Science.gov

Sample records for reveal distinct functions

  1. Distinct hippocampal functional networks revealed by tractography-based parcellation.

    PubMed

    Adnan, Areeba; Barnett, Alexander; Moayedi, Massieh; McCormick, Cornelia; Cohn, Melanie; McAndrews, Mary Pat

    2016-07-01

    Recent research suggests the anterior and posterior hippocampus form part of two distinct functional neural networks. Here we investigate the structural underpinnings of this functional connectivity difference using diffusion-weighted imaging-based parcellation. Using this technique, we substantiated that the hippocampus can be parcellated into distinct anterior and posterior segments. These structurally defined segments did indeed show different patterns of resting state functional connectivity, in that the anterior segment showed greater connectivity with temporal and orbitofrontal cortex, whereas the posterior segment was more highly connected to medial and lateral parietal cortex. Furthermore, we showed that the posterior hippocampal connectivity to memory processing regions, including the dorsolateral prefrontal cortex, parahippocampal, inferior temporal and fusiform gyri and the precuneus, predicted interindividual relational memory performance. These findings provide important support for the integration of structural and functional connectivity in understanding the brain networks underlying episodic memory. PMID:26206251

  2. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment

    PubMed Central

    van Wolfswinkel, Josien C.; Wagner, Daniel E.; Reddien, Peter W.

    2014-01-01

    Planarians are flatworms capable of regenerating any missing body region. This capacity is mediated by neoblasts, a proliferative cell population that contains pluripotent stem cells. Although population-based studies have revealed many neoblast characteristics, whether functionally distinct classes exist within this population is unclear. Here, we used high-dimensional single-cell transcriptional profiling from over a thousand individual neoblasts to directly compare gene expression fingerprints during homeostasis and regeneration. We identified two prominent neoblast classes that we named ζ (zeta) and σ (sigma). Zeta-neoblasts encompass specified cells that give rise to an abundant postmitotic lineage including epidermal cells, and are not required for regeneration. By contrast, sigma-neoblasts proliferate in response to injury, possess broad lineage capacity, and can give rise to zeta-neoblasts. These findings present a new view of planarian neoblasts, in which the population is comprised of two major and functionally distinct cellular compartments. PMID:25017721

  3. An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.

    PubMed

    Jin, Jinpu; He, Kun; Tang, Xing; Li, Zhe; Lv, Le; Zhao, Yi; Luo, Jingchu; Gao, Ge

    2015-07-01

    Transcription factors (TFs) play key roles in both development and stress responses. By integrating into and rewiring original systems, novel TFs contribute significantly to the evolution of transcriptional regulatory networks. Here, we report a high-confidence transcriptional regulatory map covering 388 TFs from 47 families in Arabidopsis. Systematic analysis of this map revealed the architectural heterogeneity of developmental and stress response subnetworks and identified three types of novel network motifs that are absent from unicellular organisms and essential for multicellular development. Moreover, TFs of novel families that emerged during plant landing present higher binding specificities and are preferentially wired into developmental processes and these novel network motifs. Further unveiled connection between the binding specificity and wiring preference of TFs explains the wiring preferences of novel-family TFs. These results reveal distinct functional and evolutionary features of novel TFs, suggesting a plausible mechanism for their contribution to the evolution of multicellular organisms. PMID:25750178

  4. Functional Analysis of GLRX5 Mutants Reveals Distinct Functionalities of GLRX5 Protein.

    PubMed

    Liu, Gang; Wang, Yongwei; Anderson, Gregory J; Camaschella, Clara; Chang, Yanzhong; Nie, Guangjun

    2016-01-01

    Glutaredoxin 5 (GLRX5) is a 156 amino acid mitochondrial protein that plays an essential role in mitochondrial iron-sulfur cluster transfer. Mutations in this protein were reported to result in sideroblastic anemia and variant nonketotic hyperglycinemia in human. Recently, we have characterized a Chinese congenital sideroblastic anemia patient who has two compound heterozygous missense mutations (c. 301 A>C and c. 443 T>C) in his GLRX5 gene. Herein, we developed a GLRX5 knockout K562 cell line and studied the biochemical functions of the identified pathogenic mutations and other conserved amino acids with predicted essential functions. We observed that the K101Q mutation (due to c. 301 A>C mutation) may prevent the binding of [Fe-S] to GLRX5 protein, while L148S (due to c. 443 T>C mutation) may interfere with [Fe-S] transfer from GLRX5 to iron regulatory protein 1 (IRP1), mitochondrial aconitase (m-aconitase) and ferrochelatase. We also demonstrated that L148S is functionally complementary to the K51del mutant with respect to Fe/S-ferrochelatase, Fe/S-IRP1, Fe/S-succinate dehydrogenase, and Fe/S-m-aconitase biosynthesis and lipoylation of pyruvate dehydrogenase complex and α-ketoglutarate dehydrogenase complex. Furthermore, we demonstrated that the mutations of highly conserved amino acid residues in GLRX5 protein can have different effects on downstream Fe/S proteins. Collectively, our current work demonstrates that GLRX5 protein is multifunctional in [Fe-S] protein synthesis and maturation and defects of the different amino acids of the protein will lead to distinct effects on downstream Fe/S biosynthesis. PMID:26100117

  5. Activity-dependent silencing reveals functionally distinct itch-generating sensory neurons

    PubMed Central

    Roberson, David P.; Gudes, Sagi; Sprague, Jared M.; Patoski, Haley A. W.; Robson, Victoria K.; Blasl, Felix; Duan, Bo; Oh, Seog Bae; Bean, Bruce P.; Ma, Qiufu

    2013-01-01

    The peripheral terminals of primary sensory neurons detect histamine and non-histamine itch-provoking ligands through molecularly distinct transduction mechanisms. It remains unclear, however, whether these distinct pruritogens activate the same or different afferent fibers. We utilized a strategy of reversibly silencing specific subsets of murine pruritogen-sensitive sensory axons by targeted delivery of a charged sodium-channel blocker and found that functional blockade of histamine itch did not affect the itch evoked by chloroquine or SLIGRL-NH2, and vice versa. Notably, blocking itch-generating fibers did not reduce pain-associated behavior. However, silencing TRPV1+ or TRPA1+ neurons allowed AITC or capsaicin respectively to evoke itch, implying that certain peripheral afferents may normally indirectly inhibit algogens from eliciting itch. These findings support the presence of functionally distinct sets of itch-generating neurons and suggest that targeted silencing of activated sensory fibers may represent a clinically useful anti-pruritic therapeutic approach for histaminergic and non-histaminergic pruritus. PMID:23685721

  6. Feeding characteristics reveal functional distinctions among browsing herbivorous fishes on coral reefs

    NASA Astrophysics Data System (ADS)

    Streit, Robert P.; Hoey, Andrew S.; Bellwood, David R.

    2015-12-01

    The removal of macroalgal biomass by fishes is a key process on coral reefs. Numerous studies have identified the fish species responsible for removing mature macroalgae, and have identified how this varies spatially, temporally, and among different algal types. None, however, have considered the behavioural and morphological traits of the browsing fishes and how this may influence the removal of macroalgal material. Using video observations of fish feeding on the brown macroalga Sargassum polycystum, we quantified the feeding behaviour and morphology of the four dominant browsing species on the Great Barrier Reef ( Kyphosus vaigiensis, Naso unicornis, Siganus canaliculatus, and Siganus doliatus). The greatest distinction between species was the algal material they targeted. K. vaigiensis and N. unicornis bit on the entire macroalgal thallus in approximately 90 % of bites. In contrast, Si. canaliculatus and Si. doliatus avoided biting the stalks, with 80-98 % of bites being on the macroalgal leaves only. This distinctive grouping into `entire thallus-biters' versus `leaf-biters' was not supported by size-standardized measures of biting morphology. Rather, species-specific adult body sizes, tooth shape, and feeding behaviour appear to underpin this functional distinction, with adults of the two larger fish species ( N. unicornis and K. vaigiensis) eating the entire macroalgal thallus, while the two smaller species ( Si. canaliculatus and Si. doliatus) bite only leaves. These findings caution against assumed homogeneity within this, and potentially other, functional groups on coral reefs. As functional redundancy within the macroalgal browsers is limited, the smaller `leaf-biting' species are unlikely to be able to compensate functionally for the loss of larger `entire thallus-biting' species.

  7. Velocity Selective Networks in Human Cortex Reveal Two Functionally Distinct Auditory Motion Systems

    PubMed Central

    Meng, Jhao-An; Saberi, Kourosh; Hsieh, I-Hui

    2016-01-01

    The auditory system encounters motion cues through an acoustic object’s movement or rotation of the listener’s head in a stationary sound field, generating a wide range of naturally occurring velocities from a few to several hundred degrees per second. The angular velocity of moving acoustic objects relative to a listener is typically slow and does not exceed tens of degrees per second, whereas head rotations in a stationary acoustic field may generate fast-changing spatial cues in the order of several hundred degrees per second. We hypothesized that these two types of systems (i.e., encoding slow movements of an object or fast head rotations) may engage functionally distinct substrates in processing spatially dynamic auditory cues, with the latter potentially involved in maintaining perceptual constancy in a stationary field during head rotations and therefore possibly involving corollary-discharge mechanisms in premotor cortex. Using fMRI, we examined cortical response patterns to sound sources moving at a wide range of velocities in 3D virtual auditory space. We found a significant categorical difference between fast and slow moving sounds, with stronger activations in response to higher velocities in the posterior superior temporal regions, the planum temporale, and notably the premotor ventral-rostral (PMVr) area implicated in planning neck and head motor functions. PMID:27294673

  8. Functional isogenic modeling of BRCA1 alleles reveals distinct carrier phenotypes

    PubMed Central

    Cochran, Rory L.; Cidado, Justin; Kim, Minsoo; Zabransky, Daniel J.; Croessmann, Sarah; Chu, David; Wong, Hong Yuen; Beaver, Julia A.; Cravero, Karen; Erlanger, Bracha; Parsons, Heather; Heaphy, Christopher M.; Meeker, Alan K.; Lauring, Josh; Park, Ben Ho

    2015-01-01

    Clinical genetic testing of BRCA1 and BRCA2 is commonly performed to identify specific individuals at risk for breast and ovarian cancers who may benefit from prophylactic therapeutic interventions. Unfortunately, it is evident that deleterious BRCA1 alleles demonstrate variable penetrance and that many BRCA1 variants of unknown significance (VUS) exist. In order to further refine hereditary risks that may be associated with specific BRCA1 alleles, we performed gene targeting to establish an isogenic panel of immortalized human breast epithelial cells harboring eight clinically relevant BRCA1 alleles. Interestingly, BRCA1 mutations and VUS had distinct, quantifiable phenotypes relative to isogenic parental BRCA1 wild type cells and controls. Heterozygous cells with known deleterious BRCA1 mutations (185delAG, C61G and R71G) demonstrated consistent phenotypes in radiation sensitivity and genomic instability assays, but showed variability in other assays. Heterozygous BRCA1 VUS cells also demonstrated assay variability, with some VUS demonstrating phenotypes more consistent with deleterious alleles. Taken together, our data suggest that BRCA1 deleterious mutations and VUS can differ in their range of tested phenotypes, suggesting they might impart varying degrees of risk. These results demonstrate that functional isogenic modeling of BRCA1 alleles could aid in classifying BRCA1 mutations and VUS, and determining BRCA allele cancer risk. PMID:26246475

  9. Functional isogenic modeling of BRCA1 alleles reveals distinct carrier phenotypes.

    PubMed

    Cochran, Rory L; Cidado, Justin; Kim, Minsoo; Zabransky, Daniel J; Croessmann, Sarah; Chu, David; Wong, Hong Yuen; Beaver, Julia A; Cravero, Karen; Erlanger, Bracha; Parsons, Heather; Heaphy, Christopher M; Meeker, Alan K; Lauring, Josh; Park, Ben Ho

    2015-09-22

    Clinical genetic testing of BRCA1 and BRCA2 is commonly performed to identify specific individuals at risk for breast and ovarian cancers who may benefit from prophylactic therapeutic interventions. Unfortunately, it is evident that deleterious BRCA1 alleles demonstrate variable penetrance and that many BRCA1 variants of unknown significance (VUS) exist. In order to further refine hereditary risks that may be associated with specific BRCA1 alleles, we performed gene targeting to establish an isogenic panel of immortalized human breast epithelial cells harboring eight clinically relevant BRCA1 alleles. Interestingly, BRCA1 mutations and VUS had distinct, quantifiable phenotypes relative to isogenic parental BRCA1 wild type cells and controls. Heterozygous cells with known deleterious BRCA1 mutations (185delAG, C61G and R71G) demonstrated consistent phenotypes in radiation sensitivity and genomic instability assays, but showed variability in other assays. Heterozygous BRCA1 VUS cells also demonstrated assay variability, with some VUS demonstrating phenotypes more consistent with deleterious alleles. Taken together, our data suggest that BRCA1 deleterious mutations and VUS can differ in their range of tested phenotypes, suggesting they might impart varying degrees of risk. These results demonstrate that functional isogenic modeling of BRCA1 alleles could aid in classifying BRCA1 mutations and VUS, and determining BRCA allele cancer risk. PMID:26246475

  10. Functional genomic analysis reveals overlapping and distinct features of chronologically long-lived yeast populations.

    PubMed

    Wierman, Margaret B; Matecic, Mirela; Valsakumar, Veena; Li, Mingguang; Smith, Daniel L; Bekiranov, Stefan; Smith, Jeffrey S

    2015-03-01

    Yeast chronological lifespan (CLS) is extended by multiple genetic and environmental manipulations, including caloric restriction (CR). Understanding the common changes in molecular pathways induced by such manipulations could potentially reveal conserved longevity mechanisms. We therefore performed gene expression profiling on several long-lived yeast populations, including anade4∆mutant defective in de novo purine (AMP) biosynthesis, and a calorie restricted WT strain. CLS was also extended by isonicotinamide (INAM) or expired media derived from CR cultures. Comparisons between these diverse long-lived conditions revealed a common set of differentially regulated genes, several of which were potential longevity biomarkers. There was also enrichment for genes that function in CLS regulation, including a long-lived adenosine kinase mutant (ado1∆) that links CLS regulation to the methyl cycle and AMP. Genes co-regulated between the CR and ade4∆ conditions were dominated by GO terms related to metabolism of alternative carbon sources, consistent with chronological longevity requiring efficient acetate/acetic acid utilization. Alternatively, treating cells with isonicotinamide (INAM) or the expired CR media resulted in GO terms predominantly related to cell wall remodeling, consistent with improved stress resistance and protection against external insults like acetic acid. Acetic acid therefore has both beneficial and detrimental effects on CLS. PMID:25769345

  11. Live Imaging of Calcium Dynamics during Axon Degeneration Reveals Two Functionally Distinct Phases of Calcium Influx

    PubMed Central

    Yamagishi, Yuya; Tessier-Lavigne, Marc

    2015-01-01

    Calcium is a key regulator of axon degeneration caused by trauma and disease, but its specific spatial and temporal dynamics in injured axons remain unclear. To clarify the function of calcium in axon degeneration, we observed calcium dynamics in single injured neurons in live zebrafish larvae and tested the temporal requirement for calcium in zebrafish neurons and cultured mouse DRG neurons. Using laser axotomy to induce Wallerian degeneration (WD) in zebrafish peripheral sensory axons, we monitored calcium dynamics from injury to fragmentation, revealing two stereotyped phases of axonal calcium influx. First, axotomy triggered a transient local calcium wave originating at the injury site. This initial calcium wave only disrupted mitochondria near the injury site and was not altered by expression of the protective WD slow (WldS) protein. Inducing multiple waves with additional axotomies did not change the kinetics of degeneration. In contrast, a second phase of calcium influx occurring minutes before fragmentation spread as a wave throughout the axon, entered mitochondria, and was abolished by WldS expression. In live zebrafish, chelating calcium after the first wave, but before the second wave, delayed the progress of fragmentation. In cultured DRG neurons, chelating calcium early in the process of WD did not alter degeneration, but chelating calcium late in WD delayed fragmentation. We propose that a terminal calcium wave is a key instructive component of the axon degeneration program. SIGNIFICANCE STATEMENT Axon degeneration resulting from trauma or neurodegenerative disease can cause devastating deficits in neural function. Understanding the molecular and cellular events that execute axon degeneration is essential for developing treatments to address these conditions. Calcium is known to contribute to axon degeneration, but its temporal requirements in this process have been unclear. Live calcium imaging in severed zebrafish neurons and temporally controlled

  12. Distinct functional roles of cardiac mitochondrial subpopulations revealed by a 3D simulation model.

    PubMed

    Hatano, Asuka; Okada, Jun-Ichi; Washio, Takumi; Hisada, Toshiaki; Sugiura, Seiryo

    2015-06-01

    Experimental characterization of two cardiac mitochondrial subpopulations, namely, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), has been hampered by technical difficulties, and an alternative approach is eagerly awaited. We previously developed a three-dimensional computational cardiomyocyte model that integrates electrophysiology, metabolism, and mechanics with subcellular structure. In this study, we further developed our model to include intracellular oxygen diffusion, and determined whether mitochondrial localization or intrinsic properties cause functional variations. For this purpose, we created two models: one with equal SSM and IFM properties and one with IFM having higher activity levels. Using these two models to compare the SSM and IFM responses of [Ca(2+)], tricarboxylic acid cycle activity, [NADH], and mitochondrial inner membrane potential to abrupt changes in pacing frequency (0.25-2 Hz), we found that the reported functional differences between these subpopulations appear to be mostly related to local [Ca(2+)] heterogeneity, and variations in intrinsic properties only serve to augment these differences. We also examined the effect of hypoxia on mitochondrial function. Under normoxic conditions, intracellular oxygen is much higher throughout the cell than the half-saturation concentration for oxidative phosphorylation. However, under limited oxygen supply, oxygen is mostly exhausted in SSM, leaving the core region in an anoxic condition. Reflecting this heterogeneous oxygen environment, the inner membrane potential continues to decrease in IFM, whereas it is maintained to nearly normal levels in SSM, thereby ensuring ATP supply to this region. Our simulation results provide clues to understanding the origin of functional variations in two cardiac mitochondrial subpopulations and their differential roles in maintaining cardiomyocyte function as a whole. PMID:26039174

  13. Distinct Functional Roles of Cardiac Mitochondrial Subpopulations Revealed by a 3D Simulation Model

    PubMed Central

    Hatano, Asuka; Okada, Jun-ichi; Washio, Takumi; Hisada, Toshiaki; Sugiura, Seiryo

    2015-01-01

    Experimental characterization of two cardiac mitochondrial subpopulations, namely, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), has been hampered by technical difficulties, and an alternative approach is eagerly awaited. We previously developed a three-dimensional computational cardiomyocyte model that integrates electrophysiology, metabolism, and mechanics with subcellular structure. In this study, we further developed our model to include intracellular oxygen diffusion, and determined whether mitochondrial localization or intrinsic properties cause functional variations. For this purpose, we created two models: one with equal SSM and IFM properties and one with IFM having higher activity levels. Using these two models to compare the SSM and IFM responses of [Ca2+], tricarboxylic acid cycle activity, [NADH], and mitochondrial inner membrane potential to abrupt changes in pacing frequency (0.25–2 Hz), we found that the reported functional differences between these subpopulations appear to be mostly related to local [Ca2+] heterogeneity, and variations in intrinsic properties only serve to augment these differences. We also examined the effect of hypoxia on mitochondrial function. Under normoxic conditions, intracellular oxygen is much higher throughout the cell than the half-saturation concentration for oxidative phosphorylation. However, under limited oxygen supply, oxygen is mostly exhausted in SSM, leaving the core region in an anoxic condition. Reflecting this heterogeneous oxygen environment, the inner membrane potential continues to decrease in IFM, whereas it is maintained to nearly normal levels in SSM, thereby ensuring ATP supply to this region. Our simulation results provide clues to understanding the origin of functional variations in two cardiac mitochondrial subpopulations and their differential roles in maintaining cardiomyocyte function as a whole. PMID:26039174

  14. Functionally distinct melanocyte populations revealed by reconstitution of hair follicles in mice.

    PubMed

    Aoki, Hitomi; Hara, Akira; Motohashi, Tsutomu; Osawa, Masatake; Kunisada, Takahiro

    2011-02-01

    Hair follicle reconstitution analysis was used to test the contribution of melanocytes or their precursors to regenerated hair follicles. In this study, we first confirmed the process of chimeric hair follicle regeneration by both hair keratinocytes and follicular melanocytes. Then, as first suggested from the differential growth requirements of epidermal skin melanocytes and non-cutaneous or dermal melanocytes, we confirmed the inability of the latter to be involved as follicular melanocytes to regenerate hair follicles during the hair reconstitution assay. This clear functional discrimination between non-cutaneous or dermal melanocytes and epidermal melanocytes suggests the presence of two different melanocyte cell lineages, a finding that might be important in the pathogenesis of melanocyte-related diseases and melanomas. PMID:21054816

  15. Characterization of type 2 diacylglycerol acyltransferases in Chlamydomonas reinhardtii reveals their distinct substrate specificities and functions in triacylglycerol biosynthesis.

    PubMed

    Liu, Jin; Han, Danxiang; Yoon, Kangsup; Hu, Qiang; Li, Yantao

    2016-04-01

    Diacylglycerol acyltransferases (DGATs) catalyze a rate-limiting step of triacylglycerol (TAG) biosynthesis in higher plants and yeast. The genome of the green alga Chlamydomonas reinhardtii has multiple genes encoding type 2 DGATs (DGTTs). Here we present detailed functional and biochemical analyses of Chlamydomonas DGTTs. In vitro enzyme analysis using a radiolabel-free assay revealed distinct substrate specificities of three DGTTs: CrDGTT1 preferred polyunsaturated acyl CoAs, CrDGTT2 preferred monounsaturated acyl CoAs, and CrDGTT3 preferred C16 CoAs. When diacylglycerol was used as the substrate, CrDGTT1 preferred C16 over C18 in the sn-2 position of the glycerol backbone, but CrDGTT2 and CrDGTT3 preferred C18 over C16. In vivo knockdown of CrDGTT1, CrDGTT2 or CrDGTT3 resulted in 20-35% decreases in TAG content and a reduction of specific TAG fatty acids, in agreement with the findings of the in vitro assay and fatty acid feeding test. These results demonstrate that CrDGTT1, CrDGTT2 and CrDGTT3 possess distinct specificities toward acyl CoAs and diacylglycerols, and may work in concert spatially and temporally to synthesize diverse TAG species in C. reinhardtii. CrDGTT1 was shown to prefer prokaryotic lipid substrates and probably resides in both the endoplasmic reticulum and chloroplast envelope, indicating its role in prokaryotic and eukaryotic TAG biosynthesis. Based on these findings, we propose a working model for the role of CrDGTT1 in TAG biosynthesis. This work provides insight into TAG biosynthesis in C. reinhardtii, and paves the way for engineering microalgae for production of biofuels and high-value bioproducts. PMID:26919811

  16. Systematic mapping of WNT-FZD protein interactions reveals functional selectivity by distinct WNT-FZD pairs.

    PubMed

    Dijksterhuis, Jacomijn P; Baljinnyam, Bolormaa; Stanger, Karen; Sercan, Hakki O; Ji, Yun; Andres, Osler; Rubin, Jeffrey S; Hannoush, Rami N; Schulte, Gunnar

    2015-03-13

    The seven-transmembrane-spanning receptors of the FZD1-10 class are bound and activated by the WNT family of lipoglycoproteins, thereby inducing a complex network of signaling pathways. However, the specificity of the interaction between mammalian WNT and FZD proteins and the subsequent signaling cascade downstream of the different WNT-FZD pairs have not been systematically addressed to date. In this study, we determined the binding affinities of various WNTs for different members of the FZD family by using bio-layer interferometry and characterized their functional selectivity in a cell system. Using purified WNTs, we show that different FZD cysteine-rich domains prefer to bind to distinct WNTs with fast on-rates and slow off-rates. In a 32D cell-based system engineered to overexpress FZD2, FZD4, or FZD5, we found that WNT-3A (but not WNT-4, -5A, or -9B) activated the WNT-β-catenin pathway through FZD2/4/5 as measured by phosphorylation of LRP6 and β-catenin stabilization. Surprisingly, different WNT-FZD pairs showed differential effects on phosphorylation of DVL2 and DVL3, revealing a previously unappreciated DVL isoform selectivity by different WNT-FZD pairs in 32D cells. In summary, we present extensive mapping of WNT-FZD cysteine-rich domain interactions complemented by analysis of WNT-FZD pair functionality in a unique cell system expressing individual FZD isoforms. Differential WNT-FZD binding and selective functional readouts suggest that endogenous WNT ligands evolved with an intrinsic natural bias toward different downstream signaling pathways, a phenomenon that could be of great importance in the design of FZD-targeting drugs. PMID:25605717

  17. Systematic Mapping of WNT-FZD Protein Interactions Reveals Functional Selectivity by Distinct WNT-FZD Pairs*

    PubMed Central

    Dijksterhuis, Jacomijn P.; Baljinnyam, Bolormaa; Stanger, Karen; Sercan, Hakki O.; Ji, Yun; Andres, Osler; Rubin, Jeffrey S.; Hannoush, Rami N.; Schulte, Gunnar

    2015-01-01

    The seven-transmembrane-spanning receptors of the FZD1–10 class are bound and activated by the WNT family of lipoglycoproteins, thereby inducing a complex network of signaling pathways. However, the specificity of the interaction between mammalian WNT and FZD proteins and the subsequent signaling cascade downstream of the different WNT-FZD pairs have not been systematically addressed to date. In this study, we determined the binding affinities of various WNTs for different members of the FZD family by using bio-layer interferometry and characterized their functional selectivity in a cell system. Using purified WNTs, we show that different FZD cysteine-rich domains prefer to bind to distinct WNTs with fast on-rates and slow off-rates. In a 32D cell-based system engineered to overexpress FZD2, FZD4, or FZD5, we found that WNT-3A (but not WNT-4, -5A, or -9B) activated the WNT-β-catenin pathway through FZD2/4/5 as measured by phosphorylation of LRP6 and β-catenin stabilization. Surprisingly, different WNT-FZD pairs showed differential effects on phosphorylation of DVL2 and DVL3, revealing a previously unappreciated DVL isoform selectivity by different WNT-FZD pairs in 32D cells. In summary, we present extensive mapping of WNT-FZD cysteine-rich domain interactions complemented by analysis of WNT-FZD pair functionality in a unique cell system expressing individual FZD isoforms. Differential WNT-FZD binding and selective functional readouts suggest that endogenous WNT ligands evolved with an intrinsic natural bias toward different downstream signaling pathways, a phenomenon that could be of great importance in the design of FZD-targeting drugs. PMID:25605717

  18. Modeling autosomal recessive cutis laxa type 1C in mice reveals distinct functions for Ltbp-4 isoforms

    PubMed Central

    Bultmann-Mellin, Insa; Conradi, Anne; Maul, Alexandra C.; Dinger, Katharina; Wempe, Frank; Wohl, Alexander P.; Imhof, Thomas; Wunderlich, F. Thomas; Bunck, Alexander C.; Nakamura, Tomoyuki; Koli, Katri; Bloch, Wilhelm; Ghanem, Alexander; Heinz, Andrea; von Melchner, Harald; Sengle, Gerhard; Sterner-Kock, Anja

    2015-01-01

    Recent studies have revealed an important role for LTBP-4 in elastogenesis. Its mutational inactivation in humans causes autosomal recessive cutis laxa type 1C (ARCL1C), which is a severe disorder caused by defects of the elastic fiber network. Although the human gene involved in ARCL1C has been discovered based on similar elastic fiber abnormalities exhibited by mice lacking the short Ltbp-4 isoform (Ltbp4S−/−), the murine phenotype does not replicate ARCL1C. We therefore inactivated both Ltbp-4 isoforms in the mouse germline to model ARCL1C. Comparative analysis of Ltbp4S−/− and Ltbp4-null (Ltbp4−/−) mice identified Ltbp-4L as an important factor for elastogenesis and postnatal survival, and showed that it has distinct tissue expression patterns and specific molecular functions. We identified fibulin-4 as a previously unknown interaction partner of both Ltbp-4 isoforms and demonstrated that at least Ltbp-4L expression is essential for incorporation of fibulin-4 into the extracellular matrix (ECM). Overall, our results contribute to the current understanding of elastogenesis and provide an animal model of ARCL1C. PMID:25713297

  19. Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses

    PubMed Central

    Kapeli, Katannya; Pratt, Gabriel A.; Vu, Anthony Q.; Hutt, Kasey R.; Martinez, Fernando J.; Sundararaman, Balaji; Batra, Ranjan; Freese, Peter; Lambert, Nicole J.; Huelga, Stephanie C.; Chun, Seung J.; Liang, Tiffany Y.; Chang, Jeremy; Donohue, John P.; Shiue, Lily; Zhang, Jiayu; Zhu, Haining; Cambi, Franca; Kasarskis, Edward; Hoon, Shawn; Ares Jr., Manuel; Burge, Christopher B.; Ravits, John; Rigo, Frank; Yeo, Gene W.

    2016-01-01

    The RNA-binding protein (RBP) TAF15 is implicated in amyotrophic lateral sclerosis (ALS). To compare TAF15 function to that of two ALS-associated RBPs, FUS and TDP-43, we integrate CLIP-seq and RNA Bind-N-Seq technologies, and show that TAF15 binds to ∼4,900 RNAs enriched for GGUA motifs in adult mouse brains. TAF15 and FUS exhibit similar binding patterns in introns, are enriched in 3′ untranslated regions and alter genes distinct from TDP-43. However, unlike FUS and TDP-43, TAF15 has a minimal role in alternative splicing. In human neural progenitors, TAF15 and FUS affect turnover of their RNA targets. In human stem cell-derived motor neurons, the RNA profile associated with concomitant loss of both TAF15 and FUS resembles that observed in the presence of the ALS-associated mutation FUS R521G, but contrasts with late-stage sporadic ALS patients. Taken together, our findings reveal convergent and divergent roles for FUS, TAF15 and TDP-43 in RNA metabolism. PMID:27378374

  20. Fosmid-Based Structure-Function Analysis Reveals Functionally Distinct Domains in the Cytoplasmic Domain of Drosophila Crumbs

    PubMed Central

    Klose, Sven; Flores-Benitez, David; Riedel, Falko; Knust, Elisabeth

    2013-01-01

    The evolutionarily conserved transmembrane protein Crumbs is required for epithelial polarity and morphogenesis in the embryo, control of tissue size in imaginal discs and morphogenesis of photoreceptor cells, and prevents light-dependent retinal degeneration. The small cytoplasmic domain contains two highly conserved regions, a FERM (i.e., protein 4.1/ezrin/radixin/moesin)-binding and a PDZ (i.e., postsynaptic density/discs large/ZO-1)-binding domain. Using a fosmid-based transgenomic approach, we analyzed the role of the two domains during invagination of the tracheae and the salivary glands in the Drosophila embryo. We provide data to show that the PDZ-binding domain is essential for the maintenance of cell polarity in both tissues. In contrast, in embryos expressing a Crumbs protein with an exchange of a conserved Tyrosine residue in the FERM-binding domain to an Alanine, both tissues are internalized, despite some initial defects in apical constriction, phospho-Moesin recruitment, and coordinated invagination movements. However, at later stages these embryos fail to undergo dorsal closure, germ band retraction, and head involution. In addition, frequent defects in tracheal fusion were observed. These results suggest stage and/or tissue specific binding partners. We discuss the power of this fosmid-based system for detailed structure-function analyses in comparison to the UAS/Gal4 system. PMID:23390593

  1. Single-Cell Co-expression Analysis Reveals Distinct Functional Modules, Co-regulation Mechanisms and Clinical Outcomes

    PubMed Central

    Wang, Jie; Xia, Shuli; Arand, Brian; Zhu, Heng; Machiraju, Raghu; Huang, Kun; Ji, Hongkai; Qian, Jiang

    2016-01-01

    Co-expression analysis has been employed to predict gene function, identify functional modules, and determine tumor subtypes. Previous co-expression analysis was mainly conducted at bulk tissue level. It is unclear whether co-expression analysis at the single-cell level will provide novel insights into transcriptional regulation. Here we developed a computational approach to compare glioblastoma expression profiles at the single-cell level with those obtained from bulk tumors. We found that the co-expressed genes observed in single cells and bulk tumors have little overlap and show distinct characteristics. The co-expressed genes identified in bulk tumors tend to have similar biological functions, and are enriched for intrachromosomal interactions with synchronized promoter activity. In contrast, single-cell co-expressed genes are enriched for known protein-protein interactions, and are regulated through interchromosomal interactions. Moreover, gene members of some protein complexes are co-expressed only at the bulk level, while those of other complexes are co-expressed at both single-cell and bulk levels. Finally, we identified a set of co-expressed genes that can predict the survival of glioblastoma patients. Our study highlights that comparative analyses of single-cell and bulk gene expression profiles enable us to identify functional modules that are regulated at different levels and hold great translational potential. PMID:27100869

  2. Mutual Information Analysis Reveals Coevolving Residues in Tat That Compensate for Two Distinct Functions in HIV-1 Gene Expression*

    PubMed Central

    Dey, Siddharth S.; Xue, Yuhua; Joachimiak, Marcin P.; Friedland, Gregory D.; Burnett, John C.; Zhou, Qiang; Arkin, Adam P.; Schaffer, David V.

    2012-01-01

    Viral genomes are continually subjected to mutations, and functionally deleterious ones can be rescued by reversion or additional mutations that restore fitness. The error prone nature of HIV-1 replication has resulted in highly diverse viral sequences, and it is not clear how viral proteins such as Tat, which plays a critical role in viral gene expression and replication, retain their complex functions. Although several important amino acid positions in Tat are conserved, we hypothesized that it may also harbor functionally important residues that may not be individually conserved yet appear as correlated pairs, whose analysis could yield new mechanistic insights into Tat function and evolution. To identify such sites, we combined mutual information analysis and experimentation to identify coevolving positions and found that residues 35 and 39 are strongly correlated. Mutation of either residue of this pair into amino acids that appear in numerous viral isolates yields a defective virus; however, simultaneous introduction of both mutations into the heterologous Tat sequence restores gene expression close to wild-type Tat. Furthermore, in contrast to most coevolving protein residues that contribute to the same function, structural modeling and biochemical studies showed that these two residues contribute to two mechanistically distinct steps in gene expression: binding P-TEFb and promoting P-TEFb phosphorylation of the C-terminal domain in RNAPII. Moreover, Tat variants that mimic HIV-1 subtypes B or C at sites 35 and 39 have evolved orthogonal strengths of P-TEFb binding versus RNAPII phosphorylation, suggesting that subtypes have evolved alternate transcriptional strategies to achieve similar gene expression levels. PMID:22253435

  3. Gene Set−Based Integrative Analysis Revealing Two Distinct Functional Regulation Patterns in Four Common Subtypes of Epithelial Ovarian Cancer

    PubMed Central

    Chang, Chia-Ming; Chuang, Chi-Mu; Wang, Mong-Lien; Yang, Yi-Ping; Chuang, Jen-Hua; Yang, Ming-Jie; Yen, Ming-Shyen; Chiou, Shih-Hwa; Chang, Cheng-Chang

    2016-01-01

    Clear cell (CCC), endometrioid (EC), mucinous (MC) and high-grade serous carcinoma (SC) are the four most common subtypes of epithelial ovarian carcinoma (EOC). The widely accepted dualistic model of ovarian carcinogenesis divided EOCs into type I and II categories based on the molecular features. However, this hypothesis has not been experimentally demonstrated. We carried out a gene set-based analysis by integrating the microarray gene expression profiles downloaded from the publicly available databases. These quantified biological functions of EOCs were defined by 1454 Gene Ontology (GO) term and 674 Reactome pathway gene sets. The pathogenesis of the four EOC subtypes was investigated by hierarchical clustering and exploratory factor analysis. The patterns of functional regulation among the four subtypes containing 1316 cases could be accurately classified by machine learning. The results revealed that the ERBB and PI3K-related pathways played important roles in the carcinogenesis of CCC, EC and MC; while deregulation of cell cycle was more predominant in SC. The study revealed that two different functional regulation patterns exist among the four EOC subtypes, which were compatible with the type I and II classifications proposed by the dualistic model of ovarian carcinogenesis. PMID:27527159

  4. K-shell Analysis Reveals Distinct Functional Parts in an Electron Transfer Network and Its Implications for Extracellular Electron Transfer.

    PubMed

    Ding, Dewu; Li, Ling; Shu, Chuanjun; Sun, Xiao

    2016-01-01

    Shewanella oneidensis MR-1 is capable of extracellular electron transfer (EET) and hence has attracted considerable attention. The EET pathways mainly consist of c-type cytochromes, along with some other proteins involved in electron transfer processes. By whole genome study and protein interactions inquisition, we constructed a large-scale electron transfer network containing 2276 interactions among 454 electron transfer related proteins in S. oneidensis MR-1. Using the k-shell decomposition method, we identified and analyzed distinct parts of the electron transfer network. We found that there was a negative correlation between the k s (k-shell values) and the average DR_100 (disordered regions per 100 amino acids) in every shell, which suggested that disordered regions of proteins played an important role during the formation and extension of the electron transfer network. Furthermore, proteins in the top three shells of the network are mainly located in the cytoplasm and inner membrane; these proteins can be responsible for transfer of electrons into the quinone pool in a wide variety of environmental conditions. In most of the other shells, proteins are broadly located throughout the five cellular compartments (cytoplasm, inner membrane, periplasm, outer membrane, and extracellular), which ensures the important EET ability of S. oneidensis MR-1. Specifically, the fourth shell was responsible for EET and the c-type cytochromes in the remaining shells of the electron transfer network were involved in aiding EET. Taken together, these results show that there are distinct functional parts in the electron transfer network of S. oneidensis MR-1, and the EET processes could achieve high efficiency through cooperation through such an electron transfer network. PMID:27148219

  5. K-shell Analysis Reveals Distinct Functional Parts in an Electron Transfer Network and Its Implications for Extracellular Electron Transfer

    PubMed Central

    Ding, Dewu; Li, Ling; Shu, Chuanjun; Sun, Xiao

    2016-01-01

    Shewanella oneidensis MR-1 is capable of extracellular electron transfer (EET) and hence has attracted considerable attention. The EET pathways mainly consist of c-type cytochromes, along with some other proteins involved in electron transfer processes. By whole genome study and protein interactions inquisition, we constructed a large-scale electron transfer network containing 2276 interactions among 454 electron transfer related proteins in S. oneidensis MR-1. Using the k-shell decomposition method, we identified and analyzed distinct parts of the electron transfer network. We found that there was a negative correlation between the ks (k-shell values) and the average DR_100 (disordered regions per 100 amino acids) in every shell, which suggested that disordered regions of proteins played an important role during the formation and extension of the electron transfer network. Furthermore, proteins in the top three shells of the network are mainly located in the cytoplasm and inner membrane; these proteins can be responsible for transfer of electrons into the quinone pool in a wide variety of environmental conditions. In most of the other shells, proteins are broadly located throughout the five cellular compartments (cytoplasm, inner membrane, periplasm, outer membrane, and extracellular), which ensures the important EET ability of S. oneidensis MR-1. Specifically, the fourth shell was responsible for EET and the c-type cytochromes in the remaining shells of the electron transfer network were involved in aiding EET. Taken together, these results show that there are distinct functional parts in the electron transfer network of S. oneidensis MR-1, and the EET processes could achieve high efficiency through cooperation through such an electron transfer network. PMID:27148219

  6. Quantitative Imaging of Cholinergic Interneurons Reveals a Distinctive Spatial Organization and a Functional Gradient across the Mouse Striatum

    PubMed Central

    Götz, Jürgen; Bertran-Gonzalez, Jesus

    2016-01-01

    Information processing in the striatum requires the postsynaptic integration of glutamatergic and dopaminergic signals, which are then relayed to the output nuclei of the basal ganglia to influence behavior. Although cellularly homogeneous in appearance, the striatum contains several rare interneuron populations which tightly modulate striatal function. Of these, cholinergic interneurons (CINs) have been recently shown to play a critical role in the control of reward-related learning; however how the striatal cholinergic network is functionally organized at the mesoscopic level and the way this organization influences striatal function remains poorly understood. Here, we systematically mapped and digitally reconstructed the entire ensemble of CINs in the mouse striatum and quantitatively assessed differences in densities, spatial arrangement and neuropil content across striatal functional territories. This approach demonstrated that the rostral portion of the striatum contained a higher concentration of CINs than the caudal striatum and that the cholinergic content in the core of the ventral striatum was significantly lower than in the rest of the regions. Additionally, statistical comparison of spatial point patterns in the striatal cholinergic ensemble revealed that only a minor portion of CINs (17%) aggregated into cluster and that they were predominantly organized in a random fashion. Furthermore, we used a fluorescence reporter to estimate the activity of over two thousand CINs in naïve mice and found that there was a decreasing gradient of CIN overall function along the dorsomedial-to-ventrolateral axis, which appeared to be independent of their propensity to aggregate within the striatum. Altogether this work suggests that the regulation of striatal function by acetylcholine across the striatum is highly heterogeneous, and that signals originating in external afferent systems may be principally determining the function of CINs in the striatum. PMID:27314496

  7. Quantitative Imaging of Cholinergic Interneurons Reveals a Distinctive Spatial Organization and a Functional Gradient across the Mouse Striatum.

    PubMed

    Matamales, Miriam; Götz, Jürgen; Bertran-Gonzalez, Jesus

    2016-01-01

    Information processing in the striatum requires the postsynaptic integration of glutamatergic and dopaminergic signals, which are then relayed to the output nuclei of the basal ganglia to influence behavior. Although cellularly homogeneous in appearance, the striatum contains several rare interneuron populations which tightly modulate striatal function. Of these, cholinergic interneurons (CINs) have been recently shown to play a critical role in the control of reward-related learning; however how the striatal cholinergic network is functionally organized at the mesoscopic level and the way this organization influences striatal function remains poorly understood. Here, we systematically mapped and digitally reconstructed the entire ensemble of CINs in the mouse striatum and quantitatively assessed differences in densities, spatial arrangement and neuropil content across striatal functional territories. This approach demonstrated that the rostral portion of the striatum contained a higher concentration of CINs than the caudal striatum and that the cholinergic content in the core of the ventral striatum was significantly lower than in the rest of the regions. Additionally, statistical comparison of spatial point patterns in the striatal cholinergic ensemble revealed that only a minor portion of CINs (17%) aggregated into cluster and that they were predominantly organized in a random fashion. Furthermore, we used a fluorescence reporter to estimate the activity of over two thousand CINs in naïve mice and found that there was a decreasing gradient of CIN overall function along the dorsomedial-to-ventrolateral axis, which appeared to be independent of their propensity to aggregate within the striatum. Altogether this work suggests that the regulation of striatal function by acetylcholine across the striatum is highly heterogeneous, and that signals originating in external afferent systems may be principally determining the function of CINs in the striatum. PMID:27314496

  8. Yeast DNA ligase IV mutations reveal a nonhomologous end joining function of BRCT1 distinct from XRCC4/Lif1 binding

    PubMed Central

    Chiruvella, Kishore K.; Renard, Brian M.; Birkeland, Shanda R.; Sunder, Sham; Liang, Zhuobin; Wilson, Thomas E.

    2014-01-01

    LIG4/Dnl4 is the DNA ligase that (re)joins DNA double-strand breaks (DSBs) via nonhomologous end joining (NHEJ), an activity supported by binding of its tandem BRCT domains to the ligase accessory protein XRCC4/Lif1. We screened a panel of 88 distinct ligase mutants to explore the structure-function relationships of the yeast Dnl4 BRCT domains and inter-BRCT linker in NHEJ. Screen results suggested two distinct classes of BRCT mutations with differential effects on Lif1 interaction as compared to NHEJ completion. Validated constructs confirmed that D800K and GG(868:869)AA mutations, which target the Lif1 binding interface, showed a severely defective Dnl4-Lif1 interaction but a less consistent and often small decrease in NHEJ activity in some assays, as well as nearly normal levels of Dnl4 accumulation at DSBs. In contrast, mutants K742A and KTT(742:744)ATA, which target the β3-α2 region of the first BRCT domain, substantially decreased NHEJ function commensurate with a large defect in Dnl4 recruitment to DSBs, despite a comparatively greater preservation of the Lif1 interaction. Together, these separation-of-function mutants indicate that Dnl4 BRCT1 supports DSB recruitment and NHEJ in a manner distinct from Lif1 binding and reveal a complexity of Dnl4 BRCT domain functions in support of stable DSB association. PMID:25457772

  9. An inducible mouse model for skin cancer reveals distinct roles for gain- and loss-of-function p53 mutations

    PubMed Central

    Caulin, Carlos; Nguyen, Thao; Lang, Gene A.; Goepfert, Thea M.; Brinkley, Bill R.; Cai, Wei-Wen; Lozano, Guillermina; Roop, Dennis R.

    2007-01-01

    Mutations in ras and p53 are the most prevalent mutations found in human nonmelanoma skin cancers. Although some p53 mutations cause a loss of function, most result in expression of altered forms of p53, which may exhibit gain-of-function properties. Therefore, understanding the consequences of acquiring p53 gain-of-function versus loss-of-function mutations is critical for the generation of effective therapies for tumors harboring p53 mutations. Here we describe an inducible mouse model in which skin tumor formation is initiated by activation of an endogenous K-rasG12D allele. Using this model we compared the consequences of activating the p53 gain-of-function mutation p53R172H and of deleting the p53 gene. Activation of the p53R172H allele resulted in increased skin tumor formation, accelerated tumor progression, and induction of metastasis compared with deletion of p53. Consistent with these observations, the p53R172H tumors exhibited aneuploidy associated with centrosome amplification, which may underlie the mechanism by which p53R172H exerts its oncogenic properties. These results clearly demonstrate that p53 gain-of-function mutations confer poorer prognosis than loss of p53 during skin carcinogenesis and have important implications for the future design of therapies for tumors that exhibit p53 gain-of-function mutations. PMID:17607363

  10. Selective Disruption of Aurora C Kinase Reveals Distinct Functions from Aurora B Kinase during Meiosis in Mouse Oocytes

    PubMed Central

    Balboula, Ahmed Z.; Schindler, Karen

    2014-01-01

    Aurora B kinase (AURKB) is the catalytic subunit of the chromosomal passenger complex (CPC), an essential regulator of chromosome segregation. In mitosis, the CPC is required to regulate kinetochore microtubule (K-MT) attachments, the spindle assembly checkpoint, and cytokinesis. Germ cells express an AURKB homolog, AURKC, which can also function in the CPC. Separation of AURKB and AURKC function during meiosis in oocytes by conventional approaches has not been successful. Therefore, the meiotic function of AURKC is still not fully understood. Here, we describe an ATP-binding-pocket-AURKC mutant, that when expressed in mouse oocytes specifically perturbs AURKC-CPC and not AURKB-CPC function. Using this mutant we show for the first time that AURKC has functions that do not overlap with AURKB. These functions include regulating localized CPC activity and regulating chromosome alignment and K-MT attachments at metaphase of meiosis I (Met I). We find that AURKC-CPC is not the sole CPC complex that regulates the spindle assembly checkpoint in meiosis, and as a result most AURKC-perturbed oocytes arrest at Met I. A small subset of oocytes do proceed through cytokinesis normally, suggesting that AURKC-CPC is not the sole CPC complex during telophase I. But, the resulting eggs are aneuploid, indicating that AURKC is a critical regulator of meiotic chromosome segregation in female gametes. Taken together, these data suggest that mammalian oocytes contain AURKC to efficiently execute meiosis I and ensure high-quality eggs necessary for sexual reproduction. PMID:24586209

  11. Disruption of aminergic signalling reveals novel compounds with distinct inhibitory effects on mosquito reproduction, locomotor function and survival

    NASA Astrophysics Data System (ADS)

    Fuchs, Silke; Rende, Ermelinda; Crisanti, Andrea; Nolan, Tony

    2014-07-01

    Insecticide resistance amongst disease vectors is a growing problem and novel compounds are needed. Biogenic amines are important for neurotransmission and we have recently shown a potential role for these in mosquito fertility. Here, we dissected the relative contribution of different aminergic signalling pathways to biological processes essential for vectorial capacity such as fertility, locomotion and survival by injecting agonists and antagonists and showed that octopaminergic/tyraminergic signalling is essential for oviposition and hatching rate. We show that egg melanisation is regulated by adrenergic signalling, whose disruption causes premature melanisation specifically through the action of tyramine. In addition to this, co-injection of tyramine with DOPA, the precursor of melanin, had a strong cumulative negative effect on mosquito locomotion and survival. Dopaminergic and serotonergic antagonists such as amitriptyline and citalopram recapitulate this effect. Together these results reveal potential new target sites for the development of future mosquito sterilants and insecticides.

  12. Disruption of aminergic signalling reveals novel compounds with distinct inhibitory effects on mosquito reproduction, locomotor function and survival

    PubMed Central

    Fuchs, Silke; Rende, Ermelinda; Crisanti, Andrea; Nolan, Tony

    2014-01-01

    Insecticide resistance amongst disease vectors is a growing problem and novel compounds are needed. Biogenic amines are important for neurotransmission and we have recently shown a potential role for these in mosquito fertility. Here, we dissected the relative contribution of different aminergic signalling pathways to biological processes essential for vectorial capacity such as fertility, locomotion and survival by injecting agonists and antagonists and showed that octopaminergic/tyraminergic signalling is essential for oviposition and hatching rate. We show that egg melanisation is regulated by adrenergic signalling, whose disruption causes premature melanisation specifically through the action of tyramine. In addition to this, co-injection of tyramine with DOPA, the precursor of melanin, had a strong cumulative negative effect on mosquito locomotion and survival. Dopaminergic and serotonergic antagonists such as amitriptyline and citalopram recapitulate this effect. Together these results reveal potential new target sites for the development of future mosquito sterilants and insecticides. PMID:24984706

  13. Modeling-Dependent Protein Characterization of the Rice Aldehyde Dehydrogenase (ALDH) Superfamily Reveals Distinct Functional and Structural Features

    PubMed Central

    Kotchoni, Simeon O.; Jimenez-Lopez, Jose C.; Gao, Dongying; Edwards, Vincent; Gachomo, Emma W.; Margam, Venu M.; Seufferheld, Manfredo J.

    2010-01-01

    The completion of the rice genome sequence has made it possible to identify and characterize new genes and to perform comparative genomics studies across taxa. The aldehyde dehydrogenase (ALDH) gene superfamily encoding for NAD(P)+-dependent enzymes is found in all major plant and animal taxa. However, the characterization of plant ALDHs has lagged behind their animal- and prokaryotic-ALDH homologs. In plants, ALDHs are involved in abiotic stress tolerance, male sterility restoration, embryo development and seed viability and maturation. However, there is still no structural property-dependent functional characterization of ALDH protein superfamily in plants. In this paper, we identify members of the rice ALDH gene superfamily and use the evolutionary nesting events of retrotransposons and protein-modeling–based structural reconstitution to report the genetic and molecular and structural features of each member of the rice ALDH superfamily in abiotic/biotic stress responses and developmental processes. Our results indicate that rice-ALDHs are the most expanded plant ALDHs ever characterized. This work represents the first report of specific structural features mediating functionality of the whole families of ALDHs in an organism ever characterized. PMID:20634950

  14. Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control.

    PubMed

    Dallmann, Chris J; Dürr, Volker; Schmitz, Josef

    2016-01-27

    Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of time-varying joint torques is lacking. Here, we determine joint torques in the stick insect to identify leg joint function in the control of body height and propulsion. Torques were determined by measuring whole-body kinematics and ground reaction forces in freely walking animals. We demonstrate that despite strong differences in morphology and posture, stick insects show a functional division of joints similar to other insect model systems. Propulsion was generated by strong depression torques about the coxa-trochanter joint, not by retraction or flexion/extension torques. Torques about the respective thorax-coxa and femur-tibia joints were often directed opposite to fore-aft forces and joint movements. This suggests a posture-dependent mechanism that counteracts collapse of the leg under body load and directs the resultant force vector such that strong depression torques can control both body height and propulsion. Our findings parallel propulsive mechanisms described in other walking, jumping and flying insects, and challenge current control models of insect walking. PMID:26791608

  15. Structural and functional analysis of the Crb2–BRCT2 domain reveals distinct roles in checkpoint signaling and DNA damage repair

    PubMed Central

    Kilkenny, Mairi L.; Doré, Andrew S.; Roe, S. Mark; Nestoras, Konstantinos; Ho, Jenny C.Y.; Watts, Felicity Z.; Pearl, Laurence H.

    2008-01-01

    Schizosaccharomyces pombe Crb2 is a checkpoint mediator required for the cellular response to DNA damage. Like human 53BP1 and Saccharomyces cerevisiae Rad9 it contains Tudor2 and BRCT2 domains. Crb2-Tudor2 domain interacts with methylated H4K20 and is required for recruitment to DNA dsDNA breaks. The BRCT2 domain is required for dimerization, but its precise role in DNA damage repair and checkpoint signaling is unclear. The crystal structure of the Crb2–BRCT2 domain, alone and in complex with a phosphorylated H2A.1 peptide, reveals the structural basis for dimerization and direct interaction with γ-H2A.1 in ionizing radiation-induced foci (IRIF). Mutational analysis in vitro confirms the functional role of key residues and allows the generation of mutants in which dimerization and phosphopeptide binding are separately disrupted. Phenotypic analysis of these in vivo reveals distinct roles in the DNA damage response. Dimerization mutants are genotoxin sensitive and defective in checkpoint signaling, Chk1 phosphorylation, and Crb2 IRIF formation, while phosphopeptide-binding mutants are only slightly sensitive to IR, have extended checkpoint delays, phosphorylate Chk1, and form Crb2 IRIF. However, disrupting phosphopeptide binding slows formation of ssDNA-binding protein (Rpa1/Rad11) foci and reduces levels of Rad22(Rad52) recombination foci, indicating a DNA repair defect. PMID:18676809

  16. Mutant Allele-Specific Uncoupling of PENETRATION3 Functions Reveals Engagement of the ATP-Binding Cassette Transporter in Distinct Tryptophan Metabolic Pathways1[OPEN

    PubMed Central

    Lu, Xunli; Dittgen, Jan; Piślewska-Bednarek, Mariola; Molina, Antonio; Schneider, Bernd; Doubský, Jan; Schneeberger, Korbinian; Schulze-Lefert, Paul

    2015-01-01

    Arabidopsis (Arabidopsis thaliana) PENETRATION (PEN) genes quantitatively contribute to the execution of different forms of plant immunity upon challenge with diverse leaf pathogens. PEN3 encodes a plasma membrane-resident pleiotropic drug resistance-type ATP-binding cassette transporter and is thought to act in a pathogen-inducible and PEN2 myrosinase-dependent metabolic pathway in extracellular defense. This metabolic pathway directs the intracellular biosynthesis and activation of tryptophan-derived indole glucosinolates for subsequent PEN3-mediated efflux across the plasma membrane at pathogen contact sites. However, PEN3 also functions in abiotic stress responses to cadmium and indole-3-butyric acid (IBA)-mediated auxin homeostasis in roots, raising the possibility that PEN3 exports multiple functionally unrelated substrates. Here, we describe the isolation of a pen3 allele, designated pen3-5, that encodes a dysfunctional protein that accumulates in planta like wild-type PEN3. The specific mutation in pen3-5 uncouples PEN3 functions in IBA-stimulated root growth modulation, callose deposition induced with a conserved peptide epitope of bacterial flagellin (flg22), and pathogen-inducible salicylic acid accumulation from PEN3 activity in extracellular defense, indicating the engagement of multiple PEN3 substrates in different PEN3-dependent biological processes. We identified 4-O-β-d-glucosyl-indol-3-yl formamide (4OGlcI3F) as a pathogen-inducible, tryptophan-derived compound that overaccumulates in pen3 leaf tissue and has biosynthesis that is dependent on an intact PEN2 metabolic pathway. We propose that a precursor of 4OGlcI3F is the PEN3 substrate in extracellular pathogen defense. These precursors, the shared indole core present in IBA and 4OGlcI3F, and allele-specific uncoupling of a subset of PEN3 functions suggest that PEN3 transports distinct indole-type metabolites in distinct biological processes. PMID:26023163

  17. Sequencing and functional annotation of avian pathogenic Escherichia coli serogroup O78 strains reveal the evolution of E. coli lineages pathogenic for poultry via distinct mechanisms.

    PubMed

    Dziva, Francis; Hauser, Heidi; Connor, Thomas R; van Diemen, Pauline M; Prescott, Graham; Langridge, Gemma C; Eckert, Sabine; Chaudhuri, Roy R; Ewers, Christa; Mellata, Melha; Mukhopadhyay, Suman; Curtiss, Roy; Dougan, Gordon; Wieler, Lothar H; Thomson, Nicholas R; Pickard, Derek J; Stevens, Mark P

    2013-03-01

    Avian pathogenic Escherichia coli (APEC) causes respiratory and systemic disease in poultry. Sequencing of a multilocus sequence type 95 (ST95) serogroup O1 strain previously indicated that APEC resembles E. coli causing extraintestinal human diseases. We sequenced the genomes of two strains of another dominant APEC lineage (ST23 serogroup O78 strains χ7122 and IMT2125) and compared them to each other and to the reannotated APEC O1 sequence. For comparison, we also sequenced a human enterotoxigenic E. coli (ETEC) strain of the same ST23 serogroup O78 lineage. Phylogenetic analysis indicated that the APEC O78 strains were more closely related to human ST23 ETEC than to APEC O1, indicating that separation of pathotypes on the basis of their extraintestinal or diarrheagenic nature is not supported by their phylogeny. The accessory genome of APEC ST23 strains exhibited limited conservation of APEC O1 genomic islands and a distinct repertoire of virulence-associated loci. In light of this diversity, we surveyed the phenotype of 2,185 signature-tagged transposon mutants of χ7122 following intra-air sac inoculation of turkeys. This procedure identified novel APEC ST23 genes that play strain- and tissue-specific roles during infection. For example, genes mediating group 4 capsule synthesis were required for the virulence of χ7122 and were conserved in IMT2125 but absent from APEC O1. Our data reveal the genetic diversity of E. coli strains adapted to cause the same avian disease and indicate that the core genome of the ST23 lineage serves as a chassis for the evolution of E. coli strains adapted to cause avian or human disease via acquisition of distinct virulence genes. PMID:23275093

  18. Genome-Wide Occupancy of SREBP1 and Its Partners NFY and SP1 Reveals Novel Functional Roles and Combinatorial Regulation of Distinct Classes of Genes

    PubMed Central

    Reed, Brian D.; Charos, Alexandra E.; Szekely, Anna M.; Weissman, Sherman M.; Snyder, Michael

    2008-01-01

    The sterol regulatory element-binding protein (SREBP) family member SREBP1 is a critical transcriptional regulator of cholesterol and fatty acid metabolism and has been implicated in insulin resistance, diabetes, and other diet-related diseases. We globally identified the promoters occupied by SREBP1 and its binding partners NFY and SP1 in a human hepatocyte cell line using chromatin immunoprecipitation combined with genome tiling arrays (ChIP-chip). We find that SREBP1 occupies the promoters of 1,141 target genes involved in diverse biological pathways, including novel targets with roles in lipid metabolism and insulin signaling. We also identify a conserved SREBP1 DNA-binding motif in SREBP1 target promoters, and we demonstrate that many SREBP1 target genes are transcriptionally activated by treatment with insulin and glucose using gene expression microarrays. Finally, we show that SREBP1 cooperates extensively with NFY and SP1 throughout the genome and that unique combinations of these factors target distinct functional pathways. Our results provide insight into the regulatory circuitry in which SREBP1 and its network partners coordinate a complex transcriptional response in the liver with cues from the diet. PMID:18654640

  19. Confocal Microscopy Studies of Cationic Lipid/dna Complexes Reveal Distinct Pathways of Gene Delivery in Cells as a Function of Structure

    NASA Astrophysics Data System (ADS)

    Lin, Alison J.; Slack, Nelle L.; Ahmad, Ayesha; Evans, Heather M.; George, Cyril X.; Samuel, Charles E.; Safinya, Cyrus R.

    2000-03-01

    We have identified multiple pathways of gene delivery in mouse L cells using cationic lipids as carriers of DNA. Transfection, the process of delivering foreign DNA into cells, using cationic lipid/DNA (CL-DNA) complexes was monitored by laser confocal microscopy. By following the progress of fluorescently labelled lipid and DNA, we have determined distinct pathways of entry of complexes into cells and the subsequent DNA release from the complexes. We have correlated the microscopy results with the x-ray diffraction data on complex structures and the corresponding transfection efficiencies. X-ray diffraction results elucidated the structures of CL-DNA complexes as a function of the membrane charge density of the system. Luciferase protein assays disclosed novel trends of transfection efficiencies along the structural phase diagram. Similar results were obtained with GFP plasmids. Funded by NIH R01-GM59288-01, R37-AI12520-24, NSF-DMR 9972246, UC-Biotechnology Research and Education Program (97-02).

  20. Distinct Pattern Separation Related Transfer Functions in Human CA3/Dentate and CA1 Revealed Using High-Resolution fMRI and Variable Mnemonic Similarity

    ERIC Educational Resources Information Center

    Lacy, Joyce W.; Yassa, Michael A.; Stark, Shauna M.; Muftuler, L. Tugan; Stark, Craig E. L.

    2011-01-01

    Producing and maintaining distinct (orthogonal) neural representations for similar events is critical to avoiding interference in long-term memory. Recently, our laboratory provided the first evidence for separation-like signals in the human CA3/dentate. Here, we extended this by parametrically varying the change in input (similarity) while…

  1. HLA Class I-T Cell Epitopes from trans-Sialidase Proteins Reveal Functionally Distinct Subsets of CD8+ T Cells in Chronic Chagas Disease

    PubMed Central

    Alvarez, María G.; Postan, Miriam; Weatherly, D. Brent; Albareda, María C.; Sidney, John; Sette, Alessandro; Olivera, Carina; Armenti, Alejandro H.

    2008-01-01

    Background Previously, we identified a set of HLA-A020.1-restricted trans-sialidase peptides as targets of CD8+ T cell responses in HLA-A0201+ individuals chronically infected by T. cruzi. Methods and Findings Herein, we report the identification of peptides encoded by the same trans-sialidase gene family that bind alleles representative of the 6 most common class I HLA-supertypes. Based on a combination of bioinformatic predictions and HLA-supertype considerations, a total of 1001 epitopes predicted to bind to HLA A01, A02, A03, A24, B7 and B44 supertypes was selected. Ninety-six supertype-binder epitopes encoded by multiple trans-sialidase genes were tested for the ability to stimulate a recall CD8+ T cell response in the peripheral blood from subjects with chronic T. cruzi infection regardless the HLA haplotype. An overall hierarchy of antigenicity was apparent, with the A02 supertype peptides being the most frequently recognized in the Chagas disease population followed by the A03 and the A24 supertype epitopes. CD8+ T cell responses to promiscuous epitopes revealed that the CD8+ T cell compartment specific for T. cruzi displays a functional profile with T cells secreting interferon-γ alone as the predominant pattern and very low prevalence of single IL-2-secreting or dual IFN-γ/IL-2 secreting T cells denoting a lack of polyfunctional cytokine responses in chronic T. cruzi infection. Conclusions This study identifies a set of T. cruzi peptides that should prove useful for monitoring immune competence and changes in infection and disease status in individuals with chronic Chagas disease. PMID:18846233

  2. Analysis of Δ12-fatty acid desaturase function revealed that two distinct pathways are active for the synthesis of PUFAs in T. aureum ATCC 34304

    PubMed Central

    Matsuda, Takanori; Sakaguchi, Keishi; Hamaguchi, Rie; Kobayashi, Takumi; Abe, Eriko; Hama, Yoichiro; Hayashi, Masahiro; Honda, Daiske; Okita, Yuji; Sugimoto, Shinichi; Okino, Nozomu; Ito, Makoto

    2012-01-01

    Thraustochytrids are known to synthesize PUFAs such as docosahexaenoic acid (DHA). Accumulating evidence suggests the presence of two synthetic pathways of PUFAs in thraustochytrids: the polyketide synthase-like (PUFA synthase) and desaturase/elongase (standard) pathways. It remains unclear whether the latter pathway functions in thraustochytrids. In this study, we report that the standard pathway produces PUFA in Thraustochytrium aureum ATCC 34304. We isolated a gene encoding a putative Δ12-fatty acid desaturase (TauΔ12des) from T. aureum. Yeasts transformed with the tauΔ12des converted endogenous oleic acid (OA) into linoleic acid (LA). The disruption of the tauΔ12des in T. aureum by homologous recombination resulted in the accumulation of OA and a decrease in the levels of LA and its downstream PUFAs. However, the DHA content was increased slightly in tauΔ12des-disruption mutants, suggesting that DHA is primarily produced in T. aureum via the PUFA synthase pathway. The transformation of the tauΔ12des-disruption mutants with a tauΔ12des expression cassette restored the wild-type fatty acid profiles. These data clearly indicate that TauΔ12des functions as Δ12-fatty acid desaturase in the standard pathway of T. aureum and demonstrate that this thraustochytrid produces PUFAs via both the PUFA synthase and the standard pathways. PMID:22368282

  3. Analysis of Δ12-fatty acid desaturase function revealed that two distinct pathways are active for the synthesis of PUFAs in T. aureum ATCC 34304.

    PubMed

    Matsuda, Takanori; Sakaguchi, Keishi; Hamaguchi, Rie; Kobayashi, Takumi; Abe, Eriko; Hama, Yoichiro; Hayashi, Masahiro; Honda, Daiske; Okita, Yuji; Sugimoto, Shinichi; Okino, Nozomu; Ito, Makoto

    2012-06-01

    Thraustochytrids are known to synthesize PUFAs such as docosahexaenoic acid (DHA). Accumulating evidence suggests the presence of two synthetic pathways of PUFAs in thraustochytrids: the polyketide synthase-like (PUFA synthase) and desaturase/elongase (standard) pathways. It remains unclear whether the latter pathway functions in thraustochytrids. In this study, we report that the standard pathway produces PUFA in Thraustochytrium aureum ATCC 34304. We isolated a gene encoding a putative Δ12-fatty acid desaturase (TauΔ12des) from T. aureum. Yeasts transformed with the tauΔ12des converted endogenous oleic acid (OA) into linoleic acid (LA). The disruption of the tauΔ12des in T. aureum by homologous recombination resulted in the accumulation of OA and a decrease in the levels of LA and its downstream PUFAs. However, the DHA content was increased slightly in tauΔ12des-disruption mutants, suggesting that DHA is primarily produced in T. aureum via the PUFA synthase pathway. The transformation of the tauΔ12des-disruption mutants with a tauΔ12des expression cassette restored the wild-type fatty acid profiles. These data clearly indicate that TauΔ12des functions as Δ12-fatty acid desaturase in the standard pathway of T. aureum and demonstrate that this thraustochytrid produces PUFAs via both the PUFA synthase and the standard pathways. PMID:22368282

  4. Dissociable effects of anodal and cathodal tDCS reveal distinct functional roles for right parietal cortex in the detection of single and competing stimuli.

    PubMed

    Filmer, Hannah L; Dux, Paul E; Mattingley, Jason B

    2015-07-01

    Spatial attention can be used to direct neural processing resources to a subset of task-relevant or otherwise salient items within the environment. Such selective processes are particularly important for resolving competition between multiple stimuli. Deficits in processing single stimuli can arise after damage to parietal, frontal and temporal brain regions, as is typical in patients with contralesional spatial neglect. By contrast, deficits in processing multiple competing stimuli may arise specifically following lesions of the posterior parietal cortex (PPC), as occurs in the disorder of spatial extinction. It remains unclear, however, whether mechanisms involved in selecting single and competing stimuli reflect the same or dissociable neural operations within the PPC. To address this issue, in separate sessions, we applied transcranial direct current stimulation (tDCS) to the left or right PPC and measured the effect on detecting and discriminating single and competing visual stimulus events. Our results revealed reliable tDCS modulations of stimulus processing, specific to the right PPC, as well as a dissociation in the detection of single and competing stimuli. For the right PPC only, single stimuli presented to the left (contralateral) visual field were affected selectively by anodal tDCS, whereas competing stimuli across the two visual fields were affected by both anodal and cathodal tDCS. These contrasting effects of anodal and cathodal tDCS on perception of single and competing stimuli suggest dissociable neural coding properties within the right PPC. PMID:25637773

  5. Analysis of the Fam181 gene family during mouse development reveals distinct strain-specific expression patterns, suggesting a role in nervous system development and function.

    PubMed

    Marks, Matthias; Pennimpede, Tracie; Lange, Lisette; Grote, Phillip; Herrmann, Bernhard G; Wittler, Lars

    2016-01-10

    During somitogenesis differential gene expression can be observed for so-called cyclic genes, which display expression changes with a periodicity of 120min in the mouse. In screens to identify novel cyclic genes in murine embryos, Fam181b was predicted to be an oscillating gene in the presomitic mesoderm (psm). This gene, and its closely related paralog Fam181a, belong to the thus far uncharacterized Fam181 gene family. Here we describe the expression of Fam181b and Fam181a during murine embryonic development. In addition, we confirm oscillation of Fam181b in the psm in-phase with targets of, and regulated by, Notch signaling. Fam181b expression in the psm, as well as in the lateral plate mesoderm, was found to be affected by genetic background. We show that Fam181a and b exhibit partially overlapping mRNA expression patterns, and encode for proteins containing highly-conserved motifs, which predominantly localize to the nucleus. A Fam181b loss-of-function model was generated and found to result in no obvious phenotype. PMID:26407640

  6. Distinct functions of the laminin β LN domain and collagen IV during cardiac extracellular matrix formation and stabilization of alary muscle attachments revealed by EMS mutagenesis in Drosophila

    PubMed Central

    2014-01-01

    Background The Drosophila heart (dorsal vessel) is a relatively simple tubular organ that serves as a model for several aspects of cardiogenesis. Cardiac morphogenesis, proper heart function and stability require structural components whose identity and ways of assembly are only partially understood. Structural components are also needed to connect the myocardial tube with neighboring cells such as pericardial cells and specialized muscle fibers, the so-called alary muscles. Results Using an EMS mutagenesis screen for cardiac and muscular abnormalities in Drosophila embryos we obtained multiple mutants for two genetically interacting complementation groups that showed similar alary muscle and pericardial cell detachment phenotypes. The molecular lesions underlying these defects were identified as domain-specific point mutations in LamininB1 and Cg25C, encoding the extracellular matrix (ECM) components laminin β and collagen IV α1, respectively. Of particular interest within the LamininB1 group are certain hypomorphic mutants that feature prominent defects in cardiac morphogenesis and cardiac ECM layer formation, but in contrast to amorphic mutants, only mild defects in other tissues. All of these alleles carry clustered missense mutations in the laminin LN domain. The identified Cg25C mutants display weaker and largely temperature-sensitive phenotypes that result from glycine substitutions in different Gly-X-Y repeats of the triple helix-forming domain. While initial basement membrane assembly is not abolished in Cg25C mutants, incorporation of perlecan is impaired and intracellular accumulation of perlecan as well as the collagen IV α2 chain is detected during late embryogenesis. Conclusions Assembly of the cardiac ECM depends primarily on laminin, whereas collagen IV is needed for stabilization. Our data underscore the importance of a correctly assembled ECM particularly for the development of cardiac tissues and their lateral connections. The mutational

  7. Large-Scale Fusion of Gray Matter and Resting-State Functional MRI Reveals Common and Distinct Biological Markers across the Psychosis Spectrum in the B-SNIP Cohort

    PubMed Central

    Wang, Zheng; Meda, Shashwath A.; Keshavan, Matcheri S.; Tamminga, Carol A.; Sweeney, John A.; Clementz, Brett A.; Schretlen, David J.; Calhoun, Vince D.; Lui, Su; Pearlson, Godfrey D.

    2015-01-01

    To investigate whether aberrant interactions between brain structure and function present similarly or differently across probands with psychotic illnesses [schizophrenia (SZ), schizoaffective disorder (SAD), and bipolar I disorder with psychosis (BP)] and whether these deficits are shared with their first-degree non-psychotic relatives. A total of 1199 subjects were assessed, including 220 SZ, 147 SAD, 180 psychotic BP, 150 first-degree relatives of SZ, 126 SAD relatives, 134 BP relatives, and 242 healthy controls (1). All subjects underwent structural MRI (sMRI) and resting-state functional MRI (rs-fMRI) scanning. Joint-independent component analysis (jICA) was used to fuse sMRI gray matter and rs-fMRI amplitude of low-frequency fluctuations data to identify the relationship between the two modalities. jICA revealed two significantly fused components. The association between functional brain alteration in a prefrontal–striatal–thalamic–cerebellar network and structural abnormalities in the default mode network was found to be common across psychotic diagnoses and correlated with cognitive function, social function, and schizo-bipolar scale scores. The fused alteration in the temporal lobe was unique to SZ and SAD. The above effects were not seen in any relative group (including those with cluster-A personality). Using a multivariate-fused approach involving two widely used imaging markers, we demonstrate both shared and distinct biological traits across the psychosis spectrum. Furthermore, our results suggest that the above traits are psychosis biomarkers rather than endophenotypes. PMID:26732139

  8. Different Leishmania Species Drive Distinct Neutrophil Functions.

    PubMed

    Hurrell, Benjamin P; Regli, Ivo B; Tacchini-Cottier, Fabienne

    2016-05-01

    Leishmaniases are vector-borne diseases of serious public health importance. During a sand fly blood meal, Leishmania parasites are deposited in the host dermis where neutrophils are rapidly recruited. Neutrophils are the first line of defense and can kill pathogens by an array of mechanisms. They can also form web-like structures called neutrophil extracellular traps (NETs) that can trap and/or kill microbes. The function of neutrophils in leishmaniasis was reported to be either beneficial by contributing to parasite killing or detrimental by impairing immune response development and control of parasite load. Here we review recent data showing that different Leishmania species elicit distinct neutrophil functions thereby influencing disease outcomes. Emerging evidence suggests that neutrophils should be considered important modulators of leishmaniasis. PMID:26944469

  9. Morphologically and Functionally Distinct Lipid Droplet Subpopulations

    PubMed Central

    Zhang, Shuyan; Wang, Yang; Cui, Liujuan; Deng, Yaqin; Xu, Shimeng; Yu, Jinhai; Cichello, Simon; Serrero, Ginette; Ying, Yunshu; Liu, Pingsheng

    2016-01-01

    Lipid droplet (LD), a multi-functional organelle, is often found to associate with other cellular membranous structures and vary in size in a given cell, which may be related to their functional diversity. Here we established a method to separate LD subpopulations from isolated CHO K2 LDs into three different size categories. The subpopulation with smallest LDs was nearly free of ER and other membranous structures while those with larger LDs contained intact ER. These distinct subpopulations of LDs differed in their protein composition and ability to recruit proteins. This method was also applicable to LDs obtained from other sources, such as Huh7 cells, mouse liver and brown adipose tissue, et al. We developed an in vitro assay requiring only isolated LDs, Coenzyme A, and ATP to drive lipid synthesis. The LD subpopulation nearly depleted of ER was able to incorporate fatty acids into triacylglycerol and phospholipids. Together, our data demonstrate that LDs in a given cell are heterogeneous in size and function, and suggest that LDs are one of cellular lipid synthetic organelles. PMID:27386790

  10. TIM-3 Regulates Distinct Functions in Macrophages

    PubMed Central

    Ocaña-Guzman, Ranferi; Torre-Bouscoulet, Luis; Sada-Ovalle, Isabel

    2016-01-01

    The transmembrane protein TIM-3 is a type I protein expressed by sub-types of lymphoid cells, such as lymphocytes Th1, Th17, Tc1, NK, as well as in myeloid cells. Scientific evidence indicates that this molecule acts as a negative regulator of T lymphocyte activation and that its expression is modified in viral infections or autoimmune diseases. In addition to evidence from lymphoid cells, the function of TIM-3 has been investigated in myeloid cells, such as monocytes, macrophages, and dendritic cells (DC), where studies have demonstrated that it can regulate cytokine production, cell activation, and the capture of apoptotic bodies. Despite these advances, the function of TIM-3 in myeloid cells and the molecular mechanisms that this protein regulates are not yet fully understood. This review examines the most recent evidence concerning the function of TIM-3 when expressed in myeloid cells, primarily macrophages, and the potential impact of that function on the field of basic immunology. PMID:27379093

  11. TIM-3 Regulates Distinct Functions in Macrophages.

    PubMed

    Ocaña-Guzman, Ranferi; Torre-Bouscoulet, Luis; Sada-Ovalle, Isabel

    2016-01-01

    The transmembrane protein TIM-3 is a type I protein expressed by sub-types of lymphoid cells, such as lymphocytes Th1, Th17, Tc1, NK, as well as in myeloid cells. Scientific evidence indicates that this molecule acts as a negative regulator of T lymphocyte activation and that its expression is modified in viral infections or autoimmune diseases. In addition to evidence from lymphoid cells, the function of TIM-3 has been investigated in myeloid cells, such as monocytes, macrophages, and dendritic cells (DC), where studies have demonstrated that it can regulate cytokine production, cell activation, and the capture of apoptotic bodies. Despite these advances, the function of TIM-3 in myeloid cells and the molecular mechanisms that this protein regulates are not yet fully understood. This review examines the most recent evidence concerning the function of TIM-3 when expressed in myeloid cells, primarily macrophages, and the potential impact of that function on the field of basic immunology. PMID:27379093

  12. Two distinct microbial communities revealed in the sponge Cinachyrella

    PubMed Central

    Cuvelier, Marie L.; Blake, Emily; Mulheron, Rebecca; McCarthy, Peter J.; Blackwelder, Patricia; Thurber, Rebecca L. Vega; Lopez, Jose V.

    2014-01-01

    Marine sponges are vital components of benthic and coral reef ecosystems, providing shelter and nutrition for many organisms. In addition, sponges act as an essential carbon and nutrient link between the pelagic and benthic environment by filtering large quantities of seawater. Many sponge species harbor a diverse microbial community (including Archaea, Bacteria and Eukaryotes), which can constitute up to 50% of the sponge biomass. Sponges of the genus Cinachyrella are common in Caribbean and Floridian reefs and their archaeal and bacterial microbiomes were explored here using 16S rRNA gene tag pyrosequencing. Cinachyrella specimens and seawater samples were collected from the same South Florida reef at two different times of year. In total, 639 OTUs (12 archaeal and 627 bacterial) belonging to 2 archaeal and 21 bacterial phyla were detected in the sponges. Based on their microbiomes, the six sponge samples formed two distinct groups, namely sponge group 1 (SG1) with lower diversity (Shannon-Weiner index: 3.73 ± 0.22) and SG2 with higher diversity (Shannon-Weiner index: 5.95 ± 0.25). Hosts' 28S rRNA gene sequences further confirmed that the sponge specimens were composed of two taxa closely related to Cinachyrella kuekenthalli. Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1. SG2 harbored many bacterial phyla (>1% of sequences) present in low abundance or below detection limits (<0.07%) in SG1 including: Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, PAUC34f, Poribacteria, and Verrucomicrobia. Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5 and 22.4% of SG1 and SG2's total OTUs, respectively. These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters. PMID:25408689

  13. Two distinct microbial communities revealed in the sponge Cinachyrella.

    PubMed

    Cuvelier, Marie L; Blake, Emily; Mulheron, Rebecca; McCarthy, Peter J; Blackwelder, Patricia; Thurber, Rebecca L Vega; Lopez, Jose V

    2014-01-01

    Marine sponges are vital components of benthic and coral reef ecosystems, providing shelter and nutrition for many organisms. In addition, sponges act as an essential carbon and nutrient link between the pelagic and benthic environment by filtering large quantities of seawater. Many sponge species harbor a diverse microbial community (including Archaea, Bacteria and Eukaryotes), which can constitute up to 50% of the sponge biomass. Sponges of the genus Cinachyrella are common in Caribbean and Floridian reefs and their archaeal and bacterial microbiomes were explored here using 16S rRNA gene tag pyrosequencing. Cinachyrella specimens and seawater samples were collected from the same South Florida reef at two different times of year. In total, 639 OTUs (12 archaeal and 627 bacterial) belonging to 2 archaeal and 21 bacterial phyla were detected in the sponges. Based on their microbiomes, the six sponge samples formed two distinct groups, namely sponge group 1 (SG1) with lower diversity (Shannon-Weiner index: 3.73 ± 0.22) and SG2 with higher diversity (Shannon-Weiner index: 5.95 ± 0.25). Hosts' 28S rRNA gene sequences further confirmed that the sponge specimens were composed of two taxa closely related to Cinachyrella kuekenthalli. Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1. SG2 harbored many bacterial phyla (>1% of sequences) present in low abundance or below detection limits (<0.07%) in SG1 including: Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, PAUC34f, Poribacteria, and Verrucomicrobia. Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5 and 22.4% of SG1 and SG2's total OTUs, respectively. These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters. PMID:25408689

  14. Phenotype Specific Analyses Reveal Distinct Regulatory Mechanism for Chronically Activated p53

    PubMed Central

    Cairns, Jonathan M.; Menon, Suraj; Pérez-Mancera, Pedro A.; Tomimatsu, Kosuke; Bermejo-Rodriguez, Camino; Ito, Yoko; Chandra, Tamir; Narita, Masako; Lyons, Scott K.; Lynch, Andy G.; Kimura, Hiroshi; Ohbayashi, Tetsuya; Tavaré, Simon; Narita, Masashi

    2015-01-01

    The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage) and chronically activated (in senescent or pro-apoptotic conditions) p53. Compared to the classical ‘acute’ p53 binding profile, ‘chronic’ p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory ‘p53 hubs’ where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the ‘lipogenic phenotype’, a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms. PMID:25790137

  15. Inferential bridging relations reveal distinct neural mechanisms: evidence from event-related brain potentials.

    PubMed

    Burkhardt, Petra

    2006-08-01

    This study investigates the online comprehension of Determiner Phrases (DPs) as a function of the given-new distinction in two-sentence texts in German and further focuses on DPs whose interpretation depends on inferential information (so-called 'bridging relations'). Previous reaction time studies report an advantage of given over new information. In the present study, this difference is reflected in distinct neural mechanisms: event-related potentials reveal that previously introduced (i.e., given) DPs elicit a reduced N400, while new DPs show an enhanced N400 followed by a P600. Crucially, inferentially bridged DPs, which are hypothesized to share properties with new and given information, first pattern with given DPs (showing an attenuated N400) and then with new DPs (showing an enhanced P600). The data demonstrate that salience relations between DPs and prior context ease DP integration and that additional cost arises from the establishment of independent reference. They further reveal that processing cost associated with the interpretation of bridged DPs results from the anaphoric complexity of introducing an independent referent. PMID:16725188

  16. Distinctive Pattern of Behavioral Functioning in Angelman Syndrome.

    ERIC Educational Resources Information Center

    Summers, Jane A.; Feldman, Maurice A.

    1999-01-01

    A study compared 27 participants with Angelman syndrome to clinical and community participants (n=948) with developmental disabilities of mixed etiology to determine whether Angelman syndrome is associated with a distinctive patterns of behavioral functioning. Those with Angelman syndrome had significantly lower scores on measures of irritability…

  17. Analysis of proteomic profiles and functional properties of human peripheral blood myeloid dendritic cells, monocyte-derived dendritic cells and the dendritic cell-like KG-1 cells reveals distinct characteristics

    PubMed Central

    2007-01-01

    Background Dendritic cells (DCs) are specialized antigen presenting cells that play a pivotal role in bridging innate and adaptive immune responses. Given the scarcity of peripheral blood myeloid dendritic cells (mDCs) investigators have used different model systems for studying DC biology. Monocyte-derived dendritic cells (moDCs) and KG-1 cells are routinely used as mDC models, but a thorough comparison of these cells has not yet been carried out, particularly in relation to their proteomes. We therefore sought to run a comparative study of the proteomes and functional properties of these cells. Results Despite general similarities between mDCs and the model systems, moDCs and KG-1 cells, our findings identified some significant differences in the proteomes of these cells, and the findings were confirmed by ELISA detection of a selection of proteins. This was particularly noticeable with proteins involved in cell growth and maintenance (for example, fibrinogen γ chain (FGG) and ubiquinol cytochrome c) and cell-cell interaction and integrity (for example, fascin and actin). We then examined the surface phenotype, cytokine profile, endocytic and T-cell-activation ability of these cells in support of the proteomic data, and obtained confirmatory evidence for differences in the maturation status and functional attributes between mDCs and the two DC models. Conclusion We have identified important proteomic and functional differences between mDCs and two DC model systems. These differences could have major functional implications, particularly in relation to DC-T cell interactions, the so-called immunological synapse, and, therefore, need to be considered when interpreting data obtained from model DC systems. PMID:17331236

  18. Two distinct forms of functional lateralization in the human brain

    PubMed Central

    Gotts, Stephen J.; Jo, Hang Joon; Wallace, Gregory L.; Saad, Ziad S.; Cox, Robert W.; Martin, Alex

    2013-01-01

    The hemispheric lateralization of certain faculties in the human brain has long been held to be beneficial for functioning. However, quantitative relationships between the degree of lateralization in particular brain regions and the level of functioning have yet to be established. Here we demonstrate that two distinct forms of functional lateralization are present in the left vs. the right cerebral hemisphere, with the left hemisphere showing a preference to interact more exclusively with itself, particularly for cortical regions involved in language and fine motor coordination. In contrast, right-hemisphere cortical regions involved in visuospatial and attentional processing interact in a more integrative fashion with both hemispheres. The degree of lateralization present in these distinct systems selectively predicted behavioral measures of verbal and visuospatial ability, providing direct evidence that lateralization is associated with enhanced cognitive ability. PMID:23959883

  19. Different Functions of Phylogenetically Distinct Bacterial Complex I Isozymes

    PubMed Central

    Spero, Melanie A.; Brickner, Joshua R.; Mollet, Jordan T.; Pisithkul, Tippapha; Amador-Noguez, Daniel

    2016-01-01

    ABSTRACT NADH:quinone oxidoreductase (complex I) is a bioenergetic enzyme that transfers electrons from NADH to quinone, conserving the energy of this reaction by contributing to the proton motive force. While the importance of NADH oxidation to mitochondrial aerobic respiration is well documented, the contribution of complex I to bacterial electron transport chains has been tested in only a few species. Here, we analyze the function of two phylogenetically distinct complex I isozymes in Rhodobacter sphaeroides, an alphaproteobacterium that contains well-characterized electron transport chains. We found that R. sphaeroides complex I activity is important for aerobic respiration and required for anaerobic dimethyl sulfoxide (DMSO) respiration (in the absence of light), photoautotrophic growth, and photoheterotrophic growth (in the absence of an external electron acceptor). Our data also provide insight into the functions of the phylogenetically distinct R. sphaeroides complex I enzymes (complex IA and complex IE) in maintaining a cellular redox state during photoheterotrophic growth. We propose that the function of each isozyme during photoheterotrophic growth is either NADH synthesis (complex IA) or NADH oxidation (complex IE). The canonical alphaproteobacterial complex I isozyme (complex IA) was also shown to be important for routing electrons to nitrogenase-mediated H2 production, while the horizontally acquired enzyme (complex IE) was dispensable in this process. Unlike the singular role of complex I in mitochondria, we predict that the phylogenetically distinct complex I enzymes found across bacterial species have evolved to enhance the functions of their respective electron transport chains. IMPORTANCE Cells use a proton motive force (PMF), NADH, and ATP to support numerous processes. In mitochondria, complex I uses NADH oxidation to generate a PMF, which can drive ATP synthesis. This study analyzed the function of complex I in bacteria, which contain more

  20. Natural Microbial Assemblages Reflect Distinct Organismal and Functional Partitioning

    NASA Astrophysics Data System (ADS)

    Wilmes, P.; Andersson, A.; Kalnejais, L. H.; Verberkmoes, N. C.; Lefsrud, M. G.; Wexler, M.; Singer, S. W.; Shah, M.; Bond, P. L.; Thelen, M. P.; Hettich, R. L.; Banfield, J. F.

    2007-12-01

    The ability to link microbial community structure to function has long been a primary focus of environmental microbiology. With the advent of community genomic and proteomic techniques, along with advances in microscopic imaging techniques, it is now possible to gain insights into the organismal and functional makeup of microbial communities. Biofilms growing within highly acidic solutions inside the Richmond Mine (Iron Mountain, Redding, California) exhibit distinct macro- and microscopic morphologies. They are composed of microorganisms belonging to the three domains of life, including archaea, bacteria and eukarya. The proportion of each organismal type depends on sampling location and developmental stage. For example, mature biofilms floating on top of acid mine drainage (AMD) pools exhibit layers consisting of a densely packed bottom layer of the chemoautolithotroph Leptospirillum group II, a less dense top layer composed mainly of archaea, and fungal filaments spanning across the entire biofilm. The expression of cytochrome 579 (the most highly abundant protein in the biofilm, believed to be central to iron oxidation and encoded by Leptospirillum group II) is localized at the interface of the biofilm with the AMD solution, highlighting that biofilm architecture is reflected at the functional gene expression level. Distinct functional partitioning is also apparent in a biological wastewater treatment system that selects for distinct polyphosphate accumulating organisms. Community genomic data from " Candidatus Accumulibacter phosphatis" dominated activated sludge has enabled high mass-accuracy shotgun proteomics for identification of key metabolic pathways. Comprehensive genome-wide alignment of orthologous proteins suggests distinct partitioning of protein variants involved in both core-metabolism and specific metabolic pathways among the dominant population and closely related species. In addition, strain- resolved proteogenomic analysis of the AMD biofilms

  1. Distinct Functions of Neutrophil in Cancer and Its Regulation

    PubMed Central

    Granot, Zvi; Jablonska, Jadwiga

    2015-01-01

    Neutrophils are the most abundant of all white blood cells in the human circulation and are usually associated with inflammation and with fighting infections. In recent years the role immune cells play in cancer has been a matter of increasing interest. In this context the function of neutrophils is controversial as neutrophils were shown to possess both tumor promoting and tumor limiting properties. Here we provide an up-to-date review of the pro- and antitumor properties neutrophils possess as well as the environmental cues that regulate these distinct functions. PMID:26648665

  2. A chimeric prokaryotic pentameric ligand–gated channel reveals distinct pathways of activation

    PubMed Central

    Schmandt, Nicolaus; Velisetty, Phanindra; Chalamalasetti, Sreevatsa V.; Stein, Richard A.; Bonner, Ross; Talley, Lauren; Parker, Mark D.; Mchaourab, Hassane S.; Yee, Vivien C.; Lodowski, David T.

    2015-01-01

    Recent high resolution structures of several pentameric ligand–gated ion channels have provided unprecedented details of their molecular architecture. However, the conformational dynamics and structural rearrangements that underlie gating and allosteric modulation remain poorly understood. We used a combination of electrophysiology, double electron–electron resonance (DEER) spectroscopy, and x-ray crystallography to investigate activation mechanisms in a novel functional chimera with the extracellular domain (ECD) of amine-gated Erwinia chrysanthemi ligand–gated ion channel, which is activated by primary amines, and the transmembrane domain of Gloeobacter violaceus ligand–gated ion channel, which is activated by protons. We found that the chimera was independently gated by primary amines and by protons. The crystal structure of the chimera in its resting state, at pH 7.0 and in the absence of primary amines, revealed a closed-pore conformation and an ECD that is twisted with respect to the transmembrane region. Amine- and pH-induced conformational changes measured by DEER spectroscopy showed that the chimera exhibits a dual mode of gating that preserves the distinct conformational changes of the parent channels. Collectively, our findings shed light on both conserved and divergent features of gating mechanisms in this class of channels, and will facilitate the design of better allosteric modulators. PMID:26415570

  3. The Brain-to-Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions.

    PubMed

    Rosario, Wilfredo; Singh, Inderroop; Wautlet, Arnaud; Patterson, Christa; Flak, Jonathan; Becker, Thomas C; Ali, Almas; Tamarina, Natalia; Philipson, Louis H; Enquist, Lynn W; Myers, Martin G; Rhodes, Christopher J

    2016-09-01

    The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia. PMID:27207534

  4. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides.

    PubMed

    Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R C; Yang, Liang; Rice, Scott A; Doyle, Patrick; Kjelleberg, Staffan

    2014-01-01

    Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. Importance: Most bacteria grow as biofilms in the environment or in association with eukaryotic hosts. Removal of biofilms that form on surfaces is a challenge in clinical

  5. Distinct Signaling Roles of Ceramide Species in Yeast Revealed Through Systematic Perturbation and Systems Biology Analyses

    PubMed Central

    Montefusco, David J.; Chen, Lujia; Matmati, Nabil; Lu, Songjian; Newcomb, Benjamin; Cooper, Gregory F.; Hannun, Yusuf A.; Lu, Xinghua

    2014-01-01

    Ceramide, the central molecule of sphingolipid metabolism, is an important bioactive molecule participating in cellular regulatory events and having implications for disease. A challenge in deciphering ceramide signaling emanates from the myriad of ceramide species that exist and the possibility that many of them may have distinct functions. Here, we applied systems biology and molecular approaches to perturb ceramide metabolism in the yeast (Saccharomyces cerevisiae) and inferred causal relationships between ceramide species and their potential targets by combining lipidomic, genomic, and transcriptomic analyses. We find that during heat stress distinct metabolic mechanisms control the abundance of different groups of ceramide species. Additionally, distinct groups of ceramide species regulated different sets of functionally related genes, indicating that specific sub-groups of lipids participated in different regulatory pathways. These results indicate a previously unrecognized complexity and versatility of lipid-mediated cell regulation. PMID:24170935

  6. A crack problem with four distinct harmonic functions

    NASA Technical Reports Server (NTRS)

    Sih, G. C.; Kassir, M. K.

    1972-01-01

    The problem of an elastic solid containing a semi-infinite plane crack subjected to concentrated shears parallel to the edge of the crack is considered. A closed form solution using four distinct harmonic functions (none of which can be taken arbitrarily) is found to satisfy the finite displacement and inverse square root stress singularity at the edge of the crack. Explicit expressions in terms of elementary functions are given for the distribution of stress and displacement in the solid. These are obtained by employing Fourier and Kontorovich-Lebedev integral transforms and certain singular solutions of Laplace equations in three dimensions. The variations of the intensity of the local stress field along the crack border are shown graphically. An example is presented, which is in contrast with the conclusion established in the literature that one of the four Papkovich-Neuber functions in three-dimensional elasticity may be arbitrarily set to zero.

  7. Inferential Bridging Relations Reveal Distinct Neural Mechanisms: Evidence from Event-Related Brain Potentials

    ERIC Educational Resources Information Center

    Burkhardt, Petra

    2006-01-01

    This study investigates the online comprehension of Determiner Phrases (DPs) as a function of the given-new distinction in two-sentence texts in German and further focuses on DPs whose interpretation depends on inferential information (so-called "bridging relations"). Previous reaction time studies report an advantage of given over new…

  8. ROS Regulate Cardiac Function via a Distinct Paracrine Mechanism

    PubMed Central

    Lim, Hui-Ying; Wang, Weidong; Chen, Jianming; Ocorr, Karen; Bodmer, Rolf

    2014-01-01

    SUMMARY Reactive oxygen species (ROS) can act cell autonomously and in a paracrine manner by diffusing into nearby cells. Here, we reveal a ROS-mediated paracrine signaling mechanism that does not require entry of ROS into target cells. We found that under physiological conditions, nonmyocytic pericardial cells (PCs) of the Drosophila heart contain elevated levels of ROS compared to the neighboring cardiomyocytes (CMs). We show that ROS in PCs act in a paracrine manner to regulate normal cardiac function, not by diffusing into the CMs to exert their function, but by eliciting a downstream D-MKK3-D-p38 MAPK signaling cascade in PCs that acts on the CMs to regulate their function. We find that ROS-D-p38 signaling in PCs during development is also important for establishing normal adult cardiac function. Our results provide evidence for a previously unrecognized role of ROS in mediating PC/CM interactions that significantly modulates heart function. PMID:24656823

  9. Distinct genetic lineages of Bactrocera caudata (Insecta: Tephritidae) revealed by COI and 16S DNA sequences.

    PubMed

    Lim, Phaik-Eem; Tan, Ji; Suana, I Wayan; Eamsobhana, Praphathip; Yong, Hoi Sen

    2012-01-01

    The fruit fly Bactrocera caudata is a pest species of economic importance in Asia. Its larvae feed on the flowers of Cucurbitaceae such as Cucurbita moschata. To-date it is distinguished from related species based on morphological characters. Specimens of B. caudata from Peninsular Malaysia and Indonesia (Bali and Lombok) were analysed using the partial DNA sequences of cytochrome c oxidase subunit I (COI) and 16S rRNA genes. Both gene sequences revealed that B. caudata from Peninsular Malaysia was distinctly different from B. caudata of Bali and Lombok, without common haplotype between them. Phylogenetic analysis revealed two distinct clades, indicating distinct genetic lineage. The uncorrected 'p' distance for COI sequences between B. caudata of Malaysia-Thailand-China and B. caudata of Bali-Lombok was 5.65%, for 16S sequences from 2.76 to 2.99%, and for combined COI and 16S sequences 4.45 to 4.46%. The 'p' values are distinctly different from intraspecific 'p' distance (0-0.23%). Both the B. caudata lineages are distinctly separated from related species in the subgenus Zeugodacus - B. ascita, B. scutellata, B. ishigakiensis, B. diaphora, B. tau, B. cucurbitae, and B. depressa. Molecular phylogenetic analysis indicates that the B. caudata lineages are closely related to B. ascita sp. B, and form a clade with B. scutellata, B. ishigakiensis, B. diaphora and B. ascita sp. A. This study provides additional baseline for the phylogenetic relationships of Bactrocera fruit flies of the subgenus Zeugodacus. Both the COI and 16S genes could be useful markers for the molecular differentiation and phylogenetic analysis of tephritid fruit flies. PMID:22615962

  10. Distinct Genetic Lineages of Bactrocera caudata (Insecta: Tephritidae) Revealed by COI and 16S DNA Sequences

    PubMed Central

    Lim, Phaik-Eem; Tan, Ji; Suana, I. Wayan; Eamsobhana, Praphathip; Yong, Hoi Sen

    2012-01-01

    The fruit fly Bactrocera caudata is a pest species of economic importance in Asia. Its larvae feed on the flowers of Cucurbitaceae such as Cucurbita moschata. To-date it is distinguished from related species based on morphological characters. Specimens of B. caudata from Peninsular Malaysia and Indonesia (Bali and Lombok) were analysed using the partial DNA sequences of cytochrome c oxidase subunit I (COI) and 16S rRNA genes. Both gene sequences revealed that B. caudata from Peninsular Malaysia was distinctly different from B. caudata of Bali and Lombok, without common haplotype between them. Phylogenetic analysis revealed two distinct clades, indicating distinct genetic lineage. The uncorrected ‘p’ distance for COI sequences between B. caudata of Malaysia-Thailand-China and B. caudata of Bali-Lombok was 5.65%, for 16S sequences from 2.76 to 2.99%, and for combined COI and 16S sequences 4.45 to 4.46%. The ‘p’ values are distinctly different from intraspecific ‘p’ distance (0–0.23%). Both the B. caudata lineages are distinctly separated from related species in the subgenus Zeugodacus – B. ascita, B. scutellata, B. ishigakiensis, B. diaphora, B. tau, B. cucurbitae, and B. depressa. Molecular phylogenetic analysis indicates that the B. caudata lineages are closely related to B. ascita sp. B, and form a clade with B. scutellata, B. ishigakiensis, B. diaphora and B. ascita sp. A. This study provides additional baseline for the phylogenetic relationships of Bactrocera fruit flies of the subgenus Zeugodacus. Both the COI and 16S genes could be useful markers for the molecular differentiation and phylogenetic analysis of tephritid fruit flies. PMID:22615962

  11. Comparative genomics reveals distinct host-interacting traits of three major human-associated propionibacteria

    PubMed Central

    2013-01-01

    Background Propionibacteria are part of the human microbiota. Many studies have addressed the predominant colonizer of sebaceous follicles of the skin, Propionibacterium acnes, and investigated its association with the skin disorder acne vulgaris, and lately with prostate cancer. Much less is known about two other propionibacterial species frequently found on human tissue sites, Propionibacterium granulosum and Propionibacterium avidum. Here we analyzed two and three genomes of P. granulosum and P. avidum, respectively, and compared them to two genomes of P. acnes; we further highlight differences among the three cutaneous species with proteomic and microscopy approaches. Results Electron and atomic force microscopy revealed an exopolysaccharide (EPS)-like structure surrounding P. avidum cells, that is absent in P. acnes and P. granulosum. In contrast, P. granulosum possesses pili-like appendices, which was confirmed by surface proteome analysis. The corresponding genes were identified; they are clustered with genes encoding sortases. Both, P. granulosum and P. avidum lack surface or secreted proteins for predicted host-interacting factors of P. acnes, including several CAMP factors, sialidases, dermatan-sulphate adhesins, hyaluronidase and a SH3 domain-containing lipoprotein; accordingly, only P. acnes exhibits neuraminidase and hyaluronidase activities. These functions are encoded on previously unrecognized island-like regions in the genome of P. acnes. Conclusions Despite their omnipresence on human skin little is known about the role of cutaneous propionibacteria. All three species are associated with a variety of diseases, including postoperative and device-related abscesses and infections. We showed that the three organisms have evolved distinct features to interact with their human host. Whereas P. avidum and P. granulosum produce an EPS-like surface structure and pili-like appendices, respectively, P. acnes possesses a number of unique surface

  12. Distinctive Genome Reduction Rates Revealed by Genomic Analyses of Two Coxiella-Like Endosymbionts in Ticks

    PubMed Central

    Gottlieb, Yuval; Lalzar, Itai; Klasson, Lisa

    2015-01-01

    Genome reduction is a hallmark of symbiotic genomes, and the rate and patterns of gene loss associated with this process have been investigated in several different symbiotic systems. However, in long-term host-associated coevolving symbiont clades, the genome size differences between strains are normally quite small and hence patterns of large-scale genome reduction can only be inferred from distant relatives. Here we present the complete genome of a Coxiella-like symbiont from Rhipicephalus turanicus ticks (CRt), and compare it with other genomes from the genus Coxiella in order to investigate the process of genome reduction in a genus consisting of intracellular host-associated bacteria with variable genome sizes. The 1.7-Mb CRt genome is larger than the genomes of most obligate mutualists but has a very low protein-coding content (48.5%) and an extremely high number of identifiable pseudogenes, indicating that it is currently undergoing genome reduction. Analysis of encoded functions suggests that CRt is an obligate tick mutualist, as indicated by the possible provisioning of the tick with biotin (B7), riboflavin (B2) and other cofactors, and by the loss of most genes involved in host cell interactions, such as secretion systems. Comparative analyses between CRt and the 2.5 times smaller genome of Coxiella from the lone star tick Amblyomma americanum (CLEAA) show that many of the same gene functions are lost and suggest that the large size difference might be due to a higher rate of genome evolution in CLEAA generated by the loss of the mismatch repair genes mutSL. Finally, sequence polymorphisms in the CRt population sampled from field collected ticks reveal up to one distinct strain variant per tick, and analyses of mutational patterns within the population suggest that selection might be acting on synonymous sites. The CRt genome is an extreme example of a symbiont genome caught in the act of genome reduction, and the comparison between CLEAA and CRt

  13. The Anthropocene is functionally and stratigraphically distinct from the Holocene.

    PubMed

    Waters, Colin N; Zalasiewicz, Jan; Summerhayes, Colin; Barnosky, Anthony D; Poirier, Clément; Gałuszka, Agnieszka; Cearreta, Alejandro; Edgeworth, Matt; Ellis, Erle C; Ellis, Michael; Jeandel, Catherine; Leinfelder, Reinhold; McNeill, J R; Richter, Daniel deB; Steffen, Will; Syvitski, James; Vidas, Davor; Wagreich, Michael; Williams, Mark; Zhisheng, An; Grinevald, Jacques; Odada, Eric; Oreskes, Naomi; Wolfe, Alexander P

    2016-01-01

    Human activity is leaving a pervasive and persistent signature on Earth. Vigorous debate continues about whether this warrants recognition as a new geologic time unit known as the Anthropocene. We review anthropogenic markers of functional changes in the Earth system through the stratigraphic record. The appearance of manufactured materials in sediments, including aluminum, plastics, and concrete, coincides with global spikes in fallout radionuclides and particulates from fossil fuel combustion. Carbon, nitrogen, and phosphorus cycles have been substantially modified over the past century. Rates of sea-level rise and the extent of human perturbation of the climate system exceed Late Holocene changes. Biotic changes include species invasions worldwide and accelerating rates of extinction. These combined signals render the Anthropocene stratigraphically distinct from the Holocene and earlier epochs. PMID:26744408

  14. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states.

    PubMed

    Boettiger, Alistair N; Bintu, Bogdan; Moffitt, Jeffrey R; Wang, Siyuan; Beliveau, Brian J; Fudenberg, Geoffrey; Imakaev, Maxim; Mirny, Leonid A; Wu, Chao-ting; Zhuang, Xiaowei

    2016-01-21

    Metazoan genomes are spatially organized at multiple scales, from packaging of DNA around individual nucleosomes to segregation of whole chromosomes into distinct territories. At the intermediate scale of kilobases to megabases, which encompasses the sizes of genes, gene clusters and regulatory domains, the three-dimensional (3D) organization of DNA is implicated in multiple gene regulatory mechanisms, but understanding this organization remains a challenge. At this scale, the genome is partitioned into domains of different epigenetic states that are essential for regulating gene expression. Here we investigate the 3D organization of chromatin in different epigenetic states using super-resolution imaging. We classified genomic domains in Drosophila cells into transcriptionally active, inactive or Polycomb-repressed states, and observed distinct chromatin organizations for each state. All three types of chromatin domains exhibit power-law scaling between their physical sizes in 3D and their domain lengths, but each type has a distinct scaling exponent. Polycomb-repressed domains show the densest packing and most intriguing chromatin folding behaviour, in which chromatin packing density increases with domain length. Distinct from the self-similar organization displayed by transcriptionally active and inactive chromatin, the Polycomb-repressed domains are characterized by a high degree of chromatin intermixing within the domain. Moreover, compared to inactive domains, Polycomb-repressed domains spatially exclude neighbouring active chromatin to a much stronger degree. Computational modelling and knockdown experiments suggest that reversible chromatin interactions mediated by Polycomb-group proteins play an important role in these unique packaging properties of the repressed chromatin. Taken together, our super-resolution images reveal distinct chromatin packaging for different epigenetic states at the kilobase-to-megabase scale, a length scale that is directly

  15. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states

    PubMed Central

    Boettiger, Alistair N.; Bintu, Bogdan; Moffitt, Jeffrey R.; Wang, Siyuan; Beliveau, Brian J.; Fudenberg, Geoffrey; Imakaev, Maxim; Mirny, Leonid A.; Wu, Chao-ting; Zhuang, Xiaowei

    2015-01-01

    Metazoan genomes are spatially organized at multiple scales, from packaging of DNA around individual nucleosomes to segregation of whole chromosomes into distinct territories1–5. At the intermediate scale of kilobases to megabases, which encompasses the sizes of genes, gene clusters and regulatory domains, the three-dimensional (3D) organization of DNA is implicated in multiple gene regulatory mechanisms2–4,6–8, but understanding this organization remains a challenge. At this scale, the genome is partitioned into domains of different epigenetic states that are essential for regulating gene expression9–11. Here, we investigate the 3D organization of chromatin in different epigenetic states using super-resolution imaging. We classified genomic domains in Drosophila cells into transcriptionally active, inactive, or Polycomb-repressed states and observed distinct chromatin organizations for each state. Remarkably, all three types of chromatin domains exhibit power-law scaling between their physical sizes in 3D and their domain lengths, but each type has a distinct scaling exponent. Polycomb-repressed chromatin shows the densest packing and most intriguing folding behaviour in which packing density increases with domain length. Distinct from the self-similar organization displayed by transcriptionally active and inactive chromatin, the Polycomb-repressed domains are characterized by a high degree of chromatin intermixing within the domain. Moreover, compared to inactive domains, Polycomb-repressed domains spatially exclude neighbouring active chromatin to a much stronger degree. Computational modelling and knockdown experiments suggest that reversible chromatin interactions mediated by Polycomb-group proteins plays an important role in these unique packaging properties of the repressed chromatin. Taken together, our super-resolution images reveal distinct chromatin packaging for different epigenetic states at the kilobase-to-megabase scale, a length scale that

  16. Coral transcriptome and bacterial community profiles reveal distinct Yellow Band Disease states in Orbicella faveolata

    PubMed Central

    Closek, Collin J; Sunagawa, Shinichi; DeSalvo, Michael K; Piceno, Yvette M; DeSantis, Todd Z; Brodie, Eoin L; Weber, Michele X; Voolstra, Christian R; Andersen, Gary L; Medina, Mónica

    2014-01-01

    Coral diseases impact reefs globally. Although we continue to describe diseases, little is known about the etiology or progression of even the most common cases. To examine a spectrum of coral health and determine factors of disease progression we examined Orbicella faveolata exhibiting signs of Yellow Band Disease (YBD), a widespread condition in the Caribbean. We used a novel combined approach to assess three members of the coral holobiont: the coral-host, associated Symbiodinium algae, and bacteria. We profiled three conditions: (1) healthy-appearing colonies (HH), (2) healthy-appearing tissue on diseased colonies (HD), and (3) diseased lesion (DD). Restriction fragment length polymorphism analysis revealed health state-specific diversity in Symbiodinium clade associations. 16S ribosomal RNA gene microarrays (PhyloChips) and O. faveolata complimentary DNA microarrays revealed the bacterial community structure and host transcriptional response, respectively. A distinct bacterial community structure marked each health state. Diseased samples were associated with two to three times more bacterial diversity. HD samples had the highest bacterial richness, which included components associated with HH and DD, as well as additional unique families. The host transcriptome under YBD revealed a reduced cellular expression of defense- and metabolism-related processes, while the neighboring HD condition exhibited an intermediate expression profile. Although HD tissue appeared visibly healthy, the microbial communities and gene expression profiles were distinct. HD should be regarded as an additional (intermediate) state of disease, which is important for understanding the progression of YBD. PMID:24950107

  17. Coral transcriptome and bacterial community profiles reveal distinct Yellow Band Disease states in Orbicella faveolata.

    PubMed

    Closek, Collin J; Sunagawa, Shinichi; DeSalvo, Michael K; Piceno, Yvette M; DeSantis, Todd Z; Brodie, Eoin L; Weber, Michele X; Voolstra, Christian R; Andersen, Gary L; Medina, Mónica

    2014-12-01

    Coral diseases impact reefs globally. Although we continue to describe diseases, little is known about the etiology or progression of even the most common cases. To examine a spectrum of coral health and determine factors of disease progression we examined Orbicella faveolata exhibiting signs of Yellow Band Disease (YBD), a widespread condition in the Caribbean. We used a novel combined approach to assess three members of the coral holobiont: the coral-host, associated Symbiodinium algae, and bacteria. We profiled three conditions: (1) healthy-appearing colonies (HH), (2) healthy-appearing tissue on diseased colonies (HD), and (3) diseased lesion (DD). Restriction fragment length polymorphism analysis revealed health state-specific diversity in Symbiodinium clade associations. 16S ribosomal RNA gene microarrays (PhyloChips) and O. faveolata complimentary DNA microarrays revealed the bacterial community structure and host transcriptional response, respectively. A distinct bacterial community structure marked each health state. Diseased samples were associated with two to three times more bacterial diversity. HD samples had the highest bacterial richness, which included components associated with HH and DD, as well as additional unique families. The host transcriptome under YBD revealed a reduced cellular expression of defense- and metabolism-related processes, while the neighboring HD condition exhibited an intermediate expression profile. Although HD tissue appeared visibly healthy, the microbial communities and gene expression profiles were distinct. HD should be regarded as an additional (intermediate) state of disease, which is important for understanding the progression of YBD. PMID:24950107

  18. Distinct Functions of Endophilin Isoforms in Synaptic Vesicle Endocytosis

    PubMed Central

    Zhang, Jifeng; Tan, Minghui; Yin, Yichen; Ren, Bingyu; Jiang, Nannan; Guo, Guoqing; Chen, Yuan

    2015-01-01

    Endophilin isoforms perform distinct characteristics in their interactions with N-type Ca2+ channels and dynamin. However, precise functional differences for the endophilin isoforms on synaptic vesicle (SV) endocytosis remain unknown. By coupling RNA interference and electrophysiological recording techniques in cultured rat hippocampal neurons, we investigated the functional differences of three isoforms of endophilin in SV endocytosis. The results showed that the amplitude of normalized evoked excitatory postsynaptic currents in endophilin1 knockdown neurons decreased significantly for both single train and multiple train stimulations. Similar results were found using endophilin2 knockdown neurons, whereas endophilin3 siRNA exhibited no change compared with control neurons. Endophilin1 and endophilin2 affected SV endocytosis, but the effect of endophilin1 and endophilin2 double knockdown was not different from that of either knockdown alone. This result suggested that endophilin1 and endophilin2 functioned together but not independently during SV endocytosis. Taken together, our results indicate that SV endocytosis is sustained by endophilin1 and endophilin2 isoforms, but not by endophilin3, in primary cultured hippocampal neurons. PMID:26682072

  19. Comprehensive expression map of transcription regulators in the adult zebrafish telencephalon reveals distinct neurogenic niches.

    PubMed

    Diotel, Nicolas; Rodriguez Viales, Rebecca; Armant, Olivier; März, Martin; Ferg, Marco; Rastegar, Sepand; Strähle, Uwe

    2015-06-01

    The zebrafish has become a model to study adult vertebrate neurogenesis. In particular, the adult telencephalon has been an intensely studied structure in the zebrafish brain. Differential expression of transcriptional regulators (TRs) is a key feature of development and tissue homeostasis. Here we report an expression map of 1,202 TR genes in the telencephalon of adult zebrafish. Our results are summarized in a database with search and clustering functions to identify genes expressed in particular regions of the telencephalon. We classified 562 genes into 13 distinct patterns, including genes expressed in the proliferative zone. The remaining 640 genes displayed unique and complex patterns of expression and could thus not be grouped into distinct classes. The neurogenic ventricular regions express overlapping but distinct sets of TR genes, suggesting regional differences in the neurogenic niches in the telencephalon. In summary, the small telencephalon of the zebrafish shows a remarkable complexity in TR gene expression. The adult zebrafish telencephalon has become a model to study neurogenesis. We established the expression pattern of more than 1200 transcription regulators (TR) in the adult telencephalon. The neurogenic regions express overlapping but distinct sets of TR genes suggesting regional differences in the neurogenic potential. PMID:25556858

  20. Quantitative proteomic analyses of mammary organoids reveals distinct signatures after exposure to environmental chemicals.

    PubMed

    Williams, Katherine E; Lemieux, George A; Hassis, Maria E; Olshen, Adam B; Fisher, Susan J; Werb, Zena

    2016-03-01

    Common environmental contaminants such as bisphenols and phthalates and persistent contaminants such as polychlorinated biphenyls are thought to influence tissue homeostasis and carcinogenesis by acting as disrupters of endocrine function. In this study we investigated the direct effects of exposure to bisphenol A (BPA), mono-n-butyl phthalate (Pht), and polychlorinated biphenyl 153 (PCB153) on the proteome of primary organotypic cultures of the mouse mammary gland. At low-nanomolar doses each of these agents induced distinct effects on the proteomes of these cultures. Although BPA treatment produced effects that were similar to those induced by estradiol, there were some notable differences, including a reduction in the abundance of retinoblastoma-associated protein and increases in the Rho GTPases Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle protein CDC42. Both Pht and PCB153 induced changes that were distinct from those induced by estrogen, including decreased levels of the transcriptional corepressor C-terminal binding protein 1. Interestingly, the three chemicals appeared to alter the abundance of distinct splice forms of many proteins as well as the abundance of several proteins that regulate RNA splicing. Our combined results indicate that the three classes of chemical have distinct effects on the proteome of normal mouse mammary cultures, some estrogen-like but most estrogen independent, that influence diverse biological processes including apoptosis, cell adhesion, and proliferation. PMID:26903627

  1. Quantitative proteomic analyses of mammary organoids reveals distinct signatures after exposure to environmental chemicals

    PubMed Central

    Williams, Katherine E.; Lemieux, George A.; Hassis, Maria E.; Olshen, Adam B.; Fisher, Susan J.; Werb, Zena

    2016-01-01

    Common environmental contaminants such as bisphenols and phthalates and persistent contaminants such as polychlorinated biphenyls are thought to influence tissue homeostasis and carcinogenesis by acting as disrupters of endocrine function. In this study we investigated the direct effects of exposure to bisphenol A (BPA), mono-n-butyl phthalate (Pht), and polychlorinated biphenyl 153 (PCB153) on the proteome of primary organotypic cultures of the mouse mammary gland. At low-nanomolar doses each of these agents induced distinct effects on the proteomes of these cultures. Although BPA treatment produced effects that were similar to those induced by estradiol, there were some notable differences, including a reduction in the abundance of retinoblastoma-associated protein and increases in the Rho GTPases Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle protein CDC42. Both Pht and PCB153 induced changes that were distinct from those induced by estrogen, including decreased levels of the transcriptional corepressor C-terminal binding protein 1. Interestingly, the three chemicals appeared to alter the abundance of distinct splice forms of many proteins as well as the abundance of several proteins that regulate RNA splicing. Our combined results indicate that the three classes of chemical have distinct effects on the proteome of normal mouse mammary cultures, some estrogen-like but most estrogen independent, that influence diverse biological processes including apoptosis, cell adhesion, and proliferation. PMID:26903627

  2. Distinct Functions of Egr Gene Family Members in Cognitive Processes

    PubMed Central

    Poirier, Roseline; Cheval, Hélène; Mailhes, Caroline; Garel, Sonia; Charnay, Patrick; Davis, Sabrina; Laroche, Serge

    2008-01-01

    The different gene members of the Egr family of transcriptional regulators have often been considered to have related functions in brain, based on their co-expression in many cell-types and structures, the relatively high homology of the translated proteins and their ability to bind to the same consensus DNA binding sequence. Recent research, however, suggest this might not be the case. In this review, we focus on the current understanding of the functional roles of the different Egr family members in learning and memory. We briefly outline evidence from mutant mice that Egr1 is required specifically for the consolidation of long-term memory, while Egr3 is primarily essential for short-term memory. We also review our own recent findings from newly generated forebrain-specific conditional Egr2 mutant mice, which revealed that Egr2, as opposed to Egr1 and Egr3, is dispensable for several forms of learning and memory and on the contrary can act as an inhibitory constraint for certain cognitive functions. The studies reviewed here highlight the fact that Egr family members may have different, and in certain circumstances antagonistic functions in the adult brain. PMID:18982106

  3. Scanning Electron Microscopy Reveals Two Distinct Classes of Erythroblastic Island Isolated from Adult Mammalian Bone Marrow.

    PubMed

    Yeo, Jia Hao; McAllan, Bronwyn M; Fraser, Stuart T

    2016-04-01

    Erythroblastic islands are multicellular clusters in which a central macrophage supports the development and maturation of red blood cell (erythroid) progenitors. These clusters play crucial roles in the pathogenesis observed in animal models of hematological disorders. The precise structure and function of erythroblastic islands is poorly understood. Here, we have combined scanning electron microscopy and immuno-gold labeling of surface proteins to develop a better understanding of the ultrastructure of these multicellular clusters. The erythroid-specific surface antigen Ter-119 and the transferrin receptor CD71 exhibited distinct patterns of protein sorting during erythroid cell maturation as detected by immuno-gold labeling. During electron microscopy analysis we observed two distinct classes of erythroblastic islands. The islands varied in size and morphology, and the number and type of erythroid cells interacting with the central macrophage. Assessment of femoral marrow isolated from a cavid rodent species (guinea pig, Cavis porcellus) and a marsupial carnivore species (fat-tailed dunnarts, Sminthopsis crassicaudata) showed that while the morphology of the central macrophage varied, two different types of erythroblastic islands were consistently identifiable. Our findings suggest that these two classes of erythroblastic islands are conserved in mammalian evolution and may play distinct roles in red blood cell production. PMID:26898901

  4. EVIDENCE FOR TWO DISTINCT STELLAR INITIAL MASS FUNCTIONS

    SciTech Connect

    Zaritsky, Dennis; Colucci, Janet E.; Bernstein, Rebecca A.

    2012-12-20

    We present velocity dispersion measurements of 20 Local Group stellar clusters (7 < log(age [yr]) <10.2) from integrated light spectra and examine the evolution of the stellar mass-to-light ratio, Y{sub *}. We find that the clusters deviate from the evolutionary tracks corresponding to simple stellar populations drawn from standard stellar initial mass functions (IMFs). The nature of this failure, in which Y{sub *} is at first underestimated and then overestimated with age, invalidates potential simple solutions involving a rescaling of either the measured masses or modeled luminosities. A range of possible shortcomings in the straightforward interpretation of the data, including subtleties arising from cluster dynamical evolution on the present-day stellar mass functions and from stellar binarity on the measured velocity dispersions, do not materially affect this conclusion given the current understanding of those effects. Independent of further conjectures regarding the origin of this problem, this result highlights a basic failing of our understanding of the integrated stellar populations of these systems. We propose the existence of two distinct IMFs, one primarily, but not exclusively, valid for older, metal-poor clusters and the other for primarily, but not exclusively, younger, metal-rich clusters. The young (log(age [yr]) < 9.5) clusters are well described by a bottom-heavy IMF, such as a Salpeter IMF, while the older clusters are better described by a top-heavy IMF, such as a light-weighted Kroupa IMF, although neither of these specific forms is a unique solution. The sample is small, with the findings currently depending on the results for four key clusters, but doubling the sample is within reach.

  5. Open chromatin reveals the functional maize genome

    PubMed Central

    Rodgers-Melnick, Eli; Vera, Daniel L.; Bass, Hank W.

    2016-01-01

    Cellular processes mediated through nuclear DNA must contend with chromatin. Chromatin structural assays can efficiently integrate information across diverse regulatory elements, revealing the functional noncoding genome. In this study, we use a differential nuclease sensitivity assay based on micrococcal nuclease (MNase) digestion to discover open chromatin regions in the maize genome. We find that maize MNase-hypersensitive (MNase HS) regions localize around active genes and within recombination hotspots, focusing biased gene conversion at their flanks. Although MNase HS regions map to less than 1% of the genome, they consistently explain a remarkably large amount (∼40%) of heritable phenotypic variance in diverse complex traits. MNase HS regions are therefore on par with coding sequences as annotations that demarcate the functional parts of the maize genome. These results imply that less than 3% of the maize genome (coding and MNase HS regions) may give rise to the overwhelming majority of phenotypic variation, greatly narrowing the scope of the functional genome. PMID:27185945

  6. Open chromatin reveals the functional maize genome.

    PubMed

    Rodgers-Melnick, Eli; Vera, Daniel L; Bass, Hank W; Buckler, Edward S

    2016-05-31

    Cellular processes mediated through nuclear DNA must contend with chromatin. Chromatin structural assays can efficiently integrate information across diverse regulatory elements, revealing the functional noncoding genome. In this study, we use a differential nuclease sensitivity assay based on micrococcal nuclease (MNase) digestion to discover open chromatin regions in the maize genome. We find that maize MNase-hypersensitive (MNase HS) regions localize around active genes and within recombination hotspots, focusing biased gene conversion at their flanks. Although MNase HS regions map to less than 1% of the genome, they consistently explain a remarkably large amount (∼40%) of heritable phenotypic variance in diverse complex traits. MNase HS regions are therefore on par with coding sequences as annotations that demarcate the functional parts of the maize genome. These results imply that less than 3% of the maize genome (coding and MNase HS regions) may give rise to the overwhelming majority of phenotypic variation, greatly narrowing the scope of the functional genome. PMID:27185945

  7. Bacterial community analysis of beef cattle feedlots reveals that pen surface is distinct from feces.

    PubMed

    Durso, Lisa M; Harhay, Gregory P; Smith, Timothy P L; Bono, James L; DeSantis, Todd Z; Clawson, Michael L

    2011-05-01

    The surface of beef cattle feedlot pens is commonly conceptualized as being packed uncomposted manure. Despite the important role that the feedlot pen may play in the transmission of veterinary and zoonotic pathogens, the bacterial ecology of feedlot surface material is not well understood. Our present study characterized the bacterial communities of the beef cattle feedlot pen surface material using 3647 full-length 16S rDNA sequences, and we compared the community composition of feedlot pens to the fecal source material. The feedlot surface composite was represented by members of the phylum Actinobacteria (42%), followed by Firmicutes (24%), Bacteroidetes (24%), and Proteobacteria (9%). The feedlot pen surface material bacterial communities were clearly distinct from those of the feces from animals in the same pen. Comparisons with previously published results of feces from the animals in the same pen reveal that, of 139 genera identified, only 25 were present in both habitats. These results indicate that, microbiologically, the feedlot pen surface material is separate and distinct from the fecal source material, suggesting that bacteria that originate in cattle feces face different selection pressures and survival challenges during their tenure in the feedlot pen, as compared to their residence in the gastrointestinal tract. PMID:21214381

  8. An analysis toolbox to explore mesenchymal migration heterogeneity reveals adaptive switching between distinct modes

    PubMed Central

    Shafqat-Abbasi, Hamdah; Kowalewski, Jacob M; Kiss, Alexa; Gong, Xiaowei; Hernandez-Varas, Pablo; Berge, Ulrich; Jafari-Mamaghani, Mehrdad; Lock, John G; Strömblad, Staffan

    2016-01-01

    Mesenchymal (lamellipodial) migration is heterogeneous, although whether this reflects progressive variability or discrete, 'switchable' migration modalities, remains unclear. We present an analytical toolbox, based on quantitative single-cell imaging data, to interrogate this heterogeneity. Integrating supervised behavioral classification with multivariate analyses of cell motion, membrane dynamics, cell-matrix adhesion status and F-actin organization, this toolbox here enables the detection and characterization of two quantitatively distinct mesenchymal migration modes, termed 'Continuous' and 'Discontinuous'. Quantitative mode comparisons reveal differences in cell motion, spatiotemporal coordination of membrane protrusion/retraction, and how cells within each mode reorganize with changed cell speed. These modes thus represent distinctive migratory strategies. Additional analyses illuminate the macromolecular- and cellular-scale effects of molecular targeting (fibronectin, talin, ROCK), including 'adaptive switching' between Continuous (favored at high adhesion/full contraction) and Discontinuous (low adhesion/inhibited contraction) modes. Overall, this analytical toolbox now facilitates the exploration of both spontaneous and adaptive heterogeneity in mesenchymal migration. DOI: http://dx.doi.org/10.7554/eLife.11384.001 PMID:26821527

  9. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis

    NASA Astrophysics Data System (ADS)

    Kaminski, Naftali; Allard, John D.; Pittet, Jean F.; Zuo, Fengrong; Griffiths, Mark J. D.; Morris, David; Huang, Xiaozhu; Sheppard, Dean; Heller, Renu A.

    2000-02-01

    The molecular mechanisms of pulmonary fibrosis are poorly understood. We have used oligonucleotide arrays to analyze the gene expression programs that underlie pulmonary fibrosis in response to bleomycin, a drug that causes lung inflammation and fibrosis, in two strains of susceptible mice (129 and C57BL/6). We then compared the gene expression patterns in these mice with 129 mice carrying a null mutation in the epithelial-restricted integrin 6 subunit (6/-), which develop inflammation but are protected from pulmonary fibrosis. Cluster analysis identified two distinct groups of genes involved in the inflammatory and fibrotic responses. Analysis of gene expression at multiple time points after bleomycin administration revealed sequential induction of subsets of genes that characterize each response. The availability of this comprehensive data set should accelerate the development of more effective strategies for intervention at the various stages in the development of fibrotic diseases of the lungs and other organs.

  10. Functional characteristics of neonatal rat β cells with distinct markers.

    PubMed

    Martens, G A; Motté, E; Kramer, G; Stangé, G; Gaarn, L W; Hellemans, K; Nielsen, J H; Aerts, J M; Ling, Z; Pipeleers, D

    2014-02-01

    Neonatal β cells are considered developmentally immature and hence less glucose responsive. To study the acquisition of mature glucose responsiveness, we compared glucose-regulated redox state, insulin synthesis, and secretion of β cells purified from neonatal or 10-week-old rats with their transcriptomes and proteomes measured by oligonucleotide and LC-MS/MS profiling. Lower glucose responsiveness of neonatal β cells was explained by two distinct properties: higher activity at low glucose and lower activity at high glucose. Basal hyperactivity was associated with higher NAD(P)H, a higher fraction of neonatal β cells actively incorporating (3)H-tyrosine, and persistently increased insulin secretion below 5 mM glucose. Neonatal β cells lacked the steep glucose-responsive NAD(P)H rise between 5 and 10 mM glucose characteristic for adult β cells and accumulated less NAD(P)H at high glucose. They had twofold lower expression of malate/aspartate-NADH shuttle and most glycolytic enzymes. Genome-wide profiling situated neonatal β cells at a developmental crossroad: they showed advanced endocrine differentiation when specifically analyzed for their mRNA/protein level of classical neuroendocrine markers. On the other hand, discrete neonatal β cell subpopulations still expressed mRNAs/proteins typical for developing/proliferating tissues. One example, delta-like 1 homolog (DLK1) was used to investigate whether neonatal β cells with basal hyperactivity corresponded to a more immature subset with high DLK1, but no association was found. In conclusion, the current study supports the importance of glycolytic NADH-shuttling in stimulus function coupling, presents basal hyperactivity as novel property of neonatal β cells, and provides potential markers to recognize intercellular developmental differences in the endocrine pancreas. PMID:24049066

  11. Dynamic Remodeling of Microbial Biofilms by Functionally Distinct Exopolysaccharides

    PubMed Central

    Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R. C.; Yang, Liang; Rice, Scott A.; Doyle, Patrick

    2014-01-01

    ABSTRACT Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. PMID:25096883

  12. Reconstructing dynamic mental models of facial expressions in prosopagnosia reveals distinct representations for identity and expression.

    PubMed

    Richoz, Anne-Raphaëlle; Jack, Rachael E; Garrod, Oliver G B; Schyns, Philippe G; Caldara, Roberto

    2015-04-01

    The human face transmits a wealth of signals that readily provide crucial information for social interactions, such as facial identity and emotional expression. Yet, a fundamental question remains unresolved: does the face information for identity and emotional expression categorization tap into common or distinct representational systems? To address this question we tested PS, a pure case of acquired prosopagnosia with bilateral occipitotemporal lesions anatomically sparing the regions that are assumed to contribute to facial expression (de)coding (i.e., the amygdala, the insula and the posterior superior temporal sulcus--pSTS). We previously demonstrated that PS does not use information from the eye region to identify faces, but relies on the suboptimal mouth region. PS's abnormal information use for identity, coupled with her neural dissociation, provides a unique opportunity to probe the existence of a dichotomy in the face representational system. To reconstruct the mental models of the six basic facial expressions of emotion in PS and age-matched healthy observers, we used a novel reverse correlation technique tracking information use on dynamic faces. PS was comparable to controls, using all facial features to (de)code facial expressions with the exception of fear. PS's normal (de)coding of dynamic facial expressions suggests that the face system relies either on distinct representational systems for identity and expression, or dissociable cortical pathways to access them. Interestingly, PS showed a selective impairment for categorizing many static facial expressions, which could be accounted for by her lesion in the right inferior occipital gyrus. PS's advantage for dynamic facial expressions might instead relate to a functionally distinct and sufficient cortical pathway directly connecting the early visual cortex to the spared pSTS. Altogether, our data provide critical insights on the healthy and impaired face systems, question evidence of deficits

  13. Phylogeography of Y-Chromosome Haplogroup I Reveals Distinct Domains of Prehistoric Gene Flow in Europe

    PubMed Central

    Rootsi, Siiri; Magri, Chiara; Kivisild, Toomas; Benuzzi, Giorgia; Help, Hela; Bermisheva, Marina; Kutuev, Ildus; Barać, Lovorka; Peričić, Marijana; Balanovsky, Oleg; Pshenichnov, Andrey; Dion, Daniel; Grobei, Monica; Zhivotovsky, Lev A.; Battaglia, Vincenza; Achilli, Alessandro; Al-Zahery, Nadia; Parik, Jüri; King, Roy; Cinnioğlu, Cengiz; Khusnutdinova, Elsa; Rudan, Pavao; Balanovska, Elena; Scheffrahn, Wolfgang; Simonescu, Maya; Brehm, Antonio; Goncalves, Rita; Rosa, Alexandra; Moisan, Jean-Paul; Chaventre, Andre; Ferak, Vladimir; Füredi, Sandor; Oefner, Peter J.; Shen, Peidong; Beckman, Lars; Mikerezi, Ilia; Terzić, Rifet; Primorac, Dragan; Cambon-Thomsen, Anne; Krumina, Astrida; Torroni, Antonio; Underhill, Peter A.; Santachiara-Benerecetti, A. Silvana; Villems, Richard; Semino, Ornella

    2004-01-01

    To investigate which aspects of contemporary human Y-chromosome variation in Europe are characteristic of primary colonization, late-glacial expansions from refuge areas, Neolithic dispersals, or more recent events of gene flow, we have analyzed, in detail, haplogroup I (Hg I), the only major clade of the Y phylogeny that is widespread over Europe but virtually absent elsewhere. The analysis of 1,104 Hg I Y chromosomes, which were identified in the survey of 7,574 males from 60 population samples, revealed several subclades with distinct geographic distributions. Subclade I1a accounts for most of Hg I in Scandinavia, with a rapidly decreasing frequency toward both the East European Plain and the Atlantic fringe, but microsatellite diversity reveals that France could be the source region of the early spread of both I1a and the less common I1c. Also, I1b*, which extends from the eastern Adriatic to eastern Europe and declines noticeably toward the southern Balkans and abruptly toward the periphery of northern Italy, probably diffused after the Last Glacial Maximum from a homeland in eastern Europe or the Balkans. In contrast, I1b2 most likely arose in southern France/Iberia. Similarly to the other subclades, it underwent a postglacial expansion and marked the human colonization of Sardinia ∼9,000 years ago. PMID:15162323

  14. Transcriptome Analysis Reveals Distinct Gene Expression Profiles in Eosinophilic and Noneosinophilic Chronic Rhinosinusitis with Nasal Polyps

    PubMed Central

    Wang, Weiqing; Gao, Zhiqiang; Wang, Huaishan; Li, Taisheng; He, Wei; Lv, Wei; Zhang, Jianmin

    2016-01-01

    Chronic rhinosinusitis with nasal polyps (CRSwNP), one of the most prevalent chronic diseases, is characterized by persistent inflammation of sinonasal mucosa. However, the pathogenesis of CRSwNP remains unclear. Here, we performed next-generation RNA sequencing and a comprehensive bioinformatics analyses to characterize the transcriptome profiles, including mRNAs and long noncoding RNAs (lncRNAs), in patients with eosinophilic and noneosinophilic CRSwNP. A total of 1917 novel lncRNAs and 280 known lncRNAs were identified. We showed eosinophilic CRSwNP (ECRSwNP) and noneosinophilic CRSwNP (non-ECRSwNP) display distinct transcriptome profiles. We identified crucial pathways, including inflammatory, immune response and extracellular microenvironment, connected to the pathogenetic mechanism of CRSwNP. We also discovered key lncRNAs differentially expressed, including lncRNA XLOC_010280, which regulates CCL18 and eosinophilic inflammation. The qRT-PCR and in situ RNA hybridization results verified the key differentially expressed genes. The feature of distinct transcriptomes between ECRSwNP and non-ECRSwNP suggests the necessity to develop specific biomarkers and personalized therapeutic strategies. Our findings lay a solid foundation for subsequent functional studies of mRNAs and lncRNAs as diagnostic and therapeutic targets in CRSwNP by providing a candidate reservoir. PMID:27216292

  15. Cortical connectivity maps reveal anatomically distinct areas in the parietal cortex of the rat

    PubMed Central

    Wilber, Aaron A.; Clark, Benjamin J.; Demecha, Alexis J.; Mesina, Lilia; Vos, Jessica M.; McNaughton, Bruce L.

    2015-01-01

    A central feature of theories of spatial navigation involves the representation of spatial relationships between objects in complex environments. The parietal cortex has long been linked to the processing of spatial visual information and recent evidence from single unit recording in rodents suggests a role for this region in encoding egocentric and world-centered frames. The rat parietal cortex can be subdivided into four distinct rostral-caudal and medial-lateral regions, which includes a zone previously characterized as secondary visual cortex. At present, very little is known regarding the relative connectivity of these parietal subdivisions. Thus, we set out to map the connectivity of the entire anterior-posterior and medial-lateral span of this region. To do this we used anterograde and retrograde tracers in conjunction with open source neuronal segmentation and tracer detection tools to generate whole brain connectivity maps of parietal inputs and outputs. Our present results show that inputs to the parietal cortex varied significantly along the medial-lateral, but not the rostral-caudal axis. Specifically, retrosplenial connectivity is greater medially, but connectivity with visual cortex, though generally sparse, is more significant laterally. Finally, based on connection density, the connectivity between parietal cortex and hippocampus is indirect and likely achieved largely via dysgranular retrosplenial cortex. Thus, similar to primates, the parietal cortex of rats exhibits a difference in connectivity along the medial-lateral axis, which may represent functionally distinct areas. PMID:25601828

  16. Mitotic History Reveals Distinct Stem Cell Populations and Their Contributions to Hematopoiesis

    PubMed Central

    Säwén, Petter; Lang, Stefan; Mandal, Pankaj; Rossi, Derrick J.; Soneji, Shamit; Bryder, David

    2016-01-01

    Summary Homeostasis of short-lived blood cells is dependent on rapid proliferation of immature precursors. Using a conditional histone 2B-mCherry-labeling mouse model, we characterize hematopoietic stem cell (HSC) and progenitor proliferation dynamics in steady state and following several types of induced stress. HSC proliferation following HSC transplantation into lethally irradiated mice is fundamentally different not only from native hematopoiesis but also from other stress contexts. Whereas transplantation promoted sustained, long-term proliferation of HSCs, both cytokine-induced mobilization and acute depletion of selected blood cell lineages elicited very limited recruitment of HSCs to the proliferative pool. By coupling mCherry-based analysis of proliferation history with multiplex gene expression analyses on single cells, we have found that HSCs can be stratified into four distinct subtypes. These subtypes have distinct molecular signatures and differ significantly in their reconstitution potentials, showcasing the power of tracking proliferation history when resolving functional heterogeneity of HSCs. PMID:26997272

  17. Distinct functional determinants of influenza hemagglutinin-mediated membrane fusion

    PubMed Central

    Ivanovic, Tijana; Harrison, Stephen C

    2015-01-01

    Membrane fusion is the critical step for infectious cell penetration by enveloped viruses. We have previously used single-virion measurements of fusion kinetics to study the molecular mechanism of influenza-virus envelope fusion. Published data on fusion inhibition by antibodies to the 'stem' of influenza virus hemagglutinin (HA) now allow us to incorporate into simulations the provision that some HAs are inactive. We find that more than half of the HAs are unproductive even for virions with no bound antibodies, but that the overall mechanism is extremely robust. Determining the fraction of competent HAs allows us to determine their rates of target-membrane engagement. Comparison of simulations with data from H3N2 and H1N1 viruses reveals three independent functional variables of HA-mediated membrane fusion closely linked to neutralization susceptibility. Evidence for compensatory changes in the evolved mechanism sets the stage for studies aiming to define the molecular constraints on HA evolvability. DOI: http://dx.doi.org/10.7554/eLife.11009.001 PMID:26613408

  18. Xenon and iodine reveal multiple distinct exotic xenon components in Efremovka "nanodiamonds"

    NASA Astrophysics Data System (ADS)

    Gilmour, J. D.; Holland, G.; Verchovsky, A. B.; Fisenko, A. V.; Crowther, S. A.; Turner, G.

    2016-03-01

    We identify new xenon components in a nanodiamond-rich residue from the reduced CV3 chondrite Efremovka. We demonstrate for the first time that these, and the previously identified xenon components Xe-P3 and Xe-P6, are associated with elevated I/Xe ratios. The 129I/127I ratio associated with xenon loss from these presolar compositions during processing on planetesimals in the early solar system was (0.369 ± 0.019) × 10-4, a factor of 3-4 lower than the canonical value. This suggests either incorporation of iodine into carbonaceous grains before the last input of freshly synthesized 129I to the solar system's precursor material, or loss of noble gases during processing of planetesimals around 30 Myr after solar system formation. The xenon/iodine ratios and model closure ages were revealed by laser step pyrolysis analysis of a neutron-irradiated, coarse-grained nanodiamond separate. Three distinct low temperature compositions are identified by characteristic I/Xe ratios and 136Xe/132Xe ratios. There is some evidence of multiple compositions with distinct I/Xe ratios in the higher temperature releases associated with Xe-P6. The presence of iodine alongside Q-Xe and these components in nanodiamonds constrains the pathway by which extreme volatiles entered the solid phase and may facilitate the identification of their carriers. There is no detectable iodine contribution to the presolar Xe-HL component, which is released at intermediate temperatures; this suggests a distinct trapping process. Releases associated with the other components all include significant contributions of 128Xe produced from iodine by neutron capture during reactor irradiation. We propose a revised model relating the origin of Xe-P3 (which exhibits an s-process deficit) through a "Q-process" to the Q component (which makes the dominant contribution to the heavy noble gas budget of primitive material). The Q-process incorporates noble gases and iodine into specific carbonaceous phases with mass

  19. Clonal Dynamics Reveal Two Distinct Populations of Basal Cells in Slow-Turnover Airway Epithelium.

    PubMed

    Watson, Julie K; Rulands, Steffen; Wilkinson, Adam C; Wuidart, Aline; Ousset, Marielle; Van Keymeulen, Alexandra; Göttgens, Berthold; Blanpain, Cédric; Simons, Benjamin D; Rawlins, Emma L

    2015-07-01

    Epithelial lineages have been studied at cellular resolution in multiple organs that turn over rapidly. However, many epithelia, including those of the lung, liver, pancreas, and prostate, turn over slowly and may be regulated differently. We investigated the mouse tracheal epithelial lineage at homeostasis by using long-term clonal analysis and mathematical modeling. This pseudostratified epithelium contains basal cells and secretory and multiciliated luminal cells. Our analysis revealed that basal cells are heterogeneous, comprising approximately equal numbers of multipotent stem cells and committed precursors, which persist in the basal layer for 11 days before differentiating to luminal fate. We confirmed the molecular and functional differences within the basal population by using single-cell qRT-PCR and further lineage labeling. Additionally, we show that self-renewal of short-lived secretory cells is a feature of homeostasis. We have thus revealed early luminal commitment of cells that are morphologically indistinguishable from stem cells. PMID:26119728

  20. Magnetic tweezers-based force clamp reveals mechanically distinct apCAM domain interactions.

    PubMed

    Kilinc, Devrim; Blasiak, Agata; O'Mahony, James J; Suter, Daniel M; Lee, Gil U

    2012-09-19

    Cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) play a crucial role in cell-cell interactions during nervous system development and function. The Aplysia CAM (apCAM), an invertebrate IgCAM, shares structural and functional similarities with vertebrate NCAM and therefore has been considered as the Aplysia homolog of NCAM. Despite these similarities, the binding properties of apCAM have not been investigated thus far. Using magnetic tweezers, we applied physiologically relevant, constant forces to apCAM-coated magnetic particles interacting with apCAM-coated model surfaces and characterized the kinetics of bond rupture. The average bond lifetime decreased with increasing external force, as predicted by theoretical considerations. Mathematical simulations suggest that the apCAM homophilic interaction is mediated by two distinct bonds, one involving all five immunoglobulin (Ig)-like domains in an antiparallel alignment and the other involving only two Ig domains. In summary, this study provides biophysical evidence that apCAM undergoes homophilic interactions, and that magnetic tweezers-based, force-clamp measurements provide a rapid and reliable method for characterizing relatively weak CAM interactions. PMID:22995484

  1. Methylome sequencing in triple-negative breast cancer reveals distinct methylation clusters with prognostic value.

    PubMed

    Stirzaker, Clare; Zotenko, Elena; Song, Jenny Z; Qu, Wenjia; Nair, Shalima S; Locke, Warwick J; Stone, Andrew; Armstong, Nicola J; Robinson, Mark D; Dobrovic, Alexander; Avery-Kiejda, Kelly A; Peters, Kate M; French, Juliet D; Stein, Sandra; Korbie, Darren J; Trau, Matt; Forbes, John F; Scott, Rodney J; Brown, Melissa A; Francis, Glenn D; Clark, Susan J

    2015-01-01

    Epigenetic alterations in the cancer methylome are common in breast cancer and provide novel options for tumour stratification. Here, we perform whole-genome methylation capture sequencing on small amounts of DNA isolated from formalin-fixed, paraffin-embedded tissue from triple-negative breast cancer (TNBC) and matched normal samples. We identify differentially methylated regions (DMRs) enriched with promoters associated with transcription factor binding sites and DNA hypersensitive sites. Importantly, we stratify TNBCs into three distinct methylation clusters associated with better or worse prognosis and identify 17 DMRs that show a strong association with overall survival, including DMRs located in the Wilms tumour 1 (WT1) gene, bi-directional-promoter and antisense WT1-AS. Our data reveal that coordinated hypermethylation can occur in oestrogen receptor-negative disease, and that characterizing the epigenetic framework provides a potential signature to stratify TNBCs. Together, our findings demonstrate the feasibility of profiling the cancer methylome with limited archival tissue to identify regulatory regions associated with cancer. PMID:25641231

  2. Metagenomic investigation of the geologically unique Hellenic Volcanic Arc reveals a distinctive ecosystem with unexpected physiology.

    PubMed

    Oulas, Anastasis; Polymenakou, Paraskevi N; Seshadri, Rekha; Tripp, H James; Mandalakis, Manolis; Paez-Espino, A David; Pati, Amrita; Chain, Patrick; Nomikou, Paraskevi; Carey, Steven; Kilias, Stephanos; Christakis, Christos; Kotoulas, Georgios; Magoulas, Antonios; Ivanova, Natalia N; Kyrpides, Nikos C

    2016-04-01

    Hydrothermal vents represent a deep, hot, aphotic biosphere where chemosynthetic primary producers, fuelled by chemicals from Earth's subsurface, form the basis of life. In this study, we examined microbial mats from two distinct volcanic sites within the Hellenic Volcanic Arc (HVA). The HVA is geologically and ecologically unique, with reported emissions of CO2 -saturated fluids at temperatures up to 220°C and a notable absence of macrofauna. Metagenomic data reveals highly complex prokaryotic communities composed of chemolithoautotrophs, some methanotrophs, and to our surprise, heterotrophs capable of anaerobic degradation of aromatic hydrocarbons. Our data suggest that aromatic hydrocarbons may indeed be a significant source of carbon in these sites, and instigate additional research into the nature and origin of these compounds in the HVA. Novel physiology was assigned to several uncultured prokaryotic lineages; most notably, a SAR406 representative is attributed with a role in anaerobic hydrocarbon degradation. This dataset, the largest to date from submarine volcanic ecosystems, constitutes a significant resource of novel genes and pathways with potential biotechnological applications. PMID:26487573

  3. Highly distinct chromosomal structures in cowpea (Vigna unguiculata), as revealed by molecular cytogenetic analysis.

    PubMed

    Iwata-Otsubo, Aiko; Lin, Jer-Young; Gill, Navdeep; Jackson, Scott A

    2016-05-01

    Cowpea (Vigna unguiculata (L.) Walp) is an important legume, particularly in developing countries. However, little is known about its genome or chromosome structure. We used molecular cytogenetics to characterize the structure of pachytene chromosomes to advance our knowledge of chromosome and genome organization of cowpea. Our data showed that cowpea has highly distinct chromosomal structures that are cytologically visible as brightly DAPI-stained heterochromatic regions. Analysis of the repetitive fraction of the cowpea genome present at centromeric and pericentromeric regions confirmed that two retrotransposons are major components of pericentromeric regions and that a 455-bp tandem repeat is found at seven out of 11 centromere pairs in cowpea. These repeats likely evolved after the divergence of cowpea from common bean and form chromosomal structure unique to cowpea. The integration of cowpea genetic and physical chromosome maps reveals potential regions of suppressed recombination due to condensed heterochromatin and a lack of pairing in a few chromosomal termini. This study provides fundamental knowledge on cowpea chromosome structure and molecular cytogenetics tools for further chromosome studies. PMID:26758200

  4. Investigation at the atomic level of homologous enzymes reveals distinct reaction paths

    NASA Astrophysics Data System (ADS)

    Zoi, Ioanna; Schwartz, Steven D.

    2015-03-01

    Bacterial enzymes Escherichia coli and Vibrio cholerae 5' -Methylthioadenosine nucleosidases (MTANs) have different binding affinities for the same transition state analogue. This was surprising as these enzymes share 60% sequence identity, have almost identical active sites and act under the same mechanism. We performed Transition Path Sampling simulations of both enzymes to reveal the atomic details of the catalytic chemical step, to explain the inhibitor affinity differences. Unlike EcMTAN, VcMTAN has multiple distinct transition states, which is an indication that multiple sets of coordinated protein motions can reach a transition state. We also identified the important residues that participate in each enzyme's reaction coordinate and explained their contribution. Subtle dynamic differences manifest in difference of reaction coordinate and transition state structure and also suggest that MTANs differ from most ribosyl transferases. As experimental approaches report averages regarding reaction coordinate information, this study offers, previously unavailable, detailed knowledge to the explanation of bacterial MTANs catalytic mechanism, and could have a significant impact on pharmaceutical design. We acknowledge the support of the National Institutes of Health through Grant GM068036.

  5. Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors

    PubMed Central

    Karniol, Baruch; Wagner, Jeremiah R.; Walker, Joseph M.; Vierstra, Richard D.

    2005-01-01

    Phys (phytochromes) are a superfamily of photochromic photoreceptors that employ a bilin-type chromophore to sense red and far-red light. Although originally thought to be restricted to plants, accumulating genetic and genomic analyses now indicate that they are also prevalent among micro-organisms. By a combination of phylogenetic and biochemical studies, we have expanded the Phy superfamily and organized its members into distinct functional clades which include the phys (plant Phys), BphPs (bacteriophytochromes), Cphs (cyanobacterial Phys), Fphs (fungal Phys) and a collection of Phy-like sequences. All contain a signature GAF (cGMP phosphodiesterase/adenylate cyclase/FhlA) domain, which houses the bilin lyase activity. A PHY domain (uppercase letters are used to denote the PHY domain specifically), which helps stabilize the Pfr form (far-red-light-absorbing form of Phy), is downstream of the GAF region in all but the Phy-like sequences. The phy, Cph, BphP and Fph families also include a PLD [N-terminal PAS (Per/Arnt/Sim)-like domain] upstream of the GAF domain. Site-directed mutagenesis of conserved residues within the GAF and PLD motifs supports their importance in chromophore binding and/or spectral activity. In agreement with Lamparter, Carrascal, Michael, Martinez, Rottwinkel and Abian [(2004) Biochemistry 43, 3659–3669], a conserved cysteine within the PLD of several BphPs was found to be necessary for binding the chromophore via the C-3 vinyl side chain on the bilin A ring. Phy-type sequences were also discovered in the actinobacterium Kineococcus radiotolerans and collections of microorganisms obtained from marine and extremely acidic environments, thus expanding further the range of these photoreceptors. Based on their organization and distribution, the evolution of the Phy superfamily into distinct photoreceptor types is proposed. PMID:16004604

  6. High throughput sequencing reveals distinct microbial populations within the mucosal and luminal niches in healthy individuals

    PubMed Central

    Ringel, Yehuda; Maharshak, Nitsan; Ringel-Kulka, Tamar; Wolber, Elizabeth Ashley; Sartor, R Balfour; Carroll, Ian M

    2015-01-01

    Background: The intestinal microbiota is associated with human health and diseases. The luminal microbiota (LM) and the mucosal-associated microbiota (MAM) are 2 distinct ecosystems with different metabolic and immunological functions. Aim: To characterize the intestinal LM and MAM in humans using high throughput sequencing of the 16S rRNA gene. Methods: Fresh fecal samples and distal colonic mucosal biopsies collected from 24 healthy subjects before (fecal) and during (mucosa) a flexible sigmoidoscopy of an un-prepared bowel. High throughput sequencing of the 16S rRNA gene was used to characterize bacterial communities. Sequences were processed using the QIIME pipeline. Results: LM and MAM populations were significantly different (ANOSIM: R = 0.49, P = 0.001). The LM displayed tighter clustering compared to the MAM (average weighted UniFrac distances 0.27 ± 0.05 vs. 0.43 ± 0.09, P < 0.001, respectively), and showed higher diversity (Shannon diversity index: 4.96 ± 0.37 vs 4.14 ± 0.56, respectively, P < 0.001). The dominant phyla in the LM and MAM were significantly different: Firmicutes (41.4% vs. 29.1%, FDR < 0.0001, respectively), Bacteroidetes (20.2% vs. 26.3%, FDR < 0.05, respectively), Actinobacteria (22% vs. 12.6%, FDR < 0.0001, respectively) and Proteobacteria (9.3% vs. 19.3%, FDR < 0.0001, respectively). The abundance of 56 genera differed significantly (FDR < 0.1) between the 2 niches. All of the genera in the fecal microbiota were present in the MAM while 10 genera were found to be unique to the MAM. Conclusion: The LM and MAM are distinct microbial ecosystems that differ significantly from each other in microbial diversity and composition. These two microbial niches should be investigated independently to better understand the role of the intestinal microbiota in health and disease. PMID:25915459

  7. Characterization of KIR intermediate promoters reveals four promoter types associated with distinct expression patterns of KIR subtypes

    PubMed Central

    Li, Hongchuan; Wright, Paul W.; McCullen, Matthew; Anderson, Stephen K.

    2015-01-01

    The human KIR genes contain multiple promoters that control the process of gene activation and variegated expression of KIR on NK and T cells. Specific subfamilies of KIR genes have differences in the timing and tissue-specificity of expression: however, previous studies of the proximal KIR promoters have not shown significant differences in activity between differentially expressed KIR gene subsets. The recent identification of an intermediate KIR promoter (ProI) associated with KIR2DL1 expression suggested a central role for this element in KIR expression. The current study identifies ProI elements in all of the KIR genes, revealing four classes of ProI that correspond with four distinct expression phenotypes of KIR sub-groups: KIR2DL2/S2/L3 that are expressed early in reconstituting NK after transplant; KIR2DL4 that is expressed by CD56-bright NK in a non-variegated manner; KIR3DL3 that is not expressed by circulating NK cells; and the remaining KIR that are expressed by subsets of CD56-dim NK. The four classes of ProI are structurally diverse and display distinct functional properties. Altogether, these results indicate that KIR ProI elements contribute to the tissue/cell type specificity of KIR transcription, and cooperate with the probabilistic proximal promoter to control KIR expression. PMID:26656451

  8. Biochemical Analysis of Distinct Activation Functions in p300 That Enhance Transcription Initiation with Chromatin Templates

    PubMed Central

    Kraus, W. Lee; Manning, E. Tory; Kadonaga, James T.

    1999-01-01

    To investigate the mechanisms of transcriptional enhancement by the p300 coactivator, we analyzed wild-type and mutant versions of p300 with a chromatin transcription system in vitro. Estrogen receptor, NF-κB p65 plus Sp1, and Gal4-VP16 were used as different sequence-specific activators. The CH3 domain (or E1A-binding region) was found to be essential for the function of each of the activators tested. The bromodomain was also observed to be generally important for p300 coactivator activity, though to a lesser extent than the CH3 domain/E1A-binding region. The acetyltransferase activity and the C-terminal region (containing the steroid receptor coactivator/p160-binding region and the glutamine-rich region) were each found to be important for activation by estrogen receptor but not for that by Gal4-VP16. The N-terminal region of p300, which had been previously found to interact with nuclear hormone receptors, was not seen to be required for any of the activators, including estrogen receptor. Single-round transcription experiments revealed that the functionally important subregions of p300 contribute to its ability to promote the assembly of transcription initiation complexes. In addition, the acetyltransferase activity of p300 was observed to be distinct from the broadly essential activation function of the CH3 domain/E1A-binding region. These results indicate that specific regions of p300 possess distinct activation functions that are differentially required to enhance the assembly of transcription initiation complexes. Interestingly, with the estrogen receptor, four distinct regions of p300 each have an essential role in the transcription activation process. These data exemplify a situation in which a network of multiple activation functions is required to achieve gene transcription. PMID:10567538

  9. Heritability of symbiont density reveals distinct regulatory mechanisms in a tripartite symbiosis.

    PubMed

    Parkinson, Jasmine F; Gobin, Bruno; Hughes, William O H

    2016-04-01

    Beneficial eukaryotic-bacterial partnerships are integral to animal and plant evolution. Understanding the density regulation mechanisms behind bacterial symbiosis is essential to elucidating the functional balance between hosts and symbionts. Citrus mealybugs, Planococcus citri (Risso), present an excellent model system for investigating the mechanisms of symbiont density regulation. They contain two obligate nutritional symbionts, Moranella endobia, which resides inside Tremblaya princeps, which has been maternally transmitted for 100-200 million years. We investigate whether host genotype may influence symbiont density by crossing mealybugs from two inbred laboratory-reared populations that differ substantially in their symbiont density to create hybrids. The density of the M. endobia symbiont in the hybrid hosts matched that of the maternal parent population, in keeping with density being determined either by the symbiont or the maternal genotype. However, the density of the T. princeps symbiont was influenced by the paternal host genotype. The greater dependency of T. princeps on its host may be due to its highly reduced genome. The decoupling of T. princeps and M. endobia densities, in spite of their intimate association, suggests that distinct regulatory mechanisms can be at work in symbiotic partnerships, even when they are obligate and mutualistic. PMID:27099709

  10. Transcriptomic analysis reveals distinct resistant response by physcion and chrysophanol against cucumber powdery mildew.

    PubMed

    Li, Yanping; Tian, Shilin; Yang, Xiaojun; Wang, Xin; Guo, Yuhai; Ni, Hanwen

    2016-01-01

    Physcion and chrysophanol induce defense responses against powdery mildew in cucumbers. The combination of these two compounds has synergistic interaction against the disease. We performed RNA-seq on cucumber leaf samples treated with physcion and chrysophanol alone and with their combination. We generated 17.6 Gb of high-quality sequencing data (∼2 Gb per sample) and catalogued the expressions profiles of 12,293 annotated cucumber genes in each sample. We identified numerous differentially expressed genes that exhibited distinct expression patterns among the three treatments. The gene expression patterns of the Chr and Phy treatments were more similar to each other than to the Phy × Chr treatment. The Phy × Chr treatment induced the highest number of differentially expressed genes. This dramatic transcriptional change after Phy × Chr treatment leaves reflects that physcion combined with chrysophanol treatment was most closely associated with induction of disease resistance. The analysis showed that the combination treatment caused expression changes of numerous defense-related genes. These genes have known or potential roles in structural, chemical and signaling defense responses and were enriched in functional gene categories potentially responsible for cucumber resistance. These results clearly demonstrated that disease resistance in cucumber leaves was significantly influenced by the combined physcion and chrysophanol treatment. Thus, physcion and chrysophanol are appealing candidates for further investigation of the gene expression and associated regulatory mechanisms related to the defense response. PMID:27231648

  11. Transcriptomic analysis reveals distinct resistant response by physcion and chrysophanol against cucumber powdery mildew

    PubMed Central

    Li, Yanping; Tian, Shilin; Yang, Xiaojun; Wang, Xin; Guo, Yuhai

    2016-01-01

    Physcion and chrysophanol induce defense responses against powdery mildew in cucumbers. The combination of these two compounds has synergistic interaction against the disease. We performed RNA-seq on cucumber leaf samples treated with physcion and chrysophanol alone and with their combination. We generated 17.6 Gb of high-quality sequencing data (∼2 Gb per sample) and catalogued the expressions profiles of 12,293 annotated cucumber genes in each sample. We identified numerous differentially expressed genes that exhibited distinct expression patterns among the three treatments. The gene expression patterns of the Chr and Phy treatments were more similar to each other than to the Phy × Chr treatment. The Phy × Chr treatment induced the highest number of differentially expressed genes. This dramatic transcriptional change after Phy × Chr treatment leaves reflects that physcion combined with chrysophanol treatment was most closely associated with induction of disease resistance. The analysis showed that the combination treatment caused expression changes of numerous defense-related genes. These genes have known or potential roles in structural, chemical and signaling defense responses and were enriched in functional gene categories potentially responsible for cucumber resistance. These results clearly demonstrated that disease resistance in cucumber leaves was significantly influenced by the combined physcion and chrysophanol treatment. Thus, physcion and chrysophanol are appealing candidates for further investigation of the gene expression and associated regulatory mechanisms related to the defense response. PMID:27231648

  12. Visualization of Eukaryotic DNA Mismatch Repair Reveals Distinct Recognition and Repair Intermediates

    PubMed Central

    Hombauer, Hans; Campbell, Christopher S.; Smith, Catherine E.; Desai, Arshad; Kolodner, Richard D.

    2011-01-01

    Summary DNA Mismatch Repair (MMR) increases replication fidelity by eliminating mispaired bases resulting from replication errors. In Saccharomyces cerevisiae mispairs are primarily detected by the Msh2-Msh6 complex and corrected following subsequent recruitment of the Mlh1-Pms1 complex. Here, we visualized functional fluorescent versions of Msh2-Msh6 and Mlh1-Pms1 in living cells. Msh2-Msh6 formed foci in S-phase that colocalized with replication factories; this localized pool accounted for 10–15% of MMR in wild-type cells but was essential for MMR in the absence of the exonuclease Exo1. Mlh1-Pms1 also formed foci that, while requiring Msh2-Msh6 for their formation, rarely colocalized with Msh2-Msh6. Mlh1-Pms1 foci increased when the number of mispaired bases was increased; in contrast, Msh2-Msh6 foci were unaffected. These results suggest that (I) mispair recognition can occur via either a replication factory-targeted or a second distinct pool of Msh2-Msh6, and (II) superstoichiometric Mlh1-Pms1 assembly triggered by mispair-bound Msh2-Msh6 defines sites of active MMR. PMID:22118461

  13. Conserved Hydration Sites in Pin1 Reveal a Distinctive Water Recognition Motif in Proteins.

    PubMed

    Barman, Arghya; Smitherman, Crystal; Souffrant, Michael; Gadda, Giovanni; Hamelberg, Donald

    2016-01-25

    Structurally conserved water molecules are important for biomolecular stability, flexibility, and function. X-ray crystallographic studies of Pin1 have resolved a number of water molecules around the enzyme, including two highly conserved water molecules within the protein. The functional role of these localized water molecules remains unknown and unexplored. Pin1 catalyzes cis/trans isomerizations of peptidyl prolyl bonds that are preceded by a phosphorylated serine or threonine residue. Pin1 is involved in many subcellular signaling processes and is a potential therapeutic target for the treatment of several life threatening diseases. Here, we investigate the significance of these structurally conserved water molecules in the catalytic domain of Pin1 using molecular dynamics (MD) simulations, free energy calculations, analysis of X-ray crystal structures, and circular dichroism (CD) experiments. MD simulations and free energy calculations suggest the tighter binding water molecule plays a crucial role in maintaining the integrity and stability of a critical hydrogen-bonding network in the active site. The second water molecule is exchangeable with bulk solvent and is found in a distinctive helix-turn-coil motif. Structural bioinformatics analysis of nonredundant X-ray crystallographic protein structures in the Protein Data Bank (PDB) suggest this motif is present in several other proteins and can act as a water site, akin to the calcium EF hand. CD experiments suggest the isolated motif is in a distorted PII conformation and requires the protein environment to fully form the α-helix-turn-coil motif. This study provides valuable insights into the role of hydration in the structural integrity of Pin1 that can be exploited in protein engineering and drug design. PMID:26651388

  14. Two distinct overstretched DNA structures revealed by single-molecule thermodynamics measurements

    PubMed Central

    Zhang, Xinghua; Chen, Hu; Fu, Hongxia; Doyle, Patrick S.; Yan, Jie

    2012-01-01

    Double-stranded DNA is a dynamic molecule whose structure can change depending on conditions. While there is consensus in the literature about many structures DNA can have, the state of highly-stretched DNA is still not clear. Several groups have shown that DNA in the torsion-unconstrained B-form undergoes an “overstretching” transition at a stretching force of around 65 pN, which leads to approximately 1.7-fold elongation of the DNA contour length. Recent experiments have revealed that two distinct structural transitions are involved in the overstretching process: (i) a hysteretic “peeling” off one strand from its complementary strand, and (ii) a nonhysteretic transition that leads to an undetermined DNA structure. We report the first simultaneous determination of the entropy (ΔS) and enthalpy changes (ΔH) pertaining to these respective transitions. For the hysteretic peeling transition, we determined ΔS ∼ 20 cal/(K.mol) and ΔH ∼ 7 kcal/mol. In the case of the nonhysteretic transition, ΔS ∼ -3 cal/(K.mol) and ΔH ∼ 1 kcal/mol. Furthermore, the response of the transition force to salt concentration implies that the two DNA strands are spatially separated after the hysteretic peeling transition. In contrast, the corresponding response after the nonhysteretic transition indicated that the strands remained in close proximity. The selection between the two transitions depends on DNA base-pair stability, and it can be illustrated by a multidimensional phase diagram. Our results provide important insights into the thermodynamics of DNA overstretching and conformational structures of overstretched DNA that may play an important role in vivo. PMID:22532662

  15. The distinctive gastric fluid proteome in gastric cancer reveals a multi-biomarker diagnostic profile

    PubMed Central

    Kon, Oi Lian; Yip, Tai-Tung; Ho, Meng Fatt; Chan, Weng Hoong; Wong, Wai Keong; Tan, Soo Yong; Ng, Wai Har; Kam, Siok Yuen; Eng, Alvin KH; Ho, Patrick; Viner, Rosa; Ong, Hock Soo; Kumarasinghe, M Priyanthi

    2008-01-01

    Background Overall gastric cancer survival remains poor mainly because there are no reliable methods for identifying highly curable early stage disease. Multi-protein profiling of gastric fluids, obtained from the anatomic site of pathology, could reveal diagnostic proteomic fingerprints. Methods Protein profiles were generated from gastric fluid samples of 19 gastric cancer and 36 benign gastritides patients undergoing elective, clinically-indicated gastroscopy using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry on multiple ProteinChip arrays. Proteomic features were compared by significance analysis of microarray algorithm and two-way hierarchical clustering. A second blinded sample set (24 gastric cancers and 29 clinically benign gastritides) was used for validation. Results By significance analysyis of microarray, 60 proteomic features were up-regulated and 46 were down-regulated in gastric cancer samples (p < 0.01). Multimarker clustering showed two distinctive proteomic profiles independent of age and ethnicity. Eighteen of 19 cancer samples clustered together (sensitivity 95%) while 27/36 of non-cancer samples clustered in a second group. Nine non-cancer samples that clustered with cancer samples included 5 pre-malignant lesions (1 adenomatous polyp and 4 intestinal metaplasia). Validation using a second sample set showed the sensitivity and specificity to be 88% and 93%, respectively. Positive predictive value of the combined data was 0.80. Selected peptide sequencing identified pepsinogen C and pepsin A activation peptide as significantly down-regulated and alpha-defensin as significantly up-regulated. Conclusion This simple and reproducible multimarker proteomic assay could supplement clinical gastroscopic evaluation of symptomatic patients to enhance diagnostic accuracy for gastric cancer and pre-malignant lesions. PMID:18950519

  16. Different Ligands of the TRPV3 Cation Channel Cause Distinct Conformational Changes as Revealed by Intrinsic Tryptophan Fluorescence Quenching*

    PubMed Central

    Billen, Bert; Brams, Marijke; Debaveye, Sarah; Remeeva, Alina; Alpizar, Yeranddy A.; Waelkens, Etienne; Kreir, Mohamed; Brüggemann, Andrea; Talavera, Karel; Nilius, Bernd; Voets, Thomas; Ulens, Chris

    2015-01-01

    TRPV3 is a thermosensitive ion channel primarily expressed in epithelial tissues of the skin, nose, and tongue. The channel has been implicated in environmental thermosensation, hyperalgesia in inflamed tissues, skin sensitization, and hair growth. Although transient receptor potential (TRP) channel research has vastly increased our understanding of the physiological mechanisms of nociception and thermosensation, the molecular mechanics of these ion channels are still largely elusive. In order to better comprehend the functional properties and the mechanism of action in TRP channels, high-resolution three-dimensional structures are indispensable, because they will yield the necessary insights into architectural intimacies at the atomic level. However, structural studies of membrane proteins are currently hampered by difficulties in protein purification and in establishing suitable crystallization conditions. In this report, we present a novel protocol for the purification of membrane proteins, which takes advantage of a C-terminal GFP fusion. Using this protocol, we purified human TRPV3. We show that the purified protein is a fully functional ion channel with properties akin to the native channel using planar patch clamp on reconstituted channels and intrinsic tryptophan fluorescence spectroscopy. Using intrinsic tryptophan fluorescence spectroscopy, we reveal clear distinctions in the molecular interaction of different ligands with the channel. Altogether, this study provides powerful tools to broaden our understanding of ligand interaction with TRPV channels, and the availability of purified human TRPV3 opens up perspectives for further structural and functional studies. PMID:25829496

  17. Integrated data analysis reveals uterine leiomyoma subtypes with distinct driver pathways and biomarkers

    PubMed Central

    Mehine, Miika; Kaasinen, Eevi; Heinonen, Hanna-Riikka; Mäkinen, Netta; Kämpjärvi, Kati; Sarvilinna, Nanna; Aavikko, Mervi; Vähärautio, Anna; Pasanen, Annukka; Bützow, Ralf; Heikinheimo, Oskari; Sjöberg, Jari; Pitkänen, Esa; Vahteristo, Pia; Aaltonen, Lauri A.

    2016-01-01

    Uterine leiomyomas are common benign smooth muscle tumors that impose a major burden on women’s health. Recent sequencing studies have revealed recurrent and mutually exclusive mutations in leiomyomas, suggesting the involvement of molecularly distinct pathways. In this study, we explored transcriptional differences among leiomyomas harboring different genetic drivers, including high mobility group AT-hook 2 (HMGA2) rearrangements, mediator complex subunit 12 (MED12) mutations, biallelic inactivation of fumarate hydratase (FH), and collagen, type IV, alpha 5 and collagen, type IV, alpha 6 (COL4A5-COL4A6) deletions. We also explored the transcriptional consequences of 7q22, 22q, and 1p deletions, aiming to identify possible target genes. We investigated 94 leiomyomas and 60 corresponding myometrial tissues using exon arrays, whole genome sequencing, and SNP arrays. This integrative approach revealed subtype-specific expression changes in key driver pathways, including Wnt/β-catenin, Prolactin, and insulin-like growth factor (IGF)1 signaling. Leiomyomas with HMGA2 aberrations displayed highly significant up-regulation of the proto-oncogene pleomorphic adenoma gene 1 (PLAG1), suggesting that HMGA2 promotes tumorigenesis through PLAG1 activation. This was supported by the identification of genetic PLAG1 alterations resulting in expression signatures as seen in leiomyomas with HMGA2 aberrations. RAD51 paralog B (RAD51B), the preferential translocation partner of HMGA2, was up-regulated in MED12 mutant lesions, suggesting a role for this gene in the genesis of leiomyomas. FH-deficient leiomyomas were uniquely characterized by activation of nuclear factor erythroid 2-related factor 2 (NRF2) target genes, supporting the hypothesis that accumulation of fumarate leads to activation of the oncogenic transcription factor NRF2. This study emphasizes the need for molecular stratification in leiomyoma research and possibly in clinical practice as well. Further research is

  18. Three acetylcholinesterases of the pinewood nematode, Bursaphelenchus xylophilus: insights into distinct physiological functions.

    PubMed

    Kang, Jae Soon; Lee, Dae-Weon; Choi, Jae Young; Je, Yeon Ho; Koh, Young Ho; Lee, Si Hyeock

    2011-02-01

    Acetylcholinesterase (AChE) plays a key role in postsynaptic transmission in most animals. Nematodes encode multiple AChEs, implying its functional diversity. To explore physiological functions of multiple AChEs, three distinct AChEs (BxACE-1, BxACE-2, and BxACE-3) were identified and characterized from the pinewood nematode. Sequencing comparison with Torpedo AChE and Caenorhabditis elegans ACEs identified choline-binding site, catalytic triad functional site, three internal disulfide bonds and aromatic residues for the catalytic gorge. Transcriptional profiling by quantitative real-time PCR revealed that BxACE-3 is more actively transcribed than BxACE-1 (2-3 times) and BxACE-2 (9-18 times) in both propagative and dispersal stages. The three BxACEs were functionally expressed using baculovirus system. Kinetic analysis of in vitro-expressed BxACEs revealed that the substrate specificity was highest in BxACE-1 whereas the catalytic efficiency was highest in BxACE-2. In inhibition assay, BxACE-3 showed the lowest inhibition rate. Taken together, it appears that both BxACE-1 and BxACE-2 play common but non-overlapping roles in synaptic transmission, whereas BxACE-3 may have non-neuronal functions. The current findings should provide valuable insights into the evolutionary process and various physiological roles of AChE. PMID:21074580

  19. Distinct roles for protein kinase C isoforms in regulating platelet purinergic receptor function.

    PubMed

    Mundell, Stuart J; Jones, Matthew L; Hardy, Adam R; Barton, Johanna F; Beaucourt, Stephanie M; Conley, Pamela B; Poole, Alastair W

    2006-09-01

    ADP is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors (GPCRs), P2Y1 and P2Y12. We have shown previously that the receptors are functionally desensitized, in a homologous manner, by distinct kinase-dependent mechanisms in which P2Y1 is regulated by protein kinase C (PKC) and P2Y12 by G protein-coupled receptor kinases. In this study, we addressed whether different PKC isoforms play different roles in regulating the trafficking and activity of these two GPCRs. Expression of PKCalpha and PKCdelta dominant-negative mutants in 1321N1 cells revealed that both isoforms regulated P2Y1 receptor signaling and trafficking, although only PKCdelta was capable of regulating P2Y12, in experiments in which PKC was directly activated by the phorbol ester phorbol 12-myristate 13-acetate (PMA). These results were paralleled in human platelets, in which PMA reduced subsequent ADP-induced P2Y1 and P2Y12 receptor signaling. PKC isoform-selective inhibitors revealed that novel, but not conventional, isoforms of PKC regulate P2Y12 function, whereas both novel and classic isoforms regulate P2Y1 activity. It is also noteworthy that we studied receptor internalization in platelets by a radioligand binding approach showing that both receptors internalize rapidly in these cells. ADP-induced P2Y1 receptor internalization is attenuated by PKC inhibitors, whereas that of the P2Y12 receptor is unaffected. Both P2Y1 and P2Y12 receptors can also undergo PMA-stimulated internalization, and here again, novel but not classic PKCs regulate P2Y12, whereas both novel and classic isoforms regulate P2Y1 internalization. This study therefore is the first to reveal distinct roles for PKC isoforms in the regulation of platelet P2Y receptor function and trafficking. PMID:16804093

  20. Clonal-Level Responses of Functionally Distinct Hematopoietic Stem Cells to Trophic Factors

    PubMed Central

    Mallaney, Cates; Kothari, Alok; Martens, Andrew; Challen, Grant A.

    2014-01-01

    Recent findings from several groups have identified distinct classes of hematopoietic stem cells (HSCs) in the bone marrow, each with inherent functional biases in terms of their differentiation, self-renewal, proliferation and lifespan. It has previously been demonstrated that myeloid- and lymphoid-biased HSCs can be prospectively enriched based on their degree of Hoechst dye efflux. In the present study, we used differential Hoechst efflux to enrich lineage-biased HSC subtypes and analyzed their functional potentials. Despite similar outputs in vitro, bone marrow transplantation assays revealed contrasting lineage differentiation in vivo. To stratify the molecular differences underlying these contrasting functional potentials at the clonal level, single-cell gene expression analysis was performed using the Fluidigm Biomark system and revealed dynamic expression of genes including Meis1, CEBP/α, Sfpi1 and Dnmt3a. Finally, single-cell gene expression analysis was used to unravel the opposing proliferative responses of lineage-biased HSCs to the growth factor TGFβ1, revealing a potential role for the cell cycle inhibitor Cdkn1c as molecular mediator. This work lends further credence to the concept of HSC heterogeneity and presents unprecedented molecular resolution of the HSC response to trophic factors using single-cell gene expression analysis. PMID:24373928

  1. Clonal-level responses of functionally distinct hematopoietic stem cells to trophic factors.

    PubMed

    Mallaney, Cates; Kothari, Alok; Martens, Andrew; Challen, Grant A

    2014-04-01

    Recent findings from several groups have identified distinct classes of hematopoietic stem cells (HSCs) in the bone marrow, each with inherent functional biases in terms of their differentiation, self-renewal, proliferation, and lifespan. It has previously been demonstrated that myeloid- and lymphoid-biased HSCs can be prospectively enriched based on their degree of Hoechst dye efflux. In the present study, we used differential Hoechst efflux to enrich lineage-biased HSC subtypes and analyzed their functional potentials. Despite similar outputs in vitro, bone marrow transplantation assays revealed contrasting lineage differentiation in vivo. To stratify the molecular differences underlying these contrasting functional potentials at the clonal level, single-cell gene expression analysis was performed using the Fluidigm BioMark system and revealed dynamic expression of genes including Meis1, CEBP/α, Sfpi1, and Dnmt3a. Finally, single-cell gene expression analysis was used to unravel the opposing proliferative responses of lineage-biased HSCs to the growth factor TGF-β1, revealing a potential role for the cell cycle inhibitor Cdkn1c as molecular mediator. This work lends further credence to the concept of HSC heterogeneity, and it presents unprecedented molecular resolution of the HSC response to trophic factors using single-cell gene expression analysis. PMID:24373928

  2. Crystal Structure of Human Soluble Adenylate Cyclase Reveals a Distinct, Highly Flexible Allosteric Bicarbonate Binding Pocket

    PubMed Central

    Saalau-Bethell, Susanne M; Berdini, Valerio; Cleasby, Anne; Congreve, Miles; Coyle, Joseph E; Lock, Victoria; Murray, Christopher W; O'Brien, M Alistair; Rich, Sharna J; Sambrook, Tracey; Vinkovic, Mladen; Yon, Jeff R; Jhoti, Harren

    2014-01-01

    Soluble adenylate cyclases catalyse the synthesis of the second messenger cAMP through the cyclisation of ATP and are the only known enzymes to be directly activated by bicarbonate. Here, we report the first crystal structure of the human enzyme that reveals a pseudosymmetrical arrangement of two catalytic domains to produce a single competent active site and a novel discrete bicarbonate binding pocket. Crystal structures of the apo protein, the protein in complex with α,β-methylene adenosine 5′-triphosphate (AMPCPP) and calcium, with the allosteric activator bicarbonate, and also with a number of inhibitors identified using fragment screening, all show a flexible active site that undergoes significant conformational changes on binding of ligands. The resulting nanomolar-potent inhibitors that were developed bind at both the substrate binding pocket and the allosteric site, and can be used as chemical probes to further elucidate the function of this protein. PMID:24616449

  3. Clonal Dynamics Reveal Two Distinct Populations of Basal Cells in Slow-Turnover Airway Epithelium

    PubMed Central

    Watson, Julie K.; Rulands, Steffen; Wilkinson, Adam C.; Wuidart, Aline; Ousset, Marielle; Van Keymeulen, Alexandra; Göttgens, Berthold; Blanpain, Cédric; Simons, Benjamin D.; Rawlins, Emma L.

    2015-01-01

    Summary Epithelial lineages have been studied at cellular resolution in multiple organs that turn over rapidly. However, many epithelia, including those of the lung, liver, pancreas, and prostate, turn over slowly and may be regulated differently. We investigated the mouse tracheal epithelial lineage at homeostasis by using long-term clonal analysis and mathematical modeling. This pseudostratified epithelium contains basal cells and secretory and multiciliated luminal cells. Our analysis revealed that basal cells are heterogeneous, comprising approximately equal numbers of multipotent stem cells and committed precursors, which persist in the basal layer for 11 days before differentiating to luminal fate. We confirmed the molecular and functional differences within the basal population by using single-cell qRT-PCR and further lineage labeling. Additionally, we show that self-renewal of short-lived secretory cells is a feature of homeostasis. We have thus revealed early luminal commitment of cells that are morphologically indistinguishable from stem cells. PMID:26119728

  4. Dual-tagged amyloid-β precursor protein reveals distinct transport pathways of its N- and C-terminal fragments.

    PubMed

    Villegas, Christine; Muresan, Virgil; Ladescu Muresan, Zoia

    2014-03-15

    The amyloid-β precursor protein (APP), a type I transmembrane protein genetically associated with Alzheimer's disease, has a complex biology that includes proteolytic processing into potentially toxic fragments, extensive trafficking and multiple, yet poorly-defined functions. We recently proposed that a significant fraction of APP is proteolytically cleaved in the neuronal soma into N- and C-terminal fragments (NTFs and CTFs), which then target independently of each other to separate destinations in the cell. Here, we prove this concept with live imaging and immunolocalization of two dual, N- and C-termini-tagged APP constructs: CFP-APP-YFP [containing the fluorescent tags, cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP)] and FLAG-APP-Myc. When expressed at low levels in neuronal cells, these constructs are processed into differently tagged NTFs and CTFs that reveal distinct distributions and characteristics of transport. Like the endogenous N- and C-terminal epitopes of APP, the FLAG-tagged NTFs are present in trains of vesicles and tubules that localize to short filaments, which often immunostain for acetylated tubulin, whereas the Myc-tagged CTFs are detected on randomly distributed vesicle-like structures. The experimental treatments that selectively destabilize the acetylated microtubules abrogate the distribution of NTFs along filaments, without altering the random distribution of CTFs. These results indicate that the NTFs and CTFs are recruited to distinct transport pathways and reach separate destinations in neurons, where they likely accomplish functions independent of the parental, full-length APP. They also point to a compartment associated with acetylated microtubules in the neuronal soma--not the neurite terminals--as a major site of APP cleavage, and segregation of NTFs from CTFs. PMID:24203698

  5. Neuropeptidomics Mass Spectrometry Reveals Signaling Networks Generated by Distinct Protease Pathways in Human Systems.

    PubMed

    Hook, Vivian; Bandeira, Nuno

    2015-12-01

    Neuropeptides regulate intercellular signaling as neurotransmitters of the central and peripheral nervous systems, and as peptide hormones in the endocrine system. Diverse neuropeptides of distinct primary sequences of various lengths, often with post-translational modifications, coordinate and integrate regulation of physiological functions. Mass spectrometry-based analysis of the diverse neuropeptide structures in neuropeptidomics research is necessary to define the full complement of neuropeptide signaling molecules. Human neuropeptidomics has notable importance in defining normal and dysfunctional neuropeptide signaling in human health and disease. Neuropeptidomics has great potential for expansion in translational research opportunities for defining neuropeptide mechanisms of human diseases, providing novel neuropeptide drug targets for drug discovery, and monitoring neuropeptides as biomarkers of drug responses. In consideration of the high impact of human neuropeptidomics for health, an observed gap in this discipline is the few published articles in human neuropeptidomics compared with, for example, human proteomics and related mass spectrometry disciplines. Focus on human neuropeptidomics will advance new knowledge of the complex neuropeptide signaling networks participating in the fine control of neuroendocrine systems. This commentary review article discusses several human neuropeptidomics accomplishments that illustrate the rapidly expanding diversity of neuropeptides generated by protease processing of pro-neuropeptide precursors occurring within the secretory vesicle proteome. Of particular interest is the finding that human-specific cathepsin V participates in producing enkephalin and likely other neuropeptides, indicating unique proteolytic mechanisms for generating human neuropeptides. The field of human neuropeptidomics has great promise to solve new mechanisms in disease conditions, leading to new drug targets and therapeutic agents for human

  6. Comparative Genome Analyses Reveal Distinct Structure in the Saltwater Crocodile MHC

    PubMed Central

    Jaratlerdsiri, Weerachai; Deakin, Janine; Godinez, Ricardo M.; Shan, Xueyan; Peterson, Daniel G.; Marthey, Sylvain; Lyons, Eric; McCarthy, Fiona M.; Isberg, Sally R.; Higgins, Damien P.; Chong, Amanda Y.; John, John St; Glenn, Travis C.; Ray, David A.; Gongora, Jaime

    2014-01-01

    The major histocompatibility complex (MHC) is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III) containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians) are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus) and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2–6 times longer) than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity) with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs. PMID:25503521

  7. Proteogenomics of Pristionchus pacificus reveals distinct proteome structure of nematode models

    PubMed Central

    Borchert, Nadine; Dieterich, Christoph; Krug, Karsten; Schütz, Wolfgang; Jung, Stephan; Nordheim, Alfred; Sommer, Ralf J.; Macek, Boris

    2010-01-01

    Pristionchus pacificus is a nematode model organism whose genome has recently been sequenced. To refine the genome annotation we performed transcriptome and proteome analysis and gathered comprehensive experimental information on gene expression. Transcriptome analysis on a 454 Life Sciences (Roche) FLX platform generated >700,000 expressed sequence tags (ESTs) from two normalized EST libraries, whereas proteome analysis on an LTQ-Orbitrap mass spectrometer detected >27,000 nonredundant peptide sequences from more than 4000 proteins at sub-parts-per-million (ppm) mass accuracy and a false discovery rate of <1%. Retraining of the SNAP gene prediction algorithm using the gene expression data led to a decrease in the number of previously predicted protein-coding genes from 29,000 to 24,000 and refinement of numerous gene models. The P. pacificus proteome contains a high proportion of small proteins with no known homologs in other species (“pioneer” proteins). Some of these proteins appear to be products of highly homologous genes, pointing to their common origin. We show that >50% of all pioneer genes are transcribed under standard culture conditions and that pioneer proteins significantly contribute to a unimodal distribution of predicted protein sizes in P. pacificus, which has an unusually low median size of 240 amino acids (26.8 kDa). In contrast, the predicted proteome of Caenorhabditis elegans follows a distinct bimodal protein size distribution, with significant functional differences between small and large protein populations. Combined, these results provide the first catalog of the expressed genome of P. pacificus, refinement of its genome annotation, and the first comparison of related nematode models at the proteome level. PMID:20237107

  8. Comparative genome analyses reveal distinct structure in the saltwater crocodile MHC.

    PubMed

    Jaratlerdsiri, Weerachai; Deakin, Janine; Godinez, Ricardo M; Shan, Xueyan; Peterson, Daniel G; Marthey, Sylvain; Lyons, Eric; McCarthy, Fiona M; Isberg, Sally R; Higgins, Damien P; Chong, Amanda Y; John, John St; Glenn, Travis C; Ray, David A; Gongora, Jaime

    2014-01-01

    The major histocompatibility complex (MHC) is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III) containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians) are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus) and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2-6 times longer) than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity) with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs. PMID:25503521

  9. Proteogenomics of Pristionchus pacificus reveals distinct proteome structure of nematode models.

    PubMed

    Borchert, Nadine; Dieterich, Christoph; Krug, Karsten; Schütz, Wolfgang; Jung, Stephan; Nordheim, Alfred; Sommer, Ralf J; Macek, Boris

    2010-06-01

    Pristionchus pacificus is a nematode model organism whose genome has recently been sequenced. To refine the genome annotation we performed transcriptome and proteome analysis and gathered comprehensive experimental information on gene expression. Transcriptome analysis on a 454 Life Sciences (Roche) FLX platform generated >700,000 expressed sequence tags (ESTs) from two normalized EST libraries, whereas proteome analysis on an LTQ-Orbitrap mass spectrometer detected >27,000 nonredundant peptide sequences from more than 4000 proteins at sub-parts-per-million (ppm) mass accuracy and a false discovery rate of <1%. Retraining of the SNAP gene prediction algorithm using the gene expression data led to a decrease in the number of previously predicted protein-coding genes from 29,000 to 24,000 and refinement of numerous gene models. The P. pacificus proteome contains a high proportion of small proteins with no known homologs in other species ("pioneer" proteins). Some of these proteins appear to be products of highly homologous genes, pointing to their common origin. We show that >50% of all pioneer genes are transcribed under standard culture conditions and that pioneer proteins significantly contribute to a unimodal distribution of predicted protein sizes in P. pacificus, which has an unusually low median size of 240 amino acids (26.8 kDa). In contrast, the predicted proteome of Caenorhabditis elegans follows a distinct bimodal protein size distribution, with significant functional differences between small and large protein populations. Combined, these results provide the first catalog of the expressed genome of P. pacificus, refinement of its genome annotation, and the first comparison of related nematode models at the proteome level. PMID:20237107

  10. Neuropeptidomics Mass Spectrometry Reveals Signaling Networks Generated by Distinct Protease Pathways in Human Systems

    NASA Astrophysics Data System (ADS)

    Hook, Vivian; Bandeira, Nuno

    2015-12-01

    Neuropeptides regulate intercellular signaling as neurotransmitters of the central and peripheral nervous systems, and as peptide hormones in the endocrine system. Diverse neuropeptides of distinct primary sequences of various lengths, often with post-translational modifications, coordinate and integrate regulation of physiological functions. Mass spectrometry-based analysis of the diverse neuropeptide structures in neuropeptidomics research is necessary to define the full complement of neuropeptide signaling molecules. Human neuropeptidomics has notable importance in defining normal and dysfunctional neuropeptide signaling in human health and disease. Neuropeptidomics has great potential for expansion in translational research opportunities for defining neuropeptide mechanisms of human diseases, providing novel neuropeptide drug targets for drug discovery, and monitoring neuropeptides as biomarkers of drug responses. In consideration of the high impact of human neuropeptidomics for health, an observed gap in this discipline is the few published articles in human neuropeptidomics compared with, for example, human proteomics and related mass spectrometry disciplines. Focus on human neuropeptidomics will advance new knowledge of the complex neuropeptide signaling networks participating in the fine control of neuroendocrine systems. This commentary review article discusses several human neuropeptidomics accomplishments that illustrate the rapidly expanding diversity of neuropeptides generated by protease processing of pro-neuropeptide precursors occurring within the secretory vesicle proteome. Of particular interest is the finding that human-specific cathepsin V participates in producing enkephalin and likely other neuropeptides, indicating unique proteolytic mechanisms for generating human neuropeptides. The field of human neuropeptidomics has great promise to solve new mechanisms in disease conditions, leading to new drug targets and therapeutic agents for human

  11. The distinction in radiobiology between medical and public health functions

    SciTech Connect

    Bond, V.P.; Wielopolski, L.

    1995-12-31

    Starting with the classical threshold-sigmoid Medical-Toxicological plot, reasons are advanced for why the coordinates of this function are not appropriate for the analysis of Public Health-Epidemiological data. Misunderstanding with respect to both the level of biological organization and the word ``dose`` are pointed out, which explain why Public Health-Epidemiological data, anomalously, yield linear functions on medical-toxicological coordinates. It is then shown why substantially different coordinates must be used to obtain a function that describes properly and completely the cancer data obtained from epidemiological studies on the atomic bomb survivors. Arguments are put forth that seriously weaken the current interpretation of the ``linear, no-threshold hypothesis``. Reasons are advanced for why, if the amount of radiation energy is expressed in the proper terms, the numerical value for the cancer ``risk coefficient`` becomes substantially smaller than it now is.

  12. Shared and Distinct Intrinsic Functional Network Centrality in Autism and Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Di Martino, Adriana; Zuo, Xi-Nian; Kelly, Clare; Grzadzinski, Rebecca; Mennes, Maarten; Schvarcz, Ariel; Rodman, Jennifer; Lord, Catherine; Castellanos, F. Xavier; Milham, Michael P.

    2015-01-01

    Background Individuals with autism spectrum disorders (ASD) often exhibit symptoms of Attention-Deficit/Hyperactivity Disorder (ADHD). Across both disorders, observations of distributed functional abnormalities suggest aberrant large-scale brain network connectivity. Yet, common and distinct network correlates of ASD and ADHD remain unidentified. Here, we aimed to examine patterns of dysconnection in school-age children with ASD, ADHD and typically developing children (TDC) who completed a resting state fMRI (R-fMRI) scan. Methods We measured voxel-wise network centrality, functional connectivity metrics indexing local (degree centrality; DC) and global (eigenvector centrality; EC) functional relationships across the entire brain connectome, in R-fMRI data from 56 children with ASD, 45 children with ADHD and 50 TDC. A one-way ANCOVA, with group as fixed factor (whole-brain corrected), was followed by post-hoc pair-wise comparisons. Results Cortical and subcortical areas exhibited centrality abnormalities; some common to both ADHD and ASD, such as in precuneus. Others were disorder-specific and included ADHD-related increases in DC in right striatum/pallidum, in contrast with ASD-related increases in bilateral temporolimbic areas. Secondary analyses differentiating children with ASD into those with or without ADHD-like comorbidity (ASD+ and ASD−, respectively) revealed that the ASD+ group shared ADHD-specific abnormalities in basal ganglia. By contrast, centrality increases in temporolimbic areas characterized children with ASD regardless of ADHD-like comorbidity. At the cluster level eignevector centrality group patterns were similar to DC. Conclusions ADHD and ASD are neurodevelopmental disorders with distinct and overlapping clinical presentations. This work provides evidence for both shared and distinct underlying mechanisms at the large-scale network level. PMID:23541632

  13. Are The Dorsal and Ventral Hippocampus functionally distinct structures?

    PubMed Central

    Fanselow, Michael S.; Dong, Hong-Wei

    2009-01-01

    One literature treats the hippocampus as a purely cognitive structure involved in memory; another treats it as a regulator of emotion whose dysfunction leads to psychopathology. We review behavioral, anatomical, and gene expression studies that together support a functional segmentation into 3 hippocampal compartments dorsal, intermediate and ventral. The dorsal hippocampus, which corresponds to the posterior hippocampus in primates, performs primarily cognitive functions. The ventral (anterior in primates) relates to stress, emotion and affect. Strikingly, gene expression in the dorsal hippocampus correlates with cortical regions involved in information processing, while genes expressed in the ventral hippocampus correlate with regions involved in emotion and stress (amygdala and hypothalamus). PMID:20152109

  14. Coordinated and Distinct Functions of Velvet Proteins in Fusarium verticillioides

    PubMed Central

    Lan, Nan; Zhang, Hanxing; Hu, Chengcheng; Wang, Wenzhao; Calvo, Ana M.; Harris, Steven D.; Chen, She

    2014-01-01

    Velvet-domain-containing proteins are broadly distributed within the fungal kingdom. In the corn pathogen Fusarium verticillioides, previous studies showed that the velvet protein F. verticillioides VE1 (FvVE1) is critical for morphological development, colony hydrophobicity, toxin production, and pathogenicity. In this study, tandem affinity purification of FvVE1 revealed that FvVE1 can form a complex with the velvet proteins F. verticillioides VelB (FvVelB) and FvVelC. Phenotypic characterization of gene knockout mutants showed that, as in the case of FvVE1, FvVelB regulated conidial size, hyphal hydrophobicity, fumonisin production, and oxidant resistance, while FvVelC was dispensable for these biological processes. Comparative transcriptional analysis of eight genes involved in the ROS (reactive oxygen species) removal system revealed that both FvVE1 and FvVelB positively regulated the transcription of a catalase-encoding gene, F. verticillioides CAT2 (FvCAT2). Deletion of FvCAT2 resulted in reduced oxidant resistance, providing further explanation of the regulation of oxidant resistance by velvet proteins in the fungal kingdom. PMID:24792348

  15. GAGA Factor Isoforms Have Distinct but Overlapping Functions In Vivo

    PubMed Central

    Greenberg, Anthony J.; Schedl, Paul

    2001-01-01

    The Drosophila melanogaster GAGA factor (encoded by the Trithorax-like [Trl] gene) is required for correct chromatin architecture at diverse chromosomal sites. The Trl gene encodes two alternatively spliced isoforms of the GAGA factor (GAGA-519 and GAGA-581) that are identical except for the length and sequence of the C-terminal glutamine-rich (Q) domain. In vitro and tissue culture experiments failed to find any functional difference between the two isoforms. We made a set of transgenes that constitutively express cDNAs coding for either of the isoforms with the goal of elucidating their roles in vivo. Phenotypic analysis of the transgenes in Trl mutant background led us to the conclusion that GAGA-519 and GAGA-581 perform different, albeit largely overlapping, functions. We also expressed a fusion protein with LacZ disrupting the Q domain of GAGA-519. This LacZ fusion protein compensated for the loss of wild-type GAGA factor to a surprisingly large extent. This suggests that the Q domain either is not required for the essential functions performed by the GAGA protein or is exclusively used for tetramer formation. These results are inconsistent with a major role of the Q domain in chromatin remodeling or transcriptional activation. We also found that GAGA-LacZ was able to associate with sites not normally occupied by the GAGA factor, pointing to a role of the Q domain in binding site choice in vivo. PMID:11713290

  16. Subcellular Profiling Reveals Distinct and Developmentally Regulated Repertoire of Growth Cone mRNAs

    PubMed Central

    Zivraj, Krishna H.; Tung, Yi Chun Loraine; Piper, Michael; Gumy, Laura; Fawcett, James W.; Yeo, Giles S. H.; Holt, Christine E.

    2013-01-01

    Cue-directed axon guidance depends partly on local translation in growth cones. Many mRNA transcripts are known to reside in developing axons, yet little is known about their subcellular distribution or, specifically, which transcripts are in growth cones. Here laser capture microdissection (LCM) was used to isolate the growth cones of retinal ganglion cell (RGC) axons of two vertebrate species, mouse and Xenopus, coupled with unbiased genomewide microarray profiling. An unexpectedly large pool of mRNAs defined predominant pathways in protein synthesis, oxidative phosphorylation, cancer, neurological disease, and signaling. Comparative profiling of “young” (pathfinding) versus “old” (target-arriving) Xenopus growth cones revealed that the number and complexity of transcripts increases dramatically with age. Many presynaptic protein mRNAs are present exclusively in old growth cones, suggesting that functionally related sets of mRNAs are targeted to growth cones in a developmentally regulated way. Remarkably, a subset of mRNAs was significantly enriched in the growth cone compared with the axon compartment, indicating that mechanisms exist to localize mRNAs selectively to the growth cone. Furthermore, some receptor transcripts (e.g., EphB4), present exclusively in old growth cones, were equally abundant in young and old cell bodies, indicating that RNA trafficking from the soma is developmentally regulated. Our findings show that the mRNA repertoire in growth cones is regulated dynamically with age and suggest that mRNA localization is tailored to match the functional demands of the growing axon tip as it transforms into the presynaptic terminal. PMID:21084603

  17. The distinct C-terminal acidic domains of HMGB proteins are functionally relevant in Schistosoma mansoni.

    PubMed

    de Abreu da Silva, Isabel Caetano; Carneiro, Vitor Coutinho; Vicentino, Amanda Roberta Revoredo; Aguilera, Estefania Anahi; Mohana-Borges, Ronaldo; Thiengo, Silvana; Fernandez, Monica Ammon; Fantappié, Marcelo Rosado

    2016-04-01

    The Schistosoma mansoni High Mobility Group Box (HMGB) proteins SmHMGB1, SmHMGB2 and SmHMGB3 share highly conserved HMG box DNA binding domains but have significantly different C-terminal acidic tails. Here, we used three full-length and tailless forms of the S. mansoni HMGB proteins to examine the functional roles of their acidic tails. DNA binding assays revealed that the different lengths of the acidic tails among the three SmHMGB proteins significantly and distinctively influenced their DNA transactions. Spectroscopic analyses indicated that the longest acidic tail of SmHMGB3 contributes to the structural stabilisation of this protein. Using immunohistochemical analysis, we showed distinct patterns of SmHMGB1, SmHMGB2 and SmHMGB3 expression in different tissues of adult worms. RNA interference approaches indicated a role for SmHMGB2 and SmHMGB3 in the reproductive system of female worms, whereas for SmHMGB1 no clear phenotype was observed. Schistosome HMGB proteins can be phosphorylated, acetylated and methylated. Importantly, the acetylation and methylation of schistosome HMGBs were greatly enhanced upon removal of the acidic tail. These data support the notion that the C-terminal acidic tails dictate the differences in the structure, expression and function of schistosome HMGB proteins. PMID:26820302

  18. Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements

    PubMed Central

    Viktorovskaya, Olga V.; Greco, Todd M.; Cristea, Ileana M.; Thompson, Sunnie R.

    2016-01-01

    Background There are currently no vaccines or antivirals available for dengue virus infection, which can cause dengue hemorrhagic fever and death. A better understanding of the host pathogen interaction is required to develop effective therapies to treat DENV. In particular, very little is known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells are not naked; rather they are coated with proteins that affect localization, stability, translation and (for viruses) replication. Methodology/Principal Findings Seventy-nine novel RNA binding proteins for dengue virus (DENV) were identified by cross-linking proteins to dengue viral RNA during a live infection in human cells. These cellular proteins were specific and distinct from those previously identified for poliovirus, suggesting a specialized role for these factors in DENV amplification. Knockdown of these proteins demonstrated their function as viral host factors, with evidence for some factors acting early, while others late in infection. Their requirement by DENV for efficient amplification is likely specific, since protein knockdown did not impair the cell fitness for viral amplification of an unrelated virus. The protein abundances of these host factors were not significantly altered during DENV infection, suggesting their interaction with DENV RNA was due to specific recruitment mechanisms. However, at the global proteome level, DENV altered the abundances of proteins in particular classes, including transporter proteins, which were down regulated, and proteins in the ubiquitin proteasome pathway, which were up regulated. Conclusions/Significance The method for identification of host factors described here is robust and broadly applicable to all RNA viruses, providing an avenue to determine the conserved or distinct mechanisms through which diverse viruses manage the viral RNA within cells. This study significantly increases the number of cellular factors known to interact with

  19. Mineral and organic growing media have distinct community structure, stability and functionality in soilless culture systems.

    PubMed

    Grunert, Oliver; Hernandez-Sanabria, Emma; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar H; Perneel, Maaike; Van Labeke, Marie-Christine; Reheul, Dirk; Boon, Nico

    2016-01-01

    The choice of soilless growing medium for plant nutrition, growth and support is crucial for improving the eco-sustainability of the production in horticultural systems. As our current understanding of the functional microbial communities inhabiting this ecosystem is still limited, we examined the microbial community development of the two most important growing media (organic and mineral) used in open soilless horticultural systems. We aimed to identify factors that influence community composition over time, and to compare the distribution of individual taxa across growing media, and their potential functionality. High throughput sequencing analysis revealed a distinctive and stable microbial community in the organic growing medium. Humidity, pH, nitrate-N, ammonium-N and conductivity were uncovered as the main factors associated with the resident bacterial communities. Ammonium-N was correlated with Rhizobiaceae abundance, while potential competitive interactions among both Methylophilaceae and Actinobacteridae with Rhizobiaceae were suggested. Our results revealed that soilless growing media are unique niches for diverse bacterial communities with temporal functional stability, which may possibly impact the resistance to external forces. These differences in communities can be used to develop strategies to move towards a sustainable horticulture with increased productivity and quality. PMID:26728128

  20. Mineral and organic growing media have distinct community structure, stability and functionality in soilless culture systems

    PubMed Central

    Grunert, Oliver; Hernandez-Sanabria, Emma; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar H.; Perneel, Maaike; Van Labeke, Marie-Christine; Reheul, Dirk; Boon, Nico

    2016-01-01

    The choice of soilless growing medium for plant nutrition, growth and support is crucial for improving the eco-sustainability of the production in horticultural systems. As our current understanding of the functional microbial communities inhabiting this ecosystem is still limited, we examined the microbial community development of the two most important growing media (organic and mineral) used in open soilless horticultural systems. We aimed to identify factors that influence community composition over time, and to compare the distribution of individual taxa across growing media, and their potential functionality. High throughput sequencing analysis revealed a distinctive and stable microbial community in the organic growing medium. Humidity, pH, nitrate-N, ammonium-N and conductivity were uncovered as the main factors associated with the resident bacterial communities. Ammonium-N was correlated with Rhizobiaceae abundance, while potential competitive interactions among both Methylophilaceae and Actinobacteridae with Rhizobiaceae were suggested. Our results revealed that soilless growing media are unique niches for diverse bacterial communities with temporal functional stability, which may possibly impact the resistance to external forces. These differences in communities can be used to develop strategies to move towards a sustainable horticulture with increased productivity and quality. PMID:26728128

  1. Comprehensive RNA Polymerase II Interactomes Reveal Distinct and Varied Roles for Each Phospho-CTD Residue.

    PubMed

    Harlen, Kevin M; Trotta, Kristine L; Smith, Erin E; Mosaheb, Mohammad M; Fuchs, Stephen M; Churchman, L Stirling

    2016-06-01

    Transcription controls splicing and other gene regulatory processes, yet mechanisms remain obscure due to our fragmented knowledge of the molecular connections between the dynamically phosphorylated RNA polymerase II (Pol II) C-terminal domain (CTD) and regulatory factors. By systematically isolating phosphorylation states of the CTD heptapeptide repeat (Y1S2P3T4S5P6S7), we identify hundreds of protein factors that are differentially enriched, revealing unappreciated connections between the Pol II CTD and co-transcriptional processes. These data uncover a role for threonine-4 in 3' end processing through control of the transition between cleavage and termination. Furthermore, serine-5 phosphorylation seeds spliceosomal assembly immediately downstream of 3' splice sites through a direct interaction with spliceosomal subcomplex U1. Strikingly, threonine-4 phosphorylation also impacts splicing by serving as a mark of co-transcriptional spliceosome release and ensuring efficient post-transcriptional splicing genome-wide. Thus, comprehensive Pol II interactomes identify the complex and functional connections between transcription machinery and other gene regulatory complexes. PMID:27239037

  2. Structural snapshots reveal distinct mechanisms of procaspase-3 and -7 activation

    PubMed Central

    Thomsen, Nathan D.; Koerber, James T.; Wells, James A.

    2013-01-01

    Procaspase-3 (P3) and procaspase-7 (P7) are activated through proteolytic maturation to form caspase-3 (C3) and caspase-7 (C7), respectively, which serve overlapping but nonredundant roles as the executioners of apoptosis in humans. However, it is unclear if differences in P3 and P7 maturation mechanisms underlie their unique biological functions, as the structure of P3 remains unknown. Here, we report structures of P3 in a catalytically inactive conformation, structures of P3 and P7 bound to covalent peptide inhibitors that reveal the active conformation of the zymogens, and the structure of a partially matured C7:P7 heterodimer. Along with a biochemical analysis, we show that P3 is catalytically inactive and matures through a symmetric all-or-nothing process. In contrast, P7 contains latent catalytic activity and matures through an asymmetric and tiered mechanism, suggesting a lower threshold for activation. Finally, we use our structures to design a selection strategy for conformation specific antibody fragments that stimulate procaspase activity, showing that executioner procaspase conformational equilibrium can be rationally modulated. Our studies provide a structural framework that may help to explain the unique roles of these important proapoptotic enzymes, and suggest general strategies for the discovery of proenzyme activators. PMID:23650375

  3. Evolution of distinct EGF domains with specific functions

    PubMed Central

    Wouters, Merridee A.; Rigoutsos, Isidore; Chu, Carmen K.; Feng, Lina L.; Sparrow, Duncan B.; Dunwoodie, Sally L.

    2005-01-01

    EGF domains are extracellular protein modules cross-linked by three intradomain disulfides. Past studies suggest the existence of two types of EGF domain with three-disulfides, human EGF-like (hEGF) domains and complement C1r-like (cEGF) domains, but to date no functional information has been related to the two different types, and they are not differentiated in sequence or structure databases. We have developed new sequence patterns based on the different C-termini to search specifically for the two types of EGF domains in sequence databases. The exhibited sensitivity and specificity of the new pattern-based method represents a significant advancement over the currently available sequence detection techniques. We re-annotated EGF sequences in the latest release of Swiss-Prot looking for functional relationships that might correlate with EGF type. We show that important post-translational modifications of three-disulfide EGFs, including unusual forms of glycosylation and post-translational proteolytic processing, are dependent on EGF subtype. For example, EGF domains that are shed from the cell surface and mediate intercellular signaling are all hEGFs, as are all human EGF receptor family ligands. Additional experimental data suggest that functional specialization has accompanied subtype divergence. Based on our structural analysis of EGF domains with three-disulfide bonds and comparison to laminin and integrin-like EGF domains with an additional inter-domain disulfide, we propose that these hEGF and cEGF domains may have arisen from a four-disulfide ancestor by selective loss of different cysteine residues. PMID:15772310

  4. Functional distinctness in the exoproteomes of marine Synechococcus.

    PubMed

    Christie-Oleza, Joseph A; Armengaud, Jean; Guerin, Philippe; Scanlan, David J

    2015-10-01

    The exported protein fraction of an organism may reflect its life strategy and, ultimately, the way it is perceived by the outside world. Bioinformatic prediction of the exported pan-proteome of Prochlorococcus and Synechococcus lineages demonstrated that (i) this fraction of the encoded proteome had a much higher incidence of lineage-specific proteins than the cytosolic fraction (57% and 73% homologue incidence respectively) and (ii) exported proteins are largely uncharacterized to date (54%) compared with proteins from the cytosolic fraction (35%). This suggests that the genomic and functional diversity of these organisms lies largely in the diverse pool of novel functions these organisms export to/through their membranes playing a key role in community diversification, e.g. for niche partitioning or evading predation. Experimental exoproteome analysis of marine Synechococcus showed transport systems for inorganic nutrients, an interesting array of strain-specific exoproteins involved in mutualistic or hostile interactions (i.e. hemolysins, pilins, adhesins), and exoenzymes with a potential mixotrophic goal (i.e. exoproteases and chitinases). We also show how these organisms can remodel their exoproteome, i.e. by increasing the repertoire of interaction proteins when grown in the presence of a heterotroph or decrease exposure to prey when grown in the dark. Finally, our data indicate that heterotrophic bacteria can feed on the exoproteome of Synechococcus. PMID:25727668

  5. Functional distinctness in the exoproteomes of marine S ynechococcus

    PubMed Central

    Armengaud, Jean; Guerin, Philippe; Scanlan, David J.

    2015-01-01

    Summary The exported protein fraction of an organism may reflect its life strategy and, ultimately, the way it is perceived by the outside world. Bioinformatic prediction of the exported pan‐proteome of P rochlorococcus and S ynechococcus lineages demonstrated that (i) this fraction of the encoded proteome had a much higher incidence of lineage‐specific proteins than the cytosolic fraction (57% and 73% homologue incidence respectively) and (ii) exported proteins are largely uncharacterized to date (54%) compared with proteins from the cytosolic fraction (35%). This suggests that the genomic and functional diversity of these organisms lies largely in the diverse pool of novel functions these organisms export to/through their membranes playing a key role in community diversification, e.g. for niche partitioning or evading predation. Experimental exoproteome analysis of marine S ynechococcus showed transport systems for inorganic nutrients, an interesting array of strain‐specific exoproteins involved in mutualistic or hostile interactions (i.e. hemolysins, pilins, adhesins), and exoenzymes with a potential mixotrophic goal (i.e. exoproteases and chitinases). We also show how these organisms can remodel their exoproteome, i.e. by increasing the repertoire of interaction proteins when grown in the presence of a heterotroph or decrease exposure to prey when grown in the dark. Finally, our data indicate that heterotrophic bacteria can feed on the exoproteome of S ynechococcus. PMID:25727668

  6. KRAS insertion mutations are oncogenic and exhibit distinct functional properties

    PubMed Central

    White, Yasmine; Bagchi, Aditi; Van Ziffle, Jessica; Inguva, Anagha; Bollag, Gideon; Zhang, Chao; Carias, Heidi; Dickens, David; Loh, Mignon; Shannon, Kevin; Firestone, Ari J.

    2016-01-01

    Oncogenic KRAS mutations introduce discrete amino acid substitutions that reduce intrinsic Ras GTPase activity and confer resistance to GTPase-activating proteins (GAPs). Here we discover a partial duplication of the switch 2 domain of K-Ras encoding a tandem repeat of amino acids G60_A66dup in a child with an atypical myeloproliferative neoplasm. K-Ras proteins containing this tandem duplication or a similar five amino acid E62_A66dup mutation identified in lung and colon cancers transform the growth of primary myeloid progenitors and of Ba/F3 cells. Recombinant K-RasG60_A66dup and K-RasE62_A66dup proteins display reduced intrinsic GTP hydrolysis rates, accumulate in the GTP-bound conformation and are resistant to GAP-mediated GTP hydrolysis. Remarkably, K-Ras proteins with switch 2 insertions are impaired for PI3 kinase binding and Akt activation, and are hypersensitive to MEK inhibition. These studies illuminate a new class of oncogenic KRAS mutations and reveal unexpected plasticity in oncogenic Ras proteins that has diagnostic and therapeutic implications. PMID:26854029

  7. Golden catfish microsatellite analysis reveals a distinct Iinbred stock of channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Golden-colored fish have been reported for rainbow trout, tilapia, several species of carps and Clarias catfish. The current golden catfish stock was created through mixing fish with predominant gold/yellow pigment and spots to normal sized and colored catfish. The golden catfish possess a distinct...

  8. Eye movements reveal distinct encoding patterns for number and cumulative surface area in random dot arrays

    PubMed Central

    Odic, Darko; Halberda, Justin

    2015-01-01

    Humans can quickly and intuitively represent the number of objects in a scene using visual evidence through the Approximate Number System (ANS). But the computations that support the encoding of visual number—the transformation from the retinal input into ANS representations—remain controversial. Two types of number encoding theories have been proposed: those arguing that number is encoded through a dedicated, enumeration computation, and those arguing that visual number is inferred from nonnumber specific visual features, such as surface area, density, convex hull, etc. Here, we attempt to adjudicate between these two theories by testing participants on both a number and a cumulative area task while also tracking their eye-movements. We hypothesize that if approximate number and surface area depend on distinct encoding computations, saccadic signatures should be distinct for the two tasks, even if the visual stimuli are identical. Consistent with this hypothesis, we find that discriminating number versus cumulative area modulates both where participants look (i.e., participants spend more time looking at the more numerous set in the number task and the larger set in the cumulative area task), and how participants look (i.e., cumulative area encoding shows fewer, longer saccades, while number encoding shows many short saccades and many switches between targets). We further identify several saccadic signatures that are associated with task difficulty and correct versus incorrect trials for both dimensions. These results suggest distinct encoding algorithms for number and cumulative area extraction, and thereby distinct representations of these dimensions. PMID:26575191

  9. Dynamic functional integration of distinct neural empathy systems

    PubMed Central

    2014-01-01

    Recent evidence points to two separate systems for empathy: a vicarious sharing emotional system that supports our ability to share emotions and mental states and a cognitive system that involves cognitive understanding of the perspective of others. Several recent models offer new evidence regarding the brain regions involved in these systems, but no study till date has examined how regions within each system dynamically interact. The study by Raz et al. in this issue of Social, Cognitive, & Affective Neuroscience is among the first to use a novel approach of functional magnetic resonance imaging analysis of fluctuations in network cohesion while an individual is experiencing empathy. Their results substantiate the approach positing two empathy mechanisms and, more broadly, demonstrate how dynamic analysis of emotions can further our understanding of social behavior. PMID:23956080

  10. Fibroblast migration on fibronectin requires three distinct functional domains.

    PubMed

    Clark, Richard A F; An, Jian-Qiang; Greiling, Doris; Khan, Azim; Schwarzbauer, Jean E

    2003-10-01

    Mesenchymal cell movement is normally constrained; however, fibronectin can provide a pathway for stromal cell migration during embryogenesis, morphogenesis, and wound healing. Cells can adhere to fibronectin via integrin and nonintegrin receptors, which bind multiple unique peptide sequences. Synthetic peptides and recombinant proteins were used to delineate the functional domains needed for human fibroblast migration over fibronectin. The 9th and 10th fibronectin type III repeats, which contain RGD and PHSRN synergy cell attachment sequences, support almost maximal fibroblast attachment, but not migration of primary dermal fibroblasts. Specific sequences within the heparin domain and the IIICS region are also required for migration. These findings predict and additional data confirm the necessity for the cooperation of multiple integrin and nonintegrin receptors for fibroblast migration on fibronectin. Such stringency of migration most likely imposes an immense constraint on normal mesenchymal cell mobility in unperturbed tissue. Loss of such restraint may be critical for the migration cancer cells through the extracellular matrix. PMID:14632184

  11. Distinct lineage-dependent structural and functional organization of the hippocampus

    PubMed Central

    Xu, Hua-Tai; Han, Zhi; Gao, Peng; He, Shuijin; Li, Zhizhong; Shi, Wei; Kodish, Oren; Shao, Wei; Brown, Keith N.; Huang, Kun; Shi, Song-Hai

    2014-01-01

    SUMMARY The hippocampus, as part of the cerebral cortex, is essential for memory formation and spatial navigation. Although it has been extensively studied, especially as a model system for neurophysiology, the cellular processes involved in constructing and organizing the hippocampus remain largely unclear. Here, we show that clonally related excitatory neurons in the developing hippocampus are progressively organized into discrete horizontal, but not vertical, clusters in the stratum pyramidale, as revealed by both cell type-specific retroviral labeling and mosaic analysis with double markers (MADM). Moreover, distinct from those in the neocortex, sister excitatory neurons in Cornu Ammonis 1 region of the hippocampus rarely develop electrical or chemical synapses with each other. Instead, they preferentially receive common synaptic input from nearby fast-spiking (FS), but not non-FS, interneurons and exhibit synchronous synaptic activity. These results suggest that shared inhibitory input may specify horizontally clustered sister excitatory neurons as functional units in the hippocampus. PMID:24949968

  12. Phylogenetic relationships and protein modelling revealed two distinct subfamilies of group II HKT genes between crop and model grasses.

    PubMed

    Ariyarathna, H A Chandima K; Francki, Michael G

    2016-07-01

    Molecular evolution of large protein families in closely related species can provide useful insights on structural functional relationships. Phylogenetic analysis of the grass-specific group II HKT genes identified two distinct subfamilies, I and II. Subfamily II was represented in all species, whereas subfamily I was identified only in the small grain cereals and possibly originated from an ancestral gene duplication post divergence from the coarse grain cereal lineage. The core protein structures were highly analogous despite there being no more than 58% amino acid identity between members of the two subfamilies. Distinctly variable regions in known functional domains, however, indicated functional divergence of the two subfamilies. The subsets of codons residing external to known functional domains predicted signatures of positive Darwinian selection potentially identifying new domains of functional divergence and providing new insights on the structural function and relationships between protein members of the two subfamilies. PMID:27203707

  13. Mutagenesis of GATA motifs controlling the endoderm regulator elt-2 reveals distinct dominant and secondary cis-regulatory elements.

    PubMed

    Du, Lawrence; Tracy, Sharon; Rifkin, Scott A

    2016-04-01

    Cis-regulatory elements (CREs) are crucial links in developmental gene regulatory networks, but in many cases, it can be difficult to discern whether similar CREs are functionally equivalent. We found that despite similar conservation and binding capability to upstream activators, different GATA cis-regulatory motifs within the promoter of the C. elegans endoderm regulator elt-2 play distinctive roles in activating and modulating gene expression throughout development. We fused wild-type and mutant versions of the elt-2 promoter to a gfp reporter and inserted these constructs as single copies into the C. elegans genome. We then counted early embryonic gfp transcripts using single-molecule RNA FISH (smFISH) and quantified gut GFP fluorescence. We determined that a single primary dominant GATA motif located 527bp upstream of the elt-2 start codon was necessary for both embryonic activation and later maintenance of transcription, while nearby secondary GATA motifs played largely subtle roles in modulating postembryonic levels of elt-2. Mutation of the primary activating site increased low-level spatiotemporally ectopic stochastic transcription, indicating that this site acts repressively in non-endoderm cells. Our results reveal that CREs with similar GATA factor binding affinities in close proximity can play very divergent context-dependent roles in regulating the expression of a developmentally critical gene in vivo. PMID:26896592

  14. Comprehensive benchmarking reveals H2BK20 acetylation as a distinctive signature of cell-state-specific enhancers and promoters.

    PubMed

    Kumar, Vibhor; Rayan, Nirmala Arul; Muratani, Masafumi; Lim, Stefan; Elanggovan, Bavani; Xin, Lixia; Lu, Tess; Makhija, Harshyaa; Poschmann, Jeremie; Lufkin, Thomas; Ng, Huck Hui; Prabhakar, Shyam

    2016-05-01

    Although over 35 different histone acetylation marks have been described, the overwhelming majority of regulatory genomics studies focus exclusively on H3K27ac and H3K9ac. In order to identify novel epigenomic traits of regulatory elements, we constructed a benchmark set of validated enhancers by performing 140 enhancer assays in human T cells. We tested 40 chromatin signatures on this unbiased enhancer set and identified H2BK20ac, a little-studied histone modification, as the most predictive mark of active enhancers. Notably, we detected a novel class of functionally distinct enhancers enriched in H2BK20ac but lacking H3K27ac, which was present in all examined cell lines and also in embryonic forebrain tissue. H2BK20ac was also unique in highlighting cell-type-specific promoters. In contrast, other acetylation marks were present in all active promoters, regardless of cell-type specificity. In stimulated microglial cells, H2BK20ac was more correlated with cell-state-specific expression changes than H3K27ac, with TGF-beta signaling decoupling the two acetylation marks at a subset of regulatory elements. In summary, our study reveals a previously unknown connection between histone acetylation and cell-type-specific gene regulation and indicates that H2BK20ac profiling can be used to uncover new dimensions of gene regulation. PMID:26957309

  15. Discovering Distinct Functional Modules of Specific Cancer Types Using Protein-Protein Interaction Networks

    PubMed Central

    Shen, Ru; Wang, Xiaosheng; Guda, Chittibabu

    2015-01-01

    Background. The molecular profiles exhibited in different cancer types are very different; hence, discovering distinct functional modules associated with specific cancer types is very important to understand the distinct functions associated with them. Protein-protein interaction networks carry vital information about molecular interactions in cellular systems, and identification of functional modules (subgraphs) in these networks is one of the most important applications of biological network analysis. Results. In this study, we developed a new graph theory based method to identify distinct functional modules from nine different cancer protein-protein interaction networks. The method is composed of three major steps: (i) extracting modules from protein-protein interaction networks using network clustering algorithms; (ii) identifying distinct subgraphs from the derived modules; and (iii) identifying distinct subgraph patterns from distinct subgraphs. The subgraph patterns were evaluated using experimentally determined cancer-specific protein-protein interaction data from the Ingenuity knowledgebase, to identify distinct functional modules that are specific to each cancer type. Conclusion. We identified cancer-type specific subgraph patterns that may represent the functional modules involved in the molecular pathogenesis of different cancer types. Our method can serve as an effective tool to discover cancer-type specific functional modules from large protein-protein interaction networks. PMID:26495282

  16. Comparative phylogeography and population genetics within Buteo lineatus reveals evidence of distinct evolutionary lineages

    USGS Publications Warehouse

    Hull, J.M.; Strobel, Bradley N.; Boal, C.W.; Hull, A.C.; Dykstra, C.R.; Irish, A.M.; Fish, A.M.; Ernest, H.B.

    2008-01-01

    Traditional subspecies classifications may suggest phylogenetic relationships that are discordant with evolutionary history and mislead evolutionary inference. To more accurately describe evolutionary relationships and inform conservation efforts, we investigated the genetic relationships and demographic histories of Buteo lineatus subspecies in eastern and western North America using 21 nuclear microsatellite loci and 375-base pairs of mitochondrial control region sequence. Frequency based analyses of mitochondrial sequence data support significant population distinction between eastern (B. l. lineatus/alleni/texanus) and western (B. l. elegans) subspecies of B. lineatus. This distinction was further supported by frequency and Bayesian analyses of the microsatellite data. We found evidence of differing demographic histories between regions; among eastern sites, mitochondrial data suggested that rapid population expansion occurred following the end of the last glacial maximum, with B. l. texanus population expansion preceding that of B. l. lineatus/alleni. No evidence of post-glacial population expansion was detected among western samples (B. l. elegans). Rather, microsatellite data suggest that the western population has experienced a recent bottleneck, presumably associated with extensive anthropogenic habitat loss during the 19th and 20th centuries. Our data indicate that eastern and western populations of B. lineatus are genetically distinct lineages, have experienced very different demographic histories, and suggest management as separate conservation units may be warranted. ?? 2008 Elsevier Inc. All rights reserved.

  17. Differential proteomic profiles from distinct Toxoplasma gondii strains revealed by 2D-difference gel electrophoresis.

    PubMed

    Zhou, Huaiyu; Zhao, Qunli; Das Singla, Lachhman; Min, Juan; He, Shenyi; Cong, Hua; Li, Ying; Su, Chunlei

    2013-04-01

    Toxoplasma gondii is an obligate intracellular protozoan that infects mammals and birds. Human infection during pregnancy may cause severe damage to the fetus. Reactivation of latent infection in immunocompromised patients can cause life-threatening encephalitis. T. gondii strains are highly diverse but only a few lineages (Type I, II and III) are widely spread. In mouse model, Type I strains are highly virulent, whereas Type II and III strains are intermediately or non virulent. It is not clear how much quantitative difference exists in proteomic profiles among these distinct T. gondii lineages. In the present study, the proteomic profiles of T. gondii tachyzoites from these lineages were investigated by two dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mass spectrometry (MS) technologies. A total of 2321 protein spots were detected. Overall, the GT1 strain of Type I lineage and the strain PTG of Type II lineage have highly similar proteomic profiles and both are different from that of the CTG strain of Type III lineage. Eighty-four protein spots were differentially expressed by greater than 1.5-fold in relative abundance and 10 of them were identified to 7 T. gondii proteins in existing database. Investigation of the quantitative differences in proteomics among distinct T. gondii strains should facilitate our understanding of difference in biological processes and pathogenesis of distinct T. gondii genotypes, which will provide basic information to determine treatment regimen for different manifestation of toxoplasmosis. PMID:23340323

  18. NMR metabolomics of human lung tumours reveals distinct metabolic signatures for adenocarcinoma and squamous cell carcinoma.

    PubMed

    Rocha, Cláudia M; Barros, António S; Goodfellow, Brian J; Carreira, Isabel M; Gomes, Ana; Sousa, Vitor; Bernardo, João; Carvalho, Lina; Gil, Ana M; Duarte, Iola F

    2015-01-01

    Lung tumour subtyping, particularly the distinction between adenocarcinoma (AdC) and squamous cell carcinoma (SqCC), is a critical diagnostic requirement. In this work, the metabolic signatures of lung carcinomas were investigated through (1)H NMR metabolomics, with a view to provide additional criteria for improved diagnosis and treatment planning. High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (NMR) spectroscopy was used to analyse matched tumour and adjacent control tissues from 56 patients undergoing surgical excision of primary lung carcinomas. Multivariate modeling allowed tumour and control tissues to be discriminated with high accuracy (97% classification rate), mainly due to significant differences in the levels of 13 metabolites. Notably, the magnitude of those differences were clearly distinct for AdC and SqCC: major alterations in AdC were related to phospholipid metabolism (increased phosphocholine, glycerophosphocholine and phosphoethanolamine, together with decreased acetate) and protein catabolism (increased peptide moieties), whereas SqCC had stronger glycolytic and glutaminolytic profiles (negatively correlated variations in glucose and lactate and positively correlated increases in glutamate and alanine). Other tumour metabolic features were increased creatine, glutathione, taurine and uridine nucleotides, the first two being especially prominent in SqCC and the latter in AdC. Furthermore, multivariate analysis of AdC and SqCC profiles allowed their discrimination with a 94% classification rate, thus showing great potential for aiding lung tumours subtyping. Overall, this study has provided new, clear evidence of distinct metabolic signatures for lung AdC and SqCC, which can potentially impact on diagnosis and provide important leads for future research on novel therapeutic targets or imaging tracers. PMID:25368033

  19. Genome-wide Evidence Reveals that African and Eurasian Golden Jackals Are Distinct Species.

    PubMed

    Koepfli, Klaus-Peter; Pollinger, John; Godinho, Raquel; Robinson, Jacqueline; Lea, Amanda; Hendricks, Sarah; Schweizer, Rena M; Thalmann, Olaf; Silva, Pedro; Fan, Zhenxin; Yurchenko, Andrey A; Dobrynin, Pavel; Makunin, Alexey; Cahill, James A; Shapiro, Beth; Álvares, Francisco; Brito, José C; Geffen, Eli; Leonard, Jennifer A; Helgen, Kristofer M; Johnson, Warren E; O'Brien, Stephen J; Van Valkenburgh, Blaire; Wayne, Robert K

    2015-08-17

    The golden jackal of Africa (Canis aureus) has long been considered a conspecific of jackals distributed throughout Eurasia, with the nearest source populations in the Middle East. However, two recent reports found that mitochondrial haplotypes of some African golden jackals aligned more closely to gray wolves (Canis lupus), which is surprising given the absence of gray wolves in Africa and the phenotypic divergence between the two species. Moreover, these results imply the existence of a previously unrecognized phylogenetically distinct species despite a long history of taxonomic work on African canids. To test the distinct-species hypothesis and understand the evolutionary history that would account for this puzzling result, we analyzed extensive genomic data including mitochondrial genome sequences, sequences from 20 autosomal loci (17 introns and 3 exon segments), microsatellite loci, X- and Y-linked zinc-finger protein gene (ZFX and ZFY) sequences, and whole-genome nuclear sequences in African and Eurasian golden jackals and gray wolves. Our results provide consistent and robust evidence that populations of golden jackals from Africa and Eurasia represent distinct monophyletic lineages separated for more than one million years, sufficient to merit formal recognition as different species: C. anthus (African golden wolf) and C. aureus (Eurasian golden jackal). Using morphologic data, we demonstrate a striking morphologic similarity between East African and Eurasian golden jackals, suggesting parallelism, which may have misled taxonomists and likely reflects uniquely intense interspecific competition in the East African carnivore guild. Our study shows how ecology can confound taxonomy if interspecific competition constrains size diversification. PMID:26234211

  20. VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System.

    PubMed

    Cianfanelli, Francesca R; Alcoforado Diniz, Juliana; Guo, Manman; De Cesare, Virginia; Trost, Matthias; Coulthurst, Sarah J

    2016-06-01

    The Type VI secretion system (T6SS) is widespread among bacterial pathogens and acts as an effective weapon against competitor bacteria and eukaryotic hosts by delivering toxic effector proteins directly into target cells. The T6SS utilises a bacteriophage-like contractile machinery to expel a puncturing device based on a tube of Hcp topped with a VgrG spike, which can be extended by a final tip from a PAAR domain-containing protein. Effector proteins are believed to be delivered by specifically associating with particular Hcp, VgrG or PAAR proteins, either covalently ('specialised') or non-covalently ('cargo' effectors). Here we used the T6SS of the opportunistic pathogen Serratia marcescens, together with integratecd genetic, proteomic and biochemical approaches, to elucidate the role of specific VgrG and PAAR homologues in T6SS function and effector specificity, revealing new aspects and unexpected subtleties in effector delivery by the T6SS. We identified effectors, both cargo and specialised, absolutely dependent on a particular VgrG for delivery to target cells, and discovered that other cargo effectors can show a preference for a particular VgrG. The presence of at least one PAAR protein was found to be essential for T6SS function, consistent with designation as a 'core' T6SS component. We showed that specific VgrG-PAAR combinations are required to assemble a functional T6SS and that the three distinct VgrG-PAAR assemblies in S. marcescens exhibit distinct effector specificity and efficiency. Unexpectedly, we discovered that two different PAAR-containing Rhs proteins can functionally pair with the same VgrG protein. Showing that accessory EagR proteins are involved in these interactions, native VgrG-Rhs-EagR complexes were isolated and specific interactions between EagR and cognate Rhs proteins identified. This study defines an essential yet flexible role for PAAR proteins in the T6SS and highlights the existence of distinct versions of the machinery with

  1. VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System

    PubMed Central

    Cianfanelli, Francesca R.; Alcoforado Diniz, Juliana; Guo, Manman; De Cesare, Virginia; Trost, Matthias; Coulthurst, Sarah J.

    2016-01-01

    The Type VI secretion system (T6SS) is widespread among bacterial pathogens and acts as an effective weapon against competitor bacteria and eukaryotic hosts by delivering toxic effector proteins directly into target cells. The T6SS utilises a bacteriophage-like contractile machinery to expel a puncturing device based on a tube of Hcp topped with a VgrG spike, which can be extended by a final tip from a PAAR domain-containing protein. Effector proteins are believed to be delivered by specifically associating with particular Hcp, VgrG or PAAR proteins, either covalently (‘specialised’) or non-covalently (‘cargo’ effectors). Here we used the T6SS of the opportunistic pathogen Serratia marcescens, together with integratecd genetic, proteomic and biochemical approaches, to elucidate the role of specific VgrG and PAAR homologues in T6SS function and effector specificity, revealing new aspects and unexpected subtleties in effector delivery by the T6SS. We identified effectors, both cargo and specialised, absolutely dependent on a particular VgrG for delivery to target cells, and discovered that other cargo effectors can show a preference for a particular VgrG. The presence of at least one PAAR protein was found to be essential for T6SS function, consistent with designation as a ‘core’ T6SS component. We showed that specific VgrG-PAAR combinations are required to assemble a functional T6SS and that the three distinct VgrG-PAAR assemblies in S. marcescens exhibit distinct effector specificity and efficiency. Unexpectedly, we discovered that two different PAAR-containing Rhs proteins can functionally pair with the same VgrG protein. Showing that accessory EagR proteins are involved in these interactions, native VgrG-Rhs-EagR complexes were isolated and specific interactions between EagR and cognate Rhs proteins identified. This study defines an essential yet flexible role for PAAR proteins in the T6SS and highlights the existence of distinct versions of the

  2. Molecular characterization reveals distinct genospecies of Anaplasma phagocytophilum from diverse North American hosts

    PubMed Central

    Bradburd, Gideon; Foley, Janet

    2012-01-01

    Anaplasma phagocytophilum is an emerging tick-borne pathogen that infects humans, domestic animals and wildlife throughout the Holarctic. In the far-western United States, multiple rodent species have been implicated as natural reservoirs for A. phagocytophilum. However, the presence of multiple A. phagocytophilum strains has made it difficult to determine which reservoir hosts pose the greatest risk to humans and domestic animals. Here we characterized three genetic markers (23S–5S rRNA intergenic spacer, ank and groESL) from 73 real-time TaqMan PCR-positive A. phagocytophilum strains infecting multiple rodent and reptile species, as well as a dog and a horse, from California. Bayesian and maximum-likelihood phylogenetic analyses of all three genetic markers consistently identified two major clades, one of which consisted of A. phagocytophilum strains infecting woodrats and the other consisting of strains infecting sciurids (chipmunks and squirrels) as well as the dog and horse strains. In addition, analysis of the 23S–5S rRNA spacer region identified two unique and highly dissimilar clades of A. phagocytophilum strains infecting several lizard species. Our findings indicate that multiple unique strains of A. phagocytophilum with distinct host tropisms exist in California. Future epidemiological studies evaluating human and domestic animal risk should incorporate these distinctions. PMID:21921109

  3. Spatial heterogeneity of gut microbiota reveals multiple bacterial communities with distinct characteristics.

    PubMed

    Lu, Hsiao-Pei; Lai, Yung-Chih; Huang, Shiao-Wei; Chen, Huang-Chi; Hsieh, Chih-hao; Yu, Hon-Tsen

    2014-01-01

    We analyzed bacterial communities of six distinct gut sites (the food bolus and mucus layer of the proximal small intestine, cecum and distal large intestine), using wild folivorous flying squirrels. We found significant spatial heterogeneity in composition, diversity, and species abundance distributions (SADs) of gut microbiota, corresponding to physicochemical conditions. High diversity was detected in the mucus layer of small intestine and the food bolus of cecum, followed by the food bolus of large intestine and the mucus layer of cecum, and relatively low diversity in the food bolus of small intestine and the mucus layer of large intestine, likely due to disturbance and resource partitioning. The SADs showed succession-like patterns in the food bolus communities from the proximal to distal gut. Notably, each mucus layer community had a unique pattern different from the food bolus community of the same compartment, with distinct relative abundances of dominant species. In combination with data from other mammalian fecal samples, we concluded that gut microbiota were apparently dynamic in community structure, from low species richness with unequal abundances to high species richness with equal abundances; these findings were interpreted as strong habitat effects on bacterial communities. PMID:25155166

  4. Pannexin 3 and connexin 43 modulate skeletal development through their distinct functions and expression patterns.

    PubMed

    Ishikawa, Masaki; Williams, Geneva L; Ikeuchi, Tomoko; Sakai, Kiyoshi; Fukumoto, Satoshi; Yamada, Yoshihiko

    2016-03-01

    Pannexin 3 (Panx3) and connexin 43 (Cx43; also known as GJA1) are two major gap junction proteins expressed in osteoblasts. Here, we studied their functional relationships in skeletal formation by generating Panx3(-/-) and Panx3(-/-);Cx43(-/-) mice and comparing their skeletal phenotypes with Cx43(-/-) mice. Panx3(-/-) mice displayed defects in endochondral and intramembranous ossification, resulting in severe dwarfism and reduced bone density. The skeletal abnormalities of Panx3(-/-);Cx43(-/-) mice were similar to those in Panx3(-/-) mice. The gross appearance of newborn Cx43(-/-) skeletons showed no obvious abnormalities, except for less mineralization of the skull. In Panx3(-/-) mice, proliferation of chondrocytes and osteoblasts increased and differentiation of these cells was inhibited. Panx3 promoted expression of osteogenic proteins such as ALP and Ocn (also known as ALPL and BGLAP, respectively), as well as Cx43, by regulating Osx (also known as SP7) expression. Panx3 was induced in the early differentiation stage and reduced during the maturation stage of osteoblasts, when Cx43 expression increased in order to promote mineralization. Furthermore, only Panx3 functioned as an endoplasmic reticulum (ER) Ca(2+) channel to promote differentiation, and it could rescue mineralization defects in Cx43(-/-) calvarial cells. Our findings reveal that Panx3 and Cx43 have distinct functions in skeletal formation. PMID:26759176

  5. TgrC1 Has Distinct Functions in Dictyostelium Development and Allorecognition

    PubMed Central

    Wang, Yue; Shaulsky, Gad

    2015-01-01

    The cell adhesion glycoproteins, TgrB1 and TgrC1, are essential for Dictyostelium development and allorecognition, but it has been impossible to determine whether their pleiotropic roles are due to one common function or to distinct functions in separate pathways. Mutations in the respective genes, tgrB1 and tgrC1, abrogate both development and allorecognition and the defects cannot be suppressed by activation of the cyclic AMP dependent protein kinase PKA, a central regulator of Dictyostelium development. Here we report that mutations in genes outside the known PKA pathway partially suppress the tgrC1-null developmental defect. We separated the pleiotropic roles of tgrC1 by testing the effects of a suppression mutation, stcinsA under different conditions. stcAins modified only the developmental defect of tgrC1– but not the allorecognition defect, suggesting that the two functions are separable. The suppressor mutant phenotype also revealed that tgrC1 regulates stalk differentiation in a cell-autonomous manner and spore differentiation in a non-cell-autonomous manner. Moreover, stcAins did not modify the developmental defect of tgrB1–, but the less robust phenotype of tgrB1– obscures the possible role of stcA relative to tgrB1. PMID:25894230

  6. Selective functional integration between anterior temporal and distinct fronto-mesolimbic regions during guilt and indignation

    PubMed Central

    Green, Sophie; Lambon Ralph, Matthew A.; Moll, Jorge; Stamatakis, Emmanuel A.; Grafman, Jordan; Zahn, Roland

    2010-01-01

    It has been hypothesized that the experience of different moral sentiments such as guilt and indignation is underpinned by activation in temporal and fronto-mesolimbic regions and that functional integration between these regions is necessary for the differentiated experience of these moral sentiments. A recent fMRI study revealed that the right superior anterior temporal lobe (ATL) was activated irrespective of the context of moral feelings (guilt or indignation). This region has been associated with context-independent conceptual social knowledge which allows us to make fine-grained differentiations between qualities of social behaviours (e.g. “critical” and “faultfinding”). This knowledge is required to make emotional evaluations of social behaviour. In contrast to the context-independent activation of the ATL, there were context-dependent activations within different fronto-mesolimbic regions for guilt and indignation. However, it is unknown whether functional integration occurs between these regions and whether regional patterns of integration are distinctive for the experience of different moral sentiments. Here, we used fMRI and psychophysiological interaction analysis, an established measure of functional integration to investigate this issue. We found selective functional integration between the right superior ATL and a subgenual cingulate region during the experience of guilt and between the right superior ATL and the lateral orbitofrontal cortex for indignation. Our data provide the first evidence for functional integration of conceptual social knowledge representations in the right superior ATL with representations of different feeling contexts in fronto-mesolimbic regions. We speculate that this functional architecture allows for the conceptually differentiated experience of moral sentiments in healthy individuals. PMID:20493953

  7. Revealing neuronal function through microelectrode array recordings

    PubMed Central

    Obien, Marie Engelene J.; Deligkaris, Kosmas; Bullmann, Torsten; Bakkum, Douglas J.; Frey, Urs

    2015-01-01

    Microelectrode arrays and microprobes have been widely utilized to measure neuronal activity, both in vitro and in vivo. The key advantage is the capability to record and stimulate neurons at multiple sites simultaneously. However, unlike the single-cell or single-channel resolution of intracellular recording, microelectrodes detect signals from all possible sources around every sensor. Here, we review the current understanding of microelectrode signals and the techniques for analyzing them. We introduce the ongoing advancements in microelectrode technology, with focus on achieving higher resolution and quality of recordings by means of monolithic integration with on-chip circuitry. We show how recent advanced microelectrode array measurement methods facilitate the understanding of single neurons as well as network function. PMID:25610364

  8. Mapping bundles of ecosystem services reveals distinct types of multifunctionality within a Swedish landscape.

    PubMed

    Queiroz, Cibele; Meacham, Megan; Richter, Kristina; Norström, Albert V; Andersson, Erik; Norberg, Jon; Peterson, Garry

    2015-01-01

    Ecosystem services (ES) is a valuable concept to be used in the planning and management of social-ecological landscapes. However, the understanding of the determinant factors affecting the interaction between services in the form of synergies or trade-offs is still limited. We assessed the production of 16 ES across 62 municipalities in the Norrström drainage basin in Sweden. We combined GIS data with publically available information for quantifying and mapping the distribution of services. Additionally, we calculated the diversity of ES for each municipality and used correlations and k-means clustering analyses to assess the existence of ES bundles. We found five distinct types of bundles of ES spatially agglomerated in the landscape that could be explained by regional social and ecological gradients. Human-dominated landscapes were highly multifunctional in our study area and urban densely populated areas were hotspots of cultural services. PMID:25576284

  9. Optogenetic activation reveals distinct roles of PIP3 and Akt in adipocyte insulin action.

    PubMed

    Xu, Yingke; Nan, Di; Fan, Jiannan; Bogan, Jonathan S; Toomre, Derek

    2016-05-15

    Glucose transporter 4 (GLUT4; also known as SLC2A4) resides on intracellular vesicles in muscle and adipose cells, and translocates to the plasma membrane in response to insulin. The phosphoinositide 3-kinase (PI3K)-Akt signaling pathway plays a major role in GLUT4 translocation; however, a challenge has been to unravel the potentially distinct contributions of PI3K and Akt (of which there are three isoforms, Akt1-Akt3) to overall insulin action. Here, we describe new optogenetic tools based on CRY2 and the N-terminus of CIB1 (CIBN). We used these 'Opto' modules to activate PI3K and Akt selectively in time and space in 3T3-L1 adipocytes. We validated these tools using biochemical assays and performed live-cell kinetic analyses of IRAP-pHluorin translocation (IRAP is also known as LNPEP and acts as a surrogate marker for GLUT4 here). Strikingly, Opto-PIP3 largely mimicked the maximal effects of insulin stimulation, whereas Opto-Akt only partially triggered translocation. Conversely, drug-mediated inhibition of Akt only partially dampened the translocation response of Opto-PIP3 In spatial optogenetic studies, focal targeting of Akt to a region of the cell marked the sites where IRAP-pHluorin vesicles fused, supporting the idea that local Akt-mediated signaling regulates exocytosis. Taken together, these results indicate that PI3K and Akt play distinct roles, and that PI3K stimulates Akt-independent pathways that are important for GLUT4 translocation. PMID:27076519

  10. Revealing remodeler function: Varied and unique

    NASA Astrophysics Data System (ADS)

    Eastlund, Allen

    Chromatin remodelers perform a necessary and required function for the successful expression of our genetic code. By modifying, shifting, or ejecting nucleosomes from the chromatin structure they allow access to the underlying DNA to the rest of the cell's machinery. This research has focused on two major remodeler motors from major families of chromatin remodelers: the trimeric motor domain of RSC and the motor domain of the ISWI family, ISWI. Using primarily stopped-flow spectrofluorometry, I have categorized the time-dependent motions of these motor domains along their preferred substrate, double-stranded DNA. Combined with collected ATP utilization data, I present the subsequent analysis and associated conclusions that stem from the underlying assumptions and models. Interestingly, there is little in common between the investigated proteins aside from their favored medium. While RSC exhibits modest translocation characteristics and highly effective motion with the ability for large molecular forces, ISWI is not only structurally different but highly inefficient in its motion leading to difficulties in determining its specific translocation mechanics. While chromatin remodeling is a ubiquitous facet of eukaryotic life, there remains much to be understood about their general mechanisms.

  11. Distinct centromere domain structures with separate functions demonstrated in live fission yeast cells.

    PubMed

    Appelgren, Henrik; Kniola, Barbara; Ekwall, Karl

    2003-10-01

    Fission yeast (Saccharomyces pombe) centromere DNA is organized in a central core region flanked on either side by a region of outer repeat (otr) sequences. The otr region is known to be heterochromatic and bound by the Swi6 protein whereas the central core region contains an unusual chromatin structure involving the histone H3 variant Cnp1 (S. pombe CENP-A). The central core is the base for formation of the kinetochore structure whereas the flanking region is important for sister centromere cohesion. We have previously shown that the ultrastructural domain structure of S. pombe centromeres in interphase is similar to that of human centromeres. Here we demonstrate that S. pombe centromeres are organized in cytologically distinct domains even in mitosis. Fluorescence in situ hybridization of fixed metaphase cells revealed that the otr regions of the centromere were still held together by cohesion even after the sister kinetochores had separated. In live cells, the central cores and kinetochores of sister chromosomes could be distinguished from one another when they were subjected to mitotic tension. The function of the different centromeric domains was addressed. Transacting mutations affecting the kinetochore (nuf2) central core domain (mis6) and the heterochromatin domain (rik1) were analyzed in live cells. In interphase, both nuf2 and mis6 caused declustering of centromeres from the spindle pole body whereas centromere clustering was normal in rik1 despite an apparent decondensation defect. The declustering of centromeres in mis6 cells correlated with loss the Ndc80 kinetochore marker protein from the centromeres. Interestingly the declustered centromeres were still restricted to the nuclear periphery thus revealing a kinetochore-independent peripheral localization mechanism for heterochromatin. Time-lapse microscopy of live mis6 and nuf2-1 mutant cells in mitosis showed similar severe misaggregation phenotypes whereas the rik1 mutants showed a mild cohesion

  12. Single Chromatin Fiber Stretching Reveals Physically Distinct Populations of Disassembly Events

    PubMed Central

    Pope, L. H.; Bennink, M. L.; van Leijenhorst-Groener, K. A.; Nikova, D.; Greve, J.; Marko, J. F.

    2005-01-01

    Eukaryotic DNA is packaged into the cell nucleus as a nucleoprotein complex, chromatin. Despite this condensed state, access to the DNA sequence must occur during gene expression and other essential genetic events. Here we employ optical tweezers stretching of reconstituted chromatin fibers to investigate the release of DNA from its protein-bound structure. Analysis of fiber length increase per unbinding event revealed discrete values of ∼30 and ∼60 nm. Furthermore, a loading rate analysis of the disruption forces revealed three individual energy barriers. The heights of these barriers were found to be ∼20 kBT, ∼25 kBT, and ∼28 kBT. For subsequent stretches of the fiber it was found that events corresponding to the ∼28 kBT energy barrier were significantly reduced. No correlation between energy barrier crossed and DNA length release was found. These studies clearly demonstrate that optical tweezers stretching of chromatin provides insight into the energetic penalties imposed by chromatin structure. Furthermore these studies reveal possible pathways via which chromatin may be disrupted during genetic code access. PMID:15695630

  13. Use of Microfluidic Technology To Analyze Gene Expression during Staphylococcus aureus Biofilm Formation Reveals Distinct Physiological Niches

    PubMed Central

    Moormeier, Derek E.; Endres, Jennifer L.; Mann, Ethan E.; Sadykov, Marat R.; Horswill, Alexander R.; Rice, Kelly C.; Fey, Paul D.

    2013-01-01

    The Staphylococcus aureus cid and lrg operons play significant roles in the control of autolysis and accumulation of extracellular genomic DNA (eDNA) during biofilm development. Although the molecular mechanisms mediating this control are only beginning to be revealed, it is clear that cell death must be limited to a subfraction of the biofilm population. In the present study, we tested the hypothesis that cid and lrg expression varies during biofilm development as a function of changes in the availability of oxygen. To examine cid and lrg promoter activity during biofilm development, fluorescent reporter fusion strains were constructed and grown in a BioFlux microfluidic system, generating time-lapse epifluorescence images of biofilm formation, which allows the spatial and temporal localization of gene expression. Consistent with cid induction under hypoxic conditions, the cid::gfp fusion strain expressed green fluorescent protein predominantly within the interior of the tower structures, similar to the pattern of expression observed with a strain carrying a gfp fusion to the hypoxia-induced promoter controlling the expression of the lactose dehydrogenase gene. The lrg promoter was also expressed within towers but appeared more diffuse throughout the tower structures, indicating that it was oxygen independent. Unexpectedly, the results also demonstrated the existence of tower structures with different expression phenotypes and physical characteristics, suggesting that these towers exhibit different metabolic activities. Overall, the findings presented here support a model in which oxygen is important in the spatial and temporal control of cid expression within a biofilm and that tower structures formed during biofilm development exhibit metabolically distinct niches. PMID:23524683

  14. Secretome Profiling of Periodontal Ligament from Deciduous and Permanent Teeth Reveals a Distinct Expression Pattern of Laminin Chains

    PubMed Central

    Giovani, Priscila A.; Salmon, Cristiane R.; Martins, Luciane; Paes Leme, Adriana F.; Rebouças, Pedro; Puppin Rontani, Regina M.; Mofatto, Luciana S.; Sallum, Enilson A.; Nociti, Francisco H.; Kantovitz, Kamila R.

    2016-01-01

    It has been suggested that there are histological and functional distinctions between the periodontal ligament (PDL) of deciduous (DecPDL) and permanent (PermPDL) teeth. Thus, we hypothesized that DecPDL and PermPDL display differences in the constitutive expression of genes/proteins involved with PDL homeostasis. Primary PDL cell cultures were obtained for DecPDL (n = 3) and PermPDL (n = 3) to allow us to perform label-free quantitative secretome analysis. Although a highly similar profile was found between DecPDL and PermPDL cells, comparative secretome analysis evidenced that one of the most stickling differences involved cell adhesion molecules, including laminin subunit gamma 1 (LAMC1) and beta 2 (LAMB2). Next, total RNA and protein extracts were obtained from fresh PDL tissues of deciduous (n = 6) and permanent (n = 6) teeth, and Western blotting and qPCR analysis were used to validate our in vitro findings. Western blot analysis confirmed that LAMC1 was increased in DecPDL fresh tissues (p<0.05). Furthermore, qPCR data analysis revealed that mRNA levels for laminin subunit beta 1 (LAMB1), beta 3 (LAMB3), LAMC1, and gamma 2 (LAMC2) were higher in DecPDL fresh tissues, whereas transcripts for LAMB2 were increased in PermPDL (p<0.05). In conclusion, the differential expression of laminin chains in DecPDL and PermPDL suggests an involvement of laminin-dependent pathways in the control of physiological differences between them. PMID:27149379

  15. Distinctive anatomical and physiological features of migraine aura revealed by 18 years of recording.

    PubMed

    Hansen, Jakob Møller; Baca, Serapio Michael; Vanvalkenburgh, Paul; Charles, Andrew

    2013-12-01

    The mechanisms underlying the initiation and propagation of the migraine aura, and the visual percept that is produces, remain uncertain. The objective of this study was to characterize and quantify a large number of visual auras recorded by a single individual over nearly two decades to gain insight into basic aura mechanisms. An individual made detailed drawings of his visual percept of migraine aura in real time during more than 1000 attacks of migraine aura without headache over 18 years. Drawings were made in a consistent fashion documenting the shape and location of the aura wavefront or scotoma in the visual field at one minute intervals. These drawings were digitized and the spatial and temporal features of auras were quantified and analysed. Consistent patterns of aura initiation, propagation and termination were observed in both right and left visual fields. Most aura attacks originated centrally (within 10° eccentricity), but there were also other distinct sites of initiation in the visual field. Auras beginning centrally preferentially propagated first through lower nasal field (69-77% of all auras) before travelling to upper and temporal fields, on both sides. Some auras propagated from peripheral to central regions of the visual field-these typically followed the reverse path of those travelling in the opposite direction. The mean velocity of the perceived visual phenomenon did not differ between attacks starting peripherally and centrally. The estimated speed of the underlying cortical event (2-3 mm/min) was in the same range as has been previously reported by others. Some auras had limited propagation and spontaneously 'aborted' after a few minutes, despite being initiated in similar locations to those that spread throughout the entire visual field. The visual percept of the aura changed corresponding with the presumed propagation from the V1 to the V2 region of the occipital cortex. In some cases the visual percept disappeared for several minutes

  16. Motor learning in childhood reveals distinct mechanisms for memory retention and re-learning.

    PubMed

    Musselman, Kristin E; Roemmich, Ryan T; Garrett, Ben; Bastian, Amy J

    2016-05-01

    Adults can easily learn and access multiple versions of the same motor skill adapted for different conditions (e.g., walking in water, sand, snow). Following even a single session of adaptation, adults exhibit clear day-to-day retention and faster re-learning of the adapted pattern. Here, we studied the retention and re-learning of an adapted walking pattern in children aged 6-17 yr. We found that all children, regardless of age, showed adult-like patterns of retention of the adapted walking pattern. In contrast, children under 12 yr of age did not re-learn faster on the next day after washout had occurred-they behaved as if they had never adapted their walking before. Re-learning could be improved in younger children when the adaptation time on day 1 was increased to allow more practice at the plateau of the adapted pattern, but never to adult-like levels. These results show that the ability to store a separate, adapted version of the same general motor pattern does not fully develop until adolescence, and furthermore, that the mechanisms underlying the retention and rapid re-learning of adapted motor patterns are distinct. PMID:27084930

  17. A mitochondrial analysis reveals distinct founder effect signatures in Canarian and Balearic goats.

    PubMed

    Ferrando, A; Manunza, A; Jordana, J; Capote, J; Pons, A; Pais, J; Delgado, T; Atoche, P; Cabrera, B; Martínez, A; Landi, V; Delgado, J V; Argüello, A; Vidal, O; Lalueza-Fox, C; Ramírez, O; Amills, M

    2015-08-01

    In the course of human migrations, domestic animals often have been translocated to islands with the aim of assuring food availability. These founder events are expected to leave a genetic footprint that may be recognised nowadays. Herewith, we have examined the mitochondrial diversity of goat populations living in the Canarian and Balearic archipelagos. Median-joining network analysis produced very distinct network topologies for these two populations. Indeed, a majority of Canarian goats shared a single ancestral haplotype that segregated in all sampled islands, suggesting a single founder effect followed by a stepping-stone pattern of diffusion. This haplotype also was present in samples collected from archaeological assemblies at Gran Canaria and Lanzarote, making evident its widespread distribution in ancient times. In stark contrast, goats from Majorca and Ibiza did not share any mitochondrial haplotypes, indicating the occurrence of two independent founder events. Furthermore, in Majorcan goats, we detected the segregation of the mitochondrial G haplogroup that has only been identified in goats from Egypt, Iran and Turkey. This finding suggests the translocation of Asian and/or African goats to Majorca, possibly as a consequence of the Phoenician and Carthaginian colonisations of this island. PMID:26153924

  18. mtDNA variation of aboriginal Siberians reveals distinct genetic affinities with Native Americans

    SciTech Connect

    Torroni, A.; Schurr, T.G.; Cabell, M.F.; Wallace, D.C. ); Sukernik, R.I.; Starikovskaya, Y.B. ); Crawford, M.H.; Comuzzie, A.G. )

    1993-09-01

    The mtDNA variation of 411 individuals from 10 aboriginal Siberian populations was analyzed in an effort to delineate the relationships between Siberian and Native American populations. All mtDNAs were characterized by PCR amplification and restriction analysis, and a subset of them was characterized by control region sequencing. The resulting data were then compiled with previous mtDNA data from Native Americans and Asians and were used for phylogenetic analysis and sequence divergence estimations. Aboriginal Siberian populations exhibited mtDNAs from three (A, C, and D) of the four haplogroups observed in Native Americans. However, none of the Siberian populations showed mtDNAs from the fourth haplogroup, group B. The presence of group B deletion haplotypes in East Asian and Native American populations but their absence in Siberians raises the possibility that haplogroup B could represent a migratory event distinct from the one(s) which brought group A, C, and D mtDNAs to the Americas. These findings support the hypothesis that the first humans to move from Siberia to the Americas carried with them a limited number of founding mtDNAs and that the initial migration occurred between 17,000-34,000 years before present. 61 refs., 5 figs., 7 tabs.

  19. Internal Transcribed Spacer 1 (ITS1) based sequence typing reveals phylogenetically distinct Ascaris population

    PubMed Central

    Das, Koushik; Chowdhury, Punam; Ganguly, Sandipan

    2015-01-01

    Taxonomic differentiation among morphologically identical Ascaris species is a debatable scientific issue in the context of Ascariasis epidemiology. To explain the disease epidemiology and also the taxonomic position of different Ascaris species, genome information of infecting strains from endemic areas throughout the world is certainly crucial. Ascaris population from human has been genetically characterized based on the widely used genetic marker, internal transcribed spacer1 (ITS1). Along with previously reported and prevalent genotype G1, 8 new sequence variants of ITS1 have been identified. Genotype G1 was significantly present among female patients aged between 10 to 15 years. Intragenic linkage disequilibrium (LD) analysis at target locus within our study population has identified an incomplete LD value with potential recombination events. A separate cluster of Indian isolates with high bootstrap value indicate their distinct phylogenetic position in comparison to the global Ascaris population. Genetic shuffling through recombination could be a possible reason for high population diversity and frequent emergence of new sequence variants, identified in present and other previous studies. This study explores the genetic organization of Indian Ascaris population for the first time which certainly includes some fundamental information on the molecular epidemiology of Ascariasis. PMID:26504510

  20. Lineage Tracing Reveals Distinctive Fates for Mesothelial Cells and Submesothelial Fibroblasts during Peritoneal Injury

    PubMed Central

    Chen, Yi-Ting; Chang, Yu-Ting; Pan, Szu-Yu; Chou, Yu-Hsiang; Chang, Fan-Chi; Yeh, Pei-Ying; Liu, Yuan-Hung; Chiang, Wen-Chih; Chen, Yung-Ming; Wu, Kwan-Dun; Tsai, Tun-Jun; Duffield, Jeremy S.

    2014-01-01

    Fibrosis of the peritoneal cavity remains a serious, life-threatening problem in the treatment of kidney failure with peritoneal dialysis. The mechanism of fibrosis remains unclear partly because the fibrogenic cells have not been identified with certainty. Recent studies have proposed mesothelial cells to be an important source of myofibroblasts through the epithelial–mesenchymal transition; however, confirmatory studies in vivo are lacking. Here, we show by inducible genetic fate mapping that type I collagen–producing submesothelial fibroblasts are specific progenitors of α-smooth muscle actin–positive myofibroblasts that accumulate progressively in models of peritoneal fibrosis induced by sodium hypochlorite, hyperglycemic dialysis solutions, or TGF-β1. Similar genetic mapping of Wilms’ tumor-1–positive mesothelial cells indicated that peritoneal membrane disruption is repaired and replaced by surviving mesothelial cells in peritoneal injury, and not by submesothelial fibroblasts. Although primary cultures of mesothelial cells or submesothelial fibroblasts each expressed α-smooth muscle actin under the influence of TGF-β1, only submesothelial fibroblasts expressed α-smooth muscle actin after induction of peritoneal fibrosis in mice. Furthermore, pharmacologic inhibition of the PDGF receptor, which is expressed by submesothelial fibroblasts but not mesothelial cells, attenuated the peritoneal fibrosis but not the remesothelialization induced by hypochlorite. Thus, our data identify distinctive fates for injured mesothelial cells and submesothelial fibroblasts during peritoneal injury and fibrosis. PMID:24854266

  1. Muscle MRI reveals distinct abnormalities in genetically proven non-dystrophic myotonias.

    PubMed

    Morrow, Jasper M; Matthews, Emma; Raja Rayan, Dipa L; Fischmann, Arne; Sinclair, Christopher D J; Reilly, Mary M; Thornton, John S; Hanna, Michael G; Yousry, Tarek A

    2013-08-01

    We assessed the presence, frequency and pattern of MRI abnormalities in non-dystrophic myotonia patients. We reviewed T1-weighted and STIR (short-tau-inversion-recovery) 3T MRI sequences of lower limb muscles at thigh and calf level in 21 patients with genetically confirmed non-dystrophic myotonia: 11 with CLCN1 mutations and 10 with SCN4A mutations, and 19 healthy volunteers. The MRI examinations of all patients showed hyperintensity within muscles on either T1-weighted or STIR images. Mild extensive or marked T1-weighted changes were noted in 10/21 patients and no volunteers. Muscles in the thigh were equally likely to be affected but in the calf there was sparing of tibialis posterior. Oedema was common in calf musculature especially in the medial gastrocnemius with STIR hyperintensity observed in 18/21 patients. In 10/11 CLCN1 patients this included a previously unreported "central stripe", also present in 3/10 SCN4A patients but no volunteers. Degree of fatty infiltration correlated with age (rho=0.46, p<0.05). Muscle MRI is frequently abnormal in non-dystrophic myotonia providing evidence of fatty infiltration and/or oedema. The pattern is distinct from other myotonic disorders; in particular the "central stripe" has not been reported in other conditions. Correlations with clinical parameters suggest a potential role for MRI as a biomarker. PMID:23810313

  2. Internal Transcribed Spacer 1 (ITS1) based sequence typing reveals phylogenetically distinct Ascaris population.

    PubMed

    Das, Koushik; Chowdhury, Punam; Ganguly, Sandipan

    2015-01-01

    Taxonomic differentiation among morphologically identical Ascaris species is a debatable scientific issue in the context of Ascariasis epidemiology. To explain the disease epidemiology and also the taxonomic position of different Ascaris species, genome information of infecting strains from endemic areas throughout the world is certainly crucial. Ascaris population from human has been genetically characterized based on the widely used genetic marker, internal transcribed spacer1 (ITS1). Along with previously reported and prevalent genotype G1, 8 new sequence variants of ITS1 have been identified. Genotype G1 was significantly present among female patients aged between 10 to 15 years. Intragenic linkage disequilibrium (LD) analysis at target locus within our study population has identified an incomplete LD value with potential recombination events. A separate cluster of Indian isolates with high bootstrap value indicate their distinct phylogenetic position in comparison to the global Ascaris population. Genetic shuffling through recombination could be a possible reason for high population diversity and frequent emergence of new sequence variants, identified in present and other previous studies. This study explores the genetic organization of Indian Ascaris population for the first time which certainly includes some fundamental information on the molecular epidemiology of Ascariasis. PMID:26504510

  3. Morphologic and molecular evaluation of Chlamydia trachomatis growth in human endocervix reveals distinct growth patterns

    PubMed Central

    Lewis, Maria E.; Belland, Robert J.; AbdelRahman, Yasser M.; Beatty, Wandy L.; Aiyar, Ashok A.; Zea, Arnold H.; Greene, Sheila J.; Marrero, Luis; Buckner, Lyndsey R.; Tate, David J.; McGowin, Chris L.; Kozlowski, Pamela A.; O'Brien, Michelle; Lillis, Rebecca A.; Martin, David H.; Quayle, Alison J.

    2014-01-01

    In vitro models of Chlamydia trachomatis growth have long been studied to predict growth in vivo. Alternative or persistent growth modes in vitro have been shown to occur under the influence of numerous stressors but have not been studied in vivo. Here, we report the development of methods for sampling human infections from the endocervix in a manner that permits a multifaceted analysis of the bacteria, host and the endocervical environment. Our approach permits evaluating total bacterial load, transcriptional patterns, morphology by immunofluorescence and electron microscopy, and levels of cytokines and nutrients in the infection microenvironment. By applying this approach to two pilot patients with disparate infections, we have determined that their contrasting growth patterns correlate with strikingly distinct transcriptional biomarkers, and are associated with differences in local levels of IFNγ. Our multifaceted approach will be useful to dissect infections in the human host and be useful in identifying patients at risk for chronic disease. Importantly, the molecular and morphological analyses described here indicate that persistent growth forms can be isolated from the human endocervix when the infection microenvironment resembles the in vitro model of IFNγ-induced persistence. PMID:24959423

  4. Whole Cell Cryo-Electron Tomography Reveals Distinct Disassembly Intermediates of Vaccinia Virus

    PubMed Central

    Cyrklaff, Marek; Linaroudis, Alexandros; Boicu, Marius; Chlanda, Petr; Baumeister, Wolfgang; Griffiths, Gareth; Krijnse-Locker, Jacomine

    2007-01-01

    At each round of infection, viruses fall apart to release their genome for replication, and then reassemble into stable particles within the same host cell. For most viruses, the structural details that underlie these disassembly and assembly reactions are poorly understood. Cryo-electron tomography (cryo-ET), a unique method to investigate large and asymmetric structures at the near molecular resolution, was previously used to study the complex structure of vaccinia virus (VV). Here we study the disassembly of VV by cryo-ET on intact, rapidly frozen, mammalian cells, infected for up to 60 minutes. Binding to the cell surface induced distinct structural rearrangements of the core, such as a shape change, the rearrangement of its surface spikes and de-condensation of the viral DNA. We propose that the cell surface induced changes, in particular the decondensation of the viral genome, are a prerequisite for the subsequent release of the vaccinia DNA into the cytoplasm, which is followed by its cytoplasmic replication. Generally, this is the first study that employs whole cell cryo-ET to address structural details of pathogen-host cell interaction. PMID:17487274

  5. Microsatellite analysis reveals genetically distinct populations of red pine (Pinus resinosa, Pinaceae).

    PubMed

    Boys, Jacquelyn; Cherry, Marilyn; Dayanandan, Selvadurai

    2005-05-01

    Red pine (Pinus resinosa Ait.) is an ecologically and economically important forest tree species of northeastern North America and is considered one of the most genetically depauperate conifer species in the region. We have isolated and characterized 13 nuclear microsatellite loci by screening a partial genomic library with di-, tri-, and tetranucleotide repeat oligonucleotide probes. In an analysis of over 500 individuals representing 17 red pine populations from Manitoba through Newfoundland, five polymorphic microsatellite loci with an average of nine alleles per locus were identified. The mean expected and observed heterozygosity values were 0.508 and 0.185, respectively. Significant departures from Hardy-Weinberg equilibrium with excess homozygosity indicating high levels of inbreeding were evident in all populations studied. The population differentiation was high with 28-35% of genetic variation partitioned among populations. The genetic distance analysis showed that three northeastern (two Newfoundland and one New Brunswick) populations are genetically distinct from the remaining populations. The coalescence-based analysis suggests that "northeastern" and "main" populations likely became isolated during the most recent Pleistocene glacial period, and severe population bottlenecks may have led to the evolution of a highly selfing mating system in red pine. PMID:21652464

  6. Comparative Plasmodium gene overexpression reveals distinct perturbation of sporozoite transmission by profilin.

    PubMed

    Sato, Yuko; Hliscs, Marion; Dunst, Josefine; Goosmann, Christian; Brinkmann, Volker; Montagna, Georgina N; Matuschewski, Kai

    2016-07-15

    Plasmodium relies on actin-based motility to migrate from the site of infection and invade target cells. Using a substrate-dependent gliding locomotion, sporozoites are able to move at fast speed (1-3 μm/s). This motility relies on a minimal set of actin regulatory proteins and occurs in the absence of detectable filamentous actin (F-actin). Here we report an overexpression strategy to investigate whether perturbations of F-actin steady-state levels affect gliding locomotion and host invasion. We selected two vital Plasmodium berghei G-actin-binding proteins, C-CAP and profilin, in combination with three stage-specific promoters and mapped the phenotypes afforded by overexpression in all three extracellular motile stages. We show that in merozoites and ookinetes, additional expression does not impair life cycle progression. In marked contrast, overexpression of C-CAP and profilin in sporozoites impairs circular gliding motility and salivary gland invasion. The propensity for productive motility correlates with actin accumulation at the parasite tip, as revealed by combinations of an actin-stabilizing drug and transgenic parasites. Strong expression of profilin, but not C-CAP, resulted in complete life cycle arrest. Comparative overexpression is an alternative experimental genetic strategy to study essential genes and reveals effects of regulatory imbalances that are not uncovered from deletion-mutant phenotyping. PMID:27226484

  7. Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme

    PubMed Central

    Liang, Yu; Diehn, Maximilian; Watson, Nathan; Bollen, Andrew W.; Aldape, Ken D.; Nicholas, M. Kelly; Lamborn, Kathleen R.; Berger, Mitchel S.; Botstein, David; Brown, Patrick O.; Israel, Mark A.

    2005-01-01

    Glioblastoma multiforme (GBM) is the most common form of malignant glioma, characterized by genetic instability, intratumoral histopathological variability, and unpredictable clinical behavior. We investigated global gene expression in surgical samples of brain tumors. Gene expression profiling revealed large differences between normal brain samples and tumor tissues and between GBMs and lower-grade oligodendroglial tumors. Extensive differences in gene expression were found among GBMs, particularly in genes involved in angiogenesis, immune cell infiltration, and extracellular matrix remodeling. We found that the gene expression patterns in paired specimens from the same GBM invariably were more closely related to each other than to any other tumor, even when the paired specimens had strikingly divergent histologies. Survival analyses revealed a set of ≈70 genes more highly expressed in rapidly progressing tumors that stratified GBMs into two groups that differed by >4-fold in median duration of survival. We further investigated one gene from the group, FABP7, and confirmed its association with survival in two unrelated cohorts totaling 105 patients. Expression of FABP7 enhanced the motility of glioma-derived cells in vitro. Our analyses thus identify and validate a prognostic marker of both biologic and clinical significance and provide a series of putative markers for additional evaluation. PMID:15827123

  8. Surface-based morphometry reveals distinct cortical thickness and surface area profiles in Williams syndrome.

    PubMed

    Green, Tamar; Fierro, Kyle C; Raman, Mira M; Saggar, Manish; Sheau, Kristen E; Reiss, Allan L

    2016-04-01

    Morphometric investigations of brain volumes in Williams syndrome (WS) consistently show significant reductions in gray matter volume compared to controls. Cortical thickness (CT) and surface area (SA) are two constituent parts of cortical gray matter volume that are considered genetically distinguishable features of brain morphology. Yet, little is known about the independent contribution of cortical CT and SA to these volumetric differences in WS. Thus, our objectives were: (i) to evaluate whether the microdeletion in chromosome 7 associated with WS has a distinct effect on CT and SA, and (ii) to evaluate age-related variations in CT and SA within WS. We compared CT and SA values in 44 individuals with WS to 49 age- and sex-matched typically developing controls. Between-group differences in CT and SA were evaluated across two age groups: young (age range 6.6-18.9 years), and adults (age range 20.2-51.5 years). Overall, we found contrasting effects of WS on cortical thickness (increases) and surface area (decreases). With respect to brain topography, the between-group pattern of CT differences showed a scattered pattern while the between-group surface area pattern was widely distributed throughout the brain. In the adult subgroup, we observed a cluster of increases in cortical thickness in WS across the brain that was not observed in the young subgroup. Our findings suggest that extensive early reductions in surface area are the driving force for the overall reduction in brain volume in WS. The age-related cortical thickness findings might reflect delayed or even arrested development of specific brain regions in WS. PMID:26852730

  9. Metabolomic Profiles of Body Mass Index in the Framingham Heart Study Reveal Distinct Cardiometabolic Phenotypes

    PubMed Central

    Ho, Jennifer E.; Larson, Martin G.; Ghorbani, Anahita; Cheng, Susan; Chen, Ming-Huei; Keyes, Michelle; Rhee, Eugene P.; Clish, Clary B.; Vasan, Ramachandran S.

    2016-01-01

    Background Although obesity and cardiometabolic traits commonly overlap, underlying pathways remain incompletely defined. The association of metabolite profiles across multiple cardiometabolic traits may lend insights into the interaction of obesity and metabolic health. We sought to investigate metabolic signatures of obesity and related cardiometabolic traits in the community using broad-based metabolomic profiling. Methods and Results We evaluated the association of 217 assayed metabolites and cross-sectional as well as longitudinal changes in cardiometabolic traits among 2,383 Framingham Offspring cohort participants. Body mass index (BMI) was associated with 69 of 217 metabolites (P<0.00023 for all), including aromatic (tyrosine, phenylalanine) and branched chain amino acids (valine, isoleucine, leucine). Additional metabolic pathways associated with BMI included the citric acid cycle (isocitrate, alpha-ketoglutarate, aconitate), the tryptophan pathway (kynurenine, kynurenic acid), and the urea cycle. There was considerable overlap in metabolite profiles between BMI, abdominal adiposity, insulin resistance [IR] and dyslipidemia, modest overlap of metabolite profiles between BMI and hyperglycemia, and little overlap with fasting glucose or elevated blood pressure. Metabolite profiles were associated with longitudinal changes in fasting glucose, but the involved metabolites (ornithine, 5-HIAA, aminoadipic acid, isoleucine, cotinine) were distinct from those associated with baseline glucose or other traits. Obesity status appeared to “modify” the association of 9 metabolites with IR. For example, bile acid metabolites were strongly associated with IR among obese but not lean individuals, whereas isoleucine had a stronger association with IR in lean individuals. Conclusions In this large-scale metabolite profiling study, body mass index was associated with a broad range of metabolic alterations. Metabolite profiling highlighted considerable overlap with

  10. The Crystal Structure of Streptococcus pyogenes Uridine Phosphorylase Reveals a Distinct Subfamily of Nucleoside Phosphorylases

    SciTech Connect

    Tran, Timothy H.; Christoffersen, S.; Allan, Paula W.; Parker, William B.; Piskur, Jure; Serra, I.; Terreni, M.; Ealick, Steven E.

    2011-09-20

    Uridine phosphorylase (UP), a key enzyme in the pyrimidine salvage pathway, catalyzes the reversible phosphorolysis of uridine or 2'-deoxyuridine to uracil and ribose 1-phosphate or 2'-deoxyribose 1-phosphate. This enzyme belongs to the nucleoside phosphorylase I superfamily whose members show diverse specificity for nucleoside substrates. Phylogenetic analysis shows Streptococcus pyogenes uridine phosphorylase (SpUP) is found in a distinct branch of the pyrimidine subfamily of nucleoside phosphorylases. To further characterize SpUP, we determined the crystal structure in complex with the products, ribose 1-phosphate and uracil, at 1.8 {angstrom} resolution. Like Escherichia coli UP (EcUP), the biological unit of SpUP is a hexamer with an ?/? monomeric fold. A novel feature of the active site is the presence of His169, which structurally aligns with Arg168 of the EcUP structure. A second active site residue, Lys162, is not present in previously determined UP structures and interacts with O2 of uracil. Biochemical studies of wild-type SpUP showed that its substrate specificity is similar to that of EcUP, while EcUP is {approx}7-fold more efficient than SpUP. Biochemical studies of SpUP mutants showed that mutations of His169 reduced activity, while mutation of Lys162 abolished all activity, suggesting that the negative charge in the transition state resides mostly on uracil O2. This is in contrast to EcUP for which transition state stabilization occurs mostly at O4.

  11. Mitochondrial DNA reveals distinct evolutionary histories for Jewish populations in Yemen and Ethiopia.

    PubMed

    Non, Amy L; Al-Meeri, Ali; Raaum, Ryan L; Sanchez, Luisa F; Mulligan, Connie J

    2011-01-01

    Southern Arabia and the Horn of Africa are important geographic centers for the study of human population history because a great deal of migration has characterized these regions since the first emergence of humans out of Africa. Analysis of Jewish groups provides a unique opportunity to investigate more recent population histories in this area. Mitochondrial DNA is used to investigate the maternal evolutionary history and can be combined with historical and linguistic data to test various population histories. In this study, we assay mitochondrial control region DNA sequence and diagnostic coding variants in Yemenite (n = 45) and Ethiopian (n = 41) Jewish populations, as well as in neighboring non-Jewish Yemeni (n = 50) and Ethiopian (previously published Semitic speakers) populations. We investigate their population histories through a comparison of haplogroup distributions and phylogenetic networks. A high frequency of sub-Saharan African L haplogroups was found in both Jewish populations, indicating a significant African maternal contribution unlike other Jewish Diaspora populations. However, no identical haplotypes were shared between the Yemenite and Ethiopian Jewish populations, suggesting very little gene flow between the populations and potentially distinct maternal population histories. These new data are also used to investigate alternate population histories in the context of historical and linguistic data. Specifically, Yemenite Jewish mitochondrial diversity reflects potential descent from ancient Israeli exiles and shared African and Middle Eastern ancestry with little evidence for large-scale conversion of local Yemeni. In contrast, the Ethiopian Jewish population appears to be a subset of the larger Ethiopian population suggesting descent primarily through conversion of local women. PMID:20623605

  12. Large-scale experimental landscapes reveal distinctive effects of patch shape and connectivity on arthropod communities.

    SciTech Connect

    Orrock, John, L.; Curler, Gregory, R.; Danielson, Brent, J.; Coyle, David. R.

    2011-09-14

    The size, shape, and isolation of habitat patches can affect organism behavior and population dynamics, but little is known about the relative role of shape and connectivity in affecting ecological communities at large spatial scales. Using six sampling sessions from July 2001 until August 2002, we collected 33,685 arthropods throughout seven 12-ha experimental landscapes consisting of clear-cut patches surrounded by a matrix of mature pine forest. Patches were explicitly designed to manipulate connectivity (via habitat corridors) independently of area and edge effects. We found that patch shape, rather than connectivity, affected ground-dwelling arthropod richness and beta diversity (i.e. turnover of genera among patches). Arthropod communities contained fewer genera and exhibited less turnover in high-edge connected and high-edge unconnected patches relative to low-edge unconnected patches of similar area. Connectivity, rather than patch shape, affected the evenness of ground-dwelling arthropod communities; regardless of patch shape, high-edge connected patches had lower evenness than low- or high-edge unconnected patches. Among the most abundant arthropod orders, increased richness in low-edge unconnected patches was largely due to increased richness of Coleoptera, whereas Hymenoptera played an important role in the lower evenness in connected patches and patterns of turnover. These findings suggest that anthropogenic habitat alteration can have distinct effects on ground-dwelling arthropod communities that arise due to changes in shape and connectivity. Moreover, this work suggests that corridors, which are common conservation tools that change both patch shape and connectivity, can have multiple effects on arthropod communities via different mechanisms, and each effect may alter components of community structure.

  13. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans

    PubMed Central

    Cenik, Can; Cenik, Elif Sarinay; Byeon, Gun W.; Grubert, Fabian; Candille, Sophie I.; Spacek, Damek; Alsallakh, Bilal; Tilgner, Hagen; Araya, Carlos L.; Tang, Hua; Ricci, Emiliano; Snyder, Michael P.

    2015-01-01

    Elucidating the consequences of genetic differences between humans is essential for understanding phenotypic diversity and personalized medicine. Although variation in RNA levels, transcription factor binding, and chromatin have been explored, little is known about global variation in translation and its genetic determinants. We used ribosome profiling, RNA sequencing, and mass spectrometry to perform an integrated analysis in lymphoblastoid cell lines from a diverse group of individuals. We find significant differences in RNA, translation, and protein levels suggesting diverse mechanisms of personalized gene expression control. Combined analysis of RNA expression and ribosome occupancy improves the identification of individual protein level differences. Finally, we identify genetic differences that specifically modulate ribosome occupancy—many of these differences lie close to start codons and upstream ORFs. Our results reveal a new level of gene expression variation among humans and indicate that genetic variants can cause changes in protein levels through effects on translation. PMID:26297486

  14. Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits.

    PubMed

    Lerner, Talia N; Shilyansky, Carrie; Davidson, Thomas J; Evans, Kathryn E; Beier, Kevin T; Zalocusky, Kelly A; Crow, Ailey K; Malenka, Robert C; Luo, Liqun; Tomer, Raju; Deisseroth, Karl

    2015-07-30

    Recent progress in understanding the diversity of midbrain dopamine neurons has highlighted the importance--and the challenges--of defining mammalian neuronal cell types. Although neurons may be best categorized using inclusive criteria spanning biophysical properties, wiring of inputs, wiring of outputs, and activity during behavior, linking all of these measurements to cell types within the intact brains of living mammals has been difficult. Here, using an array of intact-brain circuit interrogation tools, including CLARITY, COLM, optogenetics, viral tracing, and fiber photometry, we explore the diversity of dopamine neurons within the substantia nigra pars compacta (SNc). We identify two parallel nigrostriatal dopamine neuron subpopulations differing in biophysical properties, input wiring, output wiring to dorsomedial striatum (DMS) versus dorsolateral striatum (DLS), and natural activity patterns during free behavior. Our results reveal independently operating nigrostriatal information streams, with implications for understanding the logic of dopaminergic feedback circuits and the diversity of mammalian neuronal cell types. PMID:26232229

  15. Nicotine Dependence Reveals Distinct Responses from Neurons and Their Resident Nicotinic Receptors in Medial Habenula.

    PubMed

    Shih, Pei-Yu; McIntosh, J Michael; Drenan, Ryan M

    2015-12-01

    Nicotinic acetylcholine receptors (nAChRs) are the molecular target of nicotine. nAChRs in the medial habenula (MHb) have recently been shown to play a role in nicotine dependence, but it is not clear which nAChR subtypes or MHb neuron types are most important. To identify MHb nAChRs and/or cell types that play a role in nicotine dependence, we studied these receptors and cells with brain slice electrophysiology using both acute and chronic nicotine application. Cells in the ventroinferior (MHbVI) and ventrolateral MHb (MHbVL) subregions expressed functional nAChRs with different pharmacology. Further, application of nicotine to cells in these subregions led to different action potential firing patterns. The latter result was correlated with a differing ability of nicotine to induce nAChR desensitization. Chronic nicotine caused functional upregulation of nAChRs selectively in MHbVI cells, but did not change nAChR function in MHbVL. Importantly, firing responses were also differentially altered in these subregions following chronic nicotine. MHbVI neurons treated chronically with nicotine exhibited enhanced basal pacemaker firing but a blunted nicotine-induced firing response. MHbVL neurons did not change their firing properties in response to chronic nicotine. Together, these results suggest that acute and chronic nicotine differentially affect nAChR function and output of cells in MHb subregions. Because the MHb extensively innervates the interpeduncular nucleus, an area critical for both affective and somatic signs of withdrawal, these results could reflect some of the neurophysiological changes thought to occur in the MHb to the interpeduncular nucleus circuit in human smokers. PMID:26429939

  16. Histone H3 Dynamics Reveal Domains with Distinct Proliferation Potential in the Arabidopsis Root.

    PubMed

    Otero, Sofía; Desvoyes, Bénédicte; Peiró, Ramón; Gutierrez, Crisanto

    2016-06-01

    A coordinated transition from cell proliferation to differentiation is crucial for organogenesis. We found that extensive chromatin reorganization, shown here for histone H3 proteins, characterizes cell population dynamics in the root developmental compartments. The canonical H3.1 protein, incorporated during S-phase, is maintained at high levels in cells dividing at a high rate but is massively evicted in cells undergoing their last cell cycle before exit to differentiation. A similar pattern was observed in the quadruple mutant for the H3.1-encoding genes HTR1, HTR2, HTR3, and HTR9 (htr1,2,3,9), in which H3.1 is expressed only from the HTR13 gene. H3 eviction is a fast process occurring within the G2 phase of the last cell cycle, which is longer than G2 in earlier cell cycles. This longer G2 likely contributes to lower the H3.1/H3.3 ratio in cells leaving the root meristem. The high H3.1/H3.3 ratio and H3.1 eviction process also occurs in endocycling cells before differentiation, revealing a common principle of H3 eviction in the proliferating and endocycling domains of the root apex. Mutants in the H3.1 chaperone CAF-1 (fas1-4) maintain a pattern similar to that of wild-type roots. Our studies reveal that H3 incorporation and eviction dynamics identify cells with different cell division potential during organ patterning. PMID:27207857

  17. Functional organization of the fusiform gyrus revealed with connectivity profiles.

    PubMed

    Zhang, Wen; Wang, Jiaojian; Fan, Lingzhong; Zhang, Yuanchao; Fox, Peter T; Eickhoff, Simon B; Yu, Chunshui; Jiang, Tianzi

    2016-08-01

    Within the object recognition-related ventral visual stream, the human fusiform gyrus (FG), which topographically connects the striate cortex to the inferior temporal lobe, plays a pivotal role in high-level visual/cognitive functions. However, though there are many previous investigations of distinct functional modules within the FG, the functional organization of the whole FG in its full functional heterogeneity has not yet been established. In the current study, a replicable functional organization of the FG based on distinct anatomical connectivity patterns was identified. The FG was parcellated into medial (FGm), lateral (FGl), and anterior (FGa) regions using diffusion tensor imaging. We validated the reasonability of such an organizational scheme from the perspective of resting-state whole brain functional connectivity patterns and the involvement of functional subnetworks. We found corroborating support for these three distinct modules, and suggest that the FGm serves as a transition region that combines multiple stimuli, the FGl is responsible for categorical recognition, and the FGa is involved in semantic understanding. These findings support two organizational functional transitions of the ventral temporal gyrus, a posterior/anterior direction of visual/semantic processing, and a media/lateral direction of high-level visual processing. Our results may facilitate a more detailed study of the human FG in the future. Hum Brain Mapp 37:3003-3016, 2016. © 2016 Wiley Periodicals, Inc. PMID:27132874

  18. Transcriptome analysis of distinct Lindera glauca tissues revealed the differences in the unigenes related to terpenoid biosynthesis.

    PubMed

    Niu, Jun; Hou, Xinyu; Fang, Chengliang; An, Jiyong; Ha, Denglong; Qiu, Lin; Ju, Yuxi; Zhao, Haiyan; Du, WenZhi; Qi, Ji; Zhang, Zhixiang; Liu, Genan; Lin, Shanzhi

    2015-03-15

    The Lindera glauca, an economically and ecologically important tree species, has emerged as a novel potential plant for the intensive studies of essential oil owing to its characteristic aroma and medicinal property in distinct tissues. However, the transcriptome information and molecular research on this species is still unknown to date. To reveal the formation and accumulation mechanism of essential oil in distinct L. glauca tissues, it is crucial to analyze transcriptome and to identify the full repertoire of potential unigenes involved in terpenoid biosynthesis. In this paper, the transcriptomes of the roots, sarcocarps, stems, leaves and kernels of L. glauca were analyzed for the first time by using short-read sequencing technology (Illumina). A total of 27.2GB valid reads (the average length=92.7bp) was obtained from distinct L. glauca tissues, and then assembled de novo into 264,831 unigenes by Trinity strategy (mean size=560.2bp). The resulting 98,141 unigenes (38%) of all the assembled unigenes were annotated in multiple public databases, of which 114 potential unigenes were identified to be involved in the terpenoid biosynthetic accumulation in L. glauca. Additionally, the differential expression profiles revealed 675, 697, 432, 1702 and 844 high tissue-specificity expressions of unigenes in the roots, sarcocarps, stems, leaves and kernels of L. glauca, respectively. Overall, these obtained comprehensive unigene resources will contribute to advance the research regarding the specific plant and more specifically discovery of genes participating in the terpenoid pathway and its regulation in specific tissues of the L. glauca, but also could help the understanding of the differential accumulation of secondary metabolites in distinct plant tissues. PMID:25576222

  19. Distinct Quantitative Computed Tomography Emphysema Patterns Are Associated with Physiology and Function in Smokers

    PubMed Central

    San José Estépar, Raúl; Mendoza, Carlos S.; Hersh, Craig P.; Laird, Nan; Crapo, James D.; Lynch, David A.; Silverman, Edwin K.; Washko, George R.

    2013-01-01

    Rationale: Emphysema occurs in distinct pathologic patterns, but little is known about the epidemiologic associations of these patterns. Standard quantitative measures of emphysema from computed tomography (CT) do not distinguish between distinct patterns of parenchymal destruction. Objectives: To study the epidemiologic associations of distinct emphysema patterns with measures of lung-related physiology, function, and health care use in smokers. Methods: Using a local histogram-based assessment of lung density, we quantified distinct patterns of low attenuation in 9,313 smokers in the COPDGene Study. To determine if such patterns provide novel insights into chronic obstructive pulmonary disease epidemiology, we tested for their association with measures of physiology, function, and health care use. Measurements and Main Results: Compared with percentage of low-attenuation area less than −950 Hounsfield units (%LAA-950), local histogram-based measures of distinct CT low-attenuation patterns are more predictive of measures of lung function, dyspnea, quality of life, and health care use. These patterns are strongly associated with a wide array of measures of respiratory physiology and function, and most of these associations remain highly significant (P < 0.005) after adjusting for %LAA-950. In smokers without evidence of chronic obstructive pulmonary disease, the mild centrilobular disease pattern is associated with lower FEV1 and worse functional status (P < 0.005). Conclusions: Measures of distinct CT emphysema patterns provide novel information about the relationship between emphysema and key measures of physiology, physical function, and health care use. Measures of mild emphysema in smokers with preserved lung function can be extracted from CT scans and are significantly associated with functional measures. PMID:23980521

  20. Comparative transcriptomics of Central Asian Vitis vinifera accessions reveals distinct defense strategies against powdery mildew

    PubMed Central

    Amrine, Katherine C H; Blanco-Ulate, Barbara; Riaz, Summaira; Pap, Dániel; Jones, Laura; Figueroa-Balderas, Rosa; Walker, M Andrew; Cantu, Dario

    2015-01-01

    Grape powdery mildew (PM), caused by the biotrophic ascomycete Erysiphe necator, is a devastating fungal disease that affects most Vitis vinifera cultivars. We have previously identified a panel of V. vinifera accessions from Central Asia with partial resistance to PM that possess a Ren1-like local haplotype. In this study, we show that in addition to the typical Ren1-associated late post-penetration resistance, these accessions display a range of different levels of disease development suggesting that alternative alleles or additional genes contribute to determining the outcome of the interaction with the pathogen. To identify potential Ren1-dependent transcriptional responses and functions associated with the different levels of resistance, we sequenced and analyzed the transcriptomes of these Central Asian accessions at two time points of PM infection. Transcriptomes were compared to identify constitutive differences and PM-inducible responses that may underlie their disease resistant phenotype. Responses to E. necator in all resistant accessions were characterized by an early up-regulation of 13 genes, most encoding putative defense functions, and a late down-regulation of 32 genes, enriched in transcriptional regulators and protein kinases. Potential Ren1-dependent responses included a hotspot of co-regulated genes on chromosome 18. We also identified 81 genes whose expression levels and dynamics correlated with the phenotypic differences between the most resistant accessions ‘Karadzhandahal’, DVIT3351.27, and O34-16 and the other genotypes. This study provides a first exploration of the functions associated with varying levels of partial resistance to PM in V. vinifera accessions that can be exploited as sources of genetic resistance in grape breeding programs. PMID:26504579

  1. Coevolved Mutations Reveal Distinct Architectures for Two Core Proteins in the Bacterial Flagellar Motor

    PubMed Central

    Pandini, Alessandro; Kleinjung, Jens; Rasool, Shafqat; Khan, Shahid

    2015-01-01

    Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) “torque” helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could

  2. Extensive weight loss reveals distinct gene expression changes in human subcutaneous and visceral adipose tissue

    PubMed Central

    Mardinoglu, Adil; Heiker, John T.; Gärtner, Daniel; Björnson, Elias; Schön, Michael R.; Flehmig, Gesine; Klöting, Nora; Krohn, Knut; Fasshauer, Mathias; Stumvoll, Michael; Nielsen, Jens; Blüher, Matthias

    2015-01-01

    Weight loss has been shown to significantly improve Adipose tissue (AT) function, however changes in AT gene expression profiles particularly in visceral AT (VAT) have not been systematically studied. Here, we tested the hypothesis that extensive weight loss in response to bariatric surgery (BS) causes AT gene expression changes, which may affect energy and lipid metabolism, inflammation and secretory function of AT. We assessed gene expression changes by whole genome expression chips in AT samples obtained from six morbidly obese individuals, who underwent a two step BS strategy with sleeve gastrectomy as initial and a Roux-en-Y gastric bypass as second step surgery after 12 ± 2 months. Global gene expression differences in VAT and subcutaneous (S)AT were analyzed through the use of genome-scale metabolic model (GEM) for adipocytes. Significantly altered gene expressions were PCR-validated in 16 individuals, which also underwent a two-step surgery intervention. We found increased expression of cell death-inducing DFFA-like effector a (CIDEA), involved in formation of lipid droplets in both fat depots in response to significant weight loss. We observed that expression of the genes associated with metabolic reactions involved in NAD+, glutathione and branched chain amino acid metabolism are significantly increased in AT depots after surgery-induced weight loss. PMID:26434764

  3. Microfluidic Investigation Reveals Distinct Roles for Actin Cytoskeleton and Myosin II Activity in Capillary Leukocyte Trafficking

    PubMed Central

    Gabriele, Sylvain; Benoliel, Anne-Marie; Bongrand, Pierre; Théodoly, Olivier

    2009-01-01

    Circulating leukocyte sequestration in pulmonary capillaries is arguably the initiating event of lung injury in acute respiratory distress syndrome. We present a microfluidic investigation of the roles of actin organization and myosin II activity during the different stages of leukocyte trafficking through narrow capillaries (entry, transit and shape relaxation) using specific drugs (latrunculin A, jasplakinolide, and blebbistatin). The deformation rate during entry reveals that cell stiffness depends strongly on F-actin organization and hardly on myosin II activity, supporting a microfilament role in leukocyte sequestration. In the transit stage, cell friction is influenced by stiffness, demonstrating that the actin network is not completely broken after a forced entry into a capillary. Conversely, membrane unfolding was independent of leukocyte stiffness. The surface area of sequestered leukocytes increased by up to 160% in the absence of myosin II activity, showing the major role of molecular motors in microvilli wrinkling and zipping. Finally, cell shape relaxation was largely independent of both actin organization and myosin II activity, whereas a deformed state was required for normal trafficking through capillary segments. PMID:19450501

  4. Microarrays with varying carbohydrate density reveal distinct subpopulations of serum antibodies.

    PubMed

    Oyelaran, Oyindasola; Li, Qian; Farnsworth, David; Gildersleeve, Jeffrey C

    2009-07-01

    Antigen arrays have become important tools for profiling complex mixtures of proteins such as serum antibodies. These arrays can be used to better understand immune responses, discover new biomarkers, and guide the development of vaccines. Nevertheless, they are not perfect and improved array designs would enhance the information derived from this technology. In this study, we describe and evaluate a strategy for varying antigen density on an array and then use the array to study binding of lectins, monoclonal antibodies, and serum antibodies. To vary density, neoglycoproteins containing differing amounts of carbohydrate were synthesized and used to make a carbohydrate microarray with variations in both structure and density. We demonstrate that this method provides variations in density on the array surface within a range that is relevant for biological recognition events. The array was used to evaluate density dependent binding properties of three lectins (Vicia villosa lectin B4, Helix pomatia agglutinin, and soybean agglutinin) and three monoclonal antibodies (HBTn-1, B1.1, and Bric111) that bind the tumor-associated Tn antigen. In addition, serum antibodies were profiled from 30 healthy donors. The results show that variations in antigen density are required to detect the full spectrum of antibodies that bind a particular antigen and can be used to reveal differences in antibody populations between individuals that are not detectable using a single antigen density. PMID:19366269

  5. Dual Transcriptome Profiling of Leishmania-Infected Human Macrophages Reveals Distinct Reprogramming Signatures

    PubMed Central

    Fernandes, Maria Cecilia; Dillon, Laura A. L.; Belew, Ashton Trey; Bravo, Hector Corrada; Mosser, David M.

    2016-01-01

    ABSTRACT Macrophages are mononuclear phagocytes that constitute a first line of defense against pathogens. While lethal to many microbes, they are the primary host cells of Leishmania spp. parasites, the obligate intracellular pathogens that cause leishmaniasis. We conducted transcriptomic profiling of two Leishmania species and the human macrophage over the course of intracellular infection by using high-throughput RNA sequencing to characterize the global gene expression changes and reprogramming events that underlie the interactions between the pathogen and its host. A systematic exclusion of the generic effects of large-particle phagocytosis revealed a vigorous, parasite-specific response of the human macrophage early in the infection that was greatly tempered at later time points. An analogous temporal expression pattern was observed with the parasite, suggesting that much of the reprogramming that occurs as parasites transform into intracellular forms generally stabilizes shortly after entry. Following that, the parasite establishes an intracellular niche within macrophages, with minimal communication between the parasite and the host cell later during the infection. No significant difference was observed between parasite species transcriptomes or in the transcriptional response of macrophages infected with each species. Our comparative analysis of gene expression changes that occur as mouse and human macrophages are infected by Leishmania spp. points toward a general signature of the Leishmania-macrophage infectome. PMID:27165796

  6. Comprehensive Tissue-Specific Transcriptome Analysis Reveals Distinct Regulatory Programs during Early Tomato Fruit Development.

    PubMed

    Pattison, Richard J; Csukasi, Fabiana; Zheng, Yi; Fei, Zhangjun; van der Knaap, Esther; Catalá, Carmen

    2015-08-01

    Fruit formation and early development involve a range of physiological and morphological transformations of the various constituent tissues of the ovary. These developmental changes vary considerably according to tissue type, but molecular analyses at an organ-wide level inevitably obscure many tissue-specific phenomena. We used laser-capture microdissection coupled to high-throughput RNA sequencing to analyze the transcriptome of ovaries and fruit tissues of the wild tomato species Solanum pimpinellifolium. This laser-capture microdissection-high-throughput RNA sequencing approach allowed quantitative global profiling of gene expression at previously unobtainable levels of spatial resolution, revealing numerous contrasting transcriptome profiles and uncovering rare and cell type-specific transcripts. Coexpressed gene clusters linked specific tissues and stages to major transcriptional changes underlying the ovary-to-fruit transition and provided evidence of regulatory modules related to cell division, photosynthesis, and auxin transport in internal fruit tissues, together with parallel specialization of the pericarp transcriptome in stress responses and secondary metabolism. Analysis of transcription factor expression and regulatory motifs indicated putative gene regulatory modules that may regulate the development of different tissues and hormonal processes. Major alterations in the expression of hormone metabolic and signaling components illustrate the complex hormonal control underpinning fruit formation, with intricate spatiotemporal variations suggesting separate regulatory programs. PMID:26099271

  7. Angiogenesis Interactome and Time Course Microarray Data Reveal the Distinct Activation Patterns in Endothelial Cells

    PubMed Central

    Chu, Liang-Hui; Lee, Esak; Bader, Joel S.; Popel, Aleksander S.

    2014-01-01

    Angiogenesis involves stimulation of endothelial cells (EC) by various cytokines and growth factors, but the signaling mechanisms are not completely understood. Combining dynamic gene expression time-course data for stimulated EC with protein-protein interactions associated with angiogenesis (the “angiome”) could reveal how different stimuli result in different patterns of network activation and could implicate signaling intermediates as points for control or intervention. We constructed the protein-protein interaction networks of positive and negative regulation of angiogenesis comprising 367 and 245 proteins, respectively. We used five published gene expression datasets derived from in vitro assays using different types of blood endothelial cells stimulated by VEGFA (vascular endothelial growth factor A). We used the Short Time-series Expression Miner (STEM) to identify significant temporal gene expression profiles. The statistically significant patterns between 2D fibronectin and 3D type I collagen substrates for telomerase-immortalized EC (TIME) show that different substrates could influence the temporal gene activation patterns in the same cell line. We investigated the different activation patterns among 18 transmembrane tyrosine kinase receptors, and experimentally measured the protein level of the tyrosine-kinase receptors VEGFR1, VEGFR2 and VEGFR3 in human umbilical vein EC (HUVEC) and human microvascular EC (MEC). The results show that VEGFR1–VEGFR2 levels are more closely coupled than VEGFR1–VEGFR3 or VEGFR2–VEGFR3 in HUVEC and MEC. This computational methodology can be extended to investigate other molecules or biological processes such as cell cycle. PMID:25329517

  8. Revealing shared and distinct gene network organization in Arabidopsis immune responses by integrative analysis.

    PubMed

    Dong, Xiaobao; Jiang, Zhenhong; Peng, You-Liang; Zhang, Ziding

    2015-03-01

    Pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) are two main plant immune responses to counter pathogen invasion. Genome-wide gene network organizing principles leading to quantitative differences between PTI and ETI have remained elusive. We combined an advanced machine learning method and modular network analysis to systematically characterize the organizing principles of Arabidopsis (Arabidopsis thaliana) PTI and ETI at three network resolutions. At the single network node/edge level, we ranked genes and gene interactions based on their ability to distinguish immune response from normal growth and successfully identified many immune-related genes associated with PTI and ETI. Topological analysis revealed that the top-ranked gene interactions tend to link network modules. At the subnetwork level, we identified a subnetwork shared by PTI and ETI encompassing 1,159 genes and 1,289 interactions. This subnetwork is enriched in interactions linking network modules and is also a hotspot of attack by pathogen effectors. The subnetwork likely represents a core component in the coordination of multiple biological processes to favor defense over development. Finally, we constructed modular network models for PTI and ETI to explain the quantitative differences in the global network architecture. Our results indicate that the defense modules in ETI are organized into relatively independent structures, explaining the robustness of ETI to genetic mutations and effector attacks. Taken together, the multiscale comparisons of PTI and ETI provide a systems biology perspective on plant immunity and emphasize coordination among network modules to establish a robust immune response. PMID:25614062

  9. Distinct compositional thin layers at mid-mantle depths beneath northeast China revealed by the USArray

    NASA Astrophysics Data System (ADS)

    Niu, Fenglin

    2014-09-01

    We observe a clear seismic arrival at ∼35-45 s after the direct P wave in USArray recordings of two deep earthquakes occurring beneath northeast China. Velocity-spectrum and beam-forming analyses reveal that this arrival has a lower slowness value than the direct P wave and a back azimuth slightly different from the great-circle direction. The measured slowness and arrival time indicate that it is a transmitted S to P conversion from structures below the sources. We employ the common-conversion-point (CCP) stacking and diffraction migration methods to determine the location and geometric features of the seismic structures. The CCP stacking image indicates that the structure is a localized discontinuity at ∼1000 km with a dimension at ∼200 km by ∼50 km along the E-W and N-S directions, respectively. It is located at ∼150 km northeast to the two events. The 2D migrated images, on the other hand, indicate that the sources structure are reflectors dipping northeastwards by ∼17° at a slightly shallower depths. The reflectors have a length scale of ∼100 km ant their centers are ∼50 km away from the epicenters of the two earthquakes. Forward waveform modeling suggests that the dipping reflectors may be thin layers with a thickness of few kilometers. The layers have a lower shear velocity and a higher density than that of the surrounding mantle, which matches well with those predicted for mid-ocean-ridge basalt (MORB) at mid-mantle depths, according to a recent ab initio study. Combined with the results from previous studies, our observations here suggest that the former oceanic crust may be ubiquitously present in the lower mantle beneath subduction zones.

  10. Revealing Shared and Distinct Gene Network Organization in Arabidopsis Immune Responses by Integrative Analysis1

    PubMed Central

    Dong, Xiaobao; Jiang, Zhenhong; Peng, You-Liang; Zhang, Ziding

    2015-01-01

    Pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) are two main plant immune responses to counter pathogen invasion. Genome-wide gene network organizing principles leading to quantitative differences between PTI and ETI have remained elusive. We combined an advanced machine learning method and modular network analysis to systematically characterize the organizing principles of Arabidopsis (Arabidopsis thaliana) PTI and ETI at three network resolutions. At the single network node/edge level, we ranked genes and gene interactions based on their ability to distinguish immune response from normal growth and successfully identified many immune-related genes associated with PTI and ETI. Topological analysis revealed that the top-ranked gene interactions tend to link network modules. At the subnetwork level, we identified a subnetwork shared by PTI and ETI encompassing 1,159 genes and 1,289 interactions. This subnetwork is enriched in interactions linking network modules and is also a hotspot of attack by pathogen effectors. The subnetwork likely represents a core component in the coordination of multiple biological processes to favor defense over development. Finally, we constructed modular network models for PTI and ETI to explain the quantitative differences in the global network architecture. Our results indicate that the defense modules in ETI are organized into relatively independent structures, explaining the robustness of ETI to genetic mutations and effector attacks. Taken together, the multiscale comparisons of PTI and ETI provide a systems biology perspective on plant immunity and emphasize coordination among network modules to establish a robust immune response. PMID:25614062

  11. Genomic DNA Methylation Analyses Reveal the Distinct Profiles in Castor Bean Seeds with Persistent Endosperms.

    PubMed

    Xu, Wei; Yang, Tianquan; Dong, Xue; Li, De-Zhu; Liu, Aizhong

    2016-06-01

    Investigations of genomic DNA methylation in seeds have been restricted to a few model plants. The endosperm genomic DNA hypomethylation has been identified in angiosperm, but it is difficult to dissect the mechanism of how this hypomethylation is established and maintained because endosperm is ephemeral and disappears with seed development in most dicots. Castor bean (Ricinus communis), unlike Arabidopsis (Arabidopsis thaliana), endosperm is persistent throughout seed development, providing an excellent model in which to dissect the mechanism of endosperm genomic hypomethylation in dicots. We characterized the DNA methylation-related genes encoding DNA methyltransferases and demethylases and analyzed their expression profiles in different tissues. We examined genomic methylation including CG, CHG, and CHH contexts in endosperm and embryo tissues using bisulfite sequencing and revealed that the CHH methylation extent in endosperm and embryo was, unexpectedly, substantially higher than in previously studied plants, irrespective of the CHH percentage in their genomes. In particular, we found that the endosperm exhibited a global reduction in CG and CHG methylation extents relative to the embryo, markedly switching global gene expression. However, CHH methylation occurring in endosperm did not exhibit a significant reduction. Combining with the expression of 24-nucleotide small interfering RNAs (siRNAs) mapped within transposable element (TE) regions and genes involved in the RNA-directed DNA methylation pathway, we demonstrate that the 24-nucleotide siRNAs played a critical role in maintaining CHH methylation and repressing the activation of TEs in persistent endosperm development. This study discovered a novel genomic DNA methylation pattern and proposes the potential mechanism occurring in dicot seeds with persistent endosperm. PMID:27208275

  12. Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities

    PubMed Central

    2010-01-01

    Background The term endothelial progenitor cells (EPCs) is currently used to refer to cell populations which are quite dissimilar in terms of biological properties. This study provides a detailed molecular fingerprint for two EPC subtypes: early EPCs (eEPCs) and outgrowth endothelial cells (OECs). Methods Human blood-derived eEPCs and OECs were characterised by using genome-wide transcriptional profiling, 2D protein electrophoresis, and electron microscopy. Comparative analysis at the transcript and protein level included monocytes and mature endothelial cells as reference cell types. Results Our data show that eEPCs and OECs have strikingly different gene expression signatures. Many highly expressed transcripts in eEPCs are haematopoietic specific (RUNX1, WAS, LYN) with links to immunity and inflammation (TLRs, CD14, HLAs), whereas many transcripts involved in vascular development and angiogenesis-related signalling pathways (Tie2, eNOS, Ephrins) are highly expressed in OECs. Comparative analysis with monocytes and mature endothelial cells clusters eEPCs with monocytes, while OECs segment with endothelial cells. Similarly, proteomic analysis revealed that 90% of spots identified by 2-D gel analysis are common between OECs and endothelial cells while eEPCs share 77% with monocytes. In line with the expression pattern of caveolins and cadherins identified by microarray analysis, ultrastructural evaluation highlighted the presence of caveolae and adherens junctions only in OECs. Conclusions This study provides evidence that eEPCs are haematopoietic cells with a molecular phenotype linked to monocytes; whereas OECs exhibit commitment to the endothelial lineage. These findings indicate that OECs might be an attractive cell candidate for inducing therapeutic angiogenesis, while eEPC should be used with caution because of their monocytic nature. PMID:20465783

  13. Distinct functions of neuromedin u and neuromedin s in orange-spotted grouper.

    PubMed

    Li, Shuisheng; Xiao, Ling; Liu, Qiongyu; Zheng, Binbin; Chen, Huapu; Liu, Xiaochun; Zhang, Yong; Lin, Haoran

    2015-10-01

    Neuromedin U (NMU) and neuromedin S (NMS) play inhibitory roles in the regulation of food intake and energy homeostasis in mammals. However, their functions are not clearly established in teleost fish. In the present study, nmu and nms homologs were identified in several fish species. Subsequently, their cDNA sequences were cloned from the orange-spotted grouper (Epinephelus coioides). Sequence analysis showed that the orange-spotted grouper Nmu proprotein contains a 21-amino acid mature Nmu peptide (Nmu-21). The Nms proprotein lost the typical mature Nms peptide, but it retains a putative 34-amino acid peptide (Nmsrp). In situ hybridization revealed that nmu- and nms-expressing cells are mainly localized in the hypothalamic regions associated with appetite regulation. Food deprivation decreased the hypothalamic nmu mRNA levels but induced an increase of nms mRNA levels. Periprandial expression analysis showed that hypothalamic expression of nmu increased significantly at 3 h post-feeding, while nms expression was elevated at the normal feeding time. I.p. injection of synthetic Nmu-21 peptide suppressed the hypothalamic neuropeptide y (npy) expression, while Nmsrp administration significantly increased the expression of npy and orexin in orange-spotted grouper. Furthermore, the mRNA levels of LH beta subunit (lhβ) and gh in the pituitary were significantly down-regulated after Nmu-21 peptide administration, while Nmsrp was able to significantly stimulate the expression of FSH beta subunit (fshβ), prolactin (prl), and somatolaction (sl). Our results indicate that nmu and nms possess distinct neuroendocrine functions and pituitary functions in the orange spotted grouper. PMID:26162607

  14. Superresolution imaging reveals structurally distinct periodic patterns of chromatin along pachytene chromosomes

    PubMed Central

    Fournier, David; Redl, Stefan; Best, Gerrit; Borsos, Máté; Tiwari, Vijay K.; Tachibana-Konwalski, Kikuë; Ketting, René F.; Parekh, Sapun H.; Cremer, Christoph; Birk, Udo J.

    2015-01-01

    During meiosis, homologous chromosomes associate to form the synaptonemal complex (SC), a structure essential for fertility. Information about the epigenetic features of chromatin within this structure at the level of superresolution microscopy is largely lacking. We combined single-molecule localization microscopy (SMLM) with quantitative analytical methods to describe the epigenetic landscape of meiotic chromosomes at the pachytene stage in mouse oocytes. DNA is found to be nonrandomly distributed along the length of the SC in condensed clusters. Periodic clusters of repressive chromatin [trimethylation of histone H3 at lysine (Lys) 27 (H3K27me3)] are found at 500-nm intervals along the SC, whereas one of the ends of the SC displays a large and dense cluster of centromeric histone mark [trimethylation of histone H3 at Lys 9 (H3K9me3)]. Chromatin associated with active transcription [trimethylation of histone H3 at Lys 4 (H3K4me3)] is arranged in a radial hair-like loop pattern emerging laterally from the SC. These loops seem to be punctuated with small clusters of H3K4me3 with an average spread larger than their periodicity. Our findings indicate that the nanoscale structure of the pachytene chromosomes is constrained by periodic patterns of chromatin marks, whose function in recombination and higher order genome organization is yet to be elucidated. PMID:26561583

  15. Validation of Endothelin B Receptor Antibodies Reveals Two Distinct Receptor-related Bands on Western Blot

    PubMed Central

    Barr, Travis P.; Kornberg, Daniel; Montmayeur, Jean-Pierre; Long, Melinda; Reichheld, Stephen; Strichartz, Gary R.

    2014-01-01

    Antibodies are important tools for the study of protein expression, but are often used without full validation. In this study, we use Western blots to characterize antibodies targeted to the N- (NT) or C-termini (CT) and the second (IL2) or third intracellular (IL3) loops of the endothelin B receptor (ETB). The IL2-targeted antibody accurately detected endogenous ETB expression in rat brain and cultured rat astrocytes by labeling a 50kD band, the expected weight of full-length ETB. However, this antibody failed to detect transfected ETB in HEK293 cultures. In contrast, the NT-targeted antibody accurately detected endogenous ETB in rat astrocyte cultures and transfected ETB in HEK293 cultures by labeling a 37 kD band, but failed to detect endogenous ETB in rat brain. Bands detected by the CT-targeted or IL3-targeted antibodies were found to be unrelated to ETB. Our findings show that functional ETB receptors can be detected at 50 kD or 37 kD on Western blot, with drastic differences in antibody affinity for these bands. The 37 kD band likely reflects ETB receptor processing, which appears to be dependent on cell type and/or culture condition. PMID:25232999

  16. Superresolution imaging reveals structurally distinct periodic patterns of chromatin along pachytene chromosomes.

    PubMed

    Prakash, Kirti; Fournier, David; Redl, Stefan; Best, Gerrit; Borsos, Máté; Tiwari, Vijay K; Tachibana-Konwalski, Kikuë; Ketting, René F; Parekh, Sapun H; Cremer, Christoph; Birk, Udo J

    2015-11-24

    During meiosis, homologous chromosomes associate to form the synaptonemal complex (SC), a structure essential for fertility. Information about the epigenetic features of chromatin within this structure at the level of superresolution microscopy is largely lacking. We combined single-molecule localization microscopy (SMLM) with quantitative analytical methods to describe the epigenetic landscape of meiotic chromosomes at the pachytene stage in mouse oocytes. DNA is found to be nonrandomly distributed along the length of the SC in condensed clusters. Periodic clusters of repressive chromatin [trimethylation of histone H3 at lysine (Lys) 27 (H3K27me3)] are found at 500-nm intervals along the SC, whereas one of the ends of the SC displays a large and dense cluster of centromeric histone mark [trimethylation of histone H3 at Lys 9 (H3K9me3)]. Chromatin associated with active transcription [trimethylation of histone H3 at Lys 4 (H3K4me3)] is arranged in a radial hair-like loop pattern emerging laterally from the SC. These loops seem to be punctuated with small clusters of H3K4me3 with an average spread larger than their periodicity. Our findings indicate that the nanoscale structure of the pachytene chromosomes is constrained by periodic patterns of chromatin marks, whose function in recombination and higher order genome organization is yet to be elucidated. PMID:26561583

  17. The Structurally Plastic CH2 Domain Is Linked to Distinct Functions of Fimbrins/Plastins.

    PubMed

    Zhang, Ruihui; Chang, Ming; Zhang, Meng; Wu, Youjun; Qu, Xiaolu; Huang, Shanjin

    2016-08-19

    Fimbrins/plastins have been implicated in the generation of distinct actin structures, which are linked to different cellular processes. Historically, fimbrins/plastins were mainly considered as generating tight actin bundles. Here, we demonstrate that different members of the fimbrin/plastin family have diverged biochemically during evolution to generate either tight actin bundles or loose networks with distinct biochemical and biophysical properties. Using the phylogenetically and functionally distinct Arabidopsis fimbrins FIM4 and FIM5 we found that FIM4 generates both actin bundles and cross-linked actin filaments, whereas FIM5 only generates actin bundles. The distinct functions of FIM4 and FIM5 are clearly observed at single-filament resolution. Domain swapping experiments showed that cooperation between the conformationally plastic calponin-homology domain 2 (CH2) and the N-terminal headpiece determines the function of the full-length protein. Our study suggests that the structural plasticity of fimbrins/plastins has biologically meaningful consequences, and provides novel insights into the structure-function relationship of fimbrins/plastins as well as shedding light on how cells generate distinct actin structures. PMID:27261463

  18. Beta and gamma-cytoplasmic actins display distinct distribution and functional diversity.

    PubMed

    Dugina, Vera; Zwaenepoel, Ingrid; Gabbiani, Giulio; Clément, Sophie; Chaponnier, Christine

    2009-08-15

    Using newly generated monoclonal antibodies, we have compared the distribution of beta- and gamma-cytoplasmic actin in fibroblastic and epithelial cells, in which they play crucial roles during various key cellular processes. Whereas beta-actin is preferentially localized in stress fibers, circular bundles and at cell-cell contacts, suggesting a role in cell attachment and contraction, gamma-actin displays a more versatile organization, according to cell activities. In moving cells, gamma-actin is mainly organized as a meshwork in cortical and lamellipodial structures, suggesting a role in cell motility; in stationary cells, gamma-actin is also recruited into stress fibers. beta-actin-depleted cells become highly spread, display broad protrusions and reduce their stress-fiber content; by contrast, gamma-actin-depleted cells acquire a contractile phenotype with thick actin bundles and shrinked lamellar and lamellipodial structures. Moreover, beta- and gamma-actin depleted fibroblasts exhibit distinct changes in motility compared with their controls, suggesting a specific role for each isoform in cell locomotion. Our results reveal new aspects of beta- and gamma-actin organization that support their functional diversity. PMID:19638415

  19. Molecular dissection of radixin: distinct and interdependent functions of the amino- and carboxy-terminal domains

    PubMed Central

    1995-01-01

    The ERM proteins--ezrin, radixin, and moesin--occur in particular cortical cytoskeletal structures. Several lines of evidence suggest that they interact with both cytoskeletal elements and plasma membrane components. Here we described the properties of full-length and truncated radixin polypeptides expressed in transfected cells. In stable transfectants, exogenous full-length radixin behaves much like endogenous ERM proteins, localizing to the same cortical structures. However, the presence of full-length radixin or its carboxy-terminal domain in cortical structures correlates with greatly diminished staining of endogenous moesin in those structures, suggesting that radixin and moesin compete for a limiting factor required for normal associations in the cell. The results also reveal distinct roles for the amino- and carboxy-terminal domains. At low levels relative to endogenous radixin, the carboxy-terminal polypeptide is associated with most of the correct cortical targets except cleavage furrows. In contrast, the amino-terminal polypeptide is diffusely localized throughout the cell. Low level expression of full-length radixin or either of the truncated polypeptides has no detectable effect on cell physiology. However, high level expression of the carboxy-terminal domain dramatically disrupts normal cytoskeletal structures and functions. At these high levels, the amino-terminal polypeptide does localize to cortical structures, but does not affect the cells. We conclude that the behavior of radixin in cells depends upon activities contributed by separate domains of the protein, but also requires modulating interactions between those domains. PMID:7744951

  20. Identification of novel peptide substrates for protein farnesyltransferase reveals two substrate classes with distinct sequence selectivities

    PubMed Central

    Hougland, James L.; Hicks, Katherine A.; Hartman, Heather L.; Kelly, Rebekah A.; Watt, Terry J.; Fierke, Carol A.

    2010-01-01

    Prenylation is a post-translational modification essential for the proper localization and function of many proteins. Farnesylation, the attachment of a 15-carbon farnesyl group near the C-terminus of protein substrates, is catalyzed by protein farnesyltransferase (FTase). Farnesylation has received significant interest as a target for pharmaceutical development and farnesyltransferase inhibitors (FTIs) are in clinical trials as cancer therapeutics. However, as the total complement of prenylated proteins is unknown, the FTase substrates responsible for FTI efficacy are not yet understood. Identifying novel prenylated proteins within the human proteome constitutes an important step towards understanding prenylation-dependent cellular processes. Based on sequence preferences for FTase derived from analysis of known farnesylated proteins, we selected and screened a library of small peptides representing the C-termini of 213 human proteins for activity with FTase. We identified 77 novel FTase substrates that exhibit multiple-turnover reactivity within this library; our library also contained 85 peptides that can be farnesylated by FTase only under single-turnover conditions. Based on these results, a second library was designed that yielded an additional 29 novel multiple-turnover FTase substrates and 45 single-turnover substrates. The two classes of substrates exhibit different specificity requirements. Efficient multiple-turnover reactivity correlates with the presence of a nonpolar amino acid at the a2 position and a Phe, Met, or Gln at the terminal X residue, consistent with the proposed Ca1a2X sequence model. In contrast, the sequences of the single-turnover substrates vary significantly more at both the a2 and X residues and are not well-described by current farnesylation algorithms. These results improve the definition of prenyltransferase substrate specificity, test the efficacy of substrate algorithms, and provide valuable information about therapeutic targets

  1. High-resolution imaging of cardiomyocyte behavior reveals two distinct steps in ventricular trabeculation

    PubMed Central

    Staudt, David W.; Liu, Jiandong; Thorn, Kurt S.; Stuurman, Nico; Liebling, Michael; Stainier, Didier Y. R.

    2014-01-01

    Over the course of development, the vertebrate heart undergoes a series of complex morphogenetic processes that transforms it from a simple myocardial epithelium to the complex 3D structure required for its function. One of these processes leads to the formation of trabeculae to optimize the internal structure of the ventricle for efficient conduction and contraction. Despite the important role of trabeculae in the development and physiology of the heart, little is known about their mechanism of formation. Using 3D time-lapse imaging of beating zebrafish hearts, we observed that the initiation of cardiac trabeculation can be divided into two processes. Before any myocardial cell bodies have entered the trabecular layer, cardiomyocytes extend protrusions that invade luminally along neighboring cell-cell junctions. These protrusions can interact within the trabecular layer to form new cell-cell contacts. Subsequently, cardiomyocytes constrict their abluminal surface, moving their cell bodies into the trabecular layer while elaborating more protrusions. We also examined the formation of these protrusions in trabeculation-deficient animals, including erbb2 mutants, tnnt2a morphants, which lack cardiac contractions and flow, and myh6 morphants, which lack atrial contraction and exhibit reduced flow. We found that, compared with cardiomyocytes in wild-type hearts, those in erbb2 mutants were less likely to form protrusions, those in tnnt2a morphants formed less stable protrusions, and those in myh6 morphants extended fewer protrusions per cell. Thus, through detailed 4D imaging of beating hearts, we have identified novel cellular behaviors underlying cardiac trabeculation. PMID:24401373

  2. mTORC1 and mTORC2 have largely distinct functions in Purkinje cells.

    PubMed

    Angliker, Nico; Burri, Michael; Zaichuk, Mariana; Fritschy, Jean-Marc; Rüegg, Markus A

    2015-10-01

    The mammalian target of rapamycin (mTOR) is a key regulator of cellular growth which associates with other proteins to form two multi-protein complexes called mTORC1 and mTORC2. Dysregulation of mTORC1 signalling in brain is implicated in neuropathological conditions such as autism spectrum or neurodegenerative disorders. Accordingly, allosteric mTOR inhibitors are currently in clinical trials for the treatment of such disorders. Here, we ablated either mTORC1 or mTORC2 conditionally in Purkinje cells of the mouse cerebellum to dissect their role in the development, function and survival of these neurons. We find that the two mouse models largely differ from each other by phenotype and cellular responses. Inactivation of mTORC2, but not of mTORC1, led to motor coordination deficits at an early age. This phenotype correlated with developmental deficits in climbing fibre elimination and impaired dendritic self-avoidance in mTORC2-deficient Purkinje cells. In contrast, inactivation of mTORC1, but not of mTORC2, affected social interest of the mice and caused a progressive loss of Purkinje cells due to apoptosis. This cell loss was paralleled by age-dependent motor deficits. Comparison of mTORC1-deficient Purkinje cells with those deficient for the mTORC1 inhibitor TSC1 revealed a striking overlap in Purkinje cell degeneration and death, which included neurofilamentopathy and reactive gliosis. Altogether, our study reveals distinct roles of mTORC1 and mTORC2 in Purkinje cells for mouse behaviour and the survival of neurons. Our study also highlights a convergence between the phenotypes of Purkinje cells lacking mTORC1 activity and those expressing constitutively active mTORC1 due to TSC1 deficiency. PMID:26296489

  3. Distinct Impacts of Eda and Edar Loss of Function on the Mouse Dentition

    PubMed Central

    Charles, Cyril; Pantalacci, Sophie; Tafforeau, Paul; Headon, Denis; Laudet, Vincent; Viriot, Laurent

    2009-01-01

    Background The Eda-A1-Edar signaling pathway is involved in the development of organs with an ectodermal origin, including teeth. In mouse, mutants are known for both the ligand, Eda-A1 (Tabby), and the receptor, Edar (Downless). The adult dentitions of these two mutants have classically been considered to be similar. However, previous studies mentioned differences in embryonic dental development between EdaTa and Edardl-J mutants. A detailed study of tooth morphology in mutants bearing losses of functions of these two genes thus appears necessary to test the pattern variability induced by the developmental modifications. Methodology/Principal Findings 3D-reconstructions of the cheek teeth have been performed at the ESRF (Grenoble, France) by X-ray synchrotron microtomography to assess dental morphology. The morphological variability observed in EdaTa and Edardl-J mutants have then been compared in detail. Despite patchy similarities, our detailed work on cheek teeth in EdaTa and Edardl-J mice show that all dental morphotypes defined in Edardl-J mice resolutely differ from those of EdaTa mice. This study reveals that losses of function of Eda and Edar have distinct impacts on the tooth size and morphology, contrary to what has previously been thought. Conclusion/Signifiance The results indicate that unknown mechanisms of the Eda pathway are implicated in tooth morphogenesis. Three hypotheses could explain our results; an unexpected role of the Xedar pathway (which is influenced by the Eda gene product but not that of Edar), a more complex connection than has been appreciated between Edar and another protein, or a ligand-independent activity for Edar. Further work is necessary to test these hypotheses and improve our understanding of the mechanisms of development. PMID:19340299

  4. Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential AT hook, BAH, and bromodomains.

    PubMed

    Cairns, B R; Schlichter, A; Erdjument-Bromage, H; Tempst, P; Kornberg, R D; Winston, F

    1999-11-01

    RSC is an essential 15 protein nucleosome-remodeling complex from S. cerevisiae. We have identified two closely related RSC members, Rsc1 and Rsc2. Biochemical analysis revealed Rsc1 and Rsc2 in distinct complexes, defining two forms of RSC. Genetic analysis has shown that Rsc1 and Rsc2 possess shared and unique functions. Rsc1 and Rsc2 each contain two bromodomains, a bromo-adjacent homology (BAH) domain, and an AT hook. One of the bromodomains, the BAH domain, and the AT hook are each essential for Rsc1 and Rsc2 functions, although they are not required for assembly into RSC complexes. Therefore, these domains are required for RSC function. Additional genetic analysis provides further evidence that RSC function is related to transcriptional control. PMID:10619019

  5. On Determinatives and the Category-Function Distinction: A Reply to Brett Reynolds

    ERIC Educational Resources Information Center

    Lenchuk, Iryna; Ahmed, Amer

    2014-01-01

    This article examines the arguments made in the article "Determiners, Feline Marsupials, and the Category-Function Distinction: A Critique of ELT Grammars" by Brett Reynolds recently published in the "TESL Canada Journal" (2013). In our response, we demonstrate that the author's arguments are problematic on both…

  6. Distinct Patterns of Grey Matter Abnormality in High-Functioning Autism and Asperger's Syndrome

    ERIC Educational Resources Information Center

    McAlonan, Grainne M.; Suckling, John; Wong, Naikei; Cheung, Vinci; Lienenkaemper, Nina; Cheung, Charlton; Chua, Siew E.

    2008-01-01

    Background: Autism exists across a wide spectrum and there is considerable debate as to whether children with Asperger's syndrome, who have normal language milestones, should be considered to comprise a subgroup distinct other from high-functioning children with autism (HFA), who have a history of delayed language development. Magnetic resonance…

  7. Shared and Distinctive Origins and Correlates of Adult Attachment Representations: The Developmental Organization of Romantic Functioning

    PubMed Central

    Haydon, Katherine C.; Collins, W. Andrew; Salvatore, Jessica E.; Simpson, Jeffry A.; Roisman, Glenn I.

    2012-01-01

    To test proposals regarding the hierarchical organization of adult attachment, this study examined developmental origins of generalized and romantic attachment representations and their concurrent associations with romantic functioning. Participants (N = 112) in a 35-year prospective study completed the Adult Attachment Interview (AAI) and Current Relationship Interview (CRI). Two-way ANOVAs tested interactive associations of AAI and CRI security with infant attachment, early parenting quality, preschool ego resiliency, adolescent friendship quality, and adult romantic functioning. Both representations were associated with earlier parenting and core attachment-related romantic behavior, but romantic representations had distinctive links to ego resiliency and relationship-specific romantic behaviors. Attachment representations were independent and did not interactively predict romantic functioning, suggesting that they confer somewhat distinctive benefits for romantic functioning. PMID:22694197

  8. Cellular dynamics of regeneration reveals role of two distinct Pax7 stem cell populations in larval zebrafish muscle repair

    PubMed Central

    Pipalia, Tapan G.; Koth, Jana; Roy, Shukolpa D.; Hammond, Christina L.; Kawakami, Koichi

    2016-01-01

    ABSTRACT Heterogeneity of stem cells or their niches is likely to influence tissue regeneration. Here we reveal stem/precursor cell diversity during wound repair in larval zebrafish somitic body muscle using time-lapse 3D confocal microscopy on reporter lines. Skeletal muscle with incision wounds rapidly regenerates both slow and fast muscle fibre types. A swift immune response is followed by an increase in cells at the wound site, many of which express the muscle stem cell marker Pax7. Pax7+ cells proliferate and then undergo terminal differentiation involving Myogenin accumulation and subsequent loss of Pax7 followed by elongation and fusion to repair fast muscle fibres. Analysis of pax7a and pax7b transgenic reporter fish reveals that cells expressing each of the duplicated pax7 genes are distinctly localised in uninjured larvae. Cells marked by pax7a only or by both pax7a and pax7b enter the wound rapidly and contribute to muscle wound repair, but each behaves differently. Low numbers of pax7a-only cells form nascent fibres. Time-lapse microscopy revealed that the more numerous pax7b-marked cells frequently fuse to pre-existing fibres, contributing more strongly than pax7a-only cells to repair of damaged fibres. pax7b-marked cells are more often present in rows of aligned cells that are observed to fuse into a single fibre, but more rarely contribute to nascent regenerated fibres. Ablation of a substantial portion of nitroreductase-expressing pax7b cells with metronidazole prior to wounding triggered rapid pax7a-only cell accumulation, but this neither inhibited nor augmented pax7a-only cell-derived myogenesis and thus altered the cellular repair dynamics during wound healing. Moreover, pax7a-only cells did not regenerate pax7b cells, suggesting a lineage distinction. We propose a modified founder cell and fusion-competent cell model in which pax7a-only cells initiate fibre formation and pax7b cells contribute to fibre growth. This newly discovered cellular

  9. Sequence characterization of river buffalo Toll-like receptor genes 1-10 reveals distinct relationship with cattle and sheep.

    PubMed

    Dubey, P K; Goyal, S; Kathiravan, P; Mishra, B P; Gahlawat, S K; Kataria, R S

    2013-04-01

    The present study was undertaken to characterize the full-length transcripts of Toll-like receptor (TLR) genes 1-10 of river buffalo. The conceptualized amino acid identity of bubaline TLRs ranged between 86% to 100% with ruminants, while it ranged between 45% to 91% with other vertebrate species. Simple modular architecture tool (SMART) analysis revealed the presence of TIR domains and varying numbers of leucine-rich repeat motifs in all the buffalo TLRs. With respect to TIR domains, TLRs 1, 2 and 3 of river buffalo were found to have 99.3% identity with cattle and 100% identity of TLRs 4, 6 and 10 with sheep. Phylogenetic analysis of TLRs of buffalo and different vertebrate species revealed the clustering of major TLR gene subfamilies with high bootstrap values. The evolutionary relationship between buffalo and other ruminant species was found to vary among different TLRs. In order to understand the relationship between TLRs of different ruminant species, multidimensional scaling (MDS) analysis of pairwise amino acid differences between different species within each TLR was performed. Buffalo and cattle were found to be closely related only with respect to TLRs 1, 2 and 7, while buffalo and sheep were found to be clustering together with respect to TLRs 3, 6, 8 and 10. The distinct relationship of bubaline TLRs with cattle and sheep revealed the possible differences in the pathogen recognition receptor systems in these animals and consequently the differences in their susceptibility/resistance to various invading organisms. PMID:22694123

  10. Gain-of-Function Alleles in Caenorhabditis elegans Nuclear Hormone Receptor nhr-49 Are Functionally Distinct.

    PubMed

    Lee, Kayoung; Goh, Grace Ying Shyen; Wong, Marcus Andrew; Klassen, Tara Leah; Taubert, Stefan

    2016-01-01

    Nuclear hormone receptors (NHRs) are transcription factors that regulate numerous physiological and developmental processes and represent important drug targets. NHR-49, an ortholog of Hepatocyte Nuclear Factor 4 (HNF4), has emerged as a key regulator of lipid metabolism and life span in the nematode worm Caenorhabditis elegans. However, many aspects of NHR-49 function remain poorly understood, including whether and how it regulates individual sets of target genes and whether its activity is modulated by a ligand. A recent study identified three gain-of-function (gof) missense mutations in nhr-49 (nhr-49(et7), nhr-49(et8), and nhr-49(et13), respectively). These substitutions all affect the ligand-binding domain (LBD), which is critical for ligand binding and protein interactions. Thus, these alleles provide an opportunity to test how three specific residues contribute to NHR-49 dependent gene regulation. We used computational and molecular methods to delineate how these mutations alter NHR-49 activity. We find that despite originating from a screen favoring the activation of specific NHR-49 targets, all three gof alleles cause broad upregulation of NHR-49 regulated genes. Interestingly, nhr-49(et7) and nhr-49(et8) exclusively affect nhr-49 dependent activation, whereas the nhr-49(et13) surprisingly affects both nhr-49 mediated activation and repression, implicating the affected residue as dually important. We also observed phenotypic non-equivalence of these alleles, as they unexpectedly caused a long, short, and normal life span, respectively. Mechanistically, the gof substitutions altered neither protein interactions with the repressive partner NHR-66 and the coactivator MDT-15 nor the subcellular localization or expression of NHR-49. However, in silico structural modeling revealed that NHR-49 likely interacts with small molecule ligands and that the missense mutations might alter ligand binding, providing a possible explanation for increased NHR-49 activity. In

  11. CILAIR-Based Secretome Analysis of Obese Visceral and Subcutaneous Adipose Tissues Reveals Distinctive ECM Remodeling and Inflammation Mediators.

    PubMed

    Roca-Rivada, Arturo; Bravo, Susana Belen; Pérez-Sotelo, Diego; Alonso, Jana; Castro, Ana Isabel; Baamonde, Iván; Baltar, Javier; Casanueva, Felipe F; Pardo, María

    2015-01-01

    In the context of obesity, strong evidences support a distinctive pathological contribution of adipose tissue depending on its anatomical site of accumulation. Therefore, subcutaneous adipose tissue (SAT) has been lately considered metabolically benign compared to visceral fat (VAT), whose location is associated to the risk of developing cardiovascular disease, insulin resistance, and other associated comorbidities. Under the above situation, the chronic local inflammation that characterizes obese adipose tissue, has acquired a major role on the pathogenesis of obesity. In this work, we have analyzed for the first time human obese VAT and SAT secretomes using an improved quantitative proteomic approach for the study of tissue secretomes, Comparison of Isotope-Labeled Amino acid Incorporation Rates (CILAIR). The use of double isotope-labeling-CILAIR approach to analyze VAT and SAT secretomes allowed the identification of location-specific secreted proteins and its differential secretion. Additionally to the very high percentage of identified proteins previously implicated in obesity or in its comorbidities, this approach was revealed as a useful tool for the study of the obese adipose tissue microenvironment including extracellular matrix (ECM) remodeling and inflammatory status. The results herein presented reinforce the fact that VAT and SAT depots have distinct features and contribute differentially to metabolic disease. PMID:26198096

  12. Single Particle Tracking reveals two distinct environments for CD4 receptors at the surface of living T lymphocytes

    SciTech Connect

    Mascalchi, Patrice; Lamort, Anne Sophie; Salome, Laurence; Dumas, Fabrice

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer We studied the diffusion of single CD4 receptors on living lymphocytes. Black-Right-Pointing-Pointer This study reveals that CD4 receptors have either a random or confined diffusion. Black-Right-Pointing-Pointer The dynamics of unconfined CD4 receptors was accelerated by a temperature raise. Black-Right-Pointing-Pointer The dynamics of confined CD4 receptors was unchanged by a temperature raise. Black-Right-Pointing-Pointer Our results suggest the existence of two different environments for CD4 receptors. -- Abstract: We investigated the lateral diffusion of the HIV receptor CD4 at the surface of T lymphocytes at 20 Degree-Sign C and 37 Degree-Sign C by Single Particle Tracking using Quantum Dots. We found that the receptors presented two major distinct behaviors that were not equally affected by temperature changes. About half of the receptors showed a random diffusion with a diffusion coefficient increasing upon raising the temperature. The other half of the receptors was permanently or transiently confined with unchanged dynamics on raising the temperature. These observations suggest that two distinct subpopulations of CD4 receptors with different environments are present at the surface of living T lymphocytes.

  13. Comparing binding site information to binding affinity reveals that Crp/DNA complexes have several distinct binding conformers

    PubMed Central

    Holmquist, Peter C.; Holmquist, Gerald P.; Summers, Michael L.

    2011-01-01

    We show that the cAMP receptor protein (Crp) binds to DNA as several different conformers. This situation has precluded discovering a high correlation between any sequence property and binding affinity for proteins that bend DNA. Experimentally quantified affinities of Synechocystis sp. PCC 6803 cAMP receptor protein (SyCrp1), the Escherichia coli Crp (EcCrp, also CAP) and DNA were analyzed to mathematically describe, and make human-readable, the relationship of DNA sequence and binding affinity in a given system. Here, sequence logos and weight matrices were built to model SyCrp1 binding sequences. Comparing the weight matrix model to binding affinity revealed several distinct binding conformations. These Crp/DNA conformations were asymmetrical (non-palindromic). PMID:21586590

  14. Genomic reconstruction of the history of extant populations of India reveals five distinct ancestral components and a complex structure

    PubMed Central

    Basu, Analabha; Sarkar-Roy, Neeta; Majumder, Partha P.

    2016-01-01

    India, occupying the center stage of Paleolithic and Neolithic migrations, has been underrepresented in genome-wide studies of variation. Systematic analysis of genome-wide data, using multiple robust statistical methods, on (i) 367 unrelated individuals drawn from 18 mainland and 2 island (Andaman and Nicobar Islands) populations selected to represent geographic, linguistic, and ethnic diversities, and (ii) individuals from populations represented in the Human Genome Diversity Panel (HGDP), reveal four major ancestries in mainland India. This contrasts with an earlier inference of two ancestries based on limited population sampling. A distinct ancestry of the populations of Andaman archipelago was identified and found to be coancestral to Oceanic populations. Analysis of ancestral haplotype blocks revealed that extant mainland populations (i) admixed widely irrespective of ancestry, although admixtures between populations was not always symmetric, and (ii) this practice was rapidly replaced by endogamy about 70 generations ago, among upper castes and Indo-European speakers predominantly. This estimated time coincides with the historical period of formulation and adoption of sociocultural norms restricting intermarriage in large social strata. A similar replacement observed among tribal populations was temporally less uniform. PMID:26811443

  15. Genomic reconstruction of the history of extant populations of India reveals five distinct ancestral components and a complex structure.

    PubMed

    Basu, Analabha; Sarkar-Roy, Neeta; Majumder, Partha P

    2016-02-01

    India, occupying the center stage of Paleolithic and Neolithic migrations, has been underrepresented in genome-wide studies of variation. Systematic analysis of genome-wide data, using multiple robust statistical methods, on (i) 367 unrelated individuals drawn from 18 mainland and 2 island (Andaman and Nicobar Islands) populations selected to represent geographic, linguistic, and ethnic diversities, and (ii) individuals from populations represented in the Human Genome Diversity Panel (HGDP), reveal four major ancestries in mainland India. This contrasts with an earlier inference of two ancestries based on limited population sampling. A distinct ancestry of the populations of Andaman archipelago was identified and found to be coancestral to Oceanic populations. Analysis of ancestral haplotype blocks revealed that extant mainland populations (i) admixed widely irrespective of ancestry, although admixtures between populations was not always symmetric, and (ii) this practice was rapidly replaced by endogamy about 70 generations ago, among upper castes and Indo-European speakers predominantly. This estimated time coincides with the historical period of formulation and adoption of sociocultural norms restricting intermarriage in large social strata. A similar replacement observed among tribal populations was temporally less uniform. PMID:26811443

  16. Human germline and pan-cancer variomes and their distinct functional profiles

    PubMed Central

    Pan, Yang; Karagiannis, Konstantinos; Zhang, Haichen; Dingerdissen, Hayley; Shamsaddini, Amirhossein; Wan, Quan; Simonyan, Vahan; Mazumder, Raja

    2014-01-01

    Identification of non-synonymous single nucleotide variations (nsSNVs) has exponentially increased due to advances in Next-Generation Sequencing technologies. The functional impacts of these variations have been difficult to ascertain because the corresponding knowledge about sequence functional sites is quite fragmented. It is clear that mapping of variations to sequence functional features can help us better understand the pathophysiological role of variations. In this study, we investigated the effect of nsSNVs on more than 17 common types of post-translational modification (PTM) sites, active sites and binding sites. Out of 1 705 285 distinct nsSNVs on 259 216 functional sites we identified 38 549 variations that significantly affect 10 major functional sites. Furthermore, we found distinct patterns of site disruptions due to germline and somatic nsSNVs. Pan-cancer analysis across 12 different cancer types led to the identification of 51 genes with 106 nsSNV affected functional sites found in 3 or more cancer types. 13 of the 51 genes overlap with previously identified Significantly Mutated Genes (Nature. 2013 Oct 17;502(7471)). 62 mutations in these 13 genes affecting functional sites such as DNA, ATP binding and various PTM sites occur across several cancers and can be prioritized for additional validation and investigations. PMID:25232094

  17. In Vitro Reassembly of the Ribose ATP-binding Cassette Transporter Reveals a Distinct Set of Transport Complexes*

    PubMed Central

    Clifton, Matthew C.; Simon, Michael J.; Erramilli, Satchal K.; Zhang, Huide; Zaitseva, Jelena; Hermodson, Mark A.; Stauffacher, Cynthia V.

    2015-01-01

    Bacterial ATP-binding cassette (ABC) importers are primary active transporters that are critical for nutrient uptake. Based on structural and functional studies, ABC importers can be divided into two distinct classes, type I and type II. Type I importers follow a strict alternating access mechanism that is driven by the presence of the substrate. Type II importers accept substrates in a nucleotide-free state, with hydrolysis driving an inward facing conformation. The ribose transporter in Escherichia coli is a tripartite complex consisting of a cytoplasmic ATP-binding cassette protein, RbsA, with fused nucleotide binding domains; a transmembrane domain homodimer, RbsC2; and a periplasmic substrate binding protein, RbsB. To investigate the transport mechanism of the complex RbsABC2, we probed intersubunit interactions by varying the presence of the substrate ribose and the hydrolysis cofactors, ATP/ADP and Mg2+. We were able to purify a full complex, RbsABC2, in the presence of stable, transition state mimics (ATP, Mg2+, and VO4); a RbsAC complex in the presence of ADP and Mg2+; and a heretofore unobserved RbsBC complex in the absence of cofactors. The presence of excess ribose also destabilized complex formation between RbsB and RbsC. These observations suggest that RbsABC2 shares functional traits with both type I and type II importers, as well as possessing unique features, and employs a distinct mechanism relative to other ABC transporters. PMID:25533465

  18. Immunological profiling in chronic rhinosinusitis with nasal polyps reveals distinct VEGF and GMCSF signatures during symptomatic exacerbations

    PubMed Central

    Divekar, Rohit D.; Samant, Shefali; Rank, Matthew A.; Hagan, John; Lal, Devyani; O’Brien, Erin K.; Kita, Hirohito

    2015-01-01

    Background The mechanisms and immune pathways associated with chronic rhinosinusitis (CRS) are not fully understood. Immunological changes during acute exacerbation of CRS may provide valuable clues to the pathogenesis and perpetuation of the disease. Objective To characterize local and systemic immune responses associated with acute worsening of sinonasal symptoms during exacerbation in CRS with nasal polyps (CRSwNP) compared to controls. Methods This was a noninterventional prospective study of individuals with CRSwNP and normal controls. Subjects underwent a baseline visit with collection of nasal secretions, nasal washes, and serum specimens. Within 3 days of acute worsening of sinonasal symptoms, subjects underwent a study visit, followed by a post-visit 2 weeks later. The Sinonasal Outcome Test-22 (SNOT-22) scores and immunological parameters in the specimens were analyzed using a novel, unsupervised learning method and by conventional univariate analysis. Results Both CRSwNP patients and control subjects showed a significant increase in SNOT-22 scores during acute exacerbation. Increased nasal levels of IL-6, IL-5, and eosinophil major basic protein were observed in CRSwNP patients. A network analysis of serum specimens revealed changes in a set of immunological parameters, which are distinctly associated with CRSwNP but not with controls. In particular, systemic increases in VEGF and GM-CSF levels were notable and were validated by a conventional analysis. Conclusions CRSwNP patients demonstrate distinct immunological changes locally and systemically during acute exacerbation. Growth factors VEGF and GM-CSF may be involved in the immunopathogenesis of subjects with CRS and nasal polyps experiencing exacerbation. PMID:25429844

  19. Structure-Function from the Outside In: Long-range Tertiary Contacts in RNA Exhibit Distinct Catalytic Roles†

    PubMed Central

    Benz-Moy, Tara L.; Herschlag, Daniel

    2011-01-01

    The conserved catalytic core of the Tetrahymena group I ribozyme is encircled by peripheral elements. We have carried out a detailed structure-function study of the five long-range tertiary contacts that fasten these distal elements together. Mutational ablation of each of the tertiary contacts destabilizes the folded ribozyme, indicating a role of the peripheral elements in overall stability. Once folded, three of the five tertiary contact mutants exhibit defects in overall catalysis that range from 20- to 100-fold. These and the subsequent results indicate that the structural ring of peripheral elements does not act as a unitary element; rather, individual connections have distinct roles as further revealed by kinetic and thermodynamic dissection of the individual reaction steps. Ablation of P14 or the metal ion core/metal ion core receptor (MC/MCR) destabilizes docking of the substrate-containing P1 helix into tertiary interactions with the ribozyme’s conserved core. In contrast, ablation of the L9/P5 contact weakens binding of the guanosine nucleophile by slowing its association, without affecting P1 docking. The P13 and tetraloop/tetraloop receptor (TL/TLR) mutations had little functional effect and small, local structural changes, as revealed by hydroxyl radical footprinting, whereas the P14, MC/MCR, and L9/P5 mutants show structural changes distal from the mutation site. These changes extended into regions of the catalytic core involved in docking or guanosine binding. Thus, distinct allosteric pathways couple the long-range tertiary contacts to functional sites within the conserved core. This modular functional specialization may represent a fundamental strategy in RNA structure-function interrelationships. PMID:21815635

  20. Adult-born granule cells mature through two functionally distinct states

    PubMed Central

    Brunner, János; Neubrandt, Máté; Van-Weert, Susan; Andrási, Tibor; Kleine Borgmann, Felix B; Jessberger, Sebastian; Szabadics, János

    2014-01-01

    Adult-born granule cells (ABGCs) are involved in certain forms of hippocampus-dependent learning and memory. It has been proposed that young but functionally integrated ABGCs (4-weeks-old) specifically contribute to pattern separation functions of the dentate gyrus due to their heightened excitability, whereas old ABGCs (>8 weeks old) lose these capabilities. Measuring multiple cellular and integrative characteristics of 3- 10-week-old individual ABGCs, we show that ABGCs consist of two functionally distinguishable populations showing highly distinct input integration properties (one group being highly sensitive to narrow input intensity ranges while the other group linearly reports input strength) that are largely independent of the cellular age and maturation stage, suggesting that ‘classmate’ cells (born during the same period) can contribute to the network with fundamentally different functions. Thus, ABGCs provide two temporally overlapping but functionally distinct neuronal cell populations, adding a novel level of complexity to our understanding of how life-long neurogenesis contributes to adult brain function. DOI: http://dx.doi.org/10.7554/eLife.03104.001 PMID:25061223

  1. Adult-born granule cells mature through two functionally distinct states.

    PubMed

    Brunner, János; Neubrandt, Máté; Van-Weert, Susan; Andrási, Tibor; Kleine Borgmann, Felix B; Jessberger, Sebastian; Szabadics, János

    2014-01-01

    Adult-born granule cells (ABGCs) are involved in certain forms of hippocampus-dependent learning and memory. It has been proposed that young but functionally integrated ABGCs (4-weeks-old) specifically contribute to pattern separation functions of the dentate gyrus due to their heightened excitability, whereas old ABGCs (>8 weeks old) lose these capabilities. Measuring multiple cellular and integrative characteristics of 3- 10-week-old individual ABGCs, we show that ABGCs consist of two functionally distinguishable populations showing highly distinct input integration properties (one group being highly sensitive to narrow input intensity ranges while the other group linearly reports input strength) that are largely independent of the cellular age and maturation stage, suggesting that 'classmate' cells (born during the same period) can contribute to the network with fundamentally different functions. Thus, ABGCs provide two temporally overlapping but functionally distinct neuronal cell populations, adding a novel level of complexity to our understanding of how life-long neurogenesis contributes to adult brain function. PMID:25061223

  2. Distinct Signal Transduction Pathways Downstream of the (P)RR Revealed by Microarray and ChIP-chip Analyses

    PubMed Central

    Zaade, Daniela; Schmitz, Jennifer; Benke, Eileen; Klare, Sabrina; Seidel, Kerstin; Kirsch, Sebastian; Goldin-Lang, Petra; Zollmann, Frank S.; Unger, Thomas; Funke-Kaiser, Heiko

    2013-01-01

    The (pro)renin receptor ((P)RR) signaling is involved in different pathophysiologies ranging from cardiorenal end-organ damage via diabetic retinopathy to tumorigenesis. We have previously shown that the transcription factor promyelocytic leukemia zinc finger (PLZF) is an adaptor protein of the (P)RR. Furthermore, recent publications suggest that major functions of the (P)RR are mediated ligand-independently by its transmembrane and intracellular part, which acts as an accessory protein of V-ATPases. The transcriptome and recruitmentome downstream of the V-ATPase function and PLZF in the context of the (P)RR are currently unknown. Therefore, we performed a set of microarray and chromatin-immunoprecipitation (ChIP)-chip experiments using siRNA against the (P)RR, stable overexpression of PLZF, the PLZF translocation inhibitor genistein and the specific V-ATPase inhibitor bafilomycin to dissect transcriptional pathways downstream of the (P)RR. We were able to identify distinct and overlapping genetic signatures as well as novel real-time PCR-validated target genes of the different molecular functions of the (P)RR. Moreover, bioinformatic analyses of our data confirm the role of (P)RŔs signal transduction pathways in cardiovascular disease and tumorigenesis. PMID:23469216

  3. Key herbivores reveal limited functional redundancy on inshore coral reefs

    NASA Astrophysics Data System (ADS)

    Johansson, C. L.; van de Leemput, I. A.; Depczynski, M.; Hoey, A. S.; Bellwood, D. R.

    2013-12-01

    Marine ecosystems are facing increasing exposure to a range of stressors and declines in critical ecological functions. The likelihood of further loss of functions and resilience is dependent, in part, on the extent of functional redundancy (i.e. the capacity of one species to functionally compensate for the loss of another species) within critical functional groups. We used multiple metrics; species richness, generic richness, abundance and reserve capacity (i.e. the relative number of individuals available to fulfil the function if the numerically dominant species is lost), as indicators to assess the potential functional redundancy of four functional groups of herbivorous fishes (browsers, excavators, grazers and scrapers) in two of the worlds' most intact coral reef ecosystems: the Great Barrier Reef (GBR) and Ningaloo Reef in Western Australia. We found marked variations in potential redundancy among habitats within each reef system and functional groups. Despite negligible fishing of herbivorous fishes, coastal habitats in both reef systems had lower functional redundancy compared to offshore locations for all herbivorous fishes collectively and the four functional groups independently. This pattern was consistent in all four indicators of redundancy. The potential vulnerability of these coastal habitats is highlighted by recent shifts from coral to macroalgal dominance on several coastal reefs of the GBR. Our approach provides a simple yet revealing evaluation of potential functional redundancy. Moreover, it highlights the spatial variation in potential vulnerability and resilience of reef systems.

  4. Revealing quantum correlation by negativity of the Wigner function

    NASA Astrophysics Data System (ADS)

    Taghiabadi, Razieh; Akhtarshenas, Seyed Javad; Sarbishaei, Mohsen

    2016-05-01

    We analyze two two-mode continuous variable separable states with the same marginal states. We adopt the definition of classicality in the form of well-defined positive Wigner function describing the state and find that although the states possess positive local Wigner functions, they exhibit negative Wigner functions for the global states. Using the negativity of Wigner function as an indicator of nonclassicality, we show that despite these states possess different negativities of the Wigner function, they do not reveal this difference as phase space nonclassicalities such as negativity of the Mandel Q parameter or quadrature squeezing. We then concentrate on quantum correlation of these states and show that quantum discord and local quantum uncertainty, as two well-defined measures of quantum correlation, manifest the difference between negativity of the Wigner functions. The non-Gaussianity of these states is also examined and show that the difference in behavior of their non-Gaussianity is the same as the difference between negativity of their Wigner functions. We also investigate the influence of correlation rank criterion and find that when the states can be produced locally from classical states, the Wigner functions cannot reveal their quantum correlations.

  5. Functionalities of expressed messenger RNAs revealed from mutant phenotypes.

    PubMed

    Liao, Ben-Yang; Weng, Meng-Pin

    2016-07-01

    Total messenger RNAs mRNAs that are produced from a given gene under a certain set of conditions include both functional and nonfunctional transcripts. The high prevalence of nonfunctional mRNAs that have been detected in cells has raised questions regarding the functional implications of mRNA expression patterns and divergences. Phenotypes that result from the mutagenesis of protein-coding genes have provided the most straightforward descriptions of gene functions, and such data obtained from model organisms have facilitated investigations of the functionalities of expressed mRNAs. Mutant phenotype data from mouse tissues have revealed various attributes of functional mRNAs, including tissue-specificity, strength of expression, and evolutionary conservation. In addition, the role that mRNA expression evolution plays in driving morphological evolution has been revealed from studies designed to exploit morphological and physiological phenotypes of mouse mutants. Investigations into yeast essential genes (defined by an absence of colony growth after gene deletion) have further described gene regulatory strategies that reduce protein expression noise by mediating the rates of transcription and translation. In addition to the functional significance of expressed mRNAs as described in the abovementioned findings, the functionalities of other type of RNAs (i.e., noncoding RNAs) remain to be characterized with systematic mutations and phenotyping of the DNA regions that encode these RNA molecules. WIREs RNA 2016, 7:416-427. doi: 10.1002/wrna.1329 For further resources related to this article, please visit the WIREs website. PMID:26748449

  6. Proteomics Analysis Reveals Distinct Corona Composition on Magnetic Nanoparticles with Different Surface Coatings: Implications for Interactions with Primary Human Macrophages

    PubMed Central

    Vogt, Carmen; Pernemalm, Maria; Kohonen, Pekka; Laurent, Sophie; Hultenby, Kjell; Vahter, Marie; Lehtiö, Janne; Toprak, Muhammet S.; Fadeel, Bengt

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as promising contrast agents for magnetic resonance imaging. The influence of different surface coatings on the biocompatibility of SPIONs has been addressed, but the potential impact of the so-called corona of adsorbed proteins on the surface of SPIONs on their biological behavior is less well studied. Here, we determined the composition of the plasma protein corona on silica-coated versus dextran-coated SPIONs using mass spectrometry-based proteomics approaches. Notably, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed distinct protein corona compositions for the two different SPIONs. Relaxivity of silica-coated SPIONs was modulated by the presence of a protein corona. Moreover, the viability of primary human monocyte-derived macrophages was influenced by the protein corona on silica-coated, but not dextran-coated SPIONs, and the protein corona promoted cellular uptake of silica-coated SPIONs, but did not affect internalization of dextran-coated SPIONs. PMID:26444829

  7. Single-cell RNA-seq reveals distinct injury responses in different types of DRG sensory neurons

    PubMed Central

    Hu, Ganlu; Huang, Kevin; Hu, Youjin; Du, Guizhen; Xue, Zhigang; Zhu, Xianmin; Fan, Guoping

    2016-01-01

    Peripheral nerve injury leads to various injury-induced responses in sensory neurons including physiological pain, neuronal cell death, and nerve regeneration. In this study, we performed single-cell RNA-sequencing (scRNA-seq) analysis of mouse nonpeptidergic nociceptors (NP), peptidergic nociceptors (PEP), and large myelinated sensory neurons (LM) under both control and injury conditions at 3 days after sciatic nerve transection (SNT). After performing principle component and weighted gene co-expression network analysis, we categorized dorsal root ganglion (DRG) neurons into different subtypes and discovered co-regulated injury-response genes including novel regeneration associated genes (RAGs) in association with neuronal development, protein translation and cytoplasm transportation. In addition, we found significant up-regulation of the genes associated with cell death such as Pdcd2 in a subset of NP neurons after axotomy, implicating their actions in neuronal cell death upon nerve injury. Our study revealed the distinctive and sustained heterogeneity of transcriptomic responses to injury at single neuron level, implicating the involvement of different gene regulatory networks in nerve regeneration, neuronal cell death and neuropathy in different population of DRG neurons. PMID:27558660

  8. Single-cell RNA-seq reveals distinct injury responses in different types of DRG sensory neurons.

    PubMed

    Hu, Ganlu; Huang, Kevin; Hu, Youjin; Du, Guizhen; Xue, Zhigang; Zhu, Xianmin; Fan, Guoping

    2016-01-01

    Peripheral nerve injury leads to various injury-induced responses in sensory neurons including physiological pain, neuronal cell death, and nerve regeneration. In this study, we performed single-cell RNA-sequencing (scRNA-seq) analysis of mouse nonpeptidergic nociceptors (NP), peptidergic nociceptors (PEP), and large myelinated sensory neurons (LM) under both control and injury conditions at 3 days after sciatic nerve transection (SNT). After performing principle component and weighted gene co-expression network analysis, we categorized dorsal root ganglion (DRG) neurons into different subtypes and discovered co-regulated injury-response genes including novel regeneration associated genes (RAGs) in association with neuronal development, protein translation and cytoplasm transportation. In addition, we found significant up-regulation of the genes associated with cell death such as Pdcd2 in a subset of NP neurons after axotomy, implicating their actions in neuronal cell death upon nerve injury. Our study revealed the distinctive and sustained heterogeneity of transcriptomic responses to injury at single neuron level, implicating the involvement of different gene regulatory networks in nerve regeneration, neuronal cell death and neuropathy in different population of DRG neurons. PMID:27558660

  9. The brain's functional network architecture reveals human motives.

    PubMed

    Hein, Grit; Morishima, Yosuke; Leiberg, Susanne; Sul, Sunhae; Fehr, Ernst

    2016-03-01

    Goal-directed human behaviors are driven by motives. Motives are, however, purely mental constructs that are not directly observable. Here, we show that the brain's functional network architecture captures information that predicts different motives behind the same altruistic act with high accuracy. In contrast, mere activity in these regions contains no information about motives. Empathy-based altruism is primarily characterized by a positive connectivity from the anterior cingulate cortex (ACC) to the anterior insula (AI), whereas reciprocity-based altruism additionally invokes strong positive connectivity from the AI to the ACC and even stronger positive connectivity from the AI to the ventral striatum. Moreover, predominantly selfish individuals show distinct functional architectures compared to altruists, and they only increase altruistic behavior in response to empathy inductions, but not reciprocity inductions. PMID:26941317

  10. Electrophysiological evidence for functionally distinct neuronal populations in the human substantia nigra.

    PubMed

    Ramayya, Ashwin G; Zaghloul, Kareem A; Weidemann, Christoph T; Baltuch, Gordon H; Kahana, Michael J

    2014-01-01

    The human substantia nigra (SN) is thought to consist of two functionally distinct neuronal populations-dopaminergic (DA) neurons in the pars compacta subregion and GABA-ergic neurons in the pars reticulata subregion. However, a functional dissociation between these neuronal populations has not previously been demonstrated in the awake human. Here we obtained microelectrode recordings from the SN of patients undergoing deep brain stimulation (DBS) surgery for Parkinson's disease as they performed a two-alternative reinforcement learning task. Following positive feedback presentation, we found that putative DA and GABA neurons demonstrated distinct temporal dynamics. DA neurons demonstrated phasic increases in activity (250-500 ms post-feedback) whereas putative GABA neurons demonstrated more delayed and sustained increases in activity (500-1000 ms post-feedback). These results provide the first electrophysiological evidence for a functional dissociation between DA and GABA neurons in the human SN. We discuss possible functions for these neuronal responses based on previous findings in human and animal studies. PMID:25249957

  11. Simple Separation of Functionally Distinct Populations of Lamin-Binding Proteins.

    PubMed

    Berk, Jason M; Wilson, Katherine L

    2016-01-01

    The inner membrane of the nuclear envelope (NE) is home to hundreds of integral membrane proteins (NE transmembrane proteins, "NETs") with conserved or tissue-specific roles in genome organization and nuclear function. Nearly all characterized NETs bind A- or B-type lamins directly. However, hundreds of NETs remain uncharacterized, collectively posing an enormous gap that must be bridged to understand nuclear function and genome biology. We provide technically simple protocols for the separation and recovery of functionally distinct populations of NETs and A-type lamins. This protocol was developed for emerin, an inner nuclear membrane protein that binds lamins and barrier-to-autointegration factor (BANF1) as a component of nuclear lamina structure, and has diverse roles in nuclear assembly, signaling, and gene regulation. This protocol separates easily solubilized ("easy") populations of nuclear lamina proteins (emerin, lamin A, BAF) from "sonication-dependent" populations. Depending on cell type, the "easy" and "sonication-dependent" fractions each contain up to about half the available emerin, A-type lamins, and BAF, whereas B-type lamins and histone H3 are predominantly sonication dependent. The two populations of emerin have distinct posttranslational modifications, and only one population associates with BAF. This method may be useful for functional screening or analysis of other lamin-associated proteins, including novel NETs emerging from proteomic studies. PMID:26778555

  12. Natural cytotoxicity receptor splice variants orchestrate the distinct functions of human natural killer cell subtypes

    PubMed Central

    Siewiera, Johan; Gouilly, Jordi; Hocine, Hocine-Rachid; Cartron, Géraldine; Levy, Claude; Al-Daccak, Reem; Jabrane-Ferrat, Nabila

    2015-01-01

    The natural cytotoxicity receptors NKp46/NCR1, NKp44/NCR2 and NKp30/NCR3 are critical for natural killer (NK) cell functions. Their genes are transcribed into several splice variants whose physiological relevance is not yet fully understood. Here we report that decidua basalis NK (dNK) cells of the pregnant uterine mucosa and peripheral blood NK (pNK) cells, two functionally distinct subsets of the physiological NK cell pool, display differential expression of NKp30/NCR3 and NKp44/NCR2 splice variants. The presence of cytokines that are enriched within the decidual microenvironment is sufficient to convert the splice variant profile of pNK cells into one similar to that of dNK cells. This switch is associated with decreased cytotoxic function and major adaptations to the secretome, hallmarks of the decidual phenotype. Thus, NKp30/NCR3 and NKp44/NCR2 splice variants delineate functionally distinct NK cell subsets. To our knowledge, this is the first conclusive evidence underlining the physiological importance of NCR splice variants. PMID:26666685

  13. Distinctions between manipulation and function knowledge of objects: evidence from functional magnetic resonance imaging.

    PubMed

    Boronat, Consuelo B; Buxbaum, Laurel J; Coslett, H Branch; Tang, Kathy; Saffran, Eleanor M; Kimberg, Daniel Y; Detre, John A

    2005-05-01

    A prominent account of conceptual knowledge proposes that information is distributed over visual, tactile, auditory, motor and verbal-declarative attribute domains to the degree to which these features were activated when the knowledge was acquired [D.A. Allport, Distributed memory, modular subsystems and dysphagia, In: S.K. Newman, R. Epstein (Eds.), Current perspectives in dysphagia, Churchill Livingstone, Edinburgh, 1985, pp. 32-60]. A corollary is that when drawing upon this knowledge (e.g., to answer questions), particular aspects of this distributed information is re-activated as a function of the requirements of the task at hand [L.J. Buxbaum, E.M. Saffran, Knowledge of object manipulation and object function: dissociations in apraxic and non-apraxic subjects. Brain and Language, 82 (2002) 179-199; L.J. Buxbaum, T. Veramonti, M.F. Schwartz, Function and manipulation tool knowledge in apraxia: knowing 'what for' but not 'how', Neurocase, 6 (2000) 83-97; W. Simmons, L. Barsalou, The similarity-in-topography principle: Reconciling theories of conceptual deficits, Cognitive Neuropsychology, 20 (2003) 451-486]. This account predicts that answering questions about object manipulation should activate brain regions previously identified as components of the distributed sensory-motor system involved in object use, whereas answering questions about object function (that is, the purpose that it serves) should activate regions identified as components of the systems supporting verbal-declarative features. These predictions were tested in a functional magnetic resonance imaging (fMRI) study in which 15 participants viewed picture or word pairs denoting manipulable objects and determined whether the objects are manipulated similarly (M condition) or serve the same function (F condition). Significantly greater and more extensive activations in the left inferior parietal lobe bordering the intraparietal sulcus were seen in the M condition with pictures and, to a lesser

  14. Distinct Developmental Functions of Prostasin (CAP1/PRSS8) Zymogen and Activated Prostasin.

    PubMed

    Friis, Stine; Madsen, Daniel H; Bugge, Thomas H

    2016-02-01

    The membrane-anchored serine prostasin (CAP1/PRSS8) is essential for barrier acquisition of the interfollicular epidermis and for normal hair follicle development. Consequently, prostasin null mice die shortly after birth. Prostasin is found in two forms in the epidermis: a one-chain zymogen and a two-chain proteolytically active form, generated by matriptase-dependent activation site cleavage. Here we used gene editing to generate mice expressing only activation site cleavage-resistant (zymogen-locked) endogenous prostasin. Interestingly, these mutant mice displayed normal interfollicular epidermal development and postnatal survival, but had defects in whisker and pelage hair formation. These findings identify two distinct in vivo functions of epidermal prostasin: a function in the interfollicular epidermis, not requiring activation site cleavage, that can be mediated by the zymogen-locked version of prostasin and a proteolysis-dependent function of activated prostasin in hair follicles, dependent on zymogen conversion by matriptase. PMID:26719335

  15. Two Functionally Distinct Networks of Gap Junction-Coupled Inhibitory Neurons in the Thalamic Reticular Nucleus

    PubMed Central

    Patrick, Saundra L.; Richardson, Kristen A.

    2014-01-01

    Gap junctions (GJs) electrically couple GABAergic neurons of the forebrain. The spatial organization of neuron clusters coupled by GJs is an important determinant of network function, yet it is poorly described for nearly all mammalian brain regions. Here we used a novel dye-coupling technique to show that GABAergic neurons in the thalamic reticular nucleus (TRN) of mice and rats form two types of GJ-coupled clusters with distinctive patterns and axonal projections. Most clusters are elongated narrowly along functional modules within the plane of the TRN, with axons that selectively inhibit local groups of relay neurons. However, some coupled clusters have neurons arrayed across the thickness of the TRN and target their axons to both first- and higher-order relay nuclei. Dye coupling was reduced, but not abolished, among cells of connexin36 knock-out mice. Our results suggest that GJs form two distinct types of inhibitory networks that correlate activity either within or across functional modules of the thalamus. PMID:25253862

  16. Naturally occurring ERAP1 haplotypes encode functionally distinct alleles with fine substrate specificity.

    PubMed

    Reeves, Emma; Edwards, Christopher J; Elliott, Tim; James, Edward

    2013-07-01

    Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims peptides for MHC class I presentation, influencing the degree and specificity of CD8(+) T cell responses. Single-nucleotide polymorphisms within the exons encoding ERAP1 are associated with autoimmune diseases and cervical carcinoma, but it is not known whether they act independently or as disease-associated haplotypes. We sequenced ERAP1 from 20 individuals and show that single-nucleotide polymorphisms occur as distinct haplotypes in the human population and that these haplotypes encode functionally distinct ERAP1 alleles. Using a wide range of substrates, we are able to demonstrate that for any given substrate distinct ERAP1 alleles can be "normal," "hypofunctional," or "hyperfunctional" and that each allele has a trend bias toward one of these three activities. Thus, the repertoire of peptides presented at the cell surface for recognition by CTL is likely to depend on the precise combination of both MHC class I and ERAP1 alleles expressed within an individual, and has important implications for predisposition to disease. PMID:23733883

  17. Observational distinction between black holes and naked singularities: the role of the redshift function

    NASA Astrophysics Data System (ADS)

    Ortiz, Néstor; Sarbach, Olivier; Zannias, Thomas

    2015-12-01

    We suggest that the redshift of photons traveling from past to future null infinity through a collapsing object could provide an observational signature capable of differentiating between the formation of a globally naked singularity and the formation of an event horizon. Supporting evidence for this idea is drawn from the analysis of photons with zero angular momentum through the center of a collapsing spherical dust cloud. We show that the frequency shift as a function of proper time with respect to stationary observers has distinct features depending on whether the object collapses to a black hole or a naked singularity.

  18. Do slow and fast gamma rhythms correspond to distinct functional states in the hippocampal network?

    PubMed

    Colgin, Laura Lee

    2015-09-24

    For decades, hippocampal gamma was thought to be a single type of rhythm with a continuously varying frequency. However, an increasing body of evidence supports a new hypothesis regarding hippocampal gamma. The patterns traditionally defined as hippocampal gamma may actually comprise separate gamma subtypes with distinct frequencies and unique functions. The present review discusses the evidence for and against this new viewpoint. This review will also point out key questions that remain to be answered to validate the two-gamma hypothesis. This article is part of a Special Issue entitled SI: Brain and Memory. PMID:25591484

  19. Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma.

    PubMed

    Lock, Frances E; Rebollo, Rita; Miceli-Royer, Katharine; Gagnier, Liane; Kuah, Sabrina; Babaian, Artem; Sistiaga-Poveda, Maialen; Lai, C Benjamin; Nemirovsky, Oksana; Serrano, Isabel; Steidl, Christian; Karimi, Mohammad M; Mager, Dixie L

    2014-08-26

    Remnants of ancient transposable elements (TEs) are abundant in mammalian genomes. These sequences harbor multiple regulatory motifs and hence are capable of influencing expression of host genes. In response to environmental changes, TEs are known to be released from epigenetic repression and to become transcriptionally active. Such activation could also lead to lineage-inappropriate activation of oncogenes, as one study described in Hodgkin lymphoma. However, little further evidence for this mechanism in other cancers has been reported. Here, we reanalyzed whole transcriptome data from a large cohort of patients with diffuse large B-cell lymphoma (DLBCL) compared with normal B-cell centroblasts to detect genes ectopically expressed through activation of TE promoters. We have identified 98 such TE-gene chimeric transcripts that were exclusively expressed in primary DLBCL cases and confirmed several in DLBCL-derived cell lines. We further characterized a TE-gene chimeric transcript involving a fatty acid-binding protein gene (LTR2-FABP7), normally expressed in brain, that was ectopically expressed in a subset of DLBCL patients through the use of an endogenous retroviral LTR promoter of the LTR2 family. The LTR2-FABP7 chimeric transcript encodes a novel chimeric isoform of the protein with characteristics distinct from native FABP7. In vitro studies reveal a dependency for DLBCL cell line proliferation and growth on LTR2-FABP7 chimeric protein expression. Taken together, these data demonstrate the significance of TEs as regulators of aberrant gene expression in cancer and suggest that LTR2-FABP7 may contribute to the pathogenesis of DLBCL in a subgroup of patients. PMID:25114248

  20. Phylogenetic Reassessment of Antarctic Tetillidae (Demospongiae, Tetractinellida) Reveals New Genera and Genetic Similarity among Morphologically Distinct Species

    PubMed Central

    Carella, Mirco; Agell, Gemma; Cárdenas, Paco; Uriz, Maria J.

    2016-01-01

    Species of Tetillidae are distributed worldwide. However, some genera are unresolved and only a few genera and species of this family have been described from the Antarctic. The incorporation of 25 new COI and 18S sequences of Antarctic Tetillidae to those used recently for assessing the genera phylogeny, has allowed us to improve the resolution of some poorly resolved nodes and to confirm the monophyly of previously identified clades. Classical genera such as Craniella recovered their traditional diagnosis by moving the Antarctic Tetilla from Craniella, where they were placed in the previous family phylogeny, to Antarctotetilla gen. nov. The morphological re-examination of specimens used in the previous phylogeny and their comparison to the type material revealed misidentifications. The proposed monotypic new genus Levantinella had uncertain phylogenetic relationships depending on the gene partition used. Two more clades would require the inclusion of additional species to be formally established as new genera. The parsimony tree based on morphological characters and the secondary structure of the 18S (V4 region) almost completely matched the COI M1-M6 and the COI+18S concatenated phylogenies. Morphological synapomorphies have been identified for the genera proposed. New 15 28S (D3-D5) and 11 COI I3-M11 partitions were exclusively sequenced for the Antarctic species subset. Remarkably, species within the Antarctic genera Cinachyra (C. barbata and C. antarctica) and Antarctotetilla (A. leptoderma, A. grandis, and A. sagitta), which are clearly distinguishable morphologically, were not genetically differentiated with any of the markers assayed. Thus, as it has been reported for other Antarctic sponges, both the mitochondrial and nuclear partitions used did not differentiate species that were well characterized morphologically. Antarctic Tetillidae offers a rare example of genetically cryptic (with the traditional markers used for sponges), morphologically distinct

  1. Phylogenetic Reassessment of Antarctic Tetillidae (Demospongiae, Tetractinellida) Reveals New Genera and Genetic Similarity among Morphologically Distinct Species.

    PubMed

    Carella, Mirco; Agell, Gemma; Cárdenas, Paco; Uriz, Maria J

    2016-01-01

    Species of Tetillidae are distributed worldwide. However, some genera are unresolved and only a few genera and species of this family have been described from the Antarctic. The incorporation of 25 new COI and 18S sequences of Antarctic Tetillidae to those used recently for assessing the genera phylogeny, has allowed us to improve the resolution of some poorly resolved nodes and to confirm the monophyly of previously identified clades. Classical genera such as Craniella recovered their traditional diagnosis by moving the Antarctic Tetilla from Craniella, where they were placed in the previous family phylogeny, to Antarctotetilla gen. nov. The morphological re-examination of specimens used in the previous phylogeny and their comparison to the type material revealed misidentifications. The proposed monotypic new genus Levantinella had uncertain phylogenetic relationships depending on the gene partition used. Two more clades would require the inclusion of additional species to be formally established as new genera. The parsimony tree based on morphological characters and the secondary structure of the 18S (V4 region) almost completely matched the COI M1-M6 and the COI+18S concatenated phylogenies. Morphological synapomorphies have been identified for the genera proposed. New 15 28S (D3-D5) and 11 COI I3-M11 partitions were exclusively sequenced for the Antarctic species subset. Remarkably, species within the Antarctic genera Cinachyra (C. barbata and C. antarctica) and Antarctotetilla (A. leptoderma, A. grandis, and A. sagitta), which are clearly distinguishable morphologically, were not genetically differentiated with any of the markers assayed. Thus, as it has been reported for other Antarctic sponges, both the mitochondrial and nuclear partitions used did not differentiate species that were well characterized morphologically. Antarctic Tetillidae offers a rare example of genetically cryptic (with the traditional markers used for sponges), morphologically distinct

  2. Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma

    PubMed Central

    Lock, Frances E.; Rebollo, Rita; Miceli-Royer, Katharine; Gagnier, Liane; Kuah, Sabrina; Babaian, Artem; Sistiaga-Poveda, Maialen; Lai, C. Benjamin; Nemirovsky, Oksana; Serrano, Isabel; Steidl, Christian; Karimi, Mohammad M.; Mager, Dixie L.

    2014-01-01

    Remnants of ancient transposable elements (TEs) are abundant in mammalian genomes. These sequences harbor multiple regulatory motifs and hence are capable of influencing expression of host genes. In response to environmental changes, TEs are known to be released from epigenetic repression and to become transcriptionally active. Such activation could also lead to lineage-inappropriate activation of oncogenes, as one study described in Hodgkin lymphoma. However, little further evidence for this mechanism in other cancers has been reported. Here, we reanalyzed whole transcriptome data from a large cohort of patients with diffuse large B-cell lymphoma (DLBCL) compared with normal B-cell centroblasts to detect genes ectopically expressed through activation of TE promoters. We have identified 98 such TE-gene chimeric transcripts that were exclusively expressed in primary DLBCL cases and confirmed several in DLBCL-derived cell lines. We further characterized a TE-gene chimeric transcript involving a fatty acid-binding protein gene (LTR2-FABP7), normally expressed in brain, that was ectopically expressed in a subset of DLBCL patients through the use of an endogenous retroviral LTR promoter of the LTR2 family. The LTR2-FABP7 chimeric transcript encodes a novel chimeric isoform of the protein with characteristics distinct from native FABP7. In vitro studies reveal a dependency for DLBCL cell line proliferation and growth on LTR2-FABP7 chimeric protein expression. Taken together, these data demonstrate the significance of TEs as regulators of aberrant gene expression in cancer and suggest that LTR2-FABP7 may contribute to the pathogenesis of DLBCL in a subgroup of patients. PMID:25114248

  3. Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs.

    PubMed

    Clark, Matt Q; McCumsey, Stephanie J; Lopez-Darwin, Sereno; Heckscher, Ellie S; Doe, Chris Q

    2016-01-01

    Drosophila larval crawling is an attractive system to study rhythmic motor output at the level of animal behavior. Larval crawling consists of waves of muscle contractions generating forward or reverse locomotion. In addition, larvae undergo additional behaviors, including head casts, turning, and feeding. It is likely that some neurons (e.g., motor neurons) are used in all these behaviors, but the identity (or even existence) of neurons dedicated to specific aspects of behavior is unclear. To identify neurons that regulate specific aspects of larval locomotion, we performed a genetic screen to identify neurons that, when activated, could elicit distinct motor programs. We used 165 Janelia CRM-Gal4 lines-chosen for sparse neuronal expression-to ectopically express the warmth-inducible neuronal activator TrpA1, and screened for locomotor defects. The primary screen measured forward locomotion velocity, and we identified 63 lines that had locomotion velocities significantly slower than controls following TrpA1 activation (28°). A secondary screen was performed on these lines, revealing multiple discrete behavioral phenotypes, including slow forward locomotion, excessive reverse locomotion, excessive turning, excessive feeding, immobile, rigid paralysis, and delayed paralysis. While many of the Gal4 lines had motor, sensory, or muscle expression that may account for some or all of the phenotype, some lines showed specific expression in a sparse pattern of interneurons. Our results show that distinct motor programs utilize distinct subsets of interneurons, and provide an entry point for characterizing interneurons governing different elements of the larval motor program. PMID:27172197

  4. Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs

    PubMed Central

    Clark, Matt Q.; McCumsey, Stephanie J.; Lopez-Darwin, Sereno; Heckscher, Ellie S.; Doe, Chris Q.

    2016-01-01

    Drosophila larval crawling is an attractive system to study rhythmic motor output at the level of animal behavior. Larval crawling consists of waves of muscle contractions generating forward or reverse locomotion. In addition, larvae undergo additional behaviors, including head casts, turning, and feeding. It is likely that some neurons (e.g., motor neurons) are used in all these behaviors, but the identity (or even existence) of neurons dedicated to specific aspects of behavior is unclear. To identify neurons that regulate specific aspects of larval locomotion, we performed a genetic screen to identify neurons that, when activated, could elicit distinct motor programs. We used 165 Janelia CRM-Gal4 lines—chosen for sparse neuronal expression—to ectopically express the warmth-inducible neuronal activator TrpA1, and screened for locomotor defects. The primary screen measured forward locomotion velocity, and we identified 63 lines that had locomotion velocities significantly slower than controls following TrpA1 activation (28°). A secondary screen was performed on these lines, revealing multiple discrete behavioral phenotypes, including slow forward locomotion, excessive reverse locomotion, excessive turning, excessive feeding, immobile, rigid paralysis, and delayed paralysis. While many of the Gal4 lines had motor, sensory, or muscle expression that may account for some or all of the phenotype, some lines showed specific expression in a sparse pattern of interneurons. Our results show that distinct motor programs utilize distinct subsets of interneurons, and provide an entry point for characterizing interneurons governing different elements of the larval motor program. PMID:27172197

  5. Metagenome sequence analysis of filamentous microbial communities obtained from geochemically distinct geothermal channels reveals specialization of three aquificales lineages.

    PubMed

    Takacs-Vesbach, Cristina; Inskeep, William P; Jay, Zackary J; Herrgard, Markus J; Rusch, Douglas B; Tringe, Susannah G; Kozubal, Mark A; Hamamura, Natsuko; Macur, Richard E; Fouke, Bruce W; Reysenbach, Anna-Louise; McDermott, Timothy R; Jennings, Ryan deM; Hengartner, Nicolas W; Xie, Gary

    2013-01-01

    The Aquificales are thermophilic microorganisms that inhabit hydrothermal systems worldwide and are considered one of the earliest lineages of the domain Bacteria. We analyzed metagenome sequence obtained from six thermal "filamentous streamer" communities (∼40 Mbp per site), which targeted three different groups of Aquificales found in Yellowstone National Park (YNP). Unassembled metagenome sequence and PCR-amplified 16S rRNA gene libraries revealed that acidic, sulfidic sites were dominated by Hydrogenobaculum (Aquificaceae) populations, whereas the circum-neutral pH (6.5-7.8) sites containing dissolved sulfide were dominated by Sulfurihydrogenibium spp. (Hydrogenothermaceae). Thermocrinis (Aquificaceae) populations were found primarily in the circum-neutral sites with undetectable sulfide, and to a lesser extent in one sulfidic system at pH 8. Phylogenetic analysis of assembled sequence containing 16S rRNA genes as well as conserved protein-encoding genes revealed that the composition and function of these communities varied across geochemical conditions. Each Aquificales lineage contained genes for CO2 fixation by the reverse-TCA cycle, but only the Sulfurihydrogenibium populations perform citrate cleavage using ATP citrate lyase (Acl). The Aquificaceae populations use an alternative pathway catalyzed by two separate enzymes, citryl-CoA synthetase (Ccs), and citryl-CoA lyase (Ccl). All three Aquificales lineages contained evidence of aerobic respiration, albeit due to completely different types of heme Cu oxidases (subunit I) involved in oxygen reduction. The distribution of Aquificales populations and differences among functional genes involved in energy generation and electron transport is consistent with the hypothesis that geochemical parameters (e.g., pH, sulfide, H2, O2) have resulted in niche specialization among members of the Aquificales. PMID:23755042

  6. Metagenome Sequence Analysis of Filamentous Microbial Communities Obtained from Geochemically Distinct Geothermal Channels Reveals Specialization of Three Aquificales Lineages

    PubMed Central

    Takacs-Vesbach, Cristina; Inskeep, William P.; Jay, Zackary J.; Herrgard, Markus J.; Rusch, Douglas B.; Tringe, Susannah G.; Kozubal, Mark A.; Hamamura, Natsuko; Macur, Richard E.; Fouke, Bruce W.; Reysenbach, Anna-Louise; McDermott, Timothy R.; Jennings, Ryan deM.; Hengartner, Nicolas W.; Xie, Gary

    2013-01-01

    The Aquificales are thermophilic microorganisms that inhabit hydrothermal systems worldwide and are considered one of the earliest lineages of the domain Bacteria. We analyzed metagenome sequence obtained from six thermal “filamentous streamer” communities (∼40 Mbp per site), which targeted three different groups of Aquificales found in Yellowstone National Park (YNP). Unassembled metagenome sequence and PCR-amplified 16S rRNA gene libraries revealed that acidic, sulfidic sites were dominated by Hydrogenobaculum (Aquificaceae) populations, whereas the circum-neutral pH (6.5–7.8) sites containing dissolved sulfide were dominated by Sulfurihydrogenibium spp. (Hydrogenothermaceae). Thermocrinis (Aquificaceae) populations were found primarily in the circum-neutral sites with undetectable sulfide, and to a lesser extent in one sulfidic system at pH 8. Phylogenetic analysis of assembled sequence containing 16S rRNA genes as well as conserved protein-encoding genes revealed that the composition and function of these communities varied across geochemical conditions. Each Aquificales lineage contained genes for CO2 fixation by the reverse-TCA cycle, but only the Sulfurihydrogenibium populations perform citrate cleavage using ATP citrate lyase (Acl). The Aquificaceae populations use an alternative pathway catalyzed by two separate enzymes, citryl-CoA synthetase (Ccs), and citryl-CoA lyase (Ccl). All three Aquificales lineages contained evidence of aerobic respiration, albeit due to completely different types of heme Cu oxidases (subunit I) involved in oxygen reduction. The distribution of Aquificales populations and differences among functional genes involved in energy generation and electron transport is consistent with the hypothesis that geochemical parameters (e.g., pH, sulfide, H2, O2) have resulted in niche specialization among members of the Aquificales. PMID:23755042

  7. Synthetic protein interactions reveal a functional map of the cell

    PubMed Central

    Berry, Lisa K; Ólafsson, Guðjón; Ledesma-Fernández, Elena; Thorpe, Peter H

    2016-01-01

    To understand the function of eukaryotic cells, it is critical to understand the role of protein-protein interactions and protein localization. Currently, we do not know the importance of global protein localization nor do we understand to what extent the cell is permissive for new protein associations – a key requirement for the evolution of new protein functions. To answer this question, we fused every protein in the yeast Saccharomyces cerevisiae with a partner from each of the major cellular compartments and quantitatively assessed the effects upon growth. This analysis reveals that cells have a remarkable and unanticipated tolerance for forced protein associations, even if these associations lead to a proportion of the protein moving compartments within the cell. Furthermore, the interactions that do perturb growth provide a functional map of spatial protein regulation, identifying key regulatory complexes for the normal homeostasis of eukaryotic cells. DOI: http://dx.doi.org/10.7554/eLife.13053.001 PMID:27098839

  8. Meta-analysis of the TNFAIP3 region in psoriasis reveals a risk haplotype that is distinct from other autoimmune diseases.

    PubMed

    Nititham, J; Taylor, K E; Gupta, R; Chen, H; Ahn, R; Liu, J; Seielstad, M; Ma, A; Bowcock, A M; Criswell, L A; Stahle, M; Liao, W

    2015-03-01

    Tumor necrosis factor alpha-inducible protein 3 (TNFAIP3) encodes a ubiquitin-modifying protein, A20, that is a critical regulator of inflammatory responses. TNFAIP3 polymorphisms are associated with the susceptibility to multiple autoimmune diseases (AIDs) including psoriasis, systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis and celiac disease. In order to refine the TNFAIP3 association signal in psoriasis and identify candidate causal variants, we performed imputation and meta-analysis of the TNFAIP3 region in five European ancestry cohorts totaling 4704 psoriasis cases and 7805 controls. We identified 49 variants whose significance exceeded a corrected Bonferroni threshold, with the top variant being rs582757 (P = 6.07 × 10(-12), odds ratio (OR) = 1.23). Conditional analysis revealed a suggestive independent association at rs6918329 (P(cond) = 7.22 × 10(-5), OR = 1.15). Functional annotation of the top variants identified several with a strong evidence of regulatory potential and several within long noncoding RNAs. Analysis of TNFAIP3 haplotypes revealed that the psoriasis risk haplotype is distinct from other AIDs. Overall, our findings identify novel candidate causal variants of TNFAIP3 in psoriasis and highlight the complex genetic architecture of this locus in autoimmune susceptibility. PMID:25521225

  9. Meta-Analysis of the TNFAIP3 Region in Psoriasis Reveals a Risk Haplotype that is Distinct from Other Autoimmune Diseases

    PubMed Central

    Nititham, Joanne; Taylor, Kimberly E.; Gupta, Rashmi; Chen, Haoyan; Ahn, Richard; Liu, Jianjun; Seielstad, Mark; Ma, Averil; Bowcock, Anne M.; Criswell, Lindsey A.; Stahle, Mona; Liao, Wilson

    2014-01-01

    TNFAIP3 encodes aubiquitin-modifying protein, A20, that is a critical regulator of inflammatory responses. TNFAIP3 polymorphisms are associated with susceptibility to multiple autoimmune diseases including psoriasis, systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis, and celiac disease. In order to refine the TNFAIP3 association signal in psoriasis and identify candidate causal variants, we performed imputation and meta-analysis of the TNFAIP3 region in five European ancestry cohorts totaling 4,704 psoriasis cases and 7,805 controls. We identified 49 variants whose significance exceeded a corrected Bonferroni threshold, with the top variant being rs582757 (P = 6.07 × 10−12, OR = 1.23). Conditional analysis revealed a suggestive independent association at rs6918329 (Pcond = 7.22 × 10−5, OR=1.15). Functional annotation of the top variants identified several with strong evidence of regulatory potential and several within long non-coding RNAs. Analysis of TNFAIP3 haplotypes revealed that the psoriasis risk haplotype is distinct from other autoimmune diseases. Overall, our findings identify novel candidate causal variants of TNFAIP3 in psoriasis and highlight the complex genetic architecture of this locus in autoimmune susceptibility. PMID:25521225

  10. Two functionally distinct kinetochore pools of BubR1 ensure accurate chromosome segregation

    PubMed Central

    Zhang, Gang; Mendez, Blanca Lopez; Sedgwick, Garry G.; Nilsson, Jakob

    2016-01-01

    The BubR1/Bub3 complex is an important regulator of chromosome segregation as it facilitates proper kinetochore–microtubule interactions and is also an essential component of the spindle assembly checkpoint (SAC). Whether BubR1/Bub3 localization to kinetochores in human cells stimulates SAC signalling or only contributes to kinetochore–microtubule interactions is debated. Here we show that two distinct pools of BubR1/Bub3 exist at kinetochores and we uncouple these with defined BubR1/Bub3 mutants to address their function. The major kinetochore pool of BubR1/Bub3 is dependent on direct Bub1/Bub3 binding and is required for chromosome alignment but not for the SAC. A distinct pool of BubR1/Bub3 localizes by directly binding to phosphorylated MELT repeats on the outer kinetochore protein KNL1. When we prevent the direct binding of BubR1/Bub3 to KNL1 the checkpoint is weakened because BubR1/Bub3 is not incorporated into checkpoint complexes efficiently. In conclusion, kinetochore localization supports both known functions of BubR1/Bub3. PMID:27457023

  11. Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct

    PubMed Central

    Gundra, Uma Mahesh; Girgis, Natasha M.; Ruckerl, Dominik; Jenkins, Stephen; Ward, Lauren N.; Kurtz, Zachary D.; Wiens, Kirsten E.; Tang, Mei San; Basu-Roy, Upal; Mansukhani, Alka; Allen, Judith E.

    2014-01-01

    Macrophages adopt an alternatively activated phenotype (AAMs) when activated by the interleukin-4receptor(R)α. AAMs can be derived either from proliferation of tissue resident macrophages or recruited inflammatory monocytes, but it is not known whether these different sources generate AAMs that are phenotypically and functionally distinct. By transcriptional profiling analysis, we show here that, although both monocyte and tissue-derived AAMs expressed high levels of Arg1, Chi3l3, and Retnla, only monocyte-derived AAMs up-regulated Raldh2 and PD-L2. Monocyte-derived AAMs were also CX3CR1-green fluorescent protein (GFP)high and expressed CD206, whereas tissue-derived AAMs were CX3CR1-GFP and CD206 negative. Monocyte-derived AAMs had high levels of aldehyde dehydrogenase activity and promoted the differentiation of FoxP3+ cells from naïve CD4+ cells via production of retinoic acid. In contrast, tissue-derived AAMs expressed high levels of uncoupling protein 1. Hence monocyte-derived AAM have properties associated with immune regulation, and the different physiological properties associated with AAM function may depend on the distinct lineage of these cells. PMID:24695852

  12. Resident renal mononuclear phagocytes comprise five discrete populations with distinct phenotypes and functions

    PubMed Central

    Kawakami, Takahisa; Lichtnekert, Julia; Thompson, Lucas J.; Karna, Prasanthi; Bouabe, Hicham; Hohl, Tobias M.; Heinecke, Jay W.; Ziegler, Steven F.; Nelson, Peter J.; Duffield, Jeremy S.

    2013-01-01

    Recent reports have highlighted greater complexity, plasticity and functional diversity of mononuclear phagocytes (MPCs), including monocytes, macrophages and dendritic cells (DCs), in our organs, than previously understood. The functions and origins of MPCs resident within healthy organs, especially in the kidney, are less well understood, while studies suggest they play roles in disease states distinct from recruited monocytes. We developed an unbiased approach using flow cytometry to analyze MPCs residing in the normal mouse kidney, and identified five discrete subpopulations according to CD11b/CD11c expression as well as F4/80, CD103, CD14, CD16 and CD64 expression. In addition to distinct marker profiles, these subpopulations have different lineages and expression of genes involved in tissue homeostasis, including angiogenesis. Among them, the CD11bint CD11cint F4/80hi subpopulation notably exhibited high capacity to produce a representative anti-inflammatory cytokine, IL-10. Each subpopulation had different degrees of both macrophage (phagocytosis) and DC (antigen presentation) capacities, with a tendency to promote differentiation of regulatory T cells, while two of these showed expression of transcription factors reported to be highly expressed by classical DCs, and proclivity to exit the kidney following stimulation with LPS. In summary, resident kidney MPCs comprise discrete subpopulations, which cannot be simply classified into the conventional entities, and they produce anti-inflammatory and tissue-homeostatic factors to differing degrees. PMID:23956422

  13. MLL1 and MLL1 fusion proteins have distinct functions in regulating leukemic transcription program

    PubMed Central

    Xu, Jing; Li, Li; Xiong, Jie; denDekker, Aaron; Ye, Andrew; Karatas, Hacer; Liu, Liu; Wang, He; Qin, Zhaohui S; Wang, Shaomeng; Dou, Yali

    2016-01-01

    Mixed lineage leukemia protein-1 (MLL1) has a critical role in human MLL1 rearranged leukemia (MLLr) and is a validated therapeutic target. However, its role in regulating global gene expression in MLLr cells, as well as its interplay with MLL1 fusion proteins remains unclear. Here we show that despite shared DNA-binding and cofactor interacting domains at the N terminus, MLL1 and MLL-AF9 are recruited to distinct chromatin regions and have divergent functions in regulating the leukemic transcription program. We demonstrate that MLL1, probably through C-terminal interaction with WDR5, is recruited to regulatory enhancers that are enriched for binding sites of E-twenty-six (ETS) family transcription factors, whereas MLL-AF9 binds to chromatin regions that have no H3K4me1 enrichment. Transcriptome-wide changes induced by different small molecule inhibitors also highlight the distinct functions of MLL1 and MLL-AF9. Taken together, our studies provide novel insights on how MLL1 and MLL fusion proteins contribute to leukemic gene expression, which have implications for developing effective therapies in the future.

  14. Co-immunoprecipitation with Tau Isoform-specific Antibodies Reveals Distinct Protein Interactions and Highlights a Putative Role for 2N Tau in Disease.

    PubMed

    Liu, Chang; Song, Xiaomin; Nisbet, Rebecca; Götz, Jürgen

    2016-04-01

    Alternative splicing generates multiple isoforms of the microtubule-associated protein Tau, but little is known about their specific function. In the adult mouse brain, three Tau isoforms are expressed that contain either 0, 1, or 2 N-terminal inserts (0N, 1N, and 2N). We generated Tau isoform-specific antibodies and performed co-immunoprecipitations followed by tandem mass tag multiplexed quantitative mass spectrometry. We identified novel Tau-interacting proteins of which one-half comprised membrane-bound proteins, localized to the plasma membrane, mitochondria, and other organelles. Tau was also found to interact with proteins involved in presynaptic signal transduction. MetaCore analysis revealed one major Tau interaction cluster that contained 33 Tau pulldown proteins. To explore the pathways in which these proteins are involved, we conducted an ingenuity pathway analysis that revealed two significant overlapping pathways, "cell-to-cell signaling and interaction" and "neurological disease." The functional enrichment tool DAVID showed that in particular the 2N Tau-interacting proteins were specifically associated with neurological disease. Finally, for a subset of Tau interactions (apolipoprotein A1 (apoA1), apoE, mitochondrial creatine kinase U-type, β-synuclein, synaptogyrin-3, synaptophysin, syntaxin 1B, synaptotagmin, and synapsin 1), we performed reverse co-immunoprecipitations, confirming the preferential interaction of specific isoforms. For example, apoA1 displayed a 5-fold preference for the interaction with 2N, whereas β-synuclein showed preference for 0N. Remarkably, a reverse immunoprecipitation with apoA1 detected only the 2N isoform. This highlights distinct protein interactions of the different Tau isoforms, suggesting that they execute different functions in brain tissue. PMID:26861879

  15. Co-immunoprecipitation with Tau Isoform-specific Antibodies Reveals Distinct Protein Interactions and Highlights a Putative Role for 2N Tau in Disease*

    PubMed Central

    Liu, Chang; Song, Xiaomin; Nisbet, Rebecca

    2016-01-01

    Alternative splicing generates multiple isoforms of the microtubule-associated protein Tau, but little is known about their specific function. In the adult mouse brain, three Tau isoforms are expressed that contain either 0, 1, or 2 N-terminal inserts (0N, 1N, and 2N). We generated Tau isoform-specific antibodies and performed co-immunoprecipitations followed by tandem mass tag multiplexed quantitative mass spectrometry. We identified novel Tau-interacting proteins of which one-half comprised membrane-bound proteins, localized to the plasma membrane, mitochondria, and other organelles. Tau was also found to interact with proteins involved in presynaptic signal transduction. MetaCore analysis revealed one major Tau interaction cluster that contained 33 Tau pulldown proteins. To explore the pathways in which these proteins are involved, we conducted an ingenuity pathway analysis that revealed two significant overlapping pathways, “cell-to-cell signaling and interaction” and “neurological disease.” The functional enrichment tool DAVID showed that in particular the 2N Tau-interacting proteins were specifically associated with neurological disease. Finally, for a subset of Tau interactions (apolipoprotein A1 (apoA1), apoE, mitochondrial creatine kinase U-type, β-synuclein, synaptogyrin-3, synaptophysin, syntaxin 1B, synaptotagmin, and synapsin 1), we performed reverse co-immunoprecipitations, confirming the preferential interaction of specific isoforms. For example, apoA1 displayed a 5-fold preference for the interaction with 2N, whereas β-synuclein showed preference for 0N. Remarkably, a reverse immunoprecipitation with apoA1 detected only the 2N isoform. This highlights distinct protein interactions of the different Tau isoforms, suggesting that they execute different functions in brain tissue. PMID:26861879

  16. Generation of a Functionally Distinct Rhizopus oryzae Lipase through Protein Folding Memory

    PubMed Central

    Satomura, Atsushi; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2015-01-01

    Rhizopus oryzae lipase (ROL) has a propeptide at its N-terminus that functions as an intramolecular chaperone and facilitates the folding of mature ROL (mROL). In this study, we successfully generated a functionally distinct imprinted mROL (mROLimp) through protein folding memory using a mutated propeptide. The mutated propeptide left its structural memory on mROL and produced mROLimp that exhibited different substrate specificities compared with mROLWT (prepared from the wild type propeptide), although the amino acid sequences of both mROLs were the same. mROLimp showed a preference for substrates with medium chain-length acyl groups and, noticeably, recognized a peptidase-specific substrate. In addition, ROLimp was more stable than mROLWT. These results strongly suggest that proteins with identical amino acid sequences can fold into different conformations and that mutations in intramolecular chaperones can dynamically induce changes in enzymatic activity. PMID:25970342

  17. Understory plant communities and the functional distinction between savanna trees, forest trees, and pines.

    SciTech Connect

    Veldman, Joseph, W., Mattingly, Brett, W., Brudvig, Lars, A.

    2013-04-01

    Abstract. Although savanna trees and forest trees are thought to represent distinct functional groups with different effects on ecosystem processes, few empirical studies have examined these effects. In particular, it remains unclear if savanna and forest trees differ in their ability to coexist with understory plants, which comprise the majority of plant diversity in most savannas. We used structural equation modeling (SEM) and data from 157 sites across three locations in the southeastern United States to understand the effects of broadleaf savanna trees, broadleaf forest trees, and pine trees on savanna understory plant communities. After accounting for underlying gradients in fire frequency and soil moisture, abundances (i.e., basal area and stem density) of forest trees and pines, but not savanna trees, were negatively correlated with the cover and density (i.e., local-scale species richness) of C4 graminoid species, a defining savanna understory functional group that is linked to ecosystem flammability. In analyses of the full understory community, abundances of trees from all functional groups were negatively correlated with species density and cover. For both the C4 and full communities, fire frequency promoted understory plants directly, and indirectly by limiting forest tree abundance. There was little indirect influence of fire on the understory mediated through savanna trees and pines, which are more fire tolerant than forest trees. We conclude that tree functional identity is an important factor that influences overstory tree relationships with savanna understory plant communities. In particular, distinct relationships between trees and C4 graminoids have implications for grass-tree coexistence and vegetation-fire feedbacks that maintain savanna environments and their associated understory plant diversity.

  18. Asymptomatic Volunteers with a Polycystic Ovary Are a Functionally Distinct but Heterogeneous Population

    PubMed Central

    Mortensen, Monica; Ehrmann, David A.; Littlejohn, Elizabeth; Rosenfield, Robert L.

    2009-01-01

    Context/Objective: Our objective was to determine the ovarian function of asymptomatic volunteers with a polycystic ovary (V-PCO). Participants: Non-hirsute eumenorrheic V-PCO (n = 32) and volunteers with ultrasonographically normal ovaries (V-NO) (n = 21) were compared with one another and with polycystic ovary syndrome (PCOS) patients who met National Institute of Health criteria (n = 90). Design/Setting/Interventions: GnRH agonist (GnRHag), ACTH, and oral glucose tolerance tests were prospectively performed in a General Clinical Research Center. Results: The distribution of 17-hydroxyprogesterone (17OHP) responses to GnRHag of V-PCO formed a distinct population intermediate between that of V-NO, the reference population, and PCOS. Nevertheless, the V-PCO population was heterogeneous. There were 53% (seventeen of 32) that were functionally normal, with 17OHP responses and free testosterone levels like V-NO. A total of 25% (eight of 32) had an elevated free testosterone, thus meeting Rotterdam criteria for PCOS; one third of these had 17OHP hyperresponsiveness to GnRHag testing. The remaining 22% (seven of 32) had 17OHP hyperresponsiveness to GnRHag, but normal free testosterone. Of PCOS, 69% had elevated 17OHP hyperresponsiveness to GnRHag. Ovarian volume correlated significantly with 17OHP responses only in PCOS, accounting for just 10% of the variance. Conclusions: Many asymptomatic volunteers have a PCO. They are a distinct, but heterogeneous, population with respect to ovarian function, ranging from normal (53%) to occult PCOS by Rotterdam criteria (25%). Nearly one quarter (22%) had the typical PCOS type of ovarian dysfunction without hyperandrogenemia, termed a “dysregulated PCO”; they or their offspring may be at risk for PCOS. Ovarian ultrasonographic characteristics must be considered when establishing norms for ovarian function. PMID:19240158

  19. Understory plant communities and the functional distinction between savanna trees, forest trees, and pines.

    PubMed

    Veldman, Joseph W; Mattingly, W Brett; Brudvig, Lars A

    2013-02-01

    Although savanna trees and forest trees are thought to represent distinct functional groups with different effects on ecosystem processes, few empirical studies have examined these effects. In particular, it remains unclear if savanna and forest trees differ in their ability to coexist with understory plants, which comprise the majority of plant diversity in most savannas. We used structural equation modeling (SEM) and data from 157 sites across three locations in the southeastern United States to understand the effects of broadleaf savanna trees, broadleaf forest trees, and pine trees on savanna understory plant communities. After accounting for underlying gradients in fire frequency and soil moisture, abundances (i.e., basal area and stem density) of forest trees and pines, but not savanna trees, were negatively correlated with the cover and density (i.e., local-scale species richness) of C4 graminoid species, a defining savanna understory functional group that is linked to ecosystem flammability. In analyses of the full understory community, abundances of trees from all functional groups were negatively correlated with species density and cover. For both the C4 and full communities, fire frequency promoted understory plants directly, and indirectly by limiting forest tree abundance. There was little indirect influence of fire on the understory mediated through savanna trees and pines, which are morefire tolerant than forest trees. We conclude that tree functional identity is an important factor that influences overstory tree relationships with savanna understory plant communities. In particular, distinct relationships between trees and C4 graminoids have implications for grass-tree coexistence and vegetation-fire feedbacks that maintain savanna environments and their associated understory plant diversity. PMID:23691661

  20. The Structure of the GM-CSF Receptor Complex Reveals a Distinct Mode of Cytokine Receptor Activation

    SciTech Connect

    Hansen, Guido; Hercus, Timothy R.; McClure, Barbara J.; Stomski, Frank C.; Dottore, Mara; Powell, Jason; Ramshaw, Hayley; Woodcock, Joanna M.; Xu, Yibin; Guthridge, Mark; McKinstry, William J.; Lopez, Angel F.; Parker, Michael W.

    2008-08-11

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that controls the production and function of blood cells, is deregulated in clinical conditions such as rheumatoid arthritis and leukemia, yet offers therapeutic value for other diseases. Its receptors are heterodimers consisting of a ligand-specific {alpha} subunit and a {beta}c subunit that is shared with the interleukin (IL)-3 and IL-5 receptors. How signaling is initiated remains an enigma. We report here the crystal structure of the human GM-CSF/GM-CSF receptor ternary complex and its assembly into an unexpected dodecamer or higher-order complex. Importantly, mutagenesis of the GM-CSF receptor at the dodecamer interface and functional studies reveal that dodecamer formation is required for receptor activation and signaling. This unusual form of receptor assembly likely applies also to IL-3 and IL-5 receptors, providing a structural basis for understanding their mechanism of activation and for the development of therapeutics.

  1. Genome-wide analysis reveals distinct substrate specificities of Rrp6, Dis3, and core exosome subunits.

    PubMed

    Kiss, Daniel L; Andrulis, Erik D

    2010-04-01

    The RNA processing exosome complex was originally defined as an evolutionarily conserved multisubunit complex of ribonucleases responsible for the processing and/or turnover of stable RNAs. The exosome complex is also involved in the surveillance of mRNAs in both the nucleus and the cytoplasm, including nonsense-mediated decay (NMD) targets. The detailed mechanisms for how individual exosome subunits participate in each of these RNA metabolic pathways remains unclear. Here, we use RNAi to deplete exosome subunits, the exonucleases Rrp6 and Dis3, and an exosome cofactor in Drosophila melanogaster S2 tissue culture cells and assay the effects on global mRNA levels using gene expression microarrays. Consistent with the RNA degradative activities ascribed to the exosome, most mRNAs are increased. Notably, these stabilized mRNAs possess 3' untranslated regions that are longer than the representative transcriptomic average. Moreover, our results reveal substantial differences in the pools of affected mRNAs for each depleted subunit. For example, approximately 25% of the affected transcripts in Rrp6 depleted cells represent NMD substrates. While the affected mRNAs were dissimilar, they encode proteins that function in similar cellular pathways. We conclude that individual exosome subunits are largely functionally independent at the transcript level, but are interdependent on a transcriptomic level. PMID:20185544

  2. Distinct roles of cell wall biogenesis in yeast morphogenesis as revealed by multivariate analysis of high-dimensional morphometric data

    PubMed Central

    Okada, Hiroki; Ohnuki, Shinsuke; Roncero, Cesar; Konopka, James B.; Ohya, Yoshikazu

    2014-01-01

    The cell wall of budding yeast is a rigid structure composed of multiple components. To thoroughly understand its involvement in morphogenesis, we used the image analysis software CalMorph to quantitatively analyze cell morphology after treatment with drugs that inhibit different processes during cell wall synthesis. Cells treated with cell wall–affecting drugs exhibited broader necks and increased morphological variation. Tunicamycin, which inhibits the initial step of N-glycosylation of cell wall mannoproteins, induced morphologies similar to those of strains defective in α-mannosylation. The chitin synthase inhibitor nikkomycin Z induced morphological changes similar to those of mutants defective in chitin transglycosylase, possibly due to the critical role of chitin in anchoring the β-glucan network. To define the mode of action of echinocandin B, a 1,3-β-glucan synthase inhibitor, we compared the morphology it induced with mutants of Fks1 that contains the catalytic domain for 1,3-β-glucan synthesis. Echinocandin B exerted morphological effects similar to those observed in some fks1 mutants, with defects in cell polarity and reduced glucan synthesis activity, suggesting that echinocandin B affects not only 1,3-β-glucan synthesis, but also another functional domain. Thus our multivariate analyses reveal discrete functions of cell wall components and increase our understanding of the pharmacology of antifungal drugs. PMID:24258022

  3. The mitochondrial elongation factors MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics

    SciTech Connect

    Liu, Tong; Yu, Rong; Jin, Shao-Bo; Han, Liwei; Lendahl, Urban; Zhao, Jian; Nistér, Monica

    2013-11-01

    Mitochondria are dynamic organelles whose morphology is regulated by a complex balance of fission and fusion processes, and we still know relatively little about how mitochondrial dynamics is regulated. MIEF1 (also called MiD51) has recently been characterized as a key regulator of mitochondrial dynamics and in this report we explore the functions of its paralog MIEF2 (also called MiD49), to learn to what extent MIEF2 is functionally distinct from MIEF1. We show that MIEF1 and MIEF2 have many functions in common. Both are anchored in the mitochondrial outer membrane, recruit Drp1 from the cytoplasm to the mitochondrial surface and cause mitochondrial fusion, and MIEF2, like MIEF1, can interact with Drp1 and hFis1. MIEF1 and MIEF2, however, also differ in certain aspects. MIEF1 and MIEF2 are differentially expressed in human tissues during development. When overexpressed, MIEF2 exerts a stronger fusion-promoting effect than MIEF1, and in line with this, hFis1 and Mff can only partially revert the MIEF2-induced fusion phenotype, whereas MIEF1-induced fusion is reverted to a larger extent by hFis1 and Mff. MIEF2 forms high molecular weight oligomers, while MIEF1 is largely present as a dimer. Furthermore, MIEF1 and MIEF2 use distinct domains for oligomerization: in MIEF1, the region from amino acid residues 109–154 is required, whereas oligomerization of MIEF2 depends on amino acid residues 1 to 49, i.e. the N-terminal end. We also show that oligomerization of MIEF1 is not required for its mitochondrial localization and interaction with Drp1. In conclusion, our data suggest that the mitochondrial regulators MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics. - Highlights: • MIEF1 and MIEF2 recruit Drp1 to mitochondria and cause mitochondrial fusion. • MIEF2, like MIEF1, can interact with Drp1 and hFis1. • MIEF1 and MIEF2 are differentially expressed in human tissues during development. • MIEF2 exerts a stronger fusion

  4. Distinct function of 2 chromatin remodeling complexes that share a common subunit, Williams syndrome transcription factor (WSTF).

    PubMed

    Yoshimura, Kimihiro; Kitagawa, Hirochika; Fujiki, Ryoji; Tanabe, Masahiko; Takezawa, Shinichiro; Takada, Ichiro; Yamaoka, Ikuko; Yonezawa, Masayoshi; Kondo, Takeshi; Furutani, Yoshiyuki; Yagi, Hisato; Yoshinaga, Shin; Masuda, Takeyoshi; Fukuda, Toru; Yamamoto, Yoko; Ebihara, Kanae; Li, Dean Y; Matsuoka, Rumiko; Takeuchi, Jun K; Matsumoto, Takahiro; Kato, Shigeaki

    2009-06-01

    A number of nuclear complexes modify chromatin structure and operate as functional units. However, the in vivo role of each component within the complexes is not known. ATP-dependent chromatin remodeling complexes form several types of protein complexes, which reorganize chromatin structure cooperatively with histone modifiers. Williams syndrome transcription factor (WSTF) was biochemically identified as a major subunit, along with 2 distinct complexes: WINAC, a SWI/SNF-type complex, and WICH, an ISWI-type complex. Here, WSTF(-/-) mice were generated to investigate its function in chromatin remodeling in vivo. Loss of WSTF expression resulted in neonatal lethality, and all WSTF(-/-) neonates and approximately 10% of WSTF(+/-) neonates suffered cardiovascular abnormalities resembling those found in autosomal-dominant Williams syndrome patients. Developmental analysis of WSTF(-/-) embryos revealed that Gja5 gene regulation is aberrant from E9.5, conceivably because of inappropriate chromatin reorganization around the promoter regions where essential cardiac transcription factors are recruited. In vitro analysis in WSTF(-/-) mouse embryonic fibroblast (MEF) cells also showed impaired transactivation functions of cardiac transcription activators on the Gja5 promoter, but the effects were reversed by overexpression of WINAC components. Likewise in WSTF(-/-) MEF cells, recruitment of Snf2h, an ISWI ATPase, to PCNA and cell survival after DNA damage were both defective, but were ameliorated by overexpression of WICH components. Thus, the present study provides evidence that WSTF is shared and is a functionally indispensable subunit of the WICH complex for DNA repair and the WINAC complex for transcriptional control. PMID:19470456

  5. Transcriptional response of BALB/c mouse thyroids following in vivo astatine-211 exposure reveals distinct gene expression profiles

    PubMed Central

    2012-01-01

    Background Astatine-211 (211At) is an alpha particle emitting halogen with almost optimal linear energy transfer for creating DNA double-strand breaks and is thus proposed for radionuclide therapy when bound to tumor-seeking agents. Unbound 211At accumulates in the thyroid gland, and the concept of basal radiation-induced biological effects in the thyroid tissue is, to a high degree, unknown and is most valuable. Methods Female BALB/c nude mice were intravenously injected with 0.064 to 42 kBq of 211At, resulting in absorbed doses of 0.05 to 32 Gy in the thyroid gland. Thyroids were removed 24 h after injection; total RNA was extracted from pooled thyroids and processed in triplicate using Illumina MouseRef-8 Whole-Genome Expression Beadchips. Results Thyroids exposed to 211At revealed distinctive gene expression profiles compared to non-irradiated controls. A larger number of genes were affected at low absorbed doses (0.05 and 0.5 Gy) compared to intermediate (1.4 Gy) and higher absorbed doses (11 and 32 Gy). The proportion of dose-specific genes increased with decreased absorbed dose. Additionally, 1.4 Gy often exerted opposite regulation on gene expression compared to the other absorbed doses. Using Gene Ontology data, an immunological effect was detected at 0.05 and 11 Gy. Effects on cellular response to external stress and cell cycle regulation and proliferation were detected at 1.4 and 11 Gy. Conclusions Conclusively, the cellular response to ionizing radiation is complex and differs with absorbed dose. The response acquired at high absorbed doses cannot be extrapolated down to low absorbed doses or vice versa. We also demonstrated that the thyroid - already at absorbed doses similar to those obtained in radionuclide therapy - responds with expression of a high number of genes. Due to the increased heterogeneous irradiation at low absorbed doses, we suggest that this response partly originates from non-irradiated cells in the tissue, i.e., bystander cells

  6. Tracking wild sockeye salmon smolts to the ocean reveals distinct regions of nocturnal movement and high mortality.

    PubMed

    Clark, Timothy D; Furey, Nathan B; Rechisky, Erin L; Gale, Marika K; Jeffries, Ken M; Porter, Aswea D; Casselman, Matthew T; Lotto, Andrew G; Patterson, David A; Cooke, Steven J; Farrell, Anthony P; Welch, David W; Hinch, Scott G

    2016-06-01

    Few estimates of migration rates or descriptions of behavior or survival exist for wild populations of out-migrating Pacific salmon smolts from natal freshwater rearing areas to the ocean. Using acoustic transmitters and fixed receiver arrays across four years (2010-2013), we tracked the migration of > 1850 wild sockeye salmon (Oncorhynchus nerka) smolts from Chilko Lake, British Columbia, to the coastal Pacific Ocean (> 1000 km distance). Cumulative survival to the ocean ranged 3-10% among years, although this may be slightly underestimated due to technical limitations at the final receiver array. Distinct spatial patterns in both behavior and survival were observed through all years. In small, clear, upper-river reaches, downstream migration largely occurred at night at speeds up to 50 km/d and coincided with poor survival. Among years, only 57-78% of smolts survived the first 80 km. Parallel laboratory experiments revealed excellent short-term survival and unhindered swimming performance of dummy-tagged smolts, suggesting that predators rather than tagging effects were responsible for the initial high mortality of acoustic-tagged smolts. Migration speeds increased in the Fraser River mainstem (~220 km/d in some years), diel movement patterns ceased, and smolt survival generally exceeded 90% in this segment. Marine movement rates and survival were variable across years, with among-year segment-specific survival being the most variable and lowest (19-61%) during the final (and longest, 240 km) marine migration segment. Osmoregulatory preparedness was not expected to influence marine survival, as smolts could maintain normal levels of plasma chloride when experimentally exposed to saltwater (30 ppt) immediately upon commencing their migration from Chilko Lake. Transportation of smolts downstream generally increased survival to the farthest marine array. The act of tagging may have affected smolts in the marine environment in some years as dummy-tagged fish had

  7. Dissecting the social brain: Introducing the EmpaToM to reveal distinct neural networks and brain-behavior relations for empathy and Theory of Mind.

    PubMed

    Kanske, Philipp; Böckler, Anne; Trautwein, Fynn-Mathis; Singer, Tania

    2015-11-15

    Successful social interactions require both affect sharing (empathy) and understanding others' mental states (Theory of Mind, ToM). As these two functions have mostly been investigated in isolation, the specificity of the underlying neural networks and the relation of these networks to the respective behavioral indices could not be tested. Here, we present a novel fMRI paradigm (EmpaToM) that independently manipulates both empathy and ToM. Experiments 1a/b (N=90) validated the task with established empathy and ToM paradigms on a behavioral and neural level. Experiment 2 (N=178) employed the EmpaToM and revealed clearly separable neural networks including anterior insula for empathy and ventral temporoparietal junction for ToM. These distinct networks could be replicated in task-free resting state functional connectivity. Importantly, brain activity in these two networks specifically predicted the respective behavioral indices, that is, inter-individual differences in ToM related brain activity predicted inter-individual differences in ToM performance, but not empathic responding, and vice versa. Taken together, the validated EmpaToM allows separation of affective and cognitive routes to understanding others. It may thus benefit future clinical, developmental, and intervention studies on identifying selective impairments and improvement in specific components of social cognition. PMID:26254589

  8. The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum retain functionally overlapping mitochondria from two evolutionarily distinct lineages

    PubMed Central

    Imanian, Behzad; Keeling, Patrick J

    2007-01-01

    Background The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum are distinguished by the presence of a tertiary plastid derived from a diatom endosymbiont. The diatom is fully integrated with the host cell cycle and is so altered in structure as to be difficult to recognize it as a diatom, and yet it retains a number of features normally lost in tertiary and secondary endosymbionts, most notably mitochondria. The dinoflagellate host is also reported to retain mitochondrion-like structures, making these cells unique in retaining two evolutionarily distinct mitochondria. This redundancy raises the question of whether the organelles share any functions in common or have distributed functions between them. Results We show that both host and endosymbiont mitochondrial genomes encode genes for electron transport proteins. We have characterized cytochrome c oxidase 1 (cox1), cytochrome oxidase 2 (cox2), cytochrome oxidase 3 (cox3), cytochrome b (cob), and large subunit of ribosomal RNA (LSUrRNA) of endosymbiont mitochondrial ancestry, and cox1 and cob of host mitochondrial ancestry. We show that all genes are transcribed and that those ascribed to the host mitochondrial genome are extensively edited at the RNA level, as expected for a dinoflagellate mitochondrion-encoded gene. We also found evidence for extensive recombination in the host mitochondrial genes and that recombination products are also transcribed, as expected for a dinoflagellate. Conclusion Durinskia baltica and K. foliaceum retain two mitochondria from evolutionarily distinct lineages, and the functions of these organelles are at least partially overlapping, since both express genes for proteins in electron transport. PMID:17892581

  9. Distinct patterns of gene-specific methylation in mammalian placentas: implications for placental evolution and function.

    PubMed

    Ng, H K; Novakovic, B; Hiendleder, S; Craig, J M; Roberts, C T; Saffery, R

    2010-04-01

    The placenta has arisen relatively recently and is among the most rapidly evolving tissues in mammals. Several different placental barrier and structure types appear to have independently evolved common functional features. Specific patterns of gene expression that determine placental development in humans are predicted to be accompanied by specific profiles of epigenetic modification. However, the stratification of epigenetic modifications into those involved in conserved aspects of placental function, versus those involved in divergent placental features, has yet to begin. As a first step towards this goal, we have investigated the methylation status of a small number of gene-specific methylation events recently identified in human placenta, in a panel of placental tissue from baboon, marmoset, cow, cat, guinea pig and mouse. These represent disparate placental barrier types and structures. In this study we hypothesized that specific epigenetic markings may be associated with placental barrier type or function, independent of phylogeny. However, in contrast to our predictions, the majority of gene-specific methylation appears to track with phylogeny, independent of placental barrier type or other structural features. This suggests that despite the likelihood of epigenetic modification playing a role in the functioning and evolution of different placental subtypes, there is no evidence for an involvement of the gene-specific methylation profiles we have identified, in specifying these differences. Further studies, examining larger numbers of epigenetic modifications across phylogeny, are required to define the role of specific epigenetic modifications in the evolution of distinct placental structures. PMID:20167366

  10. Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability.

    PubMed

    Yoshida, Keisuke; Hisabori, Toru

    2016-07-01

    The thiol-based redox regulation system is believed to adjust chloroplast functions in response to changes in light environments. A redox cascade via the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway has been traditionally considered to serve as a transmitter of light signals to target enzymes. However, emerging data indicate that chloroplasts have a complex redox network composed of diverse redox-mediator proteins and target enzymes. Despite extensive research addressing this system, two fundamental questions are still unresolved: How are redox pathways orchestrated within chloroplasts, and why are chloroplasts endowed with a complicated redox network? In this report, we show that NADPH-Trx reductase C (NTRC) is a key redox-mediator protein responsible for regulatory functions distinct from those of the classically known FTR/Trx system. Target screening and subsequent biochemical assays indicated that NTRC and the Trx family differentially recognize their target proteins. In addition, we found that NTRC is an electron donor to Trx-z, which is a key regulator of gene expression in chloroplasts. We further demonstrate that cooperative control of chloroplast functions via the FTR/Trx and NTRC pathways is essential for plant viability. Arabidopsis double mutants impaired in FTR and NTRC expression displayed lethal phenotypes under autotrophic growth conditions. This severe growth phenotype was related to a drastic loss of photosynthetic performance. These combined results provide an expanded map of the chloroplast redox network and its biological functions. PMID:27335455

  11. Distinct Functional Constraints Partition Sequence Conservation in a cis-Regulatory Element

    PubMed Central

    Ruvinsky, Ilya

    2011-01-01

    Different functional constraints contribute to different evolutionary rates across genomes. To understand why some sequences evolve faster than others in a single cis-regulatory locus, we investigated function and evolutionary dynamics of the promoter of the Caenorhabditis elegans unc-47 gene. We found that this promoter consists of two distinct domains. The proximal promoter is conserved and is largely sufficient to direct appropriate spatial expression. The distal promoter displays little if any conservation between several closely related nematodes. Despite this divergence, sequences from all species confer robustness of expression, arguing that this function does not require substantial sequence conservation. We showed that even unrelated sequences have the ability to promote robust expression. A prominent feature shared by all of these robustness-promoting sequences is an AT-enriched nucleotide composition consistent with nucleosome depletion. Because general sequence composition can be maintained despite sequence turnover, our results explain how different functional constraints can lead to vastly disparate rates of sequence divergence within a promoter. PMID:21655084

  12. The highly conserved domain of unknown function 1792 has a distinct glycosyltransferase fold

    PubMed Central

    Zhang, Hua; Zhu, Fan; Yang, Tiandi; Ding, Lei; Zhou, Meixian; Li, Jingzhi; Haslam, Stuart M; Dell, Anne; Erlandsen, Heidi; Wu, Hui

    2014-01-01

    More than 33,000 glycosyltransferases have been identified. Structural studies, however, have only revealed two distinct glycosyltransferase (GT) folds, GT-A and GT-B. Here we report a 1.34 Å resolution X-ray crystallographic structure of a previously uncharacterized “domain of unknown function” 1792 (DUF1792) and show that the domain adopts a new fold and is required for glycosylation of a family of serine-rich repeat streptococcal adhesins. Biochemical studies reveal that the domain is a glucosyltransferase, and it catalyzes the transfer of glucose to the branch point of the hexasaccharide O-linked to the serine-rich repeat of the bacterial adhesin, Fap1 of Streptococcus parasanguinis. DUF1792 homologs from both Gram-positive and Gram-negative bacteria also exhibit the activity. Thus DUF1792 represents a new family of glycosyltransferases, so we designate it as a GT-D glycosyltransferase fold. As the domain is highly conserved in bacteria and not found in eukaryotes, it can be explored as a new antibacterial target. PMID:25023666

  13. An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora

    PubMed Central

    2011-01-01

    Background Coffee is one of the world's most important crops; it is consumed worldwide and plays a significant role in the economy of producing countries. Coffea arabica and C. canephora are responsible for 70 and 30% of commercial production, respectively. C. arabica is an allotetraploid from a recent hybridization of the diploid species, C. canephora and C. eugenioides. C. arabica has lower genetic diversity and results in a higher quality beverage than C. canephora. Research initiatives have been launched to produce genomic and transcriptomic data about Coffea spp. as a strategy to improve breeding efficiency. Results Assembling the expressed sequence tags (ESTs) of C. arabica and C. canephora produced by the Brazilian Coffee Genome Project and the Nestlé-Cornell Consortium revealed 32,007 clusters of C. arabica and 16,665 clusters of C. canephora. We detected different GC3 profiles between these species that are related to their genome structure and mating system. BLAST analysis revealed similarities between coffee and grape (Vitis vinifera) genes. Using KA/KS analysis, we identified coffee genes under purifying and positive selection. Protein domain and gene ontology analyses suggested differences between Coffea spp. data, mainly in relation to complex sugar synthases and nucleotide binding proteins. OrthoMCL was used to identify specific and prevalent coffee protein families when compared to five other plant species. Among the interesting families annotated are new cystatins, glycine-rich proteins and RALF-like peptides. Hierarchical clustering was used to independently group C. arabica and C. canephora expression clusters according to expression data extracted from EST libraries, resulting in the identification of differentially expressed genes. Based on these results, we emphasize gene annotation and discuss plant defenses, abiotic stress and cup quality-related functional categories. Conclusion We present the first comprehensive genome-wide transcript

  14. Mitochondrial thiol oxidase Erv1: both shuttle cysteine residues are required for its function with distinct roles.

    PubMed

    Ang, Swee Kim; Zhang, Mengqi; Lodi, Tiziana; Lu, Hui

    2014-06-01

    Erv1 (essential for respiration and viability 1), is an essential component of the MIA (mitochondrial import and assembly) pathway, playing an important role in the oxidative folding of mitochondrial intermembrane space proteins. In the MIA pathway, Mia40, a thiol oxidoreductase with a CPC motif at its active site, oxidizes newly imported substrate proteins. Erv1 a FAD-dependent thiol oxidase, in turn reoxidizes Mia40 via its N-terminal Cys30-Cys33 shuttle disulfide. However, it is unclear how the two shuttle cysteine residues of Erv1 relay electrons from the Mia40 CPC motif to the Erv1 active-site Cys130-Cys133 disulfide. In the present study, using yeast genetic approaches we showed that both shuttle cysteine residues of Erv1 are required for cell growth. In organelle and in vitro studies confirmed that both shuttle cysteine residues were indeed required for import of MIA pathway substrates and Erv1 enzyme function to oxidize Mia40. Furthermore, our results revealed that the two shuttle cysteine residues of Erv1 are functionally distinct. Although Cys33 is essential for forming the intermediate disulfide Cys33-Cys130' and transferring electrons to the redox active-site directly, Cys30 plays two important roles: (i) dominantly interacts and receives electrons from the Mia40 CPC motif; and (ii) resolves the Erv1 Cys33-Cys130 intermediate disulfide. Taken together, we conclude that both shuttle cysteine residues are required for Erv1 function, and play complementary, but distinct, roles to ensure rapid turnover of active Erv1. PMID:24625320

  15. Distinct neurochemical and functional properties of GAD67-containing 5-HT neurons in the rat dorsal raphe nucleus.

    PubMed

    Shikanai, Hiroki; Yoshida, Takayuki; Konno, Kohtarou; Yamasaki, Miwako; Izumi, Takeshi; Ohmura, Yu; Watanabe, Masahiko; Yoshioka, Mitsuhiro

    2012-10-10

    The serotonergic (5-HTergic) system arising from the dorsal raphe nucleus (DRN) is implicated in various physiological and behavioral processes, including stress responses. The DRN is comprised of several subnuclei, serving specific functions with distinct afferent and efferent connections. Furthermore, subsets of 5-HTergic neurons are known to coexpress other transmitters, including GABA, glutamate, or neuropeptides, thereby generating further heterogeneity. However, despite the growing evidence for functional variations among DRN subnuclei, relatively little is known about how they map onto neurochemical diversity of 5-HTergic neurons. In the present study, we characterized functional properties of GAD67-expressing 5-HTergic neurons (5-HT/GAD67 neurons) in the rat DRN, and compared with those of neurons expressing 5-HTergic molecules (5-HT neurons) or GAD67 alone. While 5-HT/GAD67 neurons were absent in the dorsomedial (DRD) or ventromedial (DRV) parts of the DRN, they were selectively distributed in the lateral wing of the DRN (DRL), constituting 12% of the total DRL neurons. They expressed plasmalemmal GABA transporter 1, but lacked vesicular inhibitory amino acid transporter. By using whole-cell patch-clamp recording, we found that 5-HT/GAD67 neurons had lower input resistance and firing frequency than 5-HT neurons. As revealed by c-Fos immunohistochemistry, neurons in the DRL, particularly 5-HT/GAD67 neurons, showed higher responsiveness to exposure to an open field arena than those in the DRD and DRV. By contrast, exposure to contextual fear conditioning stress showed no such regional differences. These findings indicate that 5-HT/GAD67 neurons constitute a unique neuronal population with distinctive neurochemical and electrophysiological properties and high responsiveness to innocuous stressor. PMID:23055511

  16. Computational identification and analysis of signaling subnetworks with distinct functional roles in the regulation of TNF production.

    PubMed

    Tomaiuolo, Maurizio; Kottke, Melissa; Matheny, Ronald W; Reifman, Jaques; Mitrophanov, Alexander Y

    2016-03-01

    Inflammation is a complex process driven by the coordinated action of a vast number of pro- and anti-inflammatory molecular mediators. While experimental studies have provided an abundance of information about the properties and mechanisms of action of individual mediators, essential system-level regulatory patterns that determine the time-course of inflammation are not sufficiently understood. In particular, it is not known how the contributions from distinct signaling pathways involved in cytokine regulation combine to shape the overall inflammatory response over different time scales. We investigated the kinetics of the intra- and extracellular signaling network controlling the production of the essential pro-inflammatory cytokine, tumor necrosis factor (TNF), and its anti-inflammatory counterpart, interleukin 10 (IL-10), in a macrophage culture. To tackle the intrinsic complexity of the network, we employed a computational modeling approach using the available literature data about specific molecular interactions. Our computational model successfully captured experimentally observed short- and long-term kinetics of key inflammatory mediators. Subsequent model analysis showed that distinct subnetworks regulate IL-10 production by impacting different temporal phases of the cAMP response element-binding protein (CREB) phosphorylation. Moreover, the model revealed that functionally similar inhibitory control circuits regulate the early and late activation phases of nuclear factor κB and CREB. Finally, we identified and investigated distinct signaling subnetworks that independently control the peak height and tail height of the TNF temporal trajectories. The knowledge of such subnetwork-specific regulatory effects may facilitate therapeutic interventions aimed at precise modulation of the inflammatory response. PMID:26751842

  17. Affinity for self antigen selects Treg cells with distinct functional properties.

    PubMed

    Wyss, Lena; Stadinski, Brian D; King, Carolyn G; Schallenberg, Sonja; McCarthy, Nicholas I; Lee, Jun Young; Kretschmer, Karsten; Terracciano, Luigi M; Anderson, Graham; Surh, Charles D; Huseby, Eric S; Palmer, Ed

    2016-09-01

    The manner in which regulatory T cells (Treg cells) control lymphocyte homeostasis is not fully understood. We identified two Treg cell populations with differing degrees of self-reactivity and distinct regulatory functions. We found that GITR(hi)PD-1(hi)CD25(hi) (Triple(hi)) Treg cells were highly self-reactive and controlled lympho-proliferation in peripheral lymph nodes. GITR(lo)PD-1(lo)CD25(lo) (Triple(lo)) Treg cells were less self-reactive and limited the development of colitis by promoting the conversion of CD4(+) Tconv cells into induced Treg cells (iTreg cells). Although Foxp3-deficient (Scurfy) mice lacked Treg cells, they contained Triple(hi)-like and Triple(lo)-like CD4(+) T cells zsuper> T cells infiltrated the skin, whereas Scurfy Triple(lo)CD4(+) T cells induced colitis and wasting disease. These findings indicate that the affinity of the T cell antigen receptor for self antigen drives the differentiation of Treg cells into distinct subsets with non-overlapping regulatory activities. PMID:27478940

  18. Distinct function of estrogen receptor α in smooth muscle and fibroblast cells in prostate development.

    PubMed

    Vitkus, Spencer; Yeh, Chiuan-Ren; Lin, Hsiu-Hsia; Hsu, Iawen; Yu, Jiangzhou; Chen, Ming; Yeh, Shuyuan

    2013-01-01

    Estrogen signaling, through estrogen receptor (ER)α, has been shown to cause hypertrophy in the prostate. Our recent report has shown that epithelial ERα knockout (KO) will not affect the normal prostate development or homeostasis. However, it remains unclear whether ERα in different types of stromal cells has distinct roles in prostate development. This study proposed to elucidate how KO of ERα in the stromal smooth muscle or fibroblast cells may interrupt cross talk between prostate stromal and epithelial cells. Smooth muscle ERαKO (smERαKO) mice showed decreased glandular infolding with the proximal area exhibiting a significant decrease. Fibroblast ERαKO mouse prostates did not exhibit this phenotype but showed a decrease in the number of ductal tips. Additionally, the amount of collagen observed in the basement membrane was reduced in smERαKO prostates. Interestingly, these phenotypes were found to be mutually exclusive among smERαKO or fibroblast ERαKO mice. Compound KO of ERα in both fibroblast and smooth muscle showed combined phenotypes from each of the single KO. Further mechanistic studies showed that IGF-I and epidermal growth factor were down-regulated in prostate smooth muscle PS-1 cells lacking ERα. Together, our results indicate the distinct functions of fibroblast vs. smERα in prostate development. PMID:23204329

  19. Divergent regulation of functionally distinct γ-tubulin complexes during differentiation.

    PubMed

    Muroyama, Andrew; Seldin, Lindsey; Lechler, Terry

    2016-06-20

    Differentiation induces the formation of noncentrosomal microtubule arrays in diverse tissues. The formation of these arrays requires loss of microtubule-organizing activity (MTOC) at the centrosome, but the mechanisms regulating this transition remain largely unexplored. Here, we use the robust loss of centrosomal MTOC activity in the epidermis to identify two pools of γ-tubulin that are biochemically and functionally distinct and differentially regulated. Nucleation-competent CDK5RAP2-γ-tubulin complexes were maintained at centrosomes upon initial epidermal differentiation. In contrast, Nedd1-γ-tubulin complexes did not promote nucleation but were required for anchoring of microtubules, a previously uncharacterized activity for this complex. Cell cycle exit specifically triggered loss of Nedd1-γ-tubulin complexes, providing a mechanistic link connecting MTOC activity and differentiation. Collectively, our studies demonstrate that distinct γ-tubulin complexes regulate different microtubule behaviors at the centrosome and show that differential regulation of these complexes drives loss of centrosomal MTOC activity. PMID:27298324

  20. Ni induces the CRR1-dependent regulon revealing overlap and distinction between hypoxia and Cu deficiency responses in Chlamydomonas reinhardtii.

    PubMed

    Blaby-Haas, Crysten E; Castruita, Madeli; Fitz-Gibbon, Sorel T; Kropat, Janette; Merchant, Sabeeha S

    2016-07-13

    The selectivity of metal sensors for a single metal ion is critical for cellular metal homeostasis. A suite of metal-responsive regulators is required to maintain a prescribed balance of metal ions ensuring that each apo-protein binds the correct metal. However, there are cases when non-essential metals ions disrupt proper metal sensing. An analysis of the Ni-responsive transcriptome of the green alga Chlamydomonas reinhardtii reveals that Ni artificially turns on the CRR1-dependent Cu-response regulon. Since this regulon also responds to hypoxia, a combinatorial transcriptome analysis was leveraged to gain insight into the mechanisms by which Ni interferes with the homeostatic regulation of Cu and oxygen status. Based on parallels with the effect of Ni on the hypoxic response in animals, we propose that a possible link between Cu, oxygen and Ni sensing is an as yet uncharacterized prolyl hydroxylase that regulates a co-activator of CRR1. This analysis also identified transcriptional responses to the pharmacological activation of the Cu-deficiency regulon. Although the Ni-responsive CRR1 regulon is composed of 56 genes (defined as the primary response), 259 transcripts responded to Ni treatment only when a copy of the wild-type CRR1 gene was present. The genome-wide impact of CRR1 target genes on the transcriptome was also evident from the 210 transcripts that were at least 2-fold higher in the crr1 strain, where the abundance of many CRR1 targets was suppressed. Additionally, we identified 120 transcripts that responded to Ni independent of CRR1 function. The putative functions of the proteins encoded by these transcripts suggest that high Ni results in protein damage. PMID:27172123

  1. Tryptophan Scanning Mutagenesis Identifies the Molecular Determinants of Distinct Barttin Functions.

    PubMed

    Wojciechowski, Daniel; Fischer, Martin; Fahlke, Christoph

    2015-07-24

    CLC-K chloride channels are expressed in the kidney and in the inner ear and require the accessory subunit barttin for proper function and membrane insertion. Barttin exerts multiple functions on CLC-proteins: it modifies protein stability and intracellular trafficking as well as channel activity, ion conduction, and gating. So far, the molecular determinants of these distinct barttin functions have remained elusive. Here we performed serial perturbation mutagenesis to identify the sequence determinants of barttin function. Barttin consists of two transmembrane helices followed by a long intracellular carboxyl terminus, and earlier work demonstrated that the transmembrane core of barttin suffices for most effects on the α-subunit. We individually substituted every amino acid of the predicted transmembrane core (amino acids 9-26 and 35-55) with tryptophan, co-expressed mutant barttin with hClC-Ka or V166E rClC-K1, and characterized CLC-K/barttin channels by patch clamp techniques, biochemistry, and confocal microscopy. The majority of mutations left the chaperone function of barttin, i.e. the effects on endoplasmic reticulum exit and surface membrane insertion, unaffected. In contrast, tryptophan insertion at multiple positions resulted in impaired activity of hClC-Ka/barttin and changes in gating of V166E rClC-K1/barttin. These results demonstrate that mutations in a cluster of hydrophobic residues within transmembrane domain 1 affect barttin-CLC-K interaction and impair gating modification by the accessory subunit. Whereas tight interaction is necessary for functional modification, even impaired association of barttin and CLC-K suffices for normal intracellular trafficking. Our findings allow definition of a likely interaction surface and clarify the mechanisms underlying CLC-K channel modification by barttin. PMID:26063802

  2. Gain-of-function SOS1 mutations cause a distinctive form of noonansyndrome

    SciTech Connect

    Tartaglia, Marco; Pennacchio, Len A.; Zhao, Chen; Yadav, KamleshK.; Fodale, Valentina; Sarkozy, Anna; Pandit, Bhaswati; Oishi, Kimihiko; Martinelli, Simone; Schackwitz, Wendy; Ustaszewska, Anna; Martin, Joes; Bristow, James; Carta, Claudio; Lepri, Francesca; Neri, Cinzia; Vasta,Isabella; Gibson, Kate; Curry, Cynthia J.; Lopez Siguero, Juan Pedro; Digilio, Maria Cristina; Zampino, Giuseppe; Dallapiccola, Bruno; Bar-Sagi, Dafna; Gelb, Brude D.

    2006-09-01

    Noonan syndrome (NS) is a developmental disordercharacterized by short stature, facial dysmorphia, congenital heartdefects and skeletal anomalies1. Increased RAS-mitogenactivated proteinkinase (MAPK) signaling due to PTPN11 and KRAS mutations cause 50 percentof NS2-6. Here, we report that 22 of 129 NS patients without PTPN11 orKRAS mutation (17 percent) have missense mutations in SOS1, which encodesa RAS-specific guanine nucleotide exchange factor (GEF). SOS1 mutationscluster at residues implicated in the maintenance of SOS1 in itsautoinhibited form and ectopic expression of two NS-associated mutantsinduced enhanced RAS activation. The phenotype associated with SOS1defects is distinctive, although within NS spectrum, with a highprevalence of ectodermal abnormalities but generally normal developmentand linear growth. Our findings implicate for the first timegain-of-function mutations in a RAS GEF in inherited disease and define anew mechanism by which upregulation of the RAS pathway can profoundlychange human development.

  3. Distinct shifts in microbiota composition during Drosophila aging impair intestinal function and drive mortality

    PubMed Central

    Clark, Rebecca I.; Salazar, Anna; Yamada, Ryuichi; Fitz-Gibbon, Sorel; Morselli, Marco; Alcaraz, Jeanette; Rana, Anil; Rera, Michael; Pellegrini, Matteo; Ja, William W.; Walker, David W.

    2015-01-01

    Summary Alterations in the composition of the intestinal microbiota have been correlated with aging and measures of frailty in the elderly. However, the relationships between microbial dynamics, age-related changes in intestinal physiology and organismal health remain poorly understood. Here, we show that dysbiosis of the intestinal microbiota, characterized by an expansion of the Gammaproteobacteria, is tightly linked to age-onset intestinal barrier dysfunction in Drosophila. Indeed, alterations in the microbiota precede and predict the onset of intestinal barrier dysfunction in aged flies. Changes in microbial composition occurring prior to intestinal barrier dysfunction contribute to changes in excretory function and immune gene activation in the aging intestine. In addition, we show that a distinct shift in microbiota composition follows intestinal barrier dysfunction leading to systemic immune activation and organismal death. Our results indicate that alterations in microbiota dynamics could contribute to and also predict varying rates of health decline during aging in mammals. PMID:26321641

  4. Analysis of Gpr126 function defines distinct mechanisms controlling the initiation and maturation of myelin

    PubMed Central

    Glenn, Thomas D.; Talbot, William S.

    2013-01-01

    In peripheral nerves, Schwann cells form the myelin sheath, which allows the efficient propagation of action potentials along axons. The transcription factor Krox20 regulates the initiation of myelination in Schwann cells and is also required to maintain mature myelin. The adhesion G protein-coupled receptor (GPCR) Gpr126 is essential for Schwann cells to initiate myelination, but previous studies have not addressed the role of Gpr126 signaling in myelin maturation and maintenance. Through analysis of Gpr126 in zebrafish, we define two distinct mechanisms controlling the initiation and maturation of myelin. We show that gpr126 mutant Schwann cells elaborate mature myelin sheaths and maintain krox20 expression for months, provided that the early signaling defect is bypassed by transient elevation of cAMP. At the onset of myelination, Gpr126 and protein kinase A (PKA) function as a switch that allows Schwann cells to initiate krox20 expression and myelination. After myelination is initiated, krox20 expression is maintained and myelin maturation proceeds independently of Gpr126 signaling. Transgenic analysis indicates that the Krox20 cis-regulatory myelinating Schwann cell element (MSE) becomes active at the onset of myelination and that this activity is dependent on Gpr126 signaling. Activity of the MSE declines after initiation, suggesting that other elements are responsible for maintaining krox20 expression in mature nerves. We also show that elevated cAMP does not initiate myelination in the absence of functional Neuregulin 1 (Nrg1) signaling. These results indicate that the mechanisms regulating the initiation of myelination are distinct from those mediating the maturation and maintenance of myelin. PMID:23804499

  5. Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea

    PubMed Central

    Alves, Ricardo J Eloy; Wanek, Wolfgang; Zappe, Anna; Richter, Andreas; Svenning, Mette M; Schleper, Christa; Urich, Tim

    2013-01-01

    The functioning of Arctic soil ecosystems is crucially important for global climate, and basic knowledge regarding their biogeochemical processes is lacking. Nitrogen (N) is the major limiting nutrient in these environments, and its availability is strongly dependent on nitrification. However, microbial communities driving this process remain largely uncharacterized in Arctic soils, namely those catalyzing the rate-limiting step of ammonia (NH3) oxidation. Eleven Arctic soils were analyzed through a polyphasic approach, integrating determination of gross nitrification rates, qualitative and quantitative marker gene analyses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and enrichment of AOA in laboratory cultures. AOA were the only NH3 oxidizers detected in five out of 11 soils and outnumbered AOB in four of the remaining six soils. The AOA identified showed great phylogenetic diversity and a multifactorial association with the soil properties, reflecting an overall distribution associated with tundra type and with several physico-chemical parameters combined. Remarkably, the different gross nitrification rates between soils were associated with five distinct AOA clades, representing the great majority of known AOA diversity in soils, which suggests differences in their nitrifying potential. This was supported by selective enrichment of two of these clades in cultures with different NH3 oxidation rates. In addition, the enrichments provided the first direct evidence for NH3 oxidation by an AOA from an uncharacterized Thaumarchaeota–AOA lineage. Our results indicate that AOA are functionally heterogeneous and that the selection of distinct AOA populations by the environment can be a determinant for nitrification activity and N availability in soils. PMID:23466705

  6. Linking structure and function in food webs: maximization of different ecological functions generates distinct food web structures.

    PubMed

    Yen, Jian D L; Cabral, Reniel B; Cantor, Mauricio; Hatton, Ian; Kortsch, Susanne; Patrício, Joana; Yamamichi, Masato

    2016-03-01

    Trophic interactions are central to ecosystem functioning, but the link between food web structure and ecosystem functioning remains obscure. Regularities (i.e. consistent patterns) in food web structure suggest the possibility of regularities in ecosystem functioning, which might be used to relate structure to function. We introduce a novel, genetic algorithm approach to simulate food webs with maximized throughput (a proxy for ecosystem functioning) and compare the structure of these simulated food webs to real empirical food webs using common metrics of food web structure. We repeat this analysis using robustness to secondary extinctions (a proxy for ecosystem resilience) instead of throughput to determine the relative contributions of ecosystem functioning and ecosystem resilience to food web structure. Simulated food webs that maximized robustness were similar to real food webs when connectance (i.e. levels of interaction across the food web) was high, but this result did not extend to food webs with low connectance. Simulated food webs that maximized throughput or a combination of throughput and robustness were not similar to any real food webs. Simulated maximum-throughput food webs differed markedly from maximum-robustness food webs, which suggests that maximizing different ecological functions can generate distinct food web structures. Based on our results, food web structure would appear to have a stronger relationship with ecosystem resilience than with ecosystem throughput. Our genetic algorithm approach is general and is well suited to large, realistically complex food webs. Genetic algorithms can incorporate constraints on structure and can generate outputs that can be compared directly to empirical data. Our method can be used to explore a range of maximization or minimization hypotheses, providing new perspectives on the links between structure and function in ecological systems. PMID:26749320

  7. Differential Progression of Structural and Functional Alterations in Distinct Retinal Ganglion Cell Types in a Mouse Model of Glaucoma

    PubMed Central

    Della Santina, Luca; Inman, Denise M.; Lupien, Caroline B.; Horner, Philip J.

    2013-01-01

    Intraocular pressure (IOP) elevation is a principal risk factor for glaucoma. Using a microbead injection technique to chronically raise IOP for 15 or 30 d in mice, we identified the early changes in visual response properties of different types of retinal ganglion cells (RGCs) and correlated these changes with neuronal morphology before cell death. Microbead-injected eyes showed reduced optokinetic tracking as well as cell death. In such eyes, multielectrode array recordings revealed that four RGC types show diverse alterations in their light responses upon IOP elevation. OFF-transient RGCs exhibited a more rapid decline in both structural and functional organizations compared with other RGCs. In contrast, although the light-evoked responses of OFF-sustained RGCs were perturbed, the dendritic arbor of this cell type remained intact. ON-transient and ON-sustained RGCs had normal functional receptive field sizes but their spontaneous and light-evoked firing rates were reduced. ON- and OFF-sustained RGCs lost excitatory synapses across an otherwise structurally normal dendritic arbor. Together, our observations indicate that there are changes in spontaneous activity and light-evoked responses in RGCs before detectable dendritic loss. However, when dendrites retract, we found corresponding changes in receptive field center size. Importantly, the effects of IOP elevation are not uniformly manifested in the structure and function of diverse RGC populations, nor are distinct RGC types perturbed within the same time-frame by such a challenge. PMID:24174678

  8. Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma.

    PubMed

    Della Santina, Luca; Inman, Denise M; Lupien, Caroline B; Horner, Philip J; Wong, Rachel O L

    2013-10-30

    Intraocular pressure (IOP) elevation is a principal risk factor for glaucoma. Using a microbead injection technique to chronically raise IOP for 15 or 30 d in mice, we identified the early changes in visual response properties of different types of retinal ganglion cells (RGCs) and correlated these changes with neuronal morphology before cell death. Microbead-injected eyes showed reduced optokinetic tracking as well as cell death. In such eyes, multielectrode array recordings revealed that four RGC types show diverse alterations in their light responses upon IOP elevation. OFF-transient RGCs exhibited a more rapid decline in both structural and functional organizations compared with other RGCs. In contrast, although the light-evoked responses of OFF-sustained RGCs were perturbed, the dendritic arbor of this cell type remained intact. ON-transient and ON-sustained RGCs had normal functional receptive field sizes but their spontaneous and light-evoked firing rates were reduced. ON- and OFF-sustained RGCs lost excitatory synapses across an otherwise structurally normal dendritic arbor. Together, our observations indicate that there are changes in spontaneous activity and light-evoked responses in RGCs before detectable dendritic loss. However, when dendrites retract, we found corresponding changes in receptive field center size. Importantly, the effects of IOP elevation are not uniformly manifested in the structure and function of diverse RGC populations, nor are distinct RGC types perturbed within the same time-frame by such a challenge. PMID:24174678

  9. Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism.

    PubMed Central

    Maden, B E

    2000-01-01

    In most organisms, tetrahydrofolate (H(4)folate) is the carrier of C(1) fragments between formyl and methyl oxidation levels. The C(1) fragments are utilized in several essential biosynthetic processes. In addition, C(1) flux through H(4)folate is utilized for energy metabolism in some groups of anaerobic bacteria. In methanogens and several other Archaea, tetrahydromethanopterin (H(4)MPT) carries C(1) fragments between formyl and methyl oxidation levels. At first sight H(4)MPT appears to resemble H(4)folate at the sites where C(1) fragments are carried. However, the two carriers are functionally distinct, as discussed in the present review. In energy metabolism, H(4)MPT permits redox-flux features that are distinct from the pathway on H(4)folate. In the reductive direction, ATP is consumed in the entry of carbon from CO(2) into the H(4)folate pathway, but not in entry into the H(4)MPT pathway. In the oxidative direction, methyl groups are much more readily oxidized on H(4)MPT than on H(4)folate. Moreover, the redox reactions on H(4)MPT are coupled to more negative reductants than the pyridine nucleotides which are generally used in the H(4)folate pathway. Thermodynamics of the reactions of C(1) reduction via the two carriers differ accordingly. A major underlying cause of the thermodynamic differences is in the chemical properties of the arylamine nitrogen N(10) on the two carriers. In H(4)folate, N(10) is subject to electron withdrawal by the carbonyl group of p-aminobenzoate, but in H(4)MPT an electron-donating methylene group occurs in the corresponding position. It is also proposed that the two structural methyl groups of H(4)MPT tune the carrier's thermodynamic properties through an entropic contribution. H(4)MPT appears to be unsuited to some of the biosynthetic functions of H(4)folate, in particular the transfer of activated formyl groups, as in purine biosynthesis. Evidence bearing upon whether H(4)MPT participates in thymidylate synthesis is discussed

  10. Vestibular function in the temporal and parietal cortex: distinct velocity and inertial processing pathways

    PubMed Central

    Ventre-Dominey, Jocelyne

    2014-01-01

    A number of behavioral and neuroimaging studies have reported converging data in favor of a cortical network for vestibular function, distributed between the temporo-parietal cortex and the prefrontal cortex in the primate. In this review, we focus on the role of the cerebral cortex in visuo-vestibular integration including the motion sensitive temporo-occipital areas i.e., the middle superior temporal area (MST) and the parietal cortex. Indeed, these two neighboring cortical regions, though they both receive combined vestibular and visual information, have distinct implications in vestibular function. In sum, this review of the literature leads to the idea of two separate cortical vestibular sub-systems forming (1) a velocity pathway including MST and direct descending pathways on vestibular nuclei. As it receives well-defined visual and vestibular velocity signals, this pathway is likely involved in heading perception and rapid top-down regulation of eye/head coordination and (2) an inertial processing pathway involving the parietal cortex in connection with the subcortical vestibular nuclei complex responsible for velocity storage integration. This vestibular cortical pathway would be implicated in high-order multimodal integration and cognitive functions, including world space and self-referential processing. PMID:25071481

  11. Divergent immune responses to house dust mite lead to distinct structural-functional phenotypes.

    PubMed

    Johnson, Jill R; Swirski, Filip K; Gajewska, Beata U; Wiley, Ryan E; Fattouh, Ramzi; Pacitto, Stephanie R; Wong, Jonathan K; Stämpfli, Martin R; Jordana, Manel

    2007-09-01

    Asthma is a chronic airway inflammatory disease that encompasses three cardinal processes: T helper (Th) cell type 2 (Th2)-polarized inflammation, bronchial hyperreactivity, and airway wall remodeling. However, the link between the immune-inflammatory phenotype and the structural-functional phenotype remains to be fully defined. The objective of these studies was to evaluate the relationship between the immunologic nature of chronic airway inflammation and the development of abnormal airway structure and function in a mouse model of chronic asthma. Using IL-4-competent and IL-4-deficient mice, we created divergent immune-inflammatory responses to chronic aeroallergen challenge. Immune-inflammatory, structural, and physiological parameters of chronic allergic airway disease were evaluated in both strains of mice. Although both strains developed airway inflammation, the profiles of the immune-inflammatory responses were markedly different: IL-4-competent mice elicited a Th2-polarized response and IL-4-deficient mice developed a Th1-polarized response. Importantly, this chronic Th1-polarized immune response was not associated with airway remodeling or bronchial hyperresponsiveness. Transient reconstitution of IL-4 in IL-4-deficient mice via an airway gene transfer approach led to partial Th2 repolarization and increased bronchial hyperresponsiveness, along with full reconstitution of airway remodeling. These data show that distinct structural-functional phenotypes associated with chronic airway inflammation are strictly dependent on the nature of the immune-inflammatory response. PMID:17586699

  12. Two Genetically and Molecularly Distinct Functions Involved in Early Neurogenesis Reside within the Enhancer of Split Locus of Drosophila Melanogaster

    PubMed Central

    Delidakis, C.; Preiss, A.; Hartley, D. A.; Artavanis-Tsakonas, S.

    1991-01-01

    Molecular correlation of the genetic aspects of the function of the neurogenic gene Enhancer of split [E(spl)] has previously been hampered by the densely transcribed nature of the chromosomal region within which it resides. We present data indicating that two distinct molecular species contribute to E(spl) function. Analysis of new E(spl) alleles has allowed us to define two complementing functions within the locus. Subsequent phenotypic analysis of different E(spl) deficiencies combined with P element-transformed constructs has demonstrated that these two functions correspond to: (1) a family of helix-loop-helix (HLH) protein-encoding genes and (2) the single copy gene E(spl) m9/10, whose product shares homology with G-protein β subunits. The zygotically active E(spl) HLH genes can, at least partially, substitute for one another's functions and their total copy number determines the activity of the locus. E(spl) m9/10 acts synergistically with the E(spl) HLH genes and other neurogenic genes in the process of neurogenesis. The maternal component of E(spl) m9/10 has the most pronounced effect in neurogenesis, while its zygotic component is predominantly required during postembryonic development. The lethality of trans-heterozygotes of null E(spl) deficiency alleles with a strong Delta point mutation is a result of the concomitant reduction in activity of both E(spl) HLH and m9/10 functions. Immunocytochemical localization of the E(spl) m9/10 protein has revealed that it is a ubiquitously distributed nuclear component in embryonic, larval and imaginal tissues. PMID:1752423

  13. Selection on soil microbiomes reveals reproducible impacts on plant function.

    PubMed

    Panke-Buisse, Kevin; Poole, Angela C; Goodrich, Julia K; Ley, Ruth E; Kao-Kniffin, Jenny

    2015-04-01

    Soil microorganisms found in the root zone impact plant growth and development, but the potential to harness these benefits is hampered by the sheer abundance and diversity of the players influencing desirable plant traits. Here, we report a high level of reproducibility of soil microbiomes in altering plant flowering time and soil functions when partnered within and between plant hosts. We used a multi-generation experimental system using Arabidopsis thaliana Col to select for soil microbiomes inducing earlier or later flowering times of their hosts. We then inoculated the selected microbiomes from the tenth generation of plantings into the soils of three additional A. thaliana genotypes (Ler, Be, RLD) and a related crucifer (Brassica rapa). With the exception of Ler, all other plant hosts showed a shift in flowering time corresponding with the inoculation of early- or late-flowering microbiomes. Analysis of the soil microbial community using 16 S rRNA gene sequencing showed distinct microbiota profiles assembling by flowering time treatment. Plant hosts grown with the late-flowering-associated microbiomes showed consequent increases in inflorescence biomass for three A. thaliana genotypes and an increase in total biomass for B. rapa. The increase in biomass was correlated with two- to five-fold enhancement of microbial extracellular enzyme activities associated with nitrogen mineralization in soils. The reproducibility of the flowering phenotype across plant hosts suggests that microbiomes can be selected to modify plant traits and coordinate changes in soil resource pools. PMID:25350154

  14. Functional effects of distinct innervation styles of pyramidal cells by fast spiking cortical interneurons

    PubMed Central

    Kubota, Yoshiyuki; Kondo, Satoru; Nomura, Masaki; Hatada, Sayuri; Yamaguchi, Noboru; Mohamed, Alsayed A; Karube, Fuyuki; Lübke, Joachim; Kawaguchi, Yasuo

    2015-01-01

    Inhibitory interneurons target precise membrane regions on pyramidal cells, but differences in their functional effects on somata, dendrites and spines remain unclear. We analyzed inhibitory synaptic events induced by cortical, fast-spiking (FS) basket cells which innervate dendritic shafts and spines as well as pyramidal cell somata. Serial electron micrograph (EMg) reconstructions showed that somatic synapses were larger than dendritic contacts. Simulations with precise anatomical and physiological data reveal functional differences between different innervation styles. FS cell soma-targeting synapses initiate a strong, global inhibition, those on shafts inhibit more restricted dendritic zones, while synapses on spines may mediate a strictly local veto. Thus, FS cell synapses of different sizes and sites provide functionally diverse forms of pyramidal cell inhibition. DOI: http://dx.doi.org/10.7554/eLife.07919.001 PMID:26142457

  15. Using networks to identify fine structural differences between functionally distinct protein states.

    PubMed

    Swint-Kruse, Liskin

    2004-08-31

    The vast increase in available data from the "-omics" revolution has enabled the fields of structural proteomics and structure prediction to make great progress in assigning realistic three-dimensional structures to each protein molecule. The challenge now lies in determining the fine structural details that endow unique functions to sequences that assume a common fold. Similar problems are encountered in understanding how distinct conformations contribute to different phases of a single protein's dynamic function. However, efforts are hampered by the complexity of these large, three-dimensional molecules. To overcome this limitation, structural data have been recast as two-dimensional networks. This analysis greatly reduces visual complexity but retains information about individual residues. Such diagrams are very useful for comparing multiple structures, including (1) homologous proteins, (2) time points throughout a dynamics simulation, and (3) functionally different conformations of a given protein. Enhanced structural examination results in new functional hypotheses to test experimentally. Here, network representations were key to discerning a difference between unliganded and inducer-bound lactose repressor protein (LacI), which were previously presumed to be identical structures. Further, the interface of unliganded LacI was surprisingly similar to that of the K84L variant and various structures generated by molecular dynamics simulations. Apo-LacI appears to be poised to adopt the conformation of either the DNA- or inducer-bound structures, and the K84L mutation appears to freeze the structure partway through the conformational transition. Additional examination of the effector binding pocket results in specific hypotheses about how inducer, anti-inducer, and neutral sugars exert their effects on repressor function. PMID:15323549

  16. Distinct Modulated Pupil Function System for Real-Time Imaging of Living Cells

    PubMed Central

    Watanabe, Tomonobu M.; Tsukasaki, Yoshikazu; Fujita, Hideaki; Ichimura, Taro; Saitoh, Tatsuya; Akira, Shizuo; Yanagida, Toshio

    2012-01-01

    Optical microscopy is one of the most contributive tools for cell biology in the past decades. Many microscopic techniques with various functions have been developed to date, i.e., phase contrast microscopy, differential interference contrast (DIC) microscopy, confocal microscopy, two photon microscopy, superresolution microscopy, etc. However, person who is in charge of an experiment has to select one of the several microscopic techniques to achieve an experimental goal, which makes the biological assay time-consuming and expensive. To solve this problem, we have developed a microscopic system with various functions in one instrument based on the optical Fourier transformation with a lens system for detection while focusing on applicability and user-friendliness for biology. The present instrument can arbitrarily modulate the pupil function with a micro mirror array on the Fourier plane of the optical pathway for detection. We named the present instrument DiMPS (Distinct optical Modulated Pupil function System). The DiMPS is compatible with conventional fluorescent probes and illumination equipment, and gives us a Fourier-filtered image, a pseudo-relief image, and a deep focus depth. Furthermore, DiMPS achieved a resolution enhancement (pseudo-superresolution) of 110 nm through the subtraction of two images whose pupil functions are independently modulated. In maximum, the spatial and temporal resolution was improved to 120 nm and 2 ms, respectively. Since the DiMPS is based on relay optics, it can be easily combined with another microscopic instrument such as confocal microscope, and provides a method for multi-color pseudo-superresolution. Thus, the DiMPS shows great promise as a flexible optical microscopy technique in biological research fields. PMID:22962597

  17. Molecular and functional characterization of two distinct IGF binding protein-6 genes in zebrafish.

    PubMed

    Wang, Xianlei; Lu, Ling; Li, Yun; Li, Mingyu; Chen, Chen; Feng, Qiang; Zhang, Chunyang; Duan, Cunming

    2009-05-01

    Insulin-like growth factor binding proteins (IGFBPs) are high-affinity binding partners for IGFs and play important roles in modulating IGF activities. In this study, we have identified and characterized two functional IGFBP-6 genes in zebrafish. Structural, phylogenetic, and comparative genomic analyses indicate that they are co-orthologs of the human IGFBP-6 gene. To gain insight into how the duplicated genes may have evolved through partitioning of ancestral functions, gene expression and functional studies were carried out. In adult fish, IGFBP-6a mRNA was most abundantly expressed in the muscle. The levels of IGFBP-6a mRNA in nonmuscle tissues were very low or barely detectable. In comparison, the levels of IGFBP-6b mRNA were high in the brain, heart, and muscle, but very low or undetectable in other adult tissues. During embryogenesis, the IGFBP-6a mRNA levels were relatively low. The IGFBP-6b mRNA levels were low during the initial 48 h. They became significantly higher at 72 and 96 h postfertilization. Overexpression of zebrafish IGFBP-6a and IGFBP-6b caused a similar degree of reduction in body size and developmental rate. No notable effects were observed on cell fate or patterning in these transgenic fish. These data suggest that the duplicated igfbp-6 genes encode two functionally similar proteins, but they have evolved distinct spatial and temporal expression patterns. These findings are consistent with the notion of an additional gene duplication event in teleost fish and have provided novel insight into the structural and functional evolution of the IGFBP gene family. PMID:19279291

  18. fMRI Reveals Distinct CNS Processing during Symptomatic and Recovered Complex Regional Pain Syndrome in Children

    ERIC Educational Resources Information Center

    Lebel, A.; Becerra, L.; Wallin, D.; Moulton, E. A.; Morris, S.; Pendse, G.; Jasciewicz, J.; Stein, M.; Aiello-Lammens, M.; Grant, E.; Berde, C.; Borsook, D.

    2008-01-01

    Complex regional pain syndrome (CRPS) in paediatric patients is clinically distinct from the adult condition in which there is often complete resolution of its signs and symptoms within several months to a few years. The ability to compare the symptomatic and asymptomatic condition in the same individuals makes this population interesting for the…

  19. Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea

    NASA Astrophysics Data System (ADS)

    Alves, Ricardo J. E.; Wanek, Wolfgang; Zappe, Anna; Richter, Andreas; Svenning, Mette M.; Schleper, Christa; Urich, Tim

    2014-05-01

    The functioning of Arctic soil ecosystems is crucially important for global climate, although basic knowledge regarding their biogeochemical processes is lacking. Nitrogen (N) is the major limiting nutrient in these environments, and therefore it is particularly important to gain a better understanding of the microbial populations catalyzing transformations that influence N bioavailability. However, microbial communities driving this process remain largely uncharacterized in Arctic soils, namely those catalyzing the rate-limiting step of ammonia (NH3) oxidation. Eleven Arctic soils from Svalbard were analyzed through a polyphasic approach, including determination of gross nitrification rates through a 15N pool dilution method, qualitative and quantitative analyses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) populations based on the functional marker gene amoA (encoding the ammonia monooxygenase subunit A), and enrichment of AOA in laboratory cultures. AOA were the only NH3 oxidizers detected in five out of 11 soils, and outnumbered AOB by 1 to 3 orders of magnitude in most others. AOA showed a great overall phylogenetic diversity that was differentially distributed across soil ecosystems, and exhibited an uneven population composition that reflected the dominance of a single AOA phylotype in each population. Moreover, AOA populations showed a multifactorial association with the soil properties, which reflected an overall distribution associated with tundra type and with several physico-chemical parameters combined, namely pH and soil moisture and N contents (i.e., NO3- and dissolved organic N). Remarkably, the different gross in situ and potential nitrification rates between soils were associated with distinct AOA phylogenetic clades, suggesting differences in their nitrifying potential, both under the native NH3 conditions and as a response to higher NH3 availability. This was further supported by the selective enrichment of two AOA clades that exhibited

  20. Reveal genes functionally associated with ACADS by a network study.

    PubMed

    Chen, Yulong; Su, Zhiguang

    2015-09-15

    Establishing a systematic network is aimed at finding essential human gene-gene/gene-disease pathway by means of network inter-connecting patterns and functional annotation analysis. In the present study, we have analyzed functional gene interactions of short-chain acyl-coenzyme A dehydrogenase gene (ACADS). ACADS plays a vital role in free fatty acid β-oxidation and regulates energy homeostasis. Modules of highly inter-connected genes in disease-specific ACADS network are derived by integrating gene function and protein interaction data. Among the 8 genes in ACADS web retrieved from both STRING and GeneMANIA, ACADS is effectively conjoined with 4 genes including HAHDA, HADHB, ECHS1 and ACAT1. The functional analysis is done via ontological briefing and candidate disease identification. We observed that the highly efficient-interlinked genes connected with ACADS are HAHDA, HADHB, ECHS1 and ACAT1. Interestingly, the ontological aspect of genes in the ACADS network reveals that ACADS, HAHDA and HADHB play equally vital roles in fatty acid metabolism. The gene ACAT1 together with ACADS indulges in ketone metabolism. Our computational gene web analysis also predicts potential candidate disease recognition, thus indicating the involvement of ACADS, HAHDA, HADHB, ECHS1 and ACAT1 not only with lipid metabolism but also with infant death syndrome, skeletal myopathy, acute hepatic encephalopathy, Reye-like syndrome, episodic ketosis, and metabolic acidosis. The current study presents a comprehensible layout of ACADS network, its functional strategies and candidate disease approach associated with ACADS network. PMID:26045367

  1. AINTEGUMENTA-LIKE genes have partly overlapping functions with AINTEGUMENTA but make distinct contributions to Arabidopsis thaliana flower development.

    PubMed

    Krizek, Beth A

    2015-08-01

    AINTEGUMENTA (ANT) is an important regulator of Arabidopsis flower development that has overlapping functions with the related AINTEGUMENTA-LIKE6 (AIL6) gene in floral organ initiation, identity specification, growth, and patterning. Two other AINTEGUMENTA-LIKE (AIL) genes, AIL5 and AIL7, are expressed in developing flowers in spatial domains that partly overlap with those of ANT. Here, it is shown that AIL5 and AIL7 also act in a partially redundant manner with ANT. The results demonstrate that AIL genes exhibit unequal genetic redundancy with roles for AIL5, AIL6, and AIL7 only revealed in the absence of ANT function. ant ail5 and ant ail7 double mutant flowers show alterations in floral organ positioning and growth, sepal fusion, and reductions in petal number. In ant ail5, petals are often replaced by filaments or dramatically reduced in size. ant ail7 double mutants produce increased numbers of carpels, which have defects in valve fusion and a loss of apical tissues. The distinct phenotypes of ant ail5, ant ail7 and the previously characterized ant ail6 indicate that AIL5, AIL6, and AIL7 make unique contributions to flower development. These distinct roles are also supported by genetic analyses of ant ail triple mutants. While ant ail5 ail6 triple mutants closely resemble ant ail6 double mutants, ant ail5 ail7 triple mutants exhibit more severe deviations from the wild type than either ant ail5 or ant ail7 double mutants. Furthermore, it is shown that AIL5, AIL6, and AIL7 act in a dose dependent manners in ant and other mutant backgrounds. PMID:25956884

  2. AINTEGUMENTA-LIKE genes have partly overlapping functions with AINTEGUMENTA but make distinct contributions to Arabidopsis thaliana flower development

    PubMed Central

    Krizek, Beth A.

    2015-01-01

    AINTEGUMENTA (ANT) is an important regulator of Arabidopsis flower development that has overlapping functions with the related AINTEGUMENTA-LIKE6 (AIL6) gene in floral organ initiation, identity specification, growth, and patterning. Two other AINTEGUMENTA-LIKE (AIL) genes, AIL5 and AIL7, are expressed in developing flowers in spatial domains that partly overlap with those of ANT. Here, it is shown that AIL5 and AIL7 also act in a partially redundant manner with ANT. The results demonstrate that AIL genes exhibit unequal genetic redundancy with roles for AIL5, AIL6, and AIL7 only revealed in the absence of ANT function. ant ail5 and ant ail7 double mutant flowers show alterations in floral organ positioning and growth, sepal fusion, and reductions in petal number. In ant ail5, petals are often replaced by filaments or dramatically reduced in size. ant ail7 double mutants produce increased numbers of carpels, which have defects in valve fusion and a loss of apical tissues. The distinct phenotypes of ant ail5, ant ail7 and the previously characterized ant ail6 indicate that AIL5, AIL6, and AIL7 make unique contributions to flower development. These distinct roles are also supported by genetic analyses of ant ail triple mutants. While ant ail5 ail6 triple mutants closely resemble ant ail6 double mutants, ant ail5 ail7 triple mutants exhibit more severe deviations from the wild type than either ant ail5 or ant ail7 double mutants. Furthermore, it is shown that AIL5, AIL6, and AIL7 act in a dose dependent manners in ant and other mutant backgrounds. PMID:25956884

  3. Conditional IFNAR1 ablation reveals distinct requirements of Type I IFN signaling for NK cell maturation and tumor surveillance

    PubMed Central

    Mizutani, Tatsuaki; Neugebauer, Nina; Putz, Eva M.; Moritz, Nadine; Simma, Olivia; Zebedin-Brandl, Eva; Gotthardt, Dagmar; Warsch, Wolfgang; Eckelhart, Eva; Kantner, Hans-Peter; Kalinke, Ulrich; Lienenklaus, Stefan; Weiss, Siegfried; Strobl, Birgit; Müller, Mathias; Sexl, Veronika; Stoiber, Dagmar

    2012-01-01

    Mice with an impaired Type I interferon (IFN) signaling (IFNAR1- and IFNβ-deficient mice) display an increased susceptibility toward v-ABL-induced B-cell leukemia/lymphoma. The enhanced leukemogenesis in the absence of an intact Type I IFN signaling is caused by alterations within the tumor environment. Deletion of Ifnar1 in tumor cells (as obtained in Ifnar1f/f CD19-Cre mice) failed to impact on disease latency or type. In line with this observation, the initial transformation and proliferative capacity of tumor cells were unaltered irrespective of whether the cells expressed IFNAR1 or not. v-ABL-induced leukemogenesis is mainly subjected to natural killer (NK) cell-mediated tumor surveillance. Thus, we concentrated on NK cell functions in IFNAR1 deficient animals. Ifnar1-/- NK cells displayed maturation defects as well as an impaired cytolytic activity. When we deleted Ifnar1 selectively in mature NK cells (by crossing Ncr1-iCre mice to Ifnar1f/f animals), maturation was not altered. However, NK cells derived from Ifnar1f/f Ncr1-iCre mice showed a significant cytolytic defect in vitro against the hematopoietic cell lines YAC-1 and RMA-S, but not against the melanoma cell line B16F10. Interestingly, this defect was not related to an in vivo phenotype as v-ABL-induced leukemogenesis was unaltered in Ifnar1f/f Ncr1-iCre compared with Ifnar1f/f control mice. Moreover, the ability of Ifnar1f/f Ncr1-iCre NK cells to kill B16F10 melanoma cells was unaltered, both in vitro and in vivo. Our data reveal that despite the necessity for Type I IFN in NK cell maturation the expression of IFNAR1 on mature murine NK cells is not required for efficient tumor surveillance. PMID:23170251

  4. Integrative analyses of genetic variation in enzyme activities of primary carbohydrate metabolism reveal distinct modes of regulation in Arabidopsis thaliana

    PubMed Central

    Keurentjes, Joost JB; Sulpice, Ronan; Gibon, Yves; Steinhauser, Marie-Caroline; Fu, Jingyuan; Koornneef, Maarten; Stitt, Mark; Vreugdenhil, Dick

    2008-01-01

    Background Plant primary carbohydrate metabolism is complex and flexible, and is regulated at many levels. Changes of transcript levels do not always lead to changes in enzyme activities, and these do not always affect metabolite levels and fluxes. To analyze interactions between these three levels of function, we have performed parallel genetic analyses of 15 enzyme activities involved in primary carbohydrate metabolism, transcript levels for their encoding structural genes, and a set of relevant metabolites. Quantitative analyses of each trait were performed in the Arabidopsis thaliana Ler × Cvi recombinant inbred line (RIL) population and subjected to correlation and quantitative trait locus (QTL) analysis. Results Traits affecting primary metabolism were often correlated, possibly due to developmental control affecting multiple genes, enzymes, or metabolites. Moreover, the activity QTLs of several enzymes co-localized with the expression QTLs (eQTLs) of their structural genes, or with metabolite accumulation QTLs of their substrates or products. In addition, many trait-specific QTLs were identified, revealing that there is also specific regulation of individual metabolic traits. Regulation of enzyme activities often occurred through multiple loci, involving both cis- and trans-acting transcriptional or post-transcriptional control of structural genes, as well as independently of the structural genes. Conclusion Future studies of the regulatory processes in primary carbohydrate metabolism will benefit from an integrative genetic analysis of gene transcription, enzyme activity, and metabolite content. The multiparallel QTL analyses of the various interconnected transducers of biological information flow, described here for the first time, can assist in determining the causes and consequences of genetic regulation at different levels of complex biological systems. PMID:18710526

  5. Quantitative Morphometry of Electrophysiologically Identified CA3b Interneurons Reveals Robust Local Geometry and Distinct Cell Classes

    PubMed Central

    Ascoli, Giorgio A.; Brown, Kerry M.; Calixto, Eduardo; Card, J. Patrick; Galvan, E. J.; Perez-Rosello, T.; Barrionuevo, Germán

    2010-01-01

    The morphological and electrophysiological diversity of inhibitory cells in hippocampal area CA3 may underlie specific computational roles and is not yet fully elucidated. In particular, interneurons with somata in strata radiatum (R) and lacunosum-moleculare (L-M) receive converging stimulation from the dentate gyrus and entorhinal cortex as well as within CA3. Although these cells express different forms of synaptic plasticity, their axonal trees and connectivity are still largely unknown. We investigated the branching and spatial patterns, plus the membrane and synaptic properties, of rat CA3b R and L-M interneurons digitally reconstructed after intracellular labeling. We found considerable variability within but no difference between the two layers, and no correlation between morphological and biophysical properties. Nevertheless, two cell types were identified based on the number of dendritic bifurcations, with significantly different anatomical and electrophysiological features. Axons generally branched an order of magnitude more than dendrites. However, interneurons on both sides of the R/L-M boundary revealed surprisingly modular axo-dendritic arborizations with consistently uniform local branch geometry. Both axons and dendrites followed a lamellar organization, and axons displayed a spatial preference towards the fissure. Moreover, only a small fraction of the axonal arbor extended to the outer portion of the invaded volume, and tended to return towards the proximal region. In contrast, dendritic trees demonstrated more limited but isotropic volume occupancy. These results suggest a role of predominantly local feedforward and lateral inhibitory control for both R and L-M interneurons. Such role may be essential to balance the extensive recurrent excitation of area CA3 underlying hippocampal autoassociative memory function. PMID:19496174

  6. Distinct Gene Expression Profiles in Egg and Synergid Cells of Rice as Revealed by Cell Type-Specific Microarrays1[W][OA

    PubMed Central

    Ohnishi, Takayuki; Takanashi, Hideki; Mogi, Mirai; Takahashi, Hirokazu; Kikuchi, Shunsuke; Yano, Kentaro; Okamoto, Takashi; Fujita, Masahiro; Kurata, Nori; Tsutsumi, Nobuhiro

    2011-01-01

    Double fertilization in flowering plants refers to a process in which two sperm cells, carried by the pollen tube, fertilize both the egg and the central cell after their release into a synergid cell of the female gametophyte. The molecular processes by which the female gametophytic cells express their unique functions during fertilization are not well understood. Genes expressed in egg and synergid cells might be important for multiple stages of the plant reproductive process. Here, we profiled genome-wide gene expression in egg and synergid cells in rice (Oryza sativa), a model monocot, using a nonenzymatic cell isolation technique. We found that the expression profiles of the egg and synergid cells were already specified at the micropylar end of the female gametophyte during the short developmental period that comprises the three consecutive mitotic nuclear divisions after megaspore generation. In addition, we identified a large number of genes expressed in the rice egg and synergid cells and characterized these genes using Gene Ontology analysis. The analysis suggested that epigenetic and posttranscriptional regulatory mechanisms are involved in the specification and/or maintenance of these cells. Comparisons between the rice profiles and reported Arabidopsis (Arabidopsis thaliana) profiles revealed that genes enriched in the egg/synergid cell of rice were distinct from those in Arabidopsis. PMID:21106719

  7. Impact of Distinct Poxvirus Infections on the Specificities and Functionalities of CD4+ T Cell Responses

    PubMed Central

    Siciliano, Nicholas A.; Hersperger, Adam R.; Lacuanan, Aimee M.; Xu, Ren-Huan; Sidney, John; Sette, Alessandro; Sigal, Luis J.

    2014-01-01

    ABSTRACT The factors that determine CD4+ T cell (TCD4+) specificities, functional capacity, and memory persistence in response to complex pathogens remain unclear. We explored these parameters in the C57BL/6 mouse through comparison of two highly related (>92% homology) poxviruses: ectromelia virus (ECTV), a natural mouse pathogen, and vaccinia virus (VACV), a heterologous virus that nevertheless elicits potent immune responses. In addition to elucidating several previously unidentified major histocompatibility complex class II (MHC-II)-restricted epitopes, we observed many qualitative and quantitative differences between the TCD4+ repertoires, including responses not elicited by VACV despite complete sequence conservation. In addition, we observed functional heterogeneity between ECTV- and VACV-specific TCD4+ at both a global and individual epitope level, particularly greater expression of the cytolytic marker CD107a from TCD4+ following ECTV infection. Most striking were differences during the late memory phase where, in contrast to ECTV, VACV infection failed to elicit measurable epitope-specific TCD4+ as determined by intracellular cytokine staining. These findings illustrate the strong influence of epitope-extrinsic factors on TCD4+ responses and memory. IMPORTANCE Much of our understanding concerning host-pathogen relationships in the context of poxvirus infections stems from studies of VACV in mice. However, VACV is not a natural mouse pathogen, and therefore, the relevance of results obtained using this model may be limited. Here, we explored the MHC class II-restricted TCD4+ repertoire induced by mousepox (ECTV) infection and the functional profile of the responding epitope-specific TCD4+, comparing these results to those induced by VACV infection under matched conditions. Despite a high degree of homology between the two viruses, we observed distinct specificity and functional profiles of TCD4+ responses at both acute and memory time points, with VACV

  8. Parcellation of the Thalamus into Distinct Nuclei reflects EphA Expression and Function

    PubMed Central

    Lehigh, Kathryn M.; Leonard, Carrie E.; Baranoski, Jacob; Donoghue, Maria J.

    2013-01-01

    Intercellular signaling via the Eph receptor tyrosine kinases and their ligands, the ephrins, acts to shape many regions of the developing brain. One intriguing consequence of Eph signaling is the control of mixing between discrete cell populations in the developing hindbrain, contributing to the formation of segregated rhombomeres. Since the thalamus is also a parcellated structure comprised of discrete nuclei, might Eph signaling play a parallel role in cell segregation in this brain structure? Analyses of expression reveal that several Eph family members are expressed in the forming thalamus and that cells expressing particular receptors form cellular groupings as development proceeds. Specifically, expression of receptors EphA4 or EphA7 and ligand ephrin-A5 is localized to distinct thalamic domains. EphA4 and EphA7 are often coexpressed in regions of the forming thalamus, with each receptor marking discrete thalamic domains. In contrast, ephrin-A5 is expressed by a limited group of thalamic cells. Within the ventral thalamus, EphA4 is present broadly, occasionally overlapping with ephrin-A5 expression. EphA7 is more restricted in its expression and is largely nonoverlapping with ephrin-A5. In mutant mice lacking one or both receptors or ephrin-A5, the appearance of the venteroposterolateral (VPL) and venteroposteromedial (VPM) nuclear complex is altered compared to wild type mice. These in vivo results support a role for Eph family members in the definition of the thalamic nuclei. In parallel, in vitro analysis reveals a hierarchy of mixing among cells expressing ephrin-A5 with cells expressing EphA4 alone, EphA4 and EphA7 together, or EphA7 alone. Together, these data support a model in which EphA molecules promote the parcellation of discrete thalamic nuclei by limiting the extent of cell mixing. PMID:24036135

  9. Proteomic profiling reveals insights into Triticeae stigma development and function.

    PubMed

    Nazemof, Nazila; Couroux, Philippe; Rampitsch, Christof; Xing, Tim; Robert, Laurian S

    2014-11-01

    To our knowledge, this study represents the first high-throughput characterization of a stigma proteome in the Triticeae. A total of 2184 triticale mature stigma proteins were identified using three different gel-based approaches combined with mass spectrometry. The great majority of these proteins are described in a Triticeae stigma for the first time. These results revealed many proteins likely to play important roles in stigma development and pollen-stigma interactions, as well as protection against biotic and abiotic stresses. Quantitative comparison of the triticale stigma transcriptome and proteome showed poor correlation, highlighting the importance of having both types of analysis. This work makes a significant contribution towards the elucidation of the Triticeae stigma proteome and provides novel insights into its role in stigma development and function. PMID:25170101

  10. Proteomic profiling reveals insights into Triticeae stigma development and function

    PubMed Central

    Nazemof, Nazila; Couroux, Philippe; Rampitsch, Christof; Xing, Tim; Robert, Laurian S.

    2014-01-01

    To our knowledge, this study represents the first high-throughput characterization of a stigma proteome in the Triticeae. A total of 2184 triticale mature stigma proteins were identified using three different gel-based approaches combined with mass spectrometry. The great majority of these proteins are described in a Triticeae stigma for the first time. These results revealed many proteins likely to play important roles in stigma development and pollen–stigma interactions, as well as protection against biotic and abiotic stresses. Quantitative comparison of the triticale stigma transcriptome and proteome showed poor correlation, highlighting the importance of having both types of analysis. This work makes a significant contribution towards the elucidation of the Triticeae stigma proteome and provides novel insights into its role in stigma development and function. PMID:25170101

  11. Modification of collagen IV by glucose or methylglyoxal alters distinct mesangial cell functions.

    PubMed

    Pozzi, Ambra; Zent, Roy; Chetyrkin, Sergei; Borza, Corina; Bulus, Nada; Chuang, Peale; Chen, Dong; Hudson, Billy; Voziyan, Paul

    2009-10-01

    Diabetic nephropathy (DN) affects both glomerular cells and the extracellular matrix (ECM), yet the pathogenic mechanisms involving cell-matrix interactions are poorly understood. Glycation alters integrin-dependent cell-ECM interactions, and perturbation of these interactions results in severe renal pathology in diabetic animals. Here, we investigated how chemical modifications of the ECM by hyperglycemia and carbonyl stress, two major features of the diabetic milieu, affect mesangial cell functions. Incubation of collagen IV with pathophysiological levels of either the carbonyl compound methylglyoxal (MGO) or glucose resulted in modification of arginine or lysine residues, respectively. Mouse mesangial cells plated on MGO-modified collagen IV showed decreased adhesion and migration. Cells plated on glucose-modified collagen IV showed reduced proliferation and migration and increased collagen IV production. Inhibiting glucose-mediated oxidative modification of collagen IV lysine residues rescued the alterations in cell growth, migration, and collagen synthesis. We propose that diabetic ECM affects mesangial cell functions via two distinct mechanisms: modification of arginine residues by MGO inhibits cell adhesion, whereas oxidative modification of lysine residues by glucose inhibits cell proliferation and increases collagen IV production. These mechanisms may contribute to mesangial cell hypertrophy and matrix expansion in DN. PMID:19608705

  12. Modification of Collagen IV by Glucose or Methylglyoxal Alters Distinct Mesangial Cell Functions

    PubMed Central

    Pozzi, Ambra; Zent, Roy; Chetyrkin, Sergei; Borza, Corina; Bulus, Nada; Chuang, Peale; Chen, Dong; Hudson, Billy

    2009-01-01

    Diabetic nephropathy (DN) affects both glomerular cells and the extracellular matrix (ECM), yet the pathogenic mechanisms involving cell-matrix interactions are poorly understood. Glycation alters integrin-dependent cell-ECM interactions, and perturbation of these interactions results in severe renal pathology in diabetic animals. Here, we investigated how chemical modifications of the ECM by hyperglycemia and carbonyl stress, two major features of the diabetic milieu, affect mesangial cell functions. Incubation of collagen IV with pathophysiological levels of either the carbonyl compound methylglyoxal (MGO) or glucose resulted in modification of arginine or lysine residues, respectively. Mouse mesangial cells plated on MGO-modified collagen IV showed decreased adhesion and migration. Cells plated on glucose-modified collagen IV showed reduced proliferation and migration and increased collagen IV production. Inhibiting glucose-mediated oxidative modification of collagen IV lysine residues rescued the alterations in cell growth, migration, and collagen synthesis. We propose that diabetic ECM affects mesangial cell functions via two distinct mechanisms: modification of arginine residues by MGO inhibits cell adhesion, whereas oxidative modification of lysine residues by glucose inhibits cell proliferation and increases collagen IV production. These mechanisms may contribute to mesangial cell hypertrophy and matrix expansion in DN. PMID:19608705

  13. Shared and distinct oculomotor function deficits in schizophrenia and obsessive compulsive disorder.

    PubMed

    Damilou, Angeliki; Apostolakis, Sotirios; Thrapsanioti, Eleftheria; Theleritis, Christos; Smyrnis, Nikolaos

    2016-06-01

    Detailed analysis of oculomotor function phenotypes in antisaccade, smooth eye pursuit, and active fixation tasks was performed in a sample of 44 patients with schizophrenia, 34 patients with obsessive compulsive disorder (OCD), and 45 matched healthy controls. A common pattern of performance deficits in both schizophrenia and OCD emerged including higher antisaccade error rate, increased latency for corrective antisaccades, as well as higher rates of unwanted saccades in smooth eye pursuit compared to healthy controls. This common pattern could be related to the dysfunction of a network of cognitive control that is present in both disorders, including the dorsolateral prefrontal cortex, the posterior parietal cortex, and the anterior cingulate cortex. In contrast, only patients with schizophrenia showed a specific increase for correct antisaccade mean latency and the intrasubject variability of latency for error prosaccades as well as a decrease in the gain for smooth eye pursuit, suggesting a specific deficit in saccadic motor control and the frontal eye field in schizophrenia that is not present in OCD. A specific deficit in fixation stability (increased frequency of unwanted saccades during active fixation) was observed only for OCD patients pointing to a deficit in the frontostriatal network controlling fixation. This deficit was pronounced for OCD patients receiving additional antipsychotic medication. In conclusion, oculomotor function showed shared and distinct patterns of deviance for schizophrenia and OCD pointing toward shared and specific neurobiological substrates for these psychiatric disorders. PMID:26914941

  14. Two distinct domains of protein 4.1 critical for assembly of functional nuclei in vitro.

    PubMed

    Krauss, Sharon Wald; Heald, Rebecca; Lee, Gloria; Nunomura, Wataru; Gimm, J Aura; Mohandas, Narla; Chasis, Joel Anne

    2002-11-15

    Protein 4.1R, a multifunctional structural protein, acts as an adaptor in mature red cell membrane skeletons linking spectrin-actin complexes to plasma membrane-associated proteins. In nucleated cells protein 4.1 is not associated exclusively with plasma membrane but is also detected at several important subcellular locations crucial for cell division. To identify 4.1 domains having critical functions in nuclear assembly, 4.1 domain peptides were added to Xenopus egg extract nuclear reconstitution reactions. Morphologically disorganized, replication deficient nuclei assembled when spectrin-actin-binding domain or NuMA-binding C-terminal domain peptides were present. However, control variant spectrin-actin-binding domain peptides incapable of binding actin or mutant C-terminal domain peptides with reduced NuMA binding had no deleterious effects on nuclear reconstitution. To test whether 4.1 is required for proper nuclear assembly, 4.1 isoforms were depleted with spectrin-actin binding or C-terminal domain-specific antibodies. Nuclei assembled in the depleted extracts were deranged. However, nuclear assembly could be rescued by the addition of recombinant 4.1R. Our data establish that protein 4.1 is essential for nuclear assembly and identify two distinct 4.1 domains, initially characterized in cytoskeletal interactions, that have crucial and versatile functions in nuclear assembly. PMID:12171917

  15. Common and distinct neural targets of treatment: changing brain function in substance addiction

    PubMed Central

    Konova, Anna B.; Moeller, Scott J.; Goldstein, Rita Z.

    2013-01-01

    Neuroimaging offers an opportunity to examine the neurobiological effects of therapeutic interventions for human drug addiction. Using activation likelihood estimation, the aim of the current meta-analysis was to quantitatively summarize functional neuroimaging studies of pharmacological and cognitive-based interventions for drug addiction, with an emphasis on their common and distinct neural targets. More exploratory analyses also contrasted subgroups of studies based on specific study and sample characteristics. The ventral striatum, a region implicated in reward, motivation, and craving, and the inferior frontal gyrus and orbitofrontal cortex, regions involved in inhibitory control goal-directed behavior, were identified as common targets of pharmacological and cognitive-based interventions; these regions were observed when the analysis was limited to only studies that used established or efficacious interventions, and across imaging paradigms and types of addictions. Consistent with theoretical models, cognitive-based interventions were additionally more likely to activate the anterior cingulate cortex, middle frontal gyrus, and precuneus, implicated in self-referential processing, cognitive control, and attention. These results suggest that therapeutic interventions for addiction may target the brain structures that are altered across addictions and identify potential neurobiological mechanisms by which the tandem use of pharmacological and cognitive-based interventions may yield synergistic or complementary effects. These findings could inform the selection of novel functional targets in future treatment development for this difficult-to-treat disorder. PMID:24140399

  16. Common and distinct neural targets of treatment: changing brain function in substance addiction.

    PubMed

    Konova, Anna B; Moeller, Scott J; Goldstein, Rita Z

    2013-12-01

    Neuroimaging offers an opportunity to examine the neurobiological effects of therapeutic interventions for human drug addiction. Using activation likelihood estimation, the aim of the current meta-analysis was to quantitatively summarize functional neuroimaging studies of pharmacological and cognitive-based interventions for drug addiction, with an emphasis on their common and distinct neural targets. More exploratory analyses also contrasted subgroups of studies based on specific study and sample characteristics. The ventral striatum, a region implicated in reward, motivation, and craving, and the inferior frontal gyrus and orbitofrontal cortex, regions involved in inhibitory control and goal-directed behavior, were identified as common targets of pharmacological and cognitive-based interventions; these regions were observed when the analysis was limited to only studies that used established or efficacious interventions, and across imaging paradigms and types of addictions. Consistent with theoretical models, cognitive-based interventions were additionally more likely to activate the anterior cingulate cortex, middle frontal gyrus, and precuneus, implicated in self-referential processing, cognitive control, and attention. These results suggest that therapeutic interventions for addiction may target the brain structures that are altered across addictions and identify potential neurobiological mechanisms by which the tandem use of pharmacological and cognitive-based interventions may yield synergistic or complementary effects. These findings could inform the selection of novel functional targets in future treatment development for this difficult-to-treat disorder. PMID:24140399

  17. Two Functionally Distinct Sources of Actin Monomers Supply the Leading Edge of Lamellipodia

    PubMed Central

    Vitriol, Eric A.; McMillen, Laura M.; Kapustina, Maryna; Gomez, Shawn M.; Vavylonis, Dimitrios; Zheng, James Q.

    2015-01-01

    Summary Lamellipodia, the sheet-like protrusions of motile cells, consist of networks of actin filaments (F-actin) regulated by the ordered assembly from and disassembly into actin monomers (G-actin). Traditionally, G-actin is thought to exist as a homogeneous pool. Here, we show that there are two functionally and molecularly distinct sources of G-actin that supply lamellipodial actin networks. G-actin originating from the cytosolic pool requires the monomer binding protein thymosin β4 (Tβ4) for optimal leading edge localization, is targeted to formins, and is responsible for creating an elevated G/F-actin ratio that promotes membrane protrusion. The second source of G-actin comes from recycled lamellipodia F-actin. Recycling occurs independently of Tβ4 and appears to regulate lamellipodia homeostasis. Tβ4-bound G-actin specifically localizes to the leading edge because it doesn’t interact with Arp2/3-mediated polymerization sites found throughout the lamellipodia. These findings demonstrate that actin networks can be constructed from multiple sources of monomers with discrete spatiotemporal functions. PMID:25865895

  18. A CD28 superagonistic antibody elicits 2 functionally distinct waves of T cell activation in rats

    PubMed Central

    Müller, Nora; van den Brandt, Jens; Odoardi, Francesca; Tischner, Denise; Herath, Judith; Flügel, Alexander; Reichardt, Holger M.

    2008-01-01

    Administration of the CD28 superagonistic antibody JJ316 is an efficient means to treat autoimmune diseases in rats, but the humanized antibody TGN1412 caused devastating side effects in healthy volunteers during a clinical trial. Here we show that JJ316 treatment of rats induced a dramatic redistribution of T lymphocytes from the periphery to the secondary lymphoid organs, resulting in severe T lymphopenia. Live imaging of secondary lymphoid organs revealed that JJ316 administration almost instantaneously (<2 minutes) arrested T cells in situ. This reduction in T cell motility was accompanied by profound cytoskeletal rearrangements and increased cell size. In addition, surface expression of lymphocyte function–associated antigen-1 was enhanced, endothelial differentiation sphingolipid G protein–coupled receptor 1 and L selectin levels were downregulated, and the cells lost their responsiveness to sphingosine 1–phosphate–directed migration. These proadhesive alterations were accompanied by signs of strong activation, including upregulation of CD25, CD69, CD134, and proinflammatory mediators. However, this did not lead to a cytokine storm similar to the clinical trial. While most of the early changes disappeared within 48 hours, we observed that CD4+CD25+FoxP3+ regulatory T cells experienced a second phase of activation, which resulted in massive cell enlargement, extensive polarization, and increased motility. These data suggest that CD28 superagonists elicit 2 qualitatively distinct waves of activation. PMID:18357346

  19. How can ten fingers shape a pot? Evidence for equivalent function in culturally distinct motor skills.

    PubMed

    Gandon, Enora; Bootsma, Reinoud J; Endler, John A; Grosman, Leore

    2013-01-01

    Behavioural variability is likely to emerge when a particular task is performed in different cultural settings, assuming that part of human motor behaviour is influenced by culture. In analysing motor behaviour it is useful to distinguish how the action is performed from the result achieved. Does cultural environment lead to specific cultural motor skills? Are there differences between cultures both in the skills themselves and in the corresponding outcomes? Here we analyse the skill of pottery wheel-throwing in French and Indian cultural environments. Our specific goal was to examine the ability of expert potters from distinct cultural settings to reproduce a common model shape (a sphere). The operational aspects of motor performance were captured through the analysis of the hand positions used by the potters during the fashioning process. In parallel, the outcomes were captured by the geometrical characteristics of the vessels produced. As expected, results revealed a cultural influence on the operational aspects of the potters' motor skill. Yet, the marked cultural differences in hand positions used did not give rise to noticeable differences in the shapes of the vessels produced. Hence, for the simple model form studied, the culturally-specific motor traditions of the French and Indian potters gave rise to an equivalent outcome, that is shape uniformity. Further work is needed to test whether such equivalence is also observed in more complex ceramic shapes. PMID:24312327

  20. Auditioning the distinctiveness account: Expanding the production effect to the auditory modality reveals the superiority of writing over vocalising.

    PubMed

    Mama, Yaniv; Icht, Michal

    2016-01-01

    The production effect (PE) documents the advantage in memory performance for words that are read aloud during study, rather than words that are read silently. Until now, the PE was examined in the visual modality, as the participants read the study words. In the present study, we extended the PE phenomenon and used the auditory modality at study. This novel methodology provides a critical test of the distinctiveness account. Accordingly, the participants heard the study words and learned them by vocal production (saying aloud) or by writing, followed by a free recall test. The use of the auditory modality yielded a memory advantage for words that were written during study over words that were vocally produced. We explain this result in light of the encoding distinctiveness account, suggesting that the PE is determined by the number of different encoding processes involved in learning, emphasising the essential role of active production. PMID:25483326

  1. Distinct Length Scales in the VO{sub 2} Metal–Insulator Transition Revealed by Bi-chromatic Optical Probing

    SciTech Connect

    Wang, Lei; Novikova, Irina B.; Klopf, John M.; Madaras, Scott E.; Williams, Gwyn P.; Madaras, Eric; Lu, Liwei; Wolf, Stuart A.; Lukaszew, Rosa A.

    2014-01-01

    Upon a heating-induced metal–instulator transition (MIT) in VO{sub 2}, microscopic metallic VO{sub 2} puddles nucleate and coarsen within the insulating matrix. This coexistence of the two phases across the transition spans distinct length scales as their relative domain sizes change. Far-field optical probing is applied to follow the dynamic evolution of the highly correlated metallic domains as the MIT progresses.

  2. A Cross-Species Analysis in Pancreatic Neuroendocrine Tumors Reveals Molecular Subtypes with Distinctive Clinical, Metastatic, Developmental, and Metabolic Characteristics

    PubMed Central

    Sadanandam, Anguraj; Wullschleger, Stephan; Lyssiotis, Costas A.; Grötzinger, Carsten; Barbi, Stefano; Bersani, Samantha; Körner, Jan; Wafy, Ismael; Mafficini, Andrea; Lawlor, Rita T.; Simbolo, Michele; Asara, John M.; Bläker, Hendrik; Cantley, Lewis C.; Wiedenmann, Bertram; Scarpa, Aldo; Hanahan, Douglas

    2016-01-01

    Seeking to assess the representative and instructive value of an engineered mouse model of pancreatic neuroendocrine tumors (PanNET) for its cognate human cancer, we profiled and compared mRNA and miRNA transcriptomes of tumors from both. Mouse PanNET tumors could be classified into two distinctive subtypes, well-differentiated islet/insulinoma tumors (IT) and poorly differentiated tumors associated with liver metastases, dubbed metastasis-like primary (MLP). Human PanNETs were independently classified into these same two subtypes, along with a third, specific gene mutation–enriched subtype. The MLP subtypes in human and mouse were similar to liver metastases in terms of miRNA and mRNA transcriptome profiles and signature genes. The human/mouse MLP subtypes also similarly expressed genes known to regulate early pancreas development, whereas the IT subtypes expressed genes characteristic of mature islet cells, suggesting different tumorigenesis pathways. In addition, these subtypes exhibit distinct metabolic profiles marked by differential pyruvate metabolism, substantiating the significance of their separate identities. SIGNIFICANCE This study involves a comprehensive cross-species integrated analysis of multi-omics profiles and histology to stratify PanNETs into subtypes with distinctive characteristics. We provide support for the RIP1-TAG2 mouse model as representative of its cognate human cancer with prospects to better understand PanNET heterogeneity and consider future applications of personalized cancer therapy. PMID:26446169

  3. A Novel Binding Mode Reveals Two Distinct Classes of NMDA Receptor GluN2B-selective Antagonists.

    PubMed

    Stroebel, David; Buhl, Derek L; Knafels, John D; Chanda, Pranab K; Green, Michael; Sciabola, Simone; Mony, Laetitia; Paoletti, Pierre; Pandit, Jayvardhan

    2016-05-01

    N-methyl-d-aspartate receptors (NMDARs) are glutamate-gated ion channels that play key roles in brain physiology and pathology. Because numerous pathologic conditions involve NMDAR overactivation, subunit-selective antagonists hold strong therapeutic potential, although clinical successes remain limited. Among the most promising NMDAR-targeting drugs are allosteric inhibitors of GluN2B-containing receptors. Since the discovery of ifenprodil, a range of GluN2B-selective compounds with strikingly different structural motifs have been identified. This molecular diversity raises the possibility of distinct binding sites, although supporting data are lacking. Using X-ray crystallography, we show that EVT-101, a GluN2B antagonist structurally unrelated to the classic phenylethanolamine pharmacophore, binds at the same GluN1/GluN2B dimer interface as ifenprodil but adopts a remarkably different binding mode involving a distinct subcavity and receptor interactions. Mutagenesis experiments demonstrate that this novel binding site is physiologically relevant. Moreover, in silico docking unveils that GluN2B-selective antagonists broadly divide into two distinct classes according to binding pose. These data widen the allosteric and pharmacological landscape of NMDARs and offer a renewed structural framework for designing next-generation GluN2B antagonists with therapeutic value for brain disorders. PMID:26912815

  4. Distinct Expression Profiles and Different Functions of Odorant Binding Proteins in Nilaparvata lugens Stål

    PubMed Central

    He, Peng; Zhang, Jin; Liu, Nai-Yong; Zhang, Ya-Nan; Yang, Ke; Dong, Shuang-Lin

    2011-01-01

    Background Odorant binding proteins (OBPs) play important roles in insect olfaction. The brown planthopper (BPH), Nilaparvata lugens Stål (Delphacidae, Auchenorrhyncha, Hemiptera) is one of the most important rice pests. Its monophagy (only feeding on rice), wing form (long and short wing) variation, and annual long distance migration (seeking for rice plants of high nutrition) imply that the olfaction would play a central role in BPH behavior. However, the olfaction related proteins have not been characterized in this insect. Methodology/Principal Findings Full length cDNA of three OBPs were obtained and distinct expression profiles were revealed regarding to tissue, developmental stage, wing form and gender for the first time for the species. The results provide important clues in functional differentiation of these genes. Binding assays with 41 compounds demonstrated that NlugOBP3 had markedly higher binding ability and wider binding spectrum than the other two OBPs. Terpenes and Ketones displayed higher binding while Alkanes showed no binding to the three OBPs. Focused on NlugOBP3, RNA interference experiments showed that NlugOBP3 not only involved in nymph olfaction on rice seedlings, but also had non-olfactory functions, as it was closely related to nymph survival. Conclusions NlugOBP3 plays important roles in both olfaction and survival of BPH. It may serve as a potential target for developing behavioral disruptant and/or lethal agent in N. lugens. PMID:22174925

  5. Distinct functions of the RNA polymerase σ subunit region 3.2 in RNA priming and promoter escape

    PubMed Central

    Pupov, Danil; Kuzin, Ivan; Bass, Irina; Kulbachinskiy, Andrey

    2014-01-01

    The σ subunit of bacterial RNA polymerase (RNAP) has been implicated in all steps of transcription initiation, including promoter recognition and opening, priming of RNA synthesis, abortive initiation and promoter escape. The post-promoter-recognition σ functions were proposed to depend on its conserved region σ3.2 that directly contacts promoter DNA immediately upstream of the RNAP active centre and occupies the RNA exit path. Analysis of the transcription effects of substitutions and deletions in this region in Escherichia coli σ70 subunit, performed in this work, suggests that (i) individual residues in the σ3.2 finger collectively contribute to RNA priming by RNAP, likely by the positioning of the template DNA strand in the active centre, but are not critical to promoter escape; (ii) the physical presence of σ3.2 in the RNA exit channel is important for promoter escape; (iii) σ3.2 promotes σ dissociation during initiation and suppresses σ-dependent promoter-proximal pausing; (iv) σ3.2 contributes to allosteric inhibition of the initiating NTP binding by rifamycins. Thus, region σ3.2 performs distinct functions in transcription initiation and its inhibition by antibiotics. The B-reader element of eukaryotic factor TFIIB likely plays similar roles in RNAPII transcription, revealing common principles in transcription initiation in various domains of life. PMID:24452800

  6. Knock-out models reveal new aquaporin functions.

    PubMed

    Verkman, Alan S

    2009-01-01

    Knockout mice have been informative in the discovery of unexpected biological functions of aquaporins. Knockout mice have confirmed the predicted roles of aquaporins in transepithelial fluid transport, as in the urinary concentrating mechanism and glandular fluid secretion. A less obvious, though predictable role of aquaporins is in tissue swelling under stress, as in the brain in stroke, tumor and infection. Phenotype analysis of aquaporin knockout mice has revealed several unexpected cellular roles of aquaporins whose mechanisms are being elucidated. Aquaporins facilitate cell migration, as seen in aquaporin-dependent tumor angiogenesis and tumor metastasis, by a mechanism that may involve facilitated water transport in lamellipodia of migrating cells. The ' aquaglyceroporins', aquaporins that transport both glycerol and water, regulate glycerol content in epidermis, fat and other tissues, and lead to a multiplicity of interesting consequences of gene disruption including dry skin, resistance to skin carcinogenesis, impaired cell proliferation and altered fat metabolism. An even more surprising role of a mammalian aquaporin is in neural signal transduction in the central nervous system. The many roles of aquaporins might be exploited for clinical benefit by modulation of aquaporin expression/function - as diuretics, and in the treatment of brain swelling, glaucoma, epilepsy, obesity and cancer. PMID:19096787

  7. Direct activation and anti-repression functions of GAL4-VP16 use distinct molecular mechanisms.

    PubMed Central

    Lyons, J G; Chambon, P

    1995-01-01

    In order to determine whether the molecular mechanisms used for direct activation by GAL4-VP16 are the same as those used for anti-repression, we have employed monoclonal antibodies specific for the VP16 activation domain. In the absence of added repressors, GAL4-VP16 was able to stimulate transcription from a template containing GAL4-binding sites, and the antibodies raised against the VP16 activation domain failed to inhibit this direct activation. GAL4-VP16 also was able to prevent histone H1-mediated repression by a mechanism that was strongly dependent on the presence of specific GAL4-binding elements in the promoter. However, in contrast to the assays conducted in the absence of repressors, the antibodies were strong inhibitors of GAL4-VP16-activated transcription in the presence of histone H1. Thus the binding of the antibodies distinguished between the direct activation and anti-repression functions of GAL4-VP16, indicating that these functions operate through distinct molecular mechanisms. The anti-repression-specific mechanism that is inhibitable by the antibodies acted at an early stage of preinitiation complex formation. Deletions of individual subdomains of the VP16 activation domain demonstrated that there was not a discrete subdomain responsible for the anti-repression function of GAL4-VP16. Thus, the inhibitory effect of the antibodies appeared to be due to the location of the epitope within the activator protein rather than to some inherent biochemical property of that region of the protein that is required specifically for anti-repression. The inhibitory effect of the antibodies also ruled out the possibility that steric exclusion of repressor proteins from the promoter was the sole means of anti-repression by the transcriptional activator. Images Figure 1 Figure 2 PMID:8554536

  8. Evolution of the vertebrate paralemmin gene family: ancient origin of gene duplicates suggests distinct functions.

    PubMed

    Hultqvist, Greta; Ocampo Daza, Daniel; Larhammar, Dan; Kilimann, Manfred W

    2012-01-01

    Paralemmin-1 is a protein implicated in plasma membrane dynamics, the development of filopodia, neurites and dendritic spines, as well as the invasiveness and metastatic potential of cancer cells. However, little is known about its mode of action, or about the biological functions of the other paralemmin isoforms: paralemmin-2, paralemmin-3 and palmdelphin. We describe here evolutionary analyses of the paralemmin gene family in a broad range of vertebrate species. Our results suggest that the four paralemmin isoform genes (PALM1, PALM2, PALM3 and PALMD) arose by quadruplication of an ancestral gene in the two early vertebrate genome duplications. Paralemmin-1 and palmdelphin were further duplicated in the teleost fish specific genome duplication. We identified a unique sequence motif common to all paralemmins, consisting of 11 highly conserved residues of which four are invariant. A single full-length paralemmin homolog with this motif was identified in the genome of the sea lamprey Petromyzon marinus and an isolated putative paralemmin motif could be detected in the genome of the lancelet Branchiostoma floridae. This allows us to conclude that the paralemmin gene family arose early and has been maintained throughout vertebrate evolution, suggesting functional diversification and specific biological roles of the paralemmin isoforms. The paralemmin genes have also maintained specific features of gene organisation and sequence. This includes the occurrence of closely linked downstream genes, initially identified as a readthrough fusion protein with mammalian paralemmin-2 (Palm2-AKAP2). We have found evidence for such an arrangement for paralemmin-1 and -2 in several vertebrate genomes, as well as for palmdelphin and paralemmin-3 in teleost fish genomes, and suggest the name paralemmin downstream genes (PDG) for this new gene family. Thus, our findings point to ancient roles for paralemmins and distinct biological functions of the gene duplicates. PMID:22855693

  9. Proteomics Analysis Reveals Overlapping Functions of Clustered Protocadherins*

    PubMed Central

    Han, Meng-Hsuan; Lin, Chengyi; Meng, Shuxia; Wang, Xiaozhong

    2010-01-01

    The three tandem-arrayed protocadherin (Pcdh) gene clusters, namely Pcdh-α, Pcdh-β, and Pcdh-γ, play important roles in the development of the vertebrate central nervous system. To gain insight into the molecular action of PCDHs, we performed a systematic proteomics analysis of PCDH-γ-associated protein complexes. We identified a list of 154 non-redundant proteins in the PCDH-γ complexes. This list includes nearly 30 members of clustered Pcdh-α, -β, and -γ families as core components of the complexes and additionally over 120 putative PCDH-associated proteins. We validated a selected subset of PCDH-γ-associated proteins using specific antibodies. Analysis of the identities of PCDH-associated proteins showed that the majority of them overlap with the proteomic profile of postsynaptic density preparations. Further analysis of membrane protein complexes revealed that several validated PCDH-γ-associated proteins exhibit reduced levels in Pcdh-γ-deficient brain tissues. Therefore, PCDH-γs are required for the integrity of the complexes. However, the size of the overall complexes and the abundance of many other proteins remained unchanged, raising a possibility that PCDH-αs and PCDH-βs might compensate for PCDH-γ function in complex formation. As a test of this idea, RNA interference knockdown of both PCDH-αs and PCDH-γs showed that PCDHs have redundant functions in regulating neuronal survival in the chicken spinal cord. Taken together, our data provide evidence that clustered PCDHs coexist in large protein complexes and have overlapping functions during vertebrate neural development. PMID:19843561

  10. Nucleotide substitutions revealing specific functions of Polycomb group genes.

    PubMed

    Bajusz, Izabella; Sipos, László; Pirity, Melinda K

    2015-04-01

    POLYCOMB group (PCG) proteins belong to the family of epigenetic regulators of genes playing important roles in differentiation and development. Mutants of PcG genes were isolated first in the fruit fly, Drosophila melanogaster, resulting in spectacular segmental transformations due to the ectopic expression of homeotic genes. Homologs of Drosophila PcG genes were also identified in plants and in vertebrates and subsequent experiments revealed the general role of PCG proteins in the maintenance of the repressed state of chromatin through cell divisions. The past decades of gene targeting experiments have allowed us to make significant strides towards understanding how the network of PCG proteins influences multiple aspects of cellular fate determination during development. Being involved in the transmission of specific expression profiles of different cell lineages, PCG proteins were found to control wide spectra of unrelated epigenetic processes in vertebrates, such as stem cell plasticity and renewal, genomic imprinting and inactivation of X-chromosome. PCG proteins also affect regulation of metabolic genes being important for switching programs between pluripotency and differentiation. Insight into the precise roles of PCG proteins in normal physiological processes has emerged from studies employing cell culture-based systems and genetically modified animals. Here we summarize the findings obtained from PcG mutant fruit flies and mice generated to date with a focus on PRC1 and PRC2 members altered by nucleotide substitutions resulting in specific alleles. We also include a compilation of lessons learned from these models about the in vivo functions of this complex protein family. With multiple knockout lines, sophisticated approaches to study the consequences of peculiar missense point mutations, and insights from complementary gain-of-function systems in hand, we are now in a unique position to significantly advance our understanding of the molecular basis of

  11. RGG boxes within the TET/FET family of RNA-binding proteins are functionally distinct.

    PubMed

    Chau, Bess Ling; Ng, King Pan; Li, Kim K C; Lee, Kevin A W

    2016-08-01

    The multi-functional TET (TAF15/EWS/TLS) or FET (FUS/EWS/TLS) protein family of higher organisms harbor a transcriptional-activation domain (EAD) and an RNA-binding domain (RBD). The transcriptional activation function is, however, only revealed in oncogenic TET-fusion proteins because in native TET proteins it is auto-repressed by RGG-boxes within the TET RBD. Auto-repression is suggested to involve direct cation-pi interactions between multiple Arg residues within RGG boxes and EAD aromatics. Via analysis of TET transcriptional activity in different organisms, we report herein that repression is not autonomous but instead requires additional trans-acting factors. This finding is not supportive of a proposed model whereby repression occurs via a simple intramolecular EAD/RGG-box interaction. We also show that RGG-boxes present within reiterated YGGDRGG repeats that are unique to TAF15, are defective for repression due to the conserved Asp residue. Thus, RGG boxes within TET proteins can be functionally distinguished. While our results show that YGGDRGG repeats are not involved in TAF15 auto-repression, their remarkable number and conservation strongly suggest that they may confer specialized properties to TAF15 and thus contribute to functional differentiation within the TET/FET protein family. PMID:27159574

  12. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and 19F-NMR

    PubMed Central

    Yang, Fan; Yu, Xiao; Liu, Chuan; Qu, Chang-Xiu; Gong, Zheng; Liu, Hong-Da; Li, Fa-Hui; Wang, Hong-Mei; He, Dong-Fang; Yi, Fan; Song, Chen; Tian, Chang-Lin; Xiao, Kun-Hong; Wang, Jiang-Yun; Sun, Jin-Peng

    2015-01-01

    Specific arrestin conformations are coupled to distinct downstream effectors, which underlie the functions of many G-protein-coupled receptors (GPCRs). Here, using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance (19F-NMR) spectroscopy, we demonstrate that distinct receptor phospho-barcodes are translated to specific β-arrestin-1 conformations and direct selective signalling. With its phosphate-binding concave surface, β-arrestin-1 ‘reads' the message in the receptor phospho-C-tails and distinct phospho-interaction patterns are revealed by 19F-NMR. Whereas all functional phosphopeptides interact with a common phosphate binding site and induce the movements of finger and middle loops, different phospho-interaction patterns induce distinct structural states of β-arrestin-1 that are coupled to distinct arrestin functions. Only clathrin recognizes and stabilizes GRK2-specific β-arrestin-1 conformations. The identified receptor-phospho-selective mechanism for arrestin conformation and the spacing of the multiple phosphate-binding sites in the arrestin enable arrestin to recognize plethora phosphorylation states of numerous GPCRs, contributing to the functional diversity of receptors. PMID:26347956

  13. Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data.

    PubMed

    Fair, Damien A; Nigg, Joel T; Iyer, Swathi; Bathula, Deepti; Mills, Kathryn L; Dosenbach, Nico U F; Schlaggar, Bradley L; Mennes, Maarten; Gutman, David; Bangaru, Saroja; Buitelaar, Jan K; Dickstein, Daniel P; Di Martino, Adriana; Kennedy, David N; Kelly, Clare; Luna, Beatriz; Schweitzer, Julie B; Velanova, Katerina; Wang, Yu-Feng; Mostofsky, Stewart; Castellanos, F Xavier; Milham, Michael P

    2012-01-01

    In recent years, there has been growing enthusiasm that functional magnetic resonance imaging (MRI) could achieve clinical utility for a broad range of neuropsychiatric disorders. However, several barriers remain. For example, the acquisition of large-scale datasets capable of clarifying the marked heterogeneity that exists in psychiatric illnesses will need to be realized. In addition, there continues to be a need for the development of image processing and analysis methods capable of separating signal from artifact. As a prototypical hyperkinetic disorder, and movement-related artifact being a significant confound in functional imaging studies, ADHD offers a unique challenge. As part of the ADHD-200 Global Competition and this special edition of Frontiers, the ADHD-200 Consortium demonstrates the utility of an aggregate dataset pooled across five institutions in addressing these challenges. The work aimed to (1) examine the impact of emerging techniques for controlling for "micro-movements," and (2) provide novel insights into the neural correlates of ADHD subtypes. Using support vector machine (SVM)-based multivariate pattern analysis (MVPA) we show that functional connectivity patterns in individuals are capable of differentiating the two most prominent ADHD subtypes. The application of graph-theory revealed that the Combined (ADHD-C) and Inattentive (ADHD-I) subtypes demonstrated some overlapping (particularly sensorimotor systems), but unique patterns of atypical connectivity. For ADHD-C, atypical connectivity was prominent in midline default network components, as well as insular cortex; in contrast, the ADHD-I group exhibited atypical patterns within the dlPFC regions and cerebellum. Systematic motion-related artifact was noted, and highlighted the need for stringent motion correction. Findings reported were robust to the specific motion correction strategy employed. These data suggest that resting-state functional connectivity MRI (rs-fcMRI) data can be

  14. Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data

    PubMed Central

    Fair, Damien A.; Nigg, Joel T.; Iyer, Swathi; Bathula, Deepti; Mills, Kathryn L.; Dosenbach, Nico U. F.; Schlaggar, Bradley L.; Mennes, Maarten; Gutman, David; Bangaru, Saroja; Buitelaar, Jan K.; Dickstein, Daniel P.; Di Martino, Adriana; Kennedy, David N.; Kelly, Clare; Luna, Beatriz; Schweitzer, Julie B.; Velanova, Katerina; Wang, Yu-Feng; Mostofsky, Stewart; Castellanos, F. Xavier; Milham, Michael P.

    2012-01-01

    In recent years, there has been growing enthusiasm that functional magnetic resonance imaging (MRI) could achieve clinical utility for a broad range of neuropsychiatric disorders. However, several barriers remain. For example, the acquisition of large-scale datasets capable of clarifying the marked heterogeneity that exists in psychiatric illnesses will need to be realized. In addition, there continues to be a need for the development of image processing and analysis methods capable of separating signal from artifact. As a prototypical hyperkinetic disorder, and movement-related artifact being a significant confound in functional imaging studies, ADHD offers a unique challenge. As part of the ADHD-200 Global Competition and this special edition of Frontiers, the ADHD-200 Consortium demonstrates the utility of an aggregate dataset pooled across five institutions in addressing these challenges. The work aimed to (1) examine the impact of emerging techniques for controlling for “micro-movements,” and (2) provide novel insights into the neural correlates of ADHD subtypes. Using support vector machine (SVM)-based multivariate pattern analysis (MVPA) we show that functional connectivity patterns in individuals are capable of differentiating the two most prominent ADHD subtypes. The application of graph-theory revealed that the Combined (ADHD-C) and Inattentive (ADHD-I) subtypes demonstrated some overlapping (particularly sensorimotor systems), but unique patterns of atypical connectivity. For ADHD-C, atypical connectivity was prominent in midline default network components, as well as insular cortex; in contrast, the ADHD-I group exhibited atypical patterns within the dlPFC regions and cerebellum. Systematic motion-related artifact was noted, and highlighted the need for stringent motion correction. Findings reported were robust to the specific motion correction strategy employed. These data suggest that resting-state functional connectivity MRI (rs-fcMRI) data can

  15. Distinct function of 2 chromatin remodeling complexes that share a common subunit, Williams syndrome transcription factor (WSTF)

    PubMed Central

    Yoshimura, Kimihiro; Kitagawa, Hirochika; Fujiki, Ryoji; Tanabe, Masahiko; Takezawa, Shinichiro; Takada, Ichiro; Yamaoka, Ikuko; Yonezawa, Masayoshi; Kondo, Takeshi; Furutani, Yoshiyuki; Yagi, Hisato; Yoshinaga, Shin; Masuda, Takeyoshi; Fukuda, Toru; Yamamoto, Yoko; Ebihara, Kanae; Li, Dean Y.; Matsuoka, Rumiko; Takeuchi, Jun K.; Matsumoto, Takahiro; Kato, Shigeaki

    2009-01-01

    A number of nuclear complexes modify chromatin structure and operate as functional units. However, the in vivo role of each component within the complexes is not known. ATP-dependent chromatin remodeling complexes form several types of protein complexes, which reorganize chromatin structure cooperatively with histone modifiers. Williams syndrome transcription factor (WSTF) was biochemically identified as a major subunit, along with 2 distinct complexes: WINAC, a SWI/SNF-type complex, and WICH, an ISWI-type complex. Here, WSTF−/− mice were generated to investigate its function in chromatin remodeling in vivo. Loss of WSTF expression resulted in neonatal lethality, and all WSTF−/− neonates and ≈10% of WSTF+/− neonates suffered cardiovascular abnormalities resembling those found in autosomal-dominant Williams syndrome patients. Developmental analysis of WSTF−/− embryos revealed that Gja5 gene regulation is aberrant from E9.5, conceivably because of inappropriate chromatin reorganization around the promoter regions where essential cardiac transcription factors are recruited. In vitro analysis in WSTF−/− mouse embryonic fibroblast (MEF) cells also showed impaired transactivation functions of cardiac transcription activators on the Gja5 promoter, but the effects were reversed by overexpression of WINAC components. Likewise in WSTF−/− MEF cells, recruitment of Snf2h, an ISWI ATPase, to PCNA and cell survival after DNA damage were both defective, but were ameliorated by overexpression of WICH components. Thus, the present study provides evidence that WSTF is shared and is a functionally indispensable subunit of the WICH complex for DNA repair and the WINAC complex for transcriptional control. PMID:19470456

  16. Integration-independent Transgenic Huntington Disease Fragment Mouse Models Reveal Distinct Phenotypes and Life Span in Vivo*

    PubMed Central

    O'Brien, Robert; DeGiacomo, Francesco; Holcomb, Jennifer; Bonner, Akilah; Ring, Karen L.; Zhang, Ningzhe; Zafar, Khan; Weiss, Andreas; Lager, Brenda; Schilling, Birgit; Gibson, Bradford W.; Chen, Sylvia; Kwak, Seung; Ellerby, Lisa M.

    2015-01-01

    The cascade of events that lead to cognitive decline, motor deficits, and psychiatric symptoms in patients with Huntington disease (HD) is triggered by a polyglutamine expansion in the N-terminal region of the huntingtin (HTT) protein. A significant mechanism in HD is the generation of mutant HTT fragments, which are generally more toxic than the full-length HTT. The protein fragments observed in human HD tissue and mouse models of HD are formed by proteolysis or aberrant splicing of HTT. To systematically investigate the relative contribution of the various HTT protein proteolysis events observed in vivo, we generated transgenic mouse models of HD representing five distinct proteolysis fragments ending at amino acids 171, 463, 536, 552, and 586 with a polyglutamine length of 148. All lines contain a single integration at the ROSA26 locus, with expression of the fragments driven by the chicken β-actin promoter at nearly identical levels. The transgenic mice N171-Q148 and N552-Q148 display significantly accelerated phenotypes and a shortened life span when compared with N463-Q148, N536-Q148, and N586-Q148 transgenic mice. We hypothesized that the accelerated phenotype was due to altered HTT protein interactions/complexes that accumulate with age. We found evidence for altered HTT complexes in caspase-2 fragment transgenic mice (N552-Q148) and a stronger interaction with the endogenous HTT protein. These findings correlate with an altered HTT molecular complex and distinct proteins in the HTT interactome set identified by mass spectrometry. In particular, we identified HSP90AA1 (HSP86) as a potential modulator of the distinct neurotoxicity of the caspase-2 fragment mice (N552-Q148) when compared with the caspase-6 transgenic mice (N586-Q148). PMID:26025364

  17. Expression Profiling of Macrophages Reveals Multiple Populations with Distinct Biological Roles in an Immunocompetent Orthotopic Model of Lung Cancer.

    PubMed

    Poczobutt, Joanna M; De, Subhajyoti; Yadav, Vinod K; Nguyen, Teresa T; Li, Howard; Sippel, Trisha R; Weiser-Evans, Mary C M; Nemenoff, Raphael A

    2016-03-15

    Macrophages represent an important component of the tumor microenvironment and play a complex role in cancer progression. These cells are characterized by a high degree of plasticity, and they alter their phenotype in response to local environmental cues. Whereas the M1/M2 classification of macrophages has been widely used, the complexity of macrophage phenotypes has not been well studied, particularly in lung cancer. In this study we employed an orthotopic immunocompetent model of lung adenocarcinoma in which murine lung cancer cells are directly implanted into the left lobe of syngeneic mice. Using multimarker flow cytometry, we defined and recovered several distinct populations of monocytes/macrophages from tumors at different stages of progression. We used RNA-seq transcriptional profiling to define distinct features of each population and determine how they change during tumor progression. We defined an alveolar resident macrophage population that does not change in number and expresses multiple genes related to lipid metabolism and lipid signaling. We also defined a population of tumor-associated macrophages that increase dramatically with tumor and selectively expresses a panel of chemokine genes. A third population, which resembles tumor-associated monocytes, expresses a large number of genes involved in matrix remodeling. By correlating transcriptional profiles with clinically prognostic genes, we show that specific monocyte/macrophage populations are enriched in genes that predict outcomes in lung adenocarcinoma, implicating these subpopulations as critical determinants of patient survival. Our data underscore the complexity of monocytes/macrophages in the tumor microenvironment, and they suggest that distinct populations play specific roles in tumor progression. PMID:26873985

  18. Stochastic assembly leads to alternative communities with distinct functions in a bioreactor microbial community.

    PubMed

    Zhou, Jizhong; Liu, Wenzong; Deng, Ye; Jiang, Yi-Huei; Xue, Kai; He, Zhili; Van Nostrand, Joy D; Wu, Liyou; Yang, Yunfeng; Wang, Aijie

    2013-01-01

    ABSTRACT The processes and mechanisms of community assembly and its relationships to community functioning are central issues in ecology. Both deterministic and stochastic factors play important roles in shaping community composition and structure, but the connection between community assembly and ecosystem functioning remains elusive, especially in microbial communities. Here, we used microbial electrolysis cell reactors as a model system to examine the roles of stochastic assembly in determining microbial community structure and functions. Under identical environmental conditions with the same source community, ecological drift (i.e., initial stochastic colonization) and subsequent biotic interactions created dramatically different communities with little overlap among 14 identical reactors, indicating that stochastic assembly played dominant roles in determining microbial community structure. Neutral community modeling analysis revealed that deterministic factors also played significant roles in shaping microbial community structure in these reactors. Most importantly, the newly formed communities differed substantially in community functions (e.g., H2 production), which showed strong linkages to community structure. This study is the first to demonstrate that stochastic assembly plays a dominant role in determining not only community structure but also ecosystem functions. Elucidating the links among community assembly, biodiversity, and ecosystem functioning is critical to understanding ecosystem functioning, biodiversity preservation, and ecosystem management. IMPORTANCE Microorganisms are the most diverse group of life known on earth. Although it is well documented that microbial natural biodiversity is extremely high, it is not clear why such high diversity is generated and maintained. Numerous studies have established the roles of niche-based deterministic factors (e.g., pH, temperature, and salt) in shaping microbial biodiversity, the importance of

  19. Basolateral EGF receptor sorting regulated by functionally distinct mechanisms in renal epithelial cells.

    PubMed

    Cotton, Calvin U; Hobert, Michael E; Ryan, Sean; Carlin, Cathleen R

    2013-03-01

    Proliferation of epithelial tissues is controlled by polarized distribution of signaling receptors including the EGF receptor (EGFR). In kidney, EGFRs are segregated from soluble ligands present in apical fluid of nephrons by selective targeting to basolateral membranes. We have shown previously that the epithelial-specific clathrin adaptor AP1B mediates basolateral EGFR sorting in established epithelia. Here we show that protein kinase C (PKC)-dependent phosphorylation of Thr654 regulates EGFR polarity as epithelial cells form new cell-cell junctional complexes. The AP1B-dependent pathway does not override a PKC-resistant T654A mutation, and conversely AP1B-defective EGFRs sort basolaterally by a PKC-dependent mechanism, in polarizing cells. Surprisingly, EGFR mutations that interfere with these different sorting pathways also produce very distinct phenotypes in three-dimensional organotypic cultures. Thus EGFRs execute different functions depending on the basolateral sorting route. Many renal disorders have defects in cell polarity and the notion that apically mislocalized EGFRs promote proliferation is still an attractive model to explain many aspects of polycystic kidney disease. Our data suggest EGFR also integrates various aspects of polarity by switching between different basolateral sorting programs in developing epithelial cells. Fundamental knowledge of basic mechanisms governing EGFR sorting therefore provides new insights into pathogenesis and advances drug discovery for these renal disorders. PMID:23205726

  20. Functionally distinct Gata3/Chd4 complexes coordinately establish T helper 2 (Th2) cell identity

    PubMed Central

    Hosokawa, Hiroyuki; Tanaka, Tomoaki; Suzuki, Yutaka; Iwamura, Chiaki; Ohkubo, Shuichi; Endoh, Kanji; Kato, Miki; Endo, Yusuke; Onodera, Atsushi; Tumes, Damon John; Kanai, Akinori; Sugano, Sumio; Nakayama, Toshinori

    2013-01-01

    GATA binding protein 3 (Gata3) is a GATA family transcription factor that controls differentiation of naïve CD4 T cells into T helper 2 (Th2) cells. However, it is unknown how Gata3 simultaneously activates Th2-specific genes while repressing those of other Th lineages. Here we show that chromodomain helicase DNA-binding protein 4 (Chd4) forms a complex with Gata3 in Th2 cells that both activates Th2 cytokine transcription and represses the Th1 cytokine IFN-γ. We define a Gata3/Chd4/p300 transcriptional activation complex at the Th2 cytokine loci and a Gata3/Chd4–nucleosome remodeling histone deacetylase repression complex at the Tbx21 locus in Th2 cells. We also demonstrate a physiological role for Chd4 in Th2-dependent inflammation in an in vivo model of asthmatic inflammation. Thus, Gata3/Chd4 forms functionally distinct complexes, which mediate both positive and negative gene regulation to facilitate Th2 cell differentiation. PMID:23471993

  1. Evidence of Two Functionally Distinct Ornithine Decarboxylation Systems in Lactic Acid Bacteria

    PubMed Central

    Romano, Andrea; Trip, Hein; Lonvaud-Funel, Aline; Lolkema, Juke S.

    2012-01-01

    Biogenic amines are low-molecular-weight organic bases whose presence in food can result in health problems. The biosynthesis of biogenic amines in fermented foods mostly proceeds through amino acid decarboxylation carried out by lactic acid bacteria (LAB), but not all systems leading to biogenic amine production by LAB have been thoroughly characterized. Here, putative ornithine decarboxylation pathways consisting of a putative ornithine decarboxylase and an amino acid transporter were identified in LAB by strain collection screening and database searches. The decarboxylases were produced in heterologous hosts and purified and characterized in vitro, whereas transporters were heterologously expressed in Lactococcus lactis and functionally characterized in vivo. Amino acid decarboxylation by whole cells of the original hosts was determined as well. We concluded that two distinct types of ornithine decarboxylation systems exist in LAB. One is composed of an ornithine decarboxylase coupled to an ornithine/putrescine transmembrane exchanger. Their combined activities results in the extracellular release of putrescine. This typical amino acid decarboxylation system is present in only a few LAB strains and may contribute to metabolic energy production and/or pH homeostasis. The second system is widespread among LAB. It is composed of a decarboxylase active on ornithine and l-2,4-diaminobutyric acid (DABA) and a transporter that mediates unidirectional transport of ornithine into the cytoplasm. Diamines that result from this second system are retained within the cytosol. PMID:22247134

  2. Distinction between patients with non-erosive reflux disease and functional heartburn

    PubMed Central

    Giacchino, Maria; Savarino, Vincenzo; Savarino, Edoardo

    2013-01-01

    Non-erosive reflux disease (NERD) and functional heartburn (FH) are two different clinical entities and the clear distinction between the two forms is actually possible thanks to the use of impedance-pH monitoring. NERD is the more common manifestation of gastro-esophageal reflux disease (GERD), one of the most widespread chronic gastrointestinal disorders in Western countries. The absence of visible lesions on endoscopy and the presence of troublesome reflux-associated (to acid, weakly acidic or non-acid reflux) symptoms are the two key factors for the definition of NERD. FH is an exclusive diagnosis and is defined by the Rome III criteria as a burning retrosternal discomfort, excluding GERD and esophageal motility disorders as a cause of the symptom. FH does not have any type of reflux underlying symptoms and psychological factors seem to be more expressed in FH patients than in patients with reflux-provoked disturbances. The aim of our review is to report the state-of-the-art knowledge about NERD and FH, to clarify their features and differences and to stimulate new research in this field. PMID:24714313

  3. There are four dynamically and functionally distinct populations of E-cadherin in cell junctions

    PubMed Central

    Erami, Zahra; Timpson, Paul; Yao, Wu; Zaidel-Bar, Ronen; Anderson, Kurt I.

    2015-01-01

    ABSTRACT E-cadherin is a trans-membrane tumor suppressor responsible for epithelial cell adhesion. E-cadherin forms adhesive clusters through combined extra-cellular cis- and trans-interactions and intracellular interaction with the actin cytoskeleton. Here we identify four populations of E-cadherin within cell junctions based on the molecular interactions which determine their mobility and adhesive properties. Adhesive and non-adhesive populations of E-cadherin each consist of mobile and immobile fractions. Up to half of the E-cadherin immobilized in cell junctions is non-adhesive. Incorporation of E-cadherin into functional adhesions require all three adhesive interactions, with deletion of any one resulting in loss of effective cell-cell adhesion. Interestingly, the only interaction which could independently slow the diffusion of E-cadherin was the tail-mediated intra-cellular interaction. The adhesive and non-adhesive mobile fractions of E-cadherin can be distinguished by their sensitivity to chemical cross-linking with adhesive clusters. Our data define the size, mobility, and adhesive properties of four distinct populations of E-cadherin within cell junctions, and support association with the actin cytoskeleton as the first step in adhesion formation. PMID:26471767

  4. Two distinct azurins function in the electron-transport chain of the obligate methylotroph Methylomonas J.

    PubMed Central

    Ambler, R P; Tobari, J

    1989-01-01

    Methylomonas J is an obligate methylotroph although it is unable to grow on methane. Like Pseudomonas AM1, it produces two blue copper proteins when growing on methylamine, one of which is the recipient of electrons from the methylamine dehydrogenase. When grown on methanol, only the other blue copper protein is produced. We have determined the amino acid sequences of these blue copper proteins, and show that they are both true azurins. The sequences are clearly homologous to those of the proteins characterized from fluorescent pseudomonads and various species of Alcaligenes, and can be aligned with them and with each other without the need to postulate any internal insertions or deletions in the sequences. The iso-1 azurin, the one produced during both methanol and methylamine growth, shows 59-65% identity with these other azurins, whereas the iso-2 protein shows only 47-53% identity. The proteins show 52% identity with each other. The two functionally equivalent blue copper proteins from Pseudomonas AM1 belong to two sequence classes that are quite distinct from the true azurins. Detailed evidence for the amino acid sequences of the proteins has been deposited as Supplementary Publication SUP 50151 (23 pages) at the British Library Document Supply Centre, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1989) 257, 5. PMID:2505762

  5. Basolateral EGF receptor sorting regulated by functionally distinct mechanisms in renal epithelial cells

    PubMed Central

    Cotton, Calvin U.; Hobert, Michael E.; Ryan, Sean; Carlin, Cathleen R.

    2014-01-01

    Proliferation of epithelial tissues is controlled by polarized distribution of signaling receptors including the EGF receptor (EGFR). In kidney, EGFRs are segregated from soluble ligands present in apical fluid of nephrons by selective targeting to basolateral membranes. We have shown previously that the epithelial-specific clathrin adaptor AP1B mediates basolateral EGFR sorting in established epithelia. Here we show that protein kinase C (PKC)-dependent phosphorylation of Thr654 regulates EGFR polarity as epithelial cells form new cell-cell junctional complexes. The AP1B-dependent pathway does not override a PKC-resistant T654A mutation, and conversely AP1B-defective EGFRs sort basolaterally by a PKC-dependent mechanism, in polarizing cells. Surprisingly, EGFR mutations that interfere with these different sorting pathways also produce very distinct phenotypes in three-dimensional organotypic cultures. Thus EGFRs execute different functions depending on the basolateral sorting route. Many renal disorders have defects in cell polarity and the notion that apically mislocalized EGFRs promote proliferation is still an attractive model to explain many aspects of polycystic kidney disease. Our data suggest EGFR also integrates various aspects of polarity by switching between different BL sorting programs in developing epithelial cells. Fundamental knowledge of basic mechanisms governing EGFR sorting therefore provides new insights into pathogenesis and advances drug discovery for these renal disorders. PMID:23205726

  6. There are four dynamically and functionally distinct populations of E-cadherin in cell junctions.

    PubMed

    Erami, Zahra; Timpson, Paul; Yao, Wu; Zaidel-Bar, Ronen; Anderson, Kurt I

    2015-01-01

    E-cadherin is a trans-membrane tumor suppressor responsible for epithelial cell adhesion. E-cadherin forms adhesive clusters through combined extra-cellular cis- and trans-interactions and intracellular interaction with the actin cytoskeleton. Here we identify four populations of E-cadherin within cell junctions based on the molecular interactions which determine their mobility and adhesive properties. Adhesive and non-adhesive populations of E-cadherin each consist of mobile and immobile fractions. Up to half of the E-cadherin immobilized in cell junctions is non-adhesive. Incorporation of E-cadherin into functional adhesions require all three adhesive interactions, with deletion of any one resulting in loss of effective cell-cell adhesion. Interestingly, the only interaction which could independently slow the diffusion of E-cadherin was the tail-mediated intra-cellular interaction. The adhesive and non-adhesive mobile fractions of E-cadherin can be distinguished by their sensitivity to chemical cross-linking with adhesive clusters. Our data define the size, mobility, and adhesive properties of four distinct populations of E-cadherin within cell junctions, and support association with the actin cytoskeleton as the first step in adhesion formation. PMID:26471767

  7. Analysis of Core Housekeeping and Virulence Genes Reveals Cryptic Lineages of Clostridium perfringens That Are Associated With Distinct Disease Presentations

    PubMed Central

    Rooney, Alejandro P.; Swezey, James L.; Friedman, Robert; Hecht, David W.; Maddox, Carol W.

    2006-01-01

    Clostridium perfringens is an important human and animal pathogen that causes a number of diseases that vary in their etiology and severity. Differences between strains regarding toxin gene composition and toxin production partly explain why some strains cause radically different diseases than others. However, they do not provide a complete explanation. The purpose of this study was to determine if there is a phylogenetic component that explains the variance in C. perfringens strain virulence by assessing patterns of genetic polymorphism in genes (colA gyrA, plc, pfoS, and rplL) that form part of the core genome in 248 type A strains. We found that purifying selection plays a central role in shaping the patterns of nucleotide substitution and polymorphism in both housekeeping and virulence genes. In contrast, recombination was found to be a significant factor only for the virulence genes plc and colA and the housekeeping gene gyrA. Finally, we found that the strains grouped into five distinct evolutionary lineages that show evidence of host adaptation and the early stages of speciation. The discovery of these previously unknown lineages and their association with distinct disease presentations carries important implications for human and veterinary clostridial disease epidemiology and provides important insights into the pathways through which virulence has evolved in C. perfringens. PMID:16489222

  8. Distinct and diverse: range-wide phylogeography reveals ancient lineages and high genetic variation in the endangered okapi (Okapia johnstoni).

    PubMed

    Stanton, David W G; Hart, John; Galbusera, Peter; Helsen, Philippe; Shephard, Jill; Kümpel, Noëlle F; Wang, Jinliang; Ewen, John G; Bruford, Michael W

    2014-01-01

    The okapi is an endangered, evolutionarily distinctive even-toed ungulate classified within the giraffidae family that is endemic to the Democratic Republic of Congo. The okapi is currently under major anthropogenic threat, yet to date nothing is known about its genetic structure and evolutionary history, information important for conservation management given the species' current plight. The distribution of the okapi, being confined to the Congo Basin and yet spanning the Congo River, also makes it an important species for testing general biogeographic hypotheses for Congo Basin fauna, a currently understudied area of research. Here we describe the evolutionary history and genetic structure of okapi, in the context of other African ungulates including the giraffe, and use this information to shed light on the biogeographic history of Congo Basin fauna in general. Using nuclear and mitochondrial DNA sequence analysis of mainly non-invasively collected samples, we show that the okapi is both highly genetically distinct and highly genetically diverse, an unusual combination of genetic traits for an endangered species, and feature a complex evolutionary history. Genetic data are consistent with repeated climatic cycles leading to multiple Plio-Pleistocene refugia in isolated forests in the Congo catchment but also imply historic gene flow across the Congo River. PMID:25007188

  9. Distinct and Diverse: Range-Wide Phylogeography Reveals Ancient Lineages and High Genetic Variation in the Endangered Okapi (Okapia johnstoni)

    PubMed Central

    Stanton, David W. G.; Hart, John; Galbusera, Peter; Helsen, Philippe; Shephard, Jill; Kümpel, Noëlle F.; Wang, Jinliang; Ewen, John G.; Bruford, Michael W.

    2014-01-01

    The okapi is an endangered, evolutionarily distinctive even-toed ungulate classified within the giraffidae family that is endemic to the Democratic Republic of Congo. The okapi is currently under major anthropogenic threat, yet to date nothing is known about its genetic structure and evolutionary history, information important for conservation management given the species' current plight. The distribution of the okapi, being confined to the Congo Basin and yet spanning the Congo River, also makes it an important species for testing general biogeographic hypotheses for Congo Basin fauna, a currently understudied area of research. Here we describe the evolutionary history and genetic structure of okapi, in the context of other African ungulates including the giraffe, and use this information to shed light on the biogeographic history of Congo Basin fauna in general. Using nuclear and mitochondrial DNA sequence analysis of mainly non-invasively collected samples, we show that the okapi is both highly genetically distinct and highly genetically diverse, an unusual combination of genetic traits for an endangered species, and feature a complex evolutionary history. Genetic data are consistent with repeated climatic cycles leading to multiple Plio-Pleistocene refugia in isolated forests in the Congo catchment but also imply historic gene flow across the Congo River. PMID:25007188

  10. Quantitative Expression Profile of Distinct Functional Regions in the Adult Mouse Brain

    PubMed Central

    Nagano, Mamoru; Uno, Kenichiro D.; Tsujino, Kaori; Hanashima, Carina; Shigeyoshi, Yasufumi; Ueda, Hiroki R.

    2011-01-01

    The adult mammalian brain is composed of distinct regions with specialized roles including regulation of circadian clocks, feeding, sleep/awake, and seasonal rhythms. To find quantitative differences of expression among such various brain regions, we conducted the BrainStars (B*) project, in which we profiled the genome-wide expression of ∼50 small brain regions, including sensory centers, and centers for motion, time, memory, fear, and feeding. To avoid confounds from temporal differences in gene expression, we sampled each region every 4 hours for 24 hours, and pooled the samples for DNA-microarray assays. Therefore, we focused on spatial differences in gene expression. We used informatics to identify candidate genes with expression changes showing high or low expression in specific regions. We also identified candidate genes with stable expression across brain regions that can be used as new internal control genes, and ligand-receptor interactions of neurohormones and neurotransmitters. Through these analyses, we found 8,159 multi-state genes, 2,212 regional marker gene candidates for 44 small brain regions, 915 internal control gene candidates, and 23,864 inferred ligand-receptor interactions. We also found that these sets include well-known genes as well as novel candidate genes that might be related to specific functions in brain regions. We used our findings to develop an integrated database (http://brainstars.org/) for exploring genome-wide expression in the adult mouse brain, and have made this database openly accessible. These new resources will help accelerate the functional analysis of the mammalian brain and the elucidation of its regulatory network systems. PMID:21858037

  11. Distinct functions of the dual leucine zipper kinase depending on its subcellular localization.

    PubMed

    Wallbach, Manuel; Duque Escobar, Jorge; Babaeikelishomi, Rohollah; Stahnke, Marie-Jeannette; Blume, Roland; Schröder, Sabine; Kruegel, Jenny; Maedler, Kathrin; Kluth, Oliver; Kehlenbach, Ralph H; Miosge, Nicolai; Oetjen, Elke

    2016-04-01

    The dual leucine zipper kinase DLK induces β-cell apoptosis by inhibiting the transcriptional activity conferred by the β-cell protective transcription factor cAMP response element binding protein CREB. This action might contribute to β-cell loss and ultimately diabetes. Within its kinase domain DLK shares high homology with the mixed lineage kinase (MLK) 3, which is activated by tumor necrosis factor (TNF) α and interleukin (IL)-1β, known prediabetic signals. In the present study, the regulation of DLK in β-cells by these cytokines was investigated. Both, TNFα and IL-1β induced the nuclear translocation of DLK. Mutations within a putative nuclear localization signal (NLS) prevented basal and cytokine-induced nuclear localization of DLK and binding to the importin receptor importin α, thereby demonstrating a functional NLS within DLK. DLK NLS mutants were catalytically active as they phosphorylated their down-stream kinase c-Jun N-terminal kinase to the same extent as DLK wild-type but did neither inhibit CREB-dependent gene transcription nor transcription conferred by the promoter of the anti-apoptotic protein BCL-xL. In addition, the β-cell apoptosis-inducing effect of DLK was severely diminished by mutation of its NLS. In a murine model of prediabetes, enhanced nuclear DLK was found. These data demonstrate that DLK exerts distinct functions, depending on its subcellular localization and thus provide a novel level of regulating DLK action. Furthermore, the prevention of the nuclear localization of DLK as induced by prediabetic signals with consecutive suppression of β-cell apoptosis might constitute a novel target in the therapy of diabetes mellitus. PMID:26776303

  12. Protein phosphatase 2A regulatory subunits perform distinct functional roles in the maize pathogen Fusarium verticillioides.

    PubMed

    Shin, Joon-Hee; Kim, Jung-Eun; Malapi-Wight, Martha; Choi, Yoon-E; Shaw, Brian D; Shim, Won-Bo

    2013-06-01

    Fusarium verticillioides is a pathogen of maize causing ear rot and stalk rot. The fungus also produces fumonisins, a group of mycotoxins linked to disorders in animals and humans. A cluster of genes, designated FUM genes, plays a key role in the synthesis of fumonisins. However, our understanding of the regulatory mechanism of fumonisin biosynthesis is still incomplete. We have demonstrated previously that Cpp1, a protein phosphatase type 2A (PP2A) catalytic subunit, negatively regulates fumonisin production and is involved in cell shape maintenance. In general, three PP2A subunits, structural A, regulatory B and catalytic C, make up a heterotrimer complex to perform regulatory functions. Significantly, we identified two PP2A regulatory subunits in the F. verticillioides genome, Ppr1 and Ppr2, which are homologous to Saccharomyces cerevisiae Cdc55 and Rts1, respectively. In this study, we hypothesized that Ppr1 and Ppr2 are involved in the regulation of fumonisin biosynthesis and/or cell development in F. verticillioides, and generated a series of mutants to determine the functional role of Ppr1 and Ppr2. The PPR1 deletion strain (Δppr1) resulted in drastic growth defects, but increased microconidia production. The PPR2 deletion mutant strain (Δppr2) showed elevated fumonisin production, similar to the Δcpp1 strain. Germinating Δppr1 conidia formed abnormally swollen cells with a central septation site, whereas Δppr2 showed early hyphal branching during conidia germination. A kernel rot assay showed that the mutants were slow to colonize kernels, but this is probably a result of growth defects rather than a virulence defect. Results from this study suggest that two PP2A regulatory subunits in F. verticillioides carry out distinct roles in the regulation of fumonisin biosynthesis and fungal development. PMID:23452277

  13. Amplified Fragment Length Polymorphism Reveals Specific Epigenetic Distinctions between Mycobacterium avium Subspecies paratuberculosis Isolates of Various Isolation Types▿

    PubMed Central

    O'Shea, B.; Khare, S.; Klein, P.; Roussel, A.; Adams, L. G.; Ficht, T. A.; Rice-Ficht, A. C.

    2011-01-01

    Amplified fragment length polymorphism (AFLP) was employed as a genetic analysis tool for the study of the genetic relatedness of Mycobacterium avium subsp. paratuberculosis isolates harvested from bovine fecal samples and from bovine or human tissues. This analysis revealed genetic differences between these two isolate types that were confirmed through cluster analysis. Dendrogram analysis separated these two isolate types based on the isolation scheme (tissue-associated versus fecal M. avium subsp. paratuberculosis isolates). Further sequence analysis of unique genetic regions from each isolation type revealed no genetic sequence differences. However, Clustal DNA alignments identified AFLP restriction enzyme sites that were undigested in the tissue-associated isolates. AFLP analysis also disclosed that the same AFLP restriction sites were digested in all of the fecal isolates. Sequence analysis further revealed a consensus sequence upstream of the undigested restriction sites for possible methyltransferase recognition in the tissue-associated M. avium subsp. paratuberculosis isolates. PMID:21471350

  14. Functional Genomics Reveals Linkers Critical for Influenza Virus Polymerase

    PubMed Central

    Wang, Lulan; Wu, Aiping; Wang, Yao E.; Quanquin, Natalie; Li, Chunfeng; Wang, Jingfeng; Chen, Hsiang-Wen; Liu, Suyang; Liu, Ping; Zhang, Hong; Qin, F. Xiao-Feng

    2015-01-01

    ABSTRACT Influenza virus mRNA synthesis by the RNA-dependent RNA polymerase involves binding and cleavage of capped cellular mRNA by the PB2 and PA subunits, respectively, and extension of viral mRNA by PB1. However, the mechanism for such a dynamic process is unclear. Using high-throughput mutagenesis and sequencing analysis, we have not only generated a comprehensive functional map for the microdomains of individual subunits but also have revealed the PA linker to be critical for polymerase activity. This PA linker binds to PB1 and also forms ionic interactions with the PA C-terminal channel. Nearly all mutants with five-amino-acid insertions in the linker were nonviable. Our model further suggests that the PA linker plays an important role in the conformational changes that occur between stages that favor capped mRNA binding and cleavage and those associated with viral mRNA synthesis. IMPORTANCE The RNA-dependent RNA polymerase of influenza virus consists of the PB1, PB2, and PA subunits. By combining genome-wide mutagenesis analysis with the recently discovered crystal structure of the influenza polymerase heterotrimer, we generated a comprehensive functional map of the entire influenza polymerase complex. We identified the microdomains of individual subunits, including the catalytic domains, the interaction interfaces between subunits, and nine linkers interconnecting different domains. Interestingly, we found that mutants with five-amino-acid insertions in individual linkers were nonviable, suggesting the critical roles these linkers play in coordinating spatial relationships between the subunits. We further identified an extended PA linker that binds to PB1 and also forms ionic interactions with the PA C-terminal channel. PMID:26719244

  15. Gpr116 Receptor Regulates Distinctive Functions in Pneumocytes and Vascular Endothelium

    PubMed Central

    Niaudet, Colin; Vanlandewijck, Michael; Ekvärn, Elisabet; Salvado, M. Dolores; Mehlem, Annika; Al Sayegh, Sahar; He, Liqun; Lebouvier, Thibaud; Castro-Freire, Marco; Katayama, Kan; Hultenby, Kjell; Moessinger, Christine; Tannenberg, Philip; Cunha, Sara; Pietras, Kristian; Laviña, Bàrbara; Hong, JongWook; Berg, Tove; Betsholtz, Christer

    2015-01-01

    Despite its known expression in both the vascular endothelium and the lung epithelium, until recently the physiological role of the adhesion receptor Gpr116/ADGRF5 has remained elusive. We generated a new mouse model of constitutive Gpr116 inactivation, with a large genetic deletion encompassing exon 4 to exon 21 of the Gpr116 gene. This model allowed us to confirm recent results defining Gpr116 as necessary regulator of surfactant homeostasis. The loss of Gpr116 provokes an early accumulation of surfactant in the lungs, followed by a massive infiltration of macrophages, and eventually progresses into an emphysema-like pathology. Further analysis of this knockout model revealed cerebral vascular leakage, beginning at around 1.5 months of age. Additionally, endothelial-specific deletion of Gpr116 resulted in a significant increase of the brain vascular leakage. Mice devoid of Gpr116 developed an anatomically normal and largely functional vascular network, surprisingly exhibited an attenuated pathological retinal vascular response in a model of oxygen-induced retinopathy. These data suggest that Gpr116 modulates endothelial properties, a previously unappreciated function despite the pan-vascular expression of this receptor. Our results support the key pulmonary function of Gpr116 and describe a new role in the central nervous system vasculature. PMID:26394398

  16. Crystal Structure Analysis and the Identification of Distinctive Functional Regions of the Protein Elicitor Mohrip2.

    PubMed

    Liu, Mengjie; Duan, Liangwei; Wang, Meifang; Zeng, Hongmei; Liu, Xinqi; Qiu, Dewen

    2016-01-01

    The protein elicitor MoHrip2, which was extracted from Magnaporthe oryzae as an exocrine protein, triggers the tobacco immune system and enhances blast resistance in rice. However, the detailed mechanisms by which MoHrip2 acts as an elicitor remain unclear. Here, we investigated the structure of MoHrip2 to elucidate its functions based on molecular structure. The three-dimensional structure of MoHrip2 was obtained. Overall, the crystal structure formed a β-barrel structure and showed high similarity to the pathogenesis-related (PR) thaumatin superfamily protein thaumatin-like xylanase inhibitor (TL-XI). To investigate the functional regions responsible for MoHrip2 elicitor activities, the full length and eight truncated proteins were expressed in Escherichia coli and were evaluated for elicitor activity in tobacco. Biological function analysis showed that MoHrip2 triggered the defense system against Botrytis cinerea in tobacco. Moreover, only MoHrip2M14 and other fragments containing the 14 amino acids residues in the middle region of the protein showed the elicitor activity of inducing a hypersensitive response and resistance related pathways, which were similar to that of full-length MoHrip2. These results revealed that the central 14 amino acid residues were essential for anti-pathogenic activity. PMID:27507984

  17. Gpr116 Receptor Regulates Distinctive Functions in Pneumocytes and Vascular Endothelium.

    PubMed

    Niaudet, Colin; Hofmann, Jennifer J; Mäe, Maarja A; Jung, Bongnam; Gaengel, Konstantin; Vanlandewijck, Michael; Ekvärn, Elisabet; Salvado, M Dolores; Mehlem, Annika; Al Sayegh, Sahar; He, Liqun; Lebouvier, Thibaud; Castro-Freire, Marco; Katayama, Kan; Hultenby, Kjell; Moessinger, Christine; Tannenberg, Philip; Cunha, Sara; Pietras, Kristian; Laviña, Bàrbara; Hong, JongWook; Berg, Tove; Betsholtz, Christer

    2015-01-01

    Despite its known expression in both the vascular endothelium and the lung epithelium, until recently the physiological role of the adhesion receptor Gpr116/ADGRF5 has remained elusive. We generated a new mouse model of constitutive Gpr116 inactivation, with a large genetic deletion encompassing exon 4 to exon 21 of the Gpr116 gene. This model allowed us to confirm recent results defining Gpr116 as necessary regulator of surfactant homeostasis. The loss of Gpr116 provokes an early accumulation of surfactant in the lungs, followed by a massive infiltration of macrophages, and eventually progresses into an emphysema-like pathology. Further analysis of this knockout model revealed cerebral vascular leakage, beginning at around 1.5 months of age. Additionally, endothelial-specific deletion of Gpr116 resulted in a significant increase of the brain vascular leakage. Mice devoid of Gpr116 developed an anatomically normal and largely functional vascular network, surprisingly exhibited an attenuated pathological retinal vascular response in a model of oxygen-induced retinopathy. These data suggest that Gpr116 modulates endothelial properties, a previously unappreciated function despite the pan-vascular expression of this receptor. Our results support the key pulmonary function of Gpr116 and describe a new role in the central nervous system vasculature. PMID:26394398

  18. Crystal Structure Analysis and the Identification of Distinctive Functional Regions of the Protein Elicitor Mohrip2

    PubMed Central

    Liu, Mengjie; Duan, Liangwei; Wang, Meifang; Zeng, Hongmei; Liu, Xinqi; Qiu, Dewen

    2016-01-01

    The protein elicitor MoHrip2, which was extracted from Magnaporthe oryzae as an exocrine protein, triggers the tobacco immune system and enhances blast resistance in rice. However, the detailed mechanisms by which MoHrip2 acts as an elicitor remain unclear. Here, we investigated the structure of MoHrip2 to elucidate its functions based on molecular structure. The three-dimensional structure of MoHrip2 was obtained. Overall, the crystal structure formed a β-barrel structure and showed high similarity to the pathogenesis-related (PR) thaumatin superfamily protein thaumatin-like xylanase inhibitor (TL-XI). To investigate the functional regions responsible for MoHrip2 elicitor activities, the full length and eight truncated proteins were expressed in Escherichia coli and were evaluated for elicitor activity in tobacco. Biological function analysis showed that MoHrip2 triggered the defense system against Botrytis cinerea in tobacco. Moreover, only MoHrip2M14 and other fragments containing the 14 amino acids residues in the middle region of the protein showed the elicitor activity of inducing a hypersensitive response and resistance related pathways, which were similar to that of full-length MoHrip2. These results revealed that the central 14 amino acid residues were essential for anti-pathogenic activity. PMID:27507984

  19. Distinct Ectomycorrhizospheres Share Similar Bacterial Communities as Revealed by Pyrosequencing-Based Analysis of 16S rRNA Genes

    PubMed Central

    Oger, P.; Morin, E.; Frey-Klett, P.

    2012-01-01

    Analysis of the 16S rRNA gene sequences generated from Xerocomus pruinatus and Scleroderma citrinum ectomycorrhizospheres revealed that similar bacterial communities inhabited the two ectomycorrhizospheres in terms of phyla and genera, with an enrichment of the Burkholderia genus. Compared to the bulk soil habitat, ectomycorrhizospheres hosted significantly more Alpha-, Beta-, and Gammaproteobacteria. PMID:22307291

  20. Temporal correlation patterns in pre-seismic electromagnetic emissions reveal distinct complexity profiles prior to major earthquakes

    NASA Astrophysics Data System (ADS)

    Donner, Reik V.; Potirakis, Stelios M.; Balasis, George; Eftaxias, Konstantinos; Kurths, Jürgen

    2015-04-01

    In the last years, continuous recordings of electromagnetic emissions from geophysical observatories have been recognized to exhibit characteristic fluctuation patterns prior to some major earthquakes. To further evaluate and quantify these findings, this work presents a detailed assessment of the time-varying correlation properties of such emissions during the preparatory phases preceding some recent earthquakes in Greece and Italy. During certain stages before the earthquakes' occurrences, the electromagnetic variability profiles are characterized by a marked increase in the degree of organization of fluctuations, which allow developing hypotheses about the underlying physical mechanisms. Based on the preparatory phases of selected seismic events, the information provided by different statistical properties characterizing complementary aspects of the time-varying complexity based on temporal correlations is systematically assessed. The obtained results allow further insights into different pre-seismic stages based on the variability of electromagnetic emissions, which are probably associated with distinct geophysical processes.

  1. Integrative "omic" analysis reveals distinctive cold responses in leaves and roots of strawberry, Fragaria × ananassa 'Korona'.

    PubMed

    Koehler, Gage; Rohloff, Jens; Wilson, Robert C; Kopka, Joachim; Erban, Alexander; Winge, Per; Bones, Atle M; Davik, Jahn; Alsheikh, Muath K; Randall, Stephen K

    2015-01-01

    To assess underlying metabolic processes and regulatory mechanisms during cold exposure of strawberry, integrative "omic" approaches were applied to Fragaria × ananassa Duch. 'Korona.' Both root and leaf tissues were examined for responses to the cold acclimation processes. Levels of metabolites, proteins, and transcripts in tissues from plants grown at 18°C were compared to those following 1-10 days of cold (2°C) exposure. When leaves and roots were subjected to GC/TOF-MS-based metabolite profiling, about 160 compounds comprising mostly structurally annotated primary and secondary metabolites, were found. Overall, 'Korona' showed a modest increase of protective metabolites such as amino acids (aspartic acid, leucine, isoleucine, and valine), pentoses, phosphorylated and non-phosphorylated hexoses, and distinct compounds of the raffinose pathway (galactinol and raffinose). Distinctive responses were observed in roots and leaves. By 2DE proteomics a total of 845 spots were observed in leaves; 4.6% changed significantly in response to cold. Twenty-one proteins were identified, many of which were associated with general metabolism or photosynthesis. Transcript levels in leaves were determined by microarray, where dozens of cold associated transcripts were quantitatively characterized, and levels of several potential key contributors (e.g., the dehydrin COR47 and GADb) to cold tolerance were confirmed by qRT-PCR. Cold responses are placed within the existing knowledge base of low temperature-induced changes in plants, allowing an evaluation of the uniqueness or generality of Fragaria responses in photosynthetic tissues. Overall, the cold response characteristics of 'Korona' are consistent with a moderately cold tolerant plant. PMID:26528299

  2. Functions of Two Distinct “Prolactin-Releasing Peptides” Evolved from a Common Ancestral Gene

    PubMed Central

    Tachibana, Tetsuya; Sakamoto, Tatsuya

    2014-01-01

    Prolactin-releasing peptide (PrRP) is one of the RF-amide peptides and was originally identified in the bovine hypothalamus as a stimulator of prolactin (PRL) release. Independently, another RF-amide peptide was found in Japanese crucian carp and named Carassius-RFa (C-RFa), which shows high homology to PrRP and stimulates PRL secretion in teleost fish. Therefore, C-RFa has been recognized as fish PrRP. However, recent work has revealed that PrRP and C-RFa in non-mammalian vertebrates are encoded by separate genes originated through duplication of an ancestral gene. Indeed, both PrRP and C-RFa are suggested to exist in teleost, amphibian, reptile, and avian species. Therefore, we propose that non-mammalian PrRP (C-RFa) be renamed PrRP2. Despite a common evolutionary origin, PrRP2 appears to be a physiological regulator of PRL, whereas this is not a consistent role for PrRP itself. Further work revealed that the biological functions of PrRP and PrRP2 are not limited solely to PRL release, because they are also neuromodulators of several hypothalamus–pituitary axes and are involved in some brain circuits related to the regulation of food intake, stress, and cardiovascular functions. However, these actions appear to be different among vertebrates. For example, central injection of PrRP inhibits feeding behavior in rodents and teleosts, while it stimulates it in chicks. Therefore, both PrRP and PrRP2 have acquired diverse actions through evolution. In this review, we integrate the burgeoning information of structures, expression profiles, and multiple biological actions of PrRP in higher vertebrates, as well as those of PrRP2 in non-mammals. PMID:25426099

  3. Isoform and Splice-Variant Specific Functions of Dynamin-2 Revealed by Analysis of Conditional Knock-Out Cells

    PubMed Central

    Liu, Ya-Wen; Surka, Mark C.; Schroeter, Thomas; Lukiyanchuk, Vasyl

    2008-01-01

    Dynamin (Dyn) is a multifunctional GTPase implicated in several cellular events, including endocytosis, intracellular trafficking, cell signaling, and cytokinesis. The mammalian genome encodes three isoforms, Dyn1, Dyn2, and Dyn3, and several splice variants of each, leading to the suggestion that distinct isoforms and/or distinct splice variants might mediate distinct cellular functions. We generated a conditional Dyn2 KO cell line and performed knockout and reconstitution experiments to explore the isoform- and splice variant specific cellular functions of ubiquitously expressed Dyn2. We find that Dyn2 is required for clathrin-mediated endocytosis (CME), p75 export from the Golgi, and PDGF-stimulated macropinocytosis and cytokinesis, but not for other endocytic pathways. Surprisingly, CME and p75 exocytosis were efficiently rescued by reintroduction of Dyn2, but not Dyn1, suggesting that these two isoforms function differentially in vesicular trafficking in nonneuronal cells. Both isoforms rescued macropinocytosis and cytokinesis, suggesting that dynamin function in these processes might be mechanistically distinct from its role in CME. Although all four Dyn2 splice variants could equally restore CME, Dyn2ba and -bb were more effective at restoring p75 exocytosis. This splice variant specificity correlated with their differential targeting to the Golgi. These studies reveal isoform and splice-variant specific functions for Dyn2. PMID:18923138

  4. Isoform and splice-variant specific functions of dynamin-2 revealed by analysis of conditional knock-out cells.

    PubMed

    Liu, Ya-Wen; Surka, Mark C; Schroeter, Thomas; Lukiyanchuk, Vasyl; Schmid, Sandra L

    2008-12-01

    Dynamin (Dyn) is a multifunctional GTPase implicated in several cellular events, including endocytosis, intracellular trafficking, cell signaling, and cytokinesis. The mammalian genome encodes three isoforms, Dyn1, Dyn2, and Dyn3, and several splice variants of each, leading to the suggestion that distinct isoforms and/or distinct splice variants might mediate distinct cellular functions. We generated a conditional Dyn2 KO cell line and performed knockout and reconstitution experiments to explore the isoform- and splice variant specific cellular functions of ubiquitously expressed Dyn2. We find that Dyn2 is required for clathrin-mediated endocytosis (CME), p75 export from the Golgi, and PDGF-stimulated macropinocytosis and cytokinesis, but not for other endocytic pathways. Surprisingly, CME and p75 exocytosis were efficiently rescued by reintroduction of Dyn2, but not Dyn1, suggesting that these two isoforms function differentially in vesicular trafficking in nonneuronal cells. Both isoforms rescued macropinocytosis and cytokinesis, suggesting that dynamin function in these processes might be mechanistically distinct from its role in CME. Although all four Dyn2 splice variants could equally restore CME, Dyn2ba and -bb were more effective at restoring p75 exocytosis. This splice variant specificity correlated with their differential targeting to the Golgi. These studies reveal isoform and splice-variant specific functions for Dyn2. PMID:18923138

  5. Targeted capture and resequencing of 1040 genes reveal environmentally driven functional variation in grey wolves.

    PubMed

    Schweizer, Rena M; Robinson, Jacqueline; Harrigan, Ryan; Silva, Pedro; Galverni, Marco; Musiani, Marco; Green, Richard E; Novembre, John; Wayne, Robert K

    2016-01-01

    In an era of ever-increasing amounts of whole-genome sequence data for individuals and populations, the utility of traditional single nucleotide polymorphisms (SNPs) array-based genome scans is uncertain. We previously performed a SNP array-based genome scan to identify candidate genes under selection in six distinct grey wolf (Canis lupus) ecotypes. Using this information, we designed a targeted capture array for 1040 genes, including all exons and flanking regions, as well as 5000 1-kb nongenic neutral regions, and resequenced these regions in 107 wolves. Selection tests revealed striking patterns of variation within candidate genes relative to noncandidate regions and identified potentially functional variants related to local adaptation. We found 27% and 47% of candidate genes from the previous SNP array study had functional changes that were outliers in sweed and bayenv analyses, respectively. This result verifies the use of genomewide SNP surveys to tag genes that contain functional variants between populations. We highlight nonsynonymous variants in APOB, LIPG and USH2A that occur in functional domains of these proteins, and that demonstrate high correlation with precipitation seasonality and vegetation. We find Arctic and High Arctic wolf ecotypes have higher numbers of genes under selection, which highlight their conservation value and heightened threat due to climate change. This study demonstrates that combining genomewide genotyping arrays with large-scale resequencing and environmental data provides a powerful approach to discern candidate functional variants in natural populations. PMID:26562361

  6. KIR2DL4 differentially signals downstream functions in human NK cells through distinct structural modules.

    PubMed

    Miah, S M Shahjahan; Hughes, Tracey L; Campbell, Kerry S

    2008-03-01

    KIR2DL4 (2DL4) is a member of the killer cell Ig-like receptor (KIR) family in human NK cells. It can stimulate potent cytokine production and weak cytolytic activity in resting NK cells, but the mechanism for 2DL4-mediated signaling remains unclear. In this study we characterized the signaling pathways stimulated by 2DL4 engagement. In a human NK-like cell line, KHYG-1, cross-linking of 2DL4 activated MAPKs including JNK, ERK, and p38. Furthermore, 2DL4 cross-linking resulted in phosphorylation of IkappaB kinase beta (IKKbeta) and the phosphorylation and degradation of IkappaBalpha, which indicate activation of the classical NF-kappaB pathway. Engagement of 2DL4 was also shown to activate the transcription and translation of a variety of cytokine genes, including TNF-alpha, IFN-gamma, MIP1alpha, MIP1beta, and IL-8. Pharmacological inhibitors of JNK, MEK1/2 and p38, blocked IFN-gamma, IL-8, and MIP1alpha production, suggesting that MAPKs are regulating 2DL4-mediated cytokine production in a nonredundant manner. Activation of both p38 and ERK appear to be upstream of the stimulation of NF-kappaB. Mutation of a transmembrane arginine in 2DL4 to glycine (R/G mutant) abrogated FcepsilonRI-gamma association, as well as receptor-mediated cytolytic activity and calcium responses. Surprisingly, the R/G mutant still activated MAPKs and the NF-kappaB pathway and selectively stimulated the production of MIP1alpha, but not that of IFN-gamma or IL-8. In conclusion, we provide evidence that the activating functions of 2DL4 can be compartmentalized into two distinct structural modules: 1) through transmembrane association with FcepsilonRI-gamma; and 2) through another receptor domain independent of the transmembrane arginine. PMID:18292514

  7. Human DNA-Damage-Inducible 2 Protein Is Structurally and Functionally Distinct from Its Yeast Ortholog

    PubMed Central

    Sivá, Monika; Svoboda, Michal; Veverka, Václav; Trempe, Jean-François; Hofmann, Kay; Kožíšek, Milan; Hexnerová, Rozálie; Sedlák, František; Belza, Jan; Brynda, Jiří; Šácha, Pavel; Hubálek, Martin; Starková, Jana; Flaisigová, Iva; Konvalinka, Jan; Šašková, Klára Grantz

    2016-01-01

    Although Ddi1-like proteins are conserved among eukaryotes, their biological functions remain poorly characterized. Yeast Ddi1 has been implicated in cell cycle regulation, DNA-damage response, and exocytosis. By virtue of its ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains, it has been proposed to serve as a proteasomal shuttle factor. All Ddi1-like family members also contain a highly conserved retroviral protease-like (RVP) domain with unknown substrate specificity. While the structure and biological function of yeast Ddi1 have been investigated, no such analysis is available for the human homologs. To address this, we solved the 3D structures of the human Ddi2 UBL and RVP domains and identified a new helical domain that extends on either side of the RVP dimer. While Ddi1-like proteins from all vertebrates lack a UBA domain, we identify a novel ubiquitin-interacting motif (UIM) located at the C-terminus of the protein. The UIM showed a weak yet specific affinity towards ubiquitin, as did the Ddi2 UBL domain. However, the full-length Ddi2 protein is unable to bind to di-ubiquitin chains. While proteomic analysis revealed no activity, implying that the protease requires other factors for activation, our structural characterization of all domains of human Ddi2 sets the stage for further characterization. PMID:27461074

  8. Human DNA-Damage-Inducible 2 Protein Is Structurally and Functionally Distinct from Its Yeast Ortholog.

    PubMed

    Sivá, Monika; Svoboda, Michal; Veverka, Václav; Trempe, Jean-François; Hofmann, Kay; Kožíšek, Milan; Hexnerová, Rozálie; Sedlák, František; Belza, Jan; Brynda, Jiří; Šácha, Pavel; Hubálek, Martin; Starková, Jana; Flaisigová, Iva; Konvalinka, Jan; Šašková, Klára Grantz

    2016-01-01

    Although Ddi1-like proteins are conserved among eukaryotes, their biological functions remain poorly characterized. Yeast Ddi1 has been implicated in cell cycle regulation, DNA-damage response, and exocytosis. By virtue of its ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains, it has been proposed to serve as a proteasomal shuttle factor. All Ddi1-like family members also contain a highly conserved retroviral protease-like (RVP) domain with unknown substrate specificity. While the structure and biological function of yeast Ddi1 have been investigated, no such analysis is available for the human homologs. To address this, we solved the 3D structures of the human Ddi2 UBL and RVP domains and identified a new helical domain that extends on either side of the RVP dimer. While Ddi1-like proteins from all vertebrates lack a UBA domain, we identify a novel ubiquitin-interacting motif (UIM) located at the C-terminus of the protein. The UIM showed a weak yet specific affinity towards ubiquitin, as did the Ddi2 UBL domain. However, the full-length Ddi2 protein is unable to bind to di-ubiquitin chains. While proteomic analysis revealed no activity, implying that the protease requires other factors for activation, our structural characterization of all domains of human Ddi2 sets the stage for further characterization. PMID:27461074

  9. Large-scale atlas of microarray data reveals the distinct expression landscape of different tissues in Arabidopsis

    DOE PAGESBeta

    He, Fei; Maslov, Sergei; Yoo, Shinjae; Wang, Daifeng; Kumari, Sunita; Gerstein, Mark; Ware, Doreen

    2016-03-25

    Here, transcriptome datasets from thousands of samples of the model plant Arabidopsis thaliana have been collectively generated by multiple individual labs. Although integration and meta-analysis of these samples has become routine in the plant research community, it is often hampered by the lack of metadata or differences in annotation styles by different labs. In this study, we carefully selected and integrated 6,057 Arabidopsis microarray expression samples from 304 experiments deposited to NCBI GEO. Metadata such as tissue type, growth condition, and developmental stage were manually curated for each sample. We then studied global expression landscape of the integrated dataset andmore » found that samples of the same tissue tend to be more similar to each other than to samples of other tissues, even in different growth conditions or developmental stages. Root has the most distinct transcriptome compared to aerial tissues, but the transcriptome of cultured root is more similar to those of aerial tissues as the former samples lost their cellular identity. Using a simple computational classification method, we showed that the tissue type of a sample can be successfully predicted based on its expression profile, opening the door for automatic metadata extraction and facilitating re-use of plant transcriptome data. As a proof of principle we applied our automated annotation pipeline to 708 RNA-seq samples from public repositories and verified accuracy of our predictions with samples’ metadata provided by authors.« less

  10. Culture-free survey reveals diverse and distinctive fungal communities associated with developing figs (Ficus spp.) in Panama.

    PubMed

    Martinson, Ellen O; Herre, Edward Allen; Machado, Carlos A; Arnold, A Elizabeth

    2012-11-01

    The ancient association of figs (Ficus spp.) and their pollinating wasps (fig wasps; Chalcidoidea, Hymenoptera) is one of the most interdependent plant-insect mutualisms known. In addition to pollinating wasps, a diverse community of organisms develops within the microcosm of the fig inflorescence and fruit. To better understand the multipartite context of the fig-fig wasp association, we used a culture-free approach to examine fungal communities associated with syconia of six species of Ficus and their pollinating wasps in lowland Panama. Diverse fungi were recovered from surface-sterilized flowers of all Ficus species, including gall- and seed flowers at four developmental stages. Fungal communities in syconia and on pollinating wasps were similar, dominated by diverse and previously unknown Saccharomycotina, and distinct from leaf- and stem endophyte communities in the same region. Before pollination, fungal communities were similar between gall- and seed flowers and among Ficus species. However, fungal communities differed significantly in flowers after pollination vs. before pollination, and between anciently diverged lineages of Ficus with active vs. passive pollination syndromes. Within groups of relatively closely related figs, there was little evidence for strict-sense host specificity between figs and particular fungal species. Instead, mixing of fungal communities among related figs, coupled with evidence for possible transfer by pollinating wasps, is consistent with recent suggestions of pollinator mixing within syconia. In turn, changes in fungal communities during fig development and ripening suggest an unexplored role of yeasts in the context of the fig-pollinator wasp mutualism. PMID:22729017

  11. Comparative analysis of somatic copy-number alterations across different human cancer types reveals two distinct classes of breakpoint hotspots

    PubMed Central

    Li, Yudong; Zhang, Li; Ball, Robyn L.; Liang, Xinle; Li, Jianrong; Lin, Zhenguo; Liang, Han

    2012-01-01

    Somatic copy-number alterations (SCNAs) play a crucial role in the development of human cancer. However, it is not well understood what evolutionary mechanisms contribute to the global patterns of SCNAs in cancer genomes. Taking advantage of data recently available through The Cancer Genome Atlas, we performed a systematic analysis on genome-wide SCNA breakpoint data for eight cancer types. First, we observed a high degree of overall similarity among the SCNA breakpoint landscapes of different cancer types. Then, we compiled 19 genomic features and evaluated their effects on the observed SCNA patterns. We found that evolutionary indel and substitution rates between species (i.e. humans and chimpanzees) consistently show the strongest correlations with breakpoint frequency among all the surveyed features; whereas the effects of some features are quite cancer-type dependent. Focusing on SCNA breakpoint hotspots, we found that cancer-type-specific breakpoint hotspots and common hotspots show distinct patterns. Cancer-type-specific hotspots are enriched with known cancer genes but are poorly predicted from genomic features; whereas common hotspots show the opposite patterns. This contrast suggests that explaining high-frequency SCNAs in cancer may require different evolutionary models: positive selection driven by cancer genes, and non-adaptive evolution related to an intrinsically unstable genomic context. Our results not only present a systematic view of the effects of genetic factors on genome-wide SCNA patterns, but also provide deep insights into the evolutionary process of SCNAs in cancer. PMID:22899649

  12. Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy

    PubMed Central

    Liu, Xiaosong; Wang, Dongdong; Liu, Gao; Srinivasan, Venkat; Liu, Zhi; Hussain, Zahid; Yang, Wanli

    2013-01-01

    Developing high-performance batteries relies on material breakthroughs. During the past few years, various in situ characterization tools have been developed and have become indispensible in studying and the eventual optimization of battery materials. However, soft X-ray spectroscopy, one of the most sensitive probes of electronic states, has been mainly limited to ex situ experiments for battery research. Here we achieve in situ and operando soft X-ray absorption spectroscopy of lithium-ion battery cathodes. Taking advantage of the elemental, chemical and surface sensitivities of soft X-rays, we discover distinct lithium-ion and electron dynamics in Li(Co1/3Ni1/3Mn1/3)O2 and LiFePO4 cathodes in polymer electrolytes. The contrast between the two systems and the relaxation effect in LiFePO4 is attributed to a phase transformation mechanism, and the mesoscale morphology and charge conductivity of the electrodes. These discoveries demonstrate feasibility and power of in situ soft X-ray spectroscopy for studying integrated and dynamic effects in batteries. PMID:24100759

  13. Large-scale atlas of microarray data reveals the distinct expression landscape of different tissues in Arabidopsis.

    PubMed

    He, Fei; Yoo, Shinjae; Wang, Daifeng; Kumari, Sunita; Gerstein, Mark; Ware, Doreen; Maslov, Sergei

    2016-06-01

    Transcriptome data sets from thousands of samples of the model plant Arabidopsis thaliana have been collectively generated by multiple individual labs. Although integration and meta-analysis of these samples has become routine in the plant research community, it is often hampered by a lack of metadata or differences in annotation styles of different labs. In this study, we carefully selected and integrated 6057 Arabidopsis microarray expression samples from 304 experiments deposited to the Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI). Metadata such as tissue type, growth conditions and developmental stage were manually curated for each sample. We then studied the global expression landscape of the integrated data set and found that samples of the same tissue tend to be more similar to each other than to samples of other tissues, even in different growth conditions or developmental stages. Root has the most distinct transcriptome, compared with aerial tissues, but the transcriptome of cultured root is more similar to the transcriptome of aerial tissues, as the cultured root samples lost their cellular identity. Using a simple computational classification method, we showed that the tissue type of a sample can be successfully predicted based on its expression profile, opening the door for automatic metadata extraction and facilitating the re-use of plant transcriptome data. As a proof of principle, we applied our automated annotation pipeline to 708 RNA-seq samples from public repositories and verified the accuracy of our predictions with sample metadata provided by the authors. PMID:27015116

  14. Crystal structures of Mycobacterium tuberculosis HspAT and ArAT reveal structural basis of their distinct substrate specificities.

    PubMed

    Nasir, Nazia; Anant, Avishek; Vyas, Rajan; Biswal, Bichitra Kumar

    2016-01-01

    Aminotransferases of subfamily Iβ, which include histidinol phosphate aminotransferases (HspATs) and aromatic amino acid aminotransferases (ArATs), are structurally similar but possess distinct substrate specificities. This study, encompassing structural and biochemical characterisation of HspAT and ArAT from Mycobacterium tuberculosis demonstrates that the residues lining the substrate binding pocket and N-terminal lid are the primary determinants of their substrate specificities. In mHspAT, hydrophilic residues in the substrate binding pocket and N-terminal lid allow the entry and binding of its preferential substrate, Hsp. On the other hand, the hydrophobic nature of both the substrate binding pocket and the N-terminal lid of mArAT is responsible for the discrimination of a polar substrate such as Hsp, while facilitating the binding of Phe and other aromatic residues such as Tyr and Trp. In addition, the present study delineates the ligand induced conformational rearrangements, providing insights into the plasticity of aminotransferases. Furthermore, the study also demonstrates that the adventitiously bound ligand 2-(N-morpholino)ethanesulfonic acid (MES) is indeed a specific inhibitor of HspAT. These results suggest that previously untapped morpholine-ring scaffold compounds could be explored for the design of new anti-TB agents. PMID:26738801

  15. Structural comparison of the Caenorhabditis elegans and human Ndc80 complexes bound to microtubules reveals distinct binding behavior

    PubMed Central

    Wilson-Kubalek, Elizabeth M.; Cheeseman, Iain M.; Milligan, Ronald A.

    2016-01-01

    During cell division, kinetochores must remain tethered to the plus ends of dynamic microtubule polymers. However, the molecular basis for robust kinetochore–microtubule interactions remains poorly understood. The conserved four-subunit Ndc80 complex plays an essential and direct role in generating dynamic kinetochore–microtubule attachments. Here we compare the binding of the Caenorhabditis elegans and human Ndc80 complexes to microtubules at high resolution using cryo–electron microscopy reconstructions. Despite the conserved roles of the Ndc80 complex in diverse organisms, we find that the attachment mode of these complexes for microtubules is distinct. The human Ndc80 complex binds every tubulin monomer along the microtubule protofilament, whereas the C. elegans Ndc80 complex binds more tightly to β-tubulin. In addition, the C. elegans Ndc80 complex tilts more toward the adjacent protofilament. These structural differences in the Ndc80 complex between different species may play significant roles in the nature of kinetochore–microtubule interactions. PMID:26941333

  16. Structure of N-Terminal Domain of NPC1 Reveals Distinct Subdomains for Binding and Transfer of Cholesterol

    SciTech Connect

    Kwon, Hyock Joo; Abi-Mosleh, Lina; Wang, Michael L.; Deisenhofer, Johann; Goldstein, Joseph L.; Brown, Michael S.; Infante, Rodney E.

    2010-09-21

    LDL delivers cholesterol to lysosomes by receptor-mediated endocytosis. Exit of cholesterol from lysosomes requires two proteins, membrane-bound Niemann-Pick C1 (NPC1) and soluble NPC2. NPC2 binds cholesterol with its isooctyl side chain buried and its 3{beta}-hydroxyl exposed. Here, we describe high-resolution structures of the N-terminal domain (NTD) of NPC1 and complexes with cholesterol and 25-hydroxycholesterol. NPC1(NTD) binds cholesterol in an orientation opposite to NPC2: 3{beta}-hydroxyl buried and isooctyl side chain exposed. Cholesterol transfer from NPC2 to NPC1(NTD) requires reorientation of a helical subdomain in NPC1(NTD), enlarging the opening for cholesterol entry. NPC1 with point mutations in this subdomain (distinct from the binding subdomain) cannot accept cholesterol from NPC2 and cannot restore cholesterol exit from lysosomes in NPC1-deficient cells. We propose a working model wherein after lysosomal hydrolysis of LDL-cholesteryl esters, cholesterol binds NPC2, which transfers it to NPC1(NTD), reversing its orientation and allowing insertion of its isooctyl side chain into the outer lysosomal membranes.

  17. Analysis of grain characters in temperate grasses reveals distinctive patterns of endosperm organization associated with grain shape

    PubMed Central

    Drea, Sinéad

    2012-01-01

    Members of the core pooids represent the most important crops in temperate zones including wheat, barley, and oats. Their importance as crops is largely due to the grain, particularly the storage capabilities of the endosperm. In this study, a comprehensive survey of grain morphology and endosperm organization in representatives of wild and cultivated species throughout the core pooids was performed. As sister to the core pooid tribes Poeae, Aveneae, Triticeae, and Bromeae within the Pooideae subfamily, Brachypodium provides a taxonomically relevant reference point. Using macroscopic, histological, and molecular analyses distinct patterns of grain tissue organization in these species, focusing on the peripheral and modified aleurone, are described. The results indicate that aleurone organization is correlated with conventional grain quality characters such as grain shape and starch content. In addition to morphological and organizational variation, expression patterns of candidate gene markers underpinning this variation were examined. Features commonly associated with grains are largely defined by analyses on lineages within the Triticeae and knowledge of grain structure may be skewed as a result of the focus on wheat and barley. Specifically, the data suggest that the modified aleurone is largely restricted to species in the Triticeae tribe. PMID:23081982

  18. Conditional cell ablation via diphtheria toxin reveals distinct requirements for the basal plate in the regional identity of diencephalic subpopulations.

    PubMed

    Lee, Bumwhee; Lam, Duc Tri; Baek, Kwanghee; Yoon, Jaeseung; Jeong, Yongsu

    2015-06-01

    The mammalian diencephalon is the caudal derivative of the embryonic forebrain. Early events in diencephalic regionalization include its subdivision along the dorsoventral and anteroposterior axes. The prosomeric model by Puelles and Rubenstein (1993) suggests that the alar plate of the posterior diencephalon is partitioned into three different prosomeres (designated p1-p3), which develop into the pretectum, thalamus, and prethalamus, respectively. Here, we report the developmental consequences of genetic ablation of cell populations from the diencephalic basal plate. The strategy for conditionally regulated cell ablation is based on the targeted expression of the diphtheria toxin gene (DTA) to the diencephalic basal plate via tamoxifen- induced, Cre-mediated recombination of the ROSA(DTA) allele. We show that activation of DTA leads to specific cell loss in the basal plate of the posterior diencephalon, and disrupted early regionalization of distinct alar territories. In the basal plate-deficient embryos, the p1 alar plate exhibited reduced expression of subtype-specific markers in the pretectum, whereas p2 alar plate failed to further subdivide into two discrete thalamic subpopulations. We also show that these defects lead to abnormal nuclear organization at later developmental stages. Our data have implications for increased understanding of the interactive roles between discrete diencephalic compartments. PMID:25950659

  19. Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Xiaosong; Wang, Dongdong; Liu, Gao; Srinivasan, Venkat; Liu, Zhi; Hussain, Zahid; Yang, Wanli

    2013-10-01

    Developing high-performance batteries relies on material breakthroughs. During the past few years, various in situ characterization tools have been developed and have become indispensible in studying and the eventual optimization of battery materials. However, soft X-ray spectroscopy, one of the most sensitive probes of electronic states, has been mainly limited to ex situ experiments for battery research. Here we achieve in situ and operando soft X-ray absorption spectroscopy of lithium-ion battery cathodes. Taking advantage of the elemental, chemical and surface sensitivities of soft X-rays, we discover distinct lithium-ion and electron dynamics in Li(Co1/3Ni1/3Mn1/3)O2 and LiFePO4 cathodes in polymer electrolytes. The contrast between the two systems and the relaxation effect in LiFePO4 is attributed to a phase transformation mechanism, and the mesoscale morphology and charge conductivity of the electrodes. These discoveries demonstrate feasibility and power of in situ soft X-ray spectroscopy for studying integrated and dynamic effects in batteries.

  20. De novo Transcriptome Analysis Reveals Distinct Defense Mechanisms by Young and Mature Leaves of Hevea brasiliensis (Para Rubber Tree).

    PubMed

    Fang, Yongjun; Mei, Hailiang; Zhou, Binhui; Xiao, Xiaohu; Yang, Meng; Huang, Yacheng; Long, Xiangyu; Hu, Songnian; Tang, Chaorong

    2016-01-01

    Along with changes in morphology in the course of maturation, leaves of Hevea brasiliensis become more resistant to leaf diseases, including the South American Leaf Blight (SALB), a devastating fungal disease of this economically important tree species. To understand the underlying mechanisms of this defense, and to identify the candidate genes involved, we sequenced the Hevea leaf transcriptome at four developmental stages (I to IV) by Illumina sequencing. A total of 62.6 million high-quality reads were generated, and assembled into 98,796 unique transcripts. We identified 3,905 differentially expressed genes implicated in leaf development, 67.8% (2,651) of which were during the transition to leaf maturation. The genes involved in cyanogenic metabolism, lignin and anthocyanin biosynthesis were noteworthy for their distinct patterns of expression between developing leaves (stages I to III) and mature leaves (stage IV), and the correlation with the change in resistance to SALB and the Oidium/Colletotrichum leaf fall. The results provide a first profile of the molecular events that relate to the dynamics of leaf morphology and defense strategies during Hevea leaf development. This dataset is beneficial to devising strategies to engineer resistance to leaf diseases as well as other in-depth studies in Hevea tree. PMID:27619402

  1. Crystal structures of Mycobacterium tuberculosis HspAT and ArAT reveal structural basis of their distinct substrate specificities

    PubMed Central

    Nasir, Nazia; Anant, Avishek; Vyas, Rajan; Biswal, Bichitra Kumar

    2016-01-01

    Aminotransferases of subfamily Iβ, which include histidinol phosphate aminotransferases (HspATs) and aromatic amino acid aminotransferases (ArATs), are structurally similar but possess distinct substrate specificities. This study, encompassing structural and biochemical characterisation of HspAT and ArAT from Mycobacterium tuberculosis demonstrates that the residues lining the substrate binding pocket and N-terminal lid are the primary determinants of their substrate specificities. In mHspAT, hydrophilic residues in the substrate binding pocket and N-terminal lid allow the entry and binding of its preferential substrate, Hsp. On the other hand, the hydrophobic nature of both the substrate binding pocket and the N-terminal lid of mArAT is responsible for the discrimination of a polar substrate such as Hsp, while facilitating the binding of Phe and other aromatic residues such as Tyr and Trp. In addition, the present study delineates the ligand induced conformational rearrangements, providing insights into the plasticity of aminotransferases. Furthermore, the study also demonstrates that the adventitiously bound ligand 2-(N-morpholino)ethanesulfonic acid (MES) is indeed a specific inhibitor of HspAT. These results suggest that previously untapped morpholine-ring scaffold compounds could be explored for the design of new anti-TB agents. PMID:26738801

  2. mtDNA variation of aboriginal Siberians reveals distinct genetic affinities with Native Americans.

    PubMed Central

    Torroni, A; Sukernik, R I; Schurr, T G; Starikorskaya, Y B; Cabell, M F; Crawford, M H; Comuzzie, A G; Wallace, D C

    1993-01-01

    The mtDNA variation of 411 individuals from 10 aboriginal Siberian populations was analyzed in an effort to delineate the relationships between Siberian and Native American populations. All mtDNAs were characterized by PCR amplification and restriction analysis, and a subset of them was characterized by control region sequencing. The resulting data were then compiled with previous mtDNA data from Native Americans and Asians and were used for phylogenetic analyses and sequence divergence estimations. Aboriginal Siberian populations exhibited mtDNAs from three (A, C, and D) of the four haplogroups observed in Native Americans. However, none of the Siberian populations showed mtDNAs from the fourth haplogroup, group B. The presence of group B deletion haplotypes in East Asian and Native American populations but their absence in Siberians raises the possibility that haplogroup B could represent a migratory event distinct from the one(s) which brought group A, C, and D mtDNAs to the Americas. Our findings support the hypothesis that the first humans to move from Siberia to the Americas carried with them a limited number of founding mtDNAs and that the initial migration occurred between 17,000-34,000 years before present. Images Figure 4 PMID:7688933

  3. Range-wide multilocus phylogeography of the red fox reveals ancient continental divergence, minimal genomic exchange and distinct demographic histories.

    PubMed

    Statham, Mark J; Murdoch, James; Janecka, Jan; Aubry, Keith B; Edwards, Ceiridwen J; Soulsbury, Carl D; Berry, Oliver; Wang, Zhenghuan; Harrison, David; Pearch, Malcolm; Tomsett, Louise; Chupasko, Judith; Sacks, Benjamin N

    2014-10-01

    Widely distributed taxa provide an opportunity to compare biogeographic responses to climatic fluctuations on multiple continents and to investigate speciation. We conducted the most geographically and genomically comprehensive study to date of the red fox (Vulpes vulpes), the world's most widely distributed wild terrestrial carnivore. Analyses of 697 bp of mitochondrial sequence in ~1000 individuals suggested an ancient Middle Eastern origin for all extant red foxes and a 400 kya (SD = 139 kya) origin of the primary North American (Nearctic) clade. Demographic analyses indicated a major expansion in Eurasia during the last glaciation (~50 kya), coinciding with a previously described secondary transfer of a single matriline (Holarctic) to North America. In contrast, North American matrilines (including the transferred portion of Holarctic clade) exhibited no signatures of expansion until the end of the Pleistocene (~12 kya). Analyses of 11 autosomal loci from a subset of foxes supported the colonization time frame suggested by mtDNA (and the fossil record) but, in contrast, reflected no detectable secondary transfer, resulting in the most fundamental genomic division of red foxes at the Bering Strait. Endemic continental Y-chromosome clades further supported this pattern. Thus, intercontinental genomic exchange was overall very limited, consistent with long-term reproductive isolation since the initial colonization of North America. Based on continental divergence times in other carnivoran species pairs, our findings support a model of peripatric speciation and are consistent with the previous classification of the North American red fox as a distinct species, V. fulva. PMID:25212210

  4. Distinct and Overlapping Functions of ptpn11 Genes in Zebrafish Development

    PubMed Central

    Bonetti, Monica; Rodriguez-Martinez, Virginia; Paardekooper Overman, Jeroen; Overvoorde, John; van Eekelen, Mark; Jopling, Chris; den Hertog, Jeroen

    2014-01-01

    The PTPN11 (protein-tyrosine phosphatase, non-receptor type 11) gene encodes SHP2, a cytoplasmic PTP that is essential for vertebrate development. Mutations in PTPN11 are associated with Noonan and LEOPARD syndrome. Human patients with these autosomal dominant disorders display various symptoms, including short stature, craniofacial defects and heart abnormalities. We have used the zebrafish as a model to investigate the role of Shp2 in embryonic development. The zebrafish genome encodes two ptpn11 genes, ptpn11a and ptpn11b. Here, we report that ptpn11a is expressed constitutively and ptpn11b expression is strongly upregulated during development. In addition, the products of both ptpn11 genes, Shp2a and Shp2b, are functional. Target-selected inactivation of ptpn11a and ptpn11b revealed that double homozygous mutants are embryonic lethal at 5–6 days post fertilization (dpf). Ptpn11a-/-ptpn11b-/- embryos showed pleiotropic defects from 4 dpf onwards, including reduced body axis extension and craniofacial defects, which was accompanied by low levels of phosphorylated Erk at 5 dpf. Interestingly, defects in homozygous ptpn11a-/- mutants overlapped with defects in the double mutants albeit they were milder, whereas ptpn11b-/- single mutants did not show detectable developmental defects and were viable and fertile. Ptpn11a-/-ptpn11b-/- mutants were rescued by expression of exogenous ptpn11a and ptpn11b alike, indicating functional redundance of Shp2a and Shp2b. The ptpn11 mutants provide a good basis for further unravelling of the function of Shp2 in vertebrate development. PMID:24736444

  5. The influence of distinct asthma phenotypes on lung function following weight loss in the obese

    PubMed Central

    Chapman, David G.; Irvin, Charles G.; Kaminsky, David A.; Forgione, Patrick M.; Bates, Jason H.T.; Dixon, Anne E.

    2014-01-01

    Background and objective There appears to be two distinct clinical phenotypes of obese patients with asthma – those with early-onset asthma and high serum IgE (TH2-high) and those with late-onset asthma and low serum IgE (TH2-low). The aim of the present study was to determine in the two phenotypes of obese asthma the effect of weight-loss on small airway function. Methods TH2-low (n=8) and TH2-high (n=5) obese asthmatics underwent methacholine challenge before and 12 months following bariatric surgery. Dose response slopes as measures of sensitivity to airway closure and narrowing were measured as maximum %fall FVC and FEV1/FVC, respectively, divided by dose. Resting airway mechanics were measured by forced oscillation technique. Results Weight-loss reduced sensitivity to airway closure in TH2-low but not TH2-high obese asthmatics (pre-post mean change ± 95%CI: 1.8 ± 0.8 doubling doses vs −0.3 ± 1.7 doubling doses, p=0.04). However, there was no effect of weight loss on the sensitivity to airway narrowing in either group (p=0.8, TH2-low: 0.8 ± 1.0 doubling doses, TH2-high: −1.1 ± 2.5 doubling doses). In contrast, respiratory resistance (20Hz) improved in TH2-high but not in TH2-low obese asthmatics (pre-post change median [IQR]: 1.5 [1.3 – 2.8] cmH2O/L/s vs 0.6 [−1.8 – 0.8] cmH2O/L/s, p=0.03). Conclusions TH2-low obese asthmatics appear to be characterised by increased small airway responsiveness and abnormalities in resting airway function that may persist following weight loss. However, this was not the case for TH2-high obese asthmatics, highlighting the complex interplay between IgE status and asthma pathophysiology in obesity. PMID:25138203

  6. Cytosolic Ca2+ and Ca2+-activated Cl− current dynamics: insights from two functionally distinct mouse exocrine cells

    PubMed Central

    Giovannucci, David R; Bruce, Jason I. E; Straub, Stephen V; Arreola, Jorge; Sneyd, James; Shuttleworth, Trevor J; Yule, David I

    2002-01-01

    The dynamics of Ca2+ release and Ca2+-activated Cl− currents in two related, but functionally distinct exocrine cells, were studied to gain insight into how the molecular specialization of Ca2+ signalling machinery are utilized to produce different physiological endpoints: in this case, fluid or exocytotic secretion. Digital imaging and patch-clamp methods were used to monitor the temporal and spatial properties of changes in cytosolic Ca2+ concentration ([Ca2+]c) and Cl− currents following the controlled photolytic release of caged-InsP3 or caged-Ca2+. In parotid and pancreatic acinar cells, changes in [Ca2+]c and activation of a Ca2+-activated Cl− current occurred with close temporal coincidence. In parotid, a rapid global Ca2+ signal was invariably induced, even with low-level photolytic release of threshold amounts of InsP3. In pancreas, threshold stimulation generated an apically delimited [Ca2+]c signal, while a stronger stimulus induced a global [Ca2+]c signal which exhibited characteristics of a propagating wave. InsP3 was more effective in parotid, where [Ca2+]c signals initiated with shorter latency and exhibited a faster time-to-peak than in pancreas. The increased potency of InsP3 in parotid probably results from a four-fold higher number of InsP3 receptors as measured by radiolabelled InsP3 binding and western blot analysis. The Ca2+ sensitivity of the Cl− channels in parotid and pancreas was determined from the [Ca2+]-current relationship measured during a dynamic ‘Ca2+ ramp’ produced by the continuous, low-level photolysis of caged-Ca2+. In addition to a greater number of InsP3 receptors, the Cl− current density of parotid acinar cells was more than four-fold greater than that of pancreatic cells. Whereas activation of the current was tightly coupled to increases in Ca2+ in both cell types, local Ca2+ clearance was found to contribute substantially to the deactivation of the current in parotid. These data reveal specializations of

  7. Microfluidic Chip-LC/MS-based Glycomic Analysis Revealed Distinct N-glycan Profile of Rat Serum

    PubMed Central

    Gao, Wei-Na; Yau, Lee-Fong; Liu, Liang; Zeng, Xing; Chen, Da-Can; Jiang, Min; Liu, Ju; Wang, Jing-Rong; Jiang, Zhi-Hong

    2015-01-01

    The rat is an important alternative for studying human pathology owing to certain similarities to humans. Glycomic studies on rat serum have revealed that variations in the N-glycans of glycoproteins correlated with disease progression, which is consistent with the findings in human serum. Therefore, we comprehensively characterized the rat serum N-glycome using microfluidic chip-LC-ESI-QTOF MS and MS/MS techniques. In total, 282 N-glycans, including isomers, were identified. This study is the first to present comprehensive profiling of N-glycans containing O-acetylated sialic acid, among which 27 N-glycans are novel. In addition, the co-existence of N-acetylneuraminic acid (NeuAc) and N-glycolylneuraminic acid (NeuGc) in a single N-glycan (‘mixed’ N-glycan) was detected and represents a new type of N-glycan in rat serum. The existence of O-acetylated sialic acid is the characteristic feature of rat serum that distinguishes it from mouse and human sera. Comparisons between the rat, mouse, and human serum glycomes revealed that the rat glycome is more similar to that of human sera than to that of mouse sera. Our findings highlight the similarities between the glycomic profile of rat and human sera and provided important selection criteria for choosing an appropriate animal model for pathological and pharmacological studies. PMID:26248949

  8. Identification of Bacterial Community Composition in Freshwater Aquaculture System Farming of Litopenaeus vannamei Reveals Distinct Temperature-Driven Patterns

    PubMed Central

    Tang, Yuyi; Tao, Peiying; Tan, Jianguo; Mu, Haizhen; Peng, Li; Yang, Dandan; Tong, Shilu; Chen, Lanming

    2014-01-01

    Change in temperature is often a major environmental factor in triggering waterborne disease outbreaks. Previous research has revealed temporal and spatial patterns of bacterial population in several aquatic ecosystems. To date, very little information is available on aquaculture environment. Here, we assessed environmental temperature effects on bacterial community composition in freshwater aquaculture system farming of Litopenaeus vannamei (FASFL). Water samples were collected over a one-year period, and aquatic bacteria were characterized by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and 16S rDNA pyrosequencing. Resulting DGGE fingerprints revealed a specific and dynamic bacterial population structure with considerable variation over the seasonal change, suggesting that environmental temperature was a key driver of bacterial population in the FASFL. Pyrosequencing data further demonstrated substantial difference in bacterial community composition between the water at higher (WHT) and at lower (WLT) temperatures in the FASFL. Actinobacteria, Proteobacteria and Bacteroidetes were the highest abundant phyla in the FASFL, however, a large number of unclassified bacteria contributed the most to the observed variation in phylogenetic diversity. The WHT harbored remarkably higher diversity and richness in bacterial composition at genus and species levels when compared to the WLT. Some potential pathogenenic species were identified in both WHT and WLT, providing data in support of aquatic animal health management in the aquaculture industry. PMID:25105725

  9. Biomarker Analysis Revealed Distinct Profiles of Innate and Adaptive Immunity in Infants with Ocular Lesions of Congenital Toxoplasmosis

    PubMed Central

    Machado, Anderson Silva; Carneiro, Ana Carolina Aguiar Vasconcelos; Béla, Samantha Ribeiro; Andrade, Gláucia Manzan Queiroz; Vasconcelos-Santos, Daniel Vitor; Januário, José Nélio; Coelho-dos-Reis, Jordana G.; Ferro, Eloisa Amália Vieira; Teixeira-Carvalho, Andréa; Vitor, Ricardo Wagner Almeida; Martins-Filho, Olindo Assis; —UFMG-CTBG, UFMG Congenital Toxoplasmosis Brazilian Group

    2014-01-01

    Toxoplasma gondii is the main infectious cause of human posterior retinochoroiditis, the most frequent clinical manifestation of congenital toxoplasmosis. This investigation was performed after neonatal screening to identify biomarkers of immunity associated with immunopathological features of the disease by flow cytometry. The study included infected infants without NRL and with retinochoroidal lesions (ARL, ACRL, and CRL) as well as noninfected individuals (NI). Our data demonstrated that leukocytosis, with increased monocytes and lymphocytes, was a relevant hematological biomarker of ARL. Immunophenotypic analysis also revealed expansion of CD14+CD16+HLA-DRhigh monocytes and CD56dim cytotoxic NK-cells in ARL. Moreover, augmented TCRγδ+ and CD8+ T-cell counts were apparently good biomarkers of morbidity. Biomarker network analysis revealed that complex and intricated networks underscored the negative correlation of monocytes with NK- and B-cells in NRL. The remarkable lack of connections involving B-cells and a relevant shift of NK-cell connections from B-cells toward T-cells observed in ARL were outstanding. A tightly connected biomarker network was observed in CRL, with relevant connections of NK- and CD8+ T-cells with a broad range of cell subsets. Our findings add novel elements to the current knowledge on the innate and adaptive immune responses in congenital toxoplasmosis. PMID:25328286

  10. Biomarker analysis revealed distinct profiles of innate and adaptive immunity in infants with ocular lesions of congenital toxoplasmosis.

    PubMed

    Machado, Anderson Silva; Carneiro, Ana Carolina Aguiar Vasconcelos; Béla, Samantha Ribeiro; Andrade, Gláucia Manzan Queiroz; Vasconcelos-Santos, Daniel Vitor; Januário, José Nélio; Coelho-dos-Reis, Jordana G; Ferro, Eloisa Amália Vieira; Teixeira-Carvalho, Andréa; Vitor, Ricardo Wagner Almeida; Martins-Filho, Olindo Assis

    2014-01-01

    Toxoplasma gondii is the main infectious cause of human posterior retinochoroiditis, the most frequent clinical manifestation of congenital toxoplasmosis. This investigation was performed after neonatal screening to identify biomarkers of immunity associated with immunopathological features of the disease by flow cytometry. The study included infected infants without NRL and with retinochoroidal lesions (ARL, ACRL, and CRL) as well as noninfected individuals (NI). Our data demonstrated that leukocytosis, with increased monocytes and lymphocytes, was a relevant hematological biomarker of ARL. Immunophenotypic analysis also revealed expansion of CD14(+)CD16(+)HLA-DR(high) monocytes and CD56(dim) cytotoxic NK-cells in ARL. Moreover, augmented TCRγ δ (+) and CD8(+) T-cell counts were apparently good biomarkers of morbidity. Biomarker network analysis revealed that complex and intricated networks underscored the negative correlation of monocytes with NK- and B-cells in NRL. The remarkable lack of connections involving B-cells and a relevant shift of NK-cell connections from B-cells toward T-cells observed in ARL were outstanding. A tightly connected biomarker network was observed in CRL, with relevant connections of NK- and CD8(+) T-cells with a broad range of cell subsets. Our findings add novel elements to the current knowledge on the innate and adaptive immune responses in congenital toxoplasmosis. PMID:25328286

  11. Multiple Analytical Approaches Reveal Distinct Gene-Environment Interactions in Smokers and Non Smokers in Lung Cancer

    PubMed Central

    Ihsan, Rakhshan; Chauhan, Pradeep Singh; Mishra, Ashwani Kumar; Yadav, Dhirendra Singh; Kaushal, Mishi; Sharma, Jagannath Dev; Zomawia, Eric; Verma, Yogesh; Kapur, Sujala; Saxena, Sunita

    2011-01-01

    Complex disease such as cancer results from interactions of multiple genetic and environmental factors. Studying these factors singularly cannot explain the underlying pathogenetic mechanism of the disease. Multi-analytical approach, including logistic regression (LR), classification and regression tree (CART) and multifactor dimensionality reduction (MDR), was applied in 188 lung cancer cases and 290 controls to explore high order interactions among xenobiotic metabolizing genes and environmental risk factors. Smoking was identified as the predominant risk factor by all three analytical approaches. Individually, CYP1A1*2A polymorphism was significantly associated with increased lung cancer risk (OR = 1.69;95%CI = 1.11–2.59,p = 0.01), whereas EPHX1 Tyr113His and SULT1A1 Arg213His conferred reduced risk (OR = 0.40;95%CI = 0.25–0.65,p<0.001 and OR = 0.51;95%CI = 0.33–0.78,p = 0.002 respectively). In smokers, EPHX1 Tyr113His and SULT1A1 Arg213His polymorphisms reduced the risk of lung cancer, whereas CYP1A1*2A, CYP1A1*2C and GSTP1 Ile105Val imparted increased risk in non-smokers only. While exploring non-linear interactions through CART analysis, smokers carrying the combination of EPHX1 113TC (Tyr/His), SULT1A1 213GG (Arg/Arg) or AA (His/His) and GSTM1 null genotypes showed the highest risk for lung cancer (OR = 3.73;95%CI = 1.33–10.55,p = 0.006), whereas combined effect of CYP1A1*2A 6235CC or TC, SULT1A1 213GG (Arg/Arg) and betel quid chewing showed maximum risk in non-smokers (OR = 2.93;95%CI = 1.15–7.51,p = 0.01). MDR analysis identified two distinct predictor models for the risk of lung cancer in smokers (tobacco chewing, EPHX1 Tyr113His, and SULT1A1 Arg213His) and non-smokers (CYP1A1*2A, GSTP1 Ile105Val and SULT1A1 Arg213His) with testing balance accuracy (TBA) of 0.6436 and 0.6677 respectively. Interaction entropy interpretations of MDR results showed non-additive interactions of tobacco chewing

  12. Morphological and behavioral differences in the gastropod Trophon geversianus associated to distinct environmental conditions, as revealed by a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Márquez, Federico; Nieto Vilela, Rocío Aimé; Lozada, Mariana; Bigatti, Gregorio

    2015-01-01

    The gastropod Trophon geversianus exhibits shell polymorphisms along its distribution in subtidal and intertidal habitats. Our hypothesis is that morphological and behavioral patterns of T. geversianus represent habitat-specific constrains; subsequently we expect an association between shell morphology, attachment behavior, and habitat. In order to test this hypothesis we compared individuals from intertidal and subtidal habitats, at three sites in Golfo Nuevo (Argentina). We analyzed shell morphology using classic morphometric variables, 3D geometric morphometrics and computing tomography scan. The results were complemented with field observations of attachment to substrate and turning time behavior, as well as of the number of shell scars produced by crab predation. Our results showed differences in shell size and shape between intertidal and subtidal-collected individuals. Centroid size, total weight and shell weight, as well as shell density and thickness were significantly lower in intertidal individuals than in subtidal ones. Gastropods from intertidal habitats presented a low-spired shell and an expanded aperture which might allow better attachment to the bottom substrate, while subtidal individuals presented a slender and narrower shell shape. The number of crab scars was significantly higher in shells from subtidal individuals. Observations of the behavior of gastropods placed at the intertidal splash zone showed 100% of attachment to the bottom in the intertidal individuals, while subtidal specimens only attached in average in 32% of the cases. These latter took 12 times longer to re-attach to the bottom when faced up. Phylogenetic analysis of COI gene fragments showed no consistent differences among individuals sampled in both habitats. All these results suggest that T. geversianus has developed two ecomorphs with distinct morphological and behavioral responses to physically stressful conditions registered in north Patagonian intertidals, as opposed to

  13. Prevalence and epidemiology of intestinal parasitism, as revealed by three distinct techniques in an endemic area in the Brazilian Amazon

    PubMed Central

    Valverde, J G; Gomes-Silva, A; De Carvalho Moreira, C J; Leles De Souza, D; Jaeger, L H; Martins, P P; Meneses, V F; Bóia, M N; Carvalho-Costa, F A

    2011-01-01

    This survey aims to estimate the prevalence of intestinal parasitic infections in Santa Isabel do Rio Negro, Amazonian Brazil, through three distinct techniques, correlating the prevalence rates with family income and age groups as well as assessing the household clustering of infections. Prevalence rates were assessed through Graham (n = 113), Baermann-Moraes (n = 232) and Ritchie (n = 463) methods. The Graham method was adopted only for children under 5 years old, 15% of whom were positive for Enterobius vermicularis. By the Baermann-Moraes technique, 5.6% of the samples were positive for Strongyloides stercoralis larvae. The Ritchie technique disclosed the following results: Ascaris lumbricoides (26%), Trichuris trichiura (22.5%), hookworms (9.5%), Entamoeba histolytica/Entamoeba dispar (25.3%), Giardia lamblia (12.5%) and E. vermicularis (0.6%). Children aged 5–14 years presented the highest prevalence for pathogenic parasites. Giardiasis and hookworm infection rates were inversely related to family income. The presence of positive contacts in the same household substantially increased the risk of infection by enteric parasites: odds ratio (OR) = 2.70, 95% confidence interval (CI) = 1.69–4.29 for ascariasis; OR = 2.17, 95% CI = 1.34–3.51 for trichuriasis; OR = 2.13, 95% CI = 1.08–4.17 for hookworm disease; OR = 3.42, 95% CI = 1.86–6.30 for giardiasis; and OR = 2.16, 95% CI = 1.35–3.47 for amoebiasis, supporting infection clustering in the home. Intestinal parasitoses are extremely frequent in the studied area, and routine methods for diagnosis may underestimate the prevalence of enterobiasis and strongyloidiasis. PMID:22117850

  14. The GST-BHMT assay reveals a distinct mechanism underlying proteasome inhibition-induced macroautophagy in mammalian cells

    PubMed Central

    Rui, Yan-Ning; Xu, Zhen; Chen, Zhihua; Zhang, Sheng

    2015-01-01

    By monitoring the fragmentation of a GST-BHMT (a protein fusion of glutathionine S-transferase N-terminal to betaine-homocysteine S-methyltransferase) reporter in lysosomes, the GST-BHMT assay has previously been established as an endpoint, cargo-based assay for starvation-induced autophagy that is largely nonselective. Here, we demonstrate that under nutrient-rich conditions, proteasome inhibition by either pharmaceutical or genetic manipulations induces similar autophagy-dependent GST-BHMT processing. However, mechanistically this proteasome inhibition-induced autophagy is different from that induced by starvation as it does not rely on regulation by MTOR (mechanistic target of rapamycin [serine/threonine kinase]) and PRKAA/AMPK (protein kinase, AMP-activated, α catalytic subunit), the upstream central sensors of cellular nutrition and energy status, but requires the presence of the cargo receptors SQSTM1/p62 (sequestosome 1) and NBR1 (neighbor of BRCA1 gene 1) that are normally involved in the selective autophagy pathway. Further, it depends on ER (endoplasmic reticulum) stress signaling, in particular ERN1/IRE1 (endoplasmic reticulum to nucleus signaling 1) and its main downstream effector MAPK8/JNK1 (mitogen-activated protein kinase 8), but not XBP1 (X-box binding protein 1), by regulating the phosphorylation-dependent disassociation of BCL2 (B-cell CLL/lymphoma 2) from BECN1 (Beclin 1, autophagy related). Moreover, the multimerization domain of GST-BHMT is required for its processing in response to proteasome inhibition, in contrast to its dispensable role in starvation-induced processing. Together, these findings support a model in which under nutrient-rich conditions, proteasome inactivation induces autophagy-dependent processing of the GST-BHMT reporter through a distinct mechanism that bears notable similarity with the yeast Cvt (cytoplasm-to-vacuole targeting) pathway, and suggest the GST-BHMT reporter might be employed as a convenient assay to study

  15. Distinct Cellular Assembly Stoichiometry of Polycomb Complexes on Chromatin Revealed by Single-molecule Chromatin Immunoprecipitation Imaging.

    PubMed

    Tatavosian, Roubina; Zhen, Chao Yu; Duc, Huy Nguyen; Balas, Maggie M; Johnson, Aaron M; Ren, Xiaojun

    2015-11-20

    Epigenetic complexes play an essential role in regulating chromatin structure, but information about their assembly stoichiometry on chromatin within cells is poorly understood. The cellular assembly stoichiometry is critical for appreciating the initiation, propagation, and maintenance of epigenetic inheritance during normal development and in cancer. By combining genetic engineering, chromatin biochemistry, and single-molecule fluorescence imaging, we developed a novel and sensitive approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) to enable investigation of the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was validated by using chromatin complexes with known stoichiometry. The stoichiometry of subunits within a polycomb complex and the assembly stoichiometry of polycomb complexes on chromatin have been extensively studied but reached divergent views. Moreover, the cellular assembly stoichiometry of polycomb complexes on chromatin remains unexplored. Using Sm-ChIPi, we demonstrated that within mouse embryonic stem cells, one polycomb repressive complex (PRC) 1 associates with multiple nucleosomes, whereas two PRC2s can bind to a single nucleosome. Furthermore, we obtained direct physical evidence that the nucleoplasmic PRC1 is monomeric, whereas PRC2 can dimerize in the nucleoplasm. We showed that ES cell differentiation induces selective alteration of the assembly stoichiometry of Cbx2 on chromatin but not other PRC1 components. We additionally showed that the PRC2-mediated trimethylation of H3K27 is not required for the assembly stoichiometry of PRC1 on chromatin. Thus, these findings uncover that PRC1 and PRC2 employ distinct mechanisms to assemble on chromatin, and the novel Sm-ChIPi technique could provide single-molecule insight into other epigenetic complexes. PMID:26381410

  16. Specificity Profiling of Dual Specificity Phosphatase Vaccinia VH1-related (VHR) Reveals Two Distinct Substrate Binding Modes*

    PubMed Central

    Luechapanichkul, Rinrada; Chen, Xianwen; Taha, Hashem A.; Vyas, Shubham; Guan, Xiaoyan; Freitas, Michael A.; Hadad, Christopher M.; Pei, Dehua

    2013-01-01

    Vaccinia VH1-related (VHR) is a dual specificity phosphatase that consists of only a single catalytic domain. Although several protein substrates have been identified for VHR, the elements that control the in vivo substrate specificity of this enzyme remain unclear. In this work, the in vitro substrate specificity of VHR was systematically profiled by screening combinatorial peptide libraries. VHR exhibits more stringent substrate specificity than classical protein-tyrosine phosphatases and recognizes two distinct classes of Tyr(P) peptides. The class I substrates are similar to the Tyr(P) motifs derived from the VHR protein substrates, having sequences of (D/E/φ)(D/S/N/T/E)(P/I/M/S/A/V)pY(G/A/S/Q) or (D/E/φ)(T/S)(D/E)pY(G/A/S/Q) (where φ is a hydrophobic amino acid and pY is phosphotyrosine). The class II substrates have the consensus sequence of (V/A)P(I/L/M/V/F)X1–6pY (where X is any amino acid) with V/A preferably at the N terminus of the peptide. Site-directed mutagenesis and molecular modeling studies suggest that the class II peptides bind to VHR in an opposite orientation relative to the canonical binding mode of the class I substrates. In this alternative binding mode, the Tyr(P) side chain binds to the active site pocket, but the N terminus of the peptide interacts with the carboxylate side chain of Asp164, which normally interacts with the Tyr(P) + 3 residue of a class I substrate. Proteins containing the class II motifs are efficient VHR substrates in vitro, suggesting that VHR may act on a novel class of yet unidentified Tyr(P) proteins in vivo. PMID:23322772

  17. Distinct energy metabolism of auditory and vestibular sensory epithelia revealed by quantitative mass spectrometry using MS2 intensity.

    PubMed

    Spinelli, Kateri J; Klimek, John E; Wilmarth, Phillip A; Shin, Jung-Bum; Choi, Dongseok; David, Larry L; Gillespie, Peter G

    2012-01-31

    Measuring the abundance of many proteins over a broad dynamic range requires accurate quantitation. We show empirically that, in MS experiments, relative quantitation using summed dissociation-product ion-current intensities is accurate, albeit variable from protein to protein, and outperforms spectral counting. By applying intensities to quantify proteins in two complex but related tissues, chick auditory and vestibular sensory epithelia, we find that glycolytic enzymes are enriched threefold in auditory epithelia, whereas enzymes responsible for oxidative phosphorylation are increased at least fourfold in vestibular epithelia. This striking difference in relative use of the two ATP-production pathways likely reflects the isolation of the auditory epithelium from its blood supply, necessary to prevent heartbeat-induced mechanical disruptions. The global view of protein expression afforded by label-free quantitation with a wide dynamic range reveals molecular specialization at a tissue or cellular level. PMID:22307652

  18. Transcriptional Profiling of Human Endocervical Tissues Reveals Distinct Gene Expression in the Follicular and Luteal Phases of the Menstrual Cycle.

    PubMed

    Yildiz-Arslan, Sevim; Coon, John S; Hope, Thomas J; Kim, J Julie

    2016-06-01

    The endocervix plays an important role in providing appropriate protective mechanisms of the upper female reproductive tract (FRT) while at the same time providing the appropriate milieu for sperm transport. Hormone fluctuations throughout the menstrual cycle contribute to changes in the mucosal environment that render the FRT vulnerable to infectious diseases. The objective of this study was to identify genes in human endocervix tissues that were differentially expressed in the follicular versus the luteal phases of the menstrual cycle using gene expression profiling. A microarray using the IIlumina platform was performed with eight endocervix tissues from follicular and four tissues from luteal phases of the menstrual cycle. Data analysis revealed significant differential expression of 110 genes between the two phases, with a P value <0.05 and a fold change cutoff of 1.5. Categorization of these genes, using Ingenuity Pathway Analysis, MetaCore from Thomson Reuters, and DAVID, revealed genes associated with extracellular matrix remodeling and cell-matrix interactions, amino acid metabolism, and lipid metabolism, as well as immune regulation in the follicular phase tissues. In luteal phase tissues, genes associated with chromatin remodeling, inflammation, angiogenesis, oxidative stress, and immune cell regulation were predominately expressed. Using samples from additional patients' tissues, select genes were confirmed by quantitative real-time PCR; immunohistochemical staining was also done to examine protein levels. This is the first microarray analysis comparing gene expression in endocervix tissues in cycling women. This study identified key genes and molecular pathways that were differentially regulated during the menstrual cycle. PMID:27170437

  19. Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human β Cell Function.

    PubMed

    Arda, H Efsun; Li, Lingyu; Tsai, Jennifer; Torre, Eduardo A; Rosli, Yenny; Peiris, Heshan; Spitale, Robert C; Dai, Chunhua; Gu, Xueying; Qu, Kun; Wang, Pei; Wang, Jing; Grompe, Markus; Scharfmann, Raphael; Snyder, Michael S; Bottino, Rita; Powers, Alvin C; Chang, Howard Y; Kim, Seung K

    2016-05-10

    Intensive efforts are focused on identifying regulators of human pancreatic islet cell growth and maturation to accelerate development of therapies for diabetes. After birth, islet cell growth and function are dynamically regulated; however, establishing these age-dependent changes in humans has been challenging. Here, we describe a multimodal strategy for isolating pancreatic endocrine and exocrine cells from children and adults to identify age-dependent gene expression and chromatin changes on a genomic scale. These profiles revealed distinct proliferative and functional states of islet α cells or β cells and histone modifications underlying age-dependent gene expression changes. Expression of SIX2 and SIX3, transcription factors without prior known functions in the pancreas and linked to fasting hyperglycemia risk, increased with age specifically in human islet β cells. SIX2 and SIX3 were sufficient to enhance insulin content or secretion in immature β cells. Our work provides a unique resource to study human-specific regulators of islet cell maturation and function. PMID:27133132

  20. High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase.

    PubMed

    Gajula, Kiran S; Huwe, Peter J; Mo, Charlie Y; Crawford, Daniel J; Stivers, James T; Radhakrishnan, Ravi; Kohli, Rahul M

    2014-09-01

    Antibody maturation is a critical immune process governed by the enzyme activation-induced deaminase (AID), a member of the AID/APOBEC DNA deaminase family. AID/APOBEC deaminases preferentially target cytosine within distinct preferred sequence motifs in DNA, with specificity largely conferred by a small 9-11 residue protein loop that differs among family members. Here, we aimed to determine the key functional characteristics of this protein loop in AID and to thereby inform our understanding of the mode of DNA engagement. To this end, we developed a methodology (Sat-Sel-Seq) that couples saturation mutagenesis at each position across the targeting loop, with iterative functional selection and next-generation sequencing. This high-throughput mutational analysis revealed dominant characteristics for residues within the loop and additionally yielded enzymatic variants that enhance deaminase activity. To rationalize these functional requirements, we performed molecular dynamics simulations that suggest that AID and its hyperactive variants can engage DNA in multiple specific modes. These findings align with AID's competing requirements for specificity and flexibility to efficiently drive antibody maturation. Beyond insights into the AID-DNA interface, our Sat-Sel-Seq approach also serves to further expand the repertoire of techniques for deep positional scanning and may find general utility for high-throughput analysis of protein function. PMID:25064858

  1. High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase

    PubMed Central

    Gajula, Kiran S.; Huwe, Peter J.; Mo, Charlie Y.; Crawford, Daniel J.; Stivers, James T.; Radhakrishnan, Ravi; Kohli, Rahul M.

    2014-01-01

    Antibody maturation is a critical immune process governed by the enzyme activation-induced deaminase (AID), a member of the AID/APOBEC DNA deaminase family. AID/APOBEC deaminases preferentially target cytosine within distinct preferred sequence motifs in DNA, with specificity largely conferred by a small 9–11 residue protein loop that differs among family members. Here, we aimed to determine the key functional characteristics of this protein loop in AID and to thereby inform our understanding of the mode of DNA engagement. To this end, we developed a methodology (Sat-Sel-Seq) that couples saturation mutagenesis at each position across the targeting loop, with iterative functional selection and next-generation sequencing. This high-throughput mutational analysis revealed dominant characteristics for residues within the loop and additionally yielded enzymatic variants that enhance deaminase activity. To rationalize these functional requirements, we performed molecular dynamics simulations that suggest that AID and its hyperactive variants can engage DNA in multiple specific modes. These findings align with AID's competing requirements for specificity and flexibility to efficiently drive antibody maturation. Beyond insights into the AID-DNA interface, our Sat-Sel-Seq approach also serves to further expand the repertoire of techniques for deep positional scanning and may find general utility for high-throughput analysis of protein function. PMID:25064858

  2. fMRI reveals distinct CNS processing during symptomatic and recovered complex regional pain syndrome in children.

    PubMed

    Lebel, A; Becerra, L; Wallin, D; Moulton, E A; Morris, S; Pendse, G; Jasciewicz, J; Stein, M; Aiello-Lammens, M; Grant, E; Berde, C; Borsook, D

    2008-07-01

    Complex regional pain syndrome (CRPS) in paediatric patients is clinically distinct from the adult condition in which there is often complete resolution of its signs and symptoms within several months to a few years. The ability to compare the symptomatic and asymptomatic condition in the same individuals makes this population interesting for the investigation of mechanisms underlying pain and other symptoms of CRPS. We used fMRI to evaluate CNS activation in paediatric patients (9-18 years) with CRPS affecting the lower extremity. Each patient underwent two scanning sessions: once during an active period of pain (CRPS(+)), and once after symptomatic recovery (CRPS(-)). In each session, mechanical (brush) and thermal (cold) stimuli were applied to the affected region of the involved limb and the corresponding mirror region of the unaffected limb. Two fundamental fMRI analyses were performed: (i) within-group analysis for CRPS(+) state and CRPS(-) state for brush and cold for the affected and unaffected limbs in each case; (ii) between-group (contrast) analysis for activations in affected and unaffected limbs in CRPS or post-CRPS states. We found: (i) in the CRPS(+) state, stimuli that evoked mechanical or cold allodynia produced patterns of CNS activation similar to those reported in adult CRPS; (ii) in the CRPS(+) state, stimuli that evoked mechanical or cold allodynia produced significant decreases in BOLD signal, suggesting pain-induced activation of endogenous pain modulatory systems; (iii) cold- or brush-induced activations in regions such as the basal ganglia and parietal lobe may explain some CNS-related symptoms in CRPS, including movement disorders and hemineglect/inattention; (iv) in the CRPS(-) state, significant activation differences persisted despite nearly complete elimination of evoked pain; (v) although non-noxious stimuli to the unaffected limb were perceived as equivalent in CRPS(+) and CRPS(-) states, the same stimulus produced different

  3. Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal coronavirus in Gammacoronavirus.

    PubMed

    Woo, Patrick C Y; Lau, Susanna K P; Lam, Carol S F; Tsang, Alan K L; Hui, Suk-Wai; Fan, Rachel Y Y; Martelli, Paolo; Yuen, Kwok-Yung

    2014-01-01

    While gammacoronaviruses mainly comprise infectious bronchitis virus (IBV) and its closely related bird coronaviruses (CoVs), the only mammalian gammacoronavirus was discovered from a white beluga whale (beluga whale CoV [BWCoV] SW1) in 2008. In this study, we discovered a novel gammacoronavirus from fecal samples from three Indo-Pacific bottlenose dolphins (Tursiops aduncus), which we named bottlenose dolphin CoV (BdCoV) HKU22. All the three BdCoV HKU22-positive samples were collected on the same date, suggesting a cluster of infection, with viral loads of 1 × 10(3) to 1 × 10(5) copies per ml. Clearance of virus was associated with a specific antibody response against the nucleocapsid of BdCoV HKU22. Complete genome sequencing and comparative genome analysis showed that BdCoV HKU22 and BWCoV SW1 have similar genome characteristics and structures. Their genome size is about 32,000 nucleotides, the largest among all CoVs, as a result of multiple unique open reading frames (NS5a, NS5b, NS5c, NS6, NS7, NS8, NS9, and NS10) between their membrane (M) and nucleocapsid (N) protein genes. Although comparative genome analysis showed that BdCoV HKU22 and BWCoV SW1 should belong to the same species, a major difference was observed in the proteins encoded by their spike (S) genes, which showed only 74.3 to 74.7% amino acid identities. The high ratios of the number of synonymous substitutions per synonymous site (Ks) to the number of nonsynonymous substitutions per nonsynonymous site (Ka) in multiple regions of the genome, especially the S gene (Ka/Ks ratio, 2.5), indicated that BdCoV HKU22 may be evolving rapidly, supporting a recent transmission event to the bottlenose dolphins. We propose a distinct species, Cetacean coronavirus, in Gammacoronavirus, to include BdCoV HKU22 and BWCoV SW1, whereas IBV and its closely related bird CoVs represent another species, Avian coronavirus, in Gammacoronavirus. PMID:24227844

  4. Discovery of a Novel Bottlenose Dolphin Coronavirus Reveals a Distinct Species of Marine Mammal Coronavirus in Gammacoronavirus

    PubMed Central

    Woo, Patrick C. Y.; Lau, Susanna K. P.; Lam, Carol S. F.; Tsang, Alan K. L.; Hui, Suk-Wai; Fan, Rachel Y. Y.; Martelli, Paolo

    2014-01-01

    While gammacoronaviruses mainly comprise infectious bronchitis virus (IBV) and its closely related bird coronaviruses (CoVs), the only mammalian gammacoronavirus was discovered from a white beluga whale (beluga whale CoV [BWCoV] SW1) in 2008. In this study, we discovered a novel gammacoronavirus from fecal samples from three Indo-Pacific bottlenose dolphins (Tursiops aduncus), which we named bottlenose dolphin CoV (BdCoV) HKU22. All the three BdCoV HKU22-positive samples were collected on the same date, suggesting a cluster of infection, with viral loads of 1 × 103 to 1 × 105 copies per ml. Clearance of virus was associated with a specific antibody response against the nucleocapsid of BdCoV HKU22. Complete genome sequencing and comparative genome analysis showed that BdCoV HKU22 and BWCoV SW1 have similar genome characteristics and structures. Their genome size is about 32,000 nucleotides, the largest among all CoVs, as a result of multiple unique open reading frames (NS5a, NS5b, NS5c, NS6, NS7, NS8, NS9, and NS10) between their membrane (M) and nucleocapsid (N) protein genes. Although comparative genome analysis showed that BdCoV HKU22 and BWCoV SW1 should belong to the same species, a major difference was observed in the proteins encoded by their spike (S) genes, which showed only 74.3 to 74.7% amino acid identities. The high ratios of the number of synonymous substitutions per synonymous site (Ks) to the number of nonsynonymous substitutions per nonsynonymous site (Ka) in multiple regions of the genome, especially the S gene (Ka/Ks ratio, 2.5), indicated that BdCoV HKU22 may be evolving rapidly, supporting a recent transmission event to the bottlenose dolphins. We propose a distinct species, Cetacean coronavirus, in Gammacoronavirus, to include BdCoV HKU22 and BWCoV SW1, whereas IBV and its closely related bird CoVs represent another species, Avian coronavirus, in Gammacoronavirus. PMID:24227844

  5. Individual metal ligands play distinct functional roles in the zinc sensor Staphylococcus aureus CzrA.

    PubMed

    Pennella, Mario A; Arunkumar, Alphonse I; Giedroc, David P

    2006-03-10

    Recent studies on metalloregulatory proteins suggest that coordination number/geometry and metal ion availability in a host cytosol are key determinants for biological specificity. Here, we investigate the contribution that individual metal ligands of the alpha5 sensing site of Staphylococcus aureus CzrA (Asp84, His86, His97', and His100') make to in vitro metal ion binding affinity, coordination geometry, and allosteric negative regulation of DNA operator/promoter region binding. All ligand substitution mutants exhibit significantly reduced metal ion binding affinity (K(Me)) by > or =10(3) M(-1). Substitutions of Asp84 and His97 give rise to non-native coordination geometries upon metal binding and are non-functional in allosteric coupling of metal and DNA binding (DeltaG(coupling) approximately 0 kcal mol(-1)). In contrast, His86 and His100 could be readily substituted with potentially liganding (Asp, Glu) and poorly liganding (Asn, Gln) residues with significant native-like tetrahedral metal coordination geometry retained in these mutants, leading to strong functional coupling (DeltaG(coupling) > or = +3.0 kcal mol(-1)). 1H-(15)N heteronuclear single quantum coherence (HSQC) spectra of wild-type and mutant CzrAs reveal that all H86 and H100 substitution mutants undergo 4 degrees structural switching on binding Zn(II), while D84N, H97N and H97D CzrAs do not. Thus, only those variant CzrAs that retain some tetrahedral coordination geometry characteristic of wild-type CzrA upon metal binding are capable of driving 4 degrees structural conformational changes linked to allosteric regulation of DNA binding in vitro, irrespective of the magnitude of K(Me). PMID:16406068

  6. Distinct Functional and Macrostructural Brain Changes in Parkinson’s Disease and Multiple System Atrophy

    PubMed Central

    Planetta, Peggy J.; Kurani, Ajay S.; Shukla, Priyank; Prodoehl, Janey; Corcos, Daniel M.; Comella, Cynthia L.; McFarland, Nikolaus R.; Okun, Michael S.; Vaillancourt, David E.

    2016-01-01

    Parkinson’s disease (PD) and the parkinsonian variant of multiple system atrophy (MSAp) are neurodegenerative disorders that can be difficult to differentiate clinically. This study provides the first characterization of the patterns of task-related functional magnetic resonance imaging (fMRI) changes across the whole brain in MSAp. We used fMRI during a precision grip force task and also performed voxel-based morphometry (VBM) on T1-weighted images in MSAp patients, PD patients, and healthy controls. All groups were matched on age, and the patient groups had comparable motor symptom durations and severities. There were three main findings. First, MSAp and PD had reduced fMRI activation in motor control areas, including the basal ganglia, thalamus, insula, primary sensorimotor and prefrontal cortices, and cerebellum compared with controls. Second, there were no activation differences among the disease groups in the basal ganglia, thalamus, insula, or primary sensorimotor cortices, but PD had more extensive activation deficits throughout the cerebrum compared with MSAp and controls. Third, VBM revealed reduced volume in the basal ganglia, middle and inferior cerebellar peduncles, pons, and throughout the cerebrum in MSAp compared with controls and PD, and additionally throughout the cerebellar cortex and vermis in MSAp compared with controls. Collectively, these results provide the first evidence that fMRI activation is abnormal in the basal ganglia, cerebellum, and cerebrum in MSAp, and that a key distinguishing feature between MSAp and PD is the extensive and widespread volume loss throughout the brain in MSAp. PMID:25413603

  7. Distinct functional and macrostructural brain changes in Parkinson's disease and multiple system atrophy.

    PubMed

    Planetta, Peggy J; Kurani, Ajay S; Shukla, Priyank; Prodoehl, Janey; Corcos, Daniel M; Comella, Cynthia L; McFarland, Nikolaus R; Okun, Michael S; Vaillancourt, David E

    2015-03-01

    Parkinson's disease (PD) and the parkinsonian variant of multiple system atrophy (MSAp) are neurodegenerative disorders that can be difficult to differentiate clinically. This study provides the first characterization of the patterns of task-related functional magnetic resonance imaging (fMRI) changes across the whole brain in MSAp. We used fMRI during a precision grip force task and also performed voxel-based morphometry (VBM) on T1 -weighted images in MSAp patients, PD patients, and healthy controls. All groups were matched on age, and the patient groups had comparable motor symptom durations and severities. There were three main findings. First, MSAp and PD had reduced fMRI activation in motor control areas, including the basal ganglia, thalamus, insula, primary sensorimotor and prefrontal cortices, and cerebellum compared with controls. Second, there were no activation differences among the disease groups in the basal ganglia, thalamus, insula, or primary sensorimotor cortices, but PD had more extensive activation deficits throughout the cerebrum compared with MSAp and controls. Third, VBM revealed reduced volume in the basal ganglia, middle and inferior cerebellar peduncles, pons, and throughout the cerebrum in MSAp compared with controls and PD, and additionally throughout the cerebellar cortex and vermis in MSAp compared with controls. Collectively, these results provide the first evidence that fMRI activation is abnormal in the basal ganglia, cerebellum, and cerebrum in MSAp, and that a key distinguishing feature between MSAp and PD is the extensive and widespread volume loss throughout the brain in MSAp. PMID:25413603

  8. Distinct roles of apolipoprotein components within the trypanosome lytic factor complex revealed in a novel transgenic mouse model.

    PubMed

    Molina-Portela, Maria Pilar; Samanovic, Marie; Raper, Jayne

    2008-08-01

    Humans express a unique subset of high-density lipoproteins (HDLs) called trypanosome lytic factors (TLFs) that kill many Trypanosoma parasite species. The proteins apolipoprotein (apo) A-I, apoL-I, and haptoglobin-related protein, which are involved in TLF structure and function, were expressed through the introduction of transgenes in mice to explore their physiological roles in vivo. Transgenic expression of human apolipoprotein L-I alone conferred trypanolytic activity in vivo. Coexpression of human apolipoprotein A-I and haptoglobin-related protein (Hpr) had an effect on the integration of apolipoprotein L-I into HDL, and both proteins were required to increase the specific activity of TLF, which was measurable in vitro. Unexpectedly, truncated apolipoprotein L-I devoid of the serum resistance gene interacting domain, which was previously shown to kill human infective trypanosomes, was not trypanolytic in transgenic mice despite being coexpressed with human apolipoprotein A-I and Hpr and incorporated into HDLs. We conclude that all three human apolipoproteins act cooperatively to achieve maximal killing capacity and that truncated apolipoprotein L-I does not function in transgenic animals. PMID:18606856

  9. Comprehensive Tissue-Specific Transcriptome Analysis Reveals Distinct Regulatory Programs during Early Tomato Fruit Development1[OPEN

    PubMed Central

    Pattison, Richard J.; Csukasi, Fabiana; Zheng, Yi; Fei, Zhangjun; van der Knaap, Esther; Catalá, Carmen

    2015-01-01

    Fruit formation and early development involve a range of physiological and morphological transformations of the various constituent tissues of the ovary. These developmental changes vary considerably according to tissue type, but molecular analyses at an organ-wide level inevitably obscure many tissue-specific phenomena. We used laser-capture microdissection coupled to high-throughput RNA sequencing to analyze the transcriptome of ovaries and fruit tissues of the wild tomato species Solanum pimpinellifolium. This laser-capture microdissection-high-throughput RNA sequencing approach allowed quantitative global profiling of gene expression at previously unobtainable levels of spatial resolution, revealing numerous contrasting transcriptome profiles and uncovering rare and cell type-specific transcripts. Coexpressed gene clusters linked specific tissues and stages to major transcriptional changes underlying the ovary-to-fruit transition and provided evidence of regulatory modules related to cell division, photosynthesis, and auxin transport in internal fruit tissues, together with parallel specialization of the pericarp transcriptome in stress responses and secondary metabolism. Analysis of transcription factor expression and regulatory motifs indicated putative gene regulatory modules that may regulate the development of different tissues and hormonal processes. Major alterations in the expression of hormone metabolic and signaling components illustrate the complex hormonal control underpinning fruit formation, with intricate spatiotemporal variations suggesting separate regulatory programs. PMID:26099271

  10. Molecular characterization of HCV in a Swedish county over 8 years (2002–2009) reveals distinct transmission patterns

    PubMed Central

    Ederth, Josefine; Jern, Camilla; Norder, Helené; Magnius, Lars; Alm, Erik; Rognsvåg, Björg Kleverman; Sundin, Carl-Gustaf; Brytting, Mia; Esbjörnsson, Joakim; Mild, Mattias

    2016-01-01

    Background Hepatitis C virus (HCV) is a major public health concern and data on its molecular epidemiology in Sweden is scarce. We carried out an 8-year population-based study of newly diagnosed HCV cases in one of Sweden's centrally situated counties, Södermanland (D-county). The aim was to characterize the HCV strains circulating, analyze their genetic relatedness to detect networks, and in combination with demographic data learn more about transmission. Methods Molecular analyses of serum samples from 91% (N=557) of all newly notified cases in D-county, 2002–2009, were performed. Phylogenetic analysis (NS5B gene, 300 bp) was linked to demographic data from the national surveillance database, SmiNet, to characterize D-county transmission clusters. The linear-by-linear association test (LBL) was used to analyze trends over time. Results The most prevalent subtypes were 1a (38%) and 3a (34%). Subtype 1a was most prevalent among cases transmitted via sexual contact, via contaminated blood, or blood products, while subtype 3a was most prevalent among people who inject drugs (PWIDs). Phylogenetic analysis revealed that the subtype 3a sequences formed more and larger transmission clusters (50% of the sequences clustered), while the 1a sequences formed smaller clusters (19% of the sequences clustered), possibly suggesting different epidemics. Conclusion We found different transmission patterns in D-county which may, from a public health perspective, have implications for how to control virus infections by targeted interventions. PMID:26854010

  11. Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae

    PubMed Central

    Gambin, Yann; Ariotti, Nicholas; McMahon, Kerrie-Ann; Bastiani, Michele; Sierecki, Emma; Kovtun, Oleksiy; Polinkovsky, Mark E; Magenau, Astrid; Jung, WooRam; Okano, Satomi; Zhou, Yong; Leneva, Natalya; Mureev, Sergey; Johnston, Wayne; Gaus, Katharina; Hancock, John F; Collins, Brett M; Alexandrov, Kirill; Parton, Robert G

    2014-01-01

    In mammalian cells three closely related cavin proteins cooperate with the scaffolding protein caveolin to form membrane invaginations known as caveolae. Here we have developed a novel single-molecule fluorescence approach to directly observe interactions and stoichiometries in protein complexes from cell extracts and from in vitro synthesized components. We show that up to 50 cavins associate on a caveola. However, rather than forming a single coat complex containing the three cavin family members, single-molecule analysis reveals an exquisite specificity of interactions between cavin1, cavin2 and cavin3. Changes in membrane tension can flatten the caveolae, causing the release of the cavin coat and its disassembly into separate cavin1-cavin2 and cavin1-cavin3 subcomplexes. Each of these subcomplexes contain 9 ± 2 cavin molecules and appear to be the building blocks of the caveolar coat. High resolution immunoelectron microscopy suggests a remarkable nanoscale organization of these separate subcomplexes, forming individual striations on the surface of caveolae. DOI: http://dx.doi.org/10.7554/eLife.01434.001 PMID:24473072

  12. Morphological characterization of a newly established human osteosarcoma cell line, HS-Os-1, revealing its distinct osteoblastic nature.

    PubMed

    Sonobe, H; Mizobuchi, H; Manabe, Y; Furihata, M; Iwata, J; Hikita, T; Oka, T; Ohtsuki, Y; Goto, T

    1991-01-01

    A newly established human osteosarcoma cell line, HS-Os-1, from an osteoblastic tumor arising in the left humerus of an 11-year-old girl was morphologically characterized in vitro and in vivo. HS-Os-1 cells in a monolayer have been maintained for more than 2 years since the initial cultivation, and were round or polygonal in shape with marked pleomorphism. Their cytoplasm was strongly positive for specific markers of osteoblasts, such as alkaline phosphatase and osteocalcin. Tumors induced in nude mice by HS-Os-1 cell inoculation at passage 12 or 23 revealed typical histological features of osteoblastic osteosarcoma, similar to those observed in the original tumor, producing prominent osteoid matrix with calcification. Ultrastructurally, HS-Os-1 cells in vitro and tumor cells in vivo showed similar well-developed, markedly dilated rough endoplasmic reticulum, polysomes and microfilaments in their cytoplasm. Additionally, many collagen fibers associated with deposition of electron-dense material were detected in the stroma featuring osteoid matrix. Thus, the HS-Os-1 cell line was shown to exhibit its osteoblastic nature in vitro and in vivo, and therefore might become an extremely useful tool for various pathomorphological investigations on human osteosarcomas. PMID:1679269

  13. Super-resolution fluorescence of huntingtin reveals growth of globular species into short fibers and coexistence of distinct aggregates.

    PubMed

    Duim, Whitney C; Jiang, Yan; Shen, Koning; Frydman, Judith; Moerner, W E

    2014-12-19

    Polyglutamine-expanded huntingtin, the protein encoded by HTT mutations associated with Huntington's disease, forms aggregate species in vitro and in vivo. Elucidation of the mechanism of growth of fibrillar aggregates from soluble monomeric protein is critical to understanding the progression of Huntington's disease and to designing therapeutics for the disease, as well as for aggregates implicated in Alzheimer's and Parkinson's diseases. We used the technique of multicolor single-molecule, super-resolution fluorescence imaging to characterize the growth of huntingtin exon 1 aggregates. The huntingtin exon 1 aggregation followed a pathway from exclusively spherical or globular species of ∼80 nm to fibers ∼1 μm in length that increased in width, but not length, over time with the addition of more huntingtin monomers. The fibers further aggregated with one another into aggregate assemblies of increasing size. Seeds created by sonication, which were comparable in shape and size to the globular species in the pathway, were observed to grow through multidirectional elongation into fibers, suggesting a mechanism for growth of globular species into fibers. The single-molecule sensitivity of our approach made it possible to characterize the aggregation pathway across a large range of size scales, from monomers to fiber assemblies, and revealed the coexistence of different aggregate species (globular species, fibers, fiber assemblies) even at late time points. PMID:25330023

  14. Super-Resolution Fluorescence of Huntingtin Reveals Growth of Globular Species into Short Fibers and Coexistence of Distinct Aggregates

    PubMed Central

    2015-01-01

    Polyglutamine-expanded huntingtin, the protein encoded by HTT mutations associated with Huntington’s disease, forms aggregate species in vitro and in vivo. Elucidation of the mechanism of growth of fibrillar aggregates from soluble monomeric protein is critical to understanding the progression of Huntington’s disease and to designing therapeutics for the disease, as well as for aggregates implicated in Alzheimer’s and Parkinson’s diseases. We used the technique of multicolor single-molecule, super-resolution fluorescence imaging to characterize the growth of huntingtin exon 1 aggregates. The huntingtin exon 1 aggregation followed a pathway from exclusively spherical or globular species of ∼80 nm to fibers ∼1 μm in length that increased in width, but not length, over time with the addition of more huntingtin monomers. The fibers further aggregated with one another into aggregate assemblies of increasing size. Seeds created by sonication, which were comparable in shape and size to the globular species in the pathway, were observed to grow through multidirectional elongation into fibers, suggesting a mechanism for growth of globular species into fibers. The single-molecule sensitivity of our approach made it possible to characterize the aggregation pathway across a large range of size scales, from monomers to fiber assemblies, and revealed the coexistence of different aggregate species (globular species, fibers, fiber assemblies) even at late time points. PMID:25330023

  15. Hyperandrogenism in female athletes with functional hypothalamic amenorrhea: a distinct phenotype

    PubMed Central

    Javed, Asma; Kashyap, Rahul; Lteif, Aida N

    2015-01-01

    Objective To compare the reproductive, metabolic, and skeletal profiles of young athletic women with functional hypothalamic amenorrhea (FHA) as well as clinical or biochemical hyperandrogenism (FHA-EX+HA) with body mass index matched women with FHA due to exercise (FHA-EX) or anorexia nervosa (FHA-AN) alone. Design Retrospective cohort study. Setting Tertiary care teaching hospital. Population Adolescents and young women, 15–30 years of age, diagnosed with FHA along with concurrent signs of hyperandrogenism (n=22) and body mass index matched control groups consisting of 22 women in each group of FHA-EX and FHA-AN. Main outcomes 1) Reproductive hormone profile: luteinizing hormone (LH), follicle stimulating hormone (FSH), total testosterone, pelvic ultrasound features. 2) Metabolic function and skeletal health markers: fasting glucose, cholesterol, number of stress fractures and bone mineral density as assessed by spine dual-energy X-ray absorptiometry z scores. Results FHA-EX+HA group was older at diagnosis compared to the other groups with a median (interquartile range [IQR]) age of 22 (18.75–25.25) years versus (vs) 17.5 (15.75–19) for FHA-EX; (P<0.01) and 18 (16–22.25) years for FHA-AN (P=0.01). There were no differences among the groups based on number of hours of exercise per week, type of physical activity or duration of amenorrhea. Median (IQR) LH/FSH ratio was higher in FHA-EX+HA than both other groups, 1.44 (1.03–1.77) vs 0.50 (0.20–0.94) for FHA-EX and 0.67 (0.51–0.87) for FHA-AN (P<0.01 for both). Total testosterone concentrations were not different among the groups. Median (IQR) fasting serum glucose concentration was higher in FHA-EX+HA vs FHA-EX, 88.5 mg/dL (82.8–90 mg/dL) vs 83.5 mg/dL (78.8–86.3 mg/dL) (P=0.01) but not different from FHA-AN (P=0.31). Percentage of women with stress fractures was lower in FHA-EX+HA (4.5%) as compared to both FHA-EX (27.3%) and FHA-AN (50%); P=0.04 and 0.01 respectively. The LH/FSH ratio was weakly

  16. Genome-Wide Transcriptional Profiling Reveals Two Distinct Outcomes in Central Nervous System Infections of Rabies Virus.

    PubMed

    Zhang, Daiting; He, Feilong; Bi, Shuilian; Guo, Huixia; Zhang, Baoshi; Wu, Fan; Liang, Jiaqi; Yang, Youtian; Tian, Qin; Ju, Chunmei; Fan, Huiying; Chen, Jinding; Guo, Xiaofeng; Luo, Yongwen

    2016-01-01

    Rabies remains a major public health concern in many developing countries. The precise neuropathogenesis of rabies is unknown, though it is hypothesized to be due to neuronal death or dysfunction. Mice that received intranasal inoculation of an attenuated rabies virus (RABV) strain HEP-Flury exhibited subtle clinical signs, and eventually recovered, which is different from the fatal encephalitis caused by the virulent RABV strain CVS-11. To understand the neuropathogenesis of rabies and the mechanisms of viral clearance, we applied RNA sequencing (RNA-Seq) to compare the brain transcriptomes of normal mice vs. HEP-Flury or CVS-11 intranasally inoculated mice. Our results revealed that both RABV strains altered positively and negatively the expression levels of many host genes, including genes associated with innate and adaptive immunity, inflammation and cell death. It is found that HEP-Flury infection can activate the innate immunity earlier through the RIG-I/MDA-5 signaling, and the innate immunity pre-activated by HEP-Flury or Newcastle disease virus (NDV) infection can effectively prevent the CVS-11 to invade central nervous system (CNS), but fails to clear the CVS-11 after its entry into the CNS. In addition, following CVS-11 infection, genes implicated in cell adhesion, blood vessel morphogenesis and coagulation were mainly up-regulated, while the genes involved in synaptic transmission and ion transport were significantly down-regulated. On the other hand, several genes involved in the MHC class II-mediated antigen presentation pathway were activated to a greater extent after the HEP-Flury infection as compared with the CVS-11 infection suggesting that the collaboration of CD4(+) T cells and MHC class II-mediated antigen presentation is critical for the clearance of attenuated RABV from the CNS. The differentially regulated genes reported here are likely to include potential therapeutic targets for expanding the post-exposure treatment window for RABV

  17. SSU Ribosomal DNA-Based Monitoring of Nematode Assemblages Reveals Distinct Seasonal Fluctuations within Evolutionary Heterogeneous Feeding Guilds

    PubMed Central

    Vervoort, Mariëtte T. W.; Vonk, J. Arie; Mooijman, Paul J. W.; Van den Elsen, Sven J. J.; Van Megen, Hanny H. B.; Veenhuizen, Peter; Landeweert, Renske; Bakker, Jaap; Mulder, Christian; Helder, Johannes

    2012-01-01

    Soils are among the most complex, diverse and competitive habitats on Earth and soil biota are responsible for ecosystem services such as nutrient cycling, carbon sequestration and remediation of freshwater. The extreme biodiversity prohibits the making of a full inventory of soil life. Hence, an appropriate indicator group should be selected to determine the biological condition of soil systems. Due to their ubiquity and the diverse responses to abiotic and biotic changes, nematodes are suitable indicators for environmental monitoring. However, the time-consuming microscopic analysis of nematode communities has limited the scale at which this indicator group is used. In an attempt to circumvent this problem, a quantitative PCR-based tool for the detection of a consistent part of the soil nematofauna was developed based on a phylum-wide molecular framework consisting of 2,400 full-length SSU rDNA sequences. Taxon-specific primers were designed and tested for specificity. Furthermore, relationships were determined between the quantitative PCR output and numbers of target nematodes. As a first field test for this DNA sequence signature-based approach, seasonal fluctuations of nematode assemblages under open canopy (one field) and closed canopy (one forest) were monitored. Fifteen taxa from four feeding guilds (covering ∼ 65% of the free-living nematode biodiversity at higher taxonomical level) were detected at two trophic levels. These four feeding guilds are composed of taxa that developed independently by parallel evolution and we detected ecologically interpretable patterns for free-living nematodes belonging to the lower trophic level of soil food webs. Our results show temporal fluctuations, which can be even opposite within taxa belonging to the same guild. This research on nematode assemblages revealed ecological information about the soil food web that had been partly overlooked. PMID:23112818

  18. Genome-Wide Transcriptional Profiling Reveals Two Distinct Outcomes in Central Nervous System Infections of Rabies Virus

    PubMed Central

    Zhang, Daiting; He, Feilong; Bi, Shuilian; Guo, Huixia; Zhang, Baoshi; Wu, Fan; Liang, Jiaqi; Yang, Youtian; Tian, Qin; Ju, Chunmei; Fan, Huiying; Chen, Jinding; Guo, Xiaofeng; Luo, Yongwen

    2016-01-01

    Rabies remains a major public health concern in many developing countries. The precise neuropathogenesis of rabies is unknown, though it is hypothesized to be due to neuronal death or dysfunction. Mice that received intranasal inoculation of an attenuated rabies virus (RABV) strain HEP-Flury exhibited subtle clinical signs, and eventually recovered, which is different from the fatal encephalitis caused by the virulent RABV strain CVS-11. To understand the neuropathogenesis of rabies and the mechanisms of viral clearance, we applied RNA sequencing (RNA-Seq) to compare the brain transcriptomes of normal mice vs. HEP-Flury or CVS-11 intranasally inoculated mice. Our results revealed that both RABV strains altered positively and negatively the expression levels of many host genes, including genes associated with innate and adaptive immunity, inflammation and cell death. It is found that HEP-Flury infection can activate the innate immunity earlier through the RIG-I/MDA-5 signaling, and the innate immunity pre-activated by HEP-Flury or Newcastle disease virus (NDV) infection can effectively prevent the CVS-11 to invade central nervous system (CNS), but fails to clear the CVS-11 after its entry into the CNS. In addition, following CVS-11 infection, genes implicated in