Science.gov

Sample records for retrograde irregular satellites

  1. Irregular Satellites of the Planets

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    2005-01-01

    This proposal is directed towards the observational exploration of the irregular satellite systems of the planets. Primarily we use large-format CCD cameras on the world's largest telescopes, on Mauna Kea, to discover new irregular satellites and then to monitor their positions in order to ascertain their orbital characteristics. Separate observations are taken to determine the physical properties of the irregular satellites. The big picture science objective is to determine how these satellites were captures, and to use the properties of the satellites and their orbits to place constraints on early solar system (including formation) processes. Work in the first year has focussed on a major investigation of the Saturn irregular satellite system. We secured observing time on the Subaru and Gemini 8-m diameter telescopes in December 2004, January, February and March 2005 for the conduct of a deep, wide-area survey. This has resulted in the detection and orbit determination for 12 new satellites to be announced in the next week or two. Additional satellites were lost, temporarily, due to unusually poor weather conditions on Mauna Kea. These objects will be recovered and their orbits published next year. A separate survey of the Uranus irregular satellites was published (Sheppard, Jewitt and Kleyna 2005). Away from the telescope, we have discovered the amazing result that the four giant planets possess similar numbers of irregular satellites. This flies in the face of the standard gas-drag model for satellite capture, since only two of the giant planets are gas giants and the others (Uranus and Neptune) formed by a different process and in the absence of much gas. The constancy of the satellite number (each giant holds approximately 100 irregular satellites measured down to the kilometer scale) is either a coincidence, with different capture mechanisms at different planets giving by chance the same total numbers of irregular satellites, or indicates that the satellites

  2. Cartography of irregularly shaped satellites

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Edwards, Kathleen

    1987-01-01

    Irregularly shaped satellites, such as Phobos and Amalthea, do not lend themselves to mapping by conventional methods because mathematical projections of their surfaces fail to convey an accurate visual impression of the landforms, and because large and irregular scale changes make their features difficult to measure on maps. A digital mapping technique has therefore been developed by which maps are compiled from digital topographic and spacecraft image files. The digital file is geometrically transformed as desired for human viewing, either on video screens or on hard copy. Digital files of this kind consist of digital images superimposed on another digital file representing the three-dimensional form of a body.

  3. An abundant population of small irregular satellites around Jupiter.

    PubMed

    Sheppard, Scott S; Jewitt, David C

    2003-05-15

    Irregular satellites have eccentric orbits that can be highly inclined or even retrograde relative to the equatorial planes of their planets. These objects cannot have formed by circumplanetary accretion, unlike the regular satellites that follow uninclined, nearly circular and prograde orbits. Rather, they are probably products of early capture from heliocentric orbits. Although the capture mechanism remains uncertain, the study of irregular satellites provides a window on processes operating in the young Solar System. Families of irregular satellites recently have been discovered around Saturn (thirteen members, refs 6, 7), Uranus (six, ref. 8) and Neptune (three, ref. 9). Because Jupiter is closer than the other giant planets, searches for smaller and fainter irregular satellites can be made. Here we report the discovery of 23 new irregular satellites of Jupiter, so increasing the total known population to 32. There are five distinct satellite groups, each dominated by one relatively large body. The groups were most probably produced by collisional shattering of precursor objects after capture by Jupiter. PMID:12748634

  4. Capture of irregular satellites at Jupiter

    SciTech Connect

    Nesvorný, David; Vokrouhlický, David; Deienno, Rogerio

    2014-03-20

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early solar system instability when encounters between the outer planets occurred. Nesvorný et al. already showed that the irregular satellites of Saturn, Uranus, and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encounters with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary disk is found to be (1.3-3.6) × 10{sup –8}. This is roughly enough to explain the observed population of jovian irregular moons. We also confirm Nesvorný et al.'s results for the irregular satellites of Saturn, Uranus, and Neptune.

  5. Rotational dynamics of irregularly shaped natural satellites

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack

    1987-01-01

    The rotational histories of irregularly shaped satellites are studied and are found to differ from the standard picture of tidal evolution of satellite rotations. Prior to capture into the synchronous rotation resonance, a narrow attitude-unstable chaotic zone is entered and the satellite begins to tumble chaotically. It is noted that enhanced dissipation of energy during the chaotic-tumbling phase may effect the orbital evolution. The theory suggests that, eventually, the rotation stays close to one of the accessible attitude-stable islands long enough for the weak tidal torque to remove the satellite from the chaotic zone.

  6. On the Origin of the Irregular Satellites

    NASA Astrophysics Data System (ADS)

    Grav, T.; Holman, M. J.

    2003-12-01

    We present JHKs photometry of 10 Jovian and 4 Saturnian irregular satellites, taken with the Near-InfraRed Imager (NIRI) at the 8-m Gemini North Observatory on Mauna Kea, Hawaii. The observed objects have near-infrared colors consistent with C,F,D and P-type asteroids, although J XII Ananke and S IX Phoebe show weak indications of possible water features in the H filter. The four members of the Himalia-family have homogeneous near-infrared colors, as do the two members of the Gallic family, S XX Paaliaq and S XXIX Siarnaq, thus strengthening the arguments supporting the dynamical clusters as remainders of larger progenitors that were captured and subsequently broken up (Grav et al. 2003). Creating low resolution normalized reflectance spectra from 0.4 to 2.2 microns the irregular satellites are identified as C-type (J VII Pasiphae), F-type (J VI Himalia and S IX Phoebe), P-type (J XII Ananke and J XVIII Themisto) and D-type (J IX Carme and J X Sinope), showing significant diversity, and hinting to several different regions as the origin of the satellite progenitors. The work was supported by NASA grant NAG5-13276 and by the Smithsonian Predoctoral Fellowship Program.

  7. Irregular Satellites of the Giant Planets

    NASA Astrophysics Data System (ADS)

    Nicholson, P. D.; Cuk, M.; Sheppard, S. S.; Nesvorny, D.; Johnson, T. V.

    The irregular satellites of the outer planets, whose population now numbers over 100, are likely to have been captured from heliocentric orbit during the early period of solar system history. They may thus constitute an intact sample of the planetesimals that accreted to form the cores of the jovian planets. Ranging in diameter from ~2 km to over 300 km, these bodies overlap the lower end of the presently known population of transneptunian objects (TNOs). Their size distributions, however, appear to be significantly shallower than that of TNOs of comparable size, suggesting either collisional evolution or a size-dependent capture probability. Several tight orbital groupings at Jupiter, supported by similarities in color, attest to a common origin followed by collisional disruption, akin to that of asteroid families. But with the limited data available to date, this does not appear to be the case at Uranus or Neptune, while the situation at Saturn is unclear. Very limited spectral evidence suggests an origin of the jovian irregulars in the outer asteroid belt, but Saturn's Phoebe and Neptune's Nereid have surfaces dominated by water ice, suggesting an outer solar system origin. The short-term dynamics of many of the irregular satellites are dominated by large-amplitude coupled oscillations in eccentricity and inclination and offer several novel features, including secular resonances. Overall, the orbital distributions of the irregulars seem to be controlled by their long-term stability against solar and planetary perturbations. The details of the process(es) whereby the irregular satellites were captured remain enigmatic, despite significant progress in recent years. Earlier ideas of accidental disruptive collisions within Jupiter's Hill sphere or aerodynamic capture within a circumplanetary nebula have been found wanting and have largely given way to more exotic theories involving planetary migration and/or close encounters between the outer planets. With the

  8. Photometric survey of the irregular satellites

    NASA Astrophysics Data System (ADS)

    Grav, Tommy; Holman, Matthew J.; Gladman, Brett J.; Aksnes, Kaare

    2003-11-01

    We present BVRI colors of 13 jovian and 8 saturnian irregular satellites obtained with the 2.56 m Nordic Optical Telescope on La Palma, the 6.5 m Magellan Baade Telescope on La Campanas, and the 6.5 m MMT on Mt. Hopkins. The observations were performed from December 2001 to March 2002. The colors of the irregular satellites vary from grey to light red. We have arbitrarily divided the known irregular satellites into two classes based on their colors. One, the grey color class, has similar colors to the C-type asteroids, and the other, the light red color class, has colors similar to P/D-type asteroids. We also find at least one object, the jovian irregular J XXIII Kalyke, that has colors similar to the red colored Centaurs/TNOs, although its classification is insecure. We find that there is a correlation between the physical properties and dynamical properties of the irregular satellites. Most of the dynamical clusters have homogeneous colors, which points to single homogeneous progenitors being cratered or fragmented as the source of each individual cluster. The heterogeneously colored clusters are most easily explained by assuming that there are several dynamical clusters in the area, rather than just one, or that the parent body was a differentiated, heterogeneous body. By analyzing simple cratering/fragmentation scenarios, we show that the heterogeneous colored S IX Phoebe cluster, is most likely two different clusters, a grey colored cluster centered on S IX Phoebe and a light red colored cluster centered on S/2000 S 1. To which of these two clusters the remaining saturnian irregulars with inclinations close to 174° belong is not clear from our analysis, but determination of their colors should help constrain this. We also show through analysis of possible fragmentation and dispersion of the six known uranian irregulars that they most likely make up two clusters, one centered on U XVI Caliban and another centered on U XVII Sycorax. We further show that

  9. Lightcurves for 25 Irregular Satellites of Saturn

    NASA Astrophysics Data System (ADS)

    Denk, Tilmann; Mottola, Stefano

    2015-11-01

    This abstract reports rotational-lightcurve observations of irregular moons of Saturn based on disk-integrated observations with the Narrow-Angle Camera of the Cassini spacecraft. For 16 objects, synodic rotation periods have been derived at <1% accuracy, for 6 others at lower accuracy or with an ambiguity with respect to the amount of maxima and minima. The average of all 22 measured periods lies between 16 and 19 h. For the 19 objects with periods faster than 24 h, the average is ~12.5 h.The objects were observed at phase angles between 2° and 143°. Among the lightcurves obtained at low phases (< ~45°), ~85% exhibit 2 maxima and 2 minima, while only ~15% show 3max/3min. For mid-phase lightcurves (~45° to ~90°), the ratio between 2max/2min and 3max/3min lightcurves is almost equal. At high phases (> ~90°), only ~1/3 of the lightcurves display 2max/2min, while ~2/3 show 3max/3min or even 4max/4min. For low- and mid-phase angles, the lightcurve amplitudes clearly increase with increasing phase. While ~50% of the objects show lightcurves with amplitudes below ~0.4 mag at low phases, we found almost no such small amplitudes for mid and high phases. Between mid- and high-phase angles, the trend of magnitude increase lessens. The most extreme measured amplitudes were ~2.5 mag.No object with a period close to the spin barrier for Main Belt asteroids (~2.3 h) was detected. By assuming a bulk density of the Saturnian irregulars of ~1 g cm-3, the fastest measured period of 5.5 h would be close to the spin barrier for these objects.A comparison of the irregular moons' rotation periods with five orbit parameters indicates possible weak correlations with two of them: Periapses and co-latitude of the orbit pole (i' with i' = i for prograde, i' = 180°-i for retrograde moons; i is the object's orbit inclination). For moons with orbits of high i' > ~27°, no fast rotator (P < 10 h) has been found, and their average rotation period is ~1.7x longer than for the low-i' objects

  10. A deeper look at the colors of the saturnian irregular satellites

    NASA Astrophysics Data System (ADS)

    Grav, Tommy; Bauer, James

    2007-11-01

    We have performed broadband color photometry of the twelve brightest irregular satellites of Saturn with the goal of understanding their surface composition, as well as their physical relationship. We find that the satellites have a wide variety of different surface colors, from the negative spectral slopes of the two retrograde satellites S IX Phoebe ( S=-2.5±0.4) and S XXV Mundilfari ( S=-5.0±1.9) to the fairly red slope of S XXII Ijiraq ( S=19.5±0.9). We further find that there exist a correlation between dynamical families and spectral slope, with the prograde clusters, the Gallic and Inuit, showing tight clustering in colors among most of their members. The retrograde objects are dynamically and physically more dispersed, but some internal structure is apparent.

  11. Near-Infrared Spectroscopy of Himalia An Irregular Jovian Satellite

    NASA Technical Reports Server (NTRS)

    Brown, R. H.; Baines, K.; Bellucci, G.; Bibring, J.-P.; Buratti, B.; Capaccioni, F.; Cerroni, P.; Clark, R.; Coradini, A.; Cruikshank, D.

    2002-01-01

    Spectra of the irregular Jovian satellite Himalia were obtained with the Visual and Infrared Mapping Spectrometer (VIMS) onboard Cassini during the Jupiter Flyby on December 18-19, 2000. These are the first spectral data of an irregular satellite beyond 2.5 microns. Additional information is contained in the original extended abstract.

  12. Black rain: The burial of the Galilean satellites in irregular satellite debris

    NASA Astrophysics Data System (ADS)

    Bottke, William F.; Vokrouhlický, David; Nesvorný, David; Moore, Jeffrey M.

    2013-04-01

    Irregular satellites are dormant comet-like bodies that reside on distant prograde and retrograde orbits around the giant planets. They are likely to be captured objects. Dynamical modeling work indicates they may have been caught during a violent reshuffling of the giant planets ˜4 Gy ago (Ga) as described by the so-called Nice model. According to this scenario, giant planet migration scattered tens of Earth masses of comet-like bodies throughout the Solar System, with some comets finding themselves near giant planets experiencing mutual encounters. In these cases, gravitational perturbations between the giant planets were often sufficient to capture the comet-like bodies onto irregular satellite-like orbits via three-body reactions. Modeling work suggests these events led to the capture of on the order of ˜0.001 lunar masses of comet-like objects on isotropic orbits around the giant planets. Roughly half of the population was readily lost by interactions with the Kozai resonance. The remaining half found themselves on orbits consistent with the known irregular satellites. From there, the bodies experienced substantial collisional evolution, enough to grind themselves down to their current low-mass states. Here we explore the fate of the putative irregular satellite debris in the Jupiter system. Pulverized by collisions, we hypothesize that the carbonaceous chondrite-like material was beaten into small enough particles that it could be driven toward Jupiter by Poynting-Robertson (P-R) drag forces. Assuming its mass distribution was dominated by D > 50 μm particles, we find that >40% ended up striking the Galilean satellites. The majority were swept up by Callisto, with a factor of 3-4 and 20-30 fewer particles reaching Ganymede and Europa/Io, respectively. Collision evolution models indicate most of this material arrived about 4 Ga, but some is still arriving today. We predict that Callisto, Ganymede, Europa, and Io were buried about 4 Ga by ˜120-140 m, 25

  13. THE IRREGULAR SATELLITES: THE MOST COLLISIONALLY EVOLVED POPULATIONS IN THE SOLAR SYSTEM

    SciTech Connect

    Bottke, William F.; Nesvorny, David; Vokrouhlicky, David; Morbidelli, Alessandro

    2010-03-15

    The known irregular satellites of the giant planets are dormant comet-like objects that reside on stable prograde and retrograde orbits in a realm where planetary perturbations are only slightly larger than solar ones. Their size distributions and total numbers are surprisingly comparable to one another, with the observed populations at Jupiter, Saturn, and Uranus having remarkably shallow power-law slopes for objects larger than 8-10 km in diameter. Recent modeling work indicates that they may have been dynamically captured during a violent reshuffling event of the giant planets {approx}3.9 billion years ago that led to the clearing of an enormous, 35 M {sub +} disk of comet-like objects (i.e., the Nice model). Multiple close encounters between the giant planets at this time allowed some scattered comets near the encounters to be captured via three-body reactions. This implies the irregular satellites should be closely related to other dormant comet-like populations that presumably were produced at the same time from the same disk of objects (e.g., Trojan asteroids, Kuiper Belt, scattered disk). A critical problem with this idea, however, is that the size distribution of the Trojan asteroids and other related populations do not look at all like the irregular satellites. Here we use numerical codes to investigate whether collisional evolution between the irregular satellites over the last {approx}3.9 Gyr is sufficient to explain this difference. Starting with Trojan asteroid-like size distributions and testing a range of physical properties, we found that our model irregular satellite populations literally self-destruct over hundreds of Myr and lose {approx}99% of their starting mass. The survivors evolve to a low-mass size distribution similar to those observed, where they stay in steady state for billions of years. This explains why the different giant planet populations look like one another and provides more evidence that the Nice model may be viable. Our work

  14. GBT Reveals Satellite of Milky Way in Retrograde Orbit

    NASA Astrophysics Data System (ADS)

    2003-05-01

    New observations with National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) suggest that what was once believed to be an intergalactic cloud of unknown distance and significance, is actually a previously unrecognized satellite galaxy of the Milky Way orbiting backward around the Galactic center. Path of Complex H Artist's rendition of the path of satellite galaxy Complex H (in red) in relation to the orbit of the Sun (in yellow) about the center of the Milky Way Galaxy. The outer layers of Complex H are being stripped away by its interaction with the Milky Way. The hydrogen atmosphere (in blue) is shown surrounding the visible portion (in white) of the Galaxy. CREDIT: Lockman, Smiley, Saxton; NRAO/AUI Jay Lockman of the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia, discovered that this object, known as "Complex H," is crashing through the outermost parts of the Milky Way from an inclined, retrograde orbit. Lockman's findings will be published in the July 1 issue of the Astrophysical Journal, Letters. "Many astronomers assumed that Complex H was probably a distant neighbor of the Milky Way with some unusual velocity that defied explanation," said Lockman. "Since its motion appeared completely unrelated to Galactic rotation, astronomers simply lumped it in with other high velocity clouds that had strange and unpredictable trajectories." High velocity clouds are essentially what their name implies, fast-moving clouds of predominately neutral atomic hydrogen. They are often found at great distances from the disk of the Milky Way, and may be left over material from the formation of our Galaxy and other galaxies in our Local Group. Over time, these objects can become incorporated into larger galaxies, just as small asteroids left over from the formation of the solar system sometimes collide with the Earth. Earlier studies of Complex H were hindered because the cloud currently is passing almost exactly behind the outer disk of

  15. Stability of Jovian Irregular Satellites Between Callisto and Themisto

    NASA Astrophysics Data System (ADS)

    Haghighipour, Nader; Jewitt, D.

    2006-09-01

    Mauna Kea survey observations of Jovian irregular satellites indicate that the region between Callisto (the outermost regular satellite at semimajor axis of 26 Jupiter-radii) and Themisto (the innermost Jovian irregular at approximately 100 Jupiter-radii), is devoid of small objects. An explanation for this observation may lie in the dynamical nature of small bodies in this region. That is, these objects may be intrinsically unstable. To examine this scenario, we launched an extensive numerical study of the orbital stability of small bodies in the region between 30 to 80 Jupiter-radii. We simulated the dynamics of a large battery of small objects and mapped their parameter-space for different values of their semimajor axes, eccentricities, and orbital inclinations. Results indicate that this region is indeed intrinsically unstable. However, the lifetimes of objects vary with their orbital eccentricities and inclinations. We present the results of our simulations and discuss their applicability to the origin of Jovian irregular satellites. This research has been supported by NASA Astrobioilogy Institute under Cooperative Agreement NNA04CC08A.

  16. Reconstructing regional climate networks from irregularly sampled satellite data

    NASA Astrophysics Data System (ADS)

    Wiedermann, Marc; Donner, Reik V.; Sykioti, Olga; Papadimitriou, Constantinos; Kurths, Jürgen

    2015-04-01

    With the increasing availability of remote sensing data Earth System Analysis has taken a great step forward. Satellite data with high resolution in time and space allow for an in-depth analysis of small-scale processes in the climate as well as ecosystems. This data type, however, also harbors crucial conceptual complications. First, depending on whether the satellite is orbiting on an ascending or descending path systematic biases are induced into the dataset and both measurements can not be evaluated simultaneously without an appropriate preprocessing. Second, remote sensing data are usually not produced with equidistant temporal sampling, but might contain huge gaps, due to cloud cover or maintenance work and irregular time steps, due to the orbiting time of the satellite. In this work, we utilize sea surface temperature (SST) data obtained from the SMOS satellite as part of ESA's Earth Explorer Mission to study small-scale regional interactions between different parts of the Mediterranean, Aegean and Black Sea. In a first step, we create homogeneous time series for each grid point by combining data from ascending and descending satellite paths by utilizing principal component and singular spectrum analysis. To address the issue of irregular temporal sampling we utilize a kernel weighted version of the linear cross-correlation function to compute lagged correlations between all pairs of grid points in the dataset. By setting a threshold to the thus obtained correlation matrix we obtain a binary matrix which can be interpreted as the adjacency matrix of a complex network. We then use tools from complex network theory to study regional interdependencies in the study area for different time lags of up to forty days. We find that the obtained networks represent well the observed average wind directions and speeds and display interaction structures between small regions in the Aegean Sea, which are in good agreement with earlier observations. The methods presented

  17. Regional climate network analysis from irregularly sampled satellite data

    NASA Astrophysics Data System (ADS)

    Wiedermann, Marc; Sykioti, Olga; Papadimitriou, Constantinos; Balasis, George; Kurths, Jürgen; Donner, Reik V.

    2016-04-01

    With the increasing availability of remote sensing data Earth System Analysis has taken a great step forward. This type of data, however, also harbors a variety of conceptual complications. First, depending on whether the satellite is orbiting on an ascending or descending path systematic biases are induced into the data, and both measurements cannot be evaluated simultaneously without an appropriate preprocessing. Second, remote sensing data are usually not produced with equidistant temporal sampling, but might contain huge gaps and irregular time steps. Third, the time period covered by the data is often too short to perform an appropriate seasonal detrending. Here, we propose a general framework to create homogeneous anomalized time series for a (multivariate) satellite data set by combining time series from ascending and descending satellite paths or even different missions using principal component and singular spectrum analysis. We then exemplarily apply our method to sea surface temperature data obtained from the SMOS satellite mission to study small-scale regional correlative patterns covering different parts of the Aegean Sea. To address the issue of irregular temporal sampling we utilize a kernel weighted version of the linear cross-correlation function to compute lagged correlations between all pairs of grid points in the data set. By binarizing the thus obtained matrices, we obtain a network representation of the system's similarity structure. Ultimately, we use tools from complex network theory to study regional interdependencies in the study area for different time lags of up to forty days. We find that the obtained networks represent well the observed average wind directions and speeds and display interaction structures between small regions in the Aegean Sea, which are in good agreement with earlier observations. In a second step, we extend the study area to the whole Mediterranean and Black Sea and investigate lagged interactions between these two

  18. On the Tidal Radius of Satellites on Prograde and Retrograde Orbits

    NASA Astrophysics Data System (ADS)

    Gajda, Grzegorz; Łokas, Ewa L.

    2016-03-01

    A tidal radius is the distance from a satellite orbiting in a host potential beyond which its material is stripped by the tidal force. We derive a revised expression for the tidal radius of a rotating satellite that properly takes into account the possibility of prograde and retrograde orbits of stars. Besides the eccentricity of the satellite orbit, the tidal radius also depends on the ratio of the satellite internal angular velocity to the orbital angular velocity. We compare our formula to the results of two N-body simulations of dwarf galaxies orbiting a Milky-Way-like host on a prograde and retrograde orbit. The tidal radius for the retrograde case is larger than for the prograde. We introduce a kinematic radius that separates stars still orbiting the dwarf galaxy from those already stripped and following the potential of the host galaxy. We find that the tidal radius matches the kinematic radius very well. Our results provide a connection between the formalism of the tidal radius derivation and the theory of resonant stripping.

  19. Geostationary-satellite beacon-receiver array for studies of ionospheric irregularities

    SciTech Connect

    Carlos, R.C.; Jacobson, A.R.; Wu, Guanghui

    1992-09-01

    Ionospheric irregularities can be studied by various techniques. These include widely spaced Doppler sounders or ionosondes, Faraday rotation polarimetry, and two-frequency differential Doppler, and radio interferometry. With geostationary satellites, one usually uses Faraday rotation of the beacon signal to measure the ionospheric TEC. With a network of polarimeters, the horizontal wave parameters of Traveling Ionospheric Disturbances (TIDS) can be deduced, but the shortcoming of this technique is its poor sensitivity. This paper describes a geostationary-satellite beacon-receiver array at Los Alamos, New Mexico, which will be employed for the studying of ionospheric irregularities, especially the fine-scale TIDS.

  20. Geostationary-satellite beacon-receiver array for studies of ionospheric irregularities

    SciTech Connect

    Carlos, R.C.; Jacobson, A.R.; Wu, Guanghui.

    1992-01-01

    Ionospheric irregularities can be studied by various techniques. These include widely spaced Doppler sounders or ionosondes, Faraday rotation polarimetry, and two-frequency differential Doppler, and radio interferometry. With geostationary satellites, one usually uses Faraday rotation of the beacon signal to measure the ionospheric TEC. With a network of polarimeters, the horizontal wave parameters of Traveling Ionospheric Disturbances (TIDS) can be deduced, but the shortcoming of this technique is its poor sensitivity. This paper describes a geostationary-satellite beacon-receiver array at Los Alamos, New Mexico, which will be employed for the studying of ionospheric irregularities, especially the fine-scale TIDS.

  1. Detection of the plasma density irregularities in the topside ionosphere with GPS measurements onboard Swarm satellites

    NASA Astrophysics Data System (ADS)

    Zakharenkova, Irina; Cherniak, Iurii

    2016-07-01

    We present new results on the detection of the topside ionospheric irregularities/plasma bubbles using GPS measurements from Precise Orbit Determination (POD) GPS antenna onboard Low Earth Orbit (LEO) satellites. For this purpose we analyze the GPS measurements onboard the ESA's constellation mission Swarm, consisted of three identical satellites with orbit altitude of 450-550 km. We demonstrate that LEO GPS can be an effective tool for monitoring the occurrence of the topside ionospheric irregularities and may essentially contribute to the multi-instrumental analysis of the ground-based and in situ data. In the present study we analyze the occurrence and global distribution of the equatorial ionospheric irregularities during post-sunset period. To support our observations and conclusions, we involve into our analysis in situ plasma density provided by Swarm constellation. Joint analysis of the Swarm GPS and in situ measurements allows us to estimate the occurrence rate of the topside ionospheric irregularities during 2014-2015. The obtained results demonstrate a high degree of similarities in the occurrence pattern of the seasonal and longitudinal distribution of the topside ionospheric irregularities derived on both types of the satellite observations. This work was partially funded by RFBR according to the research project No.16-05-01077 a.

  2. The shape of the F-region irregularities which produce satellite scintillations Evidence for axial asymmetry.

    NASA Technical Reports Server (NTRS)

    Moorcroft, D. R.; Arima, K. S.

    1972-01-01

    Correlation analysis of three-station observations of satellite amplitude scintillations, recorded at London, Canada during the summer of 1968, have been interpreted to give information on the height, size and shape of the ionospheric irregularities. The irregularities had a mean height of 390 km, and when interpreted in terms of the usual axially-symmetric, field-aligned model, had a mean axial ratio of 6.5, and a mean dimension transverse to the magnetic field of 0.7 km. None of these parameters showed any systematic trend with geomagnetic latitude. The data for one of the passes analyzed were inconsistent with axial symmetry, and when examined in terms of a more general model, 3 of 9 passes showed evidence of irregularities which were elongated both along and transverse to the earth's magnetic field, the elongation transverse to the field tending to lie in a north-south direction.

  3. Astrometric positions for 18 irregular satellites of giant planets from 23 years of observations

    NASA Astrophysics Data System (ADS)

    Gomes-Júnior, A. R.; Assafin, M.; Vieira-Martins, R.; Arlot, J.-E.; Camargo, J. I. B.; Braga-Ribas, F.; da Silva Neto, D. N.; Andrei, A. H.; Dias-Oliveira, A.; Morgado, B. E.; Benedetti-Rossi, G.; Duchemin, Y.; Desmars, J.; Lainey, V.; Thuillot, W.

    2015-08-01

    Context. The irregular satellites of the giant planets are believed to have been captured during the evolution of the solar system. Knowing their physical parameters, such as size, density, and albedo is important for constraining where they came from and how they were captured. The best way to obtain these parameters are observations in situ by spacecrafts or from stellar occultations by the objects. Both techniques demand that the orbits are well known. Aims: We aimed to obtain good astrometric positions of irregular satellites to improve their orbits and ephemeris. Methods: We identified and reduced observations of several irregular satellites from three databases containing more than 8000 images obtained between 1992 and 2014 at three sites (Observatório do Pico dos Dias, Observatoire de Haute-Provence, and European Southern Observatory - La Silla). We used the software Platform for Reduction of Astronomical Images Automatically (PRAIA) to make the astrometric reduction of the CCD frames. The UCAC4 catalog represented the International Celestial Reference System in the reductions. Identification of the satellites in the frames was done through their ephemerides as determined from the SPICE/NAIF kernels. Some procedures were followed to overcome missing or incomplete information (coordinates, date), mostly for the older images. Results: We managed to obtain more than 6000 positions for 18 irregular satellites: 12 of Jupiter, 4 of Saturn, 1 of Uranus (Sycorax), and 1 of Neptune (Nereid). For some satellites the number of obtained positions is more than 50% of what was used in earlier orbital numerical integrations. Conclusions: Comparison of our positions with recent JPL ephemeris suggests there are systematic errors in the orbits for some of the irregular satellites. The most evident case was an error in the inclination of Carme. Position tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http

  4. Aqueous alteration affecting the irregular outer planets satellites: Evidence from spectral reflectance

    NASA Astrophysics Data System (ADS)

    Vilas, Faith; Lederer, Susan M.; Gill, Sara L.; Jarvis, Kandy S.; Thomas-Osip, Joanna E.

    2006-02-01

    The surface reflectance properties of the irregular outer planets satellites are probed for evidence for the presence of aqueous alteration products on their surfaces using the strong correlation between the 3.0-μm water of hydration absorption feature and the 0.7-μm Fe 2+ → Fe 3+ oxidized iron feature seen in low-albedo asteroid reflectances, in an effort to expand our understanding of the composition of the precursor bodies from which the dynamical satellite clusters are derived. Equations converting Johnson V and Kron-Cousins RI photometry to Eight Color Asteroid Survey v (0.550 μm), w (0.701 μm), and x (0.853 μm) photometry are derived from relationships defined by Howell (1995, Ph.D. thesis), and coupled with an algorithm previously defined to detect the presence of the 0.7-μm absorption feature in ECAS asteroid photometry [Vilas, F., 1994. Icarus 111, 456-467]. Broadband VRI photometry of Ch-class Asteroid 19 Fortuna acquired during 2004 confirms the efficacy of this method of identifying the presence of the 0.7-μm feature. Photometric observations of many recently discovered irregular outer jovian, saturnian, uranian, and neptunian satellites, coupled with limited asteroid spectroscopy, were examined for the presence of aqueous alteration. The dynamical clusters of outer irregular jovian satellites are mixed between objects that do and do not show this absorption feature. Multiple observations of some objects test both positively and negatively, similar to the surface variegation that has been observed among many C-class asteroids in the main asteroid belt. Evidence for aqueous alteration on these jovian satellites augers for an origin in or near the same location as the asteroids now occupying the aqueous alteration zone (2.6-3.5 AU), at heliocentric distances internal to Jupiter's orbit. Among the saturnian irregular satellites, only S IX Phoebe shows limited evidence of aqueous alteration from ground-based observations. The other satellites show

  5. THE 3 μm SPECTRUM OF JUPITER's IRREGULAR SATELLITE HIMALIA

    SciTech Connect

    Brown, M. E.; Rhoden, A. R. E-mail: Alyssa.Rhoden@jhuapl.edu

    2014-10-01

    We present a medium resolution spectrum of Jupiter's irregular satellite Himalia covering the critical 3 μm spectral region. The spectrum shows no evidence for aqueously altered phyllosilicates, as had been suggested from the tentative detection of a 0.7 μm absorption, but instead shows a spectrum strikingly similar to the C/CF type asteroid 52 Europa. 52 Europa is the prototype of a class of asteroids generally situated in the outer asteroid belt between less distant asteroids which show evidence for aqueous alteration and more distant asteroids which show evidence for water ice. The spectral match between Himalia and this group of asteroids is surprising and difficult to reconcile with models of the origin of the irregular satellites.

  6. The Phase Curve Survey of the Irregular Saturnian Satellites: A Possible Method of Physical Classification

    NASA Technical Reports Server (NTRS)

    Bauer, James M.; Grav, Tommy; Buratti, Bonnie J.; Hicks, Michael D.

    2006-01-01

    During its 2005 January opposition, the saturnian system could be viewed at an unusually low phase angle. We surveyed a subset of Saturn's irregular satellites to obtain their true opposition magnitudes, or nearly so, down to phase angle values of 0.01 deg. Combining our data taken at the Palomar 200-inch and Cerro Tololo Inter-American Observatory's 4-m Blanco telescope with those in the literature, we present the first phase curves for nearly half the irregular satellites originally reported by Gladman et al. [2001. Nature 412, 163-166], including Paaliaq (SXX), Siarnaq (SXXIX), Tarvos (SXXI), Ijiraq (SXXII), Albiorix (SXVI), and additionally Phoebe's narrowest angle brightness measured to date. We find centaur-like steepness in the phase curves or opposition surges in most cases with the notable exception of three, Albiorix and Tarvos, which are suspected to be of similar origin based on dynamical arguments, and Siarnaq.During its 2005 January opposition, the saturnian system could be viewed at an unusually low phase angle. We surveyed a subset of Saturn's irregular satellites to obtain their true opposition magnitudes, or nearly so, down to phase angle values of 0.01 deg. Combining our data taken at the Palomar 200-inch and Cerro Tololo Inter-American Observatory's 4-m Blanco telescope with those in the literature, we present the first phase curves for nearly half the irregular satellites originally reported by Gladman et al. [2001. Nature 412, 163-166], including Paaliaq (SXX), Siarnaq (SXXIX), Tarvos (SXXI), Ijiraq (SXXII), Albiorix (SXVI), and additionally Phoebe's narrowest angle brightness measured to date. We find centaur-like steepness in the phase curves or opposition surges in most cases with the notable exception of three, Albiorix and Tarvos, which are suspected to be of similar origin based on dynamical arguments, and Siarnaq.

  7. Ionospheric electron density irregularities observed by satellite-to-satellite, dual-frequency, low-low Doppler tracking link

    NASA Technical Reports Server (NTRS)

    Estes, R. D.; Grossi, M. D.

    1984-01-01

    A low-low, satellite-to-satellite, dual-frequency, Doppler tracking experiment was performed. The data are analyzed here for irregularities in electron density at the altitude of 212 km. The differential Doppler data with the relative motion term removed are integrated to obtain a representation of the electron density variation along the satellite path. Well-known large-scale features such as the equatorial geomagnetic anomaly and day/night ionization level differences are clearly observed in the integrated data. The larger crest of the morning geomagnetic anomaly is seen to occur in the southern (winter) hemisphere in agreement with previous observations. In addition, a sharp peak in the electron density at the day-to-night transition point is observed in two consecutive revolutions. This effect may be due to the previously postulated atmospheric shock wave generated by supersonic motion of the terminator.

  8. Distributions of irregularities, patches, and scintillation in the high-latitude F region seen by Swarm satellites

    NASA Astrophysics Data System (ADS)

    Lee, W. K.; Kil, H.; Kwak, Y. S.

    2015-12-01

    High-latitude F region is a place where intense radio scintillation is produced by various types of electron density irregularities. The irregularities are known to be associated with plasma patches (enhancements of plasma density with respect to the background density), but the irregularities of other types also frequently occur. The distribution of different types of irregularities has not yet been clearly understood. In this study, we classify the irregularity types based on the morphology and investigate their distribution by analyzing the measurements of the electron density in 2014-2015 by the Langmuir probe onboard the Swarm satellites. We also process the GPS scintillation data provided by the Swarm mission to investigate the dependence of the scintillation occurrence and intensity on the irregularity type.

  9. STP/S3-4 satellite experiment: high latitude large scale density irregularities. Memorandum report

    SciTech Connect

    Rodriguez, P.; Singh, M.; Szuszczewicz, E.P.; Walker, D.N.; Holmes, J.C.

    1981-05-26

    Large scale density irregularities in the nighttime auroral zone F-region are routinely detected by a pair of pulsed plasma probes on the S3-4 satellite. The absolute density variations can be as large as an order of magnitude and in the case of a quiet diffuse aurora, the irregularities appear to be consistent with the sheet-like structures that have been postulated to explain high latitude scintillation enhancements. In a more dynamic situation, which we believe to be a surging aurora, the density variations may be associated with a density gradient and/or current-driven plasma instability. We have made preliminary analyses of the density fluctuations and FFT power spectra for evidence of characteristic scale sizes and power law dependence. Scale sizes from 10 to 300 km are clearly evident in the irregularities; power law fits to the spectra have spectral indices in the range -1.5 to -1.7. For the diffuse aurora our results suggest support for a recent numerical study of the nonlinear evolution of the current convective instability.

  10. Near-Infrared Photometry of the Irregular Satellites of Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Grav, Tommy; Holman, Matthew J.

    2004-04-01

    We present JHKs photometry of 10 Jovian and four Saturnian irregular satellites, taken with the Near-InfraRed Imager at the 8 m Gemini North Observatory on Mauna Kea, Hawaii. The observed objects have near-infrared colors consistent with C-, P-, and D-type asteroids, although J XII Ananke and S IX Phoebe show weak indications of possible water features in the H filter. The four members of the Himalia family have similar near-infrared colors, as do the two members of the Gallic family, S XX Paaliaq and S XXIX Siarnaq. From low-resolution, normalized reflectance spectra based on the broadband colors and covering 0.4-2.2 μm, the irregular satellites are identified as C-type (J VII Pasiphae, J VI Himalia, and S IX Phoebe), P-type (J XII Ananke and J XVIII Themisto), and D-type (J IX Carme and J X Sinope), showing a diversity of origins for these objects.

  11. DC Electric Fields, Associated Plasma Drifts, and Irregularities Observed on the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.

    2011-01-01

    Results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. Compared to data obtained during more active solar conditions, the ambient DC electric fields and their associated E x B drifts are variable and somewhat weak, typically < 1 mV/m. Although average drift directions show similarities to those previously reported, eastward/outward during day and westward/downward at night, this pattern varies significantly with longitude and is not always present. Daytime vertical drifts near the magnetic equator are largest after sunrise, with smaller average velocities after noon. Little or no pre-reversal enhancement in the vertical drift near sunset is observed, attributable to the solar minimum conditions creating a much reduced neutral dynamo at the satellite altitude. The nighttime ionosphere is characterized by larger amplitude, structured electric fields, even where the plasma density appears nearly quiescent. Data from successive orbits reveal that the vertical drifts and plasma density are both clearly organized with longitude. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. The VEFI data represents a new set of measurements that are germane to numerous fundamental aspects of the electrodynamics

  12. Gravitational scattering within the Himalia group of jovian prograde irregular satellites

    NASA Astrophysics Data System (ADS)

    Christou, Apostolos A.

    2005-03-01

    We test the hypothesis that gravitational scattering within the Himalia prograde irregular satellite group is responsible for the large velocity dispersion identified by Nesvorný et al. (2003, Astron. J. 126, 398-429). We carry out numerical simulations of the dynamical evolution of this group under several scenarios for Himalia's mass for 10 yr. We find that modification of the satellite orbits is significant, 10-15% of their semimajor axes differences but <5% of the eccentricities. Additionally, the inclination of the satellite Lysithea may have been modified by a secular resonance with Himalia. We scale the observed orbital element diffusion to the age of the Solar System using a power law approximation. The projected changes in a and e can reduce the observable ejection speeds of Elara and Lysithea with respect to Himalia under the 100 m s -1 mark, rendering them consistent with hydrocode simulation results (Michel et al., 2002, Icarus 160, 10-23). The dispersion magnitude required to migrate Elara to its present orbit implies that Himalia's size has been underestimated by Cassini (Porco et al., 2003, Science 299, 1541-1547) and/or that its density is significantly higher than that of extensively fractured or "rubble-pile" bodies. In addition, Lysithea could have been created as recently as the last 500 Myr of the Solar System's history. Simple calculations indicate that such diffusion would also be evident in groups of satellites genetically related to Phoebe at Saturn, Caliban and Sycorax at Uranus and Nereid at Neptune.

  13. IRREGULAR SATELLITES OF THE OUTER PLANETS: ORBITAL UNCERTAINTIES AND ASTROMETRIC RECOVERIES IN 2009-2011

    SciTech Connect

    Jacobson, R.; Brozovic, M.; Gladman, B.; Alexandersen, M.; Nicholson, P. D.; Veillet, C.

    2012-11-01

    More than 100 small satellites have been identified orbiting the giant planets in distant, inclined, eccentric orbits. Detailed study of these objects requires that their orbits be known well enough to permit routine observations both from the Earth and from spacecraft. Unfortunately, many of the satellites have very poorly known orbits due to a scarcity of astrometric measurements. We have developed a reliable method to estimate the future on-sky position uncertainties of the satellites and have verified that those uncertainties provide a correct measure of the true on-sky positional uncertainty. Based on the uncertainties, we identified a set of satellites that are effectively 'lost' and another set that would be lost if additional observations were not obtained in the near future. We attempted recoveries of 26 of the latter group using the Hale 5 m and CFHT 3.6 m telescopes and found 23. This validated our method's predictions and led to significant improvements in our knowledge of the orbits of the recovered moons. There remains a handful of irregular moons which are recoverable and whose orbits will benefit from additional observations during the next decade, while 16 moons of Jupiter and Saturn are essentially lost and will require a re-survey to be located again.

  14. Frank Ross's Early Orbits of the First Irregular Satellites of Saturn and Jupiter

    NASA Astrophysics Data System (ADS)

    Osterbrock, Donald E.

    2006-12-01

    Frank E. Ross, later the inventor of the wide-angle lens, photographic photometer, and correcting lens for large reflecting telescopes, developed for the 200-inch, that bear his name, was also an expert on celestial mechanics. After earning his PhD at Berkeley in 1901, he worked in Washington as chief assistant to Simon Newcomb, the leading astronomer of his time, until the latter's death in 1909. W. H. Pickering, who had discovered Phoebe, the first distant, irregular satellite of Saturn, was unable to calculate an orbit for it. He asked Newcomb to do it, but the "grim dean of American astronomy" was too busy, and turned the task over to Ross to do, mostly on his own time. The young assistant succeeded, but spent many sleepless nights on the job. He and his brother Walter were also running a cigar store in Washington at the time. Charles D. Perrine at Lick Observatory discovered J VI and J VII, the first two similar satellites of Jupiter, in 1904 and 1905, and could not obtain satisfactory orbits for them either, even with Director W. W. Campbell's help. Ross then calculated their orbits also, again at a tremendous cost of effort. He used log tables, pencil and paper, and a simple adding machine for his computing tasks, as all "computers" (persons) did at that time. These three satellites were the first to be discovered by photography.

  15. The Himalia Satellite Group: A Case Study on the Dynamical Self-spreading of Families of Irregular Satellites and Asteroids

    NASA Astrophysics Data System (ADS)

    Li, Daohai; Christou, Apostolos A.

    2015-11-01

    Many of the outer planets' irregular satellites are grouped into families, thought to originate from collisional fragmentation (Nesvorný et al 2004, AJ). Interestingly, families associated with the largest irregulars are either more dispersed than expected (e.g. J6 Himalia; Nesvorný et al 2003, AJ), or do not exist at all (e.g. S9 Phoebe; Ćuk et al 2003, DDA meeting #34). Christou (2005, Icarus) found that gravitational scattering by Himalia of its own group could explain the large velocity dispersion found by Nesvorný et al (2003, AJ). At the same time, Christou identified a new type of dynamical mechanism that intermittently locks the node of the satellite J10 Lysithea to that of Himalia. The same mechanism, but due to Ceres, was recently found to operate within the Hoffmeister family, dispersing its members and allowing an estimate of its age (Novaković et al 2015, ApJ).Here we revisit the issue of family self-dispersion, aiming to better understand it by studying its effects on the Himalia group. For this we utilise (a) intensive test particle simulations on a larger scale than those by Christou (2005, Icarus) (b) a semi-analytical treatment of the new resonance based on the secular theory of coorbital motion by Namouni (1999, Icarus). This has allowed us to obtain firmer constraints on the rate of dispersion over time and on how the resonance affects the long-term evolution of the orbital elements. A principal result of this work is that particles near the resonance evolve differently than those away from it. During the meeting, we will present a new estimate of the family’s age as well as an analysis of the resonant structure and how it affects Himalia family members. We will also discuss the broader implications for the long-term evolution of orbital concentrations of small bodies in the solar system.Astronomical research at the Armagh Observatory is funded by the Northern Ireland Department of Culture, Arts and Leisure (DCAL).

  16. Discovery of two additional Jovian irregulars.

    NASA Astrophysics Data System (ADS)

    Alexandersen, M.; Gladman, B.; Jacobson, R.; Brozovic, M.; Veillet, C.

    2011-10-01

    In September 2010 Jupiter and Uranus passed each other on the sky. This allowed our team to easily recover many Jovian and Uranian irregular satellites with uncertain orbits. In addition to the planned recoveries, our observations revealed two previously undetected Jovian irregular satellites. Jacobson et al. [3] and Veillet et al. [7] provided the discovery data for S/2010 J 1 and S/2010 J 2, respectively. Follow up observations in October 2010 to January 2011 indicates that these are ˜1 km objects on bound retrograde orbits. However, the fitted orbits are still too uncertain to determine which, if any, satellite group these additional satellites belong to [2]. We will obtain additional observations in July and August 2011, allowing us to present accurate orbital and grouping information.

  17. Investigating GAIM-GM's Capability to Sense Ionospheric Irregularities via Walker Satellite Constellations

    NASA Astrophysics Data System (ADS)

    McClung, B.

    2015-12-01

    GAIM-GM is a modularized physics based data assimilation model, that ingests data from multiple data sources. One data source is slant total electron content (TEC) from a ground station network to satellites, and along the occultation path between multiple satellites. This study examines GAIM-GM's capability to sense a scintillation feature in the ionosphere, overlaid on an IFM electron density grid, from simulated satellite constellations ingesting the slant TEC values into GAIM-GM. Satellite constellations were developed in an extension of Matlab, called STK. A real ground station network generated from IGS was ingested into STK to calculate access times to the satellite constellation and use the access data to compute the slant TEC values on the perturbed IFM grid. It was discovered that a Walker constellation would give the most frequent revisit time to the scintillation feature, which co-rotates with the Earth, capturing both the day and nightside ionosphere throughout the evaluation period (96 hrs). The size of the feature was varied along with the number of satellites in the Walker constellation. 25 different scenarios with these parameters varied were created to determine the sensitivity of GAIM-GM to sense the feature. A simple heuristic algorithm was applied comparing the truth data, in this case the perturbed IFM grid, to the GAIM-GM output in each scenario across the entire grid, and for those grid points within the feature.

  18. Retrograde ejaculation

    MedlinePlus

    Retrograde ejaculation occurs when semen enters the bladder instead of going out through the urethra during ejaculation. ... bladder (bladder neck) does not close. This causes semen to go backwards into the bladder rather than ...

  19. Retrograde ejaculation

    MedlinePlus

    ... problem. Alternative Names Ejaculation retrograde; Dry climax Images Male reproductive system References Bhasin S, Basson R. Sexual dysfunction in men and women. In: Kronenberg HM, Melmed S, Polonsky KS, Larsen PR, eds. Williams ... management of male infertility. In: Wein AJ, ed. Campbell-Walsh Urology . ...

  20. An atlas of ionospheric F-region structures as determined by the NRL-747/S3-4 ionospheric irregularities satellite investigation

    NASA Astrophysics Data System (ADS)

    Szuszczewicz, E. P.; Holmes, J. C.; Walker, D. N.; Singh, M.; Rodriguez, P.; Swinney, M.; Kegley, L.

    1982-07-01

    The Naval Research Laboratory in collaboration with the Air Force Space Test Program and the Office of Naval Research conducted an 'in situ' ionospheric irregularities investigation using pulsed-plasma-probe instrumentation on the polar-orbiting STP/S3-4 satellite. The polar orbit made possible a global study of F-region ionospheric electron densities Ne, temperature Te, irregularity structures delta Ne and associated power spectral distributions Pn(k). The data provide a fundamental base upon which to catalogue similarities and differences between polar and equatorial irregularities and ultimately sort out casual mechanisms coupling plasma instabilities, ionospheric irregularities, and associated effects on communication and surveillance systems. In this report the experimental techniques is briefly described, associated data sets outlined, and a complete catalogue of ionospheric density profiles is presented covering over 600 orbits of data during the period March-September 1978.

  1. DISCOVERY OF TWO ADDITIONAL JOVIAN IRREGULARS

    SciTech Connect

    Alexandersen, M.; Gladman, B.; Veillet, C.; Jacobson, R.; Brozovic, M.; Rousselot, P.

    2012-07-15

    We report on the discovery of two previously undetected irregular satellites of Jupiter (S/2010 J 1 and S/2010 J 2) during recovery observations of other known satellites. S/2010 J 1 was discovered with the Palomar 200 inch Hale telescope on September 7 UT of 2011, while S/2010 J 2 was discovered on September 8 with the 3.5 m Canada-France-Hawaii Telescope. The satellites have r-band magnitudes of 23.2 {+-} 0.3 and 24.0 {+-} 0.3, for S/2010 J 1 and S/2010 J 2, respectively, indicating diameters of {approx}2-3 km. Both S/2010 J 1 and S/2010 J 2 are on bound retrograde orbits. Time-averaged integrated orbits suggest the association to the Carme and Ananke groups, respectively. Given that the satellites were discovered within a small field during the routine observations of the previously known irregulars, their discovery agrees with predictions that other moons of similar sizes remain undetected in the Jovian Hill sphere.

  2. Secular resonances between bodies on close orbits: a case study of the Himalia prograde group of jovian irregular satellites

    NASA Astrophysics Data System (ADS)

    Li, Daohai; Christou, Apostolos A.

    2016-06-01

    The gravitational interaction between two objects on similar orbits can effect noticeable changes in the orbital evolution even if the ratio of their masses to that of the central body is vanishingly small. Christou (Icarus 174:215-229, 2005) observed an occasional resonant lock in the differential node Δ Ω between two members in the Himalia irregular satellite group of Jupiter in the N-body simulations (corresponding mass ratio ˜ 10^{-9}). Using a semianalytical approach, we have reproduced this phenomenon. We also demonstrate the existence of two additional types of resonance, involving angle differences Δ ω and Δ (Ω +π) between two group members. These resonances cause secular oscillations in eccentricity and/or inclination on timescales ˜ 1 Myr. We locate these resonances in ( a, e, i) space and analyse their topological structure. In subsequent N-body simulations, we confirm these three resonances and find a fourth one involving Δ π. In addition, we study the occurrence rates and the stability of the four resonances from a statistical perspective by integrating 1000 test particles for 100 Myr. We find ˜ 10 to 30 librators for each of the resonances. Particularly, the nodal resonance found by Christou is the most stable: 2 particles are observed to stay in libration for the entire integration.

  3. Characteristics of small-scale ionospheric irregularities as deduced from scintillation observations of radio signals from satellites ETS-2 and Polar Bear 4 at Irkutsk

    NASA Astrophysics Data System (ADS)

    Afraimovich, E. L.; Zherebtsov, G. A.; Zvezdin, V. N.; Franke, S. J.

    1994-07-01

    This paper presents some new results on the small-scale inhomogeneous ionospheric structure obtained at a facility for spaced-antenna reception of transionospheric signals from ETS-2 and Polar Bear 4 near Irkutsk (Eastern Siberia, 52 deg N, 104 deg E). A technique based on transferring time spectra of scintillations to spatial spectra using measured horizontal irregularity drift velocities is used to obtain an estimate of the mean spatial spectrum of midlatitude scintillations. Two different methods were used to determine the inclination index of the scintillation spectrum, which was found to be equal to -2, in agreement with the value recently predicted for small-scale F region irregularities generated through mapping of small-scale, turbulent electric fields from the E region to the F region. Drift velocities of the diffraction pattern, and also the altitudes at which ionospheric irregularities are located, agree well with results obtained by other authors for midlatitudes. Using simultaneous measurements for a geostationary satellite and an orbiting satellite, the supposition about the existence of the southern boundary of the scintillation region has been confirmed. Finally, analysis of quasi-periodic (QP) scintillations and simultaneously determined diffraction pattern velocities is used to show that the height of isolated irregularities giving rise to QP scintillations corresponds to the maximum of the ionospheric F2 region.

  4. Electric Field and Plasma Density Observations of Irregularities and Plasma Instabilities in the Low Latitude Ionosphere Gathered by the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, Robert F.; Freudenreich, H.; Rowland, D.; Klenzing, J.; Liebrecht, C.

    2012-01-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set which includes detailed measurements of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations gathered on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The talk focuses on occasions where the ionosphere F-peak has been elevated above the C/NOFS satellite perigee of 400 km as solar activity has increased. In particular, during the equinox periods of 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set: The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second result is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is near or below the F-peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field

  5. Ureteral retrograde brush biopsy

    MedlinePlus

    Biopsy - brush - urinary tract; Retrograde ureteral brush biopsy cytology; Cytology - ureteral retrograde brush biopsy ... to be biopsied is rubbed with the brush. Biopsy forceps may be used instead to collect a ...

  6. Retrograde peri-implantitis.

    PubMed

    Mohamed, Jumshad B; Shivakumar, B; Sudarsan, Sabitha; Arun, K V; Kumar, T S S

    2010-01-01

    Retrograde peri-implantitis constitutes an important cause for implant failure. Retrograde peri-implantitis may sometimes prove difficult to identify and hence institution of early treatment may not be possible. This paper presents a report of four cases of (the implant placed developing to) retrograde peri-implantitis. Three of these implants were successfully restored to their fully functional state while one was lost due to extensive damage. The paper highlights the importance of recognizing the etiopathogenic mechanisms, preoperative assessment, and a strong postoperative maintenance protocol to avoid retrograde peri-implant inflammation. PMID:20922082

  7. Irregular Periods

    MedlinePlus

    ... number of days after the last one. The Menstrual Cycle Most girls get their first period between the ... to skip periods or to have an irregular menstrual cycle. Illness, rapid weight change, or stress can also ...

  8. IRAS observations of irregular galaxies

    NASA Technical Reports Server (NTRS)

    Hunter, D.; Rice, W.; Gallagher, J.; Gillett, F.

    1987-01-01

    Normal irregular galaxies seem to be unusual in having vigorous star formation yet lacking the many dark nebulae typical of spirals. The Infrared Astronomy Satellite (IRAS) observations of a large sample of irregulars are used to explore the dust contents of these galaxies. Compared to normal spirals, the irregulars generally have higher L sub IR/L sub B ratios, warmer f(100)/f(60) dust color temperatures, and lower globally-averaged dust/gas ratios. The relationship between the infrared data and various global optical properties of the galaxies is discussed.

  9. Highly Structured Plasma Density and Associated Electric and Magnetic Field Irregularities at Sub-Auroral, Middle, and Low Latitudes in the Topside Ionosphere Observed with the DEMETER and DMSP Satellites

    NASA Technical Reports Server (NTRS)

    Pfaff, Robert F.; Liebrecht, C; Berthelier, Jean-Jacques; Parrot, M.; Lebreton, Jean-Pierre

    2007-01-01

    Detailed observations of the plasma structure and irregularities that characterize the topside ionosphere at sub-auroral, middle, and low-latitudes are gathered with probes on the DEMETER and DMSP satellites. In particular, we present DEMETER observations near 700 km altitude that reveal: (1) the electric field irregularities and density depletions at mid-latitudes are remarkably similar to those associated with equatorial spread-F at low latitudes; (2) the mid-latitude density structures contain both depletions and enhancements with scale lengths along the spacecraft trajectory that typically vary from 10's to 100's of km; (3) in some cases, ELF magnetic field irregularities are observed in association with the electric field irregularities on the walls of the plasma density structures and appear to be related to finely-structured spatial currents and/or Alfven waves; (4) during severe geomagnetic storms, broad regions of nightside plasma density structures are typically present, in some instances extending from the equator to the subauroral regions; and (5) intense, broadband electric and magnetic field irregularities are observed at sub-auroral latitudes during geomagnetic storm periods that are typically associated with the trough region. Data from successive DEMETER orbits during storm periods in both the daytime and nighttime illustrate how enhancements of both the ambient plasma density, as well as sub-auroral and mid-latitude density structures, correlate and evolve with changes in the Dst. The DEMETER data are compared with near simultaneous observations gathered by the DMSP satellites near 840 km. The observations are related to theories of sub-auroral and mid-latitude plasma density structuring during geomagnetic storms and penetration electric fields and are highly germane to understanding space weather effects regarding disruption of communication and navigation signals in the near-space environment.

  10. Emerging Trends in Retrograde Signaling.

    PubMed

    Suvarna, Yashasvi; Maity, Nivedita; Shivamurthy, M C

    2016-05-01

    Retrograde signaling is defined as the signaling events leading from the plastids to the nucleus in plants and across the chemical synapse, from the postsynaptic neuron to the presynaptic neuron in animals. The discovery of various retrograde messengers has opened many avenues and clouds of thoughts as to the role of retrograde signaling. They have been implicated particularly in long-term potentiation (LTP) and synaptic plasticity. But the basic assumptions about retrograde signaling have not been studied upon for many years. This review focuses on established facts and hypothesis put forward in retrograde signaling. PMID:26081150

  11. Satellites

    SciTech Connect

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system.

  12. Irregular vertex operators for irregular conformal blocks

    NASA Astrophysics Data System (ADS)

    Polyakov, Dimitri; Rim, Chaiho

    2016-05-01

    We construct the free field representation of irregular vertex operators of arbitrary rank which generates simultaneous eigenstates of positive modes of Virasoro and W symmetry generators. The irregular vertex operators turn out to be the exponentials of combinations of derivatives of Liouville or Toda fields, creating irregular coherent states. We compute examples of correlation functions of these operators and study their operator algebra.

  13. Some background about satellites

    NASA Technical Reports Server (NTRS)

    Burns, Joseph A.

    1986-01-01

    Four tables of planetary and satellite data are presented which list satellite discoveries, planetary parameters, satellite orbits, and satellite physical properties respectively. A scheme for classifying the satellites is provided and it is noted that most known moons fall into three general classes: regular satellites, collisional shards, and irregular satellites. Satellite processes are outlined with attention given to origins, dynamical and thermal evolution, surface processes, and composition and cratering. Background material is provided for each family of satellites.

  14. Asteroid 2014 OL339: yet another Earth quasi-satellite

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2014-12-01

    Our planet has one permanently bound satellite - the Moon - a likely large number of mini-moons or transient irregular natural satellites, and three temporary natural retrograde satellites or quasi-satellites. These quasi-moons - (164207) 2004 GU9, (277810) 2006 FV35 and 2013 LX28 - are unbound companions to the Earth. The orbital evolution of quasi-satellites may transform them into temporarily bound satellites of our planet. Here, we study the dynamical evolution of the recently discovered Aten asteroid 2014 OL339 to show that it is currently following a quasi-satellite orbit with respect to the Earth. This episode started at least about 775 yr ago and it will end 165 yr from now. The orbit of this object is quite chaotic and together with 164207 are the most unstable of the known Earth quasi-satellites. This group of minor bodies is, dynamically speaking, very heterogeneous but three of them exhibit Kozai-like dynamics: the argument of perihelion of 164207 oscillates around -90°, the one of 277810 librates around 180° and that of 2013 LX28 remains around 0°. Asteroid 2014 OL339 is not currently engaged in any Kozai-like dynamics.

  15. Irregularities in Imperfective Derivation

    ERIC Educational Resources Information Center

    Levin, Maurice I.

    1977-01-01

    This article discusses presentation of Russian conjugation via the one-stem system advocated by Lipson and Townsend, and attempts a more unified and complete presentation of irregularities in imperfect derivation. Two major irregularities are occurrence of an unexpected suffix and unpredictable alternation in the root of the derived imperfective.…

  16. Ionospheric irregularity physics modelling

    SciTech Connect

    Ossakow, S.L.; Keskinen, M.J.; Zalesak, S.T.

    1982-01-01

    Theoretical and numerical simulation techniques have been employed to study ionospheric F region plasma cloud striation phenomena, equatorial spread F phenomena, and high latitude diffuse auroral F region irregularity phenomena. Each of these phenomena can cause scintillation effects. The results and ideas from these studies are state-of-the-art, agree well with experimental observations, and have induced experimentalists to look for theoretically predicted results. One conclusion that can be drawn from these studies is that ionospheric irregularity phenomena can be modelled from a first principles physics point of view. Theoretical and numerical simulation results from the aforementioned ionospheric irregularity areas will be presented.

  17. What Causes Menstrual Irregularities?

    MedlinePlus

    ... menstrual flow Smoking Depression Never having given birth Endometriosis Chronic uterine infection Additional causes of menstrual irregularity include 1 : Endometriosis Endocrine gland-related causes Poorly controlled diabetes Polycystic ...

  18. Star Formation in Irregular Galaxies.

    ERIC Educational Resources Information Center

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  19. Retrograde signaling: Organelles go networking.

    PubMed

    Kleine, Tatjana; Leister, Dario

    2016-08-01

    The term retrograde signaling refers to the fact that chloroplasts and mitochondria utilize specific signaling molecules to convey information on their developmental and physiological states to the nucleus and modulate the expression of nuclear genes accordingly. Signals emanating from plastids have been associated with two main networks: 'Biogenic control' is active during early stages of chloroplast development, while 'operational' control functions in response to environmental fluctuations. Early work focused on the former and its major players, the GUN proteins. However, our view of retrograde signaling has since been extended and revised. Elements of several 'operational' signaling circuits have come to light, including metabolites, signaling cascades in the cytosol and transcription factors. Here, we review recent advances in the identification and characterization of retrograde signaling components. We place particular emphasis on the strategies employed to define signaling components, spanning the entire spectrum of genetic screens, metabolite profiling and bioinformatics. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26997501

  20. Highly irregular quantum constraints

    NASA Astrophysics Data System (ADS)

    Klauder, John R.; Little, J. Scott

    2006-05-01

    Motivated by a recent paper of Louko and Molgado, we consider a simple system with a single classical constraint R(q) = 0. If ql denotes a generic solution to R(q) = 0, our examples include cases where R'(ql) ≠ 0 (regular constraint) and R'(ql) = 0 (irregular constraint) of varying order as well as the case where R(q) = 0 for an interval, such as a <= q <= b. Quantization of irregular constraints is normally not considered; however, using the projection operator formalism we provide a satisfactory quantization which reduces to the constrained classical system when planck → 0. It is noteworthy that irregular constraints change the observable aspects of a theory as compared to strictly regular constraints.

  1. Distant retrograde orbits for the Moon's exploration

    NASA Astrophysics Data System (ADS)

    Sidorenko, Vladislav

    We discuss the properties of the distant retrograde orbits (which are called quasi-satellite orbits also) around Moon. For the first time the distant retrograde orbits were described by J.Jackson in studies on restricted three body problem at the beginning of 20th century [1]. In the synodic (rotating) reference frame distant retrograde orbit looks like an ellipse whose center is slowly drifting in the vicinity of minor primary body while in the inertial reference frame the third body is orbiting the major primary body. Although being away the Hill sphere the third body permanently stays close enough to the minor primary. Due to this reason the distant retrograde orbits are called “quasi-satellite” orbits (QS-orbits) too. Several asteroids in solar system are in a QS-orbit with respect to one of the planet. As an example we can mention the asteroid 2002VE68 which circumnavigates Venus [2]. Attention of specialists in space flight mechanics was attracted to QS-orbits after the publications of NASA technical reports devoted to periodic moon orbits [3,4]. Moving in QS-orbit the SC remains permanently (or at least for long enough time) in the vicinity of small celestial body even in the case when the Hill sphere lies beneath the surface of the body. The properties of the QS-orbit can be studied using the averaging of the motion equations [5,6,7]. From the theoretical point of view it is a specific case of 1:1 mean motion resonance. The integrals of the averaged equations become the parameters defining the secular evolution of the QS-orbit. If the trajectory is robust enough to small perturbations in the simplified problem (i.e., restricted three body problem) it may correspond to long-term stability of the real-world orbit. Our investigations demonstrate that under the proper choice of the initial conditions the QS-orbits don’t escape from Moon or don’t impact Moon for long enough time. These orbits can be recommended as a convenient technique for the large

  2. Classical Virasoro irregular conformal block

    NASA Astrophysics Data System (ADS)

    Rim, Chaiho; Zhang, Hong

    2015-07-01

    Virasoro irregular conformal block with arbitrary rank is obtained for the classical limit or equivalently Nekrasov-Shatashvili limit using the beta-deformed irregular matrix model (Penner-type matrix model for the irregular conformal block). The same result is derived using the generalized Mathieu equation which is equivalent to the loop equation of the irregular matrix model.

  3. Erratum: IRAS observations of irregular galaxies

    NASA Technical Reports Server (NTRS)

    Hunter, D. A.; Gallagher, J. S.

    1987-01-01

    In Infrared Astronomy Satellite (IRAS) observations of irregular galaxies, galactic blue luminosities were based on standard optical definitions. The blue luminosities (L sub B) were derived from the blue absolute magnitude (M sub B) or form the in band flux. However, the L sub B system for spiral galaxies was based on quasi-bolometric (rather than in band) fluxes. The formulation and resulting statements are corrected.

  4. Irregular Cellular Learning Automata.

    PubMed

    Esnaashari, Mehdi; Meybodi, Mohammad Reza

    2015-08-01

    Cellular learning automaton (CLA) is a recently introduced model that combines cellular automaton (CA) and learning automaton (LA). The basic idea of CLA is to use LA to adjust the state transition probability of stochastic CA. This model has been used to solve problems in areas such as channel assignment in cellular networks, call admission control, image processing, and very large scale integration placement. In this paper, an extension of CLA called irregular CLA (ICLA) is introduced. This extension is obtained by removing the structure regularity assumption in CLA. Irregularity in the structure of ICLA is needed in some applications, such as computer networks, web mining, and grid computing. The concept of expediency has been introduced for ICLA and then, conditions under which an ICLA becomes expedient are analytically found. PMID:25291810

  5. Forecasting morphology and dynamics of F-layer irregularities

    SciTech Connect

    Aarons, J.

    1990-05-03

    Data and analyses are at hand to forecast the morphology and dynamics of global F-layer irregularities. For the planners of systems which are impaired by the scattering characteristics of F-layer irregularities, forecasting the morphology allows them to evaluate the utility of operating systems and to plan means for integrating back-ups. For the active users forecasting the dynamics of changes in intensity and characteristics of the irregularities as a function of geophysical conditions allows for warning operators about impending problems. For the polar region the morphological parameter used as the principal forcing function for intensification of F-layer irregularities is the solar flux. Intense irregularities appear during high sunspot number years. For the auroral region the parameter used as forcing function is magnetic activity as shown by studies of radio stars, low altitude satellites and synchronous satellites. Increased solar flux plays a role both pushing the F-layer irregularity region equatorwards in latitude and increasing the quiet day intensity. For the sub-auroral region the magnetic activity during the injection phase of the magnetic storm plays a leading role. During the recovery phase of the magnetic storm the effect of the decay of ring current ions on the sub-auroral region is such that irregularities are formed of low intensity without auroral or magnetic activity.

  6. Magnetic fields in irregular galaxies

    NASA Astrophysics Data System (ADS)

    Chyzy, Krzysztof T.

    Radio data of large irregular galaxies reveal some extended synchrotron emission with a substantial degree of polarization. In the case of NGC 4449 strong galaxy-scale regular magnetic fields were found, in spite of the lack of ordered rotation required for the conventional dynamo action. The rigidly rotating large irregular NGC 55 shows vertical polarized spurs connected with a network of ionized gas filaments. Small dwarf irregulars show only isolated polarized spots.

  7. Retrogradation enthalpy does not always reflect the retrogradation behavior of gelatinized starch

    PubMed Central

    Wang, Shujun; Li, Caili; Zhang, Xiu; Copeland, Les; Wang, Shuo

    2016-01-01

    Starch retrogradation is a term used to define the process in which gelatinized starch undergoes a disorder-to-order transition. A thorough understanding of starch retrogradation behavior plays an important role in maintaining the quality of starchy foods during storage. By means of DSC, we have demonstrated for the first time that at low water contents, the enthalpy change of retrograded starch is higher than that of native starch. In terms of FTIR and Raman spectroscopic results, we showed that the molecular order of reheated retrograded starch samples is lower than that of DSC gelatinized starch. These findings have led us to conclude that enthalpy change of retrograded starch at low water contents involves the melting of recrystallized starch during storage and residual starch crystallites after DSC gelatinization, and that the endothermic transition of retrograded starch gels at low water contents does not fully represent the retrogradation behavior of starch. Very low or high water contents do not favor the occurrence of starch retrogradation. PMID:26860788

  8. Scale analysis of equatorial plasma irregularities derived from Swarm constellation

    NASA Astrophysics Data System (ADS)

    Xiong, Chao; Stolle, Claudia; Lühr, Hermann; Park, Jaeheung; Fejer, Bela G.; Kervalishvili, Guram N.

    2016-07-01

    In this study, we investigated the scale sizes of equatorial plasma irregularities (EPIs) using measurements from the Swarm satellites during its early mission and final constellation phases. We found that with longitudinal separation between Swarm satellites larger than 0.4°, no significant correlation was found any more. This result suggests that EPI structures include plasma density scale sizes less than 44 km in the zonal direction. During the Swarm earlier mission phase, clearly better EPI correlations are obtained in the northern hemisphere, implying more fragmented irregularities in the southern hemisphere where the ambient magnetic field is low. The previously reported inverted-C shell structure of EPIs is generally confirmed by the Swarm observations in the northern hemisphere, but with various tilt angles. From the Swarm spacecrafts with zonal separations of about 150 km, we conclude that larger zonal scale sizes of irregularities exist during the early evening hours (around 1900 LT).

  9. IRAS observations of a small sample of blue irregular galaxies

    NASA Technical Reports Server (NTRS)

    Hunter, D. A.; Gillett, F. C.; Gallagher, J. S., III; Rice, W. L.; Low, F. J.

    1986-01-01

    IRAS satellite IR observations are presently used to investigate the properties of the dust in a small sample of irregular galaxies chosen to cover a wide range in levels of star formation activity. The irregulars are found to have comparatively normal IR properties; the only exception is NGC 1569, an irregular galaxy with intense global star formation which seems to have a larger dust fraction at temperatures whose energies peak at 25-60 microns, by comparison with other irregulars. DDO 47, the system with lowest star formation activity, has the lowest far-IR color temperature and highest ratio of IR to H-alpha flux; this is suggested to be due to the decreased importance of radiation from young stars in heating the dust.

  10. Anisotropy of high-latitude nighttime F region irregularities

    SciTech Connect

    Livingston, R.C.; Rino, C.L.; Owen, J.; Tsunoda, R.T.

    1982-12-01

    The anisotropy of intermediate-scale, F region irregularities in the nighttime auroral zone is described. The study is based upon spaced-receiver phase scintillation measurements made with the Wideband satellite at Poker Flat, Alaska. A systematic dependence of irregularity anisotropy with local time and magnetic latitude is observed, suggesting convective control. Sheetlike irregularities are confined to the zone of east-west drift near the equatorward boundary of the auroral zone, and at the flow reversal, or Harang discontinuity, the cross-field extension of the sheets is reduced. The extension of rodlike irregularities, which are observed poleward of the zonal convection boundary, also shows apparent convection dominance. Mechanisms for convection control of the anisotropy are discussed.

  11. C/NOFS Satellite Electric Field and Plasma Density Observations of Plasma Instabilities Below the Equatorial F-Peak -- Evidence for Approximately 500 km-Scale Spread-F "Precursor" Waves Driven by Zonal Shear Flow and km-Scale, Narrow-Banded Irregularities

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.; Liebrecht, C.; Valladares, C.

    2011-01-01

    As solar activity has increased, the ionosphere F-peak has been elevated on numerous occasions above the C/NOFS satellite perigee of 400km. In particular, during the month of April, 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set (to our knowledge): The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second new result (for C/NOFS) is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is below the F -peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. [JGR, 88, 8025, 1983

  12. Phonological Priming and Irregular Past

    ERIC Educational Resources Information Center

    Stemberger, Joseph Paul

    2004-01-01

    It has been shown that the processing of irregular past-tense forms is affected by phonological factors that are inherent in the relationship of the past-tense forms to other words in the lexicon (rhyming families of irregulars) or to their base forms (vowel dominance effects). This paper addresses more ephemeral phonological effects. In a…

  13. Process for forming retrograde profiles in silicon

    DOEpatents

    Weiner, Kurt H.; Sigmon, Thomas W.

    1996-01-01

    A process for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary from 1-1e4 are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

  14. Process for forming retrograde profiles in silicon

    DOEpatents

    Weiner, K.H.; Sigmon, T.W.

    1996-10-15

    A process is disclosed for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

  15. Causes of retrograde flow in fish keratocytes.

    PubMed

    Fuhs, Thomas; Goegler, Michael; Brunner, Claudia A; Wolgemuth, Charles W; Kaes, Josef A

    2014-01-01

    Confronting motile cells with obstacles doubling as force sensors we tested the limits of the driving actin and myosin machinery. We could directly measure the force necessary to stop actin polymerization as well as the force present in the retrograde actin flow. Combined with detailed measurements of the retrograde flow velocity and specific manipulation of actin and myosin we found that actin polymerization and myosin contractility are not enough to explain the cells behavior. We show that ever-present depolymerization forces, a direct entropic consequence of actin filament recycling, are sufficient to fill this gap, even under heavy loads. PMID:24127260

  16. External security stitch for retrograde cardioplegia cannula.

    PubMed

    Gabbieri, Davide; Pedulli, Marco; Bianchi, Tiziano; Ghidoni, Italo

    2009-01-01

    Retrograde cardioplegia catheter displacement represents a troublesome complication, frequently forcing the surgeon to interrupt the operative procedure and cannulate newly the coronary sinus. However, this maneuver is time consuming, often implies the loss of surgical exposure, and exposes again the coronary sinus to the risk of iatrogenic injuries. We describe the use of an external security stitch through the muscular right atrial wall to avoid the displacement of a retrograde cardioplegia catheter and analyze the anatomic conditions which predispose to this complication. PMID:19583611

  17. In situ measurements of the spectral characteristics of F region ionospheric irregularities

    NASA Technical Reports Server (NTRS)

    Dyson, P. L.; Mcclure, J. P.; Hanson, W. B.

    1974-01-01

    The retarding potential analyzer aboard Ogo 6 has provided high-resolution observations of the ion concentration along the satellite path. Changes in ion concentration as small as 0.03% and at times as small as 0.01% could be measured. Spatial resolution varied from 35 to 380 m. Samples of data have been analyzed to determine the spectral properties of the F region irregularities observed. The most common frequency spectrum observed suggests that the responsible irregularities result from the turbulent dissipation of larger irregularities. At the equator, the larger irregularities are probably produced by convective electric fields. At high latitudes, electric fields may also be involved, but other factors such as precipitating particles may contribute to, or be primarily responsible for, the production of large irregularities. Examples of other types of spectra associated with wavelike irregularities and with 'ground glass' (high-frequency noise) irregularities are also shown.

  18. Images of Bottomside Irregularities Observed at Topside Altitudes

    NASA Technical Reports Server (NTRS)

    Burke, William J.; Gentile, Louise C.; Shomo, Shannon R.; Roddy, Patrick A.; Pfaff, Robert F.

    2012-01-01

    We analyzed plasma and field measurements acquired by the Communication/ Navigation Outage Forecasting System (C/NOFS) satellite during an eight-hour period on 13-14 January 2010 when strong to moderate 250 MHz scintillation activity was observed at nearby Scintillation Network Decision Aid (SCINDA) ground stations. C/NOFS consistently detected relatively small-scale density and electric field irregularities embedded within large-scale (approx 100 km) structures at topside altitudes. Significant spectral power measured at the Fresnel (approx 1 km) scale size suggests that C/NOFS was magnetically conjugate to bottomside irregularities similar to those directly responsible for the observed scintillations. Simultaneous ion drift and plasma density measurements indicate three distinct types of large-scale irregularities: (1) upward moving depletions, (2) downward moving depletions, and (3) upward moving density enhancements. The first type has the characteristics of equatorial plasma bubbles; the second and third do not. The data suggest that both downward moving depletions and upward moving density enhancements and the embedded small-scale irregularities may be regarded as Alfvenic images of bottomside irregularities. This interpretation is consistent with predictions of previously reported theoretical modeling and with satellite observations of upward-directed Poynting flux in the low-latitude ionosphere.

  19. Topside ionospheric irregularities as seen from multisatellite observations

    NASA Astrophysics Data System (ADS)

    Zakharenkova, Irina; Astafyeva, Elvira

    2015-01-01

    use in situ data from CHAMP and DMSP satellites, along with data of GPS receiver onboard CHAMP satellite and ground-based GPS receivers to study the occurrence and global distribution of ionospheric irregularities during the main phase of the geomagnetic storm of 29-31 August 2004 (minimum Dst excursion of -128 nT). Using the CHAMP GPS measurements, we created maps of GPS phase fluctuation activity and found two specific zones of the most intense irregularities: (1) the region of the auroral oval at high latitudes of both hemispheres and (2) the low latitudes/equatorial region between Africa and South America. At high latitudes, the topside ionospheric irregularities appeared to be more intensive in the southern hemisphere, which is, most likely, due to seasonal variations in the interhemispheric field-aligned currents system. An analysis of multi-instrumental observations reveals reinforcement of the equatorial ionization anomaly after sunset in Atlantic sector on 30 August and formation of the significant plasma depletions and irregularities over a large longitudinal range. Equatorial irregularities were also found in the morning sector at the recovery phase of the storm. In addition to low Earth orbit (LEO) GPS measurements, we analyze the LEO in situ measurements, and we show that these two techniques cannot be interchangeable in all cases because of the altitudinal extent of plasma irregularities. Overall, we demonstrate that the LEO GPS technique can serve a useful tool for detection of the topside ionospheric irregularities during space weather events and may essentially contribute to other methods based on various instruments.

  20. Irregular sleep-wake syndrome

    MedlinePlus

    Sleep-wake syndrome - irregular ... routine during the day. The amount of total sleep time is normal, but the body clock loses ... have a different condition, such as shift work sleep disorder or jet lag syndrome.

  1. Endoscopic retrograde cholangio pancreatography (ERCP) - slideshow

    MedlinePlus

    ... Search Search MedlinePlus GO GO About MedlinePlus Site Map FAQs Contact Us Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Endoscopic retrograde cholangio pancreatography (ERCP) - series URL of this ...

  2. Retrograde Lymphatic Spread of Esophageal Cancer

    PubMed Central

    Oshiro, Hisashi; Osaka, Yoshiaki; Tachibana, Shingo; Aoki, Takaya; Tsuchiya, Takayoshi; Nagao, Toshitaka

    2015-01-01

    Abstract The concept of the retrograde lymphatic spread of cancer cells appears to account for a subset of the essential mechanisms of cancer metastasis in various organs. However, no adequate data currently exist to illustrate the pathology of the retrograde lymphatic metastasis of cancer cells in human bodies. To shed light on this phenomenon, we report a case of a 63-year-old Japanese man who underwent an esophagectomy and lymph node dissection for early-stage esophageal cancer. The patient's clinical information was evaluated by board-certified surgeons and internists. Surgically excised materials were histopathologically evaluated by attending pathologists. Postoperative pathological examination revealed that the patient's tumor was a well-differentiated squamous cell carcinoma with negative surgical margins (T1N0M0, stage I). Apart from the primary lesion, a single lymphatic vessel invasion was found between the lamina propria and lamina muscularis of the esophagus where intralymphatic cancer cells had spread against the direction of backflow prevention valves and skipped beyond these valves without destroying them. The present case demonstrated that the retrograde lymphatic spread of cancer cells can occur in valve-equipped lymphatic vessels. Our study may not only provide a scientific basis for the concept of retrograde lymphatic metastasis but also explain a portion of the complexities associated with the lymphogenous metastasis of esophageal cancer. PMID:26166121

  3. Properties of Cores Formed by Retrograde Minor Mergers.

    NASA Astrophysics Data System (ADS)

    Bak, J.

    1999-09-01

    In the last 10 years over a dozen elliptical galaxies have been observed to posses a core which rotates counter to the rest of the galaxy. In one formation scenario, dynamical friction causes a compact companion to spiral into the center of a much larger elliptical galaxy on a retrograde orbit relative to the larger galaxy's rotation. If the core of the smaller galaxy is not tidally disrupted it may carry some of it's orbital angular momentum to the center. I present results from N-body simulations, which cover the parameter space over which satellite accretion is most likely to form counter rotating cores. The kinematic parts of the results are analyzed using the penalized likelihood method of Merritt to calculate 2D line-of-sight velocity fields, including third and fourth order Gauss-Hermite terms. By combining this method with IRAF, the photometric aspects of the results are analyzed and compared with observations. The results indicate that dissipationless satellite accretion can only form counter rotating cores when the larger galaxy's intrinsic angular momentum is almost perfectly antiparallel to the orbital angular momentum of the satellite. In most other cases a kinematically distinct core is formed. I present statistical properties of the cores, which include the deviations from pure isophote ellipses as well as deviations of the line-of-sight velocity profiles from a pure Gaussian form. To test the robustness of the results, some of the simulations are redone with a minor amount of dissipation added to the satellite. These simulations indicate that including small amounts of gas does not significantly effect the conclusions. I would like to thank the Student Stipend Committee for making this presentation possible.

  4. Small satellites

    NASA Technical Reports Server (NTRS)

    Thomas, P.; Veverka, J.; Dermott, S.

    1986-01-01

    Satellites smaller than Mimas (r = 195 km) are distinguished by irregular overall shapes and by rough limb topography. Material properties and impact cratering dominate the shaping of these objects. Long fragmentation histories can produce a variety of internal structures, but so far there is no direct evidence that any small satellite is an equilibrium ellipsoid made up of noncohesive gravitationally bound rubble. One many bodies that orbit close to their primary the tidal and rotational components of surface gravity strongly affect the directions of local g and thereby affect the redistribution of regolith by mass wasting. Downslope movement of regolith is extensive on Deimos, and is probably effective on many other small satellites. It is shown that in some cases observed patterns of downslope mass wasting cold produce useful constraints on the satellite's mean density. The diversity of features seen in the few high-resolution images of small satellites currently available suggests that these objects have undergone complex histories of cratering, fragmentation, and regolith evolution.

  5. Effect of vinpocetine on retrograde axoplasmic transport.

    PubMed

    Knyihar-Csillik, Elizabeth; Vecsei, Laszlo; Mihaly, Andras; Fenyo, Robert; Farkas, Ibolya; Krisztin-Peva, Beata; Csillik, Bertalan

    2007-01-01

    Vinpocetine, a derivate of vincamine, is widely used in the clinical pharmacotherapy of cerebral circulatory diseases. Herewith we report on a novel effect of vinpocetine: inhibition of retrograde axoplasmic transport of nerve growth factor (NGF) in the peripheral nerve. Blockade of retrograde transport of NGF results in transganglionic degenerative atrophy (TDA) in the segmentally related ipsilateral superficial spinal dorsal horn, which is characterized by depletion of the marker enzymes fluoride-resistant acid phosphatase (FRAP) and thiamine monophosphatase (TMP). At the same time, pain-related neuropeptides such as substance P (SP) and calcitonin gene-related peptide (CGRP), are depleted from lamina I-III from the segmentally related, ipsitateral Rolando substance of the spinal cord. On the basis of these experiments it is suggested that vinpocetine may result in a locally restricted decrease of nociception, that might be useful in clinical treatment of intractable pain. Pilot self-experiments support this assumption. PMID:17319607

  6. ORBITAL DEPENDENCE OF GALAXY PROPERTIES IN SATELLITE SYSTEMS OF GALAXIES

    SciTech Connect

    Hwang, Ho Seong; Park, Changbom E-mail: cbp@kias.re.k

    2010-09-01

    We study the dependence of satellite galaxy properties on the distance to the host galaxy and the orbital motion (prograde and retrograde orbits) using the Sloan Digital Sky Survey (SDSS) data. From SDSS Data Release 7, we find 3515 isolated satellite systems of galaxies at z < 0.03 that contain 8904 satellite galaxies. Using this sample, we construct a catalog of 635 satellites associated with 215 host galaxies whose spin directions are determined by our inspection of the SDSS color images and/or by spectroscopic observations in the literature. We divide satellite galaxies into prograde and retrograde orbit subsamples depending on their orbital motion with respect to the spin direction of the host. We find that the number of galaxies in prograde orbit is nearly equal to that of retrograde orbit galaxies: the fraction of satellites in prograde orbit is 50% {+-} 2%. The velocity distribution of satellites with respect to their hosts is found to be almost symmetric: the median bulk rotation of satellites is -1 {+-} 8 km s{sup -1}. It is found that the radial distribution of early-type satellites in prograde orbit is strongly concentrated toward the host while that of retrograde ones shows much less concentration. We also find the orbital speed of late-type satellites in prograde orbit increases as the projected distance to the host (R) decreases while the speed decreases for those in retrograde orbit. At R less than 0.1 times the host virial radius (R < 0.1r{sub vir,host}), the orbital speed decreases in both prograde and retrograde orbit cases. Prograde satellites are on average fainter than retrograde satellites for both early and late morphological types. The u - r color becomes redder as R decreases for both prograde and retrograde orbit late-type satellites. The differences between prograde and retrograde orbit satellite galaxies may be attributed to their different origin or the different strength of physical processes that they have experienced through

  7. Lexical Semantics and Irregular Inflection

    PubMed Central

    Huang, Yi Ting; Pinker, Steven

    2010-01-01

    Whether a word has an irregular inflection does not depend on its sound alone: compare lie-lay (recline) and lie-lied (prevaricate). Theories of morphology, particularly connectionist and symbolic models, disagree on which nonphonological factors are responsible. We test four possibilities: (1) Lexical effects, in which two lemmas differ in whether they specify an irregular form; (2) Semantic effects, in which the semantic features of a word become associated with regular or irregular forms; (3) Morphological structure effects, in which a word with a headless structure (e.g., a verb derived from a noun) blocks access to a stored irregular form; (4) Compositionality effects, in which the stored combination of an irregular word’s meaning (e.g., the verb’s inherent aspect) with the meaning of the inflection (e.g., pastness) doesn’t readily transfer to new senses with different combinations of such meanings. In four experiments, speakers were presented with existing and novel verbs and asked to rate their past-tense forms, semantic similarities, grammatical structure, and aspectual similarities. We found (1) an interaction between semantic and phonological similarity, coinciding with reported strategies of analogizing to known verbs and implicating lexical effects; (2) weak and inconsistent effects of semantic similarity; (3) robust effects of morphological structure, and (4) robust effects of aspectual compositionality. Results are consistent with theories of language that invoke lexical entries and morphological structure, and which differentiate the mode of storage of regular and irregular verbs. They also suggest how psycholinguistic processes have shaped vocabulary structure over history. PMID:21151703

  8. Are Wnts Retrogradely Transported to the ER?

    PubMed

    Tang, Bor Luen

    2016-11-01

    A recent report showed that Drosophila miR-307a initiates endoplasmic reticulum (ER) stress in wingless (wg)-expressing cells by suppression of the evolutionarily conserve Wnt secretion factor Wntless (Wls). Interestingly, the authors noted that wg has a putative C-terminal dilysine motif (KKVY), which is required for its apparent retrograde Golgi-to-ER transport. Wls suppression resulted in ER stress, which was phenocopied by several other manipulations that impaired wg secretion in flies, as well as Wnt5a secretion in mammalian cells. The authors surmised that their data "reveals a previously unknown Golgi-to-ER retrograde route of wg, and elucidates a correlation between Wnt secretion and ER stress." However, there are obvious caveats to this interpretation, as ER stress resulting from Wnt secretion impairment could be readily explained by its inability to leave the ER, and not resulting from Golgi-to-ER retrograde transport. J. Cell. Physiol. 231: 2315-2316, 2016. © 2016 Wiley Periodicals, Inc. PMID:26916992

  9. Probing high latitude ionospheric irregularities by GPS: Results and analysis

    NASA Astrophysics Data System (ADS)

    Krankowski, Andrzej; Shagimuratov, Irk; Ephishov, I. I.; Sieradzki, Rafal

    The GPS measurements of IGS network were used to study the occurrence of TEC fluctuations at northern and southern high latitude ionosphere during severe geomagnetic disturbances of 22-28 July 2004. For the northern hemisphere we selected 20 GPS stations located higher than 55 degrees of Corrected Geomagnetic Latitude. For the southern hemisphere, Antarctic permanent GPS stations were used. Dual-frequency GPS measurements along individual satellite passes served as row data. As a measure a fluctuation activity the rate of TEC (ROT) was used, and fluctuation intensity was evaluated using ROTI index. Using daily GPS measurements from all the selected stations, the images of spatial and temporal behavior of TEC fluctuations (in Corrected Geomagnetic Coordinate and local geomagnetic time) were formed. Similarly to the auroral oval the images demonstrate an irregularities oval. The occurrence of irregularities oval relates with the auroral oval and polar caps. During the storm, TEC fluctuation activity and intensity essentially increased. The irregularities oval expands equatorward with increasing magnetic activity. As a whole, the dynamics of the irregularities ovals in both hemispheres are similar during the storm time, however we found some difference in development of TEC fluctuations between northern and southern ionosphere. They may be caused by seasonal features of excitation of irregularities at high latitude ionosphere. Daily pattern of the irregularities oval was controlled by the motion of the station location into auroral oval. Maximal intensity of TEC fluctuations took place over polar stations. The strong TEC fluctuations were associated with the polar patches. Their study showed that the existing high-latitude GPS stations can provide a permanent monitoring of the irregularities oval in near real-time.

  10. Irregular Dwarf Galaxy IC 1613

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Ultraviolet image (left) and visual image (right) of the irregular dwarf galaxy IC 1613. Low surface brightness galaxies, such as IC 1613, are more easily detected in the ultraviolet because of the low background levels compared to visual wavelengths.

  11. LISN: A distributed observatory to image and study ionospheric irregularities

    NASA Astrophysics Data System (ADS)

    Sheehan, R.; Valladares, C. E.

    2013-05-01

    During nighttime the low-latitude ionosphere commonly develops plasma irregularities and density structures able to disrupt radio wave signals. This interference produces an adverse impact on satellite communication and navigation signals. For example, EM signals originated from satellites can suffer fading as deep as 20 dB even at UHF frequencies. In addition, civil aviation is increasingly dependent upon Global Navigation Satellite Systems and disruption of the navigation capability from ionospheric irregularities poses a clear threat to passengers and crews. To monitor and specify the conditions of the ionosphere over South America, the Low-latitude Ionospheric Sensor Network (LISN) was established as a permanent array of scientific instruments that operate continuously and transmit their observables to a central server in a real-time basis. Presently, the LISN observatory includes 3 different types of instruments: (1) 47 GPS receivers, (2) 5 flux-gate magnetometers and (3) 2 Vertical Incidence Pulsed Ionospheric Radar (VIPIR) ionosondes. In addition to providing a nowcast of the disturbed state of the ionosphere over South America, LISN permits detailed studies of the initiation and development of plasma irregularities. By using data assimilation and tomography techniques, LISN provides continuous estimates of several important geophysical parameters that are indispensable to a program aimed at forecasting the plasma electrodynamics and the formation of density structures in the low-latitude ionosphere.

  12. GPS and in situ Swarm observations of the equatorial plasma density irregularities in the topside ionosphere

    NASA Astrophysics Data System (ADS)

    Zakharenkova, Irina; Astafyeva, Elvira; Cherniak, Iurii

    2016-07-01

    Here we study the global distribution of the plasma density irregularities in the topside ionosphere by using the concurrent GPS and Langmuir probe measurements onboard the Swarm satellites. We analyze 18 months (from August 2014 till January 2016) of data from Swarm A and B satellites that flew at 460 and 510 km altitude, respectively. To identify the occurrence of the ionospheric irregularities, we have analyzed behavior of two indices ROTI and RODI based on the change rate of total electron content and electron density, respectively. The obtained results demonstrate a high degree of similarities in the occurrence pattern of the seasonal and longitudinal distribution of the topside ionospheric irregularities derived from both types of the satellite observations. Among the seasons with good data coverage, the maximal occurrence rates for the post-sunset equatorial irregularities reached 35-50 % for the September 2014 and March 2015 equinoxes and only 10-15 % for the June 2015 solstice. For the equinox seasons the intense plasma density irregularities were more frequently observed in the Atlantic sector, for the December solstice in the South American-Atlantic sector. The highest occurrence rates for the post-midnight irregularities were observed in African longitudinal sector during the September 2014 equinox and June 2015 solstice. The observed differences in SWA and SWB results could be explained by the longitude/LT separation between satellites, as SWB crossed the same post-sunset sector increasingly later than the SWA did.

  13. Mitochondrial emitted electromagnetic signals mediate retrograde signaling.

    PubMed

    Bagkos, Georgios; Koufopoulos, Kostas; Piperi, Christina

    2015-12-01

    Recent evidence shows that mitochondria regulate nuclear transcriptional activity both in normal and cell stress conditions, known as retrograde signaling. Under normal mitochondrial function, retrograde signaling is associated with mitochondrial biogenesis, normal cell phenotype and metabolic profile. In contrast, mitochondrial dysfunction leads to abnormal (oncogenic) cell phenotype and altered bio-energetic profile (nucleus reprogramming). Despite intense research efforts, a concrete mechanism through which mitochondria determine the group of genes expressed by the nucleus is still missing. The present paper proposes a novel hypothesis regarding retrograde signaling. More specifically, it reveals the mitochondrial membrane potential (MMP) and the accompanied strong electromagnetic field (EF) as key regulatory factors of nuclear activity. Mitochondrial emitted EFs extend in long distance and affect the function of nuclear membrane receptors. Depending on their frequencies, EFs can directly activate or deactivate different groups of nuclear receptors and so determine nuclear gene expression. One of the key features of the above hypothesis is that nuclear membrane receptors, besides their own endogenous or chemical ligands (hormones, lipids, etc.), can also be activated by electromagnetic signals. Moreover, normal MMP values (about -140 mV) are associated with the production of high ATP quantities and small levels of reactive oxygen species (ROS) while the hyperpolarization observed in all cancer cell types leads to a dramatic fall in ATP production and an analogous increase in ROS. The diminished ATP and increased ROS production negatively affect the function of all cellular systems including nucleus. Restoration of mitochondrial function, which is characterized by the fluctuation of MMP and EF values within a certain (normal) range, is proposed as a necessary condition for normal nuclear function and cancer therapy. PMID:26474928

  14. A gas-poor planetesimal capture model for the formation of giant planet satellite systems

    NASA Astrophysics Data System (ADS)

    Estrada, Paul R.; Mosqueira, Ignacio

    2006-04-01

    Assuming that an unknown mechanism (e.g., gas turbulence) removes most of the subnebula gas disk in a timescale shorter than that for satellite formation, we develop a model for the formation of regular (and possibly at least some of the irregular) satellites around giant planets in a gas-poor environment. In this model, which follows along the lines of the work of Safronov et al. [1986. Satellites. Univ. of Arizona Press, Tucson, pp. 89-116], heliocentric planetesimals collide within the planet's Hill sphere and generate a circumplanetary disk of prograde and retrograde satellitesimals extending as far out as ˜R/2. At first, the net angular momentum of this proto-satellite swarm is small, and collisions among satellitesimals leads to loss of mass from the outer disk, and delivers mass to the inner disk (where regular satellites form) in a timescale ≲10 years. This mass loss may be offset by continued collisional capture of sufficiently small <1 km interlopers resulting from the disruption of planetesimals in the feeding zone of the giant planet. As the planet's feeding zone is cleared in a timescale ≲10 years, enough angular momentum may be delivered to the proto-satellite swarm to account for the angular momentum of the regular satellites of Jupiter and Saturn. This feeding timescale is also roughly consistent with the independent constraint that the Galilean satellites formed in a timescale of 10-10 years, which may be long enough to accommodate Callisto's partially differentiated state [Anderson et al., 1998. Science 280, 1573; Anderson et al., 2001. Icarus 153, 157-161]. In turn, this formation timescale can be used to provide plausible constraints on the surface density of solids in the satellitesimal disk (excluding satellite embryos ˜1 gcm for satellitesimals of size ˜1 km), which yields a total disk mass smaller than the mass of the regular satellites, and means that the satellites must form in several ˜10 collisional cycles. However, much more

  15. Mitochondrial Retrograde Signaling: Triggers, Pathways, and Outcomes

    PubMed Central

    da Cunha, Fernanda Marques; Torelli, Nicole Quesada; Kowaltowski, Alicia J.

    2015-01-01

    Mitochondria are essential organelles for eukaryotic homeostasis. Although these organelles possess their own DNA, the vast majority (>99%) of mitochondrial proteins are encoded in the nucleus. This situation makes systems that allow the communication between mitochondria and the nucleus a requirement not only to coordinate mitochondrial protein synthesis during biogenesis but also to communicate eventual mitochondrial malfunctions, triggering compensatory responses in the nucleus. Mitochondria-to-nucleus retrograde signaling has been described in various organisms, albeit with differences in effector pathways, molecules, and outcomes, as discussed in this review. PMID:26583058

  16. Spontaneous rupture on irregular faults

    NASA Astrophysics Data System (ADS)

    Liu, C.

    2014-12-01

    It is now know (e.g. Robinson et al., 2006) that when ruptures propagate around bends, the rupture velocity decrease. In the extreme case, a large bend in the fault can stop the rupture. We develop a 2-D finite difference method to simulate spontaneous dynamic rupture on irregular faults. This method is based on a second order leap-frog finite difference scheme on a uniform mesh of triangles. A relaxation method is used to generate an irregular fault geometry-conforming mesh from the uniform mesh. Through this numerical coordinate mapping, the elastic wave equations are transformed and solved in a curvilinear coordinate system. Extensive numerical experiments using the linear slip-weakening law will be shown to demonstrate the effect of fault geometry on rupture properties. A long term goal is to simulate the strong ground motion near the vicinity of bends, jogs, etc.

  17. Abundances in dwarf irregular galaxies

    NASA Technical Reports Server (NTRS)

    Dufour, Reginald J.

    1986-01-01

    The results of abundance studies of dwarf irregular galaxies and similar objects are reviewed with special attention to variations in the CNO element group. Observations of the forbidden N II and semiforbidden C III lines in the most metal-poor galaxy known, IZw 18, are presented for the first time and CNO abundances are derived via a photoionization model and discussed in the context of the abundances found in other metal-poor H II regions and galaxies.

  18. Terminal retrograde turn of rolling rings.

    PubMed

    Jalali, Mir Abbas; Sarebangholi, Milad S; Alam, Mohammad-Reza

    2015-09-01

    We report an unexpected reverse spiral turn in the final stage of the motion of rolling rings. It is well known that spinning disks rotate in the same direction of their initial spin until they stop. While a spinning ring starts its motion with a kinematics similar to disks, i.e., moving along a cycloidal path prograde with the direction of its rigid body rotation, the mean trajectory of its center of mass later develops an inflection point so that the ring makes a spiral turn and revolves in a retrograde direction around a new center. Using high speed imaging and numerical simulations of models featuring a rolling rigid body, we show that the hollow geometry of a ring tunes the rotational air drag resistance so that the frictional force at the contact point with the ground changes its direction at the inflection point and puts the ring on a retrograde spiral trajectory. Our findings have potential applications in designing topologically new surface-effect flying objects capable of performing complex reorientation and translational maneuvers. PMID:26465546

  19. Retrograde intrarenal surgery in pediatric patients.

    PubMed

    Resorlu, Berkan; Sancak, Eyup Burak; Resorlu, Mustafa; Gulpinar, Murat Tolga; Adam, Gurhan; Akbas, Alpaslan; Ozdemir, Huseyin

    2014-11-01

    Urinary tract stone disease is seen at a level of 1%-2% in childhood (< 18 years). In recent years, however, there has been a marked increased in pediatric stone disease, particularly in adolescence. A carbohydrate- and salt-heavy diet and a more sedentary lifestyle are implicated in this increase. Although stone disease is rare in childhood, its presence is frequently associated with metabolic or anatomical disorders or infectious conditions, for which reason there is a high possibility of post-therapeutic recurrence. Factors such as a high possibility of recurrence and increasing incidence further enhance the importance of minimally invasive therapeutic options in children, with their expectations of a long life. In children in whom active stone removal is decided on, the way to achieve the highest level of success with the least morbidity is to select the most appropriate treatment modality. Thanks to today's advanced technology, renal stones that were once treated only by surgery can now be treated with minimally invasive techniques, from invasion of the urinary system in an antegrade (percutaneous nephrolithotomy) or retrograde (retrograde intrarenal surgery) manner or shock wave lithotripsy to laparoscopic stone surgery. This compilation study examined studies involving the RIRS procedure, the latest minimally invasive technique, in children and compared the results of those studies with those from other techniques. PMID:25374812

  20. Terminal retrograde turn of rolling rings

    NASA Astrophysics Data System (ADS)

    Jalali, Mir Abbas; Sarebangholi, Milad S.; Alam, Mohammad-Reza

    2015-09-01

    We report an unexpected reverse spiral turn in the final stage of the motion of rolling rings. It is well known that spinning disks rotate in the same direction of their initial spin until they stop. While a spinning ring starts its motion with a kinematics similar to disks, i.e., moving along a cycloidal path prograde with the direction of its rigid body rotation, the mean trajectory of its center of mass later develops an inflection point so that the ring makes a spiral turn and revolves in a retrograde direction around a new center. Using high speed imaging and numerical simulations of models featuring a rolling rigid body, we show that the hollow geometry of a ring tunes the rotational air drag resistance so that the frictional force at the contact point with the ground changes its direction at the inflection point and puts the ring on a retrograde spiral trajectory. Our findings have potential applications in designing topologically new surface-effect flying objects capable of performing complex reorientation and translational maneuvers.

  1. Subtrochanteric fractures after retrograde femoral nailing.

    PubMed

    Mounasamy, Varatharaj; Mallu, Sathya; Khanna, Vishesh; Sambandam, Senthil

    2015-10-18

    Secondary fractures around femoral nails placed for the management of hip fractures are well known. We report, two cases of a fracture of the femur at the interlocking screw site in the subtrochanteric area after retrograde femoral nailing of a femoral shaft fracture. Only a few reports in the existing literature have described these fractures. Two young men after sustaining a fall presented to us with pain, swelling and deformity in the upper thigh region. On enquiring, examining and radiographing them, peri-implant fractures of subtrochanteric nature through the distal interlocking screws were revealed in both patients who also had histories of previous falls for which retrograde intramedullary nailing was performed for their respective femora. Both patients were managed with similar surgical routines including removal of the existing hardware, open reduction and ace cephallomedullary antegrade nailing. The second case did show evidence of delayed healing and was additionally stabilized with cerclage wires. Both patients had uneventful postoperative outcomes and union was evident at the end of 6 mo postoperatively with a good range of motion at the hip and knee. Our report suggests that though seldom reported, peri-implant fractures around the subtrochanteric region can occur and pose a challenge to the treating orthopaedic surgeon. We suggest these be managed, after initial stabilization and resuscitation, by implant removal, open reduction and interlocking intramedullary antegrade nailing. Good results and progression to union can be expected in these patients by adhering to basic principles of osteosynthesis. PMID:26495251

  2. Mid-Latitude Plasma Density Irregularities and Electromagnetic Wave Scattering

    NASA Astrophysics Data System (ADS)

    Sotnikov, V.; Kim, T.; Mishin, E.; Rose, D.; Paraschiv, I.

    2015-11-01

    Ionospheric irregularities cause scintillations of electromagnetic signals that can severely affect navigation and transionospheric communication, in particular during space storms. At midlatitudes, such space weather events are caused mainly by subauroral electric field structures (SAID/SAPS) SAID/SAPS -related shear flows and plasma density troughs point to interchange and Kelvin-Helmholtz type instabilities as a possible source of plasma irregularities. A model of nonlinear development of these instabilities based on the two-fluid hydrodynamic description with inclusion of finite Larmor radius effects will be presented. The high-resolution simulations with continuous density and velocity profiles will be driven by the ambient conditions corresponding to the in situ Defense Meteorological Satellite Program (DMSP) satellite low-resolution data during UHF/GPS L-band subauroral scintillation events. These types of density irregularities play important roles in refraction and scattering of high frequency electromagnetic signals propagating in the Earth's ionosphere, inside the plasma sheath of reentry and hypersonic vehicles, and in many other applications.

  3. High latitude TEC fluctuations and irregularity oval during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Shagimuratov, I. I.; Krankowski, A.; Ephishov, I.; Cherniak, Yu.; Wielgosz, P.; Zakharenkova, I.

    2012-06-01

    GPS measurements obtained by the global IGS network were used to study the occurrence of TEC fluctuations in the northern and southern high-latitude ionosphere during severe geomagnetic storms. In the northern hemisphere, GPS stations located higher than 55N Corrected Geomagnetic Latitude (CGL) at different longitudes were selected. In the southern hemisphere, Antarctic permanent GPS stations were used. Dual-frequency GPS measurements for individual satellite passes served as raw data. As a measure of fluctuation activity the rate of TEC (ROT) was used, and the fluctuation intensity was evaluated using the ROTI index. Using daily GPS measurements from all selected stations, images of the spatial and temporal behavior of TEC fluctuations were formed (in Corrected Geomagnetic Coordinates—CGC and geomagnetic local time—GLT). Similarly to the auroral oval, these images demonstrate an irregularity oval. The occurrence of the irregularity oval relates to the auroral oval, cusp and polar cap. During a storm, the intensity of TEC fluctuations essentially increased. The irregularity oval expands equatorward with an increase of magnetic activity. The study showed that the existing high-latitude GPS stations can provide a permanent monitoring tool for the irregularity oval in near real-time. In this paper, the features of the development of phase fluctuations at the geomagnetic conjugate points, and inter-hemispheric differences and similarities during winter and summer conditions, are discussed.

  4. Phytochrome and retrograde signalling pathways coverage to antogonistically regulate a light-induced transcription network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plastid-to-nucleus retrograde signals emitted by dysfunctional chloroplasts impact photomorphogenic development, but the molecular link between retrograde and photosensory-receptor signaling has remained undefined. Here, we show that the phytochrome (phy) and retrograde signaling pathways converge a...

  5. Study of electromagnetic wave scattering by periodic density irregularities in plasma

    SciTech Connect

    Lyle, R.; Kuo, S.P.; Huang, J.

    1995-12-31

    A quasi-particle approach is used to formulate wave propagation and scattering in a periodically structured plasma. The theory is then applied to study the effect of bottomside sinusoidal (BSS) irregularities on the propagation of beacon satellites signals through the ionosphere. In this approach, the radio wave is treated as a distribution of quasi-particles described by a Wigner distribution function governed by a transport equation. The irregularities providing the collisional effect are modeled as a two dimensional density modulation on a uniform background plasma. The present work generalizes the previous work by including the spectral bandwidth ({Delta}k/k) effect of the spatially periodic irregularities on the transionospheric signal propagation. The collision of quasi-particles with the irregularities modifies the quasi-particle distribution and give rise to the wave scattering phenomenon. The multiple scattering process is generally considered in this deterministic analysis of radio wave scattering off the ionospheric density irregularities. The analysis shows that this two dimensional density grating effectively modulates the intensity of the beacon satellite signals. This spatial modulation of the wave intensity is converted into time modulation due to the drift of the ionospheric irregularities, which then results in the scintillation of the beacon satellite signals.

  6. Case study of polar cap scintillation modeling using DE 2 irregularity measurements at 800 km

    SciTech Connect

    Basu, S.; Basu, S.; Weber, E.J.; Coley, W.R.

    1988-08-01

    High-resolution in situ Dynamics Explorer 2 data on thermal plasma densities are used here to study the small-scale irregularity structure of the F layer patches. It is shown that spatially discrete density structures associated with polar cap patches can be detected fairly high in the topside by an in situ irregularity sensor and that they correspond to temporally discrete scintillation patches. It is also shown that it is possible to model phase and amplitude scintillation occurrence from a knowledge of irregularity amplitude at a satellite altitude of about 800 km provided that independent measurements of the peak density and scale height of the F region are available. 19 references.

  7. Using Kinesthetic Activities to Teach Ptolemaic and Copernican Retrograde Motion

    ERIC Educational Resources Information Center

    Richards, Ted

    2012-01-01

    This paper describes a method for teaching planetary retrograde motion, and the Ptolemaic and Copernican accounts of retrograde motion, by means of a series kinesthetic learning activities (KLAs). In the KLAs described, the students literally walk through the motions of the planets in both systems. A retrospective statistical analysis shows that…

  8. Seth Nicholson's First Satellite Discovery: Jupiter IX and His Orbit for It

    NASA Astrophysics Data System (ADS)

    Osterbrock, Donald E.

    2006-12-01

    Seth B. Nicholson was a graduate astronomy student at the University of California in Berkeley when he discovered his first satellite in 1914. He was later to discover three more, after he had joined the Mount Wilson Observatory staff following his PhD in 1915. Nicholson had begun his thesis on the problem of computing an improved orbit for J VIII, which had been discovered by Melotte in England in 1908, a distant irregular satellite like J VI and J VII. Nicholson was taking photographic plates to measure the position of J VIII in the summer of 1914 with the Crossley 36-inch reflector of Lick Observatory. He was a teaching assistant at Berkeley that summer, but would go up to Mount Hamilton to observe on weekends in the dark of the moon, traveling by rail, stage (an automobile on a regular schedule between San Jose and the observatory) and interurban trolley car, and sleeping in a shed near the Crossley dome. He first saw J IX as a much fainter object with the same motion as J VIII on a plate he took in late July 1914, and realized it must be another satellite of the giant planet. Nicholson obtained his first orbit of J IX, which had by then become his new thesis topic, in September, and published a paper on it in early 1915. Its orbit, like that of J VIII, was retrograde and irregular, but it was considerably fainter. Nicholson, a loyal student of Armin O. Leuschner, the head of the Berkeley Astronomy Division, used his teacher's "short method" (or analytic method) to calculate the orbit.

  9. Retrograde Epidural Catheter Relieves Intractable Sacral Pain.

    PubMed

    Gupta, Ruchir; Shodhan, Shivam; Hosny, Amr

    2016-01-01

    Pain caused by tumor infiltration of the sacral area remains a major clinical challenge. Patients with poor pain control despite comprehensive medical management may be treated with neuraxial techniques such as continuous epidural or spinal anesthetic. We report a case in which a patient with metastatic breast cancer experienced inadequate pain relief after multiple intravenous pain management regimens as well as intrathecal (IT) drug delivery. The concentration of local anesthetics delivered via the IT catheter was limited due to the patient's baseline motor weakness which would be exacerbated with higher concentrations of local anesthetics. Thus, a decision was made to insert an epidural catheter via a retrograde technique to provide the patient with a "band of anesthesia" which would provide profound sensory blockade without concomitant motor weakness. Pain refractory to other modalities of pain control was successfully treated with the epidural technique. PMID:27162431

  10. Asteroids in Retrograde Orbits: Interesting Cases

    NASA Astrophysics Data System (ADS)

    Kankiewicz, Paweł; Włodarczyk, Ireneusz

    2014-12-01

    We present the most interesting examples of the orbital evolution of asteroids in retrograde orbits (i > 90°). First, we used the latest observational data to determine nominal and averaged orbital elements of these objects. Next, the equations of motion of these asteroids were integrated backward 1 My, taking into account the propagation of observational errors. We used so-called 'cloning' procedure to reproduce the reliability of initial data. We obtained some possible scenarios of the orbit inversion in the past, what is often caused by the long-term influence of outer planets. For two most interesting cases (Apollo and Amor type) we did additional calculations: 100 My in the future. Additionally, we investigated the potential influence of Yarkovski/YORP effects on the long-time orbital evolution.

  11. Retrograde Epidural Catheter Relieves Intractable Sacral Pain

    PubMed Central

    Gupta, Ruchir; Shodhan, Shivam; Hosny, Amr

    2016-01-01

    Pain caused by tumor infiltration of the sacral area remains a major clinical challenge. Patients with poor pain control despite comprehensive medical management may be treated with neuraxial techniques such as continuous epidural or spinal anesthetic. We report a case in which a patient with metastatic breast cancer experienced inadequate pain relief after multiple intravenous pain management regimens as well as intrathecal (IT) drug delivery. The concentration of local anesthetics delivered via the IT catheter was limited due to the patient's baseline motor weakness which would be exacerbated with higher concentrations of local anesthetics. Thus, a decision was made to insert an epidural catheter via a retrograde technique to provide the patient with a “band of anesthesia” which would provide profound sensory blockade without concomitant motor weakness. Pain refractory to other modalities of pain control was successfully treated with the epidural technique. PMID:27162431

  12. Detection of the Equatorial Ionospheric Irregularities Using the POD GPS Measurements

    NASA Astrophysics Data System (ADS)

    Zakharenkova, I.; Astafyeva, E.; Cherniak, I.

    2015-12-01

    By making use of GPS measurements from Precise Orbit Determination (POD) GPS antenna onboard Low Earth Orbit (LEO) satellites we present results of the equatorial irregularities/plasma bubbles detection. For a given research we use data from a multi-satellite constellation consisting of the three Swarm satellites and the TerraSAR-X satellite. The major advantage of such LEO constellation is rather similar orbit altitude of ~500 km. The GPS-based indices, characterizing the occurrence and the strength of the ionospheric irregularities, were derived from the LEO GPS observations of a zenith-looking onboard GPS antenna. To study GPS fluctuation activity at the topside equatorial ionosphere we used TEC-based indices ROT (rate of TEC change) and ROTI (rate of TEC Index), proposed by Pi et al. (1997). We demonstrate a successful implementation of this technique for several case studies of the equatorial plasma bubbles occurrence in the post-midnight and morning LT hours during the year 2014. The ionospheric irregularities detected with GPS technique in Swarm/TerrasSAR-X data are consistent with the in situ plasma density variations registered by the three Swarm satellites (PLP measurements), as well as by three DMSP satellites at ~840 km orbital height, which indicate a large altitudinal extent of the observed phenomenon. Also we analyzed the global/seasonal distribution of the ionospheric irregularities at the topside equatorial region caused the phase fluctuations in GPS measurements onboard LEO satellite. We demonstrate that ROT/ROTI technique can be applied to LEO GPS data for geomagnetically quiet and disturbed conditions, as well as detection of the storm-induced equatorial irregularities in the morning local time.

  13. Biomechanical performance of retrograde nail for supracondylar fractures stabilization.

    PubMed

    Chantarapanich, Nattapon; Sitthiseripratip, Kriskrai; Mahaisavariya, Banchong; Siribodhi, Pongwit

    2016-06-01

    The study compared the biomechanical performance of retrograde nail used to stabilize supracondylar fracture (three different levels) by means of finite element analysis. Three different nail lengths (200, 260, and 300 mm) of stainless steel and titanium nails were under consideration. Intact femur model was reconstructed from Digital Imaging and Communications in Medicine images of Thai cadaveric femur scanned by computed tomography spiral scanner, whereas geometry of retrograde nail was reconstructed with the data obtained from three-dimensional laser scanner. The retrograde nail was virtually attached to the femur before nodes and elements were generated for finite element model. The finite element models were analyzed in two stages, the early stage of fracture healing and the stage after fracture healing. The finding indicated that purchasing proximal locking screw in the bowing region of the femur may be at risk due to the high stresses at the implant and bone. There were no differences in stress level, elastic strain at a fracture gap, and bone stress between stainless steel and titanium implant. Since the intramedullary canal requires reaming to accommodate the retrograde nail, the length of retrograde nail should be as long as necessary. However, in case that the retrograde nail can be accommodated into the intramedullary canal without reaming, the longer retrograde nail can be used. PMID:27032932

  14. PRODUCTION OF NEAR-EARTH ASTEROIDS ON RETROGRADE ORBITS

    SciTech Connect

    Greenstreet, S.; Gladman, B.; Ngo, H.; Granvik, M.; Larson, S.

    2012-04-20

    While computing an improved near-Earth object (NEO) steady-state orbital distribution model, we discovered in the numerical integrations the unexpected production of retrograde orbits for asteroids that had originally exited from the accepted main-belt source regions. Our model indicates that {approx}0.1% (a factor of two uncertainty) of the steady-state NEO population (perihelion q < 1.3 AU) is on retrograde orbits. These rare outcomes typically happen when asteroid orbits flip to a retrograde configuration while in the 3:1 mean-motion resonance with Jupiter and then live for {approx}0.001 to 100 Myr. The model predicts, given the estimated near-Earth asteroid (NEA) population, that a few retrograde 0.1-1 km NEAs should exist. Currently, there are two known MPC NEOs with asteroidal designations on retrograde orbits which we therefore claim could be escaped asteroids instead of devolatilized comets. This retrograde NEA population may also answer a long-standing question in the meteoritical literature regarding the origin of high-strength, high-velocity meteoroids on retrograde orbits.

  15. Preparation of irregular mesoporous hydroxyapatite

    SciTech Connect

    Wang Hualin Zhai Linfeng; Li Yanhong; Shi Tiejun

    2008-06-03

    An irregular mesoporous hydroxyapatite (meso-HA), Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, is successfully prepared from Ca(NO{sub 3}){sub 2}.4H{sub 2}O and NH{sub 4}H{sub 2}PO{sub 4} using surfactant cetyltrimethyl ammonium bromide (CTAB) as template. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) results reveal that the positive head of CTAB is assembled on the surface precipitated HA and much NH{sub 4}{sup +} is enclosed in precipitated HA before calcination. Field scanning electron microscope (FSEM) reveals that there exist many interconnected pores throughout the HA reticular skeleton. Nitrogen adsorption-desorption experiment exhibits a mesoporous material type IV curve, and pore size distribution calculated from the desorption branch of the isotherms based on Barrett-Joyner-Halenda (BJH) model shows that most pores throughout the HA reticular skeleton are sized at about 40 nm, but the pores are not uniform on the whole, owning to decomposition of the 'organic' CTAB templating structures and ammonium salt enclosed in the precipitated HA. The specific surface area of irregular meso-HA is calculated to be 37.6 m{sup 2}/g according to the Brunauer-Emmett-Teller (BET) equation. Moreover, after polylactic acid/meso-HA (PLA/meso-HA) composites degraded 12 weeks in normal saline at 37 deg. C, the interconnected pores throughout the HA skeleton were enlarged and sized in micron degree, which resemble trabecular bone structure very much.

  16. Using Kinesthetic Activities to Teach Ptolemaic and Copernican Retrograde Motion

    NASA Astrophysics Data System (ADS)

    Richards, Ted

    2012-06-01

    This paper describes a method for teaching planetary retrograde motion, and the Ptolemaic and Copernican accounts of retrograde motion, by means of a series kinesthetic learning activities (KLAs). In the KLAs described, the students literally walk through the motions of the planets in both systems. A retrospective statistical analysis shows that students who participated in these activities performed better on examination questions pertaining to retrograde motion than students who did not. Potential explanations for this result, including the breaking of classroom routine, the effect of body movement on conceptual memory, and egocentric spatial proprioception, are considered.

  17. The 'SAFARI' Technique Using Retrograde Access Via Peroneal Artery Access

    SciTech Connect

    Zhuang, Kun Da; Tan, Seck Guan; Tay, Kiang Hiong

    2012-08-15

    The 'SAFARI' technique or subintimal arterial flossing with antegrade-retrograde intervention is a method for recanalisation of chronic total occlusions (CTOs) when subintimal angioplasty fails. Retrograde access is usually obtained via the popliteal, distal anterior tibial artery (ATA)/dorsalis pedis (DP), or distal posterior tibial artery (PTA). Distal access via the peroneal artery has not been described and has a risk of continued bleeding, leading to compartment syndrome due to its deep location. We describe our experience in two patients with retrograde access via the peroneal artery and the use of balloon-assisted hemostasis for these retrograde punctures. This approach may potentially give more options for endovascular interventions in lower limb CTOs.

  18. Retrograde crossing for chronic total occlusion lesions: the Japanese way.

    PubMed

    Takano, Masamichi; Mizuno, Kyoichi

    2008-01-01

    Percutaneous coronary intervention (PCI) for chronic total occlusion (CTO) lesions remains one of the major challenges in the field of interventional cardiology. Crossing guidewires through the CTO lesions has been conventionally performed from the proximal arteries to the lesions as an antegrade approach. To date, a retrograde approach, to penetrate PCI devices including guidewires and balloons into the distal end of CTO lesions via collateral vessels or coronary artery bypass grafts, has been attempted in order to achieve procedural success. With introduction of the retrograde approach for treatments of CTO lesions, several kinds of devices, techniques, and strategies have been developed. Although the techniques and strategies for the retrograde approach have not been worldwide accepted to interventional cardiologists, we introduce a way to obtain recanalization of the CTO lesions using the retrograde approach in this article. PMID:19276488

  19. Fundamental studies of retrograde reactions in direct liquefaction

    SciTech Connect

    Serio, M.A.; Solomon, P.R.; Bassilakis, R.; Kroo, E.

    1989-01-01

    Most of the proposed processing schemes for improving liquefaction yields involve favoring bond-breaking and radical stabilization reactions over the retrograde reactions. The retrograde reactions are often encountered before liquefaction temperatures are reached. The objective of this program is to elucidate and model the retrograde reaction chemistry in direct coal liquefaction through the application of experimental techniques and theoretical models which have been successfully employed at Advanced Fuel Research (AFR) and SRI International (a subcontractor) to understand and predict coal reaction behavior. The study of retrograde reactions is being done using an integrated approach using extensive characterization of the liquefaction chemistry of three kinds of systems: (1) model polymers; (2) coal; and (3) modified coals.

  20. The inner satellites of Jupiter

    NASA Technical Reports Server (NTRS)

    Veverka, J.; Thomas, P.; Synott, S.

    1981-01-01

    The Jupiter moon Amalthea and the smaller satellites J1, J2, and J3, discovered by Voyagers 1 and 2, are discussed under the collective appellation of 'inner satellites', which distinguishes them from the Galilean satellites and the outer satellites, J6-J13. Amalthea is a dark, irregular body on which two large craters are visible, with an estimated surface gravity of 5-7 cm/sec-squared. It is speculated that Amalthea's unique color/reflectance characteristics are due to prolonged charged particle and high-velocity micrometeoroid exposure. Dimensional data are presented for J1-3.

  1. Retrograde Melting and Internal Liquid Gettering in Silicon

    SciTech Connect

    Hudelson, Steve; Newman, Bonna K.; Bernardis, Sarah; Fenning, David P.; Bertoni, Mariana I.; Marcus, Matthew A.; Fakra, Sirine C.; Lai, Barry; Buonassisi, Tonio

    2011-07-01

    Retrograde melting (melting upon cooling) is observed in silicon doped with 3d transition metals, via synchrotron-based temperature-dependent X-ray microprobe measurements. Liquid metal-silicon droplets formed via retrograde melting act as efficient sinks for metal impurities dissolved within the silicon matrix. Cooling results in decomposition of the homogeneous liquid phase into solid multiple-metal alloy precipitates. These phenomena represent a novel pathway for engineering impurities in semiconductor-based systems.

  2. Retrograde intrarenal surgery in cross-fused ectopic kidney.

    PubMed

    Resorlu, Mustafa; Kabar, Mucahit; Resorlu, Berkan; Doluoglu, Omer Gokhan; Kilinc, Muhammet Fatih; Karakan, Tolga

    2015-02-01

    Cross-fused renal ectopia is a rare congenital anomaly in which both kidneys are fused and located on the same side. We report a case of right-to-left cross-fused renal ectopia and nephrolithiasis, in whom retrograde intrarenal surgery was used to treat the stone disease. To our knowledge, this is the first case of retrograde intrarenal surgery of a crossed-fused ectopic kidney. PMID:25481231

  3. The localized origin of equatorial F region irregularity patches

    NASA Technical Reports Server (NTRS)

    Aarons, J.; Buchau, J.; Mcclure, J. P.; Basu, S.

    1978-01-01

    An intensive study of nighttime irregularities of electron density in the equatorial ionosphere was performed in October 1976 by making 50-MHz radar backscatter measurements at Jicamarca, Peru, and scintillation measurements of 249-MHz transmissions from Les 9 at two ground stations (Ancon and Huancayo, both in Peru) as well as by aircraft flying in the vicinity of the stations. The 137-MHz scintillations from the orbiting Wideband satellite were also recorded at Huancayo. The results of such measurements made on October 16-17, 1976, are discussed in this report. We find that on this particular night a large-scale irregularity patch evolved first in the west, as was detected by the radar at Jicamarca, and drifted eastward to cause successive onsets of scintillation activity on propagation paths from Ancon and Huancayo. The observations indicate the east-west dimension of the large-scale structure to be 400 km drifting eastward at a speed of approximately 100 m/s, having a lifetime of several hours, and containing a hierarchy of irregularity scale sizes in the range of kilometers to meters causing both scintillations at 249 MHz and radar backscatter at 50 MHz.

  4. The role of TIDs in the creation of the electron density irregularities in the middle-latitude F region

    NASA Astrophysics Data System (ADS)

    Oh, S. J.; Kil, H.; Kwak, Y. S.; Lee, W. K.; Tae-yong, Y.; Park, J.

    2015-12-01

    The creation of the electron density irregularities in the middle latitude F region is often interpreted in association with traveling ionospheric disturbances (TIDs). However, the occurrence climatology of the irregularities is somewhat different from that of TIDs, and therefore, a different source of the irregularities may exist. In this study, we investigate the variability of the middle-latitude irregularities with local time, season, and solar cycle by analyzing the measurements of the ion density by the CHAMP (2001-2009) and Swarm (2014-2015) satellite observations. The occurrence climatology of the field-aligned irregularities (FAIs) in middle latitude is also investigated with the VHF radar observations acquired since January 2010 at Daejeon in South Korea. The role of TIDs in the creation of the middle latitude irregularities and FAIs is investigated by comparing the their occurrence climatology with the climatology of TIDs. The conventional wisdom is that the activity of TID decreases with an increase of the solar activity. However, our preliminary results show that the occurrence rate of the FAI increases with an increase of the solar activity. The distribution of the irregularities derived from the analysis of the satellite observations may provide insight into the relationship between TIDs, FAIs, and irregularities.

  5. OGO 6 ion concentration irregularity studies

    NASA Technical Reports Server (NTRS)

    Mcclure, J. P.

    1973-01-01

    Research is reported concerning the ionospheric F-region irregularities. The results are based on in-situ OGO-6 measurements of the total ion concentration N sub i. A proposed mechanism for the generation of equatorial F-region irregularities and the morphological results, and the occurrence of Fe(+) ions in the equatorial F-region are discussed. Related research papers are included.

  6. Global Distribution of Density Irregularities in the Equatorial Ionosphere

    NASA Technical Reports Server (NTRS)

    Kil, Hyosub; Heelis, R. A.

    1998-01-01

    We analyzed measurements of ion number density made by the retarding potential analyzer aboard the Atmosphere Explorer-E (AE-E) satellite, which was in an approximately circular orbit at an altitude near 300 km in 1977 and later at an altitude near 400 km. Large-scale (greater than 60 km) density measurements in the high-altitude regions show large depletions of bubble-like structures which are confined to narrow local time longitude, and magnetic latitude ranges, while those in the low-altitude regions show relatively small depletions which are broadly distributed,in space. For this reason we considered the altitude regions below 300 km and above 350 km and investigated the global distribution of irregularities using the rms deviation delta N/N over a path length of 18 km as an indicator of overall irregularity intensity. Seasonal variations of irregularity occurrence probability are significant in the Pacific regions, while the occurrence probability is always high in die Atlantic-African regions and is always low in die Indian regions. We find that the high occurrence probability in the Pacific regions is associated with isolated bubble structures, while that near 0 deg longitude is produced by large depictions with bubble structures which are superimposed on a large-scale wave-like background. Considerations of longitude variations due to seeding mechanisms and due to F region winds and drifts are necessary to adequately explain the observations at low and high altitudes. Seeding effects are most obvious near 0 deg longitude, while the most easily observed effect of the F region is the suppression of irregularity growth by interhemispheric neutral winds.

  7. Endoscopic retrograde cholangiopancreatography during pregnancy without radiation

    PubMed Central

    Akcakaya, Adem; Ozkan, Orhan Veli; Okan, Ismail; Kocaman, Orhan; Sahin, Mustafa

    2009-01-01

    AIM: To present our experience with pregnant patients who underwent endoscopic retrograde cholangiopancreatography (ERCP) without using radiation, and to evaluate the acceptability of this alternative therapeutic pathway for ERCP during pregnancy. METHODS: Between 2000 and 2008, six pregnant women underwent seven ERCP procedures. ERCP was performed under mild sedoanalgesia induced with pethidine HCl and midazolam. The bile duct was cannulated with a guidewire through the papilla. A catheter was slid over the guidewire and bile aspiration and/or visualization of the bile oozing around the guidewire was used to confirm correct cannulation. Following sphincterotomy, the bile duct was cleared by balloon sweeping. When indicated, stents were placed. Confirmation of successful biliary cannulation and stone extraction was made by laboratory, radiological and clinical improvement. Neither fluoroscopy nor spot radiography was used during the procedure. RESULTS: The mean age of the patients was 28 years (range, 21-33 years). The mean gestational age for the fetus was 23 wk (range, 14-34 wk). Five patients underwent ERCP because of choledocholithiasis and/or choledocholithiasis-induced acute cholangitis. In one case, a stone was extracted after precut papillotomy with a needle-knife, since the stone was impacted. One patient had ERCP because of persistent biliary fistula after hepatic hydatid disease surgery. Following sphincterotomy, scoleces were removed from the common bile duct. Two weeks later, because of the absence of fistula closure, repeat ERCP was performed and a stent was placed. The fistula was closed after stent placement. Neither post-ERCP complications nor premature birth or abortion was seen. CONCLUSION: Non-radiation ERCP in experienced hands can be performed during pregnancy. Stent placement should be considered in cases for which complete common bile duct clearance is dubious because of a lack of visualization of the biliary tree. PMID:19653343

  8. Surgical correction of postliposuction contour irregularities.

    PubMed

    Chang, K N

    1994-07-01

    The surgical correction of postliposuction contour irregularities and the results are presented. Postliposuction contour irregularities are classified as major or minor according to the size of the area, severity of the irregularity, difficulty of the correction, visual impact, and the need for dermolipectomy. Methods of correction include (1) liposuction of the area of protuberance, (2) liposuction around the area of depression, (3) simultaneous fat grafting, and (4) dermolipectomy. Results of 22 patients with 43 areas of postliposuction contour irregularities were analyzed. Follow-up ranged from 1 to 4.8 years (mean 2.1 +/- 1.0 years). All patients had corrective liposuction except one, who required medial thigh dermolipectomy. Fat grafting was performed in 19 areas in 9 patients. Average number of operations performed was 1.4 per patient (range 1 to 3). Of 17 areas of minor postliposuction contour irregularities, 8 (47 percent) were improved and 8 (47 percent) were corrected. Of 26 areas of major postliposuction contour irregularities, 17 (65 percent) were improved and 8 (31 percent) were corrected. Of all 43 areas, 25 (58 percent) were improved and 16 (37 percent) were corrected. Overcorrection in two areas (4.7 percent) resulted in minor depressions in 2 patients. Results from 5 patients are presented. In summary, postliposuction contour irregularities were treated with various surgical techniques with a high rate of improvement or correction. PMID:8016225

  9. Faster diffusion across an irregular boundary.

    PubMed

    Rozanova-Pierrat, A; Grebenkov, D S; Sapoval, B

    2012-06-15

    We investigate how the shape of a heat source may enhance global heat transfer at short time. An experiment is described that allows us to obtain a direct visualization of heat propagation from a prefractal radiator. We show, both experimentally and numerically, that irregularly shaped passive coolers rapidly dissipate at short times, but their efficiency decreases with time. The de Gennes scaling argument is shown to be only a large scale approximation, which is not sufficient to describe adequately the temperature distribution close to the irregular frontier. This work shows that radiators with irregular surfaces permit increased cooling of pulsed heat sources. PMID:23004251

  10. Ionospheric irregularity physics modelling. Memorandum report

    SciTech Connect

    Ossakow, S.L.; Keskinen, M.J.; Zalesak, S.T.

    1982-02-09

    Theoretical and numerical simulation techniques have been employed to study ionospheric F region plasma cloud striation phenomena, equatorial spread F phenomena, and high latitude diffuse auroral F region irregularity phenomena. Each of these phenomena can cause scintillation effects. The results and ideas from these studies are state-of-the-art, agree well with experimental observations, and have induced experimentalists to look for theoretically predicted results. One conclusion that can be drawn from these studies is that ionospheric irregularity phenomena can be modelled from a first principles physics point of view. Theoretical and numerical simulation results from the aforementioned ionospheric irregularity areas will be presented.

  11. Discovery of 12 satellites of Saturn exhibiting orbital clustering.

    PubMed

    Gladman, B; Kavelaars, J J; Holman, M; Nicholson, P D; Burns, J A; Hergenrother, C W; Petit, J M; Marsden, B G; Jacobson, R; Gray, W; Grav, T

    2001-07-12

    The giant planets in the Solar System each have two groups of satellites. The regular satellites move along nearly circular orbits in the planet's orbital plane, revolving about it in the same sense as the planet spins. In contrast, the so-called irregular satellites are generally smaller in size and are characterized by large orbits with significant eccentricity, inclination or both. The differences in their characteristics suggest that the regular and irregular satellites formed by different mechanisms: the regular satellites are believed to have formed in an accretion disk around the planet, like a miniature Solar System, whereas the irregulars are generally thought to be captured planetesimals. Here we report the discovery of 12 irregular satellites of Saturn, along with the determinations of their orbits. These orbits, along with the orbits of irregular satellites of Jupiter and Uranus, fall into groups on the basis of their orbital inclinations. We interpret this result as indicating that most of the irregular moons are collisional remnants of larger satellites that were fragmented after capture, rather than being captured independently. PMID:11449267

  12. Retrograde, charnockite- gneiss relations in Southern India

    NASA Technical Reports Server (NTRS)

    Srikantappa, C.; Ashamanjari, K. G.; Narasimha, K. N. Prakash; Raith, M.

    1988-01-01

    The high-pressure charnockites (P = 8 to 9 Kb., T = 700 to 800 C CO2-rich fluid regime) of the Nilgiri hills show evidence of retrogression related to shear deformation within the Moyar and Bhavani shear belts. Two types of retrogression have been noticed: (1) retrogression along shear planes, and (2) retrogression along pegmatitic veins. Initial stages of retrogression results in the formation of irregular, 2 to 3 cm to one meter wide bleached zones with the removal of greasy grey color of charnockites. Minor structures which were earlier obscured in charnockites are clearly seen in bleached areas. In intensely shear areas, formation of highly fissile grey gneiss results often with the development of flaser and mylonitic structures. Fluid inclusion studies and geochemical investigations carried out for serial samples collected from charnockite to gneiss indicate following features: (1) there is a gradual decrease in density of CO2-rich fluids from 1.073 to 0.821 g/cu cm; (2) interestingly, in many sections of the gneisses studied, there is almost complete absence of fluid inclusions suggesting that they would have decrepitated (this may be due to large pressure difference (2 to 3 Kb.) created between the interior and exterior of the fluid inclusions); and (3) presence of mixed CO2-H2O inclusions were noticed.

  13. Irregular sesquiterpenoids from Ligusticum grayi roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root oil of Ligusticum grayi (Apiaceae) contains numerous irregular sesquiterpenoids. In addition to the known acyclic sesquilavandulol and a new sesquilavandulyl aldehyde, two thapsanes, one epithapsane, and fourteen sesquiterpenoids representing eight novel carbon skeletons were found. The new sk...

  14. Irregular Heartbeat More Deadly in Blacks

    MedlinePlus

    ... fullstory_159510.html Irregular Heartbeat More Deadly in Blacks: Study They were twice as likely to suffer ... 22, 2016 WEDNESDAY, June 22, 2016 (HealthDay News) -- Black Americans with a common heart rhythm disorder are ...

  15. Fundamental studies of retrograde reactions in direct liquefaction

    SciTech Connect

    Serio, M.A.; Solomon, P.R.; Kroo, E.; Charpenay, S.; Bassilakis, R.

    1991-12-17

    The overall objective of the program was to improve the understanding of retrograde reactions and their dependencies on coal rank and structure, and/or coal modifications and reaction conditions. Because retrograde reactions are competitive with bond breaking reactions, an understanding of both is required to shift the competition in favor of the latter. Related objectives were to clarify the conflicting observations reported in literature on such major topics as the role of oxygen groups in retrograde reactions and to provide a bridge from very fundamental studies on pure compounds to phenomenological studies on actual coal. This information was integrated into the FG-DVC model, which was improved and extended to the liquefaction context.

  16. Study of the prograde and retrograde Chandler excitation

    NASA Astrophysics Data System (ADS)

    Zotov, , L.; Bizouard, , C.

    2014-12-01

    Observed motion of the Earth's rotation axis consists of components at both positive and negative frequencies. New generalized equations of Bizouard, which takes into account triaxiality of the Earth and asymmetry of the ocean tide, show that retrograde and prograde excitations are coupled. In this work using designed narrow-band filter and inversion we reconstruct geodetic excitation at the prograde and retrograde Chandler frequencies. Then we compare it with geophysical excitation, filtered out from the series of the oceanic angular momentum (OAM) and atmospheric angular momentum (AAM) for 1960-2000 yrs. Their sum coincides well with geodetic excitation only in the prograde Chandler band. The retrograde excitation coincides worse, probably in result of amplification of observational noises.

  17. The structure of irregular mesospheric variations.

    NASA Technical Reports Server (NTRS)

    Justus, C. G.

    1972-01-01

    The daily difference method developed by Woodrum and Justus (1968) has been used to analyze the existing data in the height range from 50 to 200 km for irregular variations which could be due to gravity waves. The results presented establish the magnitude as well as the vertical and latitudinal structure of the irregular atmospheric variations. It is pointed out that results obtained by Theon et al. (1969) indicate strong seasonal variation in the magnitude of upper atmospheric waves at high latitudes.

  18. Orbital simulations of satellite escape/capture and the origin of satellites such as Triton

    NASA Technical Reports Server (NTRS)

    Benner, Lance A. M.; Mckinnon, William B.

    1993-01-01

    We investigate satellite escape/capture in the context of the restricted, circular three body problem as applied to the Sun, Neptune, and Triton. We have computed a large number of coplanar prograde and retrograde orbital simulations over a range of initial distances and velocities. The satellite starts at superior conjunction within approximately 2 Hill radii of Neptune and has a velocity orthogonal to the Sun-planet line. Orbits with these initial conditions can be reflected with respect to time, so an escape is simply the reverse of a capture. We numerically integrate the equations of motion to compute the satellite's position until it escapes, collides with Neptune, or after 100 planetary years fails to escape, when computations cease. The initial distance x and velocity v in the restricted problem uniquely define the Jacobi constant C, a conserved energy-like quantity. Plots of the simulation outcomes in the prograde and retrograde C, x phase spaces reveal distinct zones in which temporary satellites approach the planet closely enough that permanent capture can be effected by gas drag with a protoplanetary nebula or by collision with a pre-existing satellite. Single and double close-flybys constitute the most common possible capture orbits. Long term multiple flyby orbits occur near the stability limits between bound and unbound orbits, and are more common among retrograde captures.

  19. Behavior of high-latitude irregularities during geomagnetic disturbances. Environmental research papers

    SciTech Connect

    Houminer, Z.; Aarons, J.

    1980-06-24

    Scintillation observations of VHF and UHF transmissions from geostationary satellites at Goose Bay have been used to study the average characteristics of the high latitude irregularity region. The paper describes the average time development and mean diurnal pattern of irregularities during 58 magnetic storms in 1971-1976. The diurnal variation at Goose Bay shows two peaks of scintillation activity. One peak occurs during the afternoon hours, while the second occurs during the night. The average diurnal pattern is independent of type of storm. diurnal and seasonal effects appear only in the first day of storm commencement and not in the following days which show a very similar diurnal picture. (Author)

  20. Intermediate scale plasma density irregularities in the polar ionosphere inferred from radio occultation

    NASA Astrophysics Data System (ADS)

    Shume, E. B.; Komjathy, A.; Langley, R. B.; Verkhoglyadova, O. P.; Butala, M.; Mannucci, A. J.

    2014-12-01

    In this research, we report intermediate scale plasma density irregularities in the high-latitude ionosphere inferred from high-resolution radio occultation (RO) measurements in the CASSIOPE (CAScade Smallsat and IOnospheric Polar Explorer) - GPS (Global Positioning System) satellites radio link. The high inclination of the CASSIOPE satellite and high rate of signal receptionby the occultation antenna of the GPS Attitude, Positioning and Profiling (GAP) instrument on the Enhanced Polar Outflow Probe platform on CASSIOPE enable a high temporal and spatial resolution investigation of the dynamics of the polar ionosphere, magnetosphere-ionospherecoupling, solar wind effects, etc. with unprecedented details compared to that possible in the past. We have carried out high spatial resolution analysis in altitude and geomagnetic latitude of scintillation-producing plasma density irregularities in the polar ionosphere. Intermediate scale, scintillation-producing plasma density irregularities, which corresponds to 2 to 40 km spatial scales were inferred by applying multi-scale spectral analysis on the RO phase delay measurements. Using our multi-scale spectral analysis approach and Polar Operational Environmental Satellites (POES) and Defense Meteorological Satellite Program (DMSP) observations, we infer that the irregularity scales and phase scintillations have distinct features in the auroral oval and polar cap regions. In specific terms, we found that large length scales and and more intense phase scintillations are prevalent in the auroral oval compared to the polar cap region. Hence, the irregularity scales and phase scintillation characteristics are a function of the solar wind and the magnetospheric forcing. Multi-scale analysis may become a powerful diagnostic tool for characterizing how the ionosphere is dynamically driven by these factors.

  1. Propagating waves can explain irregular neural dynamics.

    PubMed

    Keane, Adam; Gong, Pulin

    2015-01-28

    Cortical neurons in vivo fire quite irregularly. Previous studies about the origin of such irregular neural dynamics have given rise to two major models: a balanced excitation and inhibition model, and a model of highly synchronized synaptic inputs. To elucidate the network mechanisms underlying synchronized synaptic inputs and account for irregular neural dynamics, we investigate a spatially extended, conductance-based spiking neural network model. We show that propagating wave patterns with complex dynamics emerge from the network model. These waves sweep past neurons, to which they provide highly synchronized synaptic inputs. On the other hand, these patterns only emerge from the network with balanced excitation and inhibition; our model therefore reconciles the two major models of irregular neural dynamics. We further demonstrate that the collective dynamics of propagating wave patterns provides a mechanistic explanation for a range of irregular neural dynamics, including the variability of spike timing, slow firing rate fluctuations, and correlated membrane potential fluctuations. In addition, in our model, the distributions of synaptic conductance and membrane potential are non-Gaussian, consistent with recent experimental data obtained using whole-cell recordings. Our work therefore relates the propagating waves that have been widely observed in the brain to irregular neural dynamics. These results demonstrate that neural firing activity, although appearing highly disordered at the single-neuron level, can form dynamical coherent structures, such as propagating waves at the population level. PMID:25632135

  2. Radar Studies of Ionospheric Plasma Irregularities

    NASA Astrophysics Data System (ADS)

    Rao, P. B.

    2006-11-01

    High power high resolution VHF radars have proven to be powerful diagnostics to study ionospheric plasma irregularities, a space weather phenomenon of immense importance in view of its impact on space communication and navigation. The VHF radars at Jicamarca, Peru and Trivandrum, India have contributed greatly over the past four decades in arriving at the current understanding of the basic characteristics of the equatorial spread-F (ESF) and equatorial electrojet (EEJ) irregularities and the underlying plasma instability processes. Recent advances, involving high resolution radar observations of equatorial plasma irregularities, include the detection of supersonic plasma bubbles rising to heights beyond 1000 km, 150 km echoes and kilometric scale waves. The new and more recent developments in plasma irregularity studies came from the middle and upper atmosphere (MU) radar at Shigaraki, Japan and the mesosphere stratosphere troposphere (MST) radar at Gadanki, India. The new types of plasma irregularity structures observed by this mid- and low latitude VHF radars cover the well known quasi- periodic (QP) waves, tidal ion layers, kilometric scale waves and structures in the collision dominated lower E region. The paper presents an overview on the recent advances in the radar technique and the above mentioned new developments in observation and theory of the equatorial and low latitude ionospheric plasma irregularities.

  3. Large retrograde Centaurs: visitors from the Oort cloud?

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2014-08-01

    Among all the asteroid dynamical groups, Centaurs have the highest fraction of objects moving in retrograde orbits. The distribution in absolute magnitude, H, of known retrograde Centaurs with semi-major axes in the range 6-34 AU exhibits a remarkable trend: 10 % have H<10 mag, the rest have H>12 mag. The largest objects, namely (342842) 2008 YB3, 2011 MM4 and 2013 LU28, move in almost polar, very eccentric paths; their nodal points are currently located near perihelion and aphelion. In the group of retrograde Centaurs, they are obvious outliers both in terms of dynamics and size. Here, we show that these objects are also trapped in retrograde resonances that make them unstable. Asteroid 2013 LU28, the largest, is a candidate transient co-orbital to Uranus and it may be a recent visitor from the trans-Neptunian region. Asteroids 342842 and 2011 MM4 are temporarily submitted to various high-order retrograde resonances with the Jovian planets but 342842 may be ejected towards the trans-Neptunian region within the next few hundred kyr. Asteroid 2011 MM4 is far more stable. Our analysis shows that the large retrograde Centaurs form an heterogeneous group that may include objects from various sources. Asteroid 2011 MM4 could be a visitor from the Oort cloud but an origin in a relatively stable closer reservoir cannot be ruled out. Minor bodies like 2011 MM4 may represent the remnants of the primordial planetesimals and signal the size threshold for catastrophic collisions in the early Solar System.

  4. Dynein is the motor for retrograde axonal transport of organelles

    SciTech Connect

    Schnapp, B.J.; Reese, T.S.

    1989-03-01

    Vesicular organelles in axons of nerve cells are transported along microtubules either toward their plus ends (fast anterograde transport) or toward their minus ends (retrograde transport). Two microtubule-based motors were previously identified by examining plastic beads induced to move along microtubules by cytosol fractions from the squid giant axon: (i) an anterograde motor, kinesin, and (ii) a retrograde motor, which is characterized here. The retrograde motor, a cytosolic protein previously termed HMW1, was purified from optic lobes and extruded axoplasm by nucleotide-dependent microtubule affinity and release; microtubule gliding was used as the assay of motor activity. The following properties of the retrograde motor suggest that it is cytoplasmic dynein: (i) sedimentation at 20-22 S with a heavy chain of Mr greater than 200,000 that coelectrophoreses with the alpha and beta subunits of axonemal dynein, (ii) cleavage by UV irradiation in the presence of ATP and vanadate, and (iii) a molecular structure resembling two-headed dynein from axonemes. Furthermore, bead movement toward the minus end of microtubules was blocked when axoplasmic supernatants were treated with UV/vanadate. Treatment of axoplasmic supernatant with UV/vanadate also blocks the retrograde movement of purified organelles in vitro without changing the number of anterograde moving organelles, indicating that dynein interacts specifically with a subgroup of organelles programmed to move toward the cell body. However, purified optic lobe dynein, like purified kinesin, does not by itself promote the movement of purified organelles along microtubules, suggesting that additional axoplasmic factors are necessary for retrograde as well as anterograde transport.

  5. Transcatheter closure of ruptured sinus Valsalva aneurysm with retrograde approach.

    PubMed

    Narin, Nazmi; Ozyurt, Abdullah; Baykan, Ali; Uzüm, Kazım

    2014-04-01

    A three-year-old girl with multiple heart malformations admitted to the pediatric cardiology unit because of excessive sweating and fatigue. Abnormal color Doppler flow was detected into the right atrium from the dilated coronary sinus on the echocardiographic examination, and ruptured sinus Valsalva aneurysm (SVA) was diagnosed. Although in most such cases, an antegrade transcatheter approach has been used, a retrograde approach can be used as a cost-effective treatment modality in those cases with selective high-risk surgery. In this report, we present a patient with ruptured SVA, which was closed via Amplatzer vascular plug-4 by retrograde approach. PMID:24769826

  6. Orbital Evolution and Impact Hazard of Asteroids on Retrograde Orbits

    NASA Astrophysics Data System (ADS)

    Kankiewicz, P.; Włodarczyk, I.

    2014-07-01

    We present the past evolutional scenarios of known group of asteroids in retrograde orbits. Applying the latest observational data, we determined their nominal and averaged orbital elements. Next, we studied the behaviour of their orbital motion 1~My in the past (100~My in the future for two NEAs) taking into account the limitations of observational errors. It has been shown that the influence of outer planets perturbations in many cases can import small bodies on high inclination or retrograde orbits into the inner Solar System.

  7. Climatological study of ionospheric irregularities over the European mid-latitude sector with GPS

    NASA Astrophysics Data System (ADS)

    Wautelet, Gilles; Warnant, René

    2014-03-01

    High-frequency variability of the ionosphere, or irregularities, constitutes the main threat for real-time precise positioning techniques based on Global Navigation Satellite Systems (GNSS) measurements. Indeed, during periods of enhanced ionospheric variability, GNSS users in the field—who cannot verify the integrity of their measurements—will experience positioning errors that can reach several decimeters, while the nominal accuracy of the technique is cm-level. In the frame of this paper, a climatological analysis of irregularities over the European mid-latitude region is presented. Based on a 10 years GPS dataset over Belgium, the work analyzes the occurrence rate (as a function of the solar cycle, season and local time) as well as the amplitude of ionospheric irregularities observed at a single GPS station. The study covers irregularities either due to space weather events (solar origin) or of terrestrial origin. If space weather irregularities are responsible for the largest effects in terms of ionospheric error, their occurrence rate highly depends on solar activity. Indeed, the occurrence rate of ionospheric irregularities is about 9 % during solar maximum, whereas it drops to about 0 % during medium or low solar activity periods. Medium-scale ionospheric disturbances (MSTIDs) occurring during daytime in autumn/winter are the most recurrent pattern of the time series, with yearly proportions slightly varying with the solar cycle and an amplitude of about 10 % of the TEC background. Another recurrent irregularity type, though less frequent than MSTIDs, is the noise-like variability in TEC observed during summer nighttime, under quiet geomagnetic conditions. These summer nighttime irregularities exhibit amplitudes ranging between 8 and 15 % of the TEC background.

  8. Airborne studies of equatorial F layer ionospheric irregularities

    SciTech Connect

    Weber, E.J.; Buchau, J.; Moore, J.G.

    1980-09-01

    Radio wave and optical experiments were conducted onboard a U.S. Air Force research aircraft in March 1977 and March 1978 at low magnetic latitudes to investigate the effects of F region electron density amplitude. Scintillation measurements were used to monitor the development and motion of F region 6300-A O I airglow depletions, spread F, and scintillation producing irregularities that are all associated with low-density bubbles in the postsunset equatorial ionosphere. The 6300-A airglow depletions are the bottomside signature of low plasma density within the bubbles. Examples of multiple airglow depletions and their relation to variations in the F layer virtual height (h'F) and to the occurrence of amplitude scintillations on 250-MHz satellite signals are described. Estimates of the average bottomside electron density, from simultaneous ionosonde measurements and 6300-A airglow intensities, show electron density decreases of approx.66% within the bubbles. These decreases are approximately the same for bubbles observed at the magnetic equator and near Ascension Island (18 /sup 0/S magnetic latitude). The measurements at Ascension Island show that airglow depletions extend away from the magnetic equator into the southern 6300-A intertropical arc. Variations in the maximum poleward extent of airglow depletions and of associated ionospheric irregularities that give rise to amplitude scintillations were observed. These latitudinal variations are interpreted, using field line mapping considerations, as variations in the maximum altitude of plasma bubbles over the magnetic equator. A north-south flight confirms that the overall pattern of airglow depletions and associated ionospheric irregularities extends continuously across the magnetic equator to +-15/sup 0/ magnetic latitude.

  9. Geomagnetic storm effect on the occurrence of ionospheric irregularities over African equatorial sector using GPS-TEC

    NASA Astrophysics Data System (ADS)

    Amaechi, Paul; Oyeyemi, Elijah; Akala, Andrew

    2016-07-01

    Total electron content (TEC) derived from Global Navigation Satellite Systems (GNSS) measurements provided by the International GNSS Service (IGS) network have been used to study the occurrence of large scale ionospheric irregularities over the African equatorial sector. The rate of change of TEC (ROT) as well as its standard deviation over five minutes (ROTI) were used to monitor the level of irregularities over 3 stations distributed across the three longitudinal sectors of Africa (eastern, central and western longitudinal sectors). The storm effect on irregularities occurrence has been studied in conjunction with the disturbance storm time (Dst) and the z component of the Interplanetary magnetic field (IMFBz) indices during four intense storms which were classified according to their season of occurrence during the year 2015. Irregularities were associated with GPS-TEC fluctuations as seen in the increased ROT and ROTI values especially in the post sunset period. Irregularities were inhibited over all the stations during the storm of March plausibly as a result of electric field conditioned by the southward turning of IMFBz during the pre and post midnight periods. The triggering of irregularities over the western and central stations and their inhibition over the eastern station during the storm of June was controlled by the ring current. The storm effect on irregularities was not evident over the western and central stations but inhibition of irregularities was observed over the eastern station during the storm of September.

  10. Low/Mid-latitude Ionospheric irregularities and scintillation climatology

    NASA Astrophysics Data System (ADS)

    Abdallah, Amr; Groves, K. M.; Mahrous, Ayman; Hussein, Fayrouz

    Ionospheric scintillation occur when radio signals propagate through an irregular ionosphere (e.g., plasma bubbles). Since plasma bubbles are regions of depleted ion and electron densities, a plasma bubble located on the satellite-to-ground signal path will cause radio signals to fluctuate in phase and amplitude. Ionospheric scintillation data were analyzed in the magnetic latitudinal field-of-view 29° N -13.4° N, observed by a stand-alone SCINDA (Scintillation Network Decision Aid) - GPS receiver at Helwan, Egypt (29.86° N, 31.32° E). A minimum 20° elevation cut off angle has been set in order to minimize the multipath effect. During the enhancing phase of the current solar cycle 24 (years 2010, 2011, 2012 and 2013), the behaviour of the scintillation occurrence were characterized. The seasonal, annual and solar cycle variation of scintillation occurrence is investigated together with the Total Electron Content (TEC), to put in evidence the relation between the electron density gradients and the ionospheric irregularities causing scintillation. This study considers a first step to develop a scintillation climatology over Northern Africa.

  11. The kinematics of turnaround and retrograde axonal transport.

    PubMed

    Snyder, R E

    1986-11-01

    Rapid axonal transport of a pulse of 35S-methionine-labelled material was studied in vitro in the sensory neurons of amphibian sciatic nerve using a position-sensitive detector. For 10 nerves studied at 23.0 +/- 0.2 degrees C it was found that a pulse moved in the anterograde direction characterized by front edge, peak, and trailing edge transport rates of (mm/d) 180.8 +/- 2.2 (+/- SEM), 176.6 +/- 2.3, and 153.7 +/- 3.0, respectively. Following its arrival at a distal ligature, a smaller pulse was observed to move in the retrograde direction characterized by front edge and peak transport rates of 158.0 +/- 7.3 and 110.3 +/- 3.5, respectively, indicating that retrograde transport proceeds at a rate of 0.88 +/- 0.04 that of anterograde. The retrograde pulse was observed to disperse at a rate greater than the anterograde. Reversal of radiolabel at the distal ligature began 1.49 +/- 0.15 h following arrival of the first radiolabel. Considerable variation was seen between preparations in the way radiolabel accumulated in the end (ligature) regions of the nerve. Although a retrograde pulse was seen in all preparations, in 7 of 10 preparations there was no evidence of this pulse accumulating within less than 2-3 mm of a proximal ligature; however, accumulation was observed within less than 5 mm in all preparations. PMID:2432169

  12. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants.

    PubMed

    Sun, Ai-Zhen; Guo, Fang-Qing

    2016-01-01

    It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants. PMID:27066042

  13. A systematic review of in vitro retrograde obturation materials.

    PubMed

    Theodosopoulou, Joanna N; Niederman, Richard

    2005-05-01

    The purpose of this review was two-fold: (a) to determine which retrograde obturation material(s) best prevents dye/ink penetration in vitro; and (b) to determine whether in vitro results agree with in vivo results. A MEDLINE search was conducted to identify in vitro studies published between January 1966 and October, week 4, 2003, conducted on human teeth, and published in English, German, or French language, testing the resistance to retrograde penetration of retrograde filling materials. The MEDLINE search identified 278 published articles. Of those, 115 studies examined the resistance to penetration of various retrograde filling materials, in vitro. Thirty-four studies met all the inclusion and validity criteria. The results indicate that, beyond 10 days in vitro, the most effective retrofilling materials, when measured by dye/ink penetration are: composites>glass ionomer cement>amalgam>orthograde gutta-percha>EBA. The results of these in vitro studies are not congruent with in vivo study results, suggesting a need to re-evaluate the clinical validity and importance of in vitro studies. PMID:15851926

  14. Water dynamics and retrogradation of ultrahigh pressurized wheat starch.

    PubMed

    Doona, Christopher J; Feeherry, Florence E; Baik, Moo-Yeol

    2006-09-01

    The water dynamics and retrogradation kinetics behavior of gelatinized wheat starch by either ultrahigh pressure (UHP) processing or heat are investigated. Wheat starch completely gelatinized in the condition of 90, 000 psi at 25 degrees C for 30 min (pressurized gel) or 100 degrees C for 30 min (heated gel). The physical properties of the wheat starches were characterized in terms of proton relaxation times (T2 times) measured using time-domain nuclear magnetic resonance spectroscopy and evaluated using commercially available continuous distribution modeling software. Different T2 distributions in both micro- and millisecond ranges between pressurized and heated wheat starch gels suggest distinctively different water dynamics between pressurized and heated wheat starch gels. Smaller water self-diffusion coefficients were observed for pressurized wheat starch gels and are indicative of more restricted translational proton mobility than is observed with heated wheat starch gels. The physical characteristics associated with changes taking place during retrogradation were evaluated using melting curves obtained with differential scanning calorimetry. Less retrogradation was observed in pressurized wheat starch, and it may be related to a smaller quantity of freezable water in pressurized wheat starch. Starches comprise a major constituent of many foods proposed for commercial potential using UHP, and the present results furnish insight into the effect of UHP on starch gelatinization and the mechanism of retrogradation during storage. PMID:16939331

  15. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants

    PubMed Central

    Sun, Ai-Zhen; Guo, Fang-Qing

    2016-01-01

    It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants. PMID:27066042

  16. Detecting chaos in irregularly sampled time series.

    PubMed

    Kulp, C W

    2013-09-01

    Recently, Wiebe and Virgin [Chaos 22, 013136 (2012)] developed an algorithm which detects chaos by analyzing a time series' power spectrum which is computed using the Discrete Fourier Transform (DFT). Their algorithm, like other time series characterization algorithms, requires that the time series be regularly sampled. Real-world data, however, are often irregularly sampled, thus, making the detection of chaotic behavior difficult or impossible with those methods. In this paper, a characterization algorithm is presented, which effectively detects chaos in irregularly sampled time series. The work presented here is a modification of Wiebe and Virgin's algorithm and uses the Lomb-Scargle Periodogram (LSP) to compute a series' power spectrum instead of the DFT. The DFT is not appropriate for irregularly sampled time series. However, the LSP is capable of computing the frequency content of irregularly sampled data. Furthermore, a new method of analyzing the power spectrum is developed, which can be useful for differentiating between chaotic and non-chaotic behavior. The new characterization algorithm is successfully applied to irregularly sampled data generated by a model as well as data consisting of observations of variable stars. PMID:24089946

  17. Plasma irregularities caused by cycloid bunching of the CRRES G-2 barium release

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Huba, J. D.; Pongratz, M. B.; Simons, D. J.; Wolcott, J. H.

    1993-01-01

    The Combined Release and Radiation Effects Satellite (CRRES) spacecraft carried a number of barium thermite canisters for release into the upper atmosphere. The barium release labeled G-2 showed evidence of curved irregularities not aligned with the ambient magnetic field B. The newly discovered curved structures can be explained by a process called cycloid bunching. Cycloid bunching occurs when plasma is created by photoionization of a neutral cloud injected at high velocity perpendicular to B. If the injection velocity is much larger than the expansion speed of the cloud, the ion trail will form a cycloid that has irregularities spaced by the product of the perpendicular injection speed and the ion gyroperiod, Images of the solar-illuminated barium ions are compared with the results of a three-dimensional kinetic simulation. Cycloid bunching is shown to be responsible for the rapid generation of both curved and field-aligned irregularities in the CRRES G-2 experiment.

  18. Retrograde fluids in granulites: Stable isotope evidence of fluid migration

    SciTech Connect

    Morrison, J. ); Valley, J.W. )

    1991-07-01

    Widespread retrograde alteration assemblages document the migration of mixed H{sub 2}O-CO{sub 2} fluids into granulite facies rocks in the Adirondack Mountains. Fluid migration is manifest by (1) veins and patchy intergrowths of chlorite {plus minus} sericite {plus minus} calcite, (2) small veins of calcite, many only identifiable by cathodoluminescence, and (3) high-density, CO{sub 2}-rich or mixed H{sub 2}O-CO{sub 2} fluid inclusions. The distinct and varied textural occurrences of the alteration minerals indicate that fluid-rock ratios were low and variable on a local scale. Stable isotope ratios of C, O, and S have been determined in retrograde minerals from samples of the Marcy anorthosite massif and adjacent granitic gneisses (charnockites). Retrograde calcite in the anorthosite has a relatively small range in both {delta}{sup 18}O{sub SMOW} and {delta}{sup 13}C{sub PDB} (8.6 to 14.9% and {minus}4.1 to 0.4%, respectively), probably indicating that the hydrothermal fluids that precipitated the calcite had exchanged with a variety of crustal lithologies including marbles and orthogneisses, and that calcite was precipitated over a relatively narrow temperature interval. Values of {delta}{sup 34}S{sub CDT} that range from 2.8 to 8.3% within the anorthosite can also be interpreted to reflect exchange between orthogneisses and metasediments. The recognition of retrograde fluid migration is particularly significant in granulite facies terranes because the controversy surrounding the origin of granulites arises in part from differing interpretations of fluid inclusion data, specifically, the timing of entrapment of high-density, CO{sub 2}-rich inclusions. Results indicate that retrograde fluid migration, which in some samples may leave only cryptic petrographic evidence, is a process capable of producing high-density, CO{sub 2}-rich fluid inclusions.

  19. Stellar Mass Distributions in Dwarf Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Hongxin; Hunter, D.; LITTLE THINGS Team

    2011-01-01

    We present the radial distributions of the stellar mass and the star formation histories for a large sample of dwarf irregular galaxies assembled by the LITTLE THINGS project (Local Irregulars That Trace Luminosity Extremes The HI Nearby Galaxy Survey, http://www.lowell.edu/users/dah/littlethings/index.html). Specifically, utilizing the multi-band data including FUV/NUV/UBV/Hα/3.6μm, and with the CB07 stellar population synthesis models, we analyze the variations of the SEDs as a function of radius. By studying the relationship between the stellar mass, star formation histories, star formation and HI gas, we will discuss the possible star formation modes and the roles played by the stellar mass and gas in determining the star formation in dwarf irregular galaxies in general. We gratefully acknowledge funding for this research from the National Science Foundation (AST-0707563).

  20. Irregularly-Spelled Base Words and Their Derived Forms.

    ERIC Educational Resources Information Center

    Cronnell, Bruce

    Recent research has shown that spelling-to-sound correspondences in English are less irregular than has been thought in the past and that a large percentage of irregularities consists of irregularly spelled words which recur in various derived and compound words. In order to determine the degree to which irregularities occur in multiple-derived…

  1. Irregular Sleep-Wake Rhythm Disorder.

    PubMed

    Abbott, Sabra M; Zee, Phyllis C

    2015-12-01

    Irregular sleep-wake rhythm disorder is a circadian rhythm disorder characterized by multiple bouts of sleep within a 24-hour period. Patients present with symptoms of insomnia, including difficulty either falling or staying asleep, and daytime excessive sleepiness. The disorder is seen in a variety of individuals, ranging from children with neurodevelopmental disorders, to patients with psychiatric disorders, and most commonly in older adults with neurodegenerative disorders. Treatment of irregular sleep-wake rhythm disorder requires a multimodal approach aimed at strengthening circadian synchronizing agents, such as daytime exposure to bright light, and structured social and physical activities. In addition, melatonin may be useful in some patients. PMID:26568126

  2. Rocket measurements of mesospheric ionization irregularities

    NASA Technical Reports Server (NTRS)

    Stoltzfus, R. B.; Bowhill, S. A.

    1985-01-01

    The Langmuir probe technique for measurement of electron concentration in the mesosphere is capable of excellent altitude resolution, of order 1 m. Measurements from nine daytime rocket flights carrying an electron density fine structure experiment frequently show small scale ionization structures in the altitude region 70 to 90 km. The irregularities are believed to be the result of turbulent advection of ions and electrons. The fine structure experiment flown by the University of Illinois is described and methods of analyzing the collected data is presented. Theories of homogeneous, isotropic turbulence are reviewed. Power spectra of the measured irregularities are calculated and compared to spectra predicted by turbulence theories.

  3. Dense Regular Packings of Irregular Nonconvex Particles

    NASA Astrophysics Data System (ADS)

    de Graaf, Joost; van Roij, René; Dijkstra, Marjolein

    2011-10-01

    We present a new numerical scheme to study systems of nonconvex, irregular, and punctured particles in an efficient manner. We employ this method to analyze regular packings of odd-shaped bodies, both from a nanoparticle and from a computational geometry perspective. Besides determining close-packed structures for 17 irregular shapes, we confirm several conjectures for the packings of a large set of 142 convex polyhedra and extend upon these. We also prove that we have obtained the densest packing for both rhombicuboctahedra and rhombic enneacontrahedra and we have improved upon the packing of enneagons and truncated tetrahedra.

  4. Radar observations of F region equatorial irregularities

    NASA Technical Reports Server (NTRS)

    Woodman, R. F.; La Hoz, C.

    1976-01-01

    The paper presents some results of backscatter observations of the F region irregularities made with the large 50-MHz radar at Jicamarca, Peru, during a few days of observations. The results were obtained by using three observational techniques: the modified range-time-intensity technique, the digital power mapping technique, and the digital raw data recording technique. Backscatter intensity maps as a function of altitude and time are presented, which can be interpreted as radar pictures of F region irregularities. A classification of spread F spectral signatures resulting from approximately 30,000 spectra obtained in sets of 64 simultaneous heights under a variety of conditions is also given.

  5. In-situ observations of irregular ionospheric structure associated with the plasmapause

    NASA Technical Reports Server (NTRS)

    Taylor, H. A., Jr.; Cordier, G. R.

    1974-01-01

    Additional studies of the ion composition results obtained from the OGO-6 satellite support earlier observations of irregularities in the distribution of H(+) and He(+) within the light ion trough near L = 4, which has been associated with the plasmapause. These irregularities are in the form of sub-troughs superimposed upon the major midlatitude decrease of the light ions. In the sub-troughs, ionization depletions and recoveries of as much as an order of magnitude are observed within a few degrees of latitude, usually exhibited in a pattern which changes significantly with longitude as the earth rotates beneath the relatively fixed satellite orbit. The location and properties exhibited by these sub-troughs appear to be consistent with the concept of a plasmasphere distortion in the form of 'plasmatails' resulting from the combined effects of magnetospheric convection plus corotation.

  6. Recent studies of the structure and morphology of auroral zone F region irregularities

    SciTech Connect

    Rino, C.L.; Livingston, R.C.

    1983-11-01

    Recent analyses of auroral-zone spaced-receiver measurements have shown that the regions where sheetlike irregularities occur are confined to the equatorward portion of the nighttime scintillation zone where the westward and eastward electrojets flow. Poleward of this region, the irregularities are rodlike. For satellites in highly eccentric orbits, the spaced-receiver technique can be used to measure ionospheric drifts. Simultaneous incoherent-scatter radar measurements have revealed two types of F region ionization enhancements that are believed to be the source regions of persistent scintillation features on polar satellite transmissions. One type is found at the equatorward edge of the diffuse aurora and can persist for more than 10 hours. More dynamic structures often occur in pairs, which suggests an association with 'inverted-V' precipitation events. Radar data have also revealed large-scale east-west structure in the poleward enhancements. 16 references.

  7. Scintillation and irregularities from the nightside part of a Sun-aligned polar cap arc

    NASA Astrophysics Data System (ADS)

    Meeren, Christer; Oksavik, Kjellmar; Lorentzen, Dag A.; Paxton, Larry J.; Clausen, Lasse B. N.

    2016-06-01

    In this paper we study the presence of irregularities and scintillation in relation to the nightside part of a long-lived, Sun-aligned transpolar arc on 15 January 2015. The arc was observed in DMSP UV and particle data and lasted at least 3 h between 1700 and 2000 UT. The arc was more intense than the main oval during this time. From all-sky imagers on Svalbard we were able to study the evolution of the arc, which drifted slowly westward toward the dusk cell. The intensity of the arc as observed from ground was 10-17 kR in 557.7 nm and 2-3.5 kR in 630.0 nm, i.e., significant emissions in both green and red emission lines. We have used high-resolution raw data from global navigation satellite systems (GNSS) receivers and backscatter from Super Dual Auroral Radar Network (SuperDARN) radars to study irregularities and scintillation in relation to the polar cap arc. Even though the literature has suggested that polar cap arcs are potential sources for irregularities, our results indicate only very weak irregularities. This may be due to the background density in the northward IMF polar cap being too low for significant irregularities to be created.

  8. Observation of the ionospheric irregularities over the Northern Hemisphere: Methodology and service

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Krankowski, Andrzej; Zakharenkova, Irina

    2014-08-01

    Observation and analysis of the ionospheric irregularities at the high latitudes using GPS measurements represent very actual task for both scientific point of view and Global Navigation Satellite Systems (GNSS) applications, as the occurrence of the ionospheric irregularities can impact a variety of communication and navigation systems. In this paper we describe methodology and service for continuous generation of high-resolution maps of the ionospheric irregularities. To observe the high-latitude ionospheric irregularities, data collected from three ground-based GPS networks of the Northern Hemisphere are processed and analyzed. Here we used parameters ROT (rate of total electron content (TEC) change) and ROTI (index of ROT) to study the occurrence of TEC fluctuations Pi et al.. ROTI maps are constructed with the grid of 2° × 2° resolution as a function of the magnetic local time and corrected magnetic latitude. The ROTI maps allow to estimate the overall fluctuation activity and auroral oval evolutions, in general, the ROTI values are corresponded to the probability of the GPS signals phase fluctuations. We demonstrate that the occurrence and magnitude of TEC fluctuations, measured using GNSS networks, increase dramatically during space weather events. The irregularities oval expands considerably equatorward with simultaneous increase of the fluctuation intensity.

  9. Satellite Communication.

    ERIC Educational Resources Information Center

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  10. Microwave emission from an irregular snow layer

    NASA Technical Reports Server (NTRS)

    Eom, H. J.; Lee, K. K.; Fung, A. K.

    1983-01-01

    Emission from an irregular snow layer is modeled by a layer of Mie scatterers using the radiative transfer method. Comparisons are made with measurements showing snow wetness effects and rough air-snow boundary effects. For convenience of reference, theoretical model behavior is also illustrated.

  11. Spelling Pronunciations: Transforming Irregularity into Regularity

    ERIC Educational Resources Information Center

    Landerl, Karin; Thaler, Verena; Reitsma, Pieter

    2008-01-01

    In a 10-day training, the efficacy of spelling pronunciations on German speaking 5th-graders' spelling skills for irregular words was examined. Poor spellers were less efficient in learning the spelling pronunciations than age-adequate spellers. On post-tests, 1 week after the last training day and between 5 and 12 weeks after post-test 1, poor…

  12. Generalisation of Regular and Irregular Morphological Patterns.

    ERIC Educational Resources Information Center

    Prasada, Sandeep; and Pinker, Steven

    1993-01-01

    When it comes to explaining English verbs' patterns of regular and irregular generalization, single-network theories have difficulty with the former, rule-only theories with the latter process. Linguistic and psycholinguistic evidence, based on observation during experiments and simulations in morphological pattern generation, independently call…

  13. Irregularly Shaped Space-Filling Truncated Octahedra

    ERIC Educational Resources Information Center

    Hanson, John Robert

    2008-01-01

    For any parent tetrahedron ABCD, centroids of selected sub-tetrahedra form the vertices of an irregularly shaped space-filling truncated octahedron. To reflect these properties, such a figure will be called an ISTO. Each edge of the ISTO is parallel to and one-eighth the length of one of the edges of tetrahedron ABCD and the volume of the ISTO is…

  14. Holding Irregularly Shaped Parts For Machining

    NASA Technical Reports Server (NTRS)

    Hilton, Burt W.; Wilson, Rick R.

    1988-01-01

    Part with complicated, irregular outside contours clamped for precise machining of internal passages with aid of simple method. Exterior of part cast in Rigidex, or equivalent epoxy. Forms wall to be clamped. Interior of part machined to finish of 125 microinches or finer. When machining finished, epoxy melted away by heating part to 200 degree F.

  15. Interstellar polarization in an irregularly fluctuating medium

    NASA Technical Reports Server (NTRS)

    Nee, S. F.; Jokipii, J. R.

    1979-01-01

    The interstellar polarization of starlight for an irregularly fluctuating medium is analyzed statistically. A general formulation is presented for the case in which the propagation distance s is larger than the coherence scale of the fluctuations. One specific result for randomly changing field direction is that the linear polarization saturates at a value which can be much less than unity, in agreement with observations.

  16. Irregularities in ionospheric plasma clouds: their evolution and effect on radio communication. Technical report

    SciTech Connect

    Vesecky, J.F.; Chamberlain, J.W.; Cornwall, J.M.; Hammer, D.A.; Perkins, F.W.

    1980-09-01

    Both satellite radio communications, which travel through the Earth's ionosphere, and high frequency (HF) sky wave circuits, which use the ionosphere as a refracting medium, can be strongly affected by radio wave scintillation. High altitude nuclear explosions cause scintillation (by strongly disturbing the ionosphere) and thus severely degrade satellite radio communications over a large region. Since further atmospheric nuclear tests are banned, a thorough understanding of the physics involved in both the disturbed ionosphere and its interaction with radio waves is necessary in order to design radio communications systems which will operate satisfactorily in a nuclear environment. During the 1980 JASON Summer Study we addressed some aspects of the evolution of ionospheric irregularities following a high altitude nuclear explosion--the radio wave propagation theory being apparently well understood for the satellite link case. In particular, we have worked on irregularity evolution at late times (approx. hours) after an explosion and the impact of early time irregularity structure on late time evolution. We also raise the question of scintillation effects on HF sky wave communications.

  17. Effects of chitin nano-whiskers on the gelatinization and retrogradation of maize and potato starches.

    PubMed

    Ji, Na; Liu, Chengzhen; Zhang, Shuangling; Yu, Jing; Xiong, Liu; Sun, Qingjie

    2017-01-01

    Starch is very prone to retrogradation after gelatinization. Inhibition of starch retrogradation has been an important factor in improving the quality of food. For the first time, we investigated the effect of nano-materials, represented by chitin nano-whiskers (CNWs), on the short- and long-term retrogradation of maize and potato starches. Rapid Visco-Analyser results showed that the addition of CNWs significantly decreased the setback values of maize and potato starches, which suggested that CNWs could retard the short-term retrogradation of starch. Differential scanning calorimetry and X-ray diffraction results showed that the percentage of retrogradation of maize and potato starches significantly decreased (P<0.05), suggesting the inhibition of long-term retrogradation. The CNWs could be used as a new inhibitor of starch retrogradation to develop starch-based food with longer shelf life. PMID:27507508

  18. Preliminary comparisons of VHF radar maps of F-region irregularities with scintillations in the equatorial region

    NASA Technical Reports Server (NTRS)

    Basu, S.; Aarons, J.; Mcclure, J. P.; Lahoz, C.; Bushby, A.; Woodman, R. F.

    1977-01-01

    Multiantenna 50 MHz radar backscatter maps of echo power from night-time F-region equatiorial irregularities obtained at Jicamarca, Peru were compared with simultaneous VHF scintillation observations from Huancayo at 137 and 254 MHz during the period 20 November to 12 December 1975. Saturation of VHF scintillations in excess of 20 dB was observed at both these frequencies during times when radar maps showed large intense plume structures rising into the topside ionosphere. On nights when only thin layers of bottomside irregularities were observed, moderate to weak scintillations were recorded at VHF. Preliminary values of east-west horizontal irregularity drift velocities were obtained and compared with scintillation rate observations. Using the 1.5-deg and 4.5-deg longitudinal separation between the Jicamarca radar and ionospheric observation points of the two satellites from Huancayo, information was derived regarding large-scale east-west structure during the development phase of the irregularities.

  19. Investigation of the role of plasma wave cascading processes in the formation of midlatitude irregularities utilizing GPS and radar observations

    NASA Astrophysics Data System (ADS)

    Eltrass, A.; Scales, W. A.; Erickson, P. J.; Ruohoniemi, J. M.; Baker, J. B. H.

    2016-06-01

    Recent studies reveal that midlatitude ionospheric irregularities are less understood due to lack of models and observations that can explain the characteristics of the observed wave structures. In this paper, the cascading processes of both the temperature gradient instability (TGI) and the gradient drift instability (GDI) are investigated as the cause of these irregularities. Based on observations obtained during a coordinated experiment between the Millstone Hill incoherent scatter radar and the Blackstone Super Dual Auroral Radar Network radar, a time series for the growth rate of both TGI and GDI is calculated for observations in the subauroral ionosphere under both quiet and disturbed geomagnetic conditions. Recorded GPS scintillation data are analyzed to monitor the amplitude scintillations and to obtain the spectral characteristics of irregularities producing ionospheric scintillations. Spatial power spectra of the density fluctuations associated with the TGI from nonlinear plasma simulations are compared with both the GPS scintillation spectral characteristics and previous in situ satellite spectral measurements. The spectral comparisons suggest that initially, TGI or/and GDI irregularities are generated at large-scale size (kilometer scale), and the dissipation of the energy associated with these irregularities occurs by generating smaller and smaller (decameter scale) irregularities. The alignment between experimental, theoretical, and computational results of this study suggests that in spite of expectations from linear growth rate calculations, cascading processes involving TGI and GDI are likely responsible for the midlatitude ionospheric irregularities associated with GPS scintillations during disturbed times.

  20. New technique for retrograde cerebral perfusion during arch aneurysm repair.

    PubMed

    Bartoccioni, S; Lanzillo, G; deJong, A A; Fiaschini, P; Martinelli, G; Fedeli, C; Di Lazarro, D; Mercati, U

    1995-09-01

    Many techniques are used to reduce brain damage during surgery for dissecting aneurysms of the ascending aorta and arch. Recently, new techniques of protection were proposed, consistent with hypothermic circulatory arrest in association with retrograde cerebral perfusion via superior vena cava. We propose a simple, time-saving method, which does not require any manipulation of the heart. We use a multilumen cannula for cardioplegia (D 860-DIDECO FUNDARO') with pressure transducer. This cannula is inserted in superior vena cava by means of a simple purse-string, and linked to the arterial line with a "Y" derivation, allowing retrograde perfusion of the brain and monitoring the perfusion pressure at every moment. The superior vena cava placed downstream from the cannula is closed by a small vascular clamp, to avoid blood reflux in the right atrium. This method is time- and money-saving, is readily available, and can be prepared whenever necessary, also in the middle of the surgical procedure. PMID:7488786

  1. Learning the Languages of the Chloroplast: Retrograde Signaling and Beyond.

    PubMed

    Chan, Kai Xun; Phua, Su Yin; Crisp, Peter; McQuinn, Ryan; Pogson, Barry J

    2016-04-29

    The chloroplast can act as an environmental sensor, communicating with the cell during biogenesis and operation to change the expression of thousands of proteins. This process, termed retrograde signaling, regulates expression in response to developmental cues and stresses that affect photosynthesis and yield. Recent advances have identified many signals and pathways-including carotenoid derivatives, isoprenes, phosphoadenosines, tetrapyrroles, and heme, together with reactive oxygen species and proteins-that build a communication network to regulate gene expression, RNA turnover, and splicing. However, retrograde signaling pathways have been viewed largely as a means of bilateral communication between organelles and nuclei, ignoring their potential to interact with hormone signaling and the cell as a whole to regulate plant form and function. Here, we discuss new findings on the processes by which organelle communication is initiated, transmitted, and perceived, not only to regulate chloroplastic processes but also to intersect with cellular signaling and alter physiological responses. PMID:26735063

  2. Photosynthetic light reactions: integral to chloroplast retrograde signalling.

    PubMed

    Gollan, Peter J; Tikkanen, Mikko; Aro, Eva-Mari

    2015-10-01

    Chloroplast retrograde signalling is ultimately dependent on the function of the photosynthetic light reactions and not only guides the acclimation of the photosynthetic apparatus to changing environmental and metabolic cues, but has a much wider influence on the growth and development of plants. New information generated during the past few years about regulation of photosynthetic light reactions and identification of the underlying regulatory proteins has paved the way towards better understanding of the signalling molecules produced in chloroplasts upon changes in the environment. Likewise, the availability of various mutants lacking regulatory functions has made it possible to address the role of excitation energy distribution and electron flow in the thylakoid membrane in inducing the retrograde signals from chloroplasts to the nucleus. Such signalling molecules also induce and interact with hormonal signalling cascades to provide comprehensive information from chloroplasts to the nucleus. PMID:26318477

  3. Ureteroscopy assisted retrograde nephrostomy for complete staghorn renal calculi.

    PubMed

    Kawahara, Takashi; Ito, Hiroki; Terao, Hideyuki; Ogawa, Takehiko; Uemura, Hiroji; Kubota, Yoshinobu; Matsuzaki, Junichi

    2012-09-01

    Complete staghorn calculi are typically managed with percutaneous nephrolithotomy (PCNL). However, dilating nephrostomy and inserting a nephro access sheath can be difficult to perform without hydronephrosis. We reported the procedure of ureteroscopy-assisted retrograde nephrostomy (UARN) during PCNL. UARN is effective without dilating the renal collecting system in cases of complete staghorn calculi. A 63-year old female with a left complete staghorn renal calculus was referred to our hospital. Under general and epidural anesthesia, the patient was placed in a modified-Valdivia position. A flexible ureteroscope was inserted and a Lawson retrograde nephrostomy puncture wire was advanced into the flexible ureteroscope. The puncture wire was forwarded along the route from the renal pelvis to the exit skin. Calculus fragmentation was done using a pneumatic lithotripter and the Ho: YAG laser. UARN during PCNL was effective for the treatment of a complete staghorn calculus. PMID:24917723

  4. Ureteroscopy-Assisted Retrograde Nephrostomy (UARN) after Anatrophic Nephrolithotomy

    PubMed Central

    Kawahara, Takashi; Ito, Hiroki; Terao, Hideyuki; Kato, Yoshitake; Ogawa, Takehiko; Uemura, Hiroji; Kubota, Yoshinobu; Matsuzaki, Junichi

    2012-01-01

    Introduction. Open surgical anatrophic nephrolithotomy (ANL) had been the standard treatment for large renal calculi prior to the development of endoscopic devices and endoscopic techniques. A previous report described the efficacy of ureteroscopy-assisted retrograde nephrostomy (UARN) and presented a case of renal calculi successfully treated with UARN during percutaneous nephrolithotomy (PCNL) in a patient after ANL. Case Presentation. A 61-year-old male with left renal calculi was referred for further treatment. The patient was placed under general and epidural anesthesia, in a Galdakao-modified Valdivia position. A flexible ureteroscope (URS) was inserted, and a Lawson retrograde nephrostomy puncture wire was advanced into the flexible URS. The puncture wire then followed the route from the renal pelvis to the exit skin. Calculus fragmentation was undertaken using a pneumatic lithotripter. Conclusions. UARN for PCNL was therefore found to be a safe, effective, and appropriate treatment for a patient presenting with renal calculi after undergoing ANL. PMID:22924043

  5. Sealing ability of five different retrograde filling materials.

    PubMed

    Gerhards, F; Wagner, W

    1996-09-01

    The sealing ability of Amalgam, Harvard-Cement, Diaket, gold-leaf, and Ketac-Endo as retrofilling materials was investigated. Paper cones were fixed with Harvard-Cement in the instrumented roots of 100 extracted human incisors. Apicectomy was performed and a 2-mm-deep retrograde cavity was prepared. Teeth were assigned to five groups (n = 20); each group received a different filling material. Surfaces of the roots were isolated with nail polish. Teeth, were stored in 1% methylene blue dye for 72 h. Roots were sectioned, and the depth of dye penetration was evaluated through a stereomicroscope. Retrofills with Ketac-Endo showed significantly less leakage compared with amalgam. There was no significant difference between the amalgam and Diaket groups. The sealing ability of Harvard-Cement and gold foil was lower than amalgam. It was concluded that retrograde fillings with Ketac-Endo or Diaket can be considered as alternatives for amalgam. PMID:9198426

  6. Subversion of Retrograde Trafficking by Translocated Pathogen Effectors.

    PubMed

    Personnic, Nicolas; Bärlocher, Kevin; Finsel, Ivo; Hilbi, Hubert

    2016-06-01

    Intracellular bacterial pathogens subvert the endocytic bactericidal pathway to form specific replication-permissive compartments termed pathogen vacuoles or inclusions. To this end, the pathogens employ type III or type IV secretion systems, which translocate dozens, if not hundreds, of different effector proteins into their host cells, where they manipulate vesicle trafficking and signaling pathways in favor of the intruders. While the distinct cocktail of effectors defines the specific processes by which a pathogen vacuole is formed, the different pathogens commonly target certain vesicle trafficking routes, including the endocytic or secretory pathway. Recently, the retrograde transport pathway from endosomal compartments to the trans-Golgi network emerged as an important route affecting pathogen vacuole formation. Here, we review current insight into the host cell's retrograde trafficking pathway and how vacuolar pathogens of the genera Legionella, Coxiella, Salmonella, Chlamydia, and Simkania employ mechanistically distinct strategies to subvert this pathway, thus promoting intracellular survival and replication. PMID:26924068

  7. Transit Timing Variations for Inclined and Retrograde Exoplanetary Systems

    NASA Astrophysics Data System (ADS)

    Payne, Matthew J.; Ford, Eric B.; Veras, Dimitri

    2010-03-01

    We perform numerical calculations of the expected transit timing variations (TTVs) induced on a hot-Jupiter by an Earth-mass perturber. Motivated by the recent discoveries of retrograde transiting planets, we concentrate on an investigation of the effect of varying relative planetary inclinations, up to and including completely retrograde systems. We find that planets in low-order (e.g., 2:1) mean-motion resonances (MMRs) retain approximately constant TTV amplitudes for 0° < i < 170°, only reducing in amplitude for i>170°. Systems in higher order MMRs (e.g., 5:1) increase in TTV amplitude as inclinations increase toward 45°, becoming approximately constant for 45° < i < 135°, and then declining for i>135°. Planets away from resonance slowly decrease in TTV amplitude as inclinations increase from 0° to 180°, whereas planets adjacent to resonances can exhibit a huge range of variability in TTV amplitude as a function of both eccentricity and inclination. For highly retrograde systems (135° < i <= 180°), TTV signals will be undetectable across almost the entirety of parameter space, with the exceptions occurring when the perturber has high eccentricity or is very close to an MMR. This high inclination decrease in TTV amplitude (on and away from resonance) is important for the analysis of the known retrograde and multi-planet transiting systems, as inclination effects need to be considered if TTVs are to be used to exclude the presence of any putative planetary companions: absence of evidence is not evidence of absence.

  8. Retrograde approach for closure of ruptured sinus of Valsalva.

    PubMed

    Jayaranganath, M; Subramanian, Anand; Manjunath, Cholenahally Nanjappa

    2010-07-01

    Though ruptured sinuses of Valsalva have been traditionally managed surgically, they are amenable to transcatheter closure. Various devices have been used for closure of these defects. We describe a novel technique of closure of a ruptured right sinus of Valsalva into the right ventricular outflow tract. A muscular ventricular septal defect occluder was deployed retrogradely, without resorting to the usual antegrade technique involving formation of an arteriovenous loop. PMID:20603510

  9. Formation Flying in Earth, Libration, and Distant Retrograde Orbits

    NASA Technical Reports Server (NTRS)

    Folta, David C.

    2004-01-01

    This slide presentation examines the current and future state of formation flying, LEO formations, control strategies for flight in the vicinity of the libration points, and distant retrograde orbit formations. This discussion of LEO formations includes background on perturbation theory/accelerations and LEO formation flying. The discussion of strategies for formation flight in the vicinity of the libration points includes libration missions and natural and controlled libration orbit formations. A reference list is included.

  10. Activity-Dependent Regulation of Synapses by Retrograde Messengers

    PubMed Central

    Regehr, Wade G.; Carey, Megan R.; Best, Aaron R.

    2011-01-01

    Summary Throughout the brain postsynaptic neurons release substances from their cell bodies and dendrites that regulate the strength of the synapses they receive. Diverse chemical messengers have been implicated in retrograde signaling from postsynaptic neurons to presynaptic boutons. Here we provide an overview of the signaling systems that lead to rapid changes in synaptic strength. We consider the capabilities, specializations and physiological roles of each type of signaling system. PMID:19640475

  11. Osteochondritis Dissecans Involving the Trochlear Groove Treated With Retrograde Drilling

    PubMed Central

    Kaji, Yoshio; Nakamura, Osamu; Yamaguchi, Konosuke; Yamamoto, Tetsuji

    2015-01-01

    Abstract Osteochondritis dissecans (OCD) occurs frequently in the humeral capitellum of the upper extremity, whereas OCD involving the trochlear groove (trochlear groove OCD) is rarely reported. A standard treatment for trochlear groove OCD has therefore not been determined, although several methods have been tried. The case of a 14-year-old male gymnast with bilateral trochlear groove OCD is presented. Retrograde drilling from the lateral condyle of the humerus was applied for the OCD lesion of the left elbow, since it was larger in size than that in the right elbow and was symptomatic. Conversely, since the right lesion was small and asymptomatic, it was managed conservatively. After treatment, consolidation of the OCD lesions was observed in both elbows. However, the time to healing was shorter in the left elbow treated surgically than in the right elbow managed conservatively. In conclusion, retrograde drilling is a very simple and minimally invasive treatment. This case suggests that retrograde drilling for trochlear groove OCD may be a useful procedure that may accelerate the healing process for OCD lesions. PMID:26356703

  12. Huge biloma after endoscopic retrograde cholangiopancreatography and endoscopic biliary sphincterotomy

    PubMed Central

    Alkhateeb, Harith M.; Aljanabi, Thaer J.; Al-azzawi, Khairallh H.; Alkarboly, Taha A.

    2015-01-01

    Background Biliary leak can occur as a complication of biliary surgery, endoscopic retrograde cholangiopancreatography manipulations and endoscopic biliary sphincterotomy. Consequently, bile may collect in the abdominal cavity, a condition called biloma. Rarely, it may reach a massive size. Case presentation A 72-year-old man presented with gastric upset with gradual abdominal distension reaching a large size due to intra-abdominal bile collection (biloma) after endoscopic retrograde cholangiopancreatography plus endoscopic biliary sphincterotomy and stenting for post laparoscopic cholecystectomy common bile duct stricture. This huge biloma was treated by percutaneous insertion of a tube drain for a few days, evacuating the collection successfully without recurrence. Discussion This patient might sustain injury to the common bile duct either by the guide wire or stent, or the injury occurred at the angle between the common bile duct and duodenum during sphincterotomy of the ampulla. Although any of these rents may lead to a bile leak, causing a huge biloma, they could be successfully treated by percutaneous drainage. Conclusions (1) Following endoscopic retrograde cholangiopancreatography, a patient’s complaints should not be ignored. (2) A massive biloma can occur due to such procedures. (3) Conservative treatment with minimal invasive technique can prove to be effective. PMID:26402876

  13. Simultaneous observations of ionospheric irregularities in the African low-latitude region

    NASA Astrophysics Data System (ADS)

    Ngwira, Chigomezyo M.; Seemala, Gopi K.; Bosco Habarulema, John

    2013-05-01

    Ionospheric storms represent large global disturbances of the ionospheric F-region electron density in response to geomagnetic storms. This study investigates the ionospheric response during a minor geomagnetic storm that occurred on 13-15 September 2004. In particular, we use total electron content (TEC) measurements (rate of TEC change, ROT) to examine the presence of ionospheric irregularities over four low-latitude stations in the African sector, a region that has been less studied. Ionospheric irregularities are known to cause fading and phase fluctuation of L-band radio navigation signals such as those used by the Global Navigation Satellite Systems (GNSS), and are a common feature in the equatorial and low-latitude ionosphere. In the present study, the storm began with a sudden commencement at approximately 20:00 UT on 13 September, while the peak of the main phase occurred on 14 September with an SYM-H index value around -59 nT. On 13 September, the storm did not appear to hinder the development of irregularities as they were observed over all the stations. In contrast, irregularities were rarely observed at two of the 4 stations under study and were absent over the other two stations on 14 September. The DSMP F15 satellite post-sunset flight over the African region observed deep density depletions on 13 September that can be associated with the presence of ionospheric plasma bubble irregularities. Furthermore, an analysis of ΔH (horizontal geomagnetic component corrected for ring current effects) shows that there was a strong positive ΔH perturbation observed in the post-sunset hours on 13 September, which suggests the presence of an eastward penetration electric field, while a negative perturbation of ΔH, which is associated with the equatorial counter-electrojet, was observed on 14 September.

  14. Scintillations associated with bottomside sinusoidal irregularities in the equatorial F region

    SciTech Connect

    Valladares, C.E.; DasGupta, A.; Whitney, H.E.

    1986-01-01

    A new category of equatorial F region plasma irregularities characterized by nearly sinusoidal wave forms in the ion number density N/sub i/ was observed by the Atmosphere Explorer satellites. Multisatellite scintillation observations made at Huancayo, Peru and spaced-receiver drive measurements made at Ancon, Peru are associated with such irregularities observed by AE-E on a few nights in December 1979. The scintillations continue for a period of almost 6 hours, at a level that varies from moderate to fairly intense (S4 = 0.1-0.8 at 250 MHz), and these S4 fluctuations are quite well correlated, even over a distance of 1000 km. The irregularities constituting the large patch are found to drift eastward at a velocity of approximately 140 m/s. This and other such events are accompanied by the frequency spread signatures on Huancayo ionograms, as previously reported. The unique feature of the Fourier spectra associated with such bottomside sinusiodal (BSS) irregularities is the presence of Fresnel oscillations, which allow a determination of the velocity of the diffraction pattern perpendicular to the direction of the ray from the satellite to the ground station. The velocity so determined agrees well with the results of simultaneously performed spaced-receiver drift measurements. The presence of Fresnel oscillations indicates that the BSS irregularities occur in a relatively thin layer. However, while the scintillation data indicate a high frequency, roll off with a spectral index of the order of -3 to -4, the in-situ data tend to indicate that the index is of the order -5 to -6. Modeling studies are necessary to resolve this difference.

  15. Retrogradation behaviour of high-amylose rice starch prepared by improved extrusion cooking technology.

    PubMed

    Zhang, Yanjun; Liu, Wei; Liu, Chengmei; Luo, Shunjing; Li, Ti; Liu, Yunfei; Wu, Di; Zuo, Yanna

    2014-09-01

    Native rice starch (NRS, amylose/28.9%) was gelatinized by improved extrusion cooking technology (IECT) and retrograded (RRS) after low temperature storage (4 °C). The retrogradation behaviour of RRS was changed to low retrogradation percentage and low retrogradation rate. The retrogradation resulted in a high compact morphology. The melt enthalpy change and percentage of retrogradation of RRS was 3.68 J/g and 37.7%, respectively, compared to those of NRS (9.75 J/g, 100%). The retrogradation percentage for RRS was low during storage as shown as a low retrogradation rate (0.21 d(-1)) and a high Avrami exponent (0.89). The pattern of rice starch changed from A-type to amorphous and B-type. Both the relative crystallinity of RRS (12.7%) by the X-ray diffractograms and the ratio of the band height (0.63) in the FTIR spectra were low. The analysis of retrogradation structure and short-range molecular order further confirmed the retrogradation behaviour of rice starch after IECT treatment. PMID:24731339

  16. Quantifying Irregularity in Pulsating Red Giants

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; Esteves, S.; Lin, A.; Menezes, C.; Wu, S.

    2009-12-01

    Hundreds of red giant variable stars are classified as “type L,” which the General Catalogue of Variable Stars (GCVS) defines as “slow irregular variables of late spectral type...which show no evidence of periodicity, or any periodicity present is very poorly defined....” Self-correlation (Percy and Muhammed 2004) is a simple form of time-series analysis which determines the cycle-to-cycle behavior of a star, averaged over all the available data. It is well suited for analyzing stars which are not strictly periodic. Even for non-periodic stars, it provides a “profile” of the variability, including the average “characteristic time” of variability. We have applied this method to twenty-three L-type variables which have been measured extensively by AAVSO visual observers. We find a continuous spectrum of behavior, from irregular to semiregular.

  17. Trefftz difference schemes on irregular stencils

    SciTech Connect

    Tsukerman, Igor

    2010-04-20

    The recently developed Flexible Local Approximation MEthod (FLAME) produces accurate difference schemes by replacing the usual Taylor expansion with Trefftz functions - local solutions of the underlying differential equation. This paper advances and casts in a general form a significant modification of FLAME proposed recently by Pinheiro and Webb: a least-squares fit instead of the exact match of the approximate solution at the stencil nodes. As a consequence of that, FLAME schemes can now be generated on irregular stencils with the number of nodes substantially greater than the number of approximating functions. The accuracy of the method is preserved but its robustness is improved. For demonstration, the paper presents a number of numerical examples in 2D and 3D: electrostatic (magnetostatic) particle interactions, scattering of electromagnetic (acoustic) waves, and wave propagation in a photonic crystal. The examples explore the role of the grid and stencil size, of the number of approximating functions, and of the irregularity of the stencils.

  18. Ionized interstellar froth in irregular galaxies

    NASA Technical Reports Server (NTRS)

    Hunter, Deidre A.; Gallagher, John S., III

    1990-01-01

    The warm interstellar medium of galaxies is a complicated place. It is often full of holes, neutral and ionized loops and shells, and diffuse ionized gas. Deep H alpha images of Magellanic-type irregular galaxies also reveal complex spatial structures consisting of loops and filaments in the interstellar gas outside of the boundaries of traditional HII regions. Researchers refer to these ionized structures as froth. Such structures could mark paths over which newly produced heavy elements are dispersed in irregular galaxies, and they could be the signatures of a feedback process related to star formation. In order to investigate the physical nature of the froth, researchers obtained narrow-band images and high and low dispersion spectra from Kitt Peak National Observatory (KPNO) and deep blue-passband plates from the Canada-France-Hawaii Observatory (CFHO).

  19. Aromatic Character of Irregular-Shaped Nanographenes.

    PubMed

    Nishina, Naoko; Makino, Masakazu; Aihara, Jun-Ichi

    2016-04-21

    We found that the Clar sextet formula with the maximum number of sextet rings cannot always be defined meaningfully for large irregular-shaped PAHs. It is true that edge structure is always a primary determinant of the PAH aromaticity pattern. In large PAH molecules, every edge structure modifies the aromaticity pattern near the edge, but its influence fades on going away from the edge. It follows that different textures of the aromaticity pattern appear near different edges. As a result, the entire aromaticity pattern does not always match with a single Clar formula or a single weighted superposed Clar formula. Such an unusual feature of aromaticity patterns could not have been observed distinctly if we had not explored the aromaticity patterns of large irregular-shaped PAH molecules systematically. We used the superaromatic stabilization energy (SSE) as a local aromaticity index, which is the only index of this kind not disturbed by the aromaticity of adjacent benzene rings. PMID:27030605

  20. Irregular diffusion in the bouncing ball billiard

    NASA Astrophysics Data System (ADS)

    Mátyás, L.; Klages, R.

    2004-01-01

    We call a system bouncing ball billiard if it consists of a particle that is subject to a constant vertical force and bounces inelastically on a one-dimensional vibrating periodically corrugated floor. Here we choose circular scatterers that are very shallow, hence this billiard is a deterministic diffusive version of the well-known bouncing ball problem on a flat vibrating plate. Computer simulations show that the diffusion coefficient of this system is a highly irregular function of the vibration frequency exhibiting pronounced maxima whenever there are resonances between the vibration frequency and the average time of flight of a particle. In addition, there exist irregularities on finer scales that are due to higher-order dynamical correlations pointing towards a fractal structure of this curve. We analyze the diffusive dynamics by classifying the attracting sets and by working out a simple random walk approximation for diffusion, which is systematically refined by using a Green-Kubo formula.

  1. Parallel Programming Strategies for Irregular Adaptive Applications

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Achieving scalable performance for dynamic irregular applications is eminently challenging. Traditional message-passing approaches have been making steady progress towards this goal; however, they suffer from complex implementation requirements. The use of a global address space greatly simplifies the programming task, but can degrade the performance for such computations. In this work, we examine two typical irregular adaptive applications, Dynamic Remeshing and N-Body, under competing programming methodologies and across various parallel architectures. The Dynamic Remeshing application simulates flow over an airfoil, and refines localized regions of the underlying unstructured mesh. The N-Body experiment models two neighboring Plummer galaxies that are about to undergo a merger. Both problems demonstrate dramatic changes in processor workloads and interprocessor communication with time; thus, dynamic load balancing is a required component.

  2. Parallel Computing Strategies for Irregular Algorithms

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Oliker, Leonid; Shan, Hongzhang; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Parallel computing promises several orders of magnitude increase in our ability to solve realistic computationally-intensive problems, but relies on their efficient mapping and execution on large-scale multiprocessor architectures. Unfortunately, many important applications are irregular and dynamic in nature, making their effective parallel implementation a daunting task. Moreover, with the proliferation of parallel architectures and programming paradigms, the typical scientist is faced with a plethora of questions that must be answered in order to obtain an acceptable parallel implementation of the solution algorithm. In this paper, we consider three representative irregular applications: unstructured remeshing, sparse matrix computations, and N-body problems, and parallelize them using various popular programming paradigms on a wide spectrum of computer platforms ranging from state-of-the-art supercomputers to PC clusters. We present the underlying problems, the solution algorithms, and the parallel implementation strategies. Smart load-balancing, partitioning, and ordering techniques are used to enhance parallel performance. Overall results demonstrate the complexity of efficiently parallelizing irregular algorithms.

  3. Irregular Wavelike Structure in Saturn's Rings

    NASA Technical Reports Server (NTRS)

    Pollard, Benjamin J.

    2005-01-01

    We have searched Saturn's A, B, and C rings for irregular wavelike structure using Voyager Photopolarimeter (PPS), Ultraviolet Spectrometer (UVS), and Radio Science (RSS) occultation datasets, as well as ring reflectivity profiles derived from Voyager images. A maximum entropy technique for conducting spectral analysis was used to estimate wave frequency power in relation to radial location for each dataset. Using this method we have found irregular structure in the PPS and UVS inner B Ring occultation datasets previously identified in Voyager imaging data. Both finer structure, with a wavelength of around 20 km, and large structure with wavelengths of 200 to 1000 km, are visible in the occultation data and appear similar to that seen in the imaging data. After removing ringlets from the C-Ring data, we have identified what appears to be a 1000-km wave sustained throughout the ring. The large dominant wavelength appears in all datasets; however, tests are currently being conducted in an attempt to verify its existence. Irregular structure with a wavelength of approximately 20 km has been observed in the C Ring reflectivity profiles, but not within the occultation datasets. This leads us to doubt it is caused by ring surface mass density fluctuations detectable by the occultation experiments.

  4. Magnetic Fields in Irregular Galaxies: NGC 4214

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Wilcots, E. M.; Robishaw, T.; Heiles, C.; Zweibel, E.

    2006-12-01

    Magnetic fields are an important component of the interstellar medium of galaxies. They provide support, transfer energy from supernovae, provide a possible heating mechanism, and channel gas flows (Beck 2004). Despite the importance of magnetic fields in the ISM, it is not well known what generates and sustains galactic magnetic fields or how magnetic fields, gas, and stars interact in galaxies. The magnetic fields may be especially important in low-mass galaxies like irregulars where the magnetic pressure may be great enough for the field to be dynamically important. However, only four irregular galaxies besides the LMC and the SMC have observed magnetic field structures. The goal of our project is to significantly increase the number of irregular galaxies with observed magnetic field structure. Here we present preliminary results for one of the galaxies in our sample: NGC 4214. Using the VLA and the GBT, we have obtained 3cm, 6cm, and 20cm radio continuum polarization observations of this well-studied galaxy. Our observations allow us to investigate the effects of NGC 4214's high star formation rate, slow rotation rate, and weak bar on the structure of its magnetic field. We find that NGC 4214's magnetic field has an S-shaped structure, with the central field following the bar and the outer edges curving to follow the shape of the arms. The mechanism for generating these fields is still uncertain. A. Kepley is funded by an NSF Graduate Research Fellowship.

  5. Satellite communications

    NASA Astrophysics Data System (ADS)

    Saha, M. K.

    1982-11-01

    The paper describes the basic principles and the historial development of satellite communications. Various satellite systems for global communications are discused and compared. Some typical operational communication satellite systems summary including geostationary systems are presented. Considerations leading to the system design including the link design for various multiple access techniques and the future trends in satellite communications systems are also discussed.

  6. Satellite communications

    NASA Astrophysics Data System (ADS)

    Rubin, Philip A.

    A review of the economic and technological status of the satellite communications industry is presented. The history of satellite communications is outlined, focusing on the launching of Syncom III in 1963. The basic operation of communication satellites is explained. The differences between C and Ku frequency bands are examined. Economic issues related to satellite communications are discussed in detail.

  7. Study of equatorial E region irregularities using rare daytime VHF scintillation observations

    NASA Astrophysics Data System (ADS)

    Yadav, V.; Kakad, B.; Pant, T. K.; Bhattacharyya, A.; Prasad, D. S. V. V. D.

    2015-10-01

    Scintillations on VHF radio signal are sparsely observed during daytime due to unavailability of strong electron density irregularities in equatorial E or F region. Type I/II irregularities observed at E region altitudes during the daytime are linked with either two-stream or gradient drift instability. The occurrence of these irregularities in presence of strong blanketing Es (Esb) can produce weak-moderate scintillations on VHF signal during daytime. Such sparse daytime VHF scintillations are used in the present study to retrieve information about E region irregularities, which are generally examined with radar observations. We use spaced receiver scintillation observations on 251 MHz signal transmitted from geostationary satellite UFO2 (71.2°E) and recorded at Tirunelveli (8.5°N, 77.8°E, dip latitude 0.6°N). Ionosonde data from Trivandrum (8.5°N, 76.6°E, dip latitude 0.5°N) during 2003-2005 is used to confirm the association of daytime scintillations with Esb. The daytime scintillations last for 15-45 min during postnoon hours. Their occurrence closely matches the peak occurrence time of Esb. For the first time, spatial scale lengths of E region irregularities are obtained using the technique introduced by Bhattacharyya et al. (2003). The observed spatial scales are validated using theoretical model. The theoretical model manifests 6-19% density fluctuations in the E region to produce weak scintillations (0.15 ≤S4≤ 0.4) on 251 MHz. The study reveals that scale lengths of E region irregularities are smaller on counter equatorial electrojet (CEEJ) days than non-CEEJ days, which could be resulting from lower electron temperatures in E region on CEEJ days.

  8. Common Irregular Heartbeat May Hamper Seniors' Walking Ability

    MedlinePlus

    ... Common Irregular Heartbeat May Hamper Seniors' Walking Ability Atrial fibrillation tied to faster physical decline, study finds To ... 5, 2016 (HealthDay News) -- Older adults who develop atrial fibrillation, a common heart rhythm irregularity, may be more ...

  9. How Do Health Care Providers Diagnose Menstrual Irregularities?

    MedlinePlus

    ... Information Clinical Trials Resources and Publications How do health care providers diagnose menstrual irregularities? Skip sharing on social media links Share this: Page Content A health care provider diagnoses menstrual irregularities using a combination of ...

  10. Women Less Likely to Get Blood Thinner for Irregular Heartbeat

    MedlinePlus

    ... Women Less Likely to Get Blood Thinner for Irregular Heartbeat They have a higher stroke risk from ... they help prevent stroke. Atrial fibrillation causes an irregular heartbeat. In people with atrial fibrillation, blood doesn' ...

  11. IHY objectives in the African ionospheric irregularities observation campaign

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Moldwin, M. B.

    2008-05-01

    : One of many objectives of IHY is the deployment of networks of small instruments, especially closing the land-based gaps of instruments around the world. One of the regions that have been almost entirely devoid of ground-based instruments is the African continent. Such uneven distribution of ground-based instruments hinders our ability to obtain a global understanding of the equatorial ionosphere. In the African sector, for example, a continuous ground-based observation of the equatorial ionospheric irregularities is not possible due to lack of ground-based instruments, causing many fundamental questions to remain unanswered. Satellite observations indicate the equatorial ionospheric density structures in the African continent respond to space weather effects differently than do other parts of the Earth. For example, in the African equatorial region, satellite observations show that the F-region bubbles are much deeper than the bubbles observed in any other longitudinal sectors, and are very active year round compared with other regions. Observations also show that the bubbles in Africa rises to high altitude (up to 1000+ kilometers) more frequently compared with other longitudes. However, these responses have not been studied in detail by observations from the ground due to the lack of suitable ground-based instrumentation in the region. Thus, the cause of these unique density irregularities in the continent remains a mystery for the scientific community. Therefore, in order to have a better understanding, the scientific communities, using the IHY platform, are now closing the largest land-based gap in ground-based instruments such as GPS receivers and magnetometers. The instrumentation network in African is already developing rapidly with GPS receivers from SCINDA, AMMA, IGS, and AGREES and magnetometers from MAGDAS and AMBER. In addition to new scientific discoveries and advancing space science research in Africa by establishing scientific collaborations

  12. On the origin of ringing irregularities - A meteor hypothesis

    NASA Technical Reports Server (NTRS)

    Deshpande, M. R.; Vats, H. O.; Trivedi, A. I.

    1978-01-01

    Isolated ionospheric irregularities produce oscillating diffraction patterns on the ground. In the present study typical physical properties such as density, size, etc. of these irregularities are estimated on the basis of diffraction pattern characteristics. These properties agree well with those of meteor trail ionization and it has been found that most of these oscillating irregularities occur on meteor shower days. It is therefore suggested that the oscillating irregularities are caused by meteor showers.

  13. Length measurements of mid-latitude scintillation irregularities

    SciTech Connect

    Macdougall, J.W. )

    1992-04-01

    The lengths of irregularities which produce 150-MHz amplitude scintillations have been measured at 43 deg N, 81 deg W (geographic) using arrays of receivers with large spacings. The average length (major axis radius) of the irregularities was 6.1 km. This is much shorter than expected and implies that the measurements are of 'young' irregularities, less than 1 minute old. These irregularities appear to be a large, 25-50-percent perturbation of the background density. 8 refs.

  14. Coupling of Retrograde Flow to Force Production During Malaria Parasite Migration.

    PubMed

    Quadt, Katharina A; Streichfuss, Martin; Moreau, Catherine A; Spatz, Joachim P; Frischknecht, Friedrich

    2016-02-23

    Migration of malaria parasites is powered by a myosin motor that moves actin filaments, which in turn link to adhesive proteins spanning the plasma membrane. The retrograde flow of these adhesins appears to be coupled to forward locomotion. However, the contact dynamics between the parasite and the substrate as well as the generation of forces are complex and their relation to retrograde flow is unclear. Using optical tweezers we found retrograde flow rates up to 15 μm/s contrasting with parasite average speeds of 1-2 μm/s. We found that a surface protein, TLP, functions in reducing retrograde flow for the buildup of adhesive force and that actin dynamics appear optimized for the generation of force but not for maximizing the speed of retrograde flow. These data uncover that TLP acts by modulating actin dynamics or actin filament organization and couples retrograde flow to force production in malaria parasites. PMID:26792112

  15. 14 CFR 121.563 - Reporting mechanical irregularities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Reporting mechanical irregularities. 121.563 Section 121.563 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... mechanical irregularities. The pilot in command shall ensure that all mechanical irregularities...

  16. 16 CFR 501.6 - Cellulose sponges, irregular dimensions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Cellulose sponges, irregular dimensions. 501... REQUIREMENTS AND PROHIBITIONS UNDER PART 500 § 501.6 Cellulose sponges, irregular dimensions. Variety packages of cellulose sponges of irregular dimensions, are exempted from the requirements of § 500.25 of...

  17. 16 CFR 501.6 - Cellulose sponges, irregular dimensions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Cellulose sponges, irregular dimensions. 501... REQUIREMENTS AND PROHIBITIONS UNDER PART 500 § 501.6 Cellulose sponges, irregular dimensions. Variety packages of cellulose sponges of irregular dimensions, are exempted from the requirements of § 500.25 of...

  18. 16 CFR 501.6 - Cellulose sponges, irregular dimensions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Cellulose sponges, irregular dimensions. 501... REQUIREMENTS AND PROHIBITIONS UNDER PART 500 § 501.6 Cellulose sponges, irregular dimensions. Variety packages of cellulose sponges of irregular dimensions, are exempted from the requirements of § 500.25 of...

  19. 16 CFR 501.6 - Cellulose sponges, irregular dimensions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Cellulose sponges, irregular dimensions. 501... REQUIREMENTS AND PROHIBITIONS UNDER PART 500 § 501.6 Cellulose sponges, irregular dimensions. Variety packages of cellulose sponges of irregular dimensions, are exempted from the requirements of § 500.25 of...

  20. 16 CFR 501.6 - Cellulose sponges, irregular dimensions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Cellulose sponges, irregular dimensions. 501... REQUIREMENTS AND PROHIBITIONS UNDER PART 500 § 501.6 Cellulose sponges, irregular dimensions. Variety packages of cellulose sponges of irregular dimensions, are exempted from the requirements of § 500.25 of...

  1. Remote sensing of irregularities in the equatorial ionosphere using the radio scintillation technique

    SciTech Connect

    Franke, S.J.

    1984-01-01

    Experimental measurements of signal level fluctuations (scintillation) on VHF and microwave signals from two geostationary communications satellites are studied in detail. The signals were recorded at an equatorial location which is almost directly beneath the satellites. The scintillation is caused by refraction and diffraction of the signals by variations of the refractive index in the Flayer of the ionosphere. This study is directed toward using the observed multifrequency scintillation to remotely sense the characteristics of the ionospheric irregularities. This is done by considering both statistical and deterministic models for the scintillation producing irregularities. The models are combined with existing propagation theory using analytical and numerical simulation techniques in order to predict the spatial and temporal characteristics of the multifrequency scintillation. Comparison with the observations is used to verify the models. Extensive use is made of numerical simulation. This makes it possible to study both weak and strong scintillations which occur simultaneously on the microwave and VHF frequencies, respectively. In all cases, the models are chosen to be consistent with results from other remote sensing techniques and in situ measurements. Geophysical implications of the results are discussed in light of what is known about equatorial irregularities from previous experimental and theoretical studies.

  2. Short-term magnetic field alignment variations of equatorial ionospheric irregularities

    SciTech Connect

    Johnson, A.L.

    1988-06-01

    The ionospheric irregularities that cause equatorial scintillation are elongated along the north-south magnetic field lines. During a 1981 field campaign at Ascension Island, 250-MHz receivers were spaced from 300 m to 1.6 km along the field lines, and the signals received from the Marisat satellite were cross correlated. Data collected during eight nights of fading showed a linear relationship between fading rate and cross correlation. The alignment of the antennas was adjusted to give a zero time lag between the widely spaced receivers with a measurement accuracy of 0.03 s. Since the average irregularity velocity was 125 m/s, this time accuracy translated to an angular measurement accuracy of 0.1 deg. During a 4-hour period of nightly fading, occasional differences in time of arrival were noted that corresponded to a tilt in the north-south alignment of + or - 1 deg. Data from several nights of fading were analyzed, and each night exhibited the same variance in the north-south irregularity alignment. It is postulated that the shift in the measured peak correlation may have been caused by patches of irregularities at different altitudes where the magnetic field lines have a slightly different direction. 13 references.

  3. Hemodynamic changes and retrograde flow in LVAD failure.

    PubMed

    Giridharan, Guruprasad A; Koenig, Steven C; Soucy, Kevin G; Choi, Young; Pirbodaghi, Tohid; Bartoli, Carlo R; Monreal, Gretel; Sobieski, Michael A; Schumer, Erin; Cheng, Allen; Slaughter, Mark S

    2015-01-01

    In the event of left ventricular assist device (LVAD) failure, we hypothesized that rotary blood pumps will experience significant retrograde flow and induce adverse physiologic responses. Catastrophic LVAD failure was investigated in computer simulation with pulsatile, axial, and centrifugal LVAD, mock flow loop with pulsatile (PVAD) and centrifugal (ROTAFLOW), and healthy and chronic ischemic heart failure bovine models with pulsatile (PVAD), axial (HeartMate II), and centrifugal (HVAD) pumps. Simulated conditions were LVAD "off" with outflow graft clamped (baseline), LVAD "off" with outflow graft unclamped (LVAD failure), and LVAD "on" (5 L/min). Hemodynamics (aortic and ventricular blood pressures, LVAD flow, and left ventricular volume), echocardiography (cardiac volumes), and end-organ perfusion (regional blood flow microspheres) were measured and analyzed. Retrograde flow was observed with axial and centrifugal rotary pumps during LVAD failure in computer simulation (axial = -3.4 L/min, centrifugal = -2.8 L/min), mock circulation (pulsatile = -0.1 L/min, centrifugal = -2.7 L/min), healthy (pulsatile = -1.2 ± 0.3 L/min, axial = -2.2 ± 0.2 L/min, centrifugal = -1.9 ± 0.3 L/min), and ischemic heart failure (centrifugal = 2.2 ± 0.7 L/min) bovine models for all test conditions (p < 0.05). Differences between axial and centrifugal LVAD were statistically indiscernible. Retrograde flow increased ventricular end-systolic and end-diastolic volumes and workload, and decreased myocardial and end-organ perfusion during LVAD failure compared with baseline, LVAD support, and pulsatile LVAD failure. PMID:25635935

  4. A chloroplast retrograde signal regulates nuclear alternative splicing

    PubMed Central

    Petrillo, Ezequiel; Herz, Micaela A. Godoy; Fuchs, Armin; Reifer, Dominik; Fuller, John; Yanovsky, Marcelo J.; Simpson, Craig; Brown, John W. S.; Barta, Andrea; Kalyna, Maria; Kornblihtt, Alberto R.

    2015-01-01

    Light is a source of energy and also a regulator of plant physiological adaptations. We show here that light/dark conditions affect alternative splicing of a subset of Arabidopsis genes preferentially encoding proteins involved in RNA processing. The effect requires functional chloroplasts and is also observed in roots when the communication with the photosynthetic tissues is not interrupted, suggesting that a signaling molecule travels through the plant. Using photosynthetic electron transfer inhibitors with different mechanisms of action we deduce that the reduced pool of plastoquinones initiates a chloroplast retrograde signaling that regulates nuclear alternative splicing and is necessary for proper plant responses to varying light conditions. PMID:24763593

  5. Approximations of distant retrograde orbits for mission design

    NASA Technical Reports Server (NTRS)

    Hirani, Anil N.; Russell, Ryan P.

    2006-01-01

    Distant retrograde orbits (DROs) are stable periodic orbit solutions of the equations of motion in the circular restricted three body problem. Since no closed form expressions for DROs are known, we present methods for approximating a family of planar DROs for an arbitrary, fixed mass ratio. Furthermore we give methods for computing the first and second derivatives of the position and velocity with respect to the variables that parameterize the family. The approximation and derivative methods described allow a mission designer to target specific DROs or a range of DROs with no regard to phasing in contrast to the more limited case of targeting a six-state only.

  6. A CCD comparison of outer Jovian satellites and Trojan asteroids

    NASA Technical Reports Server (NTRS)

    Luu, Jane X.

    1991-01-01

    The eight small outer Jovian satellites are not as well known as the brighter, more illustrious Galilean satellites. They are divided into two groups, each containing four satellites; the inner group travels in prograde orbits while the outer group travels in retrograde orbits. From the distinct orbital characteristics of the two groups, most of the theories of their origin involve the capture and breakup of two planetesimals upon entry into the atmosphere of proto-Jupiter. Their proximity to the Trojans asteroids has led to conjectures of a link between them and the Trojans. However, Tholen and Zellner (1984) found no red spectrum among six of the satellites and postulated that they were all C-type objects; therefore, they were unlikely to be derivatives of the Trojan population. Charge-coupled device (CCD) photometry and spectroscopy of the eight outer Jovian satellites obtained from 1987 to 1989 and a comparison between these eight satellites and the Trojan asteroids are presented.

  7. Symmetric and irregular aromatic silicon nanoclusters

    NASA Astrophysics Data System (ADS)

    Vach, Holger

    2014-10-01

    Based on first-principles calculations, we predict the existence of two classes of aromatic hydrogenated silicon nanoclusters. Despite their completely different structure, they both exhibit quite comparable physical and chemical properties due to the common presence of overcoordinated silicon atoms inducing extensive electron delocalization. Due to a complex interplay between strain relaxation and aromatic stabilization, apparently ill-defined nanoclusters might sometimes turn out to be more stable than their symmetric counterparts. Both symmetric and irregular aromatic silicon nanoclusters are extremely stable at ambient conditions and might readily find applications in future nano-technological devices.

  8. Rectilinear partitioning of irregular data parallel computations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1991-01-01

    New mapping algorithms for domain oriented data-parallel computations, where the workload is distributed irregularly throughout the domain, but exhibits localized communication patterns are described. Researchers consider the problem of partitioning the domain for parallel processing in such a way that the workload on the most heavily loaded processor is minimized, subject to the constraint that the partition be perfectly rectilinear. Rectilinear partitions are useful on architectures that have a fast local mesh network. Discussed here is an improved algorithm for finding the optimal partitioning in one dimension, new algorithms for partitioning in two dimensions, and optimal partitioning in three dimensions. The application of these algorithms to real problems are discussed.

  9. Blue compact dwarfs - Extreme dwarf irregular galaxies

    NASA Technical Reports Server (NTRS)

    Thuan, Trinh X.

    1987-01-01

    Observational data on the most extreme members of the irregular dwarf (dI) galaxy class, the blue compact dwarfs (BCDs), are characterized, reviewing the results of recent investigations. The properties of the young stellar population, the ionized gas, the older star population, and the gas and dust of BCDs are contrasted with those of other dIs; BCD morphology is illustrated with sample images; and the value of BCDs (as nearby 'young' chemically unevolved galaxies) for studies of galaxy formation, galactic evolution, and starburst triggering mechanisms is indicated.

  10. Optical properties of irregular interstellar grains

    NASA Technical Reports Server (NTRS)

    Perrin, J. M.; Lamy, P. L.

    1989-01-01

    In order to study the interaction of light with interstellar grains, the authors represent an irregular particle by a network of interacting dipoles whose polarizability is determined in a first approach by the Clausius-Mossoti relationship. Typically, 10,000 dipoles are considered. In the case of spherical particles, the results from Mie theory are fully recovered. The main interest of this method is to study with good accuracy the implications of surface roughness and/or inhomogeneities on optical properties in the infrared spectral range, particularly of the silicate emission features.

  11. Venus - Multi-Floor Irregular Crater

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Magellan image shows an irregular crater of approximately 14- kilometer (8.7-mile) mean diameter. The crater is actually a cluster of four separate craters that are in rim contact. The noncircular rims and multiple, hummocky floors are probably the result of the breakup and dispersion of an incoming meteoroid during passage through the dense Venusian atmosphere. After breaking up, the meteoroid fragments impacted nearly simultaneously, creating the crater cluster. The area shown is 40 kilometers (25 miles) in width and 76 kilometers (47 miles) in length, it is centered at -21.4 degrees latitude, 335.2 degrees longitude in the northern Lavinia Region of Venus.

  12. Testing Of Choiced Ceramics Cutting Tools At Irregular Interrupted Cut

    NASA Astrophysics Data System (ADS)

    Kyncl, Ladislav; Malotová, Šárka; Nováček, Pavel; Nicielnik, Henryk; Šoková, Dagmar; Hemžský, Pavel; Pitela, David; Holubjak, Jozef

    2015-12-01

    This article discusses the test of removable ceramic cutting inserts during machining irregular interrupted cut. Tests were performed on a lathe, with the preparation which simulated us the interrupted cut. By changing the number of plates mounted in a preparation it simulate us a regular or irregular interrupted cut. When with four plates it was regular interrupted cut, the remaining three variants were already irregular cut. It was examined whether it will have the irregular interrupted cutting effect on the insert and possibly how it will change life of inserts during irregular interrupted cut (variable delay between shocks).

  13. Geophysical properties of the ionospheric irregularities responsible for radio scintillation

    NASA Technical Reports Server (NTRS)

    Mcclure, J. P.

    1974-01-01

    The properties of F-region ionospheric irregularities are described based on in-situ measurements of the actual waveforms of ion concentration. The spectral properties of the irregularities are discussed. In high, middle and low latitudes most of the irregularities observed fall into a single 'noiselike' category having power spectra which can be approximated by f to the negative n-th power and S to the n-th power, where S is the irregularity scale size and n is approximately 2. Thus the spectral components have a maximum gradient which is almost independent of their size. Other categories of irregularities are also observed occasionally.

  14. a Study of Ionospheric Low Latitude Velocity and Density Irregularity Correlations during Solar Minimum

    NASA Astrophysics Data System (ADS)

    Haaser, R. A.; Earle, G. D.; Heelis, R. A.; Klenzing, J. H.; Coley, W. R.; Stoneback, R. A.; Burrell, A. B.

    2010-12-01

    The C/NOFS satellite has measured ionospheric plasma density irregularities at low latitudes on scales larger than 10 km over a full set of seasons. The focus of this study is on data from the Ion Velocity Meter (IVM) from Jan-Dec 2009 for pre-midnight and post-midnight times when the data are most reliable. Correlations between the normalized changes in density and velocity (dni/n and dv-horz,vert) during spread-F events (plasma bubbles through the f-peak) and localized plasma enhancements associated with those events are analyzed and compared to investigate seasonal, spatial, and temporal properties during the 2009 solar minimum conditions. The correlations presented and their relationship to the unusually quiescent background conditions in this epoch challenge our understanding and add significantly to our knowledge of ionospheric irregularity events and distribution statistics at low latitudes during solar minimum.

  15. Analysis of Slope Limiters on Irregular Grids

    NASA Technical Reports Server (NTRS)

    Berger, Marsha; Aftosmis, Michael J.

    2005-01-01

    This paper examines the behavior of flux and slope limiters on non-uniform grids in multiple dimensions. Many slope limiters in standard use do not preserve linear solutions on irregular grids impacting both accuracy and convergence. We rewrite some well-known limiters to highlight their underlying symmetry, and use this form to examine the proper - ties of both traditional and novel limiter formulations on non-uniform meshes. A consistent method of handling stretched meshes is developed which is both linearity preserving for arbitrary mesh stretchings and reduces to common limiters on uniform meshes. In multiple dimensions we analyze the monotonicity region of the gradient vector and show that the multidimensional limiting problem may be cast as the solution of a linear programming problem. For some special cases we present a new directional limiting formulation that preserves linear solutions in multiple dimensions on irregular grids. Computational results using model problems and complex three-dimensional examples are presented, demonstrating accuracy, monotonicity and robustness.

  16. Venus - Multiple-Floored, Irregular Impact Crater

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Magellan imaged this multiple-floored, irregular impact crater at latitude 16.4 degrees north, longitude 352.1 degrees east, during orbits 481 and 482 on 27 September 1990. This crater, about 9.2 kilometers in maximum diameter, was formed on what appears to be a slightly fractured, radar-dark (smooth) plain. The abundant, low viscosity flows associated with this cratering event have, however, filled local, fault-controlled troughs (called graben). These shallow graben are well portrayed on this Magellan image but would be unrecognizable but for their coincidental infilling by the radar-bright crater flows. This fortuitous enhancement by the crater flows of fault structures that are below the resolution of the Magellan synthetic aperture radar is providing the Magellan Science Team with valuable geologic information. The flow deposits from the craters are thought to consist primarily of shock melted rock and fragmented debris resulting from the nearly simultaneous impacts of two projectile fragments into the hot (800 degrees Fahrenheit) surface rocks of Venus. The presence of the various floors of this irregular crater is interpreted to be the result of crushing, fragmentation, and eventual aerodynamic dispersion of a single entry projectile during passage through the dense Venusian atmosphere.

  17. Statistical detection of systematic election irregularities

    PubMed Central

    Klimek, Peter; Yegorov, Yuri; Hanel, Rudolf; Thurner, Stefan

    2012-01-01

    Democratic societies are built around the principle of free and fair elections, and that each citizen’s vote should count equally. National elections can be regarded as large-scale social experiments, where people are grouped into usually large numbers of electoral districts and vote according to their preferences. The large number of samples implies statistical consequences for the polling results, which can be used to identify election irregularities. Using a suitable data representation, we find that vote distributions of elections with alleged fraud show a kurtosis substantially exceeding the kurtosis of normal elections, depending on the level of data aggregation. As an example, we show that reported irregularities in recent Russian elections are, indeed, well-explained by systematic ballot stuffing. We develop a parametric model quantifying the extent to which fraudulent mechanisms are present. We formulate a parametric test detecting these statistical properties in election results. Remarkably, this technique produces robust outcomes with respect to the resolution of the data and therefore, allows for cross-country comparisons. PMID:23010929

  18. Progression of irregular opacities in asbestos miners.

    PubMed Central

    Sluis-Cremer, G K; Hnizdo, E

    1989-01-01

    All white and mixed race men who were employed in South African asbestos mines and mills between 30 November 1970 and 30 November 1975 were studied. The men who had two radiographs available, the first taken some time between the above two dates and the latest available radiograph which had to be at least two years after the first one numbered 1454: 793 continued exposure after the first radiograph and 661 did not. The films were read by a panel of three readers. Data available included age, years of exposure to asbestos and other mining, intensity of exposure to asbestos and other dust, and smoking habit. Progression was expressed as the difference between the average readings of radiograph 2--radiograph 1 in minor categories per year of irregular opacities. Changes in pleural abnormality were also measured. No differences of progression in the profusion or change in size of the irregular opacities were found between the two groups or in the number of zones affected. "New attacks" appeared equally frequently between the two groups. No difference in the change in extent of any type of pleural change was seen. It appears that once a dose of asbestos sufficient to initiate the disease has been retained it is inexorably progressive. PMID:2611157

  19. Estimating spiking irregularities under changing environments.

    PubMed

    Miura, Keiji; Okada, Masato; Amari, Shun-Ichi

    2006-10-01

    We considered a gamma distribution of interspike intervals as a statistical model for neuronal spike generation. A gamma distribution is a natural extension of the Poisson process taking the effect of a refractory period into account. The model is specified by two parameters: a time-dependent firing rate and a shape parameter that characterizes spiking irregularities of individual neurons. Because the environment changes over time, observed data are generated from a model with a time-dependent firing rate, which is an unknown function. A statistical model with an unknown function is called a semiparametric model and is generally very difficult to solve. We used a novel method of estimating functions in information geometry to estimate the shape parameter without estimating the unknown function. We obtained an optimal estimating function analytically for the shape parameter independent of the functional form of the firing rate. This estimation is efficient without Fisher information loss and better than maximum likelihood estimation. We suggest a measure of spiking irregularity based on the estimating function, which may be useful for characterizing individual neurons in changing environments. PMID:16907630

  20. Retrograde intrarenal surgery in Nepal: an early experience.

    PubMed

    Gyawali, P R; Luitel, B R; Luitel, B R

    2013-06-01

    With the advancement in technology and miniaturization of instruments, retrograde intrarenal surgery (RIRS) with flexible ureteroscope is gaining popularity. Flexible ureteroscope is introduced into renal collecting system through the urethra. Holmium YAG (Ho-YAG) Laser fiber of different sizes is introduced through the ureteroscope and renal stones are pulverized. Removal of renal stones less than 15 mm in size with RIRS has sharply reduced post operative morbidity. This is a Prospective study comprised of 58 RIRS performed from January 2013 to July 2013. Preoperative investigations like full blood count (FBC), renal function test (RFT), serological investigations, urine culture, intravenous urogram or CT-urogram, chest ray and electrocardiogram were done in all patients. Renal stones less than 15 mm in size were included for RIRS. Intra renal stones were treated with 7.5 Fr flexible ureteroscope (Flex - X2) using Holmium-YAG laser. Mean stone burden in our study was 10.5 +/- 3.3 mm. Out of 32 male patients, 29 (90.6%) required pre-stenting before RIRS and all 58 patients with successful dusting of stones in single sitting were discharged on next day. Retrograde Intrarenal Surgery is advanced and successful technique and a viable alternative to Extracorporeal Shock Wave Lithotripsy (ESWL) and Percutaneous Nephrolithotomy (PCNL) in the treatment of selected intrarenal stones with minimum morbidity. PMID:24696935

  1. Retrograde closed orbits in a rotating triaxial potential

    NASA Astrophysics Data System (ADS)

    Heisler, J.; Merritt, D.; Schwarzschild, M.

    1982-07-01

    Four closed periodic orbit sequences are determined numerically, and their stability is investigated by the standard Floquet method, for the case of a specific, triaxial rotating potential. The sequences comprise (1) stable anomalous orbits that are tipped to the long axis which they circle, so that they also circle the short rotation axis, (2) unstable, anomalous orbits circling the intermediate axis, otherwise behaving like (1), (3) stable, normal retrograde orbits lying in the equatorial plane, which become unstable against perpendicular perturbations in Binney's instability strip, and (4) Z-axis orbits lying on the rotation axis, which, although stable in their inner section, become unstable to perturbations parallel to the intermediate axis farther out, and to the long axis farther out still. The entire set contains one composite sequence which is stable over the entire energy range, consisting of the outer section of the normal retrograde orbits, the sequence of the anomalous orbits, and the inner section of the Z-axis orbits. It is suggested that the composite sequence may be relevant to the dynamics of gas masses captured by rotating triaxial galaxies.

  2. Quantitative radioactive analysis of microleakage of four different retrograde fillings.

    PubMed

    Danin, J; Linder, L; Sund, M L; Strömberg, T; Torstenson, B; Zetterqvist, L

    1992-07-01

    Sealing properties of four different retrograde filling materials were investigated in vitro. Radioactive isotopes were applied in the root canal, and leakage into an extraradicular fluid was measured at regular intervals. The method permitted repeated observation of the specimens over prolonged periods of time. Forty single-rooted human teeth were biomechanically instrumented and obturated using calcium-hydroxide paste. Following obturation, an apicectomy was performed and retrograde cavities were filled with four different materials: group 1, non gamma 2 amalgam (Amalcap); group 2, glass ionomer cement (Ketac Silver); group 3, calcium-hydroxide-based root canal sealer (Sealapex); group 4, composite resin (Palfique Light-S). After removal of the calcium hydroxide, the teeth were immersed in a fluid. An isotope solution was then placed in the root canals. Samples were taken from the fluid at 0, 3, 7, 28, 56, 105, 210, 285 and 376 days to determine the radioactivity. It was found that Sealapex and Palfique Light-S showed significantly less leakage than amalgam and glass ionomer cement, which had the highest apical leakage. PMID:1399068

  3. THE ORBITS OF NEPTUNE'S OUTER SATELLITES

    SciTech Connect

    Brozovic, Marina; Jacobson, Robert A.; Sheppard, Scott S. E-mail: raj@jpl.nasa.gov

    2011-04-15

    In 2009, we used the Subaru telescope to observe all the faint irregular satellites of Neptune for the first time since 2004. These observations extend the data arcs for Halimede, Psamathe, Sao, Laomedeia, and Neso from a few years to nearly a decade. We also report on a search for unknown Neptune satellites in a half-square degree of sky and a limiting magnitude of 26.2 in the R band. No new satellites of Neptune were found. We numerically integrate the orbits for the five irregulars and summarize the results of the orbital fits in terms of the state vectors, post-fit residuals, and mean orbital elements. Sao and Neso are confirmed to be Kozai librators, while Psamathe is a 'reverse circulator'. Halimede and Laomedeia do not seem to experience any strong resonant effects.

  4. Dark material on the classical Uranian satellites: What is it and where did it come from?

    NASA Astrophysics Data System (ADS)

    Cartwright, Richard J.; Emery, Joshua P.; Lucas, Michael P.; Pinilla-Alonso, Noemi; Trilling, David E.; Rivkin, Andy S.

    2015-11-01

    During Voyager 2’s flyby of Uranus, its Imaging Science Subsystem (ISS) camera captured tantalizing images of the icy, gray-toned surfaces of the classical Uranian satellites. Additionally, ground-based near-infrared (NIR) observations of these moons have detected a mixture of H2O ice and a low albedo, and potentially carbonaceous, constituent on their surfaces. Analysis of ISS color maps demonstrated that the leading hemispheres of these moons are spectrally redder than their trailing hemispheres, and both the degree of reddening and the correlation between low albedo and spectrally red regions increases with distance from Uranus. However, ISS almost exclusively observed the southern hemispheres of these moons (subsolar point ~81º S), and we have collected new observations of their northern hemispheres (current subsolar point ~29º N). By characterizing the distribution of the dark material, we will be able to constrain the primary production mechanism for this low albedo constituent. Our preferred hypothesis is that the dark material represents accumulated intraplanetary dust that originated on Uranus’ retrograde irregular satellites.To characterize the distribution of the spectrally red, low albedo material on these moons, we are measuring their spectral slopes using visible wavelength (VIS) spectra and photometry gathered over similar wavelengths to those sensed by ISS (~0.4 - 0.6 µm). Additionally, we have collected NIR spectra of these satellites in order to characterize the relative strengths of 1.52 and 2.02 µm H2O ice bands, which are modified by the presence of low albedo contaminants. Our results indicate that the 1.52 and 2.02 µm H2O bands are stronger on the leading hemispheres of these moons, and the hemispherical asymmetry in H2O band strengths decreases with distance from Uranus. Spectral modeling of these NIR spectra will help discern between contaminant mixing and grain size effects on the relative strength of the H2O bands. We will

  5. Anterograde and Retrograde Amnesia of Place Discrimination in Retrosplenial Cortex and Hippocampal Lesioned Rats

    ERIC Educational Resources Information Center

    Haijima, Asahi; Ichitani, Yukio

    2008-01-01

    Retrograde and anterograde amnesic effects of excitotoxic lesions of the rat retrosplenial cortex (RS) and hippocampus (HPC) were investigated. To test retrograde amnesia, rats were trained with two-arm place discrimination in a radial maze 4 wk and 1 d before surgery with a different arm pair, respectively. In the retention test 1 wk after…

  6. Computing Proton Dose to Irregularly Moving Targets

    PubMed Central

    Phillips, Justin; Gueorguiev, Gueorgui; Shackleford, James A.; Grassberger, Clemens; Dowdell, Stephen; Paganetti, Harald; Sharp, Gregory C.

    2014-01-01

    Purpose While four-dimensional computed tomography (4DCT) and deformable registration can be used to assess the dose delivered to regularly moving targets, there are few methods available for irregularly moving targets. 4DCT captures an idealized waveform, but human respiration during treatment is characterized by gradual baseline shifts and other deviations from a periodic signal. This paper describes a method for computing the dose delivered to irregularly moving targets based on 1D or 3D waveforms captured at the time of delivery. Methods The procedure uses CT or 4DCT images for dose calculation, and 1D or 3D respiratory waveforms of the target position at time of delivery. Dose volumes are converted from their Cartesian geometry into a beam-specific radiological depth space, parameterized in 2D by the beam aperture, and longitudinally by the radiological depth. In this new frame of reference, the proton doses are translated according to the motion found in the 1D or 3D trajectory. These translated dose volumes are weighted and summed, then transformed back into Cartesian space, yielding an estimate of the dose that includes the effect of the measured breathing motion. The method was validated using a synthetic lung phantom and a single representative patient CT. Simulated 4DCT was generated for the phantom with 2 cm peak-to-peak motion. Results A passively-scattered proton treatment plan was generated using 6 mm and 5 mm smearing for the phantom and patient plans, respectively. The method was tested without motion, and with two simulated breathing signals: a 2 cm amplitude sinusoid, and a 2 cm amplitude sinusoid with 3 cm linear drift in the phantom. The tumor positions were equally weighted for the patient calculation. Motion-corrected dose was computed based on the mid-ventilation CT image in the phantom and the peak exhale position in the patient. Gamma evaluation was 97.8% without motion, 95.7% for 2 cm sinusoidal motion, and 95.7% with 3 cm drift in the

  7. Computing proton dose to irregularly moving targets

    NASA Astrophysics Data System (ADS)

    Phillips, Justin; Gueorguiev, Gueorgui; Shackleford, James A.; Grassberger, Clemens; Dowdell, Stephen; Paganetti, Harald; Sharp, Gregory C.

    2014-08-01

    Purpose: While four-dimensional computed tomography (4DCT) and deformable registration can be used to assess the dose delivered to regularly moving targets, there are few methods available for irregularly moving targets. 4DCT captures an idealized waveform, but human respiration during treatment is characterized by gradual baseline shifts and other deviations from a periodic signal. This paper describes a method for computing the dose delivered to irregularly moving targets based on 1D or 3D waveforms captured at the time of delivery. Methods: The procedure uses CT or 4DCT images for dose calculation, and 1D or 3D respiratory waveforms of the target position at time of delivery. Dose volumes are converted from their Cartesian geometry into a beam-specific radiological depth space, parameterized in 2D by the beam aperture, and longitudinally by the radiological depth. In this new frame of reference, the proton doses are translated according to the motion found in the 1D or 3D trajectory. These translated dose volumes are weighted and summed, then transformed back into Cartesian space, yielding an estimate of the dose that includes the effect of the measured breathing motion. The method was validated using a synthetic lung phantom and a single representative patient CT. Simulated 4DCT was generated for the phantom with 2 cm peak-to-peak motion. Results: A passively-scattered proton treatment plan was generated using 6 mm and 5 mm smearing for the phantom and patient plans, respectively. The method was tested without motion, and with two simulated breathing signals: a 2 cm amplitude sinusoid, and a 2 cm amplitude sinusoid with 3 cm linear drift in the phantom. The tumor positions were equally weighted for the patient calculation. Motion-corrected dose was computed based on the mid-ventilation CT image in the phantom and the peak exhale position in the patient. Gamma evaluation was 97.8% without motion, 95.7% for 2 cm sinusoidal motion, 95.7% with 3 cm drift in the

  8. Road and track irregularities: measurement, assessment and simulation

    NASA Astrophysics Data System (ADS)

    Haigermoser, Andreas; Luber, Bernd; Rauh, Jochen; Gräfe, Gunnar

    2015-07-01

    Road and track irregularities have an important influence on the dynamic behaviour of vehicles. Knowledge of their characteristics and magnitude is essential for the design of the vehicle but also for comparable homologation and acceptance tests as well as for the planning and management of track maintenance. Irregularities of tracks and roads are regularly measured using various measurement technologies. All have advantages and weaknesses and require several processing steps. Characterisation of irregularities is done in the distance as well as in the wavelength domain. For rail irregularities, various distance domain description methods have been proposed and are in use. Methods have been analysed and compared with regard to their processing steps. Several methods have been analysed using measured irregularity and vehicle response data. Characterisation in the wavelength domain is done in a similar way for track and road irregularities. Here, an important issue is the estimation of the power spectral densities and the approximation by analytical formulas. For rail irregularities, periodic defects also play an important role. The use of irregularities in simulations requires various processing steps if measured irregularities are used, as well as if synthetic data are utilised. This paper gives a quite complete overview of rail irregularities and points out similarities and differences to the road.

  9. Irregular lattice model for quasistatic crack propagation

    NASA Astrophysics Data System (ADS)

    Bolander, J. E.; Sukumar, N.

    2005-03-01

    An irregular lattice model is proposed for simulating quasistatic fracture in softening materials. Lattice elements are defined on the edges of a Delaunay tessellation of the medium. The dual (Voronoi) tessellation is used to scale the elemental stiffness terms in a manner that renders the lattice elastically homogeneous. This property enables the accurate modeling of heterogeneity, as demonstrated through the elastic stress analyses of fiber composites. A cohesive description of fracture is used to model crack initiation and propagation. Numerical simulations, which demonstrate energy-conserving and grid-insensitive descriptions of cracking, are presented. The model provides a framework for the failure analysis of quasibrittle materials and fiber-reinforced brittle-matrix composites.

  10. Linearity-Preserving Limiters on Irregular Grids

    NASA Technical Reports Server (NTRS)

    Berger, Marsha; Aftosmis, Michael; Murman, Scott

    2004-01-01

    This paper examines the behavior of flux and slope limiters on non-uniform grids in multiple dimensions. We note that on non-uniform grids the scalar formulation in standard use today sacrifices k-exactness, even for linear solutions, impacting both accuracy and convergence. We rewrite some well-known limiters in a n way to highlight their underlying symmetry, and use this to examine both traditional and novel limiter formulations. A consistent method of handling stretched meshes is developed, as is a new directional formulation in multiple dimensions for irregular grids. Results are presented demonstrating improved accuracy and convergence using a combination of model problems and complex three-dimensional examples.