Science.gov

Sample records for reveal larger visual

  1. Action video game players and deaf observers have larger Goldmann visual fields.

    PubMed

    Buckley, David; Codina, Charlotte; Bhardwaj, Palvi; Pascalis, Olivier

    2010-03-01

    We used Goldmann kinetic perimetry to compare how training and congenital auditory deprivation may affect the size of the visual field. We measured the ability of action video game players and deaf observers to detect small moving lights at various locations in the central (around 30 degrees from fixation) and peripheral (around 60 degrees ) visual fields. Experiment 1 found that 10 habitual video game players showed significantly larger central and peripheral field areas than 10 controls. In Experiment 2 we found that 13 congenitally deaf observers had significantly larger visual fields than 13 hearing controls for both the peripheral and central fields. Here the greatest differences were found in the lower parts of the fields. Comparison of the two groups showed that whereas VGP players have a more uniform increase in field size in both central and peripheral fields deaf observers show non-uniform increases with greatest increases in lower parts of the visual field. PMID:19962395

  2. Larger receptive fields revealed using Battenberg stimuli to assess contrast summation with moving patterns.

    PubMed

    McDougall, Thomas J; Dickinson, J Edwin; Badcock, David R

    2016-09-01

    This study reevaluated the summation extent for moving stimuli using the Battenberg summation paradigm (Meese, 2010), which aims to circumvent internal noise changes with increasing stimulus size by holding display size constant. In the checkerboard stimulus, the size of the checks (luminance-modulated drifting gratings) was varied to measure dependence on signal area. Experiment 1 was a contrast detection task that used either signal checks alternating with uniform, mean luminance, checks (single-motion) or alternate checks containing gratings moving in opposite directions (opposing-motion). The latter was designed to test whether summation extent changes when segregating regions based on motion direction. Results showed summation over a square summation area with a side length of 3.33°, much larger than previous estimates of less than 1° for similar stimuli (Anderson & Burr, 1991). This was found for both motion combinations, providing no evidence that summation extent differs when segregating patterns based on direction, at contrast detection threshold. These results are in close agreement with those obtained for static patterns (Meese, 2010) and support the same underlying summation model. Experiment 2 was a contrast increment detection task conducted to determine whether differences in summation extent arise under suprathreshold contrast conditions. There was no dependence on check size for either condition across the range of sizes tested. This supports the suggestion that segmentation mechanisms dominate perception under high-contrast conditions, a potential adaptive strategy employed by the visual system. PMID:27604069

  3. Analysis of the community structure of abyssal kinetoplastids revealed similar communities at larger spatial scales

    PubMed Central

    Salani, Faezeh Shah; Arndt, Hartmut; Hausmann, Klaus; Nitsche, Frank; Scheckenbach, Frank

    2012-01-01

    Knowledge of the spatial scales of diversity is necessary to evaluate the mechanisms driving biodiversity and biogeography in the vast but poorly understood deep sea. The community structure of kinetoplastids, an important group of microbial eukaryotes belonging to the Euglenozoa, from all abyssal plains of the South Atlantic and two areas of the eastern Mediterranean was studied using partial small subunit ribosomal DNA gene clone libraries. A total of 1364 clones from 10 different regions were retrieved. The analysis revealed statistically not distinguishable communities from both the South-East Atlantic (Angola and Guinea Basin) and the South-West Atlantic (Angola and Brazil Basin) at spatial scales of 1000–3000 km, whereas all other communities were significantly differentiated from one another. It seems likely that multiple processes operate at the same time to shape communities of deep-sea kinetoplastids. Nevertheless, constant and homogenous environmental conditions over large spatial scales at abyssal depths, together with high dispersal capabilities of microbial eukaryotes, maintain best the results of statistically indistinguishable communities at larger spatial scales. PMID:22071346

  4. Fiber-optic-based laser vapor screen flow visualization system for aerodynamic research in larger scale subsonic and transonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Inenaga, Andrew S.

    1994-01-01

    Laser vapor screen (LVS) flow visualization systems that are fiber-optic based were developed and installed for aerodynamic research in the Langley 8-Foot Transonic Pressure Tunnel and the Langley 7- by 10-Foot High Speed Tunnel. Fiber optics are used to deliver the laser beam through the plenum shell that surrounds the test section of each facility and to the light-sheet-generating optics positioned in the ceiling window of the test section. Water is injected into the wind tunnel diffuser section to increase the relative humidity and promote condensation of the water vapor in the flow field about the model. The condensed water vapor is then illuminated with an intense sheet of laser light to reveal features of the flow field. The plenum shells are optically sealed; therefore, video-based systems are used to observe and document the flow field. Operational experience shows that the fiber-optic-based systems provide safe, reliable, and high-quality off-surface flow visualization in smaller and larger scale subsonic and transonic wind tunnels. The design, the installation, and the application of the Langley Research Center (LaRC) LVS flow visualization systems in larger scale wind tunnels are highlighted. The efficiency of the fiber optic LVS systems and their insensitivity to wind tunnel vibration, the tunnel operating temperature and pressure variations, and the airborne contaminants are discussed.

  5. Larger Deficits in Brain Networks for Response Inhibition than for Visual Selective Attention in Attention Deficit Hyperactivity Disorder (ADHD)

    ERIC Educational Resources Information Center

    Booth, James R.; Burman, Douglas D.; Meyer, Joel R.; Lei, Zhang; Trommer, Barbara L.; Davenport, Nicholas D.; Li, Wei; Parrish, Todd B.; Gitelman, Darren R.; Mesulam, M. Marsel

    2005-01-01

    Background: Brain activation differences between 12 control and 12 attention deficit hyperactivity disorder (ADHD) children (9- to 12-year-olds) were examined on two cognitive tasks during functional magnetic resonance imaging (fMRI). Method: Visual selective attention was measured with the visual search of a conjunction target (red triangle) in a…

  6. Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, iso-osmotic salinity (120 mM NaCl, 12mM CaCl2) and osmotic (PEG) stresses, along with chilling (5oC) stress, were applied to the cold-sensitive grapevine species V. vinifera cv. Cabernet Sauvignon. Microarray analysis of transcript abundance in shoot tips revealed that 43% of gene exp...

  7. Target-distractor similarity has a larger impact on visual search in school-age children than spacing.

    PubMed

    Huurneman, Bianca; Boonstra, F Nienke

    2015-01-01

    In typically developing children, crowding decreases with increasing age. The influence of target-distractor similarity with respect to orientation and element spacing on visual search performance was investigated in 29 school-age children with normal vision (4- to 6-year-olds [N = 16], 7- to 8-year-olds [N = 13]). Children were instructed to search for a target E among distractor Es (feature search: all flanking Es pointing right; conjunction search: flankers in three orientations). Orientation of the target was manipulated in four directions: right (target absent), left (inversed), up, and down (vertical). Spacing was varied in four steps: 0.04°, 0.5°, 1°, and 2°. During feature search, high target-distractor similarity had a stronger impact on performance than spacing: Orientation affected accuracy until spacing was 1°, and spacing only influenced accuracy for identifying inversed targets. Spatial analyses showed that orientation affected oculomotor strategy: Children made more fixations in the "inversed" target area (4.6) than the vertical target areas (1.8 and 1.9). Furthermore, age groups differed in fixation duration: 4- to 6-year-old children showed longer fixation durations than 7- to 8-year-olds at the two largest element spacings (p = 0.039 and p = 0.027). Conjunction search performance was unaffected by spacing. Four conclusions can be drawn from this study: (a) Target-distractor similarity governs visual search performance in school-age children, (b) children make more fixations in target areas when target-distractor similarity is high, (c) 4- to 6-year-olds show longer fixation durations than 7- to 8-year-olds at 1° and 2° element spacing, and (d) spacing affects feature but not conjunction search-a finding that might indicate top-down control ameliorates crowding in children. PMID:25613761

  8. Larger mid-dorsolateral prefrontal gray matter volume in young binge drinkers revealed by voxel-based morphometry.

    PubMed

    Doallo, Sonia; Cadaveira, Fernando; Corral, Montserrat; Mota, Nayara; López-Caneda, Eduardo; Holguín, Socorro Rodríguez

    2014-01-01

    Binge drinking or heavy episodic drinking is a high prevalent pattern of alcohol consumption among young people in several countries. Despite increasing evidence that binge drinking is associated with impairments in executive aspects of working memory (i.e. self-ordered working memory), processes known to depend on the mid-dorsolateral prefrontal cortex (Brodmann areas 46 and 9), less is known about the impact of binge drinking on prefrontal gray matter integrity. Here, we investigated the effects of binge drinking on gray matter volume of mid- dorsolateral prefrontal cortex in youths. We used voxel-based morphometry on the structural magnetic resonance images of subjects reporting a persistent (at least three years) binge drinking pattern of alcohol use (n = 11; age 22.43 ± 1.03) and control subjects (n = 21; age 22.18 ± 1.08) to measure differences in gray matter volume between both groups. In a region of interest analysis of the mid-dorsolateral prefrontal cortex, after co-varying for age and gender, we observed significantly larger gray matter volume in the left mid-dorsolateral prefrontal cortex (Brodmann areas 46 and 9) in binge drinkers in comparison with control subjects. Furthermore, there was a significant positive correlation between left mid-dorsolateral prefrontal cortex volume and Self-Ordered Pointing Test (SOPT) total errors score in binge drinkers. The left mid-dorsolateral prefrontal cortex volume also correlated with the quantity and speed of alcohol intake. These findings indicate that a repeated exposure to alcohol -that does not meet criteria for alcohol dependence- throughout post-adolescent years and young adulthood is linked with structural anomalies in mid-dorsolateral prefrontal regions critically involved in executive aspects of working memory. PMID:24789323

  9. Larger Mid-Dorsolateral Prefrontal Gray Matter Volume in Young Binge Drinkers Revealed by Voxel-Based Morphometry

    PubMed Central

    Doallo, Sonia; Cadaveira, Fernando; Corral, Montserrat; Mota, Nayara; López-Caneda, Eduardo; Holguín, Socorro Rodríguez

    2014-01-01

    Binge drinking or heavy episodic drinking is a high prevalent pattern of alcohol consumption among young people in several countries. Despite increasing evidence that binge drinking is associated with impairments in executive aspects of working memory (i.e. self-ordered working memory), processes known to depend on the mid-dorsolateral prefrontal cortex (Brodmann areas 46 and 9), less is known about the impact of binge drinking on prefrontal gray matter integrity. Here, we investigated the effects of binge drinking on gray matter volume of mid- dorsolateral prefrontal cortex in youths. We used voxel-based morphometry on the structural magnetic resonance images of subjects reporting a persistent (at least three years) binge drinking pattern of alcohol use (n = 11; age 22.43±1.03) and control subjects (n = 21; age 22.18±1.08) to measure differences in gray matter volume between both groups. In a region of interest analysis of the mid-dorsolateral prefrontal cortex, after co-varying for age and gender, we observed significantly larger gray matter volume in the left mid-dorsolateral prefrontal cortex (Brodmann areas 46 and 9) in binge drinkers in comparison with control subjects. Furthermore, there was a significant positive correlation between left mid-dorsolateral prefrontal cortex volume and Self-Ordered Pointing Test (SOPT) total errors score in binge drinkers. The left mid-dorsolateral prefrontal cortex volume also correlated with the quantity and speed of alcohol intake. These findings indicate that a repeated exposure to alcohol −that does not meet criteria for alcohol dependence− throughout post-adolescent years and young adulthood is linked with structural anomalies in mid-dorsolateral prefrontal regions critically involved in executive aspects of working memory. PMID:24789323

  10. Fiber optic-based laser vapor screen flow visualization systems for aerodynamic research in larger-scale subsonic and transonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Inenaga, Andrew S.

    1992-01-01

    The design, installation, and application of the NASA laser vapor screen (LVS) flow visualization systems developed by 10-foot high speed tunnel and 8-foot transonic pressure tunnel are discussed. Sufficient quantity of water is injected into the wind tunnel diffuser section to increase the relative humidity and promote condensation of the water vapor in the flow field about the model. Vortex-dominated flows are illuminated with an intense sheet of laser light. Fiber optics are used to deliver the laser beam through the plenum shell that surrounds the test section of each facility and to the light sheet-generating optics positioned in the ceiling window of the test section. Operational experience indicates that fiber optic-based systems are safe, reliable, and capable of proving high-quality off-surface flow visualization in larger scale subsonic and transonic wind tunnels.

  11. Dense sampling reveals behavioral oscillations in rapid visual categorization.

    PubMed

    Drewes, Jan; Zhu, Weina; Wutz, Andreas; Melcher, David

    2015-01-01

    Perceptual systems must create discrete objects and events out of a continuous flow of sensory information. Previous studies have demonstrated oscillatory effects in the behavioral outcome of low-level visual tasks, suggesting a cyclic nature of visual processing as the solution. To investigate whether these effects extend to more complex tasks, a stream of "neutral" photographic images (not containing targets) was rapidly presented (20 ms/image). Embedded were one or two presentations of a randomly selected target image (vehicles and animals). Subjects reported the perceived target category. On dual-presentation trials, the ISI varied systematically from 0 to 600 ms. At randomized timing before first target presentation, the screen was flashed with the intent of creating a phase reset in the visual system. Sorting trials by temporal distance between flash and first target presentation revealed strong oscillations in behavioral performance, peaking at 5 Hz. On dual-target trials, longer ISIs led to reduced performance, implying a temporal integration window for object category discrimination. The "animal" trials exhibited a significant oscillatory component around 5 Hz. Our results indicate that oscillatory effects are not mere fringe effects relevant only with simple stimuli, but are resultant from the core mechanisms of visual processing and may well extend into real-life scenarios. PMID:26542183

  12. Visual Mismatch Negativity Reveals Automatic Detection of Sequential Regularity Violation

    PubMed Central

    Stefanics, Gábor; Kimura, Motohiro; Czigler, István

    2011-01-01

    Sequential regularities are abstract rules based on repeating sequences of environmental events, which are useful to make predictions about future events. Here, we tested whether the visual system is capable to detect sequential regularity in unattended stimulus sequences. The visual mismatch negativity (vMMN) component of the event-related potentials is sensitive to the violation of complex regularities (e.g., object-related characteristics, temporal patterns). We used the vMMN component as an index of violation of conditional (if, then) regularities. In the first experiment, to investigate emergence of vMMN and other change-related activity to the violation of conditional rules, red and green disk patterns were delivered in pairs. The majority of pairs comprised of disk patterns with identical colors, whereas in deviant pairs the colors were different. The probabilities of the two colors were equal. The second member of the deviant pairs elicited a vMMN with longer latency and more extended spatial distribution to deviants with lower probability (10 vs. 30%). In the second (control) experiment the emergence of vMMN to violation of a simple, feature-related rule was studied using oddball sequences of stimulus pairs where deviant colors were presented with 20% probabilities. Deviant colored patterns elicited a vMMN, and this component was larger for the second member of the pair, i.e., after a shorter inter-stimulus interval. This result corresponds to the SOA/(v)MMN relationship, expected on the basis of a memory-mismatch process. Our results show that the system underlying vMMN is sensitive to abstract, conditional rules. Representation of such rules implicates expectation of a subsequent event, therefore vMMN can be considered as a correlate of violated predictions about the characteristics of environmental events. PMID:21629766

  13. Point-of-gaze analysis reveals visual search strategies

    NASA Astrophysics Data System (ADS)

    Rajashekar, Umesh; Cormack, Lawrence K.; Bovik, Alan C.

    2004-06-01

    Seemingly complex tasks like visual search can be analyzed using a cognition-free, bottom-up framework. We sought to reveal strategies used by observers in visual search tasks using accurate eye tracking and image analysis at point of gaze. Observers were instructed to search for simple geometric targets embedded in 1/f noise. By analyzing the stimulus at the point of gaze using the classification image (CI) paradigm, we discovered CI templates that indeed resembled the target. No such structure emerged for a random-searcher. We demonstrate, qualitatively and quantitatively, that these CI templates are useful in predicting stimulus regions that draw human fixations in search tasks. Filtering a 1/f noise stimulus with a CI results in a 'fixation prediction map'. A qualitative evaluation of the prediction was obtained by overlaying k-means clusters of observers' fixations on the prediction map. The fixations clustered around the local maxima in the prediction map. To obtain a quantitative comparison, we computed the Kullback-Leibler distance between the recorded fixations and the prediction. Using random-searcher CIs in Monte Carlo simulations, a distribution of this distance was obtained. The z-scores for the human CIs and the original target were -9.70 and -9.37 respectively indicating that even in noisy stimuli, observers deploy their fixations efficiently to likely targets rather than casting them randomly hoping to fortuitously find the target.

  14. Perceptual rivalry: reflexes reveal the gradual nature of visual awareness.

    PubMed

    Naber, Marnix; Frässle, Stefan; Einhäuser, Wolfgang

    2011-01-01

    Rivalry is a common tool to probe visual awareness: a constant physical stimulus evokes multiple, distinct perceptual interpretations ("percepts") that alternate over time. Percepts are typically described as mutually exclusive, suggesting that a discrete (all-or-none) process underlies changes in visual awareness. Here we follow two strategies to address whether rivalry is an all-or-none process: first, we introduce two reflexes as objective measures of rivalry, pupil dilation and optokinetic nystagmus (OKN); second, we use a continuous input device (analog joystick) to allow observers a gradual subjective report. We find that the "reflexes" reflect the percept rather than the physical stimulus. Both reflexes show a gradual dependence on the time relative to perceptual transitions. Similarly, observers' joystick deflections, which are highly correlated with the reflex measures, indicate gradual transitions. Physically simulating wave-like transitions between percepts suggest piece-meal rivalry (i.e., different regions of space belonging to distinct percepts) as one possible explanation for the gradual transitions. Furthermore, the reflexes show that dominance durations depend on whether or not the percept is actively reported. In addition, reflexes respond to transitions with shorter latencies than the subjective report and show an abundance of short dominance durations. This failure to report fast changes in dominance may result from limited access of introspection to rivalry dynamics. In sum, reflexes reveal that rivalry is a gradual process, rivalry's dynamics is modulated by the required action (response mode), and that rapid transitions in perceptual dominance can slip away from awareness. PMID:21677786

  15. ERPs Reveal the Time-Course of Aberrant Visual-Phonological Binding in Developmental Dyslexia

    PubMed Central

    Jones, Manon W.; Kuipers, Jan-Rouke; Thierry, Guillaume

    2016-01-01

    New evidence is accumulating for a deficit in binding visual-orthographic information with the corresponding phonological code in developmental dyslexia. Here, we identify the mechanisms underpinning this deficit using event-related brain potentials (ERPs) in dyslexic and control adult readers performing a letter-matching task. In each trial, a printed letter was presented synchronously with an auditory letter name. Incongruent (mismatched), frequent trials were interleaved with congruent (matched) infrequent target pairs, which participants were asked to report by pressing a button. In critical trials, incongruent letter pairs were mismatched but confusable in terms of their visual or phonological features. Typical readers showed early detection of deviant trials, indicated by larger modulation in the range of the phonological mismatch negativity (PMN) compared with standard trials. This was followed by stronger modulation of the P3b wave for visually confusable deviants and an increased lateralized readiness potential (LRP) for phonological deviants, compared with standards. In contrast, dyslexic readers showed reduced sensitivity to deviancy in the PMN range. Responses to deviants in the P3b range indicated normal letter recognition processes, but the LRP calculation revealed a specific impairment for visual-orthographic information during response selection in dyslexia. In a follow-up experiment using an analogous non-lexical task in the same participants, we found no reading-group differences, indicating a degree of specificity to over-learnt visual-phonological binding. Our findings indicate early insensitivity to visual-phonological binding in developmental dyslexia, coupled with difficulty selecting the correct orthographic code. PMID:26973493

  16. ERPs Reveal the Time-Course of Aberrant Visual-Phonological Binding in Developmental Dyslexia.

    PubMed

    Jones, Manon W; Kuipers, Jan-Rouke; Thierry, Guillaume

    2016-01-01

    New evidence is accumulating for a deficit in binding visual-orthographic information with the corresponding phonological code in developmental dyslexia. Here, we identify the mechanisms underpinning this deficit using event-related brain potentials (ERPs) in dyslexic and control adult readers performing a letter-matching task. In each trial, a printed letter was presented synchronously with an auditory letter name. Incongruent (mismatched), frequent trials were interleaved with congruent (matched) infrequent target pairs, which participants were asked to report by pressing a button. In critical trials, incongruent letter pairs were mismatched but confusable in terms of their visual or phonological features. Typical readers showed early detection of deviant trials, indicated by larger modulation in the range of the phonological mismatch negativity (PMN) compared with standard trials. This was followed by stronger modulation of the P3b wave for visually confusable deviants and an increased lateralized readiness potential (LRP) for phonological deviants, compared with standards. In contrast, dyslexic readers showed reduced sensitivity to deviancy in the PMN range. Responses to deviants in the P3b range indicated normal letter recognition processes, but the LRP calculation revealed a specific impairment for visual-orthographic information during response selection in dyslexia. In a follow-up experiment using an analogous non-lexical task in the same participants, we found no reading-group differences, indicating a degree of specificity to over-learnt visual-phonological binding. Our findings indicate early insensitivity to visual-phonological binding in developmental dyslexia, coupled with difficulty selecting the correct orthographic code. PMID:26973493

  17. Dissociable Modulation of Overt Visual Attention in Valence and Arousal Revealed by Topology of Scan Path

    PubMed Central

    Ni, Jianguang; Jiang, Huihui; Jin, Yixiang; Chen, Nanhui; Wang, Jianhong; Wang, Zhengbo; Luo, Yuejia; Ma, Yuanye; Hu, Xintian

    2011-01-01

    Emotional stimuli have evolutionary significance for the survival of organisms; therefore, they are attention-grabbing and are processed preferentially. The neural underpinnings of two principle emotional dimensions in affective space, valence (degree of pleasantness) and arousal (intensity of evoked emotion), have been shown to be dissociable in the olfactory, gustatory and memory systems. However, the separable roles of valence and arousal in scene perception are poorly understood. In this study, we asked how these two emotional dimensions modulate overt visual attention. Twenty-two healthy volunteers freely viewed images from the International Affective Picture System (IAPS) that were graded for affective levels of valence and arousal (high, medium, and low). Subjects' heads were immobilized and eye movements were recorded by camera to track overt shifts of visual attention. Algebraic graph-based approaches were introduced to model scan paths as weighted undirected path graphs, generating global topology metrics that characterize the algebraic connectivity of scan paths. Our data suggest that human subjects show different scanning patterns to stimuli with different affective ratings. Valence salient stimuli (with neutral arousal) elicited faster and larger shifts of attention, while arousal salient stimuli (with neutral valence) elicited local scanning, dense attention allocation and deep processing. Furthermore, our model revealed that the modulatory effect of valence was linearly related to the valence level, whereas the relation between the modulatory effect and the level of arousal was nonlinear. Hence, visual attention seems to be modulated by mechanisms that are separate for valence and arousal. PMID:21494331

  18. Eye Movements Reveal How Task Difficulty Moulds Visual Search

    ERIC Educational Resources Information Center

    Young, Angela H.; Hulleman, Johan

    2013-01-01

    In two experiments we investigated the relationship between eye movements and performance in visual search tasks of varying difficulty. Experiment 1 provided evidence that a single process is used for search among static and moving items. Moreover, we estimated the functional visual field (FVF) from the gaze coordinates and found that its size…

  19. Larger Icy Satellites

    NASA Astrophysics Data System (ADS)

    Vance, Steven; Buratti, B. J.; Hansen, C.; Hurford, T.; McKinnon, W. B.; Pappalardo, R. T.; Turtle, E. P.

    2009-09-01

    Outer planets exploration in the past three decades has revealed a diverse host of large icy bodies undergoing a myriad of geological and chemical processes remarkably similar yet alien to those occurring on Earth. The most active of these, including the Galilean satellites and Saturn's moons Enceladus and Titan, are obvious targets for future robotic exploration. The broader host of satellites larger than 100 km should also figure into NASA's goals, owing to their abundance and insights they offer into past and present geological processes, Solar System formation and planetary evolution. Included in this class are the enigmatic objects Dione, with its smooth planes and fractured regions; Mimas with its giant crater Herschel; Iapetus, which has an odd shape and a mysterious equatorial ridge; Miranda, which has been subjected to drastic geologic reconfiguration; and Triton, with its geyser-like plumes. Many bodies in this class are of sufficient size and density to have hosted internal liquid water oceans in their early history, or even in the present epoch, making them targets of astrobiological interest. We discuss the importance of larger icy satellites to NASA's objectives, their importance for understanding, geology, chemistry and dynamics in the Solar System, and observational and experimental challenges that need to be addressed in the next decade.

  20. Revealing hidden states in visual working memory using electroencephalography

    PubMed Central

    Wolff, Michael J.; Ding, Jacqueline; Myers, Nicholas E.; Stokes, Mark G.

    2015-01-01

    It is often assumed that information in visual working memory (vWM) is maintained via persistent activity. However, recent evidence indicates that information in vWM could be maintained in an effectively “activity-silent” neural state. Silent vWM is consistent with recent cognitive and neural models, but poses an important experimental problem: how can we study these silent states using conventional measures of brain activity? We propose a novel approach that is analogous to echolocation: using a high-contrast visual stimulus, it may be possible to drive brain activity during vWM maintenance and measure the vWM-dependent impulse response. We recorded electroencephalography (EEG) while participants performed a vWM task in which a randomly oriented grating was remembered. Crucially, a high-contrast, task-irrelevant stimulus was shown in the maintenance period in half of the trials. The electrophysiological response from posterior channels was used to decode the orientations of the gratings. While orientations could be decoded during and shortly after stimulus presentation, decoding accuracy dropped back close to baseline in the delay. However, the visual evoked response from the task-irrelevant stimulus resulted in a clear re-emergence in decodability. This result provides important proof-of-concept for a promising and relatively simple approach to decode “activity-silent” vWM content using non-invasive EEG. PMID:26388748

  1. Visual discrimination of delayed self-generated movement reveals the temporal limit of proprioceptive-visual intermodal integration.

    PubMed

    Jaime, Mark; O'Driscoll, Kelly; Moore, Chris

    2016-07-01

    This study examined the intermodal integration of visual-proprioceptive feedback via a novel visual discrimination task of delayed self-generated movement. Participants performed a goal-oriented task in which visual feedback was available only via delayed videos displayed on two monitors-each with different delay durations. During task performance, delay duration was varied for one of the videos in the pair relative to a standard delay, which was held constant. Participants were required to identify and use the video with the lesser delay to perform the task. Visual discrimination of the lesser-delayed video was examined under four conditions in which the standard delay was increased for each condition. A temporal limit for proprioceptive-visual intermodal integration of 3-5s was revealed by subjects' inability to reliably discriminate video pairs. PMID:27208649

  2. Direct visualization reveals kinetics of meiotic chromosome synapsis

    SciTech Connect

    Rog, Ofer; Dernburg, Abby  F.

    2015-03-17

    The synaptonemal complex (SC) is a conserved protein complex that stabilizes interactions along homologous chromosomes (homologs) during meiosis. The SC regulates genetic exchanges between homologs, thereby enabling reductional division and the production of haploid gametes. Here, we directly observe SC assembly (synapsis) by optimizing methods for long-term fluorescence recording in C. elegans. We report that synapsis initiates independently on each chromosome pair at or near pairing centers—specialized regions required for homolog associations. Once initiated, the SC extends rapidly and mostly irreversibly to chromosome ends. Quantitation of SC initiation frequencies and extension rates reveals that initiation is a rate-limiting step in homolog interactions. Eliminating the dynein-driven chromosome movements that accompany synapsis severely retards SC extension, revealing a new role for these conserved motions. This work provides the first opportunity to directly observe and quantify key aspects of meiotic chromosome interactions and will enable future in vivo analysis of germline processes.

  3. Direct visualization reveals kinetics of meiotic chromosome synapsis

    DOE PAGESBeta

    Rog, Ofer; Dernburg, Abby  F.

    2015-03-17

    The synaptonemal complex (SC) is a conserved protein complex that stabilizes interactions along homologous chromosomes (homologs) during meiosis. The SC regulates genetic exchanges between homologs, thereby enabling reductional division and the production of haploid gametes. Here, we directly observe SC assembly (synapsis) by optimizing methods for long-term fluorescence recording in C. elegans. We report that synapsis initiates independently on each chromosome pair at or near pairing centers—specialized regions required for homolog associations. Once initiated, the SC extends rapidly and mostly irreversibly to chromosome ends. Quantitation of SC initiation frequencies and extension rates reveals that initiation is a rate-limiting step inmore » homolog interactions. Eliminating the dynein-driven chromosome movements that accompany synapsis severely retards SC extension, revealing a new role for these conserved motions. This work provides the first opportunity to directly observe and quantify key aspects of meiotic chromosome interactions and will enable future in vivo analysis of germline processes.« less

  4. A Mouse Model of Visual Perceptual Learning Reveals Alterations in Neuronal Coding and Dendritic Spine Density in the Visual Cortex

    PubMed Central

    Wang, Yan; Wu, Wei; Zhang, Xian; Hu, Xu; Li, Yue; Lou, Shihao; Ma, Xiao; An, Xu; Liu, Hui; Peng, Jing; Ma, Danyi; Zhou, Yifeng; Yang, Yupeng

    2016-01-01

    Visual perceptual learning (VPL) can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF) for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS) and a 55% gain in visual acuity (VA). Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1) than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL. PMID:27014004

  5. Acting without seeing: Eye movements reveal visual processing without awareness Miriam Spering & Marisa Carrasco

    PubMed Central

    Spering, Miriam; Carrasco, Marisa

    2015-01-01

    Visual perception and eye movements are considered to be tightly linked. Diverse fields, ranging from developmental psychology to computer science, utilize eye tracking to measure visual perception. However, this prevailing view has been challenged by recent behavioral studies. We review converging evidence revealing dissociations between the contents of perceptual awareness and different types of eye movements. Such dissociations reveal situations in which eye movements are sensitive to particular visual features that fail to modulate perceptual reports. We also discuss neurophysiological, neuroimaging and clinical studies supporting the role of subcortical pathways for visual processing without awareness. Our review links awareness to perceptual-eye movement dissociations and furthers our understanding of the brain pathways underlying vision and movement with and without awareness. PMID:25765322

  6. Neural mechanisms of visual backward masking revealed by high temporal resolution imaging of human brain.

    PubMed

    Noguchi, Yasuki; Kakigi, Ryusuke

    2005-08-01

    Backward masking is one of the potent ways to reveal the neural mechanism of visual awareness in humans. Although previous neuroimaging studies have reported that the visual masking involves the attenuation of hemodynamic signals to the masked stimulus in visual ventral regions such as the fusiform and inferior temporal gyrus, the temporal profiles of this attenuation as a whole neural population is mostly unclear. Here we used magnetoencephalography and investigated the neural response changes in higher visual region induced by backward masking. The combination of our previous random dot blinking method with the sensor-based analysis isolated the neural responses in the higher visual cortex relating to shape perception. The results revealed that, as the visibility of the target stimulus was reduced by the mask following it, the neural response to the target in the ventral regions showed gradual decreases both in its peak amplitude and peak latency. Furthermore, this decrease in the peak amplitudes was significantly correlated with the behavioral accuracy of the target identification, while the peak latency was not. These results indicate that backward masking simultaneously produces two types of neural changes in higher visual regions: attenuation of the populational neural activity itself and temporal interruption of this activity by the subsequent mask response. Especially, our data suggest that the response attenuation in higher visual response is a main cause of the perceptual impairment observed in the backward masking paradigm. PMID:15878677

  7. Growth oscillation in larger foraminifera

    PubMed Central

    Briguglio, Antonino; Hohenegger, Johann

    2015-01-01

    This work shows the potential for applying three-dimensional biometry to studying cell growth in larger benthic foraminifera. The volume of each test chamber was measured from the three-dimensional model obtained by means of computed tomography. Analyses of cell growth based on the sequence of chamber volumes revealed constant and significant oscillations for all investigated specimens, characterized by periods of approximately 15, 30, 90, and 360 days. Possible explanations for these periods are connected to tides, lunar cycles, and seasonality. The potential to record environmental oscillations or fluctuations during the lifetime of larger foraminifera is pivotal for reconstructing short-term paleoenvironmental variations or for gaining insight into the influence of tides or tidal current on the shallow-water benthic fauna in both recent and fossil environments. PMID:26166912

  8. Visual Stability and the Motion Aftereffect: A Psychophysical Study Revealing Spatial Updating

    PubMed Central

    Biber, Ulrich; Ilg, Uwe J.

    2011-01-01

    Eye movements create an ever-changing image of the world on the retina. In particular, frequent saccades call for a compensatory mechanism to transform the changing visual information into a stable percept. To this end, the brain presumably uses internal copies of motor commands. Electrophysiological recordings of visual neurons in the primate lateral intraparietal cortex, the frontal eye fields, and the superior colliculus suggest that the receptive fields (RFs) of special neurons shift towards their post-saccadic positions before the onset of a saccade. However, the perceptual consequences of these shifts remain controversial. We wanted to test in humans whether a remapping of motion adaptation occurs in visual perception. The motion aftereffect (MAE) occurs after viewing of a moving stimulus as an apparent movement to the opposite direction. We designed a saccade paradigm suitable for revealing pre-saccadic remapping of the MAE. Indeed, a transfer of motion adaptation from pre-saccadic to post-saccadic position could be observed when subjects prepared saccades. In the remapping condition, the strength of the MAE was comparable to the effect measured in a control condition (33±7% vs. 27±4%). Contrary, after a saccade or without saccade planning, the MAE was weak or absent when adaptation and test stimulus were located at different retinal locations, i.e. the effect was clearly retinotopic. Regarding visual cognition, our study reveals for the first time predictive remapping of the MAE but no spatiotopic transfer across saccades. Since the cortical sites involved in motion adaptation in primates are most likely the primary visual cortex and the middle temporal area (MT/V5) corresponding to human MT, our results suggest that pre-saccadic remapping extends to these areas, which have been associated with strict retinotopy and therefore with classical RF organization. The pre-saccadic transfer of visual features demonstrated here may be a crucial determinant for a

  9. Feedforward and quick recurrent processes in early visual cortex revealed by TMS?

    PubMed

    de Graaf, Tom A; Goebel, Rainer; Sack, Alexander T

    2012-07-01

    Transcranial magnetic stimulation (TMS) can be applied to occipital cortex to abolish (conscious) perception of visual stimuli. TMS research has revealed several time windows of masking relative to visual stimulus onset, most consistently a time window around 100ms post-stimulus. However, the exact nature of visual processing in this 'classical' time window, e.g. whether it represents the feedforward processing of the visual information, or rather a feedback projection from higher visual areas, remains unclear. Here, we used TMS to mask in the same participants two types of stimuli of different complexities (orientation Gratings and Faces) over different time windows. Interestingly, the masking functions were not the same for both stimulus types. We found an earlier peak masking latency for orientation stimuli, and a slower recovery for Faces. In a second, follow-up experiment, we superimposed both types of stimuli to create one composite stimulus set. Depending on the instruction, participants could then perform orientation or face discrimination tasks on the exact same stimuli. In addition, for each participant, stimuli were calibrated to equate task difficulties. The peak masking latency was now identical for both tasks, but the masking function revealed again a slower recovery during the face discrimination task, suggesting top-down (recurrent) effects in the second half of the masking function. Hence, rather than this masking window reflecting either feedforward or feedback processing, the early part of what is traditionally considered one masking window may reflect feedforward processing, while the latter part may already reflect recurrent processing. These findings shed new light on recurrent models of vision and related theoretical accounts of visual awareness. PMID:22032946

  10. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution.

    PubMed

    Hertz, Uri; Amedi, Amir

    2015-08-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756

  11. Dynamics of the spatial scale of visual attention revealed by brain event-related potentials

    NASA Technical Reports Server (NTRS)

    Luo, Y. J.; Greenwood, P. M.; Parasuraman, R.

    2001-01-01

    The temporal dynamics of the spatial scaling of attention during visual search were examined by recording event-related potentials (ERPs). A total of 16 young participants performed a search task in which the search array was preceded by valid cues that varied in size and hence in precision of target localization. The effects of cue size on short-latency (P1 and N1) ERP components, and the time course of these effects with variation in cue-target stimulus onset asynchrony (SOA), were examined. Reaction time (RT) to discriminate a target was prolonged as cue size increased. The amplitudes of the posterior P1 and N1 components of the ERP evoked by the search array were affected in opposite ways by the size of the precue: P1 amplitude increased whereas N1 amplitude decreased as cue size increased, particularly following the shortest SOA. The results show that when top-down information about the region to be searched is less precise (larger cues), RT is slowed and the neural generators of P1 become more active, reflecting the additional computations required in changing the spatial scale of attention to the appropriate element size to facilitate target discrimination. In contrast, the decrease in N1 amplitude with cue size may reflect a broadening of the spatial gradient of attention. The results provide electrophysiological evidence that changes in the spatial scale of attention modulate neural activity in early visual cortical areas and activate at least two temporally overlapping component processes during visual search.

  12. Contralateral delay activity reveals dimension-based attentional orienting to locations in visual working memory.

    PubMed

    Töllner, Thomas; Eschmann, Kathrin C J; Rusch, Tessa; Müller, Hermann J

    2014-04-01

    In research on visual working memory (WM), a contentiously debated issue concerns whether or not items are stored independently of one another in WM. Here we addressed this issue by exploring the role of the physical context that surrounds a given item in the memory display in the formation of WM representations. In particular, we employed bilateral memory displays that contained two or three lateralized singleton items (together with six or five distractor items), defined either within the same or in different visual feature dimensions. After a variable interval, a retro-cue was presented centrally, requiring participants to discern the presence (vs. the absence) of this item in the previously shown memory array. Our results show that search for targets in visual WM is determined interactively by dimensional context and set size: For larger, but not smaller, set sizes, memory search slowed down when targets were defined across rather than within dimensions. This dimension-specific cost manifested in a stronger contralateral delay activity component, an established neural marker of the access to WM representations. Overall, our findings provide electrophysiological evidence for the hierarchically structured nature of WM representations, and they appear inconsistent with the view that WM items are encoded in isolation. PMID:24510425

  13. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence.

    PubMed

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-01-01

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. PMID:27282108

  14. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence

    PubMed Central

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-01-01

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. PMID:27282108

  15. Wide-field Ca2+ imaging reveals visually evoked activity in the retrosplenial area

    PubMed Central

    Murakami, Tomonari; Yoshida, Takashi; Matsui, Teppei; Ohki, Kenichi

    2015-01-01

    Due to recent advances of genetic manipulation, mouse brain has become a useful model for studying brain function, which demands whole brain functional mapping techniques in the mouse brain. In the present study, to finely map visual responsive areas in the mouse brain, we combined high-resolution wide-field optical imaging with transgenic mice containing the genetically encoded Ca2+ indicator, GCaMP3. With the high signal amplitude of GCaMP3 expressing in excitatory neurons, this system allowed neural activity to be observed with relatively fine spatial resolution and cell-type specificity. To evaluate this system, we examined whether non-visual areas exhibited a visual response over the entire surface of the mouse hemisphere. We found that two association areas, the retrosplenial area (RS) and secondary motor/anterior cingulate area (M2/AC), were significantly responsive to drifting gratings. Examination using gratings with distinct spatiotemporal frequency parameters revealed that the RS strongly responded to high-spatial and low-temporal frequency gratings. The M2/AC exhibited a response property similar to that of the RS, though it was not statistically significant. Finally, we performed cellular imaging using two-photon microscopy to examine orientation and direction selectivity of individual neurons, and found that a minority of neurons in the RS clearly showed visual responses sharply selective for orientation and direction. These results suggest that neurons in RS encode visual information of fine spatial details in images. Thus, the present study shows the usefulness of the functional mapping method using a combination of wide-field and two-photon Ca2+ imaging, which allows for whole brain mapping with high spatiotemporal resolution and cell-type specificity. PMID:26106292

  16. Simulations and Visualizations of Hurricane Sandy (2012) as Revealed by the NASA CAMVis

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen

    2013-01-01

    Storm Sandy first appeared as a tropical storm in the southern Caribbean Sea on Oct. 22, 2012, moved northeastward, turned northwestward, and made landfall near Brigantine, New Jersey in late October. Sandy devastated surrounding areas, caused an estimated damage of $50 billion, and became the second costliest tropical cyclone (TC) in U.S. History surpassed only by Hurricane Katrina (2005). To save lives and mitigate economic damage, a central question to be addressed is to what extent the lead time of severe storm prediction such as Sandy can be extended (e.g., Emanuel 2012; Kerr 2012). In this study, we present 10 numerical experiments initialized at 00 and 1200 UTC Oct. 22-26, 2012, with the NASA coupled advanced global modeling and visualization systems (CAMVis). All of the predictions realistically capture Sandy's movement with the northwestward turn prior to its landfall. However, three experiments (initialized at 0000 UTC Oct. 22 and 24 and 1200 UTC Oct. 22) produce larger errors. Among the 10 experiments, the control run initialized at 0000 UTC Oct. 23 produces a remarkable 7-day forecast. To illustrate the impact of environmental flows on the predictability of Sandy, we produce and discuss four-dimensional (4-D) visualizations with the control run. 4-D visualizations clearly demonstrate the following multiscale processes that led to the sinuous track of Sandy: the initial steering impact of an upper-level trough (appearing over the northwestern Caribbean Sea and Gulf of Mexico), the blocking impact of systems to the northeast of Sandy, and the binary interaction with a mid-latitude, upper-level trough that appeared at 130degrees west longitude on Oct. 23, moved to the East Coast and intensified during the period of Oct. 29-30 prior to Sandy's landfall.

  17. The neural origins of visual crowding as revealed by event-related potentials and oscillatory dynamics.

    PubMed

    Ronconi, Luca; Bertoni, Sara; Bellacosa Marotti, Rosilari

    2016-06-01

    Visual crowding is the difficulty in perceiving a target in the presence of nearby flankers. Most neurophysiological studies of crowding employed functional neuroimaging, but because of its low temporal resolution, no definitive answer can be given to the question: is crowding arising at the earliest or at later stages of visual processing? Here, we used a classic letters crowding paradigm in combination with electroencephalography (EEG). We manipulated the critical space between peripheral target and flankers, while ensuring a proper control of basic stimulus characteristics. Analyses were focused on event-related potentials (ERPs) and oscillatory activity in the alpha (8-12 Hz), beta (15-30 Hz) and gamma (30-80 Hz) bands. At the ERP level, we found that the first sign of a crowding-induced modulation of EEG activity was a suppression of the N1 component. Oscillatory analysis revealed an early stimulus-evoked gamma enhancement and a later alpha reduction that, however, were not influenced by the amount of crowding. Importantly, reduction in the beta band reflected the amount of crowding (i.e., stronger reduction for strong relative to mid crowding condition) and correlated with individual behavioral performance. Collectively, these findings show that crowding for complex objects emerges at later stages of visual processing, possibly as a result of large-scale network interaction. PMID:27088616

  18. Mystery Montage: A Holistic, Visual, and Kinesthetic Process for Expanding Horizons and Revealing the Core of a Teaching Philosophy

    ERIC Educational Resources Information Center

    Ennis, Kim; Priebe, Carly; Sharipova, Mayya; West, Kim

    2012-01-01

    Revealing the core of a teaching philosophy is the key to a concise and meaningful philosophy statement, but it can be an elusive goal. This paper offers a visual, kinesthetic, and holistic process for expanding the horizons of self-reflection, self-analysis, and self-knowledge. Mystery montage, a variation of visual mapping, storyboarding, and…

  19. Functional magnetic resonance imaging adaptation reveals a noncategorical representation of hue in early visual cortex

    PubMed Central

    Persichetti, Andrew S.; Thompson-Schill, Sharon L.; Butt, Omar H.; Brainard, David H.; Aguirre, Geoffrey K.

    2015-01-01

    Color names divide the fine-grained gamut of color percepts into discrete categories. A categorical transition must occur somewhere between the initial encoding of the continuous spectrum of light by the cones and the verbal report of the name of a color stimulus. Here, we used a functional magnetic resonance imaging (fMRI) adaptation experiment to examine the representation of hue in the early visual cortex. Our stimuli varied in hue between blue and green. We found in the early visual areas (V1, V2/3, and hV4) a smoothly increasing recovery from adaptation with increasing hue distance between adjacent stimuli during both passive viewing (Experiment 1) and active categorization (Experiment 2). We examined the form of the adaptation effect and found no evidence that a categorical representation mediates the release from adaptation for stimuli that cross the blue–green color boundary. Examination of the direct effect of stimulus hue on the fMRI response did, however, reveal an enhanced response to stimuli near the blue–green category border. This was largest in hV4 and when subjects were engaged in active categorization of the stimulus hue. In contrast with a recent report from another laboratory (Bird, Berens, Horner, & Franklin, 2014), we found no evidence for a categorical representation of color in the middle frontal gyrus. A post hoc whole-brain analysis, however, revealed several regions in the frontal cortex with a categorical effect in the adaptation response. Overall, our results support the idea that the representation of color in the early visual cortex is primarily fine grained and does not reflect color categories. PMID:26024465

  20. Reduction in Dynamic Visual Acuity Reveals Gaze Control Changes Following Spaceflight

    NASA Technical Reports Server (NTRS)

    Peters, Brian T.; Brady, Rachel A.; Miller, Chris; Lawrence, Emily L.; Mulavara Ajitkumar P.; Bloomberg, Jacob J.

    2010-01-01

    INTRODUCTION: Exposure to microgravity causes adaptive changes in eye-head coordination that can lead to altered gaze control. This could affect postflight visual acuity during head and body motion. The goal of this study was to characterize changes in dynamic visual acuity after long-duration spaceflight. METHODS: Dynamic Visual Acuity (DVA) data from 14 astro/cosmonauts were collected after long-duration (6 months) spaceflight. The difference in acuity between seated and walking conditions provided a metric of change in the subjects ability to maintain gaze fixation during self-motion. In each condition, a psychophysical threshold detection algorithm was used to display Landolt ring optotypes at a size that was near each subject s acuity threshold. Verbal responses regarding the orientation of the gap were recorded as the optotypes appeared sequentially on a computer display 4 meters away. During the walking trials, subjects walked at 6.4 km/h on a motorized treadmill. RESULTS: A decrement in mean postflight DVA was found, with mean values returning to baseline within 1 week. The population mean showed a consistent improvement in DVA performance, but it was accompanied by high variability. A closer examination of the individual subject s recovery curves revealed that many did not follow a pattern of continuous improvement with each passing day. When adjusted on the basis of previous long-duration flight experience, the population mean shows a "bounce" in the re-adaptation curve. CONCLUSION: Gaze control during self-motion is altered following long-duration spaceflight and changes in postflight DVA performance indicate that vestibular re-adaptation may be more complex than a gradual return to normal.

  1. EEG reveals an early influence of social conformity on visual processing in group pressure situations.

    PubMed

    Trautmann-Lengsfeld, Sina Alexa; Herrmann, Christoph Siegfried

    2013-01-01

    Humans are social beings and often have to perceive and perform within groups. In conflict situations, this puts them under pressure to either adhere to the group opinion or to risk controversy with the group. Psychological experiments have demonstrated that study participants adapt to erroneous group opinions in visual perception tasks, which they can easily solve correctly when performing on their own. Until this point, however, it is unclear whether this phenomenon of social conformity influences early stages of perception that might not even reach awareness or later stages of conscious decision-making. Using electroencephalography, this study has revealed that social conformity to the wrong group opinion resulted in a decrease of the posterior-lateral P1 in line with a decrease of the later centro-parietal P3. These results suggest that group pressure situations impact early unconscious visual perceptual processing, which results in a later diminished stimulus discrimination and an adaptation even to the wrong group opinion. These findings might have important implications for understanding social behavior in group settings and are discussed within the framework of social influence on eyewitness testimony. PMID:23163969

  2. Geniculo-Cortical Projection Diversity Revealed within the Mouse Visual Thalamus.

    PubMed

    Leiwe, Marcus N; Hendry, Aenea C; Bard, Andrew D; Eglen, Stephen J; Lowe, Andrew S; Thompson, Ian D

    2016-01-01

    The mouse dorsal lateral geniculate nucleus (dLGN) is an intermediary between retina and primary visual cortex (V1). Recent investigations are beginning to reveal regional complexity in mouse dLGN. Using local injections of retrograde tracers into V1 of adult and neonatal mice, we examined the developing organisation of geniculate projection columns: the population of dLGN-V1 projection neurons that converge in cortex. Serial sectioning of the dLGN enabled the distribution of labelled projection neurons to be reconstructed and collated within a common standardised space. This enabled us to determine: the organisation of cells within the dLGN-V1 projection columns; their internal organisation (topology); and their order relative to V1 (topography). Here, we report parameters of projection columns that are highly variable in young animals and refined in the adult, exhibiting profiles consistent with shell and core zones of the dLGN. Additionally, such profiles are disrupted in adult animals with reduced correlated spontaneous activity during development. Assessing the variability between groups with partial least squares regression suggests that 4-6 cryptic lamina may exist along the length of the projection column. Our findings further spotlight the diversity of the mouse dLGN--an increasingly important model system for understanding the pre-cortical organisation and processing of visual information. Furthermore, our approach of using standardised spaces and pooling information across many animals will enhance future functional studies of the dLGN. PMID:26727264

  3. Geniculo-Cortical Projection Diversity Revealed within the Mouse Visual Thalamus

    PubMed Central

    Leiwe, Marcus N.; Hendry, Aenea C.; Bard, Andrew D.; Eglen, Stephen J.; Lowe, Andrew S.; Thompson, Ian D.

    2016-01-01

    The mouse dorsal lateral geniculate nucleus (dLGN) is an intermediary between retina and primary visual cortex (V1). Recent investigations are beginning to reveal regional complexity in mouse dLGN. Using local injections of retrograde tracers into V1 of adult and neonatal mice, we examined the developing organisation of geniculate projection columns: the population of dLGN-V1 projection neurons that converge in cortex. Serial sectioning of the dLGN enabled the distribution of labelled projection neurons to be reconstructed and collated within a common standardised space. This enabled us to determine: the organisation of cells within the dLGN-V1 projection columns; their internal organisation (topology); and their order relative to V1 (topography). Here, we report parameters of projection columns that are highly variable in young animals and refined in the adult, exhibiting profiles consistent with shell and core zones of the dLGN. Additionally, such profiles are disrupted in adult animals with reduced correlated spontaneous activity during development. Assessing the variability between groups with partial least squares regression suggests that 4–6 cryptic lamina may exist along the length of the projection column. Our findings further spotlight the diversity of the mouse dLGN–an increasingly important model system for understanding the pre-cortical organisation and processing of visual information. Furthermore, our approach of using standardised spaces and pooling information across many animals will enhance future functional studies of the dLGN. PMID:26727264

  4. Revealing the flux: Using processed Husimi maps to visualize dynamics of bound systems and mesoscopic transport

    NASA Astrophysics Data System (ADS)

    Mason, Douglas J.; Borunda, Mario F.; Heller, Eric J.

    2015-04-01

    We elaborate upon the "processed Husimi map" representation for visualizing quantum wave functions using coherent states as a measurement of the local phase space to produce a vector field related to the probability flux. Adapted from the Husimi projection, the processed Husimi map is mathematically related to the flux operator under certain limits but offers a robust and flexible alternative since it can operate away from these limits and in systems that exhibit zero flux. The processed Husimi map is further capable of revealing the full classical dynamics underlying a quantum wave function since it reverse engineers the wave function to yield the underlying classical ray structure. We demonstrate the capabilities of processed Husimi maps on bound systems with and without electromagnetic fields, as well as on open systems on and off resonance, to examine the relationship between closed system eigenstates and mesoscopic transport.

  5. Fast, visual specialization for reading in English revealed by the topography of the N170 ERP response

    PubMed Central

    Maurer, Urs; Brandeis, Daniel; McCandliss, Bruce D

    2005-01-01

    Background N170 effects associated with visual words may be related to perceptual expertise effects that have been demonstrated for faces and other extensively studied classes of visual stimuli. Although face and other object expertise effects are typically bilateral or right-lateralized, the spatial topography of reading-related N170 effects are often left-lateralized, providing potential insights into the unique aspects of reading-related perceptual expertise. Methods Extending previous research in German [1], we use a high-density channel array to characterize the N170 topography for reading-related perceptual expertise in English, a language with inconsistent spelling-to-sound mapping. N170 effects related to overall reading-related expertise are defined by contrasting responses to visual words versus novel symbol strings. By contrasting each of these conditions to pseudowords, we examined how this reading-related N170 effect generalizes to well-ordered novel letter strings. Results A sample-by-sample permutation test computed on word versus symbol ERP topographies revealed differences during two time windows corresponding to the N170 and P300 components. Topographic centroid analysis of the word and symbol N170 demonstrated significant differences in both left-right as well as inferior-superior dimensions. Words elicited larger N170 negativities than symbols at inferior occipito-temporal channels, with the maximal effect over left inferior regions often unsampled in conventional electrode montages. Further contrasts produced inferior-superior topographic effects for the pseudoword-symbol comparison and left-lateralized topographic effects for the word-pseudoword comparison. Conclusion Fast specialized perception related to reading experience produces an N170 modulation detectable across different EEG systems and different languages. Characterization of such effects may be improved by sampling with greater spatial frequency recordings that sample inferior

  6. Neural responses to visual scenes reveals inconsistencies between fMRI adaptation and multivoxel pattern analysis.

    PubMed

    Epstein, Russell A; Morgan, Lindsay K

    2012-03-01

    Human observers can recognize real-world visual scenes with great efficiency. Cortical regions such as the parahippocampal place area (PPA) and retrosplenial complex (RSC) have been implicated in scene recognition, but the specific representations supported by these regions are largely unknown. We used functional magnetic resonance imaging adaptation (fMRIa) and multi-voxel pattern analysis (MVPA) to explore this issue, focusing on whether the PPA and RSC represent scenes in terms of general categories, or as specific scenic exemplars. Subjects were scanned while viewing images drawn from 10 outdoor scene categories in two scan runs and images of 10 familiar landmarks from their home college campus in two scan runs. Analyses of multi-voxel patterns revealed that the PPA and RSC encoded both category and landmark information, with a slight advantage for landmark coding in RSC. fMRIa, on the other hand, revealed a very different picture: both PPA and RSC adapted when landmark information was repeated, but category adaptation was only observed in a small subregion of the left PPA. These inconsistencies between the MVPA and fMRIa data suggests that these two techniques interrogate different aspects of the neuronal code. We propose three hypotheses about the mechanisms that might underlie adaptation and multi-voxel signals. PMID:22001314

  7. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system

    PubMed Central

    Nern, Aljoscha; Pfeiffer, Barret D.; Rubin, Gerald M.

    2015-01-01

    We describe the development and application of methods for high-throughput neuroanatomy in Drosophila using light microscopy. These tools enable efficient multicolor stochastic labeling of neurons at both low and high densities. Expression of multiple membrane-targeted and distinct epitope-tagged proteins is controlled both by a transcriptional driver and by stochastic, recombinase-mediated excision of transcription-terminating cassettes. This MultiColor FlpOut (MCFO) approach can be used to reveal cell shapes and relative cell positions and to track the progeny of precursor cells through development. Using two different recombinases, the number of cells labeled and the number of color combinations observed in those cells can be controlled separately. We demonstrate the utility of MCFO in a detailed study of diversity and variability of Distal medulla (Dm) neurons, multicolumnar local interneurons in the adult visual system. Similar to many brain regions, the medulla has a repetitive columnar structure that supports parallel information processing together with orthogonal layers of cell processes that enable communication between columns. We find that, within a medulla layer, processes of the cells of a given Dm neuron type form distinct patterns that reflect both the morphology of individual cells and the relative positions of their arbors. These stereotyped cell arrangements differ between cell types and can even differ for the processes of the same cell type in different medulla layers. This unexpected diversity of coverage patterns provides multiple independent ways of integrating visual information across the retinotopic columns and implies the existence of multiple developmental mechanisms that generate these distinct patterns. PMID:25964354

  8. Different levels of food restriction reveal genotype-specific differences in learning a visual discrimination task.

    PubMed

    Makowiecki, Kalina; Hammond, Geoff; Rodger, Jennifer

    2012-01-01

    In behavioural experiments, motivation to learn can be achieved using food rewards as positive reinforcement in food-restricted animals. Previous studies reduce animal weights to 80-90% of free-feeding body weight as the criterion for food restriction. However, effects of different degrees of food restriction on task performance have not been assessed. We compared learning task performance in mice food-restricted to 80 or 90% body weight (BW). We used adult wildtype (WT; C57Bl/6j) and knockout (ephrin-A2⁻/⁻) mice, previously shown to have a reverse learning deficit. Mice were trained in a two-choice visual discrimination task with food reward as positive reinforcement. When mice reached criterion for one visual stimulus (80% correct in three consecutive 10 trial sets) they began the reverse learning phase, where the rewarded stimulus was switched to the previously incorrect stimulus. For the initial learning and reverse phase of the task, mice at 90%BW took almost twice as many trials to reach criterion as mice at 80%BW. Furthermore, WT 80 and 90%BW groups significantly differed in percentage correct responses and learning strategy in the reverse learning phase, whereas no differences between weight restriction groups were observed in ephrin-A2⁻/⁻ mice. Most importantly, genotype-specific differences in reverse learning strategy were only detected in the 80%BW groups. Our results indicate that increased food restriction not only results in better performance and a shorter training period, but may also be necessary for revealing behavioural differences between experimental groups. This has important ethical and animal welfare implications when deciding extent of diet restriction in behavioural studies. PMID:23144936

  9. Many-objective optimization and visual analytics reveal key trade-offs for London's water supply

    NASA Astrophysics Data System (ADS)

    Matrosov, Evgenii S.; Huskova, Ivana; Kasprzyk, Joseph R.; Harou, Julien J.; Lambert, Chris; Reed, Patrick M.

    2015-12-01

    In this study, we link a water resource management simulator to multi-objective search to reveal the key trade-offs inherent in planning a real-world water resource system. We consider new supplies and demand management (conservation) options while seeking to elucidate the trade-offs between the best portfolios of schemes to satisfy projected water demands. Alternative system designs are evaluated using performance measures that minimize capital and operating costs and energy use while maximizing resilience, engineering and environmental metrics, subject to supply reliability constraints. Our analysis shows many-objective evolutionary optimization coupled with state-of-the art visual analytics can help planners discover more diverse water supply system designs and better understand their inherent trade-offs. The approach is used to explore future water supply options for the Thames water resource system (including London's water supply). New supply options include a new reservoir, water transfers, artificial recharge, wastewater reuse and brackish groundwater desalination. Demand management options include leakage reduction, compulsory metering and seasonal tariffs. The Thames system's Pareto approximate portfolios cluster into distinct groups of water supply options; for example implementing a pipe refurbishment program leads to higher capital costs but greater reliability. This study highlights that traditional least-cost reliability constrained design of water supply systems masks asset combinations whose benefits only become apparent when more planning objectives are considered.

  10. Altered Evoked Gamma-Band Responses Reveal Impaired Early Visual Processing in ADHD Children

    ERIC Educational Resources Information Center

    Lenz, Daniel; Krauel, Kerstin; Flechtner, Hans-Henning; Schadow, Jeanette; Hinrichs, Hermann; Herrmann, Christoph S.

    2010-01-01

    Neurophysiological studies yield contrary results whether attentional problems of patients with attention-deficit/hyperactivity disorder (ADHD) are related to early visual processing deficits or not. Evoked gamma-band responses (GBRs), being among the first cortical responses occurring as early as 90 ms after visual stimulation in human EEG, have…

  11. Model-Based Reasoning: Using Visual Tools to Reveal Student Learning

    ERIC Educational Resources Information Center

    Luckie, Douglas; Harrison, Scott H.; Ebert-May, Diane

    2011-01-01

    Using visual models is common in science and should become more common in classrooms. Our research group has developed and completed studies on the use of a visual modeling tool, the Concept Connector. This modeling tool consists of an online concept mapping Java applet that has automatic scoring functions we refer to as Robograder. The Concept…

  12. Temporal Frequency Tuning Reveals Interactions between the Dorsal and Ventral Visual Streams.

    PubMed

    Kristensen, Stephanie; Garcea, Frank E; Mahon, Bradford Z; Almeida, Jorge

    2016-09-01

    Visual processing of complex objects is supported by the ventral visual pathway in the service of object identification and by the dorsal visual pathway in the service of object-directed reaching and grasping. Here, we address how these two streams interact during tool processing, by exploiting the known asymmetry in projections of subcortical magnocellular and parvocellular inputs to the dorsal and ventral streams. The ventral visual pathway receives both parvocellular and magnocellular input, whereas the dorsal visual pathway receives largely magnocellular input. We used fMRI to measure tool preferences in parietal cortex when the images were presented at either high or low temporal frequencies, exploiting the fact that parvocellular channels project principally to the ventral but not dorsal visual pathway. We reason that regions of parietal cortex that exhibit tool preferences for stimuli presented at frequencies characteristic of the parvocellular pathway receive their inputs from the ventral stream. We found that the left inferior parietal lobule, in the vicinity of the supramarginal gyrus, exhibited tool preferences for images presented at low temporal frequencies, whereas superior and posterior parietal regions exhibited tool preferences for images present at high temporal frequencies. These data indicate that object identity, processed within the ventral stream, is communicated to the left inferior parietal lobule and may there combine with inputs from the dorsal visual pathway to allow for functionally appropriate object manipulation. PMID:27082048

  13. Spatial frequency tuning reveals interactions between the dorsal and ventral visual systems.

    PubMed

    Mahon, Bradford Z; Kumar, Nicholas; Almeida, Jorge

    2013-06-01

    It is widely argued that the ability to recognize and identify manipulable objects depends on the retrieval and simulation of action-based information associated with using those objects. Evidence for that view comes from fMRI studies that have reported differential BOLD contrast in dorsal visual stream regions when participants view manipulable objects compared with a range of baseline categories. An alternative interpretation is that processes internal to the ventral visual pathway are sufficient to support the visual identification of manipulable objects and that the retrieval of object-associated use information is contingent on analysis of the visual input by the ventral stream. Here, we sought to distinguish these two perspectives by exploiting the fact that the dorsal stream is largely driven by magnocellular input, which is biased toward low spatial frequency visual information. Thus, any tool-selective responses in parietal cortex that are driven by high spatial frequencies would be indicative of inputs from the ventral visual pathway. Participants viewed images of tools and animals containing only low, or only high, spatial frequencies during fMRI. We find an internal parcellation of left parietal "tool-preferring" voxels: Inferior aspects of left parietal cortex are driven by high spatial frequency information and have privileged connectivity with ventral stream regions that show similar category preferences, whereas superior regions are driven by low spatial frequency information. Our findings suggest that the automatic activation of complex object-associated manipulation knowledge is contingent on analysis of the visual input by the ventral visual pathway. PMID:23410033

  14. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity

    PubMed Central

    Laing, Mark; Rees, Adrian; Vuong, Quoc C.

    2015-01-01

    The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we used amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only, or auditory-visual (AV) trials in the fMRI scanner. On AV trials, the auditory and visual signal could have the same (AV congruent) or different modulation rates (AV incongruent). Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for AV integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies. PMID:26483710

  15. The pupillary light response reveals the focus of covert visual attention.

    PubMed

    Mathôt, Sebastiaan; van der Linden, Lotje; Grainger, Jonathan; Vitu, Françoise

    2013-01-01

    The pupillary light response is often assumed to be a reflex that is not susceptible to cognitive influences. In line with recent converging evidence, we show that this reflexive view is incomplete, and that the pupillary light response is modulated by covert visual attention: Covertly attending to a bright area causes a pupillary constriction, relative to attending to a dark area under identical visual input. This attention-related modulation of the pupillary light response predicts cuing effects in behavior, and can be used as an index of how strongly participants attend to a particular location. Therefore, we suggest that pupil size may offer a new way to continuously track the focus of covert visual attention, without requiring a manual response from the participant. The theoretical implication of this finding is that the pupillary light response is neither fully reflexive, nor under complete voluntary control, but is instead best characterized as a stereotyped response to a voluntarily selected target. In this sense, the pupillary light response is similar to saccadic and smooth pursuit eye movements. Together, eye movements and the pupillary light response maximize visual acuity, stabilize visual input, and selectively filter visual information as it enters the eye. PMID:24205144

  16. Selective responses to specular surfaces in the macaque visual cortex revealed by fMRI.

    PubMed

    Okazawa, Gouki; Goda, Naokazu; Komatsu, Hidehiko

    2012-11-15

    The surface properties of objects, such as gloss, transparency and texture, provide important information about the material characteristics of objects in our visual environment. However, because there have been few reports on the neuronal responses to surface properties in primates, we still lack information about where and how surface properties are processed in the primate visual cortex. In this study, we used functional magnetic resonance imaging (fMRI) to examine the cortical responses to specular surfaces in the macaque visual cortex. Using computer graphics, we generated images of specular and matte objects and prepared scrambled images by locally randomizing the luminance phases of the images with specular and matte objects. In experiment 1, we contrasted the responses to specular images with those to matte and scrambled images. Activation was observed along the ventral visual pathway, including V1, V2, V3, V4 and the posterior inferior temporal (IT) cortex. In experiment 2, we manipulated the contrasts of images and found that the activation observed in these regions could not be explained solely by the global or local contrasts. These results suggest that image features related to specular surface are processed along the ventral visual pathway from V1 to specific regions in the IT cortex. This is consistent with previous human fMRI experiments that showed surface properties are processed in the ventral visual pathway. PMID:22885246

  17. Structural and effective connectivity reveals potential network-based influences on category-sensitive visual areas

    PubMed Central

    Furl, Nicholas

    2015-01-01

    Visual category perception is thought to depend on brain areas that respond specifically when certain categories are viewed. These category-sensitive areas are often assumed to be “modules” (with some degree of processing autonomy) and to act predominantly on feedforward visual input. This modular view can be complemented by a view that treats brain areas as elements within more complex networks and as influenced by network properties. This network-oriented viewpoint is emerging from studies using either diffusion tensor imaging to map structural connections or effective connectivity analyses to measure how their functional responses influence each other. This literature motivates several hypotheses that predict category-sensitive activity based on network properties. Large, long-range fiber bundles such as inferior fronto-occipital, arcuate and inferior longitudinal fasciculi are associated with behavioral recognition and could play crucial roles in conveying backward influences on visual cortex from anterior temporal and frontal areas. Such backward influences could support top-down functions such as visual search and emotion-based visual modulation. Within visual cortex itself, areas sensitive to different categories appear well-connected (e.g., face areas connect to object- and motion sensitive areas) and their responses can be predicted by backward modulation. Evidence supporting these propositions remains incomplete and underscores the need for better integration of DTI and functional imaging. PMID:25999841

  18. Response bias reveals enhanced attention to inferior visual field in signers of American Sign Language.

    PubMed

    Dye, Matthew W G; Seymour, Jenessa L; Hauser, Peter C

    2016-04-01

    Deafness results in cross-modal plasticity, whereby visual functions are altered as a consequence of a lack of hearing. Here, we present a reanalysis of data originally reported by Dye et al. (PLoS One 4(5):e5640, 2009) with the aim of testing additional hypotheses concerning the spatial redistribution of visual attention due to deafness and the use of a visuogestural language (American Sign Language). By looking at the spatial distribution of errors made by deaf and hearing participants performing a visuospatial selective attention task, we sought to determine whether there was evidence for (1) a shift in the hemispheric lateralization of visual selective function as a result of deafness, and (2) a shift toward attending to the inferior visual field in users of a signed language. While no evidence was found for or against a shift in lateralization of visual selective attention as a result of deafness, a shift in the allocation of attention from the superior toward the inferior visual field was inferred in native signers of American Sign Language, possibly reflecting an adaptation to the perceptual demands imposed by a visuogestural language. PMID:26708522

  19. Early-onset binocularity in preterm infants reveals experience-dependent visual development in humans

    PubMed Central

    Jandó, Gábor; Mikó-Baráth, Eszter; Markó, Katalin; Hollódy, Katalin; Török, Béla; Kovacs, Ilona

    2012-01-01

    Although there is a great deal of knowledge regarding the phylo- and ontogenetic plasticity of the neocortex, the precise nature of environmental impact on the newborn human brain is still one of the most controversial issues of neuroscience. The leading model–system of experience-dependent brain development is binocular vision, also called stereopsis. Here, we show that extra postnatal visual experience in preterm human neonates leads to a change in the developmental timing of binocular vision. The onset age of binocular function, as measured by the visual evoked response to dynamic random dot correlograms (DRDC-VEP), appears to be at around the same time after birth in preterm (4.07 mo) and full-term (3.78 mo) infants. To assess the integrity of the visual pathway in the studied infants, we also measured the latency of the visual-evoked response to pattern reversal stimuli (PR-VEP). PR-VEP latency is not affected by premature birth, demonstrating that the maturation of the visual pathway follows a preprogrammed developmental course. Despite the immaturity of the visual pathway, clearly demonstrated by the PR-VEP latencies, our DRCD-VEP data show that the visual cortex is remarkably ready to accept environmental stimulation right after birth. This early plasticity makes full use of the available extra stimulation time in preterm human infants and results in an early onset of cortical binocularity. According to our data, the developmental processes preceding the onset of binocular function are not preprogrammed, and the mechanisms turning on stereopsis are extremely experience-dependent in humans. PMID:22711824

  20. Casting larger polycrystalline silicon ingots

    SciTech Connect

    Wohlgemuth, J.; Tomlinson, T.; Cliber, J.; Shea, S.; Narayanan, M.

    1995-08-01

    Solarex has developed and patented a directional solidification casting process specifically designed for photovoltaics. In this process, silicon feedstock is melted in a ceramic crucible and solidified into a large grained semicrystalline silicon ingot. In-house manufacture of low cost, high purity ceramics is a key to the low cost fabrication of Solarex polycrystalline wafers. The casting process is performed in Solarex designed casting stations. The casting operation is computer controlled. There are no moving parts (except for the loading and unloading) so the growth process proceeds with virtually no operator intervention Today Solarex casting stations are used to produce ingots from which 4 bricks, each 11.4 cm by 11.4 cm in cross section, are cut. The stations themselves are physically capable of holding larger ingots, that would yield either: 4 bricks, 15 cm by 15 an; or 9 bricks, 11.4 cm by 11.4 an in cross-section. One of the tasks in the Solarex Cast Polycrystalline Silicon PVMaT Program is to design and modify one of the castings stations to cast these larger ingots. If successful, this effort will increase the production capacity of Solarex`s casting stations by 73% and reduce the labor content for casting by an equivalent percentage.

  1. The Topography of Visuospatial Attention as Revealed by a Novel Visual Field Mapping Technique

    PubMed Central

    Brefczynski-Lewis, Julie A.; Datta, Ritobrato; Lewis, James W.; DeYoe, Edgar A.

    2009-01-01

    Previously, we and others have shown that attention can enhance visual processing in a spatially specific manner that is retinotopically mapped in the occipital cortex. However, it is difficult to appreciate the functional significance of the spatial pattern of cortical activation just by examining the brain maps. In this study, we visualize the neural representation of the “spotlight” of attention using a back-projection of attention-related brain activation onto a diagram of the visual field. In the two main experiments, we examine the topography of attentional activation in the occipital and parietal cortices. In retinotopic areas, attentional enhancement is strongest at the locations of the attended target, but also spreads to nearby locations and even weakly to restricted locations in the opposite visual field. The dispersion of attentional effects around an attended site increases with the eccentricity of the target in a manner that roughly corresponds to a constant area of spread within the cortex. When averaged across multiple observers, these patterns appear consistent with a gradient model of spatial attention. However, individual observers exhibit complex variations that are unique but reproducible. Overall, these results suggest that the topography of visual attention for each individual is composed of a common theme plus a personal variation that may reflect their own unique “attentional style.” PMID:18752412

  2. Location memory biases reveal the challenges of coordinating visual and kinesthetic reference frames

    PubMed Central

    Simmering, Vanessa R.; Peterson, Clayton; Darling, Warren; Spencer, John P.

    2008-01-01

    Five experiments explored the influence of visual and kinesthetic/proprioceptive reference frames on location memory. Experiments 1 and 2 compared visual and kinesthetic reference frames in a memory task using visually-specified locations and a visually-guided response. When the environment was visible, results replicated previous findings of biases away from the midline symmetry axis of the task space, with stability for targets aligned with this axis. When the environment was not visible, results showed some evidence of bias away from a kinesthetically-specified midline (trunk anterior–posterior [a–p] axis), but there was little evidence of stability when targets were aligned with body midline. This lack of stability may reflect the challenges of coordinating visual and kinesthetic information in the absence of an environmental reference frame. Thus, Experiments 3–5 examined kinesthetic guidance of hand movement to kinesthetically-defined targets. Performance in these experiments was generally accurate with no evidence of consistent biases away from the trunk a–p axis. We discuss these results in the context of the challenges of coordinating reference frames within versus between multiple sensori-motor systems. PMID:17703284

  3. Visual Coding of Human Bodies: Perceptual Aftereffects Reveal Norm-Based, Opponent Coding of Body Identity

    ERIC Educational Resources Information Center

    Rhodes, Gillian; Jeffery, Linda; Boeing, Alexandra; Calder, Andrew J.

    2013-01-01

    Despite the discovery of body-selective neural areas in occipitotemporal cortex, little is known about how bodies are visually coded. We used perceptual adaptation to determine how body identity is coded. Brief exposure to a body (e.g., anti-Rose) biased perception toward an identity with opposite properties (Rose). Moreover, the size of this…

  4. Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex

    PubMed Central

    Wang, Quanxin; Sporns, Olaf; Burkhalter, Andreas

    2012-01-01

    Much of the information used for visual perception and visually guided actions is processed in complex networks of connections within the cortex. To understand how this works in the normal brain and to determine the impact of disease, mice are promising models. In primate visual cortex, information is processed in a dorsal stream specialized for visuospatial processing and guided action and a ventral stream for object recognition. Here, we traced the outputs of 10 visual areas and used quantitative graph analytic tools of modern network science to determine, from the projection strengths in 39 cortical targets, the community structure of the network. We found a high density of the cortical graph that exceeded that previously shown in monkey. Each source area showed a unique distribution of projection weights across its targets (i.e. connectivity profile) that was well-fit by a lognormal function. Importantly, the community structure was strongly dependent on the location of the source area: outputs from medial/anterior extrastriate areas were more strongly linked to parietal, motor and limbic cortex, whereas lateral extrastriate areas were preferentially connected to temporal and parahippocampal cortex. These two subnetworks resemble dorsal and ventral cortical streams in primates, demonstrating that the basic layout of cortical networks is conserved across species. PMID:22457489

  5. Heads First: Visual Aftereffects Reveal Hierarchical Integration of Cues to Social Attention

    PubMed Central

    Cooney, Sarah; Dignam, Holly; Brady, Nuala

    2015-01-01

    Determining where another person is attending is an important skill for social interaction that relies on various visual cues, including the turning direction of the head and body. This study reports a novel high-level visual aftereffect that addresses the important question of how these sources of information are combined in gauging social attention. We show that adapting to images of heads turned 25° to the right or left produces a perceptual bias in judging the turning direction of subsequently presented bodies. In contrast, little to no change in the judgment of head orientation occurs after adapting to extremely oriented bodies. The unidirectional nature of the aftereffect suggests that cues from the human body signaling social attention are combined in a hierarchical fashion and is consistent with evidence from single-cell recording studies in nonhuman primates showing that information about head orientation can override information about body posture when both are visible. PMID:26359866

  6. Psychophysical "blinding" methods reveal a functional hierarchy of unconscious visual processing.

    PubMed

    Breitmeyer, Bruno G

    2015-09-01

    Numerous non-invasive experimental "blinding" methods exist for suppressing the phenomenal awareness of visual stimuli. Not all of these suppressive methods occur at, and thus index, the same level of unconscious visual processing. This suggests that a functional hierarchy of unconscious visual processing can in principle be established. The empirical results of extant studies that have used a number of different methods and additional reasonable theoretical considerations suggest the following tentative hierarchy. At the highest levels in this hierarchy is unconscious processing indexed by object-substitution masking. The functional levels indexed by crowding, the attentional blink (and other attentional blinding methods), backward pattern masking, metacontrast masking, continuous flash suppression, sandwich masking, and single-flash interocular suppression, fall at progressively lower levels, while unconscious processing at the lowest levels is indexed by eye-based binocular-rivalry suppression. Although unconscious processing levels indexed by additional blinding methods is yet to be determined, a tentative placement at lower levels in the hierarchy is also given for unconscious processing indexed by Troxler fading and adaptation-induced blindness, and at higher levels in the hierarchy indexed by attentional blinding effects in addition to the level indexed by the attentional blink. The full mapping of levels in the functional hierarchy onto cortical activation sites and levels is yet to be determined. The existence of such a hierarchy bears importantly on the search for, and the distinctions between, neural correlates of conscious and unconscious vision. PMID:25704454

  7. The footprints of visual attention in the Posner cueing paradigm revealed by classification images

    NASA Technical Reports Server (NTRS)

    Eckstein, Miguel P.; Shimozaki, Steven S.; Abbey, Craig K.

    2002-01-01

    In the Posner cueing paradigm, observers' performance in detecting a target is typically better in trials in which the target is present at the cued location than in trials in which the target appears at the uncued location. This effect can be explained in terms of a Bayesian observer where visual attention simply weights the information differently at the cued (attended) and uncued (unattended) locations without a change in the quality of processing at each location. Alternatively, it could also be explained in terms of visual attention changing the shape of the perceptual filter at the cued location. In this study, we use the classification image technique to compare the human perceptual filters at the cued and uncued locations in a contrast discrimination task. We did not find statistically significant differences between the shapes of the inferred perceptual filters across the two locations, nor did the observed differences account for the measured cueing effects in human observers. Instead, we found a difference in the magnitude of the classification images, supporting the idea that visual attention changes the weighting of information at the cued and uncued location, but does not change the quality of processing at each individual location.

  8. 7 tesla FMRI reveals systematic functional organization for binocular disparity in dorsal visual cortex.

    PubMed

    Goncalves, Nuno R; Ban, Hiroshi; Sánchez-Panchuelo, Rosa M; Francis, Susan T; Schluppeck, Denis; Welchman, Andrew E

    2015-02-18

    The binocular disparity between the views of the world registered by the left and right eyes provides a powerful signal about the depth structure of the environment. Despite increasing knowledge of the cortical areas that process disparity from animal models, comparatively little is known about the local architecture of stereoscopic processing in the human brain. Here, we take advantage of the high spatial specificity and image contrast offered by 7 tesla fMRI to test for systematic organization of disparity representations in the human brain. Participants viewed random dot stereogram stimuli depicting different depth positions while we recorded fMRI responses from dorsomedial visual cortex. We repeated measurements across three separate imaging sessions. Using a series of computational modeling approaches, we report three main advances in understanding disparity organization in the human brain. First, we show that disparity preferences are clustered and that this organization persists across imaging sessions, particularly in area V3A. Second, we observe differences between the local distribution of voxel responses in early and dorsomedial visual areas, suggesting different cortical organization. Third, using modeling of voxel responses, we show that higher dorsal areas (V3A, V3B/KO) have properties that are characteristic of human depth judgments: a simple model that uses tuning parameters estimated from fMRI data captures known variations in human psychophysical performance. Together, these findings indicate that human dorsal visual cortex contains selective cortical structures for disparity that may support the neural computations that underlie depth perception. PMID:25698743

  9. 7 Tesla fMRI Reveals Systematic Functional Organization for Binocular Disparity in Dorsal Visual Cortex

    PubMed Central

    Goncalves, Nuno R.; Ban, Hiroshi; Sánchez-Panchuelo, Rosa M.; Francis, Susan T.; Schluppeck, Denis

    2015-01-01

    The binocular disparity between the views of the world registered by the left and right eyes provides a powerful signal about the depth structure of the environment. Despite increasing knowledge of the cortical areas that process disparity from animal models, comparatively little is known about the local architecture of stereoscopic processing in the human brain. Here, we take advantage of the high spatial specificity and image contrast offered by 7 tesla fMRI to test for systematic organization of disparity representations in the human brain. Participants viewed random dot stereogram stimuli depicting different depth positions while we recorded fMRI responses from dorsomedial visual cortex. We repeated measurements across three separate imaging sessions. Using a series of computational modeling approaches, we report three main advances in understanding disparity organization in the human brain. First, we show that disparity preferences are clustered and that this organization persists across imaging sessions, particularly in area V3A. Second, we observe differences between the local distribution of voxel responses in early and dorsomedial visual areas, suggesting different cortical organization. Third, using modeling of voxel responses, we show that higher dorsal areas (V3A, V3B/KO) have properties that are characteristic of human depth judgments: a simple model that uses tuning parameters estimated from fMRI data captures known variations in human psychophysical performance. Together, these findings indicate that human dorsal visual cortex contains selective cortical structures for disparity that may support the neural computations that underlie depth perception. PMID:25698743

  10. Asynchrony adaptation reveals neural population code for audio-visual timing

    PubMed Central

    Roach, Neil W.; Heron, James; Whitaker, David; McGraw, Paul V.

    2011-01-01

    The relative timing of auditory and visual stimuli is a critical cue for determining whether sensory signals relate to a common source and for making inferences about causality. However, the way in which the brain represents temporal relationships remains poorly understood. Recent studies indicate that our perception of multisensory timing is flexible—adaptation to a regular inter-modal delay alters the point at which subsequent stimuli are judged to be simultaneous. Here, we measure the effect of audio-visual asynchrony adaptation on the perception of a wide range of sub-second temporal relationships. We find distinctive patterns of induced biases that are inconsistent with the previous explanations based on changes in perceptual latency. Instead, our results can be well accounted for by a neural population coding model in which: (i) relative audio-visual timing is represented by the distributed activity across a relatively small number of neurons tuned to different delays; (ii) the algorithm for reading out this population code is efficient, but subject to biases owing to under-sampling; and (iii) the effect of adaptation is to modify neuronal response gain. These results suggest that multisensory timing information is represented by a dedicated population code and that shifts in perceived simultaneity following asynchrony adaptation arise from analogous neural processes to well-known perceptual after-effects. PMID:20961905

  11. A perceptual learning deficit in Chinese developmental dyslexia as revealed by visual texture discrimination training.

    PubMed

    Wang, Zhengke; Cheng-Lai, Alice; Song, Yan; Cutting, Laurie; Jiang, Yuzheng; Lin, Ou; Meng, Xiangzhi; Zhou, Xiaolin

    2014-08-01

    Learning to read involves discriminating between different written forms and establishing connections with phonology and semantics. This process may be partially built upon visual perceptual learning, during which the ability to process the attributes of visual stimuli progressively improves with practice. The present study investigated to what extent Chinese children with developmental dyslexia have deficits in perceptual learning by using a texture discrimination task, in which participants were asked to discriminate the orientation of target bars. Experiment l demonstrated that, when all of the participants started with the same initial stimulus-to-mask onset asynchrony (SOA) at 300 ms, the threshold SOA, adjusted according to response accuracy for reaching 80% accuracy, did not show a decrement over 5 days of training for children with dyslexia, whereas this threshold SOA steadily decreased over the training for the control group. Experiment 2 used an adaptive procedure to determine the threshold SOA for each participant during training. Results showed that both the group of dyslexia and the control group attained perceptual learning over the sessions in 5 days, although the threshold SOAs were significantly higher for the group of dyslexia than for the control group; moreover, over individual participants, the threshold SOA negatively correlated with their performance in Chinese character recognition. These findings suggest that deficits in visual perceptual processing and learning might, in part, underpin difficulty in reading Chinese. PMID:24643918

  12. Model-based reasoning: using visual tools to reveal student learning.

    PubMed

    Luckie, Douglas; Harrison, Scott H; Ebert-May, Diane

    2011-03-01

    Using visual models is common in science and should become more common in classrooms. Our research group has developed and completed studies on the use of a visual modeling tool, the Concept Connector. This modeling tool consists of an online concept mapping Java applet that has automatic scoring functions we refer to as Robograder. The Concept Connector enables students in large introductory science courses to visualize their thinking through online model building. The Concept Connector's flexible scoring system, based on tested grading schemes as well as instructor input, has enabled >1,000 physiology students to build maps of their ideas about plant and animal physiology with the guidance of automatic and immediate online scoring of homework. Criterion concept maps developed by instructors in this project contain numerous expert-generated or "correct" propositions connecting two concept words together with a linking phrase. In this study, holistic algorithms were used to test automated methods of scoring concept maps that might work as well as a human grader. PMID:21386003

  13. Adaptive Processes in Thalamus and Cortex Revealed by Silencing of Primary Visual Cortex during Contrast Adaptation.

    PubMed

    King, Jillian L; Lowe, Matthew P; Stover, Kurt R; Wong, Aimee A; Crowder, Nathan A

    2016-05-23

    Visual adaptation illusions indicate that our perception is influenced not only by the current stimulus but also by what we have seen in the recent past. Adaptation to stimulus contrast (the relative luminance created by edges or contours in a scene) induces the perception of the stimulus fading away and increases the contrast detection threshold in psychophysical tests [1, 2]. Neural correlates of contrast adaptation have been described throughout the visual system including the retina [3], dorsal lateral geniculate nucleus (dLGN) [4, 5], primary visual cortex (V1) [6], and parietal cortex [7]. The apparent ubiquity of adaptation at all stages raises the question of how this process cascades across brain regions [8]. Focusing on V1, adaptation could be inherited from pre-cortical stages, arise from synaptic depression at the thalamo-cortical synapse [9], or develop locally, but what is the weighting of these contributions? Because contrast adaptation in mouse V1 is similar to classical animal models [10, 11], we took advantage of the optogenetic tools available in mice to disentangle the processes contributing to adaptation in V1. We disrupted cortical adaptation by optogenetically silencing V1 and found that adaptation measured in V1 now resembled that observed in dLGN. Thus, the majority of adaptation seen in V1 neurons arises through local activity-dependent processes, with smaller contributions from dLGN inheritance and synaptic depression at the thalamo-cortical synapse. Furthermore, modeling indicates that divisive scaling of the weakly adapted dLGN input can predict some of the emerging features of V1 adaptation. PMID:27112300

  14. Contrast discrimination: Second responses reveal the relationship between the mean and variance of visual signals

    PubMed Central

    Solomon, Joshua A.

    2007-01-01

    To explain the relationship between first- and second-response accuracies in a detection experiment, Swets, Tanner, and Birdsall [Swets, J., Tanner, W. P., Jr., & Birdsall, T. G. (1961). Decision processes in perception. Psychological Review, 68, 301–340] proposed that the variance of visual signals increased with their means. However, both a low threshold and intrinsic uncertainty produce similar relationships. I measured the relationship between first- and second-response accuracies for suprathreshold contrast discrimination, which is thought to be unaffected by sensory thresholds and intrinsic uncertainty. The results are consistent with a slowly increasing variance. PMID:17961625

  15. Contrast discrimination: second responses reveal the relationship between the mean and variance of visual signals.

    PubMed

    Solomon, Joshua A

    2007-12-01

    To explain the relationship between first- and second-response accuracies in a detection experiment, Swets, Tanner, and Birdsall [Swets, J., Tanner, W. P., Jr., & Birdsall, T. G. (1961). Decision processes in perception. Psychological Review, 68, 301-340] proposed that the variance of visual signals increased with their means. However, both a low threshold and intrinsic uncertainty produce similar relationships. I measured the relationship between first- and second-response accuracies for suprathreshold contrast discrimination, which is thought to be unaffected by sensory thresholds and intrinsic uncertainty. The results are consistent with a slowly increasing variance. PMID:17961625

  16. Visual Capability of the Weakly Electric Fish Apteronotus albifrons as Revealed by a Modified Retinal Flat-Mount Method.

    PubMed

    Takiyama, Tomo; Luna da Silva, Valdir; Moura Silva, Daniel; Hamasaki, Sawako; Yoshida, Masayuki

    2015-01-01

    Apteronotus albifrons (Gymnotiformes, Apteronotidae) is well known to have a sophisticated active electrosense system and is commonly described as having poor vision or being almost blind. However, some studies on this species suggest that the visual system may have a role in sensing objects in the environment. In this study, we investigated the visual capabilities of A. albifrons by focusing on eye morphology and retinal ganglion cell distribution. The eyes were almost embedded below the body surface and pigmented dermal tissue covered the peripheral regions of the pupil, limiting the direction of incoming light. The lens was remarkably flattened compared to the almost spherical lenses of other teleosts. The layered structure of the retina was not well delineated and ganglion cells did not form a continuous sheet of cell bodies. A newly modified retinal flat-mount method was applied to reveal the ganglion cell distribution. This method involved postembedding removal of the pigment epithelium of the retina for easier visualization of ganglion cells in small and/or fragile retinal tissues. We found that ganglion cell densities were relatively high in the periphery and highest in the nasal and temporal retina, although specialization was not so high (approx. 3:1) with regard to the medionasal or mediotemporal axis. The estimated highest possible spatial resolving power was around 0.57 and 0.54 cycles/degree in the nasal and temporal retina, respectively, confirming the lower importance of the visual sense in this species. However, considering the hunting nature of A. albifrons, the relatively high acuity of the caudal visual field in combination with electrolocation may well be used to locate prey situated close to the side of the body. PMID:26346851

  17. Varying target prevalence reveals two, dissociable decision criteria in visual search

    PubMed Central

    Wolfe, Jeremy M; Van Wert, Michael J

    2009-01-01

    Summary Target prevalence exerts a powerful influence on visual search behavior. In most visual search experiments, targets appear on at least 50% of trials [1–3]. However, when targets are rare (as in medical or airport screening), observers shift response criteria, leading to elevated rates of miss errors [4, 5]. Observers also speed their target-absent responses and may make more motor errors [6]. This could be a speed-accuracy tradeoff with fast, frequent absent responses producing more miss errors. Disproving this hypothesis, Experiment One shows that very high target prevalence (98%) shifts response criteria in the opposite direction, leading to elevated false alarms in a simulated baggage search task. However, the very frequent target present responses are not speeded. Rather, rare target absent responses are greatly slowed. In Experiment Two, prevalence was varied sinusoidally over 1000 trials as observers’ accuracy and reaction times (RTs) were measured. Observers’ criterion and target absent RTs tracked prevalence. Sensitivity (d′) and target-present RTs did not vary with prevalence [see also 7, 8, 9]. The results support a model in which prevalence influences two parameters: A decision criterion governing the series of perceptual decisions about each attended item and a quitting threshold that governs the timing of target-absent responses. Models in which target prevalence only influences an overall decision criterion are not supported. PMID:20079642

  18. Neuronal dynamics in the visual corticothalamic pathway revealed through binocular rivalry.

    PubMed

    Varela, F J; Singer, W

    1987-01-01

    Single unit activity was recorded from principal cells in the A-laminae of the cat dorsal lateral geniculate nucleus (dLGN). A steady state pattern of afferent activation was induced by presenting a continuously drifting square wave grating of constant spatial frequency to the eye (the dominant eye) that provided the excitatory input to the recorded cell. Intermittently, a second grating stimulus was presented to the other, nondominant, eye. In most neurones nondominant eye stimulation led to inhibition of relay cell responses. The latency of this suppressive effect was unusually long (up to 1 s) and its intensity and duration depended critically on the similarity between the gratings that were presented to the two eyes. Typically suppression was strongest when the gratings differed in orientation, direction of movement and contrast and when the nondominant eye stimulus was moving rather than stationary. Ablation of visual cortex abolished these long latency and feature-dependent interferences. We conclude that the visual cortex and the corticothalamic projections are involved in the mediation of these interocular interactions. We interpret our results as support for the hypothesis that corticothalamic feedback modifies thalamic transmission as a function of the congruency between ongoing cortical activation patterns and afferent retinal signals. PMID:3582524

  19. Feature-Based Change Detection Reveals Inconsistent Individual Differences in Visual Working Memory Capacity.

    PubMed

    Ambrose, Joseph P; Wijeakumar, Sobanawartiny; Buss, Aaron T; Spencer, John P

    2016-01-01

    Visual working memory (VWM) is a key cognitive system that enables people to hold visual information in mind after a stimulus has been removed and compare past and present to detect changes that have occurred. VWM is severely capacity limited to around 3-4 items, although there are robust individual differences in this limit. Importantly, these individual differences are evident in neural measures of VWM capacity. Here, we capitalized on recent work showing that capacity is lower for more complex stimulus dimension. In particular, we asked whether individual differences in capacity remain consistent if capacity is shifted by a more demanding task, and, further, whether the correspondence between behavioral and neural measures holds across a shift in VWM capacity. Participants completed a change detection (CD) task with simple colors and complex shapes in an fMRI experiment. As expected, capacity was significantly lower for the shape dimension. Moreover, there were robust individual differences in behavioral estimates of VWM capacity across dimensions. Similarly, participants with a stronger BOLD response for color also showed a strong neural response for shape within the lateral occipital cortex, intraparietal sulcus (IPS), and superior IPS. Although there were robust individual differences in the behavioral and neural measures, we found little evidence of systematic brain-behavior correlations across feature dimensions. This suggests that behavioral and neural measures of capacity provide different views onto the processes that underlie VWM and CD. Recent theoretical approaches that attempt to bridge between behavioral and neural measures are well positioned to address these findings in future work. PMID:27147986

  20. The dynamics of attentional sampling during visual search revealed by Fourier analysis of periodic noise interference.

    PubMed

    Dugué, Laura; Vanrullen, Rufin

    2014-01-01

    What are the temporal dynamics of perceptual sampling during visual search tasks, and how do they differ between a difficult (or inefficient) and an easy (or efficient) task? Does attention focus intermittently on the stimuli, or are the stimuli processed continuously over time? We addressed these questions by way of a new paradigm using periodic fluctuations of stimulus information during a difficult (color-orientation conjunction) and an easy (+ among Ls) search task. On each stimulus, we applied a dynamic visual noise that oscillated at a given frequency (2-20 Hz, 2-Hz steps) and phase (four cardinal phase angles) for 500 ms. We estimated the dynamics of attentional sampling by computing an inverse Fourier transform on subjects' d-primes. In both tasks, the sampling function presented a significant peak at 2 Hz; we showed that this peak could be explained by nonperiodic search strategies such as increased sensitivity to stimulus onset and offset. Specifically in the difficult task, however, a second, higher-frequency peak was observed at 9 to 10 Hz, with a similar phase for all subjects; this isolated frequency component necessarily entails oscillatory attentional dynamics. In a second experiment, we presented difficult search arrays with dynamic noise that was modulated by the previously obtained grand-average attention sampling function or by its converse function (in both cases omitting the 2 Hz component to focus on genuine oscillatory dynamics). We verified that performance was higher in the latter than in the former case, even for subjects who had not participated in the first experiment. This study supports the idea of a periodic sampling of attention during a difficult search task. Although further experiments will be needed to extend these findings to other search tasks, the present report validates the usefulness of this novel paradigm for measuring the temporal dynamics of attention. PMID:24525262

  1. Feature-Based Change Detection Reveals Inconsistent Individual Differences in Visual Working Memory Capacity

    PubMed Central

    Ambrose, Joseph P.; Wijeakumar, Sobanawartiny; Buss, Aaron T.; Spencer, John P.

    2016-01-01

    Visual working memory (VWM) is a key cognitive system that enables people to hold visual information in mind after a stimulus has been removed and compare past and present to detect changes that have occurred. VWM is severely capacity limited to around 3–4 items, although there are robust individual differences in this limit. Importantly, these individual differences are evident in neural measures of VWM capacity. Here, we capitalized on recent work showing that capacity is lower for more complex stimulus dimension. In particular, we asked whether individual differences in capacity remain consistent if capacity is shifted by a more demanding task, and, further, whether the correspondence between behavioral and neural measures holds across a shift in VWM capacity. Participants completed a change detection (CD) task with simple colors and complex shapes in an fMRI experiment. As expected, capacity was significantly lower for the shape dimension. Moreover, there were robust individual differences in behavioral estimates of VWM capacity across dimensions. Similarly, participants with a stronger BOLD response for color also showed a strong neural response for shape within the lateral occipital cortex, intraparietal sulcus (IPS), and superior IPS. Although there were robust individual differences in the behavioral and neural measures, we found little evidence of systematic brain-behavior correlations across feature dimensions. This suggests that behavioral and neural measures of capacity provide different views onto the processes that underlie VWM and CD. Recent theoretical approaches that attempt to bridge between behavioral and neural measures are well positioned to address these findings in future work. PMID:27147986

  2. Automatic frame-centered object representation and integration revealed by iconic memory, visual priming, and backward masking

    PubMed Central

    Lin, Zhicheng; He, Sheng

    2012-01-01

    Object identities (“what”) and their spatial locations (“where”) are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects (“files”) within the reference frame (“cabinet”) are orderly coded relative to the frame. PMID:23104817

  3. Contextual effects in visual working memory reveal hierarchically structured memory representations.

    PubMed

    Brady, Timothy F; Alvarez, George A

    2015-01-01

    Influential slot and resource models of visual working memory make the assumption that items are stored in memory as independent units, and that there are no interactions between them. Consequently, these models predict that the number of items to be remembered (the set size) is the primary determinant of working memory performance, and therefore these models quantify memory capacity in terms of the number and quality of individual items that can be stored. Here we demonstrate that there is substantial variance in display difficulty within a single set size, suggesting that limits based on the number of individual items alone cannot explain working memory storage. We asked hundreds of participants to remember the same sets of displays, and discovered that participants were highly consistent in terms of which items and displays were hardest or easiest to remember. Although a simple grouping or chunking strategy could not explain this individual-display variability, a model with multiple, interacting levels of representation could explain some of the display-by-display differences. Specifically, a model that includes a hierarchical representation of items plus the mean and variance of sets of the colors on the display successfully accounts for some of the variability across displays. We conclude that working memory representations are composed only in part of individual, independent object representations, and that a major factor in how many items are remembered on a particular display is interitem representations such as perceptual grouping, ensemble, and texture representations. PMID:26575192

  4. Hue Selectivity in Human Visual Cortex Revealed by Functional Magnetic Resonance Imaging

    PubMed Central

    Kuriki, Ichiro; Sun, Pei; Ueno, Kenichi; Tanaka, Keiji; Cheng, Kang

    2015-01-01

    The variability of color-selective neurons in human visual cortex is considered more diverse than cone-opponent mechanisms. We addressed this issue by deriving histograms of hue-selective voxels measured using fMRI with a novel stimulation paradigm, where the stimulus hue changed continuously. Despite the large between-subject difference in hue-selective histograms, individual voxels exhibited selectivity for intermediate hues, such as purple, cyan, and orange, in addition to those along cone-opponent axes. In order to rule the possibility out that the selectivity for intermediate hues emerged through spatial summation of activities of neurons selectively responding to cone-opponent signals, we further tested hue-selective adaptations in intermediate directions of cone-opponent axes, by measuring responses to 4 diagonal hues during concurrent adaptation to 1 of the 4 hues. The selective and unidirectional reduction in response to the adapted hue lends supports to our argument that cortical neurons respond selectively to intermediate hues. PMID:26423093

  5. The Stimulus Selectivity and Connectivity of Layer Six Principal Cells Reveals Cortical Microcircuits Underlying Visual Processing

    PubMed Central

    Vélez-Fort, Mateo; Rousseau, Charly V.; Niedworok, Christian J.; Wickersham, Ian R.; Rancz, Ede A.; Brown, Alexander P.Y.; Strom, Molly; Margrie, Troy W.

    2014-01-01

    Summary Sensory computations performed in the neocortex involve layer six (L6) cortico-cortical (CC) and cortico-thalamic (CT) signaling pathways. Developing an understanding of the physiological role of these circuits requires dissection of the functional specificity and connectivity of the underlying individual projection neurons. By combining whole-cell recording from identified L6 principal cells in the mouse primary visual cortex (V1) with modified rabies virus-based input mapping, we have determined the sensory response properties and upstream monosynaptic connectivity of cells mediating the CC or CT pathway. We show that CC-projecting cells encompass a broad spectrum of selectivity to stimulus orientation and are predominantly innervated by deep layer V1 neurons. In contrast, CT-projecting cells are ultrasparse firing, exquisitely tuned to orientation and direction information, and receive long-range input from higher cortical areas. This segregation in function and connectivity indicates that L6 microcircuits route specific contextual and stimulus-related information within and outside the cortical network. PMID:25175879

  6. Automatic Segmentation of Drosophila Neural Compartments Using GAL4 Expression Data Reveals Novel Visual Pathways.

    PubMed

    Panser, Karin; Tirian, Laszlo; Schulze, Florian; Villalba, Santiago; Jefferis, Gregory S X E; Bühler, Katja; Straw, Andrew D

    2016-08-01

    Identifying distinct anatomical structures within the brain and developing genetic tools to target them are fundamental steps for understanding brain function. We hypothesize that enhancer expression patterns can be used to automatically identify functional units such as neuropils and fiber tracts. We used two recent, genome-scale Drosophila GAL4 libraries and associated confocal image datasets to segment large brain regions into smaller subvolumes. Our results (available at https://strawlab.org/braincode) support this hypothesis because regions with well-known anatomy, namely the antennal lobes and central complex, were automatically segmented into familiar compartments. The basis for the structural assignment is clustering of voxels based on patterns of enhancer expression. These initial clusters are agglomerated to make hierarchical predictions of structure. We applied the algorithm to central brain regions receiving input from the optic lobes. Based on the automated segmentation and manual validation, we can identify and provide promising driver lines for 11 previously identified and 14 novel types of visual projection neurons and their associated optic glomeruli. The same strategy can be used in other brain regions and likely other species, including vertebrates. PMID:27426516

  7. Object-based attention benefits reveal selective abnormalities of visual integration in autism.

    PubMed

    Falter, Christine M; Grant, Kate C Plaisted; Davis, Greg

    2010-06-01

    A pervasive integration deficit could provide a powerful and elegant account of cognitive processing in autism spectrum disorders (ASD). However, in the case of visual Gestalt grouping, typically assessed by tasks that require participants explicitly to introspect on their own grouping perception, clear evidence for such a deficit remains elusive. To resolve this issue, we adopt an index of Gestalt grouping from the object-based attention literature that does not require participants to assess their own grouping perception. Children with ASD and mental- and chronological-age matched typically developing children (TD) performed speeded orientation discriminations of two diagonal lines. The lines were superimposed on circles that were either grouped together or segmented on the basis of color, proximity or these two dimensions in competition. The magnitude of performance benefits evident for grouped circles, relative to ungrouped circles, provided an index of grouping under various conditions. Children with ASD showed comparable grouping by proximity to the TD group, but reduced grouping by similarity. ASD seems characterized by a selective bias away from grouping by similarity combined with typical levels of grouping by proximity, rather than by a pervasive integration deficit. PMID:20578070

  8. Visualization of Eukaryotic DNA Mismatch Repair Reveals Distinct Recognition and Repair Intermediates

    PubMed Central

    Hombauer, Hans; Campbell, Christopher S.; Smith, Catherine E.; Desai, Arshad; Kolodner, Richard D.

    2011-01-01

    Summary DNA Mismatch Repair (MMR) increases replication fidelity by eliminating mispaired bases resulting from replication errors. In Saccharomyces cerevisiae mispairs are primarily detected by the Msh2-Msh6 complex and corrected following subsequent recruitment of the Mlh1-Pms1 complex. Here, we visualized functional fluorescent versions of Msh2-Msh6 and Mlh1-Pms1 in living cells. Msh2-Msh6 formed foci in S-phase that colocalized with replication factories; this localized pool accounted for 10–15% of MMR in wild-type cells but was essential for MMR in the absence of the exonuclease Exo1. Mlh1-Pms1 also formed foci that, while requiring Msh2-Msh6 for their formation, rarely colocalized with Msh2-Msh6. Mlh1-Pms1 foci increased when the number of mispaired bases was increased; in contrast, Msh2-Msh6 foci were unaffected. These results suggest that (I) mispair recognition can occur via either a replication factory-targeted or a second distinct pool of Msh2-Msh6, and (II) superstoichiometric Mlh1-Pms1 assembly triggered by mispair-bound Msh2-Msh6 defines sites of active MMR. PMID:22118461

  9. Intricate phase diagram of a prevalent visual circuit reveals universal dynamics, phase transitions, and resonances.

    PubMed

    Caudill, Matthew S; Brandt, Sebastian F; Nussinov, Zohar; Wessel, Ralf

    2009-11-01

    Neural feedback-triads consisting of two feedback loops with a nonreciprocal lateral connection from one loop to the other are ubiquitous in the brain. We show analytically that the dynamics of this network topology are determined by algebraic combinations of its five synaptic weights. Exploration of network activity over the parameter space demonstrates the importance of the nonreciprocal lateral connection and reveals intricate behavior involving continuous transitions between qualitatively different activity states. In addition, we show that the response to periodic inputs is narrowly tuned around a center frequency determined by the effective synaptic parameters. PMID:20365022

  10. Differential Responses to a Visual Self-Motion Signal in Human Medial Cortical Regions Revealed by Wide-View Stimulation

    PubMed Central

    Wada, Atsushi; Sakano, Yuichi; Ando, Hiroshi

    2016-01-01

    Vision is important for estimating self-motion, which is thought to involve optic-flow processing. Here, we investigated the fMRI response profiles in visual area V6, the precuneus motion area (PcM), and the cingulate sulcus visual area (CSv)—three medial brain regions recently shown to be sensitive to optic-flow. We used wide-view stereoscopic stimulation to induce robust self-motion processing. Stimuli included static, randomly moving, and coherently moving dots (simulating forward self-motion). We varied the stimulus size and the presence of stereoscopic information. A combination of univariate and multi-voxel pattern analyses (MVPA) revealed that fMRI responses in the three regions differed from each other. The univariate analysis identified optic-flow selectivity and an effect of stimulus size in V6, PcM, and CSv, among which only CSv showed a significantly lower response to random motion stimuli compared with static conditions. Furthermore, MVPA revealed an optic-flow specific multi-voxel pattern in the PcM and CSv, where the discrimination of coherent motion from both random motion and static conditions showed above-chance prediction accuracy, but that of random motion from static conditions did not. Additionally, while area V6 successfully classified different stimulus sizes regardless of motion pattern, this classification was only partial in PcM and was absent in CSv. This may reflect the known retinotopic representation in V6 and the absence of such clear visuospatial representation in CSv. We also found significant correlations between the strength of subjective self-motion and univariate activation in all examined regions except for primary visual cortex (V1). This neuro-perceptual correlation was significantly higher for V6, PcM, and CSv when compared with V1, and higher for CSv when compared with the visual motion area hMT+. Our convergent results suggest the significant involvement of CSv in self-motion processing, which may give rise to its

  11. Crater Lake Revealed: Using GIS to Visualize and Analyze Postcaldera Volcanoes Beneath Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Ramsey, D. W.; Robinson, J. E.; Dartnell, P.; Bacon, C. R.; Gardner, J. V.; Mayer, L. A.; Buktenica, M. W.

    2001-12-01

    Crater Lake, Oregon, partially fills the caldera that formed ~7,700 years ago by the eruption of 50 km3 of mainly rhyodacitic magma and collapse of Mount Mazama. Prior to the climactic event, Mount Mazama had a 400,000-year eruptive history, much of which was like those of other Cascade volcanic centers such as Mount Shasta. Since the climactic eruption, there have been several less violent, smaller eruptions within the caldera itself. Until a recent bathymetric survey, relatively little was known about the character and timing of these eruptions because their products are obscured beneath Crater Lake's surface. In the summer of 2000, the lake bottom was mapped with a high-resolution multibeam echo sounder (Gardner et. al., 2001), providing a 2m/pixel view of the lake floor from its deepest basins virtually to the shoreline. Using Geographic Information Systems (GIS) applications, the bathymetric data has been visualized and analyzed (aided by images and samples obtained with the manned submersible Deep Rover, sediment cores and dredged rocks, and detailed geologic mapping of Mount Mazama) to determine a geologic map of the lake bottom, a history of lake filling (Nathenson et. al., 2001), and volumes, times, and rates of postcaldera eruptions. These calculations have been used to assemble a geologic history for Crater Lake from the time of caldera formation to present day. Postcaldera eruptions have been both subareal and subaqueous, and were well underway within about 90 years after the climactic eruption, beginning with andesitic lava flows from the Wizard Island and central platform volcanoes. The eruptive history of the Wizard Island volcano is divided into three periods defined by former shorelines where subaerial flows entered the lake, quenched rapidly, and fractured, forming lobate deltas and breccia slopes. The shorelines are visible in slope and shaded-relief images of the lake floor created with GIS. The lake filling model suggests that these shorelines

  12. Visualization of Neuregulin 1 ectodomain shedding reveals its local processing in vitro and in vivo.

    PubMed

    Kamezaki, Aosa; Sato, Fuminori; Aoki, Kazuhiro; Asakawa, Kazuhide; Kawakami, Koichi; Matsuzaki, Fumio; Sehara-Fujisawa, Atsuko

    2016-01-01

    Neuregulin1 (NRG1) plays diverse developmental roles and is likely involved in several neurological disorders including schizophrenia. The transmembrane NRG1 protein is proteolytically cleaved and released as a soluble ligand for ErbB receptors. Such post-translational processing, referred to as 'ectodomain shedding', is thought to be crucial for NRG1 function. However, little is known regarding the regulatory mechanism of NRG1 cleavage in vivo. Here, we developed a fluorescent probe, NRG1 Cleavage Indicating SenSOR (N-CISSOR), by fusing mCherry and GFP to the extracellular and intracellular domains of NRG1, respectively. N-CISSOR mimicked the subcellular localization and biochemical properties of NRG1 including cleavage dynamics and ErbB phosphorylation in cultured cells. mCherry/GFP ratio imaging of phorbol-12-myristate-13-acetate-stimulated N-CISSOR-expressing HEK293T cells enabled to monitor rapid ectodomain shedding of NRG1 at the subcellular level. Utilizing N-CISSOR in zebrafish embryos revealed preferential axonal NRG1 ectodomain shedding in developing motor neurons, demonstrating that NRG1 ectodomain shedding is spatially regulated at the subcellular level. Thus, N-CISSOR will be a valuable tool for elucidating the spatiotemporal regulation of NRG1 ectodomain shedding, both in vitro and in vivo. PMID:27364328

  13. Visualization of Neuregulin 1 ectodomain shedding reveals its local processing in vitro and in vivo

    PubMed Central

    Kamezaki, Aosa; Sato, Fuminori; Aoki, Kazuhiro; Asakawa, Kazuhide; Kawakami, Koichi; Matsuzaki, Fumio; Sehara-Fujisawa, Atsuko

    2016-01-01

    Neuregulin1 (NRG1) plays diverse developmental roles and is likely involved in several neurological disorders including schizophrenia. The transmembrane NRG1 protein is proteolytically cleaved and released as a soluble ligand for ErbB receptors. Such post-translational processing, referred to as ‘ectodomain shedding’, is thought to be crucial for NRG1 function. However, little is known regarding the regulatory mechanism of NRG1 cleavage in vivo. Here, we developed a fluorescent probe, NRG1 Cleavage Indicating SenSOR (N-CISSOR), by fusing mCherry and GFP to the extracellular and intracellular domains of NRG1, respectively. N-CISSOR mimicked the subcellular localization and biochemical properties of NRG1 including cleavage dynamics and ErbB phosphorylation in cultured cells. mCherry/GFP ratio imaging of phorbol-12-myristate-13-acetate-stimulated N-CISSOR-expressing HEK293T cells enabled to monitor rapid ectodomain shedding of NRG1 at the subcellular level. Utilizing N-CISSOR in zebrafish embryos revealed preferential axonal NRG1 ectodomain shedding in developing motor neurons, demonstrating that NRG1 ectodomain shedding is spatially regulated at the subcellular level. Thus, N-CISSOR will be a valuable tool for elucidating the spatiotemporal regulation of NRG1 ectodomain shedding, both in vitro and in vivo. PMID:27364328

  14. Visualization of the Serratia Type VI Secretion System Reveals Unprovoked Attacks and Dynamic Assembly

    PubMed Central

    Gerc, Amy J.; Diepold, Andreas; Trunk, Katharina; Porter, Michael; Rickman, Colin; Armitage, Judith P.; Stanley-Wall, Nicola R.; Coulthurst, Sarah J.

    2015-01-01

    Summary The Type VI secretion system (T6SS) is a bacterial nanomachine that fires toxic proteins into target cells. Deployment of the T6SS represents an efficient and widespread means by which bacteria attack competitors or interact with host organisms and may be triggered by contact from an attacking neighbor cell as a defensive strategy. Here, we use the opportunist pathogen Serratia marcescens and functional fluorescent fusions of key components of the T6SS to observe different subassemblies of the machinery simultaneously and on multiple timescales in vivo. We report that the localization and dynamic behavior of each of the components examined is distinct, revealing a multi-stage and dynamic assembly process for the T6SS machinery. We also show that the T6SS can assemble and fire without needing a cell contact trigger, defining an aggressive strategy that broadens target range and suggesting that activation of the T6SS is tailored to survival in specific niches. PMID:26387948

  15. Visualization of the Serratia Type VI Secretion System Reveals Unprovoked Attacks and Dynamic Assembly.

    PubMed

    Gerc, Amy J; Diepold, Andreas; Trunk, Katharina; Porter, Michael; Rickman, Colin; Armitage, Judith P; Stanley-Wall, Nicola R; Coulthurst, Sarah J

    2015-09-29

    The Type VI secretion system (T6SS) is a bacterial nanomachine that fires toxic proteins into target cells. Deployment of the T6SS represents an efficient and widespread means by which bacteria attack competitors or interact with host organisms and may be triggered by contact from an attacking neighbor cell as a defensive strategy. Here, we use the opportunist pathogen Serratia marcescens and functional fluorescent fusions of key components of the T6SS to observe different subassemblies of the machinery simultaneously and on multiple timescales in vivo. We report that the localization and dynamic behavior of each of the components examined is distinct, revealing a multi-stage and dynamic assembly process for the T6SS machinery. We also show that the T6SS can assemble and fire without needing a cell contact trigger, defining an aggressive strategy that broadens target range and suggesting that activation of the T6SS is tailored to survival in specific niches. PMID:26387948

  16. Visual guidance of forward flight in hummingbirds reveals control based on image features instead of pattern velocity.

    PubMed

    Dakin, Roslyn; Fellows, Tyee K; Altshuler, Douglas L

    2016-08-01

    Information about self-motion and obstacles in the environment is encoded by optic flow, the movement of images on the eye. Decades of research have revealed that flying insects control speed, altitude, and trajectory by a simple strategy of maintaining or balancing the translational velocity of images on the eyes, known as pattern velocity. It has been proposed that birds may use a similar algorithm but this hypothesis has not been tested directly. We examined the influence of pattern velocity on avian flight by manipulating the motion of patterns on the walls of a tunnel traversed by Anna's hummingbirds. Contrary to prediction, we found that lateral course control is not based on regulating nasal-to-temporal pattern velocity. Instead, birds closely monitored feature height in the vertical axis, and steered away from taller features even in the absence of nasal-to-temporal pattern velocity cues. For vertical course control, we observed that birds adjusted their flight altitude in response to upward motion of the horizontal plane, which simulates vertical descent. Collectively, our results suggest that birds avoid collisions using visual cues in the vertical axis. Specifically, we propose that birds monitor the vertical extent of features in the lateral visual field to assess distances to the side, and vertical pattern velocity to avoid collisions with the ground. These distinct strategies may derive from greater need to avoid collisions in birds, compared with small insects. PMID:27432982

  17. Simultaneous Visualization of Peroxisomes and Cytoskeletal Elements Reveals Actin and Not Microtubule-Based Peroxisome Motility in Plants1[w

    PubMed Central

    Mathur, Jaideep; Mathur, Neeta; Hülskamp, Martin

    2002-01-01

    Peroxisomes were visualized in living plant cells using a yellow fluorescent protein tagged with a peroxisomal targeting signal consisting of the SKL motif. Simultaneous visualization of peroxisomes and microfilaments/microtubules was accomplished in onion (Allium cepa) epidermal cells transiently expressing the yellow fluorescent protein-peroxi construct, a green fluorescent protein-mTalin construct that labels filamentous-actin filaments, and a green fluorescent protein-microtubule-binding domain construct that labels microtubules. The covisualization of peroxisomes and cytoskeletal elements revealed that, contrary to the reports from animal cells, peroxisomes in plants appear to associate with actin filaments and not microtubules. That peroxisome movement is actin based was shown by pharmacological studies. For this analysis we used onion epidermal cells and various cell types of Arabidopsis including trichomes, root hairs, and root cortex cells exhibiting different modes of growth. In transient onion epidermis assay and in transgenic Arabidopsis plants, an interference with the actin cytoskeleton resulted in progressive loss of saltatory movement followed by the aggregation and a complete cessation of peroxisome motility within 30 min of drug application. Microtubule depolymerization or stabilization had no effect. PMID:11891258

  18. Cell-Targeted Optogenetics and Electrical Microstimulation Reveal the Primate Koniocellular Projection to Supra-granular Visual Cortex.

    PubMed

    Klein, Carsten; Evrard, Henry C; Shapcott, Katharine A; Haverkamp, Silke; Logothetis, Nikos K; Schmid, Michael C

    2016-04-01

    Electrical microstimulation and more recently optogenetics are widely used to map large-scale brain circuits. However, the neuronal specificity achieved with both methods is not well understood. Here we compare cell-targeted optogenetics and electrical microstimulation in the macaque monkey brain to functionally map the koniocellular lateral geniculate nucleus (LGN) projection to primary visual cortex (V1). Selective activation of the LGN konio neurons with CamK-specific optogenetics caused selective electrical current inflow in the supra-granular layers of V1. Electrical microstimulation targeted at LGN konio layers revealed the same supra-granular V1 activation pattern as the one elicited by optogenetics. Taken together, these findings establish a selective koniocellular LGN influence on V1 supra-granular layers, and they indicate comparable capacities of both stimulation methods to isolate thalamo-cortical circuits in the primate brain. PMID:27021172

  19. Edge superconductivity in Nb thin film microbridges revealed by electric transport measurements and visualized by scanning laser microscopy

    NASA Astrophysics Data System (ADS)

    Werner, R.; Aladyshkin, A. Yu; Nefedov, I. M.; Putilov, A. V.; Kemmler, M.; Bothner, D.; Loerincz, A.; Ilin, K.; Siegel, M.; Kleiner, R.; Koelle, D.

    2013-09-01

    The resistance R versus perpendicular external magnetic field H was measured for superconducting Nb thin film microbridges with and without microholes (antidots, ADs). Well below the transition temperature, integral R(H) measurements of the resistive transition to the normal state on the plain bridge show two distinct regions, which can be identified as bulk and edge superconductivity, respectively. The latter case appears when bulk superconductivity becomes suppressed at the upper critical field Hc2 and below the critical field of edge superconductivity Hc3 ≈ 1.7 Hc2. The presence of additional edges in the AD bridge leads to a different shape of the R(H) curves. We used low-temperature scanning laser microscopy (LTSLM) to visualize the current distribution in the plain and AD bridges upon sweeping H. While the plain bridge shows a dominant LTSLM signal at its edges for H > Hc2 the AD bridge also gives a signal from the inner parts of the bridge due to the additional edge states around the ADs. LTSLM reveals an asymmetry in the current distribution between the left and right edges, which confirms theoretical predictions. Furthermore, the experimental results are in good agreement with our numerical simulations (based on the time-dependent Ginzburg-Landau model), yielding the spatial distribution of the order parameter and current density for different bias currents and H values.

  20. College Linemen Larger Than Ever, Study Finds

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_159931.html College Linemen Larger Than Ever, Study Finds These athletes will need help adopting healthy lifestyles after their careers end, researcher says To use the sharing features ...

  1. Is Parental Involvement Lower at Larger Schools?

    ERIC Educational Resources Information Center

    Walsh, Patrick

    2010-01-01

    Parents who volunteer, or who lobby for improvements in school quality, are generally seen as providing a school-wide public good. If so, straightforward public-good theory predicts that free-riding will reduce average involvement at larger schools. This study uses longitudinal data to follow families over time, as their children move from middle…

  2. Why is g Larger at the Poles?

    ERIC Educational Resources Information Center

    Iona, Mario

    1978-01-01

    Explains that the larger value of g at the poles is not due only to differences in the radii of the earth, but that other factors are also responsible such as the rotation of the earth and the increase in the earth's density toward its center. (GA)

  3. Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

    PubMed

    Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo

    2016-06-01

    Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. PMID:27194709

  4. VEP contrast sensitivity responses reveal reduced functional segregation of mid and high filters of visual channels in autism.

    PubMed

    Jemel, Boutheina; Mimeault, Daniel; Saint-Amour, Dave; Hosein, Anthony; Mottron, Laurent

    2010-01-01

    Despite the vast amount of behavioral data showing a pronounced tendency in individuals with autism spectrum disorder (ASD) to process fine visual details, much less is known about the neurophysiological characteristics of spatial vision in ASD. Here, we address this issue by assessing the contrast sensitivity response properties of the early visual-evoked potentials (VEPs) to sine-wave gratings of low, medium and high spatial frequencies in adults with ASD and in an age- and IQ-matched control group. Our results show that while VEP contrast responses to low and high spatial frequency gratings did not differ between ASD and controls, early VEPs to mid spatial frequency gratings exhibited similar response characteristics as those to high spatial frequency gratings in ASD. Our findings show evidence for an altered functional segregation of early visual channels, especially those responsible for processing mid- and high-frequency spatial scales. PMID:20884562

  5. First- and second-order contrast sensitivity functions reveal disrupted visual processing following mild traumatic brain injury.

    PubMed

    Spiegel, Daniel P; Reynaud, Alexandre; Ruiz, Tatiana; Laguë-Beauvais, Maude; Hess, Robert; Farivar, Reza

    2016-05-01

    Vision is disrupted by traumatic brain injury (TBI), with vision-related complaints being amongst the most common in this population. Based on the neural responses of early visual cortical areas, injury to the visual cortex would be predicted to affect both 1(st) order and 2(nd) order contrast sensitivity functions (CSFs)-the height and/or the cut-off of the CSF are expected to be affected by TBI. Previous studies have reported disruptions only in 2(nd) order contrast sensitivity, but using a narrow range of parameters and divergent methodologies-no study has characterized the effect of TBI on the full CSF for both 1(st) and 2(nd) order stimuli. Such information is needed to properly understand the effect of TBI on contrast perception, which underlies all visual processing. Using a unified framework based on the quick contrast sensitivity function, we measured full CSFs for static and dynamic 1(st) and 2(nd) order stimuli. Our results provide a unique dataset showing alterations in sensitivity for both 1(st) and 2(nd) order visual stimuli. In particular, we show that TBI patients have increased sensitivity for 1(st) order motion stimuli and decreased sensitivity to orientation-defined and contrast-defined 2(nd) order stimuli. In addition, our data suggest that TBI patients' sensitivity for both 1(st) order stimuli and 2(nd) order contrast-defined stimuli is shifted towards higher spatial frequencies. PMID:27036098

  6. Long term cultivation of larger benthic Foraminifera

    NASA Astrophysics Data System (ADS)

    Wöger, Julia; Eder, Wolfgang; Kinoshita, Shunichi; Antonino, Briguglio; Carles, Ferrandes-Cañadell; Hohenegger, Johann

    2015-04-01

    Benthic Foraminifera are used in a variety of applications employing numerous different methods, i.e. ecological monitoring, studying the effects of ocean acidification, reconstructing palaeo-bathymetry or investigating palaeo-salinity and palaeo-temperature to name only a few. To refine our understanding of ecological influences on larger benthic foraminiferal biology and to review inferences from field observations, culture experiments have become an indispensable tool. While culture experiments on smaller benthic foraminifera have become increasingly frequent in the past century, reports of the cultivation of symbiont bearing larger Foraminifera are rare. Generally, cultivation experiments can be divided into two groups: Culturing of populations and cultivation of single specimens allowing individual investigation. The latter differ form the former by several restrictions resulting from the need to limit individual motility without abridging microenvironmental conditions in the Foraminiferans artificial habitat, necessary to enable the individual to development as unfettered as possible. In this study we present first experiences and preliminary results of the long-term cultivation of larger benthic Foraminifera conducted at the 'Tropical Biosphere Research Station Sesoko Island, University of the Ryukyus', Japan, trying to reproduce natural conditions as closely as possible. Individuals of three species of larger benthic Foraminifera (Heterostegina depressa, Palaeonummulites venosus and Operculina complanata) have been cultured since April 2014. At the time of the general assembly the cultivation experiments will have been going on for more than one year, with the aim to investigate growth rates, longevities and reproduction strategies for comparison with results statistically inferred from application of the of the 'natural laboratory' method. The most important factor influencing foraminiferal health and development was found to be light intensity and light

  7. Monocular inhibition reveals temporal and spatial changes in gene expression in the primary visual cortex of marmoset

    PubMed Central

    Nakagami, Yuki; Watakabe, Akiya; Yamamori, Tetsuo

    2013-01-01

    We investigated the time course of the expression of several activity-dependent genes evoked by visual inputs in the primary visual cortex (V1) in adult marmosets. In order to examine the rapid time course of activity-dependent gene expression, marmosets were first monocularly inactivated by tetrodotoxin (TTX), kept in darkness for two days, and then exposed to various length of light stimulation. Activity-dependent genes including HTR1B, HTR2A, whose activity-dependency were previously reported by us, and well-known immediate early genes (IEGs), c-FOS, ZIF268, and ARC, were examined by in situ hybridization. Using this system, first, we demonstrated the ocular dominance type of gene expression pattern in V1 under this condition. IEGs were expressed in columnar patterns throughout layers II–VI of all the tested monocular marmosets. Second, we showed the regulation of HTR1B and HTR2A expressions by retinal spontaneous activity, because HTR1B and HTR2A mRNA expressions sustained a certain level regardless of visual stimulation and were inhibited by a blockade of the retinal activity with TTX. Third, IEGs dynamically changed its laminar distribution from half an hour to several hours upon a stimulus onset with the unique time course for each gene. The expression patterns of these genes were different in neurons of each layer as well. These results suggest that the regulation of each neuron in the primary visual cortex of marmosets is subjected to different regulation upon the change of activities from retina. It should be related to a highly differentiated laminar structure of marmoset visual systems, reflecting the functions of the activity-dependent gene expression in marmoset V1. PMID:23576954

  8. Receptive Field Vectors of Genetically-Identified Retinal Ganglion Cells Reveal Cell-Type-Dependent Visual Functions

    PubMed Central

    Katz, Matthew L.; Viney, Tim J.; Nikolic, Konstantin

    2016-01-01

    Sensory stimuli are encoded by diverse kinds of neurons but the identities of the recorded neurons that are studied are often unknown. We explored in detail the firing patterns of eight previously defined genetically-identified retinal ganglion cell (RGC) types from a single transgenic mouse line. We first introduce a new technique of deriving receptive field vectors (RFVs) which utilises a modified form of mutual information (“Quadratic Mutual Information”). We analysed the firing patterns of RGCs during presentation of short duration (~10 second) complex visual scenes (natural movies). We probed the high dimensional space formed by the visual input for a much smaller dimensional subspace of RFVs that give the most information about the response of each cell. The new technique is very efficient and fast and the derivation of novel types of RFVs formed by the natural scene visual input was possible even with limited numbers of spikes per cell. This approach enabled us to estimate the 'visual memory' of each cell type and the corresponding receptive field area by calculating Mutual Information as a function of the number of frames and radius. Finally, we made predictions of biologically relevant functions based on the RFVs of each cell type. RGC class analysis was complemented with results for the cells’ response to simple visual input in the form of black and white spot stimulation, and their classification on several key physiological metrics. Thus RFVs lead to predictions of biological roles based on limited data and facilitate analysis of sensory-evoked spiking data from defined cell types. PMID:26845435

  9. Receptive Field Vectors of Genetically-Identified Retinal Ganglion Cells Reveal Cell-Type-Dependent Visual Functions.

    PubMed

    Katz, Matthew L; Viney, Tim J; Nikolic, Konstantin

    2016-01-01

    Sensory stimuli are encoded by diverse kinds of neurons but the identities of the recorded neurons that are studied are often unknown. We explored in detail the firing patterns of eight previously defined genetically-identified retinal ganglion cell (RGC) types from a single transgenic mouse line. We first introduce a new technique of deriving receptive field vectors (RFVs) which utilises a modified form of mutual information ("Quadratic Mutual Information"). We analysed the firing patterns of RGCs during presentation of short duration (~10 second) complex visual scenes (natural movies). We probed the high dimensional space formed by the visual input for a much smaller dimensional subspace of RFVs that give the most information about the response of each cell. The new technique is very efficient and fast and the derivation of novel types of RFVs formed by the natural scene visual input was possible even with limited numbers of spikes per cell. This approach enabled us to estimate the 'visual memory' of each cell type and the corresponding receptive field area by calculating Mutual Information as a function of the number of frames and radius. Finally, we made predictions of biologically relevant functions based on the RFVs of each cell type. RGC class analysis was complemented with results for the cells' response to simple visual input in the form of black and white spot stimulation, and their classification on several key physiological metrics. Thus RFVs lead to predictions of biological roles based on limited data and facilitate analysis of sensory-evoked spiking data from defined cell types. PMID:26845435

  10. Student Visual Communication of Evolution

    NASA Astrophysics Data System (ADS)

    Oliveira, Alandeom W.; Cook, Kristin

    2016-05-01

    Despite growing recognition of the importance of visual representations to science education, previous research has given attention mostly to verbal modalities of evolution instruction. Visual aspects of classroom learning of evolution are yet to be systematically examined by science educators. The present study attends to this issue by exploring the types of evolutionary imagery deployed by secondary students. Our visual design analysis revealed that students resorted to two larger categories of images when visually communicating evolution: spatial metaphors (images that provided a spatio-temporal account of human evolution as a metaphorical "walk" across time and space) and symbolic representations ("icons of evolution" such as personal portraits of Charles Darwin that simply evoked evolutionary theory rather than metaphorically conveying its conceptual contents). It is argued that students need opportunities to collaboratively critique evolutionary imagery and to extend their visual perception of evolution beyond dominant images.

  11. Functional MRI Representational Similarity Analysis Reveals a Dissociation between Discriminative and Relative Location Information in the Human Visual System

    PubMed Central

    Roth, Zvi N.

    2016-01-01

    Neural responses in visual cortex are governed by a topographic mapping from retinal locations to cortical responses. Moreover, at the voxel population level early visual cortex (EVC) activity enables accurate decoding of stimuli locations. However, in many cases information enabling one to discriminate between locations (i.e., discriminative information) may be less relevant than information regarding the relative location of two objects (i.e., relative information). For example, when planning to grab a cup, determining whether the cup is located at the same retinal location as the hand is hardly relevant, whereas the location of the cup relative to the hand is crucial for performing the action. We have previously used multivariate pattern analysis techniques to measure discriminative location information, and found the highest levels in EVC, in line with other studies. Here we show, using representational similarity analysis, that availability of discriminative information in fMRI activation patterns does not entail availability of relative information. Specifically, we find that relative location information can be reliably extracted from activity patterns in posterior intraparietal sulcus (pIPS), but not from EVC, where we find the spatial representation to be warped. We further show that this variability in relative information levels between regions can be explained by a computational model based on an array of receptive fields. Moreover, when the model's receptive fields are extended to include inhibitory surround regions, the model can account for the spatial warping in EVC. These results demonstrate how size and shape properties of receptive fields in human visual cortex contribute to the transformation of discriminative spatial representations into relative spatial representations along the visual stream. PMID:27242455

  12. Accurate density functional thermochemistry for larger molecules.

    SciTech Connect

    Raghavachari, K.; Stefanov, B. B.; Curtiss, L. A.; Lucent Tech.

    1997-06-20

    Density functional methods are combined with isodesmic bond separation reaction energies to yield accurate thermochemistry for larger molecules. Seven different density functionals are assessed for the evaluation of heats of formation, Delta H 0 (298 K), for a test set of 40 molecules composed of H, C, O and N. The use of bond separation energies results in a dramatic improvement in the accuracy of all the density functionals. The B3-LYP functional has the smallest mean absolute deviation from experiment (1.5 kcal mol/f).

  13. The oscillatory activities and its synchronization in auditory-visual integration as revealed by event-related potentials to bimodal stimuli

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Xu, Peng; Yao, Li; Shu, Hua; Zhao, Xiaojie

    2012-03-01

    Neural mechanism of auditory-visual speech integration is always a hot study of multi-modal perception. The articulation conveys speech information that helps detect and disambiguate the auditory speech. As important characteristic of EEG, oscillations and its synchronization have been applied to cognition research more and more. This study analyzed the EEG data acquired by unimodal and bimodal stimuli using time frequency and phase synchrony approach, investigated the oscillatory activities and its synchrony modes behind evoked potential during auditory-visual integration, in order to reveal the inherent neural integration mechanism under these modes. It was found that beta activity and its synchronization differences had relationship with gesture N1-P2, which happened in the earlier stage of speech coding to pronouncing action. Alpha oscillation and its synchronization related with auditory N1-P2 might be mainly responsible for auditory speech process caused by anticipation from gesture to sound feature. The visual gesture changing enhanced the interaction of auditory brain regions. These results provided explanations to the power and connectivity change of event-evoked oscillatory activities which matched ERPs during auditory-visual speech integration.

  14. Functional Interaction between Right Parietal and Bilateral Frontal Cortices during Visual Search Tasks Revealed Using Functional Magnetic Imaging and Transcranial Direct Current Stimulation

    PubMed Central

    Ellison, Amanda; Ball, Keira L.; Moseley, Peter; Dowsett, James; Smith, Daniel T.; Weis, Susanne; Lane, Alison R.

    2014-01-01

    The existence of a network of brain regions which are activated when one undertakes a difficult visual search task is well established. Two primary nodes on this network are right posterior parietal cortex (rPPC) and right frontal eye fields. Both have been shown to be involved in the orientation of attention, but the contingency that the activity of one of these areas has on the other is less clear. We sought to investigate this question by using transcranial direct current stimulation (tDCS) to selectively decrease activity in rPPC and then asking participants to perform a visual search task whilst undergoing functional magnetic resonance imaging. Comparison with a condition in which sham tDCS was applied revealed that cathodal tDCS over rPPC causes a selective bilateral decrease in frontal activity when performing a visual search task. This result demonstrates for the first time that premotor regions within the frontal lobe and rPPC are not only necessary to carry out a visual search task, but that they work together to bring about normal function. PMID:24705681

  15. Alterations in task-induced activity and resting-state fluctuations in visual and DMN areas revealed in long-term meditators.

    PubMed

    Berkovich-Ohana, Aviva; Harel, Michal; Hahamy, Avital; Arieli, Amos; Malach, Rafael

    2016-07-15

    Recently we proposed that the information contained in spontaneously emerging (resting-state) fluctuations may reflect individually unique neuro-cognitive traits. One prediction of this conjecture, termed the "spontaneous trait reactivation" (STR) hypothesis, is that resting-state activity patterns could be diagnostic of unique personalities, talents and life-styles of individuals. Long-term meditators could provide a unique experimental group to test this hypothesis. Using fMRI we found that, during resting-state, the amplitude of spontaneous fluctuations in long-term mindfulness meditation (MM) practitioners was enhanced in the visual cortex and significantly reduced in the DMN compared to naïve controls. Importantly, during a visual recognition memory task, the MM group showed heightened visual cortex responsivity, concomitant with weaker negative responses in Default Mode Network (DMN) areas. This effect was also reflected in the behavioral performance, where MM practitioners performed significantly faster than the control group. Thus, our results uncover opposite changes in the visual and default mode systems in long-term meditators which are revealed during both rest and task. The results support the STR hypothesis and extend it to the domain of local changes in the magnitude of the spontaneous fluctuations. PMID:27109713

  16. Practical aspects of NMR signal assignment in larger and challenging proteins

    PubMed Central

    Frueh, Dominique P.

    2014-01-01

    NMR has matured into a technique routinely employed for studying proteins in near physiological conditions. However, applications to larger proteins are impeded by the complexity of the various correlation maps necessary to assign NMR signals. This article reviews the data analysis techniques traditionally employed for resonance assignment and describes alternative protocols necessary for overcoming challenges in large protein spectra. In particular, simultaneous analysis of multiple spectra may help overcome ambiguities or may reveal correlations in an indirect manner. Similarly, visualization of orthogonal planes in a multidimensional spectrum can provide alternative assignment procedures. We describe examples of such strategies for assignment of backbone, methyl, and nOe resonances. We describe experimental aspects of data acquisition for the related experiments and provide guidelines for preliminary studies. Focus is placed on large folded monomeric proteins and examples are provided for 37, 48, 53, and 81 kDa proteins. PMID:24534088

  17. Italian super-eruption larger than thought

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-07-01

    Recent research suggested that the super-eruption of the Campi Flegrei caldera volcano in southern Italy about 40,000 years ago may have played a part in wiping out, or forcing the migration of, the Neanderthal and modern human populations in the eastern Mediterranean regions that were covered in ash. Now a new modeling study by Costa et al. suggests that this eruption may have been even larger than previously thought. This Campi Flegrei eruption produced a widespread ash layer known as Campanian Ignimbrite (CI). Using ash thickness measurements collected at 115 sites and a three-dimensional ash dispersal model, the researchers found that the CI super-eruption would have spread 250-300 cubic kilometers of ash across a 3.7-million-square kilometer region—2 to 3 times previous ash volume estimates.

  18. Map projections for larger-scale mapping

    NASA Technical Reports Server (NTRS)

    Snyder, J. P.

    1982-01-01

    For the U.S. Geological Survey maps at 1:1,000,000-scale and larger, the most common projections are conformal, such as the Transverse Mercator and Lambert Conformal Conic. Projections for these scales should treat the Earth as an ellipsoid. In addition, the USGS has conceived and designed some new projections, including the Space Oblique Mercator, the first map projection designed to permit low-distortion mapping of the Earth from satellite imagery, continuously following the groundtrack. The USGS has programmed nearly all pertinent projection equations for inverse and forward calculations. These are used to plot maps or to transform coordinates from one projection to another. The projections in current use are described.

  19. ) Composites Containing Nanoparticles and Larger Particles

    NASA Astrophysics Data System (ADS)

    Ghanaraja, S.; Nath, S. K.; Ray, S.

    2014-07-01

    The composites reinforced with nanoparticles result in improved strength and ductility while those containing coarser particles of micron size have limited ductility. The present study investigates the outcome of mechanical properties in a composite reinforced simultaneously with coarse and fine particles. High energy milling of manganese dioxide particles with excess of aluminum powder ensures that nanoparticles generated, either of MnO2 or alumina, are mostly separate and surrounded by aluminum particles. The milled powder when added to aluminum alloy melt, the excess aluminum particles will melt leaving behind separate oxide nanoparticles without significant agglomeration. Different amounts of milled powder mix have been stirred into molten aluminum alloy where nanoparticles of MnO2 react with melt to form alumina. The resulting slurry is cast into composites, which also contains coarser (nearly micron size) alumina particles formed by internal oxidation of the melt during processing. The microstructure of the composites shows good distribution of both the size categories of particles without significant clustering. The oxide particles are primarily γ-alumina in a matrix of aluminum-magnesium-manganese alloy containing some iron picked up from the stirrer. These composites fail during tensile test by ductile fracture due to debonding of coarser particles. The presence of nanoparticles along with coarser particles in a composite improves both strength and ductility considerably, presumably due to delay in debonding of coarser particles to higher stress because of reduced mismatch in extension caused by increased strain hardening in presence of nanoparticles in the matrix. The composites containing only coarser oxide particles show limited strength and ductility attributed to early debonding of particles at a relatively lower stress due to larger mismatch in extension between matrix and larger particles. Higher addition of powder mix beyond a limit, however

  20. Pattern reversal visual evoked responses of V1/V2 and V5/MT as revealed by MEG combined with probabilistic cytoarchitectonic maps.

    PubMed

    Barnikol, Utako B; Amunts, Katrin; Dammers, Jürgen; Mohlberg, Hartmut; Fieseler, Thomas; Malikovic, Aleksandar; Zilles, Karl; Niedeggen, Michael; Tass, Peter A

    2006-05-15

    Pattern reversal stimulation provides an established tool for assessing the integrity of the visual pathway and for studying early visual processing. Numerous magnetoencephalographic (MEG) and electroencephalographic (EEG) studies have revealed a three-phasic waveform of the averaged pattern reversal visual evoked potential/magnetic field, with components N75(m), P100(m), and N145(m). However, the anatomical assignment of these components to distinct cortical generators is still a matter of debate, which has inter alia connected with considerable interindividual variations of the human striate and extrastriate cortex. The anatomical variability can be compensated for by means of probabilistic cytoarchitectonic maps, which are three-dimensional maps obtained by an observer-independent statistical mapping in a sample of ten postmortem brains. Transformed onto a subject's brain under consideration, these maps provide the probability with which a given voxel of the subject's brain belongs to a particular cytoarchitectonic area. We optimize the spatial selectivity of the probability maps for V1 and V2 with a probability threshold which optimizes the self- vs. cross-overlap in the population of postmortem brains used for deriving the probabilistic cytoarchitectonic maps. For the first time, we use probabilistic cytoarchitectonic maps of visual cortical areas in order to anatomically identify active cortical generators underlying pattern reversal visual evoked magnetic fields as revealed by MEG. The generators are determined with magnetic field tomography (MFT), which reconstructs the current source density in each voxel. In all seven subjects, our approach reveals generators in V1/V2 (with a greater overlap with V1) and in V5 unilaterally (right V5 in three subjects, left V5 in four subjects) and consistent time courses of their stimulus-locked activations, with three peak activations in V1/V2 (contributing to C1m/N75m, P100m, and N145m) and two peak activations in V5

  1. Separable features of visual cortical plasticity revealed by N-methyl-d-aspartate receptor 2A signaling

    PubMed Central

    Fagiolini, Michela; Katagiri, Hiroyuki; Miyamoto, Hiroyuki; Mori, Hisashi; Grant, Seth G. N.; Mishina, Masayoshi; Hensch, Takao K.

    2003-01-01

    How individual receptive field properties are formed in the maturing sensory neocortex remains largely unknown. The shortening of N-methyl-d-aspartate (NMDA) receptor currents by 2A subunit (NR2A) insertion has been proposed to delimit the critical period for experience-dependent refinement of circuits in visual cortex. In mice engineered to maintain prolonged NMDA responses by targeted deletion of NR2A, the sensitivity to monocular deprivation was surprisingly weakened but restricted to the typical critical period and delayed normally by dark rearing from birth. Orientation preference instead failed to mature, occluding further effects of dark rearing. Interestingly, a full ocular dominance plasticity (but not orientation bias) was selectively restored by enhanced inhibition, reflecting an imbalanced excitation in the absence of NR2A. Many of the downstream pathways involved in NMDA signaling are coupled to the receptor through a variety of protein–protein interactions and adaptor molecules. To further investigate a mechanistic dissociation of receptive field properties in the developing visual system, mice carrying a targeted disruption of the NR2A-associated 95-kDa postsynaptic density (PSD95) scaffolding protein were analyzed. Although the development and plasticity of ocular dominance was unaffected, orientation preference again failed to mature in these mice. Taken together, our results demonstrate that the cellular basis generating individual sensory response properties is separable in the developing neocortex. PMID:12591944

  2. Visualization of the joining of ribosomal subunits reveals the presence of 80S ribosomes in the nucleus

    PubMed Central

    Al-Jubran, Khalid; Wen, Jikai; Abdullahi, Akilu; Roy Chaudhury, Subhendu; Li, Min; Ramanathan, Preethi; Matina, Annunziata; De, Sandip; Piechocki, Kim; Rugjee, Kushal Nivriti; Brogna, Saverio

    2013-01-01

    In eukaryotes the 40S and 60S ribosomal subunits are assembled in the nucleolus, but there appear to be mechanisms preventing mRNA binding, 80S formation, and initiation of translation in the nucleus. To visualize association between ribosomal subunits, we tagged pairs of Drosophila ribosomal proteins (RPs) located in different subunits with mutually complementing halves of fluorescent proteins. Pairs of tagged RPs expected to interact, or be adjacent in the 80S structure, showed strong fluorescence, while pairs that were not in close proximity did not. Moreover, the complementation signal is found in ribosomal fractions and it was enhanced by translation elongation inhibitors and reduced by initiation inhibitors. Our technique achieved 80S visualization both in cultured cells and in fly tissues in vivo. Notably, while the main 80S signal was in the cytoplasm, clear signals were also seen in the nucleolus and at other nuclear sites. Furthermore, we detected rapid puromycin incorporation in the nucleolus and at transcription sites, providing an independent indication of functional 80S in the nucleolus and 80S association with nascent transcripts. PMID:24129492

  3. The structure of pairwise correlation in mouse primary visual cortex reveals functional organization in the absence of an orientation map.

    PubMed

    Denman, Daniel J; Contreras, Diego

    2014-10-01

    Neural responses to sensory stimuli are not independent. Pairwise correlation can reduce coding efficiency, occur independent of stimulus representation, or serve as an additional channel of information, depending on the timescale of correlation and the method of decoding. Any role for correlation depends on its magnitude and structure. In sensory areas with maps, like the orientation map in primary visual cortex (V1), correlation is strongly related to the underlying functional architecture, but it is unclear whether this correlation structure is an essential feature of the system or arises from the arrangement of cells in the map. We assessed the relationship between functional architecture and pairwise correlation by measuring both synchrony and correlated spike count variability in mouse V1, which lacks an orientation map. We observed significant pairwise synchrony, which was organized by distance and relative orientation preference between cells. We also observed nonzero correlated variability in both the anesthetized (0.16) and awake states (0.18). Our results indicate that the structure of pairwise correlation is maintained in the absence of an underlying anatomical organization and may be an organizing principle of the mammalian visual system preserved by nonrandom connectivity within local networks. PMID:23689635

  4. Looking at the evidence in visual world: eye-movements reveal how bilingual and monolingual Turkish speakers process grammatical evidentiality.

    PubMed

    Arslan, Seçkin; Bastiaanse, Roelien; Felser, Claudia

    2015-01-01

    This study presents pioneering data on how adult early bilinguals (heritage speakers) and late bilingual speakers of Turkish and German process grammatical evidentiality in a visual world setting in comparison to monolingual speakers of Turkish. Turkish marks evidentiality, the linguistic reference to information source, through inflectional affixes signaling either direct (-DI) or indirect (-mIş) evidentiality. We conducted an eye-tracking-during-listening experiment where participants were given access to visual 'evidence' supporting the use of either a direct or indirect evidential form. The behavioral results indicate that the monolingual Turkish speakers comprehended direct and indirect evidential scenarios equally well. In contrast, both late and early bilinguals were less accurate and slower to respond to direct than to indirect evidentials. The behavioral results were also reflected in the proportions of looks data. That is, both late and early bilinguals fixated less frequently on the target picture in the direct than in the indirect evidential condition while the monolinguals showed no difference between these conditions. Taken together, our results indicate reduced sensitivity to the semantic and pragmatic function of direct evidential forms in both late and early bilingual speakers, suggesting a simplification of the Turkish evidentiality system in Turkish heritage grammars. We discuss our findings with regard to theories of incomplete acquisition and first language attrition. PMID:26441762

  5. Looking at the evidence in visual world: eye-movements reveal how bilingual and monolingual Turkish speakers process grammatical evidentiality

    PubMed Central

    Arslan, Seçkin; Bastiaanse, Roelien; Felser, Claudia

    2015-01-01

    This study presents pioneering data on how adult early bilinguals (heritage speakers) and late bilingual speakers of Turkish and German process grammatical evidentiality in a visual world setting in comparison to monolingual speakers of Turkish. Turkish marks evidentiality, the linguistic reference to information source, through inflectional affixes signaling either direct (-DI) or indirect (-mIş) evidentiality. We conducted an eye-tracking-during-listening experiment where participants were given access to visual ‘evidence’ supporting the use of either a direct or indirect evidential form. The behavioral results indicate that the monolingual Turkish speakers comprehended direct and indirect evidential scenarios equally well. In contrast, both late and early bilinguals were less accurate and slower to respond to direct than to indirect evidentials. The behavioral results were also reflected in the proportions of looks data. That is, both late and early bilinguals fixated less frequently on the target picture in the direct than in the indirect evidential condition while the monolinguals showed no difference between these conditions. Taken together, our results indicate reduced sensitivity to the semantic and pragmatic function of direct evidential forms in both late and early bilingual speakers, suggesting a simplification of the Turkish evidentiality system in Turkish heritage grammars. We discuss our findings with regard to theories of incomplete acquisition and first language attrition. PMID:26441762

  6. The Larger Linear N-Heteroacenes.

    PubMed

    Bunz, Uwe H F

    2015-06-16

    The close structural and chemical relationship of N-heteroacenes to pentacene suggests their broad applicability in organic electronic devices, such as thin-film transistors. The superb materials science properties of azaacenes result from their improved resistance toward oxidation and their potential for electron transport, both of which have been demonstrated recently. The introduction of nitrogen atoms into the aromatic perimeter of acenes stabilizes their frontier molecular orbitals and increases their electron affinity. The HOMO-LUMO gaps in azaacenes in which the nitrogen atoms are symmetrically placed are similar to those of the acenes. The judiciously placed nitrogen atoms induce an "umpolung" of the electronic behavior of these pentacene-like molecules, i.e., instead of hole mobility in thin-film transistors, azaacenes are electron-transporting materials. The fundamental synthetic approaches toward larger azaacenes are described and discussed. Several synthetic methodologies have been exploited, and some have been newly developed to assemble substituted azaacenes. The oldest methods are condensation-based. Aromatic o-diamines are coupled with o-dihydroxyarenes in the melt without solvent. This method works well for unsubstituted azaacenes only. The attachment of substituents to the starting materials renders these "fire and sword" methods less useful. The starting materials decompose under these conditions. The direct condensation of substituted o-diamines with o-quinones proceeds well in some cases. Fluorinated benzene rings next to a pyrazine unit are introduced by nucleophilic aromatic substitution employing hexafluorobenzene. However, with these well-established synthetic methodologies, a number of azaacene topologies cannot be synthesized. The Pd-catalyzed coupling of aromatic halides and aromatic diamines has therefore emerged as versatile tool for azaacene synthesis. Now substituted diaza- and tetraazaacenes, azapentacenes, azahexacenes, and

  7. Growing Larger Crystals for Neutron Diffraction

    NASA Technical Reports Server (NTRS)

    Pusey, Marc

    2003-01-01

    Obtaining crystals of suitable size and high quality has been a major bottleneck in macromolecular crystallography. With the advent of advanced X-ray sources and methods the question of size has rapidly dwindled, almost to the point where if one can see the crystal then it was big enough. Quality is another issue, and major national and commercial efforts were established to take advantage of the microgravity environment in an effort to obtain higher quality crystals. Studies of the macromolecule crystallization process were carried out in many labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. While technological improvements are resulting in a diminishing of the minimum crystal size required, neutron diffraction structural studies still require considerably larger crystals, by several orders of magnitude, than X-ray studies. From a crystal growth physics perspective there is no reason why these 'large' crystals cannot be obtained: the question is generally more one of supply than limitations mechanism. This talk will discuss our laboratory s current model for macromolecule crystal growth, with highlights pertaining to the growth of crystals suitable for neutron diffraction studies.

  8. Manifestations of central retinal artery occlusion revealed by fundus fluorescein angiography are associated with the degree of visual loss

    PubMed Central

    GONG, HONGXIA; SONG, QIUYING; WANG, LANHUI

    2016-01-01

    The aim of this study was to investigate the association between central visual impairment and the characteristics of fundus fluorescein angiography (FFA) in patients with central retinal artery occlusion (CRAO). A total of 63 patients were diagnosed with CRAO by FFA. The visual dysfunction was classified into severe, mild and light degrees. Tropicamide was administered for mydriasis. FFA examination was performed using Heidelberg retinal tomography. The associations of age, gender and disease course with CRAO type were analyzed. Three types of manifestations were identified by FFA in 63 eyes, including poor perfusion (18 cases), exudation (22 cases) and mixed types (23 cases) of CRAO. No significant difference was found in age (F=0.171, P=0.844) and disease course (F=0.016, P=0.984) among the three types of CRAO. Similarly, no significant difference was found in gender among the three types of CRAO (χ2=0.176, P=0.916). The damage to vision caused by the exudation type of CRAO was not as severe as that caused by the poor perfusion and mixed types of CRAO. The distributions of damage severity caused by the poor perfusion and mixed types of CRAO were similar. In conclusion, the FFA observations for CRAO can be classified into three types of manifestations. The damage to vision in patients with CRAO is likely to be associated with poor perfusion in the retinal artery rather than exudation affecting the retina or optic disc. The patterns of clinical manifestations are not associated with age, gender or disease course. PMID:27313672

  9. Siphonophores eat fish larger than their stomachs

    NASA Astrophysics Data System (ADS)

    Pagès, Francesc; Madin, Laurence P.

    2010-12-01

    We report a collection of the siphonophore Halistemma cupulifera, collected at 20 meters depth during a night SCUBA dive in the Sargasso Sea. One of its stomachs (gastrozooids) contained a leptocephalus larva of the eel Ariosoma sp. folded in thirds to fit, but 8.3 cm in length fully extended. This finding shows that in situ observations can reveal previously unknown trophic interactions that may be significant in a changing world ocean where gelatinous organisms seem to increase at the expense of fish.

  10. Visualization of poly(ADP-ribose) bound to PARG reveals inherent balance between exo- and endo-glycohydrolase activities

    PubMed Central

    Barkauskaite, Eva; Brassington, Amy; Tan, Edwin S.; Warwicker, Jim; Dunstan, Mark S.; Banos, Benito; Lafite, Pierre; Ahel, Marijan; Mitchison, Timothy J.; Ahel, Ivan; Leys, David

    2013-01-01

    Poly-ADP-ribosylation is a post-translational modification that regulates processes involved in genome stability. Breakdown of the poly(ADP-ribose) (PAR) polymer is catalysed by poly(ADP-ribose) glycohydrolase (PARG), whose endo-glycohydrolase activity generates PAR fragments. Here we present the crystal structure of PARG incorporating the PAR substrate. The two terminal ADP-ribose units of the polymeric substrate are bound in exo-mode. Biochemical and modelling studies reveal that PARG acts predominantly as an exo-glycohydrolase. This preference is linked to Phe902 (human numbering), which is responsible for low-affinity binding of the substrate in endo-mode. Our data reveal the mechanism of poly-ADP-ribosylation reversal, with ADP-ribose as the dominant product, and suggest that the release of apoptotic PAR fragments occurs at unusual PAR/PARG ratios. PMID:23917065

  11. Larger right posterior parietal volume in action video game experts: a behavioral and voxel-based morphometry (VBM) study.

    PubMed

    Tanaka, Satoshi; Ikeda, Hanako; Kasahara, Kazumi; Kato, Ryo; Tsubomi, Hiroyuki; Sugawara, Sho K; Mori, Makoto; Hanakawa, Takashi; Sadato, Norihiro; Honda, Manabu; Watanabe, Katsumi

    2013-01-01

    Recent studies suggest that action video game players exhibit superior performance in visuospatial cognitive tasks compared with non-game players. However, the neural basis underlying this visuospatial cognitive performance advantage remains largely unknown. The present human behavioral and imaging study compared gray matter volume in action video game experts and non-experts using structural magnetic resonance imaging and voxel-based morphometry analysis. The results revealed significantly larger gray matter volume in the right posterior parietal cortex in experts compared with non-experts. Furthermore, the larger gray matter volume in the right posterior parietal cortex significantly correlated with individual performance in a visual working memory task in experts. These results suggest that differences in brain structure may be linked to extensive video game play, leading to superior visuospatial cognitive performance in action video game experts. PMID:23776706

  12. Larger Right Posterior Parietal Volume in Action Video Game Experts: A Behavioral and Voxel-Based Morphometry (VBM) Study

    PubMed Central

    Tanaka, Satoshi; Ikeda, Hanako; Kasahara, Kazumi; Kato, Ryo; Tsubomi, Hiroyuki; Sugawara, Sho K.; Mori, Makoto; Hanakawa, Takashi; Sadato, Norihiro; Honda, Manabu; Watanabe, Katsumi

    2013-01-01

    Recent studies suggest that action video game players exhibit superior performance in visuospatial cognitive tasks compared with non-game players. However, the neural basis underlying this visuospatial cognitive performance advantage remains largely unknown. The present human behavioral and imaging study compared gray matter volume in action video game experts and non-experts using structural magnetic resonance imaging and voxel-based morphometry analysis. The results revealed significantly larger gray matter volume in the right posterior parietal cortex in experts compared with non-experts. Furthermore, the larger gray matter volume in the right posterior parietal cortex significantly correlated with individual performance in a visual working memory task in experts. These results suggest that differences in brain structure may be linked to extensive video game play, leading to superior visuospatial cognitive performance in action video game experts. PMID:23776706

  13. Basic-level categorization of intermediate complexity fragments reveals top-down effects of expertise in visual perception.

    PubMed

    Harel, Assaf; Ullman, Shimon; Harari, Danny; Bentin, Shlomo

    2011-01-01

    Visual expertise is usually defined as the superior ability to distinguish between exemplars of a homogeneous category. Here, we ask how real-world expertise manifests at basic-level categorization and assess the contribution of stimulus-driven and top-down knowledge-based factors to this manifestation. Car experts and novices categorized computer-selected image fragments of cars, airplanes, and faces. Within each category, the fragments varied in their mutual information (MI), an objective quantifiable measure of feature diagnosticity. Categorization of face and airplane fragments was similar within and between groups, showing better performance with increasing MI levels. Novices categorized car fragments more slowly than face and airplane fragments, while experts categorized car fragments as fast as face and airplane fragments. The experts' advantage with car fragments was similar across MI levels, with similar functions relating RT with MI level for both groups. Accuracy was equal between groups for cars as well as faces and airplanes, but experts' response criteria were biased toward cars. These findings suggest that expertise does not entail only specific perceptual strategies. Rather, at the basic level, expertise manifests as a general processing advantage arguably involving application of top-down mechanisms, such as knowledge and attention, which helps experts to distinguish between object categories. PMID:21799022

  14. Basic-level categorization of intermediate complexity fragments reveals top-down effects of expertise in visual perception

    PubMed Central

    Harel, Assaf; Ullman, Shimon; Harari, Danny; Bentin, Shlomo

    2011-01-01

    Visual expertise is usually defined as the superior ability to distinguish between exemplars of a homogeneous category. Here, we ask how real-world expertise manifests at basic-level categorization and assess the contribution of stimulus-driven and top-down knowledge-based factors to this manifestation. Car experts and novices categorized computer-selected image fragments of cars, airplanes, and faces. Within each category, the fragments varied in their mutual information (MI), an objective quantifiable measure of feature diagnosticity. Categorization of face and airplane fragments was similar within and between groups, showing better performance with increasing MI levels. Novices categorized car fragments more slowly than face and airplane fragments, while experts categorized car fragments as fast as face and airplane fragments. The experts’ advantage with car fragments was similar across MI levels, with similar functions relating RT with MI level for both groups. Accuracy was equal between groups for cars as well as faces and airplanes, but experts’ response criteria were biased toward cars. These findings suggest that expertise does not entail only specific perceptual strategies. Rather, at the basic level, expertise manifests as a general processing advantage arguably involving application of top-down mechanisms, such as knowledge and attention, which helps experts to distinguish between object categories. PMID:21799022

  15. Beta-blocker migraine prophylaxis affects the excitability of the visual cortex as revealed by transcranial magnetic stimulation.

    PubMed

    Gerwig, Marcus; Niehaus, L; Stude, P; Katsarava, Z; Diener, H C

    2012-01-01

    The objective of this study is to assess effects of beta-blocker migraine prophylaxis on cortical excitability determined by transcranial magnetic stimulation (TMS). Phosphene and motor thresholds (PT, MT) were investigated in 29 patients with migraine, in 15 of them prior to and following preventive medication with metoprolol and in 14 patients without prophylaxis. Following prophylaxis headache frequency significantly decreased (p = 0.005) and mean PT were significantly increased (51.5 ± 7.5 vs. 63.6 ± 8.4%) compared to patients without preventive treatment (53.7 ± 5.3 vs. 52.3 ± 6.3%; p = 0.040). Mean MT did not significantly differ either between groups or due to treatment. In the group of all patients, a significant inverse correlation between headache frequency and the level of PT was found (R = -0.629; p < 0.01). There was, however, no significant correlation in the subgroups of patients. We conclude that (a) clinical efficacy of beta-blocker treatment in migraine could be (at least partly) linked to its ability to modulate the excitability of the visual cortex and (b) the PT determined by TMS appears suitable to assess the effects of prophylaxis on cortical excitability in the individual patient. This may be useful in clinical trials investigating migraine preventive drugs. PMID:22089539

  16. Direct visualization of endogenous Salmonella-specific B cells reveals a marked delay in clonal expansion and germinal center development

    PubMed Central

    Nanton, Minelva R.; Lee, Seung-Joo; Atif, Shaikh M.; Nuccio, Sean-Paul; Taylor, Justin J.; Bäumler, Andreas J.; Way, Sing Sing; McSorley, Stephen J.

    2014-01-01

    CD4+ T cells and B cells are both essential for acquired immunity to Salmonella infection. It is well established that Salmonella inhibit host CD4+ T-cell responses, but a corresponding inhibitory effect on B cells is less well defined. Here, we utilize an antigen tetramer and pull-down enrichment strategy to directly visualize OVA-specific B cells in mice, as they respond to infection with Salmonella-OVA. Surprisingly, OVA-specific B-cell expansion and germinal center formation was not detected until bacteria were cleared from the host. Furthermore, Salmonella infection also actively inhibited both B- and T-cell responses to the same coinjected antigen but this did not require the presence of iNOS. The SPI2 locus has been shown to be responsible for inhibition of Salmonella-specific CD4+ T-cell responses, and an examination of SPI2-deficient bacteria demonstrated a recovery in B-cell expansion in infected mice. Together, these data suggest that Salmonella can simultaneously inhibit host B- and T-cell responses using SPI2-dependent mechanisms. PMID:25346524

  17. The dual facet of gamma oscillations: separate visual and decision making circuits as revealed by simultaneous EEG/fMRI.

    PubMed

    Castelhano, João; Duarte, Isabel Catarina; Wibral, Michael; Rodriguez, Eugénio; Castelo-Branco, Miguel

    2014-10-01

    It remains an outstanding question whether gamma-band oscillations reflect unitary cognitive processes within the same task. EEG/MEG studies do lack the resolution or coverage to address the highly debated question whether single gamma activity patterns are linked with multiple cognitive modules or alternatively each pattern associates with a specific cognitive module, within the same coherent perceptual task. One way to disentangle these issues would be to provide direct identification of their sources, by combining different techniques. Here, we directly examined these questions by performing simultaneous EEG/fMRI using an ambiguous perception paradigm requiring holistic integration. We found that distinct gamma frequency sub-bands reflect different neural substrates and cognitive mechanisms when comparing object perception states vs. no categorical perception. A low gamma sub-band (near 40 Hz) activity was tightly related to the decision making network, and in particular the anterior insula. A high gamma sub-band (∼60 Hz) could be linked to early visual processing regions. The demonstration of a clear functional topography for distinct gamma sub-bands within the same task shows that distinct gamma-band modulations underlie sensory processing and perceptual decision mechanisms. PMID:24839083

  18. A screen for constituents of motor control and decision making in Drosophila reveals visual distance-estimation neurons.

    PubMed

    Triphan, Tilman; Nern, Aljoscha; Roberts, Sonia F; Korff, Wyatt; Naiman, Daniel Q; Strauss, Roland

    2016-01-01

    Climbing over chasms larger than step size is vital to fruit flies, since foraging and mating are achieved while walking. Flies avoid futile climbing attempts by processing parallax-motion vision to estimate gap width. To identify neuronal substrates of climbing control, we screened a large collection of fly lines with temporarily inactivated neuronal populations in a novel high-throughput assay described here. The observed climbing phenotypes were classified; lines in each group are reported. Selected lines were further analysed by high-resolution video cinematography. One striking class of flies attempts to climb chasms of unsurmountable width; expression analysis guided us to C2 optic-lobe interneurons. Inactivation of C2 or the closely related C3 neurons with highly specific intersectional driver lines consistently reproduced hyperactive climbing whereas strong or weak artificial depolarization of C2/C3 neurons strongly or mildly decreased climbing frequency. Contrast-manipulation experiments support our conclusion that C2/C3 neurons are part of the distance-evaluation system. PMID:27255169

  19. A screen for constituents of motor control and decision making in Drosophila reveals visual distance-estimation neurons

    PubMed Central

    Triphan, Tilman; Nern, Aljoscha; Roberts, Sonia F.; Korff, Wyatt; Naiman, Daniel Q.; Strauss, Roland

    2016-01-01

    Climbing over chasms larger than step size is vital to fruit flies, since foraging and mating are achieved while walking. Flies avoid futile climbing attempts by processing parallax-motion vision to estimate gap width. To identify neuronal substrates of climbing control, we screened a large collection of fly lines with temporarily inactivated neuronal populations in a novel high-throughput assay described here. The observed climbing phenotypes were classified; lines in each group are reported. Selected lines were further analysed by high-resolution video cinematography. One striking class of flies attempts to climb chasms of unsurmountable width; expression analysis guided us to C2 optic-lobe interneurons. Inactivation of C2 or the closely related C3 neurons with highly specific intersectional driver lines consistently reproduced hyperactive climbing whereas strong or weak artificial depolarization of C2/C3 neurons strongly or mildly decreased climbing frequency. Contrast-manipulation experiments support our conclusion that C2/C3 neurons are part of the distance-evaluation system. PMID:27255169

  20. Causal relationships between frequency bands of extracellular signals in visual cortex revealed by an information theoretic analysis.

    PubMed

    Besserve, Michel; Schölkopf, Bernhard; Logothetis, Nikos K; Panzeri, Stefano

    2010-12-01

    Characterizing how different cortical rhythms interact and how their interaction changes with sensory stimulation is important to gather insights into how these rhythms are generated and what sensory function they may play. Concepts from information theory, such as Transfer Entropy (TE), offer principled ways to quantify the amount of causation between different frequency bands of the signal recorded from extracellular electrodes; yet these techniques are hard to apply to real data. To address the above issues, in this study we develop a method to compute fast and reliably the amount of TE from experimental time series of extracellular potentials. The method consisted in adapting efficiently the calculation of TE to analog signals and in providing appropriate sampling bias corrections. We then used this method to quantify the strength and significance of causal interaction between frequency bands of field potentials and spikes recorded from primary visual cortex of anaesthetized macaques, both during spontaneous activity and during binocular presentation of naturalistic color movies. Causal interactions between different frequency bands were prominent when considering the signals at a fine (ms) temporal resolution, and happened with a very short (ms-scale) delay. The interactions were much less prominent and significant at coarser temporal resolutions. At high temporal resolution, we found strong bidirectional causal interactions between gamma-band (40-100 Hz) and slower field potentials when considering signals recorded within a distance of 2 mm. The interactions involving gamma bands signals were stronger during movie presentation than in absence of stimuli, suggesting a strong role of the gamma cycle in processing naturalistic stimuli. Moreover, the phase of gamma oscillations was playing a stronger role than their amplitude in increasing causations with slower field potentials and spikes during stimulation. The dominant direction of causality was mainly found

  1. Larger brain size indirectly increases vulnerability to extinction in mammals.

    PubMed

    Gonzalez-Voyer, Alejandro; González-Suárez, Manuela; Vilà, Carles; Revilla, Eloy

    2016-06-01

    Although previous studies have addressed the question of why large brains evolved, we have limited understanding of potential beneficial or detrimental effects of enlarged brain size in the face of current threats. Using novel phylogenetic path analysis, we evaluated how brain size directly and indirectly, via its effects on life history and ecology, influences vulnerability to extinction across 474 mammalian species. We found that larger brains, controlling for body size, indirectly increase vulnerability to extinction by extending the gestation period, increasing weaning age, and limiting litter sizes. However, we found no evidence of direct, beneficial, or detrimental effects of brain size on vulnerability to extinction, even when we explicitly considered the different types of threats that lead to vulnerability. Order-specific analyses revealed qualitatively similar patterns for Carnivora and Artiodactyla. Interestingly, for Primates, we found that larger brain size was directly (and indirectly) associated with increased vulnerability to extinction. Our results indicate that under current conditions, the constraints on life history imposed by large brains outweigh the potential benefits, undermining the resilience of the studied mammals. Contrary to the selective forces that have favored increased brain size throughout evolutionary history, at present, larger brains have become a burden for mammals. PMID:27159368

  2. Visualization of in vivo metabolic flows reveals accelerated utilization of glucose and lactate in penumbra of ischemic heart.

    PubMed

    Sugiura, Yuki; Katsumata, Yoshinori; Sano, Motoaki; Honda, Kurara; Kajimura, Mayumi; Fukuda, Keiichi; Suematsu, Makoto

    2016-01-01

    Acute ischemia produces dynamic changes in labile metabolites. To capture snapshots of such acute metabolic changes, we utilized focused microwave treatment to fix metabolic flow in vivo in hearts of mice 10 min after ligation of the left anterior descending artery. The left ventricle was subdivided into short-axis serial slices and the metabolites were analyzed by capillary electrophoresis mass spectrometry and matrix-assisted laser desorption/ionization imaging mass spectrometry. These techniques allowed us to determine the fate of exogenously administered (13)C6-glucose and (13)C3-lactate. The penumbra regions, which are adjacent to the ischemic core, exhibited the greatest adenine nucleotide energy charge and an adenosine overflow extending from the ischemic core, which can cause ischemic hyperemia. Imaging analysis of metabolic pathway flows revealed that the penumbra executes accelerated glucose oxidation, with remaining lactate utilization for tricarboxylic acid cycle for energy compensation, suggesting unexpected metabolic interplays of the penumbra with the ischemic core and normoxic regions. PMID:27581923

  3. Visualization of in vivo metabolic flows reveals accelerated utilization of glucose and lactate in penumbra of ischemic heart

    PubMed Central

    Sugiura, Yuki; Katsumata, Yoshinori; Sano, Motoaki; Honda, Kurara; Kajimura, Mayumi; Fukuda, Keiichi; Suematsu, Makoto

    2016-01-01

    Acute ischemia produces dynamic changes in labile metabolites. To capture snapshots of such acute metabolic changes, we utilized focused microwave treatment to fix metabolic flow in vivo in hearts of mice 10 min after ligation of the left anterior descending artery. The left ventricle was subdivided into short-axis serial slices and the metabolites were analyzed by capillary electrophoresis mass spectrometry and matrix-assisted laser desorption/ionization imaging mass spectrometry. These techniques allowed us to determine the fate of exogenously administered 13C6-glucose and 13C3-lactate. The penumbra regions, which are adjacent to the ischemic core, exhibited the greatest adenine nucleotide energy charge and an adenosine overflow extending from the ischemic core, which can cause ischemic hyperemia. Imaging analysis of metabolic pathway flows revealed that the penumbra executes accelerated glucose oxidation, with remaining lactate utilization for tricarboxylic acid cycle for energy compensation, suggesting unexpected metabolic interplays of the penumbra with the ischemic core and normoxic regions. PMID:27581923

  4. Mining and visualization of microarray and metabolomic data reveal extensive cell wall remodeling during winter hardening in Sitka spruce (Picea sitchensis).

    PubMed

    Grene, Ruth; Klumas, Curtis; Suren, Haktan; Yang, Kuan; Collakova, Eva; Myers, Elijah; Heath, Lenwood S; Holliday, Jason A

    2012-01-01

    Microarray gene expression profiling is a powerful technique to understand complex developmental processes, but making biologically meaningful inferences from such studies has always been challenging. We previously reported a microarray study of the freezing acclimation period in Sitka spruce (Picea sitchensis) in which a large number of candidate genes for climatic adaptation were identified. In the current paper, we apply additional systems biology tools to these data to further probe changes in the levels of genes and metabolites and activities of associated pathways that regulate this complex developmental transition. One aspect of this adaptive process that is not well understood is the role of the cell wall. Our data suggest coordinated metabolic and signaling responses leading to cell wall remodeling. Co-expression of genes encoding proteins associated with biosynthesis of structural and non-structural cell wall carbohydrates was observed, which may be regulated by ethylene signaling components. At the same time, numerous genes, whose products are putatively localized to the endomembrane system and involved in both the synthesis and trafficking of cell wall carbohydrates, were up-regulated. Taken together, these results suggest a link between ethylene signaling and biosynthesis, and targeting of cell wall related gene products during the period of winter hardening. Automated Layout Pipeline for Inferred NEtworks (ALPINE), an in-house plugin for the Cytoscape visualization environment that utilizes the existing GeneMANIA and Mosaic plugins, together with the use of visualization tools, provided images of proposed signaling processes that became active over the time course of winter hardening, particularly at later time points in the process. The resulting visualizations have the potential to reveal novel, hypothesis-generating, gene association patterns in the context of targeted subcellular location. PMID:23112803

  5. Multivariate fMRI and Eye Tracking Reveal Differential Effects of Visual Interference on Recognition Memory Judgments for Objects and Scenes.

    PubMed

    O'Neil, Edward B; Watson, Hilary C; Dhillon, Sonya; Lobaugh, Nancy J; Lee, Andy C H

    2015-09-01

    Recent work has demonstrated that the perirhinal cortex (PRC) supports conjunctive object representations that aid object recognition memory following visual object interference. It is unclear, however, how these representations interact with other brain regions implicated in mnemonic retrieval and how congruent and incongruent interference influences the processing of targets and foils during object recognition. To address this, multivariate partial least squares was applied to fMRI data acquired during an interference match-to-sample task, in which participants made object or scene recognition judgments after object or scene interference. This revealed a pattern of activity sensitive to object recognition following congruent (i.e., object) interference that included PRC, prefrontal, and parietal regions. Moreover, functional connectivity analysis revealed a common pattern of PRC connectivity across interference and recognition conditions. Examination of eye movements during the same task in a separate study revealed that participants gazed more at targets than foils during correct object recognition decisions, regardless of interference congruency. By contrast, participants viewed foils more than targets for incorrect object memory judgments, but only after congruent interference. Our findings suggest that congruent interference makes object foils appear familiar and that a network of regions, including PRC, is recruited to overcome the effects of interference. PMID:25848685

  6. Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson’s disease brain

    PubMed Central

    Roberts, Rosalind F.

    2015-01-01

    Oligomeric forms of alpha-synuclein are emerging as key mediators of pathogenesis in Parkinson’s disease. Our understanding of the exact contribution of alpha-synuclein oligomers to disease is limited by the lack of a technique for their specific detection. We describe a novel method, the alpha-synuclein proximity ligation assay, which specifically recognizes alpha-synuclein oligomers. In a blinded study with post-mortem brain tissue from patients with Parkinson’s disease (n = 8, age range 73–92 years, four males and four females) and age- and sex-matched controls (n = 8), we show that the alpha-synuclein proximity ligation assay reveals previously unrecognized pathology in the form of extensive diffuse deposition of alpha-synuclein oligomers. These oligomers are often localized, in the absence of Lewy bodies, to neuroanatomical regions mildly affected in Parkinson’s disease. Diffuse alpha-synuclein proximity ligation assay signal is significantly more abundant in patients compared to controls in regions including the cingulate cortex (1.6-fold increase) and the reticular formation of the medulla (6.5-fold increase). In addition, the alpha-synuclein proximity ligation assay labels very early perikaryal aggregates in morphologically intact neurons that may precede the development of classical Parkinson’s disease lesions, such as pale bodies or Lewy bodies. Furthermore, the alpha-synuclein proximity ligation assay preferentially detects early-stage, loosely compacted lesions such as pale bodies in patient tissue, whereas Lewy bodies, considered heavily compacted late lesions are only very exceptionally stained. The alpha-synuclein proximity ligation assay preferentially labels alpha-synuclein oligomers produced in vitro compared to monomers and fibrils, while stained oligomers in human brain display a distinct intermediate proteinase K resistance, suggesting the detection of a conformer that is different from both physiological, presynaptic alpha

  7. V/Q Matched Defect Larger than Hiatal Hernia Itself.

    PubMed

    Wachsmann, Jason W; Kim, Chun K

    2015-01-01

    We present the case report of a patient 83 year old female who developed progressive shortness of breath and subsequently underwent scintigraphic evaluation of her symptoms with a ventilation/perfusion scintigraphic exam. A matched perfusion defect was seen involving the basal segments of the left lower lobe. Following this, the patient was examined with a contrast enhanced CT of the chest to further investigate the defect, which revealed compression of the bronchi and vasculature of the left lower lobe basal segments by the hernia larger than the actual hernia. To our knowledge there has not been a case report of a large hiatal hernia as a cause of matched lower lobe defect. PMID:26420992

  8. Visual modeling reveals cryptic aspect in egg mimicry of Himalayan Cuckoo (Cuculus saturatus) on its host Blyth's Leaf Warbler (Phylloscopus reguloides).

    PubMed

    Yang, Can-Chao; Cai, Yan; Liang, Wei

    2011-08-01

    Brood parasitism and egg mimicry of Himalayan Cuckoo (Cuculus saturatus) on its host Blyth's Leaf Warbler (Phylloscopus reguloides) were studied in south-western China from April to July 2009. The cuckoo laid a white egg with fine brown markings on the blunt end. The eggs were conspicuously bigger than the host's own, with 2.06 g in mass and 1.91 cm(3) in volume. Visual modeling showed that the cuckoo eggs, which from the human eye appeared to mimic the host eggs to a great extent, were completely different from the host eggs in both hue and chroma. The characters of the Himalayan Cuckoo nestling, reported for the first time, included two triangular and black patches on its gape, which appeared from four days old and became darker with age and growth. While this character also exists in nestlings of Oriental Cuckoo (C. optatus), it has not been found for other Cuculus species. Our results reveal cryptic aspects in the cuckoo-host egg color matching, which are not visible to the naked human eye, and indicate that high mimetic cuckoo eggs rejected by hosts, as determined by human observers in previous studies, might not be mimetic as birds see them. PMID:21842542

  9. Single-molecule visualization of RecQ helicase reveals DNA melting, nucleation, and assembly are required for processive DNA unwinding

    PubMed Central

    Rad, Behzad; Forget, Anthony L.; Baskin, Ronald J.; Kowalczykowski, Stephen C.

    2015-01-01

    DNA helicases are motor proteins that unwind double-stranded DNA (dsDNA) to reveal single-stranded DNA (ssDNA) needed for many biological processes. The RecQ helicase is involved in repairing damage caused by DNA breaks and stalled replication forks via homologous recombination. Here, the helicase activity of RecQ was visualized on single molecules of DNA using a fluorescent sensor that directly detects ssDNA. By monitoring the formation and progression of individual unwinding forks, we observed that both the frequency of initiation and the rate of unwinding are highly dependent on RecQ concentration. We establish that unwinding forks can initiate internally by melting dsDNA and can proceed in both directions at up to 40–60 bp/s. The findings suggest that initiation requires a RecQ dimer, and that continued processive unwinding of several kilobases involves multiple monomers at the DNA unwinding fork. We propose a distinctive model wherein RecQ melts dsDNA internally to initiate unwinding and subsequently assembles at the fork into a distribution of multimeric species, each encompassing a broad distribution of rates, to unwind DNA. These studies define the species that promote resection of DNA, proofreading of homologous pairing, and migration of Holliday junctions, and they suggest that various functional forms of RecQ can be assembled that unwind at rates tailored to the diverse biological functions of RecQ helicase. PMID:26540728

  10. Single-molecule visualization of RecQ helicase reveals DNA melting, nucleation, and assembly are required for processive DNA unwinding.

    PubMed

    Rad, Behzad; Forget, Anthony L; Baskin, Ronald J; Kowalczykowski, Stephen C

    2015-12-15

    DNA helicases are motor proteins that unwind double-stranded DNA (dsDNA) to reveal single-stranded DNA (ssDNA) needed for many biological processes. The RecQ helicase is involved in repairing damage caused by DNA breaks and stalled replication forks via homologous recombination. Here, the helicase activity of RecQ was visualized on single molecules of DNA using a fluorescent sensor that directly detects ssDNA. By monitoring the formation and progression of individual unwinding forks, we observed that both the frequency of initiation and the rate of unwinding are highly dependent on RecQ concentration. We establish that unwinding forks can initiate internally by melting dsDNA and can proceed in both directions at up to 40-60 bp/s. The findings suggest that initiation requires a RecQ dimer, and that continued processive unwinding of several kilobases involves multiple monomers at the DNA unwinding fork. We propose a distinctive model wherein RecQ melts dsDNA internally to initiate unwinding and subsequently assembles at the fork into a distribution of multimeric species, each encompassing a broad distribution of rates, to unwind DNA. These studies define the species that promote resection of DNA, proofreading of homologous pairing, and migration of Holliday junctions, and they suggest that various functional forms of RecQ can be assembled that unwind at rates tailored to the diverse biological functions of RecQ helicase. PMID:26540728

  11. Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses.

    PubMed

    Allers, Elke; Moraru, Cristina; Duhaime, Melissa B; Beneze, Erica; Solonenko, Natalie; Barrero-Canosa, Jimena; Amann, Rudolf; Sullivan, Matthew B

    2013-08-01

    Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire, and metabolic capacity. However, our ability to understand and quantify phage-host interactions is technique-limited. Here, we introduce phageFISH - a markedly improved geneFISH protocol that increases gene detection efficiency from 40% to > 92% and is optimized for detection and visualization of intra- and extracellular phage DNA. The application of phageFISH to characterize infection dynamics in a marine podovirus-gammaproteobacterial host model system corroborated classical metrics (qPCR, plaque assay, FVIC, DAPI) and outperformed most of them to reveal new biology. PhageFISH detected both replicating and encapsidated (intracellular and extracellular) phage DNA, while simultaneously identifying and quantifying host cells during all stages of infection. Additionally, phageFISH allowed per-cell relative measurements of phage DNA, enabling single-cell documentation of infection status (e.g. early vs late stage infections). Further, it discriminated between two waves of infection, which no other measurement could due to population-averaged signals. Together, these findings richly characterize the infection dynamics of a novel model phage-host system, and debut phageFISH as a much-needed tool for studying phage-host interactions in the laboratory, with great promise for environmental surveys and lineage-specific population ecology of free phages. PMID:23489642

  12. The Yellowstone magma reservoir is 50% larger than previously imaged

    NASA Astrophysics Data System (ADS)

    Farrell, J.; Smith, R. B.; Husen, S.

    2013-12-01

    Earlier tomographic studies of the Yellowstone crustal magma system have revealed a low P-wave crustal anomaly beneath the 0.64 Ma Yellowstone caldera that has been interpreted to be the magma reservoir of partial melt that provides the thermal energy for Yellowstone's youthful volcanic and hydrothermal systems. The Yellowstone seismic network has evolved over the last decade into a modern real-time volcano monitoring system that consists of 36 short-period, broadband, and borehole seismometers that cover the entire Yellowstone volcanic field and surrounding tectonic areas. Until recently, limited seismograph coverage did not provide for adequate resolution of the velocity structure northeast of the caldera, an area of the largest negative Bouguer gravity field of -60 mGal whose 3D density model reveals a shallow, low density body that extends ~20 km northeast of the caldera. Recent upgrades to the Yellowstone Seismic Network (YSN), including the addition of nine 3-component and broadband seismic stations providing much better ray coverage of the entire Yellowstone area with greater bandwidth data. This allows much-expanded and improved resolution coverage of the Yellowstone crustal velocity structure. We have compiled waveforms for the Yellowstone earthquake catalog from 1984-2011 with 45,643 earthquakes and 1,159,724 waveforms to analyze P-wave arrival times with an automatic picker based on an adaptive high-fidelity human mimicking algorithm. Our analysis reduced the data to the 4,520 best-located earthquakes with 48,622 P-wave arrival times to invert for the velocity structure. The resulting 3D P-wave model reveals a low Vp body (up to -7% ΔVp) that is interpreted to be the Yellowstone crustal magma reservoir and is ~50% larger than previously imaged. It extends as an oblong shaped anomalous body ~90 km NE-SW, ~20 km NE of the 0.64 Ma caldera, and up to 30 km wide and markedly shallowing from 15 km depth beneath the caldera to less than ~2 km deep northeast of

  13. Microvascular pressure measurement reveals a coronary vascular waterfall in arterioles larger than 110 microm.

    PubMed

    Versluis, J P; Heslinga, J W; Sipkema, P; Westerhof, N

    2001-11-01

    Pressure-flow relationships at the entrance of the coronary circulation in the diastolic myocardium exhibit a zero-flow pressure intercept (P(int)). We tested whether this intercept is the same throughout the vascular bed. Microvascular pressure-flow relationships were therefore measured in vessels of various sizes of the maximally dilated vasculature of perfused unstimulated papillary muscle using the servo-null technique. From these relationships, P(int) were calculated with nonlinear regression. The P(int) at the level of the septal artery (diameter, 150-250 microm) was 23.2 +/- 4.4 cmH2O (n = 12). In arterioles with a diameter range between 24 and 110 microm, P(int) was 1.7 +/- 0.5 cmH2O (n = 6, P < 0.01), significantly lower than in the septal artery but significantly higher than zero, and not dependent on vessel size. In venules with the same diameters, P(int) was 1.1 +/- 1.1 cmH2O (n = 4), which was not different from zero. We conclude that, in the dilated vascular bed of the papillary muscle, two vascular waterfalls are found. The first waterfall is located in arterioles between 150 and 110 microm. The second waterfall is probably located in the small postcapillary venules. PMID:11668051

  14. Gene Profiling of Postnatal Mfrprd6 Mutant Eyes Reveals Differential Accumulation of Prss56, Visual Cycle and Phototransduction mRNAs

    PubMed Central

    Soundararajan, Ramani; Won, Jungyeon; Stearns, Timothy M.; Charette, Jeremy R.; Hicks, Wanda L.; Collin, Gayle B.; Naggert, Jürgen K.; Krebs, Mark P.; Nishina, Patsy M.

    2014-01-01

    Mutations in the membrane frizzled-related protein (MFRP/Mfrp) gene, specifically expressed in the retinal pigment epithelium (RPE) and ciliary body, cause nanophthalmia or posterior microphthalmia with retinitis pigmentosa in humans, and photoreceptor degeneration in mice. To better understand MFRP function, microarray analysis was performed on eyes of homozygous Mfrprd6 and C57BL/6J mice at postnatal days (P) 0 and P14, prior to photoreceptor loss. Data analysis revealed no changes at P0 but significant differences in RPE and retina-specific transcripts at P14, suggesting a postnatal influence of the Mfrprd6 allele. A subset of these transcripts was validated by quantitative real-time PCR (qRT-PCR). In Mfrprd6 eyes, a significant 1.5- to 2.0-fold decrease was observed among transcripts of genes linked to retinal degeneration, including those involved in visual cycle (Rpe65, Lrat, Rgr), phototransduction (Pde6a, Guca1b, Rgs9), and photoreceptor disc morphogenesis (Rpgrip1 and Fscn2). Levels of RPE65 were significantly decreased by 2.0-fold. Transcripts of Prss56, a gene associated with angle-closure glaucoma, posterior microphthalmia and myopia, were increased in Mfrprd6 eyes by 17-fold. Validation by qRT-PCR indicated a 3.5-, 14- and 70-fold accumulation of Prss56 transcripts relative to controls at P7, P14 and P21, respectively. This trend was not observed in other RPE or photoreceptor mutant mouse models with similar disease progression, suggesting that Prss56 upregulation is a specific attribute of the disruption of Mfrp. Prss56 and Glul in situ hybridization directly identified Müller glia in the inner nuclear layer as the cell type expressing Prss56. In summary, the Mfrprd6 allele causes significant postnatal changes in transcript and protein levels in the retina and RPE. The link between Mfrp deficiency and Prss56 up-regulation, together with the genetic association of human MFRP or PRSS56 variants and ocular size, raises the possibility that these genes

  15. Local Studies and Larger Issues: The Case of Sara Bagby.

    ERIC Educational Resources Information Center

    Luckett, Judith

    2002-01-01

    Explains that students can study local events within a larger context that clarifies larger events or issues. Focuses on the 1861 case of Sara Lucy Bagby (Cleveland, Ohio), an escaped slave, to illuminate aspects of gender, racial relations, politics, and the origins of the U.S. Civil War. (CMK)

  16. Variability in visual cortex size reflects tradeoff between local orientation sensitivity and global orientation modulation

    PubMed Central

    Song, Chen; Schwarzkopf, Dietrich S.; Rees, Geraint

    2013-01-01

    The surface area of early visual cortices varies several fold across healthy adult humans and is genetically heritable. But the functional consequences of this anatomical variability are still largely unexplored. Here we show that interindividual variability in human visual cortical surface area reflects a tradeoff between sensitivity to visual details and susceptibility to visual context. Specifically, individuals with larger primary visual cortices can discriminate finer orientation differences, whereas individuals with smaller primary visual cortices experience stronger perceptual modulation by global orientation contexts. This anatomically correlated tradeoff between discrimination sensitivity and contextual modulation of orientation perception, however, does not generalize to contrast perception or luminance perception. Neural field simulations based on a scaling of intracortical circuits reproduce our empirical observations. Together our findings reveal a feature-specific shift in the scope of visual perception from context-oriented to detail-oriented with increased visual cortical surface area. PMID:23887643

  17. A comparative examination of neural circuit and brain patterning between the lamprey and amphioxus reveals the evolutionary origin of the vertebrate visual center.

    PubMed

    Suzuki, Daichi G; Murakami, Yasunori; Escriva, Hector; Wada, Hiroshi

    2015-02-01

    Vertebrates are equipped with so-called camera eyes, which provide them with image-forming vision. Vertebrate image-forming vision evolved independently from that of other animals and is regarded as a key innovation for enhancing predatory ability and ecological success. Evolutionary changes in the neural circuits, particularly the visual center, were central for the acquisition of image-forming vision. However, the evolutionary steps, from protochordates to jaw-less primitive vertebrates and then to jawed vertebrates, remain largely unknown. To bridge this gap, we present the detailed development of retinofugal projections in the lamprey, the neuroarchitecture in amphioxus, and the brain patterning in both animals. Both the lateral eye in larval lamprey and the frontal eye in amphioxus project to a light-detecting visual center in the caudal prosencephalic region marked by Pax6, which possibly represents the ancestral state of the chordate visual system. Our results indicate that the visual system of the larval lamprey represents an evolutionarily primitive state, forming a link from protochordates to vertebrates and providing a new perspective of brain evolution based on developmental mechanisms and neural functions. PMID:25233869

  18. Conceptual size representation in ventral visual cortex.

    PubMed

    Gabay, Shai; Kalanthroff, Eyal; Henik, Avishai; Gronau, Nurit

    2016-01-29

    Recent findings suggest that visual objects may be mapped along the ventral occipitotemporal cortex according to their real-world size (Konkle and Oliva, 2012). It has been argued that such mapping does not reflect an abstract, conceptual size representation, but rather the visual or functional properties associated with small versus big real-world objects. To determine whether a more abstract conceptual size representation may affect visual cortical activation we used meaningless geometrical shapes, devoid of semantic or functional associations, which were associated with specific size representations by virtue of extensive training. Following training, participants underwent functional magnetic resonance imaging (fMRI) scanning while performing a conceptual size comparison task on the geometrical shapes. In addition, a size comparison task was conducted for numeral digits denoting small and big numbers. A region-of-interest analysis revealed larger blood oxygenation level dependent (BOLD) responses for conceptually 'big' than for conceptually 'small' shapes, as well as for big versus small numbers, within medial (parahippocampal place area, PPA) and lateral (occipital place area, OPA) place-selective regions. Processing of the 'big' visual shapes further elicited enhanced activation in early visual cortex, possibly reflecting top-down projections from PPA. By using arbitrary shapes and numbers we minimized visual, categorical, or functional influences on fMRI measurement, providing evidence for a possible neural mechanism underlying the representation of abstract conceptual size within the ventral visual stream. PMID:26731198

  19. Editorial Commentary: The Larger Holes or Larger Number of Holes We Drill in the Coracoid, the Weaker the Coracoid Becomes.

    PubMed

    Brady, Paul

    2016-06-01

    The larger holes or larger number of holes we drill in the coracoid, the weaker the coracoid becomes. Thus, minimizing bone holes (both size and number) is required to lower risk of coracoid process fracture, in patients in whom transosseous shoulder acromioclavicular joint reconstruction is indicated. A single 2.4-mm-diameter tunnel drilled through both the clavicle and the coracoid lowers the risk of fracture, but the risk cannot be entirely eliminated. PMID:27263761

  20. Directed Coupling in Local Field Potentials of Macaque V4 During Visual Short-Term Memory Revealed by Multivariate Autoregressive Models

    PubMed Central

    Hoerzer, Gregor M.; Liebe, Stefanie; Schloegl, Alois; Logothetis, Nikos K.; Rainer, Gregor

    2010-01-01

    Processing and storage of sensory information is based on the interaction between different neural populations rather than the isolated activity of single neurons. In order to characterize the dynamic interaction and transient cooperation of sub-circuits within a neural network, multivariate autoregressive (MVAR) models have proven to be an important analysis tool. In this study, we apply directed functional coupling based on MVAR models and describe the temporal and spatial changes of functional coupling between simultaneously recorded local field potentials in extrastriate area V4 during visual memory. Specifically, we compare the strength and directional relations of coupling based on generalized partial directed coherence (GPDC) measures while two rhesus monkeys perform a visual short-term memory task. In both monkeys we find increases in theta power during the memory period that are accompanied by changes in directed coupling. These interactions are most prominent in the low frequency range encompassing the theta band (3–12 Hz) and, more importantly, are asymmetric between pairs of recording sites. Furthermore, we find that the degree of interaction decreases as a function of distance between electrode positions, suggesting that these interactions are a predominantly local phenomenon. Taken together, our results show that directed coupling measures based on MVAR models are able to provide important insights into the spatial and temporal formation of local functionally coupled ensembles during visual memory in V4. Moreover, our findings suggest that visual memory is accompanied not only by a temporary increase of oscillatory activity in the theta band, but by a direction-dependent change in theta coupling, which ultimately represents a change in functional connectivity within the neural circuit. PMID:20577632

  1. Directed coupling in local field potentials of macaque v4 during visual short-term memory revealed by multivariate autoregressive models.

    PubMed

    Hoerzer, Gregor M; Liebe, Stefanie; Schloegl, Alois; Logothetis, Nikos K; Rainer, Gregor

    2010-01-01

    Processing and storage of sensory information is based on the interaction between different neural populations rather than the isolated activity of single neurons. In order to characterize the dynamic interaction and transient cooperation of sub-circuits within a neural network, multivariate autoregressive (MVAR) models have proven to be an important analysis tool. In this study, we apply directed functional coupling based on MVAR models and describe the temporal and spatial changes of functional coupling between simultaneously recorded local field potentials in extrastriate area V4 during visual memory. Specifically, we compare the strength and directional relations of coupling based on generalized partial directed coherence (GPDC) measures while two rhesus monkeys perform a visual short-term memory task. In both monkeys we find increases in theta power during the memory period that are accompanied by changes in directed coupling. These interactions are most prominent in the low frequency range encompassing the theta band (3-12 Hz) and, more importantly, are asymmetric between pairs of recording sites. Furthermore, we find that the degree of interaction decreases as a function of distance between electrode positions, suggesting that these interactions are a predominantly local phenomenon. Taken together, our results show that directed coupling measures based on MVAR models are able to provide important insights into the spatial and temporal formation of local functionally coupled ensembles during visual memory in V4. Moreover, our findings suggest that visual memory is accompanied not only by a temporary increase of oscillatory activity in the theta band, but by a direction-dependent change in theta coupling, which ultimately represents a change in functional connectivity within the neural circuit. PMID:20577632

  2. Similarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object Recognition.

    PubMed

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2016-08-01

    Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in the brain. Current brain imaging techniques in isolation cannot resolve the brain's spatio-temporal dynamics, because they provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration approach that uses representational similarities to combine measurements of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) to yield a spatially and temporally integrated characterization of neuronal activation. Applying this approach to 2 independent MEG-fMRI data sets, we observed that neural activity first emerged in the occipital pole at 50-80 ms, before spreading rapidly and progressively in the anterior direction along the ventral and dorsal visual streams. Further region-of-interest analyses established that dorsal and ventral regions showed MEG-fMRI correspondence in representations later than early visual cortex. Together, these results provide a novel and comprehensive, spatio-temporally resolved view of the rapid neural dynamics during the first few hundred milliseconds of object vision. They further demonstrate the feasibility of spatially unbiased representational similarity-based fusion of MEG and fMRI, promising new insights into how the brain computes complex cognitive functions. PMID:27235099

  3. A penny for your thoughts! patterns of fMRI activity reveal the content and the spatial topography of visual mental images.

    PubMed

    Boccia, Maddalena; Piccardi, Laura; Palermo, Liana; Nemmi, Federico; Sulpizio, Valentina; Galati, Gaspare; Guariglia, Cecilia

    2015-03-01

    Visual mental imagery is a complex process that may be influenced by the content of mental images. Neuropsychological evidence from patients with hemineglect suggests that in the imagery domain environments and objects may be represented separately and may be selectively affected by brain lesions. In the present study, we used functional magnetic resonance imaging (fMRI) to assess the possibility of neural segregation among mental images depicting parts of an object, of an environment (imagined from a first-person perspective), and of a geographical map, using both a mass univariate and a multivariate approach. Data show that different brain areas are involved in different types of mental images. Imagining an environment relies mainly on regions known to be involved in navigational skills, such as the retrosplenial complex and parahippocampal gyrus, whereas imagining a geographical map mainly requires activation of the left angular gyrus, known to be involved in the representation of categorical relations. Imagining a familiar object mainly requires activation of parietal areas involved in visual space analysis in both the imagery and the perceptual domain. We also found that the pattern of activity in most of these areas specifically codes for the spatial arrangement of the parts of the mental image. Our results clearly demonstrate a functional neural segregation for different contents of mental images and suggest that visuospatial information is coded by different patterns of activity in brain areas involved in visual mental imagery. PMID:25359694

  4. Similarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object Recognition

    PubMed Central

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2016-01-01

    Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in the brain. Current brain imaging techniques in isolation cannot resolve the brain's spatio-temporal dynamics, because they provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration approach that uses representational similarities to combine measurements of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) to yield a spatially and temporally integrated characterization of neuronal activation. Applying this approach to 2 independent MEG–fMRI data sets, we observed that neural activity first emerged in the occipital pole at 50–80 ms, before spreading rapidly and progressively in the anterior direction along the ventral and dorsal visual streams. Further region-of-interest analyses established that dorsal and ventral regions showed MEG–fMRI correspondence in representations later than early visual cortex. Together, these results provide a novel and comprehensive, spatio-temporally resolved view of the rapid neural dynamics during the first few hundred milliseconds of object vision. They further demonstrate the feasibility of spatially unbiased representational similarity-based fusion of MEG and fMRI, promising new insights into how the brain computes complex cognitive functions. PMID:27235099

  5. Can Visual Illusions Be Used to Facilitate Sport Skill Learning?

    PubMed

    Cañal-Bruland, Rouwen; van der Meer, Yor; Moerman, Jelle

    2016-01-01

    Recently it has been reported that practicing putting with visual illusions that make the hole appear larger than it actually is leads to longer-lasting performance improvements. Interestingly, from a motor control and learning perspective, it may be possible to actually predict the opposite to occur, as facing a smaller appearing target should enforce performers to be more precise. To test this idea the authors invited participants to practice an aiming task (i.e., a marble-shooting task) with either a visual illusion that made the target appear larger or a visual illusion that made the target appear smaller. They applied a pre-post test design, included a control group training without any illusory effects and increased the amount of practice to 450 trials. In contrast to earlier reports, the results revealed that the group that trained with the visual illusion that made the target look smaller improved performance from pre- to posttest, whereas the group practicing with visual illusions that made the target appear larger did not show any improvements. Notably, also the control group improved from pre- to posttest. The authors conclude that more research is needed to improve our understanding of whether and how visual illusions may be useful training tools for sport skill learning. PMID:27254078

  6. Do Minorities Experience Larger Lasting Benefits from Small Classes?

    ERIC Educational Resources Information Center

    Nye, Barbara; Hedges, Larry V.; Konstantopoulos, Spyros

    2004-01-01

    Recent research from randomized experiments on class size points to positive effects of small classes that persist for several years, but the evidence about the social distribution of effects is less clear. Some scholars have contended that the immediate effects of small classes are larger for minorities and for disadvantaged persons (e.g., J. D.…

  7. Larger trees suffer most during drought in forests worldwide

    USGS Publications Warehouse

    Bennett, Amy C.; McDowell, Nathan G.; Allen, Craig D.; Anderson-Teixeira, Kristina J.

    2015-01-01

    The frequency of severe droughts is increasing in many regions around the world as a result of climate change. Droughts alter the structure and function of forests. Site- and region-specific studies suggest that large trees, which play keystone roles in forests and can be disproportionately important to ecosystem carbon storage and hydrology, exhibit greater sensitivity to drought than small trees. Here, we synthesize data on tree growth and mortality collected during 40 drought events in forests worldwide to see whether this size-dependent sensitivity to drought holds more widely. We find that droughts consistently had a more detrimental impact on the growth and mortality rates of larger trees. Moreover, drought-related mortality increased with tree size in 65% of the droughts examined, especially when community-wide mortality was high or when bark beetles were present. The more pronounced drought sensitivity of larger trees could be underpinned by greater inherent vulnerability to hydraulic stress, the higher radiation and evaporative demand experienced by exposed crowns, and the tendency for bark beetles to preferentially attack larger trees. We suggest that future droughts will have a more detrimental impact on the growth and mortality of larger trees, potentially exacerbating feedbacks to climate change.

  8. 1. GENERAL VIEW, FROM SOUTHEAST. FRONT FACES EAST. Larger Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW, FROM SOUTHEAST. FRONT FACES EAST. Larger Building is Hotel Williams (HABS No. MI-258). Photocopied from photograph taken August 4, 1965 by Jack Crosby of the Michigan Historical Commission. See also Hotel Williams, MI-258, for a photocopy of a drawing showing Williams House. - Hotel Williams, Williams House, Murray Bay, Munising, Alger County, MI

  9. Asteroid collisional evolution - Evidence for a much larger early population

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.; Davis, D. R.

    1975-01-01

    The present population of asteroids is a remnant of a vastly larger one that contained perhaps a planetary mass, dominantly distributed in planetesimals approximately 500 kilometers or less in diameter. It constituted a large reservoir of objects that plausibly were responsible for cratering the moon, Mars, and Mercury. Much asteroidal dust may have accumulated on Mars and other planets.

  10. A Larger Scale. Tenth Annual Residence Hall Construction Report.

    ERIC Educational Resources Information Center

    Argon, Joe

    1999-01-01

    Presents data from the American School & University's 10th Annual Residence Hall Construction Report that show dormitories are costing more per square foot to build while also becoming larger accommodations. Data tables are provided as are highlighted discussions that include residence hall design flexibility, environmental concerns and building…

  11. One of the larger open spaces on the third floor. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    One of the larger open spaces on the third floor. This space was used most often for drafting work and for general experimentation. Physical evidence on the ceiling indicates existence of partition walls for smaller rooms, but no photographic or documentary evidence has surfaced to verify this. - Thomas A. Edison Laboratories, Building No. 5, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  12. Lower pitch is larger, yet falling pitches shrink.

    PubMed

    Eitan, Zohar; Schupak, Asi; Gotler, Alex; Marks, Lawrence E

    2014-01-01

    Experiments using diverse paradigms, including speeded discrimination, indicate that pitch and visually-perceived size interact perceptually, and that higher pitch is congruent with smaller size. While nearly all of these studies used static stimuli, here we examine the interaction of dynamic pitch and dynamic size, using Garner's speeded discrimination paradigm. Experiment 1 examined the interaction of continuous rise/fall in pitch and increase/decrease in object size. Experiment 2 examined the interaction of static pitch and size (steady high/low pitches and large/small visual objects), using an identical procedure. Results indicate that static and dynamic auditory and visual stimuli interact in opposite ways. While for static stimuli (Experiment 2), higher pitch is congruent with smaller size (as suggested by earlier work), for dynamic stimuli (Experiment 1), ascending pitch is congruent with growing size, and descending pitch with shrinking size. In addition, while static stimuli (Experiment 2) exhibit both congruence and Garner effects, dynamic stimuli (Experiment 1) present congruence effects without Garner interference, a pattern that is not consistent with prevalent interpretations of Garner's paradigm. Our interpretation of these results focuses on effects of within-trial changes on processing in dynamic tasks and on the association of changes in apparent size with implied changes in distance. Results suggest that static and dynamic stimuli can differ substantially in their cross-modal mappings, and may rely on different processing mechanisms. PMID:24351984

  13. New method for visualization of silica phytoliths in Sorghum bicolor roots by fluorescence microscopy revealed silicate concentration-dependent phytolith formation.

    PubMed

    Soukup, Milan; Martinka, Michal; Cigáň, Marek; Ravaszová, Frederika; Lux, Alexander

    2014-12-01

    Silica phytoliths are microscopic structures of amorphous hydrated silica (SiO2 · nH2O) formed by specialized plant cells. Besides their biological roles, physical, chemical, and structural properties of biogenic silica offer a wide spectrum of applications in many fields of industry and technology. Therefore, processes involved in their formation recently become a very interesting topic to study. However, optical transparency and microscopic sizes of silica phytoliths do not allow their visualization and localization by classical light microscopy methods. Their observation thus requires phytolith isolation, technically difficult or lengthy sample preparation procedures, or a work with toxic chemicals. In this paper we are proposing a novel method for visualization of silica phytoliths in Sorghum bicolor root endodermal cells by fluorescence microscopy using alkali mounting solution (pH 12). This method offers an easy and quick preparation of the samples and high contrast imaging. Based on our results we can assume that the proposed fluorescent method for silica phytolith investigation allows observation of multiple samples in relatively short time period and thus might be applicable also for high-throughput screenings. Using this method we found out that after a 3-day cultivation of sorghum plants the minimal needed concentration of sodium silicate, limiting the formation of silica phytoliths in the root endodermis, was 25 µmol dm(-3). The positive correlation of sodium silicate concentration in the substrate with the phytolith diameter was also observed. PMID:25262423

  14. Covariation between Spike and LFP Modulations Revealed with Focal and Asynchronous Stimulation of Receptive Field Surround in Monkey Primary Visual Cortex

    PubMed Central

    Kim, Kayeon; Kim, Taekjun; Yoon, Taehwan; Lee, Choongkil

    2015-01-01

    A focal visual stimulus outside the classical receptive field (RF) of a V1 neuron does not evoke a spike response by itself, and yet evokes robust changes in the local field potential (LFP). This subthreshold LFP provides a unique opportunity to investigate how changes induced by surround stimulation leads to modulation of spike activity. In the current study, two identical Gabor stimuli were sequentially presented with a variable stimulus onset asynchrony (SOA) ranging from 0 to 100 ms: the first (S1) outside the RF and the second (S2) over the RF of primary visual cortex neurons, while trained monkeys performed a fixation task. This focal and asynchronous stimulation of the RF surround enabled us to analyze the modulation of S2-evoked spike activity and covariation between spike and LFP modulation across SOA. In this condition, the modulation of S2-evoked spike response was dominantly facilitative and was correlated with the change in LFP amplitude, which was pronounced for the cells recorded in the upper cortical layers. The time course of covariation between the SOA-dependent spike modulation and LFP amplitude suggested that the subthreshold LFP evoked by the S1 can predict the magnitude of upcoming spike modulation. PMID:26670337

  15. Can a secondary isotope effect be larger than a primary?

    PubMed

    Perrin, Charles L; Burke, Kathryn D

    2015-05-21

    Primary and secondary (18)O equilibrium isotope effects on the acidities of a variety of Brønsted and Lewis acids centered on carbon, boron, nitrogen, and phosphorus were computed by density-functional theory. For many of these acids, the secondary isotope effect was found to be larger than the primary isotope effect. This is a counterintuitive result, because the H atom that is lost is closer to the (18)O atom that is responsible for the primary isotope effect. The relative magnitudes of the isotope effects can be associated with the vibrational frequency and zero-point energy of the X═O vibrations, which are greater than those of the X-O vibrations. However, the difference between these contributions is small, and the major responsibility for the larger secondary isotope effect comes from the moment-of-inertia factor, which depends on the position of the (18)O atom relative to the principal axes of rotation. PMID:25879248

  16. 60. Interior view, passage, north elevation. Though made larger over ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. Interior view, passage, north elevation. Though made larger over time, this circulation space was present since the house's earliest manifestation. The attic stair and closet date from phase II construction (After the mid-1740's). Similarly to the study chamber, the closet on the right was fitted into a former exterior window opening. - John Bartram House & Garden, House, 54th Street & Lindbergh Boulevard, Philadelphia, Philadelphia County, PA

  17. Procrastination by pigeons: preference for larger, more delayed work requirements.

    PubMed Central

    Mazur, J E

    1996-01-01

    In three experiments, pigeons chose between alternatives that required the completion of a small ratio schedule early in the trial or a larger ratio schedule later in the trial. Completion of the ratio requirement did not lead to an immediate reinforcer, but simply allowed the events of the trial to continue. In Experiment 1, the ratio requirements interrupted periods in which food was delivered on a variable-time schedule. In Experiments 2 and 3, each ratio requirement was preceded and followed by a delay, and only one reinforcer was delivered, at the end of each trial. Two of the experiments used an adjusting-ratio procedure in which the ratio requirement was increased and decreased over trials so as to estimate an indifference point--a ratio size at which the two alternatives were chosen about equally often. These experiments found clear evidence for "procrastination"--the choice of a larger but more delayed response requirement. In some cases, subjects chose the more delayed ratio schedule even when it was larger than the more immediate alternative by a factor of four or more. The results suggest that as the delay to the start of a ratio requirement is increased, it has progressively less effect on choice behavior, in much the same way that delaying a positive reinforcer reduces it effect on choice. PMID:8583195

  18. Visual field

    MedlinePlus

    Perimetry; Tangent screen exam; Automated perimetry exam; Goldmann visual field exam; Humphrey visual field exam ... Confrontation visual field exam : This is a quick and basic check of the visual field. The health care provider ...

  19. Visual Learning.

    ERIC Educational Resources Information Center

    Kirrane, Diane E.

    1992-01-01

    An increasingly visual culture is affecting work and training. Achievement of visual literacy means acquiring competence in critical analysis of visual images and in communicating through visual media. (SK)

  20. Visual field

    MedlinePlus

    Perimetry; Tangent screen exam; Automated perimetry exam; Goldmann visual field exam; Humphrey visual field exam ... Confrontation visual field exam : This is a quick and basic check of the visual field. The health care provider sits directly in front ...

  1. Visualization of lipid metabolism in the larval zebrafish intestine reveals a relationship between NPC1L1 mediated cholesterol uptake and dietary fatty acids

    PubMed Central

    Walters, James W.; Anderson, Jennifer L.; Bittman, Robert; Pack, Michael; Farber, Steven A.

    2012-01-01

    SUMMARY The small intestine is the primary site of dietary lipid absorption in mammals. The balance of nutrients, microorganisms, bile, and mucus that determine intestinal luminal environment cannot be recapitulated ex vivo, thus complicating studies of lipid absorption. We show that fluorescently labeled lipids can be used to visualize and study lipid absorption in live zebrafish larvae. We demonstrate that the addition of BODIPY-fatty acid to a diet high in atherogenic lipids enables imaging of enterocyte lipid droplet dynamics in real time. We find that a lipid-rich meal promotes BODIPY-cholesterol absorption into an endosomal compartment distinguishable from lipid droplets. We also show that dietary fatty acids promote intestinal cholesterol absorption by rapid relocalization of NPC1L1 to intestinal brush border. These data illustrate the power of the zebrafish system to address longstanding questions in vertebrate digestive physiology. PMID:22749558

  2. Visual surveys can reveal rather different 'pictures' of fish densities: Comparison of trawl and video camera surveys in the Rockall Bank, NE Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    McIntyre, F. D.; Neat, F.; Collie, N.; Stewart, M.; Fernandes, P. G.

    2015-01-01

    Visual surveys allow non-invasive sampling of organisms in the marine environment which is of particular importance in deep-sea habitats that are vulnerable to damage caused by destructive sampling devices such as bottom trawls. To enable visual surveying at depths greater than 200 m we used a deep towed video camera system, to survey large areas around the Rockall Bank in the North East Atlantic. The area of seabed sampled was similar to that sampled by a bottom trawl, enabling samples from the towed video camera system to be compared with trawl sampling to quantitatively assess the numerical density of deep-water fish populations. The two survey methods provided different results for certain fish taxa and comparable results for others. Fish that exhibited a detectable avoidance behaviour to the towed video camera system, such as the Chimaeridae, resulted in mean density estimates that were significantly lower (121 fish/km2) than those determined by trawl sampling (839 fish/km2). On the other hand, skates and rays showed no reaction to the lights in the towed body of the camera system, and mean density estimates of these were an order of magnitude higher (64 fish/km2) than the trawl (5 fish/km2). This is probably because these fish can pass under the footrope of the trawl due to their flat body shape lying close to the seabed but are easily detected by the benign towed video camera system. For other species, such as Molva sp, estimates of mean density were comparable between the two survey methods (towed camera, 62 fish/km2; trawl, 73 fish/km2). The towed video camera system presented here can be used as an alternative benign method for providing indices of abundance for species such as ling in areas closed to trawling, or for those fish that are poorly monitored by trawl surveying in any area, such as the skates and rays.

  3. Red Junglefowl (Gallus gallus) selected for low fear of humans are larger, more dominant and produce larger offspring.

    PubMed

    Agnvall, B; Ali, A; Olby, S; Jensen, P

    2014-09-01

    Many traits associated with domestication are suggested to have developed as correlated responses to reduced fear of humans. Tameness may have reduced the stress of living in human proximity and improved welfare in captivity. We selected Red Junglefowl (ancestors of all domestic chickens) for four generations on high or low fear towards humans, mimicking an important aspect of the earliest period of domestication, and tested birds from the third and fourth generation in three different social tests. Growth and plumage condition, as well as size of eggs and offspring were also recorded, as indicators of some aspects of welfare. Birds selected for low fear had higher weight, laid larger eggs and generated larger offspring, and had a better plumage condition. In a social dominance test they also performed more aggressive behaviour and received less of the same, regardless of whether the restricted resource was feed or not. Hence, dominance appeared to increase as a consequence of reduced fear of humans. Furthermore, egg size and the weight of the offspring were larger in the less fearful birds, and plumage condition better, which could be interpreted as the less fearful animals being better adapted to the environment in which they were selected. PMID:24910136

  4. Behavior and Body Patterns of the Larger Pacific Striped Octopus.

    PubMed

    Caldwell, Roy L; Ross, Richard; Rodaniche, Arcadio; Huffard, Christine L

    2015-01-01

    Over thirty years ago anecdotal accounts of the undescribed Larger Pacific Striped Octopus suggested behaviors previously unknown for octopuses. Beak-to-beak mating, dens shared by mating pairs, inking during mating and extended spawning were mentioned in publications, and enticed generations of cephalopod biologists. In 2012-2014 we were able to obtain several live specimens of this species, which remains without a formal description. All of the unique behaviors listed above were observed for animals in aquaria and are discussed here. We describe the behavior, body color patterns, and postures of 24 adults maintained in captivity. Chromatophore patterns of hatchlings are also shown. PMID:26266543

  5. Behavior and Body Patterns of the Larger Pacific Striped Octopus

    PubMed Central

    Caldwell, Roy L.; Ross, Richard; Rodaniche, Arcadio; Huffard, Christine L.

    2015-01-01

    Over thirty years ago anecdotal accounts of the undescribed Larger Pacific Striped Octopus suggested behaviors previously unknown for octopuses. Beak-to-beak mating, dens shared by mating pairs, inking during mating and extended spawning were mentioned in publications, and enticed generations of cephalopod biologists. In 2012–2014 we were able to obtain several live specimens of this species, which remains without a formal description. All of the unique behaviors listed above were observed for animals in aquaria and are discussed here. We describe the behavior, body color patterns, and postures of 24 adults maintained in captivity. Chromatophore patterns of hatchlings are also shown. PMID:26266543

  6. Treatment and recovery of larger particles of fine oxidized coal

    SciTech Connect

    Finch, R.E.

    1980-09-16

    This invention relates to a method and treating agent for increasing the yield of larger particles of fine oxidized coal where the particle size is 28 X 100 mesh and preferably 28 X 70 mesh and where said coal particles are concentrated by froth flotation. The method consists of utilizing as a promoter an alkali metal or ammonium polyacrylate. A preferred promoter is about 0.05-1.5 lbs of sodium polyacrylate latex per ton of dry coal (0.017-0.5 lb of dry sodium polyacrylate per ton of dry coal), having an average molecular weight of about 100,000, to 1, 000,000 and more, with a preferred range of 1,000,000 or more. This preferred promoter or frothing aid for oxidized coal is a water-in-oil latex of sodium polyacrylate used with a water-inoil emulsifier and preferably used with an alcohol-type frother. The latex may be utilized neat and self inverts with the assistance of an oil-in-water surfactant and the water in the system upon application to form an oil-in-water emulsion, or it may be used as a two part system with an activator (Aqueous) to promote inversion. Additionally, the latex emulsion recovers larger particles in the size 100 mesh and greater and preferably in the range 28 X 70 mesh.

  7. Improved GIA correction yields larger Antarctic mass loss.

    NASA Astrophysics Data System (ADS)

    Velicogna, I.; Sutterley, T. C.; Ivins, E. R.; van den Broeke, M. R.

    2014-12-01

    New regional ice deglaciation models have recently been developed to match a variety of geologic, glaciological, and geodetic observations. In Antarctica, these new models exhibit a smaller East Antarctic ice loss since the Last Glacial Maximum, and hence yield a smaller GIA correction to the Antarctic estimates than those predicted by ICE5G. These revised models yield less negative ice mass losses when using GRACE data. Although these new models represent a significant advance in Antarctic GIA modeling, there are still large uncertainties associated with them. One of the large uncertainties is due to the fact that in the East Antarctica interior, the GIA reconstruction is poorly constrained by observations. These new models assume a monotonic decrease in loading in the last 5000 years. We examine the impact of this assumption on the GIA estimates and how a more realistic non-monotonic loading scenario could impact the results and the GRACE ice mass estimates. We use GRACE in combination with output products from the Regional Atmospheric Climate Model (RACMO) and recent studies of deglaciation history to derive an improved GIA correction, which include a non-monotonic loading scenario, is consistent with available geological and geodetic constraints and reconstruction of recent climate history. We find a larger correction, which implies larger losses of the Antarctica ice sheet by about 70 Gt/yr.

  8. Larger Turbines and the Future Cost of Wind Energy (Poster)

    SciTech Connect

    Lantz, E.; Hand, M.

    2011-03-01

    The move to larger turbines has been observed in the United States and around the world. Turbine scaling increases energy capture while reducing general project infrastructure costs and landscape impacts, each of which of can reduce the cost of wind energy. However, scaling in the absence of innovation, can increase turbine costs. The ability of turbine designers and manufacturers to continue to scale turbines, while simultaneously reducing costs, is an important factor in long-term viability of the industry. This research seeks to better understand how technology innovation can allow the continued development of larger turbines on taller towers while also achieving lower cost of energy. Modeling incremental technology improvements identified over the past decade demonstrates that cost reductions on the order of 10%, and capacity factor improvements on the order of 5% (for sites with annual mean wind speed of 7.25 m/s at 50m), are achievable for turbines up to 3.5 MW. However, to achieve a 10% cost reduction and a 10% capacity factor improvement for turbines up to 5 MW, additional technology innovations must be developed and implemented.

  9. Immunolocalization of histamine in the optic neuropils of Scutigera coleoptrata (Myriapoda: Chilopoda) reveals the basal organization of visual systems in Mandibulata.

    PubMed

    Sombke, Andy; Harzsch, Steffen

    2015-05-01

    Myriapods play a crucial role in considerations of evolutionary transformations of arthropod nervous systems. The existing descriptions of the identity and connectivity of myriapod optic neuropils are contradictory. This study asks if the first and second optic neuropil of the scutigeromorph centipede Scutigera coleoptrata correspond to the optic neuropils of Hexapoda and malacostracan Crustacea, the lamina and medulla which are linked by neurites that are arranged in a characteristic optic chiasm. To identify photoreceptor axons, we used immunohistochemistry against histamine which is the universal transmitter of arthropod photoreceptors. Our results provide evidence that the two optic neuropils of S. coleoptrata correspond to the lamina and medulla of Hexapoda and Malacostraca and strongly argue against a correspondence of the optic neuropils in branchiopod crustaceans and scutigeromorphs, as was previously suggested. We conclude that these two retinotopic optic neuropils and an outer optic chiasm are part of the ground pattern of Mandibulata and that the visual systems of branchiopod crustaceans were simplified from this ground pattern. PMID:25797184

  10. Comparison of visual receptive field properties of the superior colliculus and primary visual cortex in rats.

    PubMed

    Li, Xiaoyuan; Sun, Chaokui; Shi, Li

    2015-08-01

    The rat visual system comprises cortical and subcortical pathways. The receptive field properties of cells in the visual cortex have been extensively studied; however, the fundamental roles of the two circuits in visual information processing are not well understood. To address this question, we have applied quantitative methods to compare and characterize the spatiotemporal receptive field (RF) properties of neurons in primary visual cortex (V1) cells and superficial layers of the superior colliculus (SC) in rats by means of extracellular recordings. An analysis of visual stimulus processing revealed distinct functional characteristics of the two visual circuits. RF diameters of SC neurons were significantly larger than those of V1 cells. Most cells in both regions had high orientation selectivity, but the mean orientation bandwidth of the SC was broader than that of V1 cells (101.5° vs. 60.2°). The mean optimal spatial frequency (SF) of SC cells was lower but had a broader bandwidth than that of V1 cells (0.03 vs. 0.068 cpd). The majority of SC and V1 cells (70% and 68%, respectively) had RFs with band-pass temporal frequency (TF) tuning profiles and similar optimal TFs. However, temporal band-pass profiles of the SC showed narrower mean temporal bandwidths than those of V1 cells (1.42 vs. 2.36 octaves). The majority of neurons in visual cortical and subcortical structures were activated in response to high-contrast, drifting gratings in the preferred orientation. The percentage of V1 neurons with a low-contrast threshold was larger than the proportion of SC neurons (45.6% vs. 30%), indicating that the former adapt better to contrast. The substantial overlap in latency distributions between SC and V1 areas suggests that the two visual systems process and analyze visual signals in parallel. However, the two areas use different neural encoding mechanisms based on different latency distribution trends. These results indicate that SC cells have poor spatial acuity

  11. Interactive Visualization of Dependencies

    ERIC Educational Resources Information Center

    Moreno, Camilo Arango; Bischof, Walter F.; Hoover, H. James

    2012-01-01

    We present an interactive tool for browsing course requisites as a case study of dependency visualization. This tool uses multiple interactive visualizations to allow the user to explore the dependencies between courses. A usability study revealed that the proposed browser provides significant advantages over traditional methods, in terms of…

  12. Visualized Gene Network Reveals the Novel Target Transcripts Sox2 and Pax6 of Neuronal Development in Trans-Placental Exposure to Bisphenol A

    PubMed Central

    Yang, Chung-Wei; Chou, Wei-Chun; Chen, Kuan-Hsueh; Cheng, An-Lin; Mao, I-Fang; Chao, How-Ran; Chuang, Chun-Yu

    2014-01-01

    Background Bisphenol A (BPA) is a ubiquitous endocrine disrupting chemical in our daily life, and its health effect in response to prenatal exposure is still controversial. Early-life BPA exposure may impact brain development and contribute to childhood neurological disorders. The aim of the present study was to investigate molecular target genes of neuronal development in trans-placental exposure to BPA. Methodology A meta-analysis of three public microarray datasets was performed to screen for differentially expressed genes (DEGs) in exposure to BPA. The candidate genes of neuronal development were identified from gene ontology analysis in a reconstructed neuronal sub-network, and their gene expressions were determined using real-time PCR in 20 umbilical cord blood samples dichotomized into high and low BPA level groups upon the median 16.8 nM. Principal Findings Among 36 neuronal transcripts sorted from DAVID ontology clusters of 457 DEGs using the analysis of Bioconductor limma package, we found two neuronal genes, sex determining region Y-box 2 (Sox2) and paired box 6 (Pax6), had preferentially down-regulated expression (Bonferroni correction p-value <10−4 and log2-transformed fold change ≤−1.2) in response to BPA exposure. Fetal cord blood samples had the obviously attenuated gene expression of Sox2 and Pax6 in high BPA group referred to low BPA group. Visualized gene network of Cytoscape analysis showed that Sox2 and Pax6 which were contributed to neural precursor cell proliferation and neuronal differentiation might be down-regulated through sonic hedgehog (Shh), vascular endothelial growth factor A (VEGFA) and Notch signaling. Conclusions These results indicated that trans-placental BPA exposure down-regulated gene expression of Sox2 and Pax6 potentially underlying the adverse effect on childhood neuronal development. PMID:25051057

  13. Lamin A is not synthesized as a larger precursor polypeptide.

    PubMed

    Lebel, S; Raymond, Y

    1987-12-16

    Isolation of rat liver nuclei in the presence of N-ethylmaleimide (NEM) led to the recovery in the final nuclear matrix of a higher molecular weight form of lamin A. The 2 kDa larger form was identified as lamin A by isoelectric point determination, recognition by an anti-lamin A and C monoclonal antibody and peptide mapping using V8 protease and N-chlorosuccinimide. The 2 kDa extension was tentatively localized to the carboxy-terminus of lamin A. Pulse-chase labeling and immunoprecipitation studies using baby hamster kidney cells showed that lysis of the cells in the presence of NEM allowed the recovery of a stable higher molecular weight form of lamin A. We conclude from these results that NEM prevented the degradation of the native form of lamin A previously thought to represent a higher molecular weight transient precursor form. PMID:3426582

  14. Biochronology and palaeoenvironment of Cenozoic Circum-Caribbean Larger Foraminifera

    NASA Astrophysics Data System (ADS)

    Baumgartner-Mora, C.

    2012-04-01

    During the Cenozoic, the areas of the Gulf of Mexico, Yucatan and Florida-Bahamas were dominated by contiguous passive margins hosting long-lasting, large carbonate platforms. In contrast, Southern Central America and the Antilles were formed by a collage of mostly oceanic terranes and arcs that reflect the complex tectonic emplacement of the Caribbean Plate between N- and S-America. In this context, carbonate palaeoenvironments were short-lived and formed either on volcanic edifices (seamounts and island arcs) or on terranes uplifted into the photic zone by collisional tectonics. Our data comes mainly from localities on the Caribbean Plate (Costa Rica, Panama and the Antilles) but includes also data from Florida, Cuba and Yucatan. The biochronologic range of most Circum-Caribbean taxa of Larger Foraminifera is currently controversial, because it is based on a large number of local and regional stratigraphic publications of the last 50 years. This work reflects a high variability of faunal composition form one area to the other, suggesting that local ranges are more likely to be controlled by changing palaeoenvironments than by biochronology. To overcome these problems, we compiled a database comprising 130 taxa from over 60 localities. Larger Foraminifera from carbonate rocks were studied in several hundred oriented thin sections and oriented sections of isolated specimens that were studied by cathodoluminescence, transmitted light microscopy and SEM for isolated and washed material. X-ray microtomography was also used to produce 3D-imaging of some forms. 87Sr/86Sr ratios were measured for age calibration on Paleocene-Eocene, Oligocene, and Late Miocene-Pliocoene fossils. Biochronologically calibrated and well-documented records of Larger Foraminifera from the literature were also incorporated into the database. Unitary Associations (UA) were calculated using Biograph and the UA-Graph software, UA represent the maximum ranges of all considered species with respect

  15. An Evaluation of TCP with Larger Initial Windows

    NASA Technical Reports Server (NTRS)

    Allman, Mark; Hayes, Christopher; Ostermann, Shawn

    1998-01-01

    Transmission Control Protocol (TCP's) slow start algorithm gradually increases the amount of data a sender injects into the network, which prevents the sender from overwhelming the network with an inappropriately large burst of traffic. However, the slow start algorithm can make poor use of the available band-width for transfers which are small compared to the bandwidth-delay product of the link, such as file transfers up to few thousand characters over satellite links or even transfers of several hundred bytes over local area networks. This paper evaluates a proposed performance enhancement that raises the initial window used by TCP from 1 MSS-sized segment to roughly 4 KB. The paper evaluates the impact of using larger initial windows on TCP transfers over both the shared Internet and dialup modem links.

  16. Visualization of electronic density

    DOE PAGESBeta

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; Hashibon, Adham; Yaish, Yuval; Adler, Joan

    2015-04-22

    An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.

  17. Larger Mammalian Body Size Leads to Lower Retroviral Activity

    PubMed Central

    Katzourakis, Aris; Magiorkinis, Gkikas; Lim, Aaron G.; Gupta, Sunetra; Belshaw, Robert; Gifford, Robert

    2014-01-01

    Retroviruses have been infecting mammals for at least 100 million years, leaving descendants in host genomes known as endogenous retroviruses (ERVs). The abundance of ERVs is partly determined by their mode of replication, but it has also been suggested that host life history traits could enhance or suppress their activity. We show that larger bodied species have lower levels of ERV activity by reconstructing the rate of ERV integration across 38 mammalian species. Body size explains 37% of the variance in ERV integration rate over the last 10 million years, controlling for the effect of confounding due to other life history traits. Furthermore, 68% of the variance in the mean age of ERVs per genome can also be explained by body size. These results indicate that body size limits the number of recently replicating ERVs due to their detrimental effects on their host. To comprehend the possible mechanistic links between body size and ERV integration we built a mathematical model, which shows that ERV abundance is favored by lower body size and higher horizontal transmission rates. We argue that because retroviral integration is tumorigenic, the negative correlation between body size and ERV numbers results from the necessity to reduce the risk of cancer, under the assumption that this risk scales positively with body size. Our model also fits the empirical observation that the lifetime risk of cancer is relatively invariant among mammals regardless of their body size, known as Peto's paradox, and indicates that larger bodied mammals may have evolved mechanisms to limit ERV activity. PMID:25033295

  18. Larger benthic foraminifera of the Paleogene Promina Beds (Croatia)

    NASA Astrophysics Data System (ADS)

    Cosovic, V.; Mrinjek, E.; Drobne, K.

    2012-04-01

    In order to add more information about complex origin of Promina Beds (traditionally interpreted as Paleogene molasse of Dinarides), two sections (Lišani Ostrovački and Ostrovica, Central Dalmatia, Croatia) have been studied in detail. Sampled carbonate sequences contain predominantly coralline red algae, larger benthic foraminifera and corals. Based on sedimentary textures, nummulitid (Nummulites s.str and Asterigerina sp.) test shapes and the associated skeletal components, altogether three types of the Middle Eocene (Lutetian to Bartonian) facies were recognized. The Ostrovica section is composed of alternating couples of marly limestones and marls, several decimeters thick with great lateral continuity. Two facies which vertically alternate are recognized as Nummulites - Asterigerina facies, where patchily dispersed large, robust and party reworked larger benthic foraminifera constitute 20% and small bioclasts (fomaniniferal fragments and whole tests less than 3 mm in diameters) 10% of rock volume and, Coral - Red algal facies with coral fragments of solitary and colonial taxa up to 1 cm in size constitute 5 - 40%, red algae 15 - 60% and lager benthic foraminifera up to 5% of rock volume. The textural and compositional differences among the facies suggest rhythmic exchanges of conditions that characterize shallower part of the mesophotic zone with abundant nummulithoclasts with deeper mesophotic, lime mud-dominated settings where nummulitids with the flat tests, coralline red algae and scleractinian corals are common. The scleractinian corals (comprising up to 20% of rock volume) encrusted by foraminifera (Acervulina, Haddonia and nubeculariids) or coralline red algae and foraminiferal assemblage made of orthophragminid and nummulitid tests scattered in matrix, are distributed uniformly throughout the studied Lišani Ostrovački section. In the central part of section, wavy to smooth thin (< 1 mm) crusts (laminas) alternating with encrusted corals occur. The

  19. Modeling Single-Trial ERP Reveals Modulation of Bottom-Up Face Visual Processing by Top-Down Task Constraints (in Some Subjects)

    PubMed Central

    Rousselet, Guillaume A.; Gaspar, Carl M.; Wieczorek, Kacper P.; Pernet, Cyril R.

    2011-01-01

    We studied how task constraints modulate the relationship between single-trial event-related potentials (ERPs) and image noise. Thirteen subjects performed two interleaved tasks: on different blocks, they saw the same stimuli, but they discriminated either between two faces or between two colors. Stimuli were two pictures of red or green faces that contained from 10 to 80% of phase noise, with 10% increments. Behavioral accuracy followed a noise dependent sigmoid in the identity task but was high and independent of noise level in the color task. EEG data recorded concurrently were analyzed using a single-trial ANCOVA: we assessed how changes in task constraints modulated ERP noise sensitivity while regressing out the main ERP differences due to identity, color, and task. Single-trial ERP sensitivity to image phase noise started at about 95–110 ms post-stimulus onset. Group analyses showed a significant reduction in noise sensitivity in the color task compared to the identity task from about 140 ms to 300 ms post-stimulus onset. However, statistical analyses in every subject revealed different results: significant task modulation occurred in 8/13 subjects, one showing an increase and seven showing a decrease in noise sensitivity in the color task. Onsets and durations of effects also differed between group and single-trial analyses: at any time point only a maximum of four subjects (31%) showed results consistent with group analyses. We provide detailed results for all 13 subjects, including a shift function analysis that revealed asymmetric task modulations of single-trial ERP distributions. We conclude that, during face processing, bottom-up sensitivity to phase noise can be modulated by top-down task constraints, in a broad window around the P2, at least in some subjects. PMID:21886627

  20. Visual processing during natural reading

    PubMed Central

    Weiss, Béla; Knakker, Balázs; Vidnyánszky, Zoltán

    2016-01-01

    Reading is a unique human ability that plays a pivotal role in the development and functioning of our modern society. However, its neural basis remains poorly understood since previous research was focused on reading words with fixed gaze. Here we developed a methodological framework for single-trial analysis of fixation onset-related EEG activity (FOREA) that enabled us to investigate visual information processing during natural reading. To reveal the effect of reading skills on orthographic processing during natural reading, we measured how altering the configural properties of the written text by modifying inter-letter spacing affects FOREA. We found that orthographic processing is reflected in FOREA in three consecutive time windows (120–175 ms, 230–265 ms, 345–380 ms after fixation onset) and the magnitude of FOREA effects in the two later time intervals showed a close association with the participants’ reading speed: FOREA effects were larger in fast than in slow readers. Furthermore, these expertise-driven configural effects were clearly dissociable from the FOREA signatures of visual perceptual processes engaged to handle the increased crowding (155–220 ms) as a result of decreasing letter spacing. Our findings revealed that with increased reading skills orthographic processing becomes more sensitive to the configural properties of the written text. PMID:27231193

  1. Visual processing during natural reading.

    PubMed

    Weiss, Béla; Knakker, Balázs; Vidnyánszky, Zoltán

    2016-01-01

    Reading is a unique human ability that plays a pivotal role in the development and functioning of our modern society. However, its neural basis remains poorly understood since previous research was focused on reading words with fixed gaze. Here we developed a methodological framework for single-trial analysis of fixation onset-related EEG activity (FOREA) that enabled us to investigate visual information processing during natural reading. To reveal the effect of reading skills on orthographic processing during natural reading, we measured how altering the configural properties of the written text by modifying inter-letter spacing affects FOREA. We found that orthographic processing is reflected in FOREA in three consecutive time windows (120-175 ms, 230-265 ms, 345-380 ms after fixation onset) and the magnitude of FOREA effects in the two later time intervals showed a close association with the participants' reading speed: FOREA effects were larger in fast than in slow readers. Furthermore, these expertise-driven configural effects were clearly dissociable from the FOREA signatures of visual perceptual processes engaged to handle the increased crowding (155-220 ms) as a result of decreasing letter spacing. Our findings revealed that with increased reading skills orthographic processing becomes more sensitive to the configural properties of the written text. PMID:27231193

  2. Temperature determining larger wildland fires in NE Spain

    NASA Astrophysics Data System (ADS)

    Molina-Terrén, D. M.; Cardil, A.

    2016-07-01

    Significant relationships were found between high-temperature days and wildland fire occurrence in the 1978-2011 period in Aragón (NE Spain). Temperature was analyzed at 850 hPa to characterize the low troposphere state, avoiding problems that affect surface reanalysis and providing regional coverage. A high-temperature day was established when air temperature was higher than 20 °C at 850 hPa. The number of these days increased significantly in the study period, increasing the frequency of adverse weather conditions that could facilitate extreme fire behavior. Specifically, these high-temperature days are more frequent in June than they used to be. The effects of those high-temperature days in wildland fire patterns were significant in terms of burned area, number of wildland fires, and average size. Fires larger than 60 ha were the subject of this study. These wildland fires have been increasing in number and size in the last years of the series.

  3. Super-size me: self biases increase to larger stimuli.

    PubMed

    Sui, Jie; Humphreys, Glyn W

    2015-04-01

    Prior work has shown that simple perceptual match responses to pairings of shapes and labels are more efficient if the pairing is associated with the participant (e.g., circle-you) than if it is associated with another familiar person (e.g., square-friend). There is a similar advantage for matching associations with high-value rewards (circle-£9) versus low-value rewards (square-£1) (Sui, He, & Humphreys Journal of Experimental Psychology: Human Perception and Performance, 38, 1105-1117, 2012). Here we evaluated the relations between the self- and reward-bias effects by introducing occasional trials in which the size of a shape was varied unexpectedly (large or small vs. a standard medium). Participants favored stimuli that were larger than the standard when stimuli were associated with the self, and this enhancement of self bias was predicted by the degree of self bias that participants showed to standard (medium) sized stimuli. Although we observed a correlation between the magnitudes of the self and reward biases over participants, reward-bias effects were not increased to large stimuli. The data suggest both overlapping and independent components of the self and reward biases, and that self biases are uniquely enhanced when stimuli increase in size, consistent with previously reported motivational biases favoring large stimuli. PMID:25112393

  4. Transformation of OODT CAS to Perform Larger Tasks

    NASA Technical Reports Server (NTRS)

    Mattmann, Chris; Freeborn, Dana; Crichton, Daniel; Hughes, John; Ramirez, Paul; Hardman, Sean; Woollard, David; Kelly, Sean

    2008-01-01

    A computer program denoted OODT CAS has been transformed to enable performance of larger tasks that involve greatly increased data volumes and increasingly intensive processing of data on heterogeneous, geographically dispersed computers. Prior to the transformation, OODT CAS (also alternatively denoted, simply, 'CAS') [wherein 'OODT' signifies 'Object-Oriented Data Technology' and 'CAS' signifies 'Catalog and Archive Service'] was a proven software component used to manage scientific data from spaceflight missions. In the transformation, CAS was split into two separate components representing its canonical capabilities: file management and workflow management. In addition, CAS was augmented by addition of a resource-management component. This third component enables CAS to manage heterogeneous computing by use of diverse resources, including high-performance clusters of computers, commodity computing hardware, and grid computing infrastructures. CAS is now more easily maintainable, evolvable, and reusable. These components can be used separately or, taking advantage of synergies, can be used together. Other elements of the transformation included addition of a separate Web presentation layer that supports distribution of data products via Really Simple Syndication (RSS) feeds, and provision for full Resource Description Framework (RDF) exports of metadata.

  5. More ‘altruistic’ punishment in larger societies

    PubMed Central

    Marlowe, Frank W; Berbesque, J. Colette; Barr, Abigail; Barrett, Clark; Bolyanatz, Alexander; Cardenas, Juan Camilo; Ensminger, Jean; Gurven, Michael; Gwako, Edwins; Henrich, Joseph; Henrich, Natalie; Lesorogol, Carolyn; McElreath, Richard; Tracer, David

    2007-01-01

    If individuals will cooperate with cooperators, and punish non-cooperators even at a cost to themselves, then this strong reciprocity could minimize the cheating that undermines cooperation. Based upon numerous economic experiments, some have proposed that human cooperation is explained by strong reciprocity and norm enforcement. Second-party punishment is when you punish someone who defected on you; third-party punishment is when you punish someone who defected on someone else. Third-party punishment is an effective way to enforce the norms of strong reciprocity and promote cooperation. Here we present new results that expand on a previous report from a large cross-cultural project. This project has already shown that there is considerable cross-cultural variation in punishment and cooperation. Here we test the hypothesis that population size (and complexity) predicts the level of third-party punishment. Our results show that people in larger, more complex societies engage in significantly more third-party punishment than people in small-scale societies. PMID:18089534

  6. A Whole-Genome Scan and Fine-Mapping Linkage Study of Auditory-Visual Synesthesia Reveals Evidence of Linkage to Chromosomes 2q24, 5q33, 6p12, and 12p12

    PubMed Central

    Asher, Julian E.; Lamb, Janine A.; Brocklebank, Denise; Cazier, Jean-Baptiste; Maestrini, Elena; Addis, Laura; Sen, Mallika; Baron-Cohen, Simon; Monaco, Anthony P.

    2009-01-01

    Synesthesia, a neurological condition affecting between 0.05%–1% of the population, is characterized by anomalous sensory perception and associated alterations in cognitive function due to interference from synesthetic percepts. A stimulus in one sensory modality triggers an automatic, consistent response in either another modality or a different aspect of the same modality. Familiality studies show evidence of a strong genetic predisposition; whereas initial pedigree analyses supported a single-gene X-linked dominant mode of inheritance with a skewed F:M ratio and a notable absence of male-to-male transmission, subsequent analyses in larger samples indicated that the mode of inheritance was likely to be more complex. Here, we report the results of a whole-genome linkage scan for auditory-visual synesthesia with 410 microsatellite markers at 9.05 cM density in 43 multiplex families (n = 196) with potential candidate regions fine-mapped at 5 cM density. Using NPL and HLOD analysis, we identified four candidate regions. Significant linkage at the genome-wide level was detected to chromosome 2q24 (HLOD = 3.025, empirical genome-wide p = 0.047). Suggestive linkage was found to chromosomes 5q33, 6p12, and 12p12. No support was found for linkage to the X chromosome; furthermore, we have identified two confirmed cases of male-to-male transmission of synesthesia. Our results demonstrate that auditory-visual synesthesia is likely to be an oligogenic disorder subject to multiple modes of inheritance and locus heterogeneity. This study comprises a significant step toward identifying the genetic substrates underlying synesthesia, with important implications for our understanding of the role of genes in human cognition and perception. PMID:19200526

  7. Ureteroscopic treatment of larger renal calculi (>2 cm)

    PubMed Central

    Bagley, Demetrius H.; Healy, Kelly A.; Kleinmann, Nir

    2012-01-01

    Objectives To evaluate the current status of ureteroscopic lithotripsy (UL) for treating renal calculi of >2 cm, as advances in flexible ureteroscope design, accessory instrumentation and lithotrites have revolutionised the treatment of urinary calculi. While previously reserved for ureteric and small renal calculi, UL has gained an increasing role in the selective management of larger renal stone burdens. Methods We searched the available databases, including PubMed, Google Scholar, and Scopus, for relevant reports in English, and the article bibliographies to identify additional relevant articles. Keywords included ureteroscopy, lithotripsy, renal calculi, and calculi >2 cm. Retrieved articles were reviewed to consider the number of patients, mean stone size, success rates, indications and complications. Results In all, nine studies (417 patients) were eligible for inclusion. After one, two or three procedures the mean (range) success rates were 68.2 (23–84)%, 87.1 (79–91)% and 94.4 (90.1–96.7)%, respectively. Overall, the success rate was >90% with a mean of 1.2–2.3 procedures per patient. The overall complication rate was 10.3%, including six (1.4%) intraoperative and 37 (8.9%) postoperative complications, most of which were minor. The most common indications for UL were a failed previous treatment (46%), comorbidities (18.2%), and technical and anatomical factors (12.3%). Conclusions UL is safe and effective for treating large renal calculi. While several procedures might be required for total stone clearance, UL should be considered a standard approach in the urologist’s options treating renal calculi of >2 cm. PMID:26558040

  8. Examining the form-function relationship of convective organization and the larger scale with observations and models

    NASA Astrophysics Data System (ADS)

    Riley, Emily Marie

    This work uses a two-pronged approach to study the form-function relationship of convective organization and the larger scale. Form is simply the visual shape of convection and function is how the convection and larger scale interact. First, CloudSat observations are used to study cloud modulation during the Madden-Julian Oscillation (MJO). Second, a cloud systems resolving model (CSRM) with parameterized large-scale dynamics is used to examine how convective organization affects the interdependence of convection and the larger-scale. Using CloudSat observations, cloud type, total cloud cover, and temperature and moisture evolution are document across MJO phases. Deep cloud types were classified as wide or narrow as a proxy for designating organized and unorganized convective systems. For locally defined phases, the MJO exhibits a familiar progression of cloud types from shallow clouds mixed with deep, isolated convection in the growing stages of the MJO, to deep, widespread, organized convection during the mature stages, to more anvil dominated conditions during the decay stages. Comparison to the convectively coupled Kelvin wave reveals both wave types exhibit similar cloud type evolution, though, the MJO was found to be modulated more by moisture variation, while the Kelvin wave was modulated more by temperature variations. In terms of globally defined MJO phases, the wide deep precipitating systems were modulated more than other cloud types by MJO phases, with the well-known progression of cloud cover from the Indian Ocean to the central Pacific. The narrow deep precipitating systems only propagated from the Indian Ocean to the Maritime Continent. The modeling component of this work involved periodic domains, where convective organization was controlled by adding shear to a three-dimensional (3D) isotropic CSRM domain or by altering the 3D domain to be longer and narrower, until eventually becoming a 2D domain. Snapshots of convective activity in various

  9. [Extracorporeal shockwave lithotripsy in the treatment of distal ureteral stones larger than 10 mm in diameter].

    PubMed

    Ishii, Nobuyuki; Yoshinaga, Atsushi; Ohno, Rena; Chiba, Koji; Hayashi, Tetsuo; Kamata, Shigeyoshi; Watanabe, Toru; Yamada, Takumi

    2004-06-01

    Optimal treatment for distal ureteral stones remains controversial. During a period of 10 years, from December 1992 to December 2002, 103 distal ureteral stones larger than 10 mm in diameter were treated at our institution with extracorporeal shock wave lithotripsy (ESWL) using the Siemens Lithostar. Only 2 patients had a ureteral stent in place at the time of treatment. The overall stone-free rate was 98% with 1-12 session and 3-month stone-free rate was 95.1%. These data reveal that a high success rate was achieved in multisession ESWL. Therefore, ESWL is considered to be acceptable as first-line therapy for fragmentation of distal ureteral stones larger than 10 mm in diameter. PMID:15293734

  10. Air pollution episodes in larger area of Bucharest

    NASA Astrophysics Data System (ADS)

    Raicu, C.; Iorga, G.

    2009-04-01

    In view of the fact that aerosol burdens in Eastern Europe may be heavily impacted by regional anthropogenic sources, this research is focused on analyses of air pollution episodes with the goal to quantify this impact in larger area of Bucharest. City of Bucharest is large size city (population 2.8 million) located in the Romanian Plain, characterised by environmental problems and meteorology typical for several cities in South-eastern Europe. It experiences intense photochemical processes. City environment includes intense emissions from traffic, thermo-electrical power-generation stations (CETs) that use mainly fossil fuels for power generation and domestic heating, and from industry. The data (PM10, SO2, CO, NOx) were collected at eight sampling sites in and around the urban area of Bucharest (three industrial and two traffic sites, one EPA urban background site, one suburban site and one regional site situated outside of Bucharest). Mass concentrations spanning over one year (2005 year) of continuous sampling were taken from data provided by the Air Quality Monitoring Network of the city. Analyses of temporal and spatial variability of PM10 were correlated with data of SO2, CO, NOx. The criterion for selecting the pollution episodes was the daily average concentration of PM10 to exceed by 35 times per year the limit value of 50 gm-3 (in accordance with Romanian Ministry Order 592/2002 criterion). Exceedances were considered as strong pollution events and were studied related to local pollution and long-range transport of pollutants provided by back-trajectories of air masses. As a general characteristics, the main contribution to the aerosol mass is due to anthropogenic local sources, but natural sources play a role, as well. The comparison between the concentration values at different sites indicates that industrial sources are responsible for a large part of the high concentrations in urban area followed by the traffic sources. The urban impact on nearby

  11. Visual agnosia.

    PubMed

    Álvarez, R; Masjuan, J

    2016-03-01

    Visual agnosia is defined as an impairment of object recognition, in the absence of visual acuity or cognitive dysfunction that would explain this impairment. This condition is caused by lesions in the visual association cortex, sparing primary visual cortex. There are 2 main pathways that process visual information: the ventral stream, tasked with object recognition, and the dorsal stream, in charge of locating objects in space. Visual agnosia can therefore be divided into 2 major groups depending on which of the two streams is damaged. The aim of this article is to conduct a narrative review of the various visual agnosia syndromes, including recent developments in a number of these syndromes. PMID:26358494

  12. Larger amygdala volume in first-degree relatives of patients with major depression

    PubMed Central

    Romanczuk-Seiferth, Nina; Pöhland, Lydia; Mohnke, Sebastian; Garbusow, Maria; Erk, Susanne; Haddad, Leila; Grimm, Oliver; Tost, Heike; Meyer-Lindenberg, Andreas; Walter, Henrik; Wüstenberg, Torsten; Heinz, Andreas

    2014-01-01

    Objective Although a heritable contribution to risk for major depressive disorder (MDD) has been established and neural alterations in patients have been identified through neuroimaging, it is unclear which brain abnormalities are related to genetic risk. Studies on brain structure of high-risk subjects – such as individuals carrying a familial liability for the development of MDD – can provide information on the potential usefulness of these measures as intermediate phenotypes of MDD. Methods 63 healthy first-degree relatives of patients with MDD and 63 healthy controls underwent structural magnetic resonance imaging. Regional gray matter volumes were analyzed via voxel-based morphometry (VBM). Results Whole-brain analysis revealed significantly larger gray matter volume in the bilateral amygdala in first-degree relatives of patients with MDD. Furthermore, relatives showed significantly larger gray matter volume in anatomical structures found relevant to MDD in previous literature, specifically in the bilateral hippocampus and amygdala as well as the left dorsolateral prefrontal cortex (DLPFC). Bilateral DLPFC volume correlated positively with the experience of negative affect. Conclusions Larger gray matter volume in healthy relatives of MDD patients point to a possible vulnerability mechanism in MDD etiology and therefore extend knowledge in the field of high-risk approaches in MDD. PMID:25003028

  13. Launch Will Create a Radio Telescope Larger than Earth

    NASA Astrophysics Data System (ADS)

    universe, where the extremely sharp radio "vision" of the new system can provide much-needed information about a number of astronomical mysteries. For years, astronomers have known that powerful "engines" in the hearts of quasars and many galaxies are pouring out tremendous amounts of energy. They suspect that supermassive black holes, with gravitational fields so strong that not even light can escape them, lie in the centers of these "engines." The mechanism at work in the centers of quasars and active galaxies, however, remains a mystery. Ground-based radio telescopes, notably NRAO's Very Long Baseline Array (VLBA), have revealed fascinating new details in recent years, and VSOP is expected to add a wealth of new information on these objects, millions or billions of light-years distant from Earth. Many of these same objects act as super-powerful particle accelerators to eject "jets" of subatomic particles at nearly the speed of light. Scientists plan to use VSOP to monitor the changes and motions in these jets to learn more about how they originate and interact with their surroundings. The satellite also will aim at regions in the sky where giant collections of water and other molecules act as natural amplifiers of radio emission much as lasers amplify light. These regions, called cosmic masers, are found in areas where new stars are forming and near the centers of galaxies. Observations can provide the detail needed to measure motions of individual maser "spots" within these regions, and provide exciting new information about the star-forming regions and the galaxies where the masers reside. In addition, high-resolution studies of cosmic masers can allow astronomers to calculate distances to them with unprecedented accuracy, and thus help resolve continuing questions about the size and age of the universe. The project is a major international undertaking, with about 40 radio telescopes from more than 15 countries having committed time to co-observe with the satellite

  14. Revealing Rembrandt

    PubMed Central

    Parker, Andrew J.

    2014-01-01

    The power and significance of artwork in shaping human cognition is self-evident. The starting point for our empirical investigations is the view that the task of neuroscience is to integrate itself with other forms of knowledge, rather than to seek to supplant them. In our recent work, we examined a particular aspect of the appreciation of artwork using present-day functional magnetic resonance imaging (fMRI). Our results emphasized the continuity between viewing artwork and other human cognitive activities. We also showed that appreciation of a particular aspect of artwork, namely authenticity, depends upon the co-ordinated activity between the brain regions involved in multiple decision making and those responsible for processing visual information. The findings about brain function probably have no specific consequences for understanding how people respond to the art of Rembrandt in comparison with their response to other artworks. However, the use of images of Rembrandt's portraits, his most intimate and personal works, clearly had a significant impact upon our viewers, even though they have been spatially confined to the interior of an MRI scanner at the time of viewing. Neuroscientific studies of humans viewing artwork have the capacity to reveal the diversity of human cognitive responses that may be induced by external advice or context as people view artwork in a variety of frameworks and settings. PMID:24795552

  15. Visualization of electronic density

    NASA Astrophysics Data System (ADS)

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; Hashibon, Adham; Yaish, Yuval; Adler, Joan

    2015-10-01

    The spatial volume occupied by an atom depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent algorithms and packages to calculate it numerically for other materials. Three-dimensional visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. In this paper, we explore several approaches to this, including the extension of an anaglyphic stereo visualization application based on the AViz package for hydrogen atoms and simple molecules to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting physical questions about nanotube properties.

  16. Helicopter Visual Aid System

    NASA Technical Reports Server (NTRS)

    Baisley, R. L.

    1973-01-01

    The results of an evaluation of police helicopter effectiveness revealed a need for improved visual capability. A JPL program developed a method that would enhance visual observation capability for both day and night usage and demonstrated the feasibility of the adopted approach. This approach made use of remote pointable optics, a display screen, a slaved covert searchlight, and a coupled camera. The approach was proved feasible through field testing and by judgement against evaluation criteria.

  17. Visual Scripting.

    ERIC Educational Resources Information Center

    Halas, John

    Visual scripting is the coordination of words with pictures in sequence. This book presents the methods and viewpoints on visual scripting of fourteen film makers, from nine countries, who are involved in animated cinema; it contains concise examples of how a storybook and preproduction script can be prepared in visual terms; and it includes a…

  18. Visual Imagery without Visual Perception?

    ERIC Educational Resources Information Center

    Bertolo, Helder

    2005-01-01

    The question regarding visual imagery and visual perception remain an open issue. Many studies have tried to understand if the two processes share the same mechanisms or if they are independent, using different neural substrates. Most research has been directed towards the need of activation of primary visual areas during imagery. Here we review…

  19. US weapons secrets revealed

    SciTech Connect

    Norris, R.S.; Arkin, W.M.

    1993-03-01

    Extraordinary details have only recently been revealed about the struggle over the control of early U.S. nuclear weapons and their initial deployments abroad. The information comes from a newly declassified top secret report, part of a larger study, The History of the Strategic Arms Competition, 1945-1972, commissioned by Defense Secretary James R. Schlisinger in summer 1974.

  20. Visual-vestibular stimulation influences spatial and non-spatial cognitive processing

    PubMed Central

    Furman, Joseph M.; Redfern, Mark S.; Fuhrman, Susan I.; Jennings, J. Richard

    2016-01-01

    This study investigated the impact of visual-vestibular stimulation on performance of an auditory information processing task in young and older adults. Performance on a spatial choice reaction time task was compared to performance on a nonspatial choice reaction time task. The tasks were performed during simultaneous rotational and moving visual stimulation. The non-spatial task was an auditory frequency discrimination task while the spatial task was a right-left lateralization task. Visual and vestibular conditions consisted of a non-movement baseline, sinusoidal earth-vertical axis rotation (EVAR) in darkness, off-vertical axis rotation (OVAR) in darkness at a constant velocity, OVAR in darkness with a sinusoidal profile, EVAR with a lighted visual surround, constant velocity optokinetic stimulation, and sinusoidal optokinetic stimulation. Baseline reaction times were subtracted from reaction times during each stimulus condition to yield “task cost”, which was analyzed statistically. Subjects were healthy young (n = 20; 24 ± 2.7 yrs; 10F) and older (n = 29; 73 ± 6.0 yrs; 18F) adults. Results indicated that task cost was affected by the visual-vestibular condition and a task × condition interaction. There was no main effect of task or age group and no significant interaction with age. Otolithic stimulation and visual stimulation were associated with greater task cost compared to semicircular canal stimulation. Combining semicircular canal with otolithic or visual stimulation had no additional effect beyond otolithic or visual stimulation alone. This pattern of task cost being larger for otolith or visual vs. semicircular canal stimulation was found for both the spatial and non-spatial tasks. The significant interaction between condition and task type revealed that the task cost for the spatial task was larger than the task cost for the non-spatial task during visual conditions but not during non-visual conditions although the visual and non-visual

  1. Metrics and Benchmarks for Visualization

    NASA Technical Reports Server (NTRS)

    Uselton, Samuel P.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    What is a "good" visualization? How can the quality of a visualization be measured? How can one tell whether one visualization is "better" than another? I claim that the true quality of a visualization can only be measured in the context of a particular purpose. The same image generated from the same data may be excellent for one purpose and abysmal for another. A good measure of visualization quality will correspond to the performance of users in accomplishing the intended purpose, so the "gold standard" is user testing. As a user of visualization software (or at least a consultant to such users) I don't expect visualization software to have been tested in this way for every possible use. In fact, scientific visualization (as distinct from more "production oriented" uses of visualization) will continually encounter new data, new questions and new purposes; user testing can never keep up. User need software they can trust, and advice on appropriate visualizations of particular purposes. Considering the following four processes, and their impact on visualization trustworthiness, reveals important work needed to create worthwhile metrics and benchmarks for visualization. These four processes are (1) complete system testing (user-in-loop), (2) software testing, (3) software design and (4) information dissemination. Additional information is contained in the original extended abstract.

  2. Visualizing Dispersion Interactions

    ERIC Educational Resources Information Center

    Gottschalk, Elinor; Venkataraman, Bhawani

    2014-01-01

    An animation and accompanying activity has been developed to help students visualize how dispersion interactions arise. The animation uses the gecko's ability to walk on vertical surfaces to illustrate how dispersion interactions play a role in macroscale outcomes. Assessment of student learning reveals that students were able to develop…

  3. A unified data representation theory for network visualization, ordering and coarse-graining

    NASA Astrophysics Data System (ADS)

    Kovács, István A.; Mizsei, Réka; Csermely, Péter

    2015-09-01

    Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of extensive data sets, by revealing the large-scale structure of complex networks in a comprehensible form.

  4. A unified data representation theory for network visualization, ordering and coarse-graining

    PubMed Central

    Kovács, István A.; Mizsei, Réka; Csermely, Péter

    2015-01-01

    Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of extensive data sets, by revealing the large-scale structure of complex networks in a comprehensible form. PMID:26348923

  5. Mathematical Visualization

    ERIC Educational Resources Information Center

    Rogness, Jonathan

    2011-01-01

    Advances in computer graphics have provided mathematicians with the ability to create stunning visualizations, both to gain insight and to help demonstrate the beauty of mathematics to others. As educators these tools can be particularly important as we search for ways to work with students raised with constant visual stimulation, from video games…

  6. Visual Literacy

    ERIC Educational Resources Information Center

    Felten, Peter

    2008-01-01

    Living in an image-rich world does not mean students (or faculty and administrators) naturally possess sophisticated visual literacy skills, just as continually listening to an iPod does not teach a person to critically analyze or create music. Instead, "visual literacy involves the ability to understand, produce, and use culturally significant…

  7. Visual Literacy.

    ERIC Educational Resources Information Center

    Lamberski, Richard J.

    A series of articles examines visual literacy from the perspectives of definition, research, curriculum, and resources. Articles examining the definition of visual literacy approach it in terms of semantics, techniques, and exploratory definition areas. There are surveys of present and potential research, and a discussion of the problem of…

  8. Visual Closure.

    ERIC Educational Resources Information Center

    Groffman, Sidney

    An experimental test of visual closure based on an information-theory concept of perception was devised to test the ability to discriminate visual stimuli with reduced cues. The test is to be administered in a timed individual situation in which the subject is presented with sets of incomplete drawings of simple objects that he is required to name…

  9. Visual Thinking.

    ERIC Educational Resources Information Center

    Arnheim, Rudolf

    Based on the more general principle that all thinking (including reasoning) is basically perceptual in nature, the author proposes that visual perception is not a passive recording of stimulus material but an active concern of the mind. He delineates the task of visually distinguishing changes in size, shape, and position and points out the…

  10. Increase of larger-sized islets in C57/black mice during the long-term space flight.

    NASA Astrophysics Data System (ADS)

    Proshchina, Alexandra; Krivova, Yulia

    groups are of unequal size. The P-value was considered significant if less than 0.05. The islets in all three groups have a typical for murine pancreas architecture. The insulin-containing cells occupied the central position in pancreatic islets and the glucagon-containing cells were localized at the periphery. Histomorphometric analyses revealed significant increase of islets size in flight group compared with vivarium ground control. Moreover, the islets in group of the delayed synchronous ground control were significant larger then in group of vivarium control. No significant differences were found in islet size between flight and delayed synchronous ground control groups, but analyses indicated the increase of larger-sized islets in mice of flight group compared with synchronous control. Thus the mean islets size correlated with the body weight. The literature data indicates that similar changes are also observed in mice under conditions of an increased demand for insulin such as pregnancy, obesity, diabetes etc. According to the literature data, the researches of activity of pancreas have shown the increase of pancreatic hormones (insulin and C-peptide) in blood of astronauts in the early period after completion of space flights of various durations. In our study, the increase of islets size occurred not only in mice from flight group, but also in synchronous ground control. For this group, the live conditions imitated those of flight group without the factors of spaceflight such as microgravity. Therefore, we supposed that the hypokinesia play an important role in alteration of islets size. Thus, our data confirms the hypothesis of association microgravity and its experimental paradigms with manifestations similar to those of physical inactivity and diabetes.

  11. Stronger cortisol response to acute psychosocial stress is correlated with larger decrease in temporal sensitivity

    PubMed Central

    Yao, Zhuxi; Jiang, Caihong; Zhang, Kan; Wu, Jianhui

    2016-01-01

    As a fundamental dimension of cognition and behavior, time perception has been found to be sensitive to stress. However, how one’s time perception changes with responses to stress is still unclear. The present study aimed to investigate the relationship between stress-induced cortisol response and time perception. A group of 40 healthy young male adults performed a temporal bisection task before and after the Trier Social Stress Test for a stress condition. A control group of 27 male participants completed the same time perception task without stress induction. In the temporal bisection task, participants were first presented with short (400 ms) and long (1,600 ms) visual signals serving as anchor durations and then required to judge whether the intermediate probe durations were more similar to the short or the long anchor. The bisection point and Weber ratio were calculated and indicated the subjective duration and the temporal sensitivity, respectively. Data showed that participants in the stress group had significantly increased salivary cortisol levels, heart rates, and negative affects compared with those in the control group. The results did not show significant group differences for the subjective duration or the temporal sensitivity. However, the results showed a significant positive correlation between stress-induced cortisol responses and decreases in temporal sensitivity indexed by increases in the Weber ratio. This correlation was not observed for the control group. Changes in subjective duration indexed by temporal bisection points were not correlated with cortisol reactivity in both the groups. In conclusion, the present study found that although no significant change was observed in time perception after an acute stressor on the group-level comparison (i.e., stress vs. nonstress group), individuals with stronger cortisol responses to stress showed a larger decrease in temporal sensitivity. This finding may provide insight into the understanding of

  12. Visual motion transforms visual space representations similarly throughout the human visual hierarchy.

    PubMed

    Harvey, Ben M; Dumoulin, Serge O

    2016-02-15

    Several studies demonstrate that visual stimulus motion affects neural receptive fields and fMRI response amplitudes. Here we unite results of these two approaches and extend them by examining the effects of visual motion on neural position preferences throughout the hierarchy of human visual field maps. We measured population receptive field (pRF) properties using high-field fMRI (7T), characterizing position preferences simultaneously over large regions of the visual cortex. We measured pRFs properties using sine wave gratings in stationary apertures, moving at various speeds in either the direction of pRF measurement or the orthogonal direction. We find direction- and speed-dependent changes in pRF preferred position and size in all visual field maps examined, including V1, V3A, and the MT+ map TO1. These effects on pRF properties increase up the hierarchy of visual field maps. However, both within and between visual field maps the extent of pRF changes was approximately proportional to pRF size. This suggests that visual motion transforms the representation of visual space similarly throughout the visual hierarchy. Visual motion can also produce an illusory displacement of perceived stimulus position. We demonstrate perceptual displacements using the same stimulus configuration. In contrast to effects on pRF properties, perceptual displacements show only weak effects of motion speed, with far larger speed-independent effects. We describe a model where low-level mechanisms could underlie the observed effects on neural position preferences. We conclude that visual motion induces similar transformations of visuo-spatial representations throughout the visual hierarchy, which may arise through low-level mechanisms. PMID:26666897

  13. Larger ejaculate volumes are associated with a lower degree of polyandry across bushcricket taxa

    PubMed Central

    Vahed, Karim

    2006-01-01

    In numerous insects, including bushcrickets (Tettigoniidae), males are known to transfer substances in the ejaculate that inhibit the receptivity of females to further matings, but it has not yet been established whether these substances reduce the lifetime degree of polyandry of the female. The aim of this study was to test the hypothesis that larger ejaculate volumes should be associated with a lower degree of polyandry across tettigoniid taxa, controlling for male body mass and phylogeny. Data on ejaculate mass, sperm number, nuptial gift mass and male mass were taken primarily from the literature. The degree of polyandry for 14 species of European bushcrickets was estimated by counting the number of spermatodoses within the spermathecae of field-caught females towards the end of their adult lifespans. Data for four further species were obtained from the literature. Data were analysed by using both species regression and independent contrasts to control for phylogeny. Multiple regression analysis revealed that, as predicted, there was a significant negative association between the degree of polyandry and ejaculate mass, relative to male body mass, across bushcricket taxa. Nuptial gift size and sperm number, however, did not contribute further to interspecific variation in the degree of polyandry. A positive relationship was found, across bushcricket taxa, between relative nuptial gift size and relative ejaculate mass, indicating that larger nuptial gifts allow the male to overcome female resistance to accepting large ejaculates. This appears to be the first comparative evidence that males can manipulate the lifetime degree of polyandry of their mates through the transfer of large ejaculates. PMID:16928643

  14. Visual cognition

    PubMed Central

    Cavanagh, Patrick

    2011-01-01

    Visual cognition, high-level vision, mid-level vision and top-down processing all refer to decision-based scene analyses that combine prior knowledge with retinal input to generate representations. The label “visual cognition” is little used at present, but research and experiments on mid- and high-level, inference-based vision have flourished, becoming in the 21st century a significant, if often understated part, of current vision research. How does visual cognition work? What are its moving parts? This paper reviews the origins and architecture of visual cognition and briefly describes some work in the areas of routines, attention, surfaces, objects, and events (motion, causality, and agency). Most vision scientists avoid being too explicit when presenting concepts about visual cognition, having learned that explicit models invite easy criticism. What we see in the literature is ample evidence for visual cognition, but few or only cautious attempts to detail how it might work. This is the great unfinished business of vision research: at some point we will be done with characterizing how the visual system measures the world and we will have to return to the question of how vision constructs models of objects, surfaces, scenes, and events. PMID:21329719

  15. The thermodynamic stability of clathrate hydrate. II. Simultaneous occupation of larger and smaller cages

    NASA Astrophysics Data System (ADS)

    Tanaka, Hideki; Kiyohara, Kenji

    1993-05-01

    obtained. The densities of state (corresponding to 0 K) are compared with the power spectra. It is revealed that the fixed lattice approximation can be applied when describing the molecular motions of methane and xenon in larger cages. The free energy for the accommodation of an extremely large CF4 or small argon guest is also examined.

  16. Visual impairment.

    PubMed

    Ellenberger, Carl

    2016-01-01

    This chapter can guide the use of imaging in the evaluation of common visual syndromes: transient visual disturbance, including migraine and amaurosis fugax; acute optic neuropathy complicating multiple sclerosis, neuromyelitis optica spectrum disorder, Leber hereditary optic neuropathy, and Susac syndrome; papilledema and pseudotumor cerebri syndrome; cerebral disturbances of vision, including posterior cerebral arterial occlusion, posterior reversible encephalopathy, hemianopia after anterior temporal lobe resection, posterior cortical atrophy, and conversion blindness. Finally, practical efforts in visual rehabilitation by sensory substitution for blind patients can improve their lives and disclose new information about the brain. PMID:27430448

  17. Vection and induced visual motion

    NASA Astrophysics Data System (ADS)

    Howard, Ian P.

    1991-12-01

    When exposed to a large moving visual display, a person experiences illusory self motion (vection). Specialized devices were used to investigate the relation between illusory visual motion of stationary objects and illusory self motion induced by motion of a visual scene. In a first set of experiments, two distinct components of induced visual motion were measured: exocentric induced motion which causes a stationary object to appear to move with the self, and egocentric induced motion which causes an object to seem to move relative to the self. Another set of experiments was designed to reveal the extent to which vection depends on the presence of stationary objects in the field of view and to explore what types of relative motion between the moving display and the stationary objects most strongly induce vection. It was observed that when all stationary objects were removed, vection had a long latency and was very weak when it occurred. A third set of experiments was designed to reveal the extent to which illusory body tilt induced by viewing a tilted or rotating scene depends on the motion of a visual stimulus and on the geometrical features of the stimulus. The results reveal the relative contributions of visual polarity and visual motion to illusory body tilt and the extent to which visual stimuli can override conflicting stimuli arising from the otolith organs.

  18. Visual Field Asymmetry in Attentional Capture

    ERIC Educational Resources Information Center

    Du, Feng; Abrams, Richard A.

    2010-01-01

    The present study examined the spatial distribution of involuntary attentional capture over the two visual hemi-fields. A new experiment, and an analysis of three previous experiments showed that distractors in the left visual field that matched a sought-for target in color produced a much larger capture effect than identical distractors in the…

  19. Visual cognition

    SciTech Connect

    Pinker, S.

    1985-01-01

    This book consists of essays covering issues in visual cognition presenting experimental techniques from cognitive psychology, methods of modeling cognitive processes on computers from artificial intelligence, and methods of studying brain organization from neuropsychology. Topics considered include: parts of recognition; visual routines; upward direction; mental rotation, and discrimination of left and right turns in maps; individual differences in mental imagery, computational analysis and the neurological basis of mental imagery: componental analysis.

  20. The Geometry of Visual Cortical Maps.

    PubMed

    Alonso, Jose Manuel

    2016-08-17

    The primary visual cortex has a map of multiple visual parameters whose topographic relations remain poorly understood. A new study (Nauhaus et al., 2016) reveals a nearly geometric map-topography that coexists within a remarkably precise representation of visual space. PMID:27537480

  1. Larger Planet Radii Inferred from Stellar "Flicker" Brightness Variations of Bright Planet-host Stars

    NASA Astrophysics Data System (ADS)

    Bastien, Fabienne A.; Stassun, Keivan G.; Pepper, Joshua

    2014-06-01

    Most extrasolar planets have been detected by their influence on their parent star, typically either gravitationally (the Doppler method) or by the small dip in brightness as the planet blocks a portion of the star (the transit method). Therefore, the accuracy with which we know the masses and radii of extrasolar planets depends directly on how well we know those of the stars, the latter usually determined from the measured stellar surface gravity, log g. Recent work has demonstrated that the short-timescale brightness variations ("flicker") of stars can be used to measure log g to a high accuracy of ~0.1-0.2 dex. Here, we use flicker measurements of 289 bright (Kepmag < 13) candidate planet-hosting stars with T eff = 4500-6650 K to re-assess the stellar parameters and determine the resulting impact on derived planet properties. This re-assessment reveals that for the brightest planet-host stars, Malmquist bias contaminates the stellar sample with evolved stars: nearly 50% of the bright planet-host stars are subgiants. As a result, the stellar radii, and hence the radii of the planets orbiting these stars, are on average 20%-30% larger than previous measurements had suggested.

  2. LARGER PLANET RADII INFERRED FROM STELLAR ''FLICKER'' BRIGHTNESS VARIATIONS OF BRIGHT PLANET-HOST STARS

    SciTech Connect

    Bastien, Fabienne A.; Stassun, Keivan G.; Pepper, Joshua

    2014-06-10

    Most extrasolar planets have been detected by their influence on their parent star, typically either gravitationally (the Doppler method) or by the small dip in brightness as the planet blocks a portion of the star (the transit method). Therefore, the accuracy with which we know the masses and radii of extrasolar planets depends directly on how well we know those of the stars, the latter usually determined from the measured stellar surface gravity, log g. Recent work has demonstrated that the short-timescale brightness variations ({sup f}licker{sup )} of stars can be used to measure log g to a high accuracy of ∼0.1-0.2 dex. Here, we use flicker measurements of 289 bright (Kepmag < 13) candidate planet-hosting stars with T {sub eff} = 4500-6650 K to re-assess the stellar parameters and determine the resulting impact on derived planet properties. This re-assessment reveals that for the brightest planet-host stars, Malmquist bias contaminates the stellar sample with evolved stars: nearly 50% of the bright planet-host stars are subgiants. As a result, the stellar radii, and hence the radii of the planets orbiting these stars, are on average 20%-30% larger than previous measurements had suggested.

  3. The Drosophila visual system

    PubMed Central

    Zhu, Yan

    2013-01-01

    A compact genome and a tiny brain make Drosophila the prime model to understand the neural substrate of behavior. The neurogenetic efforts to reveal neural circuits underlying Drosophila vision started about half a century ago, and now the field is booming with sophisticated genetic tools, rich behavioral assays, and importantly, a greater number of scientists joining from different backgrounds. This review will briefly cover the structural anatomy of the Drosophila visual system, the animal’s visual behaviors, the genes involved in assembling these circuits, the new and powerful techniques, and the challenges ahead for ultimately identifying the general principles of biological computation in the brain.   A typical brain utilizes a great many compact neural circuits to collect and process information from the internal biological and external environmental worlds and generates motor commands for observable behaviors. The fruit fly Drosophila melanogaster, despite of its miniature body and tiny brain, can survive in almost any corner of the world.1 It can find food, court mate, fight rival conspecific, avoid predators, and amazingly fly without crashing into trees. Drosophila vision and its underlying neuronal machinery has been a key research model for at least half century for neurogeneticists.2 Given the efforts invested on the visual system, this animal model is likely to offer the first full understanding of how visual information is computed by a multi-cellular organism. Furthermore, research in Drosophila has revealed many genes that play crucial roles in the formation of functional brains across species. The architectural similarities between the visual systems of Drosophila and vertebrate at the molecular, cellular, and network levels suggest new principles discovered at the circuit level on the relationship between neurons and behavior in Drosophila shall also contribute greatly to our understanding of the general principles for how bigger brains work.3

  4. Visual Prosthesis

    PubMed Central

    Schiller, Peter H.; Tehovnik, Edward J.

    2009-01-01

    There are more than 40 million blind individuals in the world whose plight would be greatly ameliorated by creating a visual prosthetic. We begin by outlining the basic operational characteristics of the visual system as this knowledge is essential for producing a prosthetic device based on electrical stimulation through arrays of implanted electrodes. We then list a series of tenets that we believe need to be followed in this effort. Central among these is our belief that the initial research in this area, which is in its infancy, should first be carried out in animals. We suggest that implantation of area V1 holds high promise as the area is of a large volume and can therefore accommodate extensive electrode arrays. We then proceed to consider coding operations that can effectively convert visual images viewed by a camera to stimulate electrode arrays to yield visual impressions that can provide shape, motion and depth information. We advocate experimental work that mimics electrical stimulation effects non-invasively in sighted human subjects using a camera from which visual images are converted into displays on a monitor akin to those created by electrical stimulation. PMID:19065857

  5. Visual stability

    PubMed Central

    Melcher, David

    2011-01-01

    Our vision remains stable even though the movements of our eyes, head and bodies create a motion pattern on the retina. One of the most important, yet basic, feats of the visual system is to correctly determine whether this retinal motion is owing to real movement in the world or rather our own self-movement. This problem has occupied many great thinkers, such as Descartes and Helmholtz, at least since the time of Alhazen. This theme issue brings together leading researchers from animal neurophysiology, clinical neurology, psychophysics and cognitive neuroscience to summarize the state of the art in the study of visual stability. Recently, there has been significant progress in understanding the limits of visual stability in humans and in identifying many of the brain circuits involved in maintaining a stable percept of the world. Clinical studies and new experimental methods, such as transcranial magnetic stimulation, now make it possible to test the causal role of different brain regions in creating visual stability and also allow us to measure the consequences when the mechanisms of visual stability break down. PMID:21242136

  6. Recipe Book for Larger Benthic Foraminifera X-ray Investigation: a Process Approach

    NASA Astrophysics Data System (ADS)

    Wolfgring, E.; Briguglio, A.; Hohenegger, J.

    2012-04-01

    During the past years X-ray microtomography (microCT) has become an essential tool in imaging procedures in micropaleontology. Apart from highest standards in accuracy, well conducted microCT scans aim to resolve the whole specimen in constant quality and free from any artifacts or visual interferences. Normally, to get used to X-ray techniques and get usable results, countless attempts are needed, resulting in enormous waste of time. This work tries to provide an insight into how best exploitable results can be obtained from the scanning process concerning Larger Benthic Foraminifera (LBF). As each specimen features different characteristics regarding substantial composition, density and conservation status, it is impossible and probably erroneous to give standardized guidelines even within this systematic group. Depending on the attributes of the specimen and on the desired visualization, several details have to be taken into account. Samples preparation: to get sharp images the X-ray has to cross the specimen along its shortest diameter, for LBF the equatorial view is almost always the best positioning (not for alveolinids!). The container itself has to be chosen wisely as well; it must not affect a flawless penetration of the specimen by the X-ray and has to provide a high degree of stability. Small plastic pipettes are perfect to store the specimen (or specimens) and some cardboard may help in keeping the position. The nature and quality of the paste used to fixate the object and its container are essential in ensuring a smooth rotation of the specimen which is inevitable for the consistent quality of the image and to avoid vibrations. Scan parameters: beside the correct choice of dedicated filters (which are always different depending on the working station), settings for kv, µA and resolution might have to be revised for each new object to deliver optimal results. Standard values for hyaline forms with empty chambers are normally around 80 Kv and 100 u

  7. Static and dynamic visual cues in feed-forward postural control.

    PubMed

    Mohapatra, Sambit; Aruin, Alexander S

    2013-01-01

    Anticipatory postural adjustments (APAs) play an important role in the performance of many activities requiring the maintenance of vertical posture. However, little is known about how variation in the available visual information affects generation of APAs. The purpose of this study was to investigate the role of different visual cues on APAs. Ten healthy young subjects were exposed to external perturbations induced at the shoulder level in standing while the level of visual information about the forthcoming perturbation was varied. The external perturbations were provided by an aluminum pendulum attached to the ceiling. The visual conditions were (1) dynamic cues (full vision and high-frequency strobe light), (2) static cues (low-frequency strobe light) and (3) no cues (eyes open in dark room). Electrical activity of the trunk and leg muscles and center of pressure displacements were recorded and quantified within the time intervals typical for APAs. The results showed that significantly larger APAs were generated in conditions with dynamic visual cues as compared to the conditions with static cues (p < 0.05). Finally, no APAs were observed in the condition where there was complete absence of any visual cues. Principal component analysis further revealed different muscle coupling patterns in the full vision and high-frequency strobe light conditions. These findings suggest the importance of using appropriate visual cues in the generation of APAs. PMID:23064846

  8. Editorial Commentary: Are Larger Screws the Answer When Anatomic Reconstruction of an Acromioclavicular Separation Fails?

    PubMed

    Denard, Patrick J

    2016-08-01

    Although fixation methods have improved, failure after fixation of an acromioclavicular joint separation is not uncommon. This biomechanical study shows that in the setting of graft slippage through previously well-placed clavicular tunnels, a revision anatomic reconstruction is feasible with larger tenodesis screws. Although the risk of clavicular fracture increases with larger tunnels, anatomic revision with larger screws is an option in select cases. PMID:27495861

  9. Which visual functions depend on intermediate visual regions? Insights from a case of developmental visual form agnosia.

    PubMed

    Gilaie-Dotan, Sharon

    2016-03-01

    A key question in visual neuroscience is the causal link between specific brain areas and perceptual functions; which regions are necessary for which visual functions? While the contribution of primary visual cortex and high-level visual regions to visual perception has been extensively investigated, the contribution of intermediate visual areas (e.g. V2/V3) to visual processes remains unclear. Here I review more than 20 visual functions (early, mid, and high-level) of LG, a developmental visual agnosic and prosopagnosic young adult, whose intermediate visual regions function in a significantly abnormal fashion as revealed through extensive fMRI and ERP investigations. While expectedly, some of LG's visual functions are significantly impaired, some of his visual functions are surprisingly normal (e.g. stereopsis, color, reading, biological motion). During the period of eight-year testing described here, LG trained on a perceptual learning paradigm that was successful in improving some but not all of his visual functions. Following LG's visual performance and taking into account additional findings in the field, I propose a framework for how different visual areas contribute to different visual functions, with an emphasis on intermediate visual regions. Thus, although rewiring and plasticity in the brain can occur during development to overcome and compensate for hindering developmental factors, LG's case seems to indicate that some visual functions are much less dependent on strict hierarchical flow than others, and can develop normally in spite of abnormal mid-level visual areas, thereby probably less dependent on intermediate visual regions. PMID:26209358

  10. RT-qPCR reveals opsin gene upregulation associated with age and sex in guppies (Poecilia reticulata) - a species with color-based sexual selection and 11 visual-opsin genes

    PubMed Central

    2011-01-01

    Background PCR-based surveys have shown that guppies (Poecilia reticulata) have an unusually large visual-opsin gene repertoire. This has led to speculation that opsin duplication and divergence has enhanced the evolution of elaborate male coloration because it improves spectral sensitivity and/or discrimination in females. However, this conjecture on evolutionary connections between opsin repertoire, vision, mate choice, and male coloration was generated with little data on gene expression. Here, we used RT-qPCR to survey visual-opsin gene expression in the eyes of males, females, and juveniles in order to further understand color-based sexual selection from the perspective of the visual system. Results Juvenile and adult (male and female) guppies express 10 visual opsins at varying levels in the eye. Two opsin genes in juveniles, SWS2B and RH2-2, accounted for >85% of all visual-opsin transcripts in the eye, excluding RH1. This relative abundance (RA) value dropped to about 65% in adults, as LWS-A180 expression increased from approximately 3% to 20% RA. The juvenile-to-female transition also showed LWS-S180 upregulation from about 1.5% to 7% RA. Finally, we found that expression in guppies' SWS2-LWS gene cluster is negatively correlated with distance from a candidate locus control region (LCR). Conclusions Selective pressures influencing visual-opsin gene expression appear to differ among age and sex. LWS upregulation in females is implicated in augmenting spectral discrimination of male coloration and courtship displays. In males, enhanced discrimination of carotenoid-rich food and possibly rival males are strong candidate selective pressures driving LWS upregulation. These developmental changes in expression suggest that adults possess better wavelength discrimination than juveniles. Opsin expression within the SWS2-LWS gene cluster appears to be regulated, in part, by a common LCR. Finally, by comparing our RT-qPCR data to MSP data, we were able to propose the

  11. Visual field defects in onchocerciasis.

    PubMed Central

    Thylefors, B; Tønjum, A M

    1978-01-01

    Lesions in the posterior segment of the eye in onchocerciasis may give visual field defects, but so far no detailed investigation has been done to determine the functional visual loss. Examination of the visual fields in 18 selected cases of onchocerciasis by means of a tangent screen test revealed important visual field defects associated with lesions in the posterior segment of the eye. Involvement of the optic nerve seemed to be important, giving rise to severely constricted visual fields. Cases of postneuritic optic atrophy showed a very uniform pattern of almost completely constricted visual fields, with only 5 to 10 degree central rest spared. Papillitis gave a similar severe constriction of the visual fields. The pattern of visual fields associated with optic neuropathy in onchocerciasis indicates that a progressive lesion of the optic nerve from the periphery may be responsible for the loss of vision. The visual field defects in onchocerciasis constitute a serious handicap, which must be taken into consideration when estimating the socioeconomic importance of the disease. Images PMID:678499

  12. Visualizing inequality

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2016-07-01

    The study of socioeconomic inequality is of substantial importance, scientific and general alike. The graphic visualization of inequality is commonly conveyed by Lorenz curves. While Lorenz curves are a highly effective statistical tool for quantifying the distribution of wealth in human societies, they are less effective a tool for the visual depiction of socioeconomic inequality. This paper introduces an alternative to Lorenz curves-the hill curves. On the one hand, the hill curves are a potent scientific tool: they provide detailed scans of the rich-poor gaps in human societies under consideration, and are capable of accommodating infinitely many degrees of freedom. On the other hand, the hill curves are a powerful infographic tool: they visualize inequality in a most vivid and tangible way, with no quantitative skills that are required in order to grasp the visualization. The application of hill curves extends far beyond socioeconomic inequality. Indeed, the hill curves are highly effective 'hyperspectral' measures of statistical variability that are applicable in the context of size distributions at large. This paper establishes the notion of hill curves, analyzes them, and describes their application in the context of general size distributions.

  13. Neural bandwidth of veridical perception across the visual field.

    PubMed

    Wilkinson, Michael O; Anderson, Roger S; Bradley, Arthur; Thibos, Larry N

    2016-01-01

    Neural undersampling of the retinal image limits the range of spatial frequencies that can be represented veridically by the array of retinal ganglion cells conveying visual information from eye to brain. Our goal was to demarcate the neural bandwidth and local anisotropy of veridical perception, unencumbered by optical imperfections of the eye, and to test competing hypotheses that might account for the results. Using monochromatic interference fringes to stimulate the retina with high-contrast sinusoidal gratings, we measured sampling-limited visual resolution along eight meridians from 0° to 50° of eccentricity. The resulting isoacuity contour maps revealed all of the expected features of the human array of retinal ganglion cells. Contours in the radial fringe maps are elongated horizontally, revealing the functional equivalent of the anatomical visual streak, and are extended into nasal retina and superior retina, indicating higher resolution along those meridians. Contours are larger in diameter for radial gratings compared to tangential or oblique gratings, indicating local anisotropy with highest bandwidth for radially oriented gratings. Comparison of these results to anatomical predictions indicates acuity is proportional to the sampling density of retinal ganglion cells everywhere in the retina. These results support the long-standing hypothesis that "pixel density" of the discrete neural image carried by the human optic nerve limits the spatial bandwidth of veridical perception at all retinal locations. PMID:26824638

  14. Serial dependence in visual perception

    PubMed Central

    Fischer, Jason; Whitney, David

    2014-01-01

    Visual input often arrives in a noisy and discontinuous stream, owing to head and eye movements, occlusion, lighting changes, and many other factors. Yet the physical world is generally stable—objects and physical characteristics rarely change spontaneously. How then does the human visual system capitalize on continuity in the physical environment over time? Here we show that visual perception is serially dependent, using both prior and present input to inform perception at the present moment. Using an orientation judgment task, we found that even when visual input changes randomly over time, perceived orientation is strongly and systematically biased toward recently seen stimuli. Further, the strength of this bias is modulated by attention and tuned to the spatial and temporal proximity of successive stimuli. These results reveal a serial dependence in perception characterized by a spatiotemporally tuned, orientation-selective operator—which we call a continuity field—that may promote visual stability over time. PMID:24686785

  15. Orientation anisotropies in human primary visual cortex depend on contrast.

    PubMed

    Maloney, Ryan T; Clifford, Colin W G

    2015-10-01

    Orientation processing in visual cortex appears matched to the environment, such that larger neural populations are tuned to cardinal (horizontal/vertical) than oblique orientations. This may be manifested perceptually as a cardinal bias: poorer sensitivity to oblique compared to cardinal orientations (the "oblique effect"). However, a growing body of psychophysical data reveals the opposite pattern of anisotropy: a bias towards the oblique over the cardinal orientations (the "horizontal effect"), something matched by recent functional magnetic resonance imaging (fMRI) studies that have found an increased response to the oblique over the cardinal orientations in early visual cortex. This may reveal the operation of an efficient coding strategy optimised to the diet of orientations encountered during natural viewing. From consideration of coding efficiency, it might be expected that the anisotropies would change as the quality/strength of the oriented stimulus changes. In two experiments, fMRI response modulations were measured in retinotopically-defined human early visual cortex as a function of the contrast and orientation of sinusoidal gratings. Both experiments revealed a marked change in the V1 response from a cardinal (vertical) bias at low contrast to an oblique bias at high contrast. In Experiment 2, this was also apparent in areas V2 and V3. On average, there was no systematic "radial bias" (a preference for orientations aligned with the visual field meridian) in V1, although it was present in some individual subjects. The change in orientation anisotropies with contrast is consistent with an adaptive stimulus coding strategy in cortex that shifts according to the strength of the sensory inputs. PMID:26093331

  16. Prognostic factors after hepatic resection for the single hepatocellular carcinoma larger than 5 cm

    PubMed Central

    Noh, Ji Hyun; Kim, Tae-Seok; Ahn, Keun Soo; Kim, Yong Hoon

    2016-01-01

    Purpose This study aimed to determine which factors affect the prognosis of hepatectomy for hepatocellular carcinoma (HCC) larger than 5 cm, including the prognostic difference between tumor sizes from 5–10 cm and larger than 10 cm. Methods The medical records of 114 patients who underwent hepatectomy for single HCC larger than 5 cm were reviewed and analyzed retrospectively. Results In the analysis of the entire cohort of 114 patients, the 5-year overall and diseases-free survival rates were 50% and 29%, respectively. In a comparison of survival rates between groups, tumor sizes of 5 to 10 cm and larger than 10 cm, the overall and disease-free survival rates were not significantly different, respectively (54% vs. 41%, P = 0.433 and 33% vs. 23%, P = 0.083). On multivariate analysis, positive hepatitis B, high prothrombin induced by vitamin K absence or antagonist-II levels over 200 mIU/mL, and vascular invasion (micro- and macrovascular invasion) were independent prognostic factors for recurrence after hepatic resection. However, tumor size larger than 10 cm was not significant for recurrence after resection. Conclusion This study shows that surgical resection of solitary HCC larger than 5 cm showed favorable overall survival. And there is no survival difference with tumors between 5–10 cm and larger than 10 cm.

  17. Solar System Visualizations

    NASA Technical Reports Server (NTRS)

    Brown, Alison M.

    2005-01-01

    Solar System Visualization products enable scientists to compare models and measurements in new ways that enhance the scientific discovery process, enhance the information content and understanding of the science results for both science colleagues and the public, and create.visually appealing and intellectually stimulating visualization products. Missions supported include MER, MRO, and Cassini. Image products produced include pan and zoom animations of large mosaics to reveal the details of surface features and topography, animations into registered multi-resolution mosaics to provide context for microscopic images, 3D anaglyphs from left and right stereo pairs, and screen captures from video footage. Specific products include a three-part context animation of the Cassini Enceladus encounter highlighting images from 350 to 4 meter per pixel resolution; Mars Reconnaissance Orbiter screen captures illustrating various instruments during assembly and testing at the Payload Hazardous Servicing Facility at Kennedy Space Center; and an animation of Mars Exploration Rover Opportunity's 'Rub al Khali' panorama where the rover was stuck in the deep fine sand for more than a month. This task creates new visualization products that enable new science results and enhance the public's understanding of the Solar System and NASA's missions of exploration.

  18. Visualizing Progress

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Reality Capture Technologies, Inc. is a spinoff company from Ames Research Center. Offering e-business solutions for optimizing management, design and production processes, RCT uses visual collaboration environments (VCEs) such as those used to prepare the Mars Pathfinder mission.The product, 4-D Reality Framework, allows multiple users from different locations to manage and share data. The insurance industry is one targeted commercial application for this technology.

  19. Flow visualization

    NASA Astrophysics Data System (ADS)

    Weinstein, Leonard M.

    Flow visualization techniques are reviewed, with particular attention given to those applicable to liquid helium flows. Three techniques capable of obtaining qualitative and quantitative measurements of complex 3D flow fields are discussed including focusing schlieren, particle image volocimetry, and holocinematography (HCV). It is concluded that the HCV appears to be uniquely capable of obtaining full time-varying, 3D velocity field data, but is limited to the low speeds typical of liquid helium facilities.

  20. Flow visualization

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M.

    1991-01-01

    Flow visualization techniques are reviewed, with particular attention given to those applicable to liquid helium flows. Three techniques capable of obtaining qualitative and quantitative measurements of complex 3D flow fields are discussed including focusing schlieren, particle image volocimetry, and holocinematography (HCV). It is concluded that the HCV appears to be uniquely capable of obtaining full time-varying, 3D velocity field data, but is limited to the low speeds typical of liquid helium facilities.

  1. Paying attention to orthography: a visual evoked potential study

    PubMed Central

    Herdman, Anthony T.; Takai, Osamu

    2013-01-01

    In adult readers, letters, and words are rapidly identified within visual networks to allow for efficient reading abilities. Neuroimaging studies of orthography have mostly used words and letter strings that recruit many hierarchical levels in reading. Understanding how single letters are processed could provide further insight into orthographic processing. The present study investigated orthographic processing using single letters and pseudoletters when adults were encouraged to pay attention to or away from orthographic features. We measured evoked potentials (EPs) to single letters and pseudoletters from adults while they performed an orthographic-discrimination task (letters vs. pseudoletters), a color-discrimination task (red vs. blue), and a target-detection task (respond to #1 and #2). Larger and later peaking N1 responses (~170 ms) and larger P2 responses (~250 ms) occurred to pseudoletters as compared to letters. This reflected greater visual processing for pseudoletters. Dipole analyses localized this effect to bilateral fusiform and inferior temporal cortices. Moreover, this letter-pseudoletter difference was not modulated by task and thus indicates that directing attention to or away from orthographic features did not affect early visual processing of single letters or pseudoletters within extrastriate regions. Paying attention to orthography or color as compared to disregarding the stimuli (target-detection task) elicited selection negativities at about 175 ms, which were followed by a classical N2-P3 complex. This indicated that the tasks sufficiently drew participant's attention to and away from the stimuli. Together these findings revealed that visual processing of single letters and pseudoletters, in adults, appeared to be sensory-contingent and independent of paying attention to stimulus features (e.g., orthography or color). PMID:23734115

  2. Larger red-shift in optical emissions obtained from the thin films of globular proteins (BSA, lysozyme) - polyelectrolyte (PAA) complexes

    NASA Astrophysics Data System (ADS)

    Talukdar, Hrishikesh; Kundu, Sarathi; Basu, Saibal

    2016-09-01

    Globular proteins (lysozyme and BSA) and polyelectrolyte (sodium polyacrylic acid) are used to form protein-polyelectrolyte complexes (PPC). Out-of-plane structures of ≈30-60 nm thick PPC films and their surface morphologies have been studied by using X-ray reflectivity and atomic force microscopy, whereas optical behaviors of PPC and protein conformations have been studied by using UV-vis, photoluminescence and FTIR spectroscopy respectively. Our study reveals that thin films of PPC show a larger red-shift of 23 and 16 nm in the optical emissions in comparison to that of pure protein whereas bulk PPC show a small blue-shift of ≈3 nm. A small amount of peak-shift is found to occur due to the heat treatment or concentration variation of the polyelectrolyte/protein in bulk solution but cannot produce such film thickness independent larger red-shift. Position of the emission peak remains nearly unchanged with the film thickness. Mechanism for such larger red-shift has been proposed.

  3. Neuronal nonlinearity explains greater visual spatial resolution for darks than lights

    PubMed Central

    Kremkow, Jens; Jin, Jianzhong; Komban, Stanley J.; Wang, Yushi; Lashgari, Reza; Li, Xiaobing; Jansen, Michael; Zaidi, Qasim; Alonso, Jose-Manuel

    2014-01-01

    Astronomers and physicists noticed centuries ago that visual spatial resolution is higher for dark than light stimuli, but the neuronal mechanisms for this perceptual asymmetry remain unknown. Here we demonstrate that the asymmetry is caused by a neuronal nonlinearity in the early visual pathway. We show that neurons driven by darks (OFF neurons) increase their responses roughly linearly with luminance decrements, independent of the background luminance. However, neurons driven by lights (ON neurons) saturate their responses with small increases in luminance and need bright backgrounds to approach the linearity of OFF neurons. We show that, as a consequence of this difference in linearity, receptive fields are larger in ON than OFF thalamic neurons, and cortical neurons are more strongly driven by darks than lights at low spatial frequencies. This ON/OFF asymmetry in linearity could be demonstrated in the visual cortex of cats, monkeys, and humans and in the cat visual thalamus. Furthermore, in the cat visual thalamus, we show that the neuronal nonlinearity is present at the ON receptive field center of ON-center neurons and ON receptive field surround of OFF-center neurons, suggesting an origin at the level of the photoreceptor. These results demonstrate a fundamental difference in visual processing between ON and OFF channels and reveal a competitive advantage for OFF neurons over ON neurons at low spatial frequencies, which could be important during cortical development when retinal images are blurred by immature optics in infant eyes. PMID:24516130

  4. Neuronal nonlinearity explains greater visual spatial resolution for darks than lights.

    PubMed

    Kremkow, Jens; Jin, Jianzhong; Komban, Stanley J; Wang, Yushi; Lashgari, Reza; Li, Xiaobing; Jansen, Michael; Zaidi, Qasim; Alonso, Jose-Manuel

    2014-02-25

    Astronomers and physicists noticed centuries ago that visual spatial resolution is higher for dark than light stimuli, but the neuronal mechanisms for this perceptual asymmetry remain unknown. Here we demonstrate that the asymmetry is caused by a neuronal nonlinearity in the early visual pathway. We show that neurons driven by darks (OFF neurons) increase their responses roughly linearly with luminance decrements, independent of the background luminance. However, neurons driven by lights (ON neurons) saturate their responses with small increases in luminance and need bright backgrounds to approach the linearity of OFF neurons. We show that, as a consequence of this difference in linearity, receptive fields are larger in ON than OFF thalamic neurons, and cortical neurons are more strongly driven by darks than lights at low spatial frequencies. This ON/OFF asymmetry in linearity could be demonstrated in the visual cortex of cats, monkeys, and humans and in the cat visual thalamus. Furthermore, in the cat visual thalamus, we show that the neuronal nonlinearity is present at the ON receptive field center of ON-center neurons and ON receptive field surround of OFF-center neurons, suggesting an origin at the level of the photoreceptor. These results demonstrate a fundamental difference in visual processing between ON and OFF channels and reveal a competitive advantage for OFF neurons over ON neurons at low spatial frequencies, which could be important during cortical development when retinal images are blurred by immature optics in infant eyes. PMID:24516130

  5. Fatigue acceptance test limit criteria for larger diameter rolled thread fasteners

    SciTech Connect

    Kephart, A.R.

    1999-05-19

    This document describes a fatigue lifetime acceptance test criterion by which studs having rolled threads, larger than 1.0 inches (25 mm) in diameter, can be assured to meet minimum quality attributes associated with a controlled rolling process.

  6. Collaboration during visual search.

    PubMed

    Malcolmson, Kelly A; Reynolds, Michael G; Smilek, Daniel

    2007-08-01

    Two experiments examine how collaboration influences visual search performance. Working with a partner or on their own, participants reported whether a target was present or absent in briefly presented search displays. We compared the search performance of individuals working together (collaborative pairs) with the pooled responses of the individuals working alone (nominal pairs). Collaborative pairs were less likely than nominal pairs to correctly detect a target and they were less likely to make false alarms. Signal detection analyses revealed that collaborative pairs were more sensitive to the presence of the target and had a more conservative response bias than the nominal pairs. This pattern was observed even when the presence of another individual was matched across pairs. The results are discussed in the context of task-sharing, social loafing and current theories of visual search. PMID:17972737

  7. Childhood Maltreatment Is Associated with Larger Left Thalamic Gray Matter Volume in Adolescents with Generalized Anxiety Disorder

    PubMed Central

    Liao, Mei; Yang, Fan; Zhang, Yan; He, Zhong; Song, Ming; Jiang, Tianzi; Li, Zexuan; Lu, Shaojia; Wu, Weiwei; Su, Linyan; Li, Lingjiang

    2013-01-01

    Background Generalized anxiety disorder (GAD) is a common anxiety disorder that usually begins in adolescence. Childhood maltreatment is highly prevalent and increases the possibility for developing a variety of mental disorders including anxiety disorders. An earlier age at onset of GAD is significantly related to maltreatment in childhood. Exploring the underpinnings of the relationship between childhood maltreatment and adolescent onset GAD would be helpful in identifying the potential risk markers of this condition. Methods Twenty-six adolescents with GAD and 25 healthy controls participated in this study. A childhood trauma questionnaire (CTQ) was introduced to assess childhood maltreatment. All subjects underwent high-resolution structural magnetic resonance scans. Voxel-based morphometry (VBM) was used to investigate gray matter alterations. Results Significantly larger gray matter volumes of the right putamen were observed in GAD patients compared to healthy controls. In addition, a significant diagnosis-by-maltreatment interaction effect for the left thalamic gray matter volume was revealed, as shown by larger volumes of the left thalamic gray matter in GAD patients with childhood maltreatment compared with GAD patients without childhood maltreatment as well as with healthy controls with/without childhood maltreatment. A significant positive association between childhood maltreatment and left thalamic gray matter volume was only seen in GAD patients. Conclusions These findings revealed an increased volume in the subcortical regions in adolescent GAD, and the alterations in the left thalamus might be involved in the association between childhood maltreatment and the occurrence of GAD. PMID:23951265

  8. Visual bioethics.

    PubMed

    Lauritzen, Paul

    2008-12-01

    Although images are pervasive in public policy debates in bioethics, few who work in the field attend carefully to the way that images function rhetorically. If the use of images is discussed at all, it is usually to dismiss appeals to images as a form of manipulation. Yet it is possible to speak meaningfully of visual arguments. Examining the appeal to images of the embryo and fetus in debates about abortion and stem cell research, I suggest that bioethicists would be well served by attending much more carefully to how images function in public policy debates. PMID:19085479

  9. Could direct killing by larger dingoes have caused the extinction of the thylacine from mainland Australia?

    PubMed

    Letnic, Mike; Fillios, Melanie; Crowther, Mathew S

    2012-01-01

    Invasive predators can impose strong selection pressure on species that evolved in their absence and drive species to extinction. Interactions between coexisting predators may be particularly strong, as larger predators frequently kill smaller predators and suppress their abundances. Until 3500 years ago the marsupial thylacine was Australia's largest predator. It became extinct from the mainland soon after the arrival of a morphologically convergent placental predator, the dingo, but persisted in the absence of dingoes on the island of Tasmania until the 20th century. As Tasmanian thylacines were larger than dingoes, it has been argued that dingoes were unlikely to have caused the extinction of mainland thylacines because larger predators are rarely killed by smaller predators. By comparing Holocene specimens from the same regions of mainland Australia, we show that dingoes were similarly sized to male thylacines but considerably larger than female thylacines. Female thylacines would have been vulnerable to killing by dingoes. Such killing could have depressed the reproductive output of thylacine populations. Our results support the hypothesis that direct killing by larger dingoes drove thylacines to extinction on mainland Australia. However, attributing the extinction of the thylacine to just one cause is problematic because the arrival of dingoes coincided with another the potential extinction driver, the intensification of the human economy. PMID:22567093

  10. Could Direct Killing by Larger Dingoes Have Caused the Extinction of the Thylacine from Mainland Australia?

    PubMed Central

    Letnic, Mike; Fillios, Melanie; Crowther, Mathew S.

    2012-01-01

    Invasive predators can impose strong selection pressure on species that evolved in their absence and drive species to extinction. Interactions between coexisting predators may be particularly strong, as larger predators frequently kill smaller predators and suppress their abundances. Until 3500 years ago the marsupial thylacine was Australia's largest predator. It became extinct from the mainland soon after the arrival of a morphologically convergent placental predator, the dingo, but persisted in the absence of dingoes on the island of Tasmania until the 20th century. As Tasmanian thylacines were larger than dingoes, it has been argued that dingoes were unlikely to have caused the extinction of mainland thylacines because larger predators are rarely killed by smaller predators. By comparing Holocene specimens from the same regions of mainland Australia, we show that dingoes were similarly sized to male thylacines but considerably larger than female thylacines. Female thylacines would have been vulnerable to killing by dingoes. Such killing could have depressed the reproductive output of thylacine populations. Our results support the hypothesis that direct killing by larger dingoes drove thylacines to extinction on mainland Australia. However, attributing the extinction of the thylacine to just one cause is problematic because the arrival of dingoes coincided with another the potential extinction driver, the intensification of the human economy. PMID:22567093

  11. Low Temperature and Polyploidy Result in Larger Cell and Body Size in an Ectothermic Vertebrate.

    PubMed

    Hermaniuk, Adam; Rybacki, Mariusz; Taylor, Jan R E

    2016-01-01

    Previous studies reported that low temperatures result in increases in both cell size and body size in ectotherms that may explain patterns of geographic variation of their body size across latitudinal ranges. Also, polyploidy showed the same effect on body size in invertebrates. In vertebrates, despite their having larger cells, no clear effect of polyploidy on body size has been found. This article presents the relationship between temperature, cell size, growth rate, and body size in diploid and polyploid hybridogenetic frog Pelophylax esculentus reared as tadpoles at 19° and 24°C. The size of cells was larger in both diploid and triploid tadpoles at 19°C, and triploids had larger cells at both temperatures. In diploid and triploid froglets, the temperature in which they developed as tadpoles did not affect the size of their cells, but triploids still had larger cells. Triploid tadpoles grew faster than diploids at 19°C and had larger body mass; there was no clear difference between ploidies in growth rate at 24°C. This indicates better adaptation of triploid tadpoles to cold environment. This is the first report on the increase of body mass of a polyploid vertebrate caused by low temperature, and we showed relationship between increase in cell size and increased body mass. The large body mass of triploids may provide a selective advantage, especially in colder environments, and this may explain the prevalence of triploids in the northern parts of the geographic range of P. esculentus. PMID:27082722

  12. Neural pathways for visual speech perception

    PubMed Central

    Bernstein, Lynne E.; Liebenthal, Einat

    2014-01-01

    This paper examines the questions, what levels of speech can be perceived visually, and how is visual speech represented by the brain? Review of the literature leads to the conclusions that every level of psycholinguistic speech structure (i.e., phonetic features, phonemes, syllables, words, and prosody) can be perceived visually, although individuals differ in their abilities to do so; and that there are visual modality-specific representations of speech qua speech in higher-level vision brain areas. That is, the visual system represents the modal patterns of visual speech. The suggestion that the auditory speech pathway receives and represents visual speech is examined in light of neuroimaging evidence on the auditory speech pathways. We outline the generally agreed-upon organization of the visual ventral and dorsal pathways and examine several types of visual processing that might be related to speech through those pathways, specifically, face and body, orthography, and sign language processing. In this context, we examine the visual speech processing literature, which reveals widespread diverse patterns of activity in posterior temporal cortices in response to visual speech stimuli. We outline a model of the visual and auditory speech pathways and make several suggestions: (1) The visual perception of speech relies on visual pathway representations of speech qua speech. (2) A proposed site of these representations, the temporal visual speech area (TVSA) has been demonstrated in posterior temporal cortex, ventral and posterior to multisensory posterior superior temporal sulcus (pSTS). (3) Given that visual speech has dynamic and configural features, its representations in feedforward visual pathways are expected to integrate these features, possibly in TVSA. PMID:25520611

  13. Signature Visualization of Software Binaries

    SciTech Connect

    Panas, T

    2008-07-01

    In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.

  14. Engineering visualization utilizing advanced animation

    NASA Technical Reports Server (NTRS)

    Sabionski, Gunter R.; Robinson, Thomas L., Jr.

    1989-01-01

    Engineering visualization is the use of computer graphics to depict engineering analysis and simulation in visual form from project planning through documentation. Graphics displays let engineers see data represented dynamically which permits the quick evaluation of results. The current state of graphics hardware and software generally allows the creation of two types of 3D graphics. The use of animated video as an engineering visualization tool is presented. The engineering, animation, and videography aspects of animated video production are each discussed. Specific issues include the integration of staffing expertise, hardware, software, and the various production processes. A detailed explanation of the animation process reveals the capabilities of this unique engineering visualization method. Automation of animation and video production processes are covered and future directions are proposed.

  15. Lightness Constancy in Surface Visualization.

    PubMed

    Szafir, Danielle Albers; Sarikaya, Alper; Gleicher, Michael

    2016-09-01

    Color is a common channel for displaying data in surface visualization, but is affected by the shadows and shading used to convey surface depth and shape. Understanding encoded data in the context of surface structure is critical for effective analysis in a variety of domains, such as in molecular biology. In the physical world, lightness constancy allows people to accurately perceive shadowed colors; however, its effectiveness in complex synthetic environments such as surface visualizations is not well understood. We report a series of crowdsourced and laboratory studies that confirm the existence of lightness constancy effects for molecular surface visualizations using ambient occlusion. We provide empirical evidence of how common visualization design decisions can impact viewers' abilities to accurately identify encoded surface colors. These findings suggest that lightness constancy aids in understanding color encodings in surface visualization and reveal a correlation between visualization techniques that improve color interpretation in shadow and those that enhance perceptions of surface depth. These results collectively suggest that understanding constancy in practice can inform effective visualization design. PMID:26584495

  16. Ecology of extant nummulitids and other larger benthic foraminifera: applications in palaeoenvironmental analysis

    NASA Astrophysics Data System (ADS)

    Beavington-Penney, Simon J.; Racey, Andrew

    2004-10-01

    Larger benthic foraminifera (LBF) are important contributors to modern and ancient tropical, shallow-marine sediments. Over the past 30 years, a substantial body of literature has built up on the ecology of modern LBF, especially in terms of their environmentally sensitive depth distribution, reproductive strategy and morphology, and the symbiotic relationship between many larger foraminifera and photosynthetic algae. Over the same period, the extinct genus Nummulites, which is abundant in Eocene sediments of southern Europe, North Africa and the Arabian Peninsula, has increasingly been studied, principally because significant volumes of hydrocarbons have been discovered reservoired within nummulitic limestones offshore Tunisia and Libya. The modern ecological studies of LBF provide a powerful tool with which to develop palaeoecological models for fossil Nummulites (and other symbiont-bearing larger foraminifera in the rock record).

  17. Manufacturing physics: using large(r) data sets and physical insight to develop great products

    NASA Astrophysics Data System (ADS)

    Rosenblum, Steven

    2011-03-01

    Early stage research does a fantastic job providing knowledge and proof-of-feasibility for new product concepts. However, the handful of data points required to validate a concept is typically insufficient to provide insight on the whole range of effects relevant to manufacturing the product. Moving to manufacturing brings larger data sets and variability; opportunistic analysis of these larger sets can yield better product design rules. In the early 2000s Corning developed an optical transmission fiber optimized to suppress stimulated Brillouin scattering (SBS). Analyzing the larger data set provided by the manufacturing environment using the same theoretical framework developed by the original researchers refined our understanding of how to improve SBS in optical fibers beyond what was known from our early efforts. This greater understanding allowed us to design better performing products.

  18. Comparative visual function in four piscivorous fishes inhabiting Chesapeake Bay.

    PubMed

    Horodysky, Andrij Z; Brill, Richard W; Warrant, Eric J; Musick, John A; Latour, Robert J

    2010-05-01

    Maintaining optimal visual performance is a difficult task in photodynamic coastal and estuarine waters because of the unavoidable tradeoffs between luminous sensitivity and spatial and temporal resolution, yet the visual systems of coastal piscivores remain understudied despite differences in their ecomorphology and microhabitat use. We therefore used electroretinographic techniques to describe the light sensitivities, temporal properties and spectral sensitivities of the visual systems of four piscivorous fishes common to coastal and estuarine waters of the western North Atlantic: striped bass (Morone saxatilis), bluefish (Pomatomus saltatrix), summer flounder (Paralichthys dentatus) and cobia (Rachycentron canadum). Benthic summer flounder exhibited higher luminous sensitivity and broader dynamic range than the three pelagic foragers. The former were at the more sensitive end of an emerging continuum for coastal fishes. By contrast, pelagic species were comparatively less sensitive, but showed larger day-night differences, consistent with their use of diel light-variant photic habitats. Flicker fusion frequency experiments revealed significant interspecific differences at maximum intensities that correlated with lifestyle and habitat. Spectral responses of most species spanned 400-610 nm, with significant day-night differences in striped bass and bluefish. Anadromous striped bass additionally responded to longer wavelengths, similar to many freshwater fishes. Collectively, these results suggest that pelagic piscivores are well adapted to bright photoclimates, which may be at odds with the modern state of eutrified coastal and estuarine waters that they utilize. Recent anthropogenic degradation of water quality in coastal environments, at a pace faster than the evolution of visual systems, may impede visually foraging piscivores, change selected prey, and eventually restructure ecosystems. PMID:20435826

  19. Visual attention and the acquisition of information in human crowds

    PubMed Central

    Gallup, Andrew C.; Hale, Joseph J.; Sumpter, David J. T.; Garnier, Simon; Kacelnik, Alex; Krebs, John R.; Couzin, Iain D.

    2012-01-01

    Pedestrian crowds can form the substrate of important socially contagious behaviors, including propagation of visual attention, violence, opinions, and emotional state. However, relating individual to collective behavior is often difficult, and quantitative studies have largely used laboratory experimentation. We present two studies in which we tracked the motion and head direction of 3,325 pedestrians in natural crowds to quantify the extent, influence, and context dependence of socially transmitted visual attention. In our first study, we instructed stimulus groups of confederates within a crowd to gaze up to a single point atop of a building. Analysis of passersby shows that visual attention spreads unevenly in space and that the probability of pedestrians adopting this behavior increases as a function of stimulus group size before saturating for larger groups. We develop a model that predicts that this gaze response will lead to the transfer of visual attention between crowd members, but it is not sufficiently strong to produce a tipping point or critical mass of gaze-following that has previously been predicted for crowd dynamics. A second experiment, in which passersby were presented with two stimulus confederates performing suspicious/irregular activity, supports the predictions of our model. This experiment reveals that visual interactions between pedestrians occur primarily within a 2-m range and that gaze-copying, although relatively weak, can facilitate response to relevant stimuli. Although the above aspects of gaze-following response are reproduced robustly between experimental setups, the overall tendency to respond to a stimulus is dependent on spatial features, social context, and sex of the passerby. PMID:22529369

  20. A randomized, placebo-controlled trial of the benzoquinone idebenone in a mouse model of OPA1-related dominant optic atrophy reveals a limited therapeutic effect on retinal ganglion cell dendropathy and visual function.

    PubMed

    Smith, T G; Seto, S; Ganne, P; Votruba, M

    2016-04-01

    Dominant optic atrophy (DOA) arises from mutations in the OPA1 gene that promotes fusion of the inner mitochondrial membrane and plays a role in maintaining ATP levels. Patients display optic disc pallor, retinal ganglion cell (RGC) loss and bilaterally reduced vision. We report a randomized, placebo-controlled trial of idebenone at 2000 mg/kg/day in 56 Opa1 mutant mice (B6;C3-Opa1(Q285STOP)), with RGC dendropathy and visual loss, and 63 wildtype mice. We assessed cellular responses in the retina, brain and liver and RGC morphology, by diolistic labeling, Sholl analysis and quantification of dendritic morphometric features. Vision was assessed by optokinetic responses. ATP levels were raised by 0.57 nmol/mg (97.73%, p=0.035) in brain from idebenone-treated Opa1 mutant mice, but in the liver there was an 80.35% (p=0.011) increase in oxidative damage. NQO1 expression in Opa1 mutant mice was reduced in the brain (to 30.5%, p=0.002) but not in retina, and neither expression level was induced by idebenone. ON-center RGCs failed to show major recovery, other than improvements in secondary dendritic length (by 53.89%, p=0.052) and dendritic territory (by 2.22 × 10(4) μm(2) or 90.24%, p=0.074). An improvement in optokinetic response was observed (by 12.2 ± 3.2s, p=0.003), but this effect was not sustained over time. OFF-center RGCs from idebenone-treated wildtype mice showed shrinkage in total dendritic length by 2.40 mm (48.05%, p=0.025) and a 47.37% diminished Sholl profile (p=0.029). Visual function in wildtype idebenone-treated mice was impaired (2.9 fewer head turns than placebo, p=0.007). Idebenone appears largely ineffective in protecting Opa1 heterozygous RGCs from dendropathy. The detrimental effect of idebenone in wildtype mice has not been previously observed and raises some concerns. PMID:26820596

  1. Wayfinding in the Blind: Larger Hippocampal Volume and Supranormal Spatial Navigation

    ERIC Educational Resources Information Center

    Fortin, Madeleine; Voss, Patrice; Lord, Catherine; Lassonde, Maryse; Pruessner, Jens; Saint-Amour, Dave; Rainville, Constant; Lepore, Franco

    2008-01-01

    In the absence of visual input, the question arises as to how complex spatial abilities develop and how the brain adapts to the absence of this modality. We explored navigational skills in both early and late blind individuals and structural differences in the hippocampus, a brain region well known to be involved in spatial processing.…

  2. Micrometeoroid Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Larger Particles

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V.; Colaux, J. L.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; Griffin, G. T.; Gerlach, L.; Wozniakiewicz, P. J.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2014-01-01

    The Wide Field and Planetary Camera 2 (WFPC2) was returned from the Hubble Space Telescope (HST) by shuttle mission STS-125 in 2009. In space for 16 years, the surface accumulated hundreds of impact features on the zinc orthotitanate paint, some penetrating through into underlying metal. Larger impacts were seen in photographs taken from within the shuttle orbiter during service missions, with spallation of paint in areas reaching 1.6 cm across, exposing alloy beneath. Here we describe larger impact shapes, the analysis of impactor composition, and the micrometeoroid (MM) types responsible.

  3. Testing the snake-detection hypothesis: larger early posterior negativity in humans to pictures of snakes than to pictures of other reptiles, spiders and slugs

    PubMed Central

    Van Strien, Jan W.; Franken, Ingmar H. A.; Huijding, Jorg

    2014-01-01

    According to the snake detection hypothesis (Isbell, 2006), fear specifically of snakes may have pushed evolutionary changes in the primate visual system allowing pre-attentional visual detection of fearful stimuli. A previous study demonstrated that snake pictures, when compared to spiders or bird pictures, draw more early attention as reflected by larger early posterior negativity (EPN). Here we report two studies that further tested the snake detection hypothesis. In Study 1, we tested whether the enlarged EPN is specific for snakes or also generalizes to other reptiles. Twenty-four healthy, non-phobic women watched the random rapid serial presentation of snake, crocodile, and turtle pictures. The EPN was scored as the mean activity at occipital electrodes (PO3, O1, Oz, PO4, O2) in the 225–300 ms time window after picture onset. The EPN was significantly larger for snake pictures than for pictures of the other reptiles. In Study 2, we tested whether disgust plays a role in the modulation of the EPN and whether preferential processing of snakes also can be found in men. 12 men and 12 women watched snake, spider, and slug pictures. Both men and women exhibited the largest EPN amplitudes to snake pictures, intermediate amplitudes to spider pictures and the smallest amplitudes to slug pictures. Disgust ratings were not associated with EPN amplitudes. The results replicate previous findings and suggest that ancestral priorities modulate the early capture of visual attention. PMID:25237303

  4. Interactive Terascale Particle Visualization

    NASA Technical Reports Server (NTRS)

    Ellsworth, David; Green, Bryan; Moran, Patrick

    2004-01-01

    This paper describes the methods used to produce an interactive visualization of a 2 TB computational fluid dynamics (CFD) data set using particle tracing (streaklines). We use the method introduced by Bruckschen et al. [2001] that pre-computes a large number of particles, stores them on disk using a space-filling curve ordering that minimizes seeks, and then retrieves and displays the particles according to the user's command. We describe how the particle computation can be performed using a PC cluster, how the algorithm can be adapted to work with a multi-block curvilinear mesh, and how the out-of-core visualization can be scaled to 296 billion particles while still achieving interactive performance on PG hardware. Compared to the earlier work, our data set size and total number of particles are an order of magnitude larger. We also describe a new compression technique that allows the lossless compression of the particles by 41% and speeds the particle retrieval by about 30%.

  5. Visualization rhetoric: framing effects in narrative visualization.

    PubMed

    Hullman, Jessica; Diakopoulos, Nicholas

    2011-12-01

    Narrative visualizations combine conventions of communicative and exploratory information visualization to convey an intended story. We demonstrate visualization rhetoric as an analytical framework for understanding how design techniques that prioritize particular interpretations in visualizations that "tell a story" can significantly affect end-user interpretation. We draw a parallel between narrative visualization interpretation and evidence from framing studies in political messaging, decision-making, and literary studies. Devices for understanding the rhetorical nature of narrative information visualizations are presented, informed by the rigorous application of concepts from critical theory, semiotics, journalism, and political theory. We draw attention to how design tactics represent additions or omissions of information at various levels-the data, visual representation, textual annotations, and interactivity-and how visualizations denote and connote phenomena with reference to unstated viewing conventions and codes. Classes of rhetorical techniques identified via a systematic analysis of recent narrative visualizations are presented, and characterized according to their rhetorical contribution to the visualization. We describe how designers and researchers can benefit from the potentially positive aspects of visualization rhetoric in designing engaging, layered narrative visualizations and how our framework can shed light on how a visualization design prioritizes specific interpretations. We identify areas where future inquiry into visualization rhetoric can improve understanding of visualization interpretation. PMID:22034342

  6. Advancing Water Science through Data Visualization

    NASA Astrophysics Data System (ADS)

    Li, X.; Troy, T.

    2014-12-01

    As water scientists, we are increasingly handling larger and larger datasets with many variables, making it easy to lose ourselves in the details. Advanced data visualization will play an increasingly significant role in propelling the development of water science in research, economy, policy and education. It can enable analysis within research and further data scientists' understanding of behavior and processes and can potentially affect how the public, whom we often want to inform, understands our work. Unfortunately for water scientists, data visualization is approached in an ad hoc manner when a more formal methodology or understanding could potentially significantly improve both research within the academy and outreach to the public. Firstly to broaden and deepen scientific understanding, data visualization can allow for more analyzed targets to be processed simultaneously and can represent the variables effectively, finding patterns, trends and relationships; thus it can even explores the new research direction or branch of water science. Depending on visualization, we can detect and separate the pivotal and trivial influential factors more clearly to assume and abstract the original complex target system. Providing direct visual perception of the differences between observation data and prediction results of models, data visualization allows researchers to quickly examine the quality of models in water science. Secondly data visualization can also improve public awareness and perhaps influence behavior. Offering decision makers clearer perspectives of potential profits of water, data visualization can amplify the economic value of water science and also increase relevant employment rates. Providing policymakers compelling visuals of the role of water for social and natural systems, data visualization can advance the water management and legislation of water conservation. By building the publics' own data visualization through apps and games about water

  7. Narrative visualization: telling stories with data.

    PubMed

    Segel, Edward; Heer, Jeffrey

    2010-01-01

    Data visualization is regularly promoted for its ability to reveal stories within data, yet these “data stories” differ in important ways from traditional forms of storytelling. Storytellers, especially online journalists, have increasingly been integrating visualizations into their narratives, in some cases allowing the visualization to function in place of a written story. In this paper, we systematically review the design space of this emerging class of visualizations. Drawing on case studies from news media to visualization research, we identify distinct genres of narrative visualization. We characterize these design differences, together with interactivity and messaging, in terms of the balance between the narrative flow intended by the author (imposed by graphical elements and the interface) and story discovery on the part of the reader (often through interactive exploration). Our framework suggests design strategies for narrative visualization, including promising under-explored approaches to journalistic storytelling and educational media. PMID:20975152

  8. Personalized visual aesthetics

    NASA Astrophysics Data System (ADS)

    Vessel, Edward A.; Stahl, Jonathan; Maurer, Natalia; Denker, Alexander; Starr, G. G.

    2014-02-01

    How is visual information linked to aesthetic experience, and what factors determine whether an individual finds a particular visual experience pleasing? We have previously shown that individuals' aesthetic responses are not determined by objective image features but are instead a function of internal, subjective factors that are shaped by a viewers' personal experience. Yet for many classes of stimuli, culturally shared semantic associations give rise to similar aesthetic taste across people. In this paper, we investigated factors that govern whether a set of observers will agree in which images are preferred, or will instead exhibit more "personalized" aesthetic preferences. In a series of experiments, observers were asked to make aesthetic judgments for different categories of visual stimuli that are commonly evaluated in an aesthetic manner (faces, natural landscapes, architecture or artwork). By measuring agreement across observers, this method was able to reveal instances of highly individualistic preferences. We found that observers showed high agreement on their preferences for images of faces and landscapes, but much lower agreement for images of artwork and architecture. In addition, we found higher agreement for heterosexual males making judgments of beautiful female faces than of beautiful male faces. These results suggest that preferences for stimulus categories that carry evolutionary significance (landscapes and faces) come to rely on similar information across individuals, whereas preferences for artifacts of human culture such as architecture and artwork, which have fewer basic-level category distinctions and reduced behavioral relevance, rely on a more personalized set of attributes.

  9. Visually induced reorientation illusions

    NASA Technical Reports Server (NTRS)

    Howard, I. P.; Hu, G.; Oman, C. M. (Principal Investigator)

    2001-01-01

    It is known that rotation of a furnished room around the roll axis of erect subjects produces an illusion of 360 degrees self-rotation in many subjects. Exposure of erect subjects to stationary tilted visual frames or rooms produces only up to 20 degrees of illusory tilt. But, in studies using static tilted rooms, subjects remained erect and the body axis was not aligned with the room. We have revealed a new class of disorientation illusions that occur in many subjects when placed in a 90 degrees or 180 degrees tilted room containing polarised objects (familiar objects with tops and bottoms). For example, supine subjects looking up at a wall of the room feel upright in an upright room and their arms feel weightless when held out from the body. We call this the levitation illusion. We measured the incidence of 90 degrees or 180 degrees reorientation illusions in erect, supine, recumbent, and inverted subjects in a room tilted 90 degrees or 180 degrees. We report that reorientation illusions depend on the displacement of the visual scene rather than of the body. However, illusions are most likely to occur when the visual and body axes are congruent. When the axes are congruent, illusions are least likely to occur when subjects are prone rather than supine, recumbent, or inverted.

  10. Dysfunctional visual word form processing in progressive alexia

    PubMed Central

    Rising, Kindle; Stib, Matthew T.; Rapcsak, Steven Z.; Beeson, Pélagie M.

    2013-01-01

    Progressive alexia is an acquired reading deficit caused by degeneration of brain regions that are essential for written word processing. Functional imaging studies have shown that early processing of the visual word form depends on a hierarchical posterior-to-anterior processing stream in occipito-temporal cortex, whereby successive areas code increasingly larger and more complex perceptual attributes of the letter string. A region located in the left lateral occipito-temporal sulcus and adjacent fusiform gyrus shows maximal selectivity for words and has been dubbed the ‘visual word form area’. We studied two patients with progressive alexia in order to determine whether their reading deficits were associated with structural and/or functional abnormalities in this visual word form system. Voxel-based morphometry showed left-lateralized occipito-temporal atrophy in both patients, very mild in one, but moderate to severe in the other. The two patients, along with 10 control subjects, were scanned with functional magnetic resonance imaging as they viewed rapidly presented words, false font strings, or a fixation crosshair. This paradigm was optimized to reliably map brain regions involved in orthographic processing in individual subjects. All 10 control subjects showed a posterior-to-anterior gradient of selectivity for words, and all 10 showed a functionally defined visual word form area in the left hemisphere that was activated for words relative to false font strings. In contrast, neither of the two patients with progressive alexia showed any evidence for a selectivity gradient or for word-specific activation of the visual word form area. The patient with mild atrophy showed normal responses to both words and false font strings in the posterior part of the visual word form system, but a failure to develop selectivity for words in the more anterior part of the system. In contrast, the patient with moderate to severe atrophy showed minimal activation of any part

  11. 76 FR 38059 - Defining Larger Participants in Certain Consumer Financial Products and Services Markets

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ...), 75 FR. 48458 (Aug. 10, 2010). \\35\\ Id. The CFPB seeks public comment on the following: What consumer... registration process to use in its larger participant determinations? C. Measurement Dates and Supervision... participant rule. See Act at Sec. 1024(a)(1)(A), (D), and (E). \\23\\ IBIS World Industry Report. Auto...

  12. 77 FR 72913 - Defining Larger Participants of the Consumer Debt Collection Market; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ... Register of October 31, 2012 (77 FR 65775) amending 12 CFR part 1090 by adding a new section to define... for substantive disagreement. Accordingly, in FR Doc. 2012-26467 published on October 31, 2012 (77 FR... Part 1090 RIN 3170-AA30 Defining Larger Participants of the Consumer Debt Collection Market;...

  13. Optimal Inventory Planning under Permissible Delay in Payments When a Larger Order Quantity

    NASA Astrophysics Data System (ADS)

    Hsu, Kuang-Hua; Huang, Hung-Fu; Tu, Yu-Cheng; Huang, Yung-Fu

    In the previous related studies, the inventory replenishment problems under permissible delay in payments are independent of the order quantity. In this study, the restrictive assumption of the trade credit independent of the order quantity is relaxed. This study discusses the inventory policies under permissible delay in payments when a larger order quantity.

  14. 78 FR 18902 - Defining Larger Participants of the Student Loan Servicing Market

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ...\\ The first two rules defined larger participants of markets for consumer reporting, 77 FR 42874 (July 20, 2012) (Consumer Reporting Rule), and for consumer debt collection, 77 FR 65775 (Oct. 31, 2012... participants of the student loan servicing market would become Sec. 1090.106 in subpart B. \\13\\ 77 FR...

  15. Larger Body Size at Metamorphosis Enhances Survival, Growth and Performance of Young Cane Toads (Rhinella marina)

    PubMed Central

    Cabrera-Guzmán, Elisa; Crossland, Michael R.; Brown, Gregory P.; Shine, Richard

    2013-01-01

    Body size at metamorphosis is a key trait in species (such as many anurans) with biphasic life-histories. Experimental studies have shown that metamorph size is highly plastic, depending upon larval density and environmental conditions (e.g. temperature, food supply, water quality, chemical cues from conspecifics, predators and competitors). To test the hypothesis that this developmental plasticity is adaptive, or to determine if inducing plasticity can be used to control an invasive species, we need to know whether or not a metamorphosing anuran’s body size influences its subsequent viability. For logistical reasons, there are few data on this topic under field conditions. We studied cane toads (Rhinella marina) within their invasive Australian range. Metamorph body size is highly plastic in this species, and our laboratory studies showed that larger metamorphs had better locomotor performance (both on land and in the water), and were more adept at catching and consuming prey. In mark-recapture trials in outdoor enclosures, larger body size enhanced metamorph survival and growth rate under some seasonal conditions. Larger metamorphs maintained their size advantage over smaller siblings for at least a month. Our data support the critical but rarely-tested assumption that all else being equal, larger body size at metamorphosis is likely to enhance an individual’s long term viability. Thus, manipulations to reduce body size at metamorphosis in cane toads may help to reduce the ecological impact of this invasive species. PMID:23922930

  16. Neonatal morbidity in growth-discordant monochorionic twins: comparison between the larger and the smaller twin.

    PubMed

    Lopriore, Enrico; Sluimers, Carolien; Pasman, Suzanne A; Middeldorp, Johanna M; Oepkes, Dick; Walther, Frans J

    2012-08-01

    Fetal growth restriction in singletons has been shown to enhance fetal lung maturation and reduce the risk of respiratory distress syndrome due to increased endogenous steroid production. However, data on lung maturation in growth-discordant monochorionic (thus, identical) twins are lacking. Our objective was to compare the risk of severe neonatal morbidity between the larger and the smaller twin in monochorionic twins with birth weight discordance (BWD). We included in the study all consecutive monochorionic diamniotic pregnancies with severe BWD (≥25%) and two live-born twins delivered at our center (n=47 twin pairs). We compared the incidence of neonatal morbidity, particularly respiratory distress syndrome (RDS), and cerebral lesions between the larger and the smaller co-twin. The incidence of severe neonatal morbidity in the larger and smaller twin was 38% (18/47) and 19% (9/47), respectively (odds ratio (OR) 2.66, 95% confidence interval (CI) 0.94-7.44) and was due primarily to the higher incidence of RDS, 32% (15/47) and 6% (3/47), respectively (OR 6.88, 95% CI 1.66-32.83). In conclusion, this study shows that the larger twin in monochorionic twin pairs with BWD is at increased risk of severe neonatal morbidity, particularly RDS, compared to the smaller twin. PMID:22854118

  17. Ecological study of the larger black flour beetle in cotton gin trash.

    PubMed

    Nansen, Christian; James, Jacob; Bowling, David; Parajulee, Megha N; Porter, Patrick

    2008-12-01

    The larger black flour beetle Cynaeus angustus (Leconte) thrives in cotton gin trash piles on the Southern High Plains of Texas and sometimes becomes a nuisance after invading public and private structures. For better understanding of the basic larger black flour beetle ecology in gin trash piles, we conducted a series of laboratory and semirealistic field trials. We showed (1) in naturally infested gin trash piles, that similar trap captures were obtained in three cardinal directions; (2) in a laboratory study, late-instar larvae stayed longer in larval stage in moist soil compared with drier soil; (3) in both horizontal and vertical choice experiments, late instars preferred soil with low moisture content; and (4) specifically larger black flour beetle adults, but most larvae as well, responded negatively to high moisture content in gin trash. The results presented are consistent with reports of larger black flour beetle living in decaying yucca palms in deserts and suggest that maintaining gin trash piles with high moisture content may be an important component in an integrated control strategy. PMID:19161678

  18. [Migration and problems related to population concentration in larger Bulgarian cities].

    PubMed

    Kiradzhiev, S

    1989-01-01

    The author examines the growing concentration of population in the larger cities of Bulgaria. Various methods for achieving a more balanced population distribution are suggested, including placing limits on migration to cities, relocating some industry, reducing labor-intensive production through automation, and improving local transportation systems to permit development of satellite towns and villages. (SUMMARY IN ENG AND RUS) PMID:12316673

  19. 77 FR 9592 - Defining Larger Participants in Certain Consumer Financial Product and Service Markets

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... FR 38059. \\9\\ In July 2011, the Bureau held four roundtable discussions on the larger participant... closed-end credit at 120 days delinquency. See 65 FR 36903, June 12, 2000. Debt buying is another... data aggregators, law firms, data and record suppliers, account maintenance services, call...

  20. 29 CFR 779.231 - Franchise arrangements which do not create a larger enterprise.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... enterprise. 779.231 Section 779.231 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION... Apply; Enterprise Coverage Leased Departments, Franchise and Other Business Arrangements § 779.231 Franchise arrangements which do not create a larger enterprise. (a) While it is clear that in...

  1. 29 CFR 779.232 - Franchise or other arrangements which create a larger enterprise.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... enterprise. 779.232 Section 779.232 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION... Apply; Enterprise Coverage Leased Departments, Franchise and Other Business Arrangements § 779.232 Franchise or other arrangements which create a larger enterprise. (a) In other instances,...

  2. 29 CFR 779.232 - Franchise or other arrangements which create a larger enterprise.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... enterprise. 779.232 Section 779.232 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION... Apply; Enterprise Coverage Leased Departments, Franchise and Other Business Arrangements § 779.232 Franchise or other arrangements which create a larger enterprise. (a) In other instances,...

  3. 29 CFR 779.231 - Franchise arrangements which do not create a larger enterprise.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... enterprise. 779.231 Section 779.231 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION... Apply; Enterprise Coverage Leased Departments, Franchise and Other Business Arrangements § 779.231 Franchise arrangements which do not create a larger enterprise. (a) While it is clear that in...

  4. 29 CFR 779.231 - Franchise arrangements which do not create a larger enterprise.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... enterprise. 779.231 Section 779.231 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION... Apply; Enterprise Coverage Leased Departments, Franchise and Other Business Arrangements § 779.231 Franchise arrangements which do not create a larger enterprise. (a) While it is clear that in...

  5. 29 CFR 779.231 - Franchise arrangements which do not create a larger enterprise.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... enterprise. 779.231 Section 779.231 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION... Apply; Enterprise Coverage Leased Departments, Franchise and Other Business Arrangements § 779.231 Franchise arrangements which do not create a larger enterprise. (a) While it is clear that in...

  6. 29 CFR 779.232 - Franchise or other arrangements which create a larger enterprise.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... enterprise. 779.232 Section 779.232 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION... Apply; Enterprise Coverage Leased Departments, Franchise and Other Business Arrangements § 779.232 Franchise or other arrangements which create a larger enterprise. (a) In other instances,...

  7. 29 CFR 779.232 - Franchise or other arrangements which create a larger enterprise.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... enterprise. 779.232 Section 779.232 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION... Apply; Enterprise Coverage Leased Departments, Franchise and Other Business Arrangements § 779.232 Franchise or other arrangements which create a larger enterprise. (a) In other instances,...

  8. 29 CFR 779.232 - Franchise or other arrangements which create a larger enterprise.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... enterprise. 779.232 Section 779.232 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION... Apply; Enterprise Coverage Leased Departments, Franchise and Other Business Arrangements § 779.232 Franchise or other arrangements which create a larger enterprise. (a) In other instances,...

  9. 29 CFR 779.231 - Franchise arrangements which do not create a larger enterprise.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... enterprise. 779.231 Section 779.231 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION... Apply; Enterprise Coverage Leased Departments, Franchise and Other Business Arrangements § 779.231 Franchise arrangements which do not create a larger enterprise. (a) While it is clear that in...

  10. 11. Interior of larger DL&W passenger building showing main concourse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Interior of larger DL&W passenger building showing main concourse on upper level, with stairway from street level at right of photo and passage to trains at left. Skyway can be seen through large window facing Buffalo River. Matching window is directly opposite. - Delaware, Lackawanna & Western Railroad, Lackawanna Terminal, Main Street & Buffalo River, Buffalo, Erie County, NY

  11. Off to new shores: Modeling the potential distribution and future range expansion of larger foraminifera

    NASA Astrophysics Data System (ADS)

    Weinmann, A. E.; Rödder, D.; Lötters, S.; Langer, M. R.

    2012-04-01

    The distribution of larger foraminifera is strongly controlled by environmental variables, especially temperature. Most of today's taxa of larger foraminifera are restricted to tropical and subtropical regions (between 30° N and 30° S) and their minimum temperature limits are governed by the 14 to 20° C isotherms. However, during times of extensive global warming (e.g. the Eocene and Miocene), larger foraminifera have been found as far North as 50° N (North America and Central Europe) as well as towards 40° S in New Zealand. It has been stated that larger foraminifera are more tolerant of rising sea surface temperatures than reef-building corals. As such they may play a more prominent role as future reef framework and carbonate producers in a steadily warming ocean. During the last century, sea surface temperatures have been rising significantly due to higher CO2 concentrations in the atmosphere. This trend is expected to continue and climate change scenarios for 2100 suggest a further increase by 1 to 6° C (IPCC Synthesis Report, 2007). We applied Species Distribution Models (SDMs) on several taxa of larger foraminifera in order to evaluate their potential distribution under current climate conditions and to predict range expansions within the next 40 years. The studied taxa include Archaias angulatus, which is regionally distributed within the Caribbean region, Calcarina spp., which occurs in the Indo-Pacific area and the true circumglobal taxon Amphistegina spp. Under present climate, Amphistegina spp. shows the widest distribution range due to its greater temperature tolerance. Both Archaias angulatus and Calcarina spp. display potential distributions that cover currently uninhabitet regions, suggesting that weak dispersal abilities are major reasons for their limited distributions. Under future climate, Archaias angulatus and Calcarina spp. show an increase in habitat suitability within their native occurrence ranges, suggesting that their tolerance for

  12. Visual embedding: a model for visualization.

    PubMed

    Demiralp, Çağatay; Scheidegger, Carlos E; Kindlmann, Gordon L; Laidlaw, David H; Heer, Jeffrey

    2014-01-01

    The authors propose visual embedding as a model for automatically generating and evaluating visualizations. A visual embedding is a function from data points to a space of visual primitives that measurably preserves structures in the data (domain) within the mapped perceptual space (range). The authors demonstrate its use with three examples: coloring of neural tracts, scatterplots with icons, and evaluation of alternative diffusion tensor glyphs. They discuss several techniques for generating visual-embedding functions, including probabilistic graphical models for embedding in discrete visual spaces. They also describe two complementary approaches--crowdsourcing and visual product spaces--for building visual spaces with associated perceptual--distance measures. In addition, they recommend several research directions for further developing the visual-embedding model. PMID:24808163

  13. Visual Mementos: Reflecting Memories with Personal Data.

    PubMed

    Thudt, Alice; Baur, Dominikus; Huron, Samuel; Carpendale, Sheelagh

    2016-01-01

    In this paper we discuss the creation of visual mementos as a new application area for visualization. We define visual mementos as visualizations of personally relevant data for the purpose of reminiscing, and sharing of life experiences. Today more people collect digital information about their life than ever before. The shift from physical to digital archives poses new challenges and opportunities for self-reflection and self-representation. Drawing on research on autobiographical memory and on the role of artifacts in reminiscing, we identified design challenges for visual mementos: mapping data to evoke familiarity, expressing subjectivity, and obscuring sensitive details for sharing. Visual mementos can make use of the known strengths of visualization in revealing patterns to show the familiar instead of the unexpected, and extend representational mappings beyond the objective to include the more subjective. To understand whether people's subjective views on their past can be reflected in a visual representation, we developed, deployed and studied a technology probe that exemplifies our concept of visual mementos. Our results show how reminiscing has been supported and reveal promising new directions for self-reflection and sharing through visual mementos of personal experiences. PMID:26529711

  14. Heading for New Shores: Projecting Marine Distribution Ranges of Selected Larger Foraminifera

    PubMed Central

    Weinmann, Anna E.; Rödder, Dennis; Lötters, Stefan; Langer, Martin R.

    2013-01-01

    The distribution of modern symbiont-bearing larger foraminifera is confined to tropical and subtropical shallow water marine habitats and a narrow range of environmental variables (e.g. temperature). Most of today's taxa are restricted to tropical and subtropical regions (between 30°N and 30°S) and their minimum temperature limits are governed by the 14 to 20°C isotherms. However, during times of extensive global warming (e.g., the Eocene and Miocene), larger foraminifera have been found as far north as 50°N (North America and Central Europe) as well as towards 47°S in New Zealand. During the last century, sea surface temperatures have been rising significantly. This trend is expected to continue and climate change scenarios for 2050 suggest a further increase by 1 to 3°C. We applied Species Distribution Models to assess potential distribution range changes of three taxa of larger foraminifera under current and future climate. The studied foraminifera include Archaias angulatus, Calcarina spp., and Amphistegina spp., and represent taxa with regional, superregional and global distribution patterns. Under present environmental conditions, Amphistegina spp. shows the largest potential distribution, apparently due to its temperature tolerance. Both Archaias angulatus and Calcarina spp. display potential distributions that cover currently uninhabited regions. Under climate conditions expected for the year 2050, all taxa should display latitudinal range expansions between 1 to 2.5 degrees both north- and southward. The modeled range projections suggest that some larger foraminifera may colonize biogeographic regions that so far seemed unsuitable. Archaias angulatus and Calcarina spp. also show an increase in habitat suitability within their native occurrence ranges, suggesting that their tolerance for maximum temperatures has yet not been fully exploited and that they benefit from ocean warming. Our findings suggest an increased role of larger foraminifera as

  15. Mesorbitolina (Cretaceous larger foraminifera) from the Yezo Group in Hokkaido, Japan and its stratigraphic and paleobiogeographic significance

    PubMed Central

    Iba, Yasuhiro; Sano, Shin-ichi

    2006-01-01

    In this paper, we describe an Aptian (Early Cretaceous) larger foraminiferal species Orbitolina (Mesorbitolina) parva from the limestone olistoliths in the lower part of the Yezo Group in the Yubari–Ashibetsu area, central Hokkaido and from limestone pebbles in the lowermost part of the Yezo Group in the Nakagawa area, northern Hokkaido. This is the first report of this species from the circum-North Pacific regions. Based on its occurrences, the shallow-marine carbonates, re-deposited in the lower part of the Yezo Group, are precisely assigned in age to the Late Aptian. Comparison of the lower part of the Yezo Group in central and northern Hokkaido indicates differences of the Aptian–Albian depositional history between the two areas. This study reveals that after Late Aptian, Mesogean key taxa (typical Cretaceous Tethyan biota) demised in the Northwest Pacific. PMID:25792785

  16. Why Teach Visual Culture?

    ERIC Educational Resources Information Center

    Passmore, Kaye

    2007-01-01

    Visual culture is a hot topic in art education right now as some teachers are dedicated to teaching it and others are adamant that it has no place in a traditional art class. Visual culture, the author asserts, can include just about anything that is visually represented. Although people often think of visual culture as contemporary visuals such…

  17. Concept of visual sensation.

    PubMed

    Bundesen, C

    1977-06-01

    A direct-realist account of visual sensation is outlined. The explanatory notion of elements in visual sensation (atomic sensations) is reinterpreted, and the suggested interpretation is formally justified by constructing a Boolean algebra for visual sensations. The related notion of sensory levels (visual field vs visual world) is discussed. PMID:887374

  18. Distributed visualization

    SciTech Connect

    Arnold, T.R.

    1991-12-31

    Within the last half decade or so, two technological evolutions have culminated in mature products of potentially great utility to computer simulation. One is the emergence of low-cost workstations with versatile graphics and substantial local CPU power. The other is the adoption of UNIX as a de facto ``standard`` operating system on at least some machines offered by virtually all vendors. It is now possible to perform transient simulations in which the number- crunching capability of a supercomputer is harnessed to allow both process control and graphical visualization on a workstation. Such a distributed computer system is described as it now exists: a large FORTRAN application on a CRAY communicates with the balance of the simulation on a SUN-3 or SUN-4 via remote procedure call (RPC) protocol. The hooks to the application and the graphics have been made very flexible. Piping of output from the CRAY to the SUN is nonselective, allowing the user to summon data and draw or plot at will. The ensemble of control, application, data handling, and graphics modules is loosely coupled, which further generalizes the utility of the software design.

  19. Distributed visualization

    SciTech Connect

    Arnold, T.R.

    1991-01-01

    Within the last half decade or so, two technological evolutions have culminated in mature products of potentially great utility to computer simulation. One is the emergence of low-cost workstations with versatile graphics and substantial local CPU power. The other is the adoption of UNIX as a de facto standard'' operating system on at least some machines offered by virtually all vendors. It is now possible to perform transient simulations in which the number- crunching capability of a supercomputer is harnessed to allow both process control and graphical visualization on a workstation. Such a distributed computer system is described as it now exists: a large FORTRAN application on a CRAY communicates with the balance of the simulation on a SUN-3 or SUN-4 via remote procedure call (RPC) protocol. The hooks to the application and the graphics have been made very flexible. Piping of output from the CRAY to the SUN is nonselective, allowing the user to summon data and draw or plot at will. The ensemble of control, application, data handling, and graphics modules is loosely coupled, which further generalizes the utility of the software design.

  20. Revealing Mercury

    NASA Astrophysics Data System (ADS)

    Prockter, L. M.; Solomon, S. C.; Head, J. W.; Watters, T. R.; Murchie, S. L.; Robinson, M. S.; Chapman, C. R.; McNutt, R. L.

    2009-04-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, developed under NASA's Discovery Program, launched in August 2004. En route to insertion into orbit about Mercury in 2011, MESSENGER flies by Mercury three times. The first and second of these encounters were accomplished in January and October of 2008. These flybys viewed portions of Mercury's surface that were not observed by Mariner 10 during its reconnaissance of somewhat less than half of the planet in 1974-1975. All MESSENGER instruments operated during each flyby and returned a wealth of new data. Many of the new observations were focused on the planet's geology, including monochrome imaging at resolutions as high as 100 m/pixel, multispectral imaging in 11 filters at resolutions as high as 500 m/pixel, laser altimetry tracks extending over several thousands of kilometers, and high-resolution spectral measurements of several types of terrain. Here we present an overview of the first inferences on the global geology of Mercury from the MESSENGER observations. Whereas evidence for volcanism was equivocal from Mariner 10 data, the new MESSENGER images and altimetry provide compelling evidence that volcanism was widespread and protracted on Mercury. Color imaging reveals three common spectral units on the surface: a higher-reflectance, relatively red material occurring as a distinct class of smooth plains, typically with distinct embayment relationships interpreted to indicate volcanic emplacement; a lower-reflectance, relatively blue material typically excavated by impact craters and therefore inferred to be more common at depth; and a spectrally intermediate terrain that constitutes much of the uppermost crust. Three more minor spectral units are also seen: fresh crater ejecta, reddish material associated with rimless depressions interpreted to be volcanic centers, and high-reflectance deposits seen in some crater floors. Preliminary measurements of crater size

  1. Numerical study of an oscillating smaller cylinder in the wake of an upstream larger cylinder

    NASA Astrophysics Data System (ADS)

    Gao, Yangyang; Yu, Dingyong; Wang, Xikun; Tan, Soon Keat

    2012-06-01

    A numerical study of flow around two tandem cylinders with unequal diameters was carried out. The upstream larger cylinder was fixed and the downstream smaller cylinder was allowed to oscillate in the transverse direction only. Comparisons of the experimental and numerical results were made to investigate the effects of the gap ratio on the maximum vibration amplitude and vortex shedding frequency. The results showed that the vibration response of the smaller cylinder was significantly affected by the presence of the upstream larger cylinder, and resulted in greatly reduced vibration amplitudes. With an increasing gap ratio, the vibration amplitude increased. However, the magnitude was lower than that corresponding to a single cylinder (with the same diameter as that of the downstream smaller cylinder) under the same flow conditions.

  2. Balance control impairment in obese individuals is caused by larger balance motor commands variability.

    PubMed

    Simoneau, Martin; Teasdale, Normand

    2015-01-01

    It is acknowledged that various factors impaired balance control. Among them, heavy body weight is associated with poor balance control because the location of the center of mass is further away from the ankle joint. Thus, a larger active ankle torque is required to counter the greater gravitational torque. Because balance motor commands have signal-dependent noise whose standard deviation increases with the absolute value of the neural control signal, it was hypothesized that faster center of pressure speed observed in obese individuals would be related to larger balance motor commands variability. A feedback-control model and parametric system identification technique was used to estimate the variability in the balance motor commands and neural controller parameters based on previously published experimental data. Results of the neuromechanical model confirmed that the balance motor commands of obese individuals are more variable than that of lean individuals. PMID:25455209

  3. Evolutionary constraints over microsatellite abundance in larger mammals as a potential mechanism against carcinogenic burden

    PubMed Central

    Park, Jung Youn; An, Yong-Rock; An, Chul-Min; Kang, Jung-Ha; Kim, Eun Mi; Kim, Heebal; Cho, Seoae; Kim, Jaemin

    2016-01-01

    Larger organisms tend to live longer, have more potentially carcinogenic cells, and undergo more cell divisions. While one might intuitively expect cancer incidence to scale with body size, this assertion does not hold over the range of different mammals. Explaining this lack of correlation, so-called ‘Peto’s paradox’ can likely increase our understanding of how cancer defense mechanisms are shaped by natural selection. Here, we study the occurrence of microsatellite in mammal genomes and observe that animals with expanded body size restrain the number of microsatellite. To take into account of higher mutation rate in the microsatellite region compared to that of genome, limiting the abundance of somatic mutations might explain how larger organisms could overcome the burden of cancer. These observations may serve as the basis to better understand how evolution has modeled protective mechanisms against cancer development. PMID:27125812

  4. Higher trends but larger uncertainty and geographic variability in 21st century temperature and heat waves

    SciTech Connect

    Ganguly, Auroop R; Steinhaeuser, Karsten J K; Erickson III, David J; Branstetter, Marcia L; Parish, Esther S; Singh, Nagendra; Drake, John B; Buja, Lawrence

    2009-01-01

    Generating credible climate change and extremes projections remains a high-priority challenge, especially since recent observed emissions are above the worst-case scenario. Bias and uncertainty analyses of ensemble simulations from a global earth systems model show increased warming and more intense heat waves combined with greater uncertainty and large regional variability in the 21st century. Global warming trends are statistically validated across ensembles and investigated at regional scales. Observed heat wave intensities in the current decade are larger than worst-case projections. Model projections are relatively insensitive to initial conditions, while uncertainty bounds obtained by comparison with recent observations are wider than ensemble ranges. Increased trends in temperature and heat waves, concurrent with larger uncertainty and variability, suggest greater urgency and complexity of adaptation or mitigation decisions.

  5. Do larger femoral heads improve the functional outcome in total hip arthroplasty?

    PubMed

    Allen, Charlotte L; Hooper, Gary J; Frampton, Christopher M A

    2014-02-01

    Use of larger diameter femoral heads has been popularised in total hip arthroplasty (THA). Recent studies have implicated larger femoral heads in early failure. We evaluated what effect the size of the femoral head had on the early functional outcome in order to determine the optimal head size for the maximal functional outcome. There were 726 patients who underwent elective THA and were divided into 3 groups according to head size then compared with respect to functional outcome scores and dislocation rates. This study failed to show that increasing the size of the femoral head significantly improved the functional outcome at 1 year after total hip arthroplasty but that the use of a 36 mm or greater femoral head did reduce the dislocation rate. PMID:23891058

  6. Evolutionary constraints over microsatellite abundance in larger mammals as a potential mechanism against carcinogenic burden.

    PubMed

    Park, Jung Youn; An, Yong-Rock; An, Chul-Min; Kang, Jung-Ha; Kim, Eun Mi; Kim, Heebal; Cho, Seoae; Kim, Jaemin

    2016-01-01

    Larger organisms tend to live longer, have more potentially carcinogenic cells, and undergo more cell divisions. While one might intuitively expect cancer incidence to scale with body size, this assertion does not hold over the range of different mammals. Explaining this lack of correlation, so-called 'Peto's paradox' can likely increase our understanding of how cancer defense mechanisms are shaped by natural selection. Here, we study the occurrence of microsatellite in mammal genomes and observe that animals with expanded body size restrain the number of microsatellite. To take into account of higher mutation rate in the microsatellite region compared to that of genome, limiting the abundance of somatic mutations might explain how larger organisms could overcome the burden of cancer. These observations may serve as the basis to better understand how evolution has modeled protective mechanisms against cancer development. PMID:27125812

  7. Larger aftershocks happen farther away: Nonseparability of magnitude and spatial distributions of aftershocks

    NASA Astrophysics Data System (ADS)

    Elst, Nicholas J.; Shaw, Bruce E.

    2015-07-01

    Aftershocks may be driven by stress concentrations left by the main shock rupture or by elastic stress transfer to adjacent fault sections or strands. Aftershocks that occur within the initial rupture may be limited in size, because the scale of the stress concentrations should be smaller than the primary rupture itself. On the other hand, aftershocks that occur on adjacent fault segments outside the primary rupture may have no such size limitation. Here we use high-precision double-difference relocated earthquake catalogs to demonstrate that larger aftershocks occur farther away than smaller aftershocks, when measured from the centroid of early aftershock activity—a proxy for the initial rupture. Aftershocks as large as or larger than the initiating event nucleate almost exclusively in the outer regions of the aftershock zone. This observation is interpreted as a signature of elastic rebound in the earthquake catalog and can be used to improve forecasting of large aftershocks.

  8. Visual exploration of nasal airflow.

    PubMed

    Zachow, Stefan; Muigg, Philipp; Hildebrandt, Thomas; Doleisch, Helmut; Hege, Hans-Christian

    2009-01-01

    Rhinologists are often faced with the challenge of assessing nasal breathing from a functional point of view to derive effective therapeutic interventions. While the complex nasal anatomy can be revealed by visual inspection and medical imaging, only vague information is available regarding the nasal airflow itself: Rhinomanometry delivers rather unspecific integral information on the pressure gradient as well as on total flow and nasal flow resistance. In this article we demonstrate how the understanding of physiological nasal breathing can be improved by simulating and visually analyzing nasal airflow, based on an anatomically correct model of the upper human respiratory tract. In particular we demonstrate how various Information Visualization (InfoVis) techniques, such as a highly scalable implementation of parallel coordinates, time series visualizations, as well as unstructured grid multi-volume rendering, all integrated within a multiple linked views framework, can be utilized to gain a deeper understanding of nasal breathing. Evaluation is accomplished by visual exploration of spatio-temporal airflow characteristics that include not only information on flow features but also on accompanying quantities such as temperature and humidity. To our knowledge, this is the first in-depth visual exploration of the physiological function of the nose over several simulated breathing cycles under consideration of a complete model of the nasal airways, realistic boundary conditions, and all physically relevant time-varying quantities. PMID:19834215

  9. Larger groups of passerines are more efficient problem solvers in the wild.

    PubMed

    Morand-Ferron, Julie; Quinn, John L

    2011-09-20

    Group living commonly helps organisms face challenging environmental conditions. Although a known phenomenon in humans, recent findings suggest that a benefit of group living in animals generally might be increased innovative problem-solving efficiency. This benefit has never been demonstrated in a natural context, however, and the mechanisms underlying improved efficiency are largely unknown. We examined the problem-solving performance of great and blue tits at automated devices and found that efficiency increased with flock size. This relationship held when restricting the analysis to naive individuals, demonstrating that larger groups increased innovation efficiency. In addition to this effect of naive flock size, the presence of at least one experienced bird increased the frequency of solving, and larger flocks were more likely to contain experienced birds. These findings provide empirical evidence for the "pool of competence" hypothesis in nonhuman animals. The probability of success also differed consistently between individuals, a necessary condition for the pool of competence hypothesis. Solvers had a higher probability of success when foraging with a larger number of companions and when using devices located near rather than further from protective tree cover, suggesting a role for reduced predation risk on problem-solving efficiency. In contrast to traditional group living theory, individuals joining larger flocks benefited from a higher seed intake, suggesting that group living facilitated exploitation of a novel food source through improved problem-solving efficiency. Together our results suggest that both ecological and social factors, through reduced predation risk and increased pool of competence, mediate innovation in natural populations. PMID:21930936

  10. Larger sized wire arrays on 1.5 MA Z-pinch generator

    SciTech Connect

    Safronova, A. S. Kantsyrev, V. L. Weller, M. E. Shlyaptseva, V. V. Shrestha, I. K. Esaulov, A. A. Stafford, A.; Chuvatin, A. S.; Coverdale, C. A.; Jones, B.

    2014-12-15

    Experiments on the UNR Zebra generator with Load Current Multiplier (LCM) allow for implosions of larger sized wire array loads than at standard current of 1 MA. Advantages of larger sized planar wire array implosions include enhanced energy coupling to plasmas, better diagnostic access to observable plasma regions, and more complex geometries of the wire loads. The experiments with larger sized wire arrays were performed on 1.5 MA Zebra with LCM (the anode-cathode gap was 1 cm, which is half the gap used in the standard mode). In particular, larger sized multi-planar wire arrays had two outer wire planes from mid-atomic-number wires to create a global magnetic field (gmf) and plasma flow between them. A modified central plane with a few Al wires at the edges was put in the middle between outer planes to influence gmf and to create Al plasma flow in the perpendicular direction (to the outer arrays plasma flow). Such modified plane has different number of empty slots: it was increased from 6 up to 10, hence increasing the gap inside the middle plane from 4.9 to 7.7 mm, respectively. Such load configuration allows for more independent study of the flows of L-shell mid-atomic-number plasma (between the outer planes) and K-shell Al plasma (which first fills the gap between the edge wires along the middle plane) and their radiation in space and time. We demonstrate that such configuration produces higher linear radiation yield and electron temperatures as well as advantages of better diagnostics access to observable plasma regions and how the load geometry (size of the gap in the middle plane) influences K-shell Al radiation. In particular, K-shell Al radiation was delayed compared to L-shell mid-atomic-number radiation when the gap in the middle plane was large enough (when the number of empty slots was increased up to ten)

  11. Larger sized wire arrays on 1.5 MA Z-pinch generator

    NASA Astrophysics Data System (ADS)

    Safronova, A. S.; Kantsyrev, V. L.; Weller, M. E.; Shlyaptseva, V. V.; Shrestha, I. K.; Esaulov, A. A.; Stafford, A.; Chuvatin, A. S.; Coverdale, C. A.; Jones, B.

    2014-12-01

    Experiments on the UNR Zebra generator with Load Current Multiplier (LCM) allow for implosions of larger sized wire array loads than at standard current of 1 MA. Advantages of larger sized planar wire array implosions include enhanced energy coupling to plasmas, better diagnostic access to observable plasma regions, and more complex geometries of the wire loads. The experiments with larger sized wire arrays were performed on 1.5 MA Zebra with LCM (the anode-cathode gap was 1 cm, which is half the gap used in the standard mode). In particular, larger sized multi-planar wire arrays had two outer wire planes from mid-atomic-number wires to create a global magnetic field (gmf) and plasma flow between them. A modified central plane with a few Al wires at the edges was put in the middle between outer planes to influence gmf and to create Al plasma flow in the perpendicular direction (to the outer arrays plasma flow). Such modified plane has different number of empty slots: it was increased from 6 up to 10, hence increasing the gap inside the middle plane from 4.9 to 7.7 mm, respectively. Such load configuration allows for more independent study of the flows of L-shell mid-atomic-number plasma (between the outer planes) and K-shell Al plasma (which first fills the gap between the edge wires along the middle plane) and their radiation in space and time. We demonstrate that such configuration produces higher linear radiation yield and electron temperatures as well as advantages of better diagnostics access to observable plasma regions and how the load geometry (size of the gap in the middle plane) influences K-shell Al radiation. In particular, K-shell Al radiation was delayed compared to L-shell mid-atomic-number radiation when the gap in the middle plane was large enough (when the number of empty slots was increased up to ten).

  12. Speaker Input Variability Does Not Explain Why Larger Populations Have Simpler Languages.

    PubMed

    Atkinson, Mark; Kirby, Simon; Smith, Kenny

    2015-01-01

    A learner's linguistic input is more variable if it comes from a greater number of speakers. Higher speaker input variability has been shown to facilitate the acquisition of phonemic boundaries, since data drawn from multiple speakers provides more information about the distribution of phonemes in a speech community. It has also been proposed that speaker input variability may have a systematic influence on individual-level learning of morphology, which can in turn influence the group-level characteristics of a language. Languages spoken by larger groups of people have less complex morphology than those spoken in smaller communities. While a mechanism by which the number of speakers could have such an effect is yet to be convincingly identified, differences in speaker input variability, which is thought to be larger in larger groups, may provide an explanation. By hindering the acquisition, and hence faithful cross-generational transfer, of complex morphology, higher speaker input variability may result in structural simplification. We assess this claim in two experiments which investigate the effect of such variability on language learning, considering its influence on a learner's ability to segment a continuous speech stream and acquire a morphologically complex miniature language. We ultimately find no evidence to support the proposal that speaker input variability influences language learning and so cannot support the hypothesis that it explains how population size determines the structural properties of language. PMID:26057624

  13. Why have microsaccades become larger? Investigating eye deformations and detection algorithms.

    PubMed

    Nyström, Marcus; Hansen, Dan Witzner; Andersson, Richard; Hooge, Ignace

    2016-01-01

    The reported size of microsaccades is considerably larger today compared to the initial era of microsaccade studies during the 1950s and 1960s. We investigate whether this increase in size is related to the fact that the eye-trackers of today measure different ocular structures than the older techniques, and that the movements of these structures may differ during a microsaccade. In addition, we explore the impact such differences have on subsequent analyzes of the eye-tracker signals. In Experiment I, the movement of the pupil as well as the first and fourth Purkinje reflections were extracted from series of eye images recorded during a fixation task. Results show that the different ocular structures produce different microsaccade signatures. In Experiment II, we found that microsaccade amplitudes computed with a common detection algorithm were larger compared to those reported by two human experts. The main reason was that the overshoots were not systematically detected by the algorithm and therefore not accurately accounted for. We conclude that one reason to why the reported size of microsaccades has increased is due to the larger overshoots produced by the modern pupil-based eye-trackers compared to the systems used in the classical studies, in combination with the lack of a systematic algorithmic treatment of the overshoot. We hope that awareness of these discrepancies in microsaccade dynamics across eye structures will lead to more generally accepted definitions of microsaccades. PMID:25481631

  14. The relationship between wolverine and larger predators, lynx and wolf, in a historical ecosystem context.

    PubMed

    Khalil, Hussein; Pasanen-Mortensen, Marianne; Elmhagen, Bodil

    2014-06-01

    Apex predators play an important role in shaping ecosystem structure. They may suppress smaller predators (mesopredators) but also subsidize scavengers via carrion provisioning. However, the importance of these interactions can change with ecosystem context. The wolverine (Gulo gulo) is a cold-adapted carnivore and facultative scavenger. It has a circumboreal distribution, where it could be either suppressed or subsidized by larger predators. In Scandinavia, the wolverine might interact with two larger predators, wolf (Canis lupus) and lynx (Lynx lynx), but human persecution decimated the populations in the nineteenth and early twentieth century. We investigated potential relationships between wolverine and the larger predators using hunting bag statistics from 15 Norwegian and Swedish counties in 1846-1922. Our best models showed a positive association between wolverine and lynx trends, taking ecological and human factors into account. There was also a positive association between year-to-year fluctuations in wolverine and wolf in the latter part of the study period. We suggest these associations could result from positive lynx-wolverine interactions through carrion provisioning, while wolves might both suppress wolverine and provide carrion with the net effect becoming positive when wolf density drops below a threshold. Wolverines could thus benefit from lynx presence and low-to-intermediate wolf densities. PMID:24652527

  15. Speaker Input Variability Does Not Explain Why Larger Populations Have Simpler Languages

    PubMed Central

    Atkinson, Mark; Kirby, Simon; Smith, Kenny

    2015-01-01

    A learner’s linguistic input is more variable if it comes from a greater number of speakers. Higher speaker input variability has been shown to facilitate the acquisition of phonemic boundaries, since data drawn from multiple speakers provides more information about the distribution of phonemes in a speech community. It has also been proposed that speaker input variability may have a systematic influence on individual-level learning of morphology, which can in turn influence the group-level characteristics of a language. Languages spoken by larger groups of people have less complex morphology than those spoken in smaller communities. While a mechanism by which the number of speakers could have such an effect is yet to be convincingly identified, differences in speaker input variability, which is thought to be larger in larger groups, may provide an explanation. By hindering the acquisition, and hence faithful cross-generational transfer, of complex morphology, higher speaker input variability may result in structural simplification. We assess this claim in two experiments which investigate the effect of such variability on language learning, considering its influence on a learner’s ability to segment a continuous speech stream and acquire a morphologically complex miniature language. We ultimately find no evidence to support the proposal that speaker input variability influences language learning and so cannot support the hypothesis that it explains how population size determines the structural properties of language. PMID:26057624

  16. Visual hallucinations.

    PubMed

    Collerton, Daniel; Mosimann, Urs Peter

    2010-11-01

    Understanding of visual hallucinations is developing rapidly. Single-factor explanations based on specific pathologies have given way to complex multifactor models with wide potential applicability. Clinical studies of disorders with frequent hallucinations-dementia, delirium, eye disease and psychosis-show that dysfunction within many parts of the distributed ventral object perception system is associated with a range of perceptions from simple flashes and dots to complex formed figures and landscapes. Dissociations between these simple and complex hallucinations indicate at least two hallucinatory syndromes, though exact boundaries need clarification. Neural models of hallucinations variably emphasize the importance of constraints from top down dorsolateral frontal systems, bottom up occipital systems, interconnecting tracts, and thalamic and brainstem regulatory systems. No model has yet gained general acceptance. Both qualitative (a small number of necessary and sufficient constraints) and quantitative explanations (an accumulation of many nonspecific factors) fit existing data. Variable associations of hallucinations with emotional distress and thought disorders across and within pathologies may reflect the roles of cognitive and regulatory systems outside of the purely perceptual. Functional imaging demonstrates that hallucinations and veridical perceptions occur in the same brain areas, intimating a key role for the negotiating interface between top down and bottom up processes. Thus, hallucinations occur when a perception that incorporates a hallucinatory element can provide a better match between predicted and actual sensory input than does a purely veridical experience. Translational research that integrates understandings from clinical hallucinations and basic vision science is likely to be the key to better treatments. WIREs Cogn Sci 2010 1 781-786 For further resources related to this article, please visit the WIREs website. PMID:26271777

  17. Dynamic Prototypicality Effects in Visual Search

    ERIC Educational Resources Information Center

    Kayaert, Greet; Op de Beeck, Hans P.; Wagemans, Johan

    2011-01-01

    In recent studies, researchers have discovered a larger neural activation for stimuli that are more extreme exemplars of their stimulus class, compared with stimuli that are more prototypical. This has been shown for faces as well as for familiar and novel shape classes. We used a visual search task to look for a behavioral correlate of these…

  18. Learning Visualizations by Analogy: Promoting Visual Literacy through Visualization Morphing.

    PubMed

    Ruchikachorn, Puripant; Mueller, Klaus

    2015-09-01

    We propose the concept of teaching (and learning) unfamiliar visualizations by analogy, that is, demonstrating an unfamiliar visualization method by linking it to another more familiar one, where the in-betweens are designed to bridge the gap of these two visualizations and explain the difference in a gradual manner. As opposed to a textual description, our morphing explains an unfamiliar visualization through purely visual means. We demonstrate our idea by ways of four visualization pair examples: data table and parallel coordinates, scatterplot matrix and hyperbox, linear chart and spiral chart, and hierarchical pie chart and treemap. The analogy is commutative i.e. any member of the pair can be the unfamiliar visualization. A series of studies showed that this new paradigm can be an effective teaching tool. The participants could understand the unfamiliar visualization methods in all of the four pairs either fully or at least significantly better after they observed or interacted with the transitions from the familiar counterpart. The four examples suggest how helpful visualization pairings be identified and they will hopefully inspire other visualization morphings and associated transition strategies to be identified. PMID:26357285

  19. Developing Tests of Visual Dependency

    NASA Technical Reports Server (NTRS)

    Kindrat, Alexandra N.

    2011-01-01

    Astronauts develop neural adaptive responses to microgravity during space flight. Consequently these adaptive responses cause maladaptive disturbances in balance and gait function when astronauts return to Earth and are re-exposed to gravity. Current research in the Neuroscience Laboratories at NASA-JSC is focused on understanding how exposure to space flight produces post-flight disturbances in balance and gait control and developing training programs designed to facilitate the rapid recovery of functional mobility after space flight. In concert with these disturbances, astronauts also often report an increase in their visual dependency during space flight. To better understand this phenomenon, studies were conducted with specially designed training programs focusing on visual dependency with the aim to understand and enhance subjects ability to rapidly adapt to novel sensory situations. The Rod and Frame test (RFT) was used first to assess an individual s visual dependency, using a variety of testing techniques. Once assessed, subjects were asked to perform two novel tasks under transformation (both the Pegboard and Cube Construction tasks). Results indicate that head position cues and initial visual test conditions had no effect on an individual s visual dependency scores. Subjects were also able to adapt to the manual tasks after several trials. Individual visual dependency correlated with ability to adapt manual to a novel visual distortion only for the cube task. Subjects with higher visual dependency showed decreased ability to adapt to this task. Ultimately, it was revealed that the RFT may serve as an effective prediction tool to produce individualized adaptability training prescriptions that target the specific sensory profile of each crewmember.

  20. Reward modulates the effect of visual cortical microstimulation on perceptual decisions.

    PubMed

    Cicmil, Nela; Cumming, Bruce G; Parker, Andrew J; Krug, Kristine

    2015-01-01

    Effective perceptual decisions rely upon combining sensory information with knowledge of the rewards available for different choices. However, it is not known where reward signals interact with the multiple stages of the perceptual decision-making pathway and by what mechanisms this may occur. We combined electrical microstimulation of functionally specific groups of neurons in visual area V5/MT with performance-contingent reward manipulation, while monkeys performed a visual discrimination task. Microstimulation was less effective in shifting perceptual choices towards the stimulus preferences of the stimulated neurons when available reward was larger. Psychophysical control experiments showed this result was not explained by a selective change in response strategy on microstimulated trials. A bounded accumulation decision model, applied to analyse behavioural performance, revealed that the interaction of expected reward with microstimulation can be explained if expected reward modulates a sensory representation stage of perceptual decision-making, in addition to the better-known effects at the integration stage. PMID:26402458

  1. Visually evoked potentials in eccentrically and centrally fixing amblyopes.

    PubMed Central

    Srebro, R

    1984-01-01

    Visually evoked potentials to checkerboard pattern reversal were found to be nearly five times larger in eccentrically fixing amblyopic eyes than in centrally fixing amblyopic eyes when compared with the fellow non-amblyopic eye. The two groups of amblyopes had comparably poor visual acuity and differed in no other way save in their fixation behaviour. This suggests that at least two neurodevelopmental mechanisms subserve human amblyopia and that only one of these resembles the animal model of visual deprivation. PMID:6733071

  2. Chinese Character Acquisition and Visual Skills in Two Chinese Scripts

    ERIC Educational Resources Information Center

    Mcbride-Chang, Catherine; Chow, Bonnie W. Y.; Zhong, Yiping; Burgess, Stephen; Hayward, William G.

    2005-01-01

    Three different visual skills, along with Chinese character recognition, vocabulary, speeded naming, and syllable deletion skills were tested twice over one school year among 118 Hong Kong and 96 Xiangtan, China kindergartners. Results revealed that a task of Visual Spatial Relationships [Gardner, M. F. (1996). "Test of visual-perceptual skills…

  3. Environmental effects of planting biomass crops at larger scales on agricultural lands

    SciTech Connect

    Tolbert, V.R.; Downing, M.E.

    1995-09-01

    Increasing from research-scale to larger-scale plantings of herbaceous. and short rotation woody crops on agricultural land in the United States has raised questions about the positive and negative environmental effects of farmland conversion. Research currently underway at experimental plot scales enables us examine runoff quality and quantity, erosion, and changes in soil characteristics associated with these energy crops compared to conventional row crops. A study of the fate of chemicals applied to the different crop types will enhance our knowledge of uptake, release, and off-site movement of nutrients and pesticides. Ongoing biodiversity studies in the North Central US allow us to compare differences in scale of plantings on bird and small mammal populations and habitat use. Plantings of 50--100 or more contiguous acres are needed to allow both researchers and producers to determine the benefits of including temporal energy crop rotations in the landscape. Results from these larger-scale plantings will help identify (1) the monitoring requirements needed to determine environmental effects of larger-scale plantings, (2) the best methods to determine the environmental effects of rotation length and the best crop management strategies for full-scale production. Because of the variations in soils, temperature, rainfall and other climatic conditions, as well as differences in the types of energy crops most suited for different regions, monitoring of large-scale plantings in these different regions of the US will be required to predict the environmental effects of regional agricultural land-use shifts for full-scale plantings.

  4. Environmental effects of planting energy crops at larger scales on agricultural lands

    SciTech Connect

    Tolbert, V.R.; Downing, M.

    1995-09-01

    Increasing from research-scale to larger-scale plantings of herbaceous and short rotation woody crops on agricultural land in the United States has raised questions about the positive and negative environmental effects of farmland conversion. Research currently underway at experimental plot scales enables us examine runoff quality and quantity, erosion, and changes in soil characteristics associated with these energy crops compared to conventional row crops. A study of the fate of chemicals applied to the different crop types will enhance our knowledge of uptake, release, and off-site movement of nutrients and pesticides. Ongoing biodiversity studies in the North Central US allow us to compare differences in scale of plantings on bird and small mammal populations and habitat use. Plantings of 50--100 or more contiguous acres are needed to allow both researchers and producers to determine the benefits of including temporal energy crop rotations in the landscape. Results from these larger-scale plantings will help identify (1) the monitoring requirements needed to determine environmental effects of larger-scale plantings, (2) the best methods to determine the environmental effects of rotation length and the best crop management strategies for full-scale production. Because of the variations in soils, temperature, rainfall and other climatic conditions, as well as differences in the types of energy crops most suited for different regions, monitoring of large-scale plantings in these different regions of the US will be required to predict the environmental effects of regional agricultural land-use shifts for full-scale plantings.

  5. An improved permanent magnet quadrupole design with larger good field region for high intensity proton linacs

    NASA Astrophysics Data System (ADS)

    Mathew, Jose V.; Rao, S. V. L. S.; Krishnagopal, S.; Singh, P.

    2013-11-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA), being developed at the Bhabha Atomic Research Centre (BARC) will produce a 20 MeV, 30 mA, continuous wave (CW) proton beam. At these low velocities, space-charge forces dominate, and could lead to larger beam sizes and beam halos. Hence in the design of the focusing lattice of the LEHIPA drift tube linac (DTL) using permanent magnet quadrupoles (PMQs), a larger good field region is preferred. Here we study, using the two dimensional (2D) and three dimensional (3D) simulation codes PANDIRA and RADIA, four different types of cylindrical PMQ designs: 16-segment trapezoidal Halbach configuration, bullet-nosed geometry and 8- and 16-segment rectangular geometries. The trapezoidal Halbach geometry is used in a variety of accelerators since it provides very high field gradients in small bores, while the bullet-nosed geometry, which is a combination of the trapezoidal and rectangular designs, is used in some DTLs. This study shows that a larger good field region is possible in the 16-segment rectangular design as compared to the Halbach and bullet-nosed designs, making it more attractive for high-intensity proton linacs. An improvement in good-field region by ˜16% over the Halbach design is obtained in the optimized 16-segment rectangular design, although the field gradient is lower by ˜20%. Tolerance studies show that the rectangular segment PMQ design is substantially less sensitive to the easy axis orientation errors and hence will be a better choice for DTLs.

  6. Paleocene-Early Eocene larger foraminiferal biostratigraphy of Yemen and Oman

    NASA Astrophysics Data System (ADS)

    Di Carlo, M.; Serra-Kiel, J.; Pignatti, J.

    2012-04-01

    The Paleogene larger foraminiferal biostratigraphy is today rather well assessed for the Tethyan domain. In order to contribute to the full integration of the Middle-East in the widely employed Shallow Benthic Zonation, a preliminary report on the Paleocene-Early Eocene larger foraminiferal assemblages from Yemen and Oman is provided here. The sections investigated in Yemen range in age from the Upper Cretaceous to the Oligocene. The Paleogene of Yemen is widely affected by dolomitization and only by analyzing over 1,700 thin sections from 60 stratigraphic sections (mainly from Hadramaut and Socotra) it has been possible to adequately investigate the fossil assemblages. In contrast, the deposits from northern Oman are characterized by rich and extraordinarily well-preserved Paleocene-Lower Eocene larger foraminiferal assemblages. This preliminary report focuses mainly on the Paleocene-Early Eocene deposits of the Umm-er-Radhuma formation. The Paleocene-Lower Eocene assemblages are characterized by strong affinities with northern Somalia. Hyaline forms such as Daviesina khatiyahi, Miscellanea gr. rhomboidea/dukhani, M. miscella, Saudia, Sakesaria, Lockhartia, Ranikothalia, Dictyokathina largely prevail in SBZ 3-4 deposits. Nummulites, Ranikothalia and Daviesina ruida characterize the Lower Ypresian. Subordinately, porcelaneous forms such as "Taberina" daviesi and conical agglutinated (Daviesiconus) also occur; alveolinids (such as Alveolina vredenburgi and A. decipiens) are relatively abundant in the basal Lower Ypresian of Socotra. In contrast to the coeval deposits from Yemen, the Paleocene section of Oman (Wadi Duqm, Abat-Tiwi platform) yields very well-preserved larger foraminiferal assemblages and agglutinated and porcelaneous forms are well represented. The occurrence of abundant Globoreticulina paleocenica is noteworthy along with an as yet undescribed Lacazinella species. The co-occurrence of Coskinon sp., "Plumokathina dienii", Dictyoconus turriculus and

  7. Light scattering by irregular particles much larger than the wavelength with wavelength-scale surface roughness.

    PubMed

    Grynko, Yevgen; Shkuratov, Yuriy; Förstner, Jens

    2016-08-01

    We simulate light scattering by random irregular particles that have dimensions much larger than the wavelength of incident light at the size parameter of X=200 using the discontinuous Galerkin time domain method. A comparison of the DGTD solution for smoothly faceted particles with that obtained with a geometric optics model shows good agreement for the scattering angle curves of intensity and polarization. If a wavelength-scale surface roughness is introduced, diffuse scattering at rough interface results in smooth and featureless curves for all scattering matrix elements which is consistent with the laboratory measurements of real samples. PMID:27472601

  8. Application of 13C NMR spectroscopy to paratope mapping for larger antigen-Fab complexes.

    PubMed

    Kim, H; Kato, K; Yamato, S; Igarashi, T; Matsunaga, C; Ohtsuka, H; Higuchi, A; Nomura, N; Noguchi, H; Arata, Y

    1994-06-13

    For the purpose of engineering the antibody combining site, mapping residues that are involved in antigen binding provide us with valuable information. By use of 13C NMR spectroscopy with selectively 13C-labeled Fv fragments, we have established a general strategy to identify the residues that are perturbed upon binding of small antigen (hapten) molecules [(1990) Biochemistry 30, 6604-6610]. In the present paper, we demonstrate that this strategy can be extended to molecular structural analyses of the complexes of an Fab fragment and a larger antigen molecule such as Pseudomonas aeruginosa exotoxin A with a molecular mass of 67 kDa. PMID:8013642

  9. Accurate thermochemistry for larger molecules : gaussian-2 theory with bond separation energies.

    SciTech Connect

    Raghavachari, K.; Stefanov, B. B.; Curtiss, L. A.; Lucent Tech.

    1997-04-22

    Gaussian-2 (G2) theory is combined with isodesmic bond separation reaction energies to yield accurate thermochemistry for larger molecules. For a test set of 40 molecules composed of H, C, O, and N, our method yields enthalpies of formation, {Delta}H{sub f}{sup 0}(298 K), with a mean absolute deviation from experiment of only 0.5 kcal/mol. This is an improvement of a factor of three over the deviation of 1.5 kcal/mol seen in standard G2 theory.

  10. 2. Spar, bramble, and the larger cutters storis (W38) make ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Spar, bramble, and the larger cutters storis (W38) make their way through arctic ice during the first transit of the northwest passage by a U.S. vessel. The lead 180 has a weight suspended over its starboard side. By swinging this weight back and forth across the centerline, the vessel can rock to free herself from ice. - U.S. Coast Guard Buoy Tenders, 180' Class, U.S. Coast Guard Headquarters, 2100 Second Street Southwest, Washington, District of Columbia, DC

  11. More rapid shift to a benthic niche in larger Gadus morhua juveniles.

    PubMed

    Ólafsdóttir, G Á; Gunnarsson, G S; Karlsson, H

    2015-08-01

    Trophic use by Atlantic cod Gadus morhua juveniles was examined early and late in the shift from pelagic to benthic habitats. Changes in the proportion of pelagic copepods, estimates of benthic prey indicated by isotope mixing models and stable-isotope values between sample periods suggested a gradual shift towards a benthic niche. Values of the trophic proxies, however, changed most markedly in the largest juvenile group, suggesting a more rapid trophic niche shift, and in turn competitive advantage, of larger juveniles. PMID:26104859

  12. [Alpha ERD and human visual selective attention].

    PubMed

    Ermachenko, N S; Ermachenko, A A; Latanov, A V

    2011-01-01

    We compared the alpha band EEG depression (event-related desynchnization, ERD) level in two tasks, involving activation of different attentional processes: visual search for a deviant relevant stimulus among many similar ones and visual oddball. Control data for the visual search task consisted of simple viewing of several stimuli being of the same shape as the relevant stimulus in the search trials. Gaze position was verified by eye tracking method. We interpreted alpha band ERD as a correlate of activation of attentional processes. Fixating the target in visual search task caused a significantly larger ERD than fixating the same stimuli in control trials over all leads. We suppose this to be related with task and visual environment complexities. The frontal ERD domination may indicate attentional control over voluntary movements execution (top-down attention). The caudal ERD may be related with updating of visual information as a result of search process (bottom-up attention). Both relevant and irrelevant stimuli in the oddball task also induced alpha band ERD, but it was larger in response to relevant one and reached maximum level over occipital leads. Domination of caudal ERD in oddball task is supposed to indicate bottom-up attention processes. PMID:22332425

  13. Impact of a Glaucoma Severity Index on Results of Trabectome Surgery: Larger Pressure Reduction in More Severe Glaucoma

    PubMed Central

    Loewen, Ralitsa T.; Roy, Pritha; Parikh, Hardik A.; Dang, Yalong; Schuman, Joel S.; Loewen, Nils A.

    2016-01-01

    Purpose To stratify outcomes of trabectome-mediated ab interno trabeculectomy (AIT) by glaucoma severity using a simple and clinically useful glaucoma index. Based on prior data of trabectome after failed trabeculectomy, we hypothesized that more severe glaucoma might have a relatively more reduced facility compared to mild glaucoma and respond with a larger IOP reduction to trabecular meshwork ablation. Methods Patients with primary open angle glaucoma who had undergone AIT without any other same session surgery and without any second eye surgery during the following 12 months were analyzed. Eyes of patients that had less than 12 months follow up or were diagnosed with neovascular glaucoma were excluded. A glaucoma index (GI) was created to capture glaucoma severity based on visual field, number of preoperative medications, and preoperative IOP. Visual field (VF) was separated into 3 categories: mild, moderate, and advanced (assigned 1, 2, and 3 points, respectively). Preoperative number of medications (meds) was divided into 4 categories: ≤1, 2, 3 or ≥4, and assigned with a value of 1 to 4. Baseline IOP (IOP) was divided into 3 categories: <20 mmHg, 20–29 mmHg, and greater than 30 mmHg and assigned with 1 to 3 points. GI was defined as IOP × meds × VF and separated into 4 groups: <6 (Group 1), 6–12 (Group 2), >12–18 (Group 3) and >18 (Group 4). Linear regression was used to determine if there was an association between GI group and IOP reduction after one year or age, gender, race, diagnosis, cup to disc (C/D) ratio, and Shaffer grade. Results Out of 1340 patients, 843 were included in the analysis. The GI group distribution was GI1 = 164, GI2 = 202, GI3 = 260, and GI4 = 216. Mean IOP reduction after one year was 4.0±5.4, 6.4±5.8, 9.0±7.6, 12.0±8.0 mmHg for GI groups 1 to 4, respectively. Linear regression showed that IOP reduction was associated with GI group after adjusting for age, gender, race, diagnosis, cup to disc ratio, and Shaffer grade

  14. Query-Driven Visualization and Analysis

    SciTech Connect

    Ruebel, Oliver; Bethel, E. Wes; Prabhat, Mr.; Wu, Kesheng

    2012-11-01

    This report focuses on an approach to high performance visualization and analysis, termed query-driven visualization and analysis (QDV). QDV aims to reduce the amount of data that needs to be processed by the visualization, analysis, and rendering pipelines. The goal of the data reduction process is to separate out data that is "scientifically interesting'' and to focus visualization, analysis, and rendering on that interesting subset. The premise is that for any given visualization or analysis task, the data subset of interest is much smaller than the larger, complete data set. This strategy---extracting smaller data subsets of interest and focusing of the visualization processing on these subsets---is complementary to the approach of increasing the capacity of the visualization, analysis, and rendering pipelines through parallelism. This report discusses the fundamental concepts in QDV, their relationship to different stages in the visualization and analysis pipelines, and presents QDV's application to problems in diverse areas, ranging from forensic cybersecurity to high energy physics.

  15. Neural Population Tuning Links Visual Cortical Anatomy to Human Visual Perception

    PubMed Central

    Song, Chen; Schwarzkopf, Dietrich Samuel; Kanai, Ryota; Rees, Geraint

    2015-01-01

    Summary The anatomy of cerebral cortex is characterized by two genetically independent variables, cortical thickness and cortical surface area, that jointly determine cortical volume. It remains unclear how cortical anatomy might influence neural response properties and whether such influences would have behavioral consequences. Here, we report that thickness and surface area of human early visual cortices exert opposite influences on neural population tuning with behavioral consequences for perceptual acuity. We found that visual cortical thickness correlated negatively with the sharpness of neural population tuning and the accuracy of perceptual discrimination at different visual field positions. In contrast, visual cortical surface area correlated positively with neural population tuning sharpness and perceptual discrimination accuracy. Our findings reveal a central role for neural population tuning in linking visual cortical anatomy to visual perception and suggest that a perceptually advantageous visual cortex is a thinned one with an enlarged surface area. PMID:25619658

  16. Snowflake Visualization

    NASA Astrophysics Data System (ADS)

    Bliven, L. F.; Kucera, P. A.; Rodriguez, P.

    2010-12-01

    NASA Snowflake Video Imagers (SVIs) enable snowflake visualization at diverse field sites. The natural variability of frozen precipitation is a complicating factor for remote sensing retrievals in high latitude regions. Particle classification is important for understanding snow/ice physics, remote sensing polarimetry, bulk radiative properties, surface emissivity, and ultimately, precipitation rates and accumulations. Yet intermittent storms, low temperatures, high winds, remote locations and complex terrain can impede us from observing falling snow in situ. SVI hardware and software have some special features. The standard camera and optics yield 8-bit gray-scale images with resolution of 0.05 x 0.1 mm, at 60 frames per second. Gray-scale images are highly desirable because they display contrast that aids particle classification. Black and white (1-bit) systems display no contrast, so there is less information to recognize particle types, which is particularly burdensome for aggregates. Data are analyzed at one-minute intervals using NASA's Precipitation Link Software that produces (a) Particle Catalogs and (b) Particle Size Distributions (PSDs). SVIs can operate nearly continuously for long periods (e.g., an entire winter season), so natural variability can be documented. Let’s summarize results from field studies this past winter and review some recent SVI enhancements. During the winter of 2009-2010, SVIs were deployed at two sites. One SVI supported weather observations during the 2010 Winter Olympics and Paralympics. It was located close to the summit (Roundhouse) of Whistler Mountain, near the town of Whistler, British Columbia, Canada. In addition, two SVIs were located at the King City Weather Radar Station (WKR) near Toronto, Ontario, Canada. Access was prohibited to the SVI on Whistler Mountain during the Olympics due to security concerns. So to meet the schedule for daily data products, we operated the SVI by remote control. We also upgraded the

  17. Larger benthic foraminiferal turnover across the Eocene-Oligocene transition at Siwa Oasis, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Orabi, H.; El Beshtawy, M.; Osman, R.; Gadallah, M.

    2015-05-01

    In the Eocene part of the Siwa Oasis, the larger foraminifera are represented by the genera Nummulites, Arxina, Operculina, Sphaerogypsina, Asterocyclina, Grzybowskia, Silvestriella, Gaziryina and Discocyclina in order of abundance. Operculina continues up to the early Oligocene as modern representatives in tropical regions, while the other genera became extinct. Nevertheless, the most common larger foraminiferal genus Lepidocyclina (Nephrolepidina) appears only in the lowermost Oligocene. In spite of the Eocene-Oligocene (E/O) transition is thought to have been attended by major continental cooling at northern middle and high latitudes, we discover that at the Siwa Oasis, there is a clear warming trend from the late Eocene (extinction level of Nummulites, Sphaerogypsina, Asterocyclina, Grzybowskia, Silvestriella and Discocyclina) to the early Oligocene is observed due to the high abundance of Operculina and occurrence of kaolinite and gypsiferous shale deposits in both Qatrani and El Qara formations (Oligocene) at this transition. The El Qara Formation is a new rock unit proposed herein for the Oligocene (Rupelian age) in the first time. Several episodes of volcanic activity occurred in Egypt during the Cenozoic. Mid Tertiary volcanicity was widespread and a number of successive volcanic pulses are starting in the late Eocene. The release of mantle CO2 from this very active volcanic episode may have in fact directly caused the warm Eocene-Oligocene greenhouse climate effect.

  18. Design and performance of tapered cubic anvil used for achieving higher pressure and larger sample cell.

    PubMed

    Han, Qi-Gang; Yang, Wen-Ke; Zhu, Pin-Wen; Ban, Qing-Chu; Yan, Ni; Zhang, Qiang

    2013-07-01

    In order to increase the maximum cell pressure of the cubic high pressure apparatus, we have developed a new structure of tungsten carbide cubic anvil (tapered cubic anvil), based on the principle of massive support and lateral support. Our results indicated that the tapered cubic anvil has some advantages. First, tapered cubic anvil can push the transfer rate of pressure well into the range above 36.37% compare to the conventional anvil. Second, the rate of failure crack decreases about 11.20% after the modification of the conventional anvil. Third, the limit of static high-pressure in the sample cell can be extended to 13 GPa, which can increase the maximum cell pressure about 73.3% than that of the conventional anvil. Fourth, the volume of sample cell compressed by tapered cubic anvils can be achieved to 14.13 mm(3) (3 mm diameter × 2 mm long), which is three and six orders of magnitude larger than that of double-stage apparatus and diamond anvil cell, respectively. This work represents a relatively simple method for achieving higher pressures and larger sample cell. PMID:23902079

  19. Description of the Weatherization Assistance Program in larger multifamily buildings for Program Year 1989

    SciTech Connect

    MacDonald, J.M.

    1993-04-01

    The efforts of the US Department of Energy (DOE) Weatherization Assistance Program (the Program) in larger multifamily buildings were examined for Program Year 1989. The results show that about 20,000 dwellings in these multifamily buildings were served under the Program that year. This is 9% of the total number of units served nationally, while costs were 7% of total national costs. High levels of activity in larger multifamily buildings were reported for some States, with New York accounting for half of all the residences treated. Owner investment is an important strategy in New York for improving their efforts. A wide range of measures was installed, but the materials costs for the measures are dominated by the cost of windows (80% of the total for that year). Where the whole building was treated, $561 was invested per unit, while for partial-building work the total invested was $417. The energy savings and cost effectiveness of the Program were not estimated, because energy use and cost data adequate for developing such estimates could not be obtained.

  20. Pharmacogenomic variants have larger effect sizes than genetic variants associated with other dichotomous complex traits.

    PubMed

    Maranville, J C; Cox, N J

    2016-08-01

    It has been suggested that pharmacogenomic phenotypes are influenced by genetic variants with larger effect sizes than other phenotypes, such as complex disease risk. This is presumed to reflect the fact that relevant environmental factors (drug exposure) are appropriately measured and taken into account. To test this hypothesis, we performed a systematic comparison of effect sizes between pharmacogenomic and non-pharmacogenomic phenotypes across all genome-wide association studies (GWAS) reported in the NHGRI GWAS catalog. We found significantly larger effect sizes for studies focused on pharmacogenomic phenotypes, as compared with complex disease risk, morphological phenotypes and endophenotypes. We found no significant differences in effect sizes between pharmacogenomic studies focused on adverse events versus those focused on drug efficacy. Furthermore, we found that this pattern persists among sample size-matched studies, suggesting that this pattern does not reflect overestimation of effect sizes due to smaller sample sizes in pharmacogenomic studies.The Pharmacogenomics Journal advance online publication, 7 July 2015; doi:10.1038/tpj.2015.47. PMID:26149738

  1. Functional convergence of tundra vegetation simplifies the interpretation of flux observations at larger spatial scales

    NASA Astrophysics Data System (ADS)

    Stoy, P. C.; Williams, M.; Evans, J. G.; Lloyd, C. R.; Prieto-Blanco, A.; Disney, M.; Street, L. E.; Shaver, G. R.

    2007-12-01

    A central challenge in terrestrial carbon cycle research is upscaling measurements of vegetation function to larger spatial and temporal scales. A solution is required to, for example, make chamber-based measurements relevant at larger spatial scales and to make eddy covariance measurements applicable to leaf or chamber- based studies. Here we demonstrate that a simple model for photosynthesis and ecosystem respiration parameterized using pan-arctic chamber flux measurements closely matches eddy covariance flux observations in a tundra ecosystem near Abisko, Sweden. The agreement holds when using a generic parameter set that does not account for vegetation type or measurement location. Inverting the model to predict leaf area using eddy covariance-measured net ecosystem exchange closely approximates tower-based LAI estimates across seasons and during periods of drought stress. Thus, recent findings documenting functional convergence of arctic vegetation holds at multiple spatial as well as temporal scales using both chamber and tower measurements. After validating the model using the eddy covariance measurements, we integrate the model with meteorological and LAI observations using a simple data assimilation scheme. The reduction of error achieved via data assimilation is compared to standard techniques of estimating eddy covariance error. Our analysis demonstrates that accurate estimates of C flux at multiple spatial scales across the tundra biome are possible given accurate estimates of photosynthetically active radiation, temperature, and leaf area index given the observed functional convergence of tundra vegetation.

  2. Multivalent display of minimal Clostridium difficile glycan epitopes mimics antigenic properties of larger glycans

    PubMed Central

    Broecker, Felix; Hanske, Jonas; Martin, Christopher E.; Baek, Ju Yuel; Wahlbrink, Annette; Wojcik, Felix; Hartmann, Laura; Rademacher, Christoph; Anish, Chakkumkal; Seeberger, Peter H.

    2016-01-01

    Synthetic cell-surface glycans are promising vaccine candidates against Clostridium difficile. The complexity of large, highly antigenic and immunogenic glycans is a synthetic challenge. Less complex antigens providing similar immune responses are desirable for vaccine development. Based on molecular-level glycan–antibody interaction analyses, we here demonstrate that the C. difficile surface polysaccharide-I (PS-I) can be resembled by multivalent display of minimal disaccharide epitopes on a synthetic scaffold that does not participate in binding. We show that antibody avidity as a measure of antigenicity increases by about five orders of magnitude when disaccharides are compared with constructs containing five disaccharides. The synthetic, pentavalent vaccine candidate containing a peptide T-cell epitope elicits weak but highly specific antibody responses to larger PS-I glycans in mice. This study highlights the potential of multivalently displaying small oligosaccharides to achieve antigenicity characteristic of larger glycans. The approach may result in more cost-efficient carbohydrate vaccines with reduced synthetic effort. PMID:27091615

  3. The trans-neptunian object UB313 is larger than Pluto.

    PubMed

    Bertoldi, F; Altenhoff, W; Weiss, A; Menten, K M; Thum, C

    2006-02-01

    The most distant known object in the Solar System, 2003 UB313 (97 au from the Sun), was recently discovered near its aphelion. Its high eccentricity and inclination to the ecliptic plane, along with its perihelion near the orbit of Neptune, identify it as a member of the 'scattered disk'. This disk of bodies probably originates in the Kuiper belt objects, which orbit near the ecliptic plane in circular orbits between 30 and 50 au, and may include Pluto as a member. The optical brightness of 2003 UB313, if adjusted to Pluto's distance, is greater than that of Pluto, which suggested that it might be larger than Pluto. The actual size, however, could not be determined from the optical measurements because the surface reflectivity (albedo) was unknown. Here we report observations of the thermal emission of 2003 UB313 at a wavelength of 1.2 mm, which in combination with the measured optical brightness leads to a diameter of 3,000 +/- 300 +/- 100 km. Here the first error reflects measurement uncertainties, while the second derives from the unknown object orientation. This makes 2003 UB313 the largest known trans-neptunian object, even larger than Pluto (2,300 km). The albedo is 0.60 +/- 0.10 +/- 0.05, which is strikingly similar to that of Pluto, suggesting that the methane seen in the optical spectrum causes a highly reflective icy surface. PMID:16452973

  4. Transurethral holmium laser enucleation of prostates (HoLEP) larger than 80 g

    NASA Astrophysics Data System (ADS)

    Kuntz, Rainer M.; Lehrich, Karin; Fayad, Amr

    2001-05-01

    In this prospective study, the efficiency of HoLEP inpatients with prostates larger than 80 grams was to be evaluated. 64 urodynamically obstructed patients with prostate glands of 103 (80-230) grams of weight underwent HoLEP (80 W, 2.0 J, 40 Hz, 550 nm bare laser fibers). The resected weight was 70 (50-200) grams, the resection time was 120.5 (83-170) min., the average resection weight was 0.7 gm/min. The postoperative catheter time was 1.3 (1-3) days. The postoperative hospital stay was 2.5 (1-7) days. HoLEP induced a significant, pronounced and immediate improvement of lower urinary tract symptoms and micturition. The symptom score decreased from 22.3 preoperatively to 5.7 one week and 2.8 one year postoperatively. The peak urinary flow rate of 4.3 ml/sec preoperatively increased to 22 ml/sec one week and 32 ml/sec one year postoperatively. The residual urine dropped from 267 ml preoperatively to 11.5 ml one week and 5.0 ml one year postoperatively. There was one incident of postoperative arterial bleeding, one patient developed urethral stricture and two patients needed a second HoLEP. HoLEP appeared to be a highly effective treatment for prostates larger than 80 grams, with excellent functional results, minor blood loss, low complication rate and very short catheter time and hospital stay.

  5. SIGNALING EFFICACY DRIVES THE EVOLUTION OF LARGER SEXUAL ORNAMENTS BY SEXUAL SELECTION

    PubMed Central

    Tazzyman, Samuel J; Iwasa, Yoh; Pomiankowski, Andrew

    2014-01-01

    Why are there so few small secondary sexual characters? Theoretical models predict that sexual selection should lead to reduction as often as exaggeration, and yet we mainly associate secondary sexual ornaments with exaggerated features such as the peacock's tail. We review the literature on mate choice experiments for evidence of reduced sexual traits. This shows that reduced ornamentation is effectively impossible in certain types of ornamental traits (behavioral, pheromonal, or color-based traits, and morphological ornaments for which the natural selection optimum is no trait), but that there are many examples of morphological traits that would permit reduction. Yet small sexual traits are very rarely seen. We analyze a simple mathematical model of Fisher's runaway process (the null model for sexual selection). Our analysis shows that the imbalance cannot be wholly explained by larger ornaments being less costly than smaller ornaments, nor by preferences for larger ornaments being less costly than preferences for smaller ornaments. Instead, we suggest that asymmetry in signaling efficacy limits runaway to trait exaggeration. PMID:24099137

  6. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield.

    PubMed

    Ma, Lin; Li, Tian; Hao, Chenyang; Wang, Yuquan; Chen, Xinhong; Zhang, Xueyong

    2016-05-01

    Grain size is a dominant component of grain weight in cereals. Earlier studies have shown that OsGS5 plays a major role in regulating both grain size and weight in rice via promotion of cell division. In this study, we isolated TaGS5 homoeologues in wheat and mapped them on chromosomes 3A, 3B and 3D. Temporal and spatial expression analysis showed that TaGS5 homoeologues were preferentially expressed in young spikes and developing grains. Two alleles of TaGS5-3A, TaGS5-3A-T and TaGS5-3A-G were identified in wheat accessions, and a functional marker was developed to discriminate them. Association analysis revealed that TaGS5-3A-T was significantly correlated with larger grain size and higher thousand kernel weight. Biochemical assays showed that TaGS5-3A-T possesses a higher enzymatic activity than TaGS5-3A-G. Transgenic rice lines overexpressing TaGS5-3A-T also exhibited larger grain size and higher thousand kernel weight than TaGS5-3A-G lines, and the transcript levels of cell cycle-related genes in TaGS5-3A-T lines were higher than those in TaGS5-3A-G lines. Furthermore, systematic evolution analysis in diploid, tetraploid and hexaploid wheat showed that TaGS5-3A underwent strong artificial selection during wheat polyploidization events and the frequency changes of two alleles demonstrated that TaGS5-3A-T was favoured in global modern wheat cultivars. These results suggest that TaGS5-3A is a positive regulator of grain size and its favoured allele TaGS5-3A-T exhibits a larger potential application in wheat high-yield breeding. PMID:26480952

  7. Visuals for Information.

    ERIC Educational Resources Information Center

    Pettersson, Rune

    This report focuses on the visual component of verbo-visual literacy, a communications concept involving the production, transmission, and perception of verbal and visual images. Five current problem areas in verbal-visual research are introduced and discussed: (1) communication (communication models, media consumption, new media, the information…

  8. Spelling: A Visual Skill.

    ERIC Educational Resources Information Center

    Hendrickson, Homer

    1988-01-01

    Spelling problems arise due to problems with form discrimination and inadequate visualization. A child's sequence of visual development involves learning motor control and coordination, with vision directing and monitoring the movements; learning visual comparison of size, shape, directionality, and solidity; developing visual memory or recall;…

  9. 4π Noncoplanar Stereotactic Body Radiation Therapy for Centrally Located or Larger Lung Tumors

    SciTech Connect

    Dong, Peng; Lee, Percy; Ruan, Dan; Long, Troy; Romeijn, Edwin; Low, Daniel A.; Kupelian, Patrick; Abraham, John; Yang, Yingli; Sheng, Ke

    2013-07-01

    Purpose: To investigate the dosimetric improvements in stereotactic body radiation therapy for patients with larger or central lung tumors using a highly noncoplanar 4π planning system. Methods and Materials: This study involved 12 patients with centrally located or larger lung tumors previously treated with 7- to 9-field static beam intensity modulated radiation therapy to 50 Gy. They were replanned using volumetric modulated arc therapy and 4π plans, in which a column generation method was used to optimize the beam orientation and the fluence map. Maximum doses to the heart, esophagus, trachea/bronchus, and spinal cord, as well as the 50% isodose volume, the lung volumes receiving 20, 10, and 5 Gy were minimized and compared against the clinical plans. A dose escalation study was performed to determine whether a higher prescription dose to the tumor would be achievable using 4π without violating dose limits set by the clinical plans. The deliverability of 4π plans was preliminarily tested. Results: Using 4π plans, the maximum heart, esophagus, trachea, bronchus and spinal cord doses were reduced by 32%, 72%, 37%, 44%, and 53% (P≤.001), respectively, and R{sub 50} was reduced by more than 50%. Lung V{sub 20}, V{sub 10}, and V{sub 5} were reduced by 64%, 53%, and 32% (P≤.001), respectively. The improved sparing of organs at risk was achieved while also improving planning target volume (PTV) coverage. The minimal PTV doses were increased by the 4π plans by 12% (P=.002). Consequently, escalated PTV doses of 68 to 70 Gy were achieved in all patients. Conclusions: We have shown that there is a large potential for plan quality improvement and dose escalation for patients with larger or centrally located lung tumors using noncoplanar beams with sufficient quality and quantity. Compared against the clinical volumetric modulated arc therapy and static intensity modulated radiation therapy plans, the 4π plans yielded significantly and consistently improved tumor

  10. Small-Scale Design Experiments as Working Space for Larger Mobile Communication Challenges

    ERIC Educational Resources Information Center

    Lowe, Sarah; Stuedahl, Dagny

    2014-01-01

    In this paper, a design experiment using Instagram as a cultural probe is submitted as a method for analyzing the challenges that arise when considering the implementation of social media within a distributed communication space. It outlines how small, iterative investigations can reveal deeper research questions relevant to the education of…

  11. The Corporate Connection: Effective Company Research Is Just Like People Research--On a Larger Scale.

    ERIC Educational Resources Information Center

    Kourofsky, Carolyn E.

    1992-01-01

    To cultivate companies for fund raising, the college development officer should focus on appropriate people, understand giving trends, follow mergers and acquisitions, and note corporate differences in giving patterns. Annual reports can reveal company self-image, help identify individuals, and illuminate the company's fiscal situation. However,…

  12. Visual modulation of auditory responses in the owl inferior colliculus.

    PubMed

    Bergan, Joseph F; Knudsen, Eric I

    2009-06-01

    The barn owl's central auditory system creates a map of auditory space in the external nucleus of the inferior colliculus (ICX). Although the crucial role visual experience plays in the formation and maintenance of this auditory space map is well established, the mechanism by which vision influences ICX responses remains unclear. Surprisingly, previous experiments have found that in the absence of extensive pharmacological manipulation, visual stimuli do not drive neural responses in the ICX. Here we investigated the influence of dynamic visual stimuli on auditory responses in the ICX. We show that a salient visual stimulus, when coincident with an auditory stimulus, can modulate auditory responses in the ICX even though the same visual stimulus may elicit no neural responses when presented alone. For each ICX neuron, the most effective auditory and visual stimuli were located in the same region of space. In addition, the magnitude of the visual modulation of auditory responses was dependent on the context of the stimulus presentation with novel visual stimuli eliciting consistently larger response modulations than frequently presented visual stimuli. Thus the visual modulation of ICX responses is dependent on the characteristics of the visual stimulus as well as on the spatial and temporal correspondence of the auditory and visual stimuli. These results demonstrate moment-to-moment visual enhancements of auditory responsiveness that, in the short-term, increase auditory responses to salient bimodal stimuli and in the long-term could serve to instruct the adaptive auditory plasticity necessary to maintain accurate auditory orienting behavior. PMID:19321633

  13. Visual examination apparatus

    NASA Technical Reports Server (NTRS)

    Haines, R. F.; Fitzgerald, J. W.; Rositano, S. A. (Inventor)

    1976-01-01

    An automated visual examination apparatus for measuring visual sensitivity and mapping blind spot location including a projection system for displaying to a patient a series of visual stimuli. A response switch enables him to indicate his reaction to the stimuli, and a recording system responsive to both the visual stimuli per se and the patient's response. The recording system thereby provides a correlated permanent record of both stimuli and response from which a substantive and readily apparent visual evaluation can be made.

  14. Orienting responses to various visual stimuli in children with visual processing impairments or infantile nystagmus syndrome.

    PubMed

    Pel, J J M; Kooiker, M J G; van der Does, J M E; Boot, F H; de Faber, J T; van der Steen-Kant, S P; van der Steen, J

    2014-12-01

    Quantification of orienting responses can be used to differentiate between children with cerebral visual impairment and infantile nystagmus syndrome. To further improve the sensitivity of this method, we compared orienting responses to a Cartoon stimulus, which contains all sorts of visual information, to stimuli that contain only Contrast, Form coherence, Motion coherence, Color and Motion detection. The stimuli were shown on an eye tracker monitor using a preferential looking paradigm. We found that both groups of children showed general slowing in orienting responses compared to controls. The children with cerebral visual impairment had significantly prolonged responses to Cartoon compared to the children with nystagmus, whereas the children with nystagmus had prolonged responses to Motion detection and larger fixation areas. Previously reported differences in orienting responses to Cartoon were replicated. Application of specific visual information did not alter the sensitivity of the method to distinguish between children with visual processing deficits. PMID:24334347

  15. NMR Structure Determination for Larger Proteins Using Backbone-Only Data

    PubMed Central

    Raman, Srivatsan; Lange, Oliver F.; Rossi, Paolo; Tyka, Michael; Wang, Xu; Aramini, James; Liu, Gaohua; Ramelot, Theresa; Eletsky, Alexander; Szyperski, Thomas; Kennedy, Michael; Prestegard, James; Montelione, Gaetano T.; Baker, David

    2010-01-01

    Conventional protein structure determination from nuclear magnetic resonance data relies heavily on side-chain proton-proton distances. The necessary side-chain resonance assignment, however, is labor intensive and prone to error. Here we show that structures can be accurately determined without NMR information on the sidechains for proteins up to 25 kDa by incorporating backbone chemical shifts, residual dipolar couplings, and amide proton distances into the Rosetta protein structure modelling methodology. These data, which are too sparse for conventional methods, serve only to guide conformational search towards the lowest energy conformations in the folding landscape; the details of the computed models are determined by the physical chemistry implicit in the Rosetta all atom energy function. The new method is not hindered by the deuteration required to suppress nuclear relaxation processes for proteins greater than 15 kDa, and should enable routine NMR structure determination for larger proteins. PMID:20133520

  16. A specialist toxicity database (TRACE) is more effective than its larger, commercially available counterparts.

    PubMed

    Anderson, C A; Copestake, P T; Robinson, L

    2000-10-26

    The retrieval precision and recall of a specialist bibliographic toxicity database (TRACE) and a range of widely available bibliographic databases used to identify toxicity papers were compared. The analysis indicated that the larger size and resources of the major bibliographic databases did not, for a series of test queries, assure superior retrieval of relevant papers. The specialist database, in which document selection and indexing is undertaken by the same expert toxicologists who use the database in their day-to-day work, achieved markedly better retrieval, using simpler search strategies, than the other databases. Specialist databases may offer a valuable alternative to the existing major bibliographic databases. The concept of relevance, as used to determine the effectiveness of bibliographic databases, is discussed. PMID:11074298

  17. Different magnitude representations in left and right hemisphere: evidence from the visual half field technique.

    PubMed

    Notebaert, Karolien; Reynvoet, Bert

    2009-05-01

    The differences between left and right hemispheric magnitude representations were investigated in two lateralised priming experiments using single-digit (Experiment 1) and two-digit numbers (Experiment 2). Based on recent brain-imaging and TMS studies, some authors have argued that the magnitude representation in the left hemisphere (LH) is more precise than the one in the right hemisphere (RH). In two experiments a prime number preceded a target number that had to be classified as smaller or larger than a fixed standard. In order to reveal hemispheric differences in magnitude representation, the priming distance effect, i.e., faster responses to targets preceded by numerically closer primes, was analysed in both visual half fields (VHF). Using single-digit numbers no hemispheric differences were found for the priming distance effect, supporting an equally precise magnitude representation in both hemispheres. However, the experiment using two-digit numbers revealed a significantly steeper priming curve when targets were presented in the left visual field (LVF) compared to targets presented in the RVF. These results suggest a less precise magnitude representation in the RH, due to a larger overlap of magnitude representations. PMID:18792837

  18. Introgression of a rare haplotype from Southeastern Africa to breed California blackeyes with larger seeds

    PubMed Central

    Lucas, Mitchell R.; Huynh, Bao-Lam; Roberts, Philip A.; Close, Timothy J.

    2015-01-01

    Seed size distinguishes most crops from their wild relatives and is an important quality trait for the grain legume cowpea. In order to breed cowpea varieties with larger seeds we introgressed a rare haplotype associated with large seeds at the Css-1 locus from an African buff seed type cultivar, IT82E-18 (18.5 g/100 seeds), into a blackeye seed type cultivar, CB27 (22 g/100 seed). Four recombinant inbred lines derived from these two parents were chosen for marker-assisted breeding based on SNP genotyping with a goal of stacking large seed haplotypes into a CB27 background. Foreground and background selection were performed during two cycles of backcrossing based on genome-wide SNP markers. The average seed size of introgression lines homozygous for haplotypes associated with large seeds was 28.7g/100 seed and 24.8 g/100 seed for cycles 1 and 2, respectively. One cycle 1 introgression line with desirable seed quality was selfed for two generations to make families with very large seeds (28–35 g/100 seeds). Field-based performance trials helped identify breeding lines that not only have large seeds but are also desirable in terms of yield, maturity, and plant architecture when compared to industry standards. A principal component analysis was used to explore the relationships between the parents relative to a core set of landraces and improved varieties based on high-density SNP data. The geographic distribution of haplotypes at the Css-1 locus suggest the haplotype associated with large seeds is unique to accessions collected from Southeastern Africa. Therefore this quantitative trait locus has a strong potential to develop larger seeded varieties for other growing regions which is demonstrated in this work using a California pedigree. PMID:25852699

  19. Compensatory larger cortical thickness in healthy elderly individuals with electroencephalographic risk for cognitive decline.

    PubMed

    Castro-Chavira, Susana A; Barrios, Fernando A; Pasaye, Erick H; Alatorre-Cruz, Graciela C; Fernández, Thalía

    2016-06-15

    Excess theta electroencephalographic (EEG) activity has been described as an accurate predictor for cognitive decline at least 7 years before symptom presentation. To test whether this predictor for cognitive decline correlates with structural changes in the brains of healthy elderly individuals, we compared the magnetic resonance structural images of healthy individuals with excess of theta activity [group with a risk for cognitive decline, risk group (RG); n=14] with healthy controls with normal EEG activity (control group; n=14). Neuropsychological and epidemiological analyses showed significant differences in only two features: more years of education and better performance in the visuospatial process task in the control group. Voxel-based morphometry results were not conclusive, but showed tendencies toward larger volumes in the prefrontal and parietal lobes, and smaller volumes in the right temporal lobe, right occipital lobe, and left cerebellum for the RG; these tendencies are in agreement with those proposed by the posterior-anterior shift in an aging model. Cortical-thickness analyses yielded a significant correlation between cortical thickness and years of education in the prefrontal and inferior-temporal regions, and larger cortical thickness in the RG, independent of age and years of education, in the right superior temporal region. These results suggest changes in the cortical thickness of structures related to memory and visuospatial functions in healthy, cognitively normal individuals before the appearance of cognitive decline. Thus, the performance of healthy elderly individuals with EEG risk may only be slightly different from normal because of compensation mechanisms allowing them to fulfill daily-life tasks, masking structural changes during preclinical neurocognitive disorders. PMID:27171033

  20. Fatigue acceptance test limit criterion for larger diameter rolled thread fasteners

    SciTech Connect

    Kephart, A.R.

    1997-05-01

    This document describes a fatigue lifetime acceptance test criterion by which studs having rolled threads, larger than 1.0 inches in diameter, can be assured to meet minimum quality attributes associated with a controlled rolling process. This criterion is derived from a stress dependent, room temperature air fatigue database for test studs having a 0.625 inch diameter threads of Alloys X-750 HTH and direct aged 625. Anticipated fatigue lives of larger threads are based on thread root elastic stress concentration factors which increase with increasing thread diameters. Over the thread size range of interest, a 30% increase in notch stress is equivalent to a factor of five (5X) reduction in fatigue life. The resulting diameter dependent fatigue acceptance criterion is normalized to the aerospace rolled thread acceptance standards for a 1.0 inch diameter, 0.125 inch pitch, Unified National thread with a controlled Root radius (UNR). Testing was conducted at a stress of 50% of the minimum specified material ultimate strength, 80 Ksi, and at a stress ratio (R) of 0.10. Limited test data for fastener diameters of 1.00 to 2.25 inches are compared to the acceptance criterion. Sensitivity of fatigue life of threads to test nut geometry variables was also shown to be dependent on notch stress conditions. Bearing surface concavity of the compression nuts and thread flank contact mismatch conditions can significantly affect the fastener fatigue life. Without improved controls these conditions could potentially provide misleading acceptance data. Alternate test nut geometry features are described and implemented in the rolled thread stud specification, MIL-DTL-24789(SH), to mitigate the potential effects on fatigue acceptance data.

  1. How to react to shallow water hydrodynamics: The larger benthic foraminifera solution

    PubMed Central

    Briguglio, Antonino; Hohenegger, Johann

    2016-01-01

    Symbiont-bearing larger benthic foraminifera inhabit the photic zone to provide their endosymbiotic algae with light. Because of the hydrodynamic conditions of shallow water environments, tests of larger foraminifera can be entrained and transported by water motion. To resist water motion, these foraminifera have to build a test able to avoid transport or have to develop special mechanisms to attach themselves to substrate or to hide their test below sediment grains. For those species which resist transport by the construction of hydrodynamic convenient shapes, the calculation of hydrodynamic parameters of their test defines the energetic input they can resist and therefore the scenario where they can live in. Measuring the density, size and shape of every test, combined with experimental data, helps to define the best mathematical approach for the settling velocity and Reynolds number of every shell. The comparison between water motion at the sediment-water interface and the specimen-specific settling velocity helps to calculate the water depths at which, for a certain test type, transport, deposition and accumulation may occur. The results obtained for the investigated taxa show that the mathematical approach gives reliable results and can discriminate the hydrodynamic behaviour of different shapes. Furthermore, the study of the settling velocities, calculated for all the investigated taxa, shows that several species are capable to resist water motion and therefore they appear to be functionally adapted to the hydrodynamic condition of its specific environment. The same study is not recommended on species which resist water motion by adopting hiding or anchoring strategies to avoid the effect of water motion.

  2. A phytochemical-rich diet may explain the absence of age-related decline in visual acuity of Amazonian hunter-gatherers in Ecuador.

    PubMed

    London, Douglas S; Beezhold, Bonnie

    2015-02-01

    Myopia is absent in undisturbed hunter-gatherers but ubiquitous in modern populations. The link between dietary phytochemicals and eye health is well established, although transition away from a wild diet has reduced phytochemical variety. We hypothesized that when larger quantities and greater variety of wild, seasonal phytochemicals are consumed in a food system, there will be a reduced prevalence of degenerative-based eye disease as measured by visual acuity. We compared food systems and visual acuity across isolated Amazonian Kawymeno Waorani hunter-gatherers and neighboring Kichwa subsistence agrarians, using dietary surveys, dietary pattern observation, and Snellen Illiterate E visual acuity examinations. Hunter-gatherers consumed more food species (130 vs. 63) and more wild plants (80 vs. 4) including 76 wild fruits, thereby obtaining larger variety and quantity of phytochemicals than agrarians. Visual acuity was inversely related to age only in agrarians (r = -.846, P < .001). As hypothesized, when stratified by age (<40 and ≥ 40 years), Mann-Whitney U tests revealed that hunter-gatherers maintained high visual acuity throughout life, whereas agrarian visual acuity declined (P values < .001); visual acuity of younger participants was high across the board, however, did not differ between groups (P > .05). This unusual absence of juvenile-onset vision problems may be related to local, organic, whole food diets of subsistence food systems isolated from modern food production. Our results suggest that intake of a wider variety of plant foods supplying necessary phytochemicals for eye health may help maintain visual acuity and prevent degenerative eye conditions as humans age. PMID:25636674

  3. Declarative Visualization Queries

    NASA Astrophysics Data System (ADS)

    Pinheiro da Silva, P.; Del Rio, N.; Leptoukh, G. G.

    2011-12-01

    In an ideal interaction with machines, scientists may prefer to write declarative queries saying "what" they want from a machine than to write code stating "how" the machine is going to address the user request. For example, in relational database, users have long relied on specifying queries using Structured Query Language (SQL), a declarative language to request data results from a database management system. In the context of visualizations, we see that users are still writing code based on complex visualization toolkit APIs. With the goal of improving the scientists' experience of using visualization technology, we have applied this query-answering pattern to a visualization setting, where scientists specify what visualizations they want generated using a declarative SQL-like notation. A knowledge enhanced management system ingests the query and knows the following: (1) know how to translate the query into visualization pipelines; and (2) how to execute the visualization pipelines to generate the requested visualization. We define visualization queries as declarative requests for visualizations specified in an SQL like language. Visualization queries specify what category of visualization to generate (e.g., volumes, contours, surfaces) as well as associated display attributes (e.g., color and opacity), without any regards for implementation, thus allowing scientists to remain partially unaware of a wide range of visualization toolkit (e.g., Generic Mapping Tools and Visualization Toolkit) specific implementation details. Implementation details are only a concern for our knowledge-based visualization management system, which uses both the information specified in the query and knowledge about visualization toolkit functions to construct visualization pipelines. Knowledge about the use of visualization toolkits includes what data formats the toolkit operates on, what formats they output, and what views they can generate. Visualization knowledge, which is not

  4. Universal visualization platform

    NASA Astrophysics Data System (ADS)

    Gee, Alexander G.; Li, Hongli; Yu, Min; Smrtic, Mary Beth; Cvek, Urska; Goodell, Howie; Gupta, Vivek; Lawrence, Christine; Zhou, Jainping; Chiang, Chih-Hung; Grinstein, Georges G.

    2005-03-01

    Although there are a number of visualization systems to choose from when analyzing data, only a few of these allow for the integration of other visualization and analysis techniques. There are even fewer visualization toolkits and frameworks from which one can develop ones own visualization applications. Even within the research community, scientists either use what they can from the available tools or start from scratch to define a program in which they are able to develop new or modified visualization techniques and analysis algorithms. Presented here is a new general-purpose platform for constructing numerous visualization and analysis applications. The focus of this system is the design and experimentation of new techniques, and where the sharing of and integration with other tools becomes second nature. Moreover, this platform supports multiple large data sets, and the recording and visualizing of user sessions. Here we introduce the Universal Visualization Platform (UVP) as a modern data visualization and analysis system.

  5. Cost-optimized methods extending the solution space of lightweight spaceborne monolithic ZERODUR® mirrors to larger sizes

    NASA Astrophysics Data System (ADS)

    Leys, Antoine; Hull, Tony; Westerhoff, Thomas

    2015-09-01

    We address the problem that larger spaceborne mirrors require greater sectional thickness to achieve a sufficient first eigen frequency that is resilient to launch loads, and to be stable during optical telescope assembly integration and test, this added thickness results in unacceptable added mass if we simply scale up solutions for smaller mirrors. Special features, like cathedral ribs, arch, chamfers, and back-side following the contour of the mirror face have been considered for these studies. For computational efficiency, we have conducted detailed analysis on various configurations of a 800 mm hexagonal segment and of a 1.2-m mirror, in a manner that they can be constrained by manufacturing parameters as would be a 4-m mirror. Furthermore each model considered also has been constrained by cost-effective machining practice as defined in the SCHOTT Mainz factory. Analysis on variants of this 1.2-m mirror has shown a favorable configuration. We have then scaled this optimal configuration to 4-m aperture. We discuss resulting parameters of costoptimized 4-m mirrors. We also discuss the advantages and disadvantages this analysis reveals of going to cathedral rib architecture on 1-m class mirror substrates.

  6. Distribution of living larger benthic foraminifera in littoral environments of the United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Fiorini, Flavia; Lokier, Stephen W.

    2015-04-01

    The distribution of larger benthic foraminifera in Recent littoral environment of the United Arab Emirates (Abu Dhabi and Western regions) was investigated with the aim of understanding the response of those foraminifera to an increase in water salinity. For this purpose, 100 sediment samples from nearshore shelf, beach-front, channel, lagoon, and intertidal environment were collected. Sampling was undertaken at a water depth shallower than 15 m in water with a temperature of 22 to 35˚C, a salinity ranging from 40 to 60‰ and a pH of 8. Samples were stained with rose Bengal at the moment of sample collection in order to identify living specimens. The most abundant epiphytic larger benthic foraminifera in the studied area were Peneroplis pertusus and P. planatus with less common Spirolina areatina, S. aciculate and Sorites marginalis. The living specimens of the above mentioned species with normal test growing were particularly abundant in the nearshore shelf and lagoonal samples collected on seaweed. Dead specimens were concentrated in the coarser sediments of the beach-front, probably transported from nearby environments. Shallow coastal ponds are located in the upper intertidal zone and have a maximum salinity of 60‰ and contain abundant detached seagrass. Samples collected from these ponds possess a living foraminifera assemblage dominated by Peneroplis pertusus and P. planatus. High percentages (up to 50% of the stained assemblage) of Peneroplis presented abnormality in test growth, such as the presence of multiple apertures with reduced size, deformation in the general shape of the test, irregular suture lines and abnormal coiling. The high percentage of abnormal tests reflects natural environmental stress mainly caused by high and variable salinity. The unique presence of living epiphytic species, suggests that epiphytic foraminifera may be transported into the pond together with seagrass and continued to live in the pond. This hypothesis is supported by

  7. RNA Interference in Schistosoma mansoni Schistosomula: Selectivity, Sensitivity and Operation for Larger-Scale Screening

    PubMed Central

    Horn, Martin; Braschi, Simon; Sojka, Daniel; Ruelas, Debbie S.; Suzuki, Brian; Lim, Kee-Chong; Hopkins, Stephanie D.; McKerrow, James H.; Caffrey, Conor R.

    2010-01-01

    Background The possible emergence of resistance to the only available drug for schistosomiasis spurs drug discovery that has been recently incentivized by the availability of improved transcriptome and genome sequence information. Transient RNAi has emerged as a straightforward and important technique to interrogate that information through decreased or loss of gene function and identify potential drug targets. To date, RNAi studies in schistosome stages infecting humans have focused on single (or up to 3) genes of interest. Therefore, in the context of standardizing larger RNAi screens, data are limited on the extent of possible off-targeting effects, gene-to-gene variability in RNAi efficiency and the operational capabilities and limits of RNAi. Methodology/Principal Findings We investigated in vitro the sensitivity and selectivity of RNAi using double-stranded (ds)RNA (approximately 500 bp) designed to target 11 Schistosoma mansoni genes that are expressed in different tissues; the gut, tegument and otherwise. Among the genes investigated were 5 that had been previously predicted to be essential for parasite survival. We employed mechanically transformed schistosomula that are relevant to parasitism in humans, amenable to screen automation and easier to obtain in greater numbers than adult parasites. The operational parameters investigated included defined culture media for optimal parasite maintenance, transfection strategy, time- and dose- dependency of RNAi, and dosing limits. Of 7 defined culture media tested, Basch Medium 169 was optimal for parasite maintenance. RNAi was best achieved by co-incubating parasites and dsRNA (standardized to 30 µg/ml for 6 days); electroporation provided no added benefit. RNAi, including interference of more than one transcript, was selective to the gene target(s) within the pools of transcripts representative of each tissue. Concentrations of dsRNA above 90 µg/ml were directly toxic. RNAi efficiency was transcript

  8. The aphelion distribution of the Near Earth meteoroid orbits with larger eccentricities

    NASA Astrophysics Data System (ADS)

    Kolomiyets, Svitlana; Voloshchuk, Yury

    2015-08-01

    The question of the stability of the Solar System has always sparked urgency to research. In some cases, larger values of eccentricity and/or inclination can be a sign of the instability. The time has now come to extend this question to a larger number of planetary systems. The discovery of extrasolar planets systems has raised many similar questions on their formation and dynamical evolution. The origin of the surprisingly large eccentricities and/or inclinations (relative to the stellar equator) of many extrasolar planets remains elusive: planet instabilities, planet-disk interactions, external perturbations from eccentric or inclined stars remain viable options. The understanding of our own planetary system and extrasolar planets systems can leap forward only with the combination of mutual research. The time has now come to the golden years of the space exploration on the distant Solar System bodies. At the same time every day the meteoric matter penetrates in the Earth atmosphere and carries information about the various locations of the Solar system. The meteoroid orbits with large eccentricities and large aphelion distances associated with the distant locations of the Solar system. We used the data of the ground-based radar observations in Kharkiv (Ukraine) to obtain the distribution of aphelion distances for the near Earth meteoroid orbits (100341) with large eccentricities (e>0.5). We analyzed the orbital inclinations too. We obtained the complicated structure of the sporadic meteoroid complex. It is the consequence of the plurality of parent bodies and origin mechanisms of meteoroids. In addition the perturbing action of the planets, non-gravitational forces affect on the stracture of meteoroid complex. Our experimental results in 1972-1978 demonstrated meteoroid masses 10^-3 -10^-6 g. The aphelion distance of orbits for these investigated meteoroids has the range from near 1 till 2 000 AU. Undoubtedly, the meteoric matter contains key information about

  9. Interactive visualization of the largest radioastronomy cubes

    NASA Astrophysics Data System (ADS)

    Hassan, A. H.; Fluke, C. J.; Barnes, D. G.

    2011-02-01

    3D visualization is an important data analysis and knowledge discovery tool, however, interactive visualization of large 3D astronomical datasets poses a challenge for many existing data visualization packages. We present a solution to interactively visualize larger-than-memory 3D astronomical data cubes by utilizing a heterogeneous cluster of CPUs and GPUs. The system partitions the data volume into smaller sub-volumes that are distributed over the rendering workstations. A GPU-based ray casting volume rendering is performed to generate images for each sub-volume, which are composited to generate the whole volume output, and returned to the user. Datasets including the HI Parkes All Sky Survey (HIPASS - 12 GB) southern sky and the Galactic All Sky Survey (GASS - 26 GB) data cubes were used to demonstrate our framework's performance. The framework can render the GASS data cube with a maximum render time <0.3 s with 1024 × 1024 pixels output resolution using three rendering workstations and eight GPUs. Our framework will scale to visualize larger datasets, even of Terabyte order, if proper hardware infrastructure is available.

  10. Specificity and randomness in the visual cortex

    PubMed Central

    Ohki, Kenichi; Reid, R. Clay

    2009-01-01

    Summary Research on the functional anatomy of visual cortical circuit has recently zoomed in from the macroscopic level to the microscopic. High-resolution functional imaging has revealed that the functional architecture of orientation maps in higher mammals is built with single-cell precision. In contrast, orientation selectivity in rodents is dispersed on visual cortex in a salt-and-pepper fashion, despite highly tuned visual responses. Recent studies of synaptic physiology indicate that there are disjoint subnetworks of interconnected cells in the rodent visual cortex. These intermingled subnetworks, described in vitro, may relate to the intermingled ensembles of cells tuned to different orientations, described in vivo. This hypothesis may soon be tested with new anatomic techniques that promise to reveal detailed wiring diagrams in cortical circuits. PMID:17720489

  11. Visual quantification of embolism reveals leaf vulnerability to hydraulic failure.

    PubMed

    Brodribb, Timothy J; Skelton, Robert P; McAdam, Scott A M; Bienaimé, Diane; Lucani, Christopher J; Marmottant, Philippe

    2016-03-01

    Vascular plant mortality during drought has been strongly linked to a failure of the internal water transport system caused by the rapid invasion of air and subsequent blockage of xylem conduits. Quantification of this critical process is greatly complicated by the existence of high water tension in xylem cells making them prone to embolism during experimental manipulation. Here we describe a simple new optical method that can be used to record spatial and temporal patterns of embolism formation in the veins of water-stressed leaves for the first time. Applying this technique in four diverse angiosperm species we found very strong agreement between the dynamics of embolism formation during desiccation and decline of leaf hydraulic conductance. These data connect the failure of the leaf water transport network under drought stress to embolism formation in the leaf xylem, and suggest embolism occurs after stomatal closure under extreme water stress. PMID:26742653

  12. Self-humidified proton exchange membrane fuel cells: Operation of larger cells and fuel cell stacks

    SciTech Connect

    Dhar, H.P.; Lee, J.H.; Lewinski, K.A.

    1996-12-31

    The PEM fuel cell is promising as the power source for use in mobile and stationary applications primarily because of its high power density, all solid components, and simplicity of operation. For wide acceptability of this power source, its cost has to be competitive with the presently available energy sources. The fuel cell requires continuous humidification during operation as a power source. The humidification unit however, increases fuel cell volume, weight, and therefore decreases its overall power density. Great advantages in terms of further fuel cell simplification can be achieved if the humidification process can be eliminated or minimized. In addition, cost reductions are associated with the case of manufacturing and operation. At BCS Technology we have developed a technology of self-humidified operation of PEM fuel cells based on the mass balance of the reactants and products and the ability of membrane electrode assembly (MEA) to retain water necessary for humidification under the cell operating conditions. The reactants enter the fuel cell chambers without carrying any form of water, whether in liquid or vapor form. Basic principles of self-humidified operation of fuel cells as practiced by BCS Technology, Inc. have been presented previously in literature. Here, we report the operation of larger self-humidified single cells and fuel cell stacks. Fuel cells of areas Up to 100 cm{sup 2} have been operated. We also show the self-humidified operation of fuel cell stacks of 50 and 100 cm{sup 2} electrode areas.

  13. Prolonged institutional rearing is associated with atypically larger amygdala volume and difficulties in emotion regulation

    PubMed Central

    Tottenham, Nim; Hare, Todd A.; Quinn, Brian T.; McCarry, Thomas W.; Nurse, Marcella; Gilhooly, Tara; Milner, Alex; Galvan, Adriana; Davidson, Matthew C.; Eigsti, Inge-Marie; Thomas, Kathleen M.; Freed, Peter; Booma, Elizabeth S.; Gunnar, Megan; Altemus, Margaret; Aronson, Jane; Casey, BJ

    2009-01-01

    Early adversity, for example poor caregiving, can have profound effects on emotional development. Orphanage rearing, even in the best circumstances, lies outside of the bounds of a species-typical caregiving environment. The long-term effects of this early adversity on the neurobiological development associated with socio-emotional behaviors are not well understood. Seventy-eight children, who include those who have experienced orphanage care and a comparison group, were assessed. Magnetic resonance imaging (MRI) was used to measure volumes of whole brain and limbic structures (e.g., amygdala, hippocampus). Emotion regulation was assessed with an emotional go-nogo paradigm, and anxiety and internalizing behaviors were assessed using the Screen for Child Anxiety Related Emotional Disorders, the Child Behavior Checklist, and a structured clinical interview. Late adoption was associated with larger corrected amygdala volumes, poorer emotion regulation, and increased anxiety. Although more than 50% of the children who experienced orphanage rearing met criteria for a psychiatric disorder, with a third having an anxiety disorder, the group differences observed in amygdala volume were not driven by the presence of an anxiety disorder. The findings are consistent with previous reports describing negative effects of prolonged orphanage care on emotional behavior and with animal models that show long term changes in the amygdala and emotional behavior following early postnatal stress. These changes in limbic circuitry may underlie residual emotional and social problems experienced by children who have been internationally adopted. PMID:20121862

  14. Molecular Evidence for Lessepsian Invasion of Soritids (Larger Symbiont Bearing Benthic Foraminifera)

    PubMed Central

    Apothéloz-Perret-Gentil, Laure; Pawlowski, Jan; Abdu, Uri; Almogi-Labin, Ahuva; Hyams-Kaphzan, Orit; Bakhrat, Anna; Abramovich, Sigal

    2013-01-01

    The Mediterranean Sea is considered as one of the hotspots of marine bioinvasions, largely due to the influx of tropical species migrating through the Suez Canal, so-called Lessepsian migrants. Several cases of Lessepsian migration have been documented recently, however, little is known about the ecological characteristics of the migrating species and their aptitude to colonize the new areas. This study focused on Red Sea soritids, larger symbiont-bearing benthic foraminifera (LBF) that are indicative of tropical and subtropical environments and were recently found in the Israeli coast of the Eastern Mediterranean. We combined molecular phylogenetic analyses of soritids and their algal symbionts as well as network analysis of Sorites orbiculus Forskål to compare populations from the Gulf of Elat (northern Red Sea) and from a known hotspot in Shikmona (northern Israel) that consists of a single population of S. orbiculus. Our phylogenetic analyses show that all specimens found in Shikmona are genetically identical to a population of S. orbiculus living on a similar shallow water pebbles habitat in the Gulf of Elat. Our analyses also show that the symbionts found in Shikmona and Elat soritids belong to the Symbiodinium clade F5, which is common in the Red Sea and also present in the Indian Ocean and Caribbean Sea. Our study therefore provides the first genetic and ecological evidences that indicate that modern population of soritids found on the Mediterranean coast of Israel is probably Lessepsian, and is less likely the descendant of a native ancient Mediterranean species. PMID:24204936

  15. Maternal support in early childhood predicts larger hippocampal volumes at school age.

    PubMed

    Luby, Joan L; Barch, Deanna M; Belden, Andy; Gaffrey, Michael S; Tillman, Rebecca; Babb, Casey; Nishino, Tomoyuki; Suzuki, Hideo; Botteron, Kelly N

    2012-02-21

    Early maternal support has been shown to promote specific gene expression, neurogenesis, adaptive stress responses, and larger hippocampal volumes in developing animals. In humans, a relationship between psychosocial factors in early childhood and later amygdala volumes based on prospective data has been demonstrated, providing a key link between early experience and brain development. Although much retrospective data suggests a link between early psychosocial factors and hippocampal volumes in humans, to date there has been no prospective data to inform this potentially important public health issue. In a longitudinal study of depressed and healthy preschool children who underwent neuroimaging at school age, we investigated whether early maternal support predicted later hippocampal volumes. Maternal support observed in early childhood was strongly predictive of hippocampal volume measured at school age. The positive effect of maternal support on hippocampal volumes was greater in nondepressed children. These findings provide prospective evidence in humans of the positive effect of early supportive parenting on healthy hippocampal development, a brain region key to memory and stress modulation. PMID:22308421

  16. Viscosity, relaxation time, and dynamics within a model asphalt of larger molecules

    SciTech Connect

    Li, Derek D.; Greenfield, Michael L.

    2014-01-21

    The dynamics properties of a new “next generation” model asphalt system that represents SHRP AAA-1 asphalt using larger molecules than past models is studied using molecular simulation. The system contains 72 molecules distributed over 12 molecule types that range from nonpolar branched alkanes to polar resins and asphaltenes. Molecular weights range from 290 to 890 g/mol. All-atom molecular dynamics simulations conducted at six temperatures from 298.15 to 533.15 K provide a wealth of correlation data. The modified Kohlrausch-Williams-Watts equation was regressed to reorientation time correlation functions and extrapolated to calculate average rotational relaxation times for individual molecules. The rotational relaxation rate of molecules decreased significantly with increasing size and decreasing temperature. Translational self-diffusion coefficients followed an Arrhenius dependence. Similar activation energies of ∼42 kJ/mol were found for all 12 molecules in the model system, while diffusion prefactors spanned an order of magnitude. Viscosities calculated directly at 533.15 K and estimated at lower temperatures using the Debye-Stokes-Einstein relationship were consistent with experimental data for asphalts. The product of diffusion coefficient and rotational relaxation time showed only small changes with temperature above 358.15 K, indicating rotation and translation that couple self-consistently with viscosity. At lower temperatures, rotation slowed more than diffusion.

  17. Cortical Thinning in Healthy Aging Correlates with Larger Motor-Evoked EEG Desynchronization

    PubMed Central

    Provencher, David; Hennebelle, Marie; Cunnane, Stephen C.; Bérubé-Lauzière, Yves; Whittingstall, Kevin

    2016-01-01

    Although electroencephalography (EEG) is a valuable tool to investigate neural activity in patients and controls, exactly how local anatomy impacts the measured signal remains unclear. Better characterizing this relationship is important to improve the understanding of how inter-subject differences in the EEG signal are related to neural activity. We hypothesized that cortical structure might affect event-related desynchronization (ERD) in EEG. Since aging is a well-documented cause of cortical thinning, we investigated the effects of cortical thickness (CT) and cortical depth (CD – the skull-to-cortex distance) on ERD using anatomical MRI and motor-evoked EEG in 17 healthy young adults and 20 healthy older persons. Results showed a significant negative correlation between ERD and CT, but no consistent relationship between ERD and CD. A thinner cortex was associated with a larger ERD in the α/β band and correcting for CT removed most of the inter-group difference in ERD. This indicates that differences in neural activity might not be the primary cause for the observed aging-related differences in ERD, at least in the motor cortex. Further, it emphasizes the importance of considering conditions affecting the EEG signal, such as cortical anatomical changes due to aging, when interpreting differences between healthy controls and/or patients. PMID:27064767

  18. Lecture archiving on a larger scale at the University of Michigan and CERN

    NASA Astrophysics Data System (ADS)

    Herr, Jeremy; Lougheed, Robert; Neal, Homer A.

    2010-04-01

    The ATLAS Collaboratory Project at the University of Michigan has been a leader in the area of collaborative tools since 1999. Its activities include the development of standards, software and hardware tools for lecture archiving, and making recommendations for videoconferencing and remote teaching facilities. Starting in 2006 our group became involved in classroom recordings, and in early 2008 we spawned CARMA, a University-wide recording service. This service uses a new portable recording system that we developed. Capture, archiving and dissemination of rich multimedia content from lectures, tutorials and classes are increasingly widespread activities among universities and research institutes. A growing array of related commercial and open source technologies is becoming available, with several new products introduced in the last couple years. As the result of a new close partnership between U-M and CERN IT, a market survey of these products was conducted and a summary of the results are presented here. It is informing an ambitious effort in 2009 to equip many CERN rooms with automated lecture archiving systems, on a much larger scale than before. This new technology is being integrated with CERN's existing webcast, CDS, and Indico applications.

  19. Foraging competition in larger groups overrides harassment avoidance benefits in female reindeer (Rangifer tarandus).

    PubMed

    Uccheddu, Stefania; Body, Guillaume; Weladji, Robert B; Holand, Øystein; Nieminen, Mauri

    2015-11-01

    Male harassment toward females during the breeding season may have a negative effect on their reproductive success by disturbing their foraging activity, thereby inducing somatic costs. Accordingly, it is predicted that females will choose mates based on their ability to provide protection or will aggregate into large groups to dilute per capita harassment level. Conversely, increasing group size may also lead to a decrease in foraging activity by increasing foraging competition, but this effect has rarely been considered in mating tactic studies. This study examined the importance of two non-exclusive hypotheses in explaining the variations of the female activity budget during the breeding season: the male harassment hypothesis, and the female foraging competition hypothesis. We used focal observations of female activity from known mating groups collected during the breeding season from a long-term (15 years) study on reindeer Rangifer tarandus. We found that females were more disturbed (i.e., spent less time feeding) in the presence of young dominant males, and marginally disturbed in the presence of satellite males, which supports the male harassment hypothesis. We also found that female disturbance level increased with group size, being independent of the adult sex ratio. Consequently, these results rejected the dilution effect, but strongly supported the foraging competition hypothesis. This study therefore highlights a potential conflict in female behaviour. Indeed, any gains from harassment protection were negated by an increase of 6-7 females, since adult males lead larger groups than young males. PMID:26188521

  20. Stable isotope stratigraphy and larger benthic foraminiferal extinctions in the Melinau Limestone, Sarawak

    NASA Astrophysics Data System (ADS)

    Cotton, Laura J.; Pearson, Paul N.; Renema, Willem

    2014-01-01

    Important long-ranging groups of larger benthic foraminifera (LBF) are known to have become extinct during a period of global cooling and climate disruption at the Eocene-Oligocene transition (EOT) but the precise timing and mechanisms are uncertain. Recent study showed unexpectedly that the LBF extinction in Tanzania occurs very close to the Eocene/Oligocene boundary, as recognised by the extinction of the planktonic foraminiferal Family Hantkeninidae, rather than at the later period of maximum global ice growth and sea-level fall, as previously thought. Here we investigate the same phase of extinction in the Melinau Limestone of Sarawak, on the island of Borneo, Malaysia one of the most complete carbonate successions spanning the Eocene to Lower Miocene. Assemblages of LBF from the Melinau Limestone were studied extensively by Geoffrey Adams during the 1960s-80s, confirming a major extinction during the EOT, but the section lacked independent means of correlation. By analysing rock samples originally studied by Adams and now in the Natural History Museum, London, we provide new bulk stable isotope (δ13C and δ18O) records. This enables us to identify, albeit tentatively, the level of maximum stable isotope excursion and show that the LBF extinction event in the Melinau Limestone occurs below this isotope excursion, supporting the results from Tanzania and indicating that the extinction of LBF close to the Eocene/Oligocene boundary may be a global phenomenon.

  1. Larger hippocampus size in women with anorexia nervosa who exercise excessively than healthy women.

    PubMed

    Beadle, Janelle N; Paradiso, Sergio; Brumm, Michael; Voss, Michelle; Halmi, Katherine; McCormick, Laurie M

    2015-05-30

    Exercise has been shown to increase hippocampal volume in healthy older adults. Observations from animal models of diabetes and hypertension suggest that the combination of exercise and caloric restriction may exert greater neuroprotection in the hippocampus than either behavior alone. Yet, in humans, the effects of exercise and caloric restriction on the hippocampus are not known. We measured the volume of the hippocampus prior to clinical treatment in women with anorexia nervosa (AN) who were restricting calories and engaging in excessive exercise, women with AN who did not exercise excessively, and healthy women who did not engage in either behavior. Women with AN were also examined longitudinally (once weight was restored and 6 months later). In the present report, we found that women with AN engaged in caloric restriction and excessive exercising prior to clinical treatment had larger hippocampal volumes than healthy comparison women. After weight restoration, women with AN who had engaged in food restriction and excessive exercise prior to treatment had hippocampal volumes similar to that of women with AN who only engaged in caloric restriction. These results advance the field by showing for the first time that hippocampal volume may be increased by exercise alone or exercise interacting with food restriction in AN. PMID:25624068

  2. A loophole-free Bell test and the route to larger quantum networks

    NASA Astrophysics Data System (ADS)

    Reiserer, Andreas; Hensen, Bas; Bernien, Hannes; Dréau, Anaïs; Kalb, Norbert; Blok, Machiel; Taminiau, Tim; Hanson, Ronald

    2016-05-01

    The nitrogen-vacancy (NV) center in diamond gives access to few-qubit nuclear-spin registers with exceptional coherence properties. Entanglement between remote registers can be established via a joint measurement of single photons that are each entangled with the electron spin of one NV center. The entanglement protocol is thus probabilistic but heralded, which has allowed us to perform the first loophole-free test of Bell's inequality using two NV centers at a distance of 1.3km. Extending the size of the network requires control over additional qubits at each node. To this end, we use nuclear spins that are controlled via the hyperfine interaction with the electronic spin. I will present our recent experimental results, where we keep a qubit locally in a single nuclear spin or in a decoherence-protected two-spin state while applying a sequence of optical pulses on the electronic spin that generates remote entanglement. Our results open perspectives toward the purification of remote entanglement and toward larger quantum networks.

  3. Growing coral larger and faster: micro-colony-fusion as a strategy for accelerating coral cover

    PubMed Central

    Page, Christopher A.; Toonen, Robert J.; Vaughan, David

    2015-01-01

    Fusion is an important life history strategy for clonal organisms to increase access to shared resources, to compete for space, and to recover from disturbance. For reef building corals, fragmentation and colony fusion are key components of resilience to disturbance. Observations of small fragments spreading tissue and fusing over artificial substrates prompted experiments aimed at further characterizing Atlantic and Pacific corals under various conditions. Small (∼1–3 cm2) fragments from the same colony spaced regularly over ceramic tiles resulted in spreading at rapid rates (e.g., tens of square centimeters per month) followed by isogenic fusion. Using this strategy, we demonstrate growth, in terms of area encrusted and covered by living tissue, of Orbicella faveolata, Pseudodiploria clivosa, and Porites lobata as high as 63, 48, and 23 cm2 per month respectively. We found a relationship between starting and ending size of fragments, with larger fragments growing at a faster rate. Porites lobata showed significant tank effects on rates of tissue spreading indicating sensitivity to biotic and abiotic factors. The tendency of small coral fragments to encrust and fuse over a variety of surfaces can be exploited for a variety of applications such as coral cultivation, assays for coral growth, and reef restoration. PMID:26500822

  4. Technique for Extension of Small Antenna Array Mutual-Coupling Data to Larger Antenna Arrays

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1996-01-01

    A technique is presented whereby the mutual interaction between a small number of elements in a planar array can be interpolated and extrapolated to accurately predict the combined interactions in a much larger array of many elements. An approximate series expression is developed, based upon knowledge of the analytical characteristic behavior of the mutual admittance between small aperture antenna elements in a conducting ground plane. This expression is utilized to analytically extend known values for a few spacings and orientations to other element configurations, thus eliminating the need to numerically integrate a large number of highly oscillating and slowly converging functions. This paper shows that the technique can predict very accurately the mutual coupling between elements in a very large planar array with a knowledge of the self-admittance of an isolated element and the coupling between only two-elements arranged in eight different pair combinations. These eight pair combinations do not necessarily have to correspond to pairs in the large array, although all of the individual elements must be identical.

  5. Origami-inspired metamaterial absorbers for improving the larger-incident angle absorption

    NASA Astrophysics Data System (ADS)

    Shen, Yang; Pang, Yongqiang; Wang, Jiafu; Ma, Hua; Pei, Zhibin; Qu, Shaobo

    2015-11-01

    When a folded resistive patch array stands up on a metallic plane, it can exhibit more outstanding absorption performance. Our theoretical investigations and simulations demonstrated that the folded resistive patch arrays can enhance the absorption bandwidth progressively with the increase of the incident angle for the oblique transverse magnetic incidence, which is contrary to the conventional resistive frequency selective surface absorber. On illumination, we achieved a 3D structure metamaterial absorber with the folded resistive patches. The proposed absorber is obtained from the inspiration of the origami, and it has broadband and lager-incident angle absorption. Both the simulations and the measurements indicate that the proposed absorber achieves the larger-incident angle absorption until 75° in the frequency band of 3.6-11.4 GHz. In addition, the absorber is extremely lightweight. The areal density of the fabricated sample is about 0.023 g cm-2. Due to the broadband and lager-incident angle absorption, it is expected that the absorbers may find potential applications such as stealth technologies and electromagnetic interference.

  6. Larger aggregates of mutant seipin in Celia's Encephalopathy, a new protein misfolding neurodegenerative disease.

    PubMed

    Ruiz-Riquelme, Alejandro; Sánchez-Iglesias, Sofía; Rábano, Alberto; Guillén-Navarro, Encarna; Domingo-Jiménez, Rosario; Ramos, Adriana; Rosa, Isaac; Senra, Ana; Nilsson, Peter; García, Ángel; Araújo-Vilar, David; Requena, Jesús R

    2015-11-01

    Celia's Encephalopathy (MIM #615924) is a recently discovered fatal neurodegenerative syndrome associated with a new BSCL2 mutation (c.985C>T) that results in an aberrant isoform of seipin (Celia seipin). This mutation is lethal in both homozygosity and compounded heterozygosity with a lipodystrophic BSCL2 mutation, resulting in a progressive encephalopathy with fatal outcomes at ages 6-8. Strikingly, heterozygous carriers are asymptomatic, conflicting with the gain of toxic function attributed to this mutation. Here we report new key insights about the molecular pathogenic mechanism of this new syndrome. Intranuclear inclusions containing mutant seipin were found in brain tissue from a homozygous patient suggesting a pathogenic mechanism similar to other neurodegenerative diseases featuring brain accumulation of aggregated, misfolded proteins. Sucrose gradient distribution showed that mutant seipin forms much larger aggregates as compared with wild type (wt) seipin, indicating an impaired oligomerization. On the other hand, the interaction between wt and Celia seipin confirmed by coimmunoprecipitation (CoIP) assays, together with the identification of mixed oligomers in sucrose gradient fractionation experiments can explain the lack of symptoms in heterozygous carriers. We propose that the increased aggregation and subsequent impaired oligomerization of Celia seipin leads to cell death. In heterozygous carriers, wt seipin might prevent the damage caused by mutant seipin through its sequestration into harmless mixed oligomers. PMID:26282322

  7. A comparison of small and larger mesoscale latent heat and radiative fluxes: December 6 case study

    NASA Technical Reports Server (NTRS)

    Gultepe, I.; Starr, David; Heymsfield, A. J.

    1993-01-01

    Because of the small amounts of water vapor, the potential for rapid changes, and the very cold temperatures in the upper troposphere, moisture measuring instruments face several problems related to calibration and response. Calculations of eddy moisture fluxes are, therefore, subject to significant uncertainty. The purpose of this study is to examine the importance of latent heat (moisture) fluxes due to small and larger mesoscale circulations in comparison to radiative fluxes within cirrus. Scale separation is made at about 1 km because of significant changes in the structures within cirrus. Only observations at warmer than -40 C are used in this study. The EG&G hygrometer that is used for measuring dewpoint temperature (Td) is believed to be fairly accurate down to -40 C. On the other hand, Lyman-Alpha (L-alpha) hygrometer measurements of moisture may include large drift errors. In order to compensate for these drift errors, the L-alpha hygrometer is often calibrated against the EG&G hygrometer. However, large errors ensue for Td measurements at temperatures less than -40 C. The cryogenic hygrometer frost point measurements may be used to calibrate L-alpha measurements at temperatures less than -40 C. In this study, however, measurements obtained by EG&G hygrometer and L-alpha measurements are used for the flux calculations.

  8. Aspirations and common tensions: larger lessons from the third US national climate assessment

    SciTech Connect

    Moser, Susanne C.; Melillo, Jerry M.; Jacobs, Katharine L.; Moss, Richard H.; Buizer, James L.

    2015-10-21

    The Third US National Climate Assessment (NCA3) was produced by experts in response to the US Global Change Research Act of 1990. Based on lessons learned from previous domestic and international assessments, the NCA3 was designed to speak to a broad public and inform the concerns of policy- and decision-makers at different scales. The NCA3 was also intended to be the first step in an ongoing assessment process that would build the nation’s capacity to respond to climate change. This concluding paper draws larger lessons from the insights gained throughout the assessment process that are of significance to future US and international assessment designers. We bring attention to process and products delivered, communication and engagement efforts, and how they contributed to the sustained assessment. Based on areas where expectations were exceeded or not fully met, we address four common tensions that all assessment designers must confront and manage: between (1) core assessment ingredients (knowledge base, institutional set-up, principled process, and the people involved), (2) national scope and subnational adaptive management information needs, (3) scope, complexity, and manageability, and (4) deliberate evaluation and ongoing learning approaches. Managing these tensions, amidst the social and political contexts in which assessments are conducted, is critical to ensure that assessments are feasible and productive, while its outcomes are perceived as credible, salient, and legitimate.

  9. Variably male-biased sex ratio in a marine bird with females larger than males.

    PubMed

    Torres, R; Drummond, H

    1999-01-01

    When the costs of rearing males and females differ progeny sex ratios are expected to be biased toward the less expensive sex. Blue-footed booby (Sula nebouxii) females are larger and roughly 32% heavier than males, thus presumably more costly to rear. We recorded hatching and fledging sex ratios in 1989, and fledging sex ratios during the next 5 years. In 1989, the sample of 751 chicks showed male bias at hatching (56%) and at fledging (57% at 90 days). Fledging sex ratios during the five subsequent reproductive seasons were at unity (1 year) or male-biased, varying from 56% to 70%. Male bias was greater during years when mean sea surface temperature was warmer and food was presumably in short supply. During two warm-water years (only) fledging sex ratio varied with hatching date. Proportions of male fledglings increased with date from 0.48 to 0.73 in 1994, and from 0.33 to 0.79 in 1995. Similar results were obtained when the analysis was repeated using only broods with no nestling mortality, suggesting that the overall increase in the proportion of males over the season was the result of sex ratio adjustments at hatching. The male-biased sex ratio, and the increased male bias during poor breeding conditions supports the idea that daughters may be more costly than sons, and that their relative cost increases in poor conditions. PMID:20135156

  10. The Visual Analysis of Visual Metaphor.

    ERIC Educational Resources Information Center

    Dake, Dennis M.; Roberts, Brian

    This paper presents an approach to understanding visual metaphor which uses metaphoric analysis and comprehension by graphic and pictorial means. The perceptible qualities of shape, line, form, color, and texture, that make up the visual structure characteristic of any particular shape, configuration, or scene, are called physiognomic properties;…

  11. A Visual Test for Visual "Literacy."

    ERIC Educational Resources Information Center

    Messaris, Paul

    Four different principles of visual manipulation constitute a minimal list of what a visually "literate" viewer should know about, but certain problems exist which are inherent in measuring viewers' awareness of each of them. The four principles are: (1) paraproxemics, or camera work which derives its effectiveness from an analogy to the…

  12. Visualizer cognitive style enhances visual creativity.

    PubMed

    Palmiero, Massimiliano; Nori, Raffaella; Piccardi, Laura

    2016-02-26

    In the last two decades, interest towards creativity has increased significantly since it was recognized as a skill and as a cognitive reserve and is now always more frequently used in ageing training. Here, the relationships between visual creativity and Visualization-Verbalization cognitive style were investigated. Fifty college students were administered the Creative Synthesis Task aimed at measuring the ability to construct creative objects and the Visualization-Verbalization Questionnaire (VVQ) aimed at measuring the attitude to preferentially use either imagery or verbal strategy while processing information. Analyses showed that only the originality score of inventions was positively predicted by the VVQ score: higher VVQ score (indicating the preference to use imagery) predicted originality of inventions. These results showed that the visualization strategy is involved especially in the originality dimension of creative objects production. In light of neuroimaging results, the possibility that different strategies, such those that involve motor processes, affect visual creativity is also discussed. PMID:26806864

  13. Visualizing the Connections in the EXFOR Database

    SciTech Connect

    Brown, D.A.

    2014-06-15

    The EXFOR database contains many datasets (over 6160) in which the measured values are reaction combinations, which means that they are not an absolute measurement of an experimental quantity. Rather, they are ratios of quantities, sums of quantities, or some other mathematical relation of experimental quantities. These reaction combinations couple large numbers of data sets together in non-trivial ways. Here a visualization is presented of the coupled data used to derive cross material covariances for the COMMARA-3 library. Links are provided to other larger visualizations on the NNDC website.

  14. Visual Search of Mooney Faces

    PubMed Central

    Goold, Jessica E.; Meng, Ming

    2016-01-01

    Faces spontaneously capture attention. However, which special attributes of a face underlie this effect is unclear. To address this question, we investigate how gist information, specific visual properties and differing amounts of experience with faces affect the time required to detect a face. Three visual search experiments were conducted investigating the rapidness of human observers to detect Mooney face images. Mooney images are two-toned, ambiguous images. They were used in order to have stimuli that maintain gist information but limit low-level image properties. Results from the experiments show: (1) Although upright Mooney faces were searched inefficiently, they were detected more rapidly than inverted Mooney face targets, demonstrating the important role of gist information in guiding attention toward a face. (2) Several specific Mooney face identities were searched efficiently while others were not, suggesting the involvement of specific visual properties in face detection. (3) By providing participants with unambiguous gray-scale versions of the Mooney face targets prior to the visual search task, the targets were detected significantly more efficiently, suggesting that prior experience with Mooney faces improves the ability to extract gist information for rapid face detection. However, a week of training with Mooney face categorization did not lead to even more efficient visual search of Mooney face targets. In summary, these results reveal that specific local image properties cannot account for how faces capture attention. On the other hand, gist information alone cannot account for how faces capture attention either. Prior experience facilitates the effect of gist on visual search of faces; making faces a special object category for guiding attention. PMID:26903941

  15. Effect of experimental scotoma size and shape on the binocular and monocular pattern visual evoked potential.

    PubMed

    Geer, I; Spafford, M M

    1994-01-01

    A small experimental, central scotoma significantly attenuates the human pattern visual evoked potential. The steady-state pattern visual evoked potential was recorded from seven visually normal adults who viewed a reversing checkerboard with 24' checks and a central scotoma that varied in size and shape. We found that square scotomas had to be at least 3 x 3 degrees to significantly (p < 0.05) attenuate the pattern visual evoked potential. Receptor density has been shown to be greater along the horizontal meridian than the vertical meridian. We hypothesized that this results in greater cortical representation of the horizontal meridian than the vertical meridian and, therefore, the pattern visual evoked potential might be significantly attenuated by a smaller rectangular scotoma oriented along the horizontal meridian than along the vertical meridian. One dimension of the rectangular scotoma was fixed at either 1 degree or 3 degrees, while the other dimension was varied from 1 degree to 8 degrees. The threshold scotoma size that significantly (p < 0.05) attenuated the pattern visual evoked potential was a horizontal scotoma subtending 1 x 4 degrees and a vertical scotoma subtending 5 x 1 degree (vertical x horizontal). Meridional differences in cortical representation were not apparent to the larger scotoma series in which the fixed dimension subtended 3 degrees (3 x 2 degrees and 2 x 3 degrees). Further analysis of the data revealed that the apparent meridional difference for the 1 degree scotoma series was a function of data variability. The determinant of the PVEP amplitude was scotoma area, not orientation. Monocular and binocular threshold scotoma sizes were the same, which could be due to the level of binocular summation demonstrated by our subjects. PMID:7813381

  16. Visual analysis and exploration of complex corporate shareholder networks

    NASA Astrophysics Data System (ADS)

    Tekušová, Tatiana; Kohlhammer, Jörn

    2008-01-01

    The analysis of large corporate shareholder network structures is an important task in corporate governance, in financing, and in financial investment domains. In a modern economy, large structures of cross-corporation, cross-border shareholder relationships exist, forming complex networks. These networks are often difficult to analyze with traditional approaches. An efficient visualization of the networks helps to reveal the interdependent shareholding formations and the controlling patterns. In this paper, we propose an effective visualization tool that supports the financial analyst in understanding complex shareholding networks. We develop an interactive visual analysis system by combining state-of-the-art visualization technologies with economic analysis methods. Our system is capable to reveal patterns in large corporate shareholder networks, allows the visual identification of the ultimate shareholders, and supports the visual analysis of integrated cash flow and control rights. We apply our system on an extensive real-world database of shareholder relationships, showing its usefulness for effective visual analysis.

  17. The 'Natural Laboratory', a tool for deciphering growth, lifetime and population dynamics in larger benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Hohenegger, Johann

    2015-04-01

    The shells of symbiont-bearing larger benthic Foraminifera (LBF) represent the response to physiological requirements in dependence of environmental conditions. All compartments of the shell such as chambers and chamberlets accommodate the growth of the cell protoplasm and are adaptations for housing photosymbiotic algae. Investigations on the biology of LBF were predominantly based on laboratory studies. The lifetime of LBF under natural conditions is still unclear. LBF, which can build >100 chambers during their lifetime, are thought to live at least one year under natural conditions. This is supported by studies on population dynamics of eulittoral foraminifera. In species characterized by a time-restricted single reproduction period the mean size of specimens increases from small to large during lifetime simultaneously reducing individual number. This becomes more complex when two or more reproduction times are present within a one-year cycle leading to a mixture of abundant small individuals with few large specimens during the year, while keeping mean size more or less constant. This mixture is typical for most sublittoral megalospheric (gamonts or schizonts) LBF. Nothing is known on the lifetime of agamonts, the diploid asexually reproducing generation. In all hyaline LBF it is thought to be significantly longer than 1 year based on the large size and considering the mean chamber building rate of the gamont/schizonts. Observations on LBF under natural conditions have not been performed yet in the deeper sublittoral. This reflects the difficulties due to intense hydrodynamics that hinder deploying technical equipment for studies in the natural environment. Therefore, studying growth, lifetime and reproduction of sublittoral LBF under natural conditions can be performed using the so-called 'natural laboratory' in comparison with laboratory investigations. The best sampling method in the upper sublittoral from 5 to 70 m depth is by SCUBA diving. Irregular

  18. The phylogenetic and palaeographic evolution of the miogypsinid larger benthic foraminifera

    NASA Astrophysics Data System (ADS)

    BouDagher-Fadel, M. K.

    2012-04-01

    The phylogenetic and palaeographic evolution of the miogypsinid larger benthic foraminifera MARCELLE K. BOUDAGHER-FADEL AND G. DAVID PRICE Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK One of the notable features of the Oligocene oceans was the appearance in Tethys of American lineages of larger benthic foraminifera, including the miogypsinids. They were reef-forming, and became very widespread and diverse, and so they play an important role in defining the Late Paleogene and Early Neogene biostratigraphy of the carbonates of the Mediterranean and the Indo-Pacific Tethyan sub-provinces. Until now, however, it has not been possible to develop an effective global view of the evolution of the miogypsinids, as the descriptions of specimens from Africa were rudimentary, and the stratigraphic ranges of genera of Tethyan forms appear to be highly dependent on palaeography. Our recent work, however, now enables a first systematic and biostratigraphic comparison of the miogypsinids from the Tethyan sub-provinces of the Mediterranean-West Africa and the Indo-Pacific, and can show for the first time that South Africa forms a new distinct bio-province. We infer that sea level, tectonic and climatic changes determined and constrained in turn the palaeogeographic distribution, evolution and eventual extinctions of the miogypsinid. The global sea level regressions in the Early Oligocene facilitated the trans-Atlantic migration of Neorotalia and miogypsinids from the Americas. This eastward migration followed two, distinct, unidirectional dispersals. One dispersal route was to the south towards South Africa, where a distinct phylogenetic lineage, similar to their American ancestors, was found in the Burdigalian. They became extinct together with their American ancestors, at the end of the Burdigalian; a time that coincided with a major global transgressions, circulation changes on closure of Panama and the major eruption of the

  19. PALEOBIOLOGICAL APPLICATIONS OF THREE-DIMENSIONAL BIOMETRY ON LARGER BENTHIC FORAMINIFERA: A NEW ROUTE OF DISCOVERIES

    PubMed Central

    Briguglio, Antonino; Hohenegger, Johann; Less, György

    2015-01-01

    Four specimens of larger benthic foraminifera (the Recent Palaeonummulites venosus and Operculina ammonoides, and the phylogenetically related Paleogene Nummulites fabianii and N. fichteli) were investigated by X-ray tomography. The resulting three-dimensional measurements enabled a comprehensive, quantitative study of shell morphology to interpret cell growth without specific shell preparation and/or destruction. After segmentation and extraction of all scanned lumina, the following characters were measured on all chambers of each specimen: chamber volume, septal distance, chamber height, and chamber width. The sequence of chamber lumina follows either a logistic function (Palaeonummulites, Operculina), where the deceleration in growth rate of the latest chambers could mark the onset of reproduction, or it can be modeled by a series of stepwise functions with differing constants (Nummulites). Variations around the growth model are either periodic, following external cycles, or random as expressed by abrupt deviations. Therefore, they may reflect the response of the cell to environmental changes in terms of cyclic changes (e.g., seasonality) or single events (e.g., predator attack). Correlations between chamber volume and the other chamber parameters show that septal distance always matches the sequence in chamber volume and can therefore be used as a proxy for environmental analyses in both growth models. Chamber height and width often remain constant around their function and rarely deviate drastically to accommodate the needed lumen for retaining test size and shape. Chamber width may vary according to chamber volume in involute specimens, whereas both chamber height and width correlate with volume in those tests following an Archimedean spiral. X-ray-tomography shows particular promise in determining which parameters that can be assessed routinely in two dimensions primarily reflect environmental conditions vs. parameters best used for taxonomic identification

  20. Weapons Make the Man (Larger): Formidability Is Represented as Size and Strength in Humans

    PubMed Central

    Fessler, Daniel M. T.; Holbrook, Colin; Snyder, Jeffrey K.

    2012-01-01

    In order to determine how to act in situations of potential agonistic conflict, individuals must assess multiple features of a prospective foe that contribute to the foe's resource-holding potential, or formidability. Across diverse species, physical size and strength are key determinants of formidability, and the same is often true for humans. However, in many species, formidability is also influenced by other factors, such as sex, coalitional size, and, in humans, access to weaponry. Decision-making involving assessments of multiple features is enhanced by the use of a single summary variable that encapsulates the contributions of these features. Given both a) the phylogenetic antiquity of the importance of size and strength as determinants of formidability, and b) redundant experiences during development that underscore the contributions of size and strength to formidability, we hypothesize that size and strength constitute the conceptual dimensions of a representation used to summarize multiple diverse determinants of a prospective foe's formidability. Here, we test this hypothesis in humans by examining the effects of a potential foe's access to weaponry on estimations of that individual's size and strength. We demonstrate that knowing that an individual possesses a gun or a large kitchen knife leads observers to conceptualize him as taller, and generally larger and more muscular, than individuals who possess only tools or similarly mundane objects. We also document that such patterns are not explicable in terms of any actual correlation between gun ownership and physical size, nor can they be explained in terms of cultural schemas or other background knowledge linking particular objects to individuals of particular size and strength. These findings pave the way for a fuller understanding of the evolution of the cognitive systems whereby humans – and likely many other social vertebrates – navigate social hierarchies. PMID:22509247

  1. Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements

    SciTech Connect

    Edelman, I.; Ivanova, O.; Ivantsov, R.; Velikanov, D.; Zabluda, V.; Zubavichus, Y.; Veligzhanin, A.; Zaikovskiy, V.; Stepanov, S.; Artemenko, A.; Curely, J.; Kliava, J.

    2012-10-15

    A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge structure, and small-angle x-ray scattering, show a broad distribution of nanoparticle sizes with characteristics depending on the treatment regime; a crystalline structure of these nanoparticles is detected in heat treated samples. Magnetic circular dichroism (MCD) studies of samples subjected to heat treatment as well as of maghemite, magnetite, and iron garnet allow to unambiguously assign the nanoparticle structure to maghemite, independently of co-dopant nature and of heat treatment regime used. Different features observed in the MCD spectra are related to different electron transitions in Fe{sup 3+} ions gathered in the nanoparticles. The static magnetization in heat treated samples has non-linear dependence on the magnetizing field with hysteresis. Zero-field cooled magnetization curves show that at higher temperatures the nanoparticles occur in superparamagnetic state with blocking temperatures above 100 K. Below ca. 20 K, a considerable contribution to both zero field-cooled and field-cooled magnetizations occurs from diluted paramagnetic ions. Variable-temperature electron magnetic resonance (EMR) studies unambiguously show that in as-prepared glasses paramagnetic ions are in diluted state and confirm the formation of magnetic nanoparticles already at earlier stages of heat treatment. Computer simulations of the EMR spectra corroborate the broad distribution of nanoparticle sizes found by 'direct' techniques as well as superparamagnetic nanoparticle behaviour demonstrated in the magnetization

  2. Recruitment-dance signals draw larger audiences when honey bee colonies have multiple patrilines

    PubMed Central

    Mattila, H. R.; Seeley, T. D.

    2010-01-01

    Honey bee queens (Apis mellifera) who mate with multiple males produce colonies that are filled with numerous genetically distinct patrilines of workers. A genetically diverse colony benefits from an enhanced foraging effort, fuelled in part by an increase in the number of recruitment signals that are produced by foragers. However, the influence of patriline diversity on the attention paid to these signals by audiences of potentially receptive workers remains unexplored. To determine whether recruitment dances performed by foragers in multiple-patriline colonies attract a greater number of dance followers than dances in colonies that lack patriline diversity, we trained workers from multiple- and single-patriline colonies to forage in a greenhouse and monitored their dance-following activity back in the hives. On average, more workers followed a dance if it was performed in a multiple-patriline colony rather than a single-patriline colony (33% increase), and for a greater number of dance circuits per follower. Furthermore, dance-following workers in multiple-patriline colonies were more likely to exit their hive after following a dance, although this did not translate to a difference in colony-level exit rates between treatment types. Recruiting nest mates to profitable food sources through dance communication is critical to a colony’s foraging success and long-term fitness; polyandrous queens produce colonies that benefit not only from increased recruitment signalling, but also from the generation of larger and more attentive audiences of signal receivers. This study highlights the importance of integrating responses of both signal senders and receivers to understand more fully the success of animal-communication systems. PMID:21350596

  3. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities

    SciTech Connect

    2013-03-01

    To accomplish Federal goals for renewable energy, sustainability, and energy security, large-scale renewable energy projects must be developed and constructed on Federal sites at a significant scale with significant private investment. For the purposes of this Guide, large-scale Federal renewable energy projects are defined as renewable energy facilities larger than 10 megawatts (MW) that are sited on Federal property and lands and typically financed and owned by third parties.1 The U.S. Department of Energy’s Federal Energy Management Program (FEMP) helps Federal agencies meet these goals and assists agency personnel navigate the complexities of developing such projects and attract the necessary private capital to complete them. This Guide is intended to provide a general resource that will begin to develop the Federal employee’s awareness and understanding of the project developer’s operating environment and the private sector’s awareness and understanding of the Federal environment. Because the vast majority of the investment that is required to meet the goals for large-scale renewable energy projects will come from the private sector, this Guide has been organized to match Federal processes with typical phases of commercial project development. FEMP collaborated with the National Renewable Energy Laboratory (NREL) and professional project developers on this Guide to ensure that Federal projects have key elements recognizable to private sector developers and investors. The main purpose of this Guide is to provide a project development framework to allow the Federal Government, private developers, and investors to work in a coordinated fashion on large-scale renewable energy projects. The framework includes key elements that describe a successful, financially attractive large-scale renewable energy project. This framework begins the translation between the Federal and private sector operating environments. When viewing the overall

  4. Microwaves create larger ablations than radiofrequency when controlled for power in ex vivo tissue

    PubMed Central

    Andreano, A.; Huang, Yu; Meloni, M. Franca; Lee, Fred T.; Brace, Christopher

    2010-01-01

    Purpose: To compare ablation zones created with equal amounts of 2.45 GHz microwave and 480 kHz radiofrequency (RF) energy in ex vivo liver and lung. Methods: A total of 38 ablations were performed in ex vivo liver and lung for 10 min each. Nineteen RF ablations (nine liver, ten lung) were performed with a 480 kHz system (200 W max, impedance-based pulsing) and cooled electrode while measuring the average RF power applied. Nineteen microwave ablations (nine liver, ten lung) were then created using a cooled triaxial antenna to deliver 2.45 GHz at the same power level as in RF experiments. Ablation zones were then sectioned and measured for minimum, maximum and mean diameters, and circularity. Measurements were compared using t-tests, with P<0.05 indicating statistical significance. Results: Mean diameters of microwave ablations were greater than RF ablations in both liver and lung (4.4±0.3 vs 3.3±0.2 cm in liver; 2.45±0.3 vs 1.6±0.5 cm in lungs; P<0.0005 all comparisons). There was no significant difference in the mean power applied during microwave or RF ablations in either organ (54.44±1.71 W vs 56.4±6.7 W in liver, P>0.05; 40±0.95 W vs 44.9±7.1 W in lung, P>0.05). Conclusions: Using a single cooled applicator, microwave energy at 2.45 GHz produces larger ablations than an equivalent amount of 480 kHz RF energy in normal liver and lung. This was more apparent in lung, likely due to the high baseline impedance which limits RF, but not microwave power delivery. PMID:20632609

  5. Low Concentrations of Methamphetamine Can Protect Dopaminergic Cells against a Larger Oxidative Stress Injury: Mechanistic Study

    PubMed Central

    El Ayadi, Amina; Zigmond, Michael J.

    2011-01-01

    Mild stress can protect against a larger insult, a phenomenon termed preconditioning or tolerance. To determine if a low intensity stressor could also protect cells against intense oxidative stress in a model of dopamine deficiency associated with Parkinson disease, we used methamphetamine to provide a mild, preconditioning stress, 6-hydroxydopamine (6-OHDA) as a source of potentially toxic oxidative stress, and MN9D cells as a model of dopamine neurons. We observed that prior exposure to subtoxic concentrations of methamphetamine protected these cells against 6-OHDA toxicity, whereas higher concentrations of methamphetamine exacerbated it. The protection by methamphetamine was accompanied by decreased uptake of both [3H] dopamine and 6-OHDA into the cells, which may have accounted for some of the apparent protection. However, a number of other effects of methamphetamine exposure suggest that the drug also affected basic cellular survival mechanisms. First, although methamphetamine preconditioning decreased basal pERK1/2 and pAkt levels, it enhanced the 6-OHDA-induced increase in these phosphokinases. Second, the apparent increase in pERK1/2 activity was accompanied by increased pMEK1/2 levels and decreased activity of protein phosphatase 2. Third, methamphetamine upregulated the pro-survival protein Bcl-2. Our results suggest that exposure to low concentrations of methamphetamine cause a number of changes in dopamine cells, some of which result in a decrease in their vulnerability to subsequent oxidative stress. These observations may provide insights into the development of new therapies for prevention or treatment of PD. PMID:22022363

  6. Test flattening in the larger foraminifer Heterostegina depressa: predicting bathymetry from axial sections

    NASA Astrophysics Data System (ADS)

    Eder, Wolfgang; Hohenegger, Johann; Kinoshita, Shunichi; Wöger, Julia; Briguglio, Antonino

    2016-04-01

    . This might enable us to better reconstruct palaeonenvironments of fossil larger foraminiferal communities or even give a hint on the degree of transport in allochtonous deposits.

  7. Weapons make the man (larger): formidability is represented as size and strength in humans.

    PubMed

    Fessler, Daniel M T; Holbrook, Colin; Snyder, Jeffrey K

    2012-01-01

    In order to determine how to act in situations of potential agonistic conflict, individuals must assess multiple features of a prospective foe that contribute to the foe's resource-holding potential, or formidability. Across diverse species, physical size and strength are key determinants of formidability, and the same is often true for humans. However, in many species, formidability is also influenced by other factors, such as sex, coalitional size, and, in humans, access to weaponry. Decision-making involving assessments of multiple features is enhanced by the use of a single summary variable that encapsulates the contributions of these features. Given both a) the phylogenetic antiquity of the importance of size and strength as determinants of formidability, and b) redundant experiences during development that underscore the contributions of size and strength to formidability, we hypothesize that size and strength constitute the conceptual dimensions of a representation used to summarize multiple diverse determinants of a prospective foe's formidability. Here, we test this hypothesis in humans by examining the effects of a potential foe's access to weaponry on estimations of that individual's size and strength. We demonstrate that knowing that an individual possesses a gun or a large kitchen knife leads observers to conceptualize him as taller, and generally larger and more muscular, than individuals who possess only tools or similarly mundane objects. We also document that such patterns are not explicable in terms of any actual correlation between gun ownership and physical size, nor can they be explained in terms of cultural schemas or other background knowledge linking particular objects to individuals of particular size and strength. These findings pave the way for a fuller understanding of the evolution of the cognitive systems whereby humans--and likely many other social vertebrates--navigate social hierarchies. PMID:22509247

  8. Vision and Visual Comfort

    ERIC Educational Resources Information Center

    Carl, David

    1977-01-01

    Visual comfort and legibility are not the same thing. Visual comfort is the light brightness range between glare and insufficient light. Eye adjustment to changing light levels is described. (Author/STS)

  9. Visualizing Knowledge Domains.

    ERIC Educational Resources Information Center

    Borner, Katy; Chen, Chaomei; Boyack, Kevin W.

    2003-01-01

    Reviews visualization techniques for scientific disciplines and information retrieval and classification. Highlights include historical background of scientometrics, bibliometrics, and citation analysis; map generation; process flow of visualizing knowledge domains; measures and similarity calculations; vector space model; factor analysis;…

  10. Visual event-related potential studies supporting the validity of VARK learning styles' visual and read/write learners.

    PubMed

    Thepsatitporn, Sarawin; Pichitpornchai, Chailerd

    2016-06-01

    The validity of learning styles needs supports of additional objective evidence. The identification of learning styles using subjective evidence from VARK questionnaires (where V is visual, A is auditory, R is read/write, and K is kinesthetic) combined with objective evidence from visual event-related potential (vERP) studies has never been investigated. It is questionable whether picture superiority effects exist in V learners and R learners. Thus, the present study aimed to investigate whether vERP could show the relationship between vERP components and VARK learning styles and to identify the existence of picture superiority effects in V learners and R learners. Thirty medical students (15 V learners and 15 R learners) performed recognition tasks with vERP and an intermediate-term memory (ITM) test. The results of within-group comparisons showed that pictures elicited larger P200 amplitudes than words at the occipital 2 site (P < 0.05) in V learners and at the occipital 1 and 2 sites (P < 0.05) in R learners. The between-groups comparison showed that P200 amplitudes elicited by pictures in V learners were larger than those of R learners at the parietal 4 site (P < 0.05). The ITM test result showed that a picture set showed distinctively more correct responses than that of a word set for both V learners (P < 0.001) and R learners (P < 0.01). In conclusion, the result indicated that the P200 amplitude at the parietal 4 site could be used to objectively distinguish V learners from R learners. A lateralization existed to the right brain (occipital 2 site) in V learners. The ITM test demonstrated the existence of picture superiority effects in both learners. The results revealed the first objective electrophysiological evidence partially supporting the validity of the subjective psychological VARK questionnaire study. PMID:27105739

  11. Orienting attention to visual or verbal/auditory imagery differentially impairs the processing of visual stimuli.

    PubMed

    Villena-González, Mario; López, Vladimir; Rodríguez, Eugenio

    2016-05-15

    When attention is oriented toward inner thoughts, as spontaneously occurs during mind wandering, the processing of external information is attenuated. However, the potential effects of thought's content regarding sensory attenuation are still unknown. The present study aims to assess if the representational format of thoughts, such as visual imagery or inner speech, might differentially affect the sensory processing of external stimuli. We recorded the brain activity of 20 participants (12 women) while they were exposed to a probe visual stimulus in three different conditions: executing a task on the visual probe (externally oriented attention), and two conditions involving inward-turned attention i.e. generating inner speech and performing visual imagery. Event-related potentials results showed that the P1 amplitude, related with sensory response, was significantly attenuated during both task involving inward attention compared with external task. When both representational formats were compared, the visual imagery condition showed stronger attenuation in sensory processing than inner speech condition. Alpha power in visual areas was measured as an index of cortical inhibition. Larger alpha amplitude was found when participants engaged in an internal thought contrasted with the external task, with visual imagery showing even more alpha power than inner speech condition. Our results show, for the first time to our knowledge, that visual attentional processing to external stimuli during self-generated thoughts is differentially affected by the representational format of the ongoing train of thoughts. PMID:26876471

  12. Visual limitations shape audio-visual integration.

    PubMed

    Pérez-Bellido, Alexis; Ernst, Marc O; Soto-Faraco, Salvador; López-Moliner, Joan

    2015-01-01

    Recent studies have proposed that some cross-modal illusions might be expressed in what were previously thought of as sensory-specific brain areas. Therefore, one interesting question is whether auditory-driven visual illusory percepts respond to manipulations of low-level visual attributes (such as luminance or chromatic contrast) in the same way as their nonillusory analogs. Here, we addressed this question using the double flash illusion (DFI), whereby one brief flash can be perceived as two when combined with two beeps presented in rapid succession. Our results showed that the perception of two illusory flashes depended on luminance contrast, just as the temporal resolution for two real flashes did. Specifically we found that the higher the luminance contrast, the stronger the DFI. Such a pattern seems to contradict what would be predicted from a maximum likelihood estimation perspective, and can be explained by considering that low-level visual stimulus attributes similarly modulate the perception of sound-induced visual phenomena and "real" visual percepts. This finding provides psychophysical support for the involvement of sensory-specific brain areas in the expression of the DFI. On the other hand, the addition of chromatic contrast failed to produce a change in the strength of the DFI despite it improved visual sensitivity to real flashes. The null impact of chromaticity on the cross-modal illusion might suggest a weaker interaction of the parvocellular visual pathway with the auditory system for cross-modal illusions. PMID:26462174

  13. Visual Channel Problems.

    ERIC Educational Resources Information Center

    Mann, Philip H.; Suiter, Patricia A.

    This teacher training module classifies visual channel problems into the following four main areas: visual perception, revisualization (memory), visual-motor (eye-hand coordination), and ocular-motor tasks. Specific deficits are listed under these main headings, behaviors are given to help identify the problem, and ways to improve the condition…

  14. ESnet Visualization Widgets

    Energy Science and Technology Software Center (ESTSC)

    2012-07-01

    The ESnet Visualization widgets are various data visualization widgets for use in web browsers to aid in the visualization of computer networks. In particular the widgets are targetted at displaying timeseries and topology data. They were developed for use in the MyESnet portal but are general enough to be used other places. The widgets are built using the d3.js library.

  15. Realistic and Schematic Visuals.

    ERIC Educational Resources Information Center

    Heuvelman, Ard

    1996-01-01

    A study examined three different visual formats (studio presenter only, realistic visuals, or schematic visuals) of an educational television program. Recognition and recall of the abstract subject matter were measured in 101 adult viewers directly after the program and 3 months later. The schematic version yielded better recall of the program,…

  16. Is VIRTU4L larger than VIR7UAL? Automatic processing of number quantity and lexical representations in leet words.

    PubMed

    García-Orza, Javier; Comesaña, Montserrat; Piñeiro, Ana; Soares, Ana Paula; Perea, Manuel

    2016-06-01

    Recent research has shown that leet words (i.e., words in which some of the letters are replaced by visually similar digits; e.g., VIRTU4L) can be processed as their base words without much cost. However, it remains unclear whether the digits inserted in leet words are simply processed as letters or whether they are simultaneously processed as numbers (i.e., in terms of access to their quantity representation). To address this question, we conducted 2 experiments that examined the size congruity effect (i.e., when comparisons of the physical size of numbers are affected by their numerical magnitudes) in a physical-size judgment task. Participants were presented with pairs of leet words that were nominally identical except for the embedded digit (e.g., VIR7UAL-VIRTU4L) and were asked to decide as quickly and accurately as possible which word in the pair appeared in a bigger font. In Experiment 1, we examined the congruity effect (congruent: VIRTU4L-VIR7UAL vs. incongruent: VIR7UAL-VIRTU4L vs. neutral: VIR7UAL-VIR7UAL) and the numerical distance effect (distance 1: PAN3L-P4NEL vs. distance 3: VIRTU4L-VIR7UAL). To examine whether the meaning of these words was accessed, we also manipulated word frequency (i.e., a marker of lexical access) in Experiment 2. Results revealed effects of congruity, distance, and word frequency, thus suggesting automatic access to both number quantity and word representations for leet words. These findings favor multidimensional accounts of number/word recognition. (PsycINFO Database Record PMID:26641447

  17. Three dimensional morphological studies of Larger Benthic Foraminifera at the population level using micro computed tomography

    NASA Astrophysics Data System (ADS)

    Kinoshita, Shunichi; Eder, Wolfgang; Woeger, Julia; Hohenegger, Johann; Briguglio, Antonino; Ferrandez-Canadell, Carles

    2015-04-01

    Symbiont-bearing larger benthic Foraminifera (LBF) are long-living marine (at least 1 year), single-celled organisms with complex calcium carbonate shells. Their morphology has been intensively studied since the middle of the nineteenth century. This led to a broad spectrum of taxonomic results, important from biostratigraphy to ecology in shallow water tropical to warm temperate marine palaeo-environments. However, it was necessary for the traditional investigation methods to cut or destruct specimens for analysing the taxonomically important inner structures. X-ray micro-computed tomography (microCT) is one of the newest techniques used in morphological studies. The greatest advantage is the non-destructive acquisition of inner structures. Furthermore, the running improve of microCT scanners' hard- and software provides high resolution and short time scans well-suited for LBF. Three-dimensional imaging techniques allow to select and extract each chamber and to measure easily its volume, surface and several form parameters used for morphometric analyses. Thus, 3-dimensional visualisation of LBF-tests is a very big step forward from traditional morphology based on 2-dimensional data. The quantification of chamber form is a great opportunity to tackle LBF structures, architectures and the bauplan geometry. The micrometric digital resolution is the only way to solve many controversies in phylogeny and evolutionary trends of LBF. For the present study we used micro-computed tomography to easily investigate the chamber number of every specimen from statistically representative part of populations to estimate population dynamics. Samples of living individuals are collected at monthly intervals from fixed locations. Specific preparation allows to scan up to 35 specimens per scan within 2 hours and to obtain the complete digital dataset for each specimen of the population. MicroCT enables thus a fast and precise count of all chambers built by the foraminifer from its

  18. Can We Prevent a Postoperative Spinal Epidural Hematoma by Using Larger Diameter Suction Drains?

    PubMed Central

    Kim, Jin Hak; Chang, Byung Kwon; Lee, Jae Il

    2016-01-01

    Background Epidural hematoma is a rare but serious complication. According to previous studies, it is not prevented by suction drains. This study evaluated the following alternative hypothesis: the larger the diameter of a suction drain, the less the remaining epidural hematoma after spinal surgery. Methods This was a randomized prospective study. Patients who underwent posterior lumbar decompression and instrumented fusion were divided into two groups: the large drain (LD, 2.8-mm-diameter tube) and small drain (SD, 1.6-mm-diameter tube) groups according to the diameter of the suction drains. All patients were consecutive and allocated alternately according to the date of operations. Suction drains were removed on day 3 and magnetic resonance imaging was performed on day 7 postoperatively. The size of remaining hematomas was measured by the degree of thecal sac compression in cross section using the following 4-point numeric scale: G1, less than one quarter; G2, between one quarter and half; G3, more than half; and G4, more than subtotal obstruction. Results There were 39 patients with LDs and 38 with SDs. They did not differ significantly in terms of sex, number of fusion segments, revision or not, antiplatelet medication, intraoperative injection of tranexamic acid. However, patient age differed significantly between the two groups (LD, 63.3 years and < SD, 68.6 years; p = 0.007). The two groups did not differ significantly in terms of prothrombin time, activated partial thromboplastin time, platelet number, blood loss, or operation duration. However, platelet function analysis exhibited a significant difference (LD, 164.7 seconds and < SD, 222.3 seconds; p = 0.002). The two blinded readers showed high consistency (Kappa value = 0.740; p = 0.000). The results of reader 1 were as follows: LD and SD had 21 and 21 cases of G1, 9 and 11 cases of G2, 6 and 6 cases of G3, and 3 and 0 cases of G4, respectively. The results of reader 2 were as follows: LD and SD had 22

  19. Why do oceanic negative cloud-to-ground lightning exhibit larger peak current values?

    NASA Astrophysics Data System (ADS)

    Chronis, T.; Koshak, W.; McCaul, E.

    2016-04-01

    This study examines the temporal (monthly) and spatial climatology (2004-2010) of the first return stroke of the cloud-to-ground (CG) lightning flash peak current (Ip) across various land/water boundaries over the contiguous United States. Four regions are examined: the Gulf of Mexico (region 1), the Florida peninsula (region 2), Lake Michigan (region 3), and part of the U.S. Mid-Atlantic (region 4). The crosss across the coastlines of regions 1, 2, and 4 show a gradual oceanward increase in the mean negative polarity CG peak current values (-Ip). This transition along the respective land/ocean boundaries is not sharp but gradual. In direct contrast with ocean, there is no consistent behavior in -Ip values as we move from land out across the fresh water of Lake Michigan (region 3). Meanwhile, the positive CG flash peak current (+Ip) values do not exhibit a consistent variation across any coastal boundary. For region 1, the -Ip values increase as we move toward the coast (southwards) especially during the wet season (June-October). This finding is in direct contrast with studies that documented winter as the season of maximum -Ip values. The zonal and seasonal variations of -Ip values across region 4 are not quite as pronounced, but the oceanic -Ip values are still larger than over the adjoining landmass. We explore in turn which up to date hypotheses pertinent to the oceanic -Ip enhancement are supported or refuted by our findings. It is concluded that the oceanic -Ip enhancement is not an artifact related to CG detection or Ip retrieval methods, nor is it likely related to the cloud top heights or CG activity. The study cannot refute the role of electrical conductivity and its contribution to CG leader attachment processes. However, given the observed "blurred transition" of the Ip values across the coastlines this paper suggests that likely the main physical mechanism is acting on the thundercloud potential. The recently suggested role of sodium chloride (Na

  20. Oscillatory growth in Larger Benthic Foraminifera: problems, interpretations and possible solutions.

    NASA Astrophysics Data System (ADS)

    Briguglio, Antonino; Eder, Wolfgang; Woeger, Julia; Kinoshita, Shunichi; Ferrandez-Canadell, Carles; Hohenegger, Johann

    2015-04-01

    The possibility to investigate cell growth and its oscillations through time in Larger Benthic Foraminifera (LBF) by means of Micro Computed Tomography (microCT) is a recent and well known methodology. However, the search for factors of oscillations around undisturbed growth - the latter can be modelled by theoretical growth functions (e.g. Gompertz and generalized logistic growth function) - is hampered by a number of factors which have been recently discovered and not yet published. Cycles are obtained based on a mean chamber building rate gained from specimens cultured in the laboratory because punctual data available in the literature are too incomplete to gain a more realistic growth model. The mean chamber building rate can be also modeled (e.g. Power-, Michaelis-Menten- and Bertallanffy function). The periodicity of the cycles observed in LBF is mostly concentrated around a prominent 29 to 30 days cycle. Other cycles, proportions and multiples of this dominant cycle are common, but probably should be considered as calculation effects in case of their inconsistency. The 30 days cycles are present in almost all specimens investigated, which may be a hint to a correlation between cell growth and the light intensity variation of lunar cycles, which can affect the photosynthetic activity of the endosymbionts in LBF tests. However, this correlation is challenged by a number of issues, which need to be further investigated. One of these problems is represented by the recent discovery of similar cycles in LBF tests, which have been laboratory-cultured and should therefore not show any environmental effects. A focused analysis of growth cycles observed in these laboratory tests showed that even if the periods are constant and significant at 30 days, their phases show a much broader variance compared to naturally grown specimens. Epigenetic signals and their influence on the oscillatory growth of cultivated organisms can be considered to play a major role in the

  1. Undergraduate research in geochemistry at a larger university: developing a community of undergraduate and graduate researchers.

    NASA Astrophysics Data System (ADS)

    Ryan, J. G.

    2003-12-01

    . Undergraduate research projects in which 3-4 students work together to collect necessary data can get around the class vs. research scheduling issues they face as they can share the laboratory workload through the week. Group projects can thus collect larger bodies of data, allowing students to address more substantive problems.

  2. Semantic Visualization Mapping for Illustrative Volume Visualization

    NASA Astrophysics Data System (ADS)

    Rautek, P.; Bruckner, S.; Gröller, M. E.

    2009-04-01

    Measured and simulated data is usually divided into several meaningful intervals that are relevant to the domain expert. Examples from medicine are the specific semantics for different measuring modalities. A PET scan of a brain measures brain activity. It shows regions of homogeneous activity that are labeled by experts with semantic values such as low brain activity or high brain activity. Diffusion MRI data provides information about the healthiness of tissue regions and is classified by experts with semantic values like healthy, diseased, or necrotic. Medical CT data encode the measured density values in Hounsfield units. Specific intervals of the Hounsfield scale refer to different tissue types like air, soft tissue, bone, contrast enhanced vessels, etc. However, the semantic parameters from expert domains are not necessarily used to describe a mapping between the volume attributes and visual appearance. Volume rendering techniques commonly map attributes of the underlying data on visual appearance via a transfer function. Transfer functions are a powerful tool to achieve various visualization mappings. The specification of transfer functions is a complex task. The user has to have expert knowledge about the underlying rendering technique to achieve the desired results. Especially the specification of higher-dimensional transfer functions is challenging. Common user interfaces provide methods to brush in two dimensions. While brushing is an intuitive method to select regions of interest or to specify features, user interfaces for higher-dimensions are more challenging and often non-intuitive. For seismic data the situation is even more difficult since the data typically consists of many more volumetric attributes than for example medical datasets. Scientific illustrators are experts in conveying information by visual means. They also make use of semantics in a natural way describing visual abstractions such as shading, tone, rendering style, saturation

  3. Visual examination apparatus

    NASA Technical Reports Server (NTRS)

    Haines, R. F.; Fitzgerald, J. W.; Rositano, S. A. (Inventor)

    1973-01-01

    An automated visual examination apparatus for measuring visual sensitivity and mapping blind spot location is described. The apparatus includes a projection system for displaying to a patient a series of visual stimuli, a response switch enabling him to indicate his reaction to the stimuli, and a recording system responsive to both the visual stimuli per se and the patient's response. The recording system provides a correlated permanent record of both stimuli and response from which a substantive and readily apparent visual evaluation can be made.

  4. Manipulating and Visualizing Proteins

    SciTech Connect

    Simon, Horst D.

    2003-12-05

    ProteinShop Gives Researchers a Hands-On Tool for Manipulating, Visualizing Protein Structures. The Human Genome Project and other biological research efforts are creating an avalanche of new data about the chemical makeup and genetic codes of living organisms. But in order to make sense of this raw data, researchers need software tools which let them explore and model data in a more intuitive fashion. With this in mind, researchers at Lawrence Berkeley National Laboratory and the University of California, Davis, have developed ProteinShop, a visualization and modeling program which allows researchers to manipulate protein structures with pinpoint control, guided in large part by their own biological and experimental instincts. Biologists have spent the last half century trying to unravel the ''protein folding problem,'' which refers to the way chains of amino acids physically fold themselves into three-dimensional proteins. This final shape, which resembles a crumpled ribbon or piece of origami, is what determines how the protein functions and translates genetic information. Understanding and modeling this geometrically complex formation is no easy matter. ProteinShop takes a given sequence of amino acids and uses visualization guides to help generate predictions about the secondary structures, identifying alpha helices and flat beta strands, and the coil regions that bind them. Once secondary structures are in place, researchers can twist and turn these pre-configurations until they come up with a number of possible tertiary structure conformations. In turn, these are fed into a computationally intensive optimization procedure that tries to find the final, three-dimensional protein structure. Most importantly, ProteinShop allows users to add human knowledge and intuition to the protein structure prediction process, thus bypassing bad configurations that would otherwise be fruitless for optimization. This saves compute cycles and accelerates the entire process, so

  5. [Chronic subdural hematoma presenting visual disturbance: a case report].

    PubMed

    Hasegawa, S; Manabe, H; Shimizu, T; Itoh, C; Suzuki, S

    2001-03-01

    The authors reported a rare case of chronic subdural hematoma presenting bilateral visual impairment caused by papilledema. A 49-year-old man was admitted to our department due to left blurred vision. On admission, ophthalmological examination revealed visual acuity disturbance on the left eye, bilateral nasal visual field defect and papilledema. CT scan and MRI demonstrated bilateral subdural hematoma. No remarkable findings were detected on cerebral angiography. After evacuation of bilateral subdural hematomas, his visual symptoms recovered. In this report, we discuss the mechanism of visual impairment caused by chronic subdural hematoma. PMID:11296405

  6. Expanding Coherent Array Processing to Larger Apertures Using Empirical Matched Field Processing

    SciTech Connect

    Ringdal, F; Harris, D B; Kvaerna, T; Gibbons, S J

    2009-07-23

    necessary to divide event populations from a single mine into identifiable subpopulations. For this purpose, we perform cluster analysis using matched field statistics calculated on pairs of individual events as a distance metric. In our initial work, calibrations were derived from ensembles of events ranging in number to more than 100. We are considering the performance now of matched field calibrations derived with many fewer events (even, as mentioned, individual events). Since these are high-variance estimates, we are testing the use of cross-channel, multitaper, spectral estimation methods to reduce the variance of calibrations and detection statistics derived from single-event observations. To test the applicability of the technique in a different tectonic region, we have obtained four years of continuous data from 4 Kazakh arrays and are extracting large numbers of event segments. Our initial results using 132 mining explosions recorded by the Makanchi array are similar to those obtained in the European Arctic. Matched field processing clearly separates the explosions from three closely-spaced mines located approximately 400 kilometers from the array, again using waveforms in a band (6-10 Hz) normally considered incoherent for this array. Having reproduced ARCES-type performance with another small aperture array, we have two additional objectives for matched field processing. We will attempt to extend matched field processing to larger apertures: a 200 km aperture (the KNET) and, if data permit, to an aperture comprised of several Kazakh arrays. We also will investigate the potential of developing matched field processing to roughly locate and classify natural seismicity, which is more diffuse than the concentrated sources of mining explosions that we have investigated to date.

  7. Functional Visual Loss

    PubMed Central

    Bruce, Beau B; Newman, Nancy J

    2010-01-01

    Synopsis Neurologists frequently evaluate patients complaining of vision loss, especially when the patient has been examined by an ophthalmologist who has found no ocular disease. A significant proportion of patients presenting to the neurologist with visual complaints will have non-organic or functional visual loss. While there are examination techniques which can aid in the detection and diagnosis of functional visual loss, the frequency with which functional visual loss occurs concomitantly with organic disease warrants substantial caution on the part of the clinician. Furthermore, purely functional visual loss is never a diagnosis of exclusion, and must be supported by positive findings on examination that demonstrate normal visual function. The relationship of true psychological disease and functional visual loss is unclear and most patients respond well to simple reassurance. PMID:20638000

  8. Cross-Modal Stimulus Conflict: The Behavioral Effects of Stimulus Input Timing in a Visual-Auditory Stroop Task

    PubMed Central

    Donohue, Sarah E.; Appelbaum, Lawrence G.; Park, Christina J.; Roberts, Kenneth C.; Woldorff, Marty G.

    2013-01-01

    Cross-modal processing depends strongly on the compatibility between different sensory inputs, the relative timing of their arrival to brain processing components, and on how attention is allocated. In this behavioral study, we employed a cross-modal audio-visual Stroop task in which we manipulated the within-trial stimulus-onset-asynchronies (SOAs) of the stimulus-component inputs, the grouping of the SOAs (blocked vs. random), the attended modality (auditory or visual), and the congruency of the Stroop color-word stimuli (congruent, incongruent, neutral) to assess how these factors interact within a multisensory context. One main result was that visual distractors produced larger incongruency effects on auditory targets than vice versa. Moreover, as revealed by both overall shorter response times (RTs) and relative shifts in the psychometric incongruency-effect functions, visual-information processing was faster and produced stronger and longer-lasting incongruency effects than did auditory. When attending to either modality, stimulus incongruency from the other modality interacted with SOA, yielding larger effects when the irrelevant distractor occurred prior to the attended target, but no interaction with SOA grouping. Finally, relative to neutral-stimuli, and across the wide range of the SOAs employed, congruency led to substantially more behavioral facilitation than did incongruency to interference, in contrast to findings that within-modality stimulus-compatibility effects tend to be more evenly split between facilitation and interference. In sum, the present findings reveal several key characteristics of how we process the stimulus compatibility of cross-modal sensory inputs, reflecting stimulus processing patterns that are critical for successfully navigating our complex multisensory world. PMID:23638149

  9. Cortical integration in the visual system of the macaque monkey: large-scale morphological differences in the pyramidal neurons in the occipital, parietal and temporal lobes.

    PubMed Central

    Elston, G N; Tweedale, R; Rosa, M G

    1999-01-01

    Layer III pyramidal neurons were injected with Lucifer yellow in tangential cortical slices taken from the inferior temporal cortex (area TE) and the superior temporal polysensory (STP) area of the macaque monkey. Basal dendritic field areas of layer III pyramidal neurons in area STP are significantly larger, and their dendritic arborizations more complex, than those of cells in area TE. Moreover, the dendritic fields of layer III pyramidal neurons in both STP and TE are many times larger and more complex than those in areas forming 'lower' stages in cortical visual processing, such as the first (V1), second (V2), fourth (V4) and middle temporal (MT) visual areas. By combining data on spine density with those of Sholl analyses, we were able to estimate the average number of spines in the basal dendritic field of layer III pyramidal neurons in each area. These calculations revealed a 13-fold difference in the number of spines in the basal dendritic field between areas STP and V1 in animals of similar age. The large differences in complexity of the same kind of neuron in different visual areas go against arguments for isopotentiality of different cortical regions and provide a basis that allows pyramidal neurons in temporal areas TE and STP to integrate more inputs than neurons in more caudal visual areas. PMID:10445291

  10. Individual differences in visual field shape modulate the effects of attention on the lower visual field advantage in crowding

    PubMed Central

    Fortenbaugh, Francesca C.; Silver, Michael A.; Robertson, Lynn C.

    2015-01-01

    It has previously been reported that visual crowding of a target by flankers is stronger in the upper visual field than in the lower, and this finding has been attributed to greater attentional resolution in the lower hemifield (He, Cavanagh, & Intriligator, 1996). Here we show that the upper/lower asymmetry in visual crowding can be explained by natural variations in the borders of each individual's visual field. Specifically, asymmetry in crowding along the vertical meridian can be almost entirely accounted for by replacing the conventional definition of visual field location, in units of degrees of visual angle, with a definition based on the ratio of the extents of an individual's upper and lower visual field. We also show that the upper/lower crowding asymmetry is eliminated when stimulus eccentricity is expressed in units of percentage of visual field extent but is present when the conventional measure of visual angle is used. We further demonstrate that the relationship between visual field extent and perceptual asymmetry is most evident when participants are able to focus their attention on the target location. These results reveal important influences of visual field boundaries on visual perception, even for visual field locations far from those boundaries. PMID:25761337

  11. Simulation visualization through dynamic instrumentation

    SciTech Connect

    Bisset, K.R.

    1998-09-01

    The goal of the instrument composition system is to allow a simulation user to dynamically create instruments as a simulation executes. Instruments can include graphical displays, data collectors, and debugging aides. Instruments are made up of small building blocks which can be easily combined into larger, more complex instruments. Through the sue of an Attribute Server (a distributed publication/subscription mechanism), the actors and instruments in a simulation can interact without direct knowledge of each other. Instead, each actor publishes the attributes which it has available. An instrument subscribes to the attributes in which it is interested, and is notified whenever the value of one of these attribute changes. An instrument can also publish attributes for use by other instruments. Since the Attribute Server is distributed, the publisher of an attribute need not execute on the same machine as the subscriber. This allows CPU intensive data visualization to execute on separate machines from the simulation, minimizing the impact on the simulation.

  12. Visual Analysis of Weblog Content

    SciTech Connect

    Gregory, Michelle L.; Payne, Deborah A.; McColgin, Dave; Cramer, Nick O.; Love, Douglas V.

    2007-03-26

    In recent years, one of the advances of the World Wide Web is social media and one of the fastest growing aspects of social media is the blogosphere. Blogs make content creation easy and are highly accessible through web pages and syndication. With their growing influence, a need has arisen to be able to monitor the opinions and insight revealed within their content. In this paper we describe a technical approach for analyzing the content of blog data using a visual analytic tool, IN-SPIRE, developed by Pacific Northwest National Laboratory. We highlight the capabilities of this tool that are particularly useful for information gathering from blog data.

  13. Attention and visual memory in visualization and computer graphics.

    PubMed

    Healey, Christopher G; Enns, James T

    2012-07-01

    A fundamental goal of visualization is to produce images of data that support visual analysis, exploration, and discovery of novel insights. An important consideration during visualization design is the role of human visual perception. How we "see" details in an image can directly impact a viewer's efficiency and effectiveness. This paper surveys research on attention and visual perception, with a specific focus on results that have direct relevance to visualization and visual analytics. We discuss theories of low-level visual perception, then show how these findings form a foundation for more recent work on visual memory and visual attention. We conclude with a brief overview of how knowledge of visual attention and visual memory is being applied in visualization and graphics. We also discuss how challenges in visualization are motivating research in psychophysics. PMID:21788672

  14. Visual field asymmetries in visual evoked responses

    PubMed Central

    Hagler, Donald J.

    2014-01-01

    Behavioral responses to visual stimuli exhibit visual field asymmetries, but cortical folding and the close proximity of visual cortical areas make electrophysiological comparisons between different stimulus locations problematic. Retinotopy-constrained source estimation (RCSE) uses distributed dipole models simultaneously constrained by multiple stimulus locations to provide separation between individual visual areas that is not possible with conventional source estimation methods. Magnetoencephalography and RCSE were used to estimate time courses of activity in V1, V2, V3, and V3A. Responses to left and right hemifield stimuli were not significantly different. Peak latencies for peripheral stimuli were significantly shorter than those for perifoveal stimuli in V1, V2, and V3A, likely related to the greater proportion of magnocellular input to V1 in the periphery. Consistent with previous results, sensor magnitudes for lower field stimuli were about twice as large as for upper field, which is only partially explained by the proximity to sensors for lower field cortical sources in V1, V2, and V3. V3A exhibited both latency and amplitude differences for upper and lower field responses. There were no differences for V3, consistent with previous suggestions that dorsal and ventral V3 are two halves of a single visual area, rather than distinct areas V3 and VP. PMID:25527151

  15. Thalamic Visual Prosthesis.

    PubMed

    Nguyen, Hieu T; Tangutooru, Siva M; Rountree, Corey M; Kantzos, Andrew J Kantzos; Tarlochan, Faris; Yoon, W Jong; Troy, John B

    2016-08-01

    Glaucoma is a neurological disorder leading to blindness initially through the loss of retinal ganglion cells, followed by loss of neurons higher in the visual system. Some work has been undertaken to develop prostheses for glaucoma patients targeting tissues along the visual pathway, including the lateral geniculate nucleus (LGN) of the thalamus, but especially the visual cortex. This review makes the case for a visual prosthesis that targets the LGN. The compact nature and orderly structure of this nucleus make it a potentially better target to restore vision than the visual cortex. Existing research for the development of a thalamic visual prosthesis will be discussed along with the gaps that need to be addressed before such a technology could be applied clinically, as well as the challenge posed by the loss of LGN neurons as glaucoma progresses. PMID:27214884

  16. [Migraine with visual aura].

    PubMed

    Bidot, S; Biotti, D

    2016-06-01

    Migraine with visual aura is marked by recurrent episodes of transient visual disturbance, often followed by headaches. Its pathophysiology has not been fully understood, but visual auras might be related to a self-propagating wave of cortical depolarization called "cortical spreading depression", triggering a trigemino-vascular "storm" ultimately leading to headaches. The most specific visual symptom is the "fortification spectrum" consisting of glimmering jagged lines spreading from the center to the periphery, and leaving a transient scotoma in its wake. Other visual symptoms are numerous, ranging from elementary positive or negative visual phenomena to complex and elaborate hallucinations. The diagnosis can be made according to the International Classification of Headache Disorders revised in 2013. The main goal of the treatment is to relieve the patient's pain quickly and to decrease the frequency of the episodes. PMID:27324232

  17. Evaluation of Visualization Software

    NASA Technical Reports Server (NTRS)

    Globus, Al; Uselton, Sam

    1995-01-01

    Visualization software is widely used in scientific and engineering research. But computed visualizations can be very misleading, and the errors are easy to miss. We feel that the software producing the visualizations must be thoroughly evaluated and the evaluation process as well as the results must be made available. Testing and evaluation of visualization software is not a trivial problem. Several methods used in testing other software are helpful, but these methods are (apparently) often not used. When they are used, the description and results are generally not available to the end user. Additional evaluation methods specific to visualization must also be developed. We present several useful approaches to evaluation, ranging from numerical analysis of mathematical portions of algorithms to measurement of human performance while using visualization systems. Along with this brief survey, we present arguments for the importance of evaluations and discussions of appropriate use of some methods.

  18. Visual identity and uncertainty in repetition blindness.

    PubMed

    Brill, Gary A; Glass, Arnold L; Rashid, Hanin; Hussey, Erika

    2008-01-01

    Repetition blindness (RB) was investigated in 6 experiments. In the first 3 experiments participants detected vowel targets in 11-letter sequences. When all letters were uppercase, detection was poorer for same (e.g., AA) than for different (e.g., AO) targets. However, when one target was uppercase and the other lowercase, RB was found only for targets visually identical except for size (e.g., Oo), not for visually different pairs (e.g., Aa). Experiment 4 found RB for visually identical versus different consonant-vowel-consonant words. Experiments 5 and 6 replicated Kanwisher's (1987) experiment in which RB was insensitive to word case but revealed these effects to be artifacts of poor recognition of 5-letter words coupled with a biased guessing strategy. Overall, these experiments found RB only at a low level of visual information processing. PMID:18792718

  19. Uniformity of accommodation across the visual field.

    PubMed

    Liu, Tao; Sreenivasan, Vidhyapriya; Thibos, Larry N

    2016-01-01

    We asked the question: Does accommodation change the eye's focusing power equally over the central visual field in emmetropic and myopic adult eyes? To answer this question we modified our laboratory scanning wavefront aberrometer to rapidly measure ocular refractive state over the central 30° diameter of visual field as a function of foveal accommodative demand. On average, ocular refractive state changed uniformly over the central visual field as the eye accommodated up to 6 D. Visual field maps of accommodative error (relative to a spherical target surface of constant vergence) reveal subtle patterns of deviation on the order of ± 0.5 D that are unique to the individual and relatively invariant to changes in accommodative state. Population mean maps for accommodative error are remarkably uniform across the central visual field, indicating the retina of the hypothetical "average eye" is conjugate to a sphere of constant target vergence for all states of accommodation, even though individual eyes might deviate from the mean due to random variations. No systematic difference between emmetropic and myopic eyes was evident. Since accuracy of accommodation across the central visual field is similar to that measured in the fovea, loss of image quality due to accommodative errors, which potentially drives myopia and may affect many aspects of visual function, will be similar across the central retina. PMID:26842859

  20. Visual Alert System

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A visual alert system resulted from circuitry developed by Applied Cybernetics Systems for Langley as part of a space related telemetry system. James Campman, Applied Cybernetics president, left the company and founded Grace Industries, Inc. to manufacture security devices based on the Langley technology. His visual alert system combines visual and audible alerts for hearing impaired people. The company also manufactures an arson detection device called the electronic nose, and is currently researching additional applications of the NASA technology.

  1. Progress in Scientific Visualization

    SciTech Connect

    Max, N

    2004-11-15

    Visualization of observed data or simulation output is important to science and engineering. I have been particularly interested in visualizing 3-D structures, and report here my personal impressions on progress in the last 20 years in visualizing molecules, scalar fields, and vector fields and their associated flows. I have tried to keep the survey and list of references manageable, so apologize to those authors whose techniques I have not mentioned, or have described without a reference citation.

  2. Age-related changes in visual exploratory behavior in a natural scene setting

    PubMed Central

    Hamel, Johanna; De Beukelaer, Sophie; Kraft, Antje; Ohl, Sven; Audebert, Heinrich J.; Brandt, Stephan A.

    2013-01-01

    Diverse cognitive functions decline with increasing age, including the ability to process central and peripheral visual information in a laboratory testing situation (useful visual field of view). To investigate whether and how this influences activities of daily life, we studied age-related changes in visual exploratory behavior in a natural scene setting: a driving simulator paradigm of variable complexity was tested in subjects of varying ages with simultaneous eye- and head-movement recordings via a head-mounted camera. Detection and reaction times were also measured by visual fixation and manual reaction. We considered video computer game experience as a possible influence on performance. Data of 73 participants of varying ages were analyzed, driving two different courses. We analyzed the influence of route difficulty level, age, and eccentricity of test stimuli on oculomotor and driving behavior parameters. No significant age effects were found regarding saccadic parameters. In the older subjects head-movements increasingly contributed to gaze amplitude. More demanding courses and more peripheral stimuli locations induced longer reaction times in all age groups. Deterioration of the functionally useful visual field of view with increasing age was not suggested in our study group. However, video game-experienced subjects revealed larger saccade amplitudes and a broader distribution of fixations on the screen. They reacted faster to peripheral objects suggesting the notion of a general detection task rather than perceiving driving as a central task. As the video game-experienced population consisted of younger subjects, our study indicates that effects due to video game experience can easily be misinterpreted as age effects if not accounted for. We therefore view it as essential to consider video game experience in all testing methods using virtual media. PMID:23801970

  3. The fluorescence properties of aerosol larger than 0.8 μm in urban and tropical rainforest locations

    NASA Astrophysics Data System (ADS)

    Gabey, A. M.; Stanley, W. R.; Gallagher, M. W.; Kaye, P. H.

    2011-06-01

    UV-LIF measurements were performed on ambient aerosol in Manchester, UK (urban city centre, winter) and Borneo, Malaysia (remote, tropical) using a Wide Issue Bioaerosol Spectrometer, version 3 (WIBS3). These sites are taken to represent environments with minor and significant primary biological aerosol (PBA) influences respectively, and the urban dataset describes the fluorescent background aerosol against which PBA must be identified by researchers using LIF. The ensemble aerosol at both sites was characterised over 2-3 weeks by measuring the fluorescence intensity and optical equivalent diameter (DP) of single particles sized 0.8 ≤ DP ≤ 20 μm. Filter samples were also collected for a subset of the Manchester campaign and analysed using energy dispersive X-Ray (EDX) spectroscopy and environmental scanning electron microscopy (ESEM), which revealed mostly non-PBA at D ≤ 1 μm. The WIBS3 features three fluorescence channels: the emission following a 280 nm excitation is recorded at 310-400 nm (channel F1) and 400-600 nm (F2), and fluorescence excited at 350 nm is detected at 400-600 nm (F3). In Manchester the primary size mode of fluorescent and non-fluorescent material was present at 0.8-1.2 μm, with a secondary fluorescent mode at 2-4 μm. In Borneo non-fluorescent material peaked at 0.8-1.2 μm and fluorescent at 3-4 μm. Agreement between fluorescent number concentrations in each channel differed at the two sites, with F1 and F3 reporting similar concentrations in Borneo but F3 outnumbering F1 by a factor of 2-3 across the size spectrum in Manchester. The fluorescence intensity in each channel generally rose with DP at both sites with the exception of F1 intensity in Manchester, which peaked at DP = 4 μm, causing a divergence between F1 and F3 intensity at larger DP. This divergence and the differing fluorescent particle concentrations demonstrate the additional discrimination provided by the F1 channel in Manchester. The relationships between

  4. Perceptual Encoding Efficiency in Visual Search

    ERIC Educational Resources Information Center

    Rauschenberger, Robert; Yantis, Steven

    2006-01-01

    The authors present 10 experiments that challenge some central assumptions of the dominant theories of visual search. Their results reveal that the complexity (or redundancy) of nontarget items is a crucial but overlooked determinant of search efficiency. The authors offer a new theoretical outline that emphasizes the importance of nontarget…

  5. Photochromic Polyaphrons For Visualization Of Flow

    NASA Technical Reports Server (NTRS)

    Subbaraman, M. R.; Ostermier, B. J.

    1988-01-01

    Drops of ultraviolet-activated dyes encapsulated in liquid films reveal flow patterns. Method based on visualization material composed of polyaphrons containing photochromic dye. Polyaphrons are droplets of organic liquid encapsulated in thin layer of another liquid, which holds droplets stably by surface tension. Photochromic dye within a polyaphron acquires color temporarily after exposure to strong ultraviolet light.

  6. Accommodating Band Students with Visual Impairments

    ERIC Educational Resources Information Center

    Coates, Rick Lee

    2012-01-01

    This article offers a discussion about some of the accommodations and modifications used in music instruction. The focus here is on the musical tasks and challenges faced by band students with visual impairments. Research and literature reveal an interest in the topic but a lack of accessible materials for immediate use in the classroom and…

  7. Separate visual representations for perception and for visually guided behavior

    NASA Technical Reports Server (NTRS)

    Bridgeman, Bruce

    1989-01-01

    Converging evidence from several sources indicates that two distinct representations of visual space mediate perception and visually guided behavior, respectively. The two maps of visual space follow different rules; spatial values in either one can be biased without affecting the other. Ordinarily the two maps give equivalent responses because both are veridically in register with the world; special techniques are required to pull them apart. One such technique is saccadic suppression: small target displacements during saccadic eye movements are not preceived, though the displacements can change eye movements or pointing to the target. A second way to separate cognitive and motor-oriented maps is with induced motion: a slowly moving frame will make a fixed target appear to drift in the opposite direction, while motor behavior toward the target is unchanged. The same result occurs with stroboscopic induced motion, where the frame jump abruptly and the target seems to jump in the opposite direction. A third method of separating cognitive and motor maps, requiring no motion of target, background or eye, is the Roelofs effect: a target surrounded by an off-center rectangular frame will appear to be off-center in the direction opposite the frame. Again the effect influences perception, but in half of the subjects it does not influence pointing to the target. This experience also reveals more characteristics of the maps and their interactions with one another, the motor map apparently has little or no memory, and must be fed from the biased cognitive map if an enforced delay occurs between stimulus presentation and motor response. In designing spatial displays, the results mean that what you see isn't necessarily what you get. Displays must be designed with either perception or visually guided behavior in mind.

  8. Shedding light on emotional perception: Interaction of brightness and semantic content in extrastriate visual cortex.

    PubMed

    Schettino, Antonio; Keil, Andreas; Porcu, Emanuele; Müller, Matthias M

    2016-06-01

    The rapid extraction of affective cues from the visual environment is crucial for flexible behavior. Previous studies have reported emotion-dependent amplitude modulations of two event-related potential (ERP) components - the N1 and EPN - reflecting sensory gain control mechanisms in extrastriate visual areas. However, it is unclear whether both components are selective electrophysiological markers of attentional orienting toward emotional material or are also influenced by physical features of the visual stimuli. To address this question, electrical brain activity was recorded from seventeen male participants while viewing original and bright versions of neutral and erotic pictures. Bright neutral scenes were rated as more pleasant compared to their original counterpart, whereas erotic scenes were judged more positively when presented in their original version. Classical and mass univariate ERP analysis showed larger N1 amplitude for original relative to bright erotic pictures, with no differences for original and bright neutral scenes. Conversely, the EPN was only modulated by picture content and not by brightness, substantiating the idea that this component is a unique electrophysiological marker of attention allocation toward emotional material. Complementary topographic analysis revealed the early selective expression of a centro-parietal positivity following the presentation of original erotic scenes only, reflecting the recruitment of neural networks associated with sustained attention and facilitated memory encoding for motivationally relevant material. Overall, these results indicate that neural networks subtending the extraction of emotional information are differentially recruited depending on low-level perceptual features, which ultimately influence affective evaluations. PMID:26994832

  9. Visual Realism in Children's Drawings: The Effect of Instructions.

    ERIC Educational Resources Information Center

    Barrett, Martyn; And Others

    Recent studies have revealed that 5-year-old children can be induced to produce visually realistic drawings, either by manipulating the nature of the model which is being drawn, or by turning the drawing task into a communicative game. However, it has also been found that 5-year-olds cannot be induced to produce visually realistic drawings merely…

  10. Evidence for Two Attentional Components in Visual Working Memory

    ERIC Educational Resources Information Center

    Allen, Richard J.; Baddeley, Alan D.; Hitch, Graham J.

    2014-01-01

    How does executive attentional control contribute to memory for sequences of visual objects, and what does this reveal about storage and processing in working memory? Three experiments examined the impact of a concurrent executive load (backward counting) on memory for sequences of individually presented visual objects. Experiments 1 and 2 found…

  11. Occipital cortical thickness in very low birth weight born adolescents predicts altered neural specialization of visual semantic category related neural networks.

    PubMed

    Klaver, Peter; Latal, Beatrice; Martin, Ernst

    2015-01-01

    Very low birth weight (VLBW) premature born infants have a high risk to develop visual perceptual and learning deficits as well as widespread functional and structural brain abnormalities during infancy and childhood. Whether and how prematurity alters neural specialization within visual neural networks is still unknown. We used functional and structural brain imaging to examine the visual semantic system of VLBW born (<1250 g, gestational age 25-32 weeks) adolescents (13-15 years, n = 11, 3 males) and matched term born control participants (13-15 years, n = 11, 3 males). Neurocognitive assessment revealed no group differences except for lower scores on an adaptive visuomotor integration test. All adolescents were scanned while viewing pictures of animals and tools and scrambled versions of these pictures. Both groups demonstrated animal and tool category related neural networks. Term born adolescents showed tool category related neural activity, i.e. tool pictures elicited more activity than animal pictures, in temporal and parietal brain areas. Animal category related activity was found in the occipital, temporal and frontal cortex. VLBW born adolescents showed reduced tool category related activity in the dorsal visual stream compared with controls, specifically the left anterior intraparietal sulcus, and enhanced animal category related activity in the left middle occipital gyrus and right lingual gyrus. Lower birth weight of VLBW adolescents correlated with larger thickness of the pericalcarine gyrus in the occipital cortex and smaller surface area of the superior temporal gyrus in the lateral temporal cortex. Moreover, larger thickness of the pericalcarine gyrus and smaller surface area of the superior temporal gyrus correlated with reduced tool category related activity in the parietal cortex. Together, our data suggest that very low birth weight predicts alterations of higher order visual semantic networks, particularly in the dorsal stream. The differences

  12. Visual exposure to large and small portion sizes and perceptions of portion size normality: Three experimental studies.

    PubMed

    Robinson, Eric; Oldham, Melissa; Cuckson, Imogen; Brunstrom, Jeffrey M; Rogers, Peter J; Hardman, Charlotte A

    2016-03-01

    Portion sizes of many foods have increased in recent times. In three studies we examined the effect that repeated visual exposure to larger versus smaller food portion sizes has on perceptions of what constitutes a normal-sized food portion and measures of portion size selection. In studies 1 and 2 participants were visually exposed to images of large or small portions of spaghetti bolognese, before making evaluations about an image of an intermediate sized portion of the same food. In study 3 participants were exposed to images of large or small portions of a snack food before selecting a portion size of snack food to consume. Across the three studies, visual exposure to larger as opposed to smaller portion sizes resulted in participants considering a normal portion of food to be larger than a reference intermediate sized portion. In studies 1 and 2 visual exposure to larger portion sizes also increased the size of self-reported ideal meal size. In study 3 visual exposure to larger portion sizes of a snack food did not affect how much of that food participants subsequently served themselves and ate. Visual exposure to larger portion sizes may adjust visual perceptions of what constitutes a 'normal' sized portion. However, we did not find evidence that visual exposure to larger portions altered snack food intake. PMID:26702602

  13. Visual exposure to large and small portion sizes and perceptions of portion size normality: Three experimental studies

    PubMed Central

    Robinson, Eric; Oldham, Melissa; Cuckson, Imogen; Brunstrom, Jeffrey M.; Rogers, Peter J.; Hardman, Charlotte A.

    2016-01-01

    Portion sizes of many foods have increased in recent times. In three studies we examined the effect that repeated visual exposure to larger versus smaller food portion sizes has on perceptions of what constitutes a normal-sized food portion and measures of portion size selection. In studies 1 and 2 participants were visually exposed to images of large or small portions of spaghetti bolognese, before making evaluations about an image of an intermediate sized portion of the same food. In study 3 participants were exposed to images of large or small portions of a snack food before selecting a portion size of snack food to consume. Across the three studies, visual exposure to larger as opposed to smaller portion sizes resulted in participants considering a normal portion of food to be larger than a reference intermediate sized portion. In studies 1 and 2 visual exposure to larger portion sizes also increased the size of self-reported ideal meal size. In study 3 visual exposure to larger portion sizes of a snack food did not affect how much of that food participants subsequently served themselves and ate. Visual exposure to larger portion sizes may adjust visual perceptions of what constitutes a ‘normal’ sized portion. However, we did not find evidence that visual exposure to larger portions altered snack food intake. PMID:26702602

  14. How to Select Visuals: The Information-Visualization System.

    ERIC Educational Resources Information Center

    Langdon, Danny G.

    1986-01-01

    Presents an overview and an example of use of the Information-Visualization System, an approach to visual selection enabling educators to match desired learning outcomes with the best visuals to carry the message. Decision tables and resource book containing visual options, information types, and suggested methods of enhancing visuals are…

  15. Auditory and visual memory losses in aging populations.

    PubMed

    Boyle, E; Aparicio, A M; Kaye, J; Acker, M

    1975-06-01

    Seventy-four men and women (age range, 44-77 years) were tested for short-term auditory and visual memory as part of a larger series of memory and cognitive function tests. All test scores for visual memory, including facial photograph recognition when a sequence requirement was adhered to, showed a significant decline (p smaller than .05) in a comparison of subjects aged 44-54 and subjects aged 55-64. This decline was not observed with the two tests of auditory memory. Thus the data indicate that short-term visual memory may be more susceptible to aging than is auditory memory. PMID:1127202

  16. Visualization of transient finite element analyses on large unstructured grids

    SciTech Connect

    Dovey, D.

    1995-03-22

    Three-dimensional transient finite element analysis is performed on unstructured grids. A trend toward running larger analysis problems, combined with a desire for interactive animation of analysis results, demands efficient visualization techniques. This paper discusses a set of data structures and algorithms for visualizing transient analysis results on unstructured grids and introduces some modifications in order to better support large grids. In particular, an element grouping approach is used to reduce the amount of memory needed for external surface determination and to speed up ``point in element`` tests. The techniques described lend themselves to visualization of analyses carried out in parallel on a massively parallel computer (MPC).

  17. Optical Coherence Tomography versus Visual Evoked Potentials in detecting subclinical visual impairment in multiple sclerosis

    PubMed Central

    Grecescu, M

    2014-01-01

    Rationale. Visual impairment is one of the most common clinical manifestations of multiple sclerosis (MS). Some multiple sclerosis patients complain of poor vision although the Snellen visual acuity is 20/20. This study reveals that sensitive measurements like visual evoked potential (VEP) and optical coherence tomography (OCT) can evidence subclinical disturbances of visual pathway. These methods examine the relation between the visual function (VEP) and retinal nerve fiber layer (RNFL) thickness, as a structural biomarker for axonal loss in patients with multiple sclerosis (MS). The findings in this study indicate the utility of combining structural and functional testing in clinical research on patients with MS. Purpose. To detect visual impairment in a population of visually asymptomatic patients affected by clinically definite multiple sclerosis (MS) and to compare the utility of optical coherence tomography (OCT) versus visual evoked potentials (VEP). Material and methods. Fourteen patients (28 eyes) affected by clinically definite MS, without a history of optic neuritis and asymptomatic for visual disturbances, were initially fully examined (visual acuity, ocular fundus, biomicroscopy) from an ophthalmic point of view and then measured by OCT (RNFL thickness) and VEP. Patients with a history of glaucoma or other retinal or optic nerve disease were excluded. Results. Of fourteen patients (28 eyes), VEP was abnormal in 11 cases (78,57%) and OCT (RNFL thickness) was abnormal in 5 cases (35,71%), while 3 patients had no abnormalities on neither tests. Conclusions. Optical coherence tomography (OCT) is less sensitive than visual evoked potentials (VEPs) in detecting visual subclinical impairment in patients with multiple sclerosis (MS). VEP remains the preferred test for the detection of clinical and subclinical optic neuritis. OCT may provide complementary information to VEP in cases with clinical definite MS and represent a valuable research instrument for the

  18. Personal Visualization and Personal Visual Analytics.

    PubMed

    Huang, Dandan; Tory, Melanie; Aseniero, Bon Adriel; Bartram, Lyn; Bateman, Scott; Carpendale, Sheelagh; Tang, Anthony; Woodbury, Robert

    2015-03-01

    Data surrounds each and every one of us in our daily lives, ranging from exercise logs, to archives of our interactions with others on social media, to online resources pertaining to our hobbies. There is enormous potential for us to use these data to understand ourselves better and make positive changes in our lives. Visualization (Vis) and visual analytics (VA) offer substantial opportunities to help individuals gain insights about themselves, their communities and their interests; however, designing tools to support data analysis in non-professional life brings a unique set of research and design challenges. We investigate the requirements and research directions required to take full advantage of Vis and VA in a personal context. We develop a taxonomy of design dimensions to provide a coherent vocabulary for discussing personal visualization and personal visual analytics. By identifying and exploring clusters in the design space, we discuss challenges and share perspectives on future research. This work brings together research that was previously scattered across disciplines. Our goal is to call research attention to this space and engage researchers to explore the enabling techniques and technology that will support people to better understand data relevant to their personal lives, interests, and needs. PMID:26357073

  19. Creativity, Visualization Abilities, and Visual Cognitive Style

    ERIC Educational Resources Information Center

    Kozhevnikov, Maria; Kozhevnikov, Michael; Yu, Chen Jiao; Blazhenkova, Olesya

    2013-01-01

    Background: Despite the recent evidence for a multi-component nature of both visual imagery and creativity, there have been no systematic studies on how the different dimensions of creativity and imagery might interrelate. Aims: The main goal of this study was to investigate the relationship between different dimensions of creativity (artistic and…

  20. Integrating Visualizations into Modeling NEST Simulations

    PubMed Central

    Nowke, Christian; Zielasko, Daniel; Weyers, Benjamin; Peyser, Alexander; Hentschel, Bernd; Kuhlen, Torsten W.

    2015-01-01

    Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work. PMID:26733860

  1. Problems Confronting Visual Culture

    ERIC Educational Resources Information Center

    Efland, Arthur D.

    2005-01-01

    A new movement has appeared recommending, in part, that the field of art education should lessen its traditional ties to drawing, painting, and the study of masterpieces to become the study of visual culture. Visual cultural study refers to an all-encompassing category of cultural practice that includes the fine arts but also deals with the study…

  2. English 3135: Visual Rhetoric

    ERIC Educational Resources Information Center

    Gatta, Oriana

    2013-01-01

    As an advanced rhetoric and composition doctoral student, I taught Engl 3135: Visual Rhetoric, a three-credit upper-level course offered by the Department of English at Georgia State University. Mary E. Hocks originally designed this course in 2000 to, in her words, "introduce visual information design theories and practices for writers [and]…

  3. Multidimensional Visual Statistical Learning

    ERIC Educational Resources Information Center

    Turk-Browne, Nicholas B.; Isola, Phillip J.; Scholl, Brian J.; Treat, Teresa A.

    2008-01-01

    Recent studies of visual statistical learning (VSL) have demonstrated that statistical regularities in sequences of visual stimuli can be automatically extracted, even without intent or awareness. Despite much work on this topic, however, several fundamental questions remain about the nature of VSL. In particular, previous experiments have not…

  4. Reading Visual Representations

    ERIC Educational Resources Information Center

    Rubenstein, Rheta N.; Thompson, Denisse R.

    2012-01-01

    Mathematics is rich in visual representations. Such visual representations are the means by which mathematical patterns "are recorded and analyzed." With respect to "vocabulary" and "symbols," numerous educators have focused on issues inherent in the language of mathematics that influence students' success with mathematics communication.…

  5. Design for Visual Arts.

    ERIC Educational Resources Information Center

    Skeries, Larry

    Experiences suggested within this visual arts packet provide high school students with awareness of visual expression in graphic design, product design, architecture, and crafts. The unit may be used in whole or in part and includes information about art careers and art-related jobs found in major occupational fields. Specific lesson topics…

  6. Mandarin Visual Speech Information

    ERIC Educational Resources Information Center

    Chen, Trevor H.

    2010-01-01

    While the auditory-only aspects of Mandarin speech are heavily-researched and well-known in the field, this dissertation addresses its lesser-known aspects: The visual and audio-visual perception of Mandarin segmental information and lexical-tone information. Chapter II of this dissertation focuses on the audiovisual perception of Mandarin…

  7. Visualization of relaminarizing flows

    NASA Technical Reports Server (NTRS)

    Viswanath, P. R.; Narasimha, R.; Prabhu, A.

    1978-01-01

    The experiments described in the present paper provided conclusive evidence for the feasibility of achieving reverse transition by several different mechanisms. Turbulent-to-laminar transition in water was visualized by injection of purple and green dyes. Air flows were visualized by colored schlieren photography.

  8. Visual Arts Research, 1995.

    ERIC Educational Resources Information Center

    Gardner, Nancy C., Ed.; Thompson, Christine, Ed.

    1995-01-01

    This document consists of the two issues of the journal "Visual Arts Research" published in 1995. This journal focuses on the theory and practice of visual arts education from educational, historical, philosophical, and psychological perspectives. Number 1 of this volume includes the following contributions: (1) "Children's Sensitivity to…

  9. Visual Arts Research, 1994.

    ERIC Educational Resources Information Center

    Gardner, Nancy C., Ed.; Thompson, Christine, Ed.

    1994-01-01

    This document consists of the two issues of the journal "Visual Arts in Research" published in 1994. This journal focuses on the theory and practice of visual arts education from educational, historical, philosophical, and psychological perspectives. Number 1 of this volume includes the following contributions: (1) "Zooming in on the Qualitative…

  10. Program Supports Scientific Visualization

    NASA Technical Reports Server (NTRS)

    Keith, Stephan

    1994-01-01

    Primary purpose of General Visualization System (GVS) computer program is to support scientific visualization of data generated by panel-method computer program PMARC_12 (inventory number ARC-13362) on Silicon Graphics Iris workstation. Enables user to view PMARC geometries and wakes as wire frames or as light shaded objects. GVS is written in C language.

  11. Complex Digital Visual Systems

    ERIC Educational Resources Information Center

    Sweeny, Robert W.

    2013-01-01

    This article identifies possibilities for data visualization as art educational research practice. The author presents an analysis of the relationship between works of art and digital visual culture, employing aspects of network analysis drawn from the work of Barabási, Newman, and Watts (2006) and Castells (1994). Describing complex network…

  12. Complicating Visual Culture

    ERIC Educational Resources Information Center

    Daiello, Vicki; Hathaway, Kevin; Rhoades, Mindi; Walker, Sydney

    2006-01-01

    Arguing for complicating the study of visual culture, as advocated by James Elkins, this article explicates and explores Lacanian psychoanalytic theory and pedagogy in view of its implications for art education practice. Subjectivity, a concept of import for addressing student identity and the visual, steers the discussion informed by pedagogical…

  13. Visual Function in Dyslexia.

    ERIC Educational Resources Information Center

    Flax, Nathan

    1968-01-01

    Using published research data, the problem of the seriously retarded reader was examined to determine the role of vision. The most obvious visual factors such as acuity and refractive error did not seem related to the problem. Impairment of visual skills such as fusion and accommodation did seem to contribute to reading difficulty, but such…

  14. Meaning and Visual Metaphor.

    ERIC Educational Resources Information Center

    Feinstein, Hermine

    1982-01-01

    Discusses Langer's thesis that metaphor is essential to thought and art is metaphor in terms of symbolization and the components of metaphor. The nature of visual metaphor, using Ortony's construct of linguistic metaphor, and how differences between visual and linguistic metaphors bear on the problem of interpreting art are discussed. (AM)

  15. Visual Complexity: A Review

    ERIC Educational Resources Information Center

    Donderi, Don C.

    2006-01-01

    The idea of visual complexity, the history of its measurement, and its implications for behavior are reviewed, starting with structuralism and Gestalt psychology at the beginning of the 20th century and ending with visual complexity theory, perceptual learning theory, and neural circuit theory at the beginning of the 21st. Evidence is drawn from…

  16. Visualizing Qualitative Information

    ERIC Educational Resources Information Center

    Slone, Debra J.

    2009-01-01

    The abundance of qualitative data in today's society and the need to easily scrutinize, digest, and share this information calls for effective visualization and analysis tools. Yet, no existing qualitative tools have the analytic power, visual effectiveness, and universality of familiar quantitative instruments like bar charts, scatter-plots, and…

  17. Visualizing the Heliosphere

    NASA Technical Reports Server (NTRS)

    Bridgman, William T.; Sirah, Greg W.; Mitchell, Horace G.

    2008-01-01

    Today, scientific data and models can combine with modern animation tools to produce compelling visualizations to inform and educate. The Scientific Visualization Studio at Goddard Space Flight Center merges these techniques from the very different worlds of entertainment and science to enable scientists and the general public to 'see the unseeable' in new ways.

  18. Visual sensitivity tester

    NASA Technical Reports Server (NTRS)

    Haines, R. F.; Fitzgerald, J. W.; Rositano, S. A.

    1972-01-01

    Testing device uses closed loop film cassettes to project programmed visual stimuli on screen which the observer views through a lens making the stimuli appear to be at optical infinity. Tester is useful for determining changes in glautomatous visual field sensitivity.

  19. Visual projection reticle

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1977-01-01

    Small lightweight device visually superimposes visual-sensitivity and response contours on displays and instrument panels. Optical system provides 45 deg arc/diameter field of view; however, special wide-angle optics can be substituted without significant size or weight penalty.

  20. Visual Factors in Reading

    ERIC Educational Resources Information Center

    Singleton, Chris; Henderson, Lisa-Marie

    2006-01-01

    This article reviews current knowledge about how the visual system recognizes letters and words, and the impact on reading when parts of the visual system malfunction. The physiology of eye and brain places important constraints on how we process text, and the efficient organization of the neurocognitive systems involved is not inherent but…