Sample records for reveal larger visual

  1. Action video game players and deaf observers have larger Goldmann visual fields.

    PubMed

    Buckley, David; Codina, Charlotte; Bhardwaj, Palvi; Pascalis, Olivier

    2010-03-05

    We used Goldmann kinetic perimetry to compare how training and congenital auditory deprivation may affect the size of the visual field. We measured the ability of action video game players and deaf observers to detect small moving lights at various locations in the central (around 30 degrees from fixation) and peripheral (around 60 degrees ) visual fields. Experiment 1 found that 10 habitual video game players showed significantly larger central and peripheral field areas than 10 controls. In Experiment 2 we found that 13 congenitally deaf observers had significantly larger visual fields than 13 hearing controls for both the peripheral and central fields. Here the greatest differences were found in the lower parts of the fields. Comparison of the two groups showed that whereas VGP players have a more uniform increase in field size in both central and peripheral fields deaf observers show non-uniform increases with greatest increases in lower parts of the visual field.

  2. Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis

    DOE PAGES

    Pavlopoulos, Georgios A.; Paez-Espino, David; Kyrpides, Nikos C.; ...

    2017-07-18

    Gene expression, signal transduction, protein/chemical interactions, biomedical literature cooccurrences, and other concepts are often captured in biological network representations where nodes represent a certain bioentity and edges the connections between them. While many tools to manipulate, visualize, and interactively explore such networks already exist, only few of them can scale up and follow today’s indisputable information growth. In this review, we shortly list a catalog of available network visualization tools and, from a user-experience point of view, we identify four candidate tools suitable for larger-scale network analysis, visualization, and exploration. Lastly, we comment on their strengths and their weaknesses andmore » empirically discuss their scalability, user friendliness, and postvisualization capabilities.« less

  3. Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlopoulos, Georgios A.; Paez-Espino, David; Kyrpides, Nikos C.

    Gene expression, signal transduction, protein/chemical interactions, biomedical literature cooccurrences, and other concepts are often captured in biological network representations where nodes represent a certain bioentity and edges the connections between them. While many tools to manipulate, visualize, and interactively explore such networks already exist, only few of them can scale up and follow today’s indisputable information growth. In this review, we shortly list a catalog of available network visualization tools and, from a user-experience point of view, we identify four candidate tools suitable for larger-scale network analysis, visualization, and exploration. Lastly, we comment on their strengths and their weaknesses andmore » empirically discuss their scalability, user friendliness, and postvisualization capabilities.« less

  4. Fiber-optic-based laser vapor screen flow visualization system for aerodynamic research in larger scale subsonic and transonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Inenaga, Andrew S.

    1994-01-01

    Laser vapor screen (LVS) flow visualization systems that are fiber-optic based were developed and installed for aerodynamic research in the Langley 8-Foot Transonic Pressure Tunnel and the Langley 7- by 10-Foot High Speed Tunnel. Fiber optics are used to deliver the laser beam through the plenum shell that surrounds the test section of each facility and to the light-sheet-generating optics positioned in the ceiling window of the test section. Water is injected into the wind tunnel diffuser section to increase the relative humidity and promote condensation of the water vapor in the flow field about the model. The condensed water vapor is then illuminated with an intense sheet of laser light to reveal features of the flow field. The plenum shells are optically sealed; therefore, video-based systems are used to observe and document the flow field. Operational experience shows that the fiber-optic-based systems provide safe, reliable, and high-quality off-surface flow visualization in smaller and larger scale subsonic and transonic wind tunnels. The design, the installation, and the application of the Langley Research Center (LaRC) LVS flow visualization systems in larger scale wind tunnels are highlighted. The efficiency of the fiber optic LVS systems and their insensitivity to wind tunnel vibration, the tunnel operating temperature and pressure variations, and the airborne contaminants are discussed.

  5. Visual evoked potential measurement of contrast sensitivity in a case of retinal laser injury reveals visual function loss despite normal acuity

    NASA Astrophysics Data System (ADS)

    Glickman, Randolph D.; Harrison, Joseph M.; Zwick, Harry; Longbotham, Harold G.; Ballentine, Charles S.; Pierce, Bennie

    1996-04-01

    Although visual function following retinal laser injuries has traditionally been assessed by measuring visual acuity, this measure only indicates the highest spatial frequency resolvable under high-contrast viewing conditions. Another visual psychophysical parameter is contrast sensitivity (CS), which measures the minimum contrast required for detection of targets over a range of spatial frequencies, and may evaluate visual mechanisms that do not directly subserve acuity. We used the visual evoked potential (VEP) to measure CS in a population of normal subjects and in patients with ophthalmic conditions affecting retinal function, including one patient with a laser injury in the macula. In this patient, the acuity had recovered from Visual stimuli consisted of counterphasing, sinusoidally-modulated luminance gratings presented at various spatial frequencies. VEPs were recorded with a gold cup electrode on the occipital scalp, and were demodulated in real time by a lock-in amplifier referenced to the stimulus counterphase frequency. As each grating was presented, its contrast was swept logarithmically from 0% to 50% over a 12-sec epoch. The CS was scored as the reciprocal of the lowest contrast within the sweep which elicited a response synchronized to the counterphase frequency. We found a CS deficit that appeared for a 3 degree(s) test field but not for larger test fields. These data indicated that contrast sensitivity measurements may reveal alterations in visual neural processing mechanisms not detected with standard clinical tests of acuity.

  6. Acting without seeing: eye movements reveal visual processing without awareness.

    PubMed

    Spering, Miriam; Carrasco, Marisa

    2015-04-01

    Visual perception and eye movements are considered to be tightly linked. Diverse fields, ranging from developmental psychology to computer science, utilize eye tracking to measure visual perception. However, this prevailing view has been challenged by recent behavioral studies. Here, we review converging evidence revealing dissociations between the contents of perceptual awareness and different types of eye movement. Such dissociations reveal situations in which eye movements are sensitive to particular visual features that fail to modulate perceptual reports. We also discuss neurophysiological, neuroimaging, and clinical studies supporting the role of subcortical pathways for visual processing without awareness. Our review links awareness to perceptual-eye movement dissociations and furthers our understanding of the brain pathways underlying vision and movement with and without awareness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Accounting for stimulus-specific variation in precision reveals a discrete capacity limit in visual working memory

    PubMed Central

    Pratte, Michael S.; Park, Young Eun; Rademaker, Rosanne L.; Tong, Frank

    2016-01-01

    If we view a visual scene that contains many objects, then momentarily close our eyes, some details persist while others seem to fade. Discrete models of visual working memory (VWM) assume that only a few items can be actively maintained in memory, beyond which pure guessing will emerge. Alternatively, continuous resource models assume that all items in a visual scene can be stored with some precision. Distinguishing between these competing models is challenging, however, as resource models that allow for stochastically variable precision (across items and trials) can produce error distributions that resemble random guessing behavior. Here, we evaluated the hypothesis that a major source of variability in VWM performance arises from systematic variation in precision across the stimuli themselves; such stimulus-specific variability can be incorporated into both discrete-capacity and variable-precision resource models. Participants viewed multiple oriented gratings, and then reported the orientation of a cued grating from memory. When modeling the overall distribution of VWM errors, we found that the variable-precision resource model outperformed the discrete model. However, VWM errors revealed a pronounced “oblique effect”, with larger errors for oblique than cardinal orientations. After this source of variability was incorporated into both models, we found that the discrete model provided a better account of VWM errors. Our results demonstrate that variable precision across the stimulus space can lead to an unwarranted advantage for resource models that assume stochastically variable precision. When these deterministic sources are adequately modeled, human working memory performance reveals evidence of a discrete capacity limit. PMID:28004957

  8. Accounting for stimulus-specific variation in precision reveals a discrete capacity limit in visual working memory.

    PubMed

    Pratte, Michael S; Park, Young Eun; Rademaker, Rosanne L; Tong, Frank

    2017-01-01

    If we view a visual scene that contains many objects, then momentarily close our eyes, some details persist while others seem to fade. Discrete models of visual working memory (VWM) assume that only a few items can be actively maintained in memory, beyond which pure guessing will emerge. Alternatively, continuous resource models assume that all items in a visual scene can be stored with some precision. Distinguishing between these competing models is challenging, however, as resource models that allow for stochastically variable precision (across items and trials) can produce error distributions that resemble random guessing behavior. Here, we evaluated the hypothesis that a major source of variability in VWM performance arises from systematic variation in precision across the stimuli themselves; such stimulus-specific variability can be incorporated into both discrete-capacity and variable-precision resource models. Participants viewed multiple oriented gratings, and then reported the orientation of a cued grating from memory. When modeling the overall distribution of VWM errors, we found that the variable-precision resource model outperformed the discrete model. However, VWM errors revealed a pronounced "oblique effect," with larger errors for oblique than cardinal orientations. After this source of variability was incorporated into both models, we found that the discrete model provided a better account of VWM errors. Our results demonstrate that variable precision across the stimulus space can lead to an unwarranted advantage for resource models that assume stochastically variable precision. When these deterministic sources are adequately modeled, human working memory performance reveals evidence of a discrete capacity limit. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. Visual Receptive Field Structure of Cortical Inhibitory Neurons Revealed by Two-Photon Imaging Guided Recording

    PubMed Central

    Liu, Bao-hua; Li, Pingyang; Li, Ya-tang; Sun, Yujiao J.; Yanagawa, Yuchio; Obata, Kunihiko; Zhang, Li I.; Tao, Huizhong W.

    2009-01-01

    Synaptic inhibition plays an important role in shaping receptive field (RF) properties in the visual cortex. However, the underlying mechanisms remain not well understood, partly due to difficulties in systematically studying functional properties of cortical inhibitory neurons in vivo. Here, we established two-photon imaging guided cell-attached recordings from genetically labelled inhibitory neurons and nearby “shadowed” excitatory neurons in the primary visual cortex of adult mice. Our results revealed that in layer 2/3, the majority of excitatory neurons exhibited both On and Off spike subfields, with their spatial arrangement varying from being completely segregated to overlapped. On the other hand, most layer 4 excitatory neurons exhibited only one discernable subfield. Interestingly, no RF structure with significantly segregated On and Off subfields was observed for layer 2/3 inhibitory neurons of either the fast-spike or regular-spike type. They predominantly possessed overlapped On and Off subfields with a significantly larger size than the excitatory neurons, and exhibited much weaker orientation tuning. These results from the mouse visual cortex suggest that different from the push-pull model proposed for simple cells, layer 2/3 simple-type neurons with segregated spike On and Off subfields likely receive spatially overlapped inhibitory On and Off inputs. We propose that the phase-insensitive inhibition can enhance the spatial distinctiveness of On and Off subfields through a gain control mechanism. PMID:19710305

  10. Burdigalian turbid water patch reef environment revealed by larger benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Novak, V.; Renema, W.; Throughflow-project

    2012-04-01

    Ancient isolated patch reefs outcropping from siliciclastic sediments are a trademark for the Miocene carbonate deposits occurring in East Kalimantan, Indonesia. They develop in transitional shelf sediments deposited between deltaic and deep marine deposits (Allen and Chambers, 1998). The Batu Putih Limestone (Wilson, 2005) and similar outcrops in adjacent areas have been characterized as shallow water carbonates influenced by high siliciclastic input, showing low relief patch reefs in turbid waters. Larger benthic foraminifera (LBF) are excellent markers for biochronology and paleoenvironmental reconstruction. This study aims to reveal age and paleoenvironment of a shallow water carbonate patch reef developed in mixed depositional system by using LBF and microfacies analysis. The studied section is located near Bontang, East Kalimantan, and is approximately 80 m long and 12 m high. It is placed within Miocene sediments in the central part of the Kutai Basin. Patch reef and capping sediments were logged through eight transects along section and divided into nine different lithological units from which samples were collected. Thin sections and isolated specimens of larger benthic foraminifera were analyzed and recognized to species level (where possible) providing age and environmental information. Microfacies analysis of thin sections included carbonate classification (textural scheme of Dunham, 1962) and assemblage composition of LBF, algae and corals relative abundance. Three environmentally indicative groups of LBF were separated based on test morphology, habitat or living relatives (Hallock and Glenn, 1986). Analysed foraminifera assemblage suggests Burdigalian age (Tf1). With use of microfacies analysis nine successive lithological units were grouped into five facies types. Paleoenvironmental reconstruction of LBF fossil assemblage indicate two cycles of possible deepening recorded in the section. Based on high muddy matrix ratio in analyzed thin-sections we

  11. Sounds activate visual cortex and improve visual discrimination.

    PubMed

    Feng, Wenfeng; Störmer, Viola S; Martinez, Antigona; McDonald, John J; Hillyard, Steven A

    2014-07-16

    A recent study in humans (McDonald et al., 2013) found that peripheral, task-irrelevant sounds activated contralateral visual cortex automatically as revealed by an auditory-evoked contralateral occipital positivity (ACOP) recorded from the scalp. The present study investigated the functional significance of this cross-modal activation of visual cortex, in particular whether the sound-evoked ACOP is predictive of improved perceptual processing of a subsequent visual target. A trial-by-trial analysis showed that the ACOP amplitude was markedly larger preceding correct than incorrect pattern discriminations of visual targets that were colocalized with the preceding sound. Dipole modeling of the scalp topography of the ACOP localized its neural generators to the ventrolateral extrastriate visual cortex. These results provide direct evidence that the cross-modal activation of contralateral visual cortex by a spatially nonpredictive but salient sound facilitates the discriminative processing of a subsequent visual target event at the location of the sound. Recordings of event-related potentials to the targets support the hypothesis that the ACOP is a neural consequence of the automatic orienting of visual attention to the location of the sound. Copyright © 2014 the authors 0270-6474/14/349817-08$15.00/0.

  12. Sounds Activate Visual Cortex and Improve Visual Discrimination

    PubMed Central

    Störmer, Viola S.; Martinez, Antigona; McDonald, John J.; Hillyard, Steven A.

    2014-01-01

    A recent study in humans (McDonald et al., 2013) found that peripheral, task-irrelevant sounds activated contralateral visual cortex automatically as revealed by an auditory-evoked contralateral occipital positivity (ACOP) recorded from the scalp. The present study investigated the functional significance of this cross-modal activation of visual cortex, in particular whether the sound-evoked ACOP is predictive of improved perceptual processing of a subsequent visual target. A trial-by-trial analysis showed that the ACOP amplitude was markedly larger preceding correct than incorrect pattern discriminations of visual targets that were colocalized with the preceding sound. Dipole modeling of the scalp topography of the ACOP localized its neural generators to the ventrolateral extrastriate visual cortex. These results provide direct evidence that the cross-modal activation of contralateral visual cortex by a spatially nonpredictive but salient sound facilitates the discriminative processing of a subsequent visual target event at the location of the sound. Recordings of event-related potentials to the targets support the hypothesis that the ACOP is a neural consequence of the automatic orienting of visual attention to the location of the sound. PMID:25031419

  13. Acting without seeing: Eye movements reveal visual processing without awareness Miriam Spering & Marisa Carrasco

    PubMed Central

    Spering, Miriam; Carrasco, Marisa

    2015-01-01

    Visual perception and eye movements are considered to be tightly linked. Diverse fields, ranging from developmental psychology to computer science, utilize eye tracking to measure visual perception. However, this prevailing view has been challenged by recent behavioral studies. We review converging evidence revealing dissociations between the contents of perceptual awareness and different types of eye movements. Such dissociations reveal situations in which eye movements are sensitive to particular visual features that fail to modulate perceptual reports. We also discuss neurophysiological, neuroimaging and clinical studies supporting the role of subcortical pathways for visual processing without awareness. Our review links awareness to perceptual-eye movement dissociations and furthers our understanding of the brain pathways underlying vision and movement with and without awareness. PMID:25765322

  14. Artificial selection reveals the energetic expense of producing larger eggs.

    PubMed

    Pick, Joel L; Hutter, Pascale; Ebneter, Christina; Ziegler, Ann-Kathrin; Giordano, Marta; Tschirren, Barbara

    2016-01-01

    The amount of resources provided by the mother before birth has important and long-lasting effects on offspring fitness. Despite this, there is a large amount of variation in maternal investment seen in natural populations. Life-history theory predicts that this variation is maintained through a trade-off between the benefits of high maternal investment for the offspring and the costs of high investment for the mother. However, the proximate mechanisms underlying these costs of reproduction are not well understood. Here we used artificial selection for high and low maternal egg investment in a precocial bird, the Japanese quail (Coturnix japonica) to quantify costs of maternal reproductive investment. We show that females from the high maternal investment lines had significantly larger reproductive organs, which explained their overall larger body mass, and resulted in a higher resting metabolic rate (RMR). Contrary to our expectations, this increase in metabolic activity did not lead to a higher level of oxidative damage. This study is the first to provide experimental evidence for metabolic costs of increased per offspring investment.

  15. Ultra-Rapid serial visual presentation reveals dynamics of feedforward and feedback processes in the ventral visual pathway.

    PubMed

    Mohsenzadeh, Yalda; Qin, Sheng; Cichy, Radoslaw M; Pantazis, Dimitrios

    2018-06-21

    Human visual recognition activates a dense network of overlapping feedforward and recurrent neuronal processes, making it hard to disentangle processing in the feedforward from the feedback direction. Here, we used ultra-rapid serial visual presentation to suppress sustained activity that blurs the boundaries of processing steps, enabling us to resolve two distinct stages of processing with MEG multivariate pattern classification. The first processing stage was the rapid activation cascade of the bottom-up sweep, which terminated early as visual stimuli were presented at progressively faster rates. The second stage was the emergence of categorical information with peak latency that shifted later in time with progressively faster stimulus presentations, indexing time-consuming recurrent processing. Using MEG-fMRI fusion with representational similarity, we localized recurrent signals in early visual cortex. Together, our findings segregated an initial bottom-up sweep from subsequent feedback processing, and revealed the neural signature of increased recurrent processing demands for challenging viewing conditions. © 2018, Mohsenzadeh et al.

  16. Scene segmentation by spike synchronization in reciprocally connected visual areas. II. Global assemblies and synchronization on larger space and time scales.

    PubMed

    Knoblauch, Andreas; Palm, Günther

    2002-09-01

    We present further simulation results of the model of two reciprocally connected visual areas proposed in the first paper [Knoblauch and Palm (2002) Biol Cybern 87:151-167]. One area corresponds to the orientation-selective subsystem of the primary visual cortex, the other is modeled as an associative memory representing stimulus objects according to Hebbian learning. We examine the scene-segmentation capability of our model on larger time and space scales, and relate it to experimental findings. Scene segmentation is achieved by attention switching on a time-scale longer than the gamma range. We find that the time-scale can vary depending on habituation parameters in the range of tens to hundreds of milliseconds. The switching process can be related to findings concerning attention and biased competition, and we reproduce experimental poststimulus time histograms (PSTHs) of single neurons under different stimulus and attentional conditions. In a larger variant the model exhibits traveling waves of activity on both slow and fast time-scales, with properties similar to those found in experiments. An apparent weakness of our standard model is the tendency to produce anti-phase correlations for fast activity from the two areas. Increasing the inter-areal delays in our model produces alternations of in-phase and anti-phase oscillations. The experimentally observed in-phase correlations can most naturally be obtained by the involvement of both fast and slow inter-areal connections; e.g., by two axon populations corresponding to fast-conducting myelinated and slow-conducting unmyelinated axons.

  17. Dissociable Modulation of Overt Visual Attention in Valence and Arousal Revealed by Topology of Scan Path

    PubMed Central

    Ni, Jianguang; Jiang, Huihui; Jin, Yixiang; Chen, Nanhui; Wang, Jianhong; Wang, Zhengbo; Luo, Yuejia; Ma, Yuanye; Hu, Xintian

    2011-01-01

    Emotional stimuli have evolutionary significance for the survival of organisms; therefore, they are attention-grabbing and are processed preferentially. The neural underpinnings of two principle emotional dimensions in affective space, valence (degree of pleasantness) and arousal (intensity of evoked emotion), have been shown to be dissociable in the olfactory, gustatory and memory systems. However, the separable roles of valence and arousal in scene perception are poorly understood. In this study, we asked how these two emotional dimensions modulate overt visual attention. Twenty-two healthy volunteers freely viewed images from the International Affective Picture System (IAPS) that were graded for affective levels of valence and arousal (high, medium, and low). Subjects' heads were immobilized and eye movements were recorded by camera to track overt shifts of visual attention. Algebraic graph-based approaches were introduced to model scan paths as weighted undirected path graphs, generating global topology metrics that characterize the algebraic connectivity of scan paths. Our data suggest that human subjects show different scanning patterns to stimuli with different affective ratings. Valence salient stimuli (with neutral arousal) elicited faster and larger shifts of attention, while arousal salient stimuli (with neutral valence) elicited local scanning, dense attention allocation and deep processing. Furthermore, our model revealed that the modulatory effect of valence was linearly related to the valence level, whereas the relation between the modulatory effect and the level of arousal was nonlinear. Hence, visual attention seems to be modulated by mechanisms that are separate for valence and arousal. PMID:21494331

  18. Can Visual Illusions Be Used to Facilitate Sport Skill Learning?

    PubMed

    Cañal-Bruland, Rouwen; van der Meer, Yor; Moerman, Jelle

    2016-01-01

    Recently it has been reported that practicing putting with visual illusions that make the hole appear larger than it actually is leads to longer-lasting performance improvements. Interestingly, from a motor control and learning perspective, it may be possible to actually predict the opposite to occur, as facing a smaller appearing target should enforce performers to be more precise. To test this idea the authors invited participants to practice an aiming task (i.e., a marble-shooting task) with either a visual illusion that made the target appear larger or a visual illusion that made the target appear smaller. They applied a pre-post test design, included a control group training without any illusory effects and increased the amount of practice to 450 trials. In contrast to earlier reports, the results revealed that the group that trained with the visual illusion that made the target look smaller improved performance from pre- to posttest, whereas the group practicing with visual illusions that made the target appear larger did not show any improvements. Notably, also the control group improved from pre- to posttest. The authors conclude that more research is needed to improve our understanding of whether and how visual illusions may be useful training tools for sport skill learning.

  19. Student Visual Communication of Evolution

    NASA Astrophysics Data System (ADS)

    Oliveira, Alandeom W.; Cook, Kristin

    2017-06-01

    Despite growing recognition of the importance of visual representations to science education, previous research has given attention mostly to verbal modalities of evolution instruction. Visual aspects of classroom learning of evolution are yet to be systematically examined by science educators. The present study attends to this issue by exploring the types of evolutionary imagery deployed by secondary students. Our visual design analysis revealed that students resorted to two larger categories of images when visually communicating evolution: spatial metaphors (images that provided a spatio-temporal account of human evolution as a metaphorical "walk" across time and space) and symbolic representations ("icons of evolution" such as personal portraits of Charles Darwin that simply evoked evolutionary theory rather than metaphorically conveying its conceptual contents). It is argued that students need opportunities to collaboratively critique evolutionary imagery and to extend their visual perception of evolution beyond dominant images.

  20. Growth oscillation in larger foraminifera.

    PubMed

    Briguglio, Antonino; Hohenegger, Johann

    2014-01-01

    This work shows the potential for applying three-dimensional biometry to studying cell growth in larger benthic foraminifera. The volume of each test chamber was measured from the three-dimensional model obtained by means of computed tomography. Analyses of cell growth based on the sequence of chamber volumes revealed constant and significant oscillations for all investigated specimens, characterized by periods of approximately 15, 30, 90, and 360 days. Possible explanations for these periods are connected to tides, lunar cycles, and seasonality. The potential to record environmental oscillations or fluctuations during the lifetime of larger foraminifera is pivotal for reconstructing short-term paleoenvironmental variations or for gaining insight into the influence of tides or tidal current on the shallow-water benthic fauna in both recent and fossil environments.

  1. Non-visual spatial tasks reveal increased interactions with stance postural control.

    PubMed

    Woollacott, Marjorie; Vander Velde, Timothy

    2008-05-07

    The current investigation aimed to contrast the level and quality of dual-task interactions resulting from the combined performance of a challenging primary postural task and three specific, yet categorically dissociated, secondary central executive tasks. Experiments determined the extent to which modality (visual vs. auditory) and code (non-spatial vs. spatial) specific cognitive resources contributed to postural interference in young adults (n=9) in a dual-task setting. We hypothesized that the different forms of executive n-back task processing employed (visual-object, auditory-object and auditory-spatial) would display contrasting levels of interactions with tandem Romberg stance postural control, and that interactions within the spatial domain would be revealed as most vulnerable to dual-task interactions. Across all cognitive tasks employed, including auditory-object (aOBJ), auditory-spatial (aSPA), and visual-object (vOBJ) tasks, increasing n-back task complexity produced correlated increases in verbal reaction time measures. Increasing cognitive task complexity also resulted in consistent decreases in judgment accuracy. Postural performance was significantly influenced by the type of cognitive loading delivered. At comparable levels of cognitive task difficulty (n-back demands and accuracy judgments) the performance of challenging auditory-spatial tasks produced significantly greater levels of postural sway than either the auditory-object or visual-object based tasks. These results suggest that it is the employment of limited non-visual spatially based coding resources that may underlie previously observed visual dual-task interference effects with stance postural control in healthy young adults.

  2. Practical aspects of NMR signal assignment in larger and challenging proteins

    PubMed Central

    Frueh, Dominique P.

    2014-01-01

    NMR has matured into a technique routinely employed for studying proteins in near physiological conditions. However, applications to larger proteins are impeded by the complexity of the various correlation maps necessary to assign NMR signals. This article reviews the data analysis techniques traditionally employed for resonance assignment and describes alternative protocols necessary for overcoming challenges in large protein spectra. In particular, simultaneous analysis of multiple spectra may help overcome ambiguities or may reveal correlations in an indirect manner. Similarly, visualization of orthogonal planes in a multidimensional spectrum can provide alternative assignment procedures. We describe examples of such strategies for assignment of backbone, methyl, and nOe resonances. We describe experimental aspects of data acquisition for the related experiments and provide guidelines for preliminary studies. Focus is placed on large folded monomeric proteins and examples are provided for 37, 48, 53, and 81 kDa proteins. PMID:24534088

  3. Transcranial magnetic stimulation reveals the content of visual short-term memory in the visual cortex.

    PubMed

    Silvanto, Juha; Cattaneo, Zaira

    2010-05-01

    Cortical areas involved in sensory analysis are also believed to be involved in short-term storage of that sensory information. Here we investigated whether transcranial magnetic stimulation (TMS) can reveal the content of visual short-term memory (VSTM) by bringing this information to visual awareness. Subjects were presented with two random-dot displays (moving either to the left or to the right) and they were required to maintain one of these in VSTM. In Experiment 1, TMS was applied over the motion-selective area V5/MT+ above phosphene threshold during the maintenance phase. The reported phosphene contained motion features of the memory item, when the phosphene spatially overlapped with memory item. Specifically, phosphene motion was enhanced when the memory item moved in the same direction as the subjects' V5/MT+ baseline phosphene, whereas it was reduced when the motion direction of the memory item was incongruent with that of the baseline V5/MT+ phosphene. There was no effect on phosphene reports when there was no spatial overlap between the phosphene and the memory item. In Experiment 2, VSTM maintenance did not influence the appearance of phosphenes induced from the lateral occipital region. These interactions between VSTM maintenance and phosphene appearance demonstrate that activity in V5/MT+ reflects the motion qualities of items maintained in VSTM. Furthermore, these results also demonstrate that information in VSTM can modulate the pattern of visual activation reaching awareness, providing evidence for the view that overlapping neuronal populations are involved in conscious visual perception and VSTM. 2010. Published by Elsevier Inc.

  4. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution

    PubMed Central

    Hertz, Uri; Amedi, Amir

    2015-01-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756

  5. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution.

    PubMed

    Hertz, Uri; Amedi, Amir

    2015-08-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. © The Author 2014. Published by Oxford University Press.

  6. Visual motion combined with base of support width reveals variable field dependency in healthy young adults.

    PubMed

    Streepey, Jefferson W; Kenyon, Robert V; Keshner, Emily A

    2007-01-01

    We previously reported responses to induced postural instability in young healthy individuals viewing visual motion with a narrow (25 degrees in both directions) and wide (90 degrees and 55 degrees in the horizontal and vertical directions) field of view (FOV) as they stood on different sized blocks. Visual motion was achieved using an immersive virtual environment that moved realistically with head motion (natural motion) and translated sinusoidally at 0.1 Hz in the fore-aft direction (augmented motion). We observed that a subset of the subjects (steppers) could not maintain continuous stance on the smallest block when the virtual environment was in motion. We completed a posteriori analyses on the postural responses of the steppers and non-steppers that may inform us about the mechanisms underlying these differences in stability. We found that when viewing augmented motion with a wide FOV, there was a greater effect on the head and whole body center of mass and ankle angle root mean square (RMS) values of the steppers than of the non-steppers. FFT analyses revealed greater power at the frequency of the visual stimulus in the steppers compared to the non-steppers. Whole body COM time lags relative to the augmented visual scene revealed that the time-delay between the scene and the COM was significantly increased in the steppers. The increased responsiveness to visual information suggests a greater visual field-dependency of the steppers and suggests that the thresholds for shifting from a reliance on visual information to somatosensory information can differ even within a healthy population.

  7. What is your neural function, visual narrative conjunction? Grammar, meaning, and fluency in sequential image processing.

    PubMed

    Cohn, Neil; Kutas, Marta

    2017-01-01

    Visual narratives sometimes depict successive images with different characters in the same physical space; corpus analysis has revealed that this occurs more often in Japanese manga than American comics. We used event-related brain potentials to determine whether comprehension of "visual narrative conjunctions" invokes not only incremental mental updating as traditionally assumed, but also, as we propose, "grammatical" combinatoric processing. We thus crossed (non)/conjunction sequences with character (in)/congruity. Conjunctions elicited a larger anterior negativity (300-500 ms) than nonconjunctions, regardless of congruity, implicating "grammatical" processes. Conjunction and incongruity both elicited larger P600s (500-700 ms), indexing updating. Both conjunction effects were modulated by participants' frequency of reading manga while growing up. Greater anterior negativity in frequent manga readers suggests more reliance on combinatoric processing; larger P600 effects in infrequent manga readers suggest more resources devoted to mental updating. As in language comprehension, it seems that processing conjunctions in visual narratives is not just mental updating but also partly grammatical, conditioned by comic readers' experience with specific visual narrative structures.

  8. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence

    PubMed Central

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-01-01

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. PMID:27282108

  9. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence.

    PubMed

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-06-10

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain.

  10. A Mouse Model of Visual Perceptual Learning Reveals Alterations in Neuronal Coding and Dendritic Spine Density in the Visual Cortex.

    PubMed

    Wang, Yan; Wu, Wei; Zhang, Xian; Hu, Xu; Li, Yue; Lou, Shihao; Ma, Xiao; An, Xu; Liu, Hui; Peng, Jing; Ma, Danyi; Zhou, Yifeng; Yang, Yupeng

    2016-01-01

    Visual perceptual learning (VPL) can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF) for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS) and a 55% gain in visual acuity (VA). Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1) than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL.

  11. Selective visual attention to emotional words: Early parallel frontal and visual activations followed by interactive effects in visual cortex.

    PubMed

    Schindler, Sebastian; Kissler, Johanna

    2016-10-01

    Human brains spontaneously differentiate between various emotional and neutral stimuli, including written words whose emotional quality is symbolic. In the electroencephalogram (EEG), emotional-neutral processing differences are typically reflected in the early posterior negativity (EPN, 200-300 ms) and the late positive potential (LPP, 400-700 ms). These components are also enlarged by task-driven visual attention, supporting the assumption that emotional content naturally drives attention. Still, the spatio-temporal dynamics of interactions between emotional stimulus content and task-driven attention remain to be specified. Here, we examine this issue in visual word processing. Participants attended to negative, neutral, or positive nouns while high-density EEG was recorded. Emotional content and top-down attention both amplified the EPN component in parallel. On the LPP, by contrast, emotion and attention interacted: Explicit attention to emotional words led to a substantially larger amplitude increase than did explicit attention to neutral words. Source analysis revealed early parallel effects of emotion and attention in bilateral visual cortex and a later interaction of both in right visual cortex. Distinct effects of attention were found in inferior, middle and superior frontal, paracentral, and parietal areas, as well as in the anterior cingulate cortex (ACC). Results specify separate and shared mechanisms of emotion and attention at distinct processing stages. Hum Brain Mapp 37:3575-3587, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Mystery Montage: A Holistic, Visual, and Kinesthetic Process for Expanding Horizons and Revealing the Core of a Teaching Philosophy

    ERIC Educational Resources Information Center

    Ennis, Kim; Priebe, Carly; Sharipova, Mayya; West, Kim

    2012-01-01

    Revealing the core of a teaching philosophy is the key to a concise and meaningful philosophy statement, but it can be an elusive goal. This paper offers a visual, kinesthetic, and holistic process for expanding the horizons of self-reflection, self-analysis, and self-knowledge. Mystery montage, a variation of visual mapping, storyboarding, and…

  13. Is orbital volume associated with eyeball and visual cortex volume in humans?

    PubMed

    Pearce, Eiluned; Bridge, Holly

    2013-01-01

    In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (n = 88) and brain and visual cortex (n = 99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes and (iii) different visual cortical areas, independently of overall brain volume. In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices.

  14. Serial functional imaging poststroke reveals visual cortex reorganization.

    PubMed

    Brodtmann, Amy; Puce, Aina; Darby, David; Donnan, Geoffrey

    2009-02-01

    Visual cortical reorganization following injury remains poorly understood. The authors performed serial functional magnetic resonance imaging (fMRI) on patients with visual cortex infarction to evaluate early and late striate, ventral, and dorsal extrastriate cortical activation. Patients were studied with fMRI within 10 days and at 6 months. The authors used a high-level visual activation task designed to activate the ventral extrastriate cortex. These data were compared to those of age-appropriate healthy control participants. The results from 24 healthy control individuals (mean age 65.7 +/- SE 3.6 years, range 32-89) were compared to those from 5 stroke patients (mean age 73.8 +/- SE 7 years, range 49-86). Patients had infarcts involving the striate and ventral extrastriate cortex. Patient activation patterns were markedly different to controls. Bilateral striate and ventral extrastriate activation was reduced at both sessions, but dorsal extrastriate activated voxel counts remained comparable to controls. Conversely, mean percent magnetic resonance signal change increased in dorsal sites. These data provide strong evidence of bilateral poststroke functional depression of striate and ventral extrastriate cortices. Possible utilization or surrogacy of the dorsal visual system was demonstrated following stroke. This activity could provide a target for novel visual rehabilitation therapies.

  15. Perceptual suppression revealed by adaptive multi-scale entropy analysis of local field potential in monkey visual cortex.

    PubMed

    Hu, Meng; Liang, Hualou

    2013-04-01

    Generalized flash suppression (GFS), in which a salient visual stimulus can be rendered invisible despite continuous retinal input, provides a rare opportunity to directly study the neural mechanism of visual perception. Previous work based on linear methods, such as spectral analysis, on local field potential (LFP) during GFS has shown that the LFP power at distinctive frequency bands are differentially modulated by perceptual suppression. Yet, the linear method alone may be insufficient for the full assessment of neural dynamic due to the fundamentally nonlinear nature of neural signals. In this study, we set forth to analyze the LFP data collected from multiple visual areas in V1, V2 and V4 of macaque monkeys while performing the GFS task using a nonlinear method - adaptive multi-scale entropy (AME) - to reveal the neural dynamic of perceptual suppression. In addition, we propose a new cross-entropy measure at multiple scales, namely adaptive multi-scale cross-entropy (AMCE), to assess the nonlinear functional connectivity between two cortical areas. We show that: (1) multi-scale entropy exhibits percept-related changes in all three areas, with higher entropy observed during perceptual suppression; (2) the magnitude of the perception-related entropy changes increases systematically over successive hierarchical stages (i.e. from lower areas V1 to V2, up to higher area V4); and (3) cross-entropy between any two cortical areas reveals higher degree of asynchrony or dissimilarity during perceptual suppression, indicating a decreased functional connectivity between cortical areas. These results, taken together, suggest that perceptual suppression is related to a reduced functional connectivity and increased uncertainty of neural responses, and the modulation of perceptual suppression is more effective at higher visual cortical areas. AME is demonstrated to be a useful technique in revealing the underlying dynamic of nonlinear/nonstationary neural signal.

  16. Is orbital volume associated with eyeball and visual cortex volume in humans?

    PubMed Central

    Pearce, Eiluned; Bridge, Holly

    2013-01-01

    Background In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. Aim To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Subjects & Methods Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (N=88), and brain and visual cortex (N=99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. Results A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes, (iii) different visual cortical areas, independently of overall brain volume. Conclusion In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices. PMID:23879766

  17. [Visual perception of Kanji characters and complicated figures. Part 3. Visual P300 event-related potentials in patients with attention deficit/hyperactivity disorders].

    PubMed

    Shirane, Seiko; Inagaki, Masumi; Sata, Yoshimi; Kaga, Makiko

    2004-07-01

    In order to evaluate visual perception, the P300 event-related potentials (ERPs) for visual oddball tasks were recorded in 11 patients with attention deficit/hyperactivity disorders (AD/HD), 12 with mental retardation (MR) and 14 age-matched healthy controls. With the aim of revealing trial-to-trial variabilities which are neglected by investigating averaged ERPs, single sweep P300s (ss-P300s) were assessed in addition to averaged P300. There were no significant differences of averaged P300 latency and amplitude between controls and AD/HD patients. AD/HD patients showed an increased variability in the amplitude of ss-P300s, while MR patient showed an increased variability in latency. These findings suggest that in AD/HD patients general attention is impaired to a larger extent than selective attention and visual perception.

  18. Reduction in Dynamic Visual Acuity Reveals Gaze Control Changes Following Spaceflight

    NASA Technical Reports Server (NTRS)

    Peters, Brian T.; Brady, Rachel A.; Miller, Chris; Lawrence, Emily L.; Mulavara Ajitkumar P.; Bloomberg, Jacob J.

    2010-01-01

    INTRODUCTION: Exposure to microgravity causes adaptive changes in eye-head coordination that can lead to altered gaze control. This could affect postflight visual acuity during head and body motion. The goal of this study was to characterize changes in dynamic visual acuity after long-duration spaceflight. METHODS: Dynamic Visual Acuity (DVA) data from 14 astro/cosmonauts were collected after long-duration (6 months) spaceflight. The difference in acuity between seated and walking conditions provided a metric of change in the subjects ability to maintain gaze fixation during self-motion. In each condition, a psychophysical threshold detection algorithm was used to display Landolt ring optotypes at a size that was near each subject s acuity threshold. Verbal responses regarding the orientation of the gap were recorded as the optotypes appeared sequentially on a computer display 4 meters away. During the walking trials, subjects walked at 6.4 km/h on a motorized treadmill. RESULTS: A decrement in mean postflight DVA was found, with mean values returning to baseline within 1 week. The population mean showed a consistent improvement in DVA performance, but it was accompanied by high variability. A closer examination of the individual subject s recovery curves revealed that many did not follow a pattern of continuous improvement with each passing day. When adjusted on the basis of previous long-duration flight experience, the population mean shows a "bounce" in the re-adaptation curve. CONCLUSION: Gaze control during self-motion is altered following long-duration spaceflight and changes in postflight DVA performance indicate that vestibular re-adaptation may be more complex than a gradual return to normal.

  19. Dynamics of the spatial scale of visual attention revealed by brain event-related potentials

    NASA Technical Reports Server (NTRS)

    Luo, Y. J.; Greenwood, P. M.; Parasuraman, R.

    2001-01-01

    The temporal dynamics of the spatial scaling of attention during visual search were examined by recording event-related potentials (ERPs). A total of 16 young participants performed a search task in which the search array was preceded by valid cues that varied in size and hence in precision of target localization. The effects of cue size on short-latency (P1 and N1) ERP components, and the time course of these effects with variation in cue-target stimulus onset asynchrony (SOA), were examined. Reaction time (RT) to discriminate a target was prolonged as cue size increased. The amplitudes of the posterior P1 and N1 components of the ERP evoked by the search array were affected in opposite ways by the size of the precue: P1 amplitude increased whereas N1 amplitude decreased as cue size increased, particularly following the shortest SOA. The results show that when top-down information about the region to be searched is less precise (larger cues), RT is slowed and the neural generators of P1 become more active, reflecting the additional computations required in changing the spatial scale of attention to the appropriate element size to facilitate target discrimination. In contrast, the decrease in N1 amplitude with cue size may reflect a broadening of the spatial gradient of attention. The results provide electrophysiological evidence that changes in the spatial scale of attention modulate neural activity in early visual cortical areas and activate at least two temporally overlapping component processes during visual search.

  20. Simulations and Visualizations of Hurricane Sandy (2012) as Revealed by the NASA CAMVis

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen

    2013-01-01

    Storm Sandy first appeared as a tropical storm in the southern Caribbean Sea on Oct. 22, 2012, moved northeastward, turned northwestward, and made landfall near Brigantine, New Jersey in late October. Sandy devastated surrounding areas, caused an estimated damage of $50 billion, and became the second costliest tropical cyclone (TC) in U.S. History surpassed only by Hurricane Katrina (2005). To save lives and mitigate economic damage, a central question to be addressed is to what extent the lead time of severe storm prediction such as Sandy can be extended (e.g., Emanuel 2012; Kerr 2012). In this study, we present 10 numerical experiments initialized at 00 and 1200 UTC Oct. 22-26, 2012, with the NASA coupled advanced global modeling and visualization systems (CAMVis). All of the predictions realistically capture Sandy's movement with the northwestward turn prior to its landfall. However, three experiments (initialized at 0000 UTC Oct. 22 and 24 and 1200 UTC Oct. 22) produce larger errors. Among the 10 experiments, the control run initialized at 0000 UTC Oct. 23 produces a remarkable 7-day forecast. To illustrate the impact of environmental flows on the predictability of Sandy, we produce and discuss four-dimensional (4-D) visualizations with the control run. 4-D visualizations clearly demonstrate the following multiscale processes that led to the sinuous track of Sandy: the initial steering impact of an upper-level trough (appearing over the northwestern Caribbean Sea and Gulf of Mexico), the blocking impact of systems to the northeast of Sandy, and the binary interaction with a mid-latitude, upper-level trough that appeared at 130degrees west longitude on Oct. 23, moved to the East Coast and intensified during the period of Oct. 29-30 prior to Sandy's landfall.

  1. Zinc histochemistry reveals circuit refinement and distinguishes visual areas in the developing ferret cerebral cortex.

    PubMed

    Khalil, Reem; Levitt, Jonathan B

    2013-09-01

    A critical question in brain development is whether different brain circuits mature concurrently or with different timescales. To characterize the anatomical and functional development of different visual cortical areas, one must be able to distinguish these areas. Here, we show that zinc histochemistry, which reveals a subset of glutamatergic processes, can be used to reliably distinguish visual areas in juvenile and adult ferret cerebral cortex, and that the postnatal decline in levels of synaptic zinc follows a broadly similar developmental trajectory in multiple areas of ferret visual cortex. Zinc staining in all areas examined (17, 18, 19, 21, and Suprasylvian) is greater in the 5-week-old than in the adult. Furthermore, there is less laminar variation in zinc staining in the 5-week-old visual cortex than in the adult. Despite differences in staining intensity, areal boundaries can be discerned in the juvenile as in the adult. By 6 weeks of age, we observe a significant decline in visual cortical synaptic zinc; this decline was most pronounced in layer IV of areas 17 and 18, with much less change in higher-order extrastriate areas during the important period in visual cortical development following eye opening. By 10 weeks of age, the laminar pattern of zinc staining in all visual areas is essentially adultlike. The decline in synaptic zinc in the supra- and infragranular layers in all areas proceeds at the same rate, though the decline in layer IV does not. These results suggest that the timecourse of synaptic zinc decline is lamina specific, and further confirm and extend the notion that at least some aspects of cortical maturation follow a similar developmental timecourse in multiple areas. The postnatal decline in synaptic zinc we observe during the second postnatal month begins after eye opening, consistent with evidence that synaptic zinc is regulated by sensory experience.

  2. The selective processing of emotional visual stimuli while detecting auditory targets: an ERP analysis.

    PubMed

    Schupp, Harald T; Stockburger, Jessica; Bublatzky, Florian; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O

    2008-09-16

    Event-related potential studies revealed an early posterior negativity (EPN) for emotional compared to neutral pictures. Exploring the emotion-attention relationship, a previous study observed that a primary visual discrimination task interfered with the emotional modulation of the EPN component. To specify the locus of interference, the present study assessed the fate of selective visual emotion processing while attention is directed towards the auditory modality. While simply viewing a rapid and continuous stream of pleasant, neutral, and unpleasant pictures in one experimental condition, processing demands of a concurrent auditory target discrimination task were systematically varied in three further experimental conditions. Participants successfully performed the auditory task as revealed by behavioral performance and selected event-related potential components. Replicating previous results, emotional pictures were associated with a larger posterior negativity compared to neutral pictures. Of main interest, increasing demands of the auditory task did not modulate the selective processing of emotional visual stimuli. With regard to the locus of interference, selective emotion processing as indexed by the EPN does not seem to reflect shared processing resources of visual and auditory modality.

  3. Activity in human visual and parietal cortex reveals object-based attention in working memory.

    PubMed

    Peters, Benjamin; Kaiser, Jochen; Rahm, Benjamin; Bledowski, Christoph

    2015-02-25

    Visual attention enables observers to select behaviorally relevant information based on spatial locations, features, or objects. Attentional selection is not limited to physically present visual information, but can also operate on internal representations maintained in working memory (WM) in service of higher-order cognition. However, only little is known about whether attention to WM contents follows the same principles as attention to sensory stimuli. To address this question, we investigated in humans whether the typically observed effects of object-based attention in perception are also evident for object-based attentional selection of internal object representations in WM. In full accordance with effects in visual perception, the key behavioral and neuronal characteristics of object-based attention were observed in WM. Specifically, we found that reaction times were shorter when shifting attention to memory positions located on the currently attended object compared with equidistant positions on a different object. Furthermore, functional magnetic resonance imaging and multivariate pattern analysis of visuotopic activity in visual (areas V1-V4) and parietal cortex revealed that directing attention to one position of an object held in WM also enhanced brain activation for other positions on the same object, suggesting that attentional selection in WM activates the entire object. This study demonstrated that all characteristic features of object-based attention are present in WM and thus follows the same principles as in perception. Copyright © 2015 the authors 0270-6474/15/353360-10$15.00/0.

  4. Eye Movements Reveal How Task Difficulty Moulds Visual Search

    ERIC Educational Resources Information Center

    Young, Angela H.; Hulleman, Johan

    2013-01-01

    In two experiments we investigated the relationship between eye movements and performance in visual search tasks of varying difficulty. Experiment 1 provided evidence that a single process is used for search among static and moving items. Moreover, we estimated the functional visual field (FVF) from the gaze coordinates and found that its size…

  5. Audio-visual integration through the parallel visual pathways.

    PubMed

    Kaposvári, Péter; Csete, Gergő; Bognár, Anna; Csibri, Péter; Tóth, Eszter; Szabó, Nikoletta; Vécsei, László; Sáry, Gyula; Tamás Kincses, Zsigmond

    2015-10-22

    Audio-visual integration has been shown to be present in a wide range of different conditions, some of which are processed through the dorsal, and others through the ventral visual pathway. Whereas neuroimaging studies have revealed integration-related activity in the brain, there has been no imaging study of the possible role of segregated visual streams in audio-visual integration. We set out to determine how the different visual pathways participate in this communication. We investigated how audio-visual integration can be supported through the dorsal and ventral visual pathways during the double flash illusion. Low-contrast and chromatic isoluminant stimuli were used to drive preferably the dorsal and ventral pathways, respectively. In order to identify the anatomical substrates of the audio-visual interaction in the two conditions, the psychophysical results were correlated with the white matter integrity as measured by diffusion tensor imaging.The psychophysiological data revealed a robust double flash illusion in both conditions. A correlation between the psychophysical results and local fractional anisotropy was found in the occipito-parietal white matter in the low-contrast condition, while a similar correlation was found in the infero-temporal white matter in the chromatic isoluminant condition. Our results indicate that both of the parallel visual pathways may play a role in the audio-visual interaction. Copyright © 2015. Published by Elsevier B.V.

  6. Visual processing during natural reading

    PubMed Central

    Weiss, Béla; Knakker, Balázs; Vidnyánszky, Zoltán

    2016-01-01

    Reading is a unique human ability that plays a pivotal role in the development and functioning of our modern society. However, its neural basis remains poorly understood since previous research was focused on reading words with fixed gaze. Here we developed a methodological framework for single-trial analysis of fixation onset-related EEG activity (FOREA) that enabled us to investigate visual information processing during natural reading. To reveal the effect of reading skills on orthographic processing during natural reading, we measured how altering the configural properties of the written text by modifying inter-letter spacing affects FOREA. We found that orthographic processing is reflected in FOREA in three consecutive time windows (120–175 ms, 230–265 ms, 345–380 ms after fixation onset) and the magnitude of FOREA effects in the two later time intervals showed a close association with the participants’ reading speed: FOREA effects were larger in fast than in slow readers. Furthermore, these expertise-driven configural effects were clearly dissociable from the FOREA signatures of visual perceptual processes engaged to handle the increased crowding (155–220 ms) as a result of decreasing letter spacing. Our findings revealed that with increased reading skills orthographic processing becomes more sensitive to the configural properties of the written text. PMID:27231193

  7. A unified data representation theory for network visualization, ordering and coarse-graining

    PubMed Central

    Kovács, István A.; Mizsei, Réka; Csermely, Péter

    2015-01-01

    Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of extensive data sets, by revealing the large-scale structure of complex networks in a comprehensible form. PMID:26348923

  8. Visual motion transforms visual space representations similarly throughout the human visual hierarchy.

    PubMed

    Harvey, Ben M; Dumoulin, Serge O

    2016-02-15

    Several studies demonstrate that visual stimulus motion affects neural receptive fields and fMRI response amplitudes. Here we unite results of these two approaches and extend them by examining the effects of visual motion on neural position preferences throughout the hierarchy of human visual field maps. We measured population receptive field (pRF) properties using high-field fMRI (7T), characterizing position preferences simultaneously over large regions of the visual cortex. We measured pRFs properties using sine wave gratings in stationary apertures, moving at various speeds in either the direction of pRF measurement or the orthogonal direction. We find direction- and speed-dependent changes in pRF preferred position and size in all visual field maps examined, including V1, V3A, and the MT+ map TO1. These effects on pRF properties increase up the hierarchy of visual field maps. However, both within and between visual field maps the extent of pRF changes was approximately proportional to pRF size. This suggests that visual motion transforms the representation of visual space similarly throughout the visual hierarchy. Visual motion can also produce an illusory displacement of perceived stimulus position. We demonstrate perceptual displacements using the same stimulus configuration. In contrast to effects on pRF properties, perceptual displacements show only weak effects of motion speed, with far larger speed-independent effects. We describe a model where low-level mechanisms could underlie the observed effects on neural position preferences. We conclude that visual motion induces similar transformations of visuo-spatial representations throughout the visual hierarchy, which may arise through low-level mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Interrupted Visual Searches Reveal Volatile Search Memory

    ERIC Educational Resources Information Center

    Shen, Y. Jeremy; Jiang, Yuhong V.

    2006-01-01

    This study investigated memory from interrupted visual searches. Participants conducted a change detection search task on polygons overlaid on scenes. Search was interrupted by various disruptions, including unfilled delay, passive viewing of other scenes, and additional search on new displays. Results showed that performance was unaffected by…

  10. Object versus spatial visual mental imagery in patients with schizophrenia

    PubMed Central

    Aleman, André; de Haan, Edward H.F.; Kahn, René S.

    2005-01-01

    Objective Recent research has revealed a larger impairment of object perceptual discrimination than of spatial perceptual discrimination in patients with schizophrenia. It has been suggested that mental imagery may share processing systems with perception. We investigated whether patients with schizophrenia would show greater impairment regarding object imagery than spatial imagery. Methods Forty-four patients with schizophrenia and 20 healthy control subjects were tested on a task of object visual mental imagery and on a task of spatial visual mental imagery. Both tasks included a condition in which no imagery was needed for adequate performance, but which was in other respects identical to the imagery condition. This allowed us to adjust for nonspecific differences in individual performance. Results The results revealed a significant difference between patients and controls on the object imagery task (F1,63 = 11.8, p = 0.001) but not on the spatial imagery task (F1,63 = 0.14, p = 0.71). To test for a differential effect, we conducted a 2 (patients v. controls) х 2 (object task v. spatial task) analysis of variance. The interaction term was statistically significant (F1,62 = 5.2, p = 0.026). Conclusions Our findings suggest a differential dysfunction of systems mediating object and spatial visual mental imagery in schizophrenia. PMID:15644999

  11. The role of early visual cortex in visual short-term memory and visual attention.

    PubMed

    Offen, Shani; Schluppeck, Denis; Heeger, David J

    2009-06-01

    We measured cortical activity with functional magnetic resonance imaging to probe the involvement of early visual cortex in visual short-term memory and visual attention. In four experimental tasks, human subjects viewed two visual stimuli separated by a variable delay period. The tasks placed differential demands on short-term memory and attention, but the stimuli were visually identical until after the delay period. Early visual cortex exhibited sustained responses throughout the delay when subjects performed attention-demanding tasks, but delay-period activity was not distinguishable from zero when subjects performed a task that required short-term memory. This dissociation reveals different computational mechanisms underlying the two processes.

  12. Changing viewer perspectives reveals constraints to implicit visual statistical learning.

    PubMed

    Jiang, Yuhong V; Swallow, Khena M

    2014-10-07

    Statistical learning-learning environmental regularities to guide behavior-likely plays an important role in natural human behavior. One potential use is in search for valuable items. Because visual statistical learning can be acquired quickly and without intention or awareness, it could optimize search and thereby conserve energy. For this to be true, however, visual statistical learning needs to be viewpoint invariant, facilitating search even when people walk around. To test whether implicit visual statistical learning of spatial information is viewpoint independent, we asked participants to perform a visual search task from variable locations around a monitor placed flat on a stand. Unbeknownst to participants, the target was more often in some locations than others. In contrast to previous research on stationary observers, visual statistical learning failed to produce a search advantage for targets in high-probable regions that were stable within the environment but variable relative to the viewer. This failure was observed even when conditions for spatial updating were optimized. However, learning was successful when the rich locations were referenced relative to the viewer. We conclude that changing viewer perspective disrupts implicit learning of the target's location probability. This form of learning shows limited integration with spatial updating or spatiotopic representations. © 2014 ARVO.

  13. Mixing apples with oranges: Visual attention deficits in schizophrenia.

    PubMed

    Caprile, Claudia; Cuevas-Esteban, Jorge; Ochoa, Susana; Usall, Judith; Navarra, Jordi

    2015-09-01

    Patients with schizophrenia usually present cognitive deficits. We investigated possible anomalies at filtering out irrelevant visual information in this psychiatric disorder. Associations between these anomalies and positive and/or negative symptomatology were also addressed. A group of individuals with schizophrenia and a control group of healthy adults performed a Garner task. In Experiment 1, participants had to rapidly classify visual stimuli according to their colour while ignoring their shape. These two perceptual dimensions are reported to be "separable" by visual selective attention. In Experiment 2, participants classified the width of other visual stimuli while trying to ignore their height. These two visual dimensions are considered as being "integral" and cannot be attended separately. While healthy perceivers were, in Experiment 1, able to exclusively respond to colour, an irrelevant variation in shape increased colour-based reaction times (RTs) in the group of patients. In Experiment 2, RTs when classifying width increased in both groups as a consequence of perceiving a variation in the irrelevant dimension (height). However, this interfering effect was larger in the group of schizophrenic patients than in the control group. Further analyses revealed that these alterations in filtering out irrelevant visual information correlated with positive symptoms in PANSS scale. A possible limitation of the study is the relatively small sample. Our findings suggest the presence of attention deficits in filtering out irrelevant visual information in schizophrenia that could be related to positive symptomatology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Visual exposure to large and small portion sizes and perceptions of portion size normality: Three experimental studies.

    PubMed

    Robinson, Eric; Oldham, Melissa; Cuckson, Imogen; Brunstrom, Jeffrey M; Rogers, Peter J; Hardman, Charlotte A

    2016-03-01

    Portion sizes of many foods have increased in recent times. In three studies we examined the effect that repeated visual exposure to larger versus smaller food portion sizes has on perceptions of what constitutes a normal-sized food portion and measures of portion size selection. In studies 1 and 2 participants were visually exposed to images of large or small portions of spaghetti bolognese, before making evaluations about an image of an intermediate sized portion of the same food. In study 3 participants were exposed to images of large or small portions of a snack food before selecting a portion size of snack food to consume. Across the three studies, visual exposure to larger as opposed to smaller portion sizes resulted in participants considering a normal portion of food to be larger than a reference intermediate sized portion. In studies 1 and 2 visual exposure to larger portion sizes also increased the size of self-reported ideal meal size. In study 3 visual exposure to larger portion sizes of a snack food did not affect how much of that food participants subsequently served themselves and ate. Visual exposure to larger portion sizes may adjust visual perceptions of what constitutes a 'normal' sized portion. However, we did not find evidence that visual exposure to larger portions altered snack food intake. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. [Sound improves distinction of low intensities of light in the visual cortex of a rabbit].

    PubMed

    Polianskiĭ, V B; Alymkulov, D E; Evtikhin, D V; Chernyshev, B V

    2011-01-01

    Electrodes were implanted into cranium above the primary visual cortex of four rabbits (Orictolagus cuniculus). At the first stage, visual evoked potentials (VEPs) were recorded in response to substitution of threshold visual stimuli (0.28 and 0.31 cd/m2). Then the sound (2000 Hz, 84 dB, duration 40 ms) was added simultaneously to every visual stimulus. Single sounds (without visual stimuli) did not produce a VEP-response. It was found that the amplitude ofVEP component N1 (85-110 ms) in response to complex stimuli (visual and sound) increased 1.6 times as compared to "simple" visual stimulation. At the second stage, paired substitutions of 8 different visual stimuli (range 0.38-20.2 cd/m2) by each other were performed. Sensory spaces of intensity were reconstructed on the basis of factor analysis. Sensory spaces of complexes were reconstructed in a similar way for simultaneous visual and sound stimulation. Comparison of vectors representing the stimuli in the spaces showed that the addition of a sound led to a 1.4-fold expansion of the space occupied by smaller intensities (0.28; 1.02; 3.05; 6.35 cd/m2). Also, the addition of the sound led to an arrangement of intensities in an ascending order. At the same time, the sound 1.33-times narrowed the space of larger intensities (8.48; 13.7; 16.8; 20.2 cd/m2). It is suggested that the addition of a sound improves a distinction of smaller intensities and impairs a dis- tinction of larger intensities. Sensory spaces revealed by complex stimuli were two-dimensional. This fact can be a consequence of integration of sound and light in a unified complex at simultaneous stimulation.

  16. Cortical and Subcortical Coordination of Visual Spatial Attention Revealed by Simultaneous EEG-fMRI Recording.

    PubMed

    Green, Jessica J; Boehler, Carsten N; Roberts, Kenneth C; Chen, Ling-Chia; Krebs, Ruth M; Song, Allen W; Woldorff, Marty G

    2017-08-16

    produces spatially specific changes in visual cortex activity in anticipation of a stimulus. The mechanisms controlling these attention-related modulations of sensory cortex, however, are poorly understood. Here, we recorded these two complementary measures of brain activity simultaneously and examined their trial-to-trial covariations to gain insight into these attentional control mechanisms. This multi-methodological approach revealed the attention-related coordination of visual cortex modulation by the subcortical pulvinar nucleus of the thalamus while also disentangling the mechanisms underlying the attentional enhancement of relevant stimulus input and those underlying the concurrent suppression of irrelevant input. Copyright © 2017 the authors 0270-6474/17/377803-08$15.00/0.

  17. Gait adaptability training is affected by visual dependency.

    PubMed

    Brady, Rachel A; Peters, Brian T; Batson, Crystal D; Ploutz-Snyder, Robert; Mulavara, Ajitkumar P; Bloomberg, Jacob J

    2012-07-01

    As part of a larger gait adaptability training study, we designed a program that presented combinations of visual flow and support-surface manipulations to investigate the response of healthy adults to walking on a treadmill in novel discordant sensorimotor conditions. A visual dependence score was determined for each subject, and this score was used to explore how visual dependency was linked to locomotor performance (1) during three training sessions and (2) in a new discordant environment presented at the conclusion of training. Performance measures included reaction time (RT), stride frequency (SF), and heart rate (HR), which respectively served as indicators of cognitive load, postural stability, and anxiety. We hypothesized that training would affect performance measures differently for highly visually dependent individuals than for their less visually dependent counterparts. A seemingly unrelated estimation analysis of RT, SF, and HR revealed a significant omnibus interaction of visual dependency by session (p < 0.001), suggesting that the magnitude of differences in these measures across training day 1 (TD1), training day 3 (TD3), and exposure to a novel test is dependent on subjects' levels of visual dependency. The RT result, in particular, suggested that highly visually dependent subjects successfully trained to one set of sensory discordant conditions but were unable to apply their adapted skills when introduced to a new sensory discordant environment. This finding augments rationale for developing customized gait training programs that are tailored to an individual. It highlights one factor--personal level of visual dependency--to consider when designing training conditions for a subject or patient. Finally, the link between visual dependency and locomotor performance may offer predictive insight regarding which subjects in a normal population will require more training when preparing for specific novel locomotor conditions.

  18. Model-Based Reasoning: Using Visual Tools to Reveal Student Learning

    ERIC Educational Resources Information Center

    Luckie, Douglas; Harrison, Scott H.; Ebert-May, Diane

    2011-01-01

    Using visual models is common in science and should become more common in classrooms. Our research group has developed and completed studies on the use of a visual modeling tool, the Concept Connector. This modeling tool consists of an online concept mapping Java applet that has automatic scoring functions we refer to as Robograder. The Concept…

  19. Mechanisms of migraine aura revealed by functional MRI in human visual cortex

    PubMed Central

    Hadjikhani, Nouchine; Sanchez del Rio, Margarita; Wu, Ona; Schwartz, Denis; Bakker, Dick; Fischl, Bruce; Kwong, Kenneth K.; Cutrer, F. Michael; Rosen, Bruce R.; Tootell, Roger B. H.; Sorensen, A. Gregory; Moskowitz, Michael A.

    2001-01-01

    Cortical spreading depression (CSD) has been suggested to underlie migraine visual aura. However, it has been challenging to test this hypothesis in human cerebral cortex. Using high-field functional MRI with near-continuous recording during visual aura in three subjects, we observed blood oxygenation level-dependent (BOLD) signal changes that demonstrated at least eight characteristics of CSD, time-locked to percept/onset of the aura. Initially, a focal increase in BOLD signal (possibly reflecting vasodilation), developed within extrastriate cortex (area V3A). This BOLD change progressed contiguously and slowly (3.5 ± 1.1 mm/min) over occipital cortex, congruent with the retinotopy of the visual percept. Following the same retinotopic progression, the BOLD signal then diminished (possibly reflecting vasoconstriction after the initial vasodilation), as did the BOLD response to visual activation. During periods with no visual stimulation, but while the subject was experiencing scintillations, BOLD signal followed the retinotopic progression of the visual percept. These data strongly suggest that an electrophysiological event such as CSD generates the aura in human visual cortex. PMID:11287655

  20. Visualization of electronic density

    DOE PAGES

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; ...

    2015-04-22

    An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.

  1. Digital holographic image fusion for a larger size object using compressive sensing

    NASA Astrophysics Data System (ADS)

    Tian, Qiuhong; Yan, Liping; Chen, Benyong; Yao, Jiabao; Zhang, Shihua

    2017-05-01

    Digital holographic imaging fusion for a larger size object using compressive sensing is proposed. In this method, the high frequency component of the digital hologram under discrete wavelet transform is represented sparsely by using compressive sensing so that the data redundancy of digital holographic recording can be resolved validly, the low frequency component is retained totally to ensure the image quality, and multiple reconstructed images with different clear parts corresponding to a laser spot size are fused to realize the high quality reconstructed image of a larger size object. In addition, a filter combing high-pass and low-pass filters is designed to remove the zero-order term from a digital hologram effectively. The digital holographic experimental setup based on off-axis Fresnel digital holography was constructed. The feasible and comparative experiments were carried out. The fused image was evaluated by using the Tamura texture features. The experimental results demonstrated that the proposed method can improve the processing efficiency and visual characteristics of the fused image and enlarge the size of the measured object effectively.

  2. Distinct Feedforward and Feedback Effects of Microstimulation in Visual Cortex Reveal Neural Mechanisms of Texture Segregation.

    PubMed

    Klink, P Christiaan; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Roelfsema, Pieter R

    2017-07-05

    The visual cortex is hierarchically organized, with low-level areas coding for simple features and higher areas for complex ones. Feedforward and feedback connections propagate information between areas in opposite directions, but their functional roles are only partially understood. We used electrical microstimulation to perturb the propagation of neuronal activity between areas V1 and V4 in monkeys performing a texture-segregation task. In both areas, microstimulation locally caused a brief phase of excitation, followed by inhibition. Both these effects propagated faithfully in the feedforward direction from V1 to V4. Stimulation of V4, however, caused little V1 excitation, but it did yield a delayed suppression during the late phase of visually driven activity. This suppression was pronounced for the V1 figure representation and weaker for background representations. Our results reveal functional differences between feedforward and feedback processing in texture segregation and suggest a specific modulating role for feedback connections in perceptual organization. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Visual Field Asymmetry in Attentional Capture

    ERIC Educational Resources Information Center

    Du, Feng; Abrams, Richard A.

    2010-01-01

    The present study examined the spatial distribution of involuntary attentional capture over the two visual hemi-fields. A new experiment, and an analysis of three previous experiments showed that distractors in the left visual field that matched a sought-for target in color produced a much larger capture effect than identical distractors in the…

  4. Hearing Shapes: Event-related Potentials Reveal the Time Course of Auditory-Visual Sensory Substitution.

    PubMed

    Graulty, Christian; Papaioannou, Orestis; Bauer, Phoebe; Pitts, Michael A; Canseco-Gonzalez, Enriqueta

    2018-04-01

    In auditory-visual sensory substitution, visual information (e.g., shape) can be extracted through strictly auditory input (e.g., soundscapes). Previous studies have shown that image-to-sound conversions that follow simple rules [such as the Meijer algorithm; Meijer, P. B. L. An experimental system for auditory image representation. Transactions on Biomedical Engineering, 39, 111-121, 1992] are highly intuitive and rapidly learned by both blind and sighted individuals. A number of recent fMRI studies have begun to explore the neuroplastic changes that result from sensory substitution training. However, the time course of cross-sensory information transfer in sensory substitution is largely unexplored and may offer insights into the underlying neural mechanisms. In this study, we recorded ERPs to soundscapes before and after sighted participants were trained with the Meijer algorithm. We compared these posttraining versus pretraining ERP differences with those of a control group who received the same set of 80 auditory/visual stimuli but with arbitrary pairings during training. Our behavioral results confirmed the rapid acquisition of cross-sensory mappings, and the group trained with the Meijer algorithm was able to generalize their learning to novel soundscapes at impressive levels of accuracy. The ERP results revealed an early cross-sensory learning effect (150-210 msec) that was significantly enhanced in the algorithm-trained group compared with the control group as well as a later difference (420-480 msec) that was unique to the algorithm-trained group. These ERP modulations are consistent with previous fMRI results and provide additional insight into the time course of cross-sensory information transfer in sensory substitution.

  5. Differential Responses to a Visual Self-Motion Signal in Human Medial Cortical Regions Revealed by Wide-View Stimulation

    PubMed Central

    Wada, Atsushi; Sakano, Yuichi; Ando, Hiroshi

    2016-01-01

    Vision is important for estimating self-motion, which is thought to involve optic-flow processing. Here, we investigated the fMRI response profiles in visual area V6, the precuneus motion area (PcM), and the cingulate sulcus visual area (CSv)—three medial brain regions recently shown to be sensitive to optic-flow. We used wide-view stereoscopic stimulation to induce robust self-motion processing. Stimuli included static, randomly moving, and coherently moving dots (simulating forward self-motion). We varied the stimulus size and the presence of stereoscopic information. A combination of univariate and multi-voxel pattern analyses (MVPA) revealed that fMRI responses in the three regions differed from each other. The univariate analysis identified optic-flow selectivity and an effect of stimulus size in V6, PcM, and CSv, among which only CSv showed a significantly lower response to random motion stimuli compared with static conditions. Furthermore, MVPA revealed an optic-flow specific multi-voxel pattern in the PcM and CSv, where the discrimination of coherent motion from both random motion and static conditions showed above-chance prediction accuracy, but that of random motion from static conditions did not. Additionally, while area V6 successfully classified different stimulus sizes regardless of motion pattern, this classification was only partial in PcM and was absent in CSv. This may reflect the known retinotopic representation in V6 and the absence of such clear visuospatial representation in CSv. We also found significant correlations between the strength of subjective self-motion and univariate activation in all examined regions except for primary visual cortex (V1). This neuro-perceptual correlation was significantly higher for V6, PcM, and CSv when compared with V1, and higher for CSv when compared with the visual motion area hMT+. Our convergent results suggest the significant involvement of CSv in self-motion processing, which may give rise to its

  6. Advancing Water Science through Data Visualization

    NASA Astrophysics Data System (ADS)

    Li, X.; Troy, T.

    2014-12-01

    As water scientists, we are increasingly handling larger and larger datasets with many variables, making it easy to lose ourselves in the details. Advanced data visualization will play an increasingly significant role in propelling the development of water science in research, economy, policy and education. It can enable analysis within research and further data scientists' understanding of behavior and processes and can potentially affect how the public, whom we often want to inform, understands our work. Unfortunately for water scientists, data visualization is approached in an ad hoc manner when a more formal methodology or understanding could potentially significantly improve both research within the academy and outreach to the public. Firstly to broaden and deepen scientific understanding, data visualization can allow for more analyzed targets to be processed simultaneously and can represent the variables effectively, finding patterns, trends and relationships; thus it can even explores the new research direction or branch of water science. Depending on visualization, we can detect and separate the pivotal and trivial influential factors more clearly to assume and abstract the original complex target system. Providing direct visual perception of the differences between observation data and prediction results of models, data visualization allows researchers to quickly examine the quality of models in water science. Secondly data visualization can also improve public awareness and perhaps influence behavior. Offering decision makers clearer perspectives of potential profits of water, data visualization can amplify the economic value of water science and also increase relevant employment rates. Providing policymakers compelling visuals of the role of water for social and natural systems, data visualization can advance the water management and legislation of water conservation. By building the publics' own data visualization through apps and games about water

  7. Automatic frame-centered object representation and integration revealed by iconic memory, visual priming, and backward masking.

    PubMed

    Lin, Zhicheng; He, Sheng

    2012-10-25

    Object identities ("what") and their spatial locations ("where") are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects ("files") within the reference frame ("cabinet") are orderly coded relative to the frame.

  8. Query-Driven Visualization and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruebel, Oliver; Bethel, E. Wes; Prabhat, Mr.

    2012-11-01

    This report focuses on an approach to high performance visualization and analysis, termed query-driven visualization and analysis (QDV). QDV aims to reduce the amount of data that needs to be processed by the visualization, analysis, and rendering pipelines. The goal of the data reduction process is to separate out data that is "scientifically interesting'' and to focus visualization, analysis, and rendering on that interesting subset. The premise is that for any given visualization or analysis task, the data subset of interest is much smaller than the larger, complete data set. This strategy---extracting smaller data subsets of interest and focusing ofmore » the visualization processing on these subsets---is complementary to the approach of increasing the capacity of the visualization, analysis, and rendering pipelines through parallelism. This report discusses the fundamental concepts in QDV, their relationship to different stages in the visualization and analysis pipelines, and presents QDV's application to problems in diverse areas, ranging from forensic cybersecurity to high energy physics.« less

  9. EEG reveals an early influence of social conformity on visual processing in group pressure situations.

    PubMed

    Trautmann-Lengsfeld, Sina Alexa; Herrmann, Christoph Siegfried

    2013-01-01

    Humans are social beings and often have to perceive and perform within groups. In conflict situations, this puts them under pressure to either adhere to the group opinion or to risk controversy with the group. Psychological experiments have demonstrated that study participants adapt to erroneous group opinions in visual perception tasks, which they can easily solve correctly when performing on their own. Until this point, however, it is unclear whether this phenomenon of social conformity influences early stages of perception that might not even reach awareness or later stages of conscious decision-making. Using electroencephalography, this study has revealed that social conformity to the wrong group opinion resulted in a decrease of the posterior-lateral P1 in line with a decrease of the later centro-parietal P3. These results suggest that group pressure situations impact early unconscious visual perceptual processing, which results in a later diminished stimulus discrimination and an adaptation even to the wrong group opinion. These findings might have important implications for understanding social behavior in group settings and are discussed within the framework of social influence on eyewitness testimony.

  10. Visual Field Map Clusters in High-Order Visual Processing: Organization of V3A/V3B and a New Cloverleaf Cluster in the Posterior Superior Temporal Sulcus

    PubMed Central

    Barton, Brian; Brewer, Alyssa A.

    2017-01-01

    The cortical hierarchy of the human visual system has been shown to be organized around retinal spatial coordinates throughout much of low- and mid-level visual processing. These regions contain visual field maps (VFMs) that each follows the organization of the retina, with neighboring aspects of the visual field processed in neighboring cortical locations. On a larger, macrostructural scale, groups of such sensory cortical field maps (CFMs) in both the visual and auditory systems are organized into roughly circular cloverleaf clusters. CFMs within clusters tend to share properties such as receptive field distribution, cortical magnification, and processing specialization. Here we use fMRI and population receptive field (pRF) modeling to investigate the extent of VFM and cluster organization with an examination of higher-level visual processing in temporal cortex and compare these measurements to mid-level visual processing in dorsal occipital cortex. In human temporal cortex, the posterior superior temporal sulcus (pSTS) has been implicated in various neuroimaging studies as subserving higher-order vision, including face processing, biological motion perception, and multimodal audiovisual integration. In human dorsal occipital cortex, the transverse occipital sulcus (TOS) contains the V3A/B cluster, which comprises two VFMs subserving mid-level motion perception and visuospatial attention. For the first time, we present the organization of VFMs in pSTS in a cloverleaf cluster. This pSTS cluster contains four VFMs bilaterally: pSTS-1:4. We characterize these pSTS VFMs as relatively small at ∼125 mm2 with relatively large pRF sizes of ∼2–8° of visual angle across the central 10° of the visual field. V3A and V3B are ∼230 mm2 in surface area, with pRF sizes here similarly ∼1–8° of visual angle across the same region. In addition, cortical magnification measurements show that a larger extent of the pSTS VFM surface areas are devoted to the peripheral

  11. Contributions of visual and embodied expertise to body perception.

    PubMed

    Reed, Catherine L; Nyberg, Andrew A; Grubb, Jefferson D

    2012-01-01

    Recent research has demonstrated that our perception of the human body differs from that of inanimate objects. This study investigated whether the visual perception of the human body differs from that of other animate bodies and, if so, whether that difference could be attributed to visual experience and/or embodied experience. To dissociate differential effects of these two types of expertise, inversion effects (recognition of inverted stimuli is slower and less accurate than recognition of upright stimuli) were compared for two types of bodies in postures that varied in typicality: humans in human postures (human-typical), humans in dog postures (human-atypical), dogs in dog postures (dog-typical), and dogs in human postures (dog-atypical). Inversion disrupts global configural processing. Relative changes in the size and presence of inversion effects reflect changes in visual processing. Both visual and embodiment expertise predict larger inversion effects for human over dog postures because we see humans more and we have experience producing human postures. However, our design that crosses body type and typicality leads to distinct predictions for visual and embodied experience. Visual expertise predicts an interaction between typicality and orientation: greater inversion effects should be found for typical over atypical postures regardless of body type. Alternatively, embodiment expertise predicts a body, typicality, and orientation interaction: larger inversion effects should be found for all human postures but only for atypical dog postures because humans can map their bodily experience onto these postures. Accuracy data supported embodiment expertise with the three-way interaction. However, response-time data supported contributions of visual expertise with larger inversion effects for typical over atypical postures. Thus, both types of expertise affect the visual perception of bodies.

  12. Interoceptive signals impact visual processing: Cardiac modulation of visual body perception.

    PubMed

    Ronchi, Roberta; Bernasconi, Fosco; Pfeiffer, Christian; Bello-Ruiz, Javier; Kaliuzhna, Mariia; Blanke, Olaf

    2017-09-01

    Multisensory perception research has largely focused on exteroceptive signals, but recent evidence has revealed the integration of interoceptive signals with exteroceptive information. Such research revealed that heartbeat signals affect sensory (e.g., visual) processing: however, it is unknown how they impact the perception of body images. Here we linked our participants' heartbeat to visual stimuli and investigated the spatio-temporal brain dynamics of cardio-visual stimulation on the processing of human body images. We recorded visual evoked potentials with 64-channel electroencephalography while showing a body or a scrambled-body (control) that appeared at the frequency of the on-line recorded participants' heartbeat or not (not-synchronous, control). Extending earlier studies, we found a body-independent effect, with cardiac signals enhancing visual processing during two time periods (77-130 ms and 145-246 ms). Within the second (later) time-window we detected a second effect characterised by enhanced activity in parietal, temporo-occipital, inferior frontal, and right basal ganglia-insula regions, but only when non-scrambled body images were flashed synchronously with the heartbeat (208-224 ms). In conclusion, our results highlight the role of interoceptive information for the visual processing of human body pictures within a network integrating cardio-visual signals of relevance for perceptual and cognitive aspects of visual body processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Revealing hidden states in visual working memory using electroencephalography

    PubMed Central

    Wolff, Michael J.; Ding, Jacqueline; Myers, Nicholas E.; Stokes, Mark G.

    2015-01-01

    It is often assumed that information in visual working memory (vWM) is maintained via persistent activity. However, recent evidence indicates that information in vWM could be maintained in an effectively “activity-silent” neural state. Silent vWM is consistent with recent cognitive and neural models, but poses an important experimental problem: how can we study these silent states using conventional measures of brain activity? We propose a novel approach that is analogous to echolocation: using a high-contrast visual stimulus, it may be possible to drive brain activity during vWM maintenance and measure the vWM-dependent impulse response. We recorded electroencephalography (EEG) while participants performed a vWM task in which a randomly oriented grating was remembered. Crucially, a high-contrast, task-irrelevant stimulus was shown in the maintenance period in half of the trials. The electrophysiological response from posterior channels was used to decode the orientations of the gratings. While orientations could be decoded during and shortly after stimulus presentation, decoding accuracy dropped back close to baseline in the delay. However, the visual evoked response from the task-irrelevant stimulus resulted in a clear re-emergence in decodability. This result provides important proof-of-concept for a promising and relatively simple approach to decode “activity-silent” vWM content using non-invasive EEG. PMID:26388748

  14. Alterations in task-induced activity and resting-state fluctuations in visual and DMN areas revealed in long-term meditators.

    PubMed

    Berkovich-Ohana, Aviva; Harel, Michal; Hahamy, Avital; Arieli, Amos; Malach, Rafael

    2016-07-15

    Recently we proposed that the information contained in spontaneously emerging (resting-state) fluctuations may reflect individually unique neuro-cognitive traits. One prediction of this conjecture, termed the "spontaneous trait reactivation" (STR) hypothesis, is that resting-state activity patterns could be diagnostic of unique personalities, talents and life-styles of individuals. Long-term meditators could provide a unique experimental group to test this hypothesis. Using fMRI we found that, during resting-state, the amplitude of spontaneous fluctuations in long-term mindfulness meditation (MM) practitioners was enhanced in the visual cortex and significantly reduced in the DMN compared to naïve controls. Importantly, during a visual recognition memory task, the MM group showed heightened visual cortex responsivity, concomitant with weaker negative responses in Default Mode Network (DMN) areas. This effect was also reflected in the behavioral performance, where MM practitioners performed significantly faster than the control group. Thus, our results uncover opposite changes in the visual and default mode systems in long-term meditators which are revealed during both rest and task. The results support the STR hypothesis and extend it to the domain of local changes in the magnitude of the spontaneous fluctuations. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Visual, Musculoskeletal, and Balance Complaints in AMD: A Follow-Up Study

    PubMed Central

    Richter, Hans Olof

    2016-01-01

    Purpose. To investigate whether patients with age-related macular degeneration (AMD) run a potentially higher risk of developing visual, musculoskeletal, and balance complaints than age-matched controls with normal vision. Methods. Visual assessments, self-rated visual function, self-rated visual, musculoskeletal, and balance complaints, and perceived general health were obtained in 37 AMD patients and 18 controls, at baseline and after an average of 3.8 years later. Results. At follow-up both groups reported decreased visual acuity (VA) and visual function, but only AMD patients reported significantly increased visual, musculoskeletal, and balance complaints. Decreased VA, need for larger font size when reading, need for larger magnification, and decreased self-rated visual function were identified as risk markers for increased complaints in AMD patients. These complaints were also identified as risk markers for decreased health. For controls, decreased VA and self-reported visual function were associated with increased visual and balance complaints. Conclusions. Visual deterioration was a risk marker for increased visual, musculoskeletal, balance, and health complaints in AMD patients. Specifically, magnifying visual aids, such as CCTV, were a risk marker for increased complaints in AMD patients. This calls for early and coordinated actions to treat and prevent visual, musculoskeletal, balance, and health complaints in AMD patients. PMID:27830084

  16. A phytochemical-rich diet may explain the absence of age-related decline in visual acuity of Amazonian hunter-gatherers in Ecuador.

    PubMed

    London, Douglas S; Beezhold, Bonnie

    2015-02-01

    Myopia is absent in undisturbed hunter-gatherers but ubiquitous in modern populations. The link between dietary phytochemicals and eye health is well established, although transition away from a wild diet has reduced phytochemical variety. We hypothesized that when larger quantities and greater variety of wild, seasonal phytochemicals are consumed in a food system, there will be a reduced prevalence of degenerative-based eye disease as measured by visual acuity. We compared food systems and visual acuity across isolated Amazonian Kawymeno Waorani hunter-gatherers and neighboring Kichwa subsistence agrarians, using dietary surveys, dietary pattern observation, and Snellen Illiterate E visual acuity examinations. Hunter-gatherers consumed more food species (130 vs. 63) and more wild plants (80 vs. 4) including 76 wild fruits, thereby obtaining larger variety and quantity of phytochemicals than agrarians. Visual acuity was inversely related to age only in agrarians (r = -.846, P < .001). As hypothesized, when stratified by age (<40 and ≥ 40 years), Mann-Whitney U tests revealed that hunter-gatherers maintained high visual acuity throughout life, whereas agrarian visual acuity declined (P values < .001); visual acuity of younger participants was high across the board, however, did not differ between groups (P > .05). This unusual absence of juvenile-onset vision problems may be related to local, organic, whole food diets of subsistence food systems isolated from modern food production. Our results suggest that intake of a wider variety of plant foods supplying necessary phytochemicals for eye health may help maintain visual acuity and prevent degenerative eye conditions as humans age. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The Effect of Eye Contact Is Contingent on Visual Awareness

    PubMed Central

    Xu, Shan; Zhang, Shen; Geng, Haiyan

    2018-01-01

    The present study explored how eye contact at different levels of visual awareness influences gaze-induced joint attention. We adopted a spatial-cueing paradigm, in which an averted gaze was used as an uninformative central cue for a joint-attention task. Prior to the onset of the averted-gaze cue, either supraliminal (Experiment 1) or subliminal (Experiment 2) eye contact was presented. The results revealed a larger subsequent gaze-cueing effect following supraliminal eye contact compared to a no-contact condition. In contrast, the gaze-cueing effect was smaller in the subliminal eye-contact condition than in the no-contact condition. These findings suggest that the facilitation effect of eye contact on coordinating social attention depends on visual awareness. Furthermore, subliminal eye contact might have an impact on subsequent social attention processes that differ from supraliminal eye contact. This study highlights the need to further investigate the role of eye contact in implicit social cognition. PMID:29467703

  18. Automatic frame-centered object representation and integration revealed by iconic memory, visual priming, and backward masking

    PubMed Central

    Lin, Zhicheng; He, Sheng

    2012-01-01

    Object identities (“what”) and their spatial locations (“where”) are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects (“files”) within the reference frame (“cabinet”) are orderly coded relative to the frame. PMID:23104817

  19. Neuronal nonlinearity explains greater visual spatial resolution for darks than lights.

    PubMed

    Kremkow, Jens; Jin, Jianzhong; Komban, Stanley J; Wang, Yushi; Lashgari, Reza; Li, Xiaobing; Jansen, Michael; Zaidi, Qasim; Alonso, Jose-Manuel

    2014-02-25

    Astronomers and physicists noticed centuries ago that visual spatial resolution is higher for dark than light stimuli, but the neuronal mechanisms for this perceptual asymmetry remain unknown. Here we demonstrate that the asymmetry is caused by a neuronal nonlinearity in the early visual pathway. We show that neurons driven by darks (OFF neurons) increase their responses roughly linearly with luminance decrements, independent of the background luminance. However, neurons driven by lights (ON neurons) saturate their responses with small increases in luminance and need bright backgrounds to approach the linearity of OFF neurons. We show that, as a consequence of this difference in linearity, receptive fields are larger in ON than OFF thalamic neurons, and cortical neurons are more strongly driven by darks than lights at low spatial frequencies. This ON/OFF asymmetry in linearity could be demonstrated in the visual cortex of cats, monkeys, and humans and in the cat visual thalamus. Furthermore, in the cat visual thalamus, we show that the neuronal nonlinearity is present at the ON receptive field center of ON-center neurons and ON receptive field surround of OFF-center neurons, suggesting an origin at the level of the photoreceptor. These results demonstrate a fundamental difference in visual processing between ON and OFF channels and reveal a competitive advantage for OFF neurons over ON neurons at low spatial frequencies, which could be important during cortical development when retinal images are blurred by immature optics in infant eyes.

  20. Visual Memories Bypass Normalization.

    PubMed

    Bloem, Ilona M; Watanabe, Yurika L; Kibbe, Melissa M; Ling, Sam

    2018-05-01

    How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores-neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation.

  1. Connectivity Reveals Sources of Predictive Coding Signals in Early Visual Cortex During Processing of Visual Optic Flow.

    PubMed

    Schindler, Andreas; Bartels, Andreas

    2017-05-01

    Superimposed on the visual feed-forward pathway, feedback connections convey higher level information to cortical areas lower in the hierarchy. A prominent framework for these connections is the theory of predictive coding where high-level areas send stimulus interpretations to lower level areas that compare them with sensory input. Along these lines, a growing body of neuroimaging studies shows that predictable stimuli lead to reduced blood oxygen level-dependent (BOLD) responses compared with matched nonpredictable counterparts, especially in early visual cortex (EVC) including areas V1-V3. The sources of these modulatory feedback signals are largely unknown. Here, we re-examined the robust finding of relative BOLD suppression in EVC evident during processing of coherent compared with random motion. Using functional connectivity analysis, we show an optic flow-dependent increase of functional connectivity between BOLD suppressed EVC and a network of visual motion areas including MST, V3A, V6, the cingulate sulcus visual area (CSv), and precuneus (Pc). Connectivity decreased between EVC and 2 areas known to encode heading direction: entorhinal cortex (EC) and retrosplenial cortex (RSC). Our results provide first evidence that BOLD suppression in EVC for predictable stimuli is indeed mediated by specific high-level areas, in accord with the theory of predictive coding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Longer is Larger--Or is It?

    ERIC Educational Resources Information Center

    Roche, Anne

    2005-01-01

    The author cites research from students' misconceptions of decimal notation that indicates that many students treat decimals as another whole number to the right of the decimal point. This "whole number thinking" leads some students to believe, in the context of comparing decimals, that "longer is larger" (for example, 0.45 is larger than 0.8…

  3. Visual Memories Bypass Normalization

    PubMed Central

    Bloem, Ilona M.; Watanabe, Yurika L.; Kibbe, Melissa M.; Ling, Sam

    2018-01-01

    How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores—neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation. PMID:29596038

  4. Early visual processing is enhanced in the midluteal phase of the menstrual cycle.

    PubMed

    Lusk, Bethany R; Carr, Andrea R; Ranson, Valerie A; Bryant, Richard A; Felmingham, Kim L

    2015-12-01

    Event-related potential (ERP) studies have revealed an early attentional bias in processing unpleasant emotional images in women. Recent neuroimaging data suggests there are significant differences in cortical emotional processing according to menstrual phase. This study examined the impact of menstrual phase on visual emotional processing in women compared to men. ERPs were recorded from 28 early follicular women, 29 midluteal women, and 27 men while they completed a passive viewing task of neutral and low- and high- arousing pleasant and unpleasant images. There was a significant effect of menstrual phase in early visual processing, as midluteal women displayed significantly greater P1 amplitude at occipital regions to all visual images compared to men. Both midluteal and early follicular women displayed larger N1 amplitudes than men (although this only reached significance for the midluteal group) to the visual images. No sex or menstrual phase differences were apparent in later N2, P3, or LPP. A condition effect demonstrated greater P3 and LPP amplitude to highly-arousing unpleasant images relative to all other stimuli conditions. These results indicate that women have greater early automatic visual processing compared to men, and suggests that this effect is particularly strong in women in the midluteal phase at the earliest stage of visual attention processing. Our findings highlight the importance of considering menstrual phase when examining sex differences in the cortical processing of visual stimuli. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Which visual functions depend on intermediate visual regions? Insights from a case of developmental visual form agnosia.

    PubMed

    Gilaie-Dotan, Sharon

    2016-03-01

    A key question in visual neuroscience is the causal link between specific brain areas and perceptual functions; which regions are necessary for which visual functions? While the contribution of primary visual cortex and high-level visual regions to visual perception has been extensively investigated, the contribution of intermediate visual areas (e.g. V2/V3) to visual processes remains unclear. Here I review more than 20 visual functions (early, mid, and high-level) of LG, a developmental visual agnosic and prosopagnosic young adult, whose intermediate visual regions function in a significantly abnormal fashion as revealed through extensive fMRI and ERP investigations. While expectedly, some of LG's visual functions are significantly impaired, some of his visual functions are surprisingly normal (e.g. stereopsis, color, reading, biological motion). During the period of eight-year testing described here, LG trained on a perceptual learning paradigm that was successful in improving some but not all of his visual functions. Following LG's visual performance and taking into account additional findings in the field, I propose a framework for how different visual areas contribute to different visual functions, with an emphasis on intermediate visual regions. Thus, although rewiring and plasticity in the brain can occur during development to overcome and compensate for hindering developmental factors, LG's case seems to indicate that some visual functions are much less dependent on strict hierarchical flow than others, and can develop normally in spite of abnormal mid-level visual areas, thereby probably less dependent on intermediate visual regions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Predictive coding of visual object position ahead of moving objects revealed by time-resolved EEG decoding.

    PubMed

    Hogendoorn, Hinze; Burkitt, Anthony N

    2018-05-01

    Due to the delays inherent in neuronal transmission, our awareness of sensory events necessarily lags behind the occurrence of those events in the world. If the visual system did not compensate for these delays, we would consistently mislocalize moving objects behind their actual position. Anticipatory mechanisms that might compensate for these delays have been reported in animals, and such mechanisms have also been hypothesized to underlie perceptual effects in humans such as the Flash-Lag Effect. However, to date no direct physiological evidence for anticipatory mechanisms has been found in humans. Here, we apply multivariate pattern classification to time-resolved EEG data to investigate anticipatory coding of object position in humans. By comparing the time-course of neural position representation for objects in both random and predictable apparent motion, we isolated anticipatory mechanisms that could compensate for neural delays when motion trajectories were predictable. As well as revealing an early neural position representation (lag 80-90 ms) that was unaffected by the predictability of the object's trajectory, we demonstrate a second neural position representation at 140-150 ms that was distinct from the first, and that was pre-activated ahead of the moving object when it moved on a predictable trajectory. The latency advantage for predictable motion was approximately 16 ± 2 ms. To our knowledge, this provides the first direct experimental neurophysiological evidence of anticipatory coding in human vision, revealing the time-course of predictive mechanisms without using a spatial proxy for time. The results are numerically consistent with earlier animal work, and suggest that current models of spatial predictive coding in visual cortex can be effectively extended into the temporal domain. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Visual event-related potential studies supporting the validity of VARK learning styles' visual and read/write learners.

    PubMed

    Thepsatitporn, Sarawin; Pichitpornchai, Chailerd

    2016-06-01

    The validity of learning styles needs supports of additional objective evidence. The identification of learning styles using subjective evidence from VARK questionnaires (where V is visual, A is auditory, R is read/write, and K is kinesthetic) combined with objective evidence from visual event-related potential (vERP) studies has never been investigated. It is questionable whether picture superiority effects exist in V learners and R learners. Thus, the present study aimed to investigate whether vERP could show the relationship between vERP components and VARK learning styles and to identify the existence of picture superiority effects in V learners and R learners. Thirty medical students (15 V learners and 15 R learners) performed recognition tasks with vERP and an intermediate-term memory (ITM) test. The results of within-group comparisons showed that pictures elicited larger P200 amplitudes than words at the occipital 2 site (P < 0.05) in V learners and at the occipital 1 and 2 sites (P < 0.05) in R learners. The between-groups comparison showed that P200 amplitudes elicited by pictures in V learners were larger than those of R learners at the parietal 4 site (P < 0.05). The ITM test result showed that a picture set showed distinctively more correct responses than that of a word set for both V learners (P < 0.001) and R learners (P < 0.01). In conclusion, the result indicated that the P200 amplitude at the parietal 4 site could be used to objectively distinguish V learners from R learners. A lateralization existed to the right brain (occipital 2 site) in V learners. The ITM test demonstrated the existence of picture superiority effects in both learners. The results revealed the first objective electrophysiological evidence partially supporting the validity of the subjective psychological VARK questionnaire study. Copyright © 2016 The American Physiological Society.

  8. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input.

    PubMed

    Sprenger, Andreas; Wojak, Jann F; Jandl, Nico M; Helmchen, Christoph

    2017-01-01

    Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive

  9. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input

    PubMed Central

    Sprenger, Andreas; Wojak, Jann F.; Jandl, Nico M.; Helmchen, Christoph

    2017-01-01

    Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive

  10. Prior knowledge of category size impacts visual search.

    PubMed

    Wu, Rachel; McGee, Brianna; Echiverri, Chelsea; Zinszer, Benjamin D

    2018-03-30

    Prior research has shown that category search can be similar to one-item search (as measured by the N2pc ERP marker of attentional selection) for highly familiar, smaller categories (e.g., letters and numbers) because the finite set of items in a category can be grouped into one unit to guide search. Other studies have shown that larger, more broadly defined categories (e.g., healthy food) also can elicit N2pc components during category search, but the amplitude of these components is typically attenuated. Two experiments investigated whether the perceived size of a familiar category impacts category and exemplar search. We presented participants with 16 familiar company logos: 8 from a smaller category (social media companies) and 8 from a larger category (entertainment/recreation manufacturing companies). The ERP results from Experiment 1 revealed that, in a two-item search array, search was more efficient for the smaller category of logos compared to the larger category. In a four-item search array (Experiment 2), where two of the four items were placeholders, search was largely similar between the category types, but there was more attentional capture by nontarget members from the same category as the target for smaller rather than larger categories. These results support a growing literature on how prior knowledge of categories affects attentional selection and capture during visual search. We discuss the implications of these findings in relation to assessing cognitive abilities across the lifespan, given that prior knowledge typically increases with age. © 2018 Society for Psychophysiological Research.

  11. Visual brain plasticity induced by central and peripheral visual field loss.

    PubMed

    Sanda, Nicolae; Cerliani, Leonardo; Authié, Colas N; Sabbah, Norman; Sahel, José-Alain; Habas, Christophe; Safran, Avinoam B; Thiebaut de Schotten, Michel

    2018-06-23

    Disorders that specifically affect central and peripheral vision constitute invaluable models to study how the human brain adapts to visual deafferentation. We explored cortical changes after the loss of central or peripheral vision. Cortical thickness (CoTks) and resting-state cortical entropy (rs-CoEn), as a surrogate for neural and synaptic complexity, were extracted in 12 Stargardt macular dystrophy, 12 retinitis pigmentosa (tunnel vision stage), and 14 normally sighted subjects. When compared to controls, both groups with visual loss exhibited decreased CoTks in dorsal area V3d. Peripheral visual field loss also showed a specific CoTks decrease in early visual cortex and ventral area V4, while central visual field loss in dorsal area V3A. Only central visual field loss exhibited increased CoEn in LO-2 area and FG1. Current results revealed biomarkers of brain plasticity within the dorsal and the ventral visual streams following central and peripheral visual field defects.

  12. Target-distractor similarity has a larger impact on visual search in school-age children than spacing.

    PubMed

    Huurneman, Bianca; Boonstra, F Nienke

    2015-01-22

    In typically developing children, crowding decreases with increasing age. The influence of target-distractor similarity with respect to orientation and element spacing on visual search performance was investigated in 29 school-age children with normal vision (4- to 6-year-olds [N = 16], 7- to 8-year-olds [N = 13]). Children were instructed to search for a target E among distractor Es (feature search: all flanking Es pointing right; conjunction search: flankers in three orientations). Orientation of the target was manipulated in four directions: right (target absent), left (inversed), up, and down (vertical). Spacing was varied in four steps: 0.04°, 0.5°, 1°, and 2°. During feature search, high target-distractor similarity had a stronger impact on performance than spacing: Orientation affected accuracy until spacing was 1°, and spacing only influenced accuracy for identifying inversed targets. Spatial analyses showed that orientation affected oculomotor strategy: Children made more fixations in the "inversed" target area (4.6) than the vertical target areas (1.8 and 1.9). Furthermore, age groups differed in fixation duration: 4- to 6-year-old children showed longer fixation durations than 7- to 8-year-olds at the two largest element spacings (p = 0.039 and p = 0.027). Conjunction search performance was unaffected by spacing. Four conclusions can be drawn from this study: (a) Target-distractor similarity governs visual search performance in school-age children, (b) children make more fixations in target areas when target-distractor similarity is high, (c) 4- to 6-year-olds show longer fixation durations than 7- to 8-year-olds at 1° and 2° element spacing, and (d) spacing affects feature but not conjunction search-a finding that might indicate top-down control ameliorates crowding in children. © 2015 ARVO.

  13. Components of working memory and visual selective attention.

    PubMed

    Burnham, Bryan R; Sabia, Matthew; Langan, Catherine

    2014-02-01

    Load theory (Lavie, N., Hirst, A., De Fockert, J. W., & Viding, E. [2004]. Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339-354.) proposes that control of attention depends on the amount and type of load that is imposed by current processing. Specifically, perceptual load should lead to efficient distractor rejection, whereas working memory load (dual-task coordination) should hinder distractor rejection. Studies support load theory's prediction that working memory load will lead to larger distractor effects; however, these studies used secondary tasks that required only verbal working memory and the central executive. The present study examined which other working memory components (visual, spatial, and phonological) influence visual selective attention. Subjects completed an attentional capture task alone (single-task) or while engaged in a working memory task (dual-task). Results showed that along with the central executive, visual and spatial working memory influenced selective attention, but phonological working memory did not. Specifically, attentional capture was larger when visual or spatial working memory was loaded, but phonological working memory load did not affect attentional capture. The results are consistent with load theory and suggest specific components of working memory influence visual selective attention. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  14. Interactive Visualization of Dependencies

    ERIC Educational Resources Information Center

    Moreno, Camilo Arango; Bischof, Walter F.; Hoover, H. James

    2012-01-01

    We present an interactive tool for browsing course requisites as a case study of dependency visualization. This tool uses multiple interactive visualizations to allow the user to explore the dependencies between courses. A usability study revealed that the proposed browser provides significant advantages over traditional methods, in terms of…

  15. Comparative visual function in four piscivorous fishes inhabiting Chesapeake Bay.

    PubMed

    Horodysky, Andrij Z; Brill, Richard W; Warrant, Eric J; Musick, John A; Latour, Robert J

    2010-05-01

    Maintaining optimal visual performance is a difficult task in photodynamic coastal and estuarine waters because of the unavoidable tradeoffs between luminous sensitivity and spatial and temporal resolution, yet the visual systems of coastal piscivores remain understudied despite differences in their ecomorphology and microhabitat use. We therefore used electroretinographic techniques to describe the light sensitivities, temporal properties and spectral sensitivities of the visual systems of four piscivorous fishes common to coastal and estuarine waters of the western North Atlantic: striped bass (Morone saxatilis), bluefish (Pomatomus saltatrix), summer flounder (Paralichthys dentatus) and cobia (Rachycentron canadum). Benthic summer flounder exhibited higher luminous sensitivity and broader dynamic range than the three pelagic foragers. The former were at the more sensitive end of an emerging continuum for coastal fishes. By contrast, pelagic species were comparatively less sensitive, but showed larger day-night differences, consistent with their use of diel light-variant photic habitats. Flicker fusion frequency experiments revealed significant interspecific differences at maximum intensities that correlated with lifestyle and habitat. Spectral responses of most species spanned 400-610 nm, with significant day-night differences in striped bass and bluefish. Anadromous striped bass additionally responded to longer wavelengths, similar to many freshwater fishes. Collectively, these results suggest that pelagic piscivores are well adapted to bright photoclimates, which may be at odds with the modern state of eutrified coastal and estuarine waters that they utilize. Recent anthropogenic degradation of water quality in coastal environments, at a pace faster than the evolution of visual systems, may impede visually foraging piscivores, change selected prey, and eventually restructure ecosystems.

  16. Behind the scenes: how visual memory load biases selective attention during processing of visual streams.

    PubMed

    Klaver, Peter; Talsma, Durk

    2013-11-01

    We recorded ERPs to investigate whether the visual memory load can bias visual selective attention. Participants memorized one or four letters and then responded to memory-matching letters presented in a relevant color while ignoring distractor letters or letters in an irrelevant color. Stimuli in the relevant color elicited larger frontal selection positivities (FSP) and occipital selection negativities (OSN) compared to irrelevant color stimuli. Only distractors elicited a larger FSP in the high than in the low memory load task. Memory load prolonged the OSN for all letters. Response mapping complexity was also modulated but did not affect the FSP and OSN. Together, the FSP data suggest that high memory load increased distractability. The OSN data suggest that memory load sustained attention to letters in a relevant color until working memory processing was completed, independently of whether the letters were in working memory or not. Copyright © 2013 Society for Psychophysiological Research.

  17. Immersive visualization of rail simulation data.

    DOT National Transportation Integrated Search

    2016-01-01

    The prime objective of this project was to create scientific, immersive visualizations of a Rail-simulation. This project is a part of a larger initiative that consists of three distinct parts. The first step consists of performing a finite element a...

  18. Location memory biases reveal the challenges of coordinating visual and kinesthetic reference frames

    PubMed Central

    Simmering, Vanessa R.; Peterson, Clayton; Darling, Warren; Spencer, John P.

    2008-01-01

    Five experiments explored the influence of visual and kinesthetic/proprioceptive reference frames on location memory. Experiments 1 and 2 compared visual and kinesthetic reference frames in a memory task using visually-specified locations and a visually-guided response. When the environment was visible, results replicated previous findings of biases away from the midline symmetry axis of the task space, with stability for targets aligned with this axis. When the environment was not visible, results showed some evidence of bias away from a kinesthetically-specified midline (trunk anterior–posterior [a–p] axis), but there was little evidence of stability when targets were aligned with body midline. This lack of stability may reflect the challenges of coordinating visual and kinesthetic information in the absence of an environmental reference frame. Thus, Experiments 3–5 examined kinesthetic guidance of hand movement to kinesthetically-defined targets. Performance in these experiments was generally accurate with no evidence of consistent biases away from the trunk a–p axis. We discuss these results in the context of the challenges of coordinating reference frames within versus between multiple sensori-motor systems. PMID:17703284

  19. Experience-Dependent Hemispheric Specialization of Letters and Numbers is Revealed in Early Visual Processing

    PubMed Central

    Park, Joonkoo; Chiang, Crystal; Brannon, Elizabeth M.; Woldorff, Marty G.

    2014-01-01

    Recent functional magnetic resonance imaging research has demonstrated that letters and numbers are preferentially processed in distinct regions and hemispheres in the visual cortex. In particular, the left visual cortex preferentially processes letters compared to numbers, while the right visual cortex preferentially processes numbers compared to letters. Because letters and numbers are cultural inventions and are otherwise physically arbitrary, such a double dissociation is strong evidence for experiential effects on neural architecture. Here, we use the high temporal resolution of event-related potentials (ERPs) to investigate the temporal dynamics of the neural dissociation between letters and numbers. We show that the divergence between ERP traces to letters and numbers emerges very early in processing. Letters evoked greater N1 waves (latencies 140–170 ms) than did numbers over left occipital channels, while numbers evoked greater N1s than letters over the right, suggesting letters and numbers are preferentially processed in opposite hemispheres early in visual encoding. Moreover, strings of letters, but not single letters, elicited greater P2 ERP waves, (starting around 250 ms) than numbers did over the left hemisphere, suggesting that the visual cortex is tuned to selectively process combinations of letters, but not numbers, further along in the visual processing stream. Additionally, the processing of both of these culturally defined stimulus types differentiated from similar but unfamiliar visual stimulus forms (false fonts) even earlier in the processing stream (the P1 at 100 ms). These findings imply major cortical specialization processes within the visual system driven by experience with reading and mathematics. PMID:24669789

  20. Experience-dependent hemispheric specialization of letters and numbers is revealed in early visual processing.

    PubMed

    Park, Joonkoo; Chiang, Crystal; Brannon, Elizabeth M; Woldorff, Marty G

    2014-10-01

    Recent fMRI research has demonstrated that letters and numbers are preferentially processed in distinct regions and hemispheres in the visual cortex. In particular, the left visual cortex preferentially processes letters compared with numbers, whereas the right visual cortex preferentially processes numbers compared with letters. Because letters and numbers are cultural inventions and are otherwise physically arbitrary, such a double dissociation is strong evidence for experiential effects on neural architecture. Here, we use the high temporal resolution of ERPs to investigate the temporal dynamics of the neural dissociation between letters and numbers. We show that the divergence between ERP traces to letters and numbers emerges very early in processing. Letters evoked greater N1 waves (latencies 140-170 msec) than did numbers over left occipital channels, whereas numbers evoked greater N1s than letters over the right, suggesting letters and numbers are preferentially processed in opposite hemispheres early in visual encoding. Moreover, strings of letters, but not single letters, elicited greater P2 ERP waves (starting around 250 msec) than numbers did over the left hemisphere, suggesting that the visual cortex is tuned to selectively process combinations of letters, but not numbers, further along in the visual processing stream. Additionally, the processing of both of these culturally defined stimulus types differentiated from similar but unfamiliar visual stimulus forms (false fonts) even earlier in the processing stream (the P1 at 100 msec). These findings imply major cortical specialization processes within the visual system driven by experience with reading and mathematics.

  1. High visual acuity revealed in dogs

    PubMed Central

    Lind, Olle; Milton, Ida; Andersson, Elin; Jensen, Per

    2017-01-01

    Humans have selectively bred and used dogs over a period of thousands of years, and more recently the dog has become an important model animal for studies in ethology, cognition and genetics. These broad interests warrant careful descriptions of the senses of dogs. Still there is little known about dog vision, especially what dogs can discriminate in different light conditions. We trained and tested whippets, pugs, and a Shetland sheepdog in a two-choice discrimination set-up and show that dogs can discriminate patterns with spatial frequencies between 5.5 and 19.5 cycle per degree (cpd) in the bright light condition (43 cd m-2). This is a higher spatial resolution than has been previously reported although the individual variation in our tests was large. Humans tested in the same set-up reached acuities corresponding to earlier studies, ranging between 32.1 and 44.2 cpd. In the dim light condition (0.0087 cd m-2) the acuity of dogs ranged between 1.8 and 3.5 cpd while in humans, between 5.9 and 9.9 cpd. Thus, humans make visual discrimination of objects from roughly a threefold distance compared to dogs in both bright and dim light. PMID:29206864

  2. High visual acuity revealed in dogs.

    PubMed

    Lind, Olle; Milton, Ida; Andersson, Elin; Jensen, Per; Roth, Lina S V

    2017-01-01

    Humans have selectively bred and used dogs over a period of thousands of years, and more recently the dog has become an important model animal for studies in ethology, cognition and genetics. These broad interests warrant careful descriptions of the senses of dogs. Still there is little known about dog vision, especially what dogs can discriminate in different light conditions. We trained and tested whippets, pugs, and a Shetland sheepdog in a two-choice discrimination set-up and show that dogs can discriminate patterns with spatial frequencies between 5.5 and 19.5 cycle per degree (cpd) in the bright light condition (43 cd m-2). This is a higher spatial resolution than has been previously reported although the individual variation in our tests was large. Humans tested in the same set-up reached acuities corresponding to earlier studies, ranging between 32.1 and 44.2 cpd. In the dim light condition (0.0087 cd m-2) the acuity of dogs ranged between 1.8 and 3.5 cpd while in humans, between 5.9 and 9.9 cpd. Thus, humans make visual discrimination of objects from roughly a threefold distance compared to dogs in both bright and dim light.

  3. Reward modulates the effect of visual cortical microstimulation on perceptual decisions

    PubMed Central

    Cicmil, Nela; Cumming, Bruce G; Parker, Andrew J; Krug, Kristine

    2015-01-01

    Effective perceptual decisions rely upon combining sensory information with knowledge of the rewards available for different choices. However, it is not known where reward signals interact with the multiple stages of the perceptual decision-making pathway and by what mechanisms this may occur. We combined electrical microstimulation of functionally specific groups of neurons in visual area V5/MT with performance-contingent reward manipulation, while monkeys performed a visual discrimination task. Microstimulation was less effective in shifting perceptual choices towards the stimulus preferences of the stimulated neurons when available reward was larger. Psychophysical control experiments showed this result was not explained by a selective change in response strategy on microstimulated trials. A bounded accumulation decision model, applied to analyse behavioural performance, revealed that the interaction of expected reward with microstimulation can be explained if expected reward modulates a sensory representation stage of perceptual decision-making, in addition to the better-known effects at the integration stage. DOI: http://dx.doi.org/10.7554/eLife.07832.001 PMID:26402458

  4. Visual imagery of famous faces: effects of memory and attention revealed by fMRI.

    PubMed

    Ishai, Alumit; Haxby, James V; Ungerleider, Leslie G

    2002-12-01

    Complex pictorial information can be represented and retrieved from memory as mental visual images. Functional brain imaging studies have shown that visual perception and visual imagery share common neural substrates. The type of memory (short- or long-term) that mediates the generation of mental images, however, has not been addressed previously. The purpose of this study was to investigate the neural correlates underlying imagery generated from short- and long-term memory (STM and LTM). We used famous faces to localize the visual response during perception and to compare the responses during visual imagery generated from STM (subjects memorized specific pictures of celebrities before the imagery task) and imagery from LTM (subjects imagined famous faces without seeing specific pictures during the experimental session). We found that visual perception of famous faces activated the inferior occipital gyri, lateral fusiform gyri, the superior temporal sulcus, and the amygdala. Small subsets of these face-selective regions were activated during imagery. Additionally, visual imagery of famous faces activated a network of regions composed of bilateral calcarine, hippocampus, precuneus, intraparietal sulcus (IPS), and the inferior frontal gyrus (IFG). In all these regions, imagery generated from STM evoked more activation than imagery from LTM. Regardless of memory type, focusing attention on features of the imagined faces (e.g., eyes, lips, or nose) resulted in increased activation in the right IPS and right IFG. Our results suggest differential effects of memory and attention during the generation and maintenance of mental images of faces.

  5. Altered Evoked Gamma-Band Responses Reveal Impaired Early Visual Processing in ADHD Children

    ERIC Educational Resources Information Center

    Lenz, Daniel; Krauel, Kerstin; Flechtner, Hans-Henning; Schadow, Jeanette; Hinrichs, Hermann; Herrmann, Christoph S.

    2010-01-01

    Neurophysiological studies yield contrary results whether attentional problems of patients with attention-deficit/hyperactivity disorder (ADHD) are related to early visual processing deficits or not. Evoked gamma-band responses (GBRs), being among the first cortical responses occurring as early as 90 ms after visual stimulation in human EEG, have…

  6. HierarchicalTopics: visually exploring large text collections using topic hierarchies.

    PubMed

    Dou, Wenwen; Yu, Li; Wang, Xiaoyu; Ma, Zhiqiang; Ribarsky, William

    2013-12-01

    Analyzing large textual collections has become increasingly challenging given the size of the data available and the rate that more data is being generated. Topic-based text summarization methods coupled with interactive visualizations have presented promising approaches to address the challenge of analyzing large text corpora. As the text corpora and vocabulary grow larger, more topics need to be generated in order to capture the meaningful latent themes and nuances in the corpora. However, it is difficult for most of current topic-based visualizations to represent large number of topics without being cluttered or illegible. To facilitate the representation and navigation of a large number of topics, we propose a visual analytics system--HierarchicalTopic (HT). HT integrates a computational algorithm, Topic Rose Tree, with an interactive visual interface. The Topic Rose Tree constructs a topic hierarchy based on a list of topics. The interactive visual interface is designed to present the topic content as well as temporal evolution of topics in a hierarchical fashion. User interactions are provided for users to make changes to the topic hierarchy based on their mental model of the topic space. To qualitatively evaluate HT, we present a case study that showcases how HierarchicalTopics aid expert users in making sense of a large number of topics and discovering interesting patterns of topic groups. We have also conducted a user study to quantitatively evaluate the effect of hierarchical topic structure. The study results reveal that the HT leads to faster identification of large number of relevant topics. We have also solicited user feedback during the experiments and incorporated some suggestions into the current version of HierarchicalTopics.

  7. Hiding and finding: the relationship between visual concealment and visual search.

    PubMed

    Smilek, Daniel; Weinheimer, Laura; Kwan, Donna; Reynolds, Mike; Kingstone, Alan

    2009-11-01

    As an initial step toward developing a theory of visual concealment, we assessed whether people would use factors known to influence visual search difficulty when the degree of concealment of objects among distractors was varied. In Experiment 1, participants arranged search objects (shapes, emotional faces, and graphemes) to create displays in which the targets were in plain sight but were either easy or hard to find. Analyses of easy and hard displays created during Experiment 1 revealed that the participants reliably used factors known to influence search difficulty (e.g., eccentricity, target-distractor similarity, presence/absence of a feature) to vary the difficulty of search across displays. In Experiment 2, a new participant group searched for the targets in the displays created by the participants in Experiment 1. Results indicated that search was more difficult in the hard than in the easy condition. In Experiments 3 and 4, participants used presence versus absence of a feature to vary search difficulty with several novel stimulus sets. Taken together, the results reveal a close link between the factors that govern concealment and the factors known to influence search difficulty, suggesting that a visual search theory can be extended to form the basis of a theory of visual concealment.

  8. Chess players' eye movements reveal rapid recognition of complex visual patterns: Evidence from a chess-related visual search task.

    PubMed

    Sheridan, Heather; Reingold, Eyal M

    2017-03-01

    To explore the perceptual component of chess expertise, we monitored the eye movements of expert and novice chess players during a chess-related visual search task that tested anecdotal reports that a key differentiator of chess skill is the ability to visualize the complex moves of the knight piece. Specifically, chess players viewed an array of four minimized chessboards, and they rapidly searched for the target board that allowed a knight piece to reach a target square in three moves. On each trial, there was only one target board (i.e., the "Yes" board), and for the remaining "lure" boards, the knight's path was blocked on either the first move (the "Easy No" board) or the second move (i.e., "the Difficult No" board). As evidence that chess experts can rapidly differentiate complex chess-related visual patterns, the experts (but not the novices) showed longer first-fixation durations on the "Yes" board relative to the "Difficult No" board. Moreover, as hypothesized, the task strongly differentiated chess skill: Reaction times were more than four times faster for the experts relative to novices, and reaction times were correlated with within-group measures of expertise (i.e., official chess ratings, number of hours of practice). These results indicate that a key component of chess expertise is the ability to rapidly recognize complex visual patterns.

  9. Visual just noticeable differences

    NASA Astrophysics Data System (ADS)

    Nankivil, Derek; Chen, Minghan; Wooley, C. Benjamin

    2018-02-01

    A visual just noticeable difference (VJND) is the amount of change in either an image (e.g. a photographic print) or in vision (e.g. due to a change in refractive power of a vision correction device or visually coupled optical system) that is just noticeable when compared with the prior state. Numerous theoretical and clinical studies have been performed to determine the amount of change in various visual inputs (power, spherical aberration, astigmatism, etc.) that result in a just noticeable visual change. Each of these approaches, in defining a VJND, relies on the comparison of two visual stimuli. The first stimulus is the nominal or baseline state and the second is the perturbed state that results in a VJND. Using this commonality, we converted each result to the change in the area of the modulation transfer function (AMTF) to provide a more fundamental understanding of what results in a VJND. We performed an analysis of the wavefront criteria from basic optics, the image quality metrics, and clinical studies testing various visual inputs, showing that fractional changes in AMTF resulting in one VJND range from 0.025 to 0.075. In addition, cycloplegia appears to desensitize the human visual system so that a much larger change in the retinal image is required to give a VJND. This finding may be of great import for clinical vision tests. Finally, we present applications of the VJND model for the determination of threshold ocular aberrations and manufacturing tolerances of visually coupled optical systems.

  10. Retention interval affects visual short-term memory encoding.

    PubMed

    Bankó, Eva M; Vidnyánszky, Zoltán

    2010-03-01

    Humans can efficiently store fine-detailed facial emotional information in visual short-term memory for several seconds. However, an unresolved question is whether the same neural mechanisms underlie high-fidelity short-term memory for emotional expressions at different retention intervals. Here we show that retention interval affects the neural processes of short-term memory encoding using a delayed facial emotion discrimination task. The early sensory P100 component of the event-related potentials (ERP) was larger in the 1-s interstimulus interval (ISI) condition than in the 6-s ISI condition, whereas the face-specific N170 component was larger in the longer ISI condition. Furthermore, the memory-related late P3b component of the ERP responses was also modulated by retention interval: it was reduced in the 1-s ISI as compared with the 6-s condition. The present findings cannot be explained based on differences in sensory processing demands or overall task difficulty because there was no difference in the stimulus information and subjects' performance between the two different ISI conditions. These results reveal that encoding processes underlying high-precision short-term memory for facial emotional expressions are modulated depending on whether information has to be stored for one or for several seconds.

  11. An insect-inspired model for visual binding II: functional analysis and visual attention.

    PubMed

    Northcutt, Brandon D; Higgins, Charles M

    2017-04-01

    We have developed a neural network model capable of performing visual binding inspired by neuronal circuitry in the optic glomeruli of flies: a brain area that lies just downstream of the optic lobes where early visual processing is performed. This visual binding model is able to detect objects in dynamic image sequences and bind together their respective characteristic visual features-such as color, motion, and orientation-by taking advantage of their common temporal fluctuations. Visual binding is represented in the form of an inhibitory weight matrix which learns over time which features originate from a given visual object. In the present work, we show that information represented implicitly in this weight matrix can be used to explicitly count the number of objects present in the visual image, to enumerate their specific visual characteristics, and even to create an enhanced image in which one particular object is emphasized over others, thus implementing a simple form of visual attention. Further, we present a detailed analysis which reveals the function and theoretical limitations of the visual binding network and in this context describe a novel network learning rule which is optimized for visual binding.

  12. Eye tracking reveals the cost of switching between self and other perspectives in a visual perspective-taking task.

    PubMed

    Ferguson, Heather J; Apperly, Ian; Cane, James E

    2017-08-01

    Previous studies have shown that while people can rapidly and accurately compute their own and other people's visual perspectives, they experience difficulty ignoring the irrelevant perspective when the two perspectives differ. We used the "avatar" perspective-taking task to examine the mechanisms that underlie these egocentric (i.e., interference from their own perspective) and altercentric (i.e., interference from the other person's perspective) tendencies. Participants were eye-tracked as they verified the number of discs in a visual scene according to either their own or an on-screen avatar's perspective. Crucially in some trials the two perspectives were inconsistent (i.e., each saw a different number of discs), while in others they were consistent. To examine the effect of perspective switching, performance was compared for trials that were preceded with the same versus a different perspective cue. We found that altercentric interference can be reduced or eliminated when participants stick with their own perspective across consecutive trials. Our eye-tracking analyses revealed distinct fixation patterns for self and other perspective taking, suggesting that consistency effects in this paradigm are driven by implicit mentalizing of what others can see, and not automatic directional cues from the avatar.

  13. Glossiness and perishable food quality: visual freshness judgment of fish eyes based on luminance distribution.

    PubMed

    Murakoshi, Takuma; Masuda, Tomohiro; Utsumi, Ken; Tsubota, Kazuo; Wada, Yuji

    2013-01-01

    Previous studies have reported the effects of statistics of luminance distribution on visual freshness perception using pictures which included the degradation process of food samples. However, these studies did not examine the effect of individual differences between the same kinds of food. Here we elucidate whether luminance distribution would continue to have a significant effect on visual freshness perception even if visual stimuli included individual differences in addition to the degradation process of foods. We took pictures of the degradation of three fishes over 3.29 hours in a controlled environment, then cropped square patches of their eyes from the original images as visual stimuli. Eleven participants performed paired comparison tests judging the visual freshness of the fish eyes at three points of degradation. Perceived freshness scores (PFS) were calculated using the Bradley-Terry Model for each image. The ANOVA revealed that the PFS for each fish decreased as the degradation time increased; however, the differences in the PFS between individual fish was larger for the shorter degradation time, and smaller for the longer degradation time. A multiple linear regression analysis was conducted in order to determine the relative importance of the statistics of luminance distribution of the stimulus images in predicting PFS. The results show that standard deviation and skewness in luminance distribution have a significant influence on PFS. These results show that even if foodstuffs contain individual differences, visual freshness perception and changes in luminance distribution correlate with degradation time.

  14. Impaired Visual Motor Coordination in Obese Adults.

    PubMed

    Gaul, David; Mat, Arimin; O'Shea, Donal; Issartel, Johann

    2016-01-01

    Objective. To investigate whether obesity alters the sensory motor integration process and movement outcome during a visual rhythmic coordination task. Methods. 88 participants (44 obese and 44 matched control) sat on a chair equipped with a wrist pendulum oscillating in the sagittal plane. The task was to swing the pendulum in synchrony with a moving visual stimulus displayed on a screen. Results. Obese participants demonstrated significantly ( p < 0.01) higher values for continuous relative phase (CRP) indicating poorer level of coordination, increased movement variability ( p < 0.05), and a larger amplitude ( p < 0.05) than their healthy weight counterparts. Conclusion. These results highlight the existence of visual sensory integration deficiencies for obese participants. The obese group have greater difficulty in synchronizing their movement with a visual stimulus. Considering that visual motor coordination is an essential component of many activities of daily living, any impairment could significantly affect quality of life.

  15. STRAD Wheel: Web-Based Library for Visualizing Temporal Data.

    PubMed

    Fernondez-Prieto, Diana; Naranjo-Valero, Carol; Hernandez, Jose Tiberio; Hagen, Hans

    2017-01-01

    Recent advances in web development, including the introduction of HTML5, have opened a door for visualization researchers and developers to quickly access larger audiences worldwide. Open source libraries for the creation of interactive visualizations are becoming more specialized but also modular, which makes them easy to incorporate in domain-specific applications. In this context, the authors developed STRAD (Spatio-Temporal-Radar) Wheel, a web-based library that focuses on the visualization and interactive query of temporal data in a compact view with multiple temporal granularities. This article includes two application examples in urban planning to help illustrate the proposed visualization's use in practice.

  16. Gestalt perception modulates early visual processing.

    PubMed

    Herrmann, C S; Bosch, V

    2001-04-17

    We examined whether early visual processing reflects perceptual properties of a stimulus in addition to physical features. We recorded event-related potentials (ERPs) of 13 subjects in a visual classification task. We used four different stimuli which were all composed of four identical elements. One of the stimuli constituted an illusory Kanizsa square, another was composed of the same number of collinear line segments but the elements did not form a Gestalt. In addition, a target and a control stimulus were used which were arranged differently. These stimuli allow us to differentiate the processing of colinear line elements (stimulus features) and illusory figures (perceptual properties). The visual N170 in response to the illusory figure was significantly larger as compared to the other collinear stimulus. This is taken to indicate that the visual N170 reflects cognitive processes of Gestalt perception in addition to attentional processes and physical stimulus properties.

  17. Influence of social presence on eye movements in visual search tasks.

    PubMed

    Liu, Na; Yu, Ruifeng

    2017-12-01

    This study employed an eye-tracking technique to investigate the influence of social presence on eye movements in visual search tasks. A total of 20 male subjects performed visual search tasks in a 2 (target presence: present vs. absent) × 2 (task complexity: complex vs. simple) × 2 (social presence: alone vs. a human audience) within-subject experiment. Results indicated that the presence of an audience could evoke a social facilitation effect on response time in visual search tasks. Compared with working alone, the participants made fewer and shorter fixations, larger saccades and shorter scan path in simple search tasks and more and longer fixations, smaller saccades and longer scan path in complex search tasks when working with an audience. The saccade velocity and pupil diameter in the audience-present condition were larger than those in the working-alone condition. No significant change in target fixation number was observed between two social presence conditions. Practitioner Summary: This study employed an eye-tracking technique to examine the influence of social presence on eye movements in visual search tasks. Results clarified the variation mechanism and characteristics of oculomotor scanning induced by social presence in visual search.

  18. Cycle-specific female preferences for visual and non-visual cues in the horse (Equus caballus)

    PubMed Central

    Burger, Dominik; Meuwly, Charles; Thomas, Selina; Sieme, Harald; Oberthür, Michael; Wedekind, Claus; Meinecke-Tillmann, Sabine

    2018-01-01

    Although female preferences are well studied in many mammals, the possible effects of the oestrous cycle are not yet sufficiently understood. Here we investigate female preferences for visual and non-visual male traits relative to the periodically cycling of sexual proceptivity (oestrus) and inactivity (dioestrus), respectively, in the polygynous horse (Equus caballus). We individually exposed mares to stallions in four experimental situations: (i) mares in oestrus and visual contact to stallions allowed, (ii) mares in oestrus, with blinds (wooden partitions preventing visual contact but allowing for acoustic and olfactory communication), (iii) mares in dioestrus, no blinds, and (iv) mares in dioestrus, with blinds. Contact times of the mares with each stallion, defined as the cumulative amount of time a mare was in the vicinity of an individual stallion and actively searching contact, were used to rank stallions according to each mare’s preferences. We found that preferences based on visual traits differed significantly from preferences based on non-visual traits in dioestrous mares. The mares then showed a preference for older and larger males, but only if visual cues were available. In contrast, oestrous mares showed consistent preferences with or without blinds, i.e. their preferences were mainly based on non-visual traits and could not be predicted by male age or size. Stallions who were generally preferred displayed a high libido that may have positively influenced female interest or may have been a consequence of it. We conclude that the oestrous cycle has a significant influence on female preferences for visual and non-visual male traits in the horse. PMID:29466358

  19. Coherence and interlimb force control: Effects of visual gain.

    PubMed

    Kang, Nyeonju; Cauraugh, James H

    2018-03-06

    Neural coupling across hemispheres and homologous muscles often appears during bimanual motor control. Force coupling in a specific frequency domain may indicate specific bimanual force coordination patterns. This study investigated coherence on pairs of bimanual isometric index finger force while manipulating visual gain and task asymmetry conditions. We used two visual gain conditions (low and high gain = 8 and 512 pixels/N), and created task asymmetry by manipulating coefficient ratios imposed on the left and right index finger forces (0.4:1.6; 1:1; 1.6:0.4, respectively). Unequal coefficient ratios required different contributions from each hand to the bimanual force task resulting in force asymmetry. Fourteen healthy young adults performed bimanual isometric force control at 20% of their maximal level of the summed force of both fingers. We quantified peak coherence and relative phase angle between hands at 0-4, 4-8, and 8-12 Hz, and estimated a signal-to-noise ratio of bimanual forces. The findings revealed higher peak coherence and relative phase angle at 0-4 Hz than at 4-8 and 8-12 Hz for both visual gain conditions. Further, peak coherence and relative phase angle values at 0-4 Hz were larger at the high gain than at the low gain. At the high gain, higher peak coherence at 0-4 Hz collapsed across task asymmetry conditions significantly predicted greater signal-to-noise ratio. These findings indicate that a greater level of visual information facilitates bimanual force coupling at a specific frequency range related to sensorimotor processing. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Position Information Encoded by Population Activity in Hierarchical Visual Areas

    PubMed Central

    Majima, Kei; Horikawa, Tomoyasu

    2017-01-01

    Abstract Neurons in high-level visual areas respond to more complex visual features with broader receptive fields (RFs) compared to those in low-level visual areas. Thus, high-level visual areas are generally considered to carry less information regarding the position of seen objects in the visual field. However, larger RFs may not imply loss of position information at the population level. Here, we evaluated how accurately the position of a seen object could be predicted (decoded) from activity patterns in each of six representative visual areas with different RF sizes [V1–V4, lateral occipital complex (LOC), and fusiform face area (FFA)]. We collected functional magnetic resonance imaging (fMRI) responses while human subjects viewed a ball randomly moving in a two-dimensional field. To estimate population RF sizes of individual fMRI voxels, RF models were fitted for individual voxels in each brain area. The voxels in higher visual areas showed larger estimated RFs than those in lower visual areas. Then, the ball’s position in a separate session was predicted by maximum likelihood estimation using the RF models of individual voxels. We also tested a model-free multivoxel regression (support vector regression, SVR) to predict the position. We found that regardless of the difference in RF size, all visual areas showed similar prediction accuracies, especially on the horizontal dimension. Higher areas showed slightly lower accuracies on the vertical dimension, which appears to be attributed to the narrower spatial distributions of the RF centers. The results suggest that much position information is preserved in population activity through the hierarchical visual pathway regardless of RF sizes and is potentially available in later processing for recognition and behavior. PMID:28451634

  1. Getting more from visual working memory: Retro-cues enhance retrieval and protect from visual interference.

    PubMed

    Souza, Alessandra S; Rerko, Laura; Oberauer, Klaus

    2016-06-01

    Visual working memory (VWM) has a limited capacity. This limitation can be mitigated by the use of focused attention: if attention is drawn to the relevant working memory content before test, performance improves (the so-called retro-cue benefit). This study tests 2 explanations of the retro-cue benefit: (a) Focused attention protects memory representations from interference by visual input at test, and (b) focusing attention enhances retrieval. Across 6 experiments using color recognition and color reproduction tasks, we varied the amount of color interference at test, and the delay between a retrieval cue (i.e., the retro-cue) and the memory test. Retro-cue benefits were larger when the memory test introduced interfering visual stimuli, showing that the retro-cue effect is in part because of protection from visual interference. However, when visual interference was held constant, retro-cue benefits were still obtained whenever the retro-cue enabled retrieval of an object from VWM but delayed response selection. Our results show that accessible information in VWM might be lost in the processes of testing memory because of visual interference and incomplete retrieval. This is not an inevitable state of affairs, though: Focused attention can be used to get the most out of VWM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. US characteristics for the prediction of neoplasm in gallbladder polyps 10 mm or larger.

    PubMed

    Kim, Jin Sil; Lee, Jeong Kyong; Kim, Yookyung; Lee, Sang Min

    2016-04-01

    To evaluate the characteristics of gallbladder polyps 10 mm or larger to predict a neoplasm in US examinations. Fifty-three patients with gallbladder polyps ≥ 10 mm with follow-up images or pathologic diagnosis were included in the retrospective study. All images and reports were reviewed to determine the imaging characteristics of gallbladder polyps. Univariate and multivariate analyses were used to evaluate predictors for a neoplastic polyp. A neoplastic polyp was verified in 12 of 53 patients and the mean size was 13.9 mm. The univariate analysis revealed that adjacent gallbladder wall thickening, larger size (≥15 mm), older age (≥57 years), absence of hyperechoic foci in a polyp, CT visibility, sessile shape, a solitary polyp, and an irregular surface were significant predictors for a neoplastic polyp. In the multivariate analysis, larger size (≥15 mm) was a significant predictor for a neoplastic polyp. A polyp size ≥15 mm was the strongest predictor for a neoplastic polyp with US. The hyperechoic foci in a polyp and CT visibility would be useful indicators for the differentiation of a neoplastic polyp, in addition to the established predictors. • A polyp size ≥15 mm is the strongest predictor for a neoplastic polyp with US. • Hyperechoic foci in a polyp and CT visibility are new predictors. • The rate of malignancy is low in polyps even 10 mm or larger (15.1 %).

  3. Do Pattern-Focused Visuals Improve Skin Self-Examination Performance? Explicating the Visual Skill Acquisition Model

    PubMed Central

    JOHN, KEVIN K.; JENSEN, JAKOB D.; KING, ANDY J.; RATCLIFF, CHELSEA L.; GROSSMAN, DOUGLAS

    2017-01-01

    Skin self-examination (SSE) consists of routinely checking the body for atypical moles that might be cancerous. Identifying atypical moles is a visual task; thus, SSE training materials utilize pattern-focused visuals to cultivate this skill. Despite widespread use, researchers have yet to explicate how pattern-focused visuals cultivate visual skill. Using eye tracking to capture the visual scanpaths of a sample of laypersons (N = 92), the current study employed a 2 (pattern: ABCDE vs. ugly duckling sign [UDS]) × 2 (presentation: photorealistic images vs. illustrations) factorial design to assess whether and how pattern-focused visuals can increase layperson accuracy in identifying atypical moles. Overall, illustrations resulted in greater sensitivity, while photos resulted in greater specificity. The UDS × photorealistic condition showed greatest specificity. For those in the photo condition with high self-efficacy, UDS increased specificity directly. For those in the photo condition with self-efficacy levels at the mean or lower, there was a conditional indirect effect such that these individuals spent a larger amount of their viewing time observing the atypical moles, and time on target was positively related to specificity. Illustrations provided significant gains in specificity for those with low-to-moderate self-efficacy by increasing total fixation time on the atypical moles. Findings suggest that maximizing visual processing efficiency could enhance existing SSE training techniques. PMID:28759333

  4. Intermittently-visual Tracking Experiments Reveal the Roles of Error-correction and Predictive Mechanisms in the Human Visual-motor Control System

    NASA Astrophysics Data System (ADS)

    Hayashi, Yoshikatsu; Tamura, Yurie; Sase, Kazuya; Sugawara, Ken; Sawada, Yasuji

    Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.

  5. Abnormal white matter tractography of visual pathways detected by high-angular-resolution diffusion imaging (HARDI) corresponds to visual dysfunction in cortical/cerebral visual impairment

    PubMed Central

    Bauer, Corinna M.; Heidary, Gena; Koo, Bang-Bon; Killiany, Ronald J.; Bex, Peter; Merabet, Lotfi B.

    2014-01-01

    Cortical (cerebral) visual impairment (CVI) is characterized by visual dysfunction associated with damage to the optic radiations and/or visual cortex. Typically it results from pre- or perinatal hypoxic damage to postchiasmal visual structures and pathways. The neuroanatomical basis of this condition remains poorly understood, particularly with regard to how the resulting maldevelopment of visual processing pathways relates to observations in the clinical setting. We report our investigation of 2 young adults diagnosed with CVI and visual dysfunction characterized by difficulties related to visually guided attention and visuospatial processing. Using high-angular-resolution diffusion imaging (HARDI), we characterized and compared their individual white matter projections of the extrageniculo-striate visual system with a normal-sighted control. Compared to a sighted control, both CVI cases revealed a striking reduction in association fibers, including the inferior frontal-occipital fasciculus as well as superior and inferior longitudinal fasciculi. This reduction in fibers associated with the major pathways implicated in visual processing may provide a neuroanatomical basis for the visual dysfunctions observed in these patients. PMID:25087644

  6. Conscious visual memory with minimal attention.

    PubMed

    Pinto, Yair; Vandenbroucke, Annelinde R; Otten, Marte; Sligte, Ilja G; Seth, Anil K; Lamme, Victor A F

    2017-02-01

    Is conscious visual perception limited to the locations that a person attends? The remarkable phenomenon of change blindness, which shows that people miss nearly all unattended changes in a visual scene, suggests the answer is yes. However, change blindness is found after visual interference (a mask or a new scene), so that subjects have to rely on working memory (WM), which has limited capacity, to detect the change. Before such interference, however, a much larger capacity store, called fragile memory (FM), which is easily overwritten by newly presented visual information, is present. Whether these different stores depend equally on spatial attention is central to the debate on the role of attention in conscious vision. In 2 experiments, we found that minimizing spatial attention almost entirely erases visual WM, as expected. Critically, FM remains largely intact. Moreover, minimally attended FM responses yield accurate metacognition, suggesting that conscious memory persists with limited spatial attention. Together, our findings help resolve the fundamental issue of how attention affects perception: Both visual consciousness and memory can be supported by only minimal attention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Psychophysical "blinding" methods reveal a functional hierarchy of unconscious visual processing.

    PubMed

    Breitmeyer, Bruno G

    2015-09-01

    Numerous non-invasive experimental "blinding" methods exist for suppressing the phenomenal awareness of visual stimuli. Not all of these suppressive methods occur at, and thus index, the same level of unconscious visual processing. This suggests that a functional hierarchy of unconscious visual processing can in principle be established. The empirical results of extant studies that have used a number of different methods and additional reasonable theoretical considerations suggest the following tentative hierarchy. At the highest levels in this hierarchy is unconscious processing indexed by object-substitution masking. The functional levels indexed by crowding, the attentional blink (and other attentional blinding methods), backward pattern masking, metacontrast masking, continuous flash suppression, sandwich masking, and single-flash interocular suppression, fall at progressively lower levels, while unconscious processing at the lowest levels is indexed by eye-based binocular-rivalry suppression. Although unconscious processing levels indexed by additional blinding methods is yet to be determined, a tentative placement at lower levels in the hierarchy is also given for unconscious processing indexed by Troxler fading and adaptation-induced blindness, and at higher levels in the hierarchy indexed by attentional blinding effects in addition to the level indexed by the attentional blink. The full mapping of levels in the functional hierarchy onto cortical activation sites and levels is yet to be determined. The existence of such a hierarchy bears importantly on the search for, and the distinctions between, neural correlates of conscious and unconscious vision. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Orienting attention to visual or verbal/auditory imagery differentially impairs the processing of visual stimuli.

    PubMed

    Villena-González, Mario; López, Vladimir; Rodríguez, Eugenio

    2016-05-15

    When attention is oriented toward inner thoughts, as spontaneously occurs during mind wandering, the processing of external information is attenuated. However, the potential effects of thought's content regarding sensory attenuation are still unknown. The present study aims to assess if the representational format of thoughts, such as visual imagery or inner speech, might differentially affect the sensory processing of external stimuli. We recorded the brain activity of 20 participants (12 women) while they were exposed to a probe visual stimulus in three different conditions: executing a task on the visual probe (externally oriented attention), and two conditions involving inward-turned attention i.e. generating inner speech and performing visual imagery. Event-related potentials results showed that the P1 amplitude, related with sensory response, was significantly attenuated during both task involving inward attention compared with external task. When both representational formats were compared, the visual imagery condition showed stronger attenuation in sensory processing than inner speech condition. Alpha power in visual areas was measured as an index of cortical inhibition. Larger alpha amplitude was found when participants engaged in an internal thought contrasted with the external task, with visual imagery showing even more alpha power than inner speech condition. Our results show, for the first time to our knowledge, that visual attentional processing to external stimuli during self-generated thoughts is differentially affected by the representational format of the ongoing train of thoughts. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Enduring critical period plasticity visualized by transcranial flavoprotein imaging in mouse primary visual cortex.

    PubMed

    Tohmi, Manavu; Kitaura, Hiroki; Komagata, Seiji; Kudoh, Masaharu; Shibuki, Katsuei

    2006-11-08

    Experience-dependent plasticity in the visual cortex was investigated using transcranial flavoprotein fluorescence imaging in mice anesthetized with urethane. On- and off-responses in the primary visual cortex were elicited by visual stimuli. Fluorescence responses and field potentials elicited by grating patterns decreased similarly as contrasts of visual stimuli were reduced. Fluorescence responses also decreased as spatial frequency of grating stimuli increased. Compared with intrinsic signal imaging in the same mice, fluorescence imaging showed faster responses with approximately 10 times larger signal changes. Retinotopic maps in the primary visual cortex and area LM were constructed using fluorescence imaging. After monocular deprivation (MD) of 4 d starting from postnatal day 28 (P28), deprived eye responses were suppressed compared with nondeprived eye responses in the binocular zone but not in the monocular zone. Imaging faithfully recapitulated a critical period for plasticity with maximal effects of MD observed around P28 and not in adulthood even under urethane anesthesia. Visual responses were compared before and after MD in the same mice, in which the skull was covered with clear acrylic dental resin. Deprived eye responses decreased after MD, whereas nondeprived eye responses increased. Effects of MD during a critical period were tested 2 weeks after reopening of the deprived eye. Significant ocular dominance plasticity was observed in responses elicited by moving grating patterns, but no long-lasting effect was found in visual responses elicited by light-emitting diode light stimuli. The present results indicate that transcranial flavoprotein fluorescence imaging is a powerful tool for investigating experience-dependent plasticity in the mouse visual cortex.

  10. Response bias reveals enhanced attention to inferior visual field in signers of American Sign Language.

    PubMed

    Dye, Matthew W G; Seymour, Jenessa L; Hauser, Peter C

    2016-04-01

    Deafness results in cross-modal plasticity, whereby visual functions are altered as a consequence of a lack of hearing. Here, we present a reanalysis of data originally reported by Dye et al. (PLoS One 4(5):e5640, 2009) with the aim of testing additional hypotheses concerning the spatial redistribution of visual attention due to deafness and the use of a visuogestural language (American Sign Language). By looking at the spatial distribution of errors made by deaf and hearing participants performing a visuospatial selective attention task, we sought to determine whether there was evidence for (1) a shift in the hemispheric lateralization of visual selective function as a result of deafness, and (2) a shift toward attending to the inferior visual field in users of a signed language. While no evidence was found for or against a shift in lateralization of visual selective attention as a result of deafness, a shift in the allocation of attention from the superior toward the inferior visual field was inferred in native signers of American Sign Language, possibly reflecting an adaptation to the perceptual demands imposed by a visuogestural language.

  11. Different Levels of Food Restriction Reveal Genotype-Specific Differences in Learning a Visual Discrimination Task

    PubMed Central

    Makowiecki, Kalina; Hammond, Geoff; Rodger, Jennifer

    2012-01-01

    In behavioural experiments, motivation to learn can be achieved using food rewards as positive reinforcement in food-restricted animals. Previous studies reduce animal weights to 80–90% of free-feeding body weight as the criterion for food restriction. However, effects of different degrees of food restriction on task performance have not been assessed. We compared learning task performance in mice food-restricted to 80 or 90% body weight (BW). We used adult wildtype (WT; C57Bl/6j) and knockout (ephrin-A2−/−) mice, previously shown to have a reverse learning deficit. Mice were trained in a two-choice visual discrimination task with food reward as positive reinforcement. When mice reached criterion for one visual stimulus (80% correct in three consecutive 10 trial sets) they began the reverse learning phase, where the rewarded stimulus was switched to the previously incorrect stimulus. For the initial learning and reverse phase of the task, mice at 90%BW took almost twice as many trials to reach criterion as mice at 80%BW. Furthermore, WT 80 and 90%BW groups significantly differed in percentage correct responses and learning strategy in the reverse learning phase, whereas no differences between weight restriction groups were observed in ephrin-A2−/− mice. Most importantly, genotype-specific differences in reverse learning strategy were only detected in the 80%BW groups. Our results indicate that increased food restriction not only results in better performance and a shorter training period, but may also be necessary for revealing behavioural differences between experimental groups. This has important ethical and animal welfare implications when deciding extent of diet restriction in behavioural studies. PMID:23144936

  12. Different levels of food restriction reveal genotype-specific differences in learning a visual discrimination task.

    PubMed

    Makowiecki, Kalina; Hammond, Geoff; Rodger, Jennifer

    2012-01-01

    In behavioural experiments, motivation to learn can be achieved using food rewards as positive reinforcement in food-restricted animals. Previous studies reduce animal weights to 80-90% of free-feeding body weight as the criterion for food restriction. However, effects of different degrees of food restriction on task performance have not been assessed. We compared learning task performance in mice food-restricted to 80 or 90% body weight (BW). We used adult wildtype (WT; C57Bl/6j) and knockout (ephrin-A2⁻/⁻) mice, previously shown to have a reverse learning deficit. Mice were trained in a two-choice visual discrimination task with food reward as positive reinforcement. When mice reached criterion for one visual stimulus (80% correct in three consecutive 10 trial sets) they began the reverse learning phase, where the rewarded stimulus was switched to the previously incorrect stimulus. For the initial learning and reverse phase of the task, mice at 90%BW took almost twice as many trials to reach criterion as mice at 80%BW. Furthermore, WT 80 and 90%BW groups significantly differed in percentage correct responses and learning strategy in the reverse learning phase, whereas no differences between weight restriction groups were observed in ephrin-A2⁻/⁻ mice. Most importantly, genotype-specific differences in reverse learning strategy were only detected in the 80%BW groups. Our results indicate that increased food restriction not only results in better performance and a shorter training period, but may also be necessary for revealing behavioural differences between experimental groups. This has important ethical and animal welfare implications when deciding extent of diet restriction in behavioural studies.

  13. Impaired visual search in rats reveals cholinergic contributions to feature binding in visuospatial attention.

    PubMed

    Botly, Leigh C P; De Rosa, Eve

    2012-10-01

    The visual search task established the feature integration theory of attention in humans and measures visuospatial attentional contributions to feature binding. We recently demonstrated that the neuromodulator acetylcholine (ACh), from the nucleus basalis magnocellularis (NBM), supports the attentional processes required for feature binding using a rat digging-based task. Additional research has demonstrated cholinergic contributions from the NBM to visuospatial attention in rats. Here, we combined these lines of evidence and employed visual search in rats to examine whether cortical cholinergic input supports visuospatial attention specifically for feature binding. We trained 18 male Long-Evans rats to perform visual search using touch screen-equipped operant chambers. Sessions comprised Feature Search (no feature binding required) and Conjunctive Search (feature binding required) trials using multiple stimulus set sizes. Following acquisition of visual search, 8 rats received bilateral NBM lesions using 192 IgG-saporin to selectively reduce cholinergic afferentation of the neocortex, which we hypothesized would selectively disrupt the visuospatial attentional processes needed for efficient conjunctive visual search. As expected, relative to sham-lesioned rats, ACh-NBM-lesioned rats took significantly longer to locate the target stimulus on Conjunctive Search, but not Feature Search trials, thus demonstrating that cholinergic contributions to visuospatial attention are important for feature binding in rats.

  14. Time limits during visual foraging reveal flexible working memory templates.

    PubMed

    Kristjánsson, Tómas; Thornton, Ian M; Kristjánsson, Árni

    2018-06-01

    During difficult foraging tasks, humans rarely switch between target categories, but switch frequently during easier foraging. Does this reflect fundamental limits on visual working memory (VWM) capacity or simply strategic choice due to effort? Our participants performed time-limited or unlimited foraging tasks where they tapped stimuli from 2 target categories while avoiding items from 2 distractor categories. These time limits should have no effect if capacity imposes limits on VWM representations but more flexible VWM could allow observers to use VWM according to task demands in each case. We found that with time limits, participants switched more frequently and switch-costs became much smaller than during unlimited foraging. Observers can therefore switch between complex (conjunction) target categories when needed. We propose that while maintaining many complex templates in working memory is effortful and observers avoid this, they can do so if this fits task demands, showing the flexibility of working memory representations used for visual exploration. This is in contrast with recent proposals, and we discuss the implications of these findings for theoretical accounts of working memory. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. Adaptive Gaze Strategies for Locomotion with Constricted Visual Field

    PubMed Central

    Authié, Colas N.; Berthoz, Alain; Sahel, José-Alain; Safran, Avinoam B.

    2017-01-01

    In retinitis pigmentosa (RP), loss of peripheral visual field accounts for most difficulties encountered in visuo-motor coordination during locomotion. The purpose of this study was to accurately assess the impact of peripheral visual field loss on gaze strategies during locomotion, and identify compensatory mechanisms. Nine RP subjects presenting a central visual field limited to 10–25° in diameter, and nine healthy subjects were asked to walk in one of three directions—straight ahead to a visual target, leftward and rightward through a door frame, with or without obstacle on the way. Whole body kinematics were recorded by motion capture, and gaze direction in space was reconstructed using an eye-tracker. Changes in gaze strategies were identified in RP subjects, including extensive exploration prior to walking, frequent fixations of the ground (even knowing no obstacle was present), of door edges, essentially of the proximal one, of obstacle edge/corner, and alternating door edges fixations when approaching the door. This was associated with more frequent, sometimes larger rapid-eye-movements, larger movements, and forward tilting of the head. Despite the visual handicap, the trajectory geometry was identical between groups, with a small decrease in walking speed in RPs. These findings identify the adaptive changes in sensory-motor coordination, in order to ensure visual awareness of the surrounding, detect changes in spatial configuration, collect information for self-motion, update the postural reference frame, and update egocentric distances to environmental objects. They are of crucial importance for the design of optimized rehabilitation procedures. PMID:28798674

  16. Anisotropic perception of visual angle: implications for the horizontal-vertical illusion, overconstancy of size, and the moon illusion.

    PubMed

    Higashiyama, A

    1992-03-01

    Three experiments investigated anisotropic perception of visual angle outdoors. In Experiment 1, scales for vertical and horizontal visual angles ranging from 20 degrees to 80 degrees were constructed with the method of angle production (in which the subject reproduced a visual angle with a protractor) and the method of distance production (in which the subject produced a visual angle by adjusting viewing distance). In Experiment 2, scales for vertical and horizontal visual angles of 5 degrees-30 degrees were constructed with the method of angle production and were compared with scales for orientation in the frontal plane. In Experiment 3, vertical and horizontal visual angles of 3 degrees-80 degrees were judged with the method of verbal estimation. The main results of the experiments were as follows: (1) The obtained angles for visual angle are described by a quadratic equation, theta' = a + b theta + c theta 2 (where theta is the visual angle; theta', the obtained angle; a, b, and c, constants). (2) The linear coefficient b is larger than unity and is steeper for vertical direction than for horizontal direction. (3) The quadratic coefficient c is generally smaller than zero and is negatively larger for vertical direction than for horizontal direction. And (4) the obtained angle for visual angle is larger than that for orientation. From these results, it was possible to predict the horizontal-vertical illusion, over-constancy of size, and the moon illusion.

  17. Dysfunctional visual word form processing in progressive alexia

    PubMed Central

    Rising, Kindle; Stib, Matthew T.; Rapcsak, Steven Z.; Beeson, Pélagie M.

    2013-01-01

    Progressive alexia is an acquired reading deficit caused by degeneration of brain regions that are essential for written word processing. Functional imaging studies have shown that early processing of the visual word form depends on a hierarchical posterior-to-anterior processing stream in occipito-temporal cortex, whereby successive areas code increasingly larger and more complex perceptual attributes of the letter string. A region located in the left lateral occipito-temporal sulcus and adjacent fusiform gyrus shows maximal selectivity for words and has been dubbed the ‘visual word form area’. We studied two patients with progressive alexia in order to determine whether their reading deficits were associated with structural and/or functional abnormalities in this visual word form system. Voxel-based morphometry showed left-lateralized occipito-temporal atrophy in both patients, very mild in one, but moderate to severe in the other. The two patients, along with 10 control subjects, were scanned with functional magnetic resonance imaging as they viewed rapidly presented words, false font strings, or a fixation crosshair. This paradigm was optimized to reliably map brain regions involved in orthographic processing in individual subjects. All 10 control subjects showed a posterior-to-anterior gradient of selectivity for words, and all 10 showed a functionally defined visual word form area in the left hemisphere that was activated for words relative to false font strings. In contrast, neither of the two patients with progressive alexia showed any evidence for a selectivity gradient or for word-specific activation of the visual word form area. The patient with mild atrophy showed normal responses to both words and false font strings in the posterior part of the visual word form system, but a failure to develop selectivity for words in the more anterior part of the system. In contrast, the patient with moderate to severe atrophy showed minimal activation of any part

  18. Dysfunctional visual word form processing in progressive alexia.

    PubMed

    Wilson, Stephen M; Rising, Kindle; Stib, Matthew T; Rapcsak, Steven Z; Beeson, Pélagie M

    2013-04-01

    Progressive alexia is an acquired reading deficit caused by degeneration of brain regions that are essential for written word processing. Functional imaging studies have shown that early processing of the visual word form depends on a hierarchical posterior-to-anterior processing stream in occipito-temporal cortex, whereby successive areas code increasingly larger and more complex perceptual attributes of the letter string. A region located in the left lateral occipito-temporal sulcus and adjacent fusiform gyrus shows maximal selectivity for words and has been dubbed the 'visual word form area'. We studied two patients with progressive alexia in order to determine whether their reading deficits were associated with structural and/or functional abnormalities in this visual word form system. Voxel-based morphometry showed left-lateralized occipito-temporal atrophy in both patients, very mild in one, but moderate to severe in the other. The two patients, along with 10 control subjects, were scanned with functional magnetic resonance imaging as they viewed rapidly presented words, false font strings, or a fixation crosshair. This paradigm was optimized to reliably map brain regions involved in orthographic processing in individual subjects. All 10 control subjects showed a posterior-to-anterior gradient of selectivity for words, and all 10 showed a functionally defined visual word form area in the left hemisphere that was activated for words relative to false font strings. In contrast, neither of the two patients with progressive alexia showed any evidence for a selectivity gradient or for word-specific activation of the visual word form area. The patient with mild atrophy showed normal responses to both words and false font strings in the posterior part of the visual word form system, but a failure to develop selectivity for words in the more anterior part of the system. In contrast, the patient with moderate to severe atrophy showed minimal activation of any part of

  19. Audio–visual interactions for motion perception in depth modulate activity in visual area V3A

    PubMed Central

    Ogawa, Akitoshi; Macaluso, Emiliano

    2013-01-01

    Multisensory signals can enhance the spatial perception of objects and events in the environment. Changes of visual size and auditory intensity provide us with the main cues about motion direction in depth. However, frequency changes in audition and binocular disparity in vision also contribute to the perception of motion in depth. Here, we presented subjects with several combinations of auditory and visual depth-cues to investigate multisensory interactions during processing of motion in depth. The task was to discriminate the direction of auditory motion in depth according to increasing or decreasing intensity. Rising or falling auditory frequency provided an additional within-audition cue that matched or did not match the intensity change (i.e. intensity-frequency (IF) “matched vs. unmatched” conditions). In two-thirds of the trials, a task-irrelevant visual stimulus moved either in the same or opposite direction of the auditory target, leading to audio–visual “congruent vs. incongruent” between-modalities depth-cues. Furthermore, these conditions were presented either with or without binocular disparity. Behavioral data showed that the best performance was observed in the audio–visual congruent condition with IF matched. Brain imaging results revealed maximal response in visual area V3A when all cues provided congruent and reliable depth information (i.e. audio–visual congruent, IF-matched condition including disparity cues). Analyses of effective connectivity revealed increased coupling from auditory cortex to V3A specifically in audio–visual congruent trials. We conclude that within- and between-modalities cues jointly contribute to the processing of motion direction in depth, and that they do so via dynamic changes of connectivity between visual and auditory cortices. PMID:23333414

  20. Visual analysis and exploration of complex corporate shareholder networks

    NASA Astrophysics Data System (ADS)

    Tekušová, Tatiana; Kohlhammer, Jörn

    2008-01-01

    The analysis of large corporate shareholder network structures is an important task in corporate governance, in financing, and in financial investment domains. In a modern economy, large structures of cross-corporation, cross-border shareholder relationships exist, forming complex networks. These networks are often difficult to analyze with traditional approaches. An efficient visualization of the networks helps to reveal the interdependent shareholding formations and the controlling patterns. In this paper, we propose an effective visualization tool that supports the financial analyst in understanding complex shareholding networks. We develop an interactive visual analysis system by combining state-of-the-art visualization technologies with economic analysis methods. Our system is capable to reveal patterns in large corporate shareholder networks, allows the visual identification of the ultimate shareholders, and supports the visual analysis of integrated cash flow and control rights. We apply our system on an extensive real-world database of shareholder relationships, showing its usefulness for effective visual analysis.

  1. Visual search deficits in amblyopia.

    PubMed

    Tsirlin, Inna; Colpa, Linda; Goltz, Herbert C; Wong, Agnes M F

    2018-04-01

    Amblyopia is a neurodevelopmental disorder defined as a reduction in visual acuity that cannot be corrected by optical means. It has been associated with low-level deficits. However, research has demonstrated a link between amblyopia and visual attention deficits in counting, tracking, and identifying objects. Visual search is a useful tool for assessing visual attention but has not been well studied in amblyopia. Here, we assessed the extent of visual search deficits in amblyopia using feature and conjunction search tasks. We compared the performance of participants with amblyopia (n = 10) to those of controls (n = 12) on both feature and conjunction search tasks using Gabor patch stimuli, varying spatial bandwidth and orientation. To account for the low-level deficits inherent in amblyopia, we measured individual contrast and crowding thresholds and monitored eye movements. The display elements were then presented at suprathreshold levels to ensure that visibility was equalized across groups. There was no performance difference between groups on feature search, indicating that our experimental design controlled successfully for low-level amblyopia deficits. In contrast, during conjunction search, median reaction times and reaction time slopes were significantly larger in participants with amblyopia compared with controls. Amblyopia differentially affects performance on conjunction visual search, a more difficult task that requires feature binding and possibly the involvement of higher-level attention processes. Deficits in visual search may affect day-to-day functioning in people with amblyopia.

  2. Dynamic Prototypicality Effects in Visual Search

    ERIC Educational Resources Information Center

    Kayaert, Greet; Op de Beeck, Hans P.; Wagemans, Johan

    2011-01-01

    In recent studies, researchers have discovered a larger neural activation for stimuli that are more extreme exemplars of their stimulus class, compared with stimuli that are more prototypical. This has been shown for faces as well as for familiar and novel shape classes. We used a visual search task to look for a behavioral correlate of these…

  3. Helicopter Visual Aid System

    NASA Technical Reports Server (NTRS)

    Baisley, R. L.

    1973-01-01

    The results of an evaluation of police helicopter effectiveness revealed a need for improved visual capability. A JPL program developed a method that would enhance visual observation capability for both day and night usage and demonstrated the feasibility of the adopted approach. This approach made use of remote pointable optics, a display screen, a slaved covert searchlight, and a coupled camera. The approach was proved feasible through field testing and by judgement against evaluation criteria.

  4. Projectors, associators, visual imagery, and the time course of visual processing in grapheme-color synesthesia.

    PubMed

    Amsel, Ben D; Kutas, Marta; Coulson, Seana

    2017-10-01

    In grapheme-color synesthesia, seeing particular letters or numbers evokes the experience of specific colors. We investigate the brain's real-time processing of words in this population by recording event-related brain potentials (ERPs) from 15 grapheme-color synesthetes and 15 controls as they judged the validity of word pairs ('yellow banana' vs. 'blue banana') presented under high and low visual contrast. Low contrast words elicited delayed P1/N170 visual ERP components in both groups, relative to high contrast. When color concepts were conveyed to synesthetes by individually tailored achromatic grapheme strings ('55555 banana'), visual contrast effects were like those in color words: P1/N170 components were delayed but unchanged in amplitude. When controls saw equivalent colored grapheme strings, visual contrast modulated P1/N170 amplitude but not latency. Color induction in synesthetes thus differs from color perception in controls. Independent from experimental effects, all orthographic stimuli elicited larger N170 and P2 in synesthetes than controls. While P2 (150-250ms) enhancement was similar in all synesthetes, N170 (130-210ms) amplitude varied with individual differences in synesthesia and visual imagery. Results suggest immediate cross-activation in visual areas processing color and shape is most pronounced in so-called projector synesthetes whose concurrent colors are experienced as originating in external space.

  5. Dynamic crossmodal links revealed by steady-state responses in auditory-visual divided attention.

    PubMed

    de Jong, Ritske; Toffanin, Paolo; Harbers, Marten

    2010-01-01

    Frequency tagging has been often used to study intramodal attention but not intermodal attention. We used EEG and simultaneous frequency tagging of auditory and visual sources to study intermodal focused and divided attention in detection and discrimination performance. Divided-attention costs were smaller, but still significant, in detection than in discrimination. The auditory steady-state response (SSR) showed no effects of attention at frontocentral locations, but did so at occipital locations where it was evident only when attention was divided between audition and vision. Similarly, the visual SSR at occipital locations was substantially enhanced when attention was divided across modalities. Both effects were equally present in detection and discrimination. We suggest that both effects reflect a common cause: An attention-dependent influence of auditory information processing on early cortical stages of visual information processing, mediated by enhanced effective connectivity between the two modalities under conditions of divided attention. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  6. Similar alterations in brain function for phonological and semantic processing to visual characters in Chinese dyslexia.

    PubMed

    Liu, Li; Wang, Wenjing; You, Wenping; Li, Yi; Awati, Neha; Zhao, Xu; Booth, James R; Peng, Danling

    2012-07-01

    Dyslexia in alphabetic languages has been extensively investigated and suggests a central deficit in orthography to phonology mapping in the left hemisphere. Compared to dyslexia in alphabetic languages, the central deficit for Chinese dyslexia is still unclear. Because of the logographic nature of Chinese characters, some have suggested that Chinese dyslexia should have larger deficits in the semantic system. To investigate this, Chinese children with reading disability (RD) were compared to typically developing (TD) children using functional magnetic resonance imaging (fMRI) on a rhyming judgment task and on a semantic association judgment task. RD children showed less activation for both tasks in right visual (BA18, 19) and left occipito-temporal cortex (BA 37), suggesting a deficit in visuo-orthographic processing. RD children also showed less activation for both tasks in left inferior frontal gyrus (BA44), which additionally showed significant correlations with activation of bilateral visuo-orthographic regions in the RD group, suggesting that the abnormalities in frontal cortex and in posterior visuo-orthographic regions may reflect a deficit in the connection between brain regions. Analyses failed to reveal larger differences between groups for the semantic compared to the rhyming task, suggesting that Chinese dyslexia is similarly impaired in the access to phonology and to semantics from the visual orthography. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Testing the snake-detection hypothesis: larger early posterior negativity in humans to pictures of snakes than to pictures of other reptiles, spiders and slugs

    PubMed Central

    Van Strien, Jan W.; Franken, Ingmar H. A.; Huijding, Jorg

    2014-01-01

    According to the snake detection hypothesis (Isbell, 2006), fear specifically of snakes may have pushed evolutionary changes in the primate visual system allowing pre-attentional visual detection of fearful stimuli. A previous study demonstrated that snake pictures, when compared to spiders or bird pictures, draw more early attention as reflected by larger early posterior negativity (EPN). Here we report two studies that further tested the snake detection hypothesis. In Study 1, we tested whether the enlarged EPN is specific for snakes or also generalizes to other reptiles. Twenty-four healthy, non-phobic women watched the random rapid serial presentation of snake, crocodile, and turtle pictures. The EPN was scored as the mean activity at occipital electrodes (PO3, O1, Oz, PO4, O2) in the 225–300 ms time window after picture onset. The EPN was significantly larger for snake pictures than for pictures of the other reptiles. In Study 2, we tested whether disgust plays a role in the modulation of the EPN and whether preferential processing of snakes also can be found in men. 12 men and 12 women watched snake, spider, and slug pictures. Both men and women exhibited the largest EPN amplitudes to snake pictures, intermediate amplitudes to spider pictures and the smallest amplitudes to slug pictures. Disgust ratings were not associated with EPN amplitudes. The results replicate previous findings and suggest that ancestral priorities modulate the early capture of visual attention. PMID:25237303

  8. Testing the snake-detection hypothesis: larger early posterior negativity in humans to pictures of snakes than to pictures of other reptiles, spiders and slugs.

    PubMed

    Van Strien, Jan W; Franken, Ingmar H A; Huijding, Jorg

    2014-01-01

    According to the snake detection hypothesis (Isbell, 2006), fear specifically of snakes may have pushed evolutionary changes in the primate visual system allowing pre-attentional visual detection of fearful stimuli. A previous study demonstrated that snake pictures, when compared to spiders or bird pictures, draw more early attention as reflected by larger early posterior negativity (EPN). Here we report two studies that further tested the snake detection hypothesis. In Study 1, we tested whether the enlarged EPN is specific for snakes or also generalizes to other reptiles. Twenty-four healthy, non-phobic women watched the random rapid serial presentation of snake, crocodile, and turtle pictures. The EPN was scored as the mean activity at occipital electrodes (PO3, O1, Oz, PO4, O2) in the 225-300 ms time window after picture onset. The EPN was significantly larger for snake pictures than for pictures of the other reptiles. In Study 2, we tested whether disgust plays a role in the modulation of the EPN and whether preferential processing of snakes also can be found in men. 12 men and 12 women watched snake, spider, and slug pictures. Both men and women exhibited the largest EPN amplitudes to snake pictures, intermediate amplitudes to spider pictures and the smallest amplitudes to slug pictures. Disgust ratings were not associated with EPN amplitudes. The results replicate previous findings and suggest that ancestral priorities modulate the early capture of visual attention.

  9. Indoor Spatial Updating with Reduced Visual Information

    PubMed Central

    Legge, Gordon E.; Gage, Rachel; Baek, Yihwa; Bochsler, Tiana M.

    2016-01-01

    Purpose Spatial updating refers to the ability to keep track of position and orientation while moving through an environment. People with impaired vision may be less accurate in spatial updating with adverse consequences for indoor navigation. In this study, we asked how artificial restrictions on visual acuity and field size affect spatial updating, and also judgments of the size of rooms. Methods Normally sighted young adults were tested with artificial restriction of acuity in Mild Blur (Snellen 20/135) and Severe Blur (Snellen 20/900) conditions, and a Narrow Field (8°) condition. The subjects estimated the dimensions of seven rectangular rooms with and without these visual restrictions. They were also guided along three-segment paths in the rooms. At the end of each path, they were asked to estimate the distance and direction to the starting location. In Experiment 1, the subjects walked along the path. In Experiment 2, they were pushed in a wheelchair to determine if reduced proprioceptive input would result in poorer spatial updating. Results With unrestricted vision, mean Weber fractions for room-size estimates were near 20%. Severe Blur but not Mild Blur yielded larger errors in room-size judgments. The Narrow Field was associated with increased error, but less than with Severe Blur. There was no effect of visual restriction on estimates of distance back to the starting location, and only Severe Blur yielded larger errors in the direction estimates. Contrary to expectation, the wheelchair subjects did not exhibit poorer updating performance than the walking subjects, nor did they show greater dependence on visual condition. Discussion If our results generalize to people with low vision, severe deficits in acuity or field will adversely affect the ability to judge the size of indoor spaces, but updating of position and orientation may be less affected by visual impairment. PMID:26943674

  10. Indoor Spatial Updating with Reduced Visual Information.

    PubMed

    Legge, Gordon E; Gage, Rachel; Baek, Yihwa; Bochsler, Tiana M

    2016-01-01

    Spatial updating refers to the ability to keep track of position and orientation while moving through an environment. People with impaired vision may be less accurate in spatial updating with adverse consequences for indoor navigation. In this study, we asked how artificial restrictions on visual acuity and field size affect spatial updating, and also judgments of the size of rooms. Normally sighted young adults were tested with artificial restriction of acuity in Mild Blur (Snellen 20/135) and Severe Blur (Snellen 20/900) conditions, and a Narrow Field (8°) condition. The subjects estimated the dimensions of seven rectangular rooms with and without these visual restrictions. They were also guided along three-segment paths in the rooms. At the end of each path, they were asked to estimate the distance and direction to the starting location. In Experiment 1, the subjects walked along the path. In Experiment 2, they were pushed in a wheelchair to determine if reduced proprioceptive input would result in poorer spatial updating. With unrestricted vision, mean Weber fractions for room-size estimates were near 20%. Severe Blur but not Mild Blur yielded larger errors in room-size judgments. The Narrow Field was associated with increased error, but less than with Severe Blur. There was no effect of visual restriction on estimates of distance back to the starting location, and only Severe Blur yielded larger errors in the direction estimates. Contrary to expectation, the wheelchair subjects did not exhibit poorer updating performance than the walking subjects, nor did they show greater dependence on visual condition. If our results generalize to people with low vision, severe deficits in acuity or field will adversely affect the ability to judge the size of indoor spaces, but updating of position and orientation may be less affected by visual impairment.

  11. Enhancing performance expectancies through visual illusions facilitates motor learning in children.

    PubMed

    Bahmani, Moslem; Wulf, Gabriele; Ghadiri, Farhad; Karimi, Saeed; Lewthwaite, Rebecca

    2017-10-01

    In a recent study by Chauvel, Wulf, and Maquestiaux (2015), golf putting performance was found to be affected by the Ebbinghaus illusion. Specifically, adult participants demonstrated more effective learning when they practiced with a hole that was surrounded by small circles, making it look larger, than when the hole was surrounded by large circles, making it look smaller. The present study examined whether this learning advantage would generalize to children who are assumed to be less sensitive to the visual illusion. Two groups of 10-year olds practiced putting golf balls from a distance of 2m, with perceived larger or smaller holes resulting from the visual illusion. Self-efficacy was increased in the group with the perceived larger hole. The latter group also demonstrated more accurate putting performance during practice. Importantly, learning (i.e., delayed retention performance without the illusion) was enhanced in the group that practiced with the perceived larger hole. The findings replicate previous results with adult learners and are in line with the notion that enhanced performance expectancies are key to optimal motor learning (Wulf & Lewthwaite, 2016). Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Solar System Visualization (SSV) Project

    NASA Technical Reports Server (NTRS)

    Todd, Jessida L.

    2005-01-01

    The Solar System Visualization (SSV) project aims at enhancing scientific and public understanding through visual representations and modeling procedures. The SSV project's objectives are to (1) create new visualization technologies, (2) organize science observations and models, and (3) visualize science results and mission Plans. The SSV project currently supports the Mars Exploration Rovers (MER) mission, the Mars Reconnaissance Orbiter (MRO), and Cassini. In support of the these missions, the SSV team has produced pan and zoom animations of large mosaics to reveal details of surface features and topography, created 3D animations of science instruments and procedures, formed 3-D anaglyphs from left and right stereo pairs, and animated registered multi-resolution mosaics to provide context for microscopic images.

  13. Visual guidance of forward flight in hummingbirds reveals control based on image features instead of pattern velocity.

    PubMed

    Dakin, Roslyn; Fellows, Tyee K; Altshuler, Douglas L

    2016-08-02

    Information about self-motion and obstacles in the environment is encoded by optic flow, the movement of images on the eye. Decades of research have revealed that flying insects control speed, altitude, and trajectory by a simple strategy of maintaining or balancing the translational velocity of images on the eyes, known as pattern velocity. It has been proposed that birds may use a similar algorithm but this hypothesis has not been tested directly. We examined the influence of pattern velocity on avian flight by manipulating the motion of patterns on the walls of a tunnel traversed by Anna's hummingbirds. Contrary to prediction, we found that lateral course control is not based on regulating nasal-to-temporal pattern velocity. Instead, birds closely monitored feature height in the vertical axis, and steered away from taller features even in the absence of nasal-to-temporal pattern velocity cues. For vertical course control, we observed that birds adjusted their flight altitude in response to upward motion of the horizontal plane, which simulates vertical descent. Collectively, our results suggest that birds avoid collisions using visual cues in the vertical axis. Specifically, we propose that birds monitor the vertical extent of features in the lateral visual field to assess distances to the side, and vertical pattern velocity to avoid collisions with the ground. These distinct strategies may derive from greater need to avoid collisions in birds, compared with small insects.

  14. Audio-visual interactions uniquely contribute to resolution of visual conflict in people possessing absolute pitch.

    PubMed

    Kim, Sujin; Blake, Randolph; Lee, Minyoung; Kim, Chai-Youn

    2017-01-01

    Individuals possessing absolute pitch (AP) are able to identify a given musical tone or to reproduce it without reference to another tone. The present study sought to learn whether this exceptional auditory ability impacts visual perception under stimulus conditions that provoke visual competition in the form of binocular rivalry. Nineteen adult participants with 3-19 years of musical training were divided into two groups according to their performance on a task involving identification of the specific note associated with hearing a given musical pitch. During test trials lasting just over half a minute, participants dichoptically viewed a scrolling musical score presented to one eye and a drifting sinusoidal grating presented to the other eye; throughout the trial they pressed buttons to track the alternations in visual awareness produced by these dissimilar monocular stimuli. On "pitch-congruent" trials, participants heard an auditory melody that was congruent in pitch with the visual score, on "pitch-incongruent" trials they heard a transposed auditory melody that was congruent with the score in melody but not in pitch, and on "melody-incongruent" trials they heard an auditory melody completely different from the visual score. For both groups, the visual musical scores predominated over the gratings when the auditory melody was congruent compared to when it was incongruent. Moreover, the AP participants experienced greater predominance of the visual score when it was accompanied by the pitch-congruent melody compared to the same melody transposed in pitch; for non-AP musicians, pitch-congruent and pitch-incongruent trials yielded equivalent predominance. Analysis of individual durations of dominance revealed differential effects on dominance and suppression durations for AP and non-AP participants. These results reveal that AP is accompanied by a robust form of bisensory interaction between tonal frequencies and musical notation that boosts the salience of a

  15. Audio-visual interactions uniquely contribute to resolution of visual conflict in people possessing absolute pitch

    PubMed Central

    Kim, Sujin; Blake, Randolph; Lee, Minyoung; Kim, Chai-Youn

    2017-01-01

    Individuals possessing absolute pitch (AP) are able to identify a given musical tone or to reproduce it without reference to another tone. The present study sought to learn whether this exceptional auditory ability impacts visual perception under stimulus conditions that provoke visual competition in the form of binocular rivalry. Nineteen adult participants with 3–19 years of musical training were divided into two groups according to their performance on a task involving identification of the specific note associated with hearing a given musical pitch. During test trials lasting just over half a minute, participants dichoptically viewed a scrolling musical score presented to one eye and a drifting sinusoidal grating presented to the other eye; throughout the trial they pressed buttons to track the alternations in visual awareness produced by these dissimilar monocular stimuli. On “pitch-congruent” trials, participants heard an auditory melody that was congruent in pitch with the visual score, on “pitch-incongruent” trials they heard a transposed auditory melody that was congruent with the score in melody but not in pitch, and on “melody-incongruent” trials they heard an auditory melody completely different from the visual score. For both groups, the visual musical scores predominated over the gratings when the auditory melody was congruent compared to when it was incongruent. Moreover, the AP participants experienced greater predominance of the visual score when it was accompanied by the pitch-congruent melody compared to the same melody transposed in pitch; for non-AP musicians, pitch-congruent and pitch-incongruent trials yielded equivalent predominance. Analysis of individual durations of dominance revealed differential effects on dominance and suppression durations for AP and non-AP participants. These results reveal that AP is accompanied by a robust form of bisensory interaction between tonal frequencies and musical notation that boosts the

  16. Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for γ-band oscillations.

    PubMed

    Bastos, Andre M; Briggs, Farran; Alitto, Henry J; Mangun, George R; Usrey, W Martin

    2014-05-28

    Oscillatory synchronization of neuronal activity has been proposed as a mechanism to modulate effective connectivity between interacting neuronal populations. In the visual system, oscillations in the gamma-frequency range (30-100 Hz) are thought to subserve corticocortical communication. To test whether a similar mechanism might influence subcortical-cortical communication, we recorded local field potential activity from retinotopically aligned regions in the lateral geniculate nucleus (LGN) and primary visual cortex (V1) of alert macaque monkeys viewing stimuli known to produce strong cortical gamma-band oscillations. As predicted, we found robust gamma-band power in V1. In contrast, visual stimulation did not evoke gamma-band activity in the LGN. Interestingly, an analysis of oscillatory phase synchronization of LGN and V1 activity identified synchronization in the alpha (8-14 Hz) and beta (15-30 Hz) frequency bands. Further analysis of directed connectivity revealed that alpha-band interactions mediated corticogeniculate feedback processing, whereas beta-band interactions mediated geniculocortical feedforward processing. These results demonstrate that although the LGN and V1 display functional interactions in the lower frequency bands, gamma-band activity in the alert monkey is largely an emergent property of cortex. Copyright © 2014 the authors 0270-6474/14/347639-06$15.00/0.

  17. Visual discrimination training improves Humphrey perimetry in chronic cortically induced blindness.

    PubMed

    Cavanaugh, Matthew R; Huxlin, Krystel R

    2017-05-09

    To assess if visual discrimination training improves performance on visual perimetry tests in chronic stroke patients with visual cortex involvement. 24-2 and 10-2 Humphrey visual fields were analyzed for 17 chronic cortically blind stroke patients prior to and following visual discrimination training, as well as in 5 untrained, cortically blind controls. Trained patients practiced direction discrimination, orientation discrimination, or both, at nonoverlapping, blind field locations. All pretraining and posttraining discrimination performance and Humphrey fields were collected with online eye tracking, ensuring gaze-contingent stimulus presentation. Trained patients recovered ∼108 degrees 2 of vision on average, while untrained patients spontaneously improved over an area of ∼16 degrees 2 . Improvement was not affected by patient age, time since lesion, size of initial deficit, or training type, but was proportional to the amount of training performed. Untrained patients counterbalanced their improvements with worsening of sensitivity over ∼9 degrees 2 of their visual field. Worsening was minimal in trained patients. Finally, although discrimination performance improved at all trained locations, changes in Humphrey sensitivity occurred both within trained regions and beyond, extending over a larger area along the blind field border. In adults with chronic cortical visual impairment, the blind field border appears to have enhanced plastic potential, which can be recruited by gaze-controlled visual discrimination training to expand the visible field. Our findings underscore a critical need for future studies to measure the effects of vision restoration approaches on perimetry in larger cohorts of patients. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  18. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex

    NASA Astrophysics Data System (ADS)

    Ohki, Kenichi; Chung, Sooyoung; Ch'ng, Yeang H.; Kara, Prakash; Reid, R. Clay

    2005-02-01

    Neurons in the cerebral cortex are organized into anatomical columns, with ensembles of cells arranged from the surface to the white matter. Within a column, neurons often share functional properties, such as selectivity for stimulus orientation; columns with distinct properties, such as different preferred orientations, tile the cortical surface in orderly patterns. This functional architecture was discovered with the relatively sparse sampling of microelectrode recordings. Optical imaging of membrane voltage or metabolic activity elucidated the overall geometry of functional maps, but is averaged over many cells (resolution >100µm). Consequently, the purity of functional domains and the precision of the borders between them could not be resolved. Here, we labelled thousands of neurons of the visual cortex with a calcium-sensitive indicator in vivo. We then imaged the activity of neuronal populations at single-cell resolution with two-photon microscopy up to a depth of 400µm. In rat primary visual cortex, neurons had robust orientation selectivity but there was no discernible local structure; neighbouring neurons often responded to different orientations. In area 18 of cat visual cortex, functional maps were organized at a fine scale. Neurons with opposite preferences for stimulus direction were segregated with extraordinary spatial precision in three dimensions, with columnar borders one to two cells wide. These results indicate that cortical maps can be built with single-cell precision.

  19. Eye-Hand Synergy and Intermittent Behaviors during Target-Directed Tracking with Visual and Non-visual Information

    PubMed Central

    Huang, Chien-Ting; Hwang, Ing-Shiou

    2012-01-01

    Visual feedback and non-visual information play different roles in tracking of an external target. This study explored the respective roles of the visual and non-visual information in eleven healthy volunteers who coupled the manual cursor to a rhythmically moving target of 0.5 Hz under three sensorimotor conditions: eye-alone tracking (EA), eye-hand tracking with visual feedback of manual outputs (EH tracking), and the same tracking without such feedback (EHM tracking). Tracking error, kinematic variables, and movement intermittency (saccade and speed pulse) were contrasted among tracking conditions. The results showed that EHM tracking exhibited larger pursuit gain, less tracking error, and less movement intermittency for the ocular plant than EA tracking. With the vision of manual cursor, EH tracking achieved superior tracking congruency of the ocular and manual effectors with smaller movement intermittency than EHM tracking, except that the rate precision of manual action was similar for both types of tracking. The present study demonstrated that visibility of manual consequences altered mutual relationships between movement intermittency and tracking error. The speed pulse metrics of manual output were linked to ocular tracking error, and saccade events were time-locked to the positional error of manual tracking during EH tracking. In conclusion, peripheral non-visual information is critical to smooth pursuit characteristics and rate control of rhythmic manual tracking. Visual information adds to eye-hand synchrony, underlying improved amplitude control and elaborate error interpretation during oculo-manual tracking. PMID:23236498

  20. Direct visualization reveals kinetics of meiotic chromosome synapsis

    DOE PAGES

    Rog, Ofer; Dernburg, Abby  F.

    2015-03-17

    The synaptonemal complex (SC) is a conserved protein complex that stabilizes interactions along homologous chromosomes (homologs) during meiosis. The SC regulates genetic exchanges between homologs, thereby enabling reductional division and the production of haploid gametes. Here, we directly observe SC assembly (synapsis) by optimizing methods for long-term fluorescence recording in C. elegans. We report that synapsis initiates independently on each chromosome pair at or near pairing centers—specialized regions required for homolog associations. Once initiated, the SC extends rapidly and mostly irreversibly to chromosome ends. Quantitation of SC initiation frequencies and extension rates reveals that initiation is a rate-limiting step inmore » homolog interactions. Eliminating the dynein-driven chromosome movements that accompany synapsis severely retards SC extension, revealing a new role for these conserved motions. This work provides the first opportunity to directly observe and quantify key aspects of meiotic chromosome interactions and will enable future in vivo analysis of germline processes.« less

  1. Gestalt Perceptual Organization of Visual Stimuli Captures Attention Automatically: Electrophysiological Evidence

    PubMed Central

    Marini, Francesco; Marzi, Carlo A.

    2016-01-01

    The visual system leverages organizational regularities of perceptual elements to create meaningful representations of the world. One clear example of such function, which has been formalized in the Gestalt psychology principles, is the perceptual grouping of simple visual elements (e.g., lines and arcs) into unitary objects (e.g., forms and shapes). The present study sought to characterize automatic attentional capture and related cognitive processing of Gestalt-like visual stimuli at the psychophysiological level by using event-related potentials (ERPs). We measured ERPs during a simple visual reaction time task with bilateral presentations of physically matched elements with or without a Gestalt organization. Results showed that Gestalt (vs. non-Gestalt) stimuli are characterized by a larger N2pc together with enhanced ERP amplitudes of non-lateralized components (N1, N2, P3) starting around 150 ms post-stimulus onset. Thus, we conclude that Gestalt stimuli capture attention automatically and entail characteristic psychophysiological signatures at both early and late processing stages. Highlights We studied the neural signatures of the automatic processes of visual attention elicited by Gestalt stimuli. We found that a reliable early correlate of attentional capture turned out to be the N2pc component. Perceptual and cognitive processing of Gestalt stimuli is associated with larger N1, N2, and P3 PMID:27630555

  2. Hemisphere-Dependent Attentional Modulation of Human Parietal Visual Field Representations

    PubMed Central

    Silver, Michael A.

    2015-01-01

    Posterior parietal cortex contains several areas defined by topographically organized maps of the contralateral visual field. However, recent studies suggest that ipsilateral stimuli can elicit larger responses in the right than left hemisphere within these areas, depending on task demands. Here we determined the effects of spatial attention on the set of visual field locations (the population receptive field [pRF]) that evoked a response for each voxel in human topographic parietal cortex. A two-dimensional Gaussian was used to model the pRF in each voxel, and we measured the effects of attention on not only the center (preferred visual field location) but also the size (visual field extent) of the pRF. In both hemispheres, larger pRFs were associated with attending to the mapping stimulus compared with attending to a central fixation point. In the left hemisphere, attending to the stimulus also resulted in more peripheral preferred locations of contralateral representations, compared with attending fixation. These effects of attention on both pRF size and preferred location preserved contralateral representations in the left hemisphere. In contrast, attentional modulation of pRF size but not preferred location significantly increased representation of the ipsilateral (right) visual hemifield in right parietal cortex. Thus, attention effects in topographic parietal cortex exhibit hemispheric asymmetries similar to those seen in hemispatial neglect. Our findings suggest potential mechanisms underlying the behavioral deficits associated with this disorder. PMID:25589746

  3. Auditory and visual interhemispheric communication in musicians and non-musicians.

    PubMed

    Woelfle, Rebecca; Grahn, Jessica A

    2013-01-01

    The corpus callosum (CC) is a brain structure composed of axon fibres linking the right and left hemispheres. Musical training is associated with larger midsagittal cross-sectional area of the CC, suggesting that interhemispheric communication may be faster in musicians. Here we compared interhemispheric transmission times (ITTs) for musicians and non-musicians. ITT was measured by comparing simple reaction times to stimuli presented to the same hemisphere that controlled a button-press response (uncrossed reaction time), or to the contralateral hemisphere (crossed reaction time). Both visual and auditory stimuli were tested. We predicted that the crossed-uncrossed difference (CUD) for musicians would be smaller than for non-musicians as a result of faster interhemispheric transfer times. We did not expect a difference in CUDs between the visual and auditory modalities for either musicians or non-musicians, as previous work indicates that interhemispheric transfer may happen through the genu of the CC, which contains motor fibres rather than sensory fibres. There were no significant differences in CUDs between musicians and non-musicians. However, auditory CUDs were significantly smaller than visual CUDs. Although this auditory-visual difference was larger in musicians than non-musicians, the interaction between modality and musical training was not significant. Therefore, although musical training does not significantly affect ITT, the crossing of auditory information between hemispheres appears to be faster than visual information, perhaps because subcortical pathways play a greater role for auditory interhemispheric transfer.

  4. Auditory and Visual Interhemispheric Communication in Musicians and Non-Musicians

    PubMed Central

    Woelfle, Rebecca; Grahn, Jessica A.

    2013-01-01

    The corpus callosum (CC) is a brain structure composed of axon fibres linking the right and left hemispheres. Musical training is associated with larger midsagittal cross-sectional area of the CC, suggesting that interhemispheric communication may be faster in musicians. Here we compared interhemispheric transmission times (ITTs) for musicians and non-musicians. ITT was measured by comparing simple reaction times to stimuli presented to the same hemisphere that controlled a button-press response (uncrossed reaction time), or to the contralateral hemisphere (crossed reaction time). Both visual and auditory stimuli were tested. We predicted that the crossed-uncrossed difference (CUD) for musicians would be smaller than for non-musicians as a result of faster interhemispheric transfer times. We did not expect a difference in CUDs between the visual and auditory modalities for either musicians or non-musicians, as previous work indicates that interhemispheric transfer may happen through the genu of the CC, which contains motor fibres rather than sensory fibres. There were no significant differences in CUDs between musicians and non-musicians. However, auditory CUDs were significantly smaller than visual CUDs. Although this auditory-visual difference was larger in musicians than non-musicians, the interaction between modality and musical training was not significant. Therefore, although musical training does not significantly affect ITT, the crossing of auditory information between hemispheres appears to be faster than visual information, perhaps because subcortical pathways play a greater role for auditory interhemispheric transfer. PMID:24386382

  5. Lightness Constancy in Surface Visualization

    PubMed Central

    Szafir, Danielle Albers; Sarikaya, Alper; Gleicher, Michael

    2016-01-01

    Color is a common channel for displaying data in surface visualization, but is affected by the shadows and shading used to convey surface depth and shape. Understanding encoded data in the context of surface structure is critical for effective analysis in a variety of domains, such as in molecular biology. In the physical world, lightness constancy allows people to accurately perceive shadowed colors; however, its effectiveness in complex synthetic environments such as surface visualizations is not well understood. We report a series of crowdsourced and laboratory studies that confirm the existence of lightness constancy effects for molecular surface visualizations using ambient occlusion. We provide empirical evidence of how common visualization design decisions can impact viewers’ abilities to accurately identify encoded surface colors. These findings suggest that lightness constancy aids in understanding color encodings in surface visualization and reveal a correlation between visualization techniques that improve color interpretation in shadow and those that enhance perceptions of surface depth. These results collectively suggest that understanding constancy in practice can inform effective visualization design. PMID:26584495

  6. Engineering visualization utilizing advanced animation

    NASA Technical Reports Server (NTRS)

    Sabionski, Gunter R.; Robinson, Thomas L., Jr.

    1989-01-01

    Engineering visualization is the use of computer graphics to depict engineering analysis and simulation in visual form from project planning through documentation. Graphics displays let engineers see data represented dynamically which permits the quick evaluation of results. The current state of graphics hardware and software generally allows the creation of two types of 3D graphics. The use of animated video as an engineering visualization tool is presented. The engineering, animation, and videography aspects of animated video production are each discussed. Specific issues include the integration of staffing expertise, hardware, software, and the various production processes. A detailed explanation of the animation process reveals the capabilities of this unique engineering visualization method. Automation of animation and video production processes are covered and future directions are proposed.

  7. Discrete Resource Allocation in Visual Working Memory

    ERIC Educational Resources Information Center

    Barton, Brian; Ester, Edward F.; Awh, Edward

    2009-01-01

    Are resources in visual working memory allocated in a continuous or a discrete fashion? On one hand, flexible resource models suggest that capacity is determined by a central resource pool that can be flexibly divided such that items of greater complexity receive a larger share of resources. On the other hand, if capacity in working memory is…

  8. Experience and information loss in auditory and visual memory.

    PubMed

    Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K

    2017-07-01

    Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.

  9. Multivariate fMRI and Eye Tracking Reveal Differential Effects of Visual Interference on Recognition Memory Judgments for Objects and Scenes.

    PubMed

    O'Neil, Edward B; Watson, Hilary C; Dhillon, Sonya; Lobaugh, Nancy J; Lee, Andy C H

    2015-09-01

    Recent work has demonstrated that the perirhinal cortex (PRC) supports conjunctive object representations that aid object recognition memory following visual object interference. It is unclear, however, how these representations interact with other brain regions implicated in mnemonic retrieval and how congruent and incongruent interference influences the processing of targets and foils during object recognition. To address this, multivariate partial least squares was applied to fMRI data acquired during an interference match-to-sample task, in which participants made object or scene recognition judgments after object or scene interference. This revealed a pattern of activity sensitive to object recognition following congruent (i.e., object) interference that included PRC, prefrontal, and parietal regions. Moreover, functional connectivity analysis revealed a common pattern of PRC connectivity across interference and recognition conditions. Examination of eye movements during the same task in a separate study revealed that participants gazed more at targets than foils during correct object recognition decisions, regardless of interference congruency. By contrast, participants viewed foils more than targets for incorrect object memory judgments, but only after congruent interference. Our findings suggest that congruent interference makes object foils appear familiar and that a network of regions, including PRC, is recruited to overcome the effects of interference.

  10. The contents of visual working memory reduce uncertainty during visual search.

    PubMed

    Cosman, Joshua D; Vecera, Shaun P

    2011-05-01

    Information held in visual working memory (VWM) influences the allocation of attention during visual search, with targets matching the contents of VWM receiving processing benefits over those that do not. Such an effect could arise from multiple mechanisms: First, it is possible that the contents of working memory enhance the perceptual representation of the target. Alternatively, it is possible that when a target is presented among distractor items, the contents of working memory operate postperceptually to reduce uncertainty about the location of the target. In both cases, a match between the contents of VWM and the target should lead to facilitated processing. However, each effect makes distinct predictions regarding set-size manipulations; whereas perceptual enhancement accounts predict processing benefits regardless of set size, uncertainty reduction accounts predict benefits only with set sizes larger than 1, when there is uncertainty regarding the target location. In the present study, in which briefly presented, masked targets were presented in isolation, there was a negligible effect of the information held in VWM on target discrimination. However, in displays containing multiple masked items, information held in VWM strongly affected target discrimination. These results argue that working memory representations act at a postperceptual level to reduce uncertainty during visual search.

  11. Occipital cortical thickness in very low birth weight born adolescents predicts altered neural specialization of visual semantic category related neural networks.

    PubMed

    Klaver, Peter; Latal, Beatrice; Martin, Ernst

    2015-01-01

    Very low birth weight (VLBW) premature born infants have a high risk to develop visual perceptual and learning deficits as well as widespread functional and structural brain abnormalities during infancy and childhood. Whether and how prematurity alters neural specialization within visual neural networks is still unknown. We used functional and structural brain imaging to examine the visual semantic system of VLBW born (<1250 g, gestational age 25-32 weeks) adolescents (13-15 years, n = 11, 3 males) and matched term born control participants (13-15 years, n = 11, 3 males). Neurocognitive assessment revealed no group differences except for lower scores on an adaptive visuomotor integration test. All adolescents were scanned while viewing pictures of animals and tools and scrambled versions of these pictures. Both groups demonstrated animal and tool category related neural networks. Term born adolescents showed tool category related neural activity, i.e. tool pictures elicited more activity than animal pictures, in temporal and parietal brain areas. Animal category related activity was found in the occipital, temporal and frontal cortex. VLBW born adolescents showed reduced tool category related activity in the dorsal visual stream compared with controls, specifically the left anterior intraparietal sulcus, and enhanced animal category related activity in the left middle occipital gyrus and right lingual gyrus. Lower birth weight of VLBW adolescents correlated with larger thickness of the pericalcarine gyrus in the occipital cortex and smaller surface area of the superior temporal gyrus in the lateral temporal cortex. Moreover, larger thickness of the pericalcarine gyrus and smaller surface area of the superior temporal gyrus correlated with reduced tool category related activity in the parietal cortex. Together, our data suggest that very low birth weight predicts alterations of higher order visual semantic networks, particularly in the dorsal stream. The differences

  12. Large capacity temporary visual memory.

    PubMed

    Endress, Ansgar D; Potter, Mary C

    2014-04-01

    Visual working memory (WM) capacity is thought to be limited to 3 or 4 items. However, many cognitive activities seem to require larger temporary memory stores. Here, we provide evidence for a temporary memory store with much larger capacity than past WM capacity estimates. Further, based on previous WM research, we show that a single factor--proactive interference--is sufficient to bring capacity estimates down to the range of previous WM capacity estimates. Participants saw a rapid serial visual presentation of 5-21 pictures of familiar objects or words presented at rates of 4/s or 8/s, respectively, and thus too fast for strategies such as rehearsal. Recognition memory was tested with a single probe item. When new items were used on all trials, no fixed memory capacities were observed, with estimates of up to 9.1 retained pictures for 21-item lists, and up to 30.0 retained pictures for 100-item lists, and no clear upper bound to how many items could be retained. Further, memory items were not stored in a temporally stable form of memory but decayed almost completely after a few minutes. In contrast, when, as in most WM experiments, a small set of items was reused across all trials, thus creating proactive interference among items, capacity remained in the range reported in previous WM experiments. These results show that humans have a large-capacity temporary memory store in the absence of proactive interference, and raise the question of whether temporary memory in everyday cognitive processing is severely limited, as in WM experiments, or has the much larger capacity found in the present experiments.

  13. Large capacity temporary visual memory

    PubMed Central

    Endress, Ansgar D.; Potter, Mary C.

    2014-01-01

    Visual working memory (WM) capacity is thought to be limited to three or four items. However, many cognitive activities seem to require larger temporary memory stores. Here, we provide evidence for a temporary memory store with much larger capacity than past WM capacity estimates. Further, based on previous WM research, we show that a single factor — proactive interference — is sufficient to bring capacity estimates down to the range of previous WM capacity estimates. Participants saw a rapid serial visual presentation (RSVP) of 5 to 21 pictures of familiar objects or words presented at rates of 4/s or 8/s, respectively, and thus too fast for strategies such as rehearsal. Recognition memory was tested with a single probe item. When new items were used on all trials, no fixed memory capacities were observed, with estimates of up to 9.1 retained pictures for 21-item lists, and up to 30.0 retained pictures for 100-item lists, and no clear upper bound to how many items could be retained. Further, memory items were not stored in a temporally stable form of memory, but decayed almost completely after a few minutes. In contrast, when, as in most WM experiments, a small set of items was reused across all trials, thus creating proactive interference among items, capacity remained in the range reported in previous WM experiments. These results show that humans have a large-capacity temporary memory store in the absence of proactive interference, and raise the question of whether temporary memory in everyday cognitive processing is severely limited as in WM experiments, or has the much larger capacity found in the present experiments. PMID:23937181

  14. Evaluation of stereoscopic display with visual function and interview

    NASA Astrophysics Data System (ADS)

    Okuyama, Fumio

    1999-05-01

    The influence of binocular stereoscopic (3D) television display on the human eye were compared with one of a 2D display, using human visual function testing and interviews. A 40- inch double lenticular display was used for 2D/3D comparison experiments. Subjects observed the display for 30 minutes at a distance 1.0 m, with a combination of 2D material and one of 3D material. The participants were twelve young adults. Main optometric test with visual function measured were visual acuity, refraction, phoria, near vision point, accommodation etc. The interview consisted of 17 questions. Testing procedures were performed just before watching, just after watching, and forty-five minutes after watching. Changes in visual function are characterized as prolongation of near vision point, decrease of accommodation and increase in phoria. 3D viewing interview results show much more visual fatigue in comparison with 2D results. The conclusions are: 1) change in visual function is larger and visual fatigue is more intense when viewing 3D images. 2) The evaluation method with visual function and interview proved to be very satisfactory for analyzing the influence of stereoscopic display on human eye.

  15. [Visual perception of Kanji characters and complicated figures. II. Visual P300 event-related potentials in patients with mental retardation].

    PubMed

    Sata, Yoshimi; Inagaki, Masumi; Shirane, Seiko; Kaga, Makiko

    2002-11-01

    In order to objectively evaluate visual perception of patients with mental retardation (MR), the P300 event-related potentials (ERPs) for visual oddball tasks were recorded in 26 patients and 13 age-matched healthy volunteers. The latency and amplitude of visual P300 in response to the Japanese ideogram stimuli (a pair of familiar Kanji characters or unfamiliar Kanji characters) and a pair of meaningless complicated figures were measured. In almost all MR patients visual P300 was observed, however, the peak latency was significantly prolonged compared to control subjects. There was no significant difference of P300 latency among the three tasks. The distribution pattern of P300 in MR patients was different from that in the controls and the amplitudes in the frontal region was larger in MR patients. The latency decreased with age even in both groups. The developmental change of P300 latency corresponded to developmental age rather than the chronological age. These findings suggest that MR patients have impairment in processing of visual perception. Assessment of P300 latencies to the visual stimuli may be useful as an objective indicator of mental deficit.

  16. Age-related changes in visual exploratory behavior in a natural scene setting

    PubMed Central

    Hamel, Johanna; De Beukelaer, Sophie; Kraft, Antje; Ohl, Sven; Audebert, Heinrich J.; Brandt, Stephan A.

    2013-01-01

    Diverse cognitive functions decline with increasing age, including the ability to process central and peripheral visual information in a laboratory testing situation (useful visual field of view). To investigate whether and how this influences activities of daily life, we studied age-related changes in visual exploratory behavior in a natural scene setting: a driving simulator paradigm of variable complexity was tested in subjects of varying ages with simultaneous eye- and head-movement recordings via a head-mounted camera. Detection and reaction times were also measured by visual fixation and manual reaction. We considered video computer game experience as a possible influence on performance. Data of 73 participants of varying ages were analyzed, driving two different courses. We analyzed the influence of route difficulty level, age, and eccentricity of test stimuli on oculomotor and driving behavior parameters. No significant age effects were found regarding saccadic parameters. In the older subjects head-movements increasingly contributed to gaze amplitude. More demanding courses and more peripheral stimuli locations induced longer reaction times in all age groups. Deterioration of the functionally useful visual field of view with increasing age was not suggested in our study group. However, video game-experienced subjects revealed larger saccade amplitudes and a broader distribution of fixations on the screen. They reacted faster to peripheral objects suggesting the notion of a general detection task rather than perceiving driving as a central task. As the video game-experienced population consisted of younger subjects, our study indicates that effects due to video game experience can easily be misinterpreted as age effects if not accounted for. We therefore view it as essential to consider video game experience in all testing methods using virtual media. PMID:23801970

  17. Editorial Commentary: The Larger Holes or Larger Number of Holes We Drill in the Coracoid, the Weaker the Coracoid Becomes.

    PubMed

    Brady, Paul

    2016-06-01

    The larger holes or larger number of holes we drill in the coracoid, the weaker the coracoid becomes. Thus, minimizing bone holes (both size and number) is required to lower risk of coracoid process fracture, in patients in whom transosseous shoulder acromioclavicular joint reconstruction is indicated. A single 2.4-mm-diameter tunnel drilled through both the clavicle and the coracoid lowers the risk of fracture, but the risk cannot be entirely eliminated. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  18. Visualizing Dispersion Interactions

    ERIC Educational Resources Information Center

    Gottschalk, Elinor; Venkataraman, Bhawani

    2014-01-01

    An animation and accompanying activity has been developed to help students visualize how dispersion interactions arise. The animation uses the gecko's ability to walk on vertical surfaces to illustrate how dispersion interactions play a role in macroscale outcomes. Assessment of student learning reveals that students were able to develop…

  19. Color vision in attention-deficit/hyperactivity disorder: a pilot visual evoked potential study.

    PubMed

    Kim, Soyeon; Banaschewski, Tobias; Tannock, Rosemary

    2015-01-01

    Individuals with attention-deficit/hyperactivity disorder (ADHD) are reported to manifest visual problems (including ophthalmological and color perception, particularly for blue-yellow stimuli), but findings are inconsistent. Accordingly, this study investigated visual function and color perception in adolescents with ADHD using color Visual Evoked Potentials (cVEP), which provides an objective measure of color perception. Thirty-one adolescents (aged 13-18), 16 with a confirmed diagnosis of ADHD, and 15 healthy peers, matched for age, gender, and IQ participated in the study. All underwent an ophthalmological exam, as well as electrophysiological testing color Visual Evoked Potentials (cVEP), which measured the latency and amplitude of the neural P1 response to chromatic (blue-yellow, red-green) and achromatic stimuli. No intergroup differences were found in the ophthalmological exam. However, significantly larger P1 amplitude was found for blue and yellow stimuli, but not red/green or achromatic stimuli, in the ADHD group (particularly in the medicated group) compared to controls. Larger amplitude in the P1 component for blue-yellow in the ADHD group compared to controls may account for the lack of difference in color perception tasks. We speculate that the larger amplitude for blue-yellow stimuli in early sensory processing (P1) might reflect a compensatory strategy for underlying problems including compromised retinal input of s-cones due to hypo-dopaminergic tone. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  20. Visual acuity testing in diabetic subjects: the decimal progression chart versus the Freiburg visual acuity test.

    PubMed

    Loumann Knudsen, Lars

    2003-08-01

    To study reproducibility and biological variation of visual acuity in diabetic maculopathy, using two different visual acuity tests, the decimal progression chart and the Freiburg visual acuity test. Twenty-two eyes in 11 diabetic subjects were examined several times within a 12-month period using both visual acuity tests. The most commonly used visual acuity test in Denmark (the decimal progression chart) was compared to the Freiburg visual acuity test (automated testing) in a paired study. Correlation analysis revealed agreement between the two methods (r(2)=0.79; slope=0.82; y-axis intercept=0.01). The mean visual acuity was found to be 15% higher (P<0.0001) with the decimal progression chart than with the Freiburg visual acuity test. The reproducibility was the same in both tests (coefficient of variation: 12% for each test); however, the variation within the 12-month examination period differed significantly. The coefficient of variation was 17% using the decimal progression chart, 35% with the Freiburg visual acuity test. The reproducibility of the two visual acuity tests is comparable under optimal testing conditions in diabetic subjects with macular oedema. However, it appears that the Freiburg visual acuity test is significantly better for detection of biological variation.

  1. Effects of Peripheral Visual Field Loss on Eye Movements During Visual Search

    PubMed Central

    Wiecek, Emily; Pasquale, Louis R.; Fiser, Jozsef; Dakin, Steven; Bex, Peter J.

    2012-01-01

    Natural vision involves sequential eye movements that bring the fovea to locations selected by peripheral vision. How peripheral visual field loss (PVFL) affects this process is not well understood. We examine how the location and extent of PVFL affects eye movement behavior in a naturalistic visual search task. Ten patients with PVFL and 13 normally sighted subjects with full visual fields (FVF) completed 30 visual searches monocularly. Subjects located a 4° × 4° target, pseudo-randomly selected within a 26° × 11° natural image. Eye positions were recorded at 50 Hz. Search duration, fixation duration, saccade size, and number of saccades per trial were not significantly different between PVFL and FVF groups (p > 0.1). A χ2 test showed that the distributions of saccade directions for PVFL and FVL subjects were significantly different in 8 out of 10 cases (p < 0.01). Humphrey Visual Field pattern deviations for each subject were compared with the spatial distribution of eye movement directions. There were no significant correlations between saccade directional bias and visual field sensitivity across the 10 patients. Visual search performance was not significantly affected by PVFL. An analysis of eye movement directions revealed patients with PVFL show a biased directional distribution that was not directly related to the locus of vision loss, challenging feed-forward models of eye movement control. Consequently, many patients do not optimally compensate for visual field loss during visual search. PMID:23162511

  2. Decoding Visual Object Categories in Early Somatosensory Cortex

    PubMed Central

    Smith, Fraser W.; Goodale, Melvyn A.

    2015-01-01

    Neurons, even in the earliest sensory areas of cortex, are subject to a great deal of contextual influence from both within and across modality connections. In the present work, we investigated whether the earliest regions of somatosensory cortex (S1 and S2) would contain content-specific information about visual object categories. We reasoned that this might be possible due to the associations formed through experience that link different sensory aspects of a given object. Participants were presented with visual images of different object categories in 2 fMRI experiments. Multivariate pattern analysis revealed reliable decoding of familiar visual object category in bilateral S1 (i.e., postcentral gyri) and right S2. We further show that this decoding is observed for familiar but not unfamiliar visual objects in S1. In addition, whole-brain searchlight decoding analyses revealed several areas in the parietal lobe that could mediate the observed context effects between vision and somatosensation. These results demonstrate that even the first cortical stages of somatosensory processing carry information about the category of visually presented familiar objects. PMID:24122136

  3. Visual target modulation of functional connectivity networks revealed by self-organizing group ICA.

    PubMed

    van de Ven, Vincent; Bledowski, Christoph; Prvulovic, David; Goebel, Rainer; Formisano, Elia; Di Salle, Francesco; Linden, David E J; Esposito, Fabrizio

    2008-12-01

    We applied a data-driven analysis based on self-organizing group independent component analysis (sogICA) to fMRI data from a three-stimulus visual oddball task. SogICA is particularly suited to the investigation of the underlying functional connectivity and does not rely on a predefined model of the experiment, which overcomes some of the limitations of hypothesis-driven analysis. Unlike most previous applications of ICA in functional imaging, our approach allows the analysis of the data at the group level, which is of particular interest in high order cognitive studies. SogICA is based on the hierarchical clustering of spatially similar independent components, derived from single subject decompositions. We identified four main clusters of components, centered on the posterior cingulate, bilateral insula, bilateral prefrontal cortex, and right posterior parietal and prefrontal cortex, consistently across all participants. Post hoc comparison of time courses revealed that insula, prefrontal cortex and right fronto-parietal components showed higher activity for targets than for distractors. Activation for distractors was higher in the posterior cingulate cortex, where deactivation was observed for targets. While our results conform to previous neuroimaging studies, they also complement conventional results by showing functional connectivity networks with unique contributions to the task that were consistent across subjects. SogICA can thus be used to probe functional networks of active cognitive tasks at the group-level and can provide additional insights to generate new hypotheses for further study. Copyright 2007 Wiley-Liss, Inc.

  4. MindSeer: a portable and extensible tool for visualization of structural and functional neuroimaging data

    PubMed Central

    Moore, Eider B; Poliakov, Andrew V; Lincoln, Peter; Brinkley, James F

    2007-01-01

    Background Three-dimensional (3-D) visualization of multimodality neuroimaging data provides a powerful technique for viewing the relationship between structure and function. A number of applications are available that include some aspect of 3-D visualization, including both free and commercial products. These applications range from highly specific programs for a single modality, to general purpose toolkits that include many image processing functions in addition to visualization. However, few if any of these combine both stand-alone and remote multi-modality visualization in an open source, portable and extensible tool that is easy to install and use, yet can be included as a component of a larger information system. Results We have developed a new open source multimodality 3-D visualization application, called MindSeer, that has these features: integrated and interactive 3-D volume and surface visualization, Java and Java3D for true cross-platform portability, one-click installation and startup, integrated data management to help organize large studies, extensibility through plugins, transparent remote visualization, and the ability to be integrated into larger information management systems. We describe the design and implementation of the system, as well as several case studies that demonstrate its utility. These case studies are available as tutorials or demos on the associated website: . Conclusion MindSeer provides a powerful visualization tool for multimodality neuroimaging data. Its architecture and unique features also allow it to be extended into other visualization domains within biomedicine. PMID:17937818

  5. MindSeer: a portable and extensible tool for visualization of structural and functional neuroimaging data.

    PubMed

    Moore, Eider B; Poliakov, Andrew V; Lincoln, Peter; Brinkley, James F

    2007-10-15

    Three-dimensional (3-D) visualization of multimodality neuroimaging data provides a powerful technique for viewing the relationship between structure and function. A number of applications are available that include some aspect of 3-D visualization, including both free and commercial products. These applications range from highly specific programs for a single modality, to general purpose toolkits that include many image processing functions in addition to visualization. However, few if any of these combine both stand-alone and remote multi-modality visualization in an open source, portable and extensible tool that is easy to install and use, yet can be included as a component of a larger information system. We have developed a new open source multimodality 3-D visualization application, called MindSeer, that has these features: integrated and interactive 3-D volume and surface visualization, Java and Java3D for true cross-platform portability, one-click installation and startup, integrated data management to help organize large studies, extensibility through plugins, transparent remote visualization, and the ability to be integrated into larger information management systems. We describe the design and implementation of the system, as well as several case studies that demonstrate its utility. These case studies are available as tutorials or demos on the associated website: http://sig.biostr.washington.edu/projects/MindSeer. MindSeer provides a powerful visualization tool for multimodality neuroimaging data. Its architecture and unique features also allow it to be extended into other visualization domains within biomedicine.

  6. A steady state visually evoked potential investigation of memory and ageing.

    PubMed

    Macpherson, Helen; Pipingas, Andrew; Silberstein, Richard

    2009-04-01

    Old age is generally accompanied by a decline in memory performance. Specifically, neuroimaging and electrophysiological studies have revealed that there are age-related changes in the neural correlates of episodic and working memory. This study investigated age-associated changes in the steady state visually evoked potential (SSVEP) amplitude and latency associated with memory performance. Participants were 15 older (59-67 years) and 14 younger (20-30 years) adults who performed an object working memory (OWM) task and a contextual recognition memory (CRM) task, whilst the SSVEP was recorded from 64 electrode sites. Retention of a single object in the low demand OWM task was characterised by smaller frontal SSVEP amplitude and latency differences in older adults than in younger adults, indicative of an age-associated reduction in neural processes. Recognition of visual images in the more difficult CRM task was accompanied by larger, more sustained SSVEP amplitude and latency decreases over temporal parietal regions in older adults. In contrast, the more transient, frontally mediated pattern of activity demonstrated by younger adults suggests that younger and older adults utilize different neural resources to perform recognition judgements. The results provide support for compensatory processes in the aging brain; at lower task demands, older adults demonstrate reduced neural activity, whereas at greater task demands neural activity is increased.

  7. Functional Connectivity Between Superior Parietal Lobule and Primary Visual Cortex "at Rest" Predicts Visual Search Efficiency.

    PubMed

    Bueichekú, Elisenda; Ventura-Campos, Noelia; Palomar-García, María-Ángeles; Miró-Padilla, Anna; Parcet, María-Antonia; Ávila, César

    2015-10-01

    Spatiotemporal activity that emerges spontaneously "at rest" has been proposed to reflect individual a priori biases in cognitive processing. This research focused on testing neurocognitive models of visual attention by studying the functional connectivity (FC) of the superior parietal lobule (SPL), given its central role in establishing priority maps during visual search tasks. Twenty-three human participants completed a functional magnetic resonance imaging session that featured a resting-state scan, followed by a visual search task based on the alphanumeric category effect. As expected, the behavioral results showed longer reaction times and more errors for the within-category (i.e., searching a target letter among letters) than the between-category search (i.e., searching a target letter among numbers). The within-category condition was related to greater activation of the superior and inferior parietal lobules, occipital cortex, inferior frontal cortex, dorsal anterior cingulate cortex, and the superior colliculus than the between-category search. The resting-state FC analysis of the SPL revealed a broad network that included connections with the inferotemporal cortex, dorsolateral prefrontal cortex, and dorsal frontal areas like the supplementary motor area and frontal eye field. Noteworthy, the regression analysis revealed that the more efficient participants in the visual search showed stronger FC between the SPL and areas of primary visual cortex (V1) related to the search task. We shed some light on how the SPL establishes a priority map of the environment during visual attention tasks and how FC is a valuable tool for assessing individual differences while performing cognitive tasks.

  8. Visual Search in ASD: Instructed Versus Spontaneous Local and Global Processing.

    PubMed

    Van der Hallen, Ruth; Evers, Kris; Boets, Bart; Steyaert, Jean; Noens, Ilse; Wagemans, Johan

    2016-09-01

    Visual search has been used extensively to investigate differences in mid-level visual processing between individuals with ASD and TD individuals. The current study employed two visual search paradigms with Gaborized stimuli to assess the impact of task distractors (Experiment 1) and task instruction (Experiment 2) on local-global visual processing in ASD versus TD children. Experiment 1 revealed both groups to be equally sensitive to the absence or presence of a distractor, regardless of the type of target or type of distractor. Experiment 2 revealed a differential effect of task instruction for ASD compared to TD, regardless of the type of target. Taken together, these results stress the importance of task factors in the study of local-global visual processing in ASD.

  9. Facial recognition using enhanced pixelized image for simulated visual prosthesis.

    PubMed

    Li, Ruonan; Zhhang, Xudong; Zhang, Hui; Hu, Guanshu

    2005-01-01

    A simulated face recognition experiment using enhanced pixelized images is designed and performed for the artificial visual prosthesis. The results of the simulation reveal new characteristics of visual performance in an enhanced pixelization condition, and then new suggestions on the future design of visual prosthesis are provided.

  10. Visual cues and listening effort: individual variability.

    PubMed

    Picou, Erin M; Ricketts, Todd A; Hornsby, Benjamin W Y

    2011-10-01

    To investigate the effect of visual cues on listening effort as well as whether predictive variables such as working memory capacity (WMC) and lipreading ability affect the magnitude of listening effort. Twenty participants with normal hearing were tested using a paired-associates recall task in 2 conditions (quiet and noise) and 2 presentation modalities (audio only [AO] and auditory-visual [AV]). Signal-to-noise ratios were adjusted to provide matched speech recognition across audio-only and AV noise conditions. Also measured were subjective perceptions of listening effort and 2 predictive variables: (a) lipreading ability and (b) WMC. Objective and subjective results indicated that listening effort increased in the presence of noise, but on average the addition of visual cues did not significantly affect the magnitude of listening effort. Although there was substantial individual variability, on average participants who were better lipreaders or had larger WMCs demonstrated reduced listening effort in noise in AV conditions. Overall, the results support the hypothesis that integrating auditory and visual cues requires cognitive resources in some participants. The data indicate that low lipreading ability or low WMC is associated with relatively effortful integration of auditory and visual information in noise.

  11. Independent sources of anisotropy in visual orientation representation: a visual and a cognitive oblique effect.

    PubMed

    Balikou, Panagiota; Gourtzelidis, Pavlos; Mantas, Asimakis; Moutoussis, Konstantinos; Evdokimidis, Ioannis; Smyrnis, Nikolaos

    2015-11-01

    The representation of visual orientation is more accurate for cardinal orientations compared to oblique, and this anisotropy has been hypothesized to reflect a low-level visual process (visual, "class 1" oblique effect). The reproduction of directional and orientation information also leads to a mean error away from cardinal orientations or directions. This anisotropy has been hypothesized to reflect a high-level cognitive process of space categorization (cognitive, "class 2," oblique effect). This space categorization process would be more prominent when the visual representation of orientation degrades such as in the case of working memory with increasing cognitive load, leading to increasing magnitude of the "class 2" oblique effect, while the "class 1" oblique effect would remain unchanged. Two experiments were performed in which an array of orientation stimuli (1-4 items) was presented and then subjects had to realign a probe stimulus within the previously presented array. In the first experiment, the delay between stimulus presentation and probe varied, while in the second experiment, the stimulus presentation time varied. The variable error was larger for oblique compared to cardinal orientations in both experiments reproducing the visual "class 1" oblique effect. The mean error also reproduced the tendency away from cardinal and toward the oblique orientations in both experiments (cognitive "class 2" oblique effect). The accuracy or the reproduced orientation degraded (increasing variable error) and the cognitive "class 2" oblique effect increased with increasing memory load (number of items) in both experiments and presentation time in the second experiment. In contrast, the visual "class 1" oblique effect was not significantly modulated by any one of these experimental factors. These results confirmed the theoretical predictions for the two anisotropies in visual orientation reproduction and provided support for models proposing the categorization of

  12. Do dyslexic individuals present a reduced visual attention span? Evidence from visual recognition tasks of non-verbal multi-character arrays.

    PubMed

    Yeari, Menahem; Isser, Michal; Schiff, Rachel

    2017-07-01

    A controversy has recently developed regarding the hypothesis that developmental dyslexia may be caused, in some cases, by a reduced visual attention span (VAS). To examine this hypothesis, independent of phonological abilities, researchers tested the ability of dyslexic participants to recognize arrays of unfamiliar visual characters. Employing this test, findings were rather equivocal: dyslexic participants exhibited poor performance in some studies but normal performance in others. The present study explored four methodological differences revealed between the two sets of studies that might underlie their conflicting results. Specifically, in two experiments we examined whether a VAS deficit is (a) specific to recognition of multi-character arrays as wholes rather than of individual characters within arrays, (b) specific to characters' position within arrays rather than to characters' identity, or revealed only under a higher attention load due to (c) low-discriminable characters, and/or (d) characters' short exposure. Furthermore, in this study we examined whether pure dyslexic participants who do not have attention disorder exhibit a reduced VAS. Although comorbidity of dyslexia and attention disorder is common and the ability to sustain attention for a long time plays a major rule in the visual recognition task, the presence of attention disorder was neither evaluated nor ruled out in previous studies. Findings did not reveal any differences between the performance of dyslexic and control participants on eight versions of the visual recognition task. These findings suggest that pure dyslexic individuals do not present a reduced visual attention span.

  13. Earthquake behavior of the Enriquillo fault zone, Haiti revealed by interactive terrain visualization

    NASA Astrophysics Data System (ADS)

    Cowgill, E.; Bernardin, T. S.; Oskin, M. E.; Bowles, C. J.; Yikilmaz, M. B.; Kreylos, O.; Elliott, A. J.; Bishop, M. S.; Gold, R. D.; Morelan, A.; Bawden, G. W.; Hamann, B.; Kellogg, L. H.

    2010-12-01

    The Mw 7.0 January 12, 2010 Haiti earthquake ended 240 years of relative quiescence following earthquakes that destroyed Port-au-Prince in 1751 and 1770. We place the 2010 rupture in the context of past earthquakes and future hazards by using remote analysis of airborne LiDAR to observe the topographic expression of active faulting and develop a new conceptual model for the earthquake behavior of the eastern Enriquillo fault zone (EFZ). In this model, the 2010 event occupies a long-lived segment boundary at a stepover within the EFZ separating fault segments that likely ruptured in 1751 and 1770, explaining both past clustering and the lack of 2010 surface rupture. Immediately following the 2010 earthquake, an airborne LiDAR point cloud containing over 2.7 billion point measurements of surface features was collected by the Rochester Inst. of Technology. To analyze these data, we capitalize on the human capacity to visually identify meaningful patterns embedded in noisy data by conducting interactive visual analysis of the entire 66.8 GB Haiti terrain data in a 4-sided, 800 ft3 immersive virtual-reality environment at the UC Davis KeckCAVES using the software tools LiDAR Viewer (to analyze point cloud data) and Crusta (for 3D surficial geologic mapping on DEM data). We discovered and measured landforms displaced by past surface-rupturing earthquakes and remotely characterized the regional fault geometry. Our analysis of the ~50 km long reach of EFZ spanning the 2010 epicenter indicates that geomorphic evidence of active faulting is clearer east of the epicenter than to the west. West of the epicenter, and in the region of the 2010 rupture, the fault is poorly defined along an embayed, low-relief range front, with little evidence of recent surface rupture. In contrast, landform offsets of 6 to 50 m along the reach of the EFZ east of the epicenter and closest to Port-au-Prince attest to repeated recent surface-rupturing earthquakes here. Specifically, we found and

  14. SPECT in patients with cortical visual loss.

    PubMed

    Silverman, I E; Galetta, S L; Gray, L G; Moster, M; Atlas, S W; Maurer, A H; Alavi, A

    1993-09-01

    Single-photon emission computed tomography (SPECT) with 99mTc-hexamethylpropyleneamine oxime (HMPAO) was used to investigate changes in cerebral blood flow in seven patients with cortical visual impairment. Traumatic brain injury (TBI) was the cause of cortical damage in two patients, cerebral ischemia in two patients and carbon monoxide (CO) poisoning, status epilepticus and Alzheimer's Disease (AD) each in three separate patients. The SPECT scans of the seven patients were compared to T2-weighted magnetic resonance image (MRI) scans of the brain to determine the correlation between functional and anatomical findings. In six of the seven patients, the qualitative interpretation of the SPECT studies supported the clinical findings (i.e., the visual field defect) by revealing altered regional cerebral blood flow (rCBF) in the appropriate regions of the visual pathway. MR scans in all of the patients, on the other hand, were either normal or disclosed smaller lesions than those detected by SPECT. We conclude that SPECT may reveal altered rCBF in patients with cortical visual impairment of various etiologies, even when MRI studies are normal or nondiagnostic.

  15. Multisensory Stimulation Can Induce an Illusion of Larger Belly Size in Immersive Virtual Reality

    PubMed Central

    Normand, Jean-Marie; Giannopoulos, Elias; Spanlang, Bernhard; Slater, Mel

    2011-01-01

    Background Body change illusions have been of great interest in recent years for the understanding of how the brain represents the body. Appropriate multisensory stimulation can induce an illusion of ownership over a rubber or virtual arm, simple types of out-of-the-body experiences, and even ownership with respect to an alternate whole body. Here we use immersive virtual reality to investigate whether the illusion of a dramatic increase in belly size can be induced in males through (a) first person perspective position (b) synchronous visual-motor correlation between real and virtual arm movements, and (c) self-induced synchronous visual-tactile stimulation in the stomach area. Methodology Twenty two participants entered into a virtual reality (VR) delivered through a stereo head-tracked wide field-of-view head-mounted display. They saw from a first person perspective a virtual body substituting their own that had an inflated belly. For four minutes they repeatedly prodded their real belly with a rod that had a virtual counterpart that they saw in the VR. There was a synchronous condition where their prodding movements were synchronous with what they felt and saw and an asynchronous condition where this was not the case. The experiment was repeated twice for each participant in counter-balanced order. Responses were measured by questionnaire, and also a comparison of before and after self-estimates of belly size produced by direct visual manipulation of the virtual body seen from the first person perspective. Conclusions The results show that first person perspective of a virtual body that substitutes for the own body in virtual reality, together with synchronous multisensory stimulation can temporarily produce changes in body representation towards the larger belly size. This was demonstrated by (a) questionnaire results, (b) the difference between the self-estimated belly size, judged from a first person perspective, after and before the experimental

  16. Visual Prediction Error Spreads Across Object Features in Human Visual Cortex

    PubMed Central

    Summerfield, Christopher; Egner, Tobias

    2016-01-01

    Visual cognition is thought to rely heavily on contextual expectations. Accordingly, previous studies have revealed distinct neural signatures for expected versus unexpected stimuli in visual cortex. However, it is presently unknown how the brain combines multiple concurrent stimulus expectations such as those we have for different features of a familiar object. To understand how an unexpected object feature affects the simultaneous processing of other expected feature(s), we combined human fMRI with a task that independently manipulated expectations for color and motion features of moving-dot stimuli. Behavioral data and neural signals from visual cortex were then interrogated to adjudicate between three possible ways in which prediction error (surprise) in the processing of one feature might affect the concurrent processing of another, expected feature: (1) feature processing may be independent; (2) surprise might “spread” from the unexpected to the expected feature, rendering the entire object unexpected; or (3) pairing a surprising feature with an expected feature might promote the inference that the two features are not in fact part of the same object. To formalize these rival hypotheses, we implemented them in a simple computational model of multifeature expectations. Across a range of analyses, behavior and visual neural signals consistently supported a model that assumes a mixing of prediction error signals across features: surprise in one object feature spreads to its other feature(s), thus rendering the entire object unexpected. These results reveal neurocomputational principles of multifeature expectations and indicate that objects are the unit of selection for predictive vision. SIGNIFICANCE STATEMENT We address a key question in predictive visual cognition: how does the brain combine multiple concurrent expectations for different features of a single object such as its color and motion trajectory? By combining a behavioral protocol that

  17. Modulation of auditory stimulus processing by visual spatial or temporal cue: an event-related potentials study.

    PubMed

    Tang, Xiaoyu; Li, Chunlin; Li, Qi; Gao, Yulin; Yang, Weiping; Yang, Jingjing; Ishikawa, Soushirou; Wu, Jinglong

    2013-10-11

    Utilizing the high temporal resolution of event-related potentials (ERPs), we examined how visual spatial or temporal cues modulated the auditory stimulus processing. The visual spatial cue (VSC) induces orienting of attention to spatial locations; the visual temporal cue (VTC) induces orienting of attention to temporal intervals. Participants were instructed to respond to auditory targets. Behavioral responses to auditory stimuli following VSC were faster and more accurate than those following VTC. VSC and VTC had the same effect on the auditory N1 (150-170 ms after stimulus onset). The mean amplitude of the auditory P1 (90-110 ms) in VSC condition was larger than that in VTC condition, and the mean amplitude of late positivity (300-420 ms) in VTC condition was larger than that in VSC condition. These findings suggest that modulation of auditory stimulus processing by visually induced spatial or temporal orienting of attention were different, but partially overlapping. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Integrative and distinctive coding of visual and conceptual object features in the ventral visual stream

    PubMed Central

    Douglas, Danielle; Newsome, Rachel N; Man, Louisa LY

    2018-01-01

    A significant body of research in cognitive neuroscience is aimed at understanding how object concepts are represented in the human brain. However, it remains unknown whether and where the visual and abstract conceptual features that define an object concept are integrated. We addressed this issue by comparing the neural pattern similarities among object-evoked fMRI responses with behavior-based models that independently captured the visual and conceptual similarities among these stimuli. Our results revealed evidence for distinctive coding of visual features in lateral occipital cortex, and conceptual features in the temporal pole and parahippocampal cortex. By contrast, we found evidence for integrative coding of visual and conceptual object features in perirhinal cortex. The neuroanatomical specificity of this effect was highlighted by results from a searchlight analysis. Taken together, our findings suggest that perirhinal cortex uniquely supports the representation of fully specified object concepts through the integration of their visual and conceptual features. PMID:29393853

  19. Many-objective optimization and visual analytics reveal key trade-offs for London's water supply

    NASA Astrophysics Data System (ADS)

    Matrosov, Evgenii S.; Huskova, Ivana; Kasprzyk, Joseph R.; Harou, Julien J.; Lambert, Chris; Reed, Patrick M.

    2015-12-01

    In this study, we link a water resource management simulator to multi-objective search to reveal the key trade-offs inherent in planning a real-world water resource system. We consider new supplies and demand management (conservation) options while seeking to elucidate the trade-offs between the best portfolios of schemes to satisfy projected water demands. Alternative system designs are evaluated using performance measures that minimize capital and operating costs and energy use while maximizing resilience, engineering and environmental metrics, subject to supply reliability constraints. Our analysis shows many-objective evolutionary optimization coupled with state-of-the art visual analytics can help planners discover more diverse water supply system designs and better understand their inherent trade-offs. The approach is used to explore future water supply options for the Thames water resource system (including London's water supply). New supply options include a new reservoir, water transfers, artificial recharge, wastewater reuse and brackish groundwater desalination. Demand management options include leakage reduction, compulsory metering and seasonal tariffs. The Thames system's Pareto approximate portfolios cluster into distinct groups of water supply options; for example implementing a pipe refurbishment program leads to higher capital costs but greater reliability. This study highlights that traditional least-cost reliability constrained design of water supply systems masks asset combinations whose benefits only become apparent when more planning objectives are considered.

  20. Receptive Field Vectors of Genetically-Identified Retinal Ganglion Cells Reveal Cell-Type-Dependent Visual Functions

    PubMed Central

    Katz, Matthew L.; Viney, Tim J.; Nikolic, Konstantin

    2016-01-01

    Sensory stimuli are encoded by diverse kinds of neurons but the identities of the recorded neurons that are studied are often unknown. We explored in detail the firing patterns of eight previously defined genetically-identified retinal ganglion cell (RGC) types from a single transgenic mouse line. We first introduce a new technique of deriving receptive field vectors (RFVs) which utilises a modified form of mutual information (“Quadratic Mutual Information”). We analysed the firing patterns of RGCs during presentation of short duration (~10 second) complex visual scenes (natural movies). We probed the high dimensional space formed by the visual input for a much smaller dimensional subspace of RFVs that give the most information about the response of each cell. The new technique is very efficient and fast and the derivation of novel types of RFVs formed by the natural scene visual input was possible even with limited numbers of spikes per cell. This approach enabled us to estimate the 'visual memory' of each cell type and the corresponding receptive field area by calculating Mutual Information as a function of the number of frames and radius. Finally, we made predictions of biologically relevant functions based on the RFVs of each cell type. RGC class analysis was complemented with results for the cells’ response to simple visual input in the form of black and white spot stimulation, and their classification on several key physiological metrics. Thus RFVs lead to predictions of biological roles based on limited data and facilitate analysis of sensory-evoked spiking data from defined cell types. PMID:26845435

  1. Spike synchrony reveals emergence of proto-objects in visual cortex.

    PubMed

    Martin, Anne B; von der Heydt, Rüdiger

    2015-04-29

    Neurons at early stages of the visual cortex signal elemental features, such as pieces of contour, but how these signals are organized into perceptual objects is unclear. Theories have proposed that spiking synchrony between these neurons encodes how features are grouped (binding-by-synchrony), but recent studies did not find the predicted increase in synchrony with binding. Here we propose that features are grouped to "proto-objects" by intrinsic feedback circuits that enhance the responses of the participating feature neurons. This hypothesis predicts synchrony exclusively between feature neurons that receive feedback from the same grouping circuit. We recorded from neurons in macaque visual cortex and used border-ownership selectivity, an intrinsic property of the neurons, to infer whether or not two neurons are part of the same grouping circuit. We found that binding produced synchrony between same-circuit neurons, but not between other pairs of neurons, as predicted by the grouping hypothesis. In a selective attention task, synchrony emerged with ignored as well as attended objects, and higher synchrony was associated with faster behavioral responses, as would be expected from early grouping mechanisms that provide the structure for object-based processing. Thus, synchrony could be produced by automatic activation of intrinsic grouping circuits. However, the binding-related elevation of synchrony was weak compared with its random fluctuations, arguing against synchrony as a code for binding. In contrast, feedback grouping circuits encode binding by modulating the response strength of related feature neurons. Thus, our results suggest a novel coding mechanism that might underlie the proto-objects of perception. Copyright © 2015 the authors 0270-6474/15/356860-11$15.00/0.

  2. Interactive Terascale Particle Visualization

    NASA Technical Reports Server (NTRS)

    Ellsworth, David; Green, Bryan; Moran, Patrick

    2004-01-01

    This paper describes the methods used to produce an interactive visualization of a 2 TB computational fluid dynamics (CFD) data set using particle tracing (streaklines). We use the method introduced by Bruckschen et al. [2001] that pre-computes a large number of particles, stores them on disk using a space-filling curve ordering that minimizes seeks, and then retrieves and displays the particles according to the user's command. We describe how the particle computation can be performed using a PC cluster, how the algorithm can be adapted to work with a multi-block curvilinear mesh, and how the out-of-core visualization can be scaled to 296 billion particles while still achieving interactive performance on PG hardware. Compared to the earlier work, our data set size and total number of particles are an order of magnitude larger. We also describe a new compression technique that allows the lossless compression of the particles by 41% and speeds the particle retrieval by about 30%.

  3. Solar System Visualizations

    NASA Technical Reports Server (NTRS)

    Brown, Alison M.

    2005-01-01

    Solar System Visualization products enable scientists to compare models and measurements in new ways that enhance the scientific discovery process, enhance the information content and understanding of the science results for both science colleagues and the public, and create.visually appealing and intellectually stimulating visualization products. Missions supported include MER, MRO, and Cassini. Image products produced include pan and zoom animations of large mosaics to reveal the details of surface features and topography, animations into registered multi-resolution mosaics to provide context for microscopic images, 3D anaglyphs from left and right stereo pairs, and screen captures from video footage. Specific products include a three-part context animation of the Cassini Enceladus encounter highlighting images from 350 to 4 meter per pixel resolution; Mars Reconnaissance Orbiter screen captures illustrating various instruments during assembly and testing at the Payload Hazardous Servicing Facility at Kennedy Space Center; and an animation of Mars Exploration Rover Opportunity's 'Rub al Khali' panorama where the rover was stuck in the deep fine sand for more than a month. This task creates new visualization products that enable new science results and enhance the public's understanding of the Solar System and NASA's missions of exploration.

  4. Parsing heterogeneity in autism spectrum disorders: visual scanning of dynamic social scenes in school-aged children.

    PubMed

    Rice, Katherine; Moriuchi, Jennifer M; Jones, Warren; Klin, Ami

    2012-03-01

    To examine patterns of variability in social visual engagement and their relationship to standardized measures of social disability in a heterogeneous sample of school-aged children with autism spectrum disorders (ASD). Eye-tracking measures of visual fixation during free-viewing of dynamic social scenes were obtained for 109 children with ASD (mean age, 10.2 ± 3.2 years), 37 of whom were matched with 26 typically-developing (TD) children (mean age, 9.5 ± 2.2 years) on gender, age, and IQ. The smaller subset allowed between-group comparisons, whereas the larger group was used for within-group examinations of ASD heterogeneity. Between-group comparisons revealed significantly attenuated orientation to socially salient aspects of the scenes, with the largest effect size (Cohen's d = 1.5) obtained for reduced fixation on faces. Within-group analyses revealed a robust association between higher fixation on the inanimate environment and greater social disability. However, the associations between fixation on the eyes and mouth and social adaptation varied greatly, even reversing, when comparing different cognitive profile subgroups. Although patterns of social visual engagement with naturalistic social stimuli are profoundly altered in children with ASD, the social adaptivity of these behaviors varies for different groups of children. This variation likely represents different patterns of adaptation and maladaptation that should be traced longitudinally to the first years of life, before complex interactions between early predispositions and compensatory learning take place. We propose that variability in these early mechanisms of socialization may serve as proximal behavioral manifestations of genetic vulnerabilities. Copyright © 2012 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. [Are Visual Field Defects Reversible? - Visual Rehabilitation with Brains].

    PubMed

    Sabel, B A

    2017-02-01

    Visual field defects are considered irreversible because the retina and optic nerve do not regenerate. Nevertheless, there is some potential for recovery of the visual fields. This can be accomplished by the brain, which analyses and interprets visual information and is able to amplify residual signals through neuroplasticity. Neuroplasticity refers to the ability of the brain to change its own functional architecture by modulating synaptic efficacy. This is actually the neurobiological basis of normal learning. Plasticity is maintained throughout life and can be induced by repetitively stimulating (training) brain circuits. The question now arises as to how plasticity can be utilised to activate residual vision for the treatment of visual field loss. Just as in neurorehabilitation, visual field defects can be modulated by post-lesion plasticity to improve vision in glaucoma, diabetic retinopathy or optic neuropathy. Because almost all patients have some residual vision, the goal is to strengthen residual capacities by enhancing synaptic efficacy. New treatment paradigms have been tested in clinical studies, including vision restoration training and non-invasive alternating current stimulation. While vision training is a behavioural task to selectively stimulate "relative defects" with daily vision exercises for the duration of 6 months, treatment with alternating current stimulation (30 min. daily for 10 days) activates and synchronises the entire retina and brain. Though full restoration of vision is not possible, such treatments improve vision, both subjectively and objectively. This includes visual field enlargements, improved acuity and reaction time, improved orientation and vision related quality of life. About 70 % of the patients respond to the therapies and there are no serious adverse events. Physiological studies of the effect of alternating current stimulation using EEG and fMRI reveal massive local and global changes in the brain. These include

  6. Decoding visual object categories in early somatosensory cortex.

    PubMed

    Smith, Fraser W; Goodale, Melvyn A

    2015-04-01

    Neurons, even in the earliest sensory areas of cortex, are subject to a great deal of contextual influence from both within and across modality connections. In the present work, we investigated whether the earliest regions of somatosensory cortex (S1 and S2) would contain content-specific information about visual object categories. We reasoned that this might be possible due to the associations formed through experience that link different sensory aspects of a given object. Participants were presented with visual images of different object categories in 2 fMRI experiments. Multivariate pattern analysis revealed reliable decoding of familiar visual object category in bilateral S1 (i.e., postcentral gyri) and right S2. We further show that this decoding is observed for familiar but not unfamiliar visual objects in S1. In addition, whole-brain searchlight decoding analyses revealed several areas in the parietal lobe that could mediate the observed context effects between vision and somatosensation. These results demonstrate that even the first cortical stages of somatosensory processing carry information about the category of visually presented familiar objects. © The Author 2013. Published by Oxford University Press.

  7. Effect of drivers' age and push button locations on visual time off road, steering wheel deviation and safety perception.

    PubMed

    Dukic, T; Hanson, L; Falkmer, T

    2006-01-15

    The study examined the effects of manual control locations on two groups of randomly selected young and old drivers in relation to visual time off road, steering wheel deviation and safety perception. Measures of visual time off road, steering wheel deviations and safety perception were performed with young and old drivers during real traffic. The results showed an effect of both driver's age and button location on the dependent variables. Older drivers spent longer visual time off road when pushing the buttons and had larger steering wheel deviations. Moreover, the greater the eccentricity between the normal line of sight and the button locations, the longer the visual time off road and the larger the steering wheel deviations. No interaction effect between button location and age was found with regard to visual time off road. Button location had an effect on perceived safety: the further away from the normal line of sight the lower the rating.

  8. Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex

    PubMed Central

    Wang, Quanxin; Sporns, Olaf; Burkhalter, Andreas

    2012-01-01

    Much of the information used for visual perception and visually guided actions is processed in complex networks of connections within the cortex. To understand how this works in the normal brain and to determine the impact of disease, mice are promising models. In primate visual cortex, information is processed in a dorsal stream specialized for visuospatial processing and guided action and a ventral stream for object recognition. Here, we traced the outputs of 10 visual areas and used quantitative graph analytic tools of modern network science to determine, from the projection strengths in 39 cortical targets, the community structure of the network. We found a high density of the cortical graph that exceeded that previously shown in monkey. Each source area showed a unique distribution of projection weights across its targets (i.e. connectivity profile) that was well-fit by a lognormal function. Importantly, the community structure was strongly dependent on the location of the source area: outputs from medial/anterior extrastriate areas were more strongly linked to parietal, motor and limbic cortex, whereas lateral extrastriate areas were preferentially connected to temporal and parahippocampal cortex. These two subnetworks resemble dorsal and ventral cortical streams in primates, demonstrating that the basic layout of cortical networks is conserved across species. PMID:22457489

  9. No Role for Motor Affordances in Visual Working Memory

    ERIC Educational Resources Information Center

    Pecher, Diane

    2013-01-01

    Motor affordances have been shown to play a role in visual object identification and categorization. The present study explored whether working memory is likewise supported by motor affordances. Use of motor affordances should be disrupted by motor interference, and this effect should be larger for objects that have motor affordances than for…

  10. Visual Context Enhanced: The Joint Contribution of Iconic Gestures and Visible Speech to Degraded Speech Comprehension.

    PubMed

    Drijvers, Linda; Özyürek, Asli

    2017-01-01

    This study investigated whether and to what extent iconic co-speech gestures contribute to information from visible speech to enhance degraded speech comprehension at different levels of noise-vocoding. Previous studies of the contributions of these 2 visual articulators to speech comprehension have only been performed separately. Twenty participants watched videos of an actress uttering an action verb and completed a free-recall task. The videos were presented in 3 speech conditions (2-band noise-vocoding, 6-band noise-vocoding, clear), 3 multimodal conditions (speech + lips blurred, speech + visible speech, speech + visible speech + gesture), and 2 visual-only conditions (visible speech, visible speech + gesture). Accuracy levels were higher when both visual articulators were present compared with 1 or none. The enhancement effects of (a) visible speech, (b) gestural information on top of visible speech, and (c) both visible speech and iconic gestures were larger in 6-band than 2-band noise-vocoding or visual-only conditions. Gestural enhancement in 2-band noise-vocoding did not differ from gestural enhancement in visual-only conditions. When perceiving degraded speech in a visual context, listeners benefit more from having both visual articulators present compared with 1. This benefit was larger at 6-band than 2-band noise-vocoding, where listeners can benefit from both phonological cues from visible speech and semantic cues from iconic gestures to disambiguate speech.

  11. TreeNetViz: revealing patterns of networks over tree structures.

    PubMed

    Gou, Liang; Zhang, Xiaolong Luke

    2011-12-01

    Network data often contain important attributes from various dimensions such as social affiliations and areas of expertise in a social network. If such attributes exhibit a tree structure, visualizing a compound graph consisting of tree and network structures becomes complicated. How to visually reveal patterns of a network over a tree has not been fully studied. In this paper, we propose a compound graph model, TreeNet, to support visualization and analysis of a network at multiple levels of aggregation over a tree. We also present a visualization design, TreeNetViz, to offer the multiscale and cross-scale exploration and interaction of a TreeNet graph. TreeNetViz uses a Radial, Space-Filling (RSF) visualization to represent the tree structure, a circle layout with novel optimization to show aggregated networks derived from TreeNet, and an edge bundling technique to reduce visual complexity. Our circular layout algorithm reduces both total edge-crossings and edge length and also considers hierarchical structure constraints and edge weight in a TreeNet graph. These experiments illustrate that the algorithm can reduce visual cluttering in TreeNet graphs. Our case study also shows that TreeNetViz has the potential to support the analysis of a compound graph by revealing multiscale and cross-scale network patterns. © 2011 IEEE

  12. Threat as a feature in visual semantic object memory.

    PubMed

    Calley, Clifford S; Motes, Michael A; Chiang, H-Sheng; Buhl, Virginia; Spence, Jeffrey S; Abdi, Hervé; Anand, Raksha; Maguire, Mandy; Estevez, Leonardo; Briggs, Richard; Freeman, Thomas; Kraut, Michael A; Hart, John

    2013-08-01

    Threatening stimuli have been found to modulate visual processes related to perception and attention. The present functional magnetic resonance imaging (fMRI) study investigated whether threat modulates visual object recognition of man-made and naturally occurring categories of stimuli. Compared with nonthreatening pictures, threatening pictures of real items elicited larger fMRI BOLD signal changes in medial visual cortices extending inferiorly into the temporo-occipital (TO) "what" pathways. This region elicited greater signal changes for threatening items compared to nonthreatening from both the natural-occurring and man-made stimulus supraordinate categories, demonstrating a featural component to these visual processing areas. Two additional loci of signal changes within more lateral inferior TO areas (bilateral BA18 and 19 as well as the right ventral temporal lobe) were detected for a category-feature interaction, with stronger responses to man-made (category) threatening (feature) stimuli than to natural threats. The findings are discussed in terms of visual recognition of processing efficiently or rapidly groups of items that confer an advantage for survival. Copyright © 2012 Wiley Periodicals, Inc.

  13. Neural pathways for visual speech perception

    PubMed Central

    Bernstein, Lynne E.; Liebenthal, Einat

    2014-01-01

    This paper examines the questions, what levels of speech can be perceived visually, and how is visual speech represented by the brain? Review of the literature leads to the conclusions that every level of psycholinguistic speech structure (i.e., phonetic features, phonemes, syllables, words, and prosody) can be perceived visually, although individuals differ in their abilities to do so; and that there are visual modality-specific representations of speech qua speech in higher-level vision brain areas. That is, the visual system represents the modal patterns of visual speech. The suggestion that the auditory speech pathway receives and represents visual speech is examined in light of neuroimaging evidence on the auditory speech pathways. We outline the generally agreed-upon organization of the visual ventral and dorsal pathways and examine several types of visual processing that might be related to speech through those pathways, specifically, face and body, orthography, and sign language processing. In this context, we examine the visual speech processing literature, which reveals widespread diverse patterns of activity in posterior temporal cortices in response to visual speech stimuli. We outline a model of the visual and auditory speech pathways and make several suggestions: (1) The visual perception of speech relies on visual pathway representations of speech qua speech. (2) A proposed site of these representations, the temporal visual speech area (TVSA) has been demonstrated in posterior temporal cortex, ventral and posterior to multisensory posterior superior temporal sulcus (pSTS). (3) Given that visual speech has dynamic and configural features, its representations in feedforward visual pathways are expected to integrate these features, possibly in TVSA. PMID:25520611

  14. Odors Bias Time Perception in Visual and Auditory Modalities

    PubMed Central

    Yue, Zhenzhu; Gao, Tianyu; Chen, Lihan; Wu, Jiashuang

    2016-01-01

    Previous studies have shown that emotional states alter our perception of time. However, attention, which is modulated by a number of factors, such as emotional events, also influences time perception. To exclude potential attentional effects associated with emotional events, various types of odors (inducing different levels of emotional arousal) were used to explore whether olfactory events modulated time perception differently in visual and auditory modalities. Participants were shown either a visual dot or heard a continuous tone for 1000 or 4000 ms while they were exposed to odors of jasmine, lavender, or garlic. Participants then reproduced the temporal durations of the preceding visual or auditory stimuli by pressing the spacebar twice. Their reproduced durations were compared to those in the control condition (without odor). The results showed that participants produced significantly longer time intervals in the lavender condition than in the jasmine or garlic conditions. The overall influence of odor on time perception was equivalent for both visual and auditory modalities. The analysis of the interaction effect showed that participants produced longer durations than the actual duration in the short interval condition, but they produced shorter durations in the long interval condition. The effect sizes were larger for the auditory modality than those for the visual modality. Moreover, by comparing performance across the initial and the final blocks of the experiment, we found odor adaptation effects were mainly manifested as longer reproductions for the short time interval later in the adaptation phase, and there was a larger effect size in the auditory modality. In summary, the present results indicate that odors imposed differential impacts on reproduced time durations, and they were constrained by different sensory modalities, valence of the emotional events, and target durations. Biases in time perception could be accounted for by a framework of

  15. A randomized controlled trial comparing 2 interventions for visual field loss with standard occupational therapy during inpatient stroke rehabilitation.

    PubMed

    Mödden, Claudia; Behrens, Marion; Damke, Iris; Eilers, Norbert; Kastrup, Andreas; Hildebrandt, Helmut

    2012-06-01

    Compensatory and restorative treatments have been developed to improve visual field defects after stroke. However, no controlled trials have compared these interventions with standard occupational therapy (OT). A total of 45 stroke participants with visual field defect admitted for inpatient rehabilitation were randomized to restorative computerized training (RT) using computer-based stimulation of border areas of their visual field defects or to a computer-based compensatory therapy (CT) teaching a visual search strategy. OT, in which different compensation strategies were used to train for activities of daily living, served as standard treatment for the active control group. Each treatment group received 15 single sessions of 30 minutes distributed over 3 weeks. The primary outcome measures were visual field expansion for RT, visual search performance for CT, and reading performance for both treatments. Visual conjunction search, alertness, and the Barthel Index were secondary outcomes. Compared with OT, CT resulted in a better visual search performance, and RT did not result in a larger expansion of the visual field. Intragroup pre-post comparisons demonstrated that CT improved all defined outcome parameters and RT several, whereas OT only improved one. CT improved functional deficits after visual field loss compared with standard OT and may be the intervention of choice during inpatient rehabilitation. A larger trial that includes lesion location in the analysis is recommended.

  16. Semantic-based crossmodal processing during visual suppression.

    PubMed

    Cox, Dustin; Hong, Sang Wook

    2015-01-01

    To reveal the mechanisms underpinning the influence of auditory input on visual awareness, we examine, (1) whether purely semantic-based multisensory integration facilitates the access to visual awareness for familiar visual events, and (2) whether crossmodal semantic priming is the mechanism responsible for the semantic auditory influence on visual awareness. Using continuous flash suppression, we rendered dynamic and familiar visual events (e.g., a video clip of an approaching train) inaccessible to visual awareness. We manipulated the semantic auditory context of the videos by concurrently pairing them with a semantically matching soundtrack (congruent audiovisual condition), a semantically non-matching soundtrack (incongruent audiovisual condition), or with no soundtrack (neutral video-only condition). We found that participants identified the suppressed visual events significantly faster (an earlier breakup of suppression) in the congruent audiovisual condition compared to the incongruent audiovisual condition and video-only condition. However, this facilitatory influence of semantic auditory input was only observed when audiovisual stimulation co-occurred. Our results suggest that the enhanced visual processing with a semantically congruent auditory input occurs due to audiovisual crossmodal processing rather than semantic priming, which may occur even when visual information is not available to visual awareness.

  17. Oligocene and Miocene larger foraminiferida from Australia and New Zealand

    NASA Astrophysics Data System (ADS)

    Chaproniere, G. C. H.

    The lithostratigraphy, biostratigraphy and the systematics of larger foraminiferids at several Late Oligocene to Middle Miocene localities in Australia are described. In particular, sediments of this interval in the North West Cape area of the Carnarvon Basin, Western Australia, yielded diverse faunas of larger and planktic foraminiferids. Areas in New Zealand were also sampled and studied. Forty species and subspecies, representing 25 genera or subgenera of larger foraminiferids, were recorded. Wherever possible, biometric methods have been used to discriminate between taxa. Such studies suggest that the rates of evolution of some groups of larger foraminiferids in New Zealand were different from those in the Australian region. Among the taxa that are illustrated and described in detail are two subspecies of Lepidocyclina (Nephrolepidina) proposed as new: Lepidocyclina (Nephrolepidina) howchini praehowchini and Lepidocyclina (Nephrolepidina) orakeiensis waikukuensis. Topotypes of L. (N.) orakeiensis hornibrooki and L. (N.) howchini howchini are discussed and figured.

  18. The footprints of visual attention in the Posner cueing paradigm revealed by classification images

    NASA Technical Reports Server (NTRS)

    Eckstein, Miguel P.; Shimozaki, Steven S.; Abbey, Craig K.

    2002-01-01

    In the Posner cueing paradigm, observers' performance in detecting a target is typically better in trials in which the target is present at the cued location than in trials in which the target appears at the uncued location. This effect can be explained in terms of a Bayesian observer where visual attention simply weights the information differently at the cued (attended) and uncued (unattended) locations without a change in the quality of processing at each location. Alternatively, it could also be explained in terms of visual attention changing the shape of the perceptual filter at the cued location. In this study, we use the classification image technique to compare the human perceptual filters at the cued and uncued locations in a contrast discrimination task. We did not find statistically significant differences between the shapes of the inferred perceptual filters across the two locations, nor did the observed differences account for the measured cueing effects in human observers. Instead, we found a difference in the magnitude of the classification images, supporting the idea that visual attention changes the weighting of information at the cued and uncued location, but does not change the quality of processing at each individual location.

  19. Larger trees suffer most during drought in forests worldwide

    USGS Publications Warehouse

    Bennett, Amy C.; McDowell, Nathan G.; Allen, Craig D.; Anderson-Teixeira, Kristina J.

    2015-01-01

    The frequency of severe droughts is increasing in many regions around the world as a result of climate change. Droughts alter the structure and function of forests. Site- and region-specific studies suggest that large trees, which play keystone roles in forests and can be disproportionately important to ecosystem carbon storage and hydrology, exhibit greater sensitivity to drought than small trees. Here, we synthesize data on tree growth and mortality collected during 40 drought events in forests worldwide to see whether this size-dependent sensitivity to drought holds more widely. We find that droughts consistently had a more detrimental impact on the growth and mortality rates of larger trees. Moreover, drought-related mortality increased with tree size in 65% of the droughts examined, especially when community-wide mortality was high or when bark beetles were present. The more pronounced drought sensitivity of larger trees could be underpinned by greater inherent vulnerability to hydraulic stress, the higher radiation and evaporative demand experienced by exposed crowns, and the tendency for bark beetles to preferentially attack larger trees. We suggest that future droughts will have a more detrimental impact on the growth and mortality of larger trees, potentially exacerbating feedbacks to climate change.

  20. COMPARISON OF RETINAL PATHOLOGY VISUALIZATION IN MULTISPECTRAL SCANNING LASER IMAGING.

    PubMed

    Meshi, Amit; Lin, Tiezhu; Dans, Kunny; Chen, Kevin C; Amador, Manuel; Hasenstab, Kyle; Muftuoglu, Ilkay Kilic; Nudleman, Eric; Chao, Daniel; Bartsch, Dirk-Uwe; Freeman, William R

    2018-03-16

    To compare retinal pathology visualization in multispectral scanning laser ophthalmoscope imaging between the Spectralis and Optos devices. This retrospective cross-sectional study included 42 eyes from 30 patients with age-related macular degeneration (19 eyes), diabetic retinopathy (10 eyes), and epiretinal membrane (13 eyes). All patients underwent retinal imaging with a color fundus camera (broad-spectrum white light), the Spectralis HRA-2 system (3-color monochromatic lasers), and the Optos P200 system (2-color monochromatic lasers). The Optos image was cropped to a similar size as the Spectralis image. Seven masked graders marked retinal pathologies in each image within a 5 × 5 grid that included the macula. The average area with detected retinal pathology in all eyes was larger in the Spectralis images compared with Optos images (32.4% larger, P < 0.0001), mainly because of better visualization of epiretinal membrane and retinal hemorrhage. The average detection rate of age-related macular degeneration and diabetic retinopathy pathologies was similar across the three modalities, whereas epiretinal membrane detection rate was significantly higher in the Spectralis images. Spectralis tricolor multispectral scanning laser ophthalmoscope imaging had higher rate of pathology detection primarily because of better epiretinal membrane and retinal hemorrhage visualization compared with Optos bicolor multispectral scanning laser ophthalmoscope imaging.

  1. 3D topology of orientation columns in visual cortex revealed by functional optical coherence tomography.

    PubMed

    Nakamichi, Yu; Kalatsky, Valery A; Watanabe, Hideyuki; Sato, Takayuki; Rajagopalan, Uma Maheswari; Tanifuji, Manabu

    2018-04-01

    Orientation tuning is a canonical neuronal response property of six-layer visual cortex that is encoded in pinwheel structures with center orientation singularities. Optical imaging of intrinsic signals enables us to map these surface two-dimensional (2D) structures, whereas lack of appropriate techniques has not allowed us to visualize depth structures of orientation coding. In the present study, we performed functional optical coherence tomography (fOCT), a technique capable of acquiring a 3D map of the intrinsic signals, to study the topology of orientation coding inside the cat visual cortex. With this technique, for the first time, we visualized columnar assemblies in orientation coding that had been predicted from electrophysiological recordings. In addition, we found that the columnar structures were largely distorted around pinwheel centers: center singularities were not rigid straight lines running perpendicularly to the cortical surface but formed twisted string-like structures inside the cortex that turned and extended horizontally through the cortex. Looping singularities were observed with their respective termini accessing the same cortical surface via clockwise and counterclockwise orientation pinwheels. These results suggest that a 3D topology of orientation coding cannot be fully anticipated from 2D surface measurements. Moreover, the findings demonstrate the utility of fOCT as an in vivo mesoscale imaging method for mapping functional response properties of cortex in the depth axis. NEW & NOTEWORTHY We used functional optical coherence tomography (fOCT) to visualize three-dimensional structure of the orientation columns with millimeter range and micrometer spatial resolution. We validated vertically elongated columnar structure in iso-orientation domains. The columnar structure was distorted around pinwheel centers. An orientation singularity formed a string with tortuous trajectories inside the cortex and connected clockwise and counterclockwise

  2. Visual function and color vision in adults with Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Kim, Soyeon; Chen, Samantha; Tannock, Rosemary

    2014-01-01

    Color vision and self-reported visual function in everyday life in young adults with Attention-Deficit/Hyperactivity Disorder (ADHD) were investigated. Participants were 30 young adults with ADHD and 30 controls matched for age and gender. They were tested individually and completed the Visual Activities Questionnaire (VAQ), Farnsworth-Munsell 100 Hue Test (FMT) and A Quick Test of Cognitive Speed (AQT). The ADHD group reported significantly more problems in 4 of 8 areas on the VAQ: depth perception, peripheral vision, visual search and visual processing speed. Further analyses of VAQ items revealed that the ADHD group endorsed more visual problems associated with driving than controls. Color perception difficulties on the FMT were restricted to the blue spectrum in the ADHD group. FMT and AQT results revealed slower processing of visual stimuli in the ADHD group. A comprehensive investigation of mechanisms underlying visual function and color vision in adults with ADHD is warranted, along with the potential impact of these visual problems on driving performance. Copyright © 2013 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  3. Stable statistical representations facilitate visual search.

    PubMed

    Corbett, Jennifer E; Melcher, David

    2014-10-01

    Observers represent the average properties of object ensembles even when they cannot identify individual elements. To investigate the functional role of ensemble statistics, we examined how modulating statistical stability affects visual search. We varied the mean and/or individual sizes of an array of Gabor patches while observers searched for a tilted target. In "stable" blocks, the mean and/or local sizes of the Gabors were constant over successive displays, whereas in "unstable" baseline blocks they changed from trial to trial. Although there was no relationship between the context and the spatial location of the target, observers found targets faster (as indexed by faster correct responses and fewer saccades) as the global mean size became stable over several displays. Building statistical stability also facilitated scanning the scene, as measured by larger saccadic amplitudes, faster saccadic reaction times, and shorter fixation durations. These findings suggest a central role for peripheral visual information, creating context to free resources for detailed processing of salient targets and maintaining the illusion of visual stability.

  4. Peripheral visual performance enhancement by neurofeedback training.

    PubMed

    Nan, Wenya; Wan, Feng; Lou, Chin Ian; Vai, Mang I; Rosa, Agostinho

    2013-12-01

    Peripheral visual performance is an important ability for everyone, and a positive inter-individual correlation is found between the peripheral visual performance and the alpha amplitude during the performance test. This study investigated the effect of alpha neurofeedback training on the peripheral visual performance. A neurofeedback group of 13 subjects finished 20 sessions of alpha enhancement feedback within 20 days. The peripheral visual performance was assessed by a new dynamic peripheral visual test on the first and last training day. The results revealed that the neurofeedback group showed significant enhancement of the peripheral visual performance as well as the relative alpha amplitude during the peripheral visual test. It was not the case in the non-neurofeedback control group, which performed the tests within the same time frame as the neurofeedback group but without any training sessions. These findings suggest that alpha neurofeedback training was effective in improving peripheral visual performance. To the best of our knowledge, this is the first study to show evidence for performance improvement in peripheral vision via alpha neurofeedback training.

  5. Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets

    PubMed Central

    Kress, Daniel; Egelhaaf, Martin

    2014-01-01

    During locomotion animals rely heavily on visual cues gained from the environment to guide their behavior. Examples are basic behaviors like collision avoidance or the approach to a goal. The saccadic gaze strategy of flying flies, which separates translational from rotational phases of locomotion, has been suggested to facilitate the extraction of environmental information, because only image flow evoked by translational self-motion contains relevant distance information about the surrounding world. In contrast to the translational phases of flight during which gaze direction is kept largely constant, walking flies experience continuous rotational image flow that is coupled to their stride-cycle. The consequences of these self-produced image shifts for the extraction of environmental information are still unclear. To assess the impact of stride-coupled image shifts on visual information processing, we performed electrophysiological recordings from the HSE cell, a motion sensitive wide-field neuron in the blowfly visual system. This cell has been concluded to play a key role in mediating optomotor behavior, self-motion estimation and spatial information processing. We used visual stimuli that were based on the visual input experienced by walking blowflies while approaching a black vertical bar. The response of HSE to these stimuli was dominated by periodic membrane potential fluctuations evoked by stride-coupled image shifts. Nevertheless, during the approach the cell’s response contained information about the bar and its background. The response components evoked by the bar were larger than the responses to its background, especially during the last phase of the approach. However, as revealed by targeted modifications of the visual input during walking, the extraction of distance information on the basis of HSE responses is much impaired by stride-coupled retinal image shifts. Possible mechanisms that may cope with these stride-coupled responses are discussed

  6. Hemispheric differences in orthographic and semantic processing as revealed by event-related potentials

    PubMed Central

    Dickson, Danielle S.; Federmeier, Kara D.

    2015-01-01

    Differences in how the right and left hemispheres (RH, LH) apprehend visual words were examined using event-related potentials (ERPs) in a repetition paradigm with visual half-field (VF) presentation. In both hemispheres (RH/LVF, LH/RVF), initial presentation of items elicited similar and typical effects of orthographic neighborhood size, with larger N400s for orthographically regular items (words and pseudowords) than for irregular items (acronyms and meaningless illegal strings). However, hemispheric differences emerged on repetition effects. When items were repeated in the LH/RVF, orthographically regular items, relative to irregular items, elicited larger repetition effects on both the N250, a component reflecting processing at the level of visual form (orthography), and on the N400, which has been linked to semantic access. In contrast, in the RH/LVF, repetition effects were biased toward irregular items on the N250 and were similar in size across item types for the N400. The results suggest that processing in the LH is more strongly affected by wordform regularity than in the RH, either due to enhanced processing of familiar orthographic patterns or due to the fact that regular forms can be more readily mapped onto phonology. PMID:25278134

  7. The positional-specificity effect reveals a passive-trace contribution to visual short-term memory.

    PubMed

    Postle, Bradley R; Awh, Edward; Serences, John T; Sutterer, David W; D'Esposito, Mark

    2013-01-01

    The positional-specificity effect refers to enhanced performance in visual short-term memory (VSTM) when the recognition probe is presented at the same location as had been the sample, even though location is irrelevant to the match/nonmatch decision. We investigated the mechanisms underlying this effect with behavioral and fMRI studies of object change-detection performance. To test whether the positional-specificity effect is a direct consequence of active storage in VSTM, we varied memory load, reasoning that it should be observed for all objects presented in a sub-span array of items. The results, however, indicated that although robust with a memory load of 1, the positional-specificity effect was restricted to the second of two sequentially presented sample stimuli in a load-of-2 experiment. An additional behavioral experiment showed that this disruption wasn't due to the increased load per se, because actively processing a second object--in the absence of a storage requirement--also eliminated the effect. These behavioral findings suggest that, during tests of object memory, position-related information is not actively stored in VSTM, but may be retained in a passive tag that marks the most recent site of selection. The fMRI data were consistent with this interpretation, failing to find location-specific bias in sustained delay-period activity, but revealing an enhanced response to recognition probes that matched the location of that trial's sample stimulus.

  8. Inhibition of Return in the Visual Field

    PubMed Central

    Bao, Yan; Lei, Quan; Fang, Yuan; Tong, Yu; Schill, Kerstin; Pöppel, Ernst; Strasburger, Hans

    2013-01-01

    Inhibition of return (IOR) as an indicator of attentional control is characterized by an eccentricity effect, that is, the more peripheral visual field shows a stronger IOR magnitude relative to the perifoveal visual field. However, it could be argued that this eccentricity effect may not be an attention effect, but due to cortical magnification. To test this possibility, we examined this eccentricity effect in two conditions: the same-size condition in which identical stimuli were used at different eccentricities, and the size-scaling condition in which stimuli were scaled according to the cortical magnification factor (M-scaling), thus stimuli being larger at the more peripheral locations. The results showed that the magnitude of IOR was significantly stronger in the peripheral relative to the perifoveal visual field, and this eccentricity effect was independent of the manipulation of stimulus size (same-size or size-scaling). These results suggest a robust eccentricity effect of IOR which cannot be eliminated by M-scaling. Underlying neural mechanisms of the eccentricity effect of IOR are discussed with respect to both cortical and subcortical structures mediating attentional control in the perifoveal and peripheral visual field. PMID:23820946

  9. Local Studies and Larger Issues: The Case of Sara Bagby.

    ERIC Educational Resources Information Center

    Luckett, Judith

    2002-01-01

    Explains that students can study local events within a larger context that clarifies larger events or issues. Focuses on the 1861 case of Sara Lucy Bagby (Cleveland, Ohio), an escaped slave, to illuminate aspects of gender, racial relations, politics, and the origins of the U.S. Civil War. (CMK)

  10. Visual Reliance for Balance Control in Older Adults Persists When Visual Information Is Disrupted by Artificial Feedback Delays

    PubMed Central

    Balasubramaniam, Ramesh

    2014-01-01

    Sensory information from our eyes, skin and muscles helps guide and correct balance. Less appreciated, however, is that delays in the transmission of sensory information between our eyes, limbs and central nervous system can exceed several 10s of milliseconds. Investigating how these time-delayed sensory signals influence balance control is central to understanding the postural system. Here, we investigate how delayed visual feedback and cognitive performance influence postural control in healthy young and older adults. The task required that participants position their center of pressure (COP) in a fixed target as accurately as possible without visual feedback about their COP location (eyes-open balance), or with artificial time delays imposed on visual COP feedback. On selected trials, the participants also performed a silent arithmetic task (cognitive dual task). We separated COP time series into distinct frequency components using low and high-pass filtering routines. Visual feedback delays affected low frequency postural corrections in young and older adults, with larger increases in postural sway noted for the group of older adults. In comparison, cognitive performance reduced the variability of rapid center of pressure displacements in young adults, but did not alter postural sway in the group of older adults. Our results demonstrate that older adults prioritize vision to control posture. This visual reliance persists even when feedback about the task is delayed by several hundreds of milliseconds. PMID:24614576

  11. A Multi-Channel, Flex-Rigid ECoG Microelectrode Array for Visual Cortical Interfacing

    PubMed Central

    Tolstosheeva, Elena; Gordillo-González, Víctor; Biefeld, Volker; Kempen, Ludger; Mandon, Sunita; Kreiter, Andreas K.; Lang, Walter

    2015-01-01

    High-density electrocortical (ECoG) microelectrode arrays are promising signal-acquisition platforms for brain-computer interfaces envisioned, e.g., as high-performance communication solutions for paralyzed persons. We propose a multi-channel microelectrode array capable of recording ECoG field potentials with high spatial resolution. The proposed array is of a 150 mm2 total recording area; it has 124 circular electrodes (100, 300 and 500 μm in diameter) situated on the edges of concentric hexagons (min. 0.8 mm interdistance) and a skull-facing reference electrode (2.5 mm2 surface area). The array is processed as a free-standing device to enable monolithic integration of a rigid interposer, designed for soldering of fine-pitch SMD-connectors on a minimal assembly area. Electrochemical characterization revealed distinct impedance spectral bands for the 100, 300 and 500 μm-type electrodes, and for the array's own reference. Epidural recordings from the primary visual cortex (V1) of an awake Rhesus macaque showed natural electrophysiological signals and clear responses to standard visual stimulation. The ECoG electrodes of larger surface area recorded signals with greater spectral power in the gamma band, while the skull-facing reference electrode provided higher average gamma power spectral density (γPSD) than the common average referencing technique. PMID:25569757

  12. Interactions between Polygonal Normal Faults and Larger Normal Faults, Offshore Nova Scotia, Canada

    NASA Astrophysics Data System (ADS)

    Pham, T. Q. H.; Withjack, M. O.; Hanafi, B. R.

    2017-12-01

    Polygonal faults, small normal faults with polygonal arrangements that form in fine-grained sedimentary rocks, can influence ground-water flow and hydrocarbon migration. Using well and 3D seismic-reflection data, we have examined the interactions between polygonal faults and larger normal faults on the passive margin of offshore Nova Scotia, Canada. The larger normal faults strike approximately E-W to NE-SW. Growth strata indicate that the larger normal faults were active in the Late Cretaceous (i.e., during the deposition of the Wyandot Formation) and during the Cenozoic. The polygonal faults were also active during the Cenozoic because they affect the top of the Wyandot Formation, a fine-grained carbonate sedimentary rock, and the overlying Cenozoic strata. Thus, the larger normal faults and the polygonal faults were both active during the Cenozoic. The polygonal faults far from the larger normal faults have a wide range of orientations. Near the larger normal faults, however, most polygonal faults have preferred orientations, either striking parallel or perpendicular to the larger normal faults. Some polygonal faults nucleated at the tip of a larger normal fault, propagated outward, and linked with a second larger normal fault. The strike of these polygonal faults changed as they propagated outward, ranging from parallel to the strike of the original larger normal fault to orthogonal to the strike of the second larger normal fault. These polygonal faults hard-linked the larger normal faults at and above the level of the Wyandot Formation but not below it. We argue that the larger normal faults created stress-enhancement and stress-reorientation zones for the polygonal faults. Numerous small, polygonal faults formed in the stress-enhancement zones near the tips of larger normal faults. Stress-reorientation zones surrounded the larger normal faults far from their tips. Fewer polygonal faults are present in these zones, and, more importantly, most polygonal faults

  13. Controlling the spotlight of attention: visual span size and flexibility in schizophrenia.

    PubMed

    Elahipanah, Ava; Christensen, Bruce K; Reingold, Eyal M

    2011-10-01

    The current study investigated the size and flexible control of visual span among patients with schizophrenia during visual search performance. Visual span is the region of the visual field from which one extracts information during a single eye fixation, and a larger visual span size is linked to more efficient search performance. Therefore, a reduced visual span may explain patients' impaired performance on search tasks. The gaze-contingent moving window paradigm was used to estimate the visual span size of patients and healthy participants while they performed two different search tasks. In addition, changes in visual span size were measured as a function of two manipulations of task difficulty: target-distractor similarity and stimulus familiarity. Patients with schizophrenia searched more slowly across both tasks and conditions. Patients also demonstrated smaller visual span sizes on the easier search condition in each task. Moreover, healthy controls' visual span size increased as target discriminability or distractor familiarity increased. This modulation of visual span size, however, was reduced or not observed among patients. The implications of the present findings, with regard to previously reported visual search deficits, and other functional and structural abnormalities associated with schizophrenia, are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Splitting attention across the two visual fields in visual short-term memory.

    PubMed

    Delvenne, Jean-Francois; Holt, Jessica L

    2012-02-01

    Humans have the ability to attentionally select the most relevant visual information from their extrapersonal world and to retain it in a temporary buffer, known as visual short-term memory (VSTM). Research suggests that at least two non-contiguous items can be selected simultaneously when they are distributed across the two visual hemifields. In two experiments, we show that attention can also be split between the left and right sides of internal representations held in VSTM. Participants were asked to remember several colors, while cues presented during the delay instructed them to orient their attention to a subset of memorized colors. Experiment 1 revealed that orienting attention to one or two colors strengthened equally participants' memory for those colors, but only when they were from separate hemifields. Experiment 2 showed that in the absence of attentional cues the distribution of the items in the visual field per se had no effect on memory. These findings strongly suggest the existence of independent attentional resources in the two hemifields for selecting and/or consolidating information in VSTM. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Primary visual cortex in neandertals as revealed from the occipital remains from the El Sidrón site, with emphasis on the new SD-2300 specimen.

    PubMed

    García-Tabernero, Antonio; Peña-Melián, Angel; Rosas, Antonio

    2018-07-01

    The comparative analysis of the endocranial surface of the El Sidrón new occipital fragment SD-2300 shows meaningful differences in the configuration of the occipital pole region between neandertals and anatomically modern humans (AMH). The particular asymmetries found in neandertals in the venous sinus drainage and the petalial patterns are recognizable in this new specimen as well. In addition, the supra- and infracalcarine fossae of the occipital pole region appear to deviate obliquely from the mid-line when compared with sapiens. Due to the excellent preservation conditions of SD-2300, the main sulci and gyri of the occipital pole area have been identified, this degree of detail being uncommon in a fossil specimen; in general, the gyrification pattern is similar to AMH, but with some notable differences. Particularly interesting is the description of the lunate and the calcarine sulci. The lunate sulcus is located close to the occipital pole, in a similar posterior position to in other Homo species. Regarding the calcarine sulcus, there are significant differences in the primary visual cortex, with the V1 area, or Brodmann area 17, being larger in Homo neanderthalensis than in Homo sapiens. This may lead to greater visual acuity in neandertals than in sapiens. © 2018 Anatomical Society.

  16. Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain.

    PubMed

    Kotrschal, Alexander; Rogell, Björn; Bundsen, Andreas; Svensson, Beatrice; Zajitschek, Susanne; Brännström, Ioana; Immler, Simone; Maklakov, Alexei A; Kolm, Niclas

    2013-01-21

    The large variation in brain size that exists in the animal kingdom has been suggested to have evolved through the balance between selective advantages of greater cognitive ability and the prohibitively high energy demands of a larger brain (the "expensive-tissue hypothesis"). Despite over a century of research on the evolution of brain size, empirical support for the trade-off between cognitive ability and energetic costs is based exclusively on correlative evidence, and the theory remains controversial. Here we provide experimental evidence for costs and benefits of increased brain size. We used artificial selection for large and small brain size relative to body size in a live-bearing fish, the guppy (Poecilia reticulata), and found that relative brain size evolved rapidly in response to divergent selection in both sexes. Large-brained females outperformed small-brained females in a numerical learning assay designed to test cognitive ability. Moreover, large-brained lines, especially males, developed smaller guts, as predicted by the expensive-tissue hypothesis, and produced fewer offspring. We propose that the evolution of brain size is mediated by a functional trade-off between increased cognitive ability and reproductive performance and discuss the implications of these findings for vertebrate brain evolution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Reliability of visual diagnosis of endometriosis.

    PubMed

    Fernando, Shavi; Soh, Pei Qian; Cooper, Michael; Evans, Susan; Reid, Geoffrey; Tsaltas, Jim; Rombauts, Luk

    2013-01-01

    To determine whether accuracy of visual diagnosis of endometriosis at laparoscopy is determined by stage of disease. Prospective longitudinal cohort study (Canadian Task Force classification II-2). Tertiary referral centers in three Australian states. Of 1439 biopsy specimens, endometriosis was proved in at least one specimen in 431 patients. Laparoscopy with visual diagnosis and staging of endometriosis followed by histopathologic analysis and confirmation. Operations were performed by five experienced laparoscopic gynecologists. Histopathologic confirmation of visual diagnosis of endometriosis adjusted for significant covariates. Endometriosis was accurately diagnosed in 49.7% of American Society for Reproductive Medicine (ASRM) stage I, which was significantly less accurate than for other stages of endometriosis. Deep endometriosis was more likely to be diagnosed accurately than superficial endometriosis (adjusted odds ratio, 2.51; 95% confidence interval, 1.50-4.18; p < .01). Lesion volume was also predictive, with larger lesions diagnosed more accurately than smaller lesions. In general, lesion site did not greatly influence accuracy except for superficial ovarian lesions, which were more likely to be incorrectly diagnosed visually as endometriosis (adjusted odds ratio, 0.16; 95% confidence interval, 0.06-0.41; p < .01). There was no statistically significant difference in accuracy between the gynecologic surgeons. The accuracy of visual diagnosis of endometriosis was substantially influenced by American Society of Reproductive Medicine stage, the depth and volume of the lesion, and to a lesser extent the location of the lesion. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  18. Evidence for Two Attentional Components in Visual Working Memory

    ERIC Educational Resources Information Center

    Allen, Richard J.; Baddeley, Alan D.; Hitch, Graham J.

    2014-01-01

    How does executive attentional control contribute to memory for sequences of visual objects, and what does this reveal about storage and processing in working memory? Three experiments examined the impact of a concurrent executive load (backward counting) on memory for sequences of individually presented visual objects. Experiments 1 and 2 found…

  19. Intrinsic-Signal Optical Imaging Reveals Cryptic Ocular Dominance Columns in Primary Visual Cortex of New World Owl Monkeys

    PubMed Central

    Kaskan, Peter M.; Lu, Haidong D.; Dillenburger, Barbara C.; Roe, Anna W.; Kaas, Jon H.

    2007-01-01

    A significant concept in neuroscience is that sensory areas of the neocortex have evolved the remarkable ability to represent a number of stimulus features within the confines of a global map of the sensory periphery. Modularity, the term often used to describe the inhomogeneous nature of the neocortex, is without a doubt an important organizational principle of early sensory areas, such as the primary visual cortex (V1). Ocular dominance columns, one type of module in V1, are found in many primate species as well as in carnivores. Yet, their variable presence in some New World monkey species and complete absence in other species has been enigmatic. Here, we demonstrate that optical imaging reveals the presence of ocular dominance columns in the superficial layers of V1 of owl monkeys (Aotus trivirgatus), even though the geniculate inputs related to each eye are highly overlapping in layer 4. The ocular dominance columns in owl monkeys revealed by optical imaging are circular in appearance. The distance between left eye centers and right eye centers is approximately 650 μm. We find no relationship between ocular dominance centers and other modular organizational features such as orientation pinwheels or the centers of the cytochrome oxidase blobs. These results are significant because they suggest that functional columns may exist in the absence of obvious differences in the distributions of activating inputs and ocular dominance columns may be more widely distributed across mammalian taxa than commonly suggested. PMID:18974855

  20. A Dynamic Bayesian Observer Model Reveals Origins of Bias in Visual Path Integration.

    PubMed

    Lakshminarasimhan, Kaushik J; Petsalis, Marina; Park, Hyeshin; DeAngelis, Gregory C; Pitkow, Xaq; Angelaki, Dora E

    2018-06-20

    Path integration is a strategy by which animals track their position by integrating their self-motion velocity. To identify the computational origins of bias in visual path integration, we asked human subjects to navigate in a virtual environment using optic flow and found that they generally traveled beyond the goal location. Such a behavior could stem from leaky integration of unbiased self-motion velocity estimates or from a prior expectation favoring slower speeds that causes velocity underestimation. Testing both alternatives using a probabilistic framework that maximizes expected reward, we found that subjects' biases were better explained by a slow-speed prior than imperfect integration. When subjects integrate paths over long periods, this framework intriguingly predicts a distance-dependent bias reversal due to buildup of uncertainty, which we also confirmed experimentally. These results suggest that visual path integration in noisy environments is limited largely by biases in processing optic flow rather than by leaky integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Visual and non-visual control of landing movements in humans

    PubMed Central

    Santello, Marco; McDonagh, Martin J N; Challis, John H

    2001-01-01

    The role of vision in controlling leg muscle activation in landing from a drop was investigated. Subjects (n = 8) performed 10 drops from four heights (0.2, 0.4, 0.6 and 0.8 m) with and without vision. Drop height was maintained constant throughout each block of trials to allow adaptation. The aim of the study was to assess the extent to which proprioceptive and vestibular information could substitute for the lack of vision in adapting landing movements to different heights. At the final stages of the movement, subjects experienced similar peak centre of body mass (CM) displacements and joint rotations, regardless of the availability of vision. This implies that subjects were able to adapt the control of landing to different heights. The amplitude and timing of electromyographic signals from the leg muscles scaled to drop height in a similar fashion with and without vision. However, variables measured throughout the execution of the movement indicated important differences. Without vision, landings were characterised by 10 % larger ground reaction forces, 10 % smaller knee joint rotations, different time lags between peak joint rotations, and more variable ground reaction forces and times to peak CM displacement. We conclude that non-visual sensory information (a) could not fully compensate for the lack of continuous visual feedback and (b) this non-visual information was used to reorganise the motor output. These results suggest that vision is important for the very accurate timing of muscle activity onset and the kinematics of landing. PMID:11711583

  2. Representation of visual symbols in the visual word processing network.

    PubMed

    Muayqil, Taim; Davies-Thompson, Jodie; Barton, Jason J S

    2015-03-01

    Previous studies have shown that word processing involves a predominantly left-sided occipitotemporal network. Words are a form of symbolic representation, in that they are arbitrary perceptual stimuli that represent other objects, actions or concepts. Lesions of parts of the visual word processing network can cause alexia, which can be associated with difficulty processing other types of symbols such as musical notation or road signs. We investigated whether components of the visual word processing network were also activated by other types of symbols. In 16 music-literate subjects, we defined the visual word network using fMRI and examined responses to four symbolic categories: visual words, musical notation, instructive symbols (e.g. traffic signs), and flags and logos. For each category we compared responses not only to scrambled stimuli, but also to similar stimuli that lacked symbolic meaning. The left visual word form area and a homologous right fusiform region responded similarly to all four categories, but equally to both symbolic and non-symbolic equivalents. Greater response to symbolic than non-symbolic stimuli occurred only in the left inferior frontal and middle temporal gyri, but only for words, and in the case of the left inferior frontal gyri, also for musical notation. A whole-brain analysis comparing symbolic versus non-symbolic stimuli revealed a distributed network of inferior temporooccipital and parietal regions that differed for different symbols. The fusiform gyri are involved in processing the form of many symbolic stimuli, but not specifically for stimuli with symbolic content. Selectivity for stimuli with symbolic content only emerges in the visual word network at the level of the middle temporal and inferior frontal gyri, but is specific for words and musical notation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Integrating Visualizations into Modeling NEST Simulations

    PubMed Central

    Nowke, Christian; Zielasko, Daniel; Weyers, Benjamin; Peyser, Alexander; Hentschel, Bernd; Kuhlen, Torsten W.

    2015-01-01

    Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work. PMID:26733860

  4. Within-Hemifield Competition in Early Visual Areas Limits the Ability to Track Multiple Objects with Attention

    PubMed Central

    Alvarez, George A.; Cavanagh, Patrick

    2014-01-01

    It is much easier to divide attention across the left and right visual hemifields than within the same visual hemifield. Here we investigate whether this benefit of dividing attention across separate visual fields is evident at early cortical processing stages. We measured the steady-state visual evoked potential, an oscillatory response of the visual cortex elicited by flickering stimuli, of moving targets and distractors while human observers performed a tracking task. The amplitude of responses at the target frequencies was larger than that of the distractor frequencies when participants tracked two targets in separate hemifields, indicating that attention can modulate early visual processing when it is divided across hemifields. However, these attentional modulations disappeared when both targets were tracked within the same hemifield. These effects were not due to differences in task performance, because accuracy was matched across the tracking conditions by adjusting target speed (with control conditions ruling out effects due to speed alone). To investigate later processing stages, we examined the P3 component over central-parietal scalp sites that was elicited by the test probe at the end of the trial. The P3 amplitude was larger for probes on targets than on distractors, regardless of whether attention was divided across or within a hemifield, indicating that these higher-level processes were not constrained by visual hemifield. These results suggest that modulating early processing stages enables more efficient target tracking, and that within-hemifield competition limits the ability to modulate multiple target representations within the hemifield maps of the early visual cortex. PMID:25164651

  5. Analysis of experience-regulated transcriptome and imprintome during critical periods of mouse visual system development reveals spatiotemporal dynamics.

    PubMed

    Hsu, Chi-Lin; Chou, Chih-Hsuan; Huang, Shih-Chuan; Lin, Chia-Yi; Lin, Meng-Ying; Tung, Chun-Che; Lin, Chun-Yen; Lai, Ivan Pochou; Zou, Yan-Fang; Youngson, Neil A; Lin, Shau-Ping; Yang, Chang-Hao; Chen, Shih-Kuo; Gau, Susan Shur-Fen; Huang, Hsien-Sung

    2018-03-15

    Visual system development is light-experience dependent, which strongly implicates epigenetic mechanisms in light-regulated maturation. Among many epigenetic processes, genomic imprinting is an epigenetic mechanism through which monoallelic gene expression occurs in a parent-of-origin-specific manner. It is unknown if genomic imprinting contributes to visual system development. We profiled the transcriptome and imprintome during critical periods of mouse visual system development under normal- and dark-rearing conditions using B6/CAST F1 hybrid mice. We identified experience-regulated, isoform-specific and brain-region-specific imprinted genes. We also found imprinted microRNAs were predominantly clustered into the Dlk1-Dio3 imprinted locus with light experience affecting some imprinted miRNA expression. Our findings provide the first comprehensive analysis of light-experience regulation of the transcriptome and imprintome during critical periods of visual system development. Our results may contribute to therapeutic strategies for visual impairments and circadian rhythm disorders resulting from a dysfunctional imprintome.

  6. Collaborative volume visualization with applications to underwater acoustic signal processing

    NASA Astrophysics Data System (ADS)

    Jarvis, Susan; Shane, Richard T.

    2000-08-01

    Distributed collaborative visualization systems represent a technology whose time has come. Researchers at the Fraunhofer Center for Research in Computer Graphics have been working in the areas of collaborative environments and high-end visualization systems for several years. The medical application. TeleInVivo, is an example of a system which marries visualization and collaboration. With TeleInvivo, users can exchange and collaboratively interact with volumetric data sets in geographically distributed locations. Since examination of many physical phenomena produce data that are naturally volumetric, the visualization frameworks used by TeleInVivo have been extended for non-medical applications. The system can now be made compatible with almost any dataset that can be expressed in terms of magnitudes within a 3D grid. Coupled with advances in telecommunications, telecollaborative visualization is now possible virtually anywhere. Expert data quality assurance and analysis can occur remotely and interactively without having to send all the experts into the field. Building upon this point-to-point concept of collaborative visualization, one can envision a larger pooling of resources to form a large overview of a region of interest from contributions of numerous distributed members.

  7. Visualization of Pulsar Search Data

    NASA Astrophysics Data System (ADS)

    Foster, R. S.; Wolszczan, A.

    1993-05-01

    The search for periodic signals from rotating neutron stars or pulsars has been a computationally taxing problem to astronomers for more than twenty-five years. Over this time interval, increases in computational capability have allowed ever more sensitive searches, covering a larger parameter space. The volume of input data and the general presence of radio frequency interference typically produce numerous spurious signals. Visualization of the search output and enhanced real-time processing of significant candidate events allow the pulsar searcher to optimally processes and search for new radio pulsars. The pulsar search algorithm and visualization system presented in this paper currently runs on serial RISC based workstations, a traditional vector based super computer, and a massively parallel computer. A description of the serial software algorithm and its modifications for massively parallel computing are describe. The results of four successive searches for millisecond period radio pulsars using the Arecibo telescope at 430 MHz have resulted in the successful detection of new long-period and millisecond period radio pulsars.

  8. [Symptoms and lesion localization in visual agnosia].

    PubMed

    Suzuki, Kyoko

    2004-11-01

    There are two cortical visual processing streams, the ventral and dorsal stream. The ventral visual stream plays the major role in constructing our perceptual representation of the visual world and the objects within it. Disturbance of visual processing at any stage of the ventral stream could result in impairment of visual recognition. Thus we need systematic investigations to diagnose visual agnosia and its type. Two types of category-selective visual agnosia, prosopagnosia and landmark agnosia, are different from others in that patients could recognize a face as a face and buildings as buildings, but could not identify an individual person or building. Neuronal bases of prosopagnosia and landmark agnosia are distinct. Importance of the right fusiform gyrus for face recognition was confirmed by both clinical and neuroimaging studies. Landmark agnosia is related to lesions in the right parahippocampal gyrus. Enlarged lesions including both the right fusiform and parahippocampal gyri can result in prosopagnosia and landmark agnosia at the same time. Category non-selective visual agnosia is related to bilateral occipito-temporal lesions, which is in agreement with the results of neuroimaging studies that revealed activation of the bilateral occipito-temporal during object recognition tasks.

  9. Continuous visual field motion impacts the postural responses of older and younger women during and after support surface tilt

    PubMed Central

    Lauer, Richard T.; Keshner, Emily A.

    2011-01-01

    The effect of continuous visual flow on the ability to regain and maintain postural orientation was examined. Fourteen young (20–39 years old) and 14 older women (60–79 years old) stood quietly during 3° (30°/s) dorsiflexion tilt of the support surface combined with 30° and 45°/s upward or downward pitch rotations of the visual field. The support surface was held tilted for 30 s and then returned to neutral over a 30-s period while the visual field continued to rotate. Segmental displacement and bilateral tibialis anterior and gastrocnemius muscle EMG responses were recorded. Continuous wavelet transforms were calculated for each muscle EMG response. An instantaneous mean frequency curve (IMNF) of muscle activity, center of mass (COM), center of pressure (COP), and angular excursion at the hip and ankle were used in a functional principal component analysis (fPCA). Functional component weights were calculated and compared with mixed model repeated measures ANOVAs. The fPCA revealed greatest mathematical differences in COM and COP responses between groups or conditions during the period that the platform transitioned from the sustained tilt to a return to neutral position. Muscle EMG responses differed most in the period following support surface tilt indicating that muscle activity increased to support stabilization against the visual flow. Older women exhibited significantly larger COM and COP responses in the direction of visual field motion and less muscle modulation when the platform returned to neutral than younger women. Results on a Rod and Frame test indicated that older women were significantly more visually dependent than the younger women. We concluded that a stiffer body combined with heightened visual sensitivity in older women critically interferes with their ability to counteract posturally destabilizing environments. PMID:21479659

  10. The visual attention span deficit in Chinese children with reading fluency difficulty.

    PubMed

    Zhao, Jing; Liu, Menglian; Liu, Hanlong; Huang, Chen

    2018-02-01

    With reading development, some children fail to learn to read fluently. However, reading fluency difficulty (RFD) has not been fully investigated. The present study explored the underlying mechanism of RFD from the aspect of visual attention span. Fourteen Chinese children with RFD and fourteen age-matched normal readers participated. The visual 1-back task was adopted to examine visual attention span. Reaction time and accuracy were recorded, and relevant d-prime (d') scores were computed. Results showed that children with RFD exhibited lower accuracy and lower d' values than the controls did in the visual 1-back task, revealing a visual attention span deficit. Further analyses on d' values revealed that the attention distribution seemed to exhibit an inverted U-shaped pattern without lateralization for normal readers, but a W-shaped pattern with a rightward bias for children with RFD, which was discussed based on between-group variation in reading strategies. Results of the correlation analyses showed that visual attention span was associated with reading fluency at the sentence level for normal readers, but was related to reading fluency at the single-character level for children with RFD. The different patterns in correlations between groups revealed that visual attention span might be affected by the variation in reading strategies. The current findings extend previous data from alphabetic languages to Chinese, a logographic language with a particularly deep orthography, and have implications for reading-dysfluency remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Is Parental Involvement Lower at Larger Schools?

    ERIC Educational Resources Information Center

    Walsh, Patrick

    2010-01-01

    Parents who volunteer, or who lobby for improvements in school quality, are generally seen as providing a school-wide public good. If so, straightforward public-good theory predicts that free-riding will reduce average involvement at larger schools. This study uses longitudinal data to follow families over time, as their children move from middle…

  12. Lower pitch is larger, yet falling pitches shrink.

    PubMed

    Eitan, Zohar; Schupak, Asi; Gotler, Alex; Marks, Lawrence E

    2014-01-01

    Experiments using diverse paradigms, including speeded discrimination, indicate that pitch and visually-perceived size interact perceptually, and that higher pitch is congruent with smaller size. While nearly all of these studies used static stimuli, here we examine the interaction of dynamic pitch and dynamic size, using Garner's speeded discrimination paradigm. Experiment 1 examined the interaction of continuous rise/fall in pitch and increase/decrease in object size. Experiment 2 examined the interaction of static pitch and size (steady high/low pitches and large/small visual objects), using an identical procedure. Results indicate that static and dynamic auditory and visual stimuli interact in opposite ways. While for static stimuli (Experiment 2), higher pitch is congruent with smaller size (as suggested by earlier work), for dynamic stimuli (Experiment 1), ascending pitch is congruent with growing size, and descending pitch with shrinking size. In addition, while static stimuli (Experiment 2) exhibit both congruence and Garner effects, dynamic stimuli (Experiment 1) present congruence effects without Garner interference, a pattern that is not consistent with prevalent interpretations of Garner's paradigm. Our interpretation of these results focuses on effects of within-trial changes on processing in dynamic tasks and on the association of changes in apparent size with implied changes in distance. Results suggest that static and dynamic stimuli can differ substantially in their cross-modal mappings, and may rely on different processing mechanisms.

  13. Chronic Invasive Fungal Sinusitis Presenting as Inferior Altitudinal Visual Field Defect.

    PubMed

    Bansal, Reema; Takkar, Aastha; Lal, Vivek; Bal, Amanjit; Bansal, Sandeep

    2017-06-01

    A young male with acute blurring of vision (6/9) complained of an inferior altitudinal field defect in right eye. Clinical ophthalmological examination was normal. Magnetic resonance imaging (MRI) of the brain revealed the expansion and mucosal thickening of right posterior ethmoid and sphenoid sinuses and opacified right maxillary sinus. Surgical intervention (transethmoidal sphenoidotomy) and histopathological examination revealed chronic invasive granulomatous fungal sinusitis. Anti-fungal therapy led to resolution of visual complaints and restoration of visual field defects.

  14. Honeycomb: Visual Analysis of Large Scale Social Networks

    NASA Astrophysics Data System (ADS)

    van Ham, Frank; Schulz, Hans-Jörg; Dimicco, Joan M.

    The rise in the use of social network sites allows us to collect large amounts of user reported data on social structures and analysis of this data could provide useful insights for many of the social sciences. This analysis is typically the domain of Social Network Analysis, and visualization of these structures often proves invaluable in understanding them. However, currently available visual analysis tools are not very well suited to handle the massive scale of this network data, and often resolve to displaying small ego networks or heavily abstracted networks. In this paper, we present Honeycomb, a visualization tool that is able to deal with much larger scale data (with millions of connections), which we illustrate by using a large scale corporate social networking site as an example. Additionally, we introduce a new probability based network metric to guide users to potentially interesting or anomalous patterns and discuss lessons learned during design and implementation.

  15. Visual Analytics for Pattern Discovery in Home Care

    PubMed Central

    Monsen, Karen A.; Bae, Sung-Heui; Zhang, Wenhui

    2016-01-01

    Summary Background Visualization can reduce the cognitive load of information, allowing users to easily interpret and assess large amounts of data. The purpose of our study was to examine home health data using visual analysis techniques to discover clinically salient associations between patient characteristics with problem-oriented health outcomes of older adult home health patients during the home health service period. Methods Knowledge, Behavior and Status ratings at discharge as well as change from admission to discharge that was coded using the Omaha System was collected from a dataset on 988 de-identified patient data from 15 home health agencies. SPSS Visualization Designer v1.0 was used to visually analyze patterns between independent and outcome variables using heat maps and histograms. Visualizations suggesting clinical salience were tested for significance using correlation analysis. Results The mean age of the patients was 80 years, with the majority female (66%). Of the 150 visualizations, 69 potentially meaningful patterns were statistically evaluated through bivariate associations, revealing 21 significant associations. Further, 14 associations between episode length and Charlson co-morbidity index mainly with urinary related diagnoses and problems remained significant after adjustment analyses. Through visual analysis, the adverse association of the longer home health episode length and higher Charlson co-morbidity index with behavior or status outcomes for patients with impaired urinary function was revealed. Conclusions We have demonstrated the use of visual analysis to discover novel patterns that described high-needs subgroups among the older home health patient population. The effective presentation of these data patterns can allow clinicians to identify areas of patient improvement, and time periods that are most effective for implementing home health interventions to improve patient outcomes. PMID:27466053

  16. The multisensory function of the human primary visual cortex.

    PubMed

    Murray, Micah M; Thelen, Antonia; Thut, Gregor; Romei, Vincenzo; Martuzzi, Roberto; Matusz, Pawel J

    2016-03-01

    It has been nearly 10 years since Ghazanfar and Schroeder (2006) proposed that the neocortex is essentially multisensory in nature. However, it is only recently that sufficient and hard evidence that supports this proposal has accrued. We review evidence that activity within the human primary visual cortex plays an active role in multisensory processes and directly impacts behavioural outcome. This evidence emerges from a full pallet of human brain imaging and brain mapping methods with which multisensory processes are quantitatively assessed by taking advantage of particular strengths of each technique as well as advances in signal analyses. Several general conclusions about multisensory processes in primary visual cortex of humans are supported relatively solidly. First, haemodynamic methods (fMRI/PET) show that there is both convergence and integration occurring within primary visual cortex. Second, primary visual cortex is involved in multisensory processes during early post-stimulus stages (as revealed by EEG/ERP/ERFs as well as TMS). Third, multisensory effects in primary visual cortex directly impact behaviour and perception, as revealed by correlational (EEG/ERPs/ERFs) as well as more causal measures (TMS/tACS). While the provocative claim of Ghazanfar and Schroeder (2006) that the whole of neocortex is multisensory in function has yet to be demonstrated, this can now be considered established in the case of the human primary visual cortex. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Encourage Students to Read through the Use of Data Visualization

    ERIC Educational Resources Information Center

    Bandeen, Heather M.; Sawin, Jason E.

    2012-01-01

    Instructors are always looking for new ways to engage students in reading assignments. The authors present a few techniques that rely on a web-based data visualization tool called Wordle (wordle.net). Wordle creates word frequency representations called word clouds. The larger a word appears within a cloud, the more frequently it occurs within a…

  18. Dynamics of alpha control: Preparatory suppression of posterior alpha oscillations by frontal modulators revealed with combined EEG and event-related optical signal (EROS)

    PubMed Central

    Mathewson, Kyle E.; Beck, Diane M.; Ro, Tony; Maclin, Edward L.; Low, Kathy A.; Fabiani, Monica; Gratton, Gabriele

    2015-01-01

    We investigated the dynamics of brain processes facilitating conscious experience of external stimuli. Previously we proposed that alpha (8-12 Hz) oscillations, which fluctuate with both sustained and directed attention, represent a pulsed inhibition of ongoing sensory brain activity. Here we tested the prediction that inhibitory alpha oscillations in visual cortex are modulated by top-down signals from frontoparietal attention networks. We measured modulations in phase-coherent alpha oscillations from superficial frontal, parietal, and occipital cortices using the event-related optical signal (EROS), a measure of neuronal activity affording high spatiotemporal resolution, along with concurrently-recorded electroencephalogram (EEG), while subjects performed a visual target-detection task. The pre-target alpha oscillations measured with EEG and EROS from posterior areas were larger for subsequently undetected targets, supporting alpha's inhibitory role. Using EROS, we localized brain correlates of these awareness-related alpha oscillations measured at the scalp to the cuneus and precuneus. Crucially, EROS alpha suppression correlated with posterior EEG alpha power across subjects. Sorting the EROS data based on EEG alpha power quartiles to investigate alpha modulators revealed that suppression of posterior alpha was preceded by increased activity in regions of the dorsal attention network, and decreased activity in regions of the cingulo-opercular network. Cross-correlations revealed the temporal dynamics of activity within these preparatory networks prior to posterior alpha modulation. The novel combination of EEG and EROS afforded localization of the sources and correlates of alpha oscillations and their temporal relationships, supporting our proposal that top-down control from attention networks modulates both posterior alpha and awareness of visual stimuli. PMID:24702458

  19. The Non-linear Health Consequences of Living in Larger Cities.

    PubMed

    Rocha, Luis E C; Thorson, Anna E; Lambiotte, Renaud

    2015-10-01

    Urbanization promotes economy, mobility, access, and availability of resources, but on the other hand, generates higher levels of pollution, violence, crime, and mental distress. The health consequences of the agglomeration of people living close together are not fully understood. Particularly, it remains unclear how variations in the population size across cities impact the health of the population. We analyze the deviations from linearity of the scaling of several health-related quantities, such as the incidence and mortality of diseases, external causes of death, wellbeing, and health care availability, in respect to the population size of cities in Brazil, Sweden, and the USA. We find that deaths by non-communicable diseases tend to be relatively less common in larger cities, whereas the per capita incidence of infectious diseases is relatively larger for increasing population size. Healthier lifestyle and availability of medical support are disproportionally higher in larger cities. The results are connected with the optimization of human and physical resources and with the non-linear effects of social networks in larger populations. An urban advantage in terms of health is not evident, and using rates as indicators to compare cities with different population sizes may be insufficient.

  20. Developing Tests of Visual Dependency

    NASA Technical Reports Server (NTRS)

    Kindrat, Alexandra N.

    2011-01-01

    Astronauts develop neural adaptive responses to microgravity during space flight. Consequently these adaptive responses cause maladaptive disturbances in balance and gait function when astronauts return to Earth and are re-exposed to gravity. Current research in the Neuroscience Laboratories at NASA-JSC is focused on understanding how exposure to space flight produces post-flight disturbances in balance and gait control and developing training programs designed to facilitate the rapid recovery of functional mobility after space flight. In concert with these disturbances, astronauts also often report an increase in their visual dependency during space flight. To better understand this phenomenon, studies were conducted with specially designed training programs focusing on visual dependency with the aim to understand and enhance subjects ability to rapidly adapt to novel sensory situations. The Rod and Frame test (RFT) was used first to assess an individual s visual dependency, using a variety of testing techniques. Once assessed, subjects were asked to perform two novel tasks under transformation (both the Pegboard and Cube Construction tasks). Results indicate that head position cues and initial visual test conditions had no effect on an individual s visual dependency scores. Subjects were also able to adapt to the manual tasks after several trials. Individual visual dependency correlated with ability to adapt manual to a novel visual distortion only for the cube task. Subjects with higher visual dependency showed decreased ability to adapt to this task. Ultimately, it was revealed that the RFT may serve as an effective prediction tool to produce individualized adaptability training prescriptions that target the specific sensory profile of each crewmember.

  1. On the domain-specificity of the visual and non-visual face-selective regions.

    PubMed

    Axelrod, Vadim

    2016-08-01

    What happens in our brains when we see a face? The neural mechanisms of face processing - namely, the face-selective regions - have been extensively explored. Research has traditionally focused on visual cortex face-regions; more recently, the role of face-regions outside the visual cortex (i.e., non-visual-cortex face-regions) has been acknowledged as well. The major quest today is to reveal the functional role of each this region in face processing. To make progress in this direction, it is essential to understand the extent to which the face-regions, and particularly the non-visual-cortex face-regions, process only faces (i.e., face-specific, domain-specific processing) or rather are involved in a more domain-general cognitive processing. In the current functional MRI study, we systematically examined the activity of the whole face-network during face-unrelated reading task (i.e., written meaningful sentences with content unrelated to faces/people and non-words). We found that the non-visual-cortex (i.e., right lateral prefrontal cortex and posterior superior temporal sulcus), but not the visual cortex face-regions, responded significantly stronger to sentences than to non-words. In general, some degree of sentence selectivity was found in all non-visual-cortex cortex. Present result highlights the possibility that the processing in the non-visual-cortex face-selective regions might not be exclusively face-specific, but rather more or even fully domain-general. In this paper, we illustrate how the knowledge about domain-general processing in face-regions can help to advance our general understanding of face processing mechanisms. Our results therefore suggest that the problem of face processing should be approached in the broader scope of cognition in general. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Visual force feedback in laparoscopic training.

    PubMed

    Horeman, Tim; Rodrigues, Sharon P; van den Dobbelsteen, John J; Jansen, Frank-Willem; Dankelman, Jenny

    2012-01-01

    To improve endoscopic surgical skills, an increasing number of surgical residents practice on box or virtual reality (VR) trainers. Current training is focused mainly on hand-eye coordination. Training methods that focus on applying the right amount of force are not yet available. The aim of this project is to develop a low-cost training system that measures the interaction force between tissue and instruments and displays a visual representation of the applied forces inside the camera image. This visual representation continuously informs the subject about the magnitude and the direction of applied forces. To show the potential of the developed training system, a pilot study was conducted in which six novices performed a needle-driving task in a box trainer with visual feedback of the force, and six novices performed the same task without visual feedback of the force. All subjects performed the training task five times and were subsequently tested in a post-test without visual feedback. The subjects who received visual feedback during training exerted on average 1.3 N (STD 0.6 N) to drive the needle through the tissue during the post-test. This value was considerably higher for the group that received no feedback (2.6 N, STD 0.9 N). The maximum interaction force during the post-test was noticeably lower for the feedback group (4.1 N, STD 1.1 N) compared with that of the control group (8.0 N, STD 3.3 N). The force-sensing training system provides us with the unique possibility to objectively assess tissue-handling skills in a laboratory setting. The real-time visualization of applied forces during training may facilitate acquisition of tissue-handling skills in complex laparoscopic tasks and could stimulate proficiency gain curves of trainees. However, larger randomized trials that also include other tasks are necessary to determine whether training with visual feedback about forces reduces the interaction force during laparoscopic surgery.

  3. Subliminal perception of complex visual stimuli.

    PubMed

    Ionescu, Mihai Radu

    2016-01-01

    Rationale: Unconscious perception of various sensory modalities is an active subject of research though its function and effect on behavior is uncertain. Objective: The present study tried to assess if unconscious visual perception could occur with more complex visual stimuli than previously utilized. Methods and Results: Videos containing slideshows of indifferent complex images with interspersed frames of interest of various durations were presented to 24 healthy volunteers. The perception of the stimulus was evaluated with a forced-choice questionnaire while awareness was quantified by self-assessment with a modified awareness scale annexed to each question with 4 categories of awareness. At values of 16.66 ms of stimulus duration, conscious awareness was not possible and answers regarding the stimulus were random. At 50 ms, nonrandom answers were coupled with no self-reported awareness suggesting unconscious perception of the stimulus. At larger durations of stimulus presentation, significantly correct answers were coupled with a certain conscious awareness. Discussion: At values of 50 ms, unconscious perception is possible even with complex visual stimuli. Further studies are recommended with a focus on a range of interest of stimulus duration between 50 to 16.66 ms.

  4. Selection-for-action in visual search.

    PubMed

    Hannus, Aave; Cornelissen, Frans W; Lindemann, Oliver; Bekkering, Harold

    2005-01-01

    Grasping an object rather than pointing to it enhances processing of its orientation but not its color. Apparently, visual discrimination is selectively enhanced for a behaviorally relevant feature. In two experiments we investigated the limitations and targets of this bias. Specifically, in Experiment 1 we were interested to find out whether the effect is capacity demanding, therefore we manipulated the set-size of the display. The results indicated a clear cognitive processing capacity requirement, i.e. the magnitude of the effect decreased for a larger set size. Consequently, in Experiment 2, we investigated if the enhancement effect occurs only at the level of behaviorally relevant feature or at a level common to different features. Therefore we manipulated the discriminability of the behaviorally neutral feature (color). Again, results showed that this manipulation influenced the action enhancement of the behaviorally relevant feature. Particularly, the effect of the color manipulation on the action enhancement suggests that the action effect is more likely to bias the competition between different visual features rather than to enhance the processing of the relevant feature. We offer a theoretical account that integrates the action-intention effect within the biased competition model of visual selective attention.

  5. Improvement in visual search with practice: mapping learning-related changes in neurocognitive stages of processing.

    PubMed

    Clark, Kait; Appelbaum, L Gregory; van den Berg, Berry; Mitroff, Stephen R; Woldorff, Marty G

    2015-04-01

    Practice can improve performance on visual search tasks; the neural mechanisms underlying such improvements, however, are not clear. Response time typically shortens with practice, but which components of the stimulus-response processing chain facilitate this behavioral change? Improved search performance could result from enhancements in various cognitive processing stages, including (1) sensory processing, (2) attentional allocation, (3) target discrimination, (4) motor-response preparation, and/or (5) response execution. We measured event-related potentials (ERPs) as human participants completed a five-day visual-search protocol in which they reported the orientation of a color popout target within an array of ellipses. We assessed changes in behavioral performance and in ERP components associated with various stages of processing. After practice, response time decreased in all participants (while accuracy remained consistent), and electrophysiological measures revealed modulation of several ERP components. First, amplitudes of the early sensory-evoked N1 component at 150 ms increased bilaterally, indicating enhanced visual sensory processing of the array. Second, the negative-polarity posterior-contralateral component (N2pc, 170-250 ms) was earlier and larger, demonstrating enhanced attentional orienting. Third, the amplitude of the sustained posterior contralateral negativity component (SPCN, 300-400 ms) decreased, indicating facilitated target discrimination. Finally, faster motor-response preparation and execution were observed after practice, as indicated by latency changes in both the stimulus-locked and response-locked lateralized readiness potentials (LRPs). These electrophysiological results delineate the functional plasticity in key mechanisms underlying visual search with high temporal resolution and illustrate how practice influences various cognitive and neural processing stages leading to enhanced behavioral performance. Copyright © 2015 the

  6. Hemispheric differences in orthographic and semantic processing as revealed by event-related potentials.

    PubMed

    Dickson, Danielle S; Federmeier, Kara D

    2014-11-01

    Differences in how the right and left hemispheres (RH, LH) apprehend visual words were examined using event-related potentials (ERPs) in a repetition paradigm with visual half-field (VF) presentation. In both hemispheres (RH/LVF, LH/RVF), initial presentation of items elicited similar and typical effects of orthographic neighborhood size, with larger N400s for orthographically regular items (words and pseudowords) than for irregular items (acronyms and meaningless illegal strings). However, hemispheric differences emerged on repetition effects. When items were repeated in the LH/RVF, orthographically regular items, relative to irregular items, elicited larger repetition effects on both the N250, a component reflecting processing at the level of visual form (orthography), and on the N400, which has been linked to semantic access. In contrast, in the RH/LVF, repetition effects were biased toward irregular items on the N250 and were similar in size across item types for the N400. The results suggest that processing in the LH is more strongly affected by wordform regularity than in the RH, either due to enhanced processing of familiar orthographic patterns or due to the fact that regular forms can be more readily mapped onto phonology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A lightning strike to the head causing a visual cortex defect with simple and complex visual hallucinations

    PubMed Central

    Kleiter, Ingo; Luerding, Ralf; Diendorfer, Gerhard; Rek, Helga; Bogdahn, Ulrich; Schalke, Berthold

    2007-01-01

    The case of a 23‐year‐old mountaineer who was hit by a lightning strike to the occiput causing a large central visual field defect and bilateral tympanic membrane ruptures is described. Owing to extreme agitation, the patient was set to a drug‐induced coma for 3 days. After extubation, she experienced simple and complex visual hallucinations for several days, but otherwise recovered largely. Neuropsychological tests revealed deficits in fast visual detection tasks and non‐verbal learning, and indicated a right temporal lobe dysfunction, consistent with a right temporal focus on electroencephalography. Four months after the accident, she developed a psychological reaction consisting of nightmares with reappearance of the complex visual hallucinations and a depressive syndrome. Using the European Cooperation for Lightning Detection network, a meteorological system for lightning surveillance, the exact geographical location and nature of the lightning flash were retrospectively retraced. PMID:17369595

  8. A lightning strike to the head causing a visual cortex defect with simple and complex visual hallucinations

    PubMed Central

    Kleiter, Ingo; Luerding, Ralf; Diendorfer, Gerhard; Rek, Helga; Bogdahn, Ulrich; Schalke, Berthold

    2009-01-01

    The case of a 23-year-old mountaineer who was hit by a lightning strike to the occiput causing a large central visual field defect and bilateral tympanic membrane ruptures is described. Owing to extreme agitation, the patient was sent into a drug-induced coma for 3 days. After extubation, she experienced simple and complex visual hallucinations for several days, but otherwise largely recovered. Neuropsychological tests revealed deficits in fast visual detection tasks and non-verbal learning and indicated a right temporal lobe dysfunction, consistent with a right temporal focus on electroencephalography. At 4 months after the accident, she developed a psychological reaction consisting of nightmares, with reappearance of the complex visual hallucinations and a depressive syndrome. Using the European Cooperation for Lightning Detection network, a meteorological system for lightning surveillance, the exact geographical location and nature of the lightning strike were retrospectively retraced PMID:21734915

  9. Postural response to predictable and nonpredictable visual flow in children and adults.

    PubMed

    Schmuckler, Mark A

    2017-11-01

    Children's (3-5years) and adults' postural reactions to different conditions of visual flow information varying in its frequency content was examined using a moving room apparatus. Both groups experienced four conditions of visual input: low-frequency (0.20Hz) visual oscillations, high-frequency (0.60Hz) oscillations, multifrequency nonpredictable visual input, and no imposed visual information. Analyses of the frequency content of anterior-posterior (AP) sway revealed that postural reactions to the single-frequency conditions replicated previous findings; children were responsive to low- and high-frequency oscillations, whereas adults were responsive to low-frequency information. Extending previous work, AP sway in response to the nonpredictable condition revealed that both groups were responsive to the different components contained in the multifrequency visual information, although adults retained their frequency selectivity to low-frequency versus high-frequency content. These findings are discussed in relation to work examining feedback versus feedforward control of posture, and the reweighting of sensory inputs for postural control, as a function of development and task context. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A Brief Period of Postnatal Visual Deprivation Alters the Balance between Auditory and Visual Attention.

    PubMed

    de Heering, Adélaïde; Dormal, Giulia; Pelland, Maxime; Lewis, Terri; Maurer, Daphne; Collignon, Olivier

    2016-11-21

    Is a short and transient period of visual deprivation early in life sufficient to induce lifelong changes in how we attend to, and integrate, simple visual and auditory information [1, 2]? This question is of crucial importance given the recent demonstration in both animals and humans that a period of blindness early in life permanently affects the brain networks dedicated to visual, auditory, and multisensory processing [1-16]. To address this issue, we compared a group of adults who had been treated for congenital bilateral cataracts during early infancy with a group of normally sighted controls on a task requiring simple detection of lateralized visual and auditory targets, presented alone or in combination. Redundancy gains obtained from the audiovisual conditions were similar between groups and surpassed the reaction time distribution predicted by Miller's race model. However, in comparison to controls, cataract-reversal patients were faster at processing simple auditory targets and showed differences in how they shifted attention across modalities. Specifically, they were faster at switching attention from visual to auditory inputs than in the reverse situation, while an opposite pattern was observed for controls. Overall, these results reveal that the absence of visual input during the first months of life does not prevent the development of audiovisual integration but enhances the salience of simple auditory inputs, leading to a different crossmodal distribution of attentional resources between auditory and visual stimuli. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Attentive Tracking Disrupts Feature Binding in Visual Working Memory

    PubMed Central

    Fougnie, Daryl; Marois, René

    2009-01-01

    One of the most influential theories in visual cognition proposes that attention is necessary to bind different visual features into coherent object percepts (Treisman & Gelade, 1980). While considerable evidence supports a role for attention in perceptual feature binding, whether attention plays a similar function in visual working memory (VWM) remains controversial. To test the attentional requirements of VWM feature binding, here we gave participants an attention-demanding multiple object tracking task during the retention interval of a VWM task. Results show that the tracking task disrupted memory for color-shape conjunctions above and beyond any impairment to working memory for object features, and that this impairment was larger when the VWM stimuli were presented at different spatial locations. These results demonstrate that the role of visuospatial attention in feature binding is not unique to perception, but extends to the working memory of these perceptual representations as well. PMID:19609460

  12. Long adaptation reveals mostly attractive shifts of orientation tuning in cat primary visual cortex.

    PubMed

    Ghisovan, N; Nemri, A; Shumikhina, S; Molotchnikoff, S

    2009-12-15

    In the adult brain, sensory cortical neurons undergo transient changes of their response properties following prolonged exposure to an appropriate stimulus (adaptation). In cat V1, orientation-selective cells shift their preferred orientation after being adapted to a non-preferred orientation. There are conflicting reports as to the direction of those shifts, towards (attractive) or away (repulsive) from the adapter. Moreover, the mechanisms underlying attractive shifts remain unexplained. In the present investigation we show that attractive shifts are the most frequent outcome of a 12 min adaptation. Overall, cells displaying selectivity for oblique orientations exhibit significantly larger shifts than cells tuned to cardinal orientations. In addition, cells selective to cardinal orientations had larger shift amplitudes when the absolute difference between the original preferred orientation and the adapting orientation increased. Conversely, cells tuned to oblique orientations exhibited larger shift amplitudes when this absolute orientation difference was narrower. Hence, neurons tuned to oblique contours appear to show more plasticity in response to small perturbations. Two different mechanisms appear to produce attractive and repulsive orientation shifts. Attractive shifts result from concurrent response depression on the non-adapted flank and selective response facilitation on the adapted flank of the orientation tuning curve. In contrast, repulsive shifts are caused solely by response depression on the adapted flank. We suggest that an early mechanism leads to repulsive shifts while attractive shifts engage a subsequent late facilitation. A potential role for attractive shifts may be improved stimulus discrimination around the adapting orientation.

  13. Photopic visual input is necessary for emmetropization in mice

    PubMed Central

    Tkatchenko, Tatiana V.; Shen, Yimin; Braun, Rod D.; Bawa, Gurinder; Kumar, Pradeep; Avrutsky, Ivan; Tkatchenko, Andrei V.

    2013-01-01

    It was recently demonstrated that refractive errors in mice stabilize around emmetropic values during early postnatal development, and that they develop experimental myopia in response to both visual form deprivation and imposed optical defocus similar to other vertebrate species. Animal studies also suggest that photopic vision plays critical role in emmetropization in diurnal species; however, it is unknown whether refractive eye development is guided by photopic vision in the mouse, which is a nocturnal species. We used an infrared mouse photorefractor and a high-resolution MRI to clarify the role of photopic visual input in refractive eye development in the mouse. Refractive eye development and form-deprivation myopia in P21-P89 C57BL/6J mice were analyzed under 12:12 h light-dark cycle, constant light and constant darkness regimens. Animals in all experimental groups were myopic at P21 (-13.2 ± 1.6 D, light-dark cycle; -12.5 ± 0.9 D, constant light; -12.5 ± 2.0 D, constant dark). The mean refractive error in the light-dark-cycle-reared animals was -0.5 ± 1.3 D at P32 and, and did not change significantly until P40 (+0.3 ± 0.6 D, P40). Animals in this group became progressively hyperopic between P40 and P89 (+2.2 ± 0.6, P67; +3.7 ± 2.0, P89). The mean refractive error in the constant-light-reared mice was -1.0 ± 0.7 D at P32 and remained stable until P89 (+0.1 ± 0.6, P40; +0.3 ± 0.6, P67; 0.0 ± 0.4, P89). Dark-reared animals exhibited highly hyperopic refractive errors at P32 (+5.2 ± 1.8) and became progressively more hyperopic with age (+8.7 ± 1.9, P40; +11.2 ± 1.4, P67). MRI analysis revealed that emmetropization in the P40-P89 constant-light-reared animals was associated with larger eyes, a longer axial length and a larger vitreous chamber compared to the light-dark-cycle-reared mice. Constant-light-reared mice also developed 4 times higher degrees of form-deprivation myopia on average compared to light-dark-cycle-reared animals (-12.0 ± 1

  14. Visual body size norms and the under‐detection of overweight and obesity

    PubMed Central

    Robinson, E.

    2017-01-01

    Summary Objectives The weight status of men with overweight and obesity tends to be visually underestimated, but visual recognition of female overweight and obesity has not been formally examined. The aims of the present studies were to test whether people can accurately recognize both male and female overweight and obesity and to examine a visual norm‐based explanation for why weight status is underestimated. Methods The present studies examine whether both male and female overweight and obesity are visually underestimated (Study 1), whether body size norms predict when underestimation of weight status occurs (Study 2) and whether visual exposure to heavier body weights adjusts visual body size norms and results in underestimation of weight status (Study 3). Results The weight status of men and women with overweight and obesity was consistently visually underestimated (Study 1). Body size norms predicted underestimation of weight status (Study 2) and in part explained why visual exposure to heavier body weights caused underestimation of overweight (Study 3). Conclusions The under‐detection of overweight and obesity may have been in part caused by exposure to larger body sizes resulting in an upwards shift in the range of body sizes that are perceived as being visually ‘normal’. PMID:29479462

  15. Within-hemifield competition in early visual areas limits the ability to track multiple objects with attention.

    PubMed

    Störmer, Viola S; Alvarez, George A; Cavanagh, Patrick

    2014-08-27

    It is much easier to divide attention across the left and right visual hemifields than within the same visual hemifield. Here we investigate whether this benefit of dividing attention across separate visual fields is evident at early cortical processing stages. We measured the steady-state visual evoked potential, an oscillatory response of the visual cortex elicited by flickering stimuli, of moving targets and distractors while human observers performed a tracking task. The amplitude of responses at the target frequencies was larger than that of the distractor frequencies when participants tracked two targets in separate hemifields, indicating that attention can modulate early visual processing when it is divided across hemifields. However, these attentional modulations disappeared when both targets were tracked within the same hemifield. These effects were not due to differences in task performance, because accuracy was matched across the tracking conditions by adjusting target speed (with control conditions ruling out effects due to speed alone). To investigate later processing stages, we examined the P3 component over central-parietal scalp sites that was elicited by the test probe at the end of the trial. The P3 amplitude was larger for probes on targets than on distractors, regardless of whether attention was divided across or within a hemifield, indicating that these higher-level processes were not constrained by visual hemifield. These results suggest that modulating early processing stages enables more efficient target tracking, and that within-hemifield competition limits the ability to modulate multiple target representations within the hemifield maps of the early visual cortex. Copyright © 2014 the authors 0270-6474/14/3311526-08$15.00/0.

  16. BactoGeNIE: A large-scale comparative genome visualization for big displays

    DOE PAGES

    Aurisano, Jillian; Reda, Khairi; Johnson, Andrew; ...

    2015-08-13

    The volume of complete bacterial genome sequence data available to comparative genomics researchers is rapidly increasing. However, visualizations in comparative genomics--which aim to enable analysis tasks across collections of genomes--suffer from visual scalability issues. While large, multi-tiled and high-resolution displays have the potential to address scalability issues, new approaches are needed to take advantage of such environments, in order to enable the effective visual analysis of large genomics datasets. In this paper, we present Bacterial Gene Neighborhood Investigation Environment, or BactoGeNIE, a novel and visually scalable design for comparative gene neighborhood analysis on large display environments. We evaluate BactoGeNIE throughmore » a case study on close to 700 draft Escherichia coli genomes, and present lessons learned from our design process. In conclusion, BactoGeNIE accommodates comparative tasks over substantially larger collections of neighborhoods than existing tools and explicitly addresses visual scalability. Given current trends in data generation, scalable designs of this type may inform visualization design for large-scale comparative research problems in genomics.« less

  17. BactoGeNIE: a large-scale comparative genome visualization for big displays

    PubMed Central

    2015-01-01

    Background The volume of complete bacterial genome sequence data available to comparative genomics researchers is rapidly increasing. However, visualizations in comparative genomics--which aim to enable analysis tasks across collections of genomes--suffer from visual scalability issues. While large, multi-tiled and high-resolution displays have the potential to address scalability issues, new approaches are needed to take advantage of such environments, in order to enable the effective visual analysis of large genomics datasets. Results In this paper, we present Bacterial Gene Neighborhood Investigation Environment, or BactoGeNIE, a novel and visually scalable design for comparative gene neighborhood analysis on large display environments. We evaluate BactoGeNIE through a case study on close to 700 draft Escherichia coli genomes, and present lessons learned from our design process. Conclusions BactoGeNIE accommodates comparative tasks over substantially larger collections of neighborhoods than existing tools and explicitly addresses visual scalability. Given current trends in data generation, scalable designs of this type may inform visualization design for large-scale comparative research problems in genomics. PMID:26329021

  18. BactoGeNIE: A large-scale comparative genome visualization for big displays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aurisano, Jillian; Reda, Khairi; Johnson, Andrew

    The volume of complete bacterial genome sequence data available to comparative genomics researchers is rapidly increasing. However, visualizations in comparative genomics--which aim to enable analysis tasks across collections of genomes--suffer from visual scalability issues. While large, multi-tiled and high-resolution displays have the potential to address scalability issues, new approaches are needed to take advantage of such environments, in order to enable the effective visual analysis of large genomics datasets. In this paper, we present Bacterial Gene Neighborhood Investigation Environment, or BactoGeNIE, a novel and visually scalable design for comparative gene neighborhood analysis on large display environments. We evaluate BactoGeNIE throughmore » a case study on close to 700 draft Escherichia coli genomes, and present lessons learned from our design process. In conclusion, BactoGeNIE accommodates comparative tasks over substantially larger collections of neighborhoods than existing tools and explicitly addresses visual scalability. Given current trends in data generation, scalable designs of this type may inform visualization design for large-scale comparative research problems in genomics.« less

  19. 78 FR 73383 - Defining Larger Participants of the Student Loan Servicing Market

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ...The Bureau of Consumer Financial Protection (Bureau or CFPB) amends the regulation defining larger participants of certain consumer financial product and service markets by adding a new section to define larger participants of a market for student loan servicing. The Bureau is issuing the final rule pursuant to its authority, under the Dodd- Frank Wall Street Reform and Consumer Protection Act, to supervise certain nonbank covered persons for compliance with Federal consumer financial law and for other purposes. The Bureau has the authority to supervise nonbank covered persons of all sizes in the residential mortgage, private education lending, and payday lending markets. In addition, the Bureau has the authority to supervise nonbank ``larger participant[s]'' of markets for other consumer financial products or services, as the Bureau defines by rule. Rules defining larger participants of a market for consumer reporting and larger participants of a market for consumer debt collection were published in the Federal Register on July 20, 2012 (Consumer Reporting Rule) and October 31, 2012 (Consumer Debt Collection Rule). This final rule identifies a market for student loan servicing and defines ``larger participants'' of this market that are subject to the Bureau's supervisory authority.

  20. Visual cortex in aging and Alzheimer's disease: changes in visual field maps and population receptive fields

    PubMed Central

    Brewer, Alyssa A.; Barton, Brian

    2012-01-01

    Although several studies have suggested that cortical alterations underlie such age-related visual deficits as decreased acuity, little is known about what changes actually occur in visual cortex during healthy aging. Two recent studies showed changes in primary visual cortex (V1) during normal aging; however, no studies have characterized the effects of aging on visual cortex beyond V1, important measurements both for understanding the aging process and for comparison to changes in age-related diseases. Similarly, there is almost no information about changes in visual cortex in Alzheimer's disease (AD), the most common form of dementia. Because visual deficits are often reported as one of the first symptoms of AD, measurements of such changes in the visual cortex of AD patients might improve our understanding of how the visual system is affected by neurodegeneration as well as aid early detection, accurate diagnosis and timely treatment of AD. Here we use fMRI to first compare the visual field map (VFM) organization and population receptive fields (pRFs) between young adults and healthy aging subjects for occipital VFMs V1, V2, V3, and hV4. Healthy aging subjects do not show major VFM organizational deficits, but do have reduced surface area and increased pRF sizes in the foveal representations of V1, V2, and hV4 relative to healthy young control subjects. These measurements are consistent with behavioral deficits seen in healthy aging. We then demonstrate the feasibility and first characterization of these measurements in two patients with mild AD, which reveal potential changes in visual cortex as part of the pathophysiology of AD. Our data aid in our understanding of the changes in the visual processing pathways in normal aging and provide the foundation for future research into earlier and more definitive detection of AD. PMID:24570669

  1. Infantile nystagmus adapts to visual demand.

    PubMed

    Wiggins, Debbie; Woodhouse, J Margaret; Margrain, Tom H; Harris, Christopher M; Erichsen, Jonathan T

    2007-05-01

    To determine the effect of visual demand on the nystagmus waveform. Individuals with infantile nystagmus syndrome (INS) commonly report that making an effort to see can intensify their nystagmus and adversely affect vision. However, such an effect has never been confirmed experimentally. The eye movement behavior of 11 subjects with INS were recorded at different gaze angles while the subjects viewed visual targets under two conditions: above and then at resolution threshold. Eye movements were recorded by infrared oculography and visual acuity (VA) was measured using Landolt C targets and a two-alternative, forced-choice (2AFC) staircase procedure. Eye movement data were analyzed at the null zone for changes in amplitude, frequency, intensity, and foveation characteristics. Waveform type was also noted under the two conditions. Data from 11 subjects revealed a significant reduction in nystagmus amplitude (P < 0.05), frequency (P < 0.05), and intensity (P < 0.01) when target size was at visual threshold. The percentage of time the eye spent within the low-velocity window (i.e., foveation) significantly increased when target size was at visual threshold (P < 0.05). Furthermore, a change in waveform type with increased visual demand was exhibited by two subjects. The results indicate that increased visual demand modifies the nystagmus waveform favorably (and possibly adaptively), producing a significant reduction in nystagmus intensity and prolonged foveation. These findings contradict previous anecdotal reports that visual effort intensifies the nystagmus eye movement at the cost of visual performance. This discrepancy may be attributable to the lack of psychological stress involved in the visual task reported here. This is consistent with the suggestion that it is the visual importance of the task to the individual rather than visual demand per se which exacerbates INS. Further studies are needed to investigate quantitatively the effects of stress and psychological

  2. THE NATURE OF THE GECKO VISUAL PIGMENT

    PubMed Central

    Crescitelli, Frederick

    1956-01-01

    Retinal extracts of the Australian gecko, Phyllurus milii (White), have revealed the presence of a photosensitive pigment, unusual for terrestrial animals, because of its absorption maximum at 524 mµ. This pigment has an absorption spectrum which is identical in form with that of other visual chromoproteins. It is not a porphyropsin, for bleaching revealed the presence, not of retinene2, but of retinene1 as a chromophore. Photolabile pigments with characteristics similar to those of the Phyllurus visual pigment were also detected in retinal extracts of six other species of nocturnal geckos. The presence of this retinal chromoprotein adequately accounts for the unusual visual sensitivity curve described by Denton for the nocturnal gecko. This pigment may have special biological significance in terms of the unique phylogenetic position of geckos as living representatives of nocturnal animals which retain some of the characteristics of their diurnal ancestors. The occurrence of this retinene1 pigment, intermediate in spectral position between rhodopsin and iodopsin, is interpreted in support of the transmutation theory of Walls. The results and interpretation of this investigation point up the fact that, from a phylogenetic point of view, too great an emphasis on the duplicity theory may serve to detract attention from the evolutionary history of the retina and the essential unitarianism of the visual cells. PMID:13385449

  3. Cerebral versus Ocular Visual Impairment: The Impact on Developmental Neuroplasticity.

    PubMed

    Martín, Maria B C; Santos-Lozano, Alejandro; Martín-Hernández, Juan; López-Miguel, Alberto; Maldonado, Miguel; Baladrón, Carlos; Bauer, Corinna M; Merabet, Lotfi B

    2016-01-01

    Cortical/cerebral visual impairment (CVI) is clinically defined as significant visual dysfunction caused by injury to visual pathways and structures occurring during early perinatal development. Depending on the location and extent of damage, children with CVI often present with a myriad of visual deficits including decreased visual acuity and impaired visual field function. Most striking, however, are impairments in visual processing and attention which have a significant impact on learning, development, and independence. Within the educational arena, current evidence suggests that strategies designed for individuals with ocular visual impairment are not effective in the case of CVI. We propose that this variance may be related to differences in compensatory neuroplasticity related to the type of visual impairment, as well as underlying alterations in brain structural connectivity. We discuss the etiology and nature of visual impairments related to CVI, and how advanced neuroimaging techniques (i.e., diffusion-based imaging) may help uncover differences between ocular and cerebral causes of visual dysfunction. Revealing these differences may help in developing future strategies for the education and rehabilitation of individuals living with visual impairment.

  4. Cerebral versus Ocular Visual Impairment: The Impact on Developmental Neuroplasticity

    PubMed Central

    Martín, Maria B. C.; Santos-Lozano, Alejandro; Martín-Hernández, Juan; López-Miguel, Alberto; Maldonado, Miguel; Baladrón, Carlos; Bauer, Corinna M.; Merabet, Lotfi B.

    2016-01-01

    Cortical/cerebral visual impairment (CVI) is clinically defined as significant visual dysfunction caused by injury to visual pathways and structures occurring during early perinatal development. Depending on the location and extent of damage, children with CVI often present with a myriad of visual deficits including decreased visual acuity and impaired visual field function. Most striking, however, are impairments in visual processing and attention which have a significant impact on learning, development, and independence. Within the educational arena, current evidence suggests that strategies designed for individuals with ocular visual impairment are not effective in the case of CVI. We propose that this variance may be related to differences in compensatory neuroplasticity related to the type of visual impairment, as well as underlying alterations in brain structural connectivity. We discuss the etiology and nature of visual impairments related to CVI, and how advanced neuroimaging techniques (i.e., diffusion-based imaging) may help uncover differences between ocular and cerebral causes of visual dysfunction. Revealing these differences may help in developing future strategies for the education and rehabilitation of individuals living with visual impairment. PMID:28082927

  5. Platelet larger cell ratio (P-LCR) in patients with dyslipidemia.

    PubMed

    Grotto, H Z W; Noronha, J F A

    2004-10-01

    We have described preliminary results of platelet larger cell ratio (P-LCR) analysis, provided by an automated hematology analyzer in patients with hypercholesterolemia and/or hypertriglyceremia. P-LCR values were significantly higher in patients (n = 41) than in control normal group (n = 20) (P < 0.0001). Larger platelets are more reactive and contribute to vasooclusive events in patients with dyslipidemia. P-LCR may be used as an indicator of risk factor for thromboembolic ischemic events.

  6. New software for 3D fracture network analysis and visualization

    NASA Astrophysics Data System (ADS)

    Song, J.; Noh, Y.; Choi, Y.; Um, J.; Hwang, S.

    2013-12-01

    This study presents new software to perform analysis and visualization of the fracture network system in 3D. The developed software modules for the analysis and visualization, such as BOUNDARY, DISK3D, FNTWK3D, CSECT and BDM, have been developed using Microsoft Visual Basic.NET and Visualization TookKit (VTK) open-source library. Two case studies revealed that each module plays a role in construction of analysis domain, visualization of fracture geometry in 3D, calculation of equivalent pipes, production of cross-section map and management of borehole data, respectively. The developed software for analysis and visualization of the 3D fractured rock mass can be used to tackle the geomechanical problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.

  7. Visualization of boundary-layer development on turbomachine blades with liquid crystals

    NASA Technical Reports Server (NTRS)

    Vanzante, Dale E.; Okiishi, Theodore H.

    1991-01-01

    This report documents a study of the use of liquid crystals to visualize boundary layer development on a turbomachine blade. A turbine blade model in a linear cascade of blades was used for the tests involved. Details of the boundary layer development on the suction surface of the turbine blade model were known from previous research. Temperature sensitive and shear sensitive liquid crystals were tried as visual agents. The temperature sensitive crystals were very effective in their ability to display the location of boundary layer flow separation and reattachment. Visualization of natural transition from laminar to turbulent boundary layer flow with the temperature sensitive crystals was possible but subtle. The visualization of separated flow reattachment with the shear sensitive crystals was easily accomplished when the crystals were allowed to make a transition from the focal-conic to a Grandjean texture. Visualization of flow reattachment based on the selective reflection properties of shear sensitive crystals was achieved only marginally because of the larger surface shear stress and shear stress gradient levels required for more dramatic color differences.

  8. Neonatal Hypoglycaemia and Visual Development: A Review.

    PubMed

    Paudel, Nabin; Chakraborty, Arijit; Anstice, Nicola; Jacobs, Robert J; Hegarty, Jo E; Harding, Jane E; Thompson, Benjamin

    2017-01-01

    Many newborn babies experience low blood glucose concentrations, a condition referred to as neonatal hypoglycaemia (NH). The effect of NH on visual development in infancy and childhood is of interest because the occipital lobes, which include the primary visual cortex and a number of extrastriate visual areas, may be particularly susceptible to NH-induced injury. In addition, a number of case series have suggested that NH can affect eye and optic nerve development. To review the existing literature concerning the effect of NH on the visual system. A PubMed, Embase, Medline, and Google Scholar literature search was conducted using prespecified MeSH terms. The literature reviewed revealed no clear evidence for an effect of NH on the development of the eye and optic nerve. Furthermore, occipital and occipital-parietal lobe injuries following NH often occurred in conjunction with comorbid conditions and were not clearly linked to subsequent visual dysfunction, possibly due to difficulties in measuring vision in young children and a lack of studies at older ages. A recent, large-scale, prospective study of NH outcomes at 2 years of age found no effect of mild-to-moderate NH on visual development. The effect of NH on visual development is unclear. It is currently unknown whether NH affects visual function in mid-to-late childhood when many visual functions reach adult levels. © 2017 S. Karger AG, Basel.

  9. SVEN: Informative Visual Representation of Complex Dynamic Structure

    DTIC Science & Technology

    2014-12-23

    nodes in the diagram can be chosen to minimize crossings, but this is the Traveling Salesman Problem , and even if an optimal solution was found, there...visualization problem inherits the challenges of optimizing the aesthetic properties of the static views of the graphs, it also introduces a new problem of how to...inevitable problem of having an overwhelming number of edge crossings for larger datasets is addressed by reducing the opacity of the lines drawn

  10. Giant prolactinomas larger than 60 mm in size: a cohort of massive and aggressive prolactin-secreting pituitary adenomas.

    PubMed

    Shimon, Ilan; Sosa, Ernesto; Mendoza, Victoria; Greenman, Yona; Tirosh, Amit; Espinosa, Etual; Popovic, Vera; Glezer, Andrea; Bronstein, Marcello D; Mercado, Moises

    2016-08-01

    Prolactin (PRL)-secreting macroadenomas usually measure between 10 and 40 mm. Giant (adenoma size ≥40 mm) PRL-tumors are not common, and larger prolactinomas (maximal diameter ≥60 mm) are rare, and their management outcomes have not been well characterized. We have identified 18 subjects (16 men, 2 females) with giant PRL-adenomas (size ≥60 mm; PRL > 1000 ng/ml) and summarized their characteristics and response to treatment. Mean age was 36.3 ± 13.5 years (range 12-59 years). Mean adenoma size was 71.8 ± 10.2 mm (60-92 mm). Complaints at presentation included headaches in 11 patients, visual deterioration in 9, sexual dysfunction in 9 males, and behavioral changes in two. Fourteen (78 %) had visual field defects. Mean PRL at presentation was 28,465 ng/ml (range 1300-270,000). All patients were treated with cabergoline (3.9 ± 2.0 mg/week), except for one who received bromocriptine. Treatment achieved PRL normalization in 11/18 patients within a median interval of 20 months. Visual improvement occurred in 12/14 patients with pre-treatment visual abnormalities. Nine patients underwent surgery (transsphenoidal, 7; transcranial, 2). None of the seven patients with elevated PRL before surgery achieved remission post-operatively. After a follow-up of 7.8 ± 5.1 years, 15/18 patients had significant adenoma shrinkage. Eleven patients are normoprolactinemic, 3 are partially controlled (PRL < 3 × ULN), and 4 remain with significantly elevated PRL. Most patients reported disappearance or improvement of their complaints. These enormous PRL-adenomas are invasive but respond fairly well to medical treatment. Long-term therapy with high dose cabergoline together with a pituitary surgery in some patients was the key for their successful management, achieving biochemical and clinical remission in most patients.

  11. Active listening impairs visual perception and selectivity: an ERP study of auditory dual-task costs on visual attention.

    PubMed

    Gherri, Elena; Eimer, Martin

    2011-04-01

    The ability to drive safely is disrupted by cell phone conversations, and this has been attributed to a diversion of attention from the visual environment. We employed behavioral and ERP measures to study whether the attentive processing of spoken messages is, in itself, sufficient to produce visual-attentional deficits. Participants searched for visual targets defined by a unique feature (Experiment 1) or feature conjunction (Experiment 2), and simultaneously listened to narrated text passages that had to be recalled later (encoding condition), or heard backward-played speech sounds that could be ignored (control condition). Responses to targets were slower in the encoding condition, and ERPs revealed that the visual processing of search arrays and the attentional selection of target stimuli were less efficient in the encoding relative to the control condition. Results demonstrate that the attentional processing of visual information is impaired when concurrent spoken messages are encoded and maintained, in line with cross-modal links in selective attention, but inconsistent with the view that attentional resources are modality-specific. The distraction of visual attention by active listening could contribute to the adverse effects of cell phone use on driving performance.

  12. Sex differences in verbal and visual-spatial tasks under different hemispheric visual-field presentation conditions.

    PubMed

    Boyle, Gregory J; Neumann, David L; Furedy, John J; Westbury, H Rae

    2010-04-01

    This paper reports sex differences in cognitive task performance that emerged when 39 Australian university undergraduates (19 men, 20 women) were asked to solve verbal (lexical) and visual-spatial cognitive matching tasks which varied in difficulty and visual field of presentation. Sex significantly interacted with task type, task difficulty, laterality, and changes in performance across trials. The results revealed that the significant individual-differences' variable of sex does not always emerge as a significant main effect, but instead in terms of significant interactions with other variables manipulated experimentally. Our results show that sex differences must be taken into account when conducting experiments into human cognitive-task performance.

  13. First- and second-order contrast sensitivity functions reveal disrupted visual processing following mild traumatic brain injury.

    PubMed

    Spiegel, Daniel P; Reynaud, Alexandre; Ruiz, Tatiana; Laguë-Beauvais, Maude; Hess, Robert; Farivar, Reza

    2016-05-01

    Vision is disrupted by traumatic brain injury (TBI), with vision-related complaints being amongst the most common in this population. Based on the neural responses of early visual cortical areas, injury to the visual cortex would be predicted to affect both 1(st) order and 2(nd) order contrast sensitivity functions (CSFs)-the height and/or the cut-off of the CSF are expected to be affected by TBI. Previous studies have reported disruptions only in 2(nd) order contrast sensitivity, but using a narrow range of parameters and divergent methodologies-no study has characterized the effect of TBI on the full CSF for both 1(st) and 2(nd) order stimuli. Such information is needed to properly understand the effect of TBI on contrast perception, which underlies all visual processing. Using a unified framework based on the quick contrast sensitivity function, we measured full CSFs for static and dynamic 1(st) and 2(nd) order stimuli. Our results provide a unique dataset showing alterations in sensitivity for both 1(st) and 2(nd) order visual stimuli. In particular, we show that TBI patients have increased sensitivity for 1(st) order motion stimuli and decreased sensitivity to orientation-defined and contrast-defined 2(nd) order stimuli. In addition, our data suggest that TBI patients' sensitivity for both 1(st) order stimuli and 2(nd) order contrast-defined stimuli is shifted towards higher spatial frequencies. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Perceptual training yields rapid improvements in visually impaired youth.

    PubMed

    Nyquist, Jeffrey B; Lappin, Joseph S; Zhang, Ruyuan; Tadin, Duje

    2016-11-30

    Visual function demands coordinated responses to information over a wide field of view, involving both central and peripheral vision. Visually impaired individuals often seem to underutilize peripheral vision, even in absence of obvious peripheral deficits. Motivated by perceptual training studies with typically sighted adults, we examined the effectiveness of perceptual training in improving peripheral perception of visually impaired youth. Here, we evaluated the effectiveness of three training regimens: (1) an action video game, (2) a psychophysical task that combined attentional tracking with a spatially and temporally unpredictable motion discrimination task, and (3) a control video game. Training with both the action video game and modified attentional tracking yielded improvements in visual performance. Training effects were generally larger in the far periphery and appear to be stable 12 months after training. These results indicate that peripheral perception might be under-utilized by visually impaired youth and that this underutilization can be improved with only ~8 hours of perceptual training. Moreover, the similarity of improvements following attentional tracking and action video-game training suggest that well-documented effects of action video-game training might be due to the sustained deployment of attention to multiple dynamic targets while concurrently requiring rapid attending and perception of unpredictable events.

  15. Perceptual training yields rapid improvements in visually impaired youth

    PubMed Central

    Nyquist, Jeffrey B.; Lappin, Joseph S.; Zhang, Ruyuan; Tadin, Duje

    2016-01-01

    Visual function demands coordinated responses to information over a wide field of view, involving both central and peripheral vision. Visually impaired individuals often seem to underutilize peripheral vision, even in absence of obvious peripheral deficits. Motivated by perceptual training studies with typically sighted adults, we examined the effectiveness of perceptual training in improving peripheral perception of visually impaired youth. Here, we evaluated the effectiveness of three training regimens: (1) an action video game, (2) a psychophysical task that combined attentional tracking with a spatially and temporally unpredictable motion discrimination task, and (3) a control video game. Training with both the action video game and modified attentional tracking yielded improvements in visual performance. Training effects were generally larger in the far periphery and appear to be stable 12 months after training. These results indicate that peripheral perception might be under-utilized by visually impaired youth and that this underutilization can be improved with only ~8 hours of perceptual training. Moreover, the similarity of improvements following attentional tracking and action video-game training suggest that well-documented effects of action video-game training might be due to the sustained deployment of attention to multiple dynamic targets while concurrently requiring rapid attending and perception of unpredictable events. PMID:27901026

  16. Effects of Alzheimer's Disease on Visual Target Detection: A "Peripheral Bias".

    PubMed

    Vallejo, Vanessa; Cazzoli, Dario; Rampa, Luca; Zito, Giuseppe A; Feuerstein, Flurin; Gruber, Nicole; Müri, René M; Mosimann, Urs P; Nef, Tobias

    2016-01-01

    Visual exploration is an omnipresent activity in everyday life, and might represent an important determinant of visual attention deficits in patients with Alzheimer's Disease (AD). The present study aimed at investigating visual search performance in AD patients, in particular target detection in the far periphery, in daily living scenes. Eighteen AD patients and 20 healthy controls participated in the study. They were asked to freely explore a hemispherical screen, covering ±90°, and to respond to targets presented at 10°, 30°, and 50° eccentricity, while their eye movements were recorded. Compared to healthy controls, AD patients recognized less targets appearing in the center. No difference was found in target detection in the periphery. This pattern was confirmed by the fixation distribution analysis. These results show a neglect for the central part of the visual field for AD patients and provide new insights by mean of a search task involving a larger field of view.

  17. Porting the AVS/Express scientific visualization software to Cray XT4.

    PubMed

    Leaver, George W; Turner, Martin J; Perrin, James S; Mummery, Paul M; Withers, Philip J

    2011-08-28

    Remote scientific visualization, where rendering services are provided by larger scale systems than are available on the desktop, is becoming increasingly important as dataset sizes increase beyond the capabilities of desktop workstations. Uptake of such services relies on access to suitable visualization applications and the ability to view the resulting visualization in a convenient form. We consider five rules from the e-Science community to meet these goals with the porting of a commercial visualization package to a large-scale system. The application uses message-passing interface (MPI) to distribute data among data processing and rendering processes. The use of MPI in such an interactive application is not compatible with restrictions imposed by the Cray system being considered. We present details, and performance analysis, of a new MPI proxy method that allows the application to run within the Cray environment yet still support MPI communication required by the application. Example use cases from materials science are considered.

  18. Ecological tolerances of Miocene larger benthic foraminifera from Indonesia

    NASA Astrophysics Data System (ADS)

    Novak, Vibor; Renema, Willem

    2018-01-01

    To provide a comprehensive palaeoenvironmental reconstruction based on larger benthic foraminifera (LBF), a quantitative analysis of their assemblage composition is needed. Besides microfacies analysis which includes environmental preferences of foraminiferal taxa, statistical analyses should also be employed. Therefore, detrended correspondence analysis and cluster analysis were performed on relative abundance data of identified LBF assemblages deposited in mixed carbonate-siliciclastic (MCS) systems and blue-water (BW) settings. Studied MCS system localities include ten sections from the central part of the Kutai Basin in East Kalimantan, ranging from late Burdigalian to Serravallian age. The BW samples were collected from eleven sections of the Bulu Formation on Central Java, dated as Serravallian. Results from detrended correspondence analysis reveal significant differences between these two environmental settings. Cluster analysis produced five clusters of samples; clusters 1 and 2 comprise dominantly MCS samples, clusters 3 and 4 with dominance of BW samples, and cluster 5 showing a mixed composition with both MCS and BW samples. The results of cluster analysis were afterwards subjected to indicator species analysis resulting in the interpretation that generated three groups among LBF taxa: typical assemblage indicators, regularly occurring taxa and rare taxa. By interpreting the results of detrended correspondence analysis, cluster analysis and indicator species analysis, along with environmental preferences of identified LBF taxa, a palaeoenvironmental model is proposed for the distribution of LBF in Miocene MCS systems and adjacent BW settings of Indonesia.

  19. Left-lateralized N170 Effects of Visual Expertise in Reading: Evidence from Japanese Syllabic and Logographic Scripts

    PubMed Central

    Maurer, Urs; Zevin, Jason D.; McCandliss, Bruce D.

    2015-01-01

    The N170 component of the event-related potential (ERP) reflects experience-dependent neural changes in several forms of visual expertise, including expertise for visual words. Readers skilled in writing systems that link characters to phonemes (i.e., alphabetic writing) typically produce a left-lateralized N170 to visual word forms. This study examined the N170 in three Japanese scripts that link characters to larger phonological units. Participants were monolingual English speakers (EL1) and native Japanese speakers (JL1) who were also proficient in English. ERPs were collected using a 129-channel array, as participants performed a series of experiments viewing words or novel control stimuli in a repetition detection task. The N170 was strongly left-lateralized for all three Japanese scripts (including logographic Kanji characters) in JL1 participants, but bilateral in EL1 participants viewing these same stimuli. This demonstrates that left-lateralization of the N170 is dependent on specific reading expertise and is not limited to alphabetic scripts. Additional contrasts within the moraic Katakana script revealed equivalent N170 responses in JL1 speakers for familiar Katakana words and for Kanji words transcribed into novel Katakana words, suggesting that the N170 expertise effect is driven by script familiarity rather than familiarity with particular visual word forms. Finally, for English words and novel symbol string stimuli, both EL1 and JL1 subjects produced equivalent responses for the novel symbols, and more left-lateralized N170 responses for the English words, indicating that such effects are not limited to the first language. Taken together, these cross-linguistic results suggest that similar neural processes underlie visual expertise for print in very different writing systems. PMID:18370600

  20. How Visual Is the Visual Cortex? Comparing Connectional and Functional Fingerprints between Congenitally Blind and Sighted Individuals.

    PubMed

    Wang, Xiaoying; Peelen, Marius V; Han, Zaizhu; He, Chenxi; Caramazza, Alfonso; Bi, Yanchao

    2015-09-09

    Classical animal visual deprivation studies and human neuroimaging studies have shown that visual experience plays a critical role in shaping the functionality and connectivity of the visual cortex. Interestingly, recent studies have additionally reported circumscribed regions in the visual cortex in which functional selectivity was remarkably similar in individuals with and without visual experience. Here, by directly comparing resting-state and task-based fMRI data in congenitally blind and sighted human subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. We found a close agreement between connectional and functional maps, pointing to a strong interdependence of connectivity and function. Visual experience (or the absence thereof) had a pronounced effect on the resting-state connectivity and functional response profile of occipital cortex and the posterior lateral fusiform gyrus. By contrast, connectional and functional fingerprints in the anterior medial and posterior lateral parts of the ventral visual cortex were statistically indistinguishable between blind and sighted individuals. These results provide a large-scale mapping of the influence of visual experience on the development of both functional and connectivity properties of visual cortex, which serves as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions. Significance statement: How is the functionality and connectivity of the visual cortex shaped by visual experience? By directly comparing resting-state and task-based fMRI data in congenitally blind and sighted subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. In addition to revealing regions that are strongly dependent on visual experience (early visual

  1. Effects of frequency shifts and visual gender information on vowel category judgments

    NASA Astrophysics Data System (ADS)

    Glidden, Catherine; Assmann, Peter F.

    2003-10-01

    Visual morphing techniques were used together with a high-quality vocoder to study the audiovisual contribution of talker gender to the identification of frequency-shifted vowels. A nine-step continuum ranging from ``bit'' to ``bet'' was constructed from natural recorded syllables spoken by an adult female talker. Upward and downward frequency shifts in spectral envelope (scale factors of 0.85 and 1.0) were applied in combination with shifts in fundamental frequency, F0 (scale factors of 0.5 and 1.0). Downward frequency shifts generally resulted in malelike voices whereas upward shifts were perceived as femalelike. Two separate nine-step visual continua from ``bit'' to ``bet'' were also constructed, one from a male face and the other a female face, each producing the end-point words. Each step along the two visual continua was paired with the corresponding step on the acoustic continuum, creating natural audiovisual utterances. Category boundary shifts were found for both acoustic cues (F0 and formant frequency shifts) and visual cues (visual gender). The visual gender effect was larger when acoustic and visual information were matched appropriately. These results suggest that visual information provided by the speech signal plays an important supplemental role in talker normalization.

  2. [Visual perception of Japanese characters and complicated figures: developmental changes of visual P300 event-related potentials].

    PubMed

    Sata, Yoshimi; Inagaki, Masumi; Shirane, Seiko; Kaga, Makiko

    2002-07-01

    In order to evaluate developmental change of visual perception, the P300 event-related potentials (ERPs) of visual oddball task were recorded in 34 healthy volunteers ranging from 7 to 37 years of age. The latency and amplitude of visual P300 in response to the Japanese ideogram stimuli (a pair of familiar Kanji characters or unfamiliar Kanji characters) and a pair of meaningless complicated figures were measured. Visual P300 was dominant at parietal area in almost all subjects. There was a significant difference of P300 latency among the three tasks. Reaction time to the both kind of Kanji tasks were significantly shorter than those to the complicated figure task. P300 latencies to the familiar Kanji, unfamiliar Kanji and figure stimuli decreased until 25.8, 26.9 and 29.4 years of age, respectively, and regression analysis revealed that a positive quadratic function could be fitted to the data. Around 9 years of age, the P300 latency/age slope was largest in the unfamiliar Kanji task. These findings suggest that visual P300 development depends on both the complexity of the tasks and specificity of the stimuli, which might reflect the variety in visual information processing.

  3. Visual distinctiveness can enhance recency effects.

    PubMed

    Bornstein, B H; Neely, C B; LeCompte, D C

    1995-05-01

    Experimental efforts to meliorate the modality effect have included attempts to make the visual stimulus more distinctive. McDowd and Madigan (1991) failed to find an enhanced recency effect in serial recall when the last item was made more distinct in terms of its color. In an attempt to extend this finding, three experiments were conducted in which visual distinctiveness was manipulated in a different manner, by combining the dimensions of physical size and coloration (i.e., whether the stimuli were solid or outlined in relief). Contrary to previous findings, recency was enhanced when the size and coloration of the last item differed from the other items in the list, regardless of whether the "distinctive" item was larger or smaller than the remaining items. The findings are considered in light of other research that has failed to obtain a similar enhanced recency effect, and their implications for current theories of the modality effect are discussed.

  4. The case of the missing visual details: Occlusion and long-term visual memory.

    PubMed

    Williams, Carrick C; Burkle, Kyle A

    2017-10-01

    To investigate the critical information in long-term visual memory representations of objects, we used occlusion to emphasize 1 type of information or another. By occluding 1 solid side of the object (e.g., top 50%) or by occluding 50% of the object with stripes (like a picket fence), we emphasized visible information about the object, processing the visible details in the former and the object's overall form in the latter. On a token discrimination test, surprisingly, memory for solid or stripe occluded objects at either encoding (Experiment 1) or test (Experiment 2) was the same. In contrast, when occluded objects matched at encoding and test (Experiment 3) or when the occlusion shifted, revealing the entire object piecemeal (Experiment 4), memory was better for solid compared with stripe occluded objects, indicating that objects are represented differently in long-term visual memory. Critically, we also found that when the task emphasized remembering exactly what was shown, memory performance in the more detailed solid occlusion condition exceeded that in the stripe condition (Experiment 5). However, when the task emphasized the whole object form, memory was better in the stripe condition (Experiment 6) than in the solid condition. We argue that long-term visual memory can represent objects flexibly, and task demands can interact with visual information, allowing the viewer to cope with changing real-world visual environments. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Beyond simple charts: Design of visualizations for big health data

    PubMed Central

    Ola, Oluwakemi; Sedig, Kamran

    2016-01-01

    Health data is often big data due to its high volume, low veracity, great variety, and high velocity. Big health data has the potential to improve productivity, eliminate waste, and support a broad range of tasks related to disease surveillance, patient care, research, and population health management. Interactive visualizations have the potential to amplify big data’s utilization. Visualizations can be used to support a variety of tasks, such as tracking the geographic distribution of diseases, analyzing the prevalence of disease, triaging medical records, predicting outbreaks, and discovering at-risk populations. Currently, many health visualization tools use simple charts, such as bar charts and scatter plots, that only represent few facets of data. These tools, while beneficial for simple perceptual and cognitive tasks, are ineffective when dealing with more complex sensemaking tasks that involve exploration of various facets and elements of big data simultaneously. There is need for sophisticated and elaborate visualizations that encode many facets of data and support human-data interaction with big data and more complex tasks. When not approached systematically, design of such visualizations is labor-intensive, and the resulting designs may not facilitate big-data-driven tasks. Conceptual frameworks that guide the design of visualizations for big data can make the design process more manageable and result in more effective visualizations. In this paper, we demonstrate how a framework-based approach can help designers create novel, elaborate, non-trivial visualizations for big health data. We present four visualizations that are components of a larger tool for making sense of large-scale public health data. PMID:28210416

  6. Beyond simple charts: Design of visualizations for big health data.

    PubMed

    Ola, Oluwakemi; Sedig, Kamran

    2016-01-01

    Health data is often big data due to its high volume, low veracity, great variety, and high velocity. Big health data has the potential to improve productivity, eliminate waste, and support a broad range of tasks related to disease surveillance, patient care, research, and population health management. Interactive visualizations have the potential to amplify big data's utilization. Visualizations can be used to support a variety of tasks, such as tracking the geographic distribution of diseases, analyzing the prevalence of disease, triaging medical records, predicting outbreaks, and discovering at-risk populations. Currently, many health visualization tools use simple charts, such as bar charts and scatter plots, that only represent few facets of data. These tools, while beneficial for simple perceptual and cognitive tasks, are ineffective when dealing with more complex sensemaking tasks that involve exploration of various facets and elements of big data simultaneously. There is need for sophisticated and elaborate visualizations that encode many facets of data and support human-data interaction with big data and more complex tasks. When not approached systematically, design of such visualizations is labor-intensive, and the resulting designs may not facilitate big-data-driven tasks. Conceptual frameworks that guide the design of visualizations for big data can make the design process more manageable and result in more effective visualizations. In this paper, we demonstrate how a framework-based approach can help designers create novel, elaborate, non-trivial visualizations for big health data. We present four visualizations that are components of a larger tool for making sense of large-scale public health data.

  7. Holographic flow visualization in rotating turbomachinery

    NASA Astrophysics Data System (ADS)

    Parker, R. J.; Reeves, M.

    1990-11-01

    Holographic flow visualization has found many applications in rotating turbomachinery. Applications in the design of aeroengine fans, automotive turbochargers, turbines, helicopter rotors, and advanced propfans are discussed. Work in ducted rotating flows and rotating free aerofoils is brought together and new developments in each field are revealed.

  8. Visual Place Learning in Drosophila melanogaster

    PubMed Central

    Ofstad, Tyler A.; Zuker, Charles S.; Reiser, Michael B.

    2011-01-01

    The ability of insects to learn and navigate to specific locations in the environment has fascinated naturalists for decades. While the impressive navigation abilities of ants, bees, wasps, and other insects clearly demonstrate that insects are capable of visual place learning1–4, little is known about the underlying neural circuits that mediate these behaviors. Drosophila melanogaster is a powerful model organism for dissecting the neural circuitry underlying complex behaviors, from sensory perception to learning and memory. Flies can identify and remember visual features such as size, color, and contour orientation5, 6. However, the extent to which they use vision to recall specific locations remains unclear. Here we describe a visual place-learning platform and demonstrate that Drosophila are capable of forming and retaining visual place memories to guide selective navigation. By targeted genetic silencing of small subsets of cells in the Drosophila brain we show that neurons in the ellipsoid body, but not in the mushroom bodies, are necessary for visual place learning. Together, these studies reveal distinct neuroanatomical substrates for spatial versus non-spatial learning, and substantiate Drosophila as a powerful model for the study of spatial memories. PMID:21654803

  9. Goal-Directed Visual Processing Differentially Impacts Human Ventral and Dorsal Visual Representations

    PubMed Central

    2017-01-01

    that processes “where” it is located. This view has been challenged by recent studies revealing the existence of “what” and “where” information in both pathways. Here, we found that goal-directed visual information processing differentially modulates shape-based object category representations in the two pathways. Whereas ventral representations are more invariant to the demand of the task, reflecting what an object is, dorsal representations are more adaptive, reflecting what we do with the object. Thus, despite the existence of “what” and “where” information in both pathways, visual representations may still differ fundamentally in the two pathways. PMID:28821655

  10. Promoting Visualization Skills through Deconstruction Using Physical Models and a Visualization Activity Intervention

    NASA Astrophysics Data System (ADS)

    Schiltz, Holly Kristine

    ' modeled visualization artifacts had on students. No patterns emerged from the passive observation of visualization artifacts in lecture or recitation, but the need to elicit visual information from students was made clear. Deconstruction proved to be a valuable method for instruction and assessment of visual information. Three strategies for using deconstruction in teaching were distilled from the lessons and observations of the student focus groups: begin with observations of what is given in an image and what it's composed of, identify the relationships between components to find additional operations in different environments about the molecule, and deconstructing steps of challenging questions can reveal mistakes. An intervention was developed to teach students to use deconstruction and verbalization to analyze complex visualization tasks and employ the principles of the theoretical framework. The activities were scaffolded to introduce increasingly challenging concepts to students, but also support them as they learned visually demanding chemistry concepts. Several themes were observed in the analysis of the visualization activities. Students used deconstruction by documenting which parts of the images were useful for interpretation of the visual. Students identified valid patterns and rules within the images, which signified understanding of arrangement of information presented in the representation. Successful strategy communication was identified when students documented personal strategies that allowed them to complete the activity tasks. Finally, students demonstrated the ability to extend symmetry skills to advanced applications they had not previously seen. This work shows how the use of deconstruction and verbalization may have a great impact on how students master difficult topics and combined, they offer students a powerful strategy to approach visually demanding chemistry problems and to the instructor a unique insight to mentally constructed strategies.

  11. Visual skills in airport-security screening.

    PubMed

    McCarley, Jason S; Kramer, Arthur F; Wickens, Christopher D; Vidoni, Eric D; Boot, Walter R

    2004-05-01

    An experiment examined visual performance in a simulated luggage-screening task. Observers participated in five sessions of a task requiring them to search for knives hidden in x-ray images of cluttered bags. Sensitivity and response times improved reliably as a result of practice. Eye movement data revealed that sensitivity increases were produced entirely by changes in observers' ability to recognize target objects, and not by changes in the effectiveness of visual scanning. Moreover, recognition skills were in part stimulus-specific, such that performance was degraded by the introduction of unfamiliar target objects. Implications for screener training are discussed.

  12. Visual recognition and visually guided action after early bilateral lesion of occipital cortex: a behavioral study of a 4.6-year-old girl.

    PubMed

    Amicuzi, Ileana; Stortini, Massimo; Petrarca, Maurizio; Di Giulio, Paola; Di Rosa, Giuseppe; Fariello, Giuseppe; Longo, Daniela; Cannatà, Vittorio; Genovese, Elisabetta; Castelli, Enrico

    2006-10-01

    We report the case of a 4.6-year-old girl born pre-term with early bilateral occipital damage. It was revealed that the child had non-severely impaired basic visual abilities and ocular motility, a selective perceptual deficit of figure-ground segregation, impaired visual recognition and abnormal navigating through space. Even if the child's visual functioning was not optimal, this was the expression of adaptive anatomic and functional brain modifications that occurred following the early lesion. Anatomic brain structure was studied with anatomic MRI and Diffusor Tensor Imaging (DTI)-MRI. This behavioral study may provide an important contribution to understanding the impact of an early lesion of the visual system on the development of visual functions and on the immature brain's potential for reorganisation related to when the damage occurred.

  13. Healthcare experiences of women with visual impairment.

    PubMed

    Sharts-Hopko, Nancy C; Smeltzer, Suzanne; Ott, Barbara B; Zimmerman, Vanessa; Duffin, Janice

    2010-01-01

    This investigation was a secondary analysis of focus group transcripts to address the question of how women with low vision or blindness have experienced healthcare. Secondary analysis of qualitative data was performed on transcripts from 2 focus groups. These focus groups were conducted at an agency serving visually impaired people in Philadelphia. The 2 focus groups included 7 and 11 women, respectively, having low-vision or who are blind who had been part of an original study of reaching hard-to-reach women with disabilities. Content analysis for the identification of thematic clusters was performed on transcriptions of the focus group data. Findings are consistent with existing research on the health needs of women with disabilities but add specific understanding related to visual impairment. Six thematic categories were identified: health professionals' awareness, information access, healthcare access, isolation, the need for self-advocacy, and perception by others. Secondary analysis of qualitative data affords in-depth understanding of a particular subset of participants within a larger study. Clinical nurse specialists and other health professionals need to increase their sensitivity to the challenges faced by women with visual impairment, and plan and provide care accordingly. Health professions students need to be prepared to interact with people who are visually impaired and healthcare settings need to respond to their needs.

  14. Exploring the Impact of Target Eccentricity and Task Difficulty on Covert Visual Spatial Attention and Its Implications for Brain Computer Interfacing

    PubMed Central

    Roijendijk, Linsey; Farquhar, Jason; van Gerven, Marcel; Jensen, Ole; Gielen, Stan

    2013-01-01

    Objective Covert visual spatial attention is a relatively new task used in brain computer interfaces (BCIs) and little is known about the characteristics which may affect performance in BCI tasks. We investigated whether eccentricity and task difficulty affect alpha lateralization and BCI performance. Approach We conducted a magnetoencephalography study with 14 participants who performed a covert orientation discrimination task at an easy or difficult stimulus contrast at either a near (3.5°) or far (7°) eccentricity. Task difficulty was manipulated block wise and subjects were aware of the difficulty level of each block. Main Results Grand average analyses revealed a significantly larger hemispheric lateralization of posterior alpha power in the difficult condition than in the easy condition, while surprisingly no difference was found for eccentricity. The difference between task difficulty levels was significant in the interval between 1.85 s and 2.25 s after cue onset and originated from a stronger decrease in the contralateral hemisphere. No significant effect of eccentricity was found. Additionally, single-trial classification analysis revealed a higher classification rate in the difficult (65.9%) than in the easy task condition (61.1%). No effect of eccentricity was found in classification rate. Significance Our results indicate that manipulating the difficulty of a task gives rise to variations in alpha lateralization and that using a more difficult task improves covert visual spatial attention BCI performance. The variations in the alpha lateralization could be caused by different factors such as an increased mental effort or a higher visual attentional demand. Further research is necessary to discriminate between them. We did not discover any effect of eccentricity in contrast to results of previous research. PMID:24312477

  15. Exploring the impact of target eccentricity and task difficulty on covert visual spatial attention and its implications for brain computer interfacing.

    PubMed

    Roijendijk, Linsey; Farquhar, Jason; van Gerven, Marcel; Jensen, Ole; Gielen, Stan

    2013-01-01

    Covert visual spatial attention is a relatively new task used in brain computer interfaces (BCIs) and little is known about the characteristics which may affect performance in BCI tasks. We investigated whether eccentricity and task difficulty affect alpha lateralization and BCI performance. We conducted a magnetoencephalography study with 14 participants who performed a covert orientation discrimination task at an easy or difficult stimulus contrast at either a near (3.5°) or far (7°) eccentricity. Task difficulty was manipulated block wise and subjects were aware of the difficulty level of each block. Grand average analyses revealed a significantly larger hemispheric lateralization of posterior alpha power in the difficult condition than in the easy condition, while surprisingly no difference was found for eccentricity. The difference between task difficulty levels was significant in the interval between 1.85 s and 2.25 s after cue onset and originated from a stronger decrease in the contralateral hemisphere. No significant effect of eccentricity was found. Additionally, single-trial classification analysis revealed a higher classification rate in the difficult (65.9%) than in the easy task condition (61.1%). No effect of eccentricity was found in classification rate. Our results indicate that manipulating the difficulty of a task gives rise to variations in alpha lateralization and that using a more difficult task improves covert visual spatial attention BCI performance. The variations in the alpha lateralization could be caused by different factors such as an increased mental effort or a higher visual attentional demand. Further research is necessary to discriminate between them. We did not discover any effect of eccentricity in contrast to results of previous research.

  16. Retinotopically specific reorganization of visual cortex for tactile pattern recognition

    PubMed Central

    Cheung, Sing-Hang; Fang, Fang; He, Sheng; Legge, Gordon E.

    2009-01-01

    Although previous studies have shown that Braille reading and other tactile-discrimination tasks activate the visual cortex of blind and sighted people [1–5], it is not known whether this kind of cross-modal reorganization is influenced by retinotopic organization. We have addressed this question by studying S, a visually impaired adult with the rare ability to read print visually and Braille by touch. S had normal visual development until age six years, and thereafter severe acuity reduction due to corneal opacification, but no evidence of visual-field loss. Functional magnetic resonance imaging (fMRI) revealed that, in S’s early visual areas, tactile information processing activated what would be the foveal representation for normally-sighted individuals, and visual information processing activated what would be the peripheral representation. Control experiments showed that this activation pattern was not due to visual imagery. S’s high-level visual areas which correspond to shape- and object-selective areas in normally-sighted individuals were activated by both visual and tactile stimuli. The retinotopically specific reorganization in early visual areas suggests an efficient redistribution of neural resources in the visual cortex. PMID:19361999

  17. Induced and evoked neural correlates of orientation selectivity in human visual cortex.

    PubMed

    Koelewijn, Loes; Dumont, Julie R; Muthukumaraswamy, Suresh D; Rich, Anina N; Singh, Krish D

    2011-02-14

    Orientation discrimination is much better for patterns oriented along the horizontal or vertical (cardinal) axes than for patterns oriented obliquely, but the neural basis for this is not known. Previous animal neurophysiology and human neuroimaging studies have demonstrated only a moderate bias for cardinal versus oblique orientations, with fMRI showing a larger response to cardinals in primary visual cortex (V1) and EEG demonstrating both increased magnitudes and reduced latencies of transient evoked responses. Here, using MEG, we localised and characterised induced gamma and transient evoked responses to stationary circular grating patches of three orientations (0, 45, and 90° from vertical). Surprisingly, we found that the sustained gamma response was larger for oblique, compared to cardinal, stimuli. This "inverse oblique effect" was also observed in the earliest (80 ms) evoked response, whereas later responses (120 ms) showed a trend towards the reverse, "classic", oblique response. Source localisation demonstrated that the sustained gamma and early evoked responses were localised to medial visual cortex, whilst the later evoked responses came from both this early visual area and a source in a more inferolateral extrastriate region. These results suggest that (1) the early evoked and sustained gamma responses manifest the initial tuning of V1 neurons, with the stronger response to oblique stimuli possibly reflecting increased tuning widths for these orientations, and (2) the classic behavioural oblique effect is mediated by an extrastriate cortical area and may also implicate feedback from extrastriate to primary visual cortex. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Neonatal hypoglycaemia and visual development: a review

    PubMed Central

    Paudel, Nabin; Chakraborty, Arijit; Anstice, Nicola; Jacobs, Robert J; Hegarty, Jo E; Harding, Jane E; Thompson, Benjamin

    2017-01-01

    Background Many newborn babies experience low blood glucose concentrations, a condition referred to as neonatal hypoglycaemia (NH). The effect of NH on visual development in infancy and childhood is of interest because the occipital lobes, which include the primary visual cortex and a number of extra-striate visual areas, may be particularly susceptible to NH induced injury. In addition, a number of case series have suggested that NH can affect eye and optic nerve development. Objective To review the existing literature concerning the effect of NH on the visual system. Methods A PubMed, Embase, Medline and Google Scholar literature search was conducted using pre-specified MeSH terms. Results The literature reviewed revealed no clear evidence for an effect of NH on the development of the eye and optic nerve. Furthermore, occipital and occipital-parietal lobe injuries following NH often occurred in conjunction with co-morbid conditions and were not clearly linked to subsequent visual dysfunction, possibly due to difficulties in measuring vision in young children and a lack of studies at older ages. A recent, large scale, prospective study of NH outcomes at 2 years of age found no effect of mild to moderate NH on visual development. Conclusion The effect of NH on visual development is unclear. It is currently unknown whether NH affects visual function in mid to late childhood when many visual functions reach adult levels. PMID:28253512

  19. Advanced in Visualization of 3D Time-Dependent CFD Solutions

    NASA Technical Reports Server (NTRS)

    Lane, David A.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Numerical simulations of complex 3D time-dependent (unsteady) flows are becoming increasingly feasible because of the progress in computing systems. Unfortunately, many existing flow visualization systems were developed for time-independent (steady) solutions and do not adequately depict solutions from unsteady flow simulations. Furthermore, most systems only handle one time step of the solutions individually and do not consider the time-dependent nature of the solutions. For example, instantaneous streamlines are computed by tracking the particles using one time step of the solution. However, for streaklines and timelines, particles need to be tracked through all time steps. Streaklines can reveal quite different information about the flow than those revealed by instantaneous streamlines. Comparisons of instantaneous streamlines with dynamic streaklines are shown. For a complex 3D flow simulation, it is common to generate a grid system with several millions of grid points and to have tens of thousands of time steps. The disk requirement for storing the flow data can easily be tens of gigabytes. Visualizing solutions of this magnitude is a challenging problem with today's computer hardware technology. Even interactive visualization of one time step of the flow data can be a problem for some existing flow visualization systems because of the size of the grid. Current approaches for visualizing complex 3D time-dependent CFD solutions are described. The flow visualization system developed at NASA Ames Research Center to compute time-dependent particle traces from unsteady CFD solutions is described. The system computes particle traces (streaklines) by integrating through the time steps. This system has been used by several NASA scientists to visualize their CFD time-dependent solutions. The flow visualization capabilities of this system are described, and visualization results are shown.

  20. Visual and motion cueing in helicopter simulation

    NASA Technical Reports Server (NTRS)

    Bray, R. S.

    1985-01-01

    Early experience in fixed-cockpit simulators, with limited field of view, demonstrated the basic difficulties of simulating helicopter flight at the level of subjective fidelity required for confident evaluation of vehicle characteristics. More recent programs, utilizing large-amplitude cockpit motion and a multiwindow visual-simulation system have received a much higher degree of pilot acceptance. However, none of these simulations has presented critical visual-flight tasks that have been accepted by the pilots as the full equivalent of flight. In this paper, the visual cues presented in the simulator are compared with those of flight in an attempt to identify deficiencies that contribute significantly to these assessments. For the low-amplitude maneuvering tasks normally associated with the hover mode, the unique motion capabilities of the Vertical Motion Simulator (VMS) at Ames Research Center permit nearly a full representation of vehicle motion. Especially appreciated in these tasks are the vertical-acceleration responses to collective control. For larger-amplitude maneuvering, motion fidelity must suffer diminution through direct attenuation through high-pass filtering washout of the computer cockpit accelerations or both. Experiments were conducted in an attempt to determine the effects of these distortions on pilot performance of height-control tasks.

  1. Auditory, visual, and auditory-visual perception of emotions by individuals with cochlear implants, hearing AIDS, and normal hearing.

    PubMed

    Most, Tova; Aviner, Chen

    2009-01-01

    This study evaluated the benefits of cochlear implant (CI) with regard to emotion perception of participants differing in their age of implantation, in comparison to hearing aid users and adolescents with normal hearing (NH). Emotion perception was examined by having the participants identify happiness, anger, surprise, sadness, fear, and disgust. The emotional content was placed upon the same neutral sentence. The stimuli were presented in auditory, visual, and combined auditory-visual modes. The results revealed better auditory identification by the participants with NH in comparison to all groups of participants with hearing loss (HL). No differences were found among the groups with HL in each of the 3 modes. Although auditory-visual perception was better than visual-only perception for the participants with NH, no such differentiation was found among the participants with HL. The results question the efficiency of some currently used CIs in providing the acoustic cues required to identify the speaker's emotional state.

  2. Shedding light on emotional perception: Interaction of brightness and semantic content in extrastriate visual cortex.

    PubMed

    Schettino, Antonio; Keil, Andreas; Porcu, Emanuele; Müller, Matthias M

    2016-06-01

    The rapid extraction of affective cues from the visual environment is crucial for flexible behavior. Previous studies have reported emotion-dependent amplitude modulations of two event-related potential (ERP) components - the N1 and EPN - reflecting sensory gain control mechanisms in extrastriate visual areas. However, it is unclear whether both components are selective electrophysiological markers of attentional orienting toward emotional material or are also influenced by physical features of the visual stimuli. To address this question, electrical brain activity was recorded from seventeen male participants while viewing original and bright versions of neutral and erotic pictures. Bright neutral scenes were rated as more pleasant compared to their original counterpart, whereas erotic scenes were judged more positively when presented in their original version. Classical and mass univariate ERP analysis showed larger N1 amplitude for original relative to bright erotic pictures, with no differences for original and bright neutral scenes. Conversely, the EPN was only modulated by picture content and not by brightness, substantiating the idea that this component is a unique electrophysiological marker of attention allocation toward emotional material. Complementary topographic analysis revealed the early selective expression of a centro-parietal positivity following the presentation of original erotic scenes only, reflecting the recruitment of neural networks associated with sustained attention and facilitated memory encoding for motivationally relevant material. Overall, these results indicate that neural networks subtending the extraction of emotional information are differentially recruited depending on low-level perceptual features, which ultimately influence affective evaluations. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Personality and Augmenting/Reducing (A/R) in auditory event-related potentials (ERPs) during emotional visual stimulation

    PubMed Central

    De Pascalis, Vilfredo; Fracasso, Francesca; Corr, Philip J.

    2017-01-01

    An auditory augmenting/reducing ERP paradigm recorded for 5 intensity tones with emotional visual stimulation was used, for the first time, to test predictions derived from the revised Reinforcement Sensitivity Theory (rRST) of personality with respect to two major factors: behavioral inhibition system (BIS), fight/flight/freeze system (FFFS). Higher BIS and FFFS scores were negatively correlated with N1/P2 slopes at central sites (C3, Cz, C4). Conditional process analysis revealed that the BIS was a mediator of the association between the N1/P2 slope and the FFFS scores. An analysis of covariance showed that lower BIS scorers exhibited larger N1/P2 amplitudes across all tone intensities while watching negative, positive and neutral pictures. Additionally, lower FFFS scorers compared to higher FFFS scorers disclosed larger N1/P2 amplitudes to the highest tone intensities and these differences were even more pronounced while watching positive emotional pictures. Findings were explained assuming the operation of two different, but related processes: transmarginal inhibition for the BIS; the attention/emotional gating mechanism regulating cortical sensory input for the FFFS trait. These findings appear consistent with predictions derived from the rRST, which traced fear and anxiety to separate but interacting neurobehavioural systems. PMID:28164996

  4. Visualization of the wake behind a sliding bubble

    NASA Astrophysics Data System (ADS)

    O'Reilly Meehan, R.; Grennan, K.; Davis, I.; Nolan, K.; Murray, D. B.

    2017-10-01

    In this work, Schlieren measurements are presented for the wake of an air bubble sliding under a heated, inclined surface in quiescent water to provide new insights into the intricate sliding bubble wake structure and the associated convective cooling process. This is a two-phase flow configuration that is pertinent to thermal management solutions, where the fundamental flow physics have yet to be fully described. In this work, we present an experimental apparatus that enables high-quality Schlieren images for different bubble sizes and measurement planes. By combining these visualizations with an advanced bubble tracking technique, we can simultaneously quantify the symbiotic relationship that exists between the sliding bubble dynamics and its associated wake. An unstable, dynamic wake structure is revealed, consisting of multiple hairpin-shaped vortex structures interacting within the macroscopic area affected by the bubble. As vorticity is generated in the near wake, the bubble shape is observed to recoil and rebound. This also occurs normal to the surface and is particularly noticeable for larger bubble sizes, with a periodic ejection of material from the near wake corresponding to significant shape changes. These findings, along with their implications from a thermal management perspective, provide information on the rich dynamics of this natural flow that cannot be obtained using alternate experimental techniques.

  5. Attention modulates perception of visual space

    PubMed Central

    Zhou, Liu; Deng, Chenglong; Ooi, Teng Leng; He, Zijiang J.

    2017-01-01

    Attention readily facilitates the detection and discrimination of objects, but it is not known whether it helps to form the vast volume of visual space that contains the objects and where actions are implemented. Conventional wisdom suggests not, given the effortless ease with which we perceive three-dimensional (3D) scenes on opening our eyes. Here, we show evidence to the contrary. In Experiment 1, the observer judged the location of a briefly presented target, placed either on the textured ground or ceiling surface. Judged location was more accurate for a target on the ground, provided that the ground was visible and that the observer directed attention to the lower visual field, not the upper field. This reveals that attention facilitates space perception with reference to the ground. Experiment 2 showed that judged location of a target in mid-air, with both ground and ceiling surfaces present, was more accurate when the observer directed their attention to the lower visual field; this indicates that the attention effect extends to visual space above the ground. These findings underscore the role of attention in anchoring visual orientation in space, which is arguably a primal event that enhances one’s ability to interact with objects and surface layouts within the visual space. The fact that the effect of attention was contingent on the ground being visible suggests that our terrestrial visual system is best served by its ecological niche. PMID:29177198

  6. Replacement of the Faces subtest by Visual Reproductions within Wechsler Memory Scale-Third Edition (WMS-III) visual memory indexes: implications for discrepancy analysis.

    PubMed

    Hawkins, Keith A; Tulsky, David S

    2004-06-01

    Within discrepancy analysis differences between scores are examined for abnormality. Although larger differences are generally associated with rising impairment probabilities, the relationship between discrepancy size and abnormality varies across score pairs in relation to the correlation between the contrasted scores in normal subjects. Examinee ability level also affects the size of discrepancies observed normally. Wechsler Memory Scale-Third Edition (WMS-III) visual index scores correlate only modestly with other Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) and WMS-III index scores; consequently, differences between these scores and others have to be very large before they become unusual, especially for subjects of higher intelligence. The substitution of the Faces subtest by Visual Reproductions within visual memory indexes formed by the combination of WMS-III visual subtests (creating immediate recall, delayed recall, and combined immediate and delayed index scores) results in higher correlation coefficients, and a decline in the discrepancy size required to surpass base rate thresholds for probable impairment. This gain appears not to occur at the cost of a diminished sensitivity to diverse pathologies. New WMS-III discrepancy base rate data are supplied to complement those currently available to clinicians.

  7. Caudate nucleus reactivity predicts perceptual learning rate for visual feature conjunctions.

    PubMed

    Reavis, Eric A; Frank, Sebastian M; Tse, Peter U

    2015-04-15

    Useful information in the visual environment is often contained in specific conjunctions of visual features (e.g., color and shape). The ability to quickly and accurately process such conjunctions can be learned. However, the neural mechanisms responsible for such learning remain largely unknown. It has been suggested that some forms of visual learning might involve the dopaminergic neuromodulatory system (Roelfsema et al., 2010; Seitz and Watanabe, 2005), but this hypothesis has not yet been directly tested. Here we test the hypothesis that learning visual feature conjunctions involves the dopaminergic system, using functional neuroimaging, genetic assays, and behavioral testing techniques. We use a correlative approach to evaluate potential associations between individual differences in visual feature conjunction learning rate and individual differences in dopaminergic function as indexed by neuroimaging and genetic markers. We find a significant correlation between activity in the caudate nucleus (a component of the dopaminergic system connected to visual areas of the brain) and visual feature conjunction learning rate. Specifically, individuals who showed a larger difference in activity between positive and negative feedback on an unrelated cognitive task, indicative of a more reactive dopaminergic system, learned visual feature conjunctions more quickly than those who showed a smaller activity difference. This finding supports the hypothesis that the dopaminergic system is involved in visual learning, and suggests that visual feature conjunction learning could be closely related to associative learning. However, no significant, reliable correlations were found between feature conjunction learning and genotype or dopaminergic activity in any other regions of interest. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Temporal windows in visual processing: "prestimulus brain state" and "poststimulus phase reset" segregate visual transients on different temporal scales.

    PubMed

    Wutz, Andreas; Weisz, Nathan; Braun, Christoph; Melcher, David

    2014-01-22

    Dynamic vision requires both stability of the current perceptual representation and sensitivity to the accumulation of sensory evidence over time. Here we study the electrophysiological signatures of this intricate balance between temporal segregation and integration in vision. Within a forward masking paradigm with short and long stimulus onset asynchronies (SOA), we manipulated the temporal overlap of the visual persistence of two successive transients. Human observers enumerated the items presented in the second target display as a measure of the informational capacity read-out from this partly temporally integrated visual percept. We observed higher β-power immediately before mask display onset in incorrect trials, in which enumeration failed due to stronger integration of mask and target visual information. This effect was timescale specific, distinguishing between segregation and integration of visual transients that were distant in time (long SOA). Conversely, for short SOA trials, mask onset evoked a stronger visual response when mask and targets were correctly segregated in time. Examination of the target-related response profile revealed the importance of an evoked α-phase reset for the segregation of those rapid visual transients. Investigating this precise mapping of the temporal relationships of visual signals onto electrophysiological responses highlights how the stream of visual information is carved up into discrete temporal windows that mediate between segregated and integrated percepts. Fragmenting the stream of visual information provides a means to stabilize perceptual events within one instant in time.

  9. Optical phonetics and visual perception of lexical and phrasal stress in English.

    PubMed

    Scarborough, Rebecca; Keating, Patricia; Mattys, Sven L; Cho, Taehong; Alwan, Abeer

    2009-01-01

    In a study of optical cues to the visual perception of stress, three American English talkers spoke words that differed in lexical stress and sentences that differed in phrasal stress, while video and movements of the face were recorded. The production of stressed and unstressed syllables from these utterances was analyzed along many measures of facial movement, which were generally larger and faster in the stressed condition. In a visual perception experiment, 16 perceivers identified the location of stress in forced-choice judgments of video clips of these utterances (without audio). Phrasal stress was better perceived than lexical stress. The relation of the visual intelligibility of the prosody of these utterances to the optical characteristics of their production was analyzed to determine which cues are associated with successful visual perception. While most optical measures were correlated with perception performance, chin measures, especially Chin Opening Displacement, contributed the most to correct perception independently of the other measures. Thus, our results indicate that the information for visual stress perception is mainly associated with mouth opening movements.

  10. Visualization of the microcirculatory network in skin by high frequency optoacoustic mesoscopy

    NASA Astrophysics Data System (ADS)

    Schwarz, Mathias; Aguirre, Juan; Buehler, Andreas; Omar, Murad; Ntziachristos, Vasilis

    2015-07-01

    Optoacoustic (photoacoustic) imaging has a high potential for imaging melanin-rich structures in skin and the microvasculature of the dermis due to the natural chromophores (de)oxyhemoglobin, and melanin. The vascular network in human dermis comprises a large network of arterioles, capillaries, and venules, ranging from 5 μm to more than 100 μm in diameter. The frequency spectrum of the microcirculatory network in human skin is intrinsically broadband, due to the large variety in size of absorbers. In our group we have developed raster-scan optoacoustic mesoscopy (RSOM) that applies a 100 MHz transducer with ultra-wide bandwidth in raster-scan mode achieving lateral resolution of 18 μm. In this study, we applied high frequency RSOM to imaging human skin in a healthy volunteer. We analyzed the frequency spectrum of anatomical structures with respect to depth and show that frequencies >60 MHz contain valuable information of structures in the epidermis and the microvasculature of the papillary dermis. We illustrate that RSOM is capable of visualizing the fine vascular network at and beneath the epidermal-dermal junction, revealing the vascular fingerprint of glabrous skin, as well as the larger venules deeper inside the dermis. We evaluate the ability of the RSOM system in measuring epidermal thickness in both hairy and glabrous skin. Finally, we showcase the capability of RSOM in visualizing benign nevi that will potentially help in imaging the penetration depth of melanoma.

  11. Temporal kinetics of prefrontal modulation of the extrastriate cortex during visual attention.

    PubMed

    Yago, Elena; Duarte, Audrey; Wong, Ting; Barceló, Francisco; Knight, Robert T

    2004-12-01

    Single-unit, event-related potential (ERP), and neuroimaging studies have implicated the prefrontal cortex (PFC) in top-down control of attention and working memory. We conducted an experiment in patients with unilateral PFC damage (n = 8) to assess the temporal kinetics of PFC-extrastriate interactions during visual attention. Subjects alternated attention between the left and the right hemifields in successive runs while they detected target stimuli embedded in streams of repetitive task-irrelevant stimuli (standards). The design enabled us to examine tonic (spatial selection) and phasic (feature selection) PFC-extrastriate interactions. PFC damage impaired performance in the visual field contralateral to lesions, as manifested by both larger reaction times and error rates. Assessment of the extrastriate P1 ERP revealed that the PFC exerts a tonic (spatial selection) excitatory input to the ipsilateral extrastriate cortex as early as 100 msec post stimulus delivery. The PFC exerts a second phasic (feature selection) excitatory extrastriate modulation from 180 to 300 msec, as evidenced by reductions in selection negativity after damage. Finally, reductions of the N2 ERP to target stimuli supports the notion that the PFC exerts a third phasic (target selection) signal necessary for successful template matching during postselection analysis of target features. The results provide electrophysiological evidence of three distinct tonic and phasic PFC inputs to the extrastriate cortex in the initial few hundred milliseconds of stimulus processing. Damage to this network appears to underlie the pervasive deficits in attention observed in patients with prefrontal lesions.

  12. Spatial Visualization in Introductory Geology Courses

    NASA Astrophysics Data System (ADS)

    Reynolds, S. J.

    2004-12-01

    Visualization is critical to solving most geologic problems, which involve events and processes across a broad range of space and time. Accordingly, spatial visualization is an essential part of undergraduate geology courses. In such courses, students learn to visualize three-dimensional topography from two-dimensional contour maps, to observe landscapes and extract clues about how that landscape formed, and to imagine the three-dimensional geometries of geologic structures and how these are expressed on the Earth's surface or on geologic maps. From such data, students reconstruct the geologic history of areas, trying to visualize the sequence of ancient events that formed a landscape. To understand the role of visualization in student learning, we developed numerous interactive QuickTime Virtual Reality animations to teach students the most important visualization skills and approaches. For topography, students can spin and tilt contour-draped, shaded-relief terrains, flood virtual landscapes with water, and slice into terrains to understand profiles. To explore 3D geometries of geologic structures, they interact with virtual blocks that can be spun, sliced into, faulted, and made partially transparent to reveal internal structures. They can tilt planes to see how they interact with topography, and spin and tilt geologic maps draped over digital topography. The GeoWall system allows students to see some of these materials in true stereo. We used various assessments to research the effectiveness of these materials and to document visualization strategies students use. Our research indicates that, compared to control groups, students using such materials improve more in their geologic visualization abilities and in their general visualization abilities as measured by a standard spatial visualization test. Also, females achieve greater gains, improving their general visualization abilities to the same level as males. Misconceptions that students carry obstruct

  13. Distinct patterns of brain atrophy in Genetic Frontotemporal Dementia Initiative (GENFI) cohort revealed by visual rating scales.

    PubMed

    Fumagalli, Giorgio G; Basilico, Paola; Arighi, Andrea; Bocchetta, Martina; Dick, Katrina M; Cash, David M; Harding, Sophie; Mercurio, Matteo; Fenoglio, Chiara; Pietroboni, Anna M; Ghezzi, Laura; van Swieten, John; Borroni, Barbara; de Mendonça, Alexandre; Masellis, Mario; Tartaglia, Maria C; Rowe, James B; Graff, Caroline; Tagliavini, Fabrizio; Frisoni, Giovanni B; Laforce, Robert; Finger, Elizabeth; Sorbi, Sandro; Scarpini, Elio; Rohrer, Jonathan D; Galimberti, Daniela

    2018-05-24

    In patients with frontotemporal dementia, it has been shown that brain atrophy occurs earliest in the anterior cingulate, insula and frontal lobes. We used visual rating scales to investigate whether identifying atrophy in these areas may be helpful in distinguishing symptomatic patients carrying different causal mutations in the microtubule-associated protein tau (MAPT), progranulin (GRN) and chromosome 9 open reading frame (C9ORF72) genes. We also analysed asymptomatic carriers to see whether it was possible to visually identify brain atrophy before the appearance of symptoms. Magnetic resonance imaging of 343 subjects (63 symptomatic mutation carriers, 132 presymptomatic mutation carriers and 148 control subjects) from the Genetic Frontotemporal Dementia Initiative study were analysed by two trained raters using a protocol of six visual rating scales that identified atrophy in key regions of the brain (orbitofrontal, anterior cingulate, frontoinsula, anterior and medial temporal lobes and posterior cortical areas). Intra- and interrater agreement were greater than 0.73 for all the scales. Voxel-based morphometric analysis demonstrated a strong correlation between the visual rating scale scores and grey matter atrophy in the same region for each of the scales. Typical patterns of atrophy were identified: symmetric anterior and medial temporal lobe involvement for MAPT, asymmetric frontal and parietal loss for GRN, and a more widespread pattern for C9ORF72. Presymptomatic MAPT carriers showed greater atrophy in the medial temporal region than control subjects, but the visual rating scales could not identify presymptomatic atrophy in GRN or C9ORF72 carriers. These simple-to-use and reproducible scales may be useful tools in the clinical setting for the discrimination of different mutations of frontotemporal dementia, and they may even help to identify atrophy prior to onset in those with MAPT mutations.

  14. Design and Usability Testing of an Audio Platform Game for Players with Visual Impairments

    ERIC Educational Resources Information Center

    Oren, Michael; Harding, Chris; Bonebright, Terri L.

    2008-01-01

    This article reports on the evaluation of a novel audio platform game that creates a spatial, interactive experience via audio cues. A pilot study with players with visual impairments, and usability testing comparing the visual and audio game versions using both sighted players and players with visual impairments, revealed that all the…

  15. Linking pain and the body: neural correlates of visually induced analgesia.

    PubMed

    Longo, Matthew R; Iannetti, Gian Domenico; Mancini, Flavia; Driver, Jon; Haggard, Patrick

    2012-02-22

    The visual context of seeing the body can reduce the experience of acute pain, producing a multisensory analgesia. Here we investigated the neural correlates of this "visually induced analgesia" using fMRI. We induced acute pain with an infrared laser while human participants looked either at their stimulated right hand or at another object. Behavioral results confirmed the expected analgesic effect of seeing the body, while fMRI results revealed an associated reduction of laser-induced activity in ipsilateral primary somatosensory cortex (SI) and contralateral operculoinsular cortex during the visual context of seeing the body. We further identified two known cortical networks activated by sensory stimulation: (1) a set of brain areas consistently activated by painful stimuli (the so-called "pain matrix"), and (2) an extensive set of posterior brain areas activated by the visual perception of the body ("visual body network"). Connectivity analyses via psychophysiological interactions revealed that the visual context of seeing the body increased effective connectivity (i.e., functional coupling) between posterior parietal nodes of the visual body network and the purported pain matrix. Increased connectivity with these posterior parietal nodes was seen for several pain-related regions, including somatosensory area SII, anterior and posterior insula, and anterior cingulate cortex. These findings suggest that visually induced analgesia does not involve an overall reduction of the cortical response elicited by laser stimulation, but is consequent to the interplay between the brain's pain network and a posterior network for body perception, resulting in modulation of the experience of pain.

  16. Visual encoding and fixation target selection in free viewing: presaccadic brain potentials

    PubMed Central

    Nikolaev, Andrey R.; Jurica, Peter; Nakatani, Chie; Plomp, Gijs; van Leeuwen, Cees

    2013-01-01

    In scrutinizing a scene, the eyes alternate between fixations and saccades. During a fixation, two component processes can be distinguished: visual encoding and selection of the next fixation target. We aimed to distinguish the neural correlates of these processes in the electrical brain activity prior to a saccade onset. Participants viewed color photographs of natural scenes, in preparation for a change detection task. Then, for each participant and each scene we computed an image heat map, with temperature representing the duration and density of fixations. The temperature difference between the start and end points of saccades was taken as a measure of the expected task-relevance of the information concentrated in specific regions of a scene. Visual encoding was evaluated according to whether subsequent change was correctly detected. Saccades with larger temperature difference were more likely to be followed by correct detection than ones with smaller temperature differences. The amplitude of presaccadic activity over anterior brain areas was larger for correct detection than for detection failure. This difference was observed for short “scrutinizing” but not for long “explorative” saccades, suggesting that presaccadic activity reflects top-down saccade guidance. Thus, successful encoding requires local scanning of scene regions which are expected to be task-relevant. Next, we evaluated fixation target selection. Saccades “moving up” in temperature were preceded by presaccadic activity of higher amplitude than those “moving down”. This finding suggests that presaccadic activity reflects attention deployed to the following fixation location. Our findings illustrate how presaccadic activity can elucidate concurrent brain processes related to the immediate goal of planning the next saccade and the larger-scale goal of constructing a robust representation of the visual scene. PMID:23818877

  17. Larger men have larger prostates: Detection bias in epidemiologic studies of obesity and prostate cancer risk

    PubMed Central

    Rundle, Andrew; Wang, Yun; Sadasivan, Sudha; Chitale, Dhananjay A.; Gupta, Nilesh S.; Tang, Deliang; Rybicki, Benjamin A.

    2017-01-01

    BACKGROUND Obesity is associated with risk of aggressive prostate cancer (PCa), but not with over-all PCa risk. However, obese men have larger prostates which may lower biopsy accuracy and cause a systematic bias towards the null in epidemiologic studies of over-all risk. METHODS Within a cohort of 6,692 men followed-up after a biopsy or transurethral resection of the prostate (TURP) with benign findings, a nested case-control study was conducted of 495 prostate cancer cases and controls matched on age, race, follow-up duration, biopsy versus TURP and procedure date. Data on body mass index and prostate volume at the time of the initial procedure were abstracted from medical records. RESULTS Prior to consideration of differences in prostate volume, overweight (OR = 1.41; 95% CI 1.01, 1.97) and obese status (OR = 1.59; 95% CI 1.09, 2.33) at the time of the original benign biopsy or TURP were associated with PCa incidence during follow-up. Prostate volume did not significantly moderate the association between body-size and PCa, however it did act as an inverse confounder; adjustment for prostate volume increased the effect size for overweight by 22% (adjusted OR = 1.52; 95% CI 1.08, 2.14) and for obese status by 23% (adjusted OR = 1.77; 95% CI 1.20, 2.62). Larger prostate volume at the time of the original benign biopsy or TURP was inversely associated with PCa incidence during follow-up (OR = 0.92 per 10 cc difference in volume; 95% CI 0.88, 0.97). In analyses that stratified case-control pairs by tumor aggressiveness of the case, prostate volume acted as an inverse confounder in analyses of non-aggressive PCa but not in analyses of aggressive PCa. CONCLUSIONS In studies of obesity and PCa, differences in prostate volume cause a bias towards the null, particularly in analyses of non-aggressive PCa. A pervasive underestimation of the association between obesity and overall PCa risk may exist in the literature. PMID:28349547

  18. Larger men have larger prostates: Detection bias in epidemiologic studies of obesity and prostate cancer risk.

    PubMed

    Rundle, Andrew; Wang, Yun; Sadasivan, Sudha; Chitale, Dhananjay A; Gupta, Nilesh S; Tang, Deliang; Rybicki, Benjamin A

    2017-06-01

    Obesity is associated with risk of aggressive prostate cancer (PCa), but not with over-all PCa risk. However, obese men have larger prostates which may lower biopsy accuracy and cause a systematic bias toward the null in epidemiologic studies of over-all risk. Within a cohort of 6692 men followed-up after a biopsy or transurethral resection of the prostate (TURP) with benign findings, a nested case-control study was conducted of 495 prostate cancer cases and controls matched on age, race, follow-up duration, biopsy versus TURP, and procedure date. Data on body mass index and prostate volume at the time of the initial procedure were abstracted from medical records. Prior to consideration of differences in prostate volume, overweight (OR = 1.41; 95%CI 1.01, 1.97), and obese status (OR = 1.59; 95%CI 1.09, 2.33) at the time of the original benign biopsy or TURP were associated with PCa incidence during follow-up. Prostate volume did not significantly moderate the association between body-size and PCa, however it did act as an inverse confounder; adjustment for prostate volume increased the effect size for overweight by 22% (adjusted OR = 1.52; 95%CI 1.08, 2.14) and for obese status by 23% (adjusted OR = 1.77; 95%CI 1.20, 2.62). Larger prostate volume at the time of the original benign biopsy or TURP was inversely associated with PCa incidence during follow-up (OR = 0.92 per 10 cc difference in volume; 95%CI 0.88, 0.97). In analyses that stratified case-control pairs by tumor aggressiveness of the case, prostate volume acted as an inverse confounder in analyses of non-aggressive PCa but not in analyses of aggressive PCa. In studies of obesity and PCa, differences in prostate volume cause a bias toward the null, particularly in analyses of non-aggressive PCa. A pervasive underestimation of the association between obesity and overall PCa risk may exist in the literature. © 2017 Wiley Periodicals, Inc.

  19. Effects of body lean and visual information on the equilibrium maintenance during stance.

    PubMed

    Duarte, Marcos; Zatsiorsky, Vladimir M

    2002-09-01

    Maintenance of equilibrium was tested in conditions when humans assume different leaning postures during upright standing. Subjects ( n=11) stood in 13 different body postures specified by visual center of pressure (COP) targets within their base of support (BOS). Different types of visual information were tested: continuous presentation of visual target, no vision after target presentation, and with simultaneous visual feedback of the COP. The following variables were used to describe the equilibrium maintenance: the mean of the COP position, the area of the ellipse covering the COP sway, and the resultant median frequency of the power spectral density of the COP displacement. The variability of the COP displacement, quantified by the COP area variable, increased when subjects occupied leaning postures, irrespective of the kind of visual information provided. This variability also increased when vision was removed in relation to when vision was present. Without vision, drifts in the COP data were observed which were larger for COP targets farther away from the neutral position. When COP feedback was given in addition to the visual target, the postural control system did not control stance better than in the condition with only visual information. These results indicate that the visual information is used by the postural control system at both short and long time scales.

  20. A perceptual learning deficit in Chinese developmental dyslexia as revealed by visual texture discrimination training.

    PubMed

    Wang, Zhengke; Cheng-Lai, Alice; Song, Yan; Cutting, Laurie; Jiang, Yuzheng; Lin, Ou; Meng, Xiangzhi; Zhou, Xiaolin

    2014-08-01

    Learning to read involves discriminating between different written forms and establishing connections with phonology and semantics. This process may be partially built upon visual perceptual learning, during which the ability to process the attributes of visual stimuli progressively improves with practice. The present study investigated to what extent Chinese children with developmental dyslexia have deficits in perceptual learning by using a texture discrimination task, in which participants were asked to discriminate the orientation of target bars. Experiment l demonstrated that, when all of the participants started with the same initial stimulus-to-mask onset asynchrony (SOA) at 300 ms, the threshold SOA, adjusted according to response accuracy for reaching 80% accuracy, did not show a decrement over 5 days of training for children with dyslexia, whereas this threshold SOA steadily decreased over the training for the control group. Experiment 2 used an adaptive procedure to determine the threshold SOA for each participant during training. Results showed that both the group of dyslexia and the control group attained perceptual learning over the sessions in 5 days, although the threshold SOAs were significantly higher for the group of dyslexia than for the control group; moreover, over individual participants, the threshold SOA negatively correlated with their performance in Chinese character recognition. These findings suggest that deficits in visual perceptual processing and learning might, in part, underpin difficulty in reading Chinese. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Viewing Quality of Life in the Larger Context.

    ERIC Educational Resources Information Center

    Schalock, Robert L.

    1993-01-01

    This article discusses aspects of the concept of quality of life that impact on policy development and habilitation services for persons with intellectual disability. The article contends that quality of life should not be viewed as an individual score for a person but in the larger context of a guiding principle that underlies the development,…

  2. Rapid discrimination of visual scene content in the human brain.

    PubMed

    Anokhin, Andrey P; Golosheykin, Simon; Sirevaag, Erik; Kristjansson, Sean; Rohrbaugh, John W; Heath, Andrew C

    2006-06-06

    The rapid evaluation of complex visual environments is critical for an organism's adaptation and survival. Previous studies have shown that emotionally significant visual scenes, both pleasant and unpleasant, elicit a larger late positive wave in the event-related brain potential (ERP) than emotionally neutral pictures. The purpose of the present study was to examine whether neuroelectric responses elicited by complex pictures discriminate between specific, biologically relevant contents of the visual scene and to determine how early in the picture processing this discrimination occurs. Subjects (n = 264) viewed 55 color slides differing in both scene content and emotional significance. No categorical judgments or responses were required. Consistent with previous studies, we found that emotionally arousing pictures, regardless of their content, produce a larger late positive wave than neutral pictures. However, when pictures were further categorized by content, anterior ERP components in a time window between 200 and 600 ms following stimulus onset showed a high selectivity for pictures with erotic content compared to other pictures regardless of their emotional valence (pleasant, neutral, and unpleasant) or emotional arousal. The divergence of ERPs elicited by erotic and non-erotic contents started at 185 ms post-stimulus in the fronto-central midline region, with a later onset in parietal regions. This rapid, selective, and content-specific processing of erotic materials and its dissociation from other pictures (including emotionally positive pictures) suggests the existence of a specialized neural network for prioritized processing of a distinct category of biologically relevant stimuli with high adaptive and evolutionary significance.

  3. Rapid discrimination of visual scene content in the human brain

    PubMed Central

    Anokhin, Andrey P.; Golosheykin, Simon; Sirevaag, Erik; Kristjansson, Sean; Rohrbaugh, John W.; Heath, Andrew C.

    2007-01-01

    The rapid evaluation of complex visual environments is critical for an organism's adaptation and survival. Previous studies have shown that emotionally significant visual scenes, both pleasant and unpleasant, elicit a larger late positive wave in the event-related brain potential (ERP) than emotionally neutral pictures. The purpose of the present study was to examine whether neuroelectric responses elicited by complex pictures discriminate between specific, biologically relevant contents of the visual scene and to determine how early in the picture processing this discrimination occurs. Subjects (n=264) viewed 55 color slides differing in both scene content and emotional significance. No categorical judgments or responses were required. Consistent with previous studies, we found that emotionally arousing pictures, regardless of their content, produce a larger late positive wave than neutral pictures. However, when pictures were further categorized by content, anterior ERP components in a time window between 200−600 ms following stimulus onset showed a high selectivity for pictures with erotic content compared to other pictures regardless of their emotional valence (pleasant, neutral, and unpleasant) or emotional arousal. The divergence of ERPs elicited by erotic and non-erotic contents started at 185 ms post-stimulus in the fronto-central midline regions, with a later onset in parietal regions. This rapid, selective, and content-specific processing of erotic materials and its dissociation from other pictures (including emotionally positive pictures) suggests the existence of a specialized neural network for prioritized processing of a distinct category of biologically relevant stimuli with high adaptive and evolutionary significance. PMID:16712815

  4. Effects of Presentation Type and Visual Control in Numerosity Discrimination: Implications for Number Processing?

    PubMed Central

    Smets, Karolien; Moors, Pieter; Reynvoet, Bert

    2016-01-01

    Performance in a non-symbolic comparison task in which participants are asked to indicate the larger numerosity of two dot arrays, is assumed to be supported by the Approximate Number System (ANS). This system allows participants to judge numerosity independently from other visual cues. Supporting this idea, previous studies indicated that numerosity can be processed when visual cues are controlled for. Consequently, distinct types of visual cue control are assumed to be interchangeable. However, a previous study showed that the type of visual cue control affected performance using a simultaneous presentation of the stimuli in numerosity comparison. In the current study, we explored whether the influence of the type of visual cue control on performance disappeared when sequentially presenting each stimulus in numerosity comparison. While the influence of the applied type of visual cue control was significantly more evident in the simultaneous condition, sequentially presenting the stimuli did not completely exclude the influence of distinct types of visual cue control. Altogether, these results indicate that the implicit assumption that it is possible to compare performances across studies with a differential visual cue control is unwarranted and that the influence of the type of visual cue control partly depends on the presentation format of the stimuli. PMID:26869967

  5. Visualization rhetoric: framing effects in narrative visualization.

    PubMed

    Hullman, Jessica; Diakopoulos, Nicholas

    2011-12-01

    Narrative visualizations combine conventions of communicative and exploratory information visualization to convey an intended story. We demonstrate visualization rhetoric as an analytical framework for understanding how design techniques that prioritize particular interpretations in visualizations that "tell a story" can significantly affect end-user interpretation. We draw a parallel between narrative visualization interpretation and evidence from framing studies in political messaging, decision-making, and literary studies. Devices for understanding the rhetorical nature of narrative information visualizations are presented, informed by the rigorous application of concepts from critical theory, semiotics, journalism, and political theory. We draw attention to how design tactics represent additions or omissions of information at various levels-the data, visual representation, textual annotations, and interactivity-and how visualizations denote and connote phenomena with reference to unstated viewing conventions and codes. Classes of rhetorical techniques identified via a systematic analysis of recent narrative visualizations are presented, and characterized according to their rhetorical contribution to the visualization. We describe how designers and researchers can benefit from the potentially positive aspects of visualization rhetoric in designing engaging, layered narrative visualizations and how our framework can shed light on how a visualization design prioritizes specific interpretations. We identify areas where future inquiry into visualization rhetoric can improve understanding of visualization interpretation. © 2011 IEEE

  6. Effects of corneal irregular astigmatism on visual acuity after conventional and femtosecond laser-assisted Descemet's stripping automated endothelial keratoplasty.

    PubMed

    Tomida, Daisuke; Yamaguchi, Takefumi; Ogawa, Akiko; Hirayama, Yumiko; Shimazaki-Den, Seika; Satake, Yoshiyuki; Shimazaki, Jun

    2015-07-01

    To compare short-term outcomes of Descemet's stripping automated endothelial keratoplasty (DSAEK) using a graft prepared with either a femtosecond laser or a microkeratome. Thirty-eight patients underwent DSAEK with grafts prepared with either a femtosecond laser (f-DSAEK; 21 eyes) or a microkeratome (m-DSAEK; 17 eyes). Visual acuity, endothelial cell density, regular astigmatism and irregular astigmatism were compared between the two groups preoperatively and at 1, 3, and 6 months post-operatively. Fourier analysis was conducted to calculate astigmatism of the anterior and posterior surfaces, and total cornea, using anterior segment optical coherence tomography (AS-OCT). Visual acuity (logMAR) improved from 1.20 ± 0.60 to 0.43 ± 0.25 after m-DSAEK (P < 0.001) and from 1.20 ± 0.57 to 0.77 ± 0.33 after f-DSAEK (P = 0.0028) at 6 months following DSAEK. Visual acuity after m-DSAEK was significantly better than after f-DSAEK at 1, 3, and 6 months (P < 0.05). AS-OCT corneal images revealed greater irregularities on the posterior surfaces of f-DSAEK grafts compared to m-DSAEK grafts. Irregular astigmatism of the total cornea and the posterior surface was significantly larger after f-DSAEK than after m-DSAEK, although there was no significant difference in irregular astigmatism of the anterior surface at 6 months. Postoperative visual acuity was significantly correlated with the postoperative irregular astigmatism of the total cornea (r = 0.6657 and P < 0.001) and the anterior (r = 0.416, P = 0.016) and posterior surfaces (r = 0.7046, P < 0.001). Visual outcomes after f-DSAEK were poor compared to conventional m-DSAEK due to an increase in irregular astigmatism caused by posterior surface irregularities.

  7. Visualizing Time-Varying Phenomena In Numerical Simulations Of Unsteady Flows

    NASA Technical Reports Server (NTRS)

    Lane, David A.

    1996-01-01

    Streamlines, contour lines, vector plots, and volume slices (cutting planes) are commonly used for flow visualization. These techniques are sometimes referred to as instantaneous flow visualization techniques because calculations are based on an instant of the flowfield in time. Although instantaneous flow visualization techniques are effective for depicting phenomena in steady flows,they sometimes do not adequately depict time-varying phenomena in unsteady flows. Streaklines and timelines are effective visualization techniques for depicting vortex shedding, vortex breakdown, and shock waves in unsteady flows. These techniques are examples of time-dependent flow visualization techniques, which are based on many instants of the flowfields in time. This paper describes the algorithms for computing streaklines and timelines. Using numerically simulated unsteady flows, streaklines and timelines are compared with streamlines, contour lines, and vector plots. It is shown that streaklines and timelines reveal vortex shedding and vortex breakdown more clearly than instantaneous flow visualization techniques.

  8. Early auditory evoked potential is modulated by selective attention and related to individual differences in visual working memory capacity.

    PubMed

    Giuliano, Ryan J; Karns, Christina M; Neville, Helen J; Hillyard, Steven A

    2014-12-01

    A growing body of research suggests that the predictive power of working memory (WM) capacity for measures of intellectual aptitude is due to the ability to control attention and select relevant information. Crucially, attentional mechanisms implicated in controlling access to WM are assumed to be domain-general, yet reports of enhanced attentional abilities in individuals with larger WM capacities are primarily within the visual domain. Here, we directly test the link between WM capacity and early attentional gating across sensory domains, hypothesizing that measures of visual WM capacity should predict an individual's capacity to allocate auditory selective attention. To address this question, auditory ERPs were recorded in a linguistic dichotic listening task, and individual differences in ERP modulations by attention were correlated with estimates of WM capacity obtained in a separate visual change detection task. Auditory selective attention enhanced ERP amplitudes at an early latency (ca. 70-90 msec), with larger P1 components elicited by linguistic probes embedded in an attended narrative. Moreover, this effect was associated with greater individual estimates of visual WM capacity. These findings support the view that domain-general attentional control mechanisms underlie the wide variation of WM capacity across individuals.

  9. Two-out-of-two color matching based visual cryptography schemes.

    PubMed

    Machizaud, Jacques; Fournel, Thierry

    2012-09-24

    Visual cryptography which consists in sharing a secret message between transparencies has been extended to color prints. In this paper, we propose a new visual cryptography scheme based on color matching. The stacked printed media reveal a uniformly colored message decoded by the human visual system. In contrast with the previous color visual cryptography schemes, the proposed one enables to share images without pixel expansion and to detect a forgery as the color of the message is kept secret. In order to correctly print the colors on the media and to increase the security of the scheme, we use spectral models developed for color reproduction describing printed colors from an optical point of view.

  10. Emergence of realism: Enhanced visual artistry and high accuracy of visual numerosity representation after left prefrontal damage.

    PubMed

    Takahata, Keisuke; Saito, Fumie; Muramatsu, Taro; Yamada, Makiko; Shirahase, Joichiro; Tabuchi, Hajime; Suhara, Tetsuya; Mimura, Masaru; Kato, Motoichiro

    2014-05-01

    Over the last two decades, evidence of enhancement of drawing and painting skills due to focal prefrontal damage has accumulated. It is of special interest that most artworks created by such patients were highly realistic ones, but the mechanism underlying this phenomenon remains to be understood. Our hypothesis is that enhanced tendency of realism was associated with accuracy of visual numerosity representation, which has been shown to be mediated predominantly by right parietal functions. Here, we report a case of left prefrontal stroke, where the patient showed enhancement of artistic skills of realistic painting after the onset of brain damage. We investigated cognitive, functional and esthetic characteristics of the patient׳s visual artistry and visual numerosity representation. Neuropsychological tests revealed impaired executive function after the stroke. Despite that, the patient׳s visual artistry related to realism was rather promoted across the onset of brain damage as demonstrated by blind evaluation of the paintings by professional art reviewers. On visual numerical cognition tasks, the patient showed higher performance in comparison with age-matched healthy controls. These results paralleled increased perfusion in the right parietal cortex including the precuneus and intraparietal sulcus. Our data provide new insight into mechanisms underlying change in artistic style due to focal prefrontal lesion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Motor Simulation without Motor Expertise: Enhanced Corticospinal Excitability in Visually Experienced Dance Spectators

    PubMed Central

    Jola, Corinne; Abedian-Amiri, Ali; Kuppuswamy, Annapoorna; Pollick, Frank E.; Grosbras, Marie-Hélène

    2012-01-01

    The human “mirror-system” is suggested to play a crucial role in action observation and execution, and is characterized by activity in the premotor and parietal cortices during the passive observation of movements. The previous motor experience of the observer has been shown to enhance the activity in this network. Yet visual experience could also have a determinant influence when watching more complex actions, as in dance performances. Here we tested the impact visual experience has on motor simulation when watching dance, by measuring changes in corticospinal excitability. We also tested the effects of empathic abilities. To fully match the participants' long-term visual experience with the present experimental setting, we used three live solo dance performances: ballet, Indian dance, and non-dance. Participants were either frequent dance spectators of ballet or Indian dance, or “novices” who never watched dance. None of the spectators had been physically trained in these dance styles. Transcranial magnetic stimulation was used to measure corticospinal excitability by means of motor-evoked potentials (MEPs) in both the hand and the arm, because the hand is specifically used in Indian dance and the arm is frequently engaged in ballet dance movements. We observed that frequent ballet spectators showed larger MEP amplitudes in the arm muscles when watching ballet compared to when they watched other performances. We also found that the higher Indian dance spectators scored on the fantasy subscale of the Interpersonal Reactivity Index, the larger their MEPs were in the arms when watching Indian dance. Our results show that even without physical training, corticospinal excitability can be enhanced as a function of either visual experience or the tendency to imaginatively transpose oneself into fictional characters. We suggest that spectators covertly simulate the movements for which they have acquired visual experience, and that empathic abilities heighten

  12. Visual cryptography for face privacy

    NASA Astrophysics Data System (ADS)

    Ross, Arun; Othman, Asem A.

    2010-04-01

    We discuss the problem of preserving the privacy of a digital face image stored in a central database. In the proposed scheme, a private face image is dithered into two host face images such that it can be revealed only when both host images are simultaneously available; at the same time, the individual host images do not reveal the identity of the original image. In order to accomplish this, we appeal to the field of Visual Cryptography. Experimental results confirm the following: (a) the possibility of hiding a private face image in two unrelated host face images; (b) the successful matching of face images that are reconstructed by superimposing the host images; and (c) the inability of the host images, known as sheets, to reveal the identity of the secret face image.

  13. Design of a 3-dimensional visual illusion speed reduction marking scheme.

    PubMed

    Liang, Guohua; Qian, Guomin; Wang, Ye; Yi, Zige; Ru, Xiaolei; Ye, Wei

    2017-03-01

    To determine which graphic and color combination for a 3-dimensional visual illusion speed reduction marking scheme presents the best visual stimulus, five parameters were designed. According to the Balanced Incomplete Blocks-Law of Comparative Judgment, three schemes, which produce strong stereoscopic impressions, were screened from the 25 initial design schemes of different combinations of graphics and colors. Three-dimensional experimental simulation scenes of the three screened schemes were created to evaluate four different effects according to a semantic analysis. The following conclusions were drawn: schemes with a red color are more effective than those without; the combination of red, yellow and blue produces the best visual stimulus; a larger area from the top surface and the front surface should be colored red; and a triangular prism should be painted as the graphic of the marking according to the stereoscopic impression and the coordination of graphics with the road.

  14. On the Efficacy of a Computer-Based Program to Teach Visual Braille Reading

    ERIC Educational Resources Information Center

    Scheithauer, Mindy C.; Tiger, Jeffrey H.; Miller, Sarah J.

    2013-01-01

    Scheithauer and Tiger (2012) created an efficient computerized program that taught 4 sighted college students to select text letters when presented with visual depictions of braille alphabetic characters and resulted in the emergence of some braille reading. The current study extended these results to a larger sample (n?=?81) and compared the…

  15. Crowded visual search in children with normal vision and children with visual impairment.

    PubMed

    Huurneman, Bianca; Cox, Ralf F A; Vlaskamp, Björn N S; Boonstra, F Nienke

    2014-03-01

    This study investigates the influence of oculomotor control, crowding, and attentional factors on visual search in children with normal vision ([NV], n=11), children with visual impairment without nystagmus ([VI-nys], n=11), and children with VI with accompanying nystagmus ([VI+nys], n=26). Exclusion criteria for children with VI were: multiple impairments and visual acuity poorer than 20/400 or better than 20/50. Three search conditions were presented: a row with homogeneous distractors, a matrix with homogeneous distractors, and a matrix with heterogeneous distractors. Element spacing was manipulated in 5 steps from 2 to 32 minutes of arc. Symbols were sized 2 times the threshold acuity to guarantee visibility for the VI groups. During simple row and matrix search with homogeneous distractors children in the VI+nys group were less accurate than children with NV at smaller spacings. Group differences were even more pronounced during matrix search with heterogeneous distractors. Search times were longer in children with VI compared to children with NV. The more extended impairments during serial search reveal greater dependence on oculomotor control during serial compared to parallel search. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Dynamic visual noise affects visual short-term memory for surface color, but not spatial location.

    PubMed

    Dent, Kevin

    2010-01-01

    In two experiments participants retained a single color or a set of four spatial locations in memory. During a 5 s retention interval participants viewed either flickering dynamic visual noise or a static matrix pattern. In Experiment 1 memory was assessed using a recognition procedure, in which participants indicated if a particular test stimulus matched the memorized stimulus or not. In Experiment 2 participants attempted to either reproduce the locations or they picked the color from a whole range of possibilities. Both experiments revealed effects of dynamic visual noise (DVN) on memory for colors but not for locations. The implications of the results for theories of working memory and the methodological prospects for DVN as an experimental tool are discussed.

  17. Larger ejaculate volumes are associated with a lower degree of polyandry across bushcricket taxa

    PubMed Central

    Vahed, Karim

    2006-01-01

    In numerous insects, including bushcrickets (Tettigoniidae), males are known to transfer substances in the ejaculate that inhibit the receptivity of females to further matings, but it has not yet been established whether these substances reduce the lifetime degree of polyandry of the female. The aim of this study was to test the hypothesis that larger ejaculate volumes should be associated with a lower degree of polyandry across tettigoniid taxa, controlling for male body mass and phylogeny. Data on ejaculate mass, sperm number, nuptial gift mass and male mass were taken primarily from the literature. The degree of polyandry for 14 species of European bushcrickets was estimated by counting the number of spermatodoses within the spermathecae of field-caught females towards the end of their adult lifespans. Data for four further species were obtained from the literature. Data were analysed by using both species regression and independent contrasts to control for phylogeny. Multiple regression analysis revealed that, as predicted, there was a significant negative association between the degree of polyandry and ejaculate mass, relative to male body mass, across bushcricket taxa. Nuptial gift size and sperm number, however, did not contribute further to interspecific variation in the degree of polyandry. A positive relationship was found, across bushcricket taxa, between relative nuptial gift size and relative ejaculate mass, indicating that larger nuptial gifts allow the male to overcome female resistance to accepting large ejaculates. This appears to be the first comparative evidence that males can manipulate the lifetime degree of polyandry of their mates through the transfer of large ejaculates. PMID:16928643

  18. Properties of visual evoked potentials to onset of movement on a television screen.

    PubMed

    Kubová, Z; Kuba, M; Hubacek, J; Vít, F

    1990-08-01

    In 80 subjects the dependence of movement-onset visual evoked potentials on some measures of stimulation was examined, and these responses were compared with pattern-reversal visual evoked potentials to verify the effectiveness of pattern movement application for visual evoked potential acquisition. Horizontally moving vertical gratings were generated on a television screen. The typical movement-onset reactions were characterized by one marked negative peak only, with a peak time between 140 and 200 ms. In all subjects the sufficient stimulus duration for acquisition of movement-onset-related visual evoked potentials was 100 ms; in some cases it was only 20 ms. Higher velocity (5.6 degree/s) produced higher amplitudes of movement-onset visual evoked potentials than did the lower velocity (2.8 degrees/s). In 80% of subjects, the more distinct reactions were found in the leads from lateral occipital areas (in 60% from the right hemisphere), with no correlation to handedness of subjects. Unlike pattern-reversal visual evoked potentials, the movement-onset responses tended to be larger to extramacular stimulation (annular target of 5 degrees-9 degrees) than to macular stimulation (circular target of 5 degrees diameter).

  19. Identifying solutions to medication adherence in the visually impaired elderly.

    PubMed

    Smith, Miranda; Bailey, Trista

    2014-02-01

    Adults older than 65 years of age with vision impairment are more likely to have difficulty managing medications compared with people having normal vision. This patient population has difficulty reading medication information and may take the wrong medication or incorrect doses of medication, resulting in serious consequences, including overdose or inadequate treatment of health problems. Visually impaired patients report increased anxiety related to medication management and must rely on others to obtain necessary drug information. Pharmacists have a unique opportunity to pursue accurate medication adherence in this special population. This article reviews literature illustrating how severe medication mismanagement can occur in the visually impaired elderly and presents resources and solutions for pharmacists to take a larger role in adherence management in this population.

  20. Rapid Extraction of Lexical Tone Phonology in Chinese Characters: A Visual Mismatch Negativity Study

    PubMed Central

    Wang, Xiao-Dong; Liu, A-Ping; Wu, Yin-Yuan; Wang, Peng

    2013-01-01

    Background In alphabetic languages, emerging evidence from behavioral and neuroimaging studies shows the rapid and automatic activation of phonological information in visual word recognition. In the mapping from orthography to phonology, unlike most alphabetic languages in which there is a natural correspondence between the visual and phonological forms, in logographic Chinese, the mapping between visual and phonological forms is rather arbitrary and depends on learning and experience. The issue of whether the phonological information is rapidly and automatically extracted in Chinese characters by the brain has not yet been thoroughly addressed. Methodology/Principal Findings We continuously presented Chinese characters differing in orthography and meaning to adult native Mandarin Chinese speakers to construct a constant varying visual stream. In the stream, most stimuli were homophones of Chinese characters: The phonological features embedded in these visual characters were the same, including consonants, vowels and the lexical tone. Occasionally, the rule of phonology was randomly violated by characters whose phonological features differed in the lexical tone. Conclusions/Significance We showed that the violation of the lexical tone phonology evoked an early, robust visual response, as revealed by whole-head electrical recordings of the visual mismatch negativity (vMMN), indicating the rapid extraction of phonological information embedded in Chinese characters. Source analysis revealed that the vMMN was involved in neural activations of the visual cortex, suggesting that the visual sensory memory is sensitive to phonological information embedded in visual words at an early processing stage. PMID:23437235

  1. The Role of the Human Extrastriate Visual Cortex in Mirror Symmetry Discrimination: A TMS-Adaptation Study

    ERIC Educational Resources Information Center

    Cattaneo, Zaira; Mattavelli, Giulia; Papagno, Costanza; Herbert, Andrew; Silvanto, Juha

    2011-01-01

    The human visual system is able to efficiently extract symmetry information from the visual environment. Prior neuroimaging evidence has revealed symmetry-preferring neuronal representations in the dorsolateral extrastriate visual cortex; the objective of the present study was to investigate the necessity of these representations in symmetry…

  2. Larger Stimuli Require Longer Processing Time for Perception.

    PubMed

    Kanai, Ryota; Dalmaijer, Edwin S; Sherman, Maxine T; Kawakita, Genji; Paffen, Chris L E

    2017-05-01

    The time it takes for a stimulus to reach awareness is often assessed by measuring reaction times (RTs) or by a temporal order judgement (TOJ) task in which perceived timing is compared against a reference stimulus. Dissociations of RT and TOJ have been reported earlier in which increases in stimulus intensity such as luminance intensity results in a decrease of RT, whereas perceived perceptual latency in a TOJ task is affected to a lesser degree. Here, we report that a simple manipulation of stimulus size has stronger effects on perceptual latency measured by TOJ than on motor latency measured by RT tasks. When participants were asked to respond to the appearance of a simple stimulus such as a luminance blob, the perceptual latency measured against a standard reference stimulus was up to 40 ms longer for a larger stimulus. In other words, the smaller stimulus was perceived to occur earlier than the larger one. RT on the other hand was hardly affected by size. The TOJ results were further replicated in a simultaneity judgement task, suggesting that the effects of size are not due to TOJ-specific response biases but more likely reflect an effect on perceived timing.

  3. Topographic Independent Component Analysis reveals random scrambling of orientation in visual space

    PubMed Central

    Martinez-Garcia, Marina; Martinez, Luis M.

    2017-01-01

    Neurons at primary visual cortex (V1) in humans and other species are edge filters organized in orientation maps. In these maps, neurons with similar orientation preference are clustered together in iso-orientation domains. These maps have two fundamental properties: (1) retinotopy, i.e. correspondence between displacements at the image space and displacements at the cortical surface, and (2) a trade-off between good coverage of the visual field with all orientations and continuity of iso-orientation domains in the cortical space. There is an active debate on the origin of these locally continuous maps. While most of the existing descriptions take purely geometric/mechanistic approaches which disregard the network function, a clear exception to this trend in the literature is the original approach of Hyvärinen and Hoyer based on infomax and Topographic Independent Component Analysis (TICA). Although TICA successfully addresses a number of other properties of V1 simple and complex cells, in this work we question the validity of the orientation maps obtained from TICA. We argue that the maps predicted by TICA can be analyzed in the retinal space, and when doing so, it is apparent that they lack the required continuity and retinotopy. Here we show that in the orientation maps reported in the TICA literature it is easy to find examples of violation of the continuity between similarly tuned mechanisms in the retinal space, which suggest a random scrambling incompatible with the maps in primates. The new experiments in the retinal space presented here confirm this guess: TICA basis vectors actually follow a random salt-and-pepper organization back in the image space. Therefore, the interesting clusters found in the TICA topology cannot be interpreted as the actual cortical orientation maps found in cats, primates or humans. In conclusion, Topographic ICA does not reproduce cortical orientation maps. PMID:28640816

  4. Topographic Independent Component Analysis reveals random scrambling of orientation in visual space.

    PubMed

    Martinez-Garcia, Marina; Martinez, Luis M; Malo, Jesús

    2017-01-01

    Neurons at primary visual cortex (V1) in humans and other species are edge filters organized in orientation maps. In these maps, neurons with similar orientation preference are clustered together in iso-orientation domains. These maps have two fundamental properties: (1) retinotopy, i.e. correspondence between displacements at the image space and displacements at the cortical surface, and (2) a trade-off between good coverage of the visual field with all orientations and continuity of iso-orientation domains in the cortical space. There is an active debate on the origin of these locally continuous maps. While most of the existing descriptions take purely geometric/mechanistic approaches which disregard the network function, a clear exception to this trend in the literature is the original approach of Hyvärinen and Hoyer based on infomax and Topographic Independent Component Analysis (TICA). Although TICA successfully addresses a number of other properties of V1 simple and complex cells, in this work we question the validity of the orientation maps obtained from TICA. We argue that the maps predicted by TICA can be analyzed in the retinal space, and when doing so, it is apparent that they lack the required continuity and retinotopy. Here we show that in the orientation maps reported in the TICA literature it is easy to find examples of violation of the continuity between similarly tuned mechanisms in the retinal space, which suggest a random scrambling incompatible with the maps in primates. The new experiments in the retinal space presented here confirm this guess: TICA basis vectors actually follow a random salt-and-pepper organization back in the image space. Therefore, the interesting clusters found in the TICA topology cannot be interpreted as the actual cortical orientation maps found in cats, primates or humans. In conclusion, Topographic ICA does not reproduce cortical orientation maps.

  5. Use of an augmented-vision device for visual search by patients with tunnel vision

    PubMed Central

    Luo, Gang; Peli, Eli

    2006-01-01

    Purpose To study the effect of an augmented-vision device that superimposes minified contour images over natural vision on visual search performance of patients with tunnel vision. Methods Twelve subjects with tunnel vision searched for targets presented outside their visual fields (VF) on a blank background under three cue conditions (with contour cues provided by the device, with auditory cues, and without cues). Three subjects (VF: 8º to 11º wide) carried out the search over a 90º×74º area, and nine subjects (VF: 7º to 16º wide) over a 66º×52º area. Eye and head movements were recorded for performance analyses that included directness of search path, search time, and gaze speed. Results Directness of the search path was greatly and significantly improved when the contour or auditory cues were provided in both the larger and smaller area search. When using the device, a significant reduction in search time (28%~74%) was demonstrated by all 3 subjects in the larger area search and by subjects with VF wider than 10º in the smaller area search (average 22%). Directness and the gaze speed accounted for 90% of the variability of search time. Conclusions While performance improvement with the device for the larger search area was obvious, whether it was helpful for the smaller search area depended on VF and gaze speed. As improvement in directness was demonstrated, increased gaze speed, which could result from further training and adaptation to the device, might enable patients with small VFs to benefit from the device for visual search tasks. PMID:16936136

  6. Use of an augmented-vision device for visual search by patients with tunnel vision.

    PubMed

    Luo, Gang; Peli, Eli

    2006-09-01

    To study the effect of an augmented-vision device that superimposes minified contour images over natural vision on visual search performance of patients with tunnel vision. Twelve subjects with tunnel vision searched for targets presented outside their visual fields (VFs) on a blank background under three cue conditions (with contour cues provided by the device, with auditory cues, and without cues). Three subjects (VF, 8 degrees -11 degrees wide) carried out the search over a 90 degrees x 74 degrees area, and nine subjects (VF, 7 degrees -16 degrees wide) carried out the search over a 66 degrees x 52 degrees area. Eye and head movements were recorded for performance analyses that included directness of search path, search time, and gaze speed. Directness of the search path was greatly and significantly improved when the contour or auditory cues were provided in the larger and the smaller area searches. When using the device, a significant reduction in search time (28% approximately 74%) was demonstrated by all three subjects in the larger area search and by subjects with VFs wider than 10 degrees in the smaller area search (average, 22%). Directness and gaze speed accounted for 90% of the variability of search time. Although performance improvement with the device for the larger search area was obvious, whether it was helpful for the smaller search area depended on VF and gaze speed. Because improvement in directness was demonstrated, increased gaze speed, which could result from further training and adaptation to the device, might enable patients with small VFs to benefit from the device for visual search tasks.

  7. Visualizations of Travel Time Performance Based on Vehicle Reidentification Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Stanley Ernest; Sharifi, Elham; Day, Christopher M.

    This paper provides a visual reference of the breadth of arterial performance phenomena based on travel time measures obtained from reidentification technology that has proliferated in the past 5 years. These graphical performance measures are revealed through overlay charts and statistical distribution as revealed through cumulative frequency diagrams (CFDs). With overlays of vehicle travel times from multiple days, dominant traffic patterns over a 24-h period are reinforced and reveal the traffic behavior induced primarily by the operation of traffic control at signalized intersections. A cumulative distribution function in the statistical literature provides a method for comparing traffic patterns from variousmore » time frames or locations in a compact visual format that provides intuitive feedback on arterial performance. The CFD may be accumulated hourly, by peak periods, or by time periods specific to signal timing plans that are in effect. Combined, overlay charts and CFDs provide visual tools with which to assess the quality and consistency of traffic movement for various periods throughout the day efficiently, without sacrificing detail, which is a typical byproduct of numeric-based performance measures. These methods are particularly effective for comparing before-and-after median travel times, as well as changes in interquartile range, to assess travel time reliability.« less

  8. Visual cues and perceived reachability.

    PubMed

    Gabbard, Carl; Ammar, Diala

    2005-12-01

    A rather consistent finding in studies of perceived (imagined) compared to actual movement in a reaching paradigm is the tendency to overestimate at midline. Explanations of such behavior have focused primarily on perceptions of postural constraints and the notion that individuals calibrate reachability in reference to multiple degrees of freedom, also known as the whole-body explanation. The present study examined the role of visual information in the form of binocular and monocular cues in perceived reachability. Right-handed participants judged the reachability of visual targets at midline with both eyes open, dominant eye occluded, and the non-dominant eye covered. Results indicated that participants were relatively accurate with condition responses not being significantly different in regard to total error. Analysis of the direction of error (mean bias) revealed effective accuracy across conditions with only a marginal distinction between monocular and binocular conditions. Therefore, within the task conditions of this experiment, it appears that binocular and monocular cues provide sufficient visual information for effective judgments of perceived reach at midline.

  9. Combined diffusion-weighted and functional magnetic resonance imaging reveals a temporal-occipital network involved in auditory-visual object processing

    PubMed Central

    Beer, Anton L.; Plank, Tina; Meyer, Georg; Greenlee, Mark W.

    2013-01-01

    Functional magnetic resonance imaging (MRI) showed that the superior temporal and occipital cortex are involved in multisensory integration. Probabilistic fiber tracking based on diffusion-weighted MRI suggests that multisensory processing is supported by white matter connections between auditory cortex and the temporal and occipital lobe. Here, we present a combined functional MRI and probabilistic fiber tracking study that reveals multisensory processing mechanisms that remained undetected by either technique alone. Ten healthy participants passively observed visually presented lip or body movements, heard speech or body action sounds, or were exposed to a combination of both. Bimodal stimulation engaged a temporal-occipital brain network including the multisensory superior temporal sulcus (msSTS), the lateral superior temporal gyrus (lSTG), and the extrastriate body area (EBA). A region-of-interest (ROI) analysis showed multisensory interactions (e.g., subadditive responses to bimodal compared to unimodal stimuli) in the msSTS, the lSTG, and the EBA region. Moreover, sounds elicited responses in the medial occipital cortex. Probabilistic tracking revealed white matter tracts between the auditory cortex and the medial occipital cortex, the inferior occipital cortex (IOC), and the superior temporal sulcus (STS). However, STS terminations of auditory cortex tracts showed limited overlap with the msSTS region. Instead, msSTS was connected to primary sensory regions via intermediate nodes in the temporal and occipital cortex. Similarly, the lSTG and EBA regions showed limited direct white matter connections but instead were connected via intermediate nodes. Our results suggest that multisensory processing in the STS is mediated by separate brain areas that form a distinct network in the lateral temporal and inferior occipital cortex. PMID:23407860

  10. Visual hallucinations in schizophrenia: confusion between imagination and perception.

    PubMed

    Brébion, Gildas; Ohlsen, Ruth I; Pilowsky, Lyn S; David, Anthony S

    2008-05-01

    An association between hallucinations and reality-monitoring deficit has been repeatedly observed in patients with schizophrenia. Most data concern auditory/verbal hallucinations. The aim of this study was to investigate the association between visual hallucinations and a specific type of reality-monitoring deficit, namely confusion between imagined and perceived pictures. Forty-one patients with schizophrenia and 43 healthy control participants completed a reality-monitoring task. Thirty-two items were presented either as written words or as pictures. After the presentation phase, participants had to recognize the target words and pictures among distractors, and then remember their mode of presentation. All groups of participants recognized the pictures better than the words, except the patients with visual hallucinations, who presented the opposite pattern. The participants with visual hallucinations made more misattributions to pictures than did the others, and higher ratings of visual hallucinations were correlated with increased tendency to remember words as pictures. No association with auditory hallucinations was revealed. Our data suggest that visual hallucinations are associated with confusion between visual mental images and perception.

  11. Effects of Alzheimer’s Disease on Visual Target Detection: A “Peripheral Bias”

    PubMed Central

    Vallejo, Vanessa; Cazzoli, Dario; Rampa, Luca; Zito, Giuseppe A.; Feuerstein, Flurin; Gruber, Nicole; Müri, René M.; Mosimann, Urs P.; Nef, Tobias

    2016-01-01

    Visual exploration is an omnipresent activity in everyday life, and might represent an important determinant of visual attention deficits in patients with Alzheimer’s Disease (AD). The present study aimed at investigating visual search performance in AD patients, in particular target detection in the far periphery, in daily living scenes. Eighteen AD patients and 20 healthy controls participated in the study. They were asked to freely explore a hemispherical screen, covering ±90°, and to respond to targets presented at 10°, 30°, and 50° eccentricity, while their eye movements were recorded. Compared to healthy controls, AD patients recognized less targets appearing in the center. No difference was found in target detection in the periphery. This pattern was confirmed by the fixation distribution analysis. These results show a neglect for the central part of the visual field for AD patients and provide new insights by mean of a search task involving a larger field of view. PMID:27582704

  12. Effects of visual and verbal interaction on unintentional interpersonal coordination.

    PubMed

    Richardson, Michael J; Marsh, Kerry L; Schmidt, R C

    2005-02-01

    Previous research has demonstrated that people's movements can become unintentionally coordinated during interpersonal interaction. The current study sought to uncover the degree to which visual and verbal (conversation) interaction constrains and organizes the rhythmic limb movements of coactors. Two experiments were conducted in which pairs of participants completed an interpersonal puzzle task while swinging handheld pendulums with instructions that minimized intentional coordination but facilitated either visual or verbal interaction. Cross-spectral analysis revealed a higher degree of coordination for conditions in which the pairs were visually coupled. In contrast, verbal interaction alone was not found to provide a sufficient medium for unintentional coordination to occur, nor did it enhance the unintentional coordination that emerged during visual interaction. The results raise questions concerning differences between visual and verbal informational linkages during interaction and how these differences may affect interpersonal movement production and its coordination.

  13. Objective assessment of chromatic and achromatic pattern adaptation reveals the temporal response properties of different visual pathways.

    PubMed

    Robson, Anthony G; Kulikowski, Janus J

    2012-11-01

    The aim was to investigate the temporal response properties of magnocellular, parvocellular, and koniocellular visual pathways using increment/decrement changes in contrast to elicit visual evoked potentials (VEPs). Static achromatic and isoluminant chromatic gratings were generated on a monitor. Chromatic gratings were modulated along red/green (R/G) or subject-specific tritanopic confusion axes, established using a minimum distinct border criterion. Isoluminance was determined using minimum flicker photometry. Achromatic and chromatic VEPs were recorded to contrast increments and decrements of 0.1 or 0.2 superimposed on the static gratings (masking contrast 0-0.6). Achromatic increment/decrement changes in contrast evoked a percept of apparent motion when the spatial frequency was low; VEPs to such stimuli were positive in polarity and largely unaffected by high levels of static contrast, consistent with transient response mechanisms. VEPs to finer achromatic gratings showed marked attenuation as static contrast was increased. Chromatic VEPs to R/G or tritan chromatic contrast increments were of negative polarity and showed progressive attenuation as static contrast was increased, in keeping with increasing desensitization of the sustained responses of the color-opponent visual pathways. Chromatic contrast decrement VEPs were of positive polarity and less sensitive to pattern adaptation. The relative contribution of sustained/transient mechanisms to achromatic processing is spatial frequency dependent. Chromatic contrast increment VEPs reflect the sustained temporal response properties of parvocellular and koniocellular pathways. Cortical VEPs can provide an objective measure of pattern adaptation and can be used to probe the temporal response characteristics of different visual pathways.

  14. Sensory experience modifies feature map relationships in visual cortex

    PubMed Central

    Cloherty, Shaun L; Hughes, Nicholas J; Hietanen, Markus A; Bhagavatula, Partha S

    2016-01-01

    The extent to which brain structure is influenced by sensory input during development is a critical but controversial question. A paradigmatic system for studying this is the mammalian visual cortex. Maps of orientation preference (OP) and ocular dominance (OD) in the primary visual cortex of ferrets, cats and monkeys can be individually changed by altered visual input. However, the spatial relationship between OP and OD maps has appeared immutable. Using a computational model we predicted that biasing the visual input to orthogonal orientation in the two eyes should cause a shift of OP pinwheels towards the border of OD columns. We then confirmed this prediction by rearing cats wearing orthogonally oriented cylindrical lenses over each eye. Thus, the spatial relationship between OP and OD maps can be modified by visual experience, revealing a previously unknown degree of brain plasticity in response to sensory input. DOI: http://dx.doi.org/10.7554/eLife.13911.001 PMID:27310531

  15. Emergence of Orientation Selectivity in the Mammalian Visual Pathway

    PubMed Central

    Scholl, Benjamin; Tan, Andrew Y. Y.; Corey, Joseph

    2013-01-01

    Orientation selectivity is a property of mammalian primary visual cortex (V1) neurons, yet its emergence along the visual pathway varies across species. In carnivores and primates, elongated receptive fields first appear in V1, whereas in lagomorphs such receptive fields emerge earlier, in the retina. Here we examine the mouse visual pathway and reveal the existence of orientation selectivity in lateral geniculate nucleus (LGN) relay cells. Cortical inactivation does not reduce this orientation selectivity, indicating that cortical feedback is not its source. Orientation selectivity is similar for LGN relay cells spiking and subthreshold input to V1 neurons, suggesting that cortical orientation selectivity is inherited from the LGN in mouse. In contrast, orientation selectivity of cat LGN relay cells is small relative to subthreshold inputs onto V1 simple cells. Together, these differences show that although orientation selectivity exists in visual neurons of both rodents and carnivores, its emergence along the visual pathway, and thus its underlying neuronal circuitry, is fundamentally different. PMID:23804085

  16. Correction of Refractive Errors in Rhesus Macaques (Macaca mulatta) Involved in Visual Research

    PubMed Central

    Mitchell, Jude F; Boisvert, Chantal J; Reuter, Jon D; Reynolds, John H; Leblanc, Mathias

    2014-01-01

    Macaques are the most common animal model for studies in vision research, and due to their high value as research subjects, often continue to participate in studies well into old age. As is true in humans, visual acuity in macaques is susceptible to refractive errors. Here we report a case study in which an aged macaque demonstrated clear impairment in visual acuity according to performance on a demanding behavioral task. Refraction demonstrated bilateral myopia that significantly affected behavioral and visual tasks. Using corrective lenses, we were able to restore visual acuity. After correction of myopia, the macaque's performance on behavioral tasks was comparable to that of a healthy control. We screened 20 other male macaques to assess the incidence of refractive errors and ocular pathologies in a larger population. Hyperopia was the most frequent ametropia but was mild in all cases. A second macaque had mild myopia and astigmatism in one eye. There were no other pathologies observed on ocular examination. We developed a simple behavioral task that visual research laboratories could use to test visual acuity in macaques. The test was reliable and easily learned by the animals in 1 d. This case study stresses the importance of screening macaques involved in visual science for refractive errors and ocular pathologies to ensure the quality of research; we also provide simple methodology for screening visual acuity in these animals. PMID:25427343

  17. Correction of refractive errors in rhesus macaques (Macaca mulatta) involved in visual research.

    PubMed

    Mitchell, Jude F; Boisvert, Chantal J; Reuter, Jon D; Reynolds, John H; Leblanc, Mathias

    2014-08-01

    Macaques are the most common animal model for studies in vision research, and due to their high value as research subjects, often continue to participate in studies well into old age. As is true in humans, visual acuity in macaques is susceptible to refractive errors. Here we report a case study in which an aged macaque demonstrated clear impairment in visual acuity according to performance on a demanding behavioral task. Refraction demonstrated bilateral myopia that significantly affected behavioral and visual tasks. Using corrective lenses, we were able to restore visual acuity. After correction of myopia, the macaque's performance on behavioral tasks was comparable to that of a healthy control. We screened 20 other male macaques to assess the incidence of refractive errors and ocular pathologies in a larger population. Hyperopia was the most frequent ametropia but was mild in all cases. A second macaque had mild myopia and astigmatism in one eye. There were no other pathologies observed on ocular examination. We developed a simple behavioral task that visual research laboratories could use to test visual acuity in macaques. The test was reliable and easily learned by the animals in 1 d. This case study stresses the importance of screening macaques involved in visual science for refractive errors and ocular pathologies to ensure the quality of research; we also provide simple methodology for screening visual acuity in these animals.

  18. Separate visual representations for perception and for visually guided behavior

    NASA Technical Reports Server (NTRS)

    Bridgeman, Bruce

    1989-01-01

    Converging evidence from several sources indicates that two distinct representations of visual space mediate perception and visually guided behavior, respectively. The two maps of visual space follow different rules; spatial values in either one can be biased without affecting the other. Ordinarily the two maps give equivalent responses because both are veridically in register with the world; special techniques are required to pull them apart. One such technique is saccadic suppression: small target displacements during saccadic eye movements are not preceived, though the displacements can change eye movements or pointing to the target. A second way to separate cognitive and motor-oriented maps is with induced motion: a slowly moving frame will make a fixed target appear to drift in the opposite direction, while motor behavior toward the target is unchanged. The same result occurs with stroboscopic induced motion, where the frame jump abruptly and the target seems to jump in the opposite direction. A third method of separating cognitive and motor maps, requiring no motion of target, background or eye, is the Roelofs effect: a target surrounded by an off-center rectangular frame will appear to be off-center in the direction opposite the frame. Again the effect influences perception, but in half of the subjects it does not influence pointing to the target. This experience also reveals more characteristics of the maps and their interactions with one another, the motor map apparently has little or no memory, and must be fed from the biased cognitive map if an enforced delay occurs between stimulus presentation and motor response. In designing spatial displays, the results mean that what you see isn't necessarily what you get. Displays must be designed with either perception or visually guided behavior in mind.

  19. Visual Skills and Chinese Reading Acquisition: A Meta-Analysis of Correlation Evidence

    ERIC Educational Resources Information Center

    Yang, Ling-Yan; Guo, Jian-Peng; Richman, Lynn C.; Schmidt, Frank L.; Gerken, Kathryn C.; Ding, Yi

    2013-01-01

    This paper used meta-analysis to synthesize the relation between visual skills and Chinese reading acquisition based on the empirical results from 34 studies published from 1991 to 2011. We obtained 234 correlation coefficients from 64 independent samples, with a total of 5,395 participants. The meta-analysis revealed that visual skills as a…

  20. Neural Substrates of Visual Spatial Coding and Visual Feedback Control for Hand Movements in Allocentric and Target-Directed Tasks

    PubMed Central

    Thaler, Lore; Goodale, Melvyn A.

    2011-01-01

    Neuropsychological evidence suggests that different brain areas may be involved in movements that are directed at visual targets (e.g., pointing or reaching), and movements that are based on allocentric visual information (e.g., drawing or copying). Here we used fMRI to investigate the neural correlates of these two types of movements in healthy volunteers. Subjects (n = 14) performed right hand movements in either a target-directed task (moving a cursor to a target dot) or an allocentric task (moving a cursor to reproduce the distance and direction between two distal target dots) with or without visual feedback about their hand movement. Movements were monitored with an MR compatible touch panel. A whole brain analysis revealed that movements in allocentric conditions led to an increase in activity in the fundus of the left intra-parietal sulcus (IPS), in posterior IPS, in bilateral dorsal premotor cortex (PMd), and in the lateral occipital complex (LOC). Visual feedback in both target-directed and allocentric conditions led to an increase in activity in area MT+, superior parietal–occipital cortex (SPOC), and posterior IPS (all bilateral). In addition, we found that visual feedback affected brain activity differently in target-directed as compared to allocentric conditions, particularly in the pre-supplementary motor area, PMd, IPS, and parieto-occipital cortex. Our results, in combination with previous findings, suggest that the LOC is essential for allocentric visual coding and that SPOC is involved in visual feedback control. The differences in brain activity between target-directed and allocentric visual feedback conditions may be related to behavioral differences in visual feedback control. Our results advance the understanding of the visual coordinate frame used by the LOC. In addition, because of the nature of the allocentric task, our results have relevance for the understanding of neural substrates of magnitude estimation and vector coding of

  1. Adaptive Acceleration of Visually Evoked Smooth Eye Movements in Mice

    PubMed Central

    2016-01-01

    The optokinetic response (OKR) consists of smooth eye movements following global motion of the visual surround, which suppress image slip on the retina for visual acuity. The effective performance of the OKR is limited to rather slow and low-frequency visual stimuli, although it can be adaptably improved by cerebellum-dependent mechanisms. To better understand circuit mechanisms constraining OKR performance, we monitored how distinct kinematic features of the OKR change over the course of OKR adaptation, and found that eye acceleration at stimulus onset primarily limited OKR performance but could be dramatically potentiated by visual experience. Eye acceleration in the temporal-to-nasal direction depended more on the ipsilateral floccular complex of the cerebellum than did that in the nasal-to-temporal direction. Gaze-holding following the OKR was also modified in parallel with eye-acceleration potentiation. Optogenetic manipulation revealed that synchronous excitation and inhibition of floccular complex Purkinje cells could effectively accelerate eye movements in the nasotemporal and temporonasal directions, respectively. These results collectively delineate multiple motor pathways subserving distinct aspects of the OKR in mice and constrain hypotheses regarding cellular mechanisms of the cerebellum-dependent tuning of movement acceleration. SIGNIFICANCE STATEMENT Although visually evoked smooth eye movements, known as the optokinetic response (OKR), have been studied in various species for decades, circuit mechanisms of oculomotor control and adaptation remain elusive. In the present study, we assessed kinematics of the mouse OKR through the course of adaptation training. Our analyses revealed that eye acceleration at visual-stimulus onset primarily limited working velocity and frequency range of the OKR, yet could be dramatically potentiated during OKR adaptation. Potentiation of eye acceleration exhibited different properties between the nasotemporal and

  2. Quantum mechanical wavefunction: visualization at undergraduate level

    NASA Astrophysics Data System (ADS)

    Chhabra, Mahima; Das, Ritwick

    2017-01-01

    Quantum mechanics (QM) forms the most crucial ingredient of modern-era physical science curricula at undergraduate level. The abstract ideas involved in QM related concepts pose a challenge towards appropriate visualization as a consequence of their counter-intuitive nature and lack of experiment-assisted visualization tools. At the heart of the quantum mechanical formulation lies the concept of ‘wavefunction’, which forms the basis for understanding the behavior of physical systems. At undergraduate level, the concept of ‘wavefunction’ is introduced in an abstract framework using mathematical tools and therefore opens up an enormous scope for alternative conceptions and erroneous visualization. The present work is an attempt towards exploring the visualization models constructed by undergraduate students for appreciating the concept of ‘wavefunction’. We present a qualitative analysis of the data obtained from administering a questionnaire containing four visualization based questions on the topic of ‘wavefunction’ to a group of ten undergraduate-level students at an institute in India which excels in teaching and research of basic sciences. Based on the written responses, all ten students were interviewed in detail to unravel the exact areas of difficulty in visualization of ‘wavefunction’. The outcome of present study not only reveals the gray areas in students’ conceptualization, but also provides a plausible route to address the issues at the pedagogical level within the classroom.

  3. VEP contrast sensitivity responses reveal reduced functional segregation of mid and high filters of visual channels in autism.

    PubMed

    Jemel, Boutheina; Mimeault, Daniel; Saint-Amour, Dave; Hosein, Anthony; Mottron, Laurent

    2010-06-01

    Despite the vast amount of behavioral data showing a pronounced tendency in individuals with autism spectrum disorder (ASD) to process fine visual details, much less is known about the neurophysiological characteristics of spatial vision in ASD. Here, we address this issue by assessing the contrast sensitivity response properties of the early visual-evoked potentials (VEPs) to sine-wave gratings of low, medium and high spatial frequencies in adults with ASD and in an age- and IQ-matched control group. Our results show that while VEP contrast responses to low and high spatial frequency gratings did not differ between ASD and controls, early VEPs to mid spatial frequency gratings exhibited similar response characteristics as those to high spatial frequency gratings in ASD. Our findings show evidence for an altered functional segregation of early visual channels, especially those responsible for processing mid- and high-frequency spatial scales.

  4. Visual Impairment and Intracranial Hypertension: An Emerging Spaceflight Risk

    NASA Technical Reports Server (NTRS)

    Taddeo, Terrance A.

    2010-01-01

    During recent long duration missions to the International Space Station (ISS) crewmembers have reported changes in visual acuity or visual field defects. Exams in the postflight period revealed changes to the visual system and elevated intracranial pressures. As a result, NASA Space Medicine has added a number of tests to be performed in the preflight, inflight and postflight periods for ISS and shuttle missions with the goal of determining the processes at work and any potential mitigation strategies. This discussion will acquaint you with the changes that NASA has made to its medical requirements in order to address the microgravity induced intracranial hypertension and associated visual changes. Key personnel have been assembled to provide you information on this topic. Educational Objectives: Provide an overview of the current Medical Operations requirements and the mitigation steps taken to operationally address the issue.

  5. Visual attention modulates brain activation to angry voices.

    PubMed

    Mothes-Lasch, Martin; Mentzel, Hans-Joachim; Miltner, Wolfgang H R; Straube, Thomas

    2011-06-29

    In accordance with influential models proposing prioritized processing of threat, previous studies have shown automatic brain responses to angry prosody in the amygdala and the auditory cortex under auditory distraction conditions. However, it is unknown whether the automatic processing of angry prosody is also observed during cross-modal distraction. The current fMRI study investigated brain responses to angry versus neutral prosodic stimuli during visual distraction. During scanning, participants were exposed to angry or neutral prosodic stimuli while visual symbols were displayed simultaneously. By means of task requirements, participants either attended to the voices or to the visual stimuli. While the auditory task revealed pronounced activation in the auditory cortex and amygdala to angry versus neutral prosody, this effect was absent during the visual task. Thus, our results show a limitation of the automaticity of the activation of the amygdala and auditory cortex to angry prosody. The activation of these areas to threat-related voices depends on modality-specific attention.

  6. Patterns of species richness and the center of diversity in modern Indo-Pacific larger foraminifera.

    PubMed

    Förderer, Meena; Rödder, Dennis; Langer, Martin R

    2018-05-29

    Symbiont-bearing Larger Benthic Foraminifera (LBF) are ubiquitous components of shallow tropical and subtropical environments and contribute substantially to carbonaceous reef and shelf sediments. Climate change is dramatically affecting carbonate producing organisms and threatens the diversity and structural integrity of coral reef ecosystems. Recent invertebrate and vertebrate surveys have identified the Coral Triangle as the planet's richest center of marine life delineating the region as a top priority for conservation. We compiled and analyzed extensive occurrence records for 68 validly recognized species of LBF from the Indian and Pacific Ocean, established individual range maps and applied Minimum Convex Polygon (MCP) and Species Distribution Model (SDM) methodologies to create the first ocean-wide species richness maps. SDM output was further used for visualizing latitudinal and longitudinal diversity gradients. Our findings provide strong support for assigning the tropical Central Indo-Pacific as the world's species-richest marine region with the Central Philippines emerging as the bullseye of LBF diversity. Sea surface temperature and nutrient content were identified as the most influential environmental constraints exerting control over the distribution of LBF. Our findings contribute to the completion of worldwide research on tropical marine biodiversity patterns and the identification of targeting centers for conservation efforts.

  7. Representation of the visual field in the primary visual area of the marmoset monkey: magnification factors, point-image size, and proportionality to retinal ganglion cell density.

    PubMed

    Chaplin, Tristan A; Yu, Hsin-Hao; Rosa, Marcello G P

    2013-04-01

    The primary visual area (V1) forms a systematic map of the visual field, in which adjacent cell clusters represent adjacent points of visual space. A precise quantification of this map is key to understanding the anatomical relationships between neurons located in different stations of the visual pathway, as well as the neural bases of visual performance in different regions of the visual field. We used computational methods to quantify the visual topography of V1 in the marmoset (Callithrix jacchus), a small diurnal monkey. The receptive fields of neurons throughout V1 were mapped in two anesthetized animals using electrophysiological recordings. Following histological reconstruction, precise 3D reconstructions of the V1 surface and recording sites were generated. We found that the areal magnification factor (M(A) ) decreases with eccentricity following a function that has the same slope as that observed in larger diurnal primates, including macaque, squirrel, and capuchin monkeys, and humans. However, there was no systematic relationship between M(A) and polar angle. Despite individual variation in the shape of V1, the relationship between M(A) and eccentricity was preserved across cases. Comparison between V1 and the retinal ganglion cell density demonstrated preferential magnification of central space in the cortex. The size of the cortical compartment activated by a punctiform stimulus decreased from the foveal representation towards the peripheral representation. Nonetheless, the relationship between the receptive field sizes of V1 cells and the density of ganglion cells suggested that each V1 cell receives information from a similar number of retinal neurons, throughout the visual field. Copyright © 2012 Wiley Periodicals, Inc.

  8. Redefining "Learning" in Statistical Learning: What Does an Online Measure Reveal About the Assimilation of Visual Regularities?

    PubMed

    Siegelman, Noam; Bogaerts, Louisa; Kronenfeld, Ofer; Frost, Ram

    2017-10-07

    From a theoretical perspective, most discussions of statistical learning (SL) have focused on the possible "statistical" properties that are the object of learning. Much less attention has been given to defining what "learning" is in the context of "statistical learning." One major difficulty is that SL research has been monitoring participants' performance in laboratory settings with a strikingly narrow set of tasks, where learning is typically assessed offline, through a set of two-alternative-forced-choice questions, which follow a brief visual or auditory familiarization stream. Is that all there is to characterizing SL abilities? Here we adopt a novel perspective for investigating the processing of regularities in the visual modality. By tracking online performance in a self-paced SL paradigm, we focus on the trajectory of learning. In a set of three experiments we show that this paradigm provides a reliable and valid signature of SL performance, and it offers important insights for understanding how statistical regularities are perceived and assimilated in the visual modality. This demonstrates the promise of integrating different operational measures to our theory of SL. © 2017 Cognitive Science Society, Inc.

  9. Visual impairment in FOXG1-mutated individuals and mice.

    PubMed

    Boggio, E M; Pancrazi, L; Gennaro, M; Lo Rizzo, C; Mari, F; Meloni, I; Ariani, F; Panighini, A; Novelli, E; Biagioni, M; Strettoi, E; Hayek, J; Rufa, A; Pizzorusso, T; Renieri, A; Costa, M

    2016-06-02

    The Forkead Box G1 (FOXG1 in humans, Foxg1 in mice) gene encodes for a DNA-binding transcription factor, essential for the development of the telencephalon in mammalian forebrain. Mutations in FOXG1 have been reported to be involved in the onset of Rett Syndrome, for which sequence alterations of MECP2 and CDKL5 are known. While visual alterations are not classical hallmarks of Rett syndrome, an increasing body of evidence shows visual impairment in patients and in MeCP2 and CDKL5 animal models. Herein we focused on the functional role of FOXG1 in the visual system of animal models (Foxg1(+/Cre) mice) and of a cohort of subjects carrying FOXG1 mutations or deletions. Visual physiology of Foxg1(+/Cre) mice was assessed by visually evoked potentials, which revealed a significant reduction in response amplitude and visual acuity with respect to wild-type littermates. Morphological investigation showed abnormalities in the organization of excitatory/inhibitory circuits in the visual cortex. No alterations were observed in retinal structure. By examining a cohort of FOXG1-mutated individuals with a panel of neuro-ophthalmological assessments, we found that all of them exhibited visual alterations compatible with high-level visual dysfunctions. In conclusion our data show that Foxg1 haploinsufficiency results in an impairment of mouse and human visual cortical function. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Aging and Visual Counting

    PubMed Central

    Li, Roger W.; MacKeben, Manfred; Chat, Sandy W.; Kumar, Maya; Ngo, Charlie; Levi, Dennis M.

    2010-01-01

    Background Much previous work on how normal aging affects visual enumeration has been focused on the response time required to enumerate, with unlimited stimulus duration. There is a fundamental question, not yet addressed, of how many visual items the aging visual system can enumerate in a “single glance”, without the confounding influence of eye movements. Methodology/Principal Findings We recruited 104 observers with normal vision across the age span (age 21–85). They were briefly (200 ms) presented with a number of well- separated black dots against a gray background on a monitor screen, and were asked to judge the number of dots. By limiting the stimulus presentation time, we can determine the maximum number of visual items an observer can correctly enumerate at a criterion level of performance (counting threshold, defined as the number of visual items at which ≈63% correct rate on a psychometric curve), without confounding by eye movements. Our findings reveal a 30% decrease in the mean counting threshold of the oldest group (age 61–85: ∼5 dots) when compared with the youngest groups (age 21–40: 7 dots). Surprisingly, despite decreased counting threshold, on average counting accuracy function (defined as the mean number of dots reported for each number tested) is largely unaffected by age, reflecting that the threshold loss can be primarily attributed to increased random errors. We further expanded this interesting finding to show that both young and old adults tend to over-count small numbers, but older observers over-count more. Conclusion/Significance Here we show that age reduces the ability to correctly enumerate in a glance, but the accuracy (veridicality), on average, remains unchanged with advancing age. Control experiments indicate that the degraded performance cannot be explained by optical, retinal or other perceptual factors, but is cortical in origin. PMID:20976149

  11. Multifocal visual evoked potential and automated perimetry abnormalities in strabismic amblyopes.

    PubMed

    Greenstein, Vivienne C; Eggers, Howard M; Hood, Donald C

    2008-02-01

    To compare visual field abnormalities obtained with standard automated perimetry (SAP) to those obtained with the multifocal visual evoked potential (mfVEP) technique in strabismic amblyopes. Humphrey 24-2 visual fields (HVF) and mfVEPs were obtained from each eye of 12 strabismic amblyopes. For the mfVEP, amplitudes and latencies were analyzed and probability plots were derived. Multifocal VEP and HVF hemifields were abnormal if they had clusters of two or more contiguous points at p < 0.01, or three or more contiguous points at p < 0.05 with at least one at p < 0.01. An eye was abnormal if it had an abnormal hemifield. On SAP, amblyopic eyes had significantly higher foveal thresholds (p = 0.003) and lower mean deviation values (p = 0.005) than fellow eyes. For the mfVEP, 11 amblyopic and 6 fellow eyes were abnormal. Of the 11 amblyopic eyes, 6 were abnormal on SAP. The deficits extended from the center to mid periphery. Monocular mfVEP latencies were significantly decreased for amblyopic eyes compared with control eyes (p < 0.0002). Both techniques revealed deficits in visual function across the visual field in strabismic amblyopes, but the mfVEP revealed deficits in fellow eyes and in more amblyopic eyes. In addition, mfVEP response latencies for amblyopic eyes were shorter than normal.

  12. VisBricks: multiform visualization of large, inhomogeneous data.

    PubMed

    Lex, Alexander; Schulz, Hans-Jörg; Streit, Marc; Partl, Christian; Schmalstieg, Dieter

    2011-12-01

    Large volumes of real-world data often exhibit inhomogeneities: vertically in the form of correlated or independent dimensions and horizontally in the form of clustered or scattered data items. In essence, these inhomogeneities form the patterns in the data that researchers are trying to find and understand. Sophisticated statistical methods are available to reveal these patterns, however, the visualization of their outcomes is mostly still performed in a one-view-fits-all manner. In contrast, our novel visualization approach, VisBricks, acknowledges the inhomogeneity of the data and the need for different visualizations that suit the individual characteristics of the different data subsets. The overall visualization of the entire data set is patched together from smaller visualizations, there is one VisBrick for each cluster in each group of interdependent dimensions. Whereas the total impression of all VisBricks together gives a comprehensive high-level overview of the different groups of data, each VisBrick independently shows the details of the group of data it represents. State-of-the-art brushing and visual linking between all VisBricks furthermore allows the comparison of the groupings and the distribution of data items among them. In this paper, we introduce the VisBricks visualization concept, discuss its design rationale and implementation, and demonstrate its usefulness by applying it to a use case from the field of biomedicine. © 2011 IEEE

  13. Feature-Based Change Detection Reveals Inconsistent Individual Differences in Visual Working Memory Capacity.

    PubMed

    Ambrose, Joseph P; Wijeakumar, Sobanawartiny; Buss, Aaron T; Spencer, John P

    2016-01-01

    Visual working memory (VWM) is a key cognitive system that enables people to hold visual information in mind after a stimulus has been removed and compare past and present to detect changes that have occurred. VWM is severely capacity limited to around 3-4 items, although there are robust individual differences in this limit. Importantly, these individual differences are evident in neural measures of VWM capacity. Here, we capitalized on recent work showing that capacity is lower for more complex stimulus dimension. In particular, we asked whether individual differences in capacity remain consistent if capacity is shifted by a more demanding task, and, further, whether the correspondence between behavioral and neural measures holds across a shift in VWM capacity. Participants completed a change detection (CD) task with simple colors and complex shapes in an fMRI experiment. As expected, capacity was significantly lower for the shape dimension. Moreover, there were robust individual differences in behavioral estimates of VWM capacity across dimensions. Similarly, participants with a stronger BOLD response for color also showed a strong neural response for shape within the lateral occipital cortex, intraparietal sulcus (IPS), and superior IPS. Although there were robust individual differences in the behavioral and neural measures, we found little evidence of systematic brain-behavior correlations across feature dimensions. This suggests that behavioral and neural measures of capacity provide different views onto the processes that underlie VWM and CD. Recent theoretical approaches that attempt to bridge between behavioral and neural measures are well positioned to address these findings in future work.

  14. Building University Capacity to Visualize Solutions to Complex Problems in the Arctic

    NASA Astrophysics Data System (ADS)

    Broderson, D.; Veazey, P.; Raymond, V. L.; Kowalski, K.; Prakash, A.; Signor, B.

    2016-12-01

    Rapidly changing environments are creating complex problems across the globe, which are particular magnified in the Arctic. These worldwide challenges can best be addressed through diverse and interdisciplinary research teams. It is incumbent on such teams to promote co-production of knowledge and data-driven decision-making by identifying effective methods to communicate their findings and to engage with the public. Decision Theater North (DTN) is a new semi-immersive visualization system that provides a space for teams to collaborate and develop solutions to complex problems, relying on diverse sets of skills and knowledge. It provides a venue to synthesize the talents of scientists, who gather information (data); modelers, who create models of complex systems; artists, who develop visualizations; communicators, who connect and bridge populations; and policymakers, who can use the visualizations to develop sustainable solutions to pressing problems. The mission of Decision Theater North is to provide a cutting-edge visual environment to facilitate dialogue and decision-making by stakeholders including government, industry, communities and academia. We achieve this mission by adopting a multi-faceted approach reflected in the theater's design, technology, networking capabilities, user support, community relationship building, and strategic partnerships. DTN is a joint project of Alaska's National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) and the University of Alaska Fairbanks (UAF), who have brought the facility up to full operational status and are now expanding its development space to support larger team science efforts. Based in Fairbanks, Alaska, DTN is uniquely poised to address changes taking place in the Arctic and subarctic, and is connected with a larger network of decision theaters that include the Arizona State University Decision Theater Network and the McCain Institute in Washington, DC.

  15. Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field.

    PubMed

    Schwartz, Sophie; Vuilleumier, Patrik; Hutton, Chloe; Maravita, Angelo; Dolan, Raymond J; Driver, Jon

    2005-06-01

    Perceptual suppression of distractors may depend on both endogenous and exogenous factors, such as attentional load of the current task and sensory competition among simultaneous stimuli, respectively. We used functional magnetic resonance imaging (fMRI) to compare these two types of attentional effects and examine how they may interact in the human brain. We varied the attentional load of a visual monitoring task performed on a rapid stream at central fixation without altering the central stimuli themselves, while measuring the impact on fMRI responses to task-irrelevant peripheral checkerboards presented either unilaterally or bilaterally. Activations in visual cortex for irrelevant peripheral stimulation decreased with increasing attentional load at fixation. This relative decrease was present even in V1, but became larger for successive visual areas through to V4. Decreases in activation for contralateral peripheral checkerboards due to higher central load were more pronounced within retinotopic cortex corresponding to 'inner' peripheral locations relatively near the central targets than for more eccentric 'outer' locations, demonstrating a predominant suppression of nearby surround rather than strict 'tunnel vision' during higher task load at central fixation. Contralateral activations for peripheral stimulation in one hemifield were reduced by competition with concurrent stimulation in the other hemifield only in inferior parietal cortex, not in retinotopic areas of occipital visual cortex. In addition, central attentional load interacted with competition due to bilateral versus unilateral peripheral stimuli specifically in posterior parietal and fusiform regions. These results reveal that task-dependent attentional load, and interhemifield stimulus-competition, can produce distinct influences on the neural responses to peripheral visual stimuli within the human visual system. These distinct mechanisms in selective visual processing may be integrated within

  16. Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

    PubMed

    Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo

    2016-06-01

    Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. © 2016 American Society of Plant Biologists. All rights reserved.

  17. Shifting Visual Perspective During Retrieval Shapes Autobiographical Memories

    PubMed Central

    St Jacques, Peggy L.; Szpunar, Karl K.; Schacter, Daniel L.

    2016-01-01

    The dynamic and flexible nature of memories is evident in our ability to adopt multiple visual perspectives. Although autobiographical memories are typically encoded from the visual perspective of our own eyes they can be retrieved from the perspective of an observer looking at our self. Here, we examined the neural mechanisms of shifting visual perspective during long-term memory retrieval and its influence on online and subsequent memories using functional magnetic resonance imaging (fMRI). Participants generated specific autobiographical memories from the last five years and rated their visual perspective. In a separate fMRI session, they were asked to retrieve the memories across three repetitions while maintaining the same visual perspective as their initial rating or by shifting to an alternative perspective. Visual perspective shifting during autobiographical memory retrieval was supported by a linear decrease in neural recruitment across repetitions in the posterior parietal cortices. Additional analyses revealed that the precuneus, in particular, contributed to both online and subsequent changes in the phenomenology of memories. Our findings show that flexibly shifting egocentric perspective during autobiographical memory retrieval is supported by the precuneus, and suggest that this manipulation of mental imagery during retrieval has consequences for how memories are retrieved and later remembered. PMID:27989780

  18. Early Auditory Evoked Potential Is Modulated by Selective Attention and Related to Individual Differences in Visual Working Memory Capacity

    PubMed Central

    Giuliano, Ryan J.; Karns, Christina M.; Neville, Helen J.; Hillyard, Steven A.

    2015-01-01

    A growing body of research suggests that the predictive power of working memory (WM) capacity for measures of intellectual aptitude is due to the ability to control attention and select relevant information. Crucially, attentional mechanisms implicated in controlling access to WM are assumed to be domain-general, yet reports of enhanced attentional abilities in individuals with larger WM capacities are primarily within the visual domain. Here, we directly test the link between WM capacity and early attentional gating across sensory domains, hypothesizing that measures of visual WM capacity should predict an individual’s capacity to allocate auditory selective attention. To address this question, auditory ERPs were recorded in a linguistic dichotic listening task, and individual differences in ERP modulations by attention were correlated with estimates of WM capacity obtained in a separate visual change detection task. Auditory selective attention enhanced ERP amplitudes at an early latency (ca. 70–90 msec), with larger P1 components elicited by linguistic probes embedded in an attended narrative. Moreover, this effect was associated with greater individual estimates of visual WM capacity. These findings support the view that domain-general attentional control mechanisms underlie the wide variation of WM capacity across individuals. PMID:25000526

  19. Blindsight and Unconscious Vision: What They Teach Us about the Human Visual System

    PubMed Central

    Ajina, Sara; Bridge, Holly

    2017-01-01

    Damage to the primary visual cortex removes the major input from the eyes to the brain, causing significant visual loss as patients are unable to perceive the side of the world contralateral to the damage. Some patients, however, retain the ability to detect visual information within this blind region; this is known as blindsight. By studying the visual pathways that underlie this residual vision in patients, we can uncover additional aspects of the human visual system that likely contribute to normal visual function but cannot be revealed under physiological conditions. In this review, we discuss the residual abilities and neural activity that have been described in blindsight and the implications of these findings for understanding the intact system. PMID:27777337

  20. Reduced response cluster size in early visual areas explains the acuity deficit in amblyopia.

    PubMed

    Huang, Yufeng; Feng, Lixia; Zhou, Yifeng

    2017-05-03

    Focal visual stimulation typically results in the activation of a large portion of the early visual cortex. This spread of activity is attributed to long-range lateral interactions. Such long-range interactions may serve to stabilize a visual representation or to simply modulate incoming signals, and any associated dysfunction in long-range activation may reduce sensitivity to visual information in conditions such as amblyopia. We sought to measure the dispersion of cortical activity following local visual stimulation in a group of patients with amblyopia and matched normal. Twenty adult anisometropic amblyopes and 10 normal controls participated in this study. Using a multifocal stimulation, we simultaneously measured cluster sizes to multiple stimulation points in the visual field. We found that the functional MRI (fMRI) response cluster size that corresponded to the fellow eye was significantly larger as opposed to that corresponding to the amblyopic eye and that the fMRI response cluster size at the two more central retinotopic locations correlated with amblyopia acuity deficit. Our results suggest that the amblyopic visual cortex has a diminished long-range communication as evidenced by significantly smaller cluster of activity as measured with fMRI. These results have important implications for models of amblyopia and approaches to treatment.

  1. Web-based Collaboration and Visualization in the ANDRILL Program

    NASA Astrophysics Data System (ADS)

    Reed, J.; Rack, F. R.; Huffman, L. T.; Cattadori, M.

    2009-12-01

    ANDRILL has embraced the web as a platform for facilitating collaboration and communicating science with educators, students and researchers alike. Two recent ANDRILL education and outreach projects, Project Circle 2008 and the Climate Change Student Summit, brought together classrooms from around the world to participate in cutting edge science. A large component of each project was the online collaboration achieved through project websites, blogs, and the GroupHub--a secure online environment where students could meet to send messages, exchange presentations and pictures, and even chat live. These technologies enabled students from different countries and time zones to connect and participate in a shared 'conversation' about climate change research. ANDRILL has also developed several interactive, web-based visualizations to make scientific drilling data more engaging and accessible to the science community and the public. Each visualization is designed around three core concepts that enable the Web 2.0 platform, namely, that they are: (1) customizable - a user can customize the visualization to display the exact data she is interested in; (2) linkable - each view in the visualization has a distinct URL that the user can share with her friends via sites like Facebook and Twitter; and (3) mashable - the user can take the visualization, mash it up with data from other sites or her own research, and embed it in her blog or website. The web offers an ideal environment for visualization and collaboration because it requires no special software and works across all computer platforms, which allows organizations and research projects to engage much larger audiences. In this presentation we will describe past challenges and successes, as well as future plans.

  2. Visual Coding of Human Bodies: Perceptual Aftereffects Reveal Norm-Based, Opponent Coding of Body Identity

    ERIC Educational Resources Information Center

    Rhodes, Gillian; Jeffery, Linda; Boeing, Alexandra; Calder, Andrew J.

    2013-01-01

    Despite the discovery of body-selective neural areas in occipitotemporal cortex, little is known about how bodies are visually coded. We used perceptual adaptation to determine how body identity is coded. Brief exposure to a body (e.g., anti-Rose) biased perception toward an identity with opposite properties (Rose). Moreover, the size of this…

  3. FAST: A multi-processed environment for visualization of computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin

    1991-01-01

    Three-dimensional, unsteady, multi-zoned fluid dynamics simulations over full scale aircraft are typical of the problems being investigated at NASA Ames' Numerical Aerodynamic Simulation (NAS) facility on CRAY2 and CRAY-YMP supercomputers. With multiple processor workstations available in the 10-30 Mflop range, we feel that these new developments in scientific computing warrant a new approach to the design and implementation of analysis tools. These larger, more complex problems create a need for new visualization techniques not possible with the existing software or systems available as of this writing. The visualization techniques will change as the supercomputing environment, and hence the scientific methods employed, evolves even further. The Flow Analysis Software Toolkit (FAST), an implementation of a software system for fluid mechanics analysis, is discussed.

  4. Distinct spatio-temporal profiles of beta-oscillations within visual and sensorimotor areas during action recognition as revealed by MEG.

    PubMed

    Pavlidou, Anastasia; Schnitzler, Alfons; Lange, Joachim

    2014-05-01

    The neural correlates of action recognition have been widely studied in visual and sensorimotor areas of the human brain. However, the role of neuronal oscillations involved during the process of action recognition remains unclear. Here, we were interested in how the plausibility of an action modulates neuronal oscillations in visual and sensorimotor areas. Subjects viewed point-light displays (PLDs) of biomechanically plausible and implausible versions of the same actions. Using magnetoencephalography (MEG), we examined dynamic changes of oscillatory activity during these action recognition processes. While both actions elicited oscillatory activity in visual and sensorimotor areas in several frequency bands, a significant difference was confined to the beta-band (∼20 Hz). An increase of power for plausible actions was observed in left temporal, parieto-occipital and sensorimotor areas of the brain, in the beta-band in successive order between 1650 and 2650 msec. These distinct spatio-temporal beta-band profiles suggest that the action recognition process is modulated by the degree of biomechanical plausibility of the action, and that spectral power in the beta-band may provide a functional interaction between visual and sensorimotor areas in humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Visual Imagery without Visual Perception?

    ERIC Educational Resources Information Center

    Bertolo, Helder

    2005-01-01

    The question regarding visual imagery and visual perception remain an open issue. Many studies have tried to understand if the two processes share the same mechanisms or if they are independent, using different neural substrates. Most research has been directed towards the need of activation of primary visual areas during imagery. Here we review…

  6. 29 CFR 779.232 - Franchise or other arrangements which create a larger enterprise.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Franchise or other arrangements which create a larger... Apply; Enterprise Coverage Leased Departments, Franchise and Other Business Arrangements § 779.232 Franchise or other arrangements which create a larger enterprise. (a) In other instances, franchise...

  7. 29 CFR 779.232 - Franchise or other arrangements which create a larger enterprise.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Franchise or other arrangements which create a larger... Apply; Enterprise Coverage Leased Departments, Franchise and Other Business Arrangements § 779.232 Franchise or other arrangements which create a larger enterprise. (a) In other instances, franchise...

  8. 29 CFR 779.232 - Franchise or other arrangements which create a larger enterprise.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Franchise or other arrangements which create a larger... Apply; Enterprise Coverage Leased Departments, Franchise and Other Business Arrangements § 779.232 Franchise or other arrangements which create a larger enterprise. (a) In other instances, franchise...

  9. 29 CFR 779.232 - Franchise or other arrangements which create a larger enterprise.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Franchise or other arrangements which create a larger... Apply; Enterprise Coverage Leased Departments, Franchise and Other Business Arrangements § 779.232 Franchise or other arrangements which create a larger enterprise. (a) In other instances, franchise...

  10. 29 CFR 779.232 - Franchise or other arrangements which create a larger enterprise.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Franchise or other arrangements which create a larger... Apply; Enterprise Coverage Leased Departments, Franchise and Other Business Arrangements § 779.232 Franchise or other arrangements which create a larger enterprise. (a) In other instances, franchise...

  11. Repetitive Transcranial Direct Current Stimulation Induced Excitability Changes of Primary Visual Cortex and Visual Learning Effects-A Pilot Study.

    PubMed

    Sczesny-Kaiser, Matthias; Beckhaus, Katharina; Dinse, Hubert R; Schwenkreis, Peter; Tegenthoff, Martin; Höffken, Oliver

    2016-01-01

    Studies on noninvasive motor cortex stimulation and motor learning demonstrated cortical excitability as a marker for a learning effect. Transcranial direct current stimulation (tDCS) is a non-invasive tool to modulate cortical excitability. It is as yet unknown how tDCS-induced excitability changes and perceptual learning in visual cortex correlate. Our study aimed to examine the influence of tDCS on visual perceptual learning in healthy humans. Additionally, we measured excitability in primary visual cortex (V1). We hypothesized that anodal tDCS would improve and cathodal tDCS would have minor or no effects on visual learning. Anodal, cathodal or sham tDCS were applied over V1 in a randomized, double-blinded design over four consecutive days (n = 30). During 20 min of tDCS, subjects had to learn a visual orientation-discrimination task (ODT). Excitability parameters were measured by analyzing paired-stimulation behavior of visual-evoked potentials (ps-VEP) and by measuring phosphene thresholds (PTs) before and after the stimulation period of 4 days. Compared with sham-tDCS, anodal tDCS led to an improvement of visual discrimination learning (p < 0.003). We found reduced PTs and increased ps-VEP ratios indicating increased cortical excitability after anodal tDCS (PT: p = 0.002, ps-VEP: p = 0.003). Correlation analysis within the anodal tDCS group revealed no significant correlation between PTs and learning effect. For cathodal tDCS, no significant effects on learning or on excitability could be seen. Our results showed that anodal tDCS over V1 resulted in improved visual perceptual learning and increased cortical excitability. tDCS is a promising tool to alter V1 excitability and, hence, perceptual visual learning.

  12. Direct Visualization of Wide Fusion-Fission Pores and Their Highly Varied Dynamics.

    PubMed

    Eyring, Katherine W; Tsien, Richard W

    2018-05-03

    In this issue of Cell, Shin et al. report the first live-cell imaging of a fusion pore. Directly visualized pores in neuroendocrine cells can be much larger than expected yet not require vesicular full-collapse. These fusion-fission pores have diverse fates arising from opposing dynamin-driven pore constriction and F-actin-mediated pore expansion. Copyright © 2018. Published by Elsevier Inc.

  13. Combining visual rehabilitative training and noninvasive brain stimulation to enhance visual function in patients with hemianopia: a comparative case study.

    PubMed

    Plow, Ela B; Obretenova, Souzana N; Halko, Mark A; Kenkel, Sigrid; Jackson, Mary Lou; Pascual-Leone, Alvaro; Merabet, Lotfi B

    2011-09-01

    To standardize a protocol for promoting visual rehabilitative outcomes in post-stroke hemianopia by combining occipital cortical transcranial direct current stimulation (tDCS) with Vision Restoration Therapy (VRT). A comparative case study assessing feasibility and safety. A controlled laboratory setting. Two patients, both with right hemianopia after occipital stroke damage. METHODS AND OUTCOME MEASUREMENTS: Both patients underwent an identical VRT protocol that lasted 3 months (30 minutes, twice a day, 3 days per week). In patient 1, anodal tDCS was delivered to the occipital cortex during VRT training, whereas in patient 2 sham tDCS with VRT was performed. The primary outcome, visual field border, was defined objectively by using high-resolution perimetry. Secondary outcomes included subjective characterization of visual deficit and functional surveys that assessed performance on activities of daily living. For patient 1, the neural correlates of visual recovery were also investigated, by using functional magnetic resonance imaging. Delivery of combined tDCS with VRT was feasible and safe. High-resolution perimetry revealed a greater shift in visual field border for patient 1 versus patient 2. Patient 1 also showed greater recovery of function in activities of daily living. Contrary to the expectation, patient 2 perceived greater subjective improvement in visual field despite objective high-resolution perimetry results that indicated otherwise. In patient 1, visual function recovery was associated with functional magnetic resonance imaging activity in surviving peri-lesional and bilateral higher-order visual areas. Results of preliminary case comparisons suggest that occipital cortical tDCS may enhance recovery of visual function associated with concurrent VRT through visual cortical reorganization. Future studies may benefit from incorporating protocol refinements such as those described here, which include global capture of function, control for potential

  14. The use of visual cues in gravity judgements on parabolic motion.

    PubMed

    Jörges, Björn; Hagenfeld, Lena; López-Moliner, Joan

    2018-06-21

    Evidence suggests that humans rely on an earth gravity prior for sensory-motor tasks like catching or reaching. Even under earth-discrepant conditions, this prior biases perception and action towards assuming a gravitational downwards acceleration of 9.81 m/s 2 . This can be particularly detrimental in interactions with virtual environments employing earth-discrepant gravity conditions for their visual presentation. The present study thus investigates how well humans discriminate visually presented gravities and which cues they use to extract gravity from the visual scene. To this end, we employed a Two-Interval Forced-Choice Design. In Experiment 1, participants had to judge which of two presented parabolas had the higher underlying gravity. We used two initial vertical velocities, two horizontal velocities and a constant target size. Experiment 2 added a manipulation of the reliability of the target size. Experiment 1 shows that participants have generally high discrimination thresholds for visually presented gravities, with weber fractions of 13 to beyond 30%. We identified the rate of change of the elevation angle (ẏ) and the visual angle (θ) as major cues. Experiment 2 suggests furthermore that size variability has a small influence on discrimination thresholds, while at the same time larger size variability increases reliance on ẏ and decreases reliance on θ. All in all, even though we use all available information, humans display low precision when extracting the governing gravity from a visual scene, which might further impact our capabilities of adapting to earth-discrepant gravity conditions with visual information alone. Copyright © 2018. Published by Elsevier Ltd.

  15. Visual Literacy and Visual Culture.

    ERIC Educational Resources Information Center

    Messaris, Paul

    Familiarity with specific images or sets of images plays a role in a culture's visual heritage. Two questions can be asked about this type of visual literacy: Is this a type of knowledge that is worth building into the formal educational curriculum of our schools? What are the educational implications of visual literacy? There is a three-part…

  16. Visual Literacy and Visual Thinking.

    ERIC Educational Resources Information Center

    Hortin, John A.

    It is proposed that visual literacy be defined as the ability to understand (read) and use (write) images and to think and learn in terms of images. This definition includes three basic principles: (1) visuals are a language and thus analogous to verbal language; (2) a visually literate person should be able to understand (read) images and use…

  17. Aging effect in pattern, motion and cognitive visual evoked potentials.

    PubMed

    Kuba, Miroslav; Kremláček, Jan; Langrová, Jana; Kubová, Zuzana; Szanyi, Jana; Vít, František

    2012-06-01

    An electrophysiological study on the effect of aging on the visual pathway and various levels of visual information processing (primary cortex, associate visual motion processing cortex and cognitive cortical areas) was performed. We examined visual evoked potentials (VEPs) to pattern-reversal, motion-onset (translation and radial motion) and visual stimuli with a cognitive task (cognitive VEPs - P300 wave) at luminance of 17 cd/m(2). The most significant age-related change in a group of 150 healthy volunteers (15-85 years of age) was the increase in the P300 wave latency (2 ms per 1 year of age). Delays of the motion-onset VEPs (0.47 ms/year in translation and 0.46 ms/year in radial motion) and the pattern-reversal VEPs (0.26 ms/year) and the reductions of their amplitudes with increasing subject age (primarily in P300) were also found to be significant. The amplitude of the motion-onset VEPs to radial motion remained the most constant parameter with increasing age. Age-related changes were stronger in males. Our results indicate that cognitive VEPs, despite larger variability of their parameters, could be a useful criterion for an objective evaluation of the aging processes within the CNS. Possible differences in aging between the motion-processing system and the form-processing system within the visual pathway might be indicated by the more pronounced delay in the motion-onset VEPs and by their preserved size for radial motion (a biologically significant variant of motion) compared to the changes in pattern-reversal VEPs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The effects of visual search efficiency on object-based attention

    PubMed Central

    Rosen, Maya; Cutrone, Elizabeth; Behrmann, Marlene

    2017-01-01

    The attentional prioritization hypothesis of object-based attention (Shomstein & Yantis in Perception & Psychophysics, 64, 41–51, 2002) suggests a two-stage selection process comprising an automatic spatial gradient and flexible strategic (prioritization) selection. The combined attentional priorities of these two stages of object-based selection determine the order in which participants will search the display for the presence of a target. The strategic process has often been likened to a prioritized visual search. By modifying the double-rectangle cueing paradigm (Egly, Driver, & Rafal in Journal of Experimental Psychology: General, 123, 161–177, 1994) and placing it in the context of a larger-scale visual search, we examined how the prioritization search is affected by search efficiency. By probing both targets located on the cued object and targets external to the cued object, we found that the attentional priority surrounding a selected object is strongly modulated by search mode. However, the ordering of the prioritization search is unaffected by search mode. The data also provide evidence that standard spatial visual search and object-based prioritization search may rely on distinct mechanisms. These results provide insight into the interactions between the mode of visual search and object-based selection, and help define the modulatory consequences of search efficiency for object-based attention. PMID:25832192

  19. Examination of long-term visual memorization capacity in the Clark's nutcracker (Nucifraga columbiana).

    PubMed

    Qadri, Muhammad A J; Leonard, Kevin; Cook, Robert G; Kelly, Debbie M

    2018-02-15

    Clark's nutcrackers exhibit remarkable cache recovery behavior, remembering thousands of seed locations over the winter. No direct laboratory test of their visual memory capacity, however, has yet been performed. Here, two nutcrackers were tested in an operant procedure used to measure different species' visual memory capacities. The nutcrackers were incrementally tested with an ever-expanding pool of pictorial stimuli in a two-alternative discrimination task. Each picture was randomly assigned to either a right or a left choice response, forcing the nutcrackers to memorize each picture-response association. The nutcrackers' visual memorization capacity was estimated at a little over 500 pictures, and the testing suggested effects of primacy, recency, and memory decay over time. The size of this long-term visual memory was less than the approximately 800-picture capacity established for pigeons. These results support the hypothesis that nutcrackers' spatial memory is a specialized adaptation tied to their natural history of food-caching and recovery, and not to a larger long-term, general memory capacity. Furthermore, despite millennia of separate and divergent evolution, the mechanisms of visual information retention seem to reflect common memory systems of differing capacities across the different species tested in this design.

  20. Blood Oxygen Level-Dependent Activation of the Primary Visual Cortex Predicts Size Adaptation Illusion

    PubMed Central

    Pooresmaeili, Arezoo; Arrighi, Roberto; Biagi, Laura; Morrone, Maria Concetta

    2016-01-01

    In natural scenes, objects rarely occur in isolation but appear within a spatiotemporal context. Here, we show that the perceived size of a stimulus is significantly affected by the context of the scene: brief previous presentation of larger or smaller adapting stimuli at the same region of space changes the perceived size of a test stimulus, with larger adapting stimuli causing the test to appear smaller than veridical and vice versa. In a human fMRI study, we measured the blood oxygen level-dependent activation (BOLD) responses of the primary visual cortex (V1) to the contours of large-diameter stimuli and found that activation closely matched the perceptual rather than the retinal stimulus size: the activated area of V1 increased or decreased, depending on the size of the preceding stimulus. A model based on local inhibitory V1 mechanisms simulated the inward or outward shifts of the stimulus contours and hence the perceptual effects. Our findings suggest that area V1 is actively involved in reshaping our perception to match the short-term statistics of the visual scene. PMID:24089504

  1. Investigating "Othering" in Visual Arts Spaces of Learning

    ERIC Educational Resources Information Center

    Biscombe, Monique; Conradie, Stephané; Costandius, Elmarie; Alexander, Neeske

    2017-01-01

    In the political, social, cultural and economic context of South Africa, higher education spaces provide fertile ground for social research. This case study explored "othered" identities in the Department of Visual Arts of Stellenbosch University. Interviews with students and lecturers revealed interesting and controversial aspects in…

  2. Assessment of visual disability using visual evoked potentials.

    PubMed

    Jeon, Jihoon; Oh, Seiyul; Kyung, Sungeun

    2012-08-06

    The purpose of this study is to validate the use of visual evoked potential (VEP) to objectively quantify visual acuity in normal and amblyopic patients, and determine if it is possible to predict visual acuity in disability assessment to register visual pathway lesions. A retrospective chart review was conducted of patients diagnosed with normal vision, unilateral amblyopia, optic neuritis, and visual disability who visited the university medical center for registration from March 2007 to October 2009. The study included 20 normal subjects (20 right eyes: 10 females, 10 males, ages 9-42 years), 18 unilateral amblyopic patients (18 amblyopic eyes, ages 19-36 years), 19 optic neuritis patients (19 eyes: ages 9-71 years), and 10 patients with visual disability having visual pathway lesions. Amplitude and latencies were analyzed and correlations with visual acuity (logMAR) were derived from 20 normal and 18 amblyopic subjects. Correlation of VEP amplitude and visual acuity (logMAR) of 19 optic neuritis patients confirmed relationships between visual acuity and amplitude. We calculated the objective visual acuity (logMAR) of 16 eyes from 10 patients to diagnose the presence or absence of visual disability using relations derived from 20 normal and 18 amblyopic eyes. Linear regression analyses between amplitude of pattern visual evoked potentials and visual acuity (logMAR) of 38 eyes from normal (right eyes) and amblyopic (amblyopic eyes) subjects were significant [y = -0.072x + 1.22, x: VEP amplitude, y: visual acuity (logMAR)]. There were no significant differences between visual acuity prediction values, which substituted amplitude values of 19 eyes with optic neuritis into function. We calculated the objective visual acuity of 16 eyes of 10 patients to diagnose the presence or absence of visual disability using relations of y = -0.072x + 1.22 (-0.072). This resulted in a prediction reference of visual acuity associated with malingering vs. real

  3. Assessment of visual disability using visual evoked potentials

    PubMed Central

    2012-01-01

    Background The purpose of this study is to validate the use of visual evoked potential (VEP) to objectively quantify visual acuity in normal and amblyopic patients, and determine if it is possible to predict visual acuity in disability assessment to register visual pathway lesions. Methods A retrospective chart review was conducted of patients diagnosed with normal vision, unilateral amblyopia, optic neuritis, and visual disability who visited the university medical center for registration from March 2007 to October 2009. The study included 20 normal subjects (20 right eyes: 10 females, 10 males, ages 9–42 years), 18 unilateral amblyopic patients (18 amblyopic eyes, ages 19–36 years), 19 optic neuritis patients (19 eyes: ages 9–71 years), and 10 patients with visual disability having visual pathway lesions. Amplitude and latencies were analyzed and correlations with visual acuity (logMAR) were derived from 20 normal and 18 amblyopic subjects. Correlation of VEP amplitude and visual acuity (logMAR) of 19 optic neuritis patients confirmed relationships between visual acuity and amplitude. We calculated the objective visual acuity (logMAR) of 16 eyes from 10 patients to diagnose the presence or absence of visual disability using relations derived from 20 normal and 18 amblyopic eyes. Results Linear regression analyses between amplitude of pattern visual evoked potentials and visual acuity (logMAR) of 38 eyes from normal (right eyes) and amblyopic (amblyopic eyes) subjects were significant [y = −0.072x + 1.22, x: VEP amplitude, y: visual acuity (logMAR)]. There were no significant differences between visual acuity prediction values, which substituted amplitude values of 19 eyes with optic neuritis into function. We calculated the objective visual acuity of 16 eyes of 10 patients to diagnose the presence or absence of visual disability using relations of y = −0.072x + 1.22 (−0.072). This resulted in a prediction reference of visual

  4. Self-concept, self-esteem, personality traits and psychopathological symptoms in adolescents with and without visual impairment.

    PubMed

    Garaigordobil, Maite; Bernarás, Elena

    2009-05-01

    The purpose of this study was to analyze self-concept, self-esteem, and other personality traits and psychopathological symptoms in subjects with and without visual impairment. The sample was made up of 90 participants aged 12 to 17: 61 with no impairment and 29 with visual impairment. The ANOVA showed that there were no significant differences in self-concept and self-esteem in the samples, but the visually impaired adolescents scored significantly higher in various psychopathological symptoms as well as in their capacity for kind behavior. The ANOVA revealed no gender differences in any variables in adolescents without visual impairment. However, women with visual impairment scored lower in self-esteem and higher in various psychopathological symptoms. Pearson coefficients revealed negative relations between self-concept/self-esteem and all the psychopathological symptoms, and neuroticism, as well as a positive relation with extraversion. Low psychoticism, high extraversion, and low hostility were identified as predictors of high self-concept.

  5. Neural organization and visual processing in the anterior optic tubercle of the honeybee brain.

    PubMed

    Mota, Theo; Yamagata, Nobuhiro; Giurfa, Martin; Gronenberg, Wulfila; Sandoz, Jean-Christophe

    2011-08-10

    The honeybee Apis mellifera represents a valuable model for studying the neural segregation and integration of visual information. Vision in honeybees has been extensively studied at the behavioral level and, to a lesser degree, at the physiological level using intracellular electrophysiological recordings of single neurons. However, our knowledge of visual processing in honeybees is still limited by the lack of functional studies of visual processing at the circuit level. Here we contribute to filling this gap by providing a neuroanatomical and neurophysiological characterization at the circuit level of a practically unstudied visual area of the bee brain, the anterior optic tubercle (AOTu). First, we analyzed the internal organization and neuronal connections of the AOTu. Second, we established a novel protocol for performing optophysiological recordings of visual circuit activity in the honeybee brain and studied the responses of AOTu interneurons during stimulation of distinct eye regions. Our neuroanatomical data show an intricate compartmentalization and connectivity of the AOTu, revealing a dorsoventral segregation of the visual input to the AOTu. Light stimuli presented in different parts of the visual field (dorsal, lateral, or ventral) induce distinct patterns of activation in AOTu output interneurons, retaining to some extent the dorsoventral input segregation revealed by our neuroanatomical data. In particular, activity patterns evoked by dorsal and ventral eye stimulation are clearly segregated into distinct AOTu subunits. Our results therefore suggest an involvement of the AOTu in the processing of dorsoventrally segregated visual information in the honeybee brain.

  6. Towards diverse visual suggestions on Flickr

    NASA Astrophysics Data System (ADS)

    Feki, Ghada; Ben Ammar, Anis; Ben Amar, Chokri

    2017-03-01

    With the great popularity of the photo sharing site Flickr, the research community is involved to produce innovative applications in order to enhance different Flickr services. In this paper, we present a new process for diverse visual suggestions generation on Flickr. We unify the social aspect of Flickr and the richness of Wikipedia to produce an important number of meanings illustrated by the diverse visual suggestions which can integrate the diversity aspect into the Flickr search. We conduct an experimental study to illustrate the effect of the fusion of the Wikipedia and Flickr knowledge on the diversity rate among the Flickr search and reveal the evolution of the diversity aspect through the returned images among the different results of search engines.

  7. Visuotactile motion congruence enhances gamma-band activity in visual and somatosensory cortices.

    PubMed

    Krebber, Martin; Harwood, James; Spitzer, Bernhard; Keil, Julian; Senkowski, Daniel

    2015-08-15

    When touching and viewing a moving surface our visual and somatosensory systems receive congruent spatiotemporal input. Behavioral studies have shown that motion congruence facilitates interplay between visual and tactile stimuli, but the neural mechanisms underlying this interplay are not well understood. Neural oscillations play a role in motion processing and multisensory integration. They may also be crucial for visuotactile motion processing. In this electroencephalography study, we applied linear beamforming to examine the impact of visuotactile motion congruence on beta and gamma band activity (GBA) in visual and somatosensory cortices. Visual and tactile inputs comprised of gratings that moved either in the same or different directions. Participants performed a target detection task that was unrelated to motion congruence. While there were no effects in the beta band (13-21Hz), the power of GBA (50-80Hz) in visual and somatosensory cortices was larger for congruent compared with incongruent motion stimuli. This suggests enhanced bottom-up multisensory processing when visual and tactile gratings moved in the same direction. Supporting its behavioral relevance, GBA was correlated with shorter reaction times in the target detection task. We conclude that motion congruence plays an important role for the integrative processing of visuotactile stimuli in sensory cortices, as reflected by oscillatory responses in the gamma band. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Role of visual and non-visual cues in constructing a rotation-invariant representation of heading in parietal cortex

    PubMed Central

    Sunkara, Adhira

    2015-01-01

    As we navigate through the world, eye and head movements add rotational velocity patterns to the retinal image. When such rotations accompany observer translation, the rotational velocity patterns must be discounted to accurately perceive heading. The conventional view holds that this computation requires efference copies of self-generated eye/head movements. Here we demonstrate that the brain implements an alternative solution in which retinal velocity patterns are themselves used to dissociate translations from rotations. These results reveal a novel role for visual cues in achieving a rotation-invariant representation of heading in the macaque ventral intraparietal area. Specifically, we show that the visual system utilizes both local motion parallax cues and global perspective distortions to estimate heading in the presence of rotations. These findings further suggest that the brain is capable of performing complex computations to infer eye movements and discount their sensory consequences based solely on visual cues. DOI: http://dx.doi.org/10.7554/eLife.04693.001 PMID:25693417

  9. [Research progress of larger flexion gap than extension gap in total knee arthroplasty].

    PubMed

    Zhang, Weisong; Hao, Dingjun

    2017-05-01

    To summarize the progress of larger flexion gap than extension gap in total knee arthro-plasty (TKA). The domestic and foreign related literature about larger flexion gap than extension gap in TKA, and its impact factors, biomechanical and kinematic features, and clinical results were summarized. During TKA, to adjust the relations of flexion gap and extension gap is one of the key factors of successful operation. The biomechanical, kinematic, and clinical researches show that properly larger flexion gap than extension gap can improve both the postoperative knee range of motion and the satisfaction of patients, but does not affect the stability of the knee joint. However, there are also contrary findings. So adjustment of flexion gap and extension gap during TKA is still in dispute. Larger flexion gap than extension gap in TKA is a new joint space theory, and long-term clinical efficacy, operation skills, and related complications still need further study.

  10. Getting a cue before getting a clue: Event-related potentials to inference in visual narrative comprehension

    PubMed Central

    Cohn, Neil; Kutas, Marta

    2015-01-01

    Inference has long been emphasized in the comprehension of verbal and visual narratives. Here, we measured event-related brain potentials to visual sequences designed to elicit inferential processing. In Impoverished sequences, an expressionless “onlooker” watches an undepicted event (e.g., person throws a ball for a dog, then watches the dog chase it) just prior to a surprising finale (e.g., someone else returns the ball), which should lead to an inference (i.e., the different person retrieved the ball). Implied sequences alter this narrative structure by adding visual cues to the critical panel such as a surprised facial expression to the onlooker implying they saw an unexpected, albeit undepicted, event. In contrast, Expected sequences show a predictable, but then confounded, event (i.e., dog retrieves ball, then different person returns it), and Explicit sequences depict the unexpected event (i.e., different person retrieves then returns ball). At the critical penultimate panel, sequences representing depicted events (Explicit, Expected) elicited a larger posterior positivity (P600) than the relatively passive events of an onlooker (Impoverished, Implied), though Implied sequences were slightly more positive than Impoverished sequences. At the subsequent and final panel, a posterior positivity (P600) was greater to images in Impoverished sequences than those in Explicit and Implied sequences, which did not differ. In addition, both sequence types requiring inference (Implied, Impoverished) elicited a larger frontal negativity than those explicitly depicting events (Expected, Explicit). These results show that neural processing differs for visual narratives omitting events versus those depicting events, and that the presence of subtle visual cues can modulate such effects presumably by altering narrative structure. PMID:26320706

  11. Rapid Presentation of Emotional Expressions Reveals New Emotional Impairments in Tourette’s Syndrome

    PubMed Central

    Mermillod, Martial; Devaux, Damien; Derost, Philippe; Rieu, Isabelle; Chambres, Patrick; Auxiette, Catherine; Legrand, Guillaume; Galland, Fabienne; Dalens, Hélène; Coulangeon, Louise Marie; Broussolle, Emmanuel; Durif, Franck; Jalenques, Isabelle

    2013-01-01

    Objective: Based on a variety of empirical evidence obtained within the theoretical framework of embodiment theory, we considered it likely that motor disorders in Tourette’s syndrome (TS) would have emotional consequences for TS patients. However, previous research using emotional facial categorization tasks suggests that these consequences are limited to TS patients with obsessive-compulsive behaviors (OCB). Method: These studies used long stimulus presentations which allowed the participants to categorize the different emotional facial expressions (EFEs) on the basis of a perceptual analysis that might potentially hide a lack of emotional feeling for certain emotions. In order to reduce this perceptual bias, we used a rapid visual presentation procedure. Results: Using this new experimental method, we revealed different and surprising impairments on several EFEs in TS patients compared to matched healthy control participants. Moreover, a spatial frequency analysis of the visual signal processed by the patients suggests that these impairments may be located at a cortical level. Conclusion: The current study indicates that the rapid visual presentation paradigm makes it possible to identify various potential emotional disorders that were not revealed by the standard visual presentation procedures previously reported in the literature. Moreover, the spatial frequency analysis performed in our study suggests that emotional deficit in TS might lie at the level of temporal cortical areas dedicated to the processing of HSF visual information. PMID:23630481

  12. The development of visual speech perception in Mandarin Chinese-speaking children.

    PubMed

    Chen, Liang; Lei, Jianghua

    2017-01-01

    The present study aimed to investigate the development of visual speech perception in Chinese-speaking children. Children aged 7, 13 and 16 were asked to visually identify both consonant and vowel sounds in Chinese as quickly and accurately as possible. Results revealed (1) an increase in accuracy of visual speech perception between ages 7 and 13 after which the accuracy rate either stagnates or drops; and (2) a U-shaped development pattern in speed of perception with peak performance in 13-year olds. Results also showed that across all age groups, the overall levels of accuracy rose, whereas the response times fell for simplex finals, complex finals and initials. These findings suggest that (1) visual speech perception in Chinese is a developmental process that is acquired over time and is still fine-tuned well into late adolescence; (2) factors other than cross-linguistic differences in phonological complexity and degrees of reliance on visual information are involved in development of visual speech perception.

  13. Cortical Integration of Audio-Visual Information

    PubMed Central

    Vander Wyk, Brent C.; Ramsay, Gordon J.; Hudac, Caitlin M.; Jones, Warren; Lin, David; Klin, Ami; Lee, Su Mei; Pelphrey, Kevin A.

    2013-01-01

    We investigated the neural basis of audio-visual processing in speech and non-speech stimuli. Physically identical auditory stimuli (speech and sinusoidal tones) and visual stimuli (animated circles and ellipses) were used in this fMRI experiment. Relative to unimodal stimuli, each of the multimodal conjunctions showed increased activation in largely non-overlapping areas. The conjunction of Ellipse and Speech, which most resembles naturalistic audiovisual speech, showed higher activation in the right inferior frontal gyrus, fusiform gyri, left posterior superior temporal sulcus, and lateral occipital cortex. The conjunction of Circle and Tone, an arbitrary audio-visual pairing with no speech association, activated middle temporal gyri and lateral occipital cortex. The conjunction of Circle and Speech showed activation in lateral occipital cortex, and the conjunction of Ellipse and Tone did not show increased activation relative to unimodal stimuli. Further analysis revealed that middle temporal regions, although identified as multimodal only in the Circle-Tone condition, were more strongly active to Ellipse-Speech or Circle-Speech, but regions that were identified as multimodal for Ellipse-Speech were always strongest for Ellipse-Speech. Our results suggest that combinations of auditory and visual stimuli may together be processed by different cortical networks, depending on the extent to which speech or non-speech percepts are evoked. PMID:20709442

  14. Application-Controlled Demand Paging for Out-of-Core Visualization

    NASA Technical Reports Server (NTRS)

    Cox, Michael; Ellsworth, David; Kutler, Paul (Technical Monitor)

    1997-01-01

    In the area of scientific visualization, input data sets are often very large. In visualization of Computational Fluid Dynamics (CFD) in particular, input data sets today can surpass 100 Gbytes, and are expected to scale with the ability of supercomputers to generate them. Some visualization tools already partition large data sets into segments, and load appropriate segments as they are needed. However, this does not remove the problem for two reasons: 1) there are data sets for which even the individual segments are too large for the largest graphics workstations, 2) many practitioners do not have access to workstations with the memory capacity required to load even a segment, especially since the state-of-the-art visualization tools tend to be developed by researchers with much more powerful machines. When the size of the data that must be accessed is larger than the size of memory, some form of virtual memory is simply required. This may be by segmentation, paging, or by paged segments. In this paper we demonstrate that complete reliance on operating system virtual memory for out-of-core visualization leads to poor performance. We then describe a paged segment system that we have implemented, and explore the principles of memory management that can be employed by the application for out-of-core visualization. We show that application control over some of these can significantly improve performance. We show that sparse traversal can be exploited by loading only those data actually required. We show also that application control over data loading can be exploited by 1) loading data from alternative storage format (in particular 3-dimensional data stored in sub-cubes), 2) controlling the page size. Both of these techniques effectively reduce the total memory required by visualization at run-time. We also describe experiments we have done on remote out-of-core visualization (when pages are read by demand from remote disk) whose results are promising.

  15. Representation of the visual field in the striate cortex: comparison of MR findings with visual field deficits in organic mercury poisoning (Minamata disease).

    PubMed

    Korogi, Y; Takahashi, M; Hirai, T; Ikushima, I; Kitajima, M; Sugahara, T; Shigematsu, Y; Okajima, T; Mukuno, K

    1997-01-01

    To compare MR imaging findings of the striate cortex with visual field deficits in patients with Minamata disease and to reestimate the classical Holmes retinotopic map by using the data obtained from comparing visual field abnormalities with degree of visual cortex atrophy. MR imaging was performed in eight patients with Minamata disease who had been given a full neuroophthalmic examination, including Goldmann dynamic perimetry. The atrophic portions of the calcarine area were measured in the sagittal plane next to the midsagittal image and represented as a percentage of atrophy of the total length of the calcarine fissure. MR findings were compared with results of a visual field test. The visual field test revealed moderate to severe concentric constriction of the visual fields, with central vision ranging from 7 degrees to 42 degrees (mean, 19 degrees). The ventral portion of the calcarine sulcus was significantly dilated on MR images in all patients. A logarithmic correlation was found between the visual field defect and the extent of dilatation of the calcarine fissure. The central 10 degrees and 30 degrees of vision seemed to fill about 20% and 50% of the total surface area of the calcarine cortex, respectively. Visual field deficits in patients with Minamata disease correlated well with MR findings of the striate cortex. Our data were consistent with the classical Holmes retinotopic map.

  16. 29 CFR 779.231 - Franchise arrangements which do not create a larger enterprise.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Franchise arrangements which do not create a larger... Apply; Enterprise Coverage Leased Departments, Franchise and Other Business Arrangements § 779.231 Franchise arrangements which do not create a larger enterprise. (a) While it is clear that in every...

  17. 29 CFR 779.231 - Franchise arrangements which do not create a larger enterprise.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Franchise arrangements which do not create a larger... Apply; Enterprise Coverage Leased Departments, Franchise and Other Business Arrangements § 779.231 Franchise arrangements which do not create a larger enterprise. (a) While it is clear that in every...

  18. 29 CFR 779.231 - Franchise arrangements which do not create a larger enterprise.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Franchise arrangements which do not create a larger... Apply; Enterprise Coverage Leased Departments, Franchise and Other Business Arrangements § 779.231 Franchise arrangements which do not create a larger enterprise. (a) While it is clear that in every...

  19. 29 CFR 779.231 - Franchise arrangements which do not create a larger enterprise.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Franchise arrangements which do not create a larger... Apply; Enterprise Coverage Leased Departments, Franchise and Other Business Arrangements § 779.231 Franchise arrangements which do not create a larger enterprise. (a) While it is clear that in every...

  20. 29 CFR 779.231 - Franchise arrangements which do not create a larger enterprise.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Franchise arrangements which do not create a larger... Apply; Enterprise Coverage Leased Departments, Franchise and Other Business Arrangements § 779.231 Franchise arrangements which do not create a larger enterprise. (a) While it is clear that in every...

  1. Visualizing Phylogenetic Treespace Using Cartographic Projections

    NASA Astrophysics Data System (ADS)

    Sundberg, Kenneth; Clement, Mark; Snell, Quinn

    Phylogenetic analysis is becoming an increasingly important tool for biological research. Applications include epidemiological studies, drug development, and evolutionary analysis. Phylogenetic search is a known NP-Hard problem. The size of the data sets which can be analyzed is limited by the exponential growth in the number of trees that must be considered as the problem size increases. A better understanding of the problem space could lead to better methods, which in turn could lead to the feasible analysis of more data sets. We present a definition of phylogenetic tree space and a visualization of this space that shows significant exploitable structure. This structure can be used to develop search methods capable of handling much larger datasets.

  2. Complete abolition of reading and writing ability with a third ventricle colloid cyst: implications for surgical intervention and proposed neural substrates of visual recognition and visual imaging ability.

    PubMed

    Barker, Lynne Ann; Morton, Nicholas; Romanowski, Charles A J; Gosden, Kevin

    2013-10-24

    We report a rare case of a patient unable to read (alexic) and write (agraphic) after a mild head injury. He had preserved speech and comprehension, could spell aloud, identify words spelt aloud and copy letter features. He was unable to visualise letters but showed no problems with digits. Neuropsychological testing revealed general visual memory, processing speed and imaging deficits. Imaging data revealed an 8 mm colloid cyst of the third ventricle that splayed the fornix. Little is known about functions mediated by fornical connectivity, but this region is thought to contribute to memory recall. Other regions thought to mediate letter recognition and letter imagery, visual word form area and visual pathways were intact. We remediated reading and writing by multimodal letter retraining. The study raises issues about the neural substrates of reading, role of fornical tracts to selective memory in the absence of other pathology, and effective remediation strategies for selective functional deficits.

  3. Temporal Structure and Complexity Affect Audio-Visual Correspondence Detection

    PubMed Central

    Denison, Rachel N.; Driver, Jon; Ruff, Christian C.

    2013-01-01

    Synchrony between events in different senses has long been considered the critical temporal cue for multisensory integration. Here, using rapid streams of auditory and visual events, we demonstrate how humans can use temporal structure (rather than mere temporal coincidence) to detect multisensory relatedness. We find psychophysically that participants can detect matching auditory and visual streams via shared temporal structure for crossmodal lags of up to 200 ms. Performance on this task reproduced features of past findings based on explicit timing judgments but did not show any special advantage for perfectly synchronous streams. Importantly, the complexity of temporal patterns influences sensitivity to correspondence. Stochastic, irregular streams – with richer temporal pattern information – led to higher audio-visual matching sensitivity than predictable, rhythmic streams. Our results reveal that temporal structure and its complexity are key determinants for human detection of audio-visual correspondence. The distinctive emphasis of our new paradigms on temporal patterning could be useful for studying special populations with suspected abnormalities in audio-visual temporal perception and multisensory integration. PMID:23346067

  4. Basic visual function and cortical thickness patterns in posterior cortical atrophy.

    PubMed

    Lehmann, Manja; Barnes, Josephine; Ridgway, Gerard R; Wattam-Bell, John; Warrington, Elizabeth K; Fox, Nick C; Crutch, Sebastian J

    2011-09-01

    Posterior cortical atrophy (PCA) is characterized by a progressive decline in higher-visual object and space processing, but the extent to which these deficits are underpinned by basic visual impairments is unknown. This study aimed to assess basic and higher-order visual deficits in 21 PCA patients. Basic visual skills including form detection and discrimination, color discrimination, motion coherence, and point localization were measured, and associations and dissociations between specific basic visual functions and measures of higher-order object and space perception were identified. All participants showed impairment in at least one aspect of basic visual processing. However, a number of dissociations between basic visual skills indicated a heterogeneous pattern of visual impairment among the PCA patients. Furthermore, basic visual impairments were associated with particular higher-order object and space perception deficits, but not with nonvisual parietal tasks, suggesting the specific involvement of visual networks in PCA. Cortical thickness analysis revealed trends toward lower cortical thickness in occipitotemporal (ventral) and occipitoparietal (dorsal) regions in patients with visuoperceptual and visuospatial deficits, respectively. However, there was also a lot of overlap in their patterns of cortical thinning. These findings suggest that different presentations of PCA represent points in a continuum of phenotypical variation.

  5. Implications on visual apperception: energy, duration, structure and synchronization.

    PubMed

    Bókkon, I; Vimal, Ram Lakhan Pandey

    2010-07-01

    Although primary visual cortex (V1 or striate) activity per se is not sufficient for visual apperception (normal conscious visual experiences and conscious functions such as detection, discrimination, and recognition), the same is also true for extrastriate visual areas (such as V2, V3, V4/V8/VO, V5/M5/MST, IT, and GF). In the lack of V1 area, visual signals can still reach several extrastriate parts but appear incapable of generating normal conscious visual experiences. It is scarcely emphasized in the scientific literature that conscious perceptions and representations must have also essential energetic conditions. These energetic conditions are achieved by spatiotemporal networks of dynamic mitochondrial distributions inside neurons. However, the highest density of neurons in neocortex (number of neurons per degree of visual angle) devoted to representing the visual field is found in retinotopic V1. It means that the highest mitochondrial (energetic) activity can be achieved in mitochondrial cytochrome oxidase-rich V1 areas. Thus, V1 bear the highest energy allocation for visual representation. In addition, the conscious perceptions also demand structural conditions, presence of adequate duration of information representation, and synchronized neural processes and/or 'interactive hierarchical structuralism.' For visual apperception, various visual areas are involved depending on context such as stimulus characteristics such as color, form/shape, motion, and other features. Here, we focus primarily on V1 where specific mitochondrial-rich retinotopic structures are found; we will concisely discuss V2 where smaller riches of these structures are found. We also point out that residual brain states are not fully reflected in active neural patterns after visual perception. Namely, after visual perception, subliminal residual states are not being reflected in passive neural recording techniques, but require active stimulation to be revealed.

  6. Directed fusion of cardiac spheroids into larger heterocellular microtissues enables investigation of cardiac action potential propagation via cardiac fibroblasts

    PubMed Central

    Markes, Alexander R.; Okundaye, Amenawon O.; Qu, Zhilin; Mende, Ulrike; Choi, Bum-Rak

    2018-01-01

    Multicellular spheroids generated through cellular self-assembly provide cytoarchitectural complexities of native tissue including three-dimensionality, extensive cell-cell contacts, and appropriate cell-extracellular matrix interactions. They are increasingly suggested as building blocks for larger engineered tissues to achieve shapes, organization, heterogeneity, and other biomimetic complexities. Application of these tissue culture platforms is of particular importance in cardiac research as the myocardium is comprised of distinct but intermingled cell types. Here, we generated scaffold-free 3D cardiac microtissue spheroids comprised of cardiac myocytes (CMs) and/or cardiac fibroblasts (CFs) and used them as building blocks to form larger microtissues with different spatial distributions of CMs and CFs. Characterization of fusing homotypic and heterotypic spheroid pairs revealed an important influence of CFs on fusion kinetics, but most strikingly showed rapid fusion kinetics between heterotypic pairs consisting of one CF and one CM spheroid, indicating that CMs and CFs self-sort in vitro into the intermixed morphology found in the healthy myocardium. We then examined electrophysiological integration of fused homotypic and heterotypic microtissues by mapping action potential propagation. Heterocellular elongated microtissues which recapitulate the disproportionate CF spatial distribution seen in the infarcted myocardium showed that action potentials propagate through CF volumes albeit with significant delay. Complementary computational modeling revealed an important role of CF sodium currents and the spatial distribution of the CM-CF boundary in action potential conduction through CF volumes. Taken together, this study provides useful insights for the development of complex, heterocellular engineered 3D tissue constructs and their engraftment via tissue fusion and has implications for arrhythmogenesis in cardiac disease and repair. PMID:29715271

  7. Military readiness: an exploration of the relationship between marksmanship and visual acuity.

    PubMed

    Wells, Kenney H; Wagner, Heidi; Reich, Lewis N; Hardigan, Patrick C

    2009-04-01

    The United States military relies on visual acuity standards to assess enlistment induction and military occupational specialty eligibility, as well as to monitor soldiers' combat vision readiness. However, these vision standards are not evidence based and may not accurately reflect appropriate standards for military readiness or reflect a correlation between visual acuity and occupational performance. The aim of this study was to investigate the relationship between visual acuity and marksmanship performance using a single blind trial with the Engagement Skills Trainer 2000. Marksmanship performance was evaluated in 28 subjects under simulated day and night conditions with habitual spectacle prescription and contact lenses that created visual blur. Panel Poisson regression using an independent correlation structure revealed significant differences (p < 0.001) as visual acuity decreased from 20/25 to 20/50. We conclude that marksmanship performance decreases as visual acuity decreases. We believe that this relationship supports the use of a visual acuity requirement.

  8. Chasing the negawatt: visualization for sustainable living.

    PubMed

    Bartram, Lyn; Rodgers, Johnny; Muise, Kevin

    2010-01-01

    Energy and resource management is an important and growing research area at the intersection of conservation, sustainable design, alternative energy production, and social behavior. Energy consumption can be significantly reduced by simply changing how occupants inhabit and use buildings, with little or no additional costs. Reflecting this fact, an emerging measure of grid energy capacity is the negawatt: a unit of power saved by increasing efficiency or reducing consumption.Visualization clearly has an important role in enabling residents to understand and manage their energy use. This role is tied to providing real-time feedback of energy use, which encourages people to conserve energy.The challenge is to understand not only what kinds of visualizations are most effective but also where and how they fit into a larger information system to help residents make informed decisions. In this article, we also examine the effective display of home energy-use data using a net-zero solar-powered home (North House) and the Adaptive Living Interface System (ALIS), North House's information backbone.

  9. What triggers catch-up saccades during visual tracking?

    PubMed

    de Brouwer, Sophie; Yuksel, Demet; Blohm, Gunnar; Missal, Marcus; Lefèvre, Philippe

    2002-03-01

    When tracking moving visual stimuli, primates orient their visual axis by combining two kinds of eye movements, smooth pursuit and saccades, that have very different dynamics. Yet, the mechanisms that govern the decision to switch from one type of eye movement to the other are still poorly understood, even though they could bring a significant contribution to the understanding of how the CNS combines different kinds of control strategies to achieve a common motor and sensory goal. In this study, we investigated the oculomotor responses to a large range of different combinations of position error and velocity error during visual tracking of moving stimuli in humans. We found that the oculomotor system uses a prediction of the time at which the eye trajectory will cross the target, defined as the "eye crossing time" (T(XE)). The eye crossing time, which depends on both position error and velocity error, is the criterion used to switch between smooth and saccadic pursuit, i.e., to trigger catch-up saccades. On average, for T(XE) between 40 and 180 ms, no saccade is triggered and target tracking remains purely smooth. Conversely, when T(XE) becomes smaller than 40 ms or larger than 180 ms, a saccade is triggered after a short latency (around 125 ms).

  10. [Ventriloquism and audio-visual integration of voice and face].

    PubMed

    Yokosawa, Kazuhiko; Kanaya, Shoko

    2012-07-01

    Presenting synchronous auditory and visual stimuli in separate locations creates the illusion that the sound originates from the direction of the visual stimulus. Participants' auditory localization bias, called the ventriloquism effect, has revealed factors affecting the perceptual integration of audio-visual stimuli. However, many studies on audio-visual processes have focused on performance in simplified experimental situations, with a single stimulus in each sensory modality. These results cannot necessarily explain our perceptual behavior in natural scenes, where various signals exist within a single sensory modality. In the present study we report the contributions of a cognitive factor, that is, the audio-visual congruency of speech, although this factor has often been underestimated in previous ventriloquism research. Thus, we investigated the contribution of speech congruency on the ventriloquism effect using a spoken utterance and two videos of a talking face. The salience of facial movements was also manipulated. As a result, when bilateral visual stimuli are presented in synchrony with a single voice, cross-modal speech congruency was found to have a significant impact on the ventriloquism effect. This result also indicated that more salient visual utterances attracted participants' auditory localization. The congruent pairing of audio-visual utterances elicited greater localization bias than did incongruent pairing, whereas previous studies have reported little dependency on the reality of stimuli in ventriloquism. Moreover, audio-visual illusory congruency, owing to the McGurk effect, caused substantial visual interference to auditory localization. This suggests that a greater flexibility in responding to multi-sensory environments exists than has been previously considered.

  11. The singular nature of auditory and visual scene analysis in autism

    PubMed Central

    Lin, I.-Fan; Shirama, Aya; Kato, Nobumasa

    2017-01-01

    Individuals with autism spectrum disorder often have difficulty acquiring relevant auditory and visual information in daily environments, despite not being diagnosed as hearing impaired or having low vision. Resent psychophysical and neurophysiological studies have shown that autistic individuals have highly specific individual differences at various levels of information processing, including feature extraction, automatic grouping and top-down modulation in auditory and visual scene analysis. Comparison of the characteristics of scene analysis between auditory and visual modalities reveals some essential commonalities, which could provide clues about the underlying neural mechanisms. Further progress in this line of research may suggest effective methods for diagnosing and supporting autistic individuals. This article is part of the themed issue ‘Auditory and visual scene analysis'. PMID:28044025

  12. Visual Grouping in Accordance With Utterance Planning Facilitates Speech Production.

    PubMed

    Zhao, Liming; Paterson, Kevin B; Bai, Xuejun

    2018-01-01

    Research on language production has focused on the process of utterance planning and involved studying the synchronization between visual gaze and the production of sentences that refer to objects in the immediate visual environment. However, it remains unclear how the visual grouping of these objects might influence this process. To shed light on this issue, the present research examined the effects of the visual grouping of objects in a visual display on utterance planning in two experiments. Participants produced utterances of the form "The snail and the necklace are above/below/on the left/right side of the toothbrush" for objects containing these referents (e.g., a snail, a necklace and a toothbrush). These objects were grouped using classic Gestalt principles of color similarity (Experiment 1) and common region (Experiment 2) so that the induced perceptual grouping was congruent or incongruent with the required phrasal organization. The results showed that speech onset latencies were shorter in congruent than incongruent conditions. The findings therefore reveal that the congruency between the visual grouping of referents and the required phrasal organization can influence speech production. Such findings suggest that, when language is produced in a visual context, speakers make use of both visual and linguistic cues to plan utterances.

  13. Dual processing of visual rotation for bipedal stance control.

    PubMed

    Day, Brian L; Muller, Timothy; Offord, Joanna; Di Giulio, Irene

    2016-10-01

    When standing, the gain of the body-movement response to a sinusoidally moving visual scene has been shown to get smaller with faster stimuli, possibly through changes in the apportioning of visual flow to self-motion or environment motion. We investigated whether visual-flow speed similarly influences the postural response to a discrete, unidirectional rotation of the visual scene in the frontal plane. Contrary to expectation, the evoked postural response consisted of two sequential components with opposite relationships to visual motion speed. With faster visual rotation the early component became smaller, not through a change in gain but by changes in its temporal structure, while the later component grew larger. We propose that the early component arises from the balance control system minimising apparent self-motion, while the later component stems from the postural system realigning the body with gravity. The source of visual motion is inherently ambiguous such that movement of objects in the environment can evoke self-motion illusions and postural adjustments. Theoretically, the brain can mitigate this problem by combining visual signals with other types of information. A Bayesian model that achieves this was previously proposed and predicts a decreasing gain of postural response with increasing visual motion speed. Here we test this prediction for discrete, unidirectional, full-field visual rotations in the frontal plane of standing subjects. The speed (0.75-48 deg s(-1) ) and direction of visual rotation was pseudo-randomly varied and mediolateral responses were measured from displacements of the trunk and horizontal ground reaction forces. The behaviour evoked by this visual rotation was more complex than has hitherto been reported, consisting broadly of two consecutive components with respective latencies of ∼190 ms and >0.7 s. Both components were sensitive to visual rotation speed, but with diametrically opposite relationships. Thus, the early

  14. Measuring visual discomfort associated with 3D displays

    NASA Astrophysics Data System (ADS)

    Lambooij, M.; Fortuin, M.; Ijsselsteijn, W. A.; Heynderickx, I.

    2009-02-01

    Some people report visual discomfort when watching 3D displays. For both the objective measurement of visual fatigue and the subjective measurement of visual discomfort, we would like to arrive at general indicators that are easy to apply in perception experiments. Previous research yielded contradictory results concerning such indicators. We hypothesize two potential causes for this: 1) not all clinical tests are equally appropriate to evaluate the effect of stereoscopic viewing on visual fatigue, and 2) there is a natural variation in susceptibility to visual fatigue amongst people with normal vision. To verify these hypotheses, we designed an experiment, consisting of two parts. Firstly, an optometric screening was used to differentiate participants in susceptibility to visual fatigue. Secondly, in a 2×2 within-subjects design (2D vs 3D and two-view vs nine-view display), a questionnaire and eight optometric tests (i.e. binocular acuity, fixation disparity with and without fusion lock, heterophoria, convergent and divergent fusion, vergence facility and accommodation response) were administered before and immediately after a reading task. Results revealed that participants found to be more susceptible to visual fatigue during screening showed a clinically meaningful increase in fusion amplitude after having viewed 3D stimuli. Two questionnaire items (i.e., pain and irritation) were significantly affected by the participants' susceptibility, while two other items (i.e., double vision and sharpness) were scored differently between 2D and 3D for all participants. Our results suggest that a combination of fusion range measurements and self-report is appropriate for evaluating visual fatigue related to 3D displays.

  15. Colour in a larger perspective: the rebirth of Gestalt psychology.

    PubMed

    Spillmann, L

    1997-01-01

    This overview takes the reader from the classical contrast and assimilation studies of the past to today's colour research, in a broad sense, with its renewed emphasis on the phenomenological qualities of visual perception. It shows how the shift in paradigm from local to global effects in single-unit recordings prompted a reappraisal of appearance in visual experiments, not just in colour, but in the perception of motion, texture, and depth as well. Gestalt ideas placed in the context of modern concepts are shown to inspire psychophysicists, neurophysiologists, and computational vision scientists alike. Feedforward, horizontal interactions, and feedback are discussed as potential neuronal mechanisms to account for phenomena such as uniform surfaces, filling-in, and grouping arising from processes beyond the classical receptive field. A look forward towards future developments in the field of figure-ground segregation (Gestalt formation) concludes the article.

  16. More 'altruistic' punishment in larger societies.

    PubMed

    Marlowe, Frank W; Berbesque, J Colette

    2008-03-07

    If individuals will cooperate with cooperators, and punish non-cooperators even at a cost to themselves, then this strong reciprocity could minimize the cheating that undermines cooperation. Based upon numerous economic experiments, some have proposed that human cooperation is explained by strong reciprocity and norm enforcement. Second-party punishment is when you punish someone who defected on you; third-party punishment is when you punish someone who defected on someone else. Third-party punishment is an effective way to enforce the norms of strong reciprocity and promote cooperation. Here we present new results that expand on a previous report from a large cross-cultural project. This project has already shown that there is considerable cross-cultural variation in punishment and cooperation. Here we test the hypothesis that population size (and complexity) predicts the level of third-party punishment. Our results show that people in larger, more complex societies engage in significantly more third-party punishment than people in small-scale societies.

  17. Visual imagery and functional connectivity in blindness: a single-case study

    PubMed Central

    Boucard, Christine C.; Rauschecker, Josef P.; Neufang, Susanne; Berthele, Achim; Doll, Anselm; Manoliu, Andrej; Riedl, Valentin; Sorg, Christian; Wohlschläger, Afra; Mühlau, Mark

    2016-01-01

    We present a case report on visual brain plasticity after total blindness acquired in adulthood. SH lost her sight when she was 27. Despite having been totally blind for 43 years, she reported to strongly rely on her vivid visual imagery. Three-Tesla magnetic resonance imaging (MRI) of SH and age-matched controls was performed. The MRI sequence included anatomical MRI, resting-state functional MRI, and task-related functional MRI where SH was instructed to imagine colours, faces, and motion. Compared to controls, voxel-based analysis revealed white matter loss along SH's visual pathway as well as grey matter atrophy in the calcarine sulci. Yet we demonstrated activation in visual areas, including V1, using functional MRI. Of the four identified visual resting-state networks, none showed alterations in spatial extent; hence, SH's preserved visual imagery seems to be mediated by intrinsic brain networks of normal extent. Time courses of two of these networks showed increased correlation with that of the inferior posterior default mode network, which may reflect adaptive changes supporting SH's strong internal visual representations. Overall, our findings demonstrate that conscious visual experience is possible even after years of absence of extrinsic input. PMID:25690326

  18. Visual imagery and functional connectivity in blindness: a single-case study.

    PubMed

    Boucard, Christine C; Rauschecker, Josef P; Neufang, Susanne; Berthele, Achim; Doll, Anselm; Manoliu, Andrej; Riedl, Valentin; Sorg, Christian; Wohlschläger, Afra; Mühlau, Mark

    2016-05-01

    We present a case report on visual brain plasticity after total blindness acquired in adulthood. SH lost her sight when she was 27. Despite having been totally blind for 43 years, she reported to strongly rely on her vivid visual imagery. Three-Tesla magnetic resonance imaging (MRI) of SH and age-matched controls was performed. The MRI sequence included anatomical MRI, resting-state functional MRI, and task-related functional MRI where SH was instructed to imagine colours, faces, and motion. Compared to controls, voxel-based analysis revealed white matter loss along SH's visual pathway as well as grey matter atrophy in the calcarine sulci. Yet we demonstrated activation in visual areas, including V1, using functional MRI. Of the four identified visual resting-state networks, none showed alterations in spatial extent; hence, SH's preserved visual imagery seems to be mediated by intrinsic brain networks of normal extent. Time courses of two of these networks showed increased correlation with that of the inferior posterior default mode network, which may reflect adaptive changes supporting SH's strong internal visual representations. Overall, our findings demonstrate that conscious visual experience is possible even after years of absence of extrinsic input.

  19. Semantic information mediates visual attention during spoken word recognition in Chinese: Evidence from the printed-word version of the visual-world paradigm.

    PubMed

    Shen, Wei; Qu, Qingqing; Li, Xingshan

    2016-07-01

    In the present study, we investigated whether the activation of semantic information during spoken word recognition can mediate visual attention's deployment to printed Chinese words. We used a visual-world paradigm with printed words, in which participants listened to a spoken target word embedded in a neutral spoken sentence while looking at a visual display of printed words. We examined whether a semantic competitor effect could be observed in the printed-word version of the visual-world paradigm. In Experiment 1, the relationship between the spoken target words and the printed words was manipulated so that they were semantically related (a semantic competitor), phonologically related (a phonological competitor), or unrelated (distractors). We found that the probability of fixations on semantic competitors was significantly higher than that of fixations on the distractors. In Experiment 2, the orthographic similarity between the spoken target words and their semantic competitors was manipulated to further examine whether the semantic competitor effect was modulated by orthographic similarity. We found significant semantic competitor effects regardless of orthographic similarity. Our study not only reveals that semantic information can affect visual attention, it also provides important new insights into the methodology employed to investigate the semantic processing of spoken words during spoken word recognition using the printed-word version of the visual-world paradigm.

  20. An atypical presentation of visual conversion disorder.

    PubMed

    Foutch, Brian K

    2015-01-01

    Nonorganic vision loss accounts for up to 5% of patients and presents in two forms, malingering and visual conversion disorder (VCD). It is described a case of VCD in a new mother struggling both with her husband being deployed overseas and the recent death of her father. In addition, she had been evaluated for a concussion secondary to a motor vehicle accident three months prior. An inexpensive series of clinical tests were performed to rule out organic disease and obtained equivocal results. Some tests revealed intact vision in the affected eye while others supported a neurological cause for the vision loss. However, the patient quickly recovered normal visual acuity when encouraged to discuss situations that have been causing emotional stress. This almost immediate recovery of vision confirmed the diagnosis of VCD. This report should make primary eye care professionals more aware of visual conversion disorder and its clinical evaluation. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  1. Differential effect of visual motion adaption upon visual cortical excitability.

    PubMed

    Lubeck, Astrid J A; Van Ombergen, Angelique; Ahmad, Hena; Bos, Jelte E; Wuyts, Floris L; Bronstein, Adolfo M; Arshad, Qadeer

    2017-03-01

    The objectives of this study were 1 ) to probe the effects of visual motion adaptation on early visual and V5/MT cortical excitability and 2 ) to investigate whether changes in cortical excitability following visual motion adaptation are related to the degree of visual dependency, i.e., an overreliance on visual cues compared with vestibular or proprioceptive cues. Participants were exposed to a roll motion visual stimulus before, during, and after visual motion adaptation. At these stages, 20 transcranial magnetic stimulation (TMS) pulses at phosphene threshold values were applied over early visual and V5/MT cortical areas from which the probability of eliciting a phosphene was calculated. Before and after adaptation, participants aligned the subjective visual vertical in front of the roll motion stimulus as a marker of visual dependency. During adaptation, early visual cortex excitability decreased whereas V5/MT excitability increased. After adaptation, both early visual and V5/MT excitability were increased. The roll motion-induced tilt of the subjective visual vertical (visual dependence) was not influenced by visual motion adaptation and did not correlate with phosphene threshold or visual cortex excitability. We conclude that early visual and V5/MT cortical excitability is differentially affected by visual motion adaptation. Furthermore, excitability in the early or late visual cortex is not associated with an increase in visual reliance during spatial orientation. Our findings complement earlier studies that have probed visual cortical excitability following motion adaptation and highlight the differential role of the early visual cortex and V5/MT in visual motion processing. NEW & NOTEWORTHY We examined the influence of visual motion adaptation on visual cortex excitability and found a differential effect in V1/V2 compared with V5/MT. Changes in visual excitability following motion adaptation were not related to the degree of an individual's visual

  2. Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Warren

    2004-06-01

    There is significant motivation to provide robotic systems with improved autonomy as a means to significantly accelerate deactivation and decommissioning (D&D) operations while also reducing the associated costs, removing human operators from hazardous environments, and reducing the required burden and skill of human operators. To achieve improved autonomy, this project focused on the basic science challenges leading to the development of visual servo controllers. The challenge in developing these controllers is that a camera provides 2-dimensional image information about the 3-dimensional Euclidean-space through a perspective (range dependent) projection that can be corrupted by uncertainty in the camera calibration matrix andmore » by disturbances such as nonlinear radial distortion. Disturbances in this relationship (i.e., corruption in the sensor information) propagate erroneous information to the feedback controller of the robot, leading to potentially unpredictable task execution. This research project focused on the development of a visual servo control methodology that targets compensating for disturbances in the camera model (i.e., camera calibration and the recovery of range information) as a means to achieve predictable response by the robotic system operating in unstructured environments. The fundamental idea is to use nonlinear Lyapunov-based techniques along with photogrammetry methods to overcome the complex control issues and alleviate many of the restrictive assumptions that impact current robotic applications. The outcome of this control methodology is a plug-and-play visual servoing control module that can be utilized in conjunction with current technology such as feature recognition and extraction to enable robotic systems with the capabilities of increased accuracy, autonomy, and robustness, with a larger field of view (and hence a larger workspace). The developed methodology has been reported in numerous peer-reviewed publications and the

  3. Does viotin activate violin more than viocin? On the use of visual cues during visual-word recognition.

    PubMed

    Perea, Manuel; Panadero, Victoria

    2014-01-01

    The vast majority of neural and computational models of visual-word recognition assume that lexical access is achieved via the activation of abstract letter identities. Thus, a word's overall shape should play no role in this process. In the present lexical decision experiment, we compared word-like pseudowords like viotín (same shape as its base word: violín) vs. viocín (different shape) in mature (college-aged skilled readers), immature (normally reading children), and immature/impaired (young readers with developmental dyslexia) word-recognition systems. Results revealed similar response times (and error rates) to consistent-shape and inconsistent-shape pseudowords for both adult skilled readers and normally reading children - this is consistent with current models of visual-word recognition. In contrast, young readers with developmental dyslexia made significantly more errors to viotín-like pseudowords than to viocín-like pseudowords. Thus, unlike normally reading children, young readers with developmental dyslexia are sensitive to a word's visual cues, presumably because of poor letter representations.

  4. Playing the electric light orchestra—how electrical stimulation of visual cortex elucidates the neural basis of perception

    PubMed Central

    Cicmil, Nela; Krug, Kristine

    2015-01-01

    Vision research has the potential to reveal fundamental mechanisms underlying sensory experience. Causal experimental approaches, such as electrical microstimulation, provide a unique opportunity to test the direct contributions of visual cortical neurons to perception and behaviour. But in spite of their importance, causal methods constitute a minority of the experiments used to investigate the visual cortex to date. We reconsider the function and organization of visual cortex according to results obtained from stimulation techniques, with a special emphasis on electrical stimulation of small groups of cells in awake subjects who can report their visual experience. We compare findings from humans and monkeys, striate and extrastriate cortex, and superficial versus deep cortical layers, and identify a number of revealing gaps in the ‘causal map′ of visual cortex. Integrating results from different methods and species, we provide a critical overview of the ways in which causal approaches have been used to further our understanding of circuitry, plasticity and information integration in visual cortex. Electrical stimulation not only elucidates the contributions of different visual areas to perception, but also contributes to our understanding of neuronal mechanisms underlying memory, attention and decision-making. PMID:26240421

  5. Spontaneous eye movements in goldfish: oculomotor integrator performance, plasticity, and dependence on visual feedback.

    PubMed

    Mensh, B D; Aksay, E; Lee, D D; Seung, H S; Tank, D W

    2004-03-01

    To quantify performance of the goldfish oculomotor neural integrator and determine its dependence on visual feedback, we measured the relationship between eye drift-velocity and position during spontaneous gaze fixations in the light and in the dark. In the light, drift-velocities were typically less than 1 deg/s, similar to those observed in humans. During brief periods in darkness, drift-velocities were only slightly larger, but showed greater variance. One hour in darkness degraded fixation-holding performance. These findings suggest that while visual feedback is not essential for online fixation stability, it may be used to tune the mechanism of persistent neural activity in the oculomotor integrator.

  6. Sharpening of Hierarchical Visual Feature Representations of Blurred Images.

    PubMed

    Abdelhack, Mohamed; Kamitani, Yukiyasu

    2018-01-01

    The robustness of the visual system lies in its ability to perceive degraded images. This is achieved through interacting bottom-up, recurrent, and top-down pathways that process the visual input in concordance with stored prior information. The interaction mechanism by which they integrate visual input and prior information is still enigmatic. We present a new approach using deep neural network (DNN) representation to reveal the effects of such integration on degraded visual inputs. We transformed measured human brain activity resulting from viewing blurred images to the hierarchical representation space derived from a feedforward DNN. Transformed representations were found to veer toward the original nonblurred image and away from the blurred stimulus image. This indicated deblurring or sharpening in the neural representation, and possibly in our perception. We anticipate these results will help unravel the interplay mechanism between bottom-up, recurrent, and top-down pathways, leading to more comprehensive models of vision.

  7. Stereotyped Movements among Children Who Are Visually Impaired

    ERIC Educational Resources Information Center

    Gal, Eynat; Dyck, Murray J.

    2009-01-01

    Does the severity of visual impairment affect the prevalence and severity of stereotyped movements? In this study, children who were blind or had low vision, half of whom had intellectual disabilities, were assessed. The results revealed that blindness and global delays were associated with more sensory processing dysfunction and more stereotyped…

  8. See what we say: using concept mapping to visualize Latino immigrant's strategies for health interventions.

    PubMed

    Vaughn, Lisa M; Jacquez, Farrah; Marschner, Daniel; McLinden, Daniel

    2016-09-01

    Researchers need specific tools to engage community members in health intervention development to ensure that efforts are contextually appropriate for immigrant populations. The purpose of the study was to generate and prioritize strategies to address obesity, stress and coping, and healthcare navigation that are contextually appropriate and applicable to the Latino immigrant community in Cincinnati, Ohio, and then use the results to develop specific interventions to improve Latino health in our area. A community-academic research team used concept mapping methodology with over 200 Latino immigrants and Latino-serving providers. A community intervention planning session was held to share the final concept maps and vote on strategies. The concept maps and results from the intervention planning session emphasized a community lay health worker model to connect the Latino immigrant community with resources to address obesity, stress and coping, and healthcare navigation. Concept maps allowed for the visualization of health intervention strategies prioritized by the larger Latino immigrant community. Concept maps revealed the appropriate content for health interventions as well as the process community members preferred for intervention delivery.

  9. Spontaneous revisitation during visual exploration as a link among strategic behavior, learning, and the hippocampus.

    PubMed

    Voss, Joel L; Warren, David E; Gonsalves, Brian D; Federmeier, Kara D; Tranel, Dan; Cohen, Neal J

    2011-08-02

    Effective exploratory behaviors involve continuous updating of sensory sampling to optimize the efficacy of information gathering. Despite some work on this issue in animals, little information exists regarding the cognitive or neural mechanisms for this sort of behavioral optimization in humans. Here we examined a visual exploration phenomenon that occurred when human subjects studying an array of objects spontaneously looked "backward" in their scanning paths to view recently seen objects again. This "spontaneous revisitation" of recently viewed objects was associated with enhanced hippocampal activity and superior subsequent memory performance in healthy participants, but occurred only rarely in amnesic patients with severe damage to the hippocampus. These findings demonstrate the necessity of the hippocampus not just in the aspects of long-term memory with which it has been associated previously, but also in the short-term adaptive control of behavior. Functional neuroimaging showed hippocampal engagement occurring in conjunction with frontocerebellar circuits, thereby revealing some of the larger brain circuitry essential for the strategic deployment of information-seeking behaviors that optimize learning.

  10. Simulating Visual Attention Allocation of Pilots in an Advanced Cockpit Environment

    NASA Technical Reports Server (NTRS)

    Frische, F.; Osterloh, J.-P.; Luedtke, A.

    2011-01-01

    This paper describes the results of experiments conducted with human line pilots and a cognitive pilot model during interaction with a new 40 Flight Management System (FMS). The aim of these experiments was to gather human pilot behavior data in order to calibrate the behavior of the model. Human behavior is mainly triggered by visual perception. Thus, the main aspect was to setup a profile of human pilots' visual attention allocation in a cockpit environment containing the new FMS. We first performed statistical analyses of eye tracker data and then compared our results to common results of familiar analyses in standard cockpit environments. The comparison has shown a significant influence of the new system on the visual performance of human pilots. Further on, analyses of the pilot models' visual performance have been performed. A comparison to human pilots' visual performance revealed important improvement potentials.

  11. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement.

    PubMed

    Lenz, Robin; Enders, Kristina; Stedmon, Colin A; Mackenzie, David M A; Nielsen, Torkel Gissel

    2015-11-15

    Identification and characterisation of microplastic (MP) is a necessary step to evaluate their concentrations, chemical composition and interactions with biota. MP ≥10μm diameter filtered from below the sea surface in the European and subtropical North Atlantic were simultaneously identified by visual microscopy and Raman micro-spectroscopy. Visually identified particles below 100μm had a significantly lower percentage confirmed by Raman than larger ones indicating that visual identification alone is inappropriate for studies on small microplastics. Sixty-eight percent of visually counted MP (n=1279) were spectroscopically confirmed being plastic. The percentage varied with type, colour and size of the MP. Fibres had a higher success rate (75%) than particles (64%). We tested Raman micro-spectroscopy applicability for MP identification with respect to varying chemical composition (additives), degradation state and organic matter coating. Partially UV-degraded post-consumer plastics provided identifiable Raman spectra for polymers most common among marine MP, i.e. polyethylene and polypropylene. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A test of a linear model of glaucomatous structure-function loss reveals sources of variability in retinal nerve fiber and visual field measurements.

    PubMed

    Hood, Donald C; Anderson, Susan C; Wall, Michael; Raza, Ali S; Kardon, Randy H

    2009-09-01

    Retinal nerve fiber (RNFL) thickness and visual field loss data from patients with glaucoma were analyzed in the context of a model, to better understand individual variation in structure versus function. Optical coherence tomography (OCT) RNFL thickness and standard automated perimetry (SAP) visual field loss were measured in the arcuate regions of one eye of 140 patients with glaucoma and 82 normal control subjects. An estimate of within-individual (measurement) error was obtained by repeat measures made on different days within a short period in 34 patients and 22 control subjects. A linear model, previously shown to describe the general characteristics of the structure-function data, was extended to predict the variability in the data. For normal control subjects, between-individual error (individual differences) accounted for 87% and 71% of the total variance in OCT and SAP measures, respectively. SAP within-individual error increased and then decreased with increased SAP loss, whereas OCT error remained constant. The linear model with variability (LMV) described much of the variability in the data. However, 12.5% of the patients' points fell outside the 95% boundary. An examination of these points revealed factors that can contribute to the overall variability in the data. These factors include epiretinal membranes, edema, individual variation in field-to-disc mapping, and the location of blood vessels and degree to which they are included by the RNFL algorithm. The model and the partitioning of within- versus between-individual variability helped elucidate the factors contributing to the considerable variability in the structure-versus-function data.

  13. Visual Contrast Sensitivity in Early-Stage Parkinson's Disease.

    PubMed

    Ming, Wendy; Palidis, Dimitrios J; Spering, Miriam; McKeown, Martin J

    2016-10-01

    Visual impairments are frequent in Parkinson's disease (PD) and impact normal functioning in daily activities. Visual contrast sensitivity is a powerful nonmotor sign for discriminating PD patients from controls. However, it is usually assessed with static visual stimuli. Here we examined the interaction between perception and eye movements in static and dynamic contrast sensitivity tasks in a cohort of mildly impaired, early-stage PD patients. Patients (n = 13) and healthy age-matched controls (n = 12) viewed stimuli of various spatial frequencies (0-8 cyc/deg) and speeds (0°/s, 10°/s, 30°/s) on a computer monitor. Detection thresholds were determined by asking participants to adjust luminance contrast until they could just barely see the stimulus. Eye position was recorded with a video-based eye tracker. Patients' static contrast sensitivity was impaired in the intermediate spatial-frequency range and this impairment correlated with fixational instability. However, dynamic contrast sensitivity and patients' smooth pursuit were relatively normal. An independent component analysis revealed contrast sensitivity profiles differentiating patients and controls. Our study simultaneously assesses perceptual contrast sensitivity and eye movements in PD, revealing a possible link between fixational instability and perceptual deficits. Spatiotemporal contrast sensitivity profiles may represent an easily measurable metric as a component of a broader combined biometric for nonmotor features observed in PD.

  14. Orthographic units in the absence of visual processing: Evidence from sublexical structure in braille.

    PubMed

    Fischer-Baum, Simon; Englebretson, Robert

    2016-08-01

    Reading relies on the recognition of units larger than single letters and smaller than whole words. Previous research has linked sublexical structures in reading to properties of the visual system, specifically on the parallel processing of letters that the visual system enables. But whether the visual system is essential for this to happen, or whether the recognition of sublexical structures may emerge by other means, is an open question. To address this question, we investigate braille, a writing system that relies exclusively on the tactile rather than the visual modality. We provide experimental evidence demonstrating that adult readers of (English) braille are sensitive to sublexical units. Contrary to prior assumptions in the braille research literature, we find strong evidence that braille readers do indeed access sublexical structure, namely the processing of multi-cell contractions as single orthographic units and the recognition of morphemes within morphologically-complex words. Therefore, we conclude that the recognition of sublexical structure is not exclusively tied to the visual system. However, our findings also suggest that there are aspects of morphological processing on which braille and print readers differ, and that these differences may, crucially, be related to reading using the tactile rather than the visual sensory modality. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Public attitudes toward larger cigarette pack warnings: Results from a nationally representative U.S. sample

    PubMed Central

    2017-01-01

    A large body of evidence supports the effectiveness of larger health warnings on cigarette packages. However, there is limited research examining attitudes toward such warning labels, which has potential implications for implementation of larger warning labels. The purpose of the current study was to examine attitudes toward larger warning sizes on cigarette packages and examine variables associated with more favorable attitudes. In a nationally representative survey of U.S. adults (N = 5,014), participants were randomized to different warning size conditions, assessing attitude toward “a health warning that covered (25, 50, 75) % of a cigarette pack.” SAS logistic regression survey procedures were used to account for the complex survey design and sampling weights. Across experimental groups, nearly three-quarters (72%) of adults had attitudes supportive of larger warning labels on cigarette packs. Among the full sample and smokers only (N = 1,511), most adults had favorable attitudes toward labels that covered 25% (78.2% and 75.2%, respectively), 50% (70% and 58.4%, respectively), and 75% (67.9% and 61%, respectively) of a cigarette pack. Young adults, females, racial/ethnic minorities, and non-smokers were more likely to have favorable attitudes toward larger warning sizes. Among smokers only, females and those with higher quit intentions held more favorable attitudes toward larger warning sizes. Widespread support exists for larger warning labels on cigarette packages among U.S. adults, including among smokers. Our findings support the implementation of larger health warnings on cigarette packs in the U.S. as required by the 2009 Tobacco Control Act. PMID:28253257

  16. Regional Neural Response Differences in the Determination of Faces or Houses Positioned in a Wide Visual Field

    PubMed Central

    Wu, Jinglong; Chen, Kewei; Imajyo, Satoshi; Ohno, Seiichiro; Kanazawa, Susumu

    2013-01-01

    In human visual cortex, the primary visual cortex (V1) is considered to be essential for visual information processing; the fusiform face area (FFA) and parahippocampal place area (PPA) are considered as face-selective region and places-selective region, respectively. Recently, a functional magnetic resonance imaging (fMRI) study showed that the neural activity ratios between V1 and FFA were constant as eccentricities increasing in central visual field. However, in wide visual field, the neural activity relationships between V1 and FFA or V1 and PPA are still unclear. In this work, using fMRI and wide-view present system, we tried to address this issue by measuring neural activities in V1, FFA and PPA for the images of faces and houses aligning in 4 eccentricities and 4 meridians. Then, we further calculated ratio relative to V1 (RRV1) as comparing the neural responses amplitudes in FFA or PPA with those in V1. We found V1, FFA, and PPA showed significant different neural activities to faces and houses in 3 dimensions of eccentricity, meridian, and region. Most importantly, the RRV1s in FFA and PPA also exhibited significant differences in 3 dimensions. In the dimension of eccentricity, both FFA and PPA showed smaller RRV1s at central position than those at peripheral positions. In meridian dimension, both FFA and PPA showed larger RRV1s at upper vertical positions than those at lower vertical positions. In the dimension of region, FFA had larger RRV1s than PPA. We proposed that these differential RRV1s indicated FFA and PPA might have different processing strategies for encoding the wide field visual information from V1. These different processing strategies might depend on the retinal position at which faces or houses are typically observed in daily life. We posited a role of experience in shaping the information processing strategies in the ventral visual cortex. PMID:23991147

  17. Visual grouping under isoluminant condition: impact of mental fatigue

    NASA Astrophysics Data System (ADS)

    Pladere, Tatjana; Bete, Diana; Skilters, Jurgis; Krumina, Gunta

    2016-09-01

    Instead of selecting arbitrary elements our visual perception prefers only certain grouping of information. There is ample evidence that the visual attention and perception is substantially impaired in the presence of mental fatigue. The question is how visual grouping, which can be considered a bottom-up controlled neuronal gain mechanism, is influenced. The main purpose of our study is to determine the influence of mental fatigue on visual grouping of definite information - color and configuration of stimuli in the psychophysical experiment. Individuals provided subjective data by filling in the questionnaire about their health and general feeling. The objective evidence was obtained in the specially designed visual search task were achromatic and chromatic isoluminant stimuli were used in order to avoid so called pop-out effect due to differences in light intensity. Each individual was instructed to define the symbols with aperture in the same direction in four tasks. The color component differed in the visual search tasks according to the goals of study. The results reveal that visual grouping is completed faster when visual stimuli have the same color and aperture direction. The shortest reaction time is in the evening. What is more, the results of reaction time suggest that the analysis of two grouping processes compete for selective attention in the visual system when similarity in color conflicts with similarity in configuration of stimuli. The described effect increases significantly in the presence of mental fatigue. But it does not have strong influence on the accuracy of task accomplishment.

  18. Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture Series)

    ScienceCinema

    Meza, Juan [LBNL Computational Research Division

    2017-12-09

    The final Carbon Smackdown match took place Aug. 9, 2010. Juan Meza of the Computational Research Division revealed how scientists use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies such as wind turbines and solar cells.

  19. Emotion processing in the visual brain: a MEG analysis.

    PubMed

    Peyk, Peter; Schupp, Harald T; Elbert, Thomas; Junghöfer, Markus

    2008-06-01

    Recent functional magnetic resonance imaging (fMRI) and event-related brain potential (ERP) studies provide empirical support for the notion that emotional cues guide selective attention. Extending this line of research, whole head magneto-encephalogram (MEG) was measured while participants viewed in separate experimental blocks a continuous stream of either pleasant and neutral or unpleasant and neutral pictures, presented for 330 ms each. Event-related magnetic fields (ERF) were analyzed after intersubject sensor coregistration, complemented by minimum norm estimates (MNE) to explore neural generator sources. Both streams of analysis converge by demonstrating the selective emotion processing in an early (120-170 ms) and a late time interval (220-310 ms). ERF analysis revealed that the polarity of the emotion difference fields was reversed across early and late intervals suggesting distinct patterns of activation in the visual processing stream. Source analysis revealed the amplified processing of emotional pictures in visual processing areas with more pronounced occipito-parieto-temporal activation in the early time interval, and a stronger engagement of more anterior, temporal, regions in the later interval. Confirming previous ERP studies showing facilitated emotion processing, the present data suggest that MEG provides a complementary look at the spread of activation in the visual processing stream.

  20. Transdiagnostic psychiatric symptoms related to visual evoked potential abnormalities.

    PubMed

    Bedwell, Jeffrey S; Butler, Pamela D; Chan, Chi C; Trachik, Benjamin J

    2015-12-15

    Visual processing abnormalities have been reported across a range of psychotic and mood disorders, but are typically examined within a particular disorder. The current study used a novel transdiagnostic approach to examine diagnostic classes, clinician-rated current symptoms, and self-reported personality traits in relation to visual processing abnormalities. We examined transient visual-evoked potentials (VEPs) from 48 adults (56% female), representing a wide range of psychotic and mood disorders, as well as individuals with no history of psychiatric disorder. Stimuli were low contrast check arrays presented on green and red backgrounds. Pairwise comparisons between individuals with schizophrenia-spectrum disorders (SSD), chronic mood disorders (CMD), and nonpsychiatric controls (NC) revealed no overall differences for either P1 or N1 amplitude. However, there was a significant interaction with the color background in which the NC group showed a significant increase in P1 amplitude to the red, vs. green, background, while the SSD group showed no change. This was related to an increase in social anhedonia and general negative symptoms. Stepwise regressions across the entire sample revealed that individuals with greater apathy and/or eccentric behavior had a reduced P1 amplitude. These relationships provide clues for uncovering the underlying causal pathology for these transdiagnostic symptoms. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Language-associated cortical regions are proportionally larger in the female brain.

    PubMed

    Harasty, J; Double, K L; Halliday, G M; Kril, J J; McRitchie, D A

    1997-02-01

    Many studies have demonstrated significant sexual dimorphism in verbal ability. However, few studies have examined anatomical differences between the sexes that may underlie such dimorphism. To examine sex differences in the absolute and proportional volumes of the main language-associated regions of the cerebral cortex. Control neuropathological case series of consecutive autopsies from a teaching hospital. No significant age-related volume changes were identified in the sample. Two language-associated cortical regions, the superior temporal gyrus (part of the Wernicke area) and its subdivisions (planum temporale, Heschl gyrus, and anterior superior temporal gyrus) and the inferior frontal gyrus (Broca area in the dominant hemisphere), and a non-language-associated region, the frontal pole, were measured using stereological techniques in brains fixed with formaldehyde solution serially sectioned at 3-mm intervals. Volume comparisons between the sexes and between brain hemispheres were performed using 2-way analysis of variance. Studies were conducted at the University of Sydney and the Prince of Wales Medical Research Institute, Sydney, Australia. Ten males and 11 females free from neurologic or neuropathological abnormalities. The volume of the superior temporal cortex, expressed as a proportion of total cerebral volume, was significantly larger in females compared with males (17.8% increase; P = .04). This was accounted for by 1 section of the superior temporal cortex, the planum temporale, which was 29.8% larger in females (P = .04). In addition, the cortical volume fraction of the Broca area in females was 20.4% larger than in males (P = .05). In contrast, no significant differences were found in the proportional volume of the frontal pole or in regional volumes between the left and right hemispheres in either sex group. Our results suggest that females have proportionally larger Wernicke and Broca language-associated regions compared with males. These

  2. Visual imagery without visual perception: lessons from blind subjects

    NASA Astrophysics Data System (ADS)

    Bértolo, Helder

    2014-08-01

    The question regarding visual imagery and visual perception remain an open issue. Many studies have tried to understand if the two processes share the same mechanisms or if they are independent, using different neural substrates. Most research has been directed towards the need of activation of primary visual areas during imagery. Here we review some of the works providing evidence for both claims. It seems that studying visual imagery in blind subjects can be used as a way of answering some of those questions, namely if it is possible to have visual imagery without visual perception. We present results from the work of our group using visual activation in dreams and its relation with EEG's spectral components, showing that congenitally blind have visual contents in their dreams and are able to draw them; furthermore their Visual Activation Index is negatively correlated with EEG alpha power. This study supports the hypothesis that it is possible to have visual imagery without visual experience.

  3. Rebalancing Spatial Attention: Endogenous Orienting May Partially Overcome the Left Visual Field Bias in Rapid Serial Visual Presentation.

    PubMed

    Śmigasiewicz, Kamila; Hasan, Gabriel Sami; Verleger, Rolf

    2017-01-01

    In dynamically changing environments, spatial attention is not equally distributed across the visual field. For instance, when two streams of stimuli are presented left and right, the second target (T2) is better identified in the left visual field (LVF) than in the right visual field (RVF). Recently, it has been shown that this bias is related to weaker stimulus-driven orienting of attention toward the RVF: The RVF disadvantage was reduced with salient task-irrelevant valid cues and increased with invalid cues. Here we studied if also endogenous orienting of attention may compensate for this unequal distribution of stimulus-driven attention. Explicit information was provided about the location of T1 and T2. Effectiveness of the cue manipulation was confirmed by EEG measures: decreasing alpha power before stream onset with informative cues, earlier latencies of potentials evoked by T1-preceding distractors at the right than at the left hemisphere when T1 was cued left, and decreasing T1- and T2-evoked N2pc amplitudes with informative cues. Importantly, informative cues reduced (though did not completely abolish) the LVF advantage, indicated by improved identification of right T2, and reflected by earlier N2pc latency evoked by right T2 and larger decrease in alpha power after cues indicating right T2. Overall, these results suggest that endogenously driven attention facilitates stimulus-driven orienting of attention toward the RVF, thereby partially overcoming the basic LVF bias in spatial attention.

  4. How a surgeon becomes superman by visualization of intelligently fused multi-modalities

    NASA Astrophysics Data System (ADS)

    Erat, Okan; Pauly, Olivier; Weidert, Simon; Thaller, Peter; Euler, Ekkehard; Mutschler, Wolf; Navab, Nassir; Fallavollita, Pascal

    2013-03-01

    Motivation: The existing visualization of the Camera augmented mobile C-arm (CamC) system does not have enough cues for depth information and presents the anatomical information in a confusing way to surgeons. Methods: We propose a method that segments anatomical information from X-ray and then augment it on the video images. To provide depth cues, pixels belonging to video images are classified as skin and object classes. The augmentation of anatomical information from X-ray is performed only when pixels have a larger probability of belonging to skin class. Results: We tested our algorithm by displaying the new visualization to 2 expert surgeons and 1 medical student during three surgical workflow sequences of the interlocking of intramedullary nail procedure, namely: skin incision, center punching, and drilling. Via a survey questionnaire, they were asked to assess the new visualization when compared to the current alphablending overlay image displayed by CamC. The participants all agreed (100%) that occlusion and instrument tip position detection were immediately improved with our technique. When asked if our visualization has potential to replace the existing alpha-blending overlay during interlocking procedures, all participants did not hesitate to suggest an immediate integration of the visualization for the correct navigation and guidance of the procedure. Conclusion: Current alpha blending visualizations lack proper depth cues and can be a source of confusion for the surgeons when performing surgery. Our visualization concept shows great potential in alleviating occlusion and facilitating clinician understanding during specific workflow steps of the intramedullary nailing procedure.

  5. Peripatetic and Euclidean theories of the visual ray.

    PubMed

    Jones, A

    1994-01-01

    The visual ray of Euclid's Optica is endowed with properties that reveal the concept to be an abstraction of a specific physical account of vision. The evolution of a physical theory of vision compatible with the Euclidean model can be traced in Peripatetic writings of the late fourth and third centuries B.C.

  6. Supramodality Effects in Visual and Haptic Spatial Processes

    ERIC Educational Resources Information Center

    Cattaneo, Zaira; Vecchi, Tomaso

    2008-01-01

    In this article, the authors investigated unimodal and cross-modal processes in spatial working memory. A number of locations had to be memorized within visual or haptic matrices according to different experimental conditions known to be critical in accounting for the effects of perception on imagery. Results reveal that some characteristics of…

  7. Visual Sensitivity of Deepwater Fishes in Lake Superior

    PubMed Central

    Harrington, Kelly A.; Hrabik, Thomas R.; Mensinger, Allen F.

    2015-01-01

    The predator-prey interactions in the offshore food web of Lake Superior have been well documented, but the sensory systems mediating these interactions remain unknown. The deepwater sculpin, (Myoxocephalus thompsoni), siscowet (Salvelinus namaycush siscowet), and kiyi (Coregonus kiyi) inhabit low light level environments. To investigate the potential role of vision in predator-prey interactions, electroretinography was used to determine visual sensitivity for each species. Spectral sensitivity curves revealed peak sensitivity at 525 nm for each species which closely corresponds to the prevalent downwelling light spectrum at depth. To determine if sufficient light was available to mediate predator-prey interactions, visual sensitivity was correlated with the intensity of downwelling light in Lake Superior to construct visual depth profiles for each species. Sufficient daytime irradiance exists for visual interactions to approximately 325 m for siscowet and kiyi and 355 m for the deepwater sculpin during summer months. Under full moon conditions, sufficient irradiance exists to elicit ERG response to light available at approximately 30 m for the siscowet and kiyi and 45 m for the deepwater sculpin. Visual interactions are therefore possible at the depths and times when these organisms overlap in the water column indicating that vision may play a far greater role at depth in deep freshwater lakes than had been previously documented. PMID:25646781

  8. Comparative visual ecology of cephalopods from different habitats.

    PubMed

    Chung, Wen-Sung; Marshall, N Justin

    2016-09-14

    Previous investigations of vision and visual pigment evolution in aquatic predators have focused on fish and crustaceans, generally ignoring the cephalopods. Since the first cephalopod opsin was sequenced in late 1980s, we now have data on over 50 cephalopod opsins, prompting this functional and phylogenetic examination. Much of this data does not specifically examine the visual pigment spectral absorbance position (λmax) relative to environment or lifestyle, and cephalopod opsin functional adaptation and visual ecology remain largely unknown. Here we introduce a new protocol for photoreceptor microspectrophotometry (MSP) that overcomes the difficulty of bleaching the bistable visual pigment and that reveals eight coastal coleoid cephalopods to be monochromatic with λmax varying from 484 to 505 nm. A combination of current MSP results, the λmax values previously characterized using cephalopod retinal extracts (467-500 nm) and the corresponding opsin phylogenetic tree were used for systematic comparisons with an end goal of examining the adaptations of coleoid visual pigments to different light environments. Spectral tuning shifts are described in response to different modes of life and light conditions. A new spectral tuning model suggests that nine amino acid substitution sites may determine the direction and the magnitude of spectral shifts. © 2016 The Authors.

  9. Flight-path estimation in passive low-altitude flight by visual cues

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Kohn, S.

    1993-01-01

    A series of experiments was conducted, in which subjects had to estimate the flight path while passively being flown in straight or in curved motion over several types of nominally flat, textured terrain. Three computer-generated terrain types were investigated: (1) a random 'pole' field, (2) a flat field consisting of random rectangular patches, and (3) a field of random parallelepipeds. Experimental parameters were the velocity-to-height (V/h) ratio, the viewing distance, and the terrain type. Furthermore, the effect of obscuring parts of the visual field was investigated. Assumptions were made about the basic visual-field information by analyzing the pattern of line-of-sight (LOS) rate vectors in the visual field. The experimental results support these assumptions and show that, for both a straight as well as a curved flight path, the estimation accuracy and estimation times improve with the V/h ratio. Error scores for the curved flight path are found to be about 3 deg in visual angle higher than for the straight flight path, and the sensitivity to the V/h ratio is found to be considerably larger. For the straight motion, the flight path could be estimated successfully from local areas in the far field. Curved flight-path estimates have to rely on the entire LOS rate pattern.

  10. Development of orientation tuning in simple cells of primary visual cortex

    PubMed Central

    Moore, Bartlett D.

    2012-01-01

    Orientation selectivity and its development are basic features of visual cortex. The original model of orientation selectivity proposes that elongated simple cell receptive fields are constructed from convergent input of an array of lateral geniculate nucleus neurons. However, orientation selectivity of simple cells in the visual cortex is generally greater than the linear contributions based on projections from spatial receptive field profiles. This implies that additional selectivity may arise from intracortical mechanisms. The hierarchical processing idea implies mainly linear connections, whereas cortical contributions are generally considered to be nonlinear. We have explored development of orientation selectivity in visual cortex with a focus on linear and nonlinear factors in a population of anesthetized 4-wk postnatal kittens and adult cats. Linear contributions are estimated from receptive field maps by which orientation tuning curves are generated and bandwidth is quantified. Nonlinear components are estimated as the magnitude of the power function relationship between responses measured from drifting sinusoidal gratings and those predicted from the spatial receptive field. Measured bandwidths for kittens are slightly larger than those in adults, whereas predicted bandwidths are substantially broader. These results suggest that relatively strong nonlinearities in early postnatal stages are substantially involved in the development of orientation tuning in visual cortex. PMID:22323631

  11. A Poetic and Visual Inquiry into the Male Professoriate: Clive, Todd, Mark and William

    ERIC Educational Resources Information Center

    Blaikie, Fiona

    2011-01-01

    This is a poetic and visual arts-informed inquiry into the male professoriate: Situated in social theory on the body and clothing, artworks, and poetry, visual identity and male scholarship are revealed and presented. Dress is a self-reflexive personal, social and political statement that challenges and/or confirms gendered and social roles.…

  12. Audio-visual speech perception: a developmental ERP investigation

    PubMed Central

    Knowland, Victoria CP; Mercure, Evelyne; Karmiloff-Smith, Annette; Dick, Fred; Thomas, Michael SC

    2014-01-01

    Being able to see a talking face confers a considerable advantage for speech perception in adulthood. However, behavioural data currently suggest that children fail to make full use of these available visual speech cues until age 8 or 9. This is particularly surprising given the potential utility of multiple informational cues during language learning. We therefore explored this at the neural level. The event-related potential (ERP) technique has been used to assess the mechanisms of audio-visual speech perception in adults, with visual cues reliably modulating auditory ERP responses to speech. Previous work has shown congruence-dependent shortening of auditory N1/P2 latency and congruence-independent attenuation of amplitude in the presence of auditory and visual speech signals, compared to auditory alone. The aim of this study was to chart the development of these well-established modulatory effects over mid-to-late childhood. Experiment 1 employed an adult sample to validate a child-friendly stimulus set and paradigm by replicating previously observed effects of N1/P2 amplitude and latency modulation by visual speech cues; it also revealed greater attenuation of component amplitude given incongruent audio-visual stimuli, pointing to a new interpretation of the amplitude modulation effect. Experiment 2 used the same paradigm to map cross-sectional developmental change in these ERP responses between 6 and 11 years of age. The effect of amplitude modulation by visual cues emerged over development, while the effect of latency modulation was stable over the child sample. These data suggest that auditory ERP modulation by visual speech represents separable underlying cognitive processes, some of which show earlier maturation than others over the course of development. PMID:24176002

  13. Integrated web visualizations for protein-protein interaction databases.

    PubMed

    Jeanquartier, Fleur; Jean-Quartier, Claire; Holzinger, Andreas

    2015-06-16

    Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks. We selected M=10 out of N=53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015. Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing.

  14. Visual Attention Model Based on Statistical Properties of Neuron Responses

    PubMed Central

    Duan, Haibin; Wang, Xiaohua

    2015-01-01

    Visual attention is a mechanism of the visual system that can select relevant objects from a specific scene. Interactions among neurons in multiple cortical areas are considered to be involved in attentional allocation. However, the characteristics of the encoded features and neuron responses in those attention related cortices are indefinite. Therefore, further investigations carried out in this study aim at demonstrating that unusual regions arousing more attention generally cause particular neuron responses. We suppose that visual saliency is obtained on the basis of neuron responses to contexts in natural scenes. A bottom-up visual attention model is proposed based on the self-information of neuron responses to test and verify the hypothesis. Four different color spaces are adopted and a novel entropy-based combination scheme is designed to make full use of color information. Valuable regions are highlighted while redundant backgrounds are suppressed in the saliency maps obtained by the proposed model. Comparative results reveal that the proposed model outperforms several state-of-the-art models. This study provides insights into the neuron responses based saliency detection and may underlie the neural mechanism of early visual cortices for bottom-up visual attention. PMID:25747859

  15. Improved Visual Cognition through Stroboscopic Training

    PubMed Central

    Appelbaum, L. Gregory; Schroeder, Julia E.; Cain, Matthew S.; Mitroff, Stephen R.

    2011-01-01

    Humans have a remarkable capacity to learn and adapt, but surprisingly little research has demonstrated generalized learning in which new skills and strategies can be used flexibly across a range of tasks and contexts. In the present work we examined whether generalized learning could result from visual–motor training under stroboscopic visual conditions. Individuals were assigned to either an experimental condition that trained with stroboscopic eyewear or to a control condition that underwent identical training with non-stroboscopic eyewear. The training consisted of multiple sessions of athletic activities during which participants performed simple drills such as throwing and catching. To determine if training led to generalized benefits, we used computerized measures to assess perceptual and cognitive abilities on a variety of tasks before and after training. Computer-based assessments included measures of visual sensitivity (central and peripheral motion coherence thresholds), transient spatial attention (a useful field of view – dual task paradigm), and sustained attention (multiple-object tracking). Results revealed that stroboscopic training led to significantly greater re-test improvement in central visual field motion sensitivity and transient attention abilities. No training benefits were observed for peripheral motion sensitivity or peripheral transient attention abilities, nor were benefits seen for sustained attention during multiple-object tracking. These findings suggest that stroboscopic training can effectively improve some, but not all aspects of visual perception and attention. PMID:22059078

  16. Structural and functional correlates of visual field asymmetry in the human brain by diffusion kurtosis MRI and functional MRI.

    PubMed

    O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C

    2016-11-09

    Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.

  17. Structural and Functional Correlates of Visual Field Asymmetry in the Human Brain by Diffusion Kurtosis MRI and Functional MRI

    PubMed Central

    O’Connell, Caitlin; Ho, Leon C.; Murphy, Matthew C.; Conner, Ian P.; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C.

    2016-01-01

    Human visual performance has been observed to exhibit superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine if the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI (DKI), respectively in 15 healthy individuals at 3 Tesla. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In DKI, the brain regions mapping to the lower visual field exhibited higher mean kurtosis but not fractional anisotropy or mean diffusivity when compared to the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing. PMID:27631541

  18. Visual adaptation dominates bimodal visual-motor action adaptation

    PubMed Central

    de la Rosa, Stephan; Ferstl, Ylva; Bülthoff, Heinrich H.

    2016-01-01

    A long standing debate revolves around the question whether visual action recognition primarily relies on visual or motor action information. Previous studies mainly examined the contribution of either visual or motor information to action recognition. Yet, the interaction of visual and motor action information is particularly important for understanding action recognition in social interactions, where humans often observe and execute actions at the same time. Here, we behaviourally examined the interaction of visual and motor action recognition processes when participants simultaneously observe and execute actions. We took advantage of behavioural action adaptation effects to investigate behavioural correlates of neural action recognition mechanisms. In line with previous results, we find that prolonged visual exposure (visual adaptation) and prolonged execution of the same action with closed eyes (non-visual motor adaptation) influence action recognition. However, when participants simultaneously adapted visually and motorically – akin to simultaneous execution and observation of actions in social interactions - adaptation effects were only modulated by visual but not motor adaptation. Action recognition, therefore, relies primarily on vision-based action recognition mechanisms in situations that require simultaneous action observation and execution, such as social interactions. The results suggest caution when associating social behaviour in social interactions with motor based information. PMID:27029781

  19. Effects of regular aerobic exercise on visual perceptual learning.

    PubMed

    Connell, Charlotte J W; Thompson, Benjamin; Green, Hayden; Sullivan, Rachel K; Gant, Nicholas

    2017-12-02

    This study investigated the influence of five days of moderate intensity aerobic exercise on the acquisition and consolidation of visual perceptual learning using a motion direction discrimination (MDD) task. The timing of exercise relative to learning was manipulated by administering exercise either before or after perceptual training. Within a matched-subjects design, twenty-seven healthy participants (n = 9 per group) completed five consecutive days of perceptual training on a MDD task under one of three interventions: no exercise, exercise before the MDD task, or exercise after the MDD task. MDD task accuracy improved in all groups over the five-day period, but there was a trend for impaired learning when exercise was performed before visual perceptual training. MDD task accuracy (mean ± SD) increased in exercise before by 4.5 ± 6.5%; exercise after by 11.8 ± 6.4%; and no exercise by 11.3 ± 7.2%. All intervention groups displayed similar MDD threshold reductions for the trained and untrained motion axes after training. These findings suggest that moderate daily exercise does not enhance the rate of visual perceptual learning for an MDD task or the transfer of learning to an untrained motion axis. Furthermore, exercise performed immediately prior to a visual perceptual learning task may impair learning. Further research with larger groups is required in order to better understand these effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Context and competition in the capture of visual attention.

    PubMed

    Hickey, Clayton; Theeuwes, Jan

    2011-10-01

    Competition-based models of visual attention propose that perceptual ambiguity is resolved through inhibition, which is stronger when objects share a greater number of neural receptive fields (RFs). According to this theory, the misallocation of attention to a salient distractor--that is, the capture of attention--can be indexed in RF-scaled interference costs. We used this pattern to investigate distractor-related costs in visual search across several manipulations of temporal context. Distractor costs are generally larger under circumstances in which the distractor can be defined by features that have recently characterised the target, suggesting that capture occurs in these trials. However, our results show that search for a target in the presence of a salient distractor also produces RF-scaled costs when the features defining the target and distractor do not vary from trial to trial. Contextual differences in distractor costs appear to reflect something other than capture, perhaps a qualitative difference in the type of attentional mechanism deployed to the distractor.