Science.gov

Sample records for reveal quantitative variation

  1. Quantitative proteomic profiling reveals photosynthesis responsible for inoculum size dependent variation in Chlorella sorokiniana.

    PubMed

    Ma, Qian; Wang, Jiangxin; Lu, Shuhuan; Lv, Yajin; Yuan, Yingjin

    2013-03-01

    High density cultivation is essential to industrial production of biodiesel from microalgae, which involves in variations of micro-environment around individual cells, including light intensity, nutrition distribution, other abiotic stress and so on. To figure out the main limit factor in high inoculum cultivation, a quantitative proteomic analysis (iTRAQ-on-line 2-D nano-LC/MS) in a non-model green microalga, Chlorella sorokiniana, under different inoculum sizes was conducted. The resulting high-quality proteomic dataset consisted of 695 proteins. Using a cutoff of P < 0.05, 241 unique proteins with differential expression levels were identified between control and different inoculum sizes. Functional analysis showed that proteins participating in photosynthesis (light reaction) and Calvin cycle (carbon reaction pathway) had highest expression levels under inoculum size of 1 × 10(6) cells mL(-1), and lowest levels under 1 × 10(7) cells mL(-1). Canonical correlation analysis of the photosynthesis related proteins and metabolites biomarkers showed that a good correlation existed between them (canonical coefficient was 0.987), suggesting photosynthesis process greatly affected microalgae biodiesel productivity and quality. Proteomic study of C. sorokiniana under different illuminations was also conducted to confirm light intensity as a potential limit factor of high inoculum size. Nearly two thirds of proteins showed up-regulation under the illumination of 70-110 µmol m(-2) s(-1), compared to those of 40 µmol m(-2) s(-1). This result suggested that by elegantly adjusting light conditions, high cell density cultivation and high biodiesel production might be achieved. PMID:23096779

  2. A Quantitative Model of Motility Reveals Low-Dimensional Variation in Exploratory Behavior Across Multiple Nematode Species

    NASA Astrophysics Data System (ADS)

    Helms, Stephen; Avery, Leon; Stephens, Greg; Shimizu, Tom

    2014-03-01

    Animal behavior emerges from many layers of biological organization--from molecular signaling pathways and neuronal networks to mechanical outputs of muscles. In principle, the large number of interconnected variables at each of these layers could imply dynamics that are complex and hard to control or even tinker with. Yet, for organisms to survive in a competitive, ever-changing environment, behavior must readily adapt. We applied quantitative modeling to identify important aspects of behavior in chromadorean nematodes ranging from the lab strain C. elegans N2 to wild strains and distant species. We revealed subtle yet important features such as speed control and heavy-tailed directional changes. We found that the parameters describing this behavioral model varied among individuals and across species in a correlated way that is consistent with a trade-off between exploratory and exploitative behavior.

  3. Quantitative trait loci in hop (Humulus lupulus L.) reveal complex genetic architecture underlying variation in sex, yield and cone chemistry

    PubMed Central

    2013-01-01

    Background Hop (Humulus lupulus L.) is cultivated for its cones, the secondary metabolites of which contribute bitterness, flavour and aroma to beer. Molecular breeding methods, such as marker assisted selection (MAS), have great potential for improving the efficiency of hop breeding. The success of MAS is reliant on the identification of reliable marker-trait associations. This study used quantitative trait loci (QTL) analysis to identify marker-trait associations for hop, focusing on traits related to expediting plant sex identification, increasing yield capacity and improving bittering, flavour and aroma chemistry. Results QTL analysis was performed on two new linkage maps incorporating transferable Diversity Arrays Technology (DArT) markers. Sixty-three QTL were identified, influencing 36 of the 50 traits examined. A putative sex-linked marker was validated in a different pedigree, confirming the potential of this marker as a screening tool in hop breeding programs. An ontogenetically stable QTL was identified for the yield trait dry cone weight; and a QTL was identified for essential oil content, which verified the genetic basis for variation in secondary metabolite accumulation in hop cones. A total of 60 QTL were identified for 33 secondary metabolite traits. Of these, 51 were pleiotropic/linked, affecting a substantial number of secondary metabolites; nine were specific to individual secondary metabolites. Conclusions Pleiotropy and linkage, found for the first time to influence multiple hop secondary metabolites, have important implications for molecular selection methods. The selection of particular secondary metabolite profiles using pleiotropic/linked QTL will be challenging because of the difficulty of selecting for specific traits without adversely changing others. QTL specific to individual secondary metabolites, however, offer unequalled value to selection programs. In addition to their potential for selection, the QTL identified in this study

  4. Male fertility versus sterility, cytotype, and DNA quantitative variation in seed production in diploid and tetraploid sea lavenders (Limonium sp., Plumbaginaceae) reveal diversity in reproduction modes.

    PubMed

    Róis, Ana Sofia; Teixeira, Generosa; Sharbel, Timothy F; Fuchs, Jörg; Martins, Sérgio; Espírito-Santo, Dalila; Caperta, Ana D

    2012-12-01

    were present in each seed. Flow cytometric seed screens using such mature seeds showed quantitative variations in seeds ploidy level. It is concluded that male function seems to play an important role in the reproduction modes of Limonium diploids and tetraploids. PMID:23086613

  5. Genetic analysis carried out in population tails reveals diverse two-loci interactions as a basic factor of quantitative traits variation in rye.

    PubMed

    Masojć, Piotr; Bienias, Anna; Berdzik, Marcin; Kruszona, Piotr

    2016-05-01

    Bidirectional selective genotyping carried out independently for five quantitative traits within a biparental population of recombinant inbred lines of rye has revealed dramatic changes in alleles distribution in the population tails. A given allele, predominant in the lower tail, is often neutral for reversely directed selection or associates with the upper tail following divergent selection for a related trait. Such radical changes in the alleles distribution cannot be explained by differences in genotypic values within a single locus. This paper presents the theoretical model of a genetic mechanism underlying observed responses of individual loci to divergent selection. The presented model refers to the specific interactions between alleles at two loci. Its wider application in genetic analysis will open up new possibilities for testing positions of genes in the hierarchical structure of interacting loci revealed under selection pressure. PMID:26450131

  6. Quantitative PCR reveals strong spatial and temporal variation of the wasting disease pathogen, Labyrinthula zosterae in northern European eelgrass (Zostera marina) beds.

    PubMed

    Bockelmann, Anna-Christina; Tams, Verena; Ploog, Jana; Schubert, Philipp R; Reusch, Thorsten B H

    2013-01-01

    Seagrass beds are the foundation species of functionally important coastal ecosystems worldwide. The world's largest losses of the widespread seagrass Zostera marina (eelgrass) have been reported as a consequence of wasting disease, an infection with the endophytic protist Labyrinthula zosterae. During one of the most extended epidemics in the marine realm, ∼90% of East and Western Atlantic eelgrass beds died-off between 1932 and 1934. Today, small outbreaks continue to be reported, but the current extent of L. zosterae in European meadows is completely unknown. In this study we quantify the abundance and prevalence of the wasting disease pathogen among 19 Z. marina populations in northern European coastal waters, using quantitative PCR (QPCR) with primers targeting a species specific portion of the internally transcribed spacer (ITS1) of L. zosterae. Spatially, we found marked variation among sites with abundances varying between 0 and 126 cells mg(-1) Z. marina dry weight (mean: 5.7 L. zosterae cells mg(-1) Z. marina dry weight ±1.9 SE) and prevalences ranged from 0-88.9%. Temporarily, abundances varied between 0 and 271 cells mg(-1) Z. marina dry weight (mean: 8.5±2.6 SE), while prevalences ranged from zero in winter and early spring to 96% in summer. Field concentrations accessed via bulk DNA extraction and subsequent QPCR correlated well with prevalence data estimated via isolation and cultivation from live plant tissue. L. zosterae was not only detectable in black lesions, a sign of Labyrinthula-induced necrosis, but also occurred in green, apparently healthy tissue. We conclude that L. zosterae infection is common (84% infected populations) in (northern) European eelgrass populations with highest abundances during the summer months. In the light of global climate change and increasing rate of marine diseases our data provide a baseline for further studies on the causes of pathogenic outbreaks of L. zosterae. PMID:23658711

  7. Quantitative PCR Reveals Strong Spatial and Temporal Variation of the Wasting Disease Pathogen, Labyrinthula zosterae in Northern European Eelgrass (Zostera marina) Beds

    PubMed Central

    Bockelmann, Anna-Christina; Tams, Verena; Ploog, Jana; Schubert, Philipp R.; Reusch, Thorsten B. H.

    2013-01-01

    Seagrass beds are the foundation species of functionally important coastal ecosystems worldwide. The world’s largest losses of the widespread seagrass Zostera marina (eelgrass) have been reported as a consequence of wasting disease, an infection with the endophytic protist Labyrinthula zosterae. During one of the most extended epidemics in the marine realm, ∼90% of East and Western Atlantic eelgrass beds died-off between 1932 and 1934. Today, small outbreaks continue to be reported, but the current extent of L. zosterae in European meadows is completely unknown. In this study we quantify the abundance and prevalence of the wasting disease pathogen among 19 Z. marina populations in northern European coastal waters, using quantitative PCR (QPCR) with primers targeting a species specific portion of the internally transcribed spacer (ITS1) of L. zosterae. Spatially, we found marked variation among sites with abundances varying between 0 and 126 cells mg−1 Z. marina dry weight (mean: 5.7 L. zosterae cells mg−1 Z. marina dry weight ±1.9 SE) and prevalences ranged from 0–88.9%. Temporarily, abundances varied between 0 and 271 cells mg−1 Z. marina dry weight (mean: 8.5±2.6 SE), while prevalences ranged from zero in winter and early spring to 96% in summer. Field concentrations accessed via bulk DNA extraction and subsequent QPCR correlated well with prevalence data estimated via isolation and cultivation from live plant tissue. L. zosterae was not only detectable in black lesions, a sign of Labyrinthula-induced necrosis, but also occurred in green, apparently healthy tissue. We conclude that L. zosterae infection is common (84% infected populations) in (northern) European eelgrass populations with highest abundances during the summer months. In the light of global climate change and increasing rate of marine diseases our data provide a baseline for further studies on the causes of pathogenic outbreaks of L. zosterae. PMID:23658711

  8. Quantitative interactome analysis reveals a chemoresistant edgotype

    PubMed Central

    Chavez, Juan D.; Schweppe, Devin K.; Eng, Jimmy K.; Zheng, Chunxiang; Taipale, Alex; Zhang, Yiyi; Takara, Kohji; Bruce, James E.

    2015-01-01

    Chemoresistance is a common mode of therapy failure for many cancers. Tumours develop resistance to chemotherapeutics through a variety of mechanisms, with proteins serving pivotal roles. Changes in protein conformations and interactions affect the cellular response to environmental conditions contributing to the development of new phenotypes. The ability to understand how protein interaction networks adapt to yield new function or alter phenotype is limited by the inability to determine structural and protein interaction changes on a proteomic scale. Here, chemical crosslinking and mass spectrometry were employed to quantify changes in protein structures and interactions in multidrug-resistant human carcinoma cells. Quantitative analysis of the largest crosslinking-derived, protein interaction network comprising 1,391 crosslinked peptides allows for ‘edgotype' analysis in a cell model of chemoresistance. We detect consistent changes to protein interactions and structures, including those involving cytokeratins, topoisomerase-2-alpha, and post-translationally modified histones, which correlate with a chemoresistant phenotype. PMID:26235782

  9. Quantitative interactome analysis reveals a chemoresistant edgotype.

    PubMed

    Chavez, Juan D; Schweppe, Devin K; Eng, Jimmy K; Zheng, Chunxiang; Taipale, Alex; Zhang, Yiyi; Takara, Kohji; Bruce, James E

    2015-01-01

    Chemoresistance is a common mode of therapy failure for many cancers. Tumours develop resistance to chemotherapeutics through a variety of mechanisms, with proteins serving pivotal roles. Changes in protein conformations and interactions affect the cellular response to environmental conditions contributing to the development of new phenotypes. The ability to understand how protein interaction networks adapt to yield new function or alter phenotype is limited by the inability to determine structural and protein interaction changes on a proteomic scale. Here, chemical crosslinking and mass spectrometry were employed to quantify changes in protein structures and interactions in multidrug-resistant human carcinoma cells. Quantitative analysis of the largest crosslinking-derived, protein interaction network comprising 1,391 crosslinked peptides allows for 'edgotype' analysis in a cell model of chemoresistance. We detect consistent changes to protein interactions and structures, including those involving cytokeratins, topoisomerase-2-alpha, and post-translationally modified histones, which correlate with a chemoresistant phenotype. PMID:26235782

  10. Geographical Variation in a Quantitative Character

    PubMed Central

    Nagylaki, T.

    1994-01-01

    A model for the evolution of the local averages of a quantitative character under migration, selection, and random genetic drift in a subdivided population is formulated and investigated. Generations are discrete and nonoverlapping; the monoecious, diploid population mates at random in each deme. All three evolutionary forces are weak, but the migration pattern and the local population numbers are otherwise arbitrary. The character is determined by purely additive gene action and a stochastically independent environment; its distribution is Gaussian with a constant variance; and it is under Gaussian stabilizing selection with the same parameters in every deme. Linkage disequilibrium is neglected. Most of the results concern the covariances of the local averages. For a finite number of demes, explicit formulas are derived for (i) the asymptotic rate and pattern of convergence to equilibrium, (ii) the variance of a suitably weighted average of the local averages, and (iii) the equilibrium covariances when selection and random drift are much weaker than migration. Essentially complete analyses of equilibrium and convergence are presented for random outbreeding and site homing, the Levene and island models, the circular habitat and the unbounded linear stepping-stone model in the diffusion approximation, and the exact unbounded stepping-stone model in one and two dimensions. PMID:8138171

  11. Single-cell chromatin accessibility reveals principles of regulatory variation.

    PubMed

    Buenrostro, Jason D; Wu, Beijing; Litzenburger, Ulrike M; Ruff, Dave; Gonzales, Michael L; Snyder, Michael P; Chang, Howard Y; Greenleaf, William J

    2015-07-23

    Cell-to-cell variation is a universal feature of life that affects a wide range of biological phenomena, from developmental plasticity to tumour heterogeneity. Although recent advances have improved our ability to document cellular phenotypic variation, the fundamental mechanisms that generate variability from identical DNA sequences remain elusive. Here we reveal the landscape and principles of mammalian DNA regulatory variation by developing a robust method for mapping the accessible genome of individual cells by assay for transposase-accessible chromatin using sequencing (ATAC-seq) integrated into a programmable microfluidics platform. Single-cell ATAC-seq (scATAC-seq) maps from hundreds of single cells in aggregate closely resemble accessibility profiles from tens of millions of cells and provide insights into cell-to-cell variation. Accessibility variance is systematically associated with specific trans-factors and cis-elements, and we discover combinations of trans-factors associated with either induction or suppression of cell-to-cell variability. We further identify sets of trans-factors associated with cell-type-specific accessibility variance across eight cell types. Targeted perturbations of cell cycle or transcription factor signalling evoke stimulus-specific changes in this observed variability. The pattern of accessibility variation in cis across the genome recapitulates chromosome compartments de novo, linking single-cell accessibility variation to three-dimensional genome organization. Single-cell analysis of DNA accessibility provides new insight into cellular variation of the 'regulome'. PMID:26083756

  12. Quantitative Trait Loci Identify Functional Noncoding Variation in Cancer

    PubMed Central

    Heyn, Holger

    2016-01-01

    The interpretation of noncoding alterations in cancer genomes presents an unresolved problem in cancer studies. While the impact of somatic variations in protein-coding regions is widely accepted, noncoding aberrations are mostly considered as passenger events. However, with the advance of genome-wide profiling strategies, alterations outside the coding context entered the focus, and multiple examples highlight the role of gene deregulation as cancer-driving events. This review describes the implication of noncoding alterations in oncogenesis and provides a theoretical framework for the identification of causal somatic variants using quantitative trait loci (QTL) analysis. Assuming that functional noncoding alterations affect quantifiable regulatory processes, somatic QTL studies constitute a valuable strategy to pinpoint cancer gene deregulation. Eventually, the comprehensive identification and interpretation of coding and noncoding alterations will guide our future understanding of cancer biology. PMID:26938653

  13. Diurnal variation in the quantitative EEG in healthy adult volunteers

    PubMed Central

    Cummings, L; Dane, A; Rhodes, J; Lynch, P; Hughes, A M

    2000-01-01

    Aims To define the change in power in standard waveband frequencies of quantitative cortical electroencephalogram (EEG) data over a 24 h period, in a drug free representative healthy volunteer population. Methods This was an open, non randomised study in which 18 volunteers (9 male and 9 female) were studied on 1 study day, over a 24 h period. Volunteers had a cortical EEG recording taken at 0, 2, 4, 6, 8, 10, 12, 16 and 24 h. Each recording lasted for 6 min (3 min eyes open, 3 min eyes closed). All EEG recordings were taken in a quietened ward environment with the curtains drawn round the bed and the volunteer supine. During the 3 min eyes open, volunteers were asked to look at a red circle on a screen at the foot of the bed, and refrain from talking. Results Plots produced of geometric mean power by time of the standard wave band frequencies gave some indication of a circadian rhythm over the 24 h period for θ (4.75–6.75 Hz), α1 (7.0–9.5 Hz) and β1 (12.75–18.50 Hz) wavebands. Mixed models were fitted to both the eyes open and eyes closed data which confirmed a change in mean waveband power with time with statistical significance at the conventional 5% level (P < 0.05). Conclusions These data indicate the presence of a diurnal variation in the cortical quantitative EEG. They support the use of a placebo control group when designing clinical trials which utilize quantitative EEG to screen for central nervous system (CNS) activity of pharmaceutical agents, to control for the confounding variable of time of day at which the EEG recordings were made. PMID:10886113

  14. Convection in Cool Stars, as Revealed through Stellar Brightness Variations

    NASA Astrophysics Data System (ADS)

    Bastien, Fabienne A.

    2015-08-01

    As a result of the high precision and cadence of surveys like MOST, CoRoT, and Kepler, we may now directly observe the very low-level light variations arising from stellar granulation in cool stars. We will discuss how this enables us to measure the physical properties of Sun-like stars, to understand the nature of surface convection and its connection to magnetic activity, and to better determine the properties of planets around cool stars. Indeed, such sensitive photometric "flicker" variations are now within reach for thousands of stars, and we estimate that ongoing and upcoming missions like K2, PLATO, and TESS will enable such measurements for >100 000 stars. We present recent results that tie “flicker” to granulation and enable a simple measurement of stellar surface gravity with a precision of ~0.1-0.2 dex. We use this, together and solely with two other simple ways of characterizing the stellar photometric variations in a high quality light curve, to construct an evolutionary diagram for Sun-like stars from the Main Sequence on towards the red giant branch. We discuss further work that correlates “flicker” with stellar density, allowing the application of astrodensity profiling techniques used in exoplanet characterization to many more stars. We also present results suggesting that the granulation of F stars must be magnetically suppressed in order to fit observations. Finally, we show that we may quantitatively predict a star's radial velocity jitter from its brightness variations, permitting the use of discovery light curves to help prioritize follow-up observations of transiting exoplanets.

  15. Analysis of copy number variation using quantitative interspecies competitive PCR.

    PubMed

    Williams, Nigel M; Williams, Hywel; Majounie, Elisa; Norton, Nadine; Glaser, Beate; Morris, Huw R; Owen, Michael J; O'Donovan, Michael C

    2008-10-01

    Over recent years small submicroscopic DNA copy-number variants (CNVs) have been highlighted as an important source of variation in the human genome, human phenotypic diversity and disease susceptibility. Consequently, there is a pressing need for the development of methods that allow the efficient, accurate and cheap measurement of genomic copy number polymorphisms in clinical cohorts. We have developed a simple competitive PCR based method to determine DNA copy number which uses the entire genome of a single chimpanzee as a competitor thus eliminating the requirement for competitive sequences to be synthesized for each assay. This results in the requirement for only a single reference sample for all assays and dramatically increases the potential for large numbers of loci to be analysed in multiplex. In this study we establish proof of concept by accurately detecting previously characterized mutations at the PARK2 locus and then demonstrating the potential of quantitative interspecies competitive PCR (qicPCR) to accurately genotype CNVs in association studies by analysing chromosome 22q11 deletions in a sample of previously characterized patients and normal controls. PMID:18697816

  16. A Pleiotropic Nonadditive Model of Variation in Quantitative Traits

    PubMed Central

    Caballero, A.; Keightley, P. D.

    1994-01-01

    A model of mutation-selection-drift balance incorporating pleiotropic and dominance effects of new mutations on quantitative traits and fitness is investigated and used to predict the amount and nature of genetic variation maintained in segregating populations. The model is based on recent information on the joint distribution of mutant effects on bristle traits and fitness in Drosophila melanogaster from experiments on the accumulation of spontaneous and P element-induced mutations. These experiments suggest a leptokurtic distribution of effects with an intermediate correlation between effects on the trait and fitness. Mutants of large effect tend to be partially recessive while those with smaller effect are on average additive, but apparently with very variable gene action. The model is parameterized with two different sets of information derived from P element insertion and spontaneous mutation data, though the latter are not fully known. They differ in the number of mutations per generation which is assumed to affect the trait. Predictions of the variance maintained for bristle number assuming parameters derived from effects of P element insertions, in which the proportion of mutations with an effect on the trait is small, fit reasonably well with experimental observations. The equilibrium genetic variance is nearly independent of the degree of dominance of new mutations. Heritabilities of between 0.4 and 0.6 are predicted with population sizes from 10(4) to 10(6), and most of the variance for the metric trait in segregating populations is due to a small proportion of mutations (about 1% of the total number) with neutral or nearly neutral effects on fitness and intermediate effects on the trait (0.1-0.5σ(P)). Much of the genetic variance is contributed by recessive or partially recessive mutants, but only a small proportion (about 10%) of the genetic variance is dominance variance. The amount of apparent selection on the trait itself generated by the model is

  17. Quantitative Social Dialectology: Explaining Linguistic Variation Geographically and Socially

    PubMed Central

    Wieling, Martijn; Nerbonne, John; Baayen, R. Harald

    2011-01-01

    In this study we examine linguistic variation and its dependence on both social and geographic factors. We follow dialectometry in applying a quantitative methodology and focusing on dialect distances, and social dialectology in the choice of factors we examine in building a model to predict word pronunciation distances from the standard Dutch language to 424 Dutch dialects. We combine linear mixed-effects regression modeling with generalized additive modeling to predict the pronunciation distance of 559 words. Although geographical position is the dominant predictor, several other factors emerged as significant. The model predicts a greater distance from the standard for smaller communities, for communities with a higher average age, for nouns (as contrasted with verbs and adjectives), for more frequent words, and for words with relatively many vowels. The impact of the demographic variables, however, varied from word to word. For a majority of words, larger, richer and younger communities are moving towards the standard. For a smaller minority of words, larger, richer and younger communities emerge as driving a change away from the standard. Similarly, the strength of the effects of word frequency and word category varied geographically. The peripheral areas of the Netherlands showed a greater distance from the standard for nouns (as opposed to verbs and adjectives) as well as for high-frequency words, compared to the more central areas. Our findings indicate that changes in pronunciation have been spreading (in particular for low-frequency words) from the Hollandic center of economic power to the peripheral areas of the country, meeting resistance that is stronger wherever, for well-documented historical reasons, the political influence of Holland was reduced. Our results are also consistent with the theory of lexical diffusion, in that distances from the Hollandic norm vary systematically and predictably on a word by word basis. PMID:21912639

  18. Analysis of natural variation reveals neurogenetic networks for Drosophila olfactory behavior.

    PubMed

    Swarup, Shilpa; Huang, Wen; Mackay, Trudy F C; Anholt, Robert R H

    2013-01-15

    Understanding the relationship between genetic variation and phenotypic variation for quantitative traits is necessary for predicting responses to natural and artificial selection and disease risk in human populations, but is challenging because of large sample sizes required to detect and validate loci with small effects. Here, we used the inbred, sequenced, wild-derived lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to perform three complementary genome-wide association (GWA) studies for natural variation in olfactory behavior. The first GWA focused on single nucleotide polymorphisms (SNPs) associated with mean differences in olfactory behavior in the DGRP, the second was an extreme quantitative trait locus GWA on an outbred advanced intercross population derived from extreme DGRP lines, and the third was for SNPs affecting the variance among DGRP lines. No individual SNP in any analysis was associated with variation in olfactory behavior by using a strict threshold accounting for multiple tests, and no SNP overlapped among the analyses. However, combining the top SNPs from all three analyses revealed a statistically enriched network of genes involved in cellular signaling and neural development. We used mutational and gene expression analyses to validate both candidate genes and network connectivity at a high rate. The lack of replication between the GWA analyses, small marginal SNP effects, and convergence on common cellular networks were likely attributable to epistasis. These results suggest that fully understanding the genotype-phenotype relationship requires a paradigm shift from a focus on single SNPs to pathway associations. PMID:23277560

  19. Quantitative Genetic Interactions Reveal Layers of Biological Modularity

    PubMed Central

    Beltrao, Pedro; Cagney, Gerard; Krogan, Nevan J.

    2010-01-01

    In the past, biomedical research has embraced a reductionist approach, primarily focused on characterizing the individual components that comprise a system of interest. Recent technical developments have significantly increased the size and scope of data describing biological systems. At the same time, advances in the field of systems biology have evoked a broader view of how the underlying components are interconnected. In this essay, we discuss how quantitative genetic interaction mapping has enhanced our view of biological systems, allowing a deeper functional interrogation at different biological scales. PMID:20510918

  20. Comparative RNA sequencing reveals substantial genetic variation in endangered primates

    PubMed Central

    Perry, George H.; Melsted, Páll; Marioni, John C.; Wang, Ying; Bainer, Russell; Pickrell, Joseph K.; Michelini, Katelyn; Zehr, Sarah; Yoder, Anne D.; Stephens, Matthew; Pritchard, Jonathan K.; Gilad, Yoav

    2012-01-01

    Comparative genomic studies in primates have yielded important insights into the evolutionary forces that shape genetic diversity and revealed the likely genetic basis for certain species-specific adaptations. To date, however, these studies have focused on only a small number of species. For the majority of nonhuman primates, including some of the most critically endangered, genome-level data are not yet available. In this study, we have taken the first steps toward addressing this gap by sequencing RNA from the livers of multiple individuals from each of 16 mammalian species, including humans and 11 nonhuman primates. Of the nonhuman primate species, five are lemurs and two are lorisoids, for which little or no genomic data were previously available. To analyze these data, we developed a method for de novo assembly and alignment of orthologous gene sequences across species. We assembled an average of 5721 gene sequences per species and characterized diversity and divergence of both gene sequences and gene expression levels. We identified patterns of variation that are consistent with the action of positive or directional selection, including an 18-fold enrichment of peroxisomal genes among genes whose regulation likely evolved under directional selection in the ancestral primate lineage. Importantly, we found no relationship between genetic diversity and endangered status, with the two most endangered species in our study, the black and white ruffed lemur and the Coquerel's sifaka, having the highest genetic diversity among all primates. Our observations imply that many endangered lemur populations still harbor considerable genetic variation. Timely efforts to conserve these species alongside their habitats have, therefore, strong potential to achieve long-term success. PMID:22207615

  1. Analysis of copy number variations reveals differences among cattle breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in the modern domesticated cattle using array comparative genomic hybridization (array CGH) and quanti...

  2. Quantitative flux analysis reveals folate-dependent NADPH production

    NASA Astrophysics Data System (ADS)

    Fan, Jing; Ye, Jiangbin; Kamphorst, Jurre J.; Shlomi, Tomer; Thompson, Craig B.; Rabinowitz, Joshua D.

    2014-06-01

    ATP is the dominant energy source in animals for mechanical and electrical work (for example, muscle contraction or neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defence and reductive biosynthesis. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway, with malic enzyme sometimes also important. Although the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analysed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labelled substrates into NADPH, and combine this approach with carbon labelling and mathematical modelling to measure NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxidative pentose phosphate pathway. Surprisingly, a nearly comparable contribution comes from serine-driven one-carbon metabolism, in which oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP+ to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. As folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP+ and reduced/oxidized glutathione ratios (GSH/GSSG) and increased cell sensitivity to oxidative stress. Thus, although the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one-carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power.

  3. A Quantitative Investigation of Stakeholder Variation in Training Program Evaluation.

    ERIC Educational Resources Information Center

    Michalski, Greg V.

    A survey was conducted to investigate variation in stakeholder perceptions of training results and evaluation within the context of a high-technology product development firm (the case organization). A scannable questionnaire survey booklet was developed and scanned data were exported and analyzed. Based on an achieved sample of 280 (70% response…

  4. Gorilla genome structural variation reveals evolutionary parallelisms with chimpanzee.

    PubMed

    Ventura, Mario; Catacchio, Claudia R; Alkan, Can; Marques-Bonet, Tomas; Sajjadian, Saba; Graves, Tina A; Hormozdiari, Fereydoun; Navarro, Arcadi; Malig, Maika; Baker, Carl; Lee, Choli; Turner, Emily H; Chen, Lin; Kidd, Jeffrey M; Archidiacono, Nicoletta; Shendure, Jay; Wilson, Richard K; Eichler, Evan E

    2011-10-01

    Structural variation has played an important role in the evolutionary restructuring of human and great ape genomes. Recent analyses have suggested that the genomes of chimpanzee and human have been particularly enriched for this form of genetic variation. Here, we set out to assess the extent of structural variation in the gorilla lineage by generating 10-fold genomic sequence coverage from a western lowland gorilla and integrating these data into a physical and cytogenetic framework of structural variation. We discovered and validated over 7665 structural changes within the gorilla lineage, including sequence resolution of inversions, deletions, duplications, and mobile element insertions. A comparison with human and other ape genomes shows that the gorilla genome has been subjected to the highest rate of segmental duplication. We show that both the gorilla and chimpanzee genomes have experienced independent yet convergent patterns of structural mutation that have not occurred in humans, including the formation of subtelomeric heterochromatic caps, the hyperexpansion of segmental duplications, and bursts of retroviral integrations. Our analysis suggests that the chimpanzee and gorilla genomes are structurally more derived than either orangutan or human genomes. PMID:21685127

  5. Genetic interactions contribute less than additive effects to quantitative trait variation in yeast

    PubMed Central

    Bloom, Joshua S.; Kotenko, Iulia; Sadhu, Meru J.; Treusch, Sebastian; Albert, Frank W.; Kruglyak, Leonid

    2015-01-01

    Genetic mapping studies of quantitative traits typically focus on detecting loci that contribute additively to trait variation. Genetic interactions are often proposed as a contributing factor to trait variation, but the relative contribution of interactions to trait variation is a subject of debate. Here we use a very large cross between two yeast strains to accurately estimate the fraction of phenotypic variance due to pairwise QTL–QTL interactions for 20 quantitative traits. We find that this fraction is 9% on average, substantially less than the contribution of additive QTL (43%). Statistically significant QTL–QTL pairs typically have small individual effect sizes, but collectively explain 40% of the pairwise interaction variance. We show that pairwise interaction variance is largely explained by pairs of loci at least one of which has a significant additive effect. These results refine our understanding of the genetic architecture of quantitative traits and help guide future mapping studies. PMID:26537231

  6. Circumstellar disks revealed by H/K flux variation gradients

    NASA Astrophysics Data System (ADS)

    Pozo Nuñez, F.; Haas, M.; Chini, R.; Ramolla, M.; Westhues, C.; Hodapp, K.-W.

    2015-06-01

    The variability of young stellar objects (YSO) changes their brightness and color preventing a proper classification in traditional color-color and color magnitude diagrams. We have explored the feasibility of the flux variation gradient (FVG) method for YSOs, using H and K band monitoring data of the star forming region RCW 38 obtained at the University Observatory Bochum in Chile. Simultaneous multi-epoch flux measurements follow a linear relation FH = α + β·FK for almost all YSOs with large variability amplitude. The slope β gives the mean HK color temperature Tvar of the varying component. Because Tvar is hotter than the dust sublimation temperature, we have tentatively assigned it to stellar variations. If the gradient does not meet the origin of the flux-flux diagram, an additional non- or less-varying component may be required. If the variability amplitude is larger at the shorter wavelength, e.g. α< 0, this component is cooler than the star (e.g. a circumstellar disk); vice versa, if α> 0, the component is hotter like a scattering halo or even a companion star. We here present examples of two YSOs, where the HK FVG implies the presence of a circumstellar disk; this finding is consistent with additional data at J and L. One YSO shows a clear K-band excess in the JHK color-color diagram, while the significance of a K-excess in the other YSO depends on the measurement epoch. Disentangling the contributions of star and disk it turns out that the two YSOs have huge variability amplitudes (~3-5 mag). The HK FVG analysis is a powerful complementary tool to analyze the varying components of YSOs and worth further exploration of monitoring data at other wavelengths.

  7. Molar Macrowear Reveals Neanderthal Eco-Geographic Dietary Variation

    PubMed Central

    Fiorenza, Luca; Benazzi, Stefano; Tausch, Jeremy; Kullmer, Ottmar; Bromage, Timothy G.; Schrenk, Friedemann

    2011-01-01

    Neanderthal diets are reported to be based mainly on the consumption of large and medium sized herbivores, while the exploitation of other food types including plants has also been demonstrated. Though some studies conclude that early Homo sapiens were active hunters, the analyses of faunal assemblages, stone tool technologies and stable isotopic studies indicate that they exploited broader dietary resources than Neanderthals. Whereas previous studies assume taxon-specific dietary specializations, we suggest here that the diet of both Neanderthals and early Homo sapiens is determined by ecological conditions. We analyzed molar wear patterns using occlusal fingerprint analysis derived from optical 3D topometry. Molar macrowear accumulates during the lifespan of an individual and thus reflects diet over long periods. Neanderthal and early Homo sapiens maxillary molar macrowear indicates strong eco-geographic dietary variation independent of taxonomic affinities. Based on comparisons with modern hunter-gatherer populations with known diets, Neanderthals as well as early Homo sapiens show high dietary variability in Mediterranean evergreen habitats but a more restricted diet in upper latitude steppe/coniferous forest environments, suggesting a significant consumption of high protein meat resources. PMID:21445243

  8. Optomechanical properties of cancer cells revealed by light-induced deformation and quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Kastl, Lena; Budde, Björn; Isbach, Michael; Rommel, Christina; Kemper, Björn; Schnekenburger, Jürgen

    2015-05-01

    There is a growing interest in cell biology and clinical diagnostics in label-free, optical techniques as the interaction with the sample is minimized and substances like dyes or fixatives do not affect the investigated cells. Such techniques include digital holographic microscopy (DHM) and the optical stretching by fiber optical two beam traps. DHM enables quantitative phase contrast imaging and thereby the determination of the cellular refractive index, dry mass and the volume, whereas optical cell stretching reveals the deformability of cells. Since optical stretching strongly depends on the optical properties and the shape of the investigated material we combined the usage of fiber optical stretching and DHM for the characterization of pancreatic tumor cells. The risk of tumors is their potential to metastasize, spread through the bloodstream and build distal tumors/metastases. The grade of dedifferentiation in which the cells lose their cell type specific properties is a measure for this metastatic potential. The less differentiated the cells are, the higher is their risk to metastasize. Our results demonstrate that pancreatic tumor cells, which are from the same tumor but vary in their grade of differentiation, show significant differences in their deformability. The retrieved data show that differentiated cells have a higher stiffness than less differentiated cells of the same tumor. Even cells that differ only in the expression of a single tumor suppressor gene which is responsible for cell-cell adhesions can be distinguished by their mechanical properties. Additionally, results from DHM measurements yield that the refractive index shows only few variations, indicating that it does not significantly influence optical cell stretching. The obtained results show a promising new approach for the phenotyping of different cell types, especially in tumor cell characterization and cancer diagnostics.

  9. River Channel Expansion Reveals Ice Sheet Runoff Variations

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Hudson, B. D.; Welty, E.; LeWinter, A.; Mikkelsen, A. B.

    2013-12-01

    . Whereas direct calibration is essential to establish total annual volumes, intra-annual variation of river runoff can be mapped for proglacial river systems along the Greenland margin.

  10. Quantitative determination of four constituents of Tinospora sps. by a reversed-phase HPLC-UV-DAD method. Broad-based studies revealing variation in content of four secondary metabolites in the plant from different eco-geographical regions of India.

    PubMed

    Ahmed, S M; Manhas, L R; Verma, V; Khajuria, R K

    2006-09-01

    This paper describes the separation and quantitation of important markers, such as 20beta-hydroxyecdysone, tinosporaside, cordioside, and columbin, present in three species of Tinospora viz, T. cordifolia, T. malabrica, and T. crispa. A reverse-phase (RP) high-performance liquid chromatography (HPLC)-UV-diode array detection (DAD) method employing gradient elution is thus developed. The marker compounds isolated from 70% ethanolic extract of T. cordfolia by repeated column chromatography are identified on the basis of (1)H NMR, (13)C NMR, and mass spectral data. The compounds are separated on a RP (RP-18, 5 microm, 250 x 4.6-mm i.d.) column using water-acetonitrile gradient and are detected by the HPLC-UV-DAD method. The calibration curves that result from marker compounds in the concentration range of 100-2000 ng on column exhibit a good correlation (r(2) > or = 0.99978). The method is successfully applied to separate and study the content of four marker compounds in 40 different accessions of three Tinospora species collected from different regions of India. The studies reveal that the maximum amount of the marker compounds is present in Tinospora cordifolia species, especially from accessions collected from higher altitudes of the Jammu province (North India). PMID:16959127

  11. Spontaneous mutations and the origin and maintenance of quantitative genetic variation.

    PubMed

    Huang, Wen; Lyman, Richard F; Lyman, Rachel A; Carbone, Mary Anna; Harbison, Susan T; Magwire, Michael M; Mackay, Trudy Fc

    2016-01-01

    Mutation and natural selection shape the genetic variation in natural populations. Here, we directly estimated the spontaneous mutation rate by sequencing new Drosophila mutation accumulation lines maintained with minimal natural selection. We inferred strong stabilizing natural selection on quantitative traits because genetic variation among wild-derived inbred lines was much lower than predicted from a neutral model and the mutational effects were much larger than allelic effects of standing polymorphisms. Stabilizing selection could act directly on the traits, or indirectly from pleiotropic effects on fitness. However, our data are not consistent with simple models of mutation-stabilizing selection balance; therefore, further empirical work is needed to assess the balance of evolutionary forces responsible for quantitative genetic variation. PMID:27213517

  12. Spontaneous mutations and the origin and maintenance of quantitative genetic variation

    PubMed Central

    Huang, Wen; Lyman, Richard F; Lyman, Rachel A; Carbone, Mary Anna; Harbison, Susan T; Magwire, Michael M; Mackay, Trudy FC

    2016-01-01

    Mutation and natural selection shape the genetic variation in natural populations. Here, we directly estimated the spontaneous mutation rate by sequencing new Drosophila mutation accumulation lines maintained with minimal natural selection. We inferred strong stabilizing natural selection on quantitative traits because genetic variation among wild-derived inbred lines was much lower than predicted from a neutral model and the mutational effects were much larger than allelic effects of standing polymorphisms. Stabilizing selection could act directly on the traits, or indirectly from pleiotropic effects on fitness. However, our data are not consistent with simple models of mutation-stabilizing selection balance; therefore, further empirical work is needed to assess the balance of evolutionary forces responsible for quantitative genetic variation. DOI: http://dx.doi.org/10.7554/eLife.14625.001 PMID:27213517

  13. Population Variation Reveals Independent Selection toward Small Body Size in Chinese Debao Pony

    PubMed Central

    Kader, Adiljan; Li, Yan; Dong, Kunzhe; Irwin, David M.; Zhao, Qianjun; He, Xiaohong; Liu, Jianfeng; Pu, Yabin; Gorkhali, Neena Amatya; Liu, Xuexue; Jiang, Lin; Li, Xiangchen; Guan, Weijun; Zhang, Yaping; Wu, Dong-Dong; Ma, Yuehui

    2016-01-01

    Body size, one of the most important quantitative traits under evolutionary scrutiny, varies considerably among species and among populations within species. Revealing the genetic basis underlying this variation is very important, particularly in humans where there is a close relationship with diseases and in domestic animals as the selective patterns are associated with improvements in production traits. The Debao pony is a horse breed with small body size that is unique to China; however, it is unknown whether the size-related candidate genes identified in Western breeds also account for the small body size of the Debao pony. Here, we compared individual horses from the Debao population with other two Chinese horse populations using single nucleotide polymorphisms (SNPs) identified with the Equine SNP 65 Bead Chip. The previously reported size-related candidate gene HMGA2 showed a significant signature for selection, consistent with its role observed in human populations. More interestingly, we found a candidate gene TBX3, which had not been observed in previous studies on horse body size that displayed the highest differentiation and most significant association, and thus likely is the dominating factor for the small stature of the Debao pony. Further comparison between the Debao pony and other breeds of horses from around the world demonstrated that TBX3 was selected independently in the Debao pony, suggesting that there were multiple origins of small stature in the horse. PMID:26637467

  14. De novo genetic variation revealed in somatic sectors of single Arabidopsis plants

    PubMed Central

    Hopkins, Marianne T; Khalid, Aaron M; Chang, Pei-Chun; Vanderhoek, Karen C; Lai, Dulcie; Doerr, Meghan D; Lolle, Susan J

    2013-01-01

    Concern over the tremendous loss of genetic diversity among many of our most important crops has prompted major efforts to preserve seed stocks derived from cultivated species and their wild relatives.  Arabidopsis thaliana propagates mainly by self-fertilizing, and therefore, like many crop plants, theoretically has a limited potential for producing genetically diverse offspring. Despite this, inbreeding has persisted in Arabidopsis for over a million years suggesting that some underlying adaptive mechanism buffers the deleterious consequences of this reproductive strategy. Using presence-absence molecular markers we demonstrate that single Arabidopsis plants can have multiple genotypes. Sequence analyses reveal single nucleotide changes, loss of sequences and, surprisingly, acquisition of unique genomic insertions. Estimates based on quantitative analyses suggest that these genetically discordant sectors are very small but can have a complex genetic makeup. In ruling out more trivial explanations for these data, our findings raise the possibility that intrinsic drivers of genetic variation are responsible for the targeted sequence changes we detect. Given the evolutionary advantage afforded to populations with greater genetic diversity, we hypothesize that organisms that primarily self-fertilize or propagate clonally counteract the genetic cost of such reproductive strategies by leveraging a cryptic reserve of extra-genomic information. PMID:24555023

  15. Population Variation Reveals Independent Selection toward Small Body Size in Chinese Debao Pony.

    PubMed

    Kader, Adiljan; Li, Yan; Dong, Kunzhe; Irwin, David M; Zhao, Qianjun; He, Xiaohong; Liu, Jianfeng; Pu, Yabin; Gorkhali, Neena Amatya; Liu, Xuexue; Jiang, Lin; Li, Xiangchen; Guan, Weijun; Zhang, Yaping; Wu, Dong-Dong; Ma, Yuehui

    2016-01-01

    Body size, one of the most important quantitative traits under evolutionary scrutiny, varies considerably among species and among populations within species. Revealing the genetic basis underlying this variation is very important, particularly in humans where there is a close relationship with diseases and in domestic animals as the selective patterns are associated with improvements in production traits. The Debao pony is a horse breed with small body size that is unique to China; however, it is unknown whether the size-related candidate genes identified in Western breeds also account for the small body size of the Debao pony. Here, we compared individual horses from the Debao population with other two Chinese horse populations using single nucleotide polymorphisms (SNPs) identified with the Equine SNP 65 Bead Chip. The previously reported size-related candidate gene HMGA2 showed a significant signature for selection, consistent with its role observed in human populations. More interestingly, we found a candidate gene TBX3, which had not been observed in previous studies on horse body size that displayed the highest differentiation and most significant association, and thus likely is the dominating factor for the small stature of the Debao pony. Further comparison between the Debao pony and other breeds of horses from around the world demonstrated that TBX3 was selected independently in the Debao pony, suggesting that there were multiple origins of small stature in the horse. PMID:26637467

  16. Quantitative measurement of phase variation amplitude of ultrasonic diffraction grating based on diffraction spectral analysis

    SciTech Connect

    Pan, Meiyan Zeng, Yingzhi; Huang, Zuohua

    2014-09-15

    A new method based on diffraction spectral analysis is proposed for the quantitative measurement of the phase variation amplitude of an ultrasonic diffraction grating. For a traveling wave, the phase variation amplitude of the grating depends on the intensity of the zeroth- and first-order diffraction waves. By contrast, for a standing wave, this amplitude depends on the intensity of the zeroth-, first-, and second-order diffraction waves. The proposed method is verified experimentally. The measured phase variation amplitude ranges from 0 to 2π, with a relative error of approximately 5%. A nearly linear relation exists between the phase variation amplitude and driving voltage. Our proposed method can also be applied to ordinary sinusoidal phase grating.

  17. Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola.

    PubMed

    Raman, H; Raman, R; Coombes, N; Song, J; Prangnell, R; Bandaranayake, C; Tahira, R; Sundaramoorthi, V; Killian, A; Meng, J; Dennis, E S; Balasubramanian, S

    2016-06-01

    Optimum flowering time is the key to maximize canola production in order to meet global demand of vegetable oil, biodiesel and canola-meal. We reveal extensive variation in flowering time across diverse genotypes of canola under field, glasshouse and controlled environmental conditions. We conduct a genome-wide association study and identify 69 single nucleotide polymorphism (SNP) markers associated with flowering time, which are repeatedly detected across experiments. Several associated SNPs occur in clusters across the canola genome; seven of them were detected within 20 Kb regions of a priori candidate genes; FLOWERING LOCUS T, FRUITFUL, FLOWERING LOCUS C, CONSTANS, FRIGIDA, PHYTOCHROME B and an additional five SNPs were localized within 14 Kb of a previously identified quantitative trait loci for flowering time. Expression analyses showed that among FLC paralogs, BnFLC.A2 accounts for ~23% of natural variation in diverse accessions. Genome-wide association analysis for FLC expression levels mapped not only BnFLC.C2 but also other loci that contribute to variation in FLC expression. In addition to revealing the complex genetic architecture of flowering time variation, we demonstrate that the identified SNPs can be modelled to predict flowering time in diverse canola germplasm accurately and hence are suitable for genomic selection of adaptative traits in canola improvement programmes. PMID:26428711

  18. Beyond Punnett squares: Student word association and explanations of phenotypic variation through an integrative quantitative genetics unit investigating anthocyanin inheritance and expression in Brassica rapa Fast plants.

    PubMed

    Batzli, Janet M; Smith, Amber R; Williams, Paul H; McGee, Seth A; Dósa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory course focused on the inheritance and expression of a quantitative trait in varying environments. We utilized Brassica rapa Fast Plants as a model organism to study variation in the phenotype anthocyanin pigment intensity. As an initial curriculum assessment, we used free word association to examine students' cognitive structures before and after the unit and explanations in students' final research posters with particular focus on variation (Pv = Gv + Ev). Comparison of pre- and postunit word frequency revealed a shift in words and a pattern of co-occurring concepts indicative of change in cognitive structure, with particular focus on "variation" as a proposed threshold concept and primary goal for students' explanations. Given review of 53 posters, we found ∼50% of students capable of intermediate to high-level explanations combining both Gv and Ev influence on expression of anthocyanin intensity (Pv). While far from "plug and play," this conceptually rich, inquiry-based unit holds promise for effective integration of quantitative and Mendelian genetics. PMID:25185225

  19. Population size is weakly related to quantitative genetic variation and trait differentiation in a stream fish.

    PubMed

    Wood, Jacquelyn L A; Tezel, Defne; Joyal, Destin; Fraser, Dylan J

    2015-09-01

    How population size influences quantitative genetic variation and differentiation among natural, fragmented populations remains unresolved. Small, isolated populations might occupy poor quality habitats and lose genetic variation more rapidly due to genetic drift than large populations. Genetic drift might furthermore overcome selection as population size decreases. Collectively, this might result in directional changes in additive genetic variation (VA ) and trait differentiation (QST ) from small to large population size. Alternatively, small populations might exhibit larger variation in VA and QST if habitat fragmentation increases variability in habitat types. We explored these alternatives by investigating VA and QST using nine fragmented populations of brook trout varying 50-fold in census size N (179-8416) and 10-fold in effective number of breeders, Nb (18-135). Across 15 traits, no evidence was found for consistent differences in VA and QST with population size and almost no evidence for increased variability of VA or QST estimates at small population size. This suggests that (i) small populations of some species may retain adaptive potential according to commonly adopted quantitative genetic measures and (ii) populations of varying sizes experience a variety of environmental conditions in nature, however extremely large studies are likely required before any firm conclusions can be made. PMID:26207947

  20. Conformation of polyelectrolytes in poor solvents: Variational approach and quantitative comparison with scaling predictions

    NASA Astrophysics Data System (ADS)

    Tang, Haozhe; Liao, Qi; Zhang, Pingwen

    2014-05-01

    We present the results of variational calculations of a polyelectrolyte solution with low salt in poor solvent conditions for a polymer backbone. By employing the variation method, we quantitatively determined the diagram of the state of the polyelectrolyte in poor solvents as a function of the charge density and the molecular weight. The exact structure and diagram of the polyelectrolyte were compared to the scaling predictions of the necklace model developed by Dobrynin and Rubinstein [Prog. Polym. Sci. 30, 1049-1118 (2005); Dobrynin and Rubinstein, Macromolecules 32, 915-922 (1999); Dobrynin and Rubinstein, Macromolecules 34, 1964-1972 (2001)]. We find that the scaling necklace model may be used as a rather good estimation and analytical approximation of the exact variational model. It is also pointed out that the molecular connection of polymer is crucial for ellipsoid and necklace conformation.

  1. Quantitative H2S-mediated protein sulfhydration reveals metabolic reprogramming during the integrated stress response.

    PubMed

    Gao, Xing-Huang; Krokowski, Dawid; Guan, Bo-Jhih; Bederman, Ilya; Majumder, Mithu; Parisien, Marc; Diatchenko, Luda; Kabil, Omer; Willard, Belinda; Banerjee, Ruma; Wang, Benlian; Bebek, Gurkan; Evans, Charles R; Fox, Paul L; Gerson, Stanton L; Hoppel, Charles L; Liu, Ming; Arvan, Peter; Hatzoglou, Maria

    2015-01-01

    The sulfhydration of cysteine residues in proteins is an important mechanism involved in diverse biological processes. We have developed a proteomics approach to quantitatively profile the changes of sulfhydrated cysteines in biological systems. Bioinformatics analysis revealed that sulfhydrated cysteines are part of a wide range of biological functions. In pancreatic β cells exposed to endoplasmic reticulum (ER) stress, elevated H2S promotes the sulfhydration of enzymes in energy metabolism and stimulates glycolytic flux. We propose that transcriptional and translational reprogramming by the integrated stress response (ISR) in pancreatic β cells is coupled to metabolic alternations triggered by sulfhydration of key enzymes in intermediary metabolism. PMID:26595448

  2. [Spontaneous mutation variation (quantitative manifestation) of some traits of the garden rose].

    PubMed

    Zykov, K I

    2002-01-01

    Quantitative variability of four traits (anthocyan coloration, flower aroma, double-flowering capacity, and a flower size) in spontaneous gemmacous mutants (sports) of garden rose may be not accidental but preferably orientated to the increase or decrease in the trait manifestation in the case of transaggressive inheritance by initial hybrid forms of the increased or decreased level of these traits in parents. Revealing this regularity enabled us to evolve a hypothesis explaining the decrease or increase in trait quantitative manifestation in sports by inactivation or elimination resulting from mutations in dominant alleles of the polymer genes responsible either for increasing or decreasing in phenotypic expression. Thus, if the parents of an initial form are known, it is possible to forecast in what way the quantitative characters in somatic mutants of the initial form will change, accidentally or getting preferably higher or lower. PMID:12379016

  3. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in Brassica rapa Fast Plants

    PubMed Central

    Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dósa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question “What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev),” we developed a 4-wk unit for an inquiry-based laboratory course focused on the inheritance and expression of a quantitative trait in varying environments. We utilized Brassica rapa Fast Plants as a model organism to study variation in the phenotype anthocyanin pigment intensity. As an initial curriculum assessment, we used free word association to examine students’ cognitive structures before and after the unit and explanations in students’ final research posters with particular focus on variation (Pv = Gv + Ev). Comparison of pre- and postunit word frequency revealed a shift in words and a pattern of co-occurring concepts indicative of change in cognitive structure, with particular focus on “variation” as a proposed threshold concept and primary goal for students’ explanations. Given review of 53 posters, we found ∼50% of students capable of intermediate to high-level explanations combining both Gv and Ev influence on expression of anthocyanin intensity (Pv). While far from “plug and play,” this conceptually rich, inquiry-based unit holds promise for effective integration of quantitative and Mendelian genetics. PMID:25185225

  4. Quantitative Genetic Architecture at Latitudinal Range Boundaries: Reduced Variation but Higher Trait Independence.

    PubMed

    Paccard, Antoine; Van Buskirk, Josh; Willi, Yvonne

    2016-05-01

    Species distribution limits are hypothesized to be caused by small population size and limited genetic variation in ecologically relevant traits, but earlier studies have not evaluated genetic variation in multivariate phenotypes. We asked whether populations at the latitudinal edges of the distribution have altered quantitative genetic architecture of ecologically relevant traits compared with midlatitude populations. We calculated measures of evolutionary potential in nine Arabidopsis lyrata populations spanning the latitudinal range of the species in eastern and midwestern North America. Environments at the latitudinal extremes have reduced water availability, and therefore plants were assessed under wet and dry treatments. We estimated genetic variance-covariance (G-) matrices for 10 traits related to size, development, and water balance. Populations at southern and northern distribution edges had reduced levels of genetic variation across traits, but their G-matrices were more spherical; G-matrix orientation was unrelated to latitude. As a consequence, the predicted short-term response to selection was at least as strong in edge populations as in central populations. These results are consistent with genetic drift eroding variation and reducing the effectiveness of correlational selection at distribution margins. We conclude that genetic variation of isolated traits poorly predicts the capacity to evolve in response to multivariate selection and that the response to selection may frequently be greater than expected at species distribution margins because of genetic drift. PMID:27104998

  5. Quantitative Proteomics Reveals That Hsp90 Inhibition Preferentially Targets Kinases and the DNA Damage Response*

    PubMed Central

    Sharma, Kirti; Vabulas, R. Martin; Macek, Boris; Pinkert, Stefan; Cox, Jürgen; Mann, Matthias; Hartl, F. Ulrich

    2012-01-01

    Despite the increasing importance of heat shock protein 90 (Hsp90) inhibitors as chemotherapeutic agents in diseases such as cancer, their global effects on the proteome remain largely unknown. Here we use high resolution, quantitative mass spectrometry to map protein expression changes associated with the application of the Hsp90 inhibitor, 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG). In depth data obtained from five replicate SILAC experiments enabled accurate quantification of about 6,000 proteins in HeLa cells. As expected, we observed activation of a heat shock response with induced expression of molecular chaperones, which refold misfolded proteins, and proteases, which degrade irreparably damaged polypeptides. Despite the broad range of known Hsp90 substrates, bioinformatics analysis revealed that particular protein classes were preferentially affected. These prominently included proteins involved in the DNA damage response, as well as protein kinases and especially tyrosine kinases. We followed up on this observation with a quantitative phosphoproteomic analysis of about 4,000 sites, which revealed that Hsp90 inhibition leads to much more down- than up-regulation of the phosphoproteome (34% down versus 6% up). This study defines the cellular response to Hsp90 inhibition at the proteome level and sheds light on the mechanisms by which it can be used to target cancer cells. PMID:22167270

  6. Quantitative mapping of pore fraction variations in silicon nitride using an ultrasonic contact scan technique

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kiser, James D.; Swickard, Suzanne M.; Szatmary, Steven A.; Kerwin, David P.

    1993-01-01

    An ultrasonic scan procedure using the pulse-echo contact configuration was employed to obtain maps of pore fraction variations in sintered silicon nitride samples in terms of ultrasonic material properties. Ultrasonic velocity, attenuation coefficient, and reflection coefficient images were obtained simultaneously over a broad band of frequencies (e.g., 30 to 110 MHz) by using spectroscopic analysis. Liquid and membrane (dry) coupling techniques and longitudinal and shear-wave energies were used. The major results include the following: Ultrasonic velocity (longitudinal and shear wave) images revealed and correlated with the extent of average through-thickness pore fraction variations in the silicon nitride disks. Attenuation coefficient images revealed pore fraction nonuniformity due to the scattering that occurred at boundaries between regions of high and low pore fraction. Velocity and attenuation coefficient images were each nearly identical for machined and polished disks, making the method readily applicable to machined materials. Velocity images were similar for wet and membrane coupling. Maps of apparent Poisson's ratio constructed from longitudinal and shear-wave velocities quantified Poisson's ratio variations across a silicon nitride disk. Thermal wave images of a disk indicated transient thermal behavior variations that correlated with observed variations in pore fraction and velocity and attenuation coefficients.

  7. The integration of quantitative genetics, paleontology, and neontology reveals genetic underpinnings of primate dental evolution.

    PubMed

    Hlusko, Leslea J; Schmitt, Christopher A; Monson, Tesla A; Brasil, Marianne F; Mahaney, Michael C

    2016-08-16

    Developmental genetics research on mice provides a relatively sound understanding of the genes necessary and sufficient to make mammalian teeth. However, mouse dentitions are highly derived compared with human dentitions, complicating the application of these insights to human biology. We used quantitative genetic analyses of data from living nonhuman primates and extensive osteological and paleontological collections to refine our assessment of dental phenotypes so that they better represent how the underlying genetic mechanisms actually influence anatomical variation. We identify ratios that better characterize the output of two dental genetic patterning mechanisms for primate dentitions. These two newly defined phenotypes are heritable with no measurable pleiotropic effects. When we consider how these two phenotypes vary across neontological and paleontological datasets, we find that the major Middle Miocene taxonomic shift in primate diversity is characterized by a shift in these two genetic outputs. Our results build on the mouse model by combining quantitative genetics and paleontology, and thereby elucidate how genetic mechanisms likely underlie major events in primate evolution. PMID:27402751

  8. The integration of quantitative genetics, paleontology, and neontology reveals genetic underpinnings of primate dental evolution

    PubMed Central

    Hlusko, Leslea J.; Schmitt, Christopher A.; Monson, Tesla A.; Brasil, Marianne F.; Mahaney, Michael C.

    2016-01-01

    Developmental genetics research on mice provides a relatively sound understanding of the genes necessary and sufficient to make mammalian teeth. However, mouse dentitions are highly derived compared with human dentitions, complicating the application of these insights to human biology. We used quantitative genetic analyses of data from living nonhuman primates and extensive osteological and paleontological collections to refine our assessment of dental phenotypes so that they better represent how the underlying genetic mechanisms actually influence anatomical variation. We identify ratios that better characterize the output of two dental genetic patterning mechanisms for primate dentitions. These two newly defined phenotypes are heritable with no measurable pleiotropic effects. When we consider how these two phenotypes vary across neontological and paleontological datasets, we find that the major Middle Miocene taxonomic shift in primate diversity is characterized by a shift in these two genetic outputs. Our results build on the mouse model by combining quantitative genetics and paleontology, and thereby elucidate how genetic mechanisms likely underlie major events in primate evolution. PMID:27402751

  9. Genetic Variability and Selection Criteria in Rice Mutant Lines as Revealed by Quantitative Traits

    PubMed Central

    Oladosu, Yusuff; Rafii, M. Y.; Abdullah, Norhani; Abdul Malek, Mohammad; Rahim, H. A.; Hussin, Ghazali; Abdul Latif, Mohammad; Kareem, Isiaka

    2014-01-01

    Genetic based knowledge of different vegetative and yield traits play a major role in varietal improvement of rice. Genetic variation gives room for recombinants which are essential for the development of a new variety in any crop. Based on this background, this work was carried out to evaluate genetic diversity of derived mutant lines and establish relationships between their yield and yield components using multivariate analysis. To achieve this objective, two field trials were carried out on 45 mutant rice genotypes to evaluate their growth and yield traits. Data were taken on vegetative traits and yield and its components, while genotypic and phenotypic coefficients, variance components, expected genetic advance, and heritability were calculated. All the genotypes showed variations for vegetative traits and yield and its components. Also, there was positive relationship between the quantitative traits and the final yield with the exception of number of tillers. Finally, the evaluated genotypes were grouped into five major clusters based on the assessed traits with the aid of UPGMA dendrogram. So hybridization of group I with group V or group VI could be used to attain higher heterosis or vigour among the genotypes. Also, this evaluation could be useful in developing reliable selection indices for important agronomic traits in rice. PMID:25431777

  10. Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation

    PubMed Central

    Jin, Minliang; Liu, Haijun; He, Cheng; Fu, Junjie; Xiao, Yingjie; Wang, Yuebin; Xie, Weibo; Wang, Guoying; Yan, Jianbing

    2016-01-01

    Gene expression variation largely contributes to phenotypic diversity and constructing pan-transcriptome is considered necessary for species with complex genomes. However, the regulation mechanisms and functional consequences of pan-transcriptome is unexplored systematically. By analyzing RNA-seq data from 368 maize diverse inbred lines, we identified almost one-third nuclear genes under expression presence and absence variation, which tend to play regulatory roles and are likely regulated by distant eQTLs. The ePAV was directly used as “genotype” to perform GWAS for 15 agronomic phenotypes and 526 metabolic traits to efficiently explore the associations between transcriptomic and phenomic variations. Through a modified assembly strategy, 2,355 high-confidence novel sequences with total 1.9 Mb lengths were found absent within reference genome. Ten randomly selected novel sequences were fully validated with genomic PCR, including another two NBS_LRR candidates potentially affect flavonoids and disease-resistance. A simulation analysis suggested that the pan-transcriptome of the maize whole kernel is approaching a maximum value of 63,000 genes, and through developing two test-cross populations and surveying several most important yield traits, the dispensable genes were shown to contribute to heterosis. Novel perspectives and resources to discover maize quantitative trait variations were provided to better understand the kernel regulation networks and to enhance maize breeding. PMID:26729541

  11. Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation.

    PubMed

    Jin, Minliang; Liu, Haijun; He, Cheng; Fu, Junjie; Xiao, Yingjie; Wang, Yuebin; Xie, Weibo; Wang, Guoying; Yan, Jianbing

    2016-01-01

    Gene expression variation largely contributes to phenotypic diversity and constructing pan-transcriptome is considered necessary for species with complex genomes. However, the regulation mechanisms and functional consequences of pan-transcriptome is unexplored systematically. By analyzing RNA-seq data from 368 maize diverse inbred lines, we identified almost one-third nuclear genes under expression presence and absence variation, which tend to play regulatory roles and are likely regulated by distant eQTLs. The ePAV was directly used as "genotype" to perform GWAS for 15 agronomic phenotypes and 526 metabolic traits to efficiently explore the associations between transcriptomic and phenomic variations. Through a modified assembly strategy, 2,355 high-confidence novel sequences with total 1.9 Mb lengths were found absent within reference genome. Ten randomly selected novel sequences were fully validated with genomic PCR, including another two NBS_LRR candidates potentially affect flavonoids and disease-resistance. A simulation analysis suggested that the pan-transcriptome of the maize whole kernel is approaching a maximum value of 63,000 genes, and through developing two test-cross populations and surveying several most important yield traits, the dispensable genes were shown to contribute to heterosis. Novel perspectives and resources to discover maize quantitative trait variations were provided to better understand the kernel regulation networks and to enhance maize breeding. PMID:26729541

  12. [Quantitive variation of polysaccharides and alcohol-soluble extracts in F1 generation of Dendrobium officinale].

    PubMed

    Zhang, Xiao-Ling; Liu, Jing-Jing; Wu, Ling-Shang; Si, Jin-Ping; Guo, Ying-Ying; Yu, Jie; Wang, Lin-Hua

    2013-11-01

    Using phenol-sulfuric acid method and hot-dip method of alcohol-soluble extracts, the contents of polysaccharides and alcohol-soluble extracts in 11 F1 generations of Dendrobium officinale were determined. The results showed that the polysaccharides contents in samples collected in May and February were 32.89%-43.07% and 25.77%-35.25%, respectively, while the extracts contents were 2.81%-4.85% and 7.90%-17.40%, respectively. They were significantly different among families. The content of polysaccharides in offspring could be significantly improved by hybridization between parents with low and high polysaccharides contents, and the hybrid vigor was obvious. Cross breeding was an effective way for breeding new varieties with higher polysaccharides contents. Harvest time would significantly affect the contents of polysaccharides and alcohol-soluble extracts. The contents of polysaccharides in families collected in May were higher than those of polysaccharides in families collected in February, but the extracts content had the opposite variation. The extents of quantitative variation of polysaccharides and alcohol-soluble extracts were different among families, and each family had its own rules. It would be significant in giving full play to their role as the excellent varieties and increasing effectiveness by studying on the quantitative accumulation regularity of polysaccharides and alcohol-soluble extracts in superior families (varieties) of D. officinale to determine the best harvesting time. PMID:24494555

  13. Hybrid Dysgenesis-Induced Quantitative Variation on the X Chromosome of Drosophila Melanogaster

    PubMed Central

    Lai, C.; Mackay, TFC.

    1990-01-01

    To determine the ability of the P-M hybrid dysgenesis system of Drosophila melanogaster to generate mutations affecting quantitative traits, X chromosome lines were constructed in which replicates of isogenic M and P strain X chromosomes were exposed to a dysgenic cross, a nondysgenic cross, or a control cross, and recovered in common autosomal backgrounds. Mutational heritabilities of abdominal and sternopleural bristle score were in general exceptionally high-of the same magnitude as heritabilities of these traits in natural populations. P strain chromosomes were eight times more mutable than M strain chromosomes, and dysgenic crosses three times more effective than nondysgenic crosses in inducing polygenic variation. However, mutational heritabilities of the bristle traits were appreciable for P strain chromosomes passed through one nondysgenic cross, and for M strain chromosomes backcrossed for seven generations to inbred P strain females, a result consistent with previous observations on mutations affecting quantitative traits arising from nondysgenic crosses. The new variation resulting from one generation of mutagenesis was caused by a few lines with large effects on bristle score, and all mutations reduced bristle number. PMID:2155852

  14. Quantitative H2S-mediated protein sulfhydration reveals metabolic reprogramming during the integrated stress response

    PubMed Central

    Gao, Xing-Huang; Krokowski, Dawid; Guan, Bo-Jhih; Bederman, Ilya; Majumder, Mithu; Parisien, Marc; Diatchenko, Luda; Kabil, Omer; Willard, Belinda; Banerjee, Ruma; Wang, Benlian; Bebek, Gurkan; Evans, Charles R.; Fox, Paul L.; Gerson, Stanton L.; Hoppel, Charles L.; Liu, Ming; Arvan, Peter; Hatzoglou, Maria

    2015-01-01

    The sulfhydration of cysteine residues in proteins is an important mechanism involved in diverse biological processes. We have developed a proteomics approach to quantitatively profile the changes of sulfhydrated cysteines in biological systems. Bioinformatics analysis revealed that sulfhydrated cysteines are part of a wide range of biological functions. In pancreatic β cells exposed to endoplasmic reticulum (ER) stress, elevated H2S promotes the sulfhydration of enzymes in energy metabolism and stimulates glycolytic flux. We propose that transcriptional and translational reprogramming by the integrated stress response (ISR) in pancreatic β cells is coupled to metabolic alternations triggered by sulfhydration of key enzymes in intermediary metabolism. DOI: http://dx.doi.org/10.7554/eLife.10067.001 PMID:26595448

  15. New quantitative approaches reveal the spatial preference of nuclear compartments in mammalian fibroblasts.

    PubMed

    Weston, David J; Russell, Richard A; Batty, Elizabeth; Jensen, Kirsten; Stephens, David A; Adams, Niall M; Freemont, Paul S

    2015-03-01

    The nuclei of higher eukaryotic cells display compartmentalization and certain nuclear compartments have been shown to follow a degree of spatial organization. To date, the study of nuclear organization has often involved simple quantitative procedures that struggle with both the irregularity of the nuclear boundary and the problem of handling replicate images. Such studies typically focus on inter-object distance, rather than spatial location within the nucleus. The concern of this paper is the spatial preference of nuclear compartments, for which we have developed statistical tools to quantitatively study and explore nuclear organization. These tools combine replicate images to generate 'aggregate maps' which represent the spatial preferences of nuclear compartments. We present two examples of different compartments in mammalian fibroblasts (WI-38 and MRC-5) that demonstrate new knowledge of spatial preference within the cell nucleus. Specifically, the spatial preference of RNA polymerase II is preserved across normal and immortalized cells, whereas PML nuclear bodies exhibit a change in spatial preference from avoiding the centre in normal cells to exhibiting a preference for the centre in immortalized cells. In addition, we show that SC35 splicing speckles are excluded from the nuclear boundary and localize throughout the nucleoplasm and in the interchromatin space in non-transformed WI-38 cells. This new methodology is thus able to reveal the effect of large-scale perturbation on spatial architecture and preferences that would not be obvious from single cell imaging. PMID:25631564

  16. New quantitative approaches reveal the spatial preference of nuclear compartments in mammalian fibroblasts

    PubMed Central

    Weston, David J.; Russell, Richard A.; Batty, Elizabeth; Jensen, Kirsten; Stephens, David A.; Adams, Niall M.; Freemont, Paul S.

    2015-01-01

    The nuclei of higher eukaryotic cells display compartmentalization and certain nuclear compartments have been shown to follow a degree of spatial organization. To date, the study of nuclear organization has often involved simple quantitative procedures that struggle with both the irregularity of the nuclear boundary and the problem of handling replicate images. Such studies typically focus on inter-object distance, rather than spatial location within the nucleus. The concern of this paper is the spatial preference of nuclear compartments, for which we have developed statistical tools to quantitatively study and explore nuclear organization. These tools combine replicate images to generate ‘aggregate maps' which represent the spatial preferences of nuclear compartments. We present two examples of different compartments in mammalian fibroblasts (WI-38 and MRC-5) that demonstrate new knowledge of spatial preference within the cell nucleus. Specifically, the spatial preference of RNA polymerase II is preserved across normal and immortalized cells, whereas PML nuclear bodies exhibit a change in spatial preference from avoiding the centre in normal cells to exhibiting a preference for the centre in immortalized cells. In addition, we show that SC35 splicing speckles are excluded from the nuclear boundary and localize throughout the nucleoplasm and in the interchromatin space in non-transformed WI-38 cells. This new methodology is thus able to reveal the effect of large-scale perturbation on spatial architecture and preferences that would not be obvious from single cell imaging. PMID:25631564

  17. Quantitative proteomics reveal a feed-forward model for mitochondrial PARKIN translocation and UB chain synthesis

    PubMed Central

    Ordureau, Alban; Sarraf, Shireen A.; Duda, David M.; Heo, Jin-Mi; Jedrykowski, Mark P.; Sviderskiy, Vladislav; Olszewski, Jennifer L.; Koerber, James T.; Xie, Tiao; Beausoleil, Sean A.; Wells, James A.; Gygi, Steven P.; Schulman, Brenda A.; Harper, J. Wade

    2014-01-01

    Phosphorylation is often used to promote protein ubiquitylation, yet we rarely understand quantitatively how ligase activation and ubiquitin (UB) chain assembly are integrated with phospho-regulation. Here we employ quantitative proteomics and live-cell imaging to dissect individual steps in the PINK1 kinase-PARKIN UB ligase mitochondrial control pathway disrupted in Parkinson’s Disease. PINK1 plays a dual role by phosphorylating PARKIN on its UB-like domain and poly-UB chains on mitochondria. PARKIN activation by PINK1 produces canonical and non-canonical UB chains on mitochondria, and PARKIN-dependent chain assembly is required for accumulation of poly-phospho-UB (poly-p-UB) on mitochondria. In vitro, PINK1 directly activates PARKIN’s ability to assemble canonical and non-canonical UB chains, and promotes association of PARKIN with both p-UB and poly-p-UB. Our data reveal a feed-forward mechanism that explains how PINK1 phosphorylation of both PARKIN and poly-UB chains synthesized by PARKIN drives a program of PARKIN recruitment and mitochondrial ubiquitylation in response to mitochondrial damage. PMID:25284222

  18. Quantitative ultrastructural analysis of sperm tails reveals flagellar defects associated with persistent asthenozoospermia.

    PubMed

    Wilton, L J; Temple-Smith, P D; de Kretser, D M

    1992-04-01

    Sperm tail morphology was examined in 10 infertile asthenozoospermic men to determine whether poor sperm motility was caused by ultrastructural defects of the flagellum. In this quantitative analysis, the numbers of outer doublet and central pair microtubules, outer and inner dynein arms and radial spokes were counted in transverse sections of 75 axonemes from each patient and compared with similar data previously collected from 10 men with normal semen characteristics. Four patients had axonemal defects: two had severe microtubule abnormalities and two had more subtle but statistically significant deficiencies of dynein arms. These abnormalities would not have been detected by more commonly used qualitative examination. Three patients had no detectable ultrastructural abnormalities of the sperm tail, possibly indicating a metabolic deficiency. A further three patients had mid-piece abnormalities. Two had few, if any, flagellar mitochondria and the third patient had irregular and disorganized mitochondria. Quantitative ultrastructural analysis has revealed axonemal abnormalities in seven of 10 patients with previously unexplained asthenozoospermia. PMID:1522195

  19. Population proteomics: quantitative variation within and among populations in cardiac protein expression.

    PubMed

    Rees, Bernard B; Andacht, Tracy; Skripnikova, Elena; Crawford, Douglas L

    2011-03-01

    Population analysis of gene expression is typically achieved by quantifying levels of mRNA; however, gene expression is also a function of protein translation and turnover. Therefore, a complete understanding of population variation in gene expression requires quantitative knowledge of protein expression within and among natural populations. We used two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) to quantitatively compare expression of heart ventricle proteins among 18 individuals in three populations of the teleost fish Fundulus. Among populations, expressions between orthologous proteins and mRNAs were generally positively correlated. Additionally, similar to the pattern of cardiac mRNA expression for the same populations, we found considerable variation in protein expression both within and among populations: Of 408 protein features in 2D gels, 34% are significantly different (P < 0.01) among individuals within a population, 9% differ between populations, and 12% have a pattern of expression that suggests they have evolved by natural selection. Although similar to mRNA expression, the frequency of significant differences among populations is larger for proteins. Similar to mRNA expressions, expressions of most proteins are correlated to the expressions of many other proteins. However, the correlations among proteins are more extensive than the correlation for similar RNAs. These correlations suggest a greater coordinate regulation of protein than mRNA expression. The larger frequency of significant differences among populations and the greater frequency of correlated expression among proteins versus among RNAs suggest that the molecular mechanisms affecting protein expression enhance the differences among populations, and these regulatory steps could be a source of variation for adaptation. PMID:21109588

  20. Age- and gender-dependent heterogeneous proportion of variation explained by SNPs in quantitative traits reflecting human health.

    PubMed

    Lee, Dain; Lee, Chaeyoung

    2015-01-01

    Age-related effects are often included as covariates in the analytical model for genome-wide association analysis of quantitative traits reflecting human health. Nevertheless, previous studies have hardly examined the effects of age on the proportion of variation explained by single nucleotide polymorphisms (PVSNP) in these traits. In this study, the PVSNP estimates of body mass index (BMI), waist-to-hip ratio, pulse pressure, high-density lipoprotein cholesterol level, triglyceride level (TG), low-density lipoprotein cholesterol level, and glucose level were obtained from Korean consortium metadata partitioned by gender or by age. Restricted maximum likelihood estimates of the PVSNP were obtained in a mixed model framework. Previous studies using pedigree data suggested possible differential heritability of certain traits with regard to gender, which we observed in our current study (BMI and TG; P < 0.05). However, the PVSNP analysis based on age revealed that, with respect to every trait tested, individuals aged 40 to 49 exhibited significantly lower PVSNP estimates than individuals aged 50 to 59 or 60 to 69 (P < 0.05). The consistent heterogeneous PVSNP with respect to age may be due to degenerated genetic functions in individuals between the ages of 50 and 69. Our results suggest the genetic mechanism of age- and gender-dependent PVSNP of quantitative traits related to human health should be further examined. PMID:25701395

  1. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans

    PubMed Central

    Cenik, Can; Cenik, Elif Sarinay; Byeon, Gun W.; Grubert, Fabian; Candille, Sophie I.; Spacek, Damek; Alsallakh, Bilal; Tilgner, Hagen; Araya, Carlos L.; Tang, Hua; Ricci, Emiliano; Snyder, Michael P.

    2015-01-01

    Elucidating the consequences of genetic differences between humans is essential for understanding phenotypic diversity and personalized medicine. Although variation in RNA levels, transcription factor binding, and chromatin have been explored, little is known about global variation in translation and its genetic determinants. We used ribosome profiling, RNA sequencing, and mass spectrometry to perform an integrated analysis in lymphoblastoid cell lines from a diverse group of individuals. We find significant differences in RNA, translation, and protein levels suggesting diverse mechanisms of personalized gene expression control. Combined analysis of RNA expression and ribosome occupancy improves the identification of individual protein level differences. Finally, we identify genetic differences that specifically modulate ribosome occupancy—many of these differences lie close to start codons and upstream ORFs. Our results reveal a new level of gene expression variation among humans and indicate that genetic variants can cause changes in protein levels through effects on translation. PMID:26297486

  2. Survey of variation in human transcription factors reveals prevalent DNA binding changes.

    PubMed

    Barrera, Luis A; Vedenko, Anastasia; Kurland, Jesse V; Rogers, Julia M; Gisselbrecht, Stephen S; Rossin, Elizabeth J; Woodard, Jaie; Mariani, Luca; Kock, Kian Hong; Inukai, Sachi; Siggers, Trevor; Shokri, Leila; Gordân, Raluca; Sahni, Nidhi; Cotsapas, Chris; Hao, Tong; Yi, Song; Kellis, Manolis; Daly, Mark J; Vidal, Marc; Hill, David E; Bulyk, Martha L

    2016-03-25

    Sequencing of exomes and genomes has revealed abundant genetic variation affecting the coding sequences of human transcription factors (TFs), but the consequences of such variation remain largely unexplored. We developed a computational, structure-based approach to evaluate TF variants for their impact on DNA binding activity and used universal protein-binding microarrays to assay sequence-specific DNA binding activity across 41 reference and 117 variant alleles found in individuals of diverse ancestries and families with Mendelian diseases. We found 77 variants in 28 genes that affect DNA binding affinity or specificity and identified thousands of rare alleles likely to alter the DNA binding activity of human sequence-specific TFs. Our results suggest that most individuals have unique repertoires of TF DNA binding activities, which may contribute to phenotypic variation. PMID:27013732

  3. A quantitative evaluation of microstructure by electron back-scattered diffraction pattern quality variations.

    PubMed

    Kang, Suk Hoon; Jin, Hyung-Ha; Jang, Jinsung; Choi, Yong Seok; Oh, Kyu Hwan; Foley, David C; Zhang, Xinghang

    2013-08-01

    Band contrast (BC) is a qualitative measure of electron back-scattered diffraction (EBSD), which is derived from the intensity of the Kikuchi bands. The BC is dependent upon several factors including scanning electron microscope measurement parameters, EBSD camera setup, and the specimen itself (lattice defect and grain orientation). In this study, the effective factors for BC variations and the feasibility of using BC variations for the quantification of microstructure evolutions have been investigated. In addition, the effects of the lattice defect and the grain orientation on the BC variations are studied. Next, a shear-deformed microstructure of 316L stainless steel, which contains nanosized grains and a large portion of twin boundaries, is revealed by BC map and histogram. Recovery and recrystallization of shear-deformed 316L stainless steel are displayed by BC variations during isothermal annealing at 700 and 800°C, respectively. It is observed that the BC turns bright as the shear-deformed crystal structure is recovered or recrystallized. PMID:23920181

  4. Revealing the Diversity and Quantity of Peritrich Ciliates in Environmental Samples Using Specific Primer-based PCR and Quantitative PCR

    PubMed Central

    Liu, Xihan; Gong, Jun

    2012-01-01

    Peritrichs are a diverse, ecologically important ciliate group usually with a complex life cycle. To date, the community of the peritrichs has been investigated by using morphology-based methods such as living observation and silver staining. Here we show a molecular approach for characterizing the diversity and quantity of free-living peritrichs in environmental samples. We newly designed four peritrich-specific primers targeting 18S rRNA genes that allow clone library construction, screening and analysis. A quantitative real-time PCR (qPCR) assay was developed to quantify peritrichs in environmental samples by using rDNA copy number as an indicator. DNA extracted from four water samples of contrasting environmental gradients was analysed. The results showed that the peritrich community was differentiated among these samples, and that the diversity decreased with the increase of water salinity. The qPCR results are consistent with the library sequence analysis in terms of quantity variations from sample to sample. The development of peritrich-specific primers, for the first time, for conventional PCR and qPCR assays, provides useful molecular tools for revealing the diversity and quantity of peritrich ciliates in environmental samples. Also, our study illustrates the potential of these molecular tools to ecological studies of other ciliate groups in diverse environments. PMID:23100023

  5. Quantitative proteomic analysis of amniocytes reveals potentially dysregulated molecular networks in Down syndrome

    PubMed Central

    2013-01-01

    Background Down syndrome (DS), caused by an extra copy of chromosome 21, affects 1 in 750 live births and is characterized by cognitive impairment and a constellation of congenital defects. Currently, little is known about the molecular pathogenesis and no direct genotype-phenotype relationship has yet been confirmed. Since DS amniocytes are expected to have a distinct biological behaviour compared to normal amniocytes, we hypothesize that relative quantification of proteins produced from trisomy and euploid (chromosomally normal) amniocytes will reveal dysregulated molecular pathways. Results Chromosomally normal- and Trisomy 21-amniocytes were quantitatively analyzed by using Stable Isotope Labeling of Amino acids in Cell culture and tandem mass spectrometry. A total of 4919 unique proteins were identified from the supernatant and cell lysate proteome. More specifically, 4548 unique proteins were identified from the lysate, and 91% of these proteins were quantified based on MS/MS spectra ratios of peptides containing isotope-labeled amino acids. A total of 904 proteins showed significant differential expression and were involved in 25 molecular pathways, each containing a minimum of 16 proteins. Sixty of these proteins consistently showed aberrant expression from trisomy 21 affected amniocytes, indicating their potential role in DS pathogenesis. Nine proteins were analyzed with a multiplex selected reaction monitoring assay in an independent set of Trisomy 21-amniocyte samples and two of them (SOD1 and NES) showed a consistent differential expression. Conclusions The most extensive proteome of amniocytes and amniotic fluid has been generated and differentially expressed proteins from amniocytes with Trisomy 21 revealed molecular pathways that seem to be most significantly affected by the presence of an extra copy of chromosome 21. PMID:23394617

  6. Quantitative Genetics of Transgenic Mice: Components of Phenotypic Variation in Body Weights and Weight Gains

    PubMed Central

    Clutter, A. C.; Pomp, D.; Murray, J. D.

    1996-01-01

    Transgenic mice possessing an ovine growth hormone gene were used to study the effects of elevated growth hormone on quantitative genetic variation. Males hemizygous for the transgene were mated to wild-type females to produce half- and full-sib families in which approximately half the progeny were transgenic and half were wild type. Analyses of body weights at 3-10 weeks, and weight gains from 3 to 6, and 6 to 10 weeks produced estimates of the proportion of total variance due to additive genetic effects (h(2)) and common litter effects (c(2)), and the genetic correlation between transgenic and wild-type expression of each trait. At 10 weeks, body weight of transgenics exceeded that of wild types by 26 and 49% in males and females, respectively. Estimated genetic variances in the transgenic group were significantly greater than zero for body weights at most ages and for both measurements of gain. Common litter effects accounted for a similar proportion of variation in the wild-type and transgenic groups. Additive genetic correlations between wild-type and transgenic expression of body weights tended to decline with age, indicating that a partially different array of genes may have begun to affect body weight in the transgenic group. PMID:8844161

  7. Bioaccumulation and Quantitative Variations of Microcystins in the Swartspruit River, South Africa.

    PubMed

    Eguzozie, Kennedy; Mavumengwana, Vuyo; Nkosi, Duduzile; Kayitesi, Eugenie; Nnabuo-Eguzozie, Emmanuella C

    2016-08-01

    The bioaccumulation and quantitative variations of cyanobacterial peptide hepatotoxin intracellular microcystin in floating scums of cyanobacterium microcystis flos aquae collected from predetermined sampling sites in the Swartspruit River was investigated. Three distinct MCs variants (MC-YR, MC-LR, and MC-RR) were isolated, identified, and quantified. Additionally, two minor microcystin congeners (MC-(H4) YR), (D-Asp(3), Dha(7))MC-RR) also were identified but were not quantified. Quantitative analysis was achieved using peak areas substituted on linear regression equations: Y = 10085x - 19698 (R (2) = 0.9998), Y = 201387x + 20328 (R (2) = 0.9929), Y = 2506x + 15659 (R (2) = 0.9999), and 9859x + 208694 (R (2) = 0.9929) of standard curves for 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, and 10.0 μg/mL MC-LR, MC-RR, MC-YR respectively. Variant dominance followed the order MC-LR > MC-RR > MC-YR across the sampling sites. Analysis of maximum and minimum concentrations of quantified MCs variants showed 270.7, 14.10 (µg/g), 141.5, 1.43 (µg/g), and 72.28, 0.15 (µg/g) for MC-LR, MC-RR, and MC-YR, respectively. This implies there was quantitative variations of microcystin congeners across the sampled sites. Significant differences between means were assessed by an analysis of variance with P < 0.05 being considered significant. Results showed that there were no significant difference between mean MCs concentrations across the sampling periods (P > 0.05) and significant difference between mean MCs concentrations across sampling sites (P < 0.05). PMID:26936473

  8. Dynamics of natural killer cell receptor revealed by quantitative analysis of photoswitchable protein.

    PubMed

    Pageon, Sophie V; Aquino, Gerardo; Lagrue, Kathryn; Köhler, Karsten; Endres, Robert G; Davis, Daniel M

    2013-11-01

    Natural Killer (NK) cell activation is dynamically regulated by numerous activating and inhibitory surface receptors that accumulate at the immune synapse. Quantitative analysis of receptor dynamics has been limited by methodologies that rely on indirect measurements such as fluorescence recovery after photobleaching. Here, we report an apparently novel approach to study how proteins traffic to and from the immune synapse using NK cell receptors tagged with the photoswitchable fluorescent protein tdEosFP, which can be irreversibly photoswitched from a green to red fluorescent state by ultraviolet light. Thus, after a localized switching event, the movement of the photoswitched molecules can be temporally and spatially resolved by monitoring fluorescence in two regions of interest. By comparing images with mathematical models, we evaluated the diffusion coefficient of the receptor KIR2DL1 (0.23 ± 0.06 μm(2) s(-1)) and assessed how synapse formation affects receptor dynamics. Our data conclude that the inhibitory NK cell receptor KIR2DL1 is continually trafficked into the synapse, and remains surprisingly stable there. Unexpectedly, however, in NK cells forming synapses with multiple target cells simultaneously, KIR2DL1 at one synapse can relocate to another synapse. Thus, our results reveal a previously undetected intersynaptic exchange of protein. PMID:24209843

  9. Quantitative Glycoproteomics Analysis Reveals Changes in N-Glycosylation Level Associated with Pancreatic Ductal Adenocarcinoma

    PubMed Central

    2015-01-01

    Glycosylation plays an important role in epithelial cancers, including pancreatic ductal adenocarcinoma. However, little is known about the glycoproteome of the human pancreas or its alterations associated with pancreatic tumorigenesis. Using quantitative glycoproteomics approach, we investigated protein N-glycosylation in pancreatic tumor tissue in comparison with normal pancreas and chronic pancreatitis tissue. The study lead to the discovery of a roster of glycoproteins with aberrant N-glycosylation level associated with pancreatic cancer, including mucin-5AC (MUC5AC), carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), insulin-like growth factor binding protein (IGFBP3), and galectin-3-binding protein (LGALS3BP). Pathway analysis of cancer-associated aberrant glycoproteins revealed an emerging phenomenon that increased activity of N-glycosylation was implicated in several pancreatic cancer pathways, including TGF-β, TNF, NF-kappa-B, and TFEB-related lysosomal changes. In addition, the study provided evidence that specific N-glycosylation sites within certain individual proteins can have significantly altered glycosylation occupancy in pancreatic cancer, reflecting the complexity of the molecular mechanisms underlying cancer-associated glycosylation events. PMID:24471499

  10. HAX1 Mutations causing SCN and Neurological Disease Lead to Microstructural Abnormalities Revealed by Quantitative MRI

    PubMed Central

    Boztug, Kaan; Ding, Xiao-Qi; Hartmann, Hans; Ziesenitz, Lena; Schäffer, Alejandro A.; Diestelhorst, Jana; Pfeifer, Dietmar; Appaswamy, Giridharan; Kehbel, Sonja; Simon, Thorsten; Jefri, Abdullah Al; Lanfermann, Heinrich; Klein, Christoph

    2011-01-01

    Biallelic mutations in the gene encoding HCLS-associated protein X-1 (HAX1) cause autosomal recessive severe congenital neutropenia. Some of these patients display neurological abnormalities including developmental delay, cognitive impairment and/or epilepsy. Recent genotype-phenotype studies have shown that mutations in HAX1 affecting transcripts A (NM_006118.3) and B (NM_001018837.1) cause the phenotype of SCN with neurological impairment, while mutations affecting isoform A but not B lead to SCN without neurological aberrations. In this study, we identified a consanguineous family with two patients suffering from SCN and neurological disease caused by a novel, homozygous genomic deletion including exons 4–7 of the HAX1 gene. Quantitative MRI analyses revealed general alterations in cerebral proton density in both of the patients, as well as in an additional unrelated patient with another HAX1 mutation (Arg86X) known to be associated with neurological manifestations. This study provides first in vivo evidence of general neurodegeneration associated with HAX1 deficiency in SCN patients. PMID:21108402

  11. A quantitative framework for whole-body coordination reveals specific deficits in freely walking ataxic mice

    PubMed Central

    Machado, Ana S; Darmohray, Dana M; Fayad, João; Marques, Hugo G; Carey, Megan R

    2015-01-01

    The coordination of movement across the body is a fundamental, yet poorly understood aspect of motor control. Mutant mice with cerebellar circuit defects exhibit characteristic impairments in locomotor coordination; however, the fundamental features of this gait ataxia have not been effectively isolated. Here we describe a novel system (LocoMouse) for analyzing limb, head, and tail kinematics of freely walking mice. Analysis of visibly ataxic Purkinje cell degeneration (pcd) mice reveals that while differences in the forward motion of individual paws are fully accounted for by changes in walking speed and body size, more complex 3D trajectories and, especially, inter-limb and whole-body coordination are specifically impaired. Moreover, the coordination deficits in pcd are consistent with a failure to predict and compensate for the consequences of movement across the body. These results isolate specific impairments in whole-body coordination in mice and provide a quantitative framework for understanding cerebellar contributions to coordinated locomotion. DOI: http://dx.doi.org/10.7554/eLife.07892.001 PMID:26433022

  12. Injury-induced decline of intrinsic regenerative ability revealed by quantitative proteomics

    PubMed Central

    Belin, Stephane; Nawabi, Homaira; Wang, Chen; Tang, Shaojun; Latremoliere, Alban; Warren, Peter; Schorle, Hubert; Uncu, Ceren; Woolf, Clifford; He, Zhigang; Steen, Judith

    2015-01-01

    Neurons differ in their responses to injury but the underlying mechanisms remain poorly understood. Using quantitative proteomics, we characterized the injury-triggered response from purified intact and axotomized retinal ganglion cells (RGCs). Subsequent informatics analyses revealed a network of injury-response signaling hubs. In addition to confirm known players, such as mTOR, this also identified new candidates, such as c-myc, NFkB and Huntingtin. Similar to mTOR, c-myc has been implicated as key regulators of anabolic metabolism and is down-regulated by axotomy. Forced expression of c-myc in RGCs, either before or after injury, promotes dramatic RGCs neuronal survival and axon regeneration after optic nerve injury. Finally, in contrast to RGCs, neither c-myc nor mTOR was down-regulated in injured peripheral sensory neurons. Our studies suggest that c-myc and other injury responsive pathways are critical to the intrinsic regenerative mechanisms and might represent a novel target for developing neural repair strategies in adults. PMID:25937169

  13. Modeling development and quantitative trait mapping reveal independent genetic modules for leaf size and shape.

    PubMed

    Baker, Robert L; Leong, Wen Fung; Brock, Marcus T; Markelz, R J Cody; Covington, Michael F; Devisetty, Upendra K; Edwards, Christine E; Maloof, Julin; Welch, Stephen; Weinig, Cynthia

    2015-10-01

    Improved predictions of fitness and yield may be obtained by characterizing the genetic controls and environmental dependencies of organismal ontogeny. Elucidating the shape of growth curves may reveal novel genetic controls that single-time-point (STP) analyses do not because, in theory, infinite numbers of growth curves can result in the same final measurement. We measured leaf lengths and widths in Brassica rapa recombinant inbred lines (RILs) throughout ontogeny. We modeled leaf growth and allometry as function valued traits (FVT), and examined genetic correlations between these traits and aspects of phenology, physiology, circadian rhythms and fitness. We used RNA-seq to construct a SNP linkage map and mapped trait quantitative trait loci (QTL). We found genetic trade-offs between leaf size and growth rate FVT and uncovered differences in genotypic and QTL correlations involving FVT vs STPs. We identified leaf shape (allometry) as a genetic module independent of length and width and identified selection on FVT parameters of development. Leaf shape is associated with venation features that affect desiccation resistance. The genetic independence of leaf shape from other leaf traits may therefore enable crop optimization in leaf shape without negative effects on traits such as size, growth rate, duration or gas exchange. PMID:26083847

  14. SU-E-T-635: Quantitative Study On Beam Flatness Variation with Beam Energy Change

    SciTech Connect

    Li, J S; Eldib, A; Ma, C; Lin, M

    2014-06-15

    Purpose: Beam flatness check has been proposed for beam energy check for photon beams with flattering filters. In this work, beam flatness change with beam energy was investigated quantitatively using the Monte Carlo method and its significance was compared with depth dose curve change. Methods: Monte Carlo simulations for a linear accelerator with flattering filter were performed with different initial electron energies for photon beams of 6MV and 10MV. Dose calculations in a water phantom were then perform with the phase space files obtained from the simulations. The beam flatness was calculated based on the dose profile at 10 cm depth for all the beams with different initial electron energies. The percentage depth dose (PDD) curves were also analyzed. The dose at 10cm depth (D10) and the ratio of the dose at 10cm and 20cm depth (D10/D20) and their change with the beam energy were calculated and compared with the beam flatness variation. Results: It was found that the beam flatness variation with beam energy change was more significant than the change of D10 and the ratio between D10 and D20 for both 6MV and 10MV beams. Half MeV difference on the initial electron beam energy brought in at least 20% variation on the beam flatness but only half percent change on the ratio of D10 and D20. The change of D10 or D20 alone is even less significant. Conclusion: The beam energy impact on PDD is less significant than that on the beam flatness. If the PDD is used for checking the beam energy, uncertainties of the measurement could possibly disguise its change. Beam flatness changes more significantly with beam energy and therefore it can be used for monitoring the energy change for photon beams with flattering filters. However, other factors which may affect the beam flatness should be watched as well.

  15. Cloning of quantitative trait genes from rice reveals conservation and divergence of photoperiod flowering pathways in Arabidopsis and rice

    PubMed Central

    Matsubara, Kazuki; Hori, Kiyosumi; Ogiso-Tanaka, Eri; Yano, Masahiro

    2014-01-01

    Flowering time in rice (Oryza sativa L.) is determined primarily by daylength (photoperiod), and natural variation in flowering time is due to quantitative trait loci involved in photoperiodic flowering. To date, genetic analysis of natural variants in rice flowering time has resulted in the positional cloning of at least 12 quantitative trait genes (QTGs), including our recently cloned QTGs, Hd17, and Hd16. The QTGs have been assigned to specific photoperiodic flowering pathways. Among them, 9 have homologs in the Arabidopsis genome, whereas it was evident that there are differences in the pathways between rice and Arabidopsis, such that the rice Ghd7–Ehd1–Hd3a/RFT1 pathway modulated by Hd16 is not present in Arabidopsis. In this review, we describe QTGs underlying natural variation in rice flowering time. Additionally, we discuss the implications of the variation in adaptive divergence and its importance in rice breeding. PMID:24860584

  16. Mapping replication dynamics in Trypanosoma brucei reveals a link with telomere transcription and antigenic variation

    PubMed Central

    Devlin, Rebecca; Marques, Catarina A; Paape, Daniel; Prorocic, Marko; Zurita-Leal, Andrea C; Campbell, Samantha J; Lapsley, Craig; Dickens, Nicholas; McCulloch, Richard

    2016-01-01

    Survival of Trypanosoma brucei depends upon switches in its protective Variant Surface Glycoprotein (VSG) coat by antigenic variation. VSG switching occurs by frequent homologous recombination, which is thought to require locus-specific initiation. Here, we show that a RecQ helicase, RECQ2, acts to repair DNA breaks, including in the telomeric site of VSG expression. Despite this, RECQ2 loss does not impair antigenic variation, but causes increased VSG switching by recombination, arguing against models for VSG switch initiation through direct generation of a DNA double strand break (DSB). Indeed, we show DSBs inefficiently direct recombination in the VSG expression site. By mapping genome replication dynamics, we reveal that the transcribed VSG expression site is the only telomeric site that is early replicating – a differential timing only seen in mammal-infective parasites. Specific association between VSG transcription and replication timing reveals a model for antigenic variation based on replication-derived DNA fragility. DOI: http://dx.doi.org/10.7554/eLife.12765.001 PMID:27228154

  17. Environmental metabolomics reveal geographic variation in aerobic metabolism and metabolic substrates in Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Shi, Yao-Long; Chi, Qing-Sheng; Liu, Wei; Fu, He-Ping; Wang, De-Hua

    2015-06-01

    Mongolian gerbils (Meriones unguiculatus) have a large-scale distribution in northern China. Geographic physiological variations which related to energy and water metabolism are critical to animals' local adaptation and distribution. However, the underlying biochemical mechanism of such variation and its role in adaptation remains largely unknown. We used GC-MS metabolomics approach to investigate the biochemical adaptation of Mongolian gerbils from xeric (desert), transition (desert steppe) and mesic (typical steppe) environments. Gerbils in desert population had lower resting metabolic rate (RMR) and total evaporative water loss (TEWL) than mesic population. Serum metabolomics revealed that concentrations of five tricarboxylic acid cycle intermediates (citrate, cis-aconitate, α-ketoglutarate, fumarate and malate) were lower in desert population than mesic population. Gastrocnemius metabolomics and citrate synthase activity analysis showed a lower concentration of citrate and lower citrate synthase activity in desert population. These findings suggest that desert dwelling gerbils decrease RMR and TEWL via down-regulation of aerobic respiration. Gastrocnemius metabolomics also revealed that there were higher concentrations of glucose and glycolytic intermediates, but lower concentrations of lipids, amino acids and urea in desert population than mesic population. This geographic variation in metabolic substrates may enhance metabolic water production per oxygen molecule for desert population while constraining aerobic respiration to reduce RMR and TEWL. PMID:25817427

  18. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development

    PubMed Central

    Pires, Nuno D.; Bemer, Marian; Müller, Lena M.; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict. PMID:26811909

  19. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    PubMed

    Pires, Nuno D; Bemer, Marian; Müller, Lena M; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict. PMID:26811909

  20. Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms

    PubMed Central

    Saka, Hector A.; Thompson, J. Will; Chen, Yi-Shan; Kumar, Yadunanda; Dubois, Laura G.; Moseley, M. Arthur; Valdivia, Raphael H.

    2011-01-01

    Summary Chlamydia trachomatis is an obligate intracellular pathogen responsible for ocular and genital infections of significant public health importance. C. trachomatis undergoes a biphasic developmental cycle alternating between two distinct forms: the infectious elementary body (EB), and the replicative but non-infectious reticulate body (RB). The molecular basis for these developmental transitions and the metabolic properties of the EB and RB forms are poorly understood as these bacteria have traditionally been difficult to manipulate through classical genetic approaches. Using two-dimensional liquid chromatography – tandem mass spectrometry (LC/LC-MS/MS) we performed a large-scale, label-free quantitative proteomic analysis of C. trachomatis LGV-L2 EB and RB forms. Additionally, we carried out LC-MS/MS to analyze the membranes of the pathogen-containing vacuole (“inclusion”). We developed a label-free quantification approaches to measure protein abundance in a mixed-proteome background which we applied for EB and RB quantitative analysis. In this manner, we catalogued the relative distribution of >54% of the predicted proteins in the C. trachomatis LGV-L2 proteome. Proteins required for central metabolism and glucose catabolism were predominant in the EB, whereas proteins associated with protein synthesis, ATP generation and nutrient transport were more abundant in the RB. These findings suggest that the EB is primed for a burst in metabolic activity upon entry, whereas the RB form is geared towards nutrient utilization, a rapid increase in cellular mass, and securing the resources for an impending transition back to the EB form. The most revealing difference between the two forms was the relative deficiency of cytoplasmic factors required for efficient Type III secretion (T3S) in the RB stage at 18 hpi, suggesting a reduced T3S capacity or a low frequency of active T3S apparatus assembled on a “per organism” basis. Our results show that EB and RB

  1. Diel Variation in Flower Scent Reveals Poor Consistency of Diurnal and Nocturnal Pollination Syndromes in Sileneae.

    PubMed

    Prieto-Benítez, Samuel; Dötterl, Stefan; Giménez-Benavides, Luis

    2015-12-01

    The composition of flower scent and the timing of emission are crucial for chemical communication between plants and their pollinators; hence, they are key traits for the characterization of pollination syndromes. In many plants, however, plants are assigned to a syndrome based on inexpensive to measure flower traits, such as color, time of flower opening, and shape. We compared day and night scents from 31 Sileneae species and tested for quantitative and semi-quantitative differences in scent among species classified a priori as diurnal or nocturnal. As most Sileneae species are not only visited by either diurnal or nocturnal animals as predicted by their syndrome, we hypothesized that, even if flower scent were preferentially emitted during the day or at night, most species also would emit some scents during the opposing periods of the day. This phenomenon would contribute to the generalized assemblage of flower visitors usually observed in Sileneae species. We found that diel variations of scent often were not congruent with the syndrome definition, but could partially be explained by taxonomy and sampling times. Most species emitted compounds with attractive potential to insects during both the night and day. Our results highlight the current opinion that syndromes are not watertight compartments evolved to exclude some flower visitors. Thus, important information may be lost when scents are collected either during day- or night-time, depending on the a priori classification of the species as diurnal or nocturnal. PMID:26538282

  2. Expression quantitative trait analysis reveals fine germline transcript regulation in mouse lung tumors.

    PubMed

    Cotroneo, Chiara E; Dassano, Alice; Colombo, Francesca; Pettinicchio, Angela; Lecis, Daniele; Dugo, Matteo; De Cecco, Loris; Dragani, Tommaso A; Manenti, Giacomo

    2016-06-01

    Gene expression modulates cellular functions in both physiologic and pathologic conditions. Herein, we carried out a genetic linkage study on the transcriptome of lung tumors induced by urethane in an (A/J x C57BL/6)F4 intercross population, whose individual lung tumor multiplicity (Nlung) is linked to the genotype at the Pulmonary adenoma susceptibility 1 (Pas1) locus. We found that expression levels of 1179 and 1579 genes are modulated by an expression quantitative trait locus (eQTL) in cis and in trans, respectively (LOD score > 5). Of note, the genomic area surrounding and including the Pas1 locus regulated 14 genes in cis and 857 genes in trans. In lung tumors of the same (A/J x C57BL/6)F4 mice, we found 1124 genes whose transcript levels associated with Nlung (FDR < 0.001). The expression levels of about a third of these genes (n = 401) were regulated by the genotype at the Pas1 locus. Pathway analysis of the sets of genes associated with Nlung and regulated by Pas1 revealed a set of 14 recurrently represented genes that are components or targets of the Ras-Erk and Pi3k-Akt signaling pathways. Altogether our results illustrate the architecture of germline control of gene expression in mouse lung cancer: they highlight the importance of Pas1 as a tumor-modifier locus, attribute to it a novel role as a major regulator of transcription in lung tumor nodules and strengthen the candidacy of the Kras gene as the effector of this locus. PMID:26966001

  3. Heterogeneity of pancreatic cancer metastases in a single patient revealed by quantitative proteomics.

    PubMed

    Kim, Min-Sik; Zhong, Yi; Yachida, Shinichi; Rajeshkumar, N V; Abel, Melissa L; Marimuthu, Arivusudar; Mudgal, Keshav; Hruban, Ralph H; Poling, Justin S; Tyner, Jeffrey W; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Pandey, Akhilesh

    2014-11-01

    Many patients with pancreatic cancer have metastases to distant organs at the time of initial presentation. Recent studies examining the evolution of pancreatic cancer at the genetic level have shown that clonal complexity of metastatic pancreatic cancer is already initiated within primary tumors, and organ-specific metastases are derived from different subclones. However, we do not yet understand to what extent the evolution of pancreatic cancer contributes to proteomic and signaling alterations. We hypothesized that genetic heterogeneity of metastatic pancreatic cancer results in heterogeneity at the proteome level. To address this, we employed a model system in which cells isolated from three sites of metastasis (liver, lung, and peritoneum) from a single patient were compared. We used a SILAC-based accurate quantitative proteomic strategy combined with high-resolution mass spectrometry to analyze the total proteome and tyrosine phosphoproteome of each of the distal metastases. Our data revealed distinct patterns of both overall proteome expression and tyrosine kinase activities across the three different metastatic lesions. This heterogeneity was significant because it led to differential sensitivity of the neoplastic cells to small molecule inhibitors targeting various kinases and other pathways. For example, R428, a tyrosine kinase inhibitor that targets Axl receptor tyrosine kinase, was able to inhibit cells derived from lung and liver metastases much more effectively than cells from the peritoneal metastasis. Finally, we confirmed that administration of R428 in mice bearing xenografts of cells derived from the three different metastatic sites significantly diminished tumors formed from liver- and lung-metastasis-derived cell lines as compared with tumors derived from the peritoneal metastasis cell line. Overall, our data provide proof-of-principle support that personalized therapy of multiple organ metastases in a single patient should involve the

  4. Comparative Genomics Analyses Reveal Extensive Chromosome Colinearity and Novel Quantitative Trait Loci in Eucalyptus.

    PubMed

    Li, Fagen; Zhou, Changpin; Weng, Qijie; Li, Mei; Yu, Xiaoli; Guo, Yong; Wang, Yu; Zhang, Xiaohong; Gan, Siming

    2015-01-01

    Dense genetic maps, along with quantitative trait loci (QTLs) detected on such maps, are powerful tools for genomics and molecular breeding studies. In the important woody genus Eucalyptus, the recent release of E. grandis genome sequence allows for sequence-based genomic comparison and searching for positional candidate genes within QTL regions. Here, dense genetic maps were constructed for E. urophylla and E. tereticornis using genomic simple sequence repeats (SSR), expressed sequence tag (EST) derived SSR, EST-derived cleaved amplified polymorphic sequence (EST-CAPS), and diversity arrays technology (DArT) markers. The E. urophylla and E. tereticornis maps comprised 700 and 585 markers across 11 linkage groups, totaling at 1,208.2 and 1,241.4 cM in length, respectively. Extensive synteny and colinearity were observed as compared to three earlier DArT-based eucalypt maps (two maps with E. grandis × E. urophylla and one map of E. globulus) and with the E. grandis genome sequence. Fifty-three QTLs for growth (10-56 months of age) and wood density (56 months) were identified in 22 discrete regions on both maps, in which only one colocalizaiton was found between growth and wood density. Novel QTLs were revealed as compared with those previously detected on DArT-based maps for similar ages in Eucalyptus. Eleven to 585 positional candidate genes were obained for a 56-month-old QTL through aligning QTL confidence interval with the E. grandis genome. These results will assist in comparative genomics studies, targeted gene characterization, and marker-assisted selection in Eucalyptus and the related taxa. PMID:26695430

  5. Quantitative X-ray Diffraction (QXRD) analysis for revealing thermal transformations of red mud.

    PubMed

    Liao, Chang-Zhong; Zeng, Lingmin; Shih, Kaimin

    2015-07-01

    Red mud is a worldwide environmental problem, and many authorities are trying to find an economic solution for its beneficial application or/and safe disposal. Ceramic production is one of the potential waste-to-resource strategies for using red mud as a raw material. Before implementing such a strategy, an unambiguous understanding of the reaction behavior of red mud under thermal conditions is essential. In this study, the phase compositions and transformation processes were revealed for the Pingguo red mud (PRM) heat-treated at different sintering temperatures. Hematite, perovskite, andradite, cancrinite, kaolinite, diaspore, gibbsite and calcite phases were observed in the samples. However, unlike those red mud samples from the other regions, no TiO2 (rutile or anatase) or quartz were observed. Titanium was found to exist mainly in perovskite and andradite while the iron mainly existed in hematite and andradite. A new silico-ferrite of calcium and aluminum (SFCA) phase was found in samples treated at temperatures above 1100°C, and two possible formation pathways for SFCA were suggested. This is the first SFCA phase to be reported in thermally treated red mud, and this finding may turn PRM waste into a material resource for the iron-making industry. Titanium was found to be enriched in the perovskite phase after 1200°C thermal treatment, and this observation indicated a potential strategy for the recovery of titanium from PRM. In addition to noting these various resource recovery opportunities, this is also the first study to quantitatively summarize the reaction details of PRM phase transformations at various temperatures. PMID:25841072

  6. Quantitative Phosphoproteomics Reveals Wee1 Kinase as a Therapeutic Target in a Model of Proneural Glioblastoma.

    PubMed

    Lescarbeau, Rebecca S; Lei, Liang; Bakken, Katrina K; Sims, Peter A; Sarkaria, Jann N; Canoll, Peter; White, Forest M

    2016-06-01

    Glioblastoma (GBM) is the most common malignant primary brain cancer. With a median survival of about a year, new approaches to treating this disease are necessary. To identify signaling molecules regulating GBM progression in a genetically engineered murine model of proneural GBM, we quantified phosphotyrosine-mediated signaling using mass spectrometry. Oncogenic signals, including phosphorylated ERK MAPK, PI3K, and PDGFR, were found to be increased in the murine tumors relative to brain. Phosphorylation of CDK1 pY15, associated with the G2 arrest checkpoint, was identified as the most differentially phosphorylated site, with a 14-fold increase in phosphorylation in the tumors. To assess the role of this checkpoint as a potential therapeutic target, syngeneic primary cell lines derived from these tumors were treated with MK-1775, an inhibitor of Wee1, the kinase responsible for CDK1 Y15 phosphorylation. MK-1775 treatment led to mitotic catastrophe, as defined by increased DNA damage and cell death by apoptosis. To assess the extensibility of targeting Wee1/CDK1 in GBM, patient-derived xenograft (PDX) cell lines were also treated with MK-1775. Although the response was more heterogeneous, on-target Wee1 inhibition led to decreased CDK1 Y15 phosphorylation and increased DNA damage and apoptosis in each line. These results were also validated in vivo, where single-agent MK-1775 demonstrated an antitumor effect on a flank PDX tumor model, increasing mouse survival by 1.74-fold. This study highlights the ability of unbiased quantitative phosphoproteomics to reveal therapeutic targets in tumor models, and the potential for Wee1 inhibition as a treatment approach in preclinical models of GBM. Mol Cancer Ther; 15(6); 1332-43. ©2016 AACR. PMID:27196784

  7. Comparative Genomics Analyses Reveal Extensive Chromosome Colinearity and Novel Quantitative Trait Loci in Eucalyptus

    PubMed Central

    Weng, Qijie; Li, Mei; Yu, Xiaoli; Guo, Yong; Wang, Yu; Zhang, Xiaohong; Gan, Siming

    2015-01-01

    Dense genetic maps, along with quantitative trait loci (QTLs) detected on such maps, are powerful tools for genomics and molecular breeding studies. In the important woody genus Eucalyptus, the recent release of E. grandis genome sequence allows for sequence-based genomic comparison and searching for positional candidate genes within QTL regions. Here, dense genetic maps were constructed for E. urophylla and E. tereticornis using genomic simple sequence repeats (SSR), expressed sequence tag (EST) derived SSR, EST-derived cleaved amplified polymorphic sequence (EST-CAPS), and diversity arrays technology (DArT) markers. The E. urophylla and E. tereticornis maps comprised 700 and 585 markers across 11 linkage groups, totaling at 1,208.2 and 1,241.4 cM in length, respectively. Extensive synteny and colinearity were observed as compared to three earlier DArT-based eucalypt maps (two maps with E. grandis × E. urophylla and one map of E. globulus) and with the E. grandis genome sequence. Fifty-three QTLs for growth (10–56 months of age) and wood density (56 months) were identified in 22 discrete regions on both maps, in which only one colocalizaiton was found between growth and wood density. Novel QTLs were revealed as compared with those previously detected on DArT-based maps for similar ages in Eucalyptus. Eleven to 585 positional candidate genes were obained for a 56-month-old QTL through aligning QTL confidence interval with the E. grandis genome. These results will assist in comparative genomics studies, targeted gene characterization, and marker-assisted selection in Eucalyptus and the related taxa. PMID:26695430

  8. Quantitative Mass Spectrometry Reveals Plasticity of Metabolic Networks in Mycobacterium smegmatis *

    PubMed Central

    Chopra, Tarun; Hamelin, Romain; Armand, Florence; Chiappe, Diego; Moniatte, Marc; McKinney, John D.

    2014-01-01

    Mycobacterium tuberculosis has a remarkable ability to persist within the human host as a clinically inapparent or chronically active infection. Fatty acids are thought to be an important carbon source used by the bacteria during long term infection. Catabolism of fatty acids requires reprogramming of metabolic networks, and enzymes central to this reprogramming have been targeted for drug discovery. Mycobacterium smegmatis, a nonpathogenic relative of M. tuberculosis, is often used as a model system because of the similarity of basic cellular processes in these two species. Here, we take a quantitative proteomics-based approach to achieve a global view of how the M. smegmatis metabolic network adjusts to utilization of fatty acids as a carbon source. Two-dimensional liquid chromatography and mass spectrometry of isotopically labeled proteins identified a total of 3,067 proteins with high confidence. This number corresponds to 44% of the predicted M. smegmatis proteome and includes most of the predicted metabolic enzymes. Compared with glucose-grown cells, 162 proteins showed differential abundance in acetate- or propionate-grown cells. Among these, acetate-grown cells showed a higher abundance of proteins that could constitute a functional glycerate pathway. Gene inactivation experiments confirmed that both the glyoxylate shunt and the glycerate pathway are operational in M. smegmatis. In addition to proteins with annotated functions, we demonstrate carbon source-dependent differential abundance of proteins that have not been functionally characterized. These proteins might play as-yet-unidentified roles in mycobacterial carbon metabolism. This study reveals several novel features of carbon assimilation in M. smegmatis, which suggests significant functional plasticity of metabolic networks in this organism. PMID:24997995

  9. What Is "Good" Research? Revealing the Paradigmatic Tensions in Quantitative Criticalist Work

    ERIC Educational Resources Information Center

    Hernández, Ebelia

    2014-01-01

    If quantitative criticalism is thought to be a bridge between positivist epistemologies prevalent in quantitative work and social constructionism often found in critical qualitative work, then this bridge is fraught with challenges and tensions. This chapter examines the methodological issues, questions, and tensions that emerged from a research…

  10. Fast quantitative susceptibility mapping using 3D EPI and total generalized variation.

    PubMed

    Langkammer, Christian; Bredies, Kristian; Poser, Benedikt A; Barth, Markus; Reishofer, Gernot; Fan, Audrey Peiwen; Bilgic, Berkin; Fazekas, Franz; Mainero, Caterina; Ropele, Stefan

    2015-05-01

    Quantitative susceptibility mapping (QSM) allows new insights into tissue composition and organization by assessing its magnetic property. Previous QSM studies have already demonstrated that magnetic susceptibility is highly sensitive to myelin density and fiber orientation as well as to para- and diamagnetic trace elements. Image resolution in QSM with current approaches is limited by the long acquisition time of 3D scans and the need for high signal to noise ratio (SNR) to solve the dipole inversion problem. We here propose a new total-generalized-variation (TGV) based method for QSM reconstruction, which incorporates individual steps of phase unwrapping, background field removal and dipole inversion in a single iteration, thus yielding a robust solution to the reconstruction problem. This approach has beneficial characteristics for low SNR data, allowing for phase data to be rapidly acquired with a 3D echo planar imaging (EPI) sequence. The proposed method was evaluated with a numerical phantom and in vivo at 3 and 7 T. Compared to total variation (TV), TGV-QSM enforced higher order smoothness which yielded solutions closer to the ground truth and prevented stair-casing artifacts. The acquisition time for images with 1mm isotropic resolution and whole brain coverage was 10s on a clinical 3 Tesla scanner. In conclusion, 3D EPI acquisition combined with single-step TGV reconstruction yields reliable QSM images of the entire brain with 1mm isotropic resolution in seconds. The short acquisition time combined with the robust reconstruction may enable new QSM applications in less compliant populations, clinical susceptibility tensor imaging, and functional resting state examinations. PMID:25731991

  11. Quantitative trait loci for variation in immune response to a Foot-and-Mouth Disease virus peptide

    PubMed Central

    2010-01-01

    Background Infectious disease of livestock continues to be a cause of substantial economic loss and has adverse welfare consequences in both the developing and developed world. New solutions to control disease are needed and research focused on the genetic loci determining variation in immune-related traits has the potential to deliver solutions. However, identifying selectable markers and the causal genes involved in disease resistance and vaccine response is not straightforward. The aims of this study were to locate regions of the bovine genome that control the immune response post immunisation. 195 F2 and backcross Holstein Charolais cattle were immunised with a 40-mer peptide derived from foot-and-mouth disease virus (FMDV). T cell and antibody (IgG1 and IgG2) responses were measured at several time points post immunisation. All experimental animals (F0, F1 and F2, n = 982) were genotyped with 165 microsatellite markers for the genome scan. Results Considerable variability in the immune responses across time was observed and sire, dam and age had significant effects on responses at specific time points. There were significant correlations within traits across time, and between IgG1 and IgG2 traits, also some weak correlations were detected between T cell and IgG2 responses. The whole genome scan detected 77 quantitative trait loci (QTL), on 22 chromosomes, including clusters of QTL on BTA 4, 5, 6, 20, 23 and 25. Two QTL reached 5% genome wide significance (on BTA 6 and 24) and one on BTA 20 reached 1% genome wide significance. Conclusions A proportion of the variance in the T cell and antibody response post immunisation with an FDMV peptide has a genetic component. Even though the antigen was relatively simple, the humoral and cell mediated responses were clearly under complex genetic control, with the majority of QTL located outside the MHC locus. The results suggest that there may be specific genes or loci that impact on variation in both the primary and

  12. Spatial and temporal variation of total electron content as revealed by principal component analysis

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Talaat, E. R.

    2010-12-01

    Eleven years of global total electron content (TEC) data are analyzed using empirical orthogonal function (EOF) decomposition and the corresponding principal component analysis (PCA) technique. For the daily averaged TEC field, the first EOF explains more than 89% and the first four EOFs explain more than 98% of the total variance of the TEC field, indicating an effective data compression and clear separation of different physical processes. The effectiveness of the PCA technique to TEC is nearly insensitive to the horizontal resolution and the length of the data records. When the PCA is applied to global TEC including local time variations, the rich spatial and temporal variations of field can be represented by the first three EOFs that explain 88% of the total variance. The spectral analysis of the time series of reveals how different mechanisms such as solar flux variation, change of the orbital declination, nonlinear mode coupling and geomagnetic activity are separated and expressed in different EOFs. This work demonstrates the usefulness of using PCA technique to assimilate and monitor the global TEC field.

  13. Flower color changes in three Japanese hibiscus species: further quantitative variation of anthocyanin and flavonols.

    PubMed

    Shimokawa, Satoshi; Iwashina, Tsukasa; Murakami, Noriaki

    2015-03-01

    One anthocyanin and four flavonols were detected from the petals of Hibiscus hamabo, H. tiliaceus and H. glaber. They were identified as cyanidin 3-0- sambubioside, gossypetin 3-O-glucuronide-8-O-glucoside, quercetin 7-O-rutinoside, gossypetin 3-O-glucoside and gossypetin 8-O-glucuronide by UV spectra, LC-MS, acid hydrolysis and HPLC. The flavonoid composition was essentially the same among the petals ofH. hamabo, H. tiliaceus and H. glaber, and there was little quantitative variation, except for cyanidin 3-O-sambubioside, the content of which in the petals ofH. tiliaceus and H. glaber was much higher than in that of H. hamabo. Flower colors of H. tiliaceus and H. glaber change from yellow to red, and that of H. hamabo changes from yellow to orange. These changes were caused by contents of anthocyanin and flavonols, which increased after flowering of H. hamabo, H. tiliaceus and H. glaber. PMID:25924527

  14. The Effect of an Experimental Bottleneck upon Quantitative Genetic Variation in the Housefly

    PubMed Central

    Bryant, Edwin H.; McCommas, Steven A.; Combs, Lisa M.

    1986-01-01

    Effects of a population bottleneck (founder-flush cycle) upon quantitative genetic variation of morphometric traits were examined in replicated experimental lines of the housefly founded with one, four or 16 pairs of flies. Heritability and additive genetic variances for eight morphometric traits generally increased as a result of the bottleneck, but the pattern of increase among bottleneck sizes differed among traits. Principal axes of the additive genetic correlation matrix for the control line yielded two suites of traits, one associated with general body size and another set largely independent of body size. In the former set containing five of the traits, additive genetic variance was greatest in the bottleneck size of four pairs, whereas in the latter set of two traits the largest additive genetic variance occurred in the smallest bottleneck size of one pair. One trait exhibited changes in additive genetic variance intermediate between these two major responses. These results were inconsistent with models of additive effects of alleles within loci or of additive effects among loci. An observed decline in viability measures and body size in the bottleneck lines also indicated that there was nonadditivity of allelic effects for these traits. Several possible nonadditive models were explored that increased additive genetic variance as a result of a bottleneck. These included a model with complete dominance, a model with overdominance and a model incorporating multiplicative epistasis. PMID:17246359

  15. Genes and quantitative genetic variation involved with senescence in cells, organs, and the whole plant

    PubMed Central

    Pujol, Benoit

    2015-01-01

    Senescence, the deterioration of morphological, physiological, and reproductive functions with age that ends with the death of the organism, was widely studied in plants. Genes were identified that are linked to the deterioration of cells, organs and the whole plant. It is, however, unclear whether those genes are the source of age dependent deterioration or get activated to regulate such deterioration. Furthermore, it is also unclear whether such genes are active as a direct consequence of age or because they are specifically involved in some developmental stages. At the individual level, it is the relationship between quantitative genetic variation, and age that can be used to detect the genetic signature of senescence. Surprisingly, the latter approach was only scarcely applied to plants. This may be the consequence of the demanding requirements for such approaches and/or the fact that most research interest was directed toward plants that avoid senescence. Here, I review those aspects in turn and call for an integrative genetic theory of senescence in plants. Such conceptual development would have implications for the management of plant genetic resources and generate progress on fundamental questions raised by aging research. PMID:25755664

  16. A quantitative assessment of the relationship between precipitation deficits and air temperature variations

    NASA Astrophysics Data System (ADS)

    He, B.; Wang, H. L.; Wang, Q. F.; Di, Z. H.

    2015-06-01

    Previous studies have reported precipitation deficits related to temperature extremes. However, how and to what extent precipitation deficits affect surface air temperatures is still poorly understood. In this study, the relationship between precipitation deficits and surface temperatures was examined in China from 1960 to 2012 based on monthly temperature and precipitation records from 565 stations. Significant negative correlations were identified in each season, with the strongest relationships in the summer, indicating that higher temperatures usually accompanied water-deficient conditions and lower temperatures usually accompanied wet conditions. The examination of the correlations based on 30 year moving windows suggested that the interaction between the two variables has declined over the past three decades. Further investigation indicated a higher impact of extreme dry conditions on temperature than that of extreme wet conditions. In addition, a new simple index (Dry Temperature Index, DTI) was developed and used to quantitatively describe the relationship between water deficits and air temperature variations. We tested and compared the DTI in the coldest month (January) and the hottest month (July) of the year, station by station. In both months, the number of stations with a DThighI ≥ 50% was greater than those with a DThighI < 50%, indicating that a greater proportion of higher temperatures occurred during dry conditions. Based on the results, we conclude that water deficits in China are usually correlated to high temperatures but not to low temperatures.

  17. Unequal Crossing over at the Rrna Tandon as a Source of Quantitative Genetic Variation in Drosophila

    PubMed Central

    Frankham, R.; Briscoe, D. A.; Nurthen, R. K.

    1980-01-01

    Abdominal bristle selection lines (three high and three low) and controls were founded from a marked homozygous line to measure the contribution of sex-linked "mutations" to selection response. Two of the low lines exhibited a period of rapid response to selection in females, but not in males. There were corresponding changes in female variance, in heritabilities in females, in the sex ratio (a deficiency of females) and in fitness, as well as the appearance of a mutant phenotype in females of one line. All of these changes were due to bb alleles (partial deficiencies for the rRNA tandon) in the X chromosomes of these lines, while the Y chromosomes remained wild-type bb+. We argue that the bb alleles arose by unequal crossing over in the rRNA tandon.—A prediction of this hypothesis is that further changes can occur in the rRNA tandon as selection is continued. This has now been shown to occur.—Our minimum estimate of the rate of occurrence of changes at the rRNA tandon is 3 x 10-4. As this is substantially higher than conventional mutation rates, the questions of the mechanisms and rates of origin of new quantitative genetic variation require careful re-examination. PMID:7439683

  18. Natural Variation for Carbohydrate Content in Arabidopsis. Interaction with Complex Traits Dissected by Quantitative Genetics1

    PubMed Central

    Calenge, Fanny; Saliba-Colombani, Véra; Mahieu, Stéphanie; Loudet, Olivier; Daniel-Vedele, Françoise; Krapp, Anne

    2006-01-01

    Besides being a metabolic fuel, carbohydrates play important roles in plant growth and development, in stress responses, and as signal molecules. We exploited natural variation in Arabidopsis (Arabidopsis thaliana) to decipher the genetic architecture determining carbohydrate content. A quantitative trait locus (QTL) approach in the Bay-0 × Shahdara progeny grown in two contrasting nitrogen environments led to the identification of 39 QTLs for starch, glucose, fructose, and sucrose contents representing at least 14 distinct polymorphic loci. A major QTL for fructose content (FR3.4) and a QTL for starch content (ST3.4) were confirmed in heterogeneous inbred families. Several genes associated with carbon (C) metabolism colocalize with the identified QTL. QTLs for senescence-related traits, and for flowering time, water status, and nitrogen-related traits, previously detected with the same genetic material, colocalize with C-related QTLs. These colocalizations reflect the complex interactions of C metabolism with other physiological processes. QTL fine-mapping and cloning could thus lead soon to the identification of genes potentially involved in the control of different connected physiological processes. PMID:16798941

  19. HST SPECTRAL MAPPING OF L/T TRANSITION BROWN DWARFS REVEALS CLOUD THICKNESS VARIATIONS

    SciTech Connect

    Apai, Daniel; Radigan, Jacqueline; Jayawardhana, Ray; Buenzli, Esther; Burrows, Adam; Reid, Iain Neill

    2013-05-10

    Most directly imaged giant exoplanets are fainter than brown dwarfs with similar spectra. To explain their relative underluminosity, unusually cloudy atmospheres have been proposed. However, with multiple parameters varying between any two objects, it remained difficult to observationally test this idea. We present a new method, sensitive time-resolved Hubble Space Telescope near-infrared spectroscopy, to study two rotating L/T transition brown dwarfs (2M2139 and SIMP0136). The observations provide spatially and spectrally resolved mapping of the cloud decks of the brown dwarfs. The data allow the study of cloud structure variations while other parameters are unchanged. We find that both brown dwarfs display variations of identical nature: J- and H-band brightness variations with minimal color and spectral changes. Our light curve models show that even the simplest surface brightness distributions require at least three elliptical spots. We show that for each source the spectral changes can be reproduced with a linear combination of only two different spectra, i.e., the entire surface is covered by two distinct types of regions. Modeling the color changes and spectral variations together reveal patchy cloud covers consisting of a spatially heterogeneous mix of low-brightness, low-temperature thick clouds and brighter, thin, and warm clouds. We show that the same thick cloud patches seen in our varying brown dwarf targets, if extended to the entire photosphere, predict near-infrared colors/magnitudes matching the range occupied by the directly imaged exoplanets that are cooler and less luminous than brown dwarfs with similar spectral types. This supports the models in which thick clouds are responsible for the near-infrared properties of these ''underluminous'' exoplanets.

  20. Isotopic Zonation Within Sulfate Evaporite Mineral Crystals Reveal Quantitative Paleoenvironment Details

    NASA Astrophysics Data System (ADS)

    Coleman, M.; Rhorssen, M.; Mielke, R. E.

    2008-12-01

    Isotopic variations measured within a single crystal of hydrated magnesium sulfate are greater than 30 permil for delta 2-H, almost 10 permil for δ18O in water of hydration; and greater than 3 permil in sulfate oxygen. These results are interpreted to indicate the relative humidity of the system during evaporation (15 to 20 percent in this test case) and constrain the volume of water involved. The theoretical basis of this system is the isotopic fractionation between the species in solution and those precipitated as evaporite salts. Precipitation preferentially accumulates more of the heavy isotopes of sulfur and oxygen in mineral sulfate, relative to sulfate in solution. During the course of mineral growth this leads to successive depletion of the respective heavier isotopes in the residual brine reflected in a parallel trend in successive precipitates or even in successive zones within a single crystal. The change in isotopic composition at any one time during the process, relative to the initial value, can be described by an isotopic version of the Rayleigh Fractionation equation, depending only on the extent of the completion of the process and the relevant fractionation factor. Evaporation preferentially removes isotopically lighter hydrogen and oxygen leading to successive extents of enrichment in the respective heavier isotopes in the residual water. However, the relative effects on hydrogen and oxygen isotopes differs as function of relative humidity [1]. ALL OF THESE CHANGES ARE PRESERVED IN THE MINERAL ISOTOPE COMPOSITIONS. We precipitated barium sulfate from epsomite or gypsum samples, which was reduced at 1450°C in the presence of graphite and glassy carbon in a Finnigan TC/EA to produce CO for O isotopic analysis in a Finnigan 253 mass spectrometer, while a separate subsample was oxidized to SO2 in a Costech Elemental Analyzer. However, to make progress with this approach we needed to make a large number of measurements of hydration water and so we

  1. Variation analysis of transcriptome changes reveals cochlear genes and their associated functions in cochlear susceptibility to acoustic overstimulation.

    PubMed

    Yang, Shuzhi; Cai, Qunfeng; Bard, Jonathan; Jamison, Jennifer; Wang, Jianmin; Yang, Weiping; Hu, Bo Hua

    2015-12-01

    Individual variation in the susceptibility of the auditory system to acoustic overstimulation has been well-documented at both the functional and structural levels. However, the molecular mechanism responsible for this variation is unclear. The current investigation was designed to examine the variation patterns of cochlear gene expression using RNA-seq data and to identify the genes with expression variation that increased following acoustic trauma. This study revealed that the constitutive expressions of cochlear genes displayed diverse levels of gene-specific variation. These variation patterns were altered by acoustic trauma; approximately one-third of the examined genes displayed marked increases in their expression variation. Bioinformatics analyses revealed that the genes that exhibited increased variation were functionally related to cell death, biomolecule metabolism, and membrane function. In contrast, the stable genes were primarily related to basic cellular processes, including protein and macromolecular syntheses and transport. There was no functional overlap between the stable and variable genes. Importantly, we demonstrated that glutamate metabolism is related to the variation in the functional response of the cochlea to acoustic overstimulation. Taken together, the results indicate that our analyses of the individual variations in transcriptome changes of cochlear genes provide important information for the identification of genes that potentially contribute to the generation of individual variation in cochlear responses to acoustic overstimulation. PMID:26024952

  2. Comprehensive long-span paired-end-tag mapping reveals characteristic patterns of structural variations in epithelial cancer genomes

    PubMed Central

    Hillmer, Axel M.; Yao, Fei; Inaki, Koichiro; Lee, Wah Heng; Ariyaratne, Pramila N.; Teo, Audrey S.M.; Woo, Xing Yi; Zhang, Zhenshui; Zhao, Hao; Ukil, Leena; Chen, Jieqi P.; Zhu, Feng; So, Jimmy B.Y.; Salto-Tellez, Manuel; Poh, Wan Ting; Zawack, Kelson F.B.; Nagarajan, Niranjan; Gao, Song; Li, Guoliang; Kumar, Vikrant; Lim, Hui Ping J.; Sia, Yee Yen; Chan, Chee Seng; Leong, See Ting; Neo, Say Chuan; Choi, Poh Sum D.; Thoreau, Hervé; Tan, Patrick B.O.; Shahab, Atif; Ruan, Xiaoan; Bergh, Jonas; Hall, Per; Cacheux-Rataboul, Valère; Wei, Chia-Lin; Yeoh, Khay Guan; Sung, Wing-Kin; Bourque, Guillaume; Liu, Edison T.; Ruan, Yijun

    2011-01-01

    Somatic genome rearrangements are thought to play important roles in cancer development. We optimized a long-span paired-end-tag (PET) sequencing approach using 10-Kb genomic DNA inserts to study human genome structural variations (SVs). The use of a 10-Kb insert size allows the identification of breakpoints within repetitive or homology-containing regions of a few kilobases in size and results in a higher physical coverage compared with small insert libraries with the same sequencing effort. We have applied this approach to comprehensively characterize the SVs of 15 cancer and two noncancer genomes and used a filtering approach to strongly enrich for somatic SVs in the cancer genomes. Our analyses revealed that most inversions, deletions, and insertions are germ-line SVs, whereas tandem duplications, unpaired inversions, interchromosomal translocations, and complex rearrangements are over-represented among somatic rearrangements in cancer genomes. We demonstrate that the quantitative and connective nature of DNA–PET data is precise in delineating the genealogy of complex rearrangement events, we observe signatures that are compatible with breakage-fusion-bridge cycles, and we discover that large duplications are among the initial rearrangements that trigger genome instability for extensive amplification in epithelial cancers. PMID:21467267

  3. Quantitative monitoring of the coseismic seismoelectric field relatively to salinity and saturation variation

    NASA Astrophysics Data System (ADS)

    Brito, D.; Holzhauer, J.; Bordes, C.; Guatarbes, B.; Callot, J. P.

    2014-12-01

    Resulting from an electrokinetic coupling generated under seismic excitation, the seismoelectric (SE) effect appears as a promising tool for porous media characterization. However, due to the incomplete understanding of the underlying physics, observations remained strictly qualitative for a long time. Eventually in the 1990's, Pride's robust explanation for the SE effect opened new prospects. Within a decade, a dynamic formulation of the coseismic transfer function had been given, that expresses the coseismic electric field E relatively to the acceleration ü.Our purpose is to confront this model to measurements carried out on a simple porous medium at lab scale. In this experiment, a seismic wave propagates within a 120l-sandbox, filled with unconsolidated monodisperse quartz sand, for varying water contents and fluid conductivities. The seismic wave is generated by a pneumatic source of wide frequency spectrum allowing for measurements at the kilohertz range. The sandbox is equipped with 20 accelerometers, 5 water-sensors and a 30 rods electrode array. All captors are placed with a maximum offset of 30cm to the source.By changing salinity in the range [2-8mS/m] at constant saturation, we observed a decrease in the |E/ü| transfer function proportional to the salinity increase, as expected by Pride and already reported in literature. This proved the experimental setup to be suitable for further quantitative measuring, being in our case a SE monitoring under saturation variations. After a relaxation time, a dramatic increase in seismic velocities attested full saturation. The ensuing SE monitoring while draining, going from 100 to 35% water-content, showed a change in the sign of the E/ü ratio consistent with Pride's predictions. In the meanwhile, seismic records exhibited velocity changes in agreement with a patchy evolution of the saturation

  4. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in "Brassica rapa" Fast Plants

    ERIC Educational Resources Information Center

    Batzli, Janet M.; Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dosa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory…

  5. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation.

    PubMed

    Shalek, Alex K; Satija, Rahul; Shuga, Joe; Trombetta, John J; Gennert, Dave; Lu, Diana; Chen, Peilin; Gertner, Rona S; Gaublomme, Jellert T; Yosef, Nir; Schwartz, Schraga; Fowler, Brian; Weaver, Suzanne; Wang, Jing; Wang, Xiaohui; Ding, Ruihua; Raychowdhury, Raktima; Friedman, Nir; Hacohen, Nir; Park, Hongkun; May, Andrew P; Regev, Aviv

    2014-06-19

    High-throughput single-cell transcriptomics offers an unbiased approach for understanding the extent, basis and function of gene expression variation between seemingly identical cells. Here we sequence single-cell RNA-seq libraries prepared from over 1,700 primary mouse bone-marrow-derived dendritic cells spanning several experimental conditions. We find substantial variation between identically stimulated dendritic cells, in both the fraction of cells detectably expressing a given messenger RNA and the transcript's level within expressing cells. Distinct gene modules are characterized by different temporal heterogeneity profiles. In particular, a 'core' module of antiviral genes is expressed very early by a few 'precocious' cells in response to uniform stimulation with a pathogenic component, but is later activated in all cells. By stimulating cells individually in sealed microfluidic chambers, analysing dendritic cells from knockout mice, and modulating secretion and extracellular signalling, we show that this response is coordinated by interferon-mediated paracrine signalling from these precocious cells. Notably, preventing cell-to-cell communication also substantially reduces variability between cells in the expression of an early-induced 'peaked' inflammatory module, suggesting that paracrine signalling additionally represses part of the inflammatory program. Our study highlights the importance of cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular populations can use to establish complex dynamic responses. PMID:24919153

  6. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation

    NASA Astrophysics Data System (ADS)

    Shalek, Alex K.; Satija, Rahul; Shuga, Joe; Trombetta, John J.; Gennert, Dave; Lu, Diana; Chen, Peilin; Gertner, Rona S.; Gaublomme, Jellert T.; Yosef, Nir; Schwartz, Schraga; Fowler, Brian; Weaver, Suzanne; Wang, Jing; Wang, Xiaohui; Ding, Ruihua; Raychowdhury, Raktima; Friedman, Nir; Hacohen, Nir; Park, Hongkun; May, Andrew P.; Regev, Aviv

    2014-06-01

    High-throughput single-cell transcriptomics offers an unbiased approach for understanding the extent, basis and function of gene expression variation between seemingly identical cells. Here we sequence single-cell RNA-seq libraries prepared from over 1,700 primary mouse bone-marrow-derived dendritic cells spanning several experimental conditions. We find substantial variation between identically stimulated dendritic cells, in both the fraction of cells detectably expressing a given messenger RNA and the transcript's level within expressing cells. Distinct gene modules are characterized by different temporal heterogeneity profiles. In particular, a `core' module of antiviral genes is expressed very early by a few `precocious' cells in response to uniform stimulation with a pathogenic component, but is later activated in all cells. By stimulating cells individually in sealed microfluidic chambers, analysing dendritic cells from knockout mice, and modulating secretion and extracellular signalling, we show that this response is coordinated by interferon-mediated paracrine signalling from these precocious cells. Notably, preventing cell-to-cell communication also substantially reduces variability between cells in the expression of an early-induced `peaked' inflammatory module, suggesting that paracrine signalling additionally represses part of the inflammatory program. Our study highlights the importance of cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular populations can use to establish complex dynamic responses.

  7. A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds

    PubMed Central

    Kijas, James W.; Townley, David; Dalrymple, Brian P.; Heaton, Michael P.; Maddox, Jillian F.; McGrath, Annette; Wilson, Peter; Ingersoll, Roxann G.; McCulloch, Russell; McWilliam, Sean; Tang, Dave; McEwan, John; Cockett, Noelle; Oddy, V. Hutton; Nicholas, Frank W.; Raadsma, Herman

    2009-01-01

    The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identifying the first genome-wide set of SNP for sheep, we report on levels of genetic variability both within and between a diverse sample of ovine populations. Then, using cluster analysis and the partitioning of genetic variation, we demonstrate sheep are characterised by weak phylogeographic structure, overlapping genetic similarity and generally low differentiation which is consistent with their short evolutionary history. The degree of population substructure was, however, sufficient to cluster individuals based on geographic origin and known breed history. Specifically, African and Asian populations clustered separately from breeds of European origin sampled from Australia, New Zealand, Europe and North America. Furthermore, we demonstrate the presence of stratification within some, but not all, ovine breeds. The results emphasize that careful documentation of genetic structure will be an essential prerequisite when mapping the genetic basis of complex traits. Furthermore, the identification of a subset of SNP able to assign individuals into broad groupings demonstrates even a small panel of markers may be suitable for applications such as traceability. PMID:19270757

  8. Distinct energy metabolism of auditory and vestibular sensory epithelia revealed by quantitative mass spectrometry using MS2 intensity.

    PubMed

    Spinelli, Kateri J; Klimek, John E; Wilmarth, Phillip A; Shin, Jung-Bum; Choi, Dongseok; David, Larry L; Gillespie, Peter G

    2012-01-31

    Measuring the abundance of many proteins over a broad dynamic range requires accurate quantitation. We show empirically that, in MS experiments, relative quantitation using summed dissociation-product ion-current intensities is accurate, albeit variable from protein to protein, and outperforms spectral counting. By applying intensities to quantify proteins in two complex but related tissues, chick auditory and vestibular sensory epithelia, we find that glycolytic enzymes are enriched threefold in auditory epithelia, whereas enzymes responsible for oxidative phosphorylation are increased at least fourfold in vestibular epithelia. This striking difference in relative use of the two ATP-production pathways likely reflects the isolation of the auditory epithelium from its blood supply, necessary to prevent heartbeat-induced mechanical disruptions. The global view of protein expression afforded by label-free quantitation with a wide dynamic range reveals molecular specialization at a tissue or cellular level. PMID:22307652

  9. QUANTITATIVE PCR ANALYSIS OF HOUSE DUST CAN REVEAL ABNORMAL MOLD CONDITIONS

    EPA Science Inventory

    Indoor mold populations were measured in the dust of homes in Cleveland and Cincinnati, OH, by quantitative PCR (QPCR) and, in Cincinnati, also by culturing. QPCR assays for 82 species (or groups of species) were used to identify and quantify indoor mold populations in moldy home...

  10. Quantitative phenotyping of powdery mildew resistance in grapevine reveals differences in host resistance biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent demonstration of race-specific resistance to Erysiphe necator has encouraged grapevine breeders to identify and introgress quantitative resistance genes exhibiting complementary mechanisms. In 2012, we established a phenotyping center (VitisGenPM) for detailed evaluation of resistance to...

  11. Quantitative estimation of Holocene surface salinity variation in the Black Sea using dinoflagellate cyst process length

    NASA Astrophysics Data System (ADS)

    Mertens, Kenneth Neil; Bradley, Lee R.; Takano, Yoshihito; Mudie, Petra J.; Marret, Fabienne; Aksu, Ali E.; Hiscott, Richard N.; Verleye, Thomas J.; Mousing, Erik A.; Smyrnova, Ludmila L.; Bagheri, Siamak; Mansor, Mashhor; Pospelova, Vera; Matsuoka, Kazumi

    2012-04-01

    Reconstruction of salinity in the Holocene Black Sea has been an ongoing debate over the past four decades. Here we calibrate summer surface water salinity in the Black Sea, Sea of Azov and Caspian Sea with the process length of the dinoflagellate cyst Lingulodinium machaerophorum. We then apply this calibration to make a regional reconstruction of paleosalinity in the Black Sea, calculated by averaging out process length variation observed at four core sites from the Black Sea with high sedimentation rates and dated by multiple mollusk shell ages. Results show a very gradual change of salinity from ˜14 ± 0.91 psu around 9.9 cal ka BP to a minimum ˜12.3 ± 0.91 psu around 8.5 cal ka BP, reaching current salinities of ˜17.1 ± 0.91 psu around 4.1 cal ka BP. The resolution of our sampling is about 250 years, and it fails to reveal a catastrophic salinization event at ˜9.14 cal ka BP advocated by other researchers. The dinoflagellate cyst salinity-proxy does not record large Holocene salinity fluctuations, and after early Holocene freshening, it shows correspondence to the regional sea-level curve of Brückner et al. (2010) derived from Balabanov (2007).

  12. Quantitative trait locus mapping reveals regions of the maize genome controlling root system architecture.

    PubMed

    Zurek, Paul R; Topp, Christopher N; Benfey, Philip N

    2015-04-01

    The quest to determine the genetic basis of root system architecture (RSA) has been greatly facilitated by recent developments in root phenotyping techniques. Methods that are accurate, high throughput, and control for environmental factors are especially attractive for quantitative trait locus mapping. Here, we describe the adaptation of a nondestructive in vivo gel-based root imaging platform for use in maize (Zea mays). We identify a large number of contrasting RSA traits among 25 founder lines of the maize nested association mapping population and locate 102 quantitative trait loci using the B73 (compact RSA)×Ki3 (exploratory RSA) mapping population. Our results suggest that a phenotypic tradeoff exists between small, compact RSA and large, exploratory RSA. PMID:25673779

  13. Quantitative Trait Locus Mapping Reveals Regions of the Maize Genome Controlling Root System Architecture1[OPEN

    PubMed Central

    Benfey, Philip N.

    2015-01-01

    The quest to determine the genetic basis of root system architecture (RSA) has been greatly facilitated by recent developments in root phenotyping techniques. Methods that are accurate, high throughput, and control for environmental factors are especially attractive for quantitative trait locus mapping. Here, we describe the adaptation of a nondestructive in vivo gel-based root imaging platform for use in maize (Zea mays). We identify a large number of contrasting RSA traits among 25 founder lines of the maize nested association mapping population and locate 102 quantitative trait loci using the B73 (compact RSA) × Ki3 (exploratory RSA) mapping population. Our results suggest that a phenotypic tradeoff exists between small, compact RSA and large, exploratory RSA. PMID:25673779

  14. Expression Quantitative Trait Loci Information Improves Predictive Modeling of Disease Relevance of Non-Coding Genetic Variation

    PubMed Central

    Raj, Towfique; McGeachie, Michael J.; Qiu, Weiliang; Ziniti, John P.; Stubbs, Benjamin J.; Liang, Liming; Martinez, Fernando D.; Strunk, Robert C.; Lemanske, Robert F.; Liu, Andrew H.; Stranger, Barbara E.; Carey, Vincent J.; Raby, Benjamin A.

    2015-01-01

    Disease-associated loci identified through genome-wide association studies (GWAS) frequently localize to non-coding sequence. We and others have demonstrated strong enrichment of such single nucleotide polymorphisms (SNPs) for expression quantitative trait loci (eQTLs), supporting an important role for regulatory genetic variation in complex disease pathogenesis. Herein we describe our initial efforts to develop a predictive model of disease-associated variants leveraging eQTL information. We first catalogued cis-acting eQTLs (SNPs within 100kb of target gene transcripts) by meta-analyzing four studies of three blood-derived tissues (n = 586). At a false discovery rate < 5%, we mapped eQTLs for 6,535 genes; these were enriched for disease-associated genes (P < 10−04), particularly those related to immune diseases and metabolic traits. Based on eQTL information and other variant annotations (distance from target gene transcript, minor allele frequency, and chromatin state), we created multivariate logistic regression models to predict SNP membership in reported GWAS. The complete model revealed independent contributions of specific annotations as strong predictors, including evidence for an eQTL (odds ratio (OR) = 1.2–2.0, P < 10−11) and the chromatin states of active promoters, different classes of strong or weak enhancers, or transcriptionally active regions (OR = 1.5–2.3, P < 10−11). This complete prediction model including eQTL association information ultimately allowed for better discrimination of SNPs with higher probabilities of GWAS membership (6.3–10.0%, compared to 3.5% for a random SNP) than the other two models excluding eQTL information. This eQTL-based prediction model of disease relevance can help systematically prioritize non-coding GWAS SNPs for further functional characterization. PMID:26474488

  15. Sub-cellular and Multi-cellular Signaling Mechanisms Revealed by Quantitative Laser Microscopies

    NASA Astrophysics Data System (ADS)

    Piston, David

    2005-03-01

    Newly developed instrumentation and optical probes allows us to image quantitatively dynamic processes within ever more complicated biological systems. Using methods such as fluorescence recovery after photobleaching (FRAP) and Förster resonance energy transfer (FRET) of GFPs fused to the glucose sensing enzyme glucokinase (GK), we have discovered that the location and activity of beta cell GK is acutely regulated by insulin. These findings provide a mechanism whereby the glucose sensing ability of the beta cell is tightly coupled to insulin signaling. We have also measured pancreatic β-cell metabolism during glucose stimulation by quantitative two-photon NAD(P)H imaging. We have developed methods to delineate quantitatively the NAD(P)H signals from the cytoplasm and mitochondria, and show that the metabolic response of these two compartments are differentially stimulated by glucose and other metabolites. Absolute levels of NAD(P)H were determined using two-photon excited fluorescence lifetime imaging (FLIM). These findings elucidate the relative contributions of glycolytic and citric acid cycle metabolism in normal and diabetic cells.

  16. Infrared spectroscopy reveals both qualitative and quantitative differences in equine subchondral bone during maturation.

    PubMed

    Kobrina, Yevgeniya; Isaksson, Hanna; Sinisaari, Miikka; Rieppo, Lassi; Brama, Pieter A; van Weeren, Rene; Helminen, Heikki J; Jurvelin, Jukka S; Saarakkala, Simo

    2010-01-01

    The collagen phase in bone is known to undergo major changes during growth and maturation. The objective of this study is to clarify whether Fourier transform infrared (FTIR) microspectroscopy, coupled with cluster analysis, can detect quantitative and qualitative changes in the collagen matrix of subchondral bone in horses during maturation and growth. Equine subchondral bone samples (n = 29) from the proximal joint surface of the first phalanx are prepared from two sites subjected to different loading conditions. Three age groups are studied: newborn (0 days old), immature (5 to 11 months old), and adult (6 to 10 years old) horses. Spatial collagen content and collagen cross-link ratio are quantified from the spectra. Additionally, normalized second derivative spectra of samples are clustered using the k-means clustering algorithm. In quantitative analysis, collagen content in the subchondral bone increases rapidly between the newborn and immature horses. The collagen cross-link ratio increases significantly with age. In qualitative analysis, clustering is able to separate newborn and adult samples into two different groups. The immature samples display some nonhomogeneity. In conclusion, this is the first study showing that FTIR spectral imaging combined with clustering techniques can detect quantitative and qualitative changes in the collagen matrix of subchondral bone during growth and maturation. PMID:21198207

  17. Infrared spectroscopy reveals both qualitative and quantitative differences in equine subchondral bone during maturation

    NASA Astrophysics Data System (ADS)

    Kobrina, Yevgeniya; Isaksson, Hanna; Sinisaari, Miikka; Rieppo, Lassi; Brama, Pieter A.; van Weeren, René; Helminen, Heikki J.; Jurvelin, Jukka S.; Saarakkala, Simo

    2010-11-01

    The collagen phase in bone is known to undergo major changes during growth and maturation. The objective of this study is to clarify whether Fourier transform infrared (FTIR) microspectroscopy, coupled with cluster analysis, can detect quantitative and qualitative changes in the collagen matrix of subchondral bone in horses during maturation and growth. Equine subchondral bone samples (n = 29) from the proximal joint surface of the first phalanx are prepared from two sites subjected to different loading conditions. Three age groups are studied: newborn (0 days old), immature (5 to 11 months old), and adult (6 to 10 years old) horses. Spatial collagen content and collagen cross-link ratio are quantified from the spectra. Additionally, normalized second derivative spectra of samples are clustered using the k-means clustering algorithm. In quantitative analysis, collagen content in the subchondral bone increases rapidly between the newborn and immature horses. The collagen cross-link ratio increases significantly with age. In qualitative analysis, clustering is able to separate newborn and adult samples into two different groups. The immature samples display some nonhomogeneity. In conclusion, this is the first study showing that FTIR spectral imaging combined with clustering techniques can detect quantitative and qualitative changes in the collagen matrix of subchondral bone during growth and maturation.

  18. Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998-2001

    NASA Astrophysics Data System (ADS)

    Lee, Jian-Cheng; Angelier, Jacques; Chu, Hao-Tsu; Hu, Jyr-Ching; Jeng, Fu-Shu; Rau, Ruey-Juin

    2003-11-01

    The daily creep meter data recorded at Chihshang in 1998-2001 are presented. The Chihshang creep meter experiment was set up across the Chihshang thrust fault, the most active segment of the Longitudinal Valley Fault, which is the present-day plate suture between the Eurasian and the Philippine Sea plates in eastern Taiwan. Near-continuous data recording at two sites revealed different surface fault motions yet similar annual shortening rates: 16.2 mm at the Tapo site (comprising two connected creep meters) and 15.0 mm at the Chinyuan site (three creep meters straddling parallel fault branches). Four of the five creep meters showed a seasonal variation, with the fault moving steadily during the rainy season from April to October, and remaining quiescent during the rest of the year. The only exception was recorded by the creep meter located on a mélange-composed hillslope, where local gravitational landsliding played an additional role other than tectonic faulting. Through comparison with daily precipitation data, we inferred that moderate rainfall suffices to trigger or facilitate slippage on the surface fault, during the transition period of the dry/wet season. During the observation period from 1998 to 2001, the subsurface seismicity exhibited clusters of microearthquakes on the Chihshang Fault at depths of 10-25 km. Recurrent earthquakes occurred regardless of whether the season was wet or dry, indicating that the stress relaxation associated with seismicity in the seismogenic zone did not transfer immediately up to the surface. The accumulated strain on the Chihshang Fault at shallow surface levels was released through creep during the wet season. In addition to these short-term seasonal variations, an apparent decrease in the annual slipping rate on the Chihshang Fault during the last few years deserves further investigation in order to mitigate against seismic hazard.

  19. Nuclear microsatellite variation in Malagasy baobabs (Adansonia, Bombacoideae, Malvaceae) reveals past hybridization and introgression

    PubMed Central

    Leong Pock Tsy, Jean-Michel; Lumaret, Roselyne; Flaven-Noguier, Elodie; Sauve, Mathieu; Dubois, Marie-Pierre; Danthu, Pascal

    2013-01-01

    Background and Aims Adansonia comprises nine species, six of which are endemic to Madagascar. Genetic relationships between the Malagasy species remain unresolved due to conflicting results between nuclear and plastid DNA variation. Morphologically intermediate individuals between distinct species have been identified, indicative of interspecific hybridization. In this paper, microsatellite data are used to identify potential cases of hybridization and to provide insights into the evolutionary history of the genus on Madagascar. Methods Eleven microsatellites amplified with new primers developed for Adansonia rubrostipa were used to analyse 672 individuals collected at 27 sites for the six Malagasy species and morphologically intermediate individuals. Rates of individual admixture were examined using three Bayesian clustering programs, STRUCTURE, BAPS and NewHybrids, with no a priori species assignment. Key Results Population differentiation was coherent, with recognized species boundaries. In the four Malagasy species of section Longitubae, 8·0, 9·0 and 9·5 % of individuals with mixed genotypes were identified by BAPS, NewHybrids and STRUCTURE, respectively. At sites with sympatric populations of A. rubrostipa and A. za, NewHybrids indicated these individuals to be F2 and, predominantly, backcrosses with both parental species. In northern Madagascar, two populations of trees combining A. za and A. perrieri morphology and microsatellite alleles were identified in the current absence of the parental species. Conclusions The clear genetic differentiation observed between the six species may reflect their adaptation to different assortments of climate regimes and habitats during the colonization of the island. Microsatellite variation reveals that hybridization probably occurred in secondary contact between species of section Longitubae. This type of hybridization may also have been involved in the differentiation of a local new stabilized entity showing specific

  20. Assessing Precipitation Isotope Variations during Atmospheric River Events to Reveal Dominant Atmospheric/Hydrologic Processes

    NASA Astrophysics Data System (ADS)

    McCabe-Glynn, S. E.; Johnson, K. R.; Yoshimura, K.; Buenning, N. H.; Welker, J. M.

    2015-12-01

    Extreme precipitation events across the Western US commonly associated with atmospheric rivers (ARs), whereby extensive fluxes of moisture are transported from the subtropics, can result in major damage and are projected by most climate models to increase in frequency and severity. However, they are difficult to project beyond ~ten days and the location of landfall and topographically induced precipitation is even more uncertain. Water isotopes, often used to reconstruct past rainfall variability, are useful natural tracers of atmospheric hydrologic processes. Because of the typical tropical and sub-tropical origins, ARs can carry unique water isotope (δ18O and δ2H, d-excess) signatures that can be utilized to provide source and process information that can lead to improving AR predictions. Recent analysis of the top 10 weekly precipitation total samples from Sequoia National Park, CA, of which 9 contained AR events, shows a high variability in the isotopic values. NOAA Hysplit back trajectory analyses reveals a variety of trajectories and varying latitudinal source regions contributed to moisture delivered to this site, which may explain part of the high variability (δ2H = -150.03 to -49.52 ‰, δ18O = -19.27 to -7.20 ‰, d-excess = 4.1 to 25.8). Here we examine the top precipitation totals occurring during AR events and the associated isotopic composition of precipitation samples from several sites across the Western US. We utilize IsoGSM, an isotope-enabled atmospheric general circulation model, to characterize the hydrologic processes and physical dynamics contributing to the observed isotopic variations. We investigate isotopic influences from moisture source location, AR speed, condensation height, and associated temperature. We explore the dominant controls on spatial and temporal variations of the isotopic composition of AR precipitation which highlights different physical processes for different AR events.

  1. Functional Coding Variation in Recombinant Inbred Mouse Lines Reveals Novel Serotonin Transporter-Associated Phenotypes

    SciTech Connect

    Carneiro, Ana; Airey, David; Thompson, Brent; Zhu, C; Rinchik, Eugene M; Lu, Lu; Chesler, Elissa J; Erikson, Keith; Blakely, Randy

    2009-01-01

    The human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT, SLC6A4) figures prominently in the etiology or treatment of many prevalent neurobehavioral disorders including anxiety, alcoholism, depression, autism and obsessive-compulsive disorder (OCD). Here we utilize naturally occurring polymorphisms in recombinant inbred (RI) lines to identify novel phenotypes associated with altered SERT function. The widely used mouse strain C57BL/6J, harbors a SERT haplotype defined by two nonsynonymous coding variants (Gly39 and Lys152 (GK)). At these positions, many other mouse lines, including DBA/2J, encode Glu39 and Arg152 (ER haplotype), assignments found also in hSERT. Synaptosomal 5-HT transport studies revealed reduced uptake associated with the GK variant. Heterologous expression studies confirmed a reduced SERT turnover rate for the GK variant. Experimental and in silico approaches using RI lines (C57Bl/6J X DBA/2J=BXD) identifies multiple anatomical, biochemical and behavioral phenotypes specifically impacted by GK/ER variation. Among our findings are multiple traits associated with anxiety and alcohol consumption, as well as of the control of dopamine (DA) signaling. Further bioinformatic analysis of BXD phenotypes, combined with biochemical evaluation of SERT knockout mice, nominates SERT-dependent 5-HT signaling as a major determinant of midbrain iron homeostasis that, in turn, dictates ironregulated DA phenotypes. Our studies provide a novel example of the power of coordinated in vitro, in vivo and in silico approaches using murine RI lines to elucidate and quantify the system-level impact of gene variation.

  2. Cranial Ontogeny in Stegoceras validum (Dinosauria: Pachycephalosauria): A Quantitative Model of Pachycephalosaur Dome Growth and Variation

    PubMed Central

    Schott, Ryan K.; Evans, David C.; Goodwin, Mark B.; Horner, John R.; Brown, Caleb Marshall; Longrich, Nicholas R.

    2011-01-01

    Historically, studies of pachycephalosaurs have recognized plesiomorphically flat-headed taxa and apomorphically domed taxa. More recently, it has been suggested that the expression of the frontoparietal dome is ontogenetic and derived from a flat-headed juvenile morphology. However, strong evidence to support this hypothesis has been lacking. Here we test this hypothesis in a large, stratigraphically constrained sample of specimens assigned to Stegoceras validum, the best known pachycephalosaur, using multiple independent lines of evidence including conserved morphology of ornamentation, landmark-based allometric analyses of frontoparietal shape, and cranial bone histology. New specimens show that the diagnostic ornamentation of the parietosquamosal bar is conserved throughout the size range of the sample, which links flat-headed specimens to domed S. validum. High-resolution CT scans of three frontoparietals reveal that vascularity decreases with size and document a pattern that is consistent with previously proposed histological changes during growth. Furthermore, aspects of dome shape and size are strongly correlated and indicative of ontogenetic growth. These results are complementary and strongly support the hypothesis that the sample represents a growth series of a single taxon. Cranial dome growth is positively allometric, proceeds from a flat-headed to a domed state, and confirms the synonymy of Ornatotholus browni as a juvenile Stegoceras. This dataset serves as the first detailed model of growth and variation in a pachycephalosaur. Flat-headed juveniles possess three characters (externally open cranial sutures, tuberculate dorsal surface texture, and open supratemporal fenestrae) that are reduced or eliminated during ontogeny. These characters also occur in putative flat-headed taxa, suggesting that they may also represent juveniles of domed taxa. However, open cranial sutures and supratemporal fenestrae are plesiomorphic within Ornithischia, and thus

  3. Whole-Genome Sequencing Reveals Diverse Models of Structural Variations in Esophageal Squamous Cell Carcinoma.

    PubMed

    Cheng, Caixia; Zhou, Yong; Li, Hongyi; Xiong, Teng; Li, Shuaicheng; Bi, Yanghui; Kong, Pengzhou; Wang, Fang; Cui, Heyang; Li, Yaoping; Fang, Xiaodong; Yan, Ting; Li, Yike; Wang, Juan; Yang, Bin; Zhang, Ling; Jia, Zhiwu; Song, Bin; Hu, Xiaoling; Yang, Jie; Qiu, Haile; Zhang, Gehong; Liu, Jing; Xu, Enwei; Shi, Ruyi; Zhang, Yanyan; Liu, Haiyan; He, Chanting; Zhao, Zhenxiang; Qian, Yu; Rong, Ruizhou; Han, Zhiwei; Zhang, Yanlin; Luo, Wen; Wang, Jiaqian; Peng, Shaoliang; Yang, Xukui; Li, Xiangchun; Li, Lin; Fang, Hu; Liu, Xingmin; Ma, Li; Chen, Yunqing; Guo, Shiping; Chen, Xing; Xi, Yanfeng; Li, Guodong; Liang, Jianfang; Yang, Xiaofeng; Guo, Jiansheng; Jia, JunMei; Li, Qingshan; Cheng, Xiaolong; Zhan, Qimin; Cui, Yongping

    2016-02-01

    Comprehensive identification of somatic structural variations (SVs) and understanding their mutational mechanisms in cancer might contribute to understanding biological differences and help to identify new therapeutic targets. Unfortunately, characterization of complex SVs across the whole genome and the mutational mechanisms underlying esophageal squamous cell carcinoma (ESCC) is largely unclear. To define a comprehensive catalog of somatic SVs, affected target genes, and their underlying mechanisms in ESCC, we re-analyzed whole-genome sequencing (WGS) data from 31 ESCCs using Meerkat algorithm to predict somatic SVs and Patchwork to determine copy-number changes. We found deletions and translocations with NHEJ and alt-EJ signature as the dominant SV types, and 16% of deletions were complex deletions. SVs frequently led to disruption of cancer-associated genes (e.g., CDKN2A and NOTCH1) with different mutational mechanisms. Moreover, chromothripsis, kataegis, and breakage-fusion-bridge (BFB) were identified as contributing to locally mis-arranged chromosomes that occurred in 55% of ESCCs. These genomic catastrophes led to amplification of oncogene through chromothripsis-derived double-minute chromosome formation (e.g., FGFR1 and LETM2) or BFB-affected chromosomes (e.g., CCND1, EGFR, ERBB2, MMPs, and MYC), with approximately 30% of ESCCs harboring BFB-derived CCND1 amplification. Furthermore, analyses of copy-number alterations reveal high frequency of whole-genome duplication (WGD) and recurrent focal amplification of CDCA7 that might act as a potential oncogene in ESCC. Our findings reveal molecular defects such as chromothripsis and BFB in malignant transformation of ESCCs and demonstrate diverse models of SVs-derived target genes in ESCCs. These genome-wide SV profiles and their underlying mechanisms provide preventive, diagnostic, and therapeutic implications for ESCCs. PMID:26833333

  4. Whole-Genome Sequencing Reveals Diverse Models of Structural Variations in Esophageal Squamous Cell Carcinoma

    PubMed Central

    Cheng, Caixia; Zhou, Yong; Li, Hongyi; Xiong, Teng; Li, Shuaicheng; Bi, Yanghui; Kong, Pengzhou; Wang, Fang; Cui, Heyang; Li, Yaoping; Fang, Xiaodong; Yan, Ting; Li, Yike; Wang, Juan; Yang, Bin; Zhang, Ling; Jia, Zhiwu; Song, Bin; Hu, Xiaoling; Yang, Jie; Qiu, Haile; Zhang, Gehong; Liu, Jing; Xu, Enwei; Shi, Ruyi; Zhang, Yanyan; Liu, Haiyan; He, Chanting; Zhao, Zhenxiang; Qian, Yu; Rong, Ruizhou; Han, Zhiwei; Zhang, Yanlin; Luo, Wen; Wang, Jiaqian; Peng, Shaoliang; Yang, Xukui; Li, Xiangchun; Li, Lin; Fang, Hu; Liu, Xingmin; Ma, Li; Chen, Yunqing; Guo, Shiping; Chen, Xing; Xi, Yanfeng; Li, Guodong; Liang, Jianfang; Yang, Xiaofeng; Guo, Jiansheng; Jia, JunMei; Li, Qingshan; Cheng, Xiaolong; Zhan, Qimin; Cui, Yongping

    2016-01-01

    Comprehensive identification of somatic structural variations (SVs) and understanding their mutational mechanisms in cancer might contribute to understanding biological differences and help to identify new therapeutic targets. Unfortunately, characterization of complex SVs across the whole genome and the mutational mechanisms underlying esophageal squamous cell carcinoma (ESCC) is largely unclear. To define a comprehensive catalog of somatic SVs, affected target genes, and their underlying mechanisms in ESCC, we re-analyzed whole-genome sequencing (WGS) data from 31 ESCCs using Meerkat algorithm to predict somatic SVs and Patchwork to determine copy-number changes. We found deletions and translocations with NHEJ and alt-EJ signature as the dominant SV types, and 16% of deletions were complex deletions. SVs frequently led to disruption of cancer-associated genes (e.g., CDKN2A and NOTCH1) with different mutational mechanisms. Moreover, chromothripsis, kataegis, and breakage-fusion-bridge (BFB) were identified as contributing to locally mis-arranged chromosomes that occurred in 55% of ESCCs. These genomic catastrophes led to amplification of oncogene through chromothripsis-derived double-minute chromosome formation (e.g., FGFR1 and LETM2) or BFB-affected chromosomes (e.g., CCND1, EGFR, ERBB2, MMPs, and MYC), with approximately 30% of ESCCs harboring BFB-derived CCND1 amplification. Furthermore, analyses of copy-number alterations reveal high frequency of whole-genome duplication (WGD) and recurrent focal amplification of CDCA7 that might act as a potential oncogene in ESCC. Our findings reveal molecular defects such as chromothripsis and BFB in malignant transformation of ESCCs and demonstrate diverse models of SVs-derived target genes in ESCCs. These genome-wide SV profiles and their underlying mechanisms provide preventive, diagnostic, and therapeutic implications for ESCCs. PMID:26833333

  5. Targeted capture and resequencing of 1040 genes reveal environmentally driven functional variation in grey wolves.

    PubMed

    Schweizer, Rena M; Robinson, Jacqueline; Harrigan, Ryan; Silva, Pedro; Galverni, Marco; Musiani, Marco; Green, Richard E; Novembre, John; Wayne, Robert K

    2016-01-01

    In an era of ever-increasing amounts of whole-genome sequence data for individuals and populations, the utility of traditional single nucleotide polymorphisms (SNPs) array-based genome scans is uncertain. We previously performed a SNP array-based genome scan to identify candidate genes under selection in six distinct grey wolf (Canis lupus) ecotypes. Using this information, we designed a targeted capture array for 1040 genes, including all exons and flanking regions, as well as 5000 1-kb nongenic neutral regions, and resequenced these regions in 107 wolves. Selection tests revealed striking patterns of variation within candidate genes relative to noncandidate regions and identified potentially functional variants related to local adaptation. We found 27% and 47% of candidate genes from the previous SNP array study had functional changes that were outliers in sweed and bayenv analyses, respectively. This result verifies the use of genomewide SNP surveys to tag genes that contain functional variants between populations. We highlight nonsynonymous variants in APOB, LIPG and USH2A that occur in functional domains of these proteins, and that demonstrate high correlation with precipitation seasonality and vegetation. We find Arctic and High Arctic wolf ecotypes have higher numbers of genes under selection, which highlight their conservation value and heightened threat due to climate change. This study demonstrates that combining genomewide genotyping arrays with large-scale resequencing and environmental data provides a powerful approach to discern candidate functional variants in natural populations. PMID:26562361

  6. Whole-Genome Sequencing Reveals Genetic Variation in the Asian House Rat.

    PubMed

    Teng, Huajing; Zhang, Yaohua; Shi, Chengmin; Mao, Fengbiao; Hou, Lingling; Guo, Hongling; Sun, Zhongsheng; Zhang, Jianxu

    2016-01-01

    Whole-genome sequencing of wild-derived rat species can provide novel genomic resources, which may help decipher the genetics underlying complex phenotypes. As a notorious pest, reservoir of human pathogens, and colonizer, the Asian house rat, Rattus tanezumi, is successfully adapted to its habitat. However, little is known regarding genetic variation in this species. In this study, we identified over 41,000,000 single-nucleotide polymorphisms, plus insertions and deletions, through whole-genome sequencing and bioinformatics analyses. Moreover, we identified over 12,000 structural variants, including 143 chromosomal inversions. Further functional analyses revealed several fixed nonsense mutations associated with infection and immunity-related adaptations, and a number of fixed missense mutations that may be related to anticoagulant resistance. A genome-wide scan for loci under selection identified various genes related to neural activity. Our whole-genome sequencing data provide a genomic resource for future genetic studies of the Asian house rat species and have the potential to facilitate understanding of the molecular adaptations of rats to their ecological niches. PMID:27172215

  7. Temporal analysis of mtDNA variation reveals decreased genetic diversity in least terns

    USGS Publications Warehouse

    Draheim, Hope M.; Baird, Patricia; Haig, Susan M.

    2012-01-01

    The Least Tern (Sternula antillarum) has undergone large population declines over the last century as a result of direct and indirect anthropogenic factors. The genetic implications of these declines are unknown. We used historical museum specimens (pre-1960) and contemporary (2001–2005) samples to examine range-wide phylogeographic patterns and investigate potential loss in the species' genetic variation. We obtained sequences (522 bp) of the mitochondrial gene for NADH dehydrogenase subunit 6 (ND6) from 268 individuals from across the species' range. Phylogeographic analysis revealed no association with geography or traditional subspecies designations. However, we detected potential reductions in genetic diversity in contemporary samples from California and the Atlantic coast Least Tern from that in historical samples, suggesting that current genetic diversity in Least Tern populations is lower than in their pre-1960 counterparts. Our results offer unique insights into changes in the Least Tern's genetic diversity over the past century and highlight the importance and utility of museum specimens in studies of conservation genetics.

  8. Whole-Genome Sequencing Reveals Genetic Variation in the Asian House Rat

    PubMed Central

    Teng, Huajing; Zhang, Yaohua; Shi, Chengmin; Mao, Fengbiao; Hou, Lingling; Guo, Hongling; Sun, Zhongsheng; Zhang, Jianxu

    2016-01-01

    Whole-genome sequencing of wild-derived rat species can provide novel genomic resources, which may help decipher the genetics underlying complex phenotypes. As a notorious pest, reservoir of human pathogens, and colonizer, the Asian house rat, Rattus tanezumi, is successfully adapted to its habitat. However, little is known regarding genetic variation in this species. In this study, we identified over 41,000,000 single-nucleotide polymorphisms, plus insertions and deletions, through whole-genome sequencing and bioinformatics analyses. Moreover, we identified over 12,000 structural variants, including 143 chromosomal inversions. Further functional analyses revealed several fixed nonsense mutations associated with infection and immunity-related adaptations, and a number of fixed missense mutations that may be related to anticoagulant resistance. A genome-wide scan for loci under selection identified various genes related to neural activity. Our whole-genome sequencing data provide a genomic resource for future genetic studies of the Asian house rat species and have the potential to facilitate understanding of the molecular adaptations of rats to their ecological niches. PMID:27172215

  9. A map of rice genome variation reveals the origin of cultivated rice.

    PubMed

    Huang, Xuehui; Kurata, Nori; Wei, Xinghua; Wang, Zi-Xuan; Wang, Ahong; Zhao, Qiang; Zhao, Yan; Liu, Kunyan; Lu, Hengyun; Li, Wenjun; Guo, Yunli; Lu, Yiqi; Zhou, Congcong; Fan, Danlin; Weng, Qijun; Zhu, Chuanrang; Huang, Tao; Zhang, Lei; Wang, Yongchun; Feng, Lei; Furuumi, Hiroyasu; Kubo, Takahiko; Miyabayashi, Toshie; Yuan, Xiaoping; Xu, Qun; Dong, Guojun; Zhan, Qilin; Li, Canyang; Fujiyama, Asao; Toyoda, Atsushi; Lu, Tingting; Feng, Qi; Qian, Qian; Li, Jiayang; Han, Bin

    2012-10-25

    Crop domestications are long-term selection experiments that have greatly advanced human civilization. The domestication of cultivated rice (Oryza sativa L.) ranks as one of the most important developments in history. However, its origins and domestication processes are controversial and have long been debated. Here we generate genome sequences from 446 geographically diverse accessions of the wild rice species Oryza rufipogon, the immediate ancestral progenitor of cultivated rice, and from 1,083 cultivated indica and japonica varieties to construct a comprehensive map of rice genome variation. In the search for signatures of selection, we identify 55 selective sweeps that have occurred during domestication. In-depth analyses of the domestication sweeps and genome-wide patterns reveal that Oryza sativa japonica rice was first domesticated from a specific population of O. rufipogon around the middle area of the Pearl River in southern China, and that Oryza sativa indica rice was subsequently developed from crosses between japonica rice and local wild rice as the initial cultivars spread into South East and South Asia. The domestication-associated traits are analysed through high-resolution genetic mapping. This study provides an important resource for rice breeding and an effective genomics approach for crop domestication research. PMID:23034647

  10. Genetic architecture of trout from Albania as revealed by mtDNA control region variation

    PubMed Central

    2009-01-01

    To determine the genetic architecture of trout in Albania, 87 individuals were collected from 19 riverine and lacustrine sites in Albania, FYROM and Greece. All individuals were analyzed for sequence variation in the mtDNA control region. Among fourteen haplotypes detected, four previously unpublished haplotypes, bearing a close relationship to haplotypes of the Adriatic and marmoratus lineages of Salmo trutta, were revealed. Ten previously described haplotypes, characteristic of S. ohridanus, S. letnica and the Adriatic and Mediterranean lineages of S. trutta, were also detected. Haplotypes detected in this study were placed in a well supported branch of S. ohridanus, and a cluster of Mediterranean – Adriatic – marmoratus haplotypes, which were further delimited into three subdivisions of Mediterranean, marmoratus, and a previously non-described formation of four Adriatic haplotypes (Balkan cluster). Haplotypes of the Balkan cluster and the other Adriatic haplotypes, do not represent a contiguous haplotype lineage and appear not to be closely related, indicating independent arrivals into the Adriatic drainage and suggesting successive colonization events. Despite the presence of marmoratus haplotypes in Albania, no marbled phenotype was found, confirming previously reported findings that there is no association between this phenotype and marmoratus haplotypes. PMID:19284692

  11. Quantitative interaction screen of telomeric repeat-containing RNA reveals novel TERRA regulators

    PubMed Central

    Scheibe, Marion; Arnoult, Nausica; Kappei, Dennis; Buchholz, Frank; Decottignies, Anabelle; Butter, Falk; Mann, Matthias

    2013-01-01

    Telomeres are actively transcribed into telomeric repeat-containing RNA (TERRA), which has been implicated in the regulation of telomere length and heterochromatin formation. Here, we applied quantitative mass spectrometry (MS)–based proteomics to obtain a high-confidence interactome of TERRA. Using SILAC-labeled nuclear cell lysates in an RNA pull-down experiment and two different salt conditions, we distinguished 115 proteins binding specifically to TERRA out of a large set of background binders. While TERRA binders identified in two previous studies showed little overlap, using quantitative mass spectrometry we obtained many candidates reported in these two studies. To test whether novel candidates found here are involved in TERRA regulation, we performed an esiRNA-based interference analysis for 15 of them. Knockdown of 10 genes encoding candidate proteins significantly affected total cellular levels of TERRA, and RNAi of five candidates perturbed TERRA recruitment to telomeres. Notably, depletion of SRRT/ARS2, involved in miRNA processing, up-regulated both total and telomere-bound TERRA. Conversely, knockdown of MORF4L2, a component of the NuA4 histone acetyltransferase complex, reduced TERRA levels both globally and for telomere-bound TERRA. We thus identified new proteins involved in the homeostasis and telomeric abundance of TERRA, extending our knowledge of TERRA regulation. PMID:23921659

  12. Quantitative proteomic analysis of mice corneal tissues reveals angiogenesis-related proteins involved in corneal neovascularization.

    PubMed

    Shen, Minqian; Tao, Yimin; Feng, Yifan; Liu, Xing; Yuan, Fei; Zhou, Hu

    2016-07-01

    Corneal neovascularization (CNV) was induced in Balb/c mice by alkali burns in the central area of the cornea with a diameter of 2.5mm. After fourteen days, the cornea from one eye was collected for histological staining for CNV examination, while the cornea from the other eye of the same mouse was harvested for proteomic analysis. The label-free quantitative proteomic approach was applied to analyze five normal corneal tissues (normal group mice n=5) and five corresponding neovascularized corneal tissues (model group mice n=5). A total of 2124 proteins were identified, and 1682 proteins were quantified from these corneal tissues. Among these quantified proteins, 290 proteins were significantly changed between normal and alkali burned corneal tissues. Of these significantly changed proteins, 35 were reported or predicted as angiogenesis-related proteins. Then, these 35 proteins were analyzed using Ingenuity Pathway Analysis Software, resulting in 26 proteins enriched and connected to each other in the protein-protein interaction network, such as Lcn-2, αB-crystallin and Serpinf1 (PEDF). These three significantly changed proteins were selected for further Western blotting validation. Consistent with the quantitative proteomic results, Western blotting showed that Lcn-2 and αB-crystallin were significantly up-regulated in CNV model, while PEDF was down-regulated. This study provided increased understanding of angiogenesis-related proteins involved in corneal vascular development, which will be useful in the ophthalmic clinic of specifically target angiogenesis. PMID:27049463

  13. Quantitative Secretomic Analysis of Trichoderma reesei Strains Reveals Enzymatic Composition for Lignocellulosic Biomass Degradation*

    PubMed Central

    Adav, Sunil S.; Chao, Lim Tze; Sze, Siu Kwan

    2012-01-01

    Trichoderma reesei is a mesophilic, filamentous fungus, and it is a major industrial source of cellulases, but its lignocellulolytic protein expressions on lignocellulosic biomass are poorly explored at present. The extracellular proteins secreted by T. reesei QM6a wild-type and hypercellulolytic mutant Rut C30 grown on natural lignocellulosic biomasses were explored using a quantitative proteomic approach with 8-plex high throughput isobaric tags for relative and absolute quantification (iTRAQ) and analyzed by liquid chromatography tandem mass spectrometry. We quantified 230 extracellular proteins, including cellulases, hemicellulases, lignin-degrading enzymes, proteases, protein-translocating transporter, and hypothetical proteins. Quantitative iTRAQ results suggested that the expressions and regulations of these lignocellulolytic proteins in the secretome of T. reesei wild-type and mutant Rut C30 were dependent on both nature and complexity of different lignocellulosic carbon sources. Therefore, we discuss here the essential lignocellulolytic proteins for designing an enzyme mixture for optimal lignocellulosic biomass hydrolysis. PMID:22355001

  14. Comparative mapping reveals quantitative trait loci that affect spawning time in coho salmon (Oncorhynchus kisutch)

    PubMed Central

    Araneda, Cristian; Díaz, Nelson F.; Gomez, Gilda; López, María Eugenia; Iturra, Patricia

    2012-01-01

    Spawning time in salmonids is a sex-limited quantitative trait that can be modified by selection. In rainbow trout (Oncorhynchus mykiss), various quantitative trait loci (QTL) that affect the expression of this trait have been discovered. In this study, we describe four microsatellite loci associated with two possible spawning time QTL regions in coho salmon (Oncorhynchus kisutch). The four loci were identified in females from two populations (early and late spawners) produced by divergent selection from the same base population. Three of the loci (OmyFGT34TUF, One2ASC and One19ASC) that were strongly associated with spawning time in coho salmon (p < 0.0002) were previously associated with QTL for the same trait in rainbow trout; a fourth loci (Oki10) with a suggestive association (p = 0.00035) mapped 10 cM from locus OmyFGT34TUF in rainbow trout. The changes in allelic frequency observed after three generations of selection were greater than expected because of genetic drift. This work shows that comparing information from closely-related species is a valid strategy for identifying QTLs for marker-assisted selection in species whose genomes are poorly characterized or lack a saturated genetic map. PMID:22888302

  15. Quantitative fluorescence imaging reveals point of release for lipoproteins during LDLR-dependent uptake[S

    PubMed Central

    Pompey, Shanica; Zhao, Zhenze; Luby-Phelps, Kate; Michaely, Peter

    2013-01-01

    The LDL receptor (LDLR) supports efficient uptake of both LDL and VLDL remnants by binding lipoprotein at the cell surface, internalizing lipoprotein through coated pits, and releasing lipoprotein in endocytic compartments before returning to the surface for further rounds of uptake. While many aspects of lipoprotein binding and receptor entry are well understood, it is less clear where, when, and how the LDLR releases lipoprotein. To address these questions, the current study employed quantitative fluorescence imaging to visualize the uptake and endosomal processing of LDL and the VLDL remnant β-VLDL. We find that lipoprotein release is rapid, with most release occurring prior to entry of lipoprotein into early endosomes. Published biochemical studies have identified two mechanisms of lipoprotein release: one that involves the β-propeller module of the LDLR and a second that is independent of this module. Quantitative imaging comparing uptake supported by the normal LDLR or by an LDLR variant incapable of β-propeller-dependent release shows that the β-propeller-independent process is sufficient for release for both lipoproteins but that the β-propeller process accelerates both LDL and β-VLDL release. Together these findings define where, when, and how lipoprotein release occurs and provide a generalizable methodology for visualizing endocytic handling in situ. PMID:23296879

  16. Single Cell Quantification of Reporter Gene Expression in Live Adult Caenorhabditis elegans Reveals Reproducible Cell-Specific Expression Patterns and Underlying Biological Variation

    PubMed Central

    Mendenhall, Alexander R.; Tedesco, Patricia M.; Sands, Bryan; Johnson, Thomas E.; Brent, Roger

    2015-01-01

    In multicellular organisms such as Caenorhabditis elegans, differences in complex phenotypes such as lifespan correlate with the level of expression of particular engineered reporter genes. In single celled organisms, quantitative understanding of responses to extracellular signals and of cell-to-cell variation in responses has depended on precise measurement of reporter gene expression. Here, we developed microscope-based methods to quantify reporter gene expression in cells of Caenorhabditis elegans with low measurement error. We then quantified expression in strains that carried different configurations of Phsp-16.2-fluorescent-protein reporters, in whole animals, and in all 20 cells of the intestine tissue, which is responsible for most of the fluorescent signal. Some animals bore more recently developed single copy Phsp-16.2 reporters integrated at defined chromosomal sites, others, “classical” multicopy reporter gene arrays integrated at random sites. At the level of whole animals, variation in gene expression was similar: strains with single copy reporters showed the same amount of animal-to-animal variation as strains with multicopy reporters. At the level of cells, in animals with single copy reporters, the pattern of expression in cells within the tissue was highly stereotyped. In animals with multicopy reporters, the cell-specific expression pattern was also stereotyped, but distinct, and somewhat more variable. Our methods are rapid and gentle enough to allow quantification of expression in the same cells of an animal at different times during adult life. They should allow investigators to use changes in reporter expression in single cells in tissues as quantitative phenotypes, and link those to molecular differences. Moreover, by diminishing measurement error, they should make possible dissection of the causes of the remaining, real, variation in expression. Understanding such variation should help reveal its contribution to differences in complex

  17. Quantitative Determination of Flexible Pharmacological Mechanisms Based On Topological Variation in Mice Anti-Ischemic Modular Networks

    PubMed Central

    Chen, Yin-ying; Yu, Ya-nan; Zhang, Ying-ying; Li, Bing; Liu, Jun; Li, Dong-feng; Wu, Ping; Wang, Jie; Wang, Zhong; Wang, Yong-yan

    2016-01-01

    Targeting modules or signalings may open a new path to understanding the complex pharmacological mechanisms of reversing disease processes. However, determining how to quantify the structural alteration of these signalings or modules in pharmacological networks poses a great challenge towards realizing rational drug use in clinical medicine. Here, we explore a novel approach for dynamic comparative and quantitative analysis of the topological structural variation of modules in molecular networks, proposing the concept of allosteric modules (AMs). Based on the ischemic brain of mice, we optimize module distribution in different compound-dependent modular networks by using the minimum entropy criterion and then calculate the variation in similarity values of AMs under various conditions using a novel method of SimiNEF. The diverse pharmacological dynamic stereo-scrolls of AMs with functional gradient alteration, which consist of five types of AMs, may robustly deconstruct modular networks under the same ischemic conditions. The concept of AMs can not only integrate the responsive mechanisms of different compounds based on topological cascading variation but also obtain valuable structural information about disease and pharmacological networks beyond pathway analysis. We thereby provide a new systemic quantitative strategy for rationally determining pharmacological mechanisms of altered modular networks based on topological variation. PMID:27383195

  18. Comparative Transcriptome Analysis Reveals the Genetic Basis of Skin Color Variation in Common Carp

    PubMed Central

    Jiang, Yanliang; Zhang, Songhao; Xu, Jian; Feng, Jianxin; Mahboob, Shahid; Al-Ghanim, Khalid A.; Sun, Xiaowen; Xu, Peng

    2014-01-01

    Background The common carp is an important aquaculture species that is widely distributed across the world. During the long history of carp domestication, numerous carp strains with diverse skin colors have been established. Skin color is used as a visual criterion to determine the market value of carp. However, the genetic basis of common carp skin color has not been extensively studied. Methodology/Principal Findings In this study, we performed Illumina sequencing on two common carp strains: the reddish Xingguo red carp and the brownish-black Yellow River carp. A total of 435,348,868 reads were generated, resulting in 198,781 assembled contigs that were used as reference sequences. Comparisons of skin transcriptome files revealed 2,012 unigenes with significantly different expression in the two common carp strains, including 874 genes that were up-regulated in Xingguo red carp and 1,138 genes that were up-regulated in Yellow River carp. The expression patterns of 20 randomly selected differentially expressed genes were validated using quantitative RT-PCR. Gene pathway analysis of the differentially expressed genes indicated that melanin biosynthesis, along with the Wnt and MAPK signaling pathways, is highly likely to affect the skin pigmentation process. Several key genes involved in the skin pigmentation process, including TYRP1, SILV, ASIP and xCT, showed significant differences in their expression patterns between the two strains. Conclusions In this study, we conducted a comparative transcriptome analysis of Xingguo red carp and Yellow River carp skins, and we detected key genes involved in the common carp skin pigmentation process. We propose that common carp skin pigmentation depends upon at least three pathways. Understanding fish skin color genetics will facilitate future molecular selection of the fish skin colors with high market values. PMID:25255374

  19. Quantitative Lipoproteomics in Clostridium difficile Reveals a Role for Lipoproteins in Sporulation.

    PubMed

    Charlton, Thomas M; Kovacs-Simon, Andrea; Michell, Stephen L; Fairweather, Neil F; Tate, Edward W

    2015-11-19

    Bacterial lipoproteins are surface exposed, anchored to the membrane by S-diacylglyceryl modification of the N-terminal cysteine thiol. They play important roles in many essential cellular processes and in bacterial pathogenesis. For example, Clostridium difficile is a Gram-positive anaerobe that causes severe gastrointestinal disease; however, its lipoproteome remains poorly characterized. Here we describe the application of metabolic tagging with alkyne-tagged lipid analogs, in combination with quantitative proteomics, to profile protein lipidation across diverse C. difficile strains and on inactivation of specific components of the lipoprotein biogenesis pathway. These studies provide the first comprehensive map of the C. difficile lipoproteome, demonstrate the existence of two active lipoprotein signal peptidases, and provide insights into lipoprotein function, implicating the lipoproteome in transmission of this pathogen. PMID:26584780

  20. Strigolactone-Regulated Proteins Revealed by iTRAQ-Based Quantitative Proteomics in Arabidopsis

    SciTech Connect

    Li, Zhou; Czarnecki, Olaf; Chourey, Karuna; Yang, Jun; Tuskan, Gerald A; Hurst, Gregory {Greg} B; Pan, Chongle; Chen, Jay

    2014-01-01

    Strigolactones (SLs) are a new class of plant hormones. In addition to acting as a key inhibitor of shoot branching, SLs stimulate seed germination of root parasitic plants and promote hyphal branching and root colonization of symbiotic arbuscular mycorrhizal fungi. They also regulate many other aspects of plant growth and development. At the transcription level, SL-regulated genes have been reported. However, nothing is known about the proteome regulated by this new class of plant hormones. Here, a quantitative proteomics approach using an isobaric chemical labeling reagent, iTRAQ, to identify the proteome regulated by SLs in Arabidopsis seedlings is presented. It was found SLs regulate the expression of about three dozens of proteins that have not been previously assigned to SL pathways. These findings provide a new tool to investigate the molecular mechanism of action of SLs.

  1. Facilitated Diffusion of Acetonitrile Revealed by Quantitative Breath Analysis Using Extractive Electrospray Ionization Mass Spectrometry

    PubMed Central

    Li, Ming; Ding, Jianhua; Gu, Haiwei; Zhang, Yan; Pan, Susu; Xu, Ning; Chen, Huanwen; Li, Hongmei

    2013-01-01

    By using silver cations (Ag+) as the ionic reagent in reactive extractive electrospray ionization mass spectrometry (EESI-MS), the concentrations of acetonitrile in exhaled breath samples from the volunteers including active smokers, passive smokers, and non-smokers were quantitatively measured in vivo, without any sample pretreatment. A limit of detection (LOD) and relative standard deviation (RSD) were 0.16 ng/L and 3.5% (n = 8), respectively, for the acetonitrile signals in MS/MS experiments. Interestingly, the concentrations of acetonitrile in human breath continuously increased for 1–4 hours after the smoker finished smoking and then slowly decreased to the background level in 7 days. The experimental data of a large number of (> 165) samples indicated that the inhaled acetonitrile is excreted most likely by facilitated diffusion, instead of simple diffusion reported previously for other volatile compounds. PMID:23386969

  2. Quantitative mass spectrometry measurements reveal stoichiometry of principal postsynaptic density proteins.

    PubMed

    Lowenthal, Mark S; Markey, Sanford P; Dosemeci, Ayse

    2015-06-01

    Quantitative studies are presented of postsynaptic density (PSD) fractions from rat cerebral cortex with the ultimate goal of defining the average copy numbers of proteins in the PSD complex. Highly specific and selective isotope dilution mass spectrometry assays were developed using isotopically labeled polypeptide concatemer internal standards. Interpretation of PSD protein stoichiometry was achieved as a molar ratio with respect to PSD-95 (SAP-90, DLG4), and subsequently, copy numbers were estimated using a consensus literature value for PSD-95. Average copy numbers for several proteins at the PSD were estimated for the first time, including those for AIDA-1, BRAGs, and densin. Major findings include evidence for the high copy number of AIDA-1 in the PSD (144 ± 30)-equivalent to that of the total GKAP family of proteins (150 ± 27)-suggesting that AIDA-1 is an element of the PSD scaffold. The average copy numbers for NMDA receptor sub-units were estimated to be 66 ± 18, 27 ± 9, and 45 ± 15, respectively, for GluN1, GluN2A, and GluN2B, yielding a total of 34 ± 10 NMDA channels. Estimated average copy numbers for AMPA channels and their auxiliary sub-units TARPs were 68 ± 36 and 144 ± 38, respectively, with a stoichiometry of ∼1:2, supporting the assertion that most AMPA receptors anchor to the PSD via TARP sub-units. This robust, quantitative analysis of PSD proteins improves upon and extends the list of major PSD components with assigned average copy numbers in the ongoing effort to unravel the complex molecular architecture of the PSD. PMID:25874902

  3. Quantitative Proteomics Reveals an Altered Cystic Fibrosis In Vitro Bronchial Epithelial Secretome

    PubMed Central

    Peters-Hall, Jennifer R.; Brown, Kristy J.; Pillai, Dinesh K.; Tomney, Amarel; Garvin, Lindsay M.; Wu, Xiaofang

    2015-01-01

    Alterations in epithelial secretions and mucociliary clearance contribute to chronic bacterial infection in cystic fibrosis (CF) lung disease, but whether CF lungs are unchanged in the absence of infection remains controversial. A proteomic comparison of airway secretions from subjects with CF and control subjects shows alterations in key biological processes, including immune response and proteolytic activity, but it is unclear if these are due to mutant CF transmembrane conductance regulator (CFTR) and/or chronic infection. We hypothesized that the CF lung apical secretome is altered under constitutive conditions in the absence of inflammatory cells and pathogens. To test this, we performed quantitative proteomics of in vitro apical secretions from air–liquid interface cultures of three life-extended CF (ΔF508/ΔF508) and three non-CF human bronchial epithelial cells after labeling of CF cells by stable isotope labeling with amino acids in cell culture. Mass spectrometry analysis identified and quantitated 666 proteins across samples, of which 70 exhibited differential enrichment or depletion in CF secretions (±1.5-fold change; P < 0.05). The key molecular functions were innate immunity (24%), cytoskeleton/extracellular matrix organization (24%), and protease/antiprotease activity (17%). Oxidative proteins and classical complement pathway proteins that are altered in CF secretions in vivo were not altered in vitro. Specific differentially increased proteins—MUC5AC and MUC5B mucins, fibronectin, and matrix metalloproteinase-9—were validated by antibody-based assays. Overall, the in vitro CF secretome data are indicative of a constitutive airway epithelium with altered innate immunity, suggesting that downstream consequences of mutant CFTR set the stage for chronic inflammation and infection in CF airways. PMID:25692303

  4. Quantitative Analysis of Global Proteome and Lysine Acetylome Reveal the Differential Impacts of VPA and SAHA on HL60 Cells.

    PubMed

    Zhu, Xiaoyu; Liu, Xin; Cheng, Zhongyi; Zhu, Jun; Xu, Lei; Wang, Fengsong; Qi, Wulin; Yan, Jiawei; Liu, Ning; Sun, Zimin; Liu, Huilan; Peng, Xiaojun; Hao, Yingchan; Zheng, Nan; Wu, Quan

    2016-01-01

    Valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) are both HDAC inhibitors (HDACi). Previous studies indicated that both inhibitors show therapeutic effects on acute myeloid leukaemia (AML), while the differential impacts of the two different HDACi on AML treatment still remains elusive. In this study, using 3-plex SILAC based quantitative proteomics technique, anti-acetyllysine antibody based affinity enrichment, high resolution LC-MS/MS and intensive bioinformatic analysis, the quantitative proteome and acetylome in SAHA and VPA treated AML HL60 cells were extensively studied. In total, 5,775 proteins and 1,124 lysine acetylation sites were successfully obtained in response to VAP and SAHA treatment. It is found that VPA and SAHA treatment differently induced proteome and acetylome profiling in AML HL60 cells. This study revealed the differential impacts of VPA and SAHA on proteome/acetylome in AML cells, deepening our understanding of HDAC inhibitor mediated AML therapeutics. PMID:26822725

  5. Quantitative Analysis of Global Proteome and Lysine Acetylome Reveal the Differential Impacts of VPA and SAHA on HL60 Cells

    PubMed Central

    Zhu, Xiaoyu; Liu, Xin; Cheng, Zhongyi; Zhu, Jun; Xu, Lei; Wang, Fengsong; Qi, Wulin; Yan, Jiawei; Liu, Ning; Sun, Zimin; Liu, Huilan; Peng, Xiaojun; Hao, Yingchan; Zheng, Nan; Wu, Quan

    2016-01-01

    Valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) are both HDAC inhibitors (HDACi). Previous studies indicated that both inhibitors show therapeutic effects on acute myeloid leukaemia (AML), while the differential impacts of the two different HDACi on AML treatment still remains elusive. In this study, using 3-plex SILAC based quantitative proteomics technique, anti-acetyllysine antibody based affinity enrichment, high resolution LC-MS/MS and intensive bioinformatic analysis, the quantitative proteome and acetylome in SAHA and VPA treated AML HL60 cells were extensively studied. In total, 5,775 proteins and 1,124 lysine acetylation sites were successfully obtained in response to VAP and SAHA treatment. It is found that VPA and SAHA treatment differently induced proteome and acetylome profiling in AML HL60 cells. This study revealed the differential impacts of VPA and SAHA on proteome/acetylome in AML cells, deepening our understanding of HDAC inhibitor mediated AML therapeutics. PMID:26822725

  6. Label-free Quantitative Proteomics Reveals Differentially Regulated Proteins Influencing Urolithiasis*

    PubMed Central

    Wright, C. A.; Howles, S.; Trudgian, D. C.; Kessler, B. M.; Reynard, J. M.; Noble, J. G.; Hamdy, F. C.; Turney, B. W.

    2011-01-01

    Urinary proteins have been implicated as inhibitors of kidney stone formation (urolithiasis). As a proximal fluid, prefiltered by the kidneys, urine is an attractive biofluid for proteomic analysis in urologic conditions. However, it is necessary to correct for variations in urinary concentration. In our study, individual urine samples were normalized for this variation by using a total protein to creatinine ratio. Pooled urine samples were compared in two independent experiments. Differences between the urinary proteome of stone formers and nonstone-forming controls were characterized and quantified using label-free nano-ultraperformance liquid chromatography high/low collision energy switching analysis. There were 1063 proteins identified, of which 367 were unique to the stone former groups, 408 proteins were unique to the control pools, and 288 proteins were identified for comparative quantification. Proteins found to be unique in stone-formers were involved in carbohydrate metabolism pathways and associated with disease states. Thirty-four proteins demonstrated a consistent >twofold change between stone formers and controls. For ceruloplasmin, one of the proteins was shown to be more than twofold up-regulated in the stone-former pools, this observation was validated in individuals by enzyme-linked immunosorbent assay. Moreover, in vitro crystallization assays demonstrated ceruloplasmin had a dose-dependent increase on calcium oxalate crystal formation. Taken together, these results may suggest a functional role for ceruloplasmin in urolithiasis. PMID:21474797

  7. Quantitative Proteomics Reveals the Temperature-Dependent Proteins Encoded by a Series of Cluster Genes in Thermoanaerobacter Tengcongensis*

    PubMed Central

    Chen, Zhen; Wen, Bo; Wang, Quanhui; Tong, Wei; Guo, Jiao; Bai, Xue; Zhao, Jingjing; Sun, Yao; Tang, Qi; Lin, Zhilong; Lin, Liang; Liu, Siqi

    2013-01-01

    Comprehensive and quantitative information of the thermophile proteome is an important source for understanding of the survival mechanism under high growth temperature. Thermoanaerobacter tengcongensis (T. tengcongensis), a typical anaerobic thermophilic eubacterium, was selected to quantitatively evaluate its protein abundance changes in response to four different temperatures. With optimized procedures of isobaric tags for relative and absolute quantitation quantitative proteomics (iTRAQ), such as peptide fractionation with high-pH reverse phase (RP) high performance liquid chromatography (HPLC), tandem MS acquisition mode in LTQ Orbitrap Velos MS, and evaluation of the quantification algorithms, high quality of the quantitative information of the peptides identified were acquired. In total, 1589 unique proteins were identified and defined 251 as the temperature-dependent proteins. Analysis of genomic locations toward the correspondent genes of these temperature-dependent proteins revealed that more than 30% were contiguous units with relevant biological functions, which are likely to form the operon structures in T. tengcongensis. The RNA sequencing (RNA-seq) data further demonstrated that these cluster genes were cotranscribed, and their mRNA abundance changes responding to temperature exhibited the similar trends as the proteomic results, suggesting that the temperature-dependent proteins are highly associated with the correspondent transcription status. Hence, the operon regulation is likely an energy-efficient mode for T. tengcongensis survival. In addition, evaluation to the functions of differential proteomes indicated that the abundance of the proteins participating in sulfur-respiration on the plasma membrane was decreased as the temperature increased, whereas the glycolysis-related protein abundance was increased. The energy supply in T. tengcongensis at high temperature is, therefore, speculated not mainly through the respiration chain reactions. PMID

  8. Assigning Quantitative Function to Post-Translational Modifications Reveals Multiple Sites of Phosphorylation That Tune Yeast Pheromone Signaling Output

    PubMed Central

    Pincus, David; Ryan, Christopher J.; Smith, Richard D.

    2013-01-01

    Cell signaling systems transmit information by post-translationally modifying signaling proteins, often via phosphorylation. While thousands of sites of phosphorylation have been identified in proteomic studies, the vast majority of sites have no known function. Assigning functional roles to the catalog of uncharacterized phosphorylation sites is a key research challenge. Here we present a general approach to address this challenge and apply it to a prototypical signaling pathway, the pheromone response pathway in Saccharomyces cerevisiae. The pheromone pathway includes a mitogen activated protein kinase (MAPK) cascade activated by a G-protein coupled receptor (GPCR). We used published mass spectrometry-based proteomics data to identify putative sites of phosphorylation on pheromone pathway components, and we used evolutionary conservation to assign priority to a list of candidate MAPK regulatory sites. We made targeted alterations in those sites, and measured the effects of the mutations on pheromone pathway output in single cells. Our work identified six new sites that quantitatively tuned system output. We developed simple computational models to find system architectures that recapitulated the quantitative phenotypes of the mutants. Our results identify a number of putative phosphorylation events that contribute to adjust the input-output relationship of this model eukaryotic signaling system. We believe this combined approach constitutes a general means not only to reveal modification sites required to turn a pathway on and off, but also those required for more subtle quantitative effects that tune pathway output. Our results suggest that relatively small quantitative influences from individual phosphorylation events endow signaling systems with plasticity that evolution may exploit to quantitatively tailor signaling outcomes. PMID:23554854

  9. Assigning Quantitative Function to Post-Translational Modifications Reveals Multiple Sites of Phosphorylation That Tune Yeast Pheromone Signaling Output

    SciTech Connect

    Pincus, David; Ryan, Christopher J.; Smith, Richard D.; Brent, Roger; Resnekov, Orna; Hakimi, Mohamed Ali

    2013-03-12

    Cell signaling systems transmit information by post-­translationally modifying signaling proteins, often via phosphorylation. While thousands of sites of phosphorylation have been identified in proteomic studies, the vast majority of sites have no known function. Assigning functional roles to the catalog of uncharacterized phosphorylation sites is a key research challenge. Here we present a general approach to address this challenge and apply it to a prototypical signaling pathway, the pheromone response pathway in Saccharomyces cerevisiae. The pheromone pathway includes a mitogen activated protein kinase (MAPK) cascade activated by a G-­protein coupled receptor (GPCR). We used mass spectrometry-based proteomics to identify sites whose phosphorylation changed when the system was active, and evolutionary conservation to assign priority to a list of candidate MAPK regulatory sites. We made targeted alterations in those sites, and measured the effects of the mutations on pheromone pathway output in single cells. Our work identified six new sites that quantitatively tuned system output. We developed simple computational models to find system architectures that recapitulated the quantitative phenotypes of the mutants. Our results identify a number of regulated phosphorylation events that contribute to adjust the input-­output relationship of this model eukaryotic signaling system. We believe this combined approach constitutes a general means not only to reveal modification sites required to turn a pathway on and off, but also those required for more subtle quantitative effects that tune pathway output. Our results further suggest that relatively small quantitative influences from individual regulatory phosphorylation events endow signaling systems with plasticity that evolution may exploit to quantitatively tailor signaling outcomes.

  10. Evaluation of copy number variations reveals novel candidate genes in autism spectrum disorder-associated pathways

    PubMed Central

    Griswold, Anthony J.; Ma, Deqiong; Cukier, Holly N.; Nations, Laura D.; Schmidt, Mike A.; Chung, Ren-Hua; Jaworski, James M.; Salyakina, Daria; Konidari, Ioanna; Whitehead, Patrice L.; Wright, Harry H.; Abramson, Ruth K.; Williams, Scott M.; Menon, Ramkumar; Martin, Eden R.; Haines, Jonathan L.; Gilbert, John R.; Cuccaro, Michael L.; Pericak-Vance, Margaret A.

    2012-01-01

    Autism spectrum disorders (ASDs) are highly heritable, yet relatively few associated genetic loci have been replicated. Copy number variations (CNVs) have been implicated in autism; however, the majority of loci contribute to <1% of the disease population. Therefore, independent studies are important to refine associated CNV regions and discover novel susceptibility genes. In this study, a genome-wide SNP array was utilized for CNV detection by two distinct algorithms in a European ancestry case–control data set. We identify a significantly higher burden in the number and size of deletions, and disrupting more genes in ASD cases. Moreover, 18 deletions larger than 1 Mb were detected exclusively in cases, implicating novel regions at 2q22.1, 3p26.3, 4q12 and 14q23. Case-specific CNVs provided further evidence for pathways previously implicated in ASDs, revealing new candidate genes within the GABAergic signaling and neural development pathways. These include DBI, an allosteric binder of GABA receptors, GABARAPL1, the GABA receptor-associated protein, and SLC6A11, a postsynaptic GABA transporter. We also identified CNVs in COBL, deletions of which cause defects in neuronal cytoskeleton morphogenesis in model vertebrates, and DNER, a neuron-specific Notch ligand required for cerebellar development. Moreover, we found evidence of genetic overlap between ASDs and other neurodevelopmental and neuropsychiatric diseases. These genes include glutamate receptors (GRID1, GRIK2 and GRIK4), synaptic regulators (NRXN3, SLC6A8 and SYN3), transcription factor (ZNF804A) and RNA-binding protein FMR1. Taken together, these CNVs may be a few of the missing pieces of ASD heritability and lead to discovering novel etiological mechanisms. PMID:22543975

  11. Can isotopic variations in structural water of gypsum reveal paleoclimatic changes?

    NASA Astrophysics Data System (ADS)

    Gatti, E.; Bustos, D.; Coleman, M. L.

    2015-12-01

    Water of crystallization in gypsum can be used as paleo-environmental proxy to study large scale climatic variability in arid areas. This is because changes in the isotopic composition of water of crystallization are due to isotopic variations in the mother brine from which the mineral precipitated, and the brine isotopic composition is linked to evaporation processes and humidity. This is particularly important when the salts are the only traces left of the original water, i.e. in modern arid areas. This study aims to prove that the 2-D/18-O compositions of the water of crystallization extracted from successive precipitates or even different growth zones of natural gypsum (CaSO4·H2O) can reconstruct the evaporation history and paleo-humidity of the source water basin. The method was tested in a laboratory experiment that evaporated CaSO4 brines under controlled temperature and humidity conditions. The brine was left to evaporate for five days at two different humidities (45 and 75 RH%); subsequently, brines and precipitated gypsum were sampled at 24 hour intervals. In this way we simulated zoned growth of gypsum. The samples were then analyzed for oxygen and hydrogen isotopic composition using a Thermo Scientific TC/EA with modified column, coupled to a MAT 253 Thermo Finnigan mass spectrometer at JPL. If preliminary results validate the novel hypothesis that changes in mineral composition can reveal details of paleo-environmental conditions the theory will be tested on natural gypsum collected from selected areas in White Sands National Monument, New Mexico. The study is currently ongoing but the full dataset will be presented at the conference.

  12. Metabarcoding reveals environmental factors influencing spatio-temporal variation in pelagic micro-eukaryotes.

    PubMed

    Brannock, Pamela M; Ortmann, Alice C; Moss, Anthony G; Halanych, Kenneth M

    2016-08-01

    Marine environments harbour a vast diversity of micro-eukaryotic organisms (protists and other small eukaryotes) that play important roles in structuring marine ecosystems. However, micro-eukaryote diversity is not well understood. Likewise, knowledge is limited regarding micro-eukaryote spatial and seasonal distribution, especially over long temporal scales. Given the importance of this group for mobilizing energy from lower trophic levels near the base of the food chain to larger organisms, assessing community stability, diversity and resilience is important to understand ecosystem health. Herein, we use a metabarcoding approach to examine pelagic micro-eukaryote communities over a 2.5-year time series. Bimonthly surface sampling (July 2009 to December 2011) was conducted at four locations within Mobile Bay (Bay) and along the Alabama continental shelf (Shelf). Alpha-diversity only showed significant differences in Shelf sites, with the greatest differences observed between summer and winter. Beta-diversity showed significant differences in community composition in relation to season and the Bay was dominated by diatoms, while the Shelf was characterized by dinoflagellates and copepods. The northern Gulf of Mexico is heavily influenced by the Mobile River Basin, which brings low-salinity nutrient-rich water mostly during winter and spring. Community composition was correlated with salinity, temperature and dissolved silicate. However, species interactions (e.g. predation and parasitism) may also contribute to the observed variation, especially on the Shelf, which warrants further exploration. Metabarcoding revealed clear patterns in surface pelagic micro-eukaryote communities that were consistent over multiple years, demonstrating how these techniques could be greatly beneficial to ecological monitoring and management over temporal scales. PMID:27238767

  13. Meteorological variation in daily travel behaviour: evidence from revealed preference data from the Netherlands

    NASA Astrophysics Data System (ADS)

    Creemers, Lieve; Wets, Geert; Cools, Mario

    2015-04-01

    This study investigates the meteorological variation in revealed preference travel data. The main objective of this study is to investigate the impact of weather conditions on daily activity participation (trip motives) and daily modal choices in the Netherlands. To this end, data from the Dutch National Travel Household Survey of 2008 were matched to hourly weather data provided by the Royal Dutch Meteorological Institute and were complemented with thermal indices to indicate the level of thermal comfort and additional variables to indicate the seasonality of the weather conditions. Two multinomial logit-generalised estimation equations (MNL-GEE) models were constructed, one to assess the impact of weather conditions on trip motives and one to assess the effect of weather conditions on modal choice. The modelling results indicate that, depending on the travel attribute of concern, other factors might play a role. Nonetheless, the thermal component, as well as the aesthetical component and the physical component of weather play a significant role. Moreover, the parameter estimates indicate significant differences in the impact of weather conditions when different time scales are considered (e.g. daily versus hourly based). The fact that snow does not play any role at all was unexpected. This finding can be explained by the relatively low occurrence of this weather type in the study area. It is important to consider the effects of weather in travel demand modelling frameworks because this will help to achieve higher accuracy and more realistic traffic forecasts. These will in turn allow policy makers to make better long-term and short-term decisions to achieve various political goals, such as progress towards a sustainable transportation system. Further research in this respect should emphasise the role of weather conditions and activity-scheduling attributes.

  14. Bulk Segregant Analysis Reveals the Genetic Basis of a Natural Trait Variation in Fission Yeast

    PubMed Central

    Hu, Wen; Suo, Fang; Du, Li-Lin

    2015-01-01

    Although the fission yeast Schizosaccharomyces pombe is a well-established model organism, studies of natural trait variations in this species remain limited. To assess the feasibility of segregant-pool-based mapping of phenotype-causing genes in natural strains of fission yeast, we investigated the cause of a maltose utilization defect (Mal-) of the S. pombe strain CBS5557 (originally known as Schizosaccharomyces malidevorans). Analyzing the genome sequence of CBS5557 revealed 955 nonconservative missense substitutions, and 61 potential loss-of-function variants including 47 frameshift indels, 13 early stop codons, and 1 splice site mutation. As a side benefit, our analysis confirmed 146 sequence errors in the reference genome and improved annotations of 27 genes. We applied bulk segregant analysis to map the causal locus of the Mal- phenotype. Through sequencing the segregant pools derived from a cross between CBS5557 and the laboratory strain, we located the locus to within a 2.23-Mb chromosome I inversion found in most S. pombe isolates including CBS5557. To map genes within the inversion region that occupies 18% of the genome, we created a laboratory strain containing the same inversion. Analyzing segregants from a cross between CBS5557 and the inversion-containing laboratory strain narrowed down the locus to a 200-kb interval and led us to identify agl1, which suffers a 5-bp deletion in CBS5557, as the causal gene. Interestingly, loss of agl1 through a 34-kb deletion underlies the Mal- phenotype of another S. pombe strain CGMCC2.1628. This work adapts and validates the bulk segregant analysis method for uncovering trait-gene relationship in natural fission yeast strains. PMID:26615217

  15. Contributions of 18 Additional DNA Sequence Variations in the Gene Encoding Apolipoprotein E to Explaining Variation in Quantitative Measures of Lipid Metabolism

    PubMed Central

    Stengård, Jari H.; Clark, Andrew G.; Weiss, Kenneth M.; Kardia, Sharon; Nickerson, Deborah A.; Salomaa, Veikko; Ehnholm, Christian; Boerwinkle, Eric; Sing, Charles F.

    2002-01-01

    different traits and varied among the six gender-population strata. The role that noncoding variable sites play in the explanation of pleiotropic effects on different measures of lipid metabolism reveals that both regulatory and structural functional variation in the APOE gene influences measures of lipid metabolism. This study demonstrates that resequencing of the complete gene in a sample of ⩾20 individuals and an evaluation of all combinations of the identified variable sites, separately for each population and interacting environmental context, may be necessary to fully characterize the impact that a gene has on variation in related traits of a metabolic system. PMID:12165926

  16. Use of the growing environment as a source of variation to identify the quantitative trait transcripts and modules of co-expressed genes that determine chlorogenic acid accumulation

    PubMed Central

    JOËT, THIERRY; SALMONA, JORDI; LAFFARGUE, ANDRÉINA; DESCROIX, FRÉDÉRIC; DUSSERT, STÉPHANE

    2010-01-01

    Developing Coffea arabica seeds accumulate large amounts of chlorogenic acids (CGAs) as a storage form of phenylpropanoid derivatives, making coffee a valuable model to investigate the metabolism of these widespread plant phenolics. However, developmental and environmental regulations of CGA metabolism are poorly understood. In the present work, the expression of selected phenylpropanoid genes, together with CGA isomer profiles, was monitored throughout seed development across a wide set of contrasted natural environments. Although CGA metabolism was controlled by major developmental factors, the mean temperature during seed development had a direct impact on the time-window of CGA biosynthesis, as well as on final CGA isomer composition through subtle transcriptional regulations. We provide evidence that the variability induced by the environment is a useful tool to test whether CGA accumulation is quantitatively modulated at the transcriptional level, hence enabling detection of rate-limiting transcriptional steps [quantitative trait transcripts (QTTs)] for CGA biosynthesis. Variations induced by the environment also enabled a better description of the phenylpropanoid gene transcriptional network throughout seed development, as well as the detection of three temporally distinct modules of quantitatively co-expressed genes. Finally, analysis of metabolite-to-metabolite relationships revealed new biochemical characteristics of the isomerization steps that remain uncharacterized at the gene level. PMID:20199615

  17. Lung involvement in childhood measles: severe immune dysfunction revealed by quantitative immunohistochemistry.

    PubMed

    Moussallem, Tálib Moysés; Guedes, Fernanda; Fernandes, Elaine Raniero; Pagliari, Carla; Lancellotti, Carmen Lucia Penteado; de Andrade, Heitor Franco; Duarte, Maria Irma Seixas

    2007-08-01

    Measles, accounting for nearly 1 million deaths each year, presents intense involvement of lymphoid organs and the lungs. The immune response in situ in the lungs was determined in blocks recovered from 42 necropsies of children who died from measles determined by immune cell phenotype (CD4, CD8, CD20, CD45RO, CD68, natural killer [NK], and antigen S-100 B [S100]) and cytokine production (interferon, tumor necrosis factor, interleukin [IL]-1, IL-2, IL-4, IL-10, and IL-12). Compared with the lungs of age-paired controls, patients with measles presented severe depletion of CD4+, CD20+, CD68+, NK+, and S100+ cells in alveolus- and bronchus-associated lymphoid tissue without depletion of CD8+ cells. Most of these features were similar in both forms of measles lung involvement, Hecht giant cell, or interstitial pneumonia, but S100+ cells were depleted in bronchus-associated lymphoid tissue from patients with Hecht pneumonia, which also occurs more frequently in malnourished children. IL-10- and IL-12-producing cells were depleted in patients with measles, whereas IL-1-, interferon-, and IL-4-producing cells were more frequently seen in the alveolus of patients with measles compared with controls. Quantitative in situ immune cell phenotype and function in the lung in measles demonstrated severe immune dysfunction, with loss of key cells, such as dendritic, CD4+, and NK+ cells, and deficient cytokine production, which allows for a better comprehension of local reactions in this process. PMID:17499339

  18. Quantitative particle exclusion assays of the pericellular coat reveal changing mesh size

    NASA Astrophysics Data System (ADS)

    Chang, Patrick; McLane, Louis; Kramer, Nolan; Curtis, Jennifer E.

    2013-03-01

    We present a quantitative assay of the pericellular coat, a tethered polymer matrix that decorates the surface of numerous cell types. In these assays, we look at how passivated microspheres of varying diameter penetrate the cell coat. Distinct spatial distributions correspond to different particle sizes. These measurements confirm that the cell coat (on the chondrocyte RCJ-P cell line) has a spatially varying mesh size, in agreement with our independent assays performed with optical force probe microscopy. The data indicate that particles with diameters of 500 nm or greater do not penetrate the inner layer of the matrix, while particles smaller than 500 nm reach different regions, with the smallest reaching the cell surface. In an ongoing effort, we are developing a model for the observed statistical distribution of the beads. These experiments show that accessibility of the cell surface is strongly mediated by the presence of the cell coat, and they have important implications regarding the transport of molecules to the cell surface, protection from bacterial infection, drug delivery, as well as the way the cell interacts and adheres to the surrounding extracellular matrix.

  19. Quantitative Proteomics Reveals Membrane Protein-Mediated Hypersaline Sensitivity and Adaptation in Halophilic Nocardiopsis xinjiangensis.

    PubMed

    Zhang, Yao; Li, Yanchang; Zhang, Yongguang; Wang, Zhiqiang; Zhao, Mingzhi; Su, Na; Zhang, Tao; Chen, Lingsheng; Wei, Wei; Luo, Jing; Zhou, Yanxia; Xu, Yongru; Xu, Ping; Li, Wenjun; Tao, Yong

    2016-01-01

    The genus Nocardiopsis is one of the most dominant Actinobacteria that survives in hypersaline environments. However, the adaptation mechanisms for halophilism are still unclear. Here, we performed isobaric tags for relative and absolute quantification based quantitative proteomics to investigate the functions of the membrane proteome after salt stress. A total of 683 membrane proteins were identified and quantified, of which 126 membrane proteins displayed salt-induced changes in abundance. Intriguingly, bioinformatics analyses indicated that these differential proteins showed two expression patterns, which were further validated by phenotypic changes and functional differences. The majority of ABC transporters, secondary active transporters, cell motility proteins, and signal transduction kinases were up-regulated with increasing salt concentration, whereas cell differentiation, small molecular transporter (ions and amino acids), and secondary metabolism proteins were significantly up-regulated at optimum salinity, but down-regulated or unchanged at higher salinity. The small molecule transporters and cell differentiation-related proteins acted as sensing proteins that played a more important biological role at optimum salinity. However, the ABC transporters for compatible solutes, Na(+)-dependent transporters, and cell motility proteins acted as adaptive proteins that actively counteracted higher salinity stress. Overall, regulation of membrane proteins may provide a major protection strategy against hyperosmotic stress. PMID:26549328

  20. Urinary proteome alterations in HER2 enriched breast cancer revealed by multipronged quantitative proteomics.

    PubMed

    Gajbhiye, Akshada; Dabhi, Raju; Taunk, Khushman; Vannuruswamy, Garikapati; RoyChoudhury, Sourav; Adhav, Ragini; Seal, Shubhendu; Mane, Anupama; Bayatigeri, Santhakumari; Santra, Manas K; Chaudhury, Koel; Rapole, Srikanth

    2016-09-01

    Globally, breast cancer is the second most common cancer among women. Although biomarker discoveries through various proteomic approaches of tissue and serum samples have been studied in breast cancer, urinary proteome alterations in breast cancer are least studied. Urine being a noninvasive biofluid and a significant source of proteins, it has the potential in early diagnosis of breast cancer. This study used complementary quantitative gel-based and gel-free proteomic approaches to find a panel of urinary protein markers that could discriminate HER2 enriched (HE) subtype breast cancer from the healthy controls. A total of 183 differentially expressed proteins were identified using three complementary approaches, namely 2D-DIGE, iTRAQ, and sequential window acquisition of all theoretical mass spectra. The differentially expressed proteins were subjected to various bioinformatics analyses for deciphering the biological context of these proteins using protein analysis through evolutionary relationships, database for annotation, visualization and integrated discovery, and STRING. Multivariate statistical analysis was undertaken to identify the set of most significant proteins, which could discriminate HE breast cancer from healthy controls. Immunoblotting and MRM-based validation in a separate cohort testified a panel of 21 proteins such as zinc-alpha2-glycoprotein, A2GL, retinol-binding protein 4, annexin A1, SAP3, SRC8, gelsolin, kininogen 1, CO9, clusterin, ceruloplasmin, and α1-antitrypsin could be a panel of candidate markers that could discriminate HE breast cancer from healthy controls. PMID:27324523

  1. A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.

    PubMed

    Taipale, Mikko; Tucker, George; Peng, Jian; Krykbaeva, Irina; Lin, Zhen-Yuan; Larsen, Brett; Choi, Hyungwon; Berger, Bonnie; Gingras, Anne-Claude; Lindquist, Susan

    2014-07-17

    Chaperones are abundant cellular proteins that promote the folding and function of their substrate proteins (clients). In vivo, chaperones also associate with a large and diverse set of cofactors (cochaperones) that regulate their specificity and function. However, how these cochaperones regulate protein folding and whether they have chaperone-independent biological functions is largely unknown. We combined mass spectrometry and quantitative high-throughput LUMIER assays to systematically characterize the chaperone-cochaperone-client interaction network in human cells. We uncover hundreds of chaperone clients, delineate their participation in specific cochaperone complexes, and establish a surprisingly distinct network of protein-protein interactions for cochaperones. As a salient example of the power of such analysis, we establish that NUDC family cochaperones specifically associate with structurally related but evolutionarily distinct β-propeller folds. We provide a framework for deciphering the proteostasis network and its regulation in development and disease and expand the use of chaperones as sensors for drug-target engagement. PMID:25036637

  2. Context influences on TALE–DNA binding revealed by quantitative profiling

    PubMed Central

    Rogers, Julia M.; Barrera, Luis A.; Reyon, Deepak; Sander, Jeffry D.; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L.

    2015-01-01

    Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE–DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000–20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE–DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design. PMID:26067805

  3. Quantitative PCR analysis of house dust can reveal abnormal mold conditions†

    PubMed Central

    Meklin, Teija; Haugland, Richard A.; Reponen, Tiina; Varma, Manju; Lummus, Zana; Bernstein, David; Wymer, Larry J.; Vesper, Stephen J.

    2007-01-01

    Indoor mold concentrations were measured in the dust of moldy homes (MH) and reference homes (RH) by quantitative PCR (QPCR) assays for 82 species or related groups of species (assay groups). About 70% of the species and groups were never or only rarely detected. The ratios (MH geometric mean : RH geometric mean) for 6 commonly detected species (Aspergillus ochraceus, A. penicillioides, A. unguis, A. versicolor, Eurotium group, and Cladosporium sphaerospermum) were > 1 (Group I). Logistic regression analysis of the sum of the logs of the concentrations of Group I species resulted in a 95% probability for separating MH from RH. These results suggest that it may be possible to evaluate whether a home has an abnormal mold condition by quantifying a limited number of mold species in a dust sample. Also, four common species of Aspergillus were quantified by standard culturing procedures and their concentrations compared to QPCR results. Culturing underestimated the concentrations of these four species by 2 to 3 orders of magnitude compared to QPCR. PMID:15237292

  4. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors

    PubMed Central

    Foster, Leonard J.; de Hoog, Carmen L.; Mann, Matthias

    2003-01-01

    Membrane lipids were once thought to be homogenously distributed in the 2D surface of a membrane, but the lipid raft theory suggests that cholesterol and sphingolipids partition away from other membrane lipids. Lipid raft theory further implicates these cholesterol-rich domains in many processes such as signaling and vesicle traffic. However, direct characterization of rafts has been difficult, because they cannot be isolated in pure form. In the first functional proteomic analysis of rafts, we use quantitative high-resolution MS to specifically detect proteins depleted from rafts by cholesterol-disrupting drugs, resulting in a set of 241 authentic lipid raft components. We detect a large proportion of signaling molecules, highly enriched versus total membranes and detergent-resistant fractions, which thus far biochemically defined rafts. Our results provide the first large-scale and unbiased evidence, to our knowledge, for the connection of rafts with signaling and place limits on the fraction of plasma membrane composed by rafts. PMID:12724530

  5. Nucleophosmin in the pathogenesis of arsenic-related bladder carcinogenesis revealed by quantitative proteomics

    SciTech Connect

    Chen Shuhui; Wang Yiwen; Hsu Jueliang; Chang Hongyi; Wang Chiyun; Shen Potsun; Chiang Chiwu; Chuang Jingjing; Tsai Hungwen; Gu Powen; Chang Fangchih; Liu Hsiaosheng; Chow Nanhaw

    2010-01-15

    To investigate the molecular mechanisms of arsenic (As)-associated carcinogenesis, we performed proteomic analysis on E7 immortalized human uroepithelial cells after treatment with As in vitro. Quantitative proteomics was performed using stable isotope dimethyl labeling coupled with two-dimensional liquid chromatography peptide separation and mass spectrometry (MS)/MS analysis. Among 285 proteins, a total of 26 proteins were upregulated (ratio > 2.0) and 18 proteins were downregulated (ratio < 0.65) by As treatment, which are related to nucleotide binding, lipid metabolism, protein folding, protein biosynthesis, transcription, DNA repair, cell cycle control, and signal transduction. This study reports the potential significance of nucleophosmin (NPM) in the As-related bladder carcinogenesis. NPM was universally expressed in all of uroepithelial cell lines examined, implying that NPM may play a role in human bladder carcinogenesis. Upregulation of NPM tends to be dose- and time-dependent after As treatment. Expression of NPM was associated with cell proliferation, migration and anti-apoptosis. On the contrary, soy isoflavones inhibited the expression of NPM in vitro. The results suggest that NPM may play a role in the As-related bladder carcinogenesis, and soybean-based foods may have potential in the suppression of As/NPM-related tumorigenesis.

  6. Quantitative Phosphoproteomics Revealed Glucose-Stimulated Responses of Islet Associated with Insulin Secretion.

    PubMed

    Li, Jiaming; Li, Qingrun; Tang, Jiashu; Xia, Fangying; Wu, Jiarui; Zeng, Rong

    2015-11-01

    As central tissue of glucose homeostasis, islet has been an important focus of diabetes research. Phosphorylation plays pivotal roles in islet function, especially in islet glucose-stimulated insulin secretion. A systematic view on how phosphorylation networks were coordinately regulated in this process remains lacking, partially due to the limited amount of islets from an individual for a phosphoproteomic analysis. Here we optimized the in-tip and best-ratio phosphopeptide enrichment strategy and a SILAC-based workflow for processing rat islet samples. With limited islet lysates from each individual rat (20-47 μg), we identified 8539 phosphosites on 2487 proteins. Subsequent quantitative analyses uncovered that short-term (30 min) high glucose stimulation induced coordinate responses of islet phosphoproteome on multiple biological levels, including insulin secretion related pathways, cytoskeleton dynamics, protein processing in ER and Golgi, transcription and translation, and so on. Furthermore, three glucose-responsive phosphosites (Prkar1a pT75pS77 and Tagln2 pS163) from the data set were proved to be correlated with insulin secretion. Overall, we initially gave an in-depth map of islet phosphoproteome regulated by glucose on individual rat level. This was a significant addition to our knowledge about how phosphorylation networks responded in insulin secretion. Also, the list of changed phosphosites was a valuable resource for molecular researchers in diabetes field. PMID:26437020

  7. A Quantitative Characterization of Nucleoplasmin/Histone Complexes Reveals Chaperone Versatility.

    PubMed

    Fernández-Rivero, Noelia; Franco, Aitor; Velázquez-Campoy, Adrian; Alonso, Edurne; Muga, Arturo; Prado, Adelina

    2016-01-01

    Nucleoplasmin (NP) is an abundant histone chaperone in vertebrate oocytes and embryos involved in storing and releasing maternal histones to establish and maintain the zygotic epigenome. NP has been considered a H2A-H2B histone chaperone, and recently it has been shown that it can also interact with H3-H4. However, its interaction with different types of histones has not been quantitatively studied so far. We show here that NP binds H2A-H2B, H3-H4 and linker histones with Kd values in the subnanomolar range, forming different complexes. Post-translational modifications of NP regulate exposure of the polyGlu tract at the disordered distal face of the protein and induce an increase in chaperone affinity for all histones. The relative affinity of NP for H2A-H2B and linker histones and the fact that they interact with the distal face of the chaperone could explain their competition for chaperone binding, a relevant process in NP-mediated sperm chromatin remodelling during fertilization. Our data show that NP binds H3-H4 tetramers in a nucleosomal conformation and dimers, transferring them to DNA to form disomes and tetrasomes. This finding might be relevant to elucidate the role of NP in chromatin disassembly and assembly during replication and transcription. PMID:27558753

  8. A Quantitative Characterization of Nucleoplasmin/Histone Complexes Reveals Chaperone Versatility

    PubMed Central

    Fernández-Rivero, Noelia; Franco, Aitor; Velázquez-Campoy, Adrian; Alonso, Edurne; Muga, Arturo; Prado, Adelina

    2016-01-01

    Nucleoplasmin (NP) is an abundant histone chaperone in vertebrate oocytes and embryos involved in storing and releasing maternal histones to establish and maintain the zygotic epigenome. NP has been considered a H2A–H2B histone chaperone, and recently it has been shown that it can also interact with H3-H4. However, its interaction with different types of histones has not been quantitatively studied so far. We show here that NP binds H2A–H2B, H3-H4 and linker histones with Kd values in the subnanomolar range, forming different complexes. Post-translational modifications of NP regulate exposure of the polyGlu tract at the disordered distal face of the protein and induce an increase in chaperone affinity for all histones. The relative affinity of NP for H2A–H2B and linker histones and the fact that they interact with the distal face of the chaperone could explain their competition for chaperone binding, a relevant process in NP-mediated sperm chromatin remodelling during fertilization. Our data show that NP binds H3-H4 tetramers in a nucleosomal conformation and dimers, transferring them to DNA to form disomes and tetrasomes. This finding might be relevant to elucidate the role of NP in chromatin disassembly and assembly during replication and transcription. PMID:27558753

  9. Quantitative Phosphoproteomics Reveals the Role of Protein Arginine Phosphorylation in the Bacterial Stress Response*

    PubMed Central

    Schmidt, Andreas; Trentini, Débora Broch; Spiess, Silvia; Fuhrmann, Jakob; Ammerer, Gustav; Mechtler, Karl; Clausen, Tim

    2014-01-01

    Arginine phosphorylation is an emerging protein modification implicated in the general stress response of Gram-positive bacteria. The modification is mediated by the arginine kinase McsB, which phosphorylates and inactivates the heat shock repressor CtsR. In this study, we developed a mass spectrometric approach accounting for the peculiar chemical properties of phosphoarginine. The improved methodology was used to analyze the dynamic changes in the Bacillus subtilis arginine phosphoproteome in response to different stress situations. Quantitative analysis showed that a B. subtilis mutant lacking the YwlE arginine phosphatase accumulated a strikingly large number of arginine phosphorylations (217 sites in 134 proteins), however only a minor fraction of these sites was increasingly modified during heat shock or oxidative stress. The main targets of McsB-mediated arginine phosphorylation comprise central factors of the stress response system including the CtsR and HrcA heat shock repressors, as well as major components of the protein quality control system such as the ClpCP protease and the GroEL chaperonine. These findings highlight the impact of arginine phosphorylation in orchestrating the bacterial stress response. PMID:24263382

  10. Quantitative Analysis of Fundus-Image Sequences Reveals Phase of Spontaneous Venous Pulsations

    PubMed Central

    Moret, Fabrice; Reiff, Charlotte M.; Lagrèze, Wolf A.; Bach, Michael

    2015-01-01

    Purpose Spontaneous venous pulsation correlates negatively with elevated intracranial pressure and papilledema, and it relates to glaucoma. Yet, its etiology remains unclear. A key element to elucidate its underlying mechanism is the time at which collapse occurs with respect to the heart cycle, but previous reports are contradictory. We assessed this question in healthy subjects using quantitative measurements of both vein diameters and artery lateral displacements; the latter being used as the marker of the ocular systole time. Methods We recorded 5-second fundus sequences with a near-infrared scanning laser ophthalmoscope in 12 young healthy subjects. The image sequences were coregistered, cleaned from microsaccades, and filtered via a principal component analysis to remove nonpulsatile dynamic features. Time courses of arterial lateral displacement and of diameter at sites of spontaneous venous pulsation or proximal to the disk were retrieved from those image sequences and compared. Results Four subjects displayed both arterial and venous pulsatile waveforms. On those, we observed venous diameter waveforms differing markedly among the subjects, ranging from a waveform matching the typical intraocular pressure waveform to a close replica of the arterial waveform. Conclusions The heterogeneity in waveforms and arteriovenous phases suggests that the mechanism governing the venous outflow resistance differs among healthy subjects. Translational relevance Further characterizations are necessary to understand the heterogeneous mechanisms governing the venous outflow resistance as this resistance is altered in glaucoma and is instrumental when monitoring intracranial hypertension based on fundus observations. PMID:26396929

  11. Global Analysis of DNA Methylation Variation in Adipose Tissue from Twins Reveals Links to Disease-Associated Variants in Distal Regulatory Elements

    PubMed Central

    Grundberg, Elin; Meduri, Eshwar; Sandling, Johanna K.; Hedman, Åsa K.; Keildson, Sarah; Buil, Alfonso; Busche, Stephan; Yuan, Wei; Nisbet, James; Sekowska, Magdalena; Wilk, Alicja; Barrett, Amy; Small, Kerrin S.; Ge, Bing; Caron, Maxime; Shin, So-Youn; Ahmadi, Kourosh R.; Ainali, Chrysanthi; Barrett, Amy; Bataille, Veronique; Bell, Jordana T.; Buil, Alfonso; Deloukas, Panos; Dermitzakis, Emmanouil T.; Dimas, Antigone S.; Durbin, Richard; Glass, Daniel; Grundberg, Elin; Hassanali, Neelam; Hedman, Åsa K.; Ingle, Catherine; Knowles, David; Krestyaninova, Maria; Lindgren, Cecilia M.; Lowe, Christopher E.; McCarthy, Mark I.; Meduri, Eshwar; di Meglio, Paola; Min, Josine L.; Montgomery, Stephen B.; Nestle, Frank O.; Nica, Alexandra C.; Nisbet, James; O’Rahilly, Stephen; Parts, Leopold; Potter, Simon; Sandling, Johanna; Sekowska, Magdalena; Shin, So-Youn; Small, Kerrin S.; Soranzo, Nicole; Spector, Tim D.; Surdulescu, Gabriela; Travers, Mary E.; Tsaprouni, Loukia; Tsoka, Sophia; Wilk, Alicja; Yang, Tsun-Po; Zondervan, Krina T.; Lathrop, Mark; Dermitzakis, Emmanouil T.; McCarthy, Mark I.; Spector, Timothy D.; Bell, Jordana T.; Deloukas, Panos

    2013-01-01

    Epigenetic modifications such as DNA methylation play a key role in gene regulation and disease susceptibility. However, little is known about the genome-wide frequency, localization, and function of methylation variation and how it is regulated by genetic and environmental factors. We utilized the Multiple Tissue Human Expression Resource (MuTHER) and generated Illumina 450K adipose methylome data from 648 twins. We found that individual CpGs had low variance and that variability was suppressed in promoters. We noted that DNA methylation variation was highly heritable (h2median = 0.34) and that shared environmental effects correlated with metabolic phenotype-associated CpGs. Analysis of methylation quantitative-trait loci (metQTL) revealed that 28% of CpGs were associated with nearby SNPs, and when overlapping them with adipose expression quantitative-trait loci (eQTL) from the same individuals, we found that 6% of the loci played a role in regulating both gene expression and DNA methylation. These associations were bidirectional, but there were pronounced negative associations for promoter CpGs. Integration of metQTL with adipose reference epigenomes and disease associations revealed significant enrichment of metQTL overlapping metabolic-trait or disease loci in enhancers (the strongest effects were for high-density lipoprotein cholesterol and body mass index [BMI]). We followed up with the BMI SNP rs713586, a cg01884057 metQTL that overlaps an enhancer upstream of ADCY3, and used bisulphite sequencing to refine this region. Our results showed widespread population invariability yet sequence dependence on adipose DNA methylation but that incorporating maps of regulatory elements aid in linking CpG variation to gene regulation and disease risk in a tissue-dependent manner. PMID:24183450

  12. Validation and Estimation of Additive Genetic Variation Associated with DNA Tests for Quantitative Beef Cattle Traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. National Beef Cattle Evaluation Consortium (NBCEC) has been involved in the validation of commercial DNA tests for quantitative beef quality traits since their first appearance on the U.S. market in the early 2000s. The NBCEC Advisory Council initially requested that the NBCEC set up a syst...

  13. Genic and non-genic contributions to natural variation of quantitative traits in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complex genomes of many economically important crops present tremendous challenges to understand the genetic control of many quantitative traits with great importance in crop production, adaptation, and evolution. Advances in genomic technology need to be integrated with strategic genetic design...

  14. Gene expression variation and expression quantitative trait mapping of human chromosome 21 genes.

    PubMed

    Deutsch, Samuel; Lyle, Robert; Dermitzakis, Emmanouil T; Attar, Homa; Subrahmanyan, Lakshman; Gehrig, Corinne; Parand, Leila; Gagnebin, Maryline; Rougemont, Jacques; Jongeneel, C Victor; Antonarakis, Stylianos E

    2005-12-01

    Inter-individual differences in gene expression are likely to account for an important fraction of phenotypic differences, including susceptibility to common disorders. Recent studies have shown extensive variation in gene expression levels in humans and other organisms, and that a fraction of this variation is under genetic control. We investigated the patterns of gene expression variation in a 25 Mb region of human chromosome 21, which has been associated with many Down syndrome (DS) phenotypes. Taqman real-time PCR was used to measure expression variation of 41 genes in lymphoblastoid cells of 40 unrelated individuals. For 25 genes found to be differentially expressed, additional analysis was performed in 10 CEPH families to determine heritabilities and map loci harboring regulatory variation. Seventy-six percent of the differentially expressed genes had significant heritabilities, and genomewide linkage analysis led to the identification of significant eQTLs for nine genes. Most eQTLs were in trans, with the best result (P=7.46 x 10(-8)) obtained for TMEM1 on chromosome 12q24.33. A cis-eQTL identified for CCT8 was validated by performing an association study in 60 individuals from the HapMap project. SNP rs965951 located within CCT8 was found to be significantly associated with its expression levels (P=2.5 x 10(-5)) confirming cis-regulatory variation. The results of our study provide a representative view of expression variation of chromosome 21 genes, identify loci involved in their regulation and suggest that genes, for which expression differences are significantly larger than 1.5-fold in control samples, are unlikely to be involved in DS-phenotypes present in all affected individuals. PMID:16251198

  15. A Novel Quantitative Approach for Eliminating Sample-To-Sample Variation Using a Hue Saturation Value Analysis Program

    PubMed Central

    McMullen, Eri; Figueiredo, Jose Luiz; Aikawa, Masanori; Aikawa, Elena

    2014-01-01

    Objectives As computing technology and image analysis techniques have advanced, the practice of histology has grown from a purely qualitative method to one that is highly quantified. Current image analysis software is imprecise and prone to wide variation due to common artifacts and histological limitations. In order to minimize the impact of these artifacts, a more robust method for quantitative image analysis is required. Methods and Results Here we present a novel image analysis software, based on the hue saturation value color space, to be applied to a wide variety of histological stains and tissue types. By using hue, saturation, and value variables instead of the more common red, green, and blue variables, our software offers some distinct advantages over other commercially available programs. We tested the program by analyzing several common histological stains, performed on tissue sections that ranged from 4 µm to 10 µm in thickness, using both a red green blue color space and a hue saturation value color space. Conclusion We demonstrated that our new software is a simple method for quantitative analysis of histological sections, which is highly robust to variations in section thickness, sectioning artifacts, and stain quality, eliminating sample-to-sample variation. PMID:24595280

  16. Mechanisms of Cell Cycle Control Revealed by a Systematic and Quantitative Overexpression Screen in S. cerevisiae

    PubMed Central

    Niu, Wei; Li, Zhihua; Zhan, Wenjing; Iyer, Vishwanath R.; Marcotte, Edward M.

    2008-01-01

    Regulation of cell cycle progression is fundamental to cell health and reproduction, and failures in this process are associated with many human diseases. Much of our knowledge of cell cycle regulators derives from loss-of-function studies. To reveal new cell cycle regulatory genes that are difficult to identify in loss-of-function studies, we performed a near-genome-wide flow cytometry assay of yeast gene overexpression-induced cell cycle delay phenotypes. We identified 108 genes whose overexpression significantly delayed the progression of the yeast cell cycle at a specific stage. Many of the genes are newly implicated in cell cycle progression, for example SKO1, RFA1, and YPR015C. The overexpression of RFA1 or YPR015C delayed the cell cycle at G2/M phases by disrupting spindle attachment to chromosomes and activating the DNA damage checkpoint, respectively. In contrast, overexpression of the transcription factor SKO1 arrests cells at G1 phase by activating the pheromone response pathway, revealing new cross-talk between osmotic sensing and mating. More generally, 92%–94% of the genes exhibit distinct phenotypes when overexpressed as compared to their corresponding deletion mutants, supporting the notion that many genes may gain functions upon overexpression. This work thus implicates new genes in cell cycle progression, complements previous screens, and lays the foundation for future experiments to define more precisely roles for these genes in cell cycle progression. PMID:18617996

  17. Quantitative measures to reveal coordinated cytoskeleton-nucleus reorganization during in vitro invasion of cancer cells

    NASA Astrophysics Data System (ADS)

    Dvir, Liron; Nissim, Ronen; Alvarez-Elizondo, Martha B.; Weihs, Daphne

    2015-04-01

    Metastasis formation is a major cause of mortality in cancer patients and includes tumor cell relocation to distant organs. A metastatic cell invades through other cells and extracellular matrix by biochemical attachment and mechanical force application. Force is used to move on or through a 2- or 3-dimensional (3D) environment, respectively, or to penetrate a 2D substrate. We have previously shown that even when a gel substrate is impenetrable, metastatic breast cancer cells can still indent it by applying force. Cells typically apply force through the acto-myosin network, which is mechanically connected to the nucleus. We develop a 3D image-analysis to reveal relative locations of the cell elements, and show that as cells apply force to the gel, a coordinated process occurs that involves cytoskeletal remodeling and repositioning of the nucleus. Our approach shows that the actin and microtubules reorganize in the cell, bringing the actin to the leading edge of the cell. In parallel, the nucleus is transported behind the actin, likely by the cytoskeleton, into the indentation dimple formed in the gel. The nucleus volume below the gel surface correlates with indentation depth, when metastatic breast cancer cells indent gels deeply. However, the nucleus always remains above the gel in benign cells, even when small indentations are observed. Determining mechanical processes during metastatic cell invasion can reveal how cells disseminate in the body and can uncover targets for diagnosis and treatment.

  18. A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identi...

  19. Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics*

    PubMed Central

    Pan, Cuiping; Olsen, Jesper V.; Daub, Henrik; Mann, Matthias

    2009-01-01

    Aberrant signaling causes many diseases, and manipulating signaling pathways with kinase inhibitors has emerged as a promising area of drug research. Most kinase inhibitors target the conserved ATP-binding pocket; therefore specificity is a major concern. Proteomics has previously been used to identify the direct targets of kinase inhibitors upon affinity purification from cellular extracts. Here we introduce a complementary approach to evaluate the effects of kinase inhibitors on the entire cell signaling network. We used triple labeling SILAC (stable isotope labeling by amino acids in cell culture) to compare cellular phosphorylation levels for control, epidermal growth factor stimulus, and growth factor combined with kinase inhibitors. Of thousands of phosphopeptides, less than 10% had a response pattern indicative of targets of U0126 and SB202190, two widely used MAPK inhibitors. Interestingly, 83% of the growth factor-induced phosphorylation events were affected by either or both inhibitors, showing quantitatively that early signaling processes are predominantly transmitted through the MAPK cascades. In contrast to MAPK inhibitors, dasatinib, a clinical drug directed against BCR-ABL, which is the cause of chronic myelogenous leukemia, affected nearly 1,000 phosphopeptides. In addition to the proximal effects on ABL and its immediate targets, dasatinib broadly affected the downstream MAPK pathways. Pathway mapping of regulated sites implicated a variety of cellular functions, such as chromosome remodeling, RNA splicing, and cytoskeletal organization, some of which have been described in the literature before. Our assay is streamlined and generic and could become a useful tool in kinase drug development. PMID:19651622

  20. Resting-state quantitative electroencephalography reveals increased neurophysiologic connectivity in depression.

    PubMed

    Leuchter, Andrew F; Cook, Ian A; Hunter, Aimee M; Cai, Chaochao; Horvath, Steve

    2012-01-01

    Symptoms of Major Depressive Disorder (MDD) are hypothesized to arise from dysfunction in brain networks linking the limbic system and cortical regions. Alterations in brain functional cortical connectivity in resting-state networks have been detected with functional imaging techniques, but neurophysiologic connectivity measures have not been systematically examined. We used weighted network analysis to examine resting state functional connectivity as measured by quantitative electroencephalographic (qEEG) coherence in 121 unmedicated subjects with MDD and 37 healthy controls. Subjects with MDD had significantly higher overall coherence as compared to controls in the delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and beta (12-20 Hz) frequency bands. The frontopolar region contained the greatest number of "hub nodes" (surface recording locations) with high connectivity. MDD subjects expressed higher theta and alpha coherence primarily in longer distance connections between frontopolar and temporal or parietooccipital regions, and higher beta coherence primarily in connections within and between electrodes overlying the dorsolateral prefrontal cortical (DLPFC) or temporal regions. Nearest centroid analysis indicated that MDD subjects were best characterized by six alpha band connections primarily involving the prefrontal region. The present findings indicate a loss of selectivity in resting functional connectivity in MDD. The overall greater coherence observed in depressed subjects establishes a new context for the interpretation of previous studies showing differences in frontal alpha power and synchrony between subjects with MDD and normal controls. These results can inform the development of qEEG state and trait biomarkers for MDD. PMID:22384265

  1. Principles of microRNA Regulation Revealed Through Modeling microRNA Expression Quantitative Trait Loci

    PubMed Central

    Budach, Stefan; Heinig, Matthias; Marsico, Annalisa

    2016-01-01

    Extensive work has been dedicated to study mechanisms of microRNA-mediated gene regulation. However, the transcriptional regulation of microRNAs themselves is far less well understood, due to difficulties determining the transcription start sites of transient primary transcripts. This challenge can be addressed using expression quantitative trait loci (eQTLs) whose regulatory effects represent a natural source of perturbation of cis-regulatory elements. Here we used previously published cis-microRNA-eQTL data for the human GM12878 cell line, promoter predictions, and other functional annotations to determine the relationship between functional elements and microRNA regulation. We built a logistic regression model that classifies microRNA/SNP pairs into eQTLs or non-eQTLs with 85% accuracy; shows microRNA-eQTL enrichment for microRNA precursors, promoters, enhancers, and transcription factor binding sites; and depletion for repressed chromatin. Interestingly, although there is a large overlap between microRNA eQTLs and messenger RNA eQTLs of host genes, 74% of these shared eQTLs affect microRNA and host expression independently. Considering microRNA-only eQTLs we find a significant enrichment for intronic promoters, validating the existence of alternative promoters for intragenic microRNAs. Finally, in line with the GM12878 cell line derived from B cells, we find genome-wide association (GWA) variants associated to blood-related traits more likely to be microRNA eQTLs than random GWA and non-GWA variants, aiding the interpretation of GWA results. PMID:27260304

  2. Resting-State Quantitative Electroencephalography Reveals Increased Neurophysiologic Connectivity in Depression

    PubMed Central

    Leuchter, Andrew F.; Cook, Ian A.; Hunter, Aimee M.; Cai, Chaochao; Horvath, Steve

    2012-01-01

    Symptoms of Major Depressive Disorder (MDD) are hypothesized to arise from dysfunction in brain networks linking the limbic system and cortical regions. Alterations in brain functional cortical connectivity in resting-state networks have been detected with functional imaging techniques, but neurophysiologic connectivity measures have not been systematically examined. We used weighted network analysis to examine resting state functional connectivity as measured by quantitative electroencephalographic (qEEG) coherence in 121 unmedicated subjects with MDD and 37 healthy controls. Subjects with MDD had significantly higher overall coherence as compared to controls in the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (12–20 Hz) frequency bands. The frontopolar region contained the greatest number of “hub nodes” (surface recording locations) with high connectivity. MDD subjects expressed higher theta and alpha coherence primarily in longer distance connections between frontopolar and temporal or parietooccipital regions, and higher beta coherence primarily in connections within and between electrodes overlying the dorsolateral prefrontal cortical (DLPFC) or temporal regions. Nearest centroid analysis indicated that MDD subjects were best characterized by six alpha band connections primarily involving the prefrontal region. The present findings indicate a loss of selectivity in resting functional connectivity in MDD. The overall greater coherence observed in depressed subjects establishes a new context for the interpretation of previous studies showing differences in frontal alpha power and synchrony between subjects with MDD and normal controls. These results can inform the development of qEEG state and trait biomarkers for MDD. PMID:22384265

  3. Quantitative Phosphoproteomics Reveals Signaling Mechanisms Associated with Rapid Cold Hardening in a Chill-Tolerant Fly.

    PubMed

    Teets, Nicholas M; Denlinger, David L

    2016-08-01

    Rapid cold hardening (RCH) is a physiological adaptation in which brief chilling (minutes to hours) significantly enhances the cold tolerance of insects. RCH allows insects to cope with sudden cold snaps and diurnal variation in temperature, but the mechanistic basis of this rapid stress response is poorly understood. Here, we used phosphoproteomics to identify phosphorylation-mediated signaling events that are regulated by chilling that induces RCH. Phosphoproteomic changes were measured in both brain and fat bodies, two tissues that are essential for sensing cold and coordinating RCH at the organismal level. Tissues were chilled ex vivo, and changes in phosphoprotein abundance were measured using 2D electrophoresis coupled with Pro-Q diamond labeling of phosphoproteins followed by protein identification via LC-MS/MS. In both tissues, we observed an abundance of protein phosphorylation events in response to chilling. Some of the proteins regulated by RCH-inducing chilling include proteins involved in cytoskeletal reorganization, heat shock proteins, and proteins involved in the degradation of damaged cellular components via the proteasome and autophagosome. Our results suggest that phosphorylation-mediated signaling cascades are major drivers of RCH and enhance our mechanistic understanding of this complex phenotype. PMID:27362561

  4. Influence of dominance, leptokurtosis and pleiotropy of deleterious mutations on quantitative genetic variation at mutation-selection balance.

    PubMed Central

    Zhang, Xu-Sheng; Wang, Jinliang; Hill, William G

    2004-01-01

    In models of maintenance of genetic variance (V (G)) it has often been assumed that mutant alleles act additively. However, experimental data show that the dominance coefficient varies among mutant alleles and those of large effect tend to be recessive. On the basis of empirical knowledge of mutations, a joint-effect model of pleiotropic and real stabilizing selection that includes dominance is constructed and analyzed. It is shown that dominance can dramatically alter the prediction of equilibrium V (G). Analysis indicates that for the situations where mutations are more recessive for fitness than for a quantitative trait, as supported by the available data, the joint-effect model predicts a significantly higher V (G) than does an additive model. Importantly, for what seem to be realistic distributions of mutational effects (i.e., many mutants may not affect the quantitative trait substantially but are likely to affect fitness), the observed high levels of genetic variation in the quantitative trait under strong apparent stabilizing selection can be generated. This investigation supports the hypothesis that most V (G) comes from the alleles nearly neutral for fitness in heterozygotes while apparent stabilizing selection is contributed mainly by the alleles of large effect on the quantitative trait. Thus considerations of dominance coefficients of mutations lend further support to our previous conclusion that mutation-selection balance is a plausible mechanism of the maintenance of the genetic variance in natural populations. PMID:15020447

  5. Quantitative analysis of diet structure by real-time PCR, reveals different feeding patterns by two dominant grasshopper species

    PubMed Central

    Huang, Xunbing; Wu, Huihui; McNeill, Mark Richard; Qin, Xinghu; Ma, Jingchuan; Tu, Xiongbing; Cao, Guangchun; Wang, Guangjun; Nong, Xiangqun; Zhang, Zehua

    2016-01-01

    Studies on grasshopper diets have historically employed a range of methodologies, each with certain advantages and disadvantages. For example, some methodologies are qualitative instead of quantitative. Others require long experimental periods or examine population-level effects, only. In this study, we used real-time PCR to examine diets of individual grasshoppers. The method has the advantage of being both fast and quantitative. Using two grasshopper species, Oedaleus asiaticus and Dasyhippus barbipes, we designed ITS primer sequences for their three main host plants, Stipa krylovii, Leymus chinensis and Cleistogenes squarrosa and used real-time PCR method to test diet structure both qualitatively and quantitatively. The lowest detection efficiency of the three grass species was ~80% with a strong correlation between actual and PCR-measured food intake. We found that Oedaleus asiaticus maintained an unchanged diet structure across grasslands with different grass communities. By comparison, Dasyhippus barbipes changed its diet structure. These results revealed why O. asiaticus distribution is mainly confined to Stipa-dominated grassland, and D. barbipes is more widely distributed across Inner Mongolia. Overall, real-time PCR was shown to be a useful tool for investigating grasshopper diets, which in turn offers some insight into grasshopper distributions and improved pest management. PMID:27562455

  6. Quantitative analysis of diet structure by real-time PCR, reveals different feeding patterns by two dominant grasshopper species.

    PubMed

    Huang, Xunbing; Wu, Huihui; McNeill, Mark Richard; Qin, Xinghu; Ma, Jingchuan; Tu, Xiongbing; Cao, Guangchun; Wang, Guangjun; Nong, Xiangqun; Zhang, Zehua

    2016-01-01

    Studies on grasshopper diets have historically employed a range of methodologies, each with certain advantages and disadvantages. For example, some methodologies are qualitative instead of quantitative. Others require long experimental periods or examine population-level effects, only. In this study, we used real-time PCR to examine diets of individual grasshoppers. The method has the advantage of being both fast and quantitative. Using two grasshopper species, Oedaleus asiaticus and Dasyhippus barbipes, we designed ITS primer sequences for their three main host plants, Stipa krylovii, Leymus chinensis and Cleistogenes squarrosa and used real-time PCR method to test diet structure both qualitatively and quantitatively. The lowest detection efficiency of the three grass species was ~80% with a strong correlation between actual and PCR-measured food intake. We found that Oedaleus asiaticus maintained an unchanged diet structure across grasslands with different grass communities. By comparison, Dasyhippus barbipes changed its diet structure. These results revealed why O. asiaticus distribution is mainly confined to Stipa-dominated grassland, and D. barbipes is more widely distributed across Inner Mongolia. Overall, real-time PCR was shown to be a useful tool for investigating grasshopper diets, which in turn offers some insight into grasshopper distributions and improved pest management. PMID:27562455

  7. Genome-wide DNA methylation map of human neutrophils reveals widespread inter-individual epigenetic variation

    PubMed Central

    Chatterjee, Aniruddha; Stockwell, Peter A.; Rodger, Euan J.; Duncan, Elizabeth J.; Parry, Matthew F.; Weeks, Robert J.; Morison, Ian M.

    2015-01-01

    The extent of variation in DNA methylation patterns in healthy individuals is not yet well documented. Identification of inter-individual epigenetic variation is important for understanding phenotypic variation and disease susceptibility. Using neutrophils from a cohort of healthy individuals, we generated base-resolution DNA methylation maps to document inter-individual epigenetic variation. We identified 12851 autosomal inter-individual variably methylated fragments (iVMFs). Gene promoters were the least variable, whereas gene body and upstream regions showed higher variation in DNA methylation. The iVMFs were relatively enriched in repetitive elements compared to non-iVMFs, and were associated with genome regulation and chromatin function elements. Further, variably methylated genes were disproportionately associated with regulation of transcription, responsive function and signal transduction pathways. Transcriptome analysis indicates that iVMF methylation at differentially expressed exons has a positive correlation and local effect on the inclusion of that exon in the mRNA transcript. PMID:26612583

  8. Quantitative Mass Spectrometry Reveals Partial Translational Regulation for Dosage Compensation in Chicken.

    PubMed

    Uebbing, Severin; Konzer, Anne; Xu, Luohao; Backström, Niclas; Brunström, Björn; Bergquist, Jonas; Ellegren, Hans

    2015-10-01

    There is increasing evidence that dosage compensation is not a ubiquitous feature following sex chromosome evolution, especially not in organisms where females are the heterogametic sex, like in birds. Even when it occurs, compensation can be incomplete and limited to dosage-sensitive genes. However, previous work has mainly studied transcriptional regulation of sex-linked genes, which may not reflect expression at the protein level. Here, we used liquid chromatography-tandem mass spectrometry to detect and quantify expressed levels of more than 2,400 proteins in ten different tissues of male and female chicken embryos. For comparison, transcriptome sequencing was performed in the same individuals, five of each sex. The proteomic analysis revealed that dosage compensation was incomplete, with a mean male-to-female (M:F) expression ratio of Z-linked genes of 1.32 across tissues, similar to that at the RNA level (1.29). The mean Z chromosome-to-autosome expression ratio was close to 1 in males and lower than 1 in females, consistent with partly reduced Z chromosome expression in females. Although our results exclude a general mechanism for chromosome-wide dosage compensation at translation, 30% of all proteins encoded from Z-linked genes showed a significant change in the M:F ratio compared with the corresponding ratio at the RNA level. This resulted in a pattern where some genes showed balanced expression between sexes and some close to 2-fold higher expression in males. This suggests that proteomic analyses will be necessary to reveal a more complete picture of gene regulation and sex chromosome evolution. PMID:26108680

  9. Stable isotopes reveal ecotypic variation of water uptake patterns in Aleppo pine

    NASA Astrophysics Data System (ADS)

    Ferrio, Juan Pedro; Lucabaugh, Devon; Chambel, Regina; Voltas, Jordi

    2014-05-01

    Aleppo pine (Pinus halepensis Mill.) has a large natural distribution range that encompasses a multitude of thermal and moisture conditions found in the Mediterranean basin. We hypothesized that due to the recurrent incidences of drought stress and high temperatures that occur at varying degrees along its distribution range, populations of Aleppo pine have undergone ecotypic differentiation in soil water uptake patterns. This study analyzed stable isotopic compositions (δ18O and δ2H) of xylem water to identify adaptive divergence associated to the pattern of soil water consumption by roots of Aleppo pine populations originating from the Mediterranean region. The results from this study show that genetic diversity in the extraction pattern of soil water can be found among populations and ecological regions of Aleppo pine under common garden conditions. However, the ability to detect such differences depended on the period of the year examined. In particular, data collection in full summer (end of July) proved to be the most adequate in revealing genetic divergence among populations, while end of spring and, to a lesser extent, end of summer, were less successful for this purpose. Both water uptake patterns (as estimated by δ18O and δ2H) and above-ground growth, exhibited significant relationships with both climatic and geographical variables. This suggests that the underlying variation among populations can be explained by certain characteristics at origin. In addition, we used a bayesian mixing model (SIAR package for R) that incorporated isotopic signatures from xylem and soil water in order to determine the predominant soil layer of water source consumption at the aforementioned periods of the growing season, where water availably ranged from lowest to highest. This allowed us to gain some understanding of Aleppo pines' differential reaction to drought, at the intraspecific level, across the fluctuating conditions of the growing season by comparing the

  10. The effect of respiratory induced density variations on non-TOF PET quantitation in the lung

    NASA Astrophysics Data System (ADS)

    Holman, Beverley F.; Cuplov, Vesna; Hutton, Brian F.; Groves, Ashley M.; Thielemans, Kris

    2016-04-01

    Accurate PET quantitation requires a matched attenuation map. Obtaining matched CT attenuation maps in the thorax is difficult due to the respiratory cycle which causes both motion and density changes. Unlike with motion, little attention has been given to the effects of density changes in the lung on PET quantitation. This work aims to explore the extent of the errors caused by pulmonary density attenuation map mismatch on dynamic and static parameter estimates. Dynamic XCAT phantoms were utilised using clinically relevant 18F-FDG and 18F-FMISO time activity curves for all organs within the thorax to estimate the expected parameter errors. The simulations were then validated with PET data from 5 patients suffering from idiopathic pulmonary fibrosis who underwent PET/Cine-CT. The PET data were reconstructed with three gates obtained from the Cine-CT and the average Cine-CT. The lung TACs clearly displayed differences between true and measured curves with error depending on global activity distribution at the time of measurement. The density errors from using a mismatched attenuation map were found to have a considerable impact on PET quantitative accuracy. Maximum errors due to density mismatch were found to be as high as 25% in the XCAT simulation. Differences in patient derived kinetic parameter estimates and static concentration between the extreme gates were found to be as high as 31% and 14%, respectively. Overall our results show that respiratory associated density errors in the attenuation map affect quantitation throughout the lung, not just regions near boundaries. The extent of this error is dependent on the activity distribution in the thorax and hence on the tracer and time of acquisition. Consequently there may be a significant impact on estimated kinetic parameters throughout the lung.

  11. Quantitative proteomics reveals the effect of protein glycosylation in soybean root under flooding stress

    PubMed Central

    Mustafa, Ghazala; Komatsu, Setsuko

    2014-01-01

    Flooding stress has a negative impact on soybean cultivation because it severely impairs growth and development. To understand the flooding responsive mechanism in early stage soybeans, a glycoproteomic technique was used. Two-day-old soybeans were treated with flooding for 2 days and roots were collected. Globally, the accumulation level of glycoproteins, as revealed by cross-reaction with concanavalin A decreased by 2 days of flooding stress. Glycoproteins were enriched from total protein extracts using concanavalin A lectin resin and analyzed using a gel-free proteomic technique. One-hundred eleven and 69 glycoproteins were identified without and with 2 days of flooding stress, respectively. Functional categorization of these identified glycoproteins indicated that the accumulation level of proteins related to protein degradation, cell wall, and glycolysis increased, while stress-related proteins decreased under flooding stress. Also the accumulation level of glycoproteins localized in the secretory pathway decreased under flooding stress. Out of 23 common glycoproteins between control and flooding conditions, peroxidases and glycosyl hydrolases were decreased by 2 days of flooding stress. mRNA expression levels of proteins in the endoplasmic reticulum and N-glycosylation related proteins were downregulated by flooding stress. These results suggest that flooding might negatively affect the process of N-glycosylation of proteins related to stress and protein degradation; however glycoproteins involved in glycolysis are activated. PMID:25477889

  12. Quantitative proteomics reveals middle infrared radiation-interfered networks in breast cancer cells.

    PubMed

    Chang, Hsin-Yi; Li, Ming-Hua; Huang, Tsui-Chin; Hsu, Chia-Lang; Tsai, Shang-Ru; Lee, Si-Chen; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2015-02-01

    Breast cancer is one of the leading cancer-related causes of death worldwide. Treatment of triple-negative breast cancer (TNBC) is complex and challenging, especially when metastasis has developed. In this study, we applied infrared radiation as an alternative approach for the treatment of TNBC. We used middle infrared (MIR) with a wavelength range of 3-5 μm to irradiate breast cancer cells. MIR significantly inhibited cell proliferation in several breast cancer cells but did not affect the growth of normal breast epithelial cells. We performed iTRAQ-coupled LC-MS/MS analysis to investigate the MIR-triggered molecular mechanisms in breast cancer cells. A total of 1749 proteins were identified, quantified, and subjected to functional enrichment analysis. From the constructed functionally enriched network, we confirmed that MIR caused G2/M cell cycle arrest, remodeled the microtubule network to an astral pole arrangement, altered the actin filament formation and focal adhesion molecule localization, and reduced cell migration activity and invasion ability. Our results reveal the coordinative effects of MIR-regulated physiological responses in concentrated networks, demonstrating the potential implementation of infrared radiation in breast cancer therapy. PMID:25556991

  13. Quantitative proteomics reveal ATM kinase-dependent exchange in DNA damage response complexes.

    PubMed

    Choi, Serah; Srivas, Rohith; Fu, Katherine Y; Hood, Brian L; Dost, Banu; Gibson, Gregory A; Watkins, Simon C; Van Houten, Bennett; Bandeira, Nuno; Conrads, Thomas P; Ideker, Trey; Bakkenist, Christopher J

    2012-10-01

    ATM is a protein kinase that initiates a well-characterized signaling cascade in cells exposed to ionizing radiation (IR). However, the role for ATM in coordinating critical protein interactions and subsequent exchanges within DNA damage response (DDR) complexes is unknown. We combined SILAC-based tandem mass spectrometry and a subcellular fractionation protocol to interrogate the proteome of irradiated cells treated with or without the ATM kinase inhibitor KU55933. We developed an integrative network analysis to identify and prioritize proteins that were responsive to KU55933, specifically in chromatin, and that were also enriched for physical interactions with known DNA repair proteins. This analysis identified 53BP1 and annexin A1 (ANXA1) as strong candidates. Using fluorescence recovery after photobleaching, we found that the exchange of GFP-53BP1 in DDR complexes decreased with KU55933. Further, we found that ANXA1 knockdown sensitized cells to IR via a mechanism that was not potentiated by KU55933. Our study reveals a role for ATM kinase activity in the dynamic exchange of proteins in DDR complexes and identifies a role for ANXA1 in cellular radioprotection. PMID:22909323

  14. Molecular genetics of growth and development in Populus (Salicaceae). V. Mapping quantitative trait loci affecting leaf variation

    SciTech Connect

    Wu, R.; Bradshaw, H.D. Jr.; Stettler, R.F.

    1997-02-01

    The genetic variation of leaf morphology and development was studied in the 2-yr-old replicated plantation of an interspecific hybrid pedigree of Populus trichocarpa T. & G. and P. deltoides Marsh. via both molecular and quantitative genetic methods. Leaf traits chosen showed pronounced differences between the original parents, including leaf size, shape, orientation, color, structure, petiole size, and petiole cross section. In the F{sub 2} generation, leaf traits were all significantly different among genotypes, but with significant effects due to genotype X crown-position interaction. Variation in leaf pigmentation, petiole length, and petiole length proportion appeared to be under the control of few quantitative trait loci (QTLs). More QTLs were associated with single leaf area, leaf shape, lamina angle, abaxial color, and petiole flatness, and in these traits the number of QTLs varied among crown positions. In general the estimates of QTL numbers from Wright`s biometric method were close to those derived from molecular markers. For those traits with few underlying QTLs, a single marker interval could explain from 30-60% of the observed phenotypic variance. For multigenic traits, certain markers contributed more substantially to the observed variation than others. Genetic cluster analysis showed developmentally related traits to be more strongly associated with each other than with unrelated traits. This finding was also supported by the QTL mapping. For example, the same chromosomal segment of linkage group L seemed to account for 20% of the phenotypic variation of all dimension-related traits, leaf size, petiole length, and midrib angle. In both traits, the P. deltoides alleles had positive effects and were dominant to the P. trichocarpa alleles. Similar relationships were also found for lamina angle, abaxial greenness, and petiole flatness. 72 refs., 3 figs., 2 tabs.

  15. Quantitative Fluorescence Correlation Spectroscopy Reveals a 1000-Fold Increase in Lifetime of Protein Functionality

    PubMed Central

    Zhang, Dianwen; Lans, Hannes; Vermeulen, Wim; Lenferink, Aufried; Otto, Cees

    2008-01-01

    We have investigated dilute protein solutions with fluorescence correlation spectroscopy (FCS) and have observed that a rapid loss of proteins occurs from solution. It is commonly assumed that such a loss is the result of protein adsorption to interfaces. A protocol was developed in which this mode of protein loss can be prevented. However, FCS on fluorescent protein (enhanced green fluorescent protein, mCherry, and mStrawberry) solutions enclosed by adsorption-protected interfaces still reveals a decrease of the fluorescent protein concentration, while the diffusion time is stable over long periods of time. We interpret this decay as a loss of protein functionality, probably caused by denaturation of the fluorescent proteins. We show that the typical lifetime of protein functionality in highly dilute, approximately single molecule per femtoliter solutions can be extended more than 1000-fold (typically from a few hours to >40 days) by adding compounds with surfactant behavior. No direct interactions between the surfactant and the fluorescent proteins were observed from the diffusion time measured by FCS. A critical surfactant concentration of more than 23 μM was required to achieve the desired protein stabilization for Triton X-100. The surfactant does not interfere with DNA-protein binding, because similar observations were made using DNA-cutting restriction enzymes. We associate the occurrence of denaturation of proteins with the activity of water at the water-protein interface, which was recently proposed in terms of the “water attack model”. Our observations suggest that soluble biomolecules can extend an influence over much larger distances than suggested by their actual volume. PMID:18586843

  16. Quantitative Mass Spectrometry Reveals Dynamics of Factor-inhibiting Hypoxia-inducible Factor-catalyzed Hydroxylation*

    PubMed Central

    Singleton, Rachelle S.; Trudgian, David C.; Fischer, Roman; Kessler, Benedikt M.; Ratcliffe, Peter J.; Cockman, Matthew E.

    2011-01-01

    The asparaginyl hydroxylase, factor-inhibiting hypoxia-inducible factor (HIF), is central to the oxygen-sensing pathway that controls the activity of HIF. Factor-inhibiting HIF (FIH) also catalyzes the hydroxylation of a large set of proteins that share a structural motif termed the ankyrin repeat domain (ARD). In vitro studies have defined kinetic properties of FIH with respect to different substrates and have suggested FIH binds more tightly to certain ARD proteins than HIF and that ARD hydroxylation may have a lower Km value for oxygen than HIF hydroxylation. However, regulation of asparaginyl hydroxylation on ARD substrates has not been systematically studied in cells. To address these questions, we employed isotopic labeling and mass spectrometry to monitor the accrual, inhibition, and decay of hydroxylation under defined conditions. Under the conditions examined, hydroxylation was not reversed but increased as the protein aged. The extent of hydroxylation on ARD proteins was increased by addition of ascorbate, whereas iron and 2-oxoglutarate supplementation had no significant effect. Despite preferential binding of FIH to ARD substrates in vitro, when expressed as fusion proteins in cells, hydroxylation was found to be more complete on HIF polypeptides compared with sites within the ARD. Furthermore, comparative studies of hydroxylation in graded hypoxia revealed ARD hydroxylation was suppressed in a site-specific manner and was as sensitive as HIF to hypoxic inhibition. These findings suggest that asparaginyl hydroxylation of HIF-1 and ARD proteins is regulated by oxygen over a similar range, potentially tuning the HIF transcriptional response through competition between the two types of substrate. PMID:21808058

  17. Revealing hidden clonal complexity in Mycobacterium tuberculosis infection by qualitative and quantitative improvement of sampling.

    PubMed

    Pérez-Lago, L; Palacios, J J; Herranz, M; Ruiz Serrano, M J; Bouza, E; García-de-Viedma, D

    2015-02-01

    The analysis of microevolution events, its functional relevance and impact on molecular epidemiology strategies, constitutes one of the most challenging aspects of the study of clonal complexity in infection by Mycobacterium tuberculosis. In this study, we retrospectively evaluated whether two improved sampling schemes could provide access to the clonal complexity that is undetected by the current standards (analysis of one isolate from one sputum). We evaluated in 48 patients the analysis by mycobacterial interspersed repetitive unit-variable number tandem repeat of M. tuberculosis isolates cultured from bronchial aspirate (BAS) or bronchoalveolar lavage (BAL) and, in another 16 cases, the analysis of a higher number of isolates from independent sputum samples. Analysis of the isolates from BAS/BAL specimens revealed clonal complexity in a very high proportion of cases (5/48); in most of these cases, complexity was not detected when the isolates from sputum samples were analysed. Systematic analysis of isolates from multiple sputum samples also improved the detection of clonal complexity. We found coexisting clonal variants in two of 16 cases that would have gone undetected in the analysis of the isolate from a single sputum specimen. Our results suggest that analysis of isolates from BAS/BAL specimens is highly efficient for recording the true clonal composition of M. tuberculosis in the lungs. When these samples are not available, we recommend increasing the number of isolates from independent sputum specimens, because they might not harbour the same pool of bacteria. Our data suggest that the degree of clonal complexity in tuberculosis has been underestimated because of the deficiencies inherent in a simplified procedure. PMID:25658553

  18. Population genomic variation reveals roles of history, adaptation and ploidy in switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geographic patterns of genetic variation are shaped by multiple evolutionary processes, including genetic drift, migration, and natural selection. Switchgrass (Panicum virgatum L.) has strong ecotypic differentiation despite life history characteristics that promote high levels of gene flow and can ...

  19. Subtle porosity variation in the YBa2Cu3O(7-x) high-temperature superconductor revealed by ultrasonic imaging

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Generazio, E. R.; Stang, D. B.; Hepp, A. F.

    1990-01-01

    The characterization of global porosity variation within a nominally 93-percent-dense specimen of YBa2Cu3O(7-x) high-temperature superconductor is reported. With a computer-controlled scanning system, precision ultrasonic velocity measurements were obtained at 100 micron increments over an 8- by 8-mm area of the YBa2Cu3O(7-x) specimen. The measurements were used to form a color map of velocity variation across the scanned region of the specimen. Subtle velocity variation on the order of 1 percent was observed. The specimen was shown by experimental methods to be single-phase, untextured, and free of nonuniform residual microstresses. From this knowledge and an established velocity-density relationship, a likely conclusion is that the observed velocity variations are solely due to porosity variations of similar magnitude. Locating these subtle porosity variations is critical since they can result in an order of magnitude variation in J(sub c) for dense YBCO specimens. Thus, mapping the global porosity distribution within YBa2Cu3O(7-x) may reveal regions that have poorer superconducting properties. Ultrasonic velocity results are translated into useful microstructural information for the material scientist.

  20. High levels of variation in Salix lignocellulose genes revealed using poplar genomic resources

    PubMed Central

    2013-01-01

    Background Little is known about the levels of variation in lignin or other wood related genes in Salix, a genus that is being increasingly used for biomass and biofuel production. The lignin biosynthesis pathway is well characterized in a number of species, including the model tree Populus. We aimed to transfer the genomic resources already available in Populus to its sister genus Salix to assess levels of variation within genes involved in wood formation. Results Amplification trials for 27 gene regions were undertaken in 40 Salix taxa. Twelve of these regions were sequenced. Alignment searches of the resulting sequences against reference databases, combined with phylogenetic analyses, showed the close similarity of these Salix sequences to Populus, confirming homology of the primer regions and indicating a high level of conservation within the wood formation genes. However, all sequences were found to vary considerably among Salix species, mainly as SNPs with a smaller number of insertions-deletions. Between 25 and 176 SNPs per kbp per gene region (in predicted exons) were discovered within Salix. Conclusions The variation found is sizeable but not unexpected as it is based on interspecific and not intraspecific comparison; it is comparable to interspecific variation in Populus. The characterisation of genetic variation is a key process in pre-breeding and for the conservation and exploitation of genetic resources in Salix. This study characterises the variation in several lignocellulose gene markers for such purposes. PMID:23924375

  1. The Minimum Number of Genes Contributing to Quantitative Variation between and within Populations

    PubMed Central

    Lande, Russell

    1981-01-01

    A procedure is outlined for estimating the minimum number of freely segregating genetic factors, nE, contributing to the difference in a quantitative character between two populations that have diverged by artificial or natural selection. If certain simple criteria are satisfied approximately on an appropriate scale of measurement, nE can be estimated by comparing the phenotypic means and variances in the two parental populations and in their F1 and F2 hybrids (and backcrosses). This generalizes the method of Wright to genetically heterogeneous (or wild) parental populations, as well as inbred lines. Standard errors of the estimates are derived for large samples. The minimum number of genes involved in producing a large difference between populations in a quantitative trait is typically estimated to be about 5 or 10, with occasional values up to 20. This strongly supports the neo-Darwinian theory that large evolutionary changes usually occur by the accumulation of multiple genetic factors with relatively small effects. PMID:7343418

  2. Transcriptome analysis reveals novel patterning and pigmentation genes underlying Heliconius butterfly wing pattern variation

    PubMed Central

    2012-01-01

    Background Heliconius butterfly wing pattern diversity offers a unique opportunity to investigate how natural genetic variation can drive the evolution of complex adaptive phenotypes. Positional cloning and candidate gene studies have identified a handful of regulatory and pigmentation genes implicated in Heliconius wing pattern variation, but little is known about the greater developmental networks within which these genes interact to pattern a wing. Here we took a large-scale transcriptomic approach to identify the network of genes involved in Heliconius wing pattern development and variation. This included applying over 140 transcriptome microarrays to assay gene expression in dissected wing pattern elements across a range of developmental stages and wing pattern morphs of Heliconius erato. Results We identified a number of putative early prepattern genes with color-pattern related expression domains. We also identified 51 genes differentially expressed in association with natural color pattern variation. Of these, the previously identified color pattern “switch gene” optix was recovered as the first transcript to show color-specific differential expression. Most differentially expressed genes were transcribed late in pupal development and have roles in cuticle formation or pigment synthesis. These include previously undescribed transporter genes associated with ommochrome pigmentation. Furthermore, we observed upregulation of melanin-repressing genes such as ebony and Dat1 in non-melanic patterns. Conclusions This study identifies many new genes implicated in butterfly wing pattern development and provides a glimpse into the number and types of genes affected by variation in genes that drive color pattern evolution. PMID:22747837

  3. Quantitative variation in obesity-related traits and insulin precursors linked to the OB gene region on human chromosome 7

    SciTech Connect

    Duggirala, R.; Stern, M.P.; Reinhart, L.J.

    1996-09-01

    Despite the evidence that human obesity has strong genetic determinants, efforts at identifying specific genes that influence human obesity have largely been unsuccessful. Using the sibship data obtained from 32 low-income Mexican American pedigrees ascertained on a type II diabetic proband and a multipoint variance-components method, we tested for linkage between various obesity-related traits plus associated metabolic traits and 15 markers on human chromosome 7. We found evidence for linkage between markers in the OB gene region and various traits, as follows: D7S514 and extremity skinfolds (LOD = 3.1), human carboxypeptidase A1 (HCPA1) and 32,33-split proinsulin level (LOD = 4.2), and HCPA1 and proinsulin level (LOD = 3.2). A putative susceptibility locus linked to the marker D7S514 explained 56% of the total phenotypic variation in extremity skinfolds. Variation at the HCPA1 locus explained 64% of phenotypic variation in proinsulin level and {approximately}73% of phenotypic variation in split proinsulin concentration, respectively. Weaker evidence for linkage to several other obesity-related traits (e.g., waist circumference, body-mass index, fat mass by bioimpedance, etc.) was observed for a genetic location, which is {approximately}15 cM telomeric to OB. In conclusion, our study reveals that the OB region plays a significant role in determining the phenotypic variation of both insulin precursors and obesity-related traits, at least in Mexican Americans. 66 refs., 3 figs., 4 tabs.

  4. Ozone variations over the northern subtropical region revealed by ozonesonde observations in Hanoi

    NASA Astrophysics Data System (ADS)

    Ogino, S.-Y.; Fujiwara, M.; Shiotani, M.; Hasebe, F.; Matsumoto, J.; Hoang, Thuy Ha T.; Nguyen, Tan Thanh T.

    2013-04-01

    Seasonal and subseasonal variations in the ozone mixing ratio (OMR) are investigated by using continuous 7 year ozonesonde data from Hanoi (21°N, 106°E), Vietnam. The mean seasonal variations for the 7 years show large amplitude at the upper troposphere and lower stratosphere (UTLS) region (10-18 km) and at the lower troposphere (around 3 km) with standard deviations normalized by the annual mean value of about 30% for both regions. In the UTLS region, the seasonal variation in the OMR shows a minimum in winter and a maximum in spring to summer. The variation seems to be caused by the seasonal change in horizontal transport. Low OMR air masses are transported from the equatorial troposphere in winter by the anticyclonic flow associated with the equatorial convections, and high OMR air masses are transported from the midlatitude stratosphere in summer possibly due to Rossby wave breakings in the UT region and anticyclonic circulation associated with the Tibetan High in the LS region. In the lower troposphere, a spring maximum is found at 3 km height. Biomass burning and tropopause foldings are suggested as possible causes of this maximum. Subseasonal variations in the OMR show large amplitude in the UTLS region (at around 15 km) and in the boundary layer (below 1 km) with the standard deviations normalized by the annual mean larger than 40%. The OMR variations in the winter UTLS region have a negative correlation with the meridional wind. This relation indicates that the low OMRs observed at Hanoi has been transported from the equatorial region.

  5. Long-term accounting for raindrop size distribution variations improves quantitative precipitation estimation by weather radar

    NASA Astrophysics Data System (ADS)

    Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko

    2016-04-01

    Weather radars provide information on the characteristics of precipitation at high spatial and temporal resolution. Unfortunately, rainfall measurements by radar are affected by multiple error sources. The current study is focused on the impact of variations of the raindrop size distribution on radar rainfall estimates. Such variations lead to errors in the estimated rainfall intensity (R) and specific attenuation (k) when using fixed relations for the conversion of the observed reflectivity (Z) into R and k. For non-polarimetric radar, this error source has received relatively little attention compared to other error sources. We propose to link the parameters of the Z-R and Z-k relations directly to those of the normalized gamma DSD. The benefit of this procedure is that it reduces the number of unknown parameters. In this work, the DSD parameters are obtained using 1) surface observations from a Parsivel and Thies LPM disdrometer, and 2) a Monte Carlo optimization procedure using surface rain gauge observations. The impact of both approaches for a given precipitation type is assessed for 45 days of summertime precipitation observed in The Netherlands. Accounting for DSD variations using disdrometer observations leads to an improved radar QPE product as compared to applying climatological Z-R and Z-k relations. This especially holds for situations where widespread stratiform precipitation is observed. The best results are obtained when the DSD parameters are optimized. However, the optimized Z-R and Z-k relations show an unrealistic variability that arises from uncorrected error sources. As such, the optimization approach does not result in a realistic DSD shape but instead also accounts for uncorrected error sources resulting in the best radar rainfall adjustment. Therefore, to further improve the quality of preciptitation estimates by weather radar, usage should either be made of polarimetric radar or by extending the network of disdrometers.

  6. Rapid and Inexpensive Screening of Genomic Copy Number Variations Using a Novel Quantitative Fluorescent PCR Method

    PubMed Central

    Han, Joan C.; Elsea, Sarah H.; Pena, Heloísa B.; Pena, Sérgio Danilo Junho

    2013-01-01

    Detection of human microdeletion and microduplication syndromes poses significant burden on public healthcare systems in developing countries. With genome-wide diagnostic assays frequently inaccessible, targeted low-cost PCR-based approaches are preferred. However, their reproducibility depends on equally efficient amplification using a number of target and control primers. To address this, the recently described technique called Microdeletion/Microduplication Quantitative Fluorescent PCR (MQF-PCR) was shown to reliably detect four human syndromes by quantifying DNA amplification in an internally controlled PCR reaction. Here, we confirm its utility in the detection of eight human microdeletion syndromes, including the more common WAGR, Smith-Magenis, and Potocki-Lupski syndromes with 100% sensitivity and 100% specificity. We present selection, design, and performance evaluation of detection primers using variety of approaches. We conclude that MQF-PCR is an easily adaptable method for detection of human pathological chromosomal aberrations. PMID:24288428

  7. Proteome-wide Light/Dark Modulation of Thiol Oxidation in Cyanobacteria Revealed by Quantitative Site-specific Redox Proteomics*

    PubMed Central

    Guo, Jia; Nguyen, Amelia Y.; Dai, Ziyu; Su, Dian; Gaffrey, Matthew J.; Moore, Ronald J.; Jacobs, Jon M.; Monroe, Matthew E.; Smith, Richard D.; Koppenaal, David W.; Pakrasi, Himadri B.; Qian, Wei-Jun

    2014-01-01

    Reversible protein thiol oxidation is an essential regulatory mechanism of photosynthesis, metabolism, and gene expression in photosynthetic organisms. Herein, we present proteome-wide quantitative and site-specific profiling of in vivo thiol oxidation modulated by light/dark in the cyanobacterium Synechocystis sp. PCC 6803, an oxygenic photosynthetic prokaryote, using a resin-assisted thiol enrichment approach. Our proteomic approach integrates resin-assisted enrichment with isobaric tandem mass tag labeling to enable site-specific and quantitative measurements of reversibly oxidized thiols. The redox dynamics of ∼2,100 Cys-sites from 1,060 proteins under light, dark, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (a photosystem II inhibitor) conditions were quantified. In addition to relative quantification, the stoichiometry or percentage of oxidation (reversibly oxidized/total thiols) for ∼1,350 Cys-sites was also quantified. The overall results revealed broad changes in thiol oxidation in many key biological processes, including photosynthetic electron transport, carbon fixation, and glycolysis. Moreover, the redox sensitivity along with the stoichiometric data enabled prediction of potential functional Cys-sites for proteins of interest. The functional significance of redox-sensitive Cys-sites in NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, peroxiredoxin (AhpC/TSA family protein Sll1621), and glucose 6-phosphate dehydrogenase was further confirmed with site-specific mutagenesis and biochemical studies. Together, our findings provide significant insights into the broad redox regulation of photosynthetic organisms. PMID:25118246

  8. Proteome-wide light/dark modulation of thiol oxidation in cyanobacteria revealed by quantitative site-specific redox proteomics.

    PubMed

    Guo, Jia; Nguyen, Amelia Y; Dai, Ziyu; Su, Dian; Gaffrey, Matthew J; Moore, Ronald J; Jacobs, Jon M; Monroe, Matthew E; Smith, Richard D; Koppenaal, David W; Pakrasi, Himadri B; Qian, Wei-Jun

    2014-12-01

    Reversible protein thiol oxidation is an essential regulatory mechanism of photosynthesis, metabolism, and gene expression in photosynthetic organisms. Herein, we present proteome-wide quantitative and site-specific profiling of in vivo thiol oxidation modulated by light/dark in the cyanobacterium Synechocystis sp. PCC 6803, an oxygenic photosynthetic prokaryote, using a resin-assisted thiol enrichment approach. Our proteomic approach integrates resin-assisted enrichment with isobaric tandem mass tag labeling to enable site-specific and quantitative measurements of reversibly oxidized thiols. The redox dynamics of ∼2,100 Cys-sites from 1,060 proteins under light, dark, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (a photosystem II inhibitor) conditions were quantified. In addition to relative quantification, the stoichiometry or percentage of oxidation (reversibly oxidized/total thiols) for ∼1,350 Cys-sites was also quantified. The overall results revealed broad changes in thiol oxidation in many key biological processes, including photosynthetic electron transport, carbon fixation, and glycolysis. Moreover, the redox sensitivity along with the stoichiometric data enabled prediction of potential functional Cys-sites for proteins of interest. The functional significance of redox-sensitive Cys-sites in NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, peroxiredoxin (AhpC/TSA family protein Sll1621), and glucose 6-phosphate dehydrogenase was further confirmed with site-specific mutagenesis and biochemical studies. Together, our findings provide significant insights into the broad redox regulation of photosynthetic organisms. PMID:25118246

  9. Genetic variation in GPBAR1 predisposes to quantitative changes in colonic transit and bile acid excretion

    PubMed Central

    Shin, Andrea; Busciglio, Irene; Carlson, Paula; Acosta, Andres; Bharucha, Adil E.; Burton, Duane; Lamsam, Jesse; Lueke, Alan; Donato, Leslie J.; Zinsmeister, Alan R.

    2014-01-01

    The pathobiology of irritable bowel syndrome (IBS) is multifaceted. We aimed to identify candidate genes predisposing to quantitative traits in IBS. In 30 healthy volunteers, 30 IBS-constipation, and 64 IBS-diarrhea patients, we measured bowel symptoms, bile acid (BA) synthesis (serum 7α-hydroxy-4-cholesten-3-one and FGF19), fecal BA and fat, colonic transit (CT by scintigraphy), and intestinal permeability (IP by 2-sugar excretion). We assessed associations of candidate genes controlling BA metabolism (KLB rs17618244 and FGFR4 rs351855), BA receptor (GPBAR1 rs11554825), serotonin (5-HT) reuptake (SLC6A4 through rs4795541 which encodes for the 44-bp insert in 5HTTLPR), or immune activation (TNFSF15 rs4263839) with three primary quantitative traits of interest: colonic transit, BA synthesis, and fecal BA excretion. There were significant associations between fecal BA and CT at 48 h (r = 0.43; P < 0.001) and IP (r = 0.23; P = 0.015). GPBAR1 genotype was associated with CT48 (P = 0.003) and total fecal BA [P = 0.030, false detection rate (FDR) P = 0.033]. Faster CT48 observed with both CC and TT GPBAR1 genotypes was due to significant interaction with G allele of KLB, which increases BA synthesis and excretion. Other univariate associations (P < 0.05, without FDR correction) observed between GPBAR1 and symptom phenotype and gas sensation ratings support the role of GPBAR1 receptor. Associations between SLC6A4 and stool consistency, ease of passage, postprandial colonic tone, and total fecal BA excretion provide data in support of future hypothesis-testing studies. Genetic control of GPBAR1 receptor predisposing to pathobiological mechanisms in IBS provides evidence from humans in support of the importance of GPBAR1 to colonic motor and secretory functions demonstrated in animal studies. PMID:25012842

  10. A quantitative and descriptive approach to morphological variation of the endocranial base in modern humans.

    PubMed

    Bruner, Emiliano; Ripani, Maurizio

    2008-09-01

    The cranial base is one of the major foci of interest in functional craniology. The evolution and morphogenesis of this structure are still poorly known and rather controversial because of multifactorial influences and polyphasic stages. Endocranial dynamics are associated anteriorly with the upper facial structures, laterally with the mandibular system and midsagittally with brain development. In the present study, we investigated the endocranial morphology of modern humans using 3D landmark-based approaches, i.e. geometric morphometrics and Euclidean distance matrix analysis. The structure of endocranial variation is poorly integrated, with only weak reciprocal influences among the three fossae. Some major variations are associated with changes in the posterior fossa, with possible consequences on the anterior areas. These main patterns of integration are hypothesized to be influenced by the connective tensors of the dura layers. Static allometry and sex differences are largely related to the ontogenetic sequences, characterized by early maturation of the anterior fossa with respect to the middle and posterior regions (i.e., relatively shorter posterior part of the planum sphenoideum and vertical lengthening of the clivus in males). The relative independence between the endocranial fossae, as well as their structural connection through the meningeal tensors, must be carefully considered in studies on the evolutionary dynamics, since they lead to mosaic changes through phylogeny. PMID:18398846

  11. Genotypic variation in wheat grain fructan content revealed by a simplified HPLC method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fructans are regarded as prebiotics, with potentially beneficial effects on human health. This study aimed to examine genetic variation in wheat grain fructan content using an improved analytical method. The method involves extracting fructans from wheat grain followed by enzymatic hydrolysis to bre...

  12. Copy number variation detection in cattle reveals potential breed specific differences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copy Number Variations (CNVs) are large, common deletions or duplications of genome sequence among individuals of a species that have been linked to diseases and phenotypic traits. For example, a CNV-generating, translocation mechanism encompassing the KIT gene is responsible for color sidedness in ...

  13. Whole-genome sequencing reveals the diversity of cattle copy number variations and multicopy genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structural and functional impacts of copy number variations (CNVs) on livestock genomes are not yet well understood. We identified 1853 CNV regions using population-scale sequencing data generated from 75 cattle representing 8 breeds (Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, Romagnol...

  14. Phylogenomics Reveals Three Sources of Adaptive Variation during a Rapid Radiation

    PubMed Central

    Pease, James B.; Haak, David C.; Hahn, Matthew W.; Moyle, Leonie C.

    2016-01-01

    Speciation events often occur in rapid bursts of diversification, but the ecological and genetic factors that promote these radiations are still much debated. Using whole transcriptomes from all 13 species in the ecologically and reproductively diverse wild tomato clade (Solanum sect. Lycopersicon), we infer the species phylogeny and patterns of genetic diversity in this group. Despite widespread phylogenetic discordance due to the sorting of ancestral variation, we date the origin of this radiation to approximately 2.5 million years ago and find evidence for at least three sources of adaptive genetic variation that fuel diversification. First, we detect introgression both historically between early-branching lineages and recently between individual populations, at specific loci whose functions indicate likely adaptive benefits. Second, we find evidence of lineage-specific de novo evolution for many genes, including loci involved in the production of red fruit color. Finally, using a “PhyloGWAS” approach, we detect environment-specific sorting of ancestral variation among populations that come from different species but share common environmental conditions. Estimated across the whole clade, small but substantial and approximately equal fractions of the euchromatic portion of the genome are inferred to contribute to each of these three sources of adaptive genetic variation. These results indicate that multiple genetic sources can promote rapid diversification and speciation in response to new ecological opportunity, in agreement with our emerging phylogenomic understanding of the complexity of both ancient and recent species radiations. PMID:26871574

  15. DNA variation in the wild plant Arabidopsis thaliana revealed by amplified fragment length polymorphism analysis.

    PubMed Central

    Miyashita, N T; Kawabe, A; Innan, H

    1999-01-01

    To investigate the level and pattern of DNA variation of Arabidopsis thaliana at the entire genome level, AFLP analysis was conducted for 38 ecotypes distributed throughout the world. Ten pairs of selective primers were used to detect a total of 472 bands, of which 374 (79. 2%) were polymorphic. The frequency distribution of polymorphic bands was skewed toward an excess of singleton variation. On the basis of AFLP variation, nucleotide diversity for the entire genome was estimated to be 0.0106, which was within the range reported previously for specific nuclear genes. The frequency distribution of pairwise distance was bimodal because of an ecotype (Fl-3) with a large number of unique bands. Linkage disequilibrium between polymorphic AFLPs was tested. The proportion of significant linkage disequilibria was close to random expectation after neglecting the ecotype Fl-3. This result indicates that the effect of recombination could not be ignored in this selfing species. A neighbor-joining tree was constructed on the basis of the AFLP variation. This tree has a star-like topology and shows no clear association between ecotype and geographic origin, suggesting a recent spread of this plant species and limited migration between its habitats. PMID:10430596

  16. Genetic variation of Spiroplasma citri populations in California revealed by two genomic loci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus stubborn disease (CSD), known to be present in California since 1915, was confirmed to be caused by Spiroplasma citri in 1972. Hosts of S. citri include citrus and a wide range of annual weeds, ornamentals and crops such as carrots and sesame. Genetic variation of S. citri in California was e...

  17. Comparative genomics reveals multiple causes of variation in mycotoxin production among Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Collectively, species of Fusarium produce a structurally diverse array of mycotoxins and other secondary metabolites (SMs), but individual species contribute to only a fraction of this diversity. To elucidate causes of variation in SM production among species, we are examining the distribution and e...

  18. Population genomic variation reveals roles of history, adaptation, and ploidy in switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diversity within a species is shaped by many processes, including mutation, migration, and natural selection. These processes leave signatures in geographic and genomic patterns of variation, and characterizing the patterns provides insight into the roles of different factors in shaping diversity. W...

  19. ANALYSIS OF CATTLE COPY NUMBER VARIATION REVEALS INSIGHTS INTO THE EVOLUTION OF RUMINANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We conducted a systematic study of the cattle copy number variation (CNV) using array comparative genomic hybridization (array CGH). Multiple bulls from both dairy and beef breeds were selected to represent the cattle population. Up to February 2008, over 80 hybridizations were performed and appro...

  20. Experimental designs and statistical methods for mapping quantitative trait loci underlying triploid endosperm traits without maternal genetic variation.

    PubMed

    Wen, Yongxian; Wu, Weiren

    2008-01-01

    Many endosperm traits are related to grain quality in cereal crops. Endosperm traits are mainly controlled by the endosperm genome but may be affected by the maternal genome. Studies have shown that maternal genotypic variation could greatly influence the estimation of the direct effects of quantitative trait loci (QTLs) underlying endosperm traits. In this paper, we propose methods of interval mapping of endosperm QTLs using seeds of F2 or BC1 (an equal mixture of F1 x P1 and F1 x P2 with F1 as the female parent) derived from a cross between 2 pure lines (P1 x P2). The most significant advantage of our experimental designs is that the maternal effects do not contribute to the genetic variation of endosperm traits and therefore the direct effects of endosperm QTLs can be estimated without the influence of maternal effects. In addition, the experimental designs can greatly reduce environmental variation because a few F1 plants grown in a small block of field will produce sufficient F2 or BC1 seeds for endosperm QTL analysis. Simulation studies show that the methods can efficiently detect endosperm QTLs and unbiasedly estimate their positions and effects. The BC1 design is better than the F2 design. PMID:18544551

  1. A Quantitative Toxicogenomics Assay Reveals the Evolution and Nature of Toxicity during the Transformation of Environmental Pollutants

    PubMed Central

    2015-01-01

    The incomplete mineralization of contaminants of emerging concern (CECs) during the advanced oxidation processes can generate transformation products that exhibit toxicity comparable to or greater than that of the original contaminant. In this study, we demonstrated the application of a novel, fast, and cost-effective quantitative toxicogenomics-based approach for the evaluation of the evolution and nature of toxicity along the electro-Fenton oxidative degradation of three representative CECs whose oxidative degradation pathways have been relatively well studied, bisphenol A, triclosan, and ibuprofen. The evolution of toxicity as a result of the transformation of parent chemicals and production of intermediates during the course of degradation are monitored, and the quantitative toxicogenomics assay results revealed the dynamic toxicity changes and mechanisms, as well as their association with identified intermediates during the electro-Fenton oxidation process of the selected CECs. Although for the three CECs, a majority (>75%) of the parent compounds disappeared at the 15 min reaction time, the nearly complete elimination of toxicity required a minimal 30 min reaction time, and they seem to correspond to the disappearance of identified aromatic intermediates. Bisphenol A led to a wide range of stress responses, and some identified transformation products containing phenolic or quinone group, such as 1,4-benzoquinone and hydroquinone, likely contributed to the transit toxicity exhibited as DNA stress (genotoxicity) and membrane stress during the degradation. Triclosan is known to cause severe oxidative stress, and although the oxidative damage potential decreased concomitantly with the disappearance of triclosan after a 15 min reaction, the sustained toxicity associated with both membrane and protein stress was likely attributed at least partially to the production of 2,4-dichlorophenol that is known to cause the production of abnormal proteins and affect the cell

  2. A quantitative toxicogenomics assay reveals the evolution and nature of toxicity during the transformation of environmental pollutants.

    PubMed

    Gou, Na; Yuan, Songhu; Lan, Jiaqi; Gao, Ce; Alshawabkeh, Akram N; Gu, April Z

    2014-01-01

    The incomplete mineralization of contaminants of emerging concern (CECs) during the advanced oxidation processes can generate transformation products that exhibit toxicity comparable to or greater than that of the original contaminant. In this study, we demonstrated the application of a novel, fast, and cost-effective quantitative toxicogenomics-based approach for the evaluation of the evolution and nature of toxicity along the electro-Fenton oxidative degradation of three representative CECs whose oxidative degradation pathways have been relatively well studied, bisphenol A, triclosan, and ibuprofen. The evolution of toxicity as a result of the transformation of parent chemicals and production of intermediates during the course of degradation are monitored, and the quantitative toxicogenomics assay results revealed the dynamic toxicity changes and mechanisms, as well as their association with identified intermediates during the electro-Fenton oxidation process of the selected CECs. Although for the three CECs, a majority (>75%) of the parent compounds disappeared at the 15 min reaction time, the nearly complete elimination of toxicity required a minimal 30 min reaction time, and they seem to correspond to the disappearance of identified aromatic intermediates. Bisphenol A led to a wide range of stress responses, and some identified transformation products containing phenolic or quinone group, such as 1,4-benzoquinone and hydroquinone, likely contributed to the transit toxicity exhibited as DNA stress (genotoxicity) and membrane stress during the degradation. Triclosan is known to cause severe oxidative stress, and although the oxidative damage potential decreased concomitantly with the disappearance of triclosan after a 15 min reaction, the sustained toxicity associated with both membrane and protein stress was likely attributed at least partially to the production of 2,4-dichlorophenol that is known to cause the production of abnormal proteins and affect the cell

  3. Quantitative Proteomic and Transcriptomic Study on Autotetraploid Paulownia and Its Diploid Parent Reveal Key Metabolic Processes Associated with Paulownia Autotetraploidization

    PubMed Central

    Dong, Yanpeng; Deng, Minjie; Zhao, Zhenli; Fan, Guoqiang

    2016-01-01

    Polyploidy plays a very important role in speciation and plant evolution by way of genomic merging and doubling. In the process of polyploidy, rapid genomic, and transcriptomic changes have been observed and researched. However, proteomic divergence caused by the effects of polyploidization is still poorly understood. In the present study, we used iTRAQ coupled with mass spectrometry to quantitatively analyze proteomic changes in the leaves of autotetraploid Paulownia and its diploid parent. A total of 2963 proteins were identified and quantified. Among them, 463 differentially abundant proteins were detected between autotetraploid Paulownia and its diploid parent, and 198 proteins were found to be non-additively abundant in autotetraploid Paulownia, suggesting the presence of non-additive protein regulation during genomic merger and doubling. We also detected 1808 protein-encoding genes in previously published RNA sequencing data. We found that 59 of the genes that showed remarkable changes at mRNA level encoded proteins with consistant changes in their abundance levels, while a further 48 genes that showed noteworthy changes in their expression levels encoded proteins with opposite changes in their abundance levels. Proteins involved in posttranslational modification, protein turnover, and response to stimulus, were significantly enriched among the non-additive proteins, which may provide some of the driving power for variation and adaptation in autopolyploids. Quantitative real-time PCR analysis verified the expression patterns of related protein-coding genes. In addition, we found that the percentage of differentially abundant proteins that matched previously reported differentially expressed genes was relatively low. PMID:27446122

  4. Quantitative Proteomic and Transcriptomic Study on Autotetraploid Paulownia and Its Diploid Parent Reveal Key Metabolic Processes Associated with Paulownia Autotetraploidization.

    PubMed

    Dong, Yanpeng; Deng, Minjie; Zhao, Zhenli; Fan, Guoqiang

    2016-01-01

    Polyploidy plays a very important role in speciation and plant evolution by way of genomic merging and doubling. In the process of polyploidy, rapid genomic, and transcriptomic changes have been observed and researched. However, proteomic divergence caused by the effects of polyploidization is still poorly understood. In the present study, we used iTRAQ coupled with mass spectrometry to quantitatively analyze proteomic changes in the leaves of autotetraploid Paulownia and its diploid parent. A total of 2963 proteins were identified and quantified. Among them, 463 differentially abundant proteins were detected between autotetraploid Paulownia and its diploid parent, and 198 proteins were found to be non-additively abundant in autotetraploid Paulownia, suggesting the presence of non-additive protein regulation during genomic merger and doubling. We also detected 1808 protein-encoding genes in previously published RNA sequencing data. We found that 59 of the genes that showed remarkable changes at mRNA level encoded proteins with consistant changes in their abundance levels, while a further 48 genes that showed noteworthy changes in their expression levels encoded proteins with opposite changes in their abundance levels. Proteins involved in posttranslational modification, protein turnover, and response to stimulus, were significantly enriched among the non-additive proteins, which may provide some of the driving power for variation and adaptation in autopolyploids. Quantitative real-time PCR analysis verified the expression patterns of related protein-coding genes. In addition, we found that the percentage of differentially abundant proteins that matched previously reported differentially expressed genes was relatively low. PMID:27446122

  5. Minimizing technical variation during sample preparation prior to label-free quantitative mass spectrometry.

    PubMed

    Scheerlinck, E; Dhaenens, M; Van Soom, A; Peelman, L; De Sutter, P; Van Steendam, K; Deforce, D

    2015-12-01

    Sample preparation is the crucial starting point to obtain high-quality mass spectrometry data and can be divided into two main steps in a bottom-up proteomics approach: cell/tissue lysis with or without detergents and a(n) (in-solution) digest comprising denaturation, reduction, alkylation, and digesting of the proteins. Here, some important considerations, among others, are that the reagents used for sample preparation can inhibit the digestion enzyme (e.g., 0.1% sodium dodecyl sulfate [SDS] and 0.5 M guanidine HCl), give rise to ion suppression (e.g., polyethylene glycol [PEG]), be incompatible with liquid chromatography-tandem mass spectrometry (LC-MS/MS) (e.g., SDS), and can induce additional modifications (e.g., urea). Taken together, all of these irreproducible effects are gradually becoming a problem when label-free quantitation of the samples is envisioned such as during the increasingly popular high-definition mass spectrometry (HDMS(E)) and sequential window acquisition of all theoretical fragment ion spectra (SWATH) data-independent acquisition strategies. Here, we describe the detailed validation of a reproducible method with sufficient protein yield for sample preparation without any known LC-MS/MS interfering substances by using 1% sodium deoxycholate (SDC) during both cell lysis and in-solution digest. PMID:26302362

  6. Development of Betta splendens embryos and larvae reveals variation in pigmentation patterns.

    PubMed

    Carey, Alexis N; Lyvers, Benjamin H; Ferrill, Rachel N; Johnson, Rachel L; Dumaine, Anne Marie; Sly, Belinda J

    2016-06-01

    Vertebrate pigmentation provides an ideal system for studying the intersections between evolution, genetics, and developmental biology. Teleost fish, with their accessible developmental stages and intense and diverse colours produced by chromatophores, are an ideal group for study. We set out to test whether Betta splendens is a good model organism for studying the evolution and development of diverse pigmentation. Our results demonstrate that B. splendens can be bred to produce large numbers of offspring with easily visualized pigment cells. Depending on the colour of the parents, there was variation in larval pigmentation patterns both within and between breeding events. In juveniles the developing adult pigmentation patterns showed even greater variation. These results suggest that B. splendens has great potential as a model organism for pigmentation studies. PMID:27172056

  7. Developmental constraints revealed by co-variation within and among molar rows in two murine rodents.

    PubMed

    Renaud, Sabrina; Pantalacci, Sophie; Quéré, Jean-Pierre; Laudet, Vincent; Auffray, Jean-Christophe

    2009-01-01

    Morphological integration corresponds to interdependency between characters that can arise from several causes. Proximal causes of integration include that different phenotypic features may share common genetic sets and/or interact during their development. Ultimate causes may be the prolonged effect of selection favoring integration of functionally interacting characters, achieved by the molding of these proximal causes. Strong and direct interactions among successive teeth of a molar row are predicted by genetic and developmental evidences. Functional constraints related to occlusion, however, should have selected more strongly for a morphological integration of occluding teeth and a corresponding evolution of the underlying developmental and genetic pathways. To investigate how these predictions match the patterns of phenotypic integration, we studied the co-variation among the six molars of the murine molar row, focusing on two populations of house mice (Mus musculus domesticus) and wood mice (Apodemus sylvaticus). The size and shape of the three upper and lower molars were quantified and compared. Our results evidenced similar patterns in both species, size being more integrated than shape among all the teeth, and both size and shape co-varying strongly between adjacent teeth, but also between occluding teeth. Strong co-variation within each molar row is in agreement with developmental models showing a cascade influence of the first molar on the subsequent molars. In contrast, the strong co-variation between molars of the occluding tooth rows confirms that functional constraints molded patterns of integration and probably the underlying developmental pathways despite the low level of direct developmental interactions occurring among molar rows. These patterns of co-variation are furthermore conserved between the house mouse and the wood mouse that diverged >10 Ma, suggesting that they may constitute long-running constraints to the diversification of the murine

  8. Quantitative magnetic resonance analysis and a morphometric predictive model reveal lean body mass changes in migrating Nearctic-Neotropical passerines.

    PubMed

    Seewagen, Chad L; Guglielmo, Christopher G

    2011-04-01

    Most studies of lean mass dynamics in free-living passerine birds have focused on Old World species at geographical barriers where they are challenged to make the longest non-stop flight of their migration. We examined lean mass variation in New World passerines in an area where the distribution of stopover habitat does not require flights to exceed more than a few hours and most migrants stop flying well before fat stores near exhaustion. We used either quantitative magnetic resonance (QMR) analysis or a morphometric model to measure or estimate, respectively, the fat and lean body mass of migrants during stopovers in New York, USA. With these data, we examined (1) variance in total body mass explained by lean body mass, (2) hourly rates of fat and lean body mass change in single-capture birds, and (3) net changes in fat and lean mass in recaptured birds. Lean mass contributed to 50% of the variation in total body mass among white-throated sparrows Zonotrichia albicollis and hermit thrushes Catharus guttatus. Lean mass of refueling gray catbirds Dumetella carolinensis and white-throated sparrows, respectively, increased 1.123 and 0.320 g h(-1). Lean mass of ovenbirds Seiurus aurocapillus accounted for an estimated 33-40% of hourly gains in total body mass. On average 35% of the total mass gained among recaptured birds was lean mass. Substantial changes in passerine lean mass are not limited to times when birds are forced to make long, non-stop flights across barriers. Protein usage during migration is common across broad taxonomic groups, migration systems, and migration strategies. PMID:21079970

  9. Quantitative Proteomic Analysis Reveals Populus cathayana Females Are More Sensitive and Respond More Sophisticatedly to Iron Deficiency than Males.

    PubMed

    Zhang, Sheng; Zhang, Yunxiang; Cao, Yanchun; Lei, Yanbao; Jiang, Hao

    2016-03-01

    Previous studies have shown that there are significant sexual differences in the morphological and physiological responses of Populus cathayana Rehder to nitrogen and phosphorus deficiencies, but little is known about the sex-specific differences in responses to iron deficiency. In this study, the effects of iron deficiency on the morphology, physiology, and proteome of P. cathayana males and females were investigated. The results showed that iron deficiency (25 days) significantly decreased height growth, photosynthetic rate, chlorophyll content, and tissue iron concentration in both sexes. A comparison between the sexes indicated that iron-deficient males had less height inhibition and photosynthesis system II or chloroplast ultrastructural damage than iron-deficient females. iTRAQ-based quantitative proteomic analysis revealed that 144 and 68 proteins were decreased in abundance (e.g., proteins involved in photosynthesis, carbohydrate and energy metabolism, and gene expression regulation) and 78 and 39 proteins were increased in abundance (e.g., proteins involved in amino acid metabolism and stress response) according to the criterion of ratio ≥1.5 in females and males, respectively. A comparison between the sexes indicated that iron-deficient females exhibited a greater change in the proteins involved in photosynthesis, carbon and energy metabolism, the redox system, and stress responsive proteins. This study reveals females are more sensitive and have a more sophisticated response to iron deficiency compared with males and provides new insights into differential sexual responses to nutrient deficiency. PMID:26842668

  10. Stroma derived COL6A3 is a potential prognosis marker of colorectal carcinoma revealed by quantitative proteomics

    PubMed Central

    Chen, Sun-Xia; Wang, Xiao-Qing; Cui, Shu-Jian; Liu, Xiao-Hui; Jiang, Ying-Hua; Wang, Jie; Zhang, Yang; Yang, Peng-Yuan; Liu, Feng

    2015-01-01

    Colorectal cancer (CRC) represents the third most common cancer in males and second in females worldwide. Here, we performed a quantitative 8-plex iTRAQ proteomics analysis of the secreted proteins from five colonic fibroblast cultures and three colon cancer epithelial cell lines. We identified 1114 proteins at 0% FDR, including 587 potential secreted proteins. We further recognized 116 fibroblast-enriched proteins which were significantly associated with cell movement, angiogenesis, proliferation and wound healing, and 44 epithelial cell-enriched proteins. By interrogation of Oncomine database, we found that 20 and 8 fibroblast-enriched proteins were up- and downregulated in CRC, respectively. Western blots confirmed the fibroblast-specific secretion of filamin C, COL6A3, COL4A1 and spondin-2. Upregulated mRNA and stroma expression of COL6A3 in CRC, which were revealed by Oncomine analyses and tissue-microarray-immunohistochemistry, indicated poor prognosis. COL6A3 expression was significantly associated with Dukes stage, T stage, stage, recurrence and smoking status. Circulating plasma COL6A3 in CRC patients was upregulated significantly comparing with healthy peoples. Receiver operating characteristic curve analysis revealed that COL6A3 has better predictive performance for CRC with an area under the curve of 0.885 and the best sensitivity/specificity of 92.9%/81.3%. Thus we demonstrated that COL6A3 was a potential diagnosis and prognosis marker of CRC. PMID:26338966

  11. Quantitative Proteomics of the Tonoplast Reveals a Role for Glycolytic Enzymes in Salt Tolerance[C][W

    PubMed Central

    Barkla, Bronwyn J.; Vera-Estrella, Rosario; Hernández-Coronado, Marcela; Pantoja, Omar

    2009-01-01

    To examine the role of the tonoplast in plant salt tolerance and identify proteins involved in the regulation of transporters for vacuolar Na+ sequestration, we exploited a targeted quantitative proteomics approach. Two-dimensional differential in-gel electrophoresis analysis of free flow zonal electrophoresis separated tonoplast fractions from control, and salt-treated Mesembryanthemum crystallinum plants revealed the membrane association of glycolytic enzymes aldolase and enolase, along with subunits of the vacuolar H+-ATPase V-ATPase. Protein blot analysis confirmed coordinated salt regulation of these proteins, and chaotrope treatment indicated a strong tonoplast association. Reciprocal coimmunoprecipitation studies revealed that the glycolytic enzymes interacted with the V-ATPase subunit B VHA-B, and aldolase was shown to stimulate V-ATPase activity in vitro by increasing the affinity for ATP. To investigate a physiological role for this association, the Arabidopsis thaliana cytoplasmic enolase mutant, los2, was characterized. These plants were salt sensitive, and there was a specific reduction in enolase abundance in the tonoplast from salt-treated plants. Moreover, tonoplast isolated from mutant plants showed an impaired ability for aldolase stimulation of V-ATPase hydrolytic activity. The association of glycolytic proteins with the tonoplast may not only channel ATP to the V-ATPase, but also directly upregulate H+-pump activity. PMID:20028841

  12. Stroma derived COL6A3 is a potential prognosis marker of colorectal carcinoma revealed by quantitative proteomics.

    PubMed

    Qiao, Jie; Fang, Cai-Yun; Chen, Sun-Xia; Wang, Xiao-Qing; Cui, Shu-Jian; Liu, Xiao-Hui; Jiang, Ying-Hua; Wang, Jie; Zhang, Yang; Yang, Peng-Yuan; Liu, Feng

    2015-10-01

    Colorectal cancer (CRC) represents the third most common cancer in males and second in females worldwide. Here, we performed a quantitative 8-plex iTRAQ proteomics analysis of the secreted proteins from five colonic fibroblast cultures and three colon cancer epithelial cell lines. We identified 1114 proteins at 0% FDR, including 587 potential secreted proteins. We further recognized 116 fibroblast-enriched proteins which were significantly associated with cell movement, angiogenesis, proliferation and wound healing, and 44 epithelial cell-enriched proteins. By interrogation of Oncomine database, we found that 20 and 8 fibroblast-enriched proteins were up- and downregulated in CRC, respectively. Western blots confirmed the fibroblast-specific secretion of filamin C, COL6A3, COL4A1 and spondin-2. Upregulated mRNA and stroma expression of COL6A3 in CRC, which were revealed by Oncomine analyses and tissue-microarray-immunohistochemistry, indicated poor prognosis. COL6A3 expression was significantly associated with Dukes stage, T stage, stage, recurrence and smoking status. Circulating plasma COL6A3 in CRC patients was upregulated significantly comparing with healthy peoples. Receiver operating characteristic curve analysis revealed that COL6A3 has better predictive performance for CRC with an area under the curve of 0.885 and the best sensitivity/specificity of 92.9%/81.3%. Thus we demonstrated that COL6A3 was a potential diagnosis and prognosis marker of CRC. PMID:26338966

  13. Association Mapping across Numerous Traits Reveals Patterns of Functional Variation in Maize

    PubMed Central

    Wallace, Jason G.; Bradbury, Peter J.; Zhang, Nengyi; Gibon, Yves; Stitt, Mark; Buckler, Edward S.

    2014-01-01

    Phenotypic variation in natural populations results from a combination of genetic effects, environmental effects, and gene-by-environment interactions. Despite the vast amount of genomic data becoming available, many pressing questions remain about the nature of genetic mutations that underlie functional variation. We present the results of combining genome-wide association analysis of 41 different phenotypes in ∼5,000 inbred maize lines to analyze patterns of high-resolution genetic association among of 28.9 million single-nucleotide polymorphisms (SNPs) and ∼800,000 copy-number variants (CNVs). We show that genic and intergenic regions have opposite patterns of enrichment, minor allele frequencies, and effect sizes, implying tradeoffs among the probability that a given polymorphism will have an effect, the detectable size of that effect, and its frequency in the population. We also find that genes tagged by GWAS are enriched for regulatory functions and are ∼50% more likely to have a paralog than expected by chance, indicating that gene regulation and gene duplication are strong drivers of phenotypic variation. These results will likely apply to many other organisms, especially ones with large and complex genomes like maize. PMID:25474422

  14. Artificial Selection Reveals High Genetic Variation in Phenology at the Trailing Edge of a Species Range.

    PubMed

    Sheth, Seema Nayan; Angert, Amy Lauren

    2016-02-01

    Species responses to climate change depend on the interplay of migration and adaptation, yet we know relatively little about the potential for adaptation. Genetic adaptations to climate change often involve shifts in the timing of phenological events, such as flowering. If populations at the edge of a species range have lower genetic variation in phenological traits than central populations, then their persistence under climate change could be threatened. To test this hypothesis, we performed artificial selection experiments using the scarlet monkeyflower (Mimulus cardinalis) and compared genetic variation in flowering time among populations at the latitudinal center, northern edge, and southern edge of the species range. We also assessed whether selection on flowering time yielded correlated responses in functional traits, potentially representing a cost associated with early or late flowering. Contrary to prediction, southern populations exhibited greater responses to selection on flowering time than central or northern populations. Further, selection for early flowering resulted in correlated increases in specific leaf area and leaf nitrogen, whereas selection for late flowering led to decreases in these traits. These results provide critical insights about how spatial variation in the potential for adaptation may affect population persistence under changing climates. PMID:26807746

  15. Population genomic variation reveals roles of history, adaptation and ploidy in switchgrass

    PubMed Central

    Grabowski, Paul P; Morris, Geoffrey P; Casler, Michael D; Borevitz, Justin O

    2014-01-01

    Geographic patterns of genetic variation are shaped by multiple evolutionary processes, including genetic drift, migration and natural selection. Switchgrass (Panicum virgatum L.) has strong genetic and adaptive differentiation despite life history characteristics that promote high levels of gene flow and can homogenize intraspecific differences, such as wind-pollination and self-incompatibility. To better understand how historical and contemporary factors shape variation in switchgrass, we use genotyping-by-sequencing to characterize switchgrass from across its range at 98 042 SNPs. Population structuring reflects biogeographic and ploidy differences within and between switchgrass ecotypes and indicates that biogeographic history, ploidy incompatibilities and differential adaptation each have important roles in shaping ecotypic differentiation in switchgrass. At one extreme, we determine that two Panicum taxa are not separate species but are actually conspecific, ecologically divergent types of switchgrass adapted to the extreme conditions of coastal sand dune habitats. Conversely, we identify natural hybrids among lowland and upland ecotypes and visualize their genome-wide patterns of admixture. Furthermore, we determine that genetic differentiation between primarily tetraploid and octoploid lineages is not caused solely by ploidy differences. Rather, genetic diversity in primarily octoploid lineages is consistent with a history of admixture. This suggests that polyploidy in switchgrass is promoted by admixture of diverged lineages, which may be important for maintaining genetic differentiation between switchgrass ecotypes where they are sympatric. These results provide new insights into the mechanisms shaping variation in widespread species and provide a foundation for dissecting the genetic basis of adaptation in switchgrass. PMID:24962137

  16. Genome comparison of two Magnaporthe oryzae field isolates reveals genome variations and potential virulence effectors

    PubMed Central

    2013-01-01

    Background Rice blast caused by the fungus Magnaporthe oryzae is an important disease in virtually every rice growing region of the world, which leads to significant annual decreases of grain quality and yield. To prevent disease, resistance genes in rice have been cloned and introduced into susceptible cultivars. However, introduced resistance can often be broken within few years of release, often due to mutation of cognate avirulence genes in fungal field populations. Results To better understand the pattern of mutation of M. oryzae field isolates under natural selection forces, we used a next generation sequencing approach to analyze the genomes of two field isolates FJ81278 and HN19311, as well as the transcriptome of FJ81278. By comparing the de novo genome assemblies of the two isolates against the finished reference strain 70–15, we identified extensive polymorphisms including unique genes, SNPs (single nucleotide polymorphism) and indels, structural variations, copy number variations, and loci under strong positive selection. The 1.75 MB of isolate-specific genome content carrying 118 novel genes from FJ81278, and 0.83 MB from HN19311 were also identified. By analyzing secreted proteins carrying polymorphisms, in total 256 candidate virulence effectors were found and 6 were chosen for functional characterization. Conclusions We provide results from genome comparison analysis showing extensive genome variation, and generated a list of M. oryzae candidate virulence effectors for functional characterization. PMID:24341723

  17. Identification of quantitative genetic components of fitness variation in farmed, hybrid and native salmon in the wild

    PubMed Central

    Besnier, F; Glover, K A; Lien, S; Kent, M; Hansen, M M; Shen, X; Skaala, Ø

    2015-01-01

    Feral animals represent an important problem in many ecosystems due to interbreeding with wild conspecifics. Hybrid offspring from wild and domestic parents are often less adapted to local environment and ultimately, can reduce the fitness of the native population. This problem is an important concern in Norway, where each year, hundreds of thousands of farm Atlantic salmon escape from fish farms. Feral fish outnumber wild populations, leading to a possible loss of local adaptive genetic variation and erosion of genetic structure in wild populations. Studying the genetic factors underlying relative performance between wild and domesticated conspecific can help to better understand how domestication modifies the genetic background of populations, and how it may alter their ability to adapt to the natural environment. Here, based upon a large-scale release of wild, farm and wild x farm salmon crosses into a natural river system, a genome-wide quantitative trait locus (QTL) scan was performed on the offspring of 50 full-sib families, for traits related to fitness (length, weight, condition factor and survival). Six QTLs were detected as significant contributors to the phenotypic variation of the first three traits, explaining collectively between 9.8 and 14.8% of the phenotypic variation. The seventh QTL had a significant contribution to the variation in survival, and is regarded as a key factor to understand the fitness variability observed among salmon in the river. Interestingly, strong allelic correlation within one of the QTL regions in farmed salmon might reflect a recent selective sweep due to artificial selection. PMID:26059968

  18. Mathematical Modeling Reveals That Changes to Local Cell Density Dynamically Modulate Baseline Variations in Cell Growth and Drug Response.

    PubMed

    Greene, James M; Levy, Doron; Herrada, Sylvia P; Gottesman, Michael M; Lavi, Orit

    2016-05-15

    Cell-to-cell variations contribute to drug resistance with consequent therapy failure in cancer. Experimental techniques have been developed to monitor tumor heterogeneity, but estimates of cell-to-cell variation typically fail to account for the expected spatiotemporal variations during the cell growth process. To fully capture the extent of such dynamic variations, we developed a mechanistic mathematical model supported by in vitro experiments with an ovarian cancer cell line. We introduce the notion of dynamic baseline cell-to-cell variation, showing how the emerging spatiotemporal heterogeneity of one cell population can be attributed to differences in local cell density and cell cycle. Manipulation of the geometric arrangement and spatial density of cancer cells revealed that given a fixed global cell density, significant differences in growth, proliferation, and paclitaxel-induced apoptosis rates were observed based solely on cell movement and local conditions. We conclude that any statistical estimate of changes in the level of heterogeneity should be integrated with the dynamics and spatial effects of the baseline system. This approach incorporates experimental and theoretical methods to systematically analyze biologic phenomena and merits consideration as an underlying reference model for cell biology studies that investigate dynamic processes affecting cancer cell behavior. Cancer Res; 76(10); 2882-90. ©2016 AACR. PMID:26933088

  19. Differential adaptation to multi-stressed conditions of wine fermentation revealed by variations in yeast regulatory networks

    PubMed Central

    2013-01-01

    Background Variation of gene expression can lead to phenotypic variation and have therefore been assumed to contribute the diversity of wine yeast (Saccharomyces cerevisiae) properties. However, the molecular bases of this variation of gene expression are unknown. We addressed these questions by carrying out an integrated genetical-genomic study in fermentation conditions. We report here quantitative trait loci (QTL) mapping based on expression profiling in a segregating population generated by a cross between a derivative of the popular wine strain EC1118 and the laboratory strain S288c. Results Most of the fermentation traits studied appeared to be under multi-allelic control. We mapped five phenotypic QTLs and 1465 expression QTLs. Several expression QTLs overlapped in hotspots. Among the linkages unraveled here, several were associated with metabolic processes essential for wine fermentation such as glucose sensing or nitrogen and vitamin metabolism. Variations affecting the regulation of drug detoxification and export (TPO1, PDR12 or QDR2) were linked to variation in four genes encoding transcription factors (PDR8, WAR1, YRR1 and HAP1). We demonstrated that the allelic variation of WAR1 and TPO1 affected sorbic and octanoic acid resistance, respectively. Moreover, analysis of the transcription factors phylogeny suggests they evolved with a specific adaptation of the strains to wine fermentation conditions. Unexpectedly, we found that the variation of fermentation rates was associated with a partial disomy of chromosome 16. This disomy resulted from the well known 8–16 translocation. Conclusions This large data set made it possible to decipher the effects of genetic variation on gene expression during fermentation and certain wine fermentation properties. Our findings shed a new light on the adaptation mechanisms required by yeast to cope with the multiple stresses generated by wine fermentation. In this context, the detoxification and export systems appear

  20. Mantle heterogeneities as revealed by along-axis variations in MORB volatile concentrations

    NASA Astrophysics Data System (ADS)

    Le Voyer, M.; Cottrell, E.; Kelley, K. A.; Hauri, E. H.

    2013-12-01

    We determined C, H, S, F and Cl concentrations by SIMS in more than 300 mid-ocean ridge basalt glasses from ridges worldwide. Although CO2 contents of MORB glasses are strongly affected by degassing, rapid quenching and confining water pressure during submarine eruptions prevents H2O, S, F and Cl from degassing, allowing us to study volatile-element systematics in relation to variations in the composition of the mantle source. Average compositions are 160×150 ppm CO2, 0.32×0.36 wt% H2O, 190×190 ppm F, 1200×450 ppm S and 140×420 ppm Cl (2σ standard variation). High Cl/Nb can be used as tracer of seawater alteration and/or assimilation of altered materials such as serpentinite. MORB samples that are depleted in Cl (and other incompatible elements) are the ones most affected by Cl addition. Filtering out all samples with Cl/Nb>20 results in lowering the average composition for Cl as well as the range in compositions for all volatiles (2σ standard variation lowered by up to 50%). After filtering, the volatile content for unaltered MORB glasses is 180×130 ppm CO2, 0.33×0.38 wt% H2O, 200×190 ppm F, 1150×250 ppm S and 80×230 ppm Cl. To account for variations in the degree of melting and/or crystallization, we normalize by a trace element with similar compatibility during mantle melting. Average ratios for unaltered MORB are 150×70 for CO2/Nb, 10×8 for Cl/Nb, 2.4×1.8 for F/Zr, 240×100 for H2O/Ce, and 240×80 for S/Dy. For CO2, the positive correlation with eruption depth at the global scale indicates that the CO2 content in MORB is mainly controlled by degassing, through a combination of equilibrium degassing (for samples with saturation pressure equals to equilibrium pressure, indicating equilibrium between the melt and the gas phase) and kinetic effects (for samples with saturation pressure greater than eruption pressure, indicating a delay in CO2 partitioning into the bubbles, thus an excess CO2 in the melt). We find that there is no correlation globally

  1. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms.

    PubMed

    Young, Jodi N; Heureux, Ana M C; Sharwood, Robert E; Rickaby, Rosalind E M; Morel, François M M; Whitney, Spencer M

    2016-05-01

    While marine phytoplankton rival plants in their contribution to global primary productivity, our understanding of their photosynthesis remains rudimentary. In particular, the kinetic diversity of the CO2-fixing enzyme, Rubisco, in phytoplankton remains unknown. Here we quantify the maximum rates of carboxylation (k cat (c)), oxygenation (k cat (o)), Michaelis constants (K m) for CO2 (K C) and O2 (K O), and specificity for CO2 over O2 (SC/O) for Form I Rubisco from 11 diatom species. Diatom Rubisco shows greater variation in K C (23-68 µM), SC/O (57-116mol mol(-1)), and K O (413-2032 µM) relative to plant and algal Rubisco. The broad range of K C values mostly exceed those of C4 plant Rubisco, suggesting that the strength of the carbon-concentrating mechanism (CCM) in diatoms is more diverse, and more effective than previously predicted. The measured k cat (c) for each diatom Rubisco showed less variation (2.1-3.7s(-1)), thus averting the canonical trade-off typically observed between K C and k cat (c) for plant Form I Rubisco. Uniquely, a negative relationship between K C and cellular Rubisco content was found, suggesting variation among diatom species in how they allocate their limited cellular resources between Rubisco synthesis and their CCM. The activation status of Rubisco in each diatom was low, indicating a requirement for Rubisco activase. This work highlights the need to better understand the correlative natural diversity between the Rubisco kinetics and CCM of diatoms and the underpinning mechanistic differences in catalytic chemistry among the Form I Rubisco superfamily. PMID:27129950

  2. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms

    PubMed Central

    Young, Jodi N.; Heureux, Ana M.C.; Sharwood, Robert E.; Rickaby, Rosalind E.M.; Morel, François M.M.; Whitney, Spencer M.

    2016-01-01

    While marine phytoplankton rival plants in their contribution to global primary productivity, our understanding of their photosynthesis remains rudimentary. In particular, the kinetic diversity of the CO2-fixing enzyme, Rubisco, in phytoplankton remains unknown. Here we quantify the maximum rates of carboxylation (k cat c), oxygenation (k cat o), Michaelis constants (K m) for CO2 (K C) and O2 (K O), and specificity for CO2 over O2 (SC/O) for Form I Rubisco from 11 diatom species. Diatom Rubisco shows greater variation in K C (23–68 µM), SC/O (57–116mol mol−1), and K O (413–2032 µM) relative to plant and algal Rubisco. The broad range of K C values mostly exceed those of C4 plant Rubisco, suggesting that the strength of the carbon-concentrating mechanism (CCM) in diatoms is more diverse, and more effective than previously predicted. The measured k cat c for each diatom Rubisco showed less variation (2.1–3.7s−1), thus averting the canonical trade-off typically observed between K C and k cat c for plant Form I Rubisco. Uniquely, a negative relationship between K C and cellular Rubisco content was found, suggesting variation among diatom species in how they allocate their limited cellular resources between Rubisco synthesis and their CCM. The activation status of Rubisco in each diatom was low, indicating a requirement for Rubisco activase. This work highlights the need to better understand the correlative natural diversity between the Rubisco kinetics and CCM of diatoms and the underpinning mechanistic differences in catalytic chemistry among the Form I Rubisco superfamily. PMID:27129950

  3. Spatiotemporal variations of Venus middle atmosphere revealed by Subaru/COMICS

    NASA Astrophysics Data System (ADS)

    Sato, T. M.; Sagawa, H.; Kouyama, T.; Imamura, T.; Satoh, T.

    2013-09-01

    We report the spatiotemporal variations of brightness temperatures of Venus at cloud top altitudes (~70 km) obtained by the Cooled Mid-Infrared Camera and Spectrometer (COMICS), mounted on the 8.2-m Subaru Telescope. The two important findings are (1) the brightness temperatures at north polar regions were synchronized with those at south polar regions at least in the three observation nights and (2) there were some streaky patterns as were seen in UV and these patterns varied from day to day.

  4. Quantitative dynamics of triacylglycerol accumulation in microalgae populations at single-cell resolution revealed by Raman microspectroscopy

    PubMed Central

    2014-01-01

    Background Rapid, real-time and label-free measurement of the cellular contents of biofuel molecules such as triacylglycerol (TAG) in populations at single-cell resolution are important for bioprocess control and understanding of the population heterogeneity. Raman microspectroscopy can directly detect the changes of metabolite profile in a cell and thus can potentially serve these purposes. Results Single-cell Raman spectra (SCRS) of the unicellular oleaginous microalgae Nannochloropsis oceanica from the cultures under nitrogen depletion (TAG-producing condition) and nitrogen repletion (non-TAG-producing condition) were sampled at eight time points during the first 96 hours upon the onset of nitrogen depletion. Single N. oceanica cells were captured by a 532-nm laser and the SCRS were acquired by the same laser within one second per cell. Using chemometric methods, the SCRS were able to discriminate cells between nitrogen-replete and nitrogen-depleted conditions at as early as 6 hours with >93.3% accuracy, and among the eight time points under nitrogen depletion with >90.4% accuracy. Quantitative prediction of TAG content in single cells was achieved and validated via SCRS and liquid chromatography-mass spectrometry (LC-MS) analysis at population level. SCRS revealed the dynamics of heterogeneity in TAG production among cells in each isogenic population. A significant negative correlation between TAG content and lipid unsaturation degree in individual microalgae cells was observed. Conclusions Our results show that SCRS can serve as a label-free and non-invasive proxy for quantitatively tracking and screening cellular TAG content in real-time at single-cell level. Phenotypic comparison of single cells via SCRS should also help investigating the mechanisms of functional heterogeneity within a cellular population. PMID:24716544

  5. Comparative proteomics of milk fat globule membrane in different species reveals variations in lactation and nutrition.

    PubMed

    Lu, Jing; Wang, Xinyu; Zhang, Weiqing; Liu, Lu; Pang, Xiaoyang; Zhang, Shuwen; Lv, Jiaping

    2016-04-01

    In present study, 312, 554, 175 and 143 proteins were identified and quantified by label-free quantitative proteomics in human, cow, goat and yak milk fat globule membrane (MFGM), respectively. Fifty proteins involved in vesicle mediate transport and milk fat globule secretion were conserved among species. Moreover, proteins involved in lipid synthesis and secretion (xanthine dehydrogenase/oxidase, stomatin and CD36), showed different expression pattern and the host defense proteins exhibited various profiles within species. Notably, the content and activity of lipid catabolic enzymes were significantly higher in human MFGM, which could be indicative of the superior fat utilization in breast fed infants. Our findings unraveled the significant differences in protein composition of human milk and conventionally used substitutes of it. The in-depth study of lipid metabolic enzymes in human MFGM will probably contribute to the improvement of the fat utilization through modulation of lipid catabolic enzymes in infant formula. PMID:26593540

  6. Expression Quantitative Trait Locus Mapping across Water Availability Environments Reveals Contrasting Associations with Genomic Features in Arabidopsis[C][W][OPEN

    PubMed Central

    Lowry, David B.; Logan, Tierney L.; Santuari, Luca; Hardtke, Christian S.; Richards, James H.; DeRose-Wilson, Leah J.; McKay, John K.; Sen, Saunak; Juenger, Thomas E.

    2013-01-01

    The regulation of gene expression is crucial for an organism’s development and response to stress, and an understanding of the evolution of gene expression is of fundamental importance to basic and applied biology. To improve this understanding, we conducted expression quantitative trait locus (eQTL) mapping in the Tsu-1 (Tsushima, Japan) × Kas-1 (Kashmir, India) recombinant inbred line population of Arabidopsis thaliana across soil drying treatments. We then used genome resequencing data to evaluate whether genomic features (promoter polymorphism, recombination rate, gene length, and gene density) are associated with genes responding to the environment (E) or with genes with genetic variation (G) in gene expression in the form of eQTLs. We identified thousands of genes that responded to soil drying and hundreds of main-effect eQTLs. However, we identified very few statistically significant eQTLs that interacted with the soil drying treatment (GxE eQTL). Analysis of genome resequencing data revealed associations of several genomic features with G and E genes. In general, E genes had lower promoter diversity and local recombination rates. By contrast, genes with eQTLs (G) had significantly greater promoter diversity and were located in genomic regions with higher recombination. These results suggest that genomic architecture may play an important a role in the evolution of gene expression. PMID:24045022

  7. Natural variation reveals that intracellular distribution of ELF3 protein is associated with function in the circadian clock

    PubMed Central

    Anwer, Muhammad Usman; Boikoglou, Eleni; Herrero, Eva; Hallstein, Marc; Davis, Amanda Melaragno; Velikkakam James, Geo; Nagy, Ferenc; Davis, Seth Jon

    2014-01-01

    Natural selection of variants within the Arabidopsis thaliana circadian clock can be attributed to adaptation to varying environments. To define a basis for such variation, we examined clock speed in a reporter-modified Bay-0 x Shakdara recombinant inbred line and localized heritable variation. Extensive variation led us to identify EARLY FLOWERING3 (ELF3) as a major quantitative trait locus (QTL). The causal nucleotide polymorphism caused a short-period phenotype under light and severely dampened rhythm generation in darkness, and entrainment alterations resulted. We found that ELF3-Sha protein failed to properly localize to the nucleus, and its ability to accumulate in darkness was compromised. Evidence was provided that the ELF3-Sha allele originated in Central Asia. Collectively, we showed that ELF3 protein plays a vital role in defining its light-repressor action in the circadian clock and that its functional abilities are largely dependent on its cellular localization. DOI: http://dx.doi.org/10.7554/eLife.02206.001 PMID:24867215

  8. Mass spectrometry-based absolute quantification reveals rhythmic variation of mouse circadian clock proteins.

    PubMed

    Narumi, Ryohei; Shimizu, Yoshihiro; Ukai-Tadenuma, Maki; Ode, Koji L; Kanda, Genki N; Shinohara, Yuta; Sato, Aya; Matsumoto, Katsuhiko; Ueda, Hiroki R

    2016-06-14

    Absolute values of protein expression levels in cells are crucial information for understanding cellular biological systems. Precise quantification of proteins can be achieved by liquid chromatography (LC)-mass spectrometry (MS) analysis of enzymatic digests of proteins in the presence of isotope-labeled internal standards. Thus, development of a simple and easy way for the preparation of internal standards is advantageous for the analyses of multiple target proteins, which will allow systems-level studies. Here we describe a method, termed MS-based Quantification By isotope-labeled Cell-free products (MS-QBiC), which provides the simple and high-throughput preparation of internal standards by using a reconstituted cell-free protein synthesis system, and thereby facilitates both multiplexed and sensitive quantification of absolute amounts of target proteins. This method was applied to a systems-level dynamic analysis of mammalian circadian clock proteins, which consist of transcription factors and protein kinases that govern central and peripheral circadian clocks in mammals. Sixteen proteins from 20 selected circadian clock proteins were successfully quantified from mouse liver over a 24-h time series, and 14 proteins had circadian variations. Quantified values were applied to detect internal body time using a previously developed molecular timetable method. The analyses showed that single time-point data from wild-type mice can predict the endogenous state of the circadian clock, whereas data from clock mutant mice are not applicable because of the disappearance of circadian variation. PMID:27247408

  9. Whole Genome Analysis of 132 Clinical Saccharomyces cerevisiae Strains Reveals Extensive Ploidy Variation

    PubMed Central

    Zhu, Yuan O.; Sherlock, Gavin; Petrov, Dmitri A.

    2016-01-01

    Budding yeast has undergone several independent transitions from commercial to clinical lifestyles. The frequency of such transitions suggests that clinical yeast strains are derived from environmentally available yeast populations, including commercial sources. However, despite their important role in adaptive evolution, the prevalence of polyploidy and aneuploidy has not been extensively analyzed in clinical strains. In this study, we have looked for patterns governing the transition to clinical invasion in the largest screen of clinical yeast isolates to date. In particular, we have focused on the hypothesis that ploidy changes have influenced adaptive processes. We sequenced 144 yeast strains, 132 of which are clinical isolates. We found pervasive large-scale genomic variation in both overall ploidy (34% of strains identified as 3n/4n) and individual chromosomal copy numbers (36% of strains identified as aneuploid). We also found evidence for the highly dynamic nature of yeast genomes, with 35 strains showing partial chromosomal copy number changes and eight strains showing multiple independent chromosomal events. Intriguingly, a lineage identified to be baker’s/commercial derived with a unique damaging mutation in NDC80 was particularly prone to polyploidy, with 83% of its members being triploid or tetraploid. Polyploidy was in turn associated with a >2× increase in aneuploidy rates as compared to other lineages. This dataset provides a rich source of information on the genomics of clinical yeast strains and highlights the potential importance of large-scale genomic copy variation in yeast adaptation. PMID:27317778

  10. Whole Genome Analysis of 132 Clinical Saccharomyces cerevisiae Strains Reveals Extensive Ploidy Variation.

    PubMed

    Zhu, Yuan O; Sherlock, Gavin; Petrov, Dmitri A

    2016-01-01

    Budding yeast has undergone several independent transitions from commercial to clinical lifestyles. The frequency of such transitions suggests that clinical yeast strains are derived from environmentally available yeast populations, including commercial sources. However, despite their important role in adaptive evolution, the prevalence of polyploidy and aneuploidy has not been extensively analyzed in clinical strains. In this study, we have looked for patterns governing the transition to clinical invasion in the largest screen of clinical yeast isolates to date. In particular, we have focused on the hypothesis that ploidy changes have influenced adaptive processes. We sequenced 144 yeast strains, 132 of which are clinical isolates. We found pervasive large-scale genomic variation in both overall ploidy (34% of strains identified as 3n/4n) and individual chromosomal copy numbers (36% of strains identified as aneuploid). We also found evidence for the highly dynamic nature of yeast genomes, with 35 strains showing partial chromosomal copy number changes and eight strains showing multiple independent chromosomal events. Intriguingly, a lineage identified to be baker's/commercial derived with a unique damaging mutation in NDC80 was particularly prone to polyploidy, with 83% of its members being triploid or tetraploid. Polyploidy was in turn associated with a >2× increase in aneuploidy rates as compared to other lineages. This dataset provides a rich source of information on the genomics of clinical yeast strains and highlights the potential importance of large-scale genomic copy variation in yeast adaptation. PMID:27317778

  11. Interannual variation of the Indonesian throughflow in the Timor Passage as revealed in SODA: 1958 - 2008

    NASA Astrophysics Data System (ADS)

    Iskandar, I.; Mardiansyah, W.; Setiabudidaya, D.; Poerwono, P.; Syamsuddin, F.

    2015-09-01

    Temporal variability of the Indonesian Throughflow (ITF) in the Timor Passage was evaluated with special focus on its interannual variation. The ITF transport was estimated as a latitudinal averaged of an along strait currents in the Timor Passage based on the output of Simple Ocean Data Assimilation (SODA) experiment from 1958 - 2008. A Complex Empirical Orthogonal Function (CEOF), then, was applied to the interannual estimated ITF transport to extract the dominant mode of variability. The result has shown that the leading CEOF mode was explaining 67.2% of the total interannual variation. The reconstructed first CEOF time series shows strong positive anomalies (towards the Pacific Ocean) during 1962 - 1969, 1972 - 1978, 1997 - 1999, 2002 - 2005 and 2007. The transport was reversed (towards the Indian Ocean) during other periods. The upper layer transport above ˜200m depth is significantly correlated with the zonal wind stress in the western equatorial Pacific Ocean, with the transport lagging the winds by about 10 months. The middle layer transport between about 200 - 600m depth is significantly influenced by the zonal wind from the eastern equatorial Indian Ocean in which the zonal winds lag the ITF by about 5 months. In addition, the deeper layer transport below about 600m depth shows significant zero lag correlation with the zonal wind stress in the western equatorial Pacific Ocean, though the impact of the equatorial Indian Ocean zonal wind stress is not negligible.

  12. Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum-Phytophthora capsici Phytopathosystem.

    PubMed

    Mahadevan, Chidambareswaren; Krishnan, Anu; Saraswathy, Gayathri G; Surendran, Arun; Jaleel, Abdul; Sakuntala, Manjula

    2016-01-01

    Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset

  13. Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum—Phytophthora capsici Phytopathosystem

    PubMed Central

    Mahadevan, Chidambareswaren; Krishnan, Anu; Saraswathy, Gayathri G.; Surendran, Arun; Jaleel, Abdul; Sakuntala, Manjula

    2016-01-01

    Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset

  14. Metabolomics reveals significant variations in metabolites and correlations regarding the maturation of walnuts (Juglans regia L.)

    PubMed Central

    Rao, Guodong; Sui, Jinkai

    2016-01-01

    ABSTRACT The content of walnut metabolites is related to its nutritive value and physiological characteristics, however, comprehensive information concerning the metabolome of walnut kernels is limited. In this study we analyzed the metabolites of walnut kernels at five developmental stages from filling to ripening using GC-MS-based untargeted metabolomics; of a total 252 peaks identified, 85 metabolites were positively identified. Further statistical analysis revealed that these 85 metabolites covered different types of metabolism pathways. PCA scores revealed that the metabolic compositions of the embryo are different at each stage, while the metabolic composition of the endotesta could not be significantly separated into distinct groups. Additionally, 7225 metabolite-metabolite correlations were detected in walnut kernel by a Pearson correlation coefficient approach; during screening of the calculated correlations, 463 and 1047 were determined to be significant with r2≥0.49 and had a false discovery rate (FDR) ≤0.05 in endotesta and embryo, respectively. This work provides the first comprehensive metabolomic study of walnut kernels and reveals that most of the carbohydrate and protein-derived carbon was transferred into other compounds, such as fatty acids, during the maturation of walnuts, which may potentially provide the basis for further studies on walnut kernel metabolism. PMID:27215321

  15. Metabolomics reveals significant variations in metabolites and correlations regarding the maturation of walnuts (Juglans regia L.).

    PubMed

    Rao, Guodong; Sui, Jinkai; Zhang, Jianguo

    2016-01-01

    The content of walnut metabolites is related to its nutritive value and physiological characteristics, however, comprehensive information concerning the metabolome of walnut kernels is limited. In this study we analyzed the metabolites of walnut kernels at five developmental stages from filling to ripening using GC-MS-based untargeted metabolomics; of a total 252 peaks identified, 85 metabolites were positively identified. Further statistical analysis revealed that these 85 metabolites covered different types of metabolism pathways. PCA scores revealed that the metabolic compositions of the embryo are different at each stage, while the metabolic composition of the endotesta could not be significantly separated into distinct groups. Additionally, 7225 metabolite-metabolite correlations were detected in walnut kernel by a Pearson correlation coefficient approach; during screening of the calculated correlations, 463 and 1047 were determined to be significant with r(2)≥0.49 and had a false discovery rate (FDR) ≤0.05 in endotesta and embryo, respectively. This work provides the first comprehensive metabolomic study of walnut kernels and reveals that most of the carbohydrate and protein-derived carbon was transferred into other compounds, such as fatty acids, during the maturation of walnuts, which may potentially provide the basis for further studies on walnut kernel metabolism. PMID:27215321

  16. Quantitative Monitoring for Enhanced Geothermal Systems Using Double-Difference Waveform Inversion with Spatially-Variant Total-Variation Regularization

    SciTech Connect

    Lin, Youzuo; Huang, Lianjie; Zhang, Zhigang

    2011-01-01

    Double-difference waveform inversion is a promising tool for quantitative monitoring for enhanced geothermal systems (EGS). The method uses time-lapse seismic data to jointly inverts for reservoir changes. Due to the ill-posedness of waveform inversion, it is a great challenge to obtain reservoir changes accurately and efficiently, particularly when using timelapse seismic reflection data. To improve reconstruction, we develop a spatially-variant total-variation regularization scheme into double-difference waveform inversion to improve the inversion accuracy and robustness. The new regularization scheme employs different regularization parameters in different regions of the model to obtain an optimal regularization in each area. We compare the results obtained using a spatially-variant parameter with those obtained using a constant regularization parameter. Utilizing a spatially-variant regularization scheme, the target monitoring regions are well reconstructed and the image noise is significantly reduced outside the monitoring regions. Our numerical examples demonstrate that the spatially-variant total-variation regularization scheme provides the flexibility to regularize local regions based on the a priori spatial information without increasing computational costs and the computer memory requirement.

  17. A First Glimpse of Wild Lupin Karyotype Variation As Revealed by Comparative Cytogenetic Mapping

    PubMed Central

    Susek, Karolina; Bielski, Wojciech K.; Hasterok, Robert; Naganowska, Barbara; Wolko, Bogdan

    2016-01-01

    Insight into plant genomes at the cytomolecular level provides useful information about their karyotype structure, enabling inferences about taxonomic relationships and evolutionary origins. The Old World lupins (OWL) demonstrate a high level of genomic diversification involving variation in chromosome numbers (2n = 32–52), basic chromosome numbers (x = 5–7, 9, 13) and in nuclear genome size (2C DNA = 0.97–2.68 pg). Lupins comprise both crop and wild species and provide an intriguing system to study karyotype evolution. In order to investigate lupin chromosome structure, heterologous FISH was used. Sixteen BACs that had been generated as chromosome markers for the reference species, Lupinus angustifolius, were used to identify chromosomes in the wild species and explore karyotype variation. While all “single-locus” in L. angustifolius, in the wild lupins these clones proved to be “single-locus,” “single-locus” with additional signals, “repetitive” or had no detectable BAC-FISH signal. The diverse distribution of the clones in the targeted genomes suggests a complex evolution history, which possibly involved multiple chromosomal changes such as fusions/fissions and repetitive sequence amplification. Twelve BACs were sequenced and we found numerous transposable elements including DNA transposons as well as LTR and non-LTR retrotransposons with varying quantity and composition among the different lupin species. However, at this preliminary stage, no correlation was observed between the pattern of BAC-FISH signals and the repeat content in particular BACs. Here, we describe the first BAC-based chromosome-specific markers for the wild species: L. cosentinii, L. cryptanthus, L. pilosus, L. micranthus and one New World lupin, L. multiflorus. These BACs could constitute the basis for an assignment of the chromosomal and genetic maps of other lupins, e.g., L. albus and L. luteus. Moreover, we identified karyotype variation that helps illustrate the

  18. A First Glimpse of Wild Lupin Karyotype Variation As Revealed by Comparative Cytogenetic Mapping.

    PubMed

    Susek, Karolina; Bielski, Wojciech K; Hasterok, Robert; Naganowska, Barbara; Wolko, Bogdan

    2016-01-01

    Insight into plant genomes at the cytomolecular level provides useful information about their karyotype structure, enabling inferences about taxonomic relationships and evolutionary origins. The Old World lupins (OWL) demonstrate a high level of genomic diversification involving variation in chromosome numbers (2n = 32-52), basic chromosome numbers (x = 5-7, 9, 13) and in nuclear genome size (2C DNA = 0.97-2.68 pg). Lupins comprise both crop and wild species and provide an intriguing system to study karyotype evolution. In order to investigate lupin chromosome structure, heterologous FISH was used. Sixteen BACs that had been generated as chromosome markers for the reference species, Lupinus angustifolius, were used to identify chromosomes in the wild species and explore karyotype variation. While all "single-locus" in L. angustifolius, in the wild lupins these clones proved to be "single-locus," "single-locus" with additional signals, "repetitive" or had no detectable BAC-FISH signal. The diverse distribution of the clones in the targeted genomes suggests a complex evolution history, which possibly involved multiple chromosomal changes such as fusions/fissions and repetitive sequence amplification. Twelve BACs were sequenced and we found numerous transposable elements including DNA transposons as well as LTR and non-LTR retrotransposons with varying quantity and composition among the different lupin species. However, at this preliminary stage, no correlation was observed between the pattern of BAC-FISH signals and the repeat content in particular BACs. Here, we describe the first BAC-based chromosome-specific markers for the wild species: L. cosentinii, L. cryptanthus, L. pilosus, L. micranthus and one New World lupin, L. multiflorus. These BACs could constitute the basis for an assignment of the chromosomal and genetic maps of other lupins, e.g., L. albus and L. luteus. Moreover, we identified karyotype variation that helps illustrate the relationships between the

  19. Stover Composition in Maize and Sorghum Reveals Remarkable Genetic Variation and Plasticity for Carbohydrate Accumulation

    PubMed Central

    Sekhon, Rajandeep S.; Breitzman, Matthew W.; Silva, Renato R.; Santoro, Nicholas; Rooney, William L.; de Leon, Natalia; Kaeppler, Shawn M.

    2016-01-01

    Carbohydrates stored in vegetative organs, particularly stems, of grasses are a very important source of energy. We examined carbohydrate accumulation in adult sorghum and maize hybrids with distinct phenology and different end uses (grain, silage, sucrose or sweetness in stalk juice, and biomass). Remarkable variation was observed for non-structural carbohydrates and structural polysaccharides during three key developmental stages both between and within hybrids developed for distinct end use in both species. At the onset of the reproductive phase (average 65 days after planting, DAP), a wide range for accumulation of non-structural carbohydrates (free glucose and sucrose combined), was observed in internodes of maize (11–24%) and sorghum (7–36%) indicating substantial variation for transient storage of excess photosynthate during periods of low grain or vegetative sink strength. Remobilization of these reserves for supporting grain fill or vegetative growth was evident from lower amounts in maize (8–19%) and sorghum (9–27%) near the end of the reproductive period (average 95 DAP). At physiological maturity of grain hybrids (average 120 DAP), amounts of these carbohydrates were generally unchanged in maize (9–21%) and sorghum (16–27%) suggesting a loss of photosynthetic assimilation due to weakening sink demand. Nonetheless, high amounts of non-structural carbohydrates at maturity even in grain maize and sorghum (15–18%) highlight the potential for developing dual-purpose (grain/stover) crops. For both species, the amounts of structural polysaccharides in the cell wall, measured as monomeric components (glucose and pentose), decreased during grain fill but remained unchanged thereafter with maize biomass possessing slightly higher amounts than sorghum. Availability of carbohydrates in maize and sorghum highlights the potential for developing energy-rich dedicated biofuel or dual-purpose (grain/stover) crops. PMID:27375668

  20. Stover composition in maize and sorghum reveals remarkable genetic variation and plasticity for carbohydrate accumulation

    DOE PAGESBeta

    Sekhon, Rajandeep S.; Breitzman, Matthew W.; Silva, Renato R.; Santoro, Nicholas; Rooney, William L.; de Leon, Natalia; Kaeppler, Shawn M.

    2016-06-08

    Carbohydrates stored in vegetative organs, particularly stems, of grasses are a very important source of energy. We examined carbohydrate accumulation in adult sorghum and maize hybrids with distinct phenology and different end uses (grain, silage, sucrose or sweetness in stalk juice, and biomass). Remarkable variation was observed for nonstructural carbohydrates and structural polysaccharides during three key developmental stages both between and within hybrids developed for distinct end use in both species. At the onset of the reproductive phase (average 65 days after planting, DAP), a wide range for accumulation of non-structural carbohydrates (free glucose and sucrose combined), was observed inmore » internodes of maize (11-24%) and sorghum (7-36%) indicating substantial variation for transient storage of excess photosynthate during periods of low grain or vegetative sink strength. Remobilization of these reserves for supporting grain fill or vegetative growth was evident from lower amounts in maize (8-19%) and sorghum (9-27%) near the end of the reproductive period (average 95 DAP). At physiological maturity of grain hybrids (average 120 DAP), amounts of these carbohydrates were generally unchanged in maize (9-21%) and sorghum (16-27%) suggesting a loss of photosynthetic assimilation due to weakening sink demand. Nonetheless, high amounts of non-structural carbohydrates at maturity even in grain maize and sorghum (15-18%) highlight the potential for developing dual-purpose (grain/stover) crops. For both species, the amounts of structural polysaccharides in the cell wall, measured as monomeric components (glucose and pentose), decreased during grain fill but remained unchanged thereafter with maize biomass possessing slightly higher amounts than sorghum. In conclusion, availability of carbohydrates in maize and sorghum highlights the potential for developing energy-rich dedicated biofuel or dual-purpose (grain/stover) crops.« less

  1. Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression

    PubMed Central

    Zhang, Jie; Liu, Yuan; Xia, En-Hua; Yao, Qiu-Yang; Liu, Xiang-Dong; Gao, Li-Zhi

    2015-01-01

    Polyploidy, or whole-genome duplication (WGD), serves as a key innovation in plant evolution and is an important genomic feature for all eukaryotes. Neopolyploids have to overcome difficulties in meiosis, genomic alterations, changes of gene expression, and epigenomic reorganization. However, the underlying mechanisms for these processes are poorly understood. One of the most interesting aspects is that genome doubling events increase the dosage of all genes. Unlike allopolyploids entangled by both hybridization and polyploidization, autopolyploids, especially artificial lines, in relatively uniform genetic background offer a model system to understand mechanisms of genome-dosage effects. To investigate DNA methylation effects in response to WGD rather than hybridization, we produced autotetraploid rice with its diploid donor, Oryza sativa ssp. indica cv. Aijiaonante, both of which were independently self-pollinated over 48 generations, and generated and compared their comprehensive transcriptomes, base pair-resolution methylomes, and siRNAomes. DNA methylation variation of transposable elements (TEs) was observed as widespread in autotetraploid rice, in which hypermethylation of class II DNA transposons was predominantly noted in CHG and CHH contexts. This was accompanied by changes of 24-nt siRNA abundance, indicating the role of the RNA-directed DNA methylation pathway. Our results showed that the increased methylation state of class II TEs may suppress the expression of neighboring genes in autotetraploid rice that has obtained double alleles, leading to no significant differences in transcriptome alterations for most genes from its diploid donor. Collectively, our findings suggest that chromosome doubling induces methylation variation in TEs that affect gene expression and may become a “genome shock” response factor to help neoautopolyploids adapt to genome-dosage effects. PMID:26621743

  2. HLA variation reveals genetic continuity rather than population group structure in East Asia.

    PubMed

    Di, Da; Sanchez-Mazas, Alicia

    2014-03-01

    Genetic differences between Northeast Asian (NEA) and Southeast Asian (SEA) populations have been observed in numerous studies. At the among-population level, despite a clear north-south differentiation observed for many genetic markers, debates were led between abrupt differences and a continuous pattern. At the within-population level, whether NEA or SEA populations have higher genetic diversity is also highly controversial. In this study, we analyzed a large set of HLA data from East Asia in order to map the genetic variation among and within populations in this continent and to clarify the distribution pattern of HLA lineages and alleles. We observed a genetic differentiation between NEA and SEA populations following a continuous pattern from north to south, and we show a significant and continuous decrease of HLA diversity by the same direction. This continuity is shaped by clinal distributions of many HLA lineages and alleles with increasing or decreasing frequencies along the latitude. These results bring new evidence in favor of the "overlapping model" proposed previously for East Asian peopling history, whereby modern humans migrated eastward from western Eurasia via two independent routes along each side of the Himalayas and, later, overlapped in East Asia across open land areas. Our study strongly suggests that intensive gene flow between NEA and SEA populations occurred and shaped the latitude-related continuous pattern of genetic variation and the peculiar HLA lineage and allele distributions observed in this continent. Probably for a very long period, the exact duration of these events remains to be estimated. PMID:24449274

  3. Stover Composition in Maize and Sorghum Reveals Remarkable Genetic Variation and Plasticity for Carbohydrate Accumulation.

    PubMed

    Sekhon, Rajandeep S; Breitzman, Matthew W; Silva, Renato R; Santoro, Nicholas; Rooney, William L; de Leon, Natalia; Kaeppler, Shawn M

    2016-01-01

    Carbohydrates stored in vegetative organs, particularly stems, of grasses are a very important source of energy. We examined carbohydrate accumulation in adult sorghum and maize hybrids with distinct phenology and different end uses (grain, silage, sucrose or sweetness in stalk juice, and biomass). Remarkable variation was observed for non-structural carbohydrates and structural polysaccharides during three key developmental stages both between and within hybrids developed for distinct end use in both species. At the onset of the reproductive phase (average 65 days after planting, DAP), a wide range for accumulation of non-structural carbohydrates (free glucose and sucrose combined), was observed in internodes of maize (11-24%) and sorghum (7-36%) indicating substantial variation for transient storage of excess photosynthate during periods of low grain or vegetative sink strength. Remobilization of these reserves for supporting grain fill or vegetative growth was evident from lower amounts in maize (8-19%) and sorghum (9-27%) near the end of the reproductive period (average 95 DAP). At physiological maturity of grain hybrids (average 120 DAP), amounts of these carbohydrates were generally unchanged in maize (9-21%) and sorghum (16-27%) suggesting a loss of photosynthetic assimilation due to weakening sink demand. Nonetheless, high amounts of non-structural carbohydrates at maturity even in grain maize and sorghum (15-18%) highlight the potential for developing dual-purpose (grain/stover) crops. For both species, the amounts of structural polysaccharides in the cell wall, measured as monomeric components (glucose and pentose), decreased during grain fill but remained unchanged thereafter with maize biomass possessing slightly higher amounts than sorghum. Availability of carbohydrates in maize and sorghum highlights the potential for developing energy-rich dedicated biofuel or dual-purpose (grain/stover) crops. PMID:27375668

  4. Indifference to dissonance in native Amazonians reveals cultural variation in music perception.

    PubMed

    McDermott, Josh H; Schultz, Alan F; Undurraga, Eduardo A; Godoy, Ricardo A

    2016-07-28

    by biology remains debated. One widely discussed phenomenon is that some combinations of notes are perceived by Westerners as pleasant, or consonant, whereas others are perceived as unpleasant,or dissonant. The contrast between consonance and dissonance is central to Western music and its origins have fascinated scholars since the ancient Greeks. Aesthetic responses to consonance are commonly assumed by scientists to have biological roots, and thus to be universally present in humans. Ethnomusicologists and composers, in contrast, have argued that consonance is a creation of Western musical culture. The issue has remained unresolved, partly because little is known about the extent of cross-cultural variation in consonance preferences. Here we report experiments with the Tsimane'--a native Amazonian society with minimal exposure to Western culture--and comparison populations in Bolivia and the United States that varied in exposure to Western music. Participants rated the pleasantness of sounds. Despite exhibiting Western-like discrimination abilities and Western-like aesthetic responses to familiar sounds and acoustic roughness, the Tsimane' rated consonant and dissonant chords and vocal harmonies as equally pleasant. By contrast, Bolivian city- and town-dwellers exhibited significant preferences for consonance,albeit to a lesser degree than US residents. The results indicate that consonance preferences can be absent in cultures sufficiently isolated from Western music, and are thus unlikely to reflect innate biases or exposure to harmonic natural sounds. The observed variation in preferences is presumably determined by exposure to musical harmony, suggesting that culture has a dominant role in shaping aesthetic responses to music. PMID:27409816

  5. [Phylogenetic relationships and intraspecific variation of D-genome Aegilops L. as revealed by RAPD analysis].

    PubMed

    Goriunova, S V; Kochieva, E Z; Chikida, N N; Pukhal'skiĭ, V A

    2004-05-01

    RAPD analysis was carried out to study the genetic variation and phylogenetic relationships of polyploid Aegilops species, which contain the D genome as a component of the alloploid genome, and diploid Aegilops tauschii, which is a putative donor of the D genome for common wheat. In total, 74 accessions of six D-genome Aegilops species were examined. The highest intraspecific variation (0.03-0.21) was observed for Ae. tauschii. Intraspecific distances between accessions ranged 0.007-0.067 in Ae. cylindrica, 0.017-0.047 in Ae. vavilovii, and 0.00-0.053 in Ae. juvenalis. Likewise, Ae. ventricosa and Ae. crassa showed low intraspecific polymorphism. The among-accession difference in alloploid Ae. ventricosa (genome DvNv) was similar to that of one parental species, Ae. uniaristata (N), and substantially lower than in the other parent, Ae. tauschii (D). The among-accession difference in Ae. cylindrica (CcDc) was considerably lower than in either parent, Ae. tauschii (D) or Ae. caudata (C). With the exception of Ae. cylindrica, all D-genome species--Ae. tauschii (D), Ae. ventricosa (DvNv), Ae. crassa (XcrDcrl and XcrDcrlDcr2), Ae. juvenalis (XjDjUj), and Ae. vavilovii (XvaDvaSva)--formed a single polymorphic cluster, which was distinct from clusters of other species. The only exception, Ae. cylindrica, did not group with the other D-genome species, but clustered with Ae. caudata (C), a donor of the C genome. The cluster of these two species was clearly distinct from the cluster of the other D-genome species and close to a cluster of Ae. umbellulata (genome U) and Ae. ovata (genome UgMg). Thus, RAPD analysis for the first time was used to estimate and to compare the interpopulation polymorphism and to establish the phylogenetic relationships of all diploid and alloploid D-genome Aegilops species. PMID:15272562

  6. Quantitative Proteomic Analysis Reveals Molecular Adaptations in the Hippocampal Synaptic Active Zone of Chronic Mild Stress-Unsusceptible Rats

    PubMed Central

    Zhou, Jian; Liu, Zhao; Yu, Jia; Han, Xin; Fan, Songhua; Shao, Weihua; Chen, Jianjun; Qiao, Rui

    2016-01-01

    Background: While stressful events are recognized as an important cause of major depressive disorder, some individuals exposed to life stressors maintain normal psychological functioning. The molecular mechanism(s) underlying this phenomenon remain unclear. Abnormal transmission and plasticity of hippocampal synapses have been implied to play a key role in the pathoetiology of major depressive disorder. Methods: A chronic mild stress protocol was applied to separate susceptible and unsusceptible rat subpopulations. Proteomic analysis using an isobaric tag for relative and absolute quantitation coupled with tandem mass spectrometry was performed to identify differential proteins in enriched hippocampal synaptic junction preparations. Results: A total of 4318 proteins were quantified, and 89 membrane proteins were present in differential amounts. Of these, SynaptomeDB identified 81 (91%) having a synapse-specific localization. The unbiased profiles identified several candidate proteins within the synaptic junction that may be associated with stress vulnerability or insusceptibility. Subsequent functional categorization revealed that protein systems particularly involved in membrane trafficking at the synaptic active zone exhibited a positive strain as potential molecular adaptations in the unsusceptible rats. Moreover, through STRING and immunoblotting analysis, membrane-associated GTP-bound Rab3a and Munc18-1 appear to coregulate syntaxin-1/SNAP25/VAMP2 assembly at the hippocampal presynaptic active zone of unsusceptible rats, facilitating SNARE-mediated membrane fusion and neurotransmitter release, and may be part of a stress-protection mechanism in actively maintaining an emotional homeostasis. Conclusions: The present results support the concept that there is a range of potential protein adaptations in the hippocampal synaptic active zone of unsusceptible rats, revealing new investigative targets that may contribute to a better understanding of stress

  7. Quantitative Proteomics Analysis Reveals the Min System of Escherichia coli Modulates Reversible Protein Association with the Inner Membrane.

    PubMed

    Lee, Hsiao-Lin; Chiang, I-Chen; Liang, Suh-Yuen; Lee, Der-Yen; Chang, Geen-Dong; Wang, Kwan-Yu; Lin, Shu-Yu; Shih, Yu-Ling

    2016-05-01

    The Min system of Escherichia coli mediates placement of the division septum at the midcell. It oscillates from pole to pole to establish a concentration gradient of the division inhibition that is high at the poles but low at the midcell; the cell middle thereby becomes the most favorable site for division. Although Min oscillation is well studied from molecular and biophysical perspectives, it is still an enigma as to whether such a continuous, energy-consuming, and organized movement of the Min proteins would affect cellular processes other than the division site selection. To tackle this question, we compared the inner membrane proteome of the wild-type and Δmin strains using a quantitative approach. Forty proteins that showed differential abundance on the inner membrane of the mutant cells were identified and defined as proteins of interest (POIs). More than half of the POIs were peripheral membrane proteins, suggesting that the Min system affects mainly reversible protein association with the inner membrane. In addition, 6 out of 10 selected POIs directly interacted with at least one of the Min proteins, confirming the correlation between POIs and the Min system.Further analysis revealed a functional relationship between metabolism and the Min system. Metabolic enzymes accounted for 45% of the POIs, and there was a change of metabolites in the related reactions. We hypothesize that the Min system could alter the membrane location of proteins to modulate their enzymatic activity. Thus, the metabolic modulation in the Δmin mutant is likely an adaptive phenotype in cells of abnormal size and chromosome number due to an imbalanced abundance of proteins on the inner membrane. Taken together, the current work reports novel interactions of the Min system and reveals a global physiological impact of the Min system in addition to the division site placement. PMID:26889046

  8. Small angle neutron scattering contrast variation reveals heterogeneities of interactions in protein gels.

    PubMed

    Banc, A; Charbonneau, C; Dahesh, M; Appavou, M-S; Fu, Z; Morel, M-H; Ramos, L

    2016-06-28

    We propose a quantitative approach to probe the spatial heterogeneities of interactions in macromolecular gels, based on a combination of small angle X-ray (SAXS) and neutrons (SANS) scattering. We investigate the structure of model gluten protein gels and show that the gels display radically different SAXS and SANS profiles when the solvent is (at least partially) deuterated. The detailed analysis of the SANS signal as a function of the solvent deuteration demonstrates heterogeneities of sample deuteration at different length scales. The progressive exchange between the protons (H) of the proteins and the deuteriums (D) of the solvent is inhomogeneous and 60 nm large zones that are enriched in H are evidenced. In addition, at low protein concentration, in the sol state, solvent deuteration induces a liquid/liquid phase separation. Complementary biochemical and structure analyses show that the denser protein phase is more protonated and specifically enriched in glutenin, the polymeric fraction of gluten proteins. These findings suggest that the presence of H-rich zones in gluten gels would arise from the preferential interaction of glutenin polymers through a tight network of non-exchangeable intermolecular hydrogen bonds. PMID:27198847

  9. Label-free quantitative proteomics reveals differentially regulated proteins in the latex of sticky diseased Carica papaya L. plants.

    PubMed

    Rodrigues, Silas P; Ventura, José A; Aguilar, Clemente; Nakayasu, Ernesto S; Choi, HyungWon; Sobreira, Tiago J P; Nohara, Lilian L; Wermelinger, Luciana S; Almeida, Igor C; Zingali, Russolina B; Fernandes, Patricia M B

    2012-06-18

    Papaya meleira virus (PMeV) is so far the only described laticifer-infecting virus, the causal agent of papaya (Carica papaya L.) sticky disease. The effects of PMeV on the laticifers' regulatory network were addressed here through the proteomic analysis of papaya latex. Using both 1-DE- and 1D-LC-ESI-MS/MS, 160 unique papaya latex proteins were identified, representing 122 new proteins in the latex of this plant. Quantitative analysis by normalized spectral counting revealed 10 down-regulated proteins in the latex of diseased plants, 9 cysteine proteases (chymopapain) and 1 latex serine proteinase inhibitor. A repression of papaya latex proteolytic activity during PMeV infection was hypothesized. This was further confirmed by enzymatic assays that showed a reduction of cysteine-protease-associated proteolytic activity in the diseased papaya latex. These findings are discussed in the context of plant responses against pathogens and may greatly contribute to understand the roles of laticifers in plant stress responses. PMID:22465191

  10. Quantitative Genome-Wide Genetic Interaction Screens Reveal Global Epistatic Relationships of Protein Complexes in Escherichia coli

    PubMed Central

    Kumar, Ashwani; Stewart, Geordie; Samanfar, Bahram; Aoki, Hiroyuki; Wagih, Omar; Vlasblom, James; Phanse, Sadhna; Lad, Krunal; Yeou Hsiung Yu, Angela; Graham, Christopher; Jin, Ke; Brown, Eric; Golshani, Ashkan; Kim, Philip; Moreno-Hagelsieb, Gabriel; Greenblatt, Jack; Houry, Walid A.; Parkinson, John; Emili, Andrew

    2014-01-01

    Large-scale proteomic analyses in Escherichia coli have documented the composition and physical relationships of multiprotein complexes, but not their functional organization into biological pathways and processes. Conversely, genetic interaction (GI) screens can provide insights into the biological role(s) of individual gene and higher order associations. Combining the information from both approaches should elucidate how complexes and pathways intersect functionally at a systems level. However, such integrative analysis has been hindered due to the lack of relevant GI data. Here we present a systematic, unbiased, and quantitative synthetic genetic array screen in E. coli describing the genetic dependencies and functional cross-talk among over 600,000 digenic mutant combinations. Combining this epistasis information with putative functional modules derived from previous proteomic data and genomic context-based methods revealed unexpected associations, including new components required for the biogenesis of iron-sulphur and ribosome integrity, and the interplay between molecular chaperones and proteases. We find that functionally-linked genes co-conserved among γ-proteobacteria are far more likely to have correlated GI profiles than genes with divergent patterns of evolution. Overall, examining bacterial GIs in the context of protein complexes provides avenues for a deeper mechanistic understanding of core microbial systems. PMID:24586182

  11. Label-free quantitative proteomics reveals differentially regulated proteins in the latex of sticky diseased Carica papaya L. plants

    PubMed Central

    Rodrigues, Silas P.; Ventura, José A.; Aguilar, Clemente; Nakayasu, Ernesto S.; Choi, HyungWon; Sobreira, Tiago J. P.; Nohara, Lilian L.; Wermelinger, Luciana S.; Almeida, Igor C.; Zingali, Russolina B.; Fernandes, Patricia M. B.

    2012-01-01

    Papaya meleira virus (PMeV) is so far the only described laticifer-infecting virus, the causal agent of papaya (Carica papaya L.) sticky disease. The effects of PMeV on the laticifers’ regulatory network were addressed here through the proteomic analysis of papaya latex. Using both 1-DE- and 1D-LC-ESI-MS/MS, 160 unique papaya latex proteins were identified, representing 122 new proteins in the latex of this plant. Quantitative analysis by normalized spectral counting revealed 10 down-regulated proteins in the latex of diseased plants, 9 cysteine proteases (chymopapain) and 1 latex serine proteinase inhibitor. A repression of papaya latex proteolytic activity during PMeV infection was hypothesized. This was further confirmed by enzymatic assays that showed a reduction of cysteine-protease-associated proteolytic activity in the diseased papaya latex. These findings are discussed in the context of plant responses against pathogens and may greatly contribute to understand the roles of laticifers in plant stress responses. PMID:22465191

  12. Wide-scale quantitative phosphoproteomic analysis reveals that cold treatment of T cells closely mimics soluble antibody stimulation

    PubMed Central

    Ji, Qinqin; Salomon, Arthur R.

    2015-01-01

    The activation of T-lymphocytes through antigen-mediated T-cell receptor (TCR) clustering is vital in regulating the adaptive-immune response. Although T cell receptor signaling has been extensively studied, the fundamental mechanisms for signal initiation are not fully understood. Reduced temperature initiated some of the hallmarks of TCR signaling such as increased phosphorylation and activation on ERK and calcium release from the endoplasmic reticulum as well as coalesce T-cell membrane microdomains. The precise mechanism of TCR signaling initiation due to temperature change remains obscure. One critical question is whether signaling initiated by cold treatment of T cells differs from signaling initiated by crosslinking of the T cell receptor. To address this uncertainty, a wide-scale, quantitative mass spectrometry-based phosphoproteomic analysis was performed on T cells stimulated either by temperature shift or through crosslinking of the TCR. Careful statistical comparison between the two stimulations revealed a striking level of identity between the subset of 339 sites that changed significantly with both stimulations. This study demonstrates for the first time, at unprecedented detail, that T cell cold treatment was sufficient to initiate signaling patterns nearly identical to soluble antibody stimulation, shedding new light on the mechanism of activation of these critically important immune cells. PMID:25839225

  13. A quantitative imaging-based screen reveals the exocyst as a network hub connecting endocytosis and exocytosis

    PubMed Central

    Jose, Mini; Tollis, Sylvain; Nair, Deepak; Mitteau, Romain; Velours, Christophe; Massoni-Laporte, Aurelie; Royou, Anne; Sibarita, Jean-Baptiste; McCusker, Derek

    2015-01-01

    The coupling of endocytosis and exocytosis underlies fundamental biological processes ranging from fertilization to neuronal activity and cellular polarity. However, the mechanisms governing the spatial organization of endocytosis and exocytosis require clarification. Using a quantitative imaging-based screen in budding yeast, we identified 89 mutants displaying defects in the localization of either one or both pathways. High-resolution single-vesicle tracking revealed that the endocytic and exocytic mutants she4∆ and bud6∆ alter post-Golgi vesicle dynamics in opposite ways. The endocytic and exocytic pathways display strong interdependence during polarity establishment while being more independent during polarity maintenance. Systems analysis identified the exocyst complex as a key network hub, rich in genetic interactions with endocytic and exocytic components. Exocyst mutants displayed altered endocytic and post-Golgi vesicle dynamics and interspersed endocytic and exocytic domains compared with control cells. These data are consistent with an important role for the exocyst in coordinating endocytosis and exocytosis. PMID:25947137

  14. Quantitative proteomics analysis reveals glutamine deprivation activates fatty acid β-oxidation pathway in HepG2 cells.

    PubMed

    Long, Baisheng; Muhamad, Rodiallah; Yan, Guokai; Yu, Jie; Fan, Qiwen; Wang, Zhichang; Li, Xiuzhi; Purnomoadi, Agung; Achmadi, Joelal; Yan, Xianghua

    2016-05-01

    Glutamine, a multifunctional amino acid, functions in nutrient metabolism, energy balance, apoptosis, and cell proliferation. Lipid is an important nutrient and controls a broad range of physiological processes. Previous studies have demonstrated that glutamine can affect lipolysis and lipogenesis, but the effect of glutamine on the detailed lipid metabolism remains incompletely understood. Here, we applied the quantitative proteomics approach to estimate the relative abundance of proteins in HepG2 cells treated by glutamine deprivation. The results showed that there were 212 differentially abundant proteins in response to glutamine deprivation, including 150 significantly increased proteins and 62 significantly decreased proteins. Interestingly, functional classification showed that 43 differentially abundant proteins were related to lipid metabolism. Further bioinformatics analysis and western blotting validation revealed that lipid accumulation may be affected by β-oxidation of fatty acid induced by glutamine deprivation in HepG2 cells. Together, our results may provide the potential for regulating lipid metabolism by glutamine in animal production and human nutrition. The MS data have been deposited to the ProteomeXchange Consortium with identifier PXD003387. PMID:26837383

  15. Label-free quantitative phosphoproteomic analysis reveals differentially regulated proteins and pathway in PRRSV-infected pulmonary alveolar macrophages.

    PubMed

    Luo, Rui; Fang, Liurong; Jin, Hui; Wang, Dang; An, Kang; Xu, Ningzhi; Chen, Huanchun; Xiao, Shaobo

    2014-03-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen of swine worldwide and causes significant economic losses. Through regulating the host proteins phosphorylation, PRRSV was found to manipulate the activities of several signaling molecules to regulate innate immune responses. However, the role of protein phosphorylation during PRRSV infection and the signal pathways responsible for it are relatively unknown. Here liquid chromatography-tandem mass spectrometry for label-free quantitative phosphoproteomics was applied to systematically investigate the global phosphorylation events in PRRSV-infected pulmonary alveolar macrophages. In total, we identified 2125 unique phosphosites, of which the phosphorylation level of 292 phosphosites on 242 proteins and 373 phosphosites on 249 proteins was significantly altered at 12 and 36 h pi, respectively. The phosphoproteomics data were analyzed using ingenuity pathways analysis to identify defined canonical pathways and functional networks. Pathway analysis revealed that PRRSV-induced inflammatory cytokines production was probably due to the activation of mitogen-activated protein kinase and NF-κB signal pathway, which were regulated by several protein kinases during virus infection. Interacting network analysis indicated that altered phosphoproteins were involved in cellular assembly and organization, protein synthesis, molecular transport, and signal transduction in PRRSV infected cells. These pathways and functional networks analysis could provide direct insights into the biological significance of phosphorylation events modulated by PRRSV and may help us elucidate the pathogenic mechanisms of PRRSV infection. PMID:24533505

  16. Impacts of CD44 knockdown in cancer cells on tumor and host metabolic systems revealed by quantitative imaging mass spectrometry.

    PubMed

    Ohmura, Mitsuyo; Hishiki, Takako; Yamamoto, Takehiro; Nakanishi, Tsuyoshi; Kubo, Akiko; Tsuchihashi, Kenji; Tamada, Mayumi; Toue, Sakino; Kabe, Yasuaki; Saya, Hideyuki; Suematsu, Makoto

    2015-04-30

    CD44 expressed in cancer cells was shown to stabilize cystine transporter (xCT) that uptakes cystine and excretes glutamate to supply cysteine as a substrate for reduced glutathione (GSH) for survival. While targeting CD44 serves as a potentially therapeutic stratagem to attack cancer growth and chemoresistance, the impact of CD44 targeting in cancer cells on metabolic systems of tumors and host tissues in vivo remains to be fully determined. This study aimed to reveal effects of CD44 silencing on alterations in energy metabolism and sulfur-containing metabolites in vitro and in vivo using capillary electrophoresis-mass spectrometry and quantitative imaging mass spectrometry (Q-IMS), respectively. In an experimental model of xenograft transplantation of human colon cancer HCT116 cells in superimmunodeficient NOG mice, snap-frozen liver tissues containing metastatic tumors were examined by Q-IMS. As reported previously, short hairpin CD44 RNA interference (shCD44) in cancer cells caused significant regression of tumor growth in the host liver. Under these circumstances, the CD44 knockdown suppressed polyamines, GSH and energy charges not only in metastatic tumors but also in the host liver. In culture, HCT116 cells treated with shCD44 decreased total amounts of methionine-pool metabolites including spermidine and spermine, and reactive cysteine persulfides, suggesting roles of these metabolites for cancer growth. Collectively, these results suggest that CD44 expressed in cancer accounts for a key regulator of metabolic interplay between tumor and the host tissue. PMID:25461272

  17. Quantitative PCR Profiling of Escherichia coli in Livestock Feces Reveals Increased Population Resilience Relative to Culturable Counts under Temperature Extremes.

    PubMed

    Oliver, David M; Bird, Clare; Burd, Emmy; Wyman, Michael

    2016-09-01

    The relationship between culturable counts (CFU) and quantitative PCR (qPCR) cell equivalent counts of Escherichia coli in dairy feces exposed to different environmental conditions and temperature extremes was investigated. Fecal samples were collected in summer and winter from dairy cowpats held under two treatments: field-exposed versus polytunnel-protected. A significant correlation in quantified E. coli was recorded between the qPCR and culture-based methods (r = 0.82). Evaluation of the persistence profiles of E. coli over time revealed no significant difference in the E. coli numbers determined as either CFU or gene copies during the summer for the field-exposed cowpats, whereas significantly higher counts were observed by qPCR for the polytunnel-protected cowpats, which were exposed to higher ambient temperatures. In winter, the qPCR returned significantly higher counts of E. coli for the field-exposed cowpats, thus representing a reversal of the findings from the summer sampling campaign. Results from this study suggest that with increasing time post-defecation and with the onset of challenging environmental conditions, such as extremes in temperature, culture-based counts begin to underestimate the true resilience of viable E. coli populations in livestock feces. This is important not only in the long term as the Earth changes in response to climate-change drivers but also in the short term during spells of extremely cold or hot weather. PMID:27454176

  18. Satellite measurements reveal strong anisotropy in spatial coherence of climate variations over the Tibet Plateau.

    PubMed

    Chen, Deliang; Tian, Yudong; Yao, Tandong; Ou, Tinghai

    2016-01-01

    This study uses high-resolution, long-term satellite observations to evaluate the spatial scales of the climate variations across the Tibet Plateau (TP). Both land surface temperature and precipitation observations of more than 10 years were analysed with a special attention to eight existing ice-core sites in the TP. The temporal correlation for the monthly or annual anomalies between any two points decreases exponentially with their spatial distance, and we used the e-folding decay constant to quantify the spatial scales. We found that the spatial scales are strongly direction-dependent, with distinctive patterns in the west-east and south-north orientations, for example. Meanwhile, in the same directions the scales are largely symmetric backward and forward. Focusing on the west-east and south-north directions, we found the spatial coherence in the first is generally stronger than in the second. The annual surface temperature had typical spatial scales of 302-480 km, while the annual precipitation showed smaller scales of 111-182 km. The majority of the eight ice-core sites exhibit scales much smaller than the typical scales over the TP as a whole. These results provide important observational basis for the selection of appropriate downscaling strategies, deployment of climate-data collection networks, and interpreting paleoclimate reconstructions. PMID:27553388

  19. mtDNA variation of aboriginal Siberians reveals distinct genetic affinities with Native Americans

    SciTech Connect

    Torroni, A.; Schurr, T.G.; Cabell, M.F.; Wallace, D.C. ); Sukernik, R.I.; Starikovskaya, Y.B. ); Crawford, M.H.; Comuzzie, A.G. )

    1993-09-01

    The mtDNA variation of 411 individuals from 10 aboriginal Siberian populations was analyzed in an effort to delineate the relationships between Siberian and Native American populations. All mtDNAs were characterized by PCR amplification and restriction analysis, and a subset of them was characterized by control region sequencing. The resulting data were then compiled with previous mtDNA data from Native Americans and Asians and were used for phylogenetic analysis and sequence divergence estimations. Aboriginal Siberian populations exhibited mtDNAs from three (A, C, and D) of the four haplogroups observed in Native Americans. However, none of the Siberian populations showed mtDNAs from the fourth haplogroup, group B. The presence of group B deletion haplotypes in East Asian and Native American populations but their absence in Siberians raises the possibility that haplogroup B could represent a migratory event distinct from the one(s) which brought group A, C, and D mtDNAs to the Americas. These findings support the hypothesis that the first humans to move from Siberia to the Americas carried with them a limited number of founding mtDNAs and that the initial migration occurred between 17,000-34,000 years before present. 61 refs., 5 figs., 7 tabs.

  20. Satellite measurements reveal strong anisotropy in spatial coherence of climate variations over the Tibet Plateau

    PubMed Central

    Chen, Deliang; Tian, Yudong; Yao, Tandong; Ou, Tinghai

    2016-01-01

    This study uses high-resolution, long-term satellite observations to evaluate the spatial scales of the climate variations across the Tibet Plateau (TP). Both land surface temperature and precipitation observations of more than 10 years were analysed with a special attention to eight existing ice-core sites in the TP. The temporal correlation for the monthly or annual anomalies between any two points decreases exponentially with their spatial distance, and we used the e-folding decay constant to quantify the spatial scales. We found that the spatial scales are strongly direction-dependent, with distinctive patterns in the west-east and south-north orientations, for example. Meanwhile, in the same directions the scales are largely symmetric backward and forward. Focusing on the west-east and south-north directions, we found the spatial coherence in the first is generally stronger than in the second. The annual surface temperature had typical spatial scales of 302–480 km, while the annual precipitation showed smaller scales of 111–182 km. The majority of the eight ice-core sites exhibit scales much smaller than the typical scales over the TP as a whole. These results provide important observational basis for the selection of appropriate downscaling strategies, deployment of climate-data collection networks, and interpreting paleoclimate reconstructions. PMID:27553388

  1. Application of coalescent methods to reveal fine-scale rate variation and recombination hotspots.

    PubMed Central

    Fearnhead, Paul; Harding, Rosalind M; Schneider, Julie A; Myers, Simon; Donnelly, Peter

    2004-01-01

    There has been considerable recent interest in understanding the way in which recombination rates vary over small physical distances, and the extent of recombination hotspots, in various genomes. Here we adapt, apply, and assess the power of recently developed coalescent-based approaches to estimating recombination rates from sequence polymorphism data. We apply full-likelihood estimation to study rate variation in and around a well-characterized recombination hotspot in humans, in the beta-globin gene cluster, and show that it provides similar estimates, consistent with those from sperm studies, from two populations deliberately chosen to have different demographic and selectional histories. We also demonstrate how approximate-likelihood methods can be used to detect local recombination hotspots from genomic-scale SNP data. In a simulation study based on 80 100-kb regions, these methods detect 43 out of 60 hotspots (ranging from 1 to 2 kb in size), with only two false positives out of 2000 subregions that were tested for the presence of a hotspot. Our study suggests that new computational tools for sophisticated analysis of population diversity data are valuable for hotspot detection and fine-scale mapping of local recombination rates. PMID:15342541

  2. Stable isotope analysis reveals community-level variation in fish trophodynamics across a fringing coral reef

    NASA Astrophysics Data System (ADS)

    Wyatt, A. S. J.; Waite, A. M.; Humphries, S.

    2012-12-01

    In contrast to trophodynamic variations, the marked zonation in physical and biological processes across coral reefs and the concomitant changes in habitat and community structure are well documented. In this study, we demonstrate consistent spatial changes in the community-level trophodynamics of 46 species of fish across the fringing Ningaloo Reef, Western Australia, using tissue stable isotope and fatty acid analyses. Increasing nitrogen (δ15N) and decreasing carbon (δ13C) isotope ratios in the tissues of herbivores, planktivores and carnivores with increasing proximity to the ocean were indicative of increased reliance on oceanic productivity. In contrast, detritivores and corallivores displayed no spatial change in δ15N or δ13C, indicative of the dependence on reef-derived material across the reef. Higher δ13C, as well as increased benthic- and bacterial-specific fatty acids, suggested reliance on reef-derived production increased in back-reef habitats. Genus-level analyses supported community- and trophic group-level trends, with isotope modelling of species from five genera ( Abudefduf sexfasciatus, Chromis viridis, Dascyllus spp., Pomacentrus spp. and Stegastes spp.), demonstrating declining access to oceanic zooplankton and, in the case of Pomacentrus spp. and Stegastes spp., a switch to herbivory in the back-reef. The spatial changes in fish trophodynamics suggest that the relative roles of oceanic and reef-derived nutrients warrant more detailed consideration in reef-level community ecology.

  3. Natural Variation in Petal Color in Lycoris longituba Revealed by Anthocyanin Components

    PubMed Central

    He, Qiuling; Shen, Ye; Wang, Mingxiu; Huang, Minren; Yang, Ruizhen; Zhu, Shuijin; Wang, Liangsheng; Xu, Yanjun; Wu, Rongling

    2011-01-01

    Lycoris longituba is one of the species belonging to the Amaryllidaceae family. Despite its limited distribution, endemic to central eastern China, this species displays an exceptionally wide diversity of flower colors from purple, red, orange, to yellow, in nature. We study the natural variation of floral color in L. longituba by testing the components of water-soluble vacuolar pigments – anthocyanins – in its petals using high-performance liquid chromatography coupled with photodiode array detection and electrospray ionization mass spectrometry. Four anthocyanins were identified, cyanidin-3-sophoroside (Cy3So), cyanidin-3-xylosylglucoside (Cy3XyGlc), cyanidin-3-sambubioside (Cy3Sa), and pelargonidin-3-xylosylglucoside (Pg3XyGlc), which occur at various amounts in L. longituba petals of different colors. A multivariate analysis was used to explore the relationship between pigments and flower color. Anthocyanins have been thought to play a major role in acting as a UV screen that protects the plant's DNA from sunlight damage and attracting insects for the purpose of pollination. Thus, knowledge about the content and type of anthocyanins determining the petal coloration of Lycoris longituba will help to study the adaptive evolution of flowers and provide useful information for the ornamental breeding of this species. PMID:21829604

  4. Metrics other than potency reveal systematic variation in responses to cancer drugs

    PubMed Central

    Fallahi-Sichani, Mohammad; Honarnejad, Saman; Heiser, Laura M.; Gray, Joe W.; Sorger, Peter K.

    2014-01-01

    Large-scale analysis of cellular response to anti-cancer drugs typically focuses on variation in potency (IC50) assuming that it is the most important difference between effective/ineffective drugs or sensitive/resistant cells. We took a multi-parametric approach involving analysis of the slope of the dose-response curve (HS), the area under the curve (AUC) and the maximum effect (Emax). We found that some of these parameters vary systematically with cell line and others with drug class. For cell-cycle inhibitors, Emax often but not always correlated with cell proliferation rate. For drugs targeting the Akt/PI3K/mTOR pathway dose-response curves were unusually shallow. Classical pharmacology has no ready explanation for this phenomenon but single-cell analysis showed that it correlated with significant and heritable cell-to-cell variability in the extent of target inhibition. We conclude that parameters other than potency should be considered in the comparative analysis of drug response, particularly at clinically relevant concentrations near and above IC50. PMID:24013279

  5. Metrics other than potency reveal systematic variation in responses to cancer drugs.

    PubMed

    Fallahi-Sichani, Mohammad; Honarnejad, Saman; Heiser, Laura M; Gray, Joe W; Sorger, Peter K

    2013-11-01

    Large-scale analysis of cellular response to anticancer drugs typically focuses on variation in potency (half-maximum inhibitory concentration, (IC50)), assuming that it is the most important difference between effective and ineffective drugs or sensitive and resistant cells. We took a multiparametric approach involving analysis of the slope of the dose-response curve, the area under the curve and the maximum effect (Emax). We found that some of these parameters vary systematically with cell line and others with drug class. For cell-cycle inhibitors, Emax often but not always correlated with cell proliferation rate. For drugs targeting the Akt/PI3K/mTOR pathway, dose-response curves were unusually shallow. Classical pharmacology has no ready explanation for this phenomenon, but single-cell analysis showed that it correlated with significant and heritable cell-to-cell variability in the extent of target inhibition. We conclude that parameters other than potency should be considered in the comparative analysis of drug response, particularly at clinically relevant concentrations near and above the IC50. PMID:24013279

  6. Skeletal muscle transcriptional profiles in two Italian beef breeds, Chianina and Maremmana, reveal breed specific variation.

    PubMed

    Bongiorni, S; Gruber, C E M; Chillemi, G; Bueno, S; Failla, S; Moioli, B; Ferrè, F; Valentini, A

    2016-04-01

    Chianina and Maremmana breeds play an important role in the Italian cattle meat market. The Chianina breed is an ancient breed principally raised for draught. Now this breed is the worldwide recognized producer of top quality beef, tasteful and tender, specifically the famous "Florentine steak". The Maremmana characterized by a massive skeletal structure, is a rustic cattle breed selected for adaptability to the marshy land of the Maremma region. We used a high throughput mRNA sequencing to analyze gene expression in muscle tissues of two Italian cattle breeds, Maremmana (MM) and Chianina (CN) with different selection history. We aim to examine the specific genetic contribution of each breed to meat production and quality, comparing the skeletal muscle tissue from Maremmana and Chianina. Most of the differentially expressed genes were grouped in the Glycolysis/Gluconeogenesis pathways. The rate and the extent of post-mortem energy metabolism have a critical effect on the conversion of muscle to meat. Furthermore, we aim at discovering the differences in nucleotide variation between the two breeds which might be attributable to the different history of selection/divergence. In this work we could emphasize the involvement of pathways of post-mortem energy metabolism. Moreover, we detected a collection of coding SNPs which could offer new genomic resources to improve phenotypic selection in livestock breeding program. PMID:26896938

  7. Molecular variation of Sporisorium scitamineum in Mainland China revealed by internal transcribed spacers.

    PubMed

    Zhang, Y Y; Huang, N; Xiao, X H; Huang, L; Liu, F; Su, W H; Que, Y X

    2015-01-01

    Sugarcane smut caused by the fungus Sporisorium scitamineum is a worldwide disease and also one of the most prevalent diseases in sugarcane production in mainland China. To study molecular variation in S. scitamineum, 23 S. scitamineum isolates from the 6 primary sugar-cane production areas in mainland, China (Guangxi, Yunnan, Guangdong, Hainan, Fujian, and Jiangxi Provinces), were assessed using internal transcribed spacer (ITS) methods. The results of ITS sequence analysis showed that the organisms can be defined at the genus level, including Ustilago and Sporisorium, and can also differentiate between closely related species. This method was not suitable for phylogenetic relationship analysis of different S. scitamineum isolates and could not provide support regarding their race ascription at the molecular level. The results of the present study will be useful for studies examining the molecular diversity of S. scitamineum and for establishing a genetic foundation for their pathogenicity differentiation and new race detection. In addition, our results can provide useful information for the pathogen selection principle in sugarcane smut resistance breeding and variety distribution. PMID:26214470

  8. Using GMD Data, AIRS Measurements, and the NASA Chemistry-Climate Model to Reveal Regional and Seasonal Variation of Methane

    NASA Astrophysics Data System (ADS)

    Steele, K. J.; Duncan, B. N.; Warner, J. X.; Nielsen, J. E.

    2010-12-01

    model revealed that variation in source strength is dependent on the site location in relation to the source strength. Assessing CH4 source contributions to the UT revealed that variability is affected by seasonal variation in the sources convolved with seasonal variation in deep convection. More work is needed in order to constrain sources of atmospheric CH4. However, surface and tropospheric in situ data can be used to validate AIRS observations so that CH4 can be monitored at a global scale, and CCM output can aid in determining which sources have the largest contribution to atmospheric CH4.

  9. Experimental reintroduction reveals novel life-history variation in Laysan Ducks (Anas laysanensis)

    USGS Publications Warehouse

    Walters, Jeffrey R.; Reynolds, Michelle H.

    2013-01-01

    Subfossil remains indicate that the Laysan Duck (Anas laysanensis) formerly occurred throughout the Hawaiian archipelago, but for more than 150 years it has been confined to a single, small atoll in the northwestern chain, Laysan Island. In 2004–2005, 42 ducks were reintroduced from Laysan to Midway Atoll, where they exhibited variation in life history never observed on Laysan. On Laysan, females have never been observed to breed successfully at age 1 year and few attempt it, whereas on Midway, females routinely raised young at <1 year of age. Mean (± SD) clutch size on Midway (7.0 ± 1.1, n = 41) was larger than the maximum clutch size of six eggs observed on Laysan. On Midway, renesting following nest failure (0.55 probability, n = 27) and double brooding (0.50, n = 54) were routine, and two instances of triple brooding were observed, whereas on Laysan, renesting and double brooding are rare (0.05 probability for both during our study; n = 21 and 19, respectively) and triple brooding has never been observed. Other novel life history on Midway included early cessation of parental care to renest. Altered life history on Midway is likely related to better feeding conditions and low population density compared with Laysan. An especially intriguing possibility is that the phenotypic plasticity observed represents exposure of hidden reaction norms evolved when the species inhabited a range of environments, but several alternative explanations exist. Future reintroductions of this species may provide opportunities to test hypotheses about mechanisms underlying phenotypic plasticity.

  10. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes

    PubMed Central

    Glessner, Joseph T.; Wang, Kai; Cai, Guiqing; Korvatska, Olena; Kim, Cecilia E.; Wood, Shawn; Zhang, Haitao; Estes, Annette; Brune, Camille W.; Bradfield, Jonathan P.; Imielinski, Marcin; Frackelton, Edward C.; Reichert, Jennifer; Crawford, Emily L.; Munson, Jeffrey; Sleiman, Patrick M. A.; Chiavacci, Rosetta; Annaiah, Kiran; Thomas, Kelly; Hou, Cuiping; Glaberson, Wendy; Flory, James; Otieno, Frederick; Garris, Maria; Soorya, Latha; Klei, Lambertus; Piven, Joseph; Meyer, Kacie J.; Anagnostou, Evdokia; Sakurai, Takeshi; Game, Rachel M.; Rudd, Danielle S.; Zurawiecki, Danielle; McDougle, Christopher J.; Davis, Lea K.; Miller, Judith; Posey, David J.; Michaels, Shana; Kolevzon, Alexander; Silverman, Jeremy M.; Bernier, Raphael; Levy, Susan E.; Schultz, Robert T.; Dawson, Geraldine; Owley, Thomas; McMahon, William M.; Wassink, Thomas H.; Sweeney, John A.; Nurnberger, John I.; Coon, Hilary; Sutcliffe, James S.; Minshew, Nancy J.; Grant, Struan F. A.; Bucan, Maja; Cook, Edwin H.; Buxbaum, Joseph D.; Devlin, Bernie; Schellenberg, Gerard D.; Hakonarson, Hakon

    2010-01-01

    Autism spectrum disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins1–4. Previous studies focusing on candidate genes or genomic regions have identified several copy number variations (CNVs) that are associated with an increased risk of ASDs5–9. Here we present the results from a whole-genome CNV study on a cohort of 859 ASD cases and 1,409 healthy children of European ancestry who were genotyped with ~550,000 single nucleotide polymorphism markers, in an attempt to comprehensively identify CNVs conferring susceptibility to ASDs. Positive findings were evaluated in an independent cohort of 1,336 ASD cases and 1,110 controls of European ancestry. Besides previously reported ASD candidate genes, such as NRXN1 (ref. 10) and CNTN4 (refs 11, 12), several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, were enriched with CNVs in ASD cases compared to controls (P = 9.5 × 10−3). Furthermore, CNVs within or surrounding genes involved in the ubiquitin pathways, including UBE3A, PARK2, RFWD2 and FBXO40, were affected by CNVs not observed in controls (P = 3.3 × 10−3). We also identified duplications 55 kilobases upstream of complementary DNA AK123120 (P = 3.6 × 10−6). Although these variants may be individually rare, they target genes involved in neuronal cell-adhesion or ubiquitin degradation, indicating that these two important gene networks expressed within the central nervous system may contribute to the genetic susceptibility of ASD. PMID:19404257

  11. Natural Variation of Heterokaryon Incompatibility Gene het-c in Podospora anserina Reveals Diversifying Selection

    PubMed Central

    Bastiaans, Eric; Debets, Alfons J.M.; Aanen, Duur K.; van Diepeningen, Anne D.; Saupe, Sven J.; Paoletti, Mathieu

    2014-01-01

    In filamentous fungi, allorecognition takes the form of heterokaryon incompatibility, a cell death reaction triggered when genetically distinct hyphae fuse. Heterokaryon incompatibility is controlled by specific loci termed het-loci. In this article, we analyzed the natural variation in one such fungal allorecognition determinant, the het-c heterokaryon incompatibility locus of the filamentous ascomycete Podospora anserina. The het-c locus determines an allogenic incompatibility reaction together with two unlinked loci termed het-d and het-e. Each het-c allele is incompatible with a specific subset of the het-d and het-e alleles. We analyzed variability at the het-c locus in a population of 110 individuals, and in additional isolates from various localities. We identified a total of 11 het-c alleles, which define 7 distinct incompatibility specificity classes in combination with the known het-d and het-e alleles. We found that the het-c allorecognition gene of P. anserina is under diversifying selection. We find a highly unequal allele distribution of het-c in the population, which contrasts with the more balanced distribution of functional groups of het-c based on their allorecognition function. One explanation for the observed het-c diversity in the population is its function in allorecognition. However, alleles that are most efficient in allorecognition are rare. An alternative and not exclusive explanation for the observed diversity is that het-c is involved in pathogen recognition. In Arabidopsis thaliana, a homolog of het-c is a pathogen effector target, supporting this hypothesis. We hypothesize that the het-c diversity in P. anserina results from both its functions in pathogen-defense, and allorecognition. PMID:24448643

  12. Natural variation of heterokaryon incompatibility gene het-c in Podospora anserina reveals diversifying selection.

    PubMed

    Bastiaans, Eric; Debets, Alfons J M; Aanen, Duur K; van Diepeningen, Anne D; Saupe, Sven J; Paoletti, Mathieu

    2014-04-01

    In filamentous fungi, allorecognition takes the form of heterokaryon incompatibility, a cell death reaction triggered when genetically distinct hyphae fuse. Heterokaryon incompatibility is controlled by specific loci termed het-loci. In this article, we analyzed the natural variation in one such fungal allorecognition determinant, the het-c heterokaryon incompatibility locus of the filamentous ascomycete Podospora anserina. The het-c locus determines an allogenic incompatibility reaction together with two unlinked loci termed het-d and het-e. Each het-c allele is incompatible with a specific subset of the het-d and het-e alleles. We analyzed variability at the het-c locus in a population of 110 individuals, and in additional isolates from various localities. We identified a total of 11 het-c alleles, which define 7 distinct incompatibility specificity classes in combination with the known het-d and het-e alleles. We found that the het-c allorecognition gene of P. anserina is under diversifying selection. We find a highly unequal allele distribution of het-c in the population, which contrasts with the more balanced distribution of functional groups of het-c based on their allorecognition function. One explanation for the observed het-c diversity in the population is its function in allorecognition. However, alleles that are most efficient in allorecognition are rare. An alternative and not exclusive explanation for the observed diversity is that het-c is involved in pathogen recognition. In Arabidopsis thaliana, a homolog of het-c is a pathogen effector target, supporting this hypothesis. We hypothesize that the het-c diversity in P. anserina results from both its functions in pathogen-defense, and allorecognition. PMID:24448643

  13. In situ cardiac perfusion reveals interspecific variation of intraventricular flow separation in reptiles.

    PubMed

    Joyce, William; Axelsson, Michael; Altimiras, Jordi; Wang, Tobias

    2016-07-15

    The ventricles of non-crocodilian reptiles are incompletely divided and provide an opportunity for mixing of oxygen-poor blood and oxygen-rich blood (intracardiac shunting). However, both cardiac morphology and in vivo shunting patterns exhibit considerable interspecific variation within reptiles. In the present study, we develop an in situ double-perfused heart approach to characterise the propensity and capacity for shunting in five reptile species: the turtle Trachemys scripta, the rock python Python sebae, the yellow anaconda Eunectes notaeus, the varanid lizard Varanus exanthematicus and the bearded dragon Pogona vitticeps To simulate changes in vascular bed resistance, pulmonary and systemic afterloads were independently manipulated and changes in blood flow distribution amongst the central outflow tracts were monitored. As previously demonstrated in Burmese pythons, rock pythons and varanid lizards exhibited pronounced intraventricular flow separation. As pulmonary or systemic afterload was raised, flow in the respective circulation decreased. However, flow in the other circulation, where afterload was constant, remained stable. This correlates with the convergent evolution of intraventricular pressure separation and the large intraventricular muscular ridge, which compartmentalises the ventricle, in these species. Conversely, in the three other species, the pulmonary and systemic flows were strongly mutually dependent, such that the decrease in pulmonary flow in response to elevated pulmonary afterload resulted in redistribution of perfusate to the systemic circuit (and vice versa). Thus, in these species, the muscular ridge appeared labile and blood could readily transverse the intraventricular cava. We conclude that relatively minor structural differences between non-crocodilian reptiles result in the fundamental changes in cardiac function. Further, our study emphasises that functionally similar intracardiac flow separation evolved independently in

  14. Whole-Genome Resequencing Reveals Extensive Natural Variation in the Model Green Alga Chlamydomonas reinhardtii[OPEN

    PubMed Central

    Hazzouri, Khaled M.; Rosas, Ulises; Bahmani, Tayebeh; Nelson, David R.; Abdrabu, Rasha; Harris, Elizabeth H.; Salehi-Ashtiani, Kourosh; Purugganan, Michael D.

    2015-01-01

    We performed whole-genome resequencing of 12 field isolates and eight commonly studied laboratory strains of the model organism Chlamydomonas reinhardtii to characterize genomic diversity and provide a resource for studies of natural variation. Our data support previous observations that Chlamydomonas is among the most diverse eukaryotic species. Nucleotide diversity is ∼3% and is geographically structured in North America with some evidence of admixture among sampling locales. Examination of predicted loss-of-function mutations in field isolates indicates conservation of genes associated with core cellular functions, while genes in large gene families and poorly characterized genes show a greater incidence of major effect mutations. De novo assembly of unmapped reads recovered genes in the field isolates that are absent from the CC-503 assembly. The laboratory reference strains show a genomic pattern of polymorphism consistent with their origin as the recombinant progeny of a diploid zygospore. Large duplications or amplifications are a prominent feature of laboratory strains and appear to have originated under laboratory culture. Extensive natural variation offers a new source of genetic diversity for studies of Chlamydomonas, including naturally occurring alleles that may prove useful in studies of gene function and the dissection of quantitative genetic traits. PMID:26392080

  15. Quantitative single-molecule microscopy reveals that CENP-A(Cnp1) deposition occurs during G2 in fission yeast.

    PubMed

    Lando, David; Endesfelder, Ulrike; Berger, Harald; Subramanian, Lakxmi; Dunne, Paul D; McColl, James; Klenerman, David; Carr, Antony M; Sauer, Markus; Allshire, Robin C; Heilemann, Mike; Laue, Ernest D

    2012-07-01

    The inheritance of the histone H3 variant CENP-A in nucleosomes at centromeres following DNA replication is mediated by an epigenetic mechanism. To understand the process of epigenetic inheritance, or propagation of histones and histone variants, as nucleosomes are disassembled and reassembled in living eukaryotic cells, we have explored the feasibility of exploiting photo-activated localization microscopy (PALM). PALM of single molecules in living cells has the potential to reveal new concepts in cell biology, providing insights into stochastic variation in cellular states. However, thus far, its use has been limited to studies in bacteria or to processes occurring near the surface of eukaryotic cells. With PALM, one literally observes and 'counts' individual molecules in cells one-by-one and this allows the recording of images with a resolution higher than that determined by the diffraction of light (the so-called super-resolution microscopy). Here, we investigate the use of different fluorophores and develop procedures to count the centromere-specific histone H3 variant CENP-A(Cnp1) with single-molecule sensitivity in fission yeast (Schizosaccharomyces pombe). The results obtained are validated by and compared with ChIP-seq analyses. Using this approach, CENP-A(Cnp1) levels at fission yeast (S. pombe) centromeres were followed as they change during the cell cycle. Our measurements show that CENP-A(Cnp1) is deposited solely during the G2 phase of the cell cycle. PMID:22870388

  16. Variation of floret fertility in hexaploid wheat revealed by tiller removal.

    PubMed

    Guo, Zifeng; Schnurbusch, Thorsten

    2015-09-01

    Grain number per spike, which is greatly influenced by floret fertility, is an important trait of wheat (Triticum aestivum L.) yield. Maximum floret primordia, fertile floret, and final grain number per spikelet are three crucial factors of floret fertility. Floral degradation plays a critical role in determining these three floret fertility-related traits. Twelve hexaploid spring wheat genotypes were selected to investigate the influence of detillering on floral degradation and floret fertility-related traits in the field and greenhouse. Notably, the green anther stage was found to consistently have the maximum floret primordia number. Visible floral degradation, however, was observed to occur at several floral developmental stages, specifically from green anther stage to anthesis. Detillering was able to delay floral degradation in most cases and was evidently highly associated with increased maximum floret primordia, fertile floret, and final grain number per spikelet, with only a few exceptions. Thermal time required for each floral developmental stage was overall not influenced by detillering. These data hereby reveal a predominant spikelet fertility pattern along the spike in which the number of fertile florets per spikelet at anthesis becomes developmentally confined. PMID:26157170

  17. A pangenomic analysis of the Nannochloropsis organellar genomes reveals novel genetic variations in key metabolic genes

    PubMed Central

    2014-01-01

    Background Microalgae in the genus Nannochloropsis are photosynthetic marine Eustigmatophytes of significant interest to the bioenergy and aquaculture sectors due to their ability to efficiently accumulate biomass and lipids for utilization in renewable transportation fuels, aquaculture feed, and other useful bioproducts. To better understand the genetic complement that drives the metabolic processes of these organisms, we present the assembly and comparative pangenomic analysis of the chloroplast and mitochondrial genomes from Nannochloropsis salina CCMP1776. Results The chloroplast and mitochondrial genomes of N. salina are 98.4% and 97% identical to their counterparts in Nannochloropsis gaditana. Comparison of the Nannochloropsis pangenome to other algae within and outside of the same phyla revealed regions of significant genetic divergence in key genes that encode proteins needed for regulation of branched chain amino synthesis (acetohydroxyacid synthase), carbon fixation (RuBisCO activase), energy conservation (ATP synthase), protein synthesis and homeostasis (Clp protease, ribosome). Conclusions Many organellar gene modifications in Nannochloropsis are unique and deviate from conserved orthologs found across the tree of life. Implementation of secondary and tertiary structure prediction was crucial to functionally characterize many proteins and therefore should be implemented in automated annotation pipelines. The exceptional similarity of the N. salina and N. gaditana organellar genomes suggests that N. gaditana be reclassified as a strain of N. salina. PMID:24646409

  18. Variation of floret fertility in hexaploid wheat revealed by tiller removal

    PubMed Central

    Guo, Zifeng

    2015-01-01

    Grain number per spike, which is greatly influenced by floret fertility, is an important trait of wheat (Triticum aestivum L.) yield. Maximum floret primordia, fertile floret, and final grain number per spikelet are three crucial factors of floret fertility. Floral degradation plays a critical role in determining these three floret fertility-related traits. Twelve hexaploid spring wheat genotypes were selected to investigate the influence of detillering on floral degradation and floret fertility-related traits in the field and greenhouse. Notably, the green anther stage was found to consistently have the maximum floret primordia number. Visible floral degradation, however, was observed to occur at several floral developmental stages, specifically from green anther stage to anthesis. Detillering was able to delay floral degradation in most cases and was evidently highly associated with increased maximum floret primordia, fertile floret, and final grain number per spikelet, with only a few exceptions. Thermal time required for each floral developmental stage was overall not influenced by detillering. These data hereby reveal a predominant spikelet fertility pattern along the spike in which the number of fertile florets per spikelet at anthesis becomes developmentally confined. PMID:26157170

  19. Mapping of fiber quality QTLs reveals useful variation and footprints of cotton domestication using introgression lines.

    PubMed

    Zhang, Shu-Wen; Zhu, Xie-Fei; Feng, Liu-Chun; Gao, Xiang; Yang, Biao; Zhang, Tian-Zhen; Zhou, Bao-Liang

    2016-01-01

    Fiber quality improvement is a driving force for further cotton domestication and breeding. Here, QTLs for fiber quality were mapped in 115 introgression lines (ILs) first developed from two intraspecific populations of cultivated and feral cotton landraces. A total of 60 QTLs were found, which explained 2.03-16.85% of the phenotypic variance found in fiber quality traits. A total of 36 markers were associated with five fiber traits, 33 of which were found to be associated with QTLs in multiple environments. In addition, nine pairs of common QTLs were identified; namely, one pair of QTLs for fiber elongation, three pairs for fiber length, three pairs for fiber strength and two pairs for micronaire (qMICs). All common QTLs had additive effects in the same direction in both IL populations. We also found five QTL clusters, allowing cotton breeders to focus their efforts on regions of QTLs with the highest percentages of phenotypic variance. Our results also reveal footprints of domestication; for example, fourteen QTLs with positive effects were found to have remained in modern cultivars during domestication, and two negative qMICs that had never been reported before were found, suggesting that the qMICs regions may be eliminated during artificial selection. PMID:27549323

  20. Revealing local variations in nanoparticle size distributions in supported catalysts: a generic TEM specimen preparation method.

    PubMed

    Pingel, Torben; Skoglundh, Magnus; Grönbeck, Henrik; Olsson, Eva

    2015-11-01

    The specimen preparation method is crucial for how much information can be gained from transmission electron microscopy (TEM) studies of supported nanoparticle catalysts. The aim of this work is to develop a method that allows for observation of size and location of nanoparticles deposited on a porous oxide support material. A bimetallic Pt-Pd/Al(2)O(3) catalyst in powder form was embedded in acrylic resin and lift-out specimens were extracted using combined focused ion beam/scanning electron microscopy (FIB/SEM). These specimens allow for a cross-section view across individual oxide support particles, including the unaltered near surface region of these particles. A site-dependent size distribution of Pt-Pd nanoparticles was revealed along the radial direction of the support particles by scanning transmission electron microscopy (STEM) imaging. The developed specimen preparation method enables obtaining information about the spatial distribution of nanoparticles in complex support structures which commonly is a challenge in heterogeneous catalysis. PMID:26139081

  1. Lack of Genetic Variation of Bursaphelenchus xylophilus in Portugal Revealed by RAPD-PCR Analyses.

    PubMed

    Vieira, Paulo; Burgermeister, Wolfgang; Mota, Manuel; Metge, Kai; Silva, Gonçalo

    2007-06-01

    Random Amplified Polymorphic DNA (RAPD-PCR) technique was used to assess the level of genetic variability and genetic relationships among 24 Portuguese isolates of pinewood nematode, Bursaphelenchus xylophilus. The isolates represent the main infested areas of Portugal. Two additional isolates of B. xylophilus representing North America and East Asia were included, and B. mucronatus was used as out-group. Twenty-eight random primers generated a total of 640 DNA fragments. The Nei and Li similarity index revealed a high genetic similarity among the Portuguese isolates (above 90%). Hierarchical cluster analysis was performed to illustrate the relatedness among the isolates. No indication for separate groups among the Portuguese isolates was obtained, and the low level of genetic diversity strongly suggests that they were dispersed recently from a single introduction. The lack of apparent relationship between the genetic and the geographic matrices of the Portuguese isolates limits the use of this technique for following recent pathways of distribution. Genetic distance of the Portuguese isolates towards an isolate from China was much lower as compared to an isolate from the USA. This confirmed previous results suggesting an East Asian origin of the Portuguese B. xylophilus. PMID:19259480

  2. Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection

    PubMed Central

    Xie, Weibo; Wang, Gongwei; Yuan, Meng; Yao, Wen; Lyu, Kai; Zhao, Hu; Yang, Meng; Li, Pingbo; Zhang, Xing; Yuan, Jing; Wang, Quanxiu; Liu, Fang; Dong, Huaxia; Zhang, Lejing; Li, Xinglei; Meng, Xiangzhou; Zhang, Wan; Xiong, Lizhong; He, Yuqing; Wang, Shiping; Yu, Sibin; Xu, Caiguo; Luo, Jie; Li, Xianghua; Xiao, Jinghua; Lian, Xingming; Zhang, Qifa

    2015-01-01

    Intensive rice breeding over the past 50 y has dramatically increased productivity especially in the indica subspecies, but our knowledge of the genomic changes associated with such improvement has been limited. In this study, we analyzed low-coverage sequencing data of 1,479 rice accessions from 73 countries, including landraces and modern cultivars. We identified two major subpopulations, indica I (IndI) and indica II (IndII), in the indica subspecies, which corresponded to the two putative heterotic groups resulting from independent breeding efforts. We detected 200 regions spanning 7.8% of the rice genome that had been differentially selected between IndI and IndII, and thus referred to as breeding signatures. These regions included large numbers of known functional genes and loci associated with important agronomic traits revealed by genome-wide association studies. Grain yield was positively correlated with the number of breeding signatures in a variety, suggesting that the number of breeding signatures in a line may be useful for predicting agronomic potential and the selected loci may provide targets for rice improvement. PMID:26358652

  3. Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars.

    PubMed

    Lin, Hong; Rao, Jun; Shi, Jianxin; Hu, Chaoyang; Cheng, Fang; Wilson, Zoe A; Zhang, Dabing; Quan, Sheng

    2014-09-01

    Soybean [Glycine max (L.) Merr.] is one of the world's major crops, and soybean seeds are a rich and important resource for proteins and oils. While "omics" studies, such as genomics, transcriptomics, and proteomics, have been widely applied in soybean molecular research, fewer metabolomic studies have been conducted for large-scale detection of low molecular weight metabolites, especially in soybean seeds. In this study, we investigated the seed metabolomes of 29 common soybean cultivars through combined gas chromatography-mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry. One hundred sixty-nine named metabolites were identified and subsequently used to construct a metabolic network of mature soybean seed. Among the 169 detected metabolites, 104 were found to be significantly variable in their levels across tested cultivars. Metabolite markers that could be used to distinguish genetically related soybean cultivars were also identified, and metabolite-metabolite correlation analysis revealed some significant associations within the same or among different metabolite groups. Findings from this work may potentially provide the basis for further studies on both soybean seed metabolism and metabolic engineering to improve soybean seed quality and yield. PMID:24942044

  4. Mitochondrial DNA variation reveals recent evolutionary history of main Boa constrictor clades.

    PubMed

    Hynková, Ivana; Starostová, Zuzana; Frynta, Daniel

    2009-09-01

    We sequenced a 1114-bp fragment of cytochrome b gene in six subspecies (115 samples) of Boa constrictor and detected 67 haplotypes. Our analyses revealed the presence of two distinct clades, one from Central America (CA) including the neighboring part of South America west of the Andes, and the other covering the rest of South America (SA). Sequence divergence between CA and SA clades is about 5-7%, which roughly corresponds to a separation at the time of uplift of the Colombian Andes following formation of the Panama Isthmus before 3.5 Myr Sequence divergence within the SA and CA clades is only 2-3%, suggesting a fairly recent spread of these clades Into their current geographic ranges. Thus, we may not be dealing with taxa with a markedly old evolutionary history. Because juveniles of B. constrictor feed mostly on small rodents, we hypothesized that spread of this species was allowed by a new food source represented by murold rodents that appeared after closure of the Panama portal. With respect to the taxonomy, B. c. imperator may be elevated to full species rank. Within the SA clade, a haplotype of Argentinian B. c. occidentalis is markedly distinct, while the remaining haplotype groups analyzed are distributed throughout large ranges and may all belong to a single nominotypic subspecies. PMID:19799513

  5. Mapping of fiber quality QTLs reveals useful variation and footprints of cotton domestication using introgression lines

    PubMed Central

    Zhang, Shu-Wen; Zhu, Xie-Fei; Feng, Liu-Chun; Gao, Xiang; Yang, Biao; Zhang, Tian-Zhen; Zhou, Bao-Liang

    2016-01-01

    Fiber quality improvement is a driving force for further cotton domestication and breeding. Here, QTLs for fiber quality were mapped in 115 introgression lines (ILs) first developed from two intraspecific populations of cultivated and feral cotton landraces. A total of 60 QTLs were found, which explained 2.03–16.85% of the phenotypic variance found in fiber quality traits. A total of 36 markers were associated with five fiber traits, 33 of which were found to be associated with QTLs in multiple environments. In addition, nine pairs of common QTLs were identified; namely, one pair of QTLs for fiber elongation, three pairs for fiber length, three pairs for fiber strength and two pairs for micronaire (qMICs). All common QTLs had additive effects in the same direction in both IL populations. We also found five QTL clusters, allowing cotton breeders to focus their efforts on regions of QTLs with the highest percentages of phenotypic variance. Our results also reveal footprints of domestication; for example, fourteen QTLs with positive effects were found to have remained in modern cultivars during domestication, and two negative qMICs that had never been reported before were found, suggesting that the qMICs regions may be eliminated during artificial selection. PMID:27549323

  6. Climate and flow variation revealed in tree rings of riparian cottonwood, western North Dakota, USA

    NASA Astrophysics Data System (ADS)

    Friedman, J. M.; Edmondson, J. R.; Meko, D. M.; Touchan, R.; Griffin, E. R.; Zhou, H.

    2014-12-01

    In the western Great Plains, where old upland trees are scarce, rings of riparian trees provide an important opportunity for reconstructing past river flow and climate. We present data from 489 plains cottonwood (Populus deltoides ssp. monilifera) trees along the Little Missouri River in western North Dakota. The trees are in randomly selected flood-plain locations within the North and South units of Theodore Roosevelt National Park. The two sites are separated by 160 river km. The Little Missouri watershed contains foothills but no mountains, and most annual high flows result from snowmelt in March or April. Cores were collected and processed using standard dendrochronological methods. The effect of tree age was removed from the chronology using a single relation for the site as a whole (age-curve standardization), which preserves century-scale variation. Trees were as old as 371 years. Given that cottonwood establishment depends upon channel migration, abundant establishment from 1864-1891 at both sites suggests that one or more large floods occurred prior to this period. At the North Unit, establishment continued at a lower rate during the next century, but upstream at the South Unit, tree establishment was greatly curtailed after the 1800s. Comparison of General Land Office Maps from 1907 to recent satellite imagery confirms that channel migration in the last century was much greater within the North Unit, a difference caused in part by a downstream increase in flood amplification by ice jamming. Ring widths show that even on the flood plain riparian trees were chronically drought stressed. At both sites growth was strongly positively correlated with flow and precipitation and weakly negatively correlated with temperature. Growth was most strongly correlated with flow and precipitation in April-July, which is consistent with dendrometer-band measurements showing growth cessation in August. Whereas cottonwood establishment decreased in the 1900s, ring widths

  7. Lithologic variation within bright material on Vesta revealed by linear spectral unmixing

    NASA Astrophysics Data System (ADS)

    Zambon, F.; Tosi, F.; Carli, C.; De Sanctis, M. C.; Blewett, D. T.; Palomba, E.; Longobardo, A.; Frigeri, A.; Ammannito, E.; Russell, C. T.; Raymond, C. A.

    2016-07-01

    Vesta's surface is mostly composed of pyroxene-rich lithologies compatible with howardite, eucrite and diogenite (HED) meteorites (e.g., McCord et al. [1970] Science, 168, 1445-1447; Feierberg & Drake [1980] Science, 209, 805-807). Data provided by the Visible and Infrared (VIR) spectrometer, onboard the NASA Dawn spacecraft, revealed that all Vesta reflectance spectra show absorption bands at ∼0.9 and ∼1.9 μm, which are typical of iron-bearing pyroxenes (De Sanctis et al. [2012] Science, 336, 697-700). Other minerals may be present in spectrally significant concentrations; these include olivine and opaque phases like those found in carbonaceous chondrites. These additional components modify the dominant pyroxene absorptions. We apply linear spectral unmixing on bright material (BM) units of Vesta to identify HEDs and non-HED phases. We explore the limits of applicability of linear spectral unmixing, testing it on laboratory mixtures. We find that the linear method is applicable at the VIR pixel resolution and it is useful when the surface is composed of pyroxene-rich lithologies containing moderate quantities of carbonaceous chondrite, olivine, and plagioclase. We found three main groups of BM units: eucrite-rich, diogenite-rich, and olivine-rich. For the non-HED spectral endmember, we choose either olivine or a featureless component. Our work confirms that Vesta's surface contains a high content of pyroxenes mixed with a lower concentration of other phases. In many cases, the non-HED endmember that gives the best fit is the featureless phase, which causes a reduction in the strength of both bands. The anticorrelation between albedo and featureless endmember indicates that this phase is associated with low-albedo, CC-like opaque material. Large amounts of olivine have been detected in Bellicia, Arruntia and BU14 BM units. Other sites present low olivine content (<30%) mostly with a high concentration of diogenite.

  8. Metagenomic approach reveals variation of microbes with arsenic and antimony metabolism genes from highly contaminated soil.

    PubMed

    Luo, Jinming; Bai, Yaohui; Liang, Jinsong; Qu, Jiuhui

    2014-01-01

    Microbes have great potential for arsenic (As) and antimony (Sb) bioremediation in heavily contaminated soil because they have the ability to biotransform As and Sb to species that have less toxicity or are more easily removed. In this study, we integrated a metagenomic method with physicochemical characterization to elucidate the composition of microbial community and functional genes (related to As and Sb) in a high As (range from 34.11 to 821.23 mg kg-1) and Sb (range from 226.67 to 3923.07 mg kg-1) contaminated mine field. Metagenomic analysis revealed that microbes from 18 phyla were present in the 5 samples of soil contaminated with high As and Sb. Moreover, redundancy analysis (RDA) of the relationship between the 18 phyla and the concentration of As and Sb demonstrated that 5 phyla of microbes, i.e. Actinobacteria, Firmicutes, Nitrospirae, Tenericutes and Gemmatimonadetes were positively correlated with As and Sb concentration. The distribution, diversity and abundance of functional genes (including arsC, arrA, aioA, arsB and ACR3) were much higher for the samples containing higher As and Sb concentrations. Based on correlation analysis, the results showed a positive relationship between arsC-like (R2 = 0.871) and aioA-like (R2 = 0.675) gene abundance and As concentration, and indicated that intracellular As(V) reduction and As(III) oxidation could be the dominant As detoxification mechanism enabling the microbes to survive in the environment. This study provides a direct and reliable reference on the diversity of microbial community and functional genes in an extremely high concentration As- and Sb-contaminated environment. PMID:25299175

  9. Metagenomic Approach Reveals Variation of Microbes with Arsenic and Antimony Metabolism Genes from Highly Contaminated Soil

    PubMed Central

    Luo, Jinming; Bai, Yaohui; Liang, Jinsong; Qu, Jiuhui

    2014-01-01

    Microbes have great potential for arsenic (As) and antimony (Sb) bioremediation in heavily contaminated soil because they have the ability to biotransform As and Sb to species that have less toxicity or are more easily removed. In this study, we integrated a metagenomic method with physicochemical characterization to elucidate the composition of microbial community and functional genes (related to As and Sb) in a high As (range from 34.11 to 821.23 mg kg−1) and Sb (range from 226.67 to 3923.07 mg kg−1) contaminated mine field. Metagenomic analysis revealed that microbes from 18 phyla were present in the 5 samples of soil contaminated with high As and Sb. Moreover, redundancy analysis (RDA) of the relationship between the 18 phyla and the concentration of As and Sb demonstrated that 5 phyla of microbes, i.e. Actinobacteria, Firmicutes, Nitrospirae, Tenericutes and Gemmatimonadetes were positively correlated with As and Sb concentration. The distribution, diversity and abundance of functional genes (including arsC, arrA, aioA, arsB and ACR3) were much higher for the samples containing higher As and Sb concentrations. Based on correlation analysis, the results showed a positive relationship between arsC-like (R2 = 0.871) and aioA-like (R2 = 0.675) gene abundance and As concentration, and indicated that intracellular As(V) reduction and As(III) oxidation could be the dominant As detoxification mechanism enabling the microbes to survive in the environment. This study provides a direct and reliable reference on the diversity of microbial community and functional genes in an extremely high concentration As- and Sb-contaminated environment. PMID:25299175

  10. Genetic Structure of the Han Chinese Population Revealed by Genome-wide SNP Variation

    PubMed Central

    Chen, Jieming; Zheng, Houfeng; Bei, Jin-Xin; Sun, Liangdan; Jia, Wei-hua; Li, Tao; Zhang, Furen; Seielstad, Mark; Zeng, Yi-Xin; Zhang, Xuejun; Liu, Jianjun

    2009-01-01

    Population stratification is a potential problem for genome-wide association studies (GWAS), confounding results and causing spurious associations. Hence, understanding how allele frequencies vary across geographic regions or among subpopulations is an important prelude to analyzing GWAS data. Using over 350,000 genome-wide autosomal SNPs in over 6000 Han Chinese samples from ten provinces of China, our study revealed a one-dimensional “north-south” population structure and a close correlation between geography and the genetic structure of the Han Chinese. The north-south population structure is consistent with the historical migration pattern of the Han Chinese population. Metropolitan cities in China were, however, more diffused “outliers,” probably because of the impact of modern migration of peoples. At a very local scale within the Guangdong province, we observed evidence of population structure among dialect groups, probably on account of endogamy within these dialects. Via simulation, we show that empirical levels of population structure observed across modern China can cause spurious associations in GWAS if not properly handled. In the Han Chinese, geographic matching is a good proxy for genetic matching, particularly in validation and candidate-gene studies in which population stratification cannot be directly accessed and accounted for because of the lack of genome-wide data, with the exception of the metropolitan cities, where geographical location is no longer a good indicator of ancestral origin. Our findings are important for designing GWAS in the Chinese population, an activity that is expected to intensify greatly in the near future. PMID:19944401

  11. Integrative Analysis of Transcriptomic and Epigenomic Data to Reveal Regulation Patterns for BMD Variation

    PubMed Central

    Zhang, Ji-Gang; Tan, Li-Jun; Xu, Chao; He, Hao; Tian, Qing; Zhou, Yu; Qiu, Chuan; Chen, Xiang-Ding; Deng, Hong-Wen

    2015-01-01

    Integration of multiple profiling data and construction of functional gene networks may provide additional insights into the molecular mechanisms of complex diseases. Osteoporosis is a worldwide public health problem, but the complex gene-gene interactions, post-transcriptional modifications and regulation of functional networks are still unclear. To gain a comprehensive understanding of osteoporosis etiology, transcriptome gene expression microarray, epigenomic miRNA microarray and methylome sequencing were performed simultaneously in 5 high hip BMD (Bone Mineral Density) subjects and 5 low hip BMD subjects. SPIA (Signaling Pathway Impact Analysis) and PCST (Prize Collecting Steiner Tree) algorithm were used to perform pathway-enrichment analysis and construct the interaction networks. Through integrating the transcriptomic and epigenomic data, firstly we identified 3 genes (FAM50A, ZNF473 and TMEM55B) and one miRNA (hsa-mir-4291) which showed the consistent association evidence from both gene expression and methylation data; secondly in network analysis we identified an interaction network module with 12 genes and 11 miRNAs including AKT1, STAT3, STAT5A, FLT3, hsa-mir-141 and hsa-mir-34a which have been associated with BMD in previous studies. This module revealed the crosstalk among miRNAs, mRNAs and DNA methylation and showed four potential regulatory patterns of gene expression to influence the BMD status. In conclusion, the integration of multiple layers of omics can yield in-depth results than analysis of individual omics data respectively. Integrative analysis from transcriptomics and epigenomic data improves our ability to identify causal genetic factors, and more importantly uncover functional regulation pattern of multi-omics for osteoporosis etiology. PMID:26390436

  12. Capillary zone electrophoresis and capillary electrophoresis-mass spectrometry for analyzing qualitative and quantitative variations in therapeutic albumin.

    PubMed

    Marie, Anne-Lise; Przybylski, Cédric; Gonnet, Florence; Daniel, Régis; Urbain, Rémi; Chevreux, Guillaume; Jorieux, Sylvie; Taverna, Myriam

    2013-10-24

    The present study describes a reproducible and quantitative capillary zone electrophoresis (CZE) method, which leads to the separation of nine forms (native, oxidized and glycated) of human serum albumin (HSA). In an attempt to identify the different species separated by this CZE method, the capillary electrophoresis was coupled to mass spectrometry using a sheath liquid interface, an optimized capillary coating and a suitable CE running buffer. CE-MS analyses confirmed the heterogeneity of albumin preparation and revealed new truncated and modified forms such as Advanced Glycation End products (AGEs). Assignment of the CZE peaks was carried out using specific antibodies, carboxypeptidase A or sample reduction before or during the CE separation. Thus, five HSA forms were unambiguously identified. Using this CZE method several albumin batches produced by slightly different fractionation ways could be discriminated. Furthermore, analyses of HSA preparations marketed by five pharmaceutical industries revealed that two therapeutic albumins, including that marketed by LFB, contained the highest proportion of native form and lower levels of oxidized forms. PMID:24120174

  13. Multi-character approach reveals a discordant pattern of phenotypic variation during ontogeny in Culex pipiens biotypes (Diptera: Culicidae).

    PubMed

    Krtinić, B; Ludoški, J; Milankov, V

    2015-02-01

    Culex (Culex) pipiens s.l. (Diptera: Culicidae) comprises two distinct biotypes, pipiens ('rural') and molestus ('urban'), both of which are thought to have differing capacities due to different host preferences. To better understand West Nile encephalitis epidemiology and improve risk assessment, local distinction between these forms is essential. This study assesses phenotypic variation at larval and adult stages of 'urban' and 'rural' biotypes of the species by complementary use of meristic, univariate and multivariate traits analyzed by traditional and geometric morphometrics. Third- and fourth-instar larvae from a broad area of the city of Novi Sad (Serbia) were collected and reared in the laboratory. After adult eclosion, the sex of each larva was recorded based on the sex of the corresponding adult. Examination of the association between variations of larval traits revealed contrasting variations regarding pecten spines vs. siphonal size and siphonal shape in the 'rural' biotype. Siphons of larvae collected in marshes and forest ecosystems outside urban areas were found to be the largest, but possessed the smallest number of pecten spines. In addition, statistically significant female-biased sexual dimorphism was observed in siphonal size, wing size and wing shape. Finally, we propose that an integrative approach is essential in delimitation of Cx. pipiens s.l. biotypes, since their differentiation was not possible based solely on larval and adult traits. Our findings shed light on the phenotypic plasticity important for population persistence in the changing environment of these medically important taxa. PMID:25424880

  14. Revealing oxidative damage to enzymes of carbohydrate metabolism in yeast: An integration of 2D DIGE, quantitative proteomics, and bioinformatics.

    PubMed

    Boone, Cory H T; Grove, Ryan A; Adamcova, Dana; Braga, Camila P; Adamec, Jiri

    2016-07-01

    Clinical usage of lidocaine, a pro-oxidant has been linked with severe, mostly neurological complications. The mechanism(s) causing these complications is independent of the blockade of voltage-gated sodium channels. The budding yeast Saccharomyces cerevisiae lacks voltage-gated sodium channels, thus provides an ideal system to investigate lidocaine-induced protein and pathway alterations. Whole-proteome alterations leading to these complications have not been identified. To address this, S. cerevisiae was grown to stationary phase and exposed to an LC50 dose of lidocaine. The differential proteomes of lidocaine treatment and control were resolved 6 h post exposure using 2D DIGE. Amine reactive dyes and carbonyl reactive dyes were used to assess protein abundance and protein oxidation, respectively. Quantitative analysis of these dyes (⩾ 1.5-fold alteration, p ⩽ 0.05) revealed a total of 33 proteoforms identified by MS differing in abundance and/or oxidation upon lidocaine exposure. Network analysis showed enrichment of apoptotic proteins and cell wall maintenance proteins, while the abundance of proteins central to carbohydrate metabolism, such as triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase, and redox proteins superoxide dismutase and peroxiredoxin were significantly decreased. Enzymes of carbohydrate metabolism, such as phosphoglycerate kinase and enolase, the TCA cycle enzyme aconitase, and multiple ATP synthase subunits were found to be oxidatively modified. Also, the activity of aconitase was found to be decreased. Overall, these data suggest that toxic doses of lidocaine induce significant disruption of glycolytic pathways, energy production, and redox balance, potentially leading to cell malfunction and death. PMID:27193513

  15. Structure of Complement C3(H2O) Revealed By Quantitative Cross-Linking/Mass Spectrometry And Modeling.

    PubMed

    Chen, Zhuo A; Pellarin, Riccardo; Fischer, Lutz; Sali, Andrej; Nilges, Michael; Barlow, Paul N; Rappsilber, Juri

    2016-08-01

    The slow but spontaneous and ubiquitous formation of C3(H2O), the hydrolytic and conformationally rearranged product of C3, initiates antibody-independent activation of the complement system that is a key first line of antimicrobial defense. The structure of C3(H2O) has not been determined. Here we subjected C3(H2O) to quantitative cross-linking/mass spectrometry (QCLMS). This revealed details of the structural differences and similarities between C3(H2O) and C3, as well as between C3(H2O) and its pivotal proteolytic cleavage product, C3b, which shares functionally similarity with C3(H2O). Considered in combination with the crystal structures of C3 and C3b, the QCMLS data suggest that C3(H2O) generation is accompanied by the migration of the thioester-containing domain of C3 from one end of the molecule to the other. This creates a stable C3b-like platform able to bind the zymogen, factor B, or the regulator, factor H. Integration of available crystallographic and QCLMS data allowed the determination of a 3D model of the C3(H2O) domain architecture. The unique arrangement of domains thus observed in C3(H2O), which retains the anaphylatoxin domain (that is excised when C3 is enzymatically activated to C3b), can be used to rationalize observed differences between C3(H2O) and C3b in terms of complement activation and regulation. PMID:27250206

  16. Succession patterns of fungi associated to wound-induced agarwood in wild Aquilaria malaccensis revealed from quantitative PCR assay.

    PubMed

    Mohamed, Rozi; Jong, Phai Lee; Nurul Irdayu, Ismail

    2014-09-01

    Aquilaria malaccensis produces agarwood in response to wounding and fungal attack. However, information is limited regarding Aquilaria's interaction with its diverse fungal community. In this study, time-related changes of three natural fungal colonizers in two wounded wild A. malaccensis were tracked, beginning a few hours after wounding up to 12 months. Using species-specific primers derived from their nrITS sequences in quantitative real-time PCR (qPCR), we quantified the amount of Cunninghamella bainieri, Fusarium solani and Lasiodiplodia theobromae. Because time is a major factor affecting agarwood quantity and quality, 14 wood samples were collected at different time points, i.e., 0-18 h, 2-13 days, 2-18 weeks, and 6-12 months after wounding. qPCR data revealed that the abundance of the three species decreased over time. The fungi were detected in high numbers during the first few hours and days after wounding (40- to 25,000-fold higher levels compared with initial counts) and in low numbers (<1- to 3,200-fold higher than initially) many months later. Consistent with its role in defense response, the accumulation of secondary metabolites at the wounding site could have caused the decline in fungal abundance. Succession patterns of the two trees were not identical, indicating that fungal populations may have been affected by tree environment and wound microclimate. Our results are important for understanding the diversity of microbial community in wild Aquilaria species and their association to wound-induced agarwood formation. Fungi could be secondary triggers to agarwood production in situations where trees are wounded in attempt to induce agarwood. PMID:24840100

  17. Structure of Complement C3(H2O) Revealed By Quantitative Cross-Linking/Mass Spectrometry And Modeling*

    PubMed Central

    Pellarin, Riccardo; Sali, Andrej; Barlow, Paul N.

    2016-01-01

    The slow but spontaneous and ubiquitous formation of C3(H2O), the hydrolytic and conformationally rearranged product of C3, initiates antibody-independent activation of the complement system that is a key first line of antimicrobial defense. The structure of C3(H2O) has not been determined. Here we subjected C3(H2O) to quantitative cross-linking/mass spectrometry (QCLMS). This revealed details of the structural differences and similarities between C3(H2O) and C3, as well as between C3(H2O) and its pivotal proteolytic cleavage product, C3b, which shares functionally similarity with C3(H2O). Considered in combination with the crystal structures of C3 and C3b, the QCMLS data suggest that C3(H2O) generation is accompanied by the migration of the thioester-containing domain of C3 from one end of the molecule to the other. This creates a stable C3b-like platform able to bind the zymogen, factor B, or the regulator, factor H. Integration of available crystallographic and QCLMS data allowed the determination of a 3D model of the C3(H2O) domain architecture. The unique arrangement of domains thus observed in C3(H2O), which retains the anaphylatoxin domain (that is excised when C3 is enzymatically activated to C3b), can be used to rationalize observed differences between C3(H2O) and C3b in terms of complement activation and regulation. PMID:27250206

  18. Quantitative Imaging of Cholinergic Interneurons Reveals a Distinctive Spatial Organization and a Functional Gradient across the Mouse Striatum

    PubMed Central

    Götz, Jürgen; Bertran-Gonzalez, Jesus

    2016-01-01

    Information processing in the striatum requires the postsynaptic integration of glutamatergic and dopaminergic signals, which are then relayed to the output nuclei of the basal ganglia to influence behavior. Although cellularly homogeneous in appearance, the striatum contains several rare interneuron populations which tightly modulate striatal function. Of these, cholinergic interneurons (CINs) have been recently shown to play a critical role in the control of reward-related learning; however how the striatal cholinergic network is functionally organized at the mesoscopic level and the way this organization influences striatal function remains poorly understood. Here, we systematically mapped and digitally reconstructed the entire ensemble of CINs in the mouse striatum and quantitatively assessed differences in densities, spatial arrangement and neuropil content across striatal functional territories. This approach demonstrated that the rostral portion of the striatum contained a higher concentration of CINs than the caudal striatum and that the cholinergic content in the core of the ventral striatum was significantly lower than in the rest of the regions. Additionally, statistical comparison of spatial point patterns in the striatal cholinergic ensemble revealed that only a minor portion of CINs (17%) aggregated into cluster and that they were predominantly organized in a random fashion. Furthermore, we used a fluorescence reporter to estimate the activity of over two thousand CINs in naïve mice and found that there was a decreasing gradient of CIN overall function along the dorsomedial-to-ventrolateral axis, which appeared to be independent of their propensity to aggregate within the striatum. Altogether this work suggests that the regulation of striatal function by acetylcholine across the striatum is highly heterogeneous, and that signals originating in external afferent systems may be principally determining the function of CINs in the striatum. PMID:27314496

  19. Quantitative Imaging of Cholinergic Interneurons Reveals a Distinctive Spatial Organization and a Functional Gradient across the Mouse Striatum.

    PubMed

    Matamales, Miriam; Götz, Jürgen; Bertran-Gonzalez, Jesus

    2016-01-01

    Information processing in the striatum requires the postsynaptic integration of glutamatergic and dopaminergic signals, which are then relayed to the output nuclei of the basal ganglia to influence behavior. Although cellularly homogeneous in appearance, the striatum contains several rare interneuron populations which tightly modulate striatal function. Of these, cholinergic interneurons (CINs) have been recently shown to play a critical role in the control of reward-related learning; however how the striatal cholinergic network is functionally organized at the mesoscopic level and the way this organization influences striatal function remains poorly understood. Here, we systematically mapped and digitally reconstructed the entire ensemble of CINs in the mouse striatum and quantitatively assessed differences in densities, spatial arrangement and neuropil content across striatal functional territories. This approach demonstrated that the rostral portion of the striatum contained a higher concentration of CINs than the caudal striatum and that the cholinergic content in the core of the ventral striatum was significantly lower than in the rest of the regions. Additionally, statistical comparison of spatial point patterns in the striatal cholinergic ensemble revealed that only a minor portion of CINs (17%) aggregated into cluster and that they were predominantly organized in a random fashion. Furthermore, we used a fluorescence reporter to estimate the activity of over two thousand CINs in naïve mice and found that there was a decreasing gradient of CIN overall function along the dorsomedial-to-ventrolateral axis, which appeared to be independent of their propensity to aggregate within the striatum. Altogether this work suggests that the regulation of striatal function by acetylcholine across the striatum is highly heterogeneous, and that signals originating in external afferent systems may be principally determining the function of CINs in the striatum. PMID:27314496

  20. Novel X-Linked Genes Revealed by Quantitative Polymerase Chain Reaction in the Green Anole, Anolis carolinensis

    PubMed Central

    Rovatsos, Michail; Altmanová, Marie; Pokorná, Martina Johnson; Kratochvíl, Lukáš

    2014-01-01

    The green anole, Anolis carolinensis (ACA), is the model reptile for a vast array of biological disciplines. It was the first nonavian reptile to have its genome fully sequenced. During the genome project, the XX/XY system of sex chromosomes homologous to chicken chromosome 15 (GGA15) was revealed, and 106 X-linked genes were identified. We selected 38 genes located on eight scaffolds in ACA and having orthologs located on GGA15, then tested their linkage to ACA X chromosome by using comparative quantitative fluorescent real-time polymerase chain reaction applied to male and female genomic DNA. All tested genes appeared to be X-specific and not present on the Y chromosome. Assuming that all genes located on these scaffolds should be localized to the ACA X chromosome, we more than doubled the number of known X-linked genes in ACA, from 106 to 250. While demonstrating that the gene content of chromosome X in ACA and GGA15 is largely conserved, we nevertheless showed that numerous interchromosomal rearrangements had occurred since the splitting of the chicken and anole evolutionary lineages. The presence of many ACA X-specific genes localized to distinct contigs indicates that the ACA Y chromosome should be highly degenerated, having lost a large amount of its original gene content during evolution. The identification of novel genes linked to the X chromosome and absent on the Y chromosome in the model lizard species contributes to ongoing research as to the evolution of sex determination in reptiles and provides important information for future comparative and functional genomics. PMID:25172916

  1. A quantitative trait locus for variation in dopamine metabolism mapped in a primate model using reference sequences from related species

    PubMed Central

    Freimer, Nelson B.; Service, Susan K.; Ophoff, Roel A.; Jasinska, Anna J.; McKee, Kevin; Villeneuve, Amelie; Belisle, Alexandre; Bailey, Julia N.; Breidenthal, Sherry E.; Jorgensen, Matthew J.; Mann, J. John; Cantor, Rita M.; Dewar, Ken; Fairbanks, Lynn A.

    2007-01-01

    Non-human primates (NHP) provide crucial research models. Their strong similarities to humans make them particularly valuable for understanding complex behavioral traits and brain structure and function. We report here the genetic mapping of an NHP nervous system biologic trait, the cerebrospinal fluid (CSF) concentration of the dopamine metabolite homovanillic acid (HVA), in an extended inbred vervet monkey (Chlorocebus aethiops sabaeus) pedigree. CSF HVA is an index of CNS dopamine activity, which is hypothesized to contribute substantially to behavioral variations in NHP and humans. For quantitative trait locus (QTL) mapping, we carried out a two-stage procedure. We first scanned the genome using a first-generation genetic map of short tandem repeat markers. Subsequently, using >100 SNPs within the most promising region identified by the genome scan, we mapped a QTL for CSF HVA at a genome-wide level of significance (peak logarithm of odds score >4) to a narrow well delineated interval (<10 Mb). The SNP discovery exploited conserved segments between human and rhesus macaque reference genome sequences. Our findings demonstrate the potential of using existing primate reference genome sequences for designing high-resolution genetic analyses applicable across a wide range of NHP species, including the many for which full genome sequences are not yet available. Leveraging genomic information from sequenced to nonsequenced species should enable the utilization of the full range of NHP diversity in behavior and disease susceptibility to determine the genetic basis of specific biological and behavioral traits. PMID:17884980

  2. Quantitative estimation of density variation in high-speed flows through inversion of the measured wavefront distortion

    NASA Astrophysics Data System (ADS)

    Medhi, Biswajit; Hegde, Gopalkrishna Mahadeva; Reddy, Kalidevapura Polareddy Jagannath; Roy, Debasish; Vasu, Ram Mohan

    2014-12-01

    A simple method employing an optical probe is presented to measure density variations in a hypersonic flow obstructed by a test model in a typical shock tunnel. The probe has a plane light wave trans-illuminating the flow and casting a shadow of a random dot pattern. Local slopes of the distorted wavefront are obtained from shifts of the dots in the pattern. Local shifts in the dots are accurately measured by cross-correlating local shifted shadows with the corresponding unshifted originals. The measured slopes are suitably unwrapped by using a discrete cosine transform based phase unwrapping procedure and also through iterative procedures. The unwrapped phase information is used in an iterative scheme for a full quantitative recovery of density distribution in the shock around the model through refraction tomographic inversion. Hypersonic flow field parameters around a missile shaped body at a free-stream Mach number of 5.8 measured using this technique are compared with the numerically estimated values.

  3. Quantitatively analyzing dielectrical properties of resins and mapping permittivity variations in CFRP with high-frequency eddy current device technology

    NASA Astrophysics Data System (ADS)

    Gäbler, Simone; Heuer, Henning; Heinrich, Gert; Kupke, Richard

    2015-03-01

    Eddy current testing is well-established for non-destructive characterization of electrical conductive materials. The development of high-frequency eddy current technology (with frequency ranges up to 100 MHz) made it even possible to extend the classical fields of application towards less conductive materials like CFRP. Maxwell's equations and recent research show that the use of high-frequency eddy current technology is also suitable for non-conductive materials. In that case the change of complex impedance of the probing coil contains information on sample permittivity. This paper shows that even a quantitative measurement of complex permittivity with high-frequency eddy current device technology is possible using an appropriate calibration. Measurement accuracy is comparable to commercial capacitive dielectric analyzers. If the sample material is electrically conductive, both, permittivity and conductivity influence the complex impedance measured with high-frequency eddy current devices. Depending on the measurement setup and the sheet resistance of the sample a parallel characterization of both parameters is possible on isotropic multi-layer materials. On CFRP the permittivity measurement is much more complex due to the capacitive effects between the carbon rovings. However, first results show that at least the local permittivity variations (like those caused by thermal damages) are detectable.

  4. Genetic variation between Schistosoma japonicum lineages from lake and mountainous regions in China revealed by resequencing whole genomes.

    PubMed

    Yin, Mingbo; Liu, Xiao; Xu, Bin; Huang, Jian; Zheng, Qi; Yang, Zhong; Feng, Zheng; Han, Ze-Guang; Hu, Wei

    2016-09-01

    Schistosoma infection is a major cause of morbidity and mortality worldwide. Schistosomiasis japonica is endemic in mainland China along the Yangtze River, typically distributed in two geographical categories of lake and mountainous regions. Study on schistosome genetic diversity is of interest in respect of understanding parasite biology and transmission, and formulating control strategy. Certain genetic variations may be associated with adaptations to different ecological habitats. The aim of this study is to gain insight into Schistosoma japonicum genetic variation, evolutionary origin and associated causes of different geographic lineages through examining homozygous Single Nucleotide Polymorphisms (SNPs) based on resequenced genome data. We collected S. japonicum samples from four sites, three in the lake regions (LR) of mid-east (Guichi and Tonglin in Anhui province, Laogang in Hunan province) and one in mountainous region (MR) (Xichang in Sichuan province) of south-west of China, resequenced their genomes using Next Generation Sequencing (NGS) technology, and made use of the available database of S. japonicum draft genomic sequence as a reference in genome mapping. A total of 14,575 SNPs from 2059 genes were identified in the four lineages. Phylogenetic analysis confirmed significant genetic variation exhibited between the different geographical lineages, and further revealed that the MR Xichang lineage is phylogenetically closer to LR Guich lineage than to other two LR lineages, and the MR lineage might be evolved from LR lineages. More than two thirds of detected SNPs were nonsynonymous; functional annotation of the SNP-containing genes showed that they are involved mainly in biological processes such as signaling and response to stimuli. Notably, unique nonsynonymous SNP variations were detected in 66 genes of MR lineage, inferring possible genetic adaption to mountainous ecological condition. PMID:27207135

  5. Quantitative Analysis of the Association Angle between T-cell Receptor Vα/Vβ Domains Reveals Important Features for Epitope Recognition.

    PubMed

    Hoffmann, Thomas; Krackhardt, Angela M; Antes, Iris

    2015-07-01

    T-cell receptors (TCR) play an important role in the adaptive immune system as they recognize pathogen- or cancer-based epitopes and thus initiate the cell-mediated immune response. Therefore there exists a growing interest in the optimization of TCRs for medical purposes like adoptive T-cell therapy. However, the molecular mechanisms behind T-cell signaling are still predominantly unknown. For small sets of TCRs it was observed that the angle between their Vα- and Vβ-domains, which bind the epitope, can vary and might be important for epitope recognition. Here we present a comprehensive, quantitative study of the variation in the Vα/Vβ interdomain-angle and its influence on epitope recognition, performing a systematic bioinformatics analysis based on a representative set of experimental TCR structures. For this purpose we developed a new, cuboid-based superpositioning method, which allows a unique, quantitative analysis of the Vα/Vβ-angles. Angle-based clustering led to six significantly different clusters. Analysis of these clusters revealed the unexpected result that the angle is predominantly influenced by the TCR-clonotype, whereas the bound epitope has only a minor influence. Furthermore we could identify a previously unknown center of rotation (CoR), which is shared by all TCRs. All TCR geometries can be obtained by rotation around this center, rendering it a new, common TCR feature with the potential of improving the accuracy of TCR structure prediction considerably. The importance of Vα/Vβ rotation for signaling was confirmed as we observed larger variances in the Vα/Vβ-angles in unbound TCRs compared to epitope-bound TCRs. Our results strongly support a two-step mechanism for TCR-epitope: First, preformation of a flexible TCR geometry in the unbound state and second, locking of the Vα/Vβ-angle in a TCR-type specific geometry upon epitope-MHC association, the latter being driven by rotation around the unique center of rotation. PMID:26185983

  6. Genome-Wide Detection of SNP and SV Variations to Reveal Early Ripening-Related Genes in Grape

    PubMed Central

    Tao, Jianmin; Jiang, Weihua; Zhang, Shijie; Wang, Qiunan; Qu, Shenchun

    2016-01-01

    Early ripening in grape (Vitis vinifera L.) is a crucial agronomic trait. The fruits of the grape line ‘Summer Black’ (SBBM), which contains a bud mutation, can be harvested approximately one week earlier than the ‘Summer Black’ (SBC)control. To investigate the molecular mechanism of the bud mutation related to early ripening, we detected genome-wide genetic variations based on re-sequencing. In total, 3,692,777 single nucleotide polymorphisms (SNPs) and 81,223 structure variations (SVs) in the SBC genome and 3,823,464 SNPs and 85,801 SVs in the SBBM genome were detected compared with the reference grape sequence. Of these, 635 SBC-specific genes and 665 SBBM-specific genes were screened. Ripening and colour-associated unigenes with non-synonymous mutations (NS), SVs or frame-shift mutations (F) were analysed. The results showed that 90 unigenes in SBC, 76 unigenes in SBBM and 13 genes that mapped to large fragment indels were filtered. The expression patterns of eight genes were confirmed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR).The re-sequencing data showed that 635 SBC-specific genes and 665 SBBM-specific genes associated with early ripening were screened. Among these, NCED6 expression appears to be related to NCED1 and is involved in ABA biosynthesis in grape, which might play a role in the onset of anthocyanin accumulation. The SEP and ERF genes probably play roles in ethylene response. PMID:26840449

  7. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis

    PubMed Central

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zhang, Dasheng; Zheng, Jingui

    2016-01-01

    Background Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. Results The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. Conclusions

  8. Natural Variation at the FRD3 MATE Transporter Locus Reveals Cross-Talk between Fe Homeostasis and Zn Tolerance in Arabidopsis thaliana

    PubMed Central

    Pineau, Christophe; Loubet, Stéphanie; Lefoulon, Cécile; Chalies, Claude; Fizames, Cécile; Lacombe, Benoit; Ferrand, Marina; Loudet, Olivier; Berthomieu, Pierre; Richard, Odile

    2012-01-01

    Zinc (Zn) is essential for the optimal growth of plants but is toxic if present in excess, so Zn homeostasis needs to be finely tuned. Understanding Zn homeostasis mechanisms in plants will help in the development of innovative approaches for the phytoremediation of Zn-contaminated sites. In this study, Zn tolerance quantitative trait loci (QTL) were identified by analyzing differences in the Bay-0 and Shahdara accessions of Arabidopsis thaliana. Fine-scale mapping showed that a variant of the Fe homeostasis-related FERRIC REDUCTASE DEFECTIVE3 (FRD3) gene, which encodes a multidrug and toxin efflux (MATE) transporter, is responsible for reduced Zn tolerance in A. thaliana. Allelic variation in FRD3 revealed which amino acids are necessary for FRD3 function. In addition, the results of allele-specific expression assays in F1 individuals provide evidence for the existence of at least one putative metal-responsive cis-regulatory element. Our results suggest that FRD3 works as a multimer and is involved in loading Zn into xylem. Cross-homeostasis between Fe and Zn therefore appears to be important for Zn tolerance in A. thaliana with FRD3 acting as an essential regulator. PMID:23236296

  9. Interspecific variation in localization of hypericins and phloroglucinols in the genus Hypericum as revealed by desorption electrospray ionization mass spectrometry imaging.

    PubMed

    Kucharíková, Andrea; Kimáková, Katarína; Janfelt, Christian; Čellárová, Eva

    2016-05-01

    Plants of the genus Hypericum are widely known for their therapeutic properties. The most biologically active compounds of this genus are naphtodianthrones and phloroglucinols. Indirect desorption electrospray ionization mass spectrometry (DESI-MS) imaging allows visualization and localization of secondary metabolites in different plant tissues. This study is focused on localization of major secondary compounds in the leaves of 17 different in vitro cultured Hypericum species classified in 11 sections. Generally, all identified naphtodianthrones, protohypericin, hypericin, protopseudohypericin and pseudohypericin were co-localized in the dark glands of eight hypericin producing species at the site of their accumulation. The known phloroglucinols, hyperforin, adhyperforin, hyperfirin and some new phloroglucinols with m/z [M - H](-) 495 and 569 were localized in the translucent and pale cavities within the leaf in the majority of studied species. The comparison of different Hypericum species revealed an interspecific variation in the distribution of the dark and translucent glands corresponding with the localization of hypericins and phloroglucinols. Moreover, similarities in the localization and composition of the phloroglucinols were observed in the species belonging to the same section. Adding to various quantitative studies focused on the detection of secondary metabolites, this work using indirect DESI-MSI offers additional valuable information about localization of the above-mentioned compounds. PMID:26822391

  10. Subtle local structural variations in oxygen deficient niobium germanate thin film glasses as revealed by x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Sahiner, M. A.; Nabizadeh, A.; Rivella, D.; Cerqueira, L.; Hachlica, J.; Morea, R.; Gonzalo, J.; Woicik, J. C.

    2016-05-01

    The local electronic and crystal structure of niobium-lead-germanate, Nb2O5-PbO- GeO2 (NPG), glass thin films on silicon substrates were probed by XANES and EXAFS. NPG glasses are promising candidates for applications in nonlinear optical devices because they exhibit interesting optical characteristics such as high nonlinear third order optical susceptibility. In this work NPG glasses were prepared with pulsed laser deposition method with varying oxygen partial pressure to induce thin films with different oxygen stoichiometry. Previously, it was shown that oxygen stoichiometry has a very important effect to produce unusual high optical susceptibility. Detailed EXAFS and XANES analyses in a series of NPG thin films revealed the subtle variations in the local environment around Nb atoms and the Nb oxidation states caused by oxygen deficiencies.

  11. Breeding signature of combining ability improvement revealed by a genomic variation map from recurrent selection population in Brassica napus

    PubMed Central

    Zhao, Xinwang; Li, Bao; Zhang, Ka; Hu, Kaining; Yi, Bin; Wen, Jing; Ma, Chaozhi; Shen, Jinxiong; Fu, Tingdong; Tu, Jinxing

    2016-01-01

    Combining ability is crucial for parent selection in crop hybrid breeding. The present investigation and results had revealed the underlying genetic factors which might contribute in adequate combining ability, further assisting in enhancing heterosis and stability. Here, we conducted a large-scale analysis of genomic variation in order to define genomic regions affecting the combining ability in recurrent selection population of rapeseed. A population of 175 individuals was genotyped with the Brassica60K SNP chip. 525 hybrids were assembled with three different testers and used to evaluate the general combining ability (GCA) in three environments. By detecting the changes of the genomic variation, we identified 376 potential genome regions, spanning 3.03% of rapeseed genome which provided QTL-level resolution on potentially selected variants. More than 96% of these regions were located in the C subgenome, indicating that C subgenome had sustained stronger selection pressure in the breeding program than the A subgenome. In addition, a high level of linkage disequilibrium in rapeseed genome was detected, suggesting that marker-assisted selection for the population improvement might be easily implemented. This study outlines the evidence for high GCA on a genomic level and provided underlying molecular mechanism for recurrent selection improvement in B. napus. PMID:27412721

  12. Genetic variation in wild populations of the tuber crop Amorphophallus konjac (Araceae) in central China as revealed by AFLP markers.

    PubMed

    Pan, C; Gichira, A W; Chen, J M

    2015-01-01

    Amorphophallus konjac is an economically important crop. In order to provide baseline information for sustainable development and conservation of the wild plant resources of A. konjac, we studied the genetic diversity and population structure of this species using amplified fragment length polymorphism (AFLP) molecular markers. We sampled 139 individuals from 10 wild populations of A. konjac in central China. Using five AFLP primer combinations, we scored a total of 270 DNA fragments, most of which were polymorphic (98.2%). Percentage of polymorphic loci, Nei's genetic diversity index, and Shannon's information index showed high levels of genetic variation within A. konjac populations. Analysis of molecular variance indicated that most of the variance (68%) resided within populations. The coefficient of genetic differentiation between populations was 0.348 and the estimated gene flow was 0.469, indicating that there was limited gene flow among the populations. Unweighted pair group method with arithmetic mean cluster analysis and principal coordinates analysis indicated that geographically close populations were more likely to cluster together. The Mantel test revealed a significant correlation between geographic and genetic distances (R2 = 0.2521, P < 0.05). The special insect-pollination system of A. konjac and the complex geography of central China are likely to have contributed to the current pattern of genetic variation of this species. In the present study, we provide several suggestions on the future protection of the wild plant genetic resources of A. konjac. PMID:26782525

  13. Breeding signature of combining ability improvement revealed by a genomic variation map from recurrent selection population in Brassica napus.

    PubMed

    Zhao, Xinwang; Li, Bao; Zhang, Ka; Hu, Kaining; Yi, Bin; Wen, Jing; Ma, Chaozhi; Shen, Jinxiong; Fu, Tingdong; Tu, Jinxing

    2016-01-01

    Combining ability is crucial for parent selection in crop hybrid breeding. The present investigation and results had revealed the underlying genetic factors which might contribute in adequate combining ability, further assisting in enhancing heterosis and stability. Here, we conducted a large-scale analysis of genomic variation in order to define genomic regions affecting the combining ability in recurrent selection population of rapeseed. A population of 175 individuals was genotyped with the Brassica60K SNP chip. 525 hybrids were assembled with three different testers and used to evaluate the general combining ability (GCA) in three environments. By detecting the changes of the genomic variation, we identified 376 potential genome regions, spanning 3.03% of rapeseed genome which provided QTL-level resolution on potentially selected variants. More than 96% of these regions were located in the C subgenome, indicating that C subgenome had sustained stronger selection pressure in the breeding program than the A subgenome. In addition, a high level of linkage disequilibrium in rapeseed genome was detected, suggesting that marker-assisted selection for the population improvement might be easily implemented. This study outlines the evidence for high GCA on a genomic level and provided underlying molecular mechanism for recurrent selection improvement in B. napus. PMID:27412721

  14. Comprehensive analysis of imprinted genes in maize reveals allelic variation for imprinting and limited conservation with other species.

    PubMed

    Waters, Amanda J; Bilinski, Paul; Eichten, Steven R; Vaughn, Matthew W; Ross-Ibarra, Jeffrey; Gehring, Mary; Springer, Nathan M

    2013-11-26

    In plants, a subset of genes exhibit imprinting in endosperm tissue such that expression is primarily from the maternal or paternal allele. Imprinting may arise as a consequence of mechanisms for silencing of transposons during reproduction, and in some cases imprinted expression of particular genes may provide a selective advantage such that it is conserved across species. Separate mechanisms for the origin of imprinted expression patterns and maintenance of these patterns may result in substantial variation in the targets of imprinting in different species. Here we present deep sequencing of RNAs isolated from reciprocal crosses of four diverse maize genotypes, providing a comprehensive analysis that allows evaluation of imprinting at more than 95% of endosperm-expressed genes. We find that over 500 genes exhibit statistically significant parent-of-origin effects in maize endosperm tissue, but focused our analyses on a subset of these genes that had >90% expression from the maternal allele (69 genes) or from the paternal allele (108 genes) in at least one reciprocal cross. Over 10% of imprinted genes show evidence of allelic variation for imprinting. A comparison of imprinting in maize and rice reveals that 13% of genes with syntenic orthologs in both species exhibit conserved imprinting. Genes that exhibit conserved imprinting between maize and rice have elevated nonsynonymous to synonymous substitution ratios compared with other imprinted genes, suggesting a history of more rapid evolution. Together, these data suggest that imprinting only has functional relevance at a subset of loci that currently exhibit imprinting in maize. PMID:24218619

  15. Recent Variations of The Italian Glaciers: Qualitative and Quantitative Data-base and Processings On A Fundamental Water Resource

    NASA Astrophysics Data System (ADS)

    Diolaiuti, G.; D'Agata, C.; Stella, G.; Apadula, F.; Smiraglia, C.

    This paper introduces the preliminary results of a project applied primarily to the compilation of the first general and complete data-base of all Italian glaciers, avail- able to the scientific community, and secondly to the elaboration of the information contained in the data base to supply a strong contribution to the study of the spatial and temporal variabilities of the climatic signal inside the alpine glacier historical series. The project started in the year 2000 as a convention between Università degli Studi di Milano (Italy) and CESI (Italian Electrical Sperimental Center) and gives the first results and the free use by people in the 2002, the International Year of Mountains. Fundamental for the development of the project was the collaboration of the Italian Glaciological Committee (CGI) with its publications (from 1914 to 1977 SBollettino & cedil;del Comitato Glaciologico ItalianoT and from 1978 to 2000 SGeografia Fisica e Di- & cedil;namica Quaternaria). The data-base collects qualitative and quantitative information on glaciers monitored by the Italian Glaciological CommitteeSs operators during the century of their activity for a total of 902 glaciers (901 alpine glaciers and only Ap- pennine one, the Calderone Glacier). For every glacier were inserted in the data-base: 1) data about the glacial terminus elevations, date and method of the measure 2) name and position of the signals used by the operators in order to verify the variations of extension of glacial terminus 3) distance between the signal and the glacier terminus and relative angle of measure 4) operatorSs name 5) bibliographical source of the information 6) qualitative data (on cartographic material, photographies and papers). Currently only a part of the data collected in the data-base is directly available in the web site: www.cesi.it/greeninfo/i ghiacciai Italiani/. Here the users are able to find, for every glacier, a table with all the references of qualitative (as cartography and

  16. Seasonal and topographic variations in porewaters of a southeastern USA salt marsh as revealed by voltammetric profilingdagger.

    PubMed

    Bull, D C; Taillefert, M

    2001-01-01

    We report electrochemical profiles from unvegetated surficial sediments of a Georgia salt marsh. In creek bank sediments, the absence of Sigma H2S or FeSaq and the presence of Fe(III)-organic complexes suggest that Mn and Fe reduction dominates over at least the top ca. 5 cm of the sediment column, consistent with other recent results. In unvegetated flats, accumulation of Sigma H2S indicates that SO42- reduction dominates over the same depth. A summer release of dissolved organic species from the dominant tall form Spartina alterniflora, together with elevated temperatures, appears to result in increased SO42- reduction intensity and hence high summer concentrations of Sigma H2S in flat sediments. However, increased bioturbation and/or bioirrigation seem to prevent this from happening in bank sediments. Studies of biogeochemical processes in salt marshes need to take such spatial and temporal variations into account if we are to develop a good understanding of these highly productive ecosystems. Furthermore, multidimensional analyses are necessary to obtain adequate quantitative pictures of such heterogeneous sediments. PMID:16759419

  17. Integrative analyses of genetic variation in enzyme activities of primary carbohydrate metabolism reveal distinct modes of regulation in Arabidopsis thaliana

    PubMed Central

    Keurentjes, Joost JB; Sulpice, Ronan; Gibon, Yves; Steinhauser, Marie-Caroline; Fu, Jingyuan; Koornneef, Maarten; Stitt, Mark; Vreugdenhil, Dick

    2008-01-01

    Background Plant primary carbohydrate metabolism is complex and flexible, and is regulated at many levels. Changes of transcript levels do not always lead to changes in enzyme activities, and these do not always affect metabolite levels and fluxes. To analyze interactions between these three levels of function, we have performed parallel genetic analyses of 15 enzyme activities involved in primary carbohydrate metabolism, transcript levels for their encoding structural genes, and a set of relevant metabolites. Quantitative analyses of each trait were performed in the Arabidopsis thaliana Ler × Cvi recombinant inbred line (RIL) population and subjected to correlation and quantitative trait locus (QTL) analysis. Results Traits affecting primary metabolism were often correlated, possibly due to developmental control affecting multiple genes, enzymes, or metabolites. Moreover, the activity QTLs of several enzymes co-localized with the expression QTLs (eQTLs) of their structural genes, or with metabolite accumulation QTLs of their substrates or products. In addition, many trait-specific QTLs were identified, revealing that there is also specific regulation of individual metabolic traits. Regulation of enzyme activities often occurred through multiple loci, involving both cis- and trans-acting transcriptional or post-transcriptional control of structural genes, as well as independently of the structural genes. Conclusion Future studies of the regulatory processes in primary carbohydrate metabolism will benefit from an integrative genetic analysis of gene transcription, enzyme activity, and metabolite content. The multiparallel QTL analyses of the various interconnected transducers of biological information flow, described here for the first time, can assist in determining the causes and consequences of genetic regulation at different levels of complex biological systems. PMID:18710526

  18. A novel imaging method for quantitative Golgi localization reveals differential intra-Golgi trafficking of secretory cargoes

    PubMed Central

    Tie, Hieng Chiong; Mahajan, Divyanshu; Chen, Bing; Cheng, Li; VanDongen, Antonius M. J.; Lu, Lei

    2016-01-01

    Cellular functions of the Golgi are determined by the unique distribution of its resident proteins. Currently, electron microscopy is required for the localization of a Golgi protein at the sub-Golgi level. We developed a quantitative sub-Golgi localization method based on centers of fluorescence masses of nocodazole-induced Golgi ministacks under conventional optical microscopy. Our method is rapid, convenient, and quantitative, and it yields a practical localization resolution of ∼30 nm. The method was validated by the previous electron microscopy data. We quantitatively studied the intra-Golgi trafficking of synchronized secretory membrane cargoes and directly demonstrated the cisternal progression of cargoes from the cis- to the trans-Golgi. Our data suggest that the constitutive efflux of secretory cargoes could be restricted at the Golgi stack, and the entry of the trans-Golgi network in secretory pathway could be signal dependent. PMID:26764092

  19. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood

    PubMed Central

    Toperoff, Gidon; Aran, Dvir; Kark, Jeremy D.; Rosenberg, Michael; Dubnikov, Tatyana; Nissan, Batel; Wainstein, Julio; Friedlander, Yechiel; Levy-Lahad, Ephrat; Glaser, Benjamin; Hellman, Asaf

    2012-01-01

    Inter-individual DNA methylation variations were frequently hypothesized to alter individual susceptibility to Type 2 Diabetes Mellitus (T2DM). Sequence-influenced methylations were described in T2DM-associated genomic regions, but evidence for direct, sequence-independent association with disease risk is missing. Here, we explore disease-contributing DNA methylation through a stepwise study design: first, a pool-based, genome-scale screen among 1169 case and control individuals revealed an excess of differentially methylated sites in genomic regions that were previously associated with T2DM through genetic studies. Next, in-depth analyses were performed at selected top-ranking regions. A CpG site in the first intron of the FTO gene showed small (3.35%) but significant (P = 0.000021) hypomethylation of cases relative to controls. The effect was independent of the sequence polymorphism in the region and persists among individuals carrying the sequence-risk alleles. The odds of belonging to the T2DM group increased by 6.1% for every 1% decrease in methylation (OR = 1.061, 95% CI: 1.032–1.090), the odds ratio for decrease of 1 standard deviation of methylation (adjusted to gender) was 1.5856 (95% CI: 1.2824–1.9606) and the sensitivity (area under the curve = 0.638, 95% CI: 0.586–0.690; males = 0.675, females = 0.609) was better than that of the strongest known sequence variant. Furthermore, a prospective study in an independent population cohort revealed significant hypomethylation of young individuals that later progressed to T2DM, relative to the individuals who stayed healthy. Further genomic analysis revealed co-localization with gene enhancers and with binding sites for methylation-sensitive transcriptional regulators. The data showed that low methylation level at the analyzed sites is an early marker of T2DM and suggests a novel mechanism by which early-onset, inter-individual methylation variation at isolated non-promoter genomic sites predisposes to T2DM

  20. Quantitative proteomic analysis of wheat grain proteins reveals differential effects of silencing of omega-5 gliadin genes in transgenic lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel wheat lines with altered flour compositions can be used to decipher the roles of specific gluten proteins in flour quality. Grain proteins from transgenic wheat lines in which genes encoding the omega-5 gliadins were silenced by RNA interference (RNAi) were analyzed in detail by quantitative 2...

  1. Extensive Pyrosequencing Reveals Frequent Intra-Genomic Variations of Internal Transcribed Spacer Regions of Nuclear Ribosomal DNA

    PubMed Central

    Li, Dezhu; Sun, Yongzhen; Niu, Yunyun; Chen, Zhiduan; Luo, Hongmei; Pang, Xiaohui; Sun, Zhiying; Liu, Chang; Lv, Aiping; Deng, Youping; Larson-Rabin, Zachary; Wilkinson, Mike; Chen, Shilin

    2012-01-01

    Background Internal transcribed spacer of nuclear ribosomal DNA (nrDNA) is already one of the most popular phylogenetic and DNA barcoding markers. However, the existence of its multiple copies has complicated such usage and a detailed characterization of intra-genomic variations is critical to address such concerns. Methodology/Principal Findings In this study, we used sequence-tagged pyrosequencing and genome-wide analyses to characterize intra-genomic variations of internal transcribed spacer 2 (ITS2) regions from 178 plant species. We discovered that mutation of ITS2 is frequent, with a mean of 35 variants per species. And on average, three of the most abundant variants make up 91% of all ITS2 copies. Moreover, we found different congeneric species share identical variants in 13 genera. Interestingly, different species across different genera also share identical variants. In particular, one minor variant of ITS2 in Eleutherococcus giraldii was found identical to the ITS2 major variant of Panax ginseng, both from Araliaceae family. In addition, DNA barcoding gap analysis showed that the intra-genomic distances were markedly smaller than those of the intra-specific or inter-specific variants. When each of 5543 variants were examined for its species discrimination efficiency, a 97% success rate was obtained at the species level. Conclusions Identification of identical ITS2 variants across intra-generic or inter-generic species revealed complex species evolutionary history, possibly, horizontal gene transfer and ancestral hybridization. Although intra-genomic multiple variants are frequently found within each genome, the usage of the major variants alone is sufficient for phylogeny construction and species determination in most cases. Furthermore, the inclusion of minor variants further improves the resolution of species identification. PMID:22952830

  2. A recurrent copy number variation of the NEB triplicate region: only revealed by the targeted nemaline myopathy CGH array.

    PubMed

    Kiiski, Kirsi; Lehtokari, Vilma-Lotta; Löytynoja, Ari; Ahlstén, Liina; Laitila, Jenni; Wallgren-Pettersson, Carina; Pelin, Katarina

    2016-04-01

    Recently, new large variants have been identified in the nebulin gene (NEB) causing nemaline myopathy (NM). NM constitutes a heterogeneous group of disorders among the congenital myopathies, and disease-causing variants in NEB are a main cause of the recessively inherited form of NM. NEB consists of 183 exons and it includes homologous sequences such as a 32-kb triplicate region (TRI), where eight exons are repeated three times (exons 82-89, 90-97, 98-105). In human, the normal copy number of NEB TRI is six (three copies in each allele). Recently, we described a custom NM-CGH microarray designed to detect copy number variations (CNVs) in the known NM genes. The array has now been updated to include all the currently known 10 NM genes. The NM-CGH array is superior in detecting CNVs, especially of the NEB TRI, that is not included in the exome capture kits. To date, we have studied 266 samples from 196 NM families using the NM-CGH microarray, and identified a novel recurrent NEB TRI variation in 13% (26/196) of the families and in 10% of the controls (6/60). An analysis of the breakpoints revealed adjacent repeat elements, which are known to predispose for rearrangements such as CNVs. The control CNV samples deviate only one copy from the normal six copies, whereas the NM samples include CNVs of up to four additional copies. Based on this study, NEB seems to tolerate deviations of one TRI copy, whereas addition of two or more copies might be pathogenic. PMID:26197980

  3. Multiple 10Be records revealing the history of cosmic-ray variations across the Iceland Basin excursion

    NASA Astrophysics Data System (ADS)

    Horiuchi, Kazuho; Kamata, Kanae; Maejima, Shun; Sasaki, Sho; Sasaki, Nobuyoshi; Yamazaki, Toshitsugu; Fujita, Shuji; Motoyama, Hideaki; Matsuzaki, Hiroyuki

    2016-04-01

    Cosmogenic 10Be is a proxy of cosmic-ray flux, and its natural records provide vital information about the past intensity variability of the geomagnetic field and solar activity. 10Be records also serve as powerful tools for global synchronization among a variety of paleoarchives and for elucidating sedimentary processes on natural remanent magnetization acquisition. However, high-resolution (multi-decadal to multi-centennial) records of 10Be are scarce, especially those older than several tens of thousands of years. Here we present multiple high-resolution 10Be records of the Iceland Basin geomagnetic excursion interval (ca. 170-200 kyr ago) obtained from sediment cores (authigenic 10Be/9Be ratio) and an ice core (atmospheric 10Be flux). Comparing sedimentary 10Be records with relative paleointensity from the same cores, we found differences in the magnetic lock-in depth, even between adjacent cores. The 10Be-proxy records from the sediment and ice cores exhibit common characteristics: an asymmetric large-scale variation, a ∼7-kyr quasi-plateau around the maximum with a characteristic mid-term depression, and multi-millennial fluctuations in cosmic-ray flux during this interval. Minimal-synchronized and stacked 10Be records show that maximum cosmic-ray flux occurred 188.5-190.0 kyr ago and was double the present flux. A wavelet analysis of the stacked curve reveals dominant 4-kyr and secondary 8-kyr periodicities, both of which can be interpreted as intrinsic geomagnetic cycles. The wavelet spectrum of the high-resolution ice-core record shows a periodicity of 1.7 kyr and somewhat intermingled multi-centennial cycles around the maxima of 10Be, which likely represent solar cycles in this period. High-resolution 10Be records from multiple paleoarchives provide both a robust proxy record of cosmic-ray flux and a valuable tool for detailed global synchronization based on cosmic-ray variations.

  4. Genetic variability of oil palm parental genotypes and performance of its' progenies as revealed by molecular markers and quantitative traits.

    PubMed

    Abdullah, Norziha; Rafii Yusop, Mohd; Ithnin, Maizura; Saleh, Ghizan; Latif, M A

    2011-04-01

    Studies were conducted to assess the genetic relationships between the parental palms (dura and pisifera) and performance of their progenies based on nine microsatellite markers and 29 quantitative traits. Correlation analyses between genetic distances and hybrids performance were estimated. The coefficients of correlation values of genetic distances with hybrid performance were non-significant, except for mean nut weight and leaf number. However, the correlation coefficient of genetic distances with these characters was low to be used as predicted value. These results indicated that genetic distances based on the microsatellite markers may not be useful for predicting hybrid performance. The genetic distance analysis using UPGMA clustering system generated 5 genetic clusters with coefficient of 1.26 based on quantitative traits of progenies. The genotypes, DP16, DP14, DP4, DP13, DP12, DP15, DP8, DP1 and DP2 belonging to distant clusters and greater genetic distances could be selected for further breeding programs. PMID:21513898

  5. Quantitative Estimation of the Impact of European Teleconnections on Interannual Variation of East Asian Winter Temperature and Monsoon

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon; Kim, Hae-Dong

    2014-01-01

    The impact of European teleconnections including the East AtlanticWest Russia (EA-WR), the Scandinavia (SCA), and the East Atlantic (EA) on East Asian winter temperature variability was quantified and compared with the combined effect of the Arctic Oscillation (AO), the Western Pacific (WP), and the El-Nino Southern Oscillation (ENSO), which are originated in the Northern Hemispheric high-latitudes or the Pacific. Three European teleconnections explained 22-25 percent of the total monthly upper-tropospheric height variance over Eurasia. Regression analysis revealed warming by EA-WR and EA and cooling by SCA over mid-latitude East Asia during their positive phase and vice versa. Temperature anomalies were largely explained by the advective temperature change process at the lower troposphere. The average spatial correlation over East Asia (90-180E, 10-80N) for the last 34 winters between observed and reconstructed temperature comprised of AO, WP and ENSO effect (AWE) was approximately 0.55, and adding the European teleconnection components (ESE) to the reconstructed temperature improved the correlation up to approximately 0.64. Lower level atmospheric structure demonstrated that approximately five of the last 34 winters were significantly better explained by ESE than AWE to determine East Asian seasonal winter temperatures. We also compared the impact between EA-WR and AO on the 1) East Asian winter monsoon, 2) cold surge, and 3) the Siberian high. These three were strongly coupled, and their spatial features and interannual variation were somewhat better explained by EA-WR than AO. Results suggest that the EA-WR impact must be treated more importantly than previously thought for a better understanding of East Asian winter temperature and monsoon variability.

  6. Comparing maternal genetic variation across two millennia reveals the demographic history of an ancient human population in southwest Turkey.

    PubMed

    Ottoni, Claudio; Rasteiro, Rita; Willet, Rinse; Claeys, Johan; Talloen, Peter; Van de Vijver, Katrien; Chikhi, Lounès; Poblome, Jeroen; Decorte, Ronny

    2016-02-01

    More than two decades of archaeological research at the site of Sagalassos, in southwest Turkey, resulted in the study of the former urban settlement in all its features. Originally settled in late Classical/early Hellenistic times, possibly from the later fifth century BCE onwards, the city of Sagalassos and its surrounding territory saw empires come and go. The Plague of Justinian in the sixth century CE, which is considered to have caused the death of up to a third of the population in Anatolia, and an earthquake in the seventh century CE, which is attested to have devastated many monuments in the city, may have severely affected the contemporary Sagalassos community. Human occupation continued, however, and Byzantine Sagalassos was eventually abandoned around 1200 CE. In order to investigate whether these historical events resulted in demographic changes across time, we compared the mitochondrial DNA variation of two population samples from Sagalassos (Roman and Middle Byzantine) and a modern sample from the nearby town of Ağlasun. Our analyses revealed no genetic discontinuity across two millennia in the region and Bayesian coalescence-based simulations indicated that a major population decline in the area coincided with the final abandonment of Sagalassos, rather than with the Plague of Justinian or the mentioned earthquake. PMID:26998313

  7. Molecular cytogenetic analysis of monoecious hemp (Cannabis sativa L.) cultivars reveals its karyotype variations and sex chromosomes constitution.

    PubMed

    Razumova, Olga V; Alexandrov, Oleg S; Divashuk, Mikhail G; Sukhorada, Tatiana I; Karlov, Gennady I

    2016-05-01

    Hemp (Cannabis sativa L., 2n = 20) is a dioecious plant. Sex expression is controlled by an X-to-autosome balance system consisting of the heteromorphic sex chromosomes XY for males and XX for females. Genetically monoecious hemp offers several agronomic advantages compared to the dioecious cultivars that are widely used in hemp cultivation. The male or female origin of monoecious maternal plants is unknown. Additionally, the sex chromosome composition of monoecious hemp forms remains unknown. In this study, we examine the sex chromosome makeup in monoecious hemp using a cytogenetic approach. Eight monoecious and two dioecious cultivars were used. The DNA of 210 monoecious plants was used for PCR analysis with the male-associated markers MADC2 and SCAR323. All monoecious plants showed female amplification patterns. Fluorescence in situ hybridization (FISH) with the subtelomeric CS-1 probe to chromosomes plates and karyotyping revealed a lack of Y chromosome and presence of XX sex chromosomes in monoecious cultivars with the chromosome number 2n = 20. There was a high level of intra- and intercultivar karyotype variation detected. The results of this study can be used for further analysis of the genetic basis of sex expression in plants. PMID:26149370

  8. Comparing maternal genetic variation across two millennia reveals the demographic history of an ancient human population in southwest Turkey

    PubMed Central

    Ottoni, Claudio; Willet, Rinse; Claeys, Johan; Talloen, Peter; Van de Vijver, Katrien; Chikhi, Lounès; Poblome, Jeroen; Decorte, Ronny

    2016-01-01

    More than two decades of archaeological research at the site of Sagalassos, in southwest Turkey, resulted in the study of the former urban settlement in all its features. Originally settled in late Classical/early Hellenistic times, possibly from the later fifth century BCE onwards, the city of Sagalassos and its surrounding territory saw empires come and go. The Plague of Justinian in the sixth century CE, which is considered to have caused the death of up to a third of the population in Anatolia, and an earthquake in the seventh century CE, which is attested to have devastated many monuments in the city, may have severely affected the contemporary Sagalassos community. Human occupation continued, however, and Byzantine Sagalassos was eventually abandoned around 1200 CE. In order to investigate whether these historical events resulted in demographic changes across time, we compared the mitochondrial DNA variation of two population samples from Sagalassos (Roman and Middle Byzantine) and a modern sample from the nearby town of Ağlasun. Our analyses revealed no genetic discontinuity across two millennia in the region and Bayesian coalescence-based simulations indicated that a major population decline in the area coincided with the final abandonment of Sagalassos, rather than with the Plague of Justinian or the mentioned earthquake. PMID:26998313

  9. Genomewide Variation in an Introgression Line of Rice-Zizania Revealed by Whole-Genome re-Sequencing

    PubMed Central

    Bai, Yan; Zhang, Yun-Hong; Liu, Ying; Wu, Ying; Lin, Xiu-Yun; Wen, Jia-Wei; Xu, Chun-Ming; Li, Lin-Feng; Liu, Bao

    2013-01-01

    Background Hybridization between genetically diverged organisms is known as an important avenue that drives plant genome evolution. The possible outcomes of hybridization would be the occurrences of genetic instabilities in the resultant hybrids. It remained under-investigated however whether pollination by alien pollens of a closely related but sexually "incompatible" species could evoke genomic changes and to what extent it may result in phenotypic novelties in the derived progenies. Methodology/Principal Findings In this study, we have re-sequenced the genomes of Oryza sativa ssp. japonica cv. Matsumae and one of its derived introgressant RZ35 that was obtained from an introgressive hybridization between Matsumae and Zizanialatifolia Griseb. in general, 131 millions 90 base pair (bp) paired-end reads were generated which covered 13.2 and 21.9 folds of the Matsumae and RZ35 genomes, respectively. Relative to Matsumae, a total of 41,724 homozygous single nucleotide polymorphisms (SNPs) and 17,839 homozygous insertions/deletions (indels) were identified in RZ35, of which 3,797 SNPs were nonsynonymous mutations. Furthermore, rampant mobilization of transposable elements (TEs) was found in the RZ35 genome. The results of pathogen inoculation revealed that RZ35 exhibited enhanced resistance to blast relative to Matsumae. Notably, one nonsynonymous mutation was found in the known blast resistance gene Pid3/Pi25 and real-time quantitative (q) RT-PCR analysis revealed constitutive up-regulation of its expression, suggesting both altered function and expression of Pid3/Pi25 may be responsible for the enhanced resistance to rice blast by RZ35. Conclusions/Significance Our results demonstrate that introgressive hybridization by Zizania has provoked genomewide, extensive genomic changes in the rice genome, and some of which have resulted in important phenotypic novelties. These findings suggest that introgressive hybridization by alien pollens of even a sexually incompatible

  10. Quantitative Correlation between Infectivity and Gp120 Density on HIV-1 Virions Revealed by Optical Trapping Virometry.

    PubMed

    DeSantis, Michael C; Kim, Jin H; Song, Hanna; Klasse, Per Johan; Cheng, Wei

    2016-06-17

    The envelope glycoprotein (Env) gp120/gp41 is required for HIV-1 infection of host cells. Although in general it has been perceived that more Env gives rise to higher infectivity, the precise quantitative dependence of HIV-1 virion infectivity on Env density has remained unknown. Here we have developed a method to examine this dependence. This method involves 1) production of a set of single-cycle HIV-1 virions with varied density of Env on their surface, 2) site-specific labeling of Env-specific antibody Fab with a fluorophore at high efficiency, and 3) optical trapping virometry to measure the number of gp120 molecules on individual HIV-1 virions. The resulting gp120 density per virion is then correlated with the infectivity of the virions measured in cell culture. In the presence of DEAE-dextran, the polycation known to enhance HIV-1 infectivity in cell culture, virion infectivity follows gp120 density as a sigmoidal dependence and reaches an apparent plateau. This quantitative dependence can be described by a Hill equation, with a Hill coefficient of 2.4 ± 0.6. In contrast, in the absence of DEAE-dextran, virion infectivity increases monotonically with gp120 density and no saturation is observed under the experimental conditions. These results provide the first quantitative evidence that Env trimers cooperate on the virion surface to mediate productive infection by HIV-1. Moreover, as a result of the low number of Env trimers on individual virions, the number of additional Env trimers per virion that is required for the optimal infectivity will depend on the inclusion of facilitating agents during infection. PMID:27129237

  11. Explaining Quantitative Variation in the Rate of Optional Infinitive Errors across Languages: A Comparison of MOSAIC and the Variational Learning Model

    ERIC Educational Resources Information Center

    Freudenthal, Daniel: Pine, Julian; Gobet, Fernando

    2010-01-01

    In this study, we use corpus analysis and computational modelling techniques to compare two recent accounts of the OI stage: Legate & Yang's (2007) Variational Learning Model and Freudenthal, Pine & Gobet's (2006) Model of Syntax Acquisition in Children. We first assess the extent to which each of these accounts can explain the level of OI errors…

  12. Assessment of the redox status in patients with metabolic syndrome and type 2 diabetes reveals great variations

    PubMed Central

    SPANIDIS, YPATIOS; MPESIOS, ANASTASIOS; STAGOS, DIMITRIOS; GOUTZOURELAS, NIKOLAOS; BAR-OR, DAVID; KARAPETSA, MARIA; ZAKYNTHINOS, EPAMINONDAS; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDES M.; LEON, GEORGE; KOURETAS, DEMETRIOS

    2016-01-01

    The aim of the present study was to examine the effectiveness of a new redox status marker, the static oxidation reduction potential (sORP), for assessing oxidative stress in 75 patients with metabolic syndrome (MetS) and type 2 diabetes (T2D). A total of 35 normal subjects were used as the controls. Moreover, conventional markers of oxidative stress were assessed, such as thiobarbituric acid reactive substances (TBARS), protein carbonyls, the total antioxidant capacity in plasma, glutathione (GSH) levels and catalase (CAT) activity in erythrocytes. The results revealed that sORP was significantly higher (by 13.4%) in the patients with MetS and T2D compared to the controls, indicating an increase in oxidative stress. This finding was also supported by the significantly lower levels (by 27.7%) of GSH and the higher levels (by 23.3%) of CAT activity in the patients with MetS and T2D compared to the controls. Moreover, our results indicated a great variation in oxidative stress markers between the different patients with MetS and T2D, particarly as regards the GSH levels. Thus, the patients with MetS and T2D were divided into 2 subgroups, one with low GSH levels (n=31; GSH <3 µmol/g Hb) and another with high GSH levels (n=35; GSH >4 µmol/g Hb). The comparison of the markers between the 2 subgroups indicated that in the low GSH group, the GSH levels were significantly lower (by 51.7 and 52.9%) than those in the high GSH group and the controls, respectively. Furthermore, sORP in the low GSH group was significantly higher (by 8.1%) compared to the high GSH group, suggesting its sensitivity for assessing oxidative stress in patients wtih MetS and T2D. Moreover, this variation in oxidative stress levels between the different patients with T2D suggests that the assessment of the redox status may be important in prediabetic conditions, since there is evidence indicating that differences in the redox status in pre-diabetes may result in different outcomes. PMID:26998009

  13. Quantitative Phosphoproteomics Reveals Crosstalk Between Phosphorylation and O-GlcNAc in the DNA Damage Response Pathway

    PubMed Central

    Zhong, Jun; Martinez, Marissa; Sengupta, Srona; Lee, Albert; Wu, Xinyan; Chaerkady, Raghothama; Chatterjee, Aditi; O’Meally, Robert N.; Cole, Robert N.; Pandey, Akhilesh; Zachara, Natasha E.

    2015-01-01

    The modification of intracellular proteins by monosaccharides of O-linked β-N-acetylglucosamine (O-GlcNAc) is an essential and dynamic post-translational modification of metazoans. The addition and removal of O-GlcNAc is catalyzed by the O-GlcNAc transferase (OGT) and O-GlcNAcase, respectively. One mechanism by which O-GlcNAc is thought to mediate proteins is by regulating phosphorylation. To provide insight into the pathways regulated by O-GlcNAc, we have utilized stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative proteomics to carry out comparisons of site-specific phosphorylation in OGT wild-type (WT) and Null cells. Quantitation of the phosphoproteome demonstrated that out of 5,529 phosphoserine, phosphothreonine and phosphotyrosine sites, 232 phosphosites were upregulated and 133 downregulated in the absence of O-GlcNAc. Collectively, these data suggest that deletion of OGT has a profound effect on the phosphorylation of cell cycle and DNA damage response proteins. Key events were confirmed by biochemical analyses and demonstrate a increase in the activating autophosphorylation event on ATM (Ser1987) and on ATM’s downstream targets p53, H2AX and Chk2. Together, these data support widespread changes in the phosphoproteome upon removal of O-GlcNAc, suggesting that O-GlcNAc regulates processes such as the cell cycle, genomic stability, and lysosomal biogenesis. PMID:25263469

  14. Parsing ERK Activation Reveals Quantitatively Equivalent Contributions From Epidermal Growth Factor Receptor and HER2 In Human Mammary Epithelial Cells

    SciTech Connect

    Hendriks, Bart S.; Orr, Galya; Wells, Alan H.; Wiley, H. S.; Lauffenburger, Douglas A.

    2005-02-18

    HER2, a member of the EGFR tyrosine kinase family, functions as an accessory EGFR signaling component and alters EGFR trafficking by heterodimerization. HER2 overexpression leads to aberrant cell behavior including enhanced proliferation and motility. Here we apply a combination of computational modeling and quantitative experimental studies of the dynamic interactions between EGFR and HER2, and their downstream activation of extracellular signal-related kinase (ERK) to understand this complex signaling system. Using cells expressing different levels of HER2 relative to the EGFR, we can separate relative contributions of EGFR and HER2 to signaling amplitude and duration. Based on our model calculations, we demonstrate that, in contrast with previous suggestions in the literature, the intrinsic capabilities of EGFR and HER2 to activated ERK are quantitatively equivalent . We find that HER2-mediated effects on EGFR dimerization and trafficking are sufficient to explain the detected HER2-mediated amplification of EGF-induced ERK signaling. Our model suggests that transient amplification of ERK activity by HER2 arises predominantly from the 2-to-1 stoichiometry of receptor kinase to bound ligand in EGFR/HER2 heterodimers compared to the 1-to-1 stoichiometry of the EGFR homodimer, but alterations in receptor trafficking, with resultant EGFR sparing, cause the sustained HER2-mediated enhancement of ERK signaling.

  15. Quantitative gene expression profiling of mouse brain regions reveals differential transcripts conserved in human and affected in disease models.

    PubMed

    Brochier, Camille; Gaillard, Marie-Claude; Diguet, Elsa; Caudy, Nicolas; Dossat, Carole; Ségurens, Béatrice; Wincker, Patrick; Roze, Emmanuel; Caboche, Jocelyne; Hantraye, Philippe; Brouillet, Emmanuel; Elalouf, Jean-Marc; de Chaldée, Michel

    2008-04-22

    Using serial analysis of gene expression, we collected quantitative transcriptome data in 11 regions of the adult wild-type mouse brain: the orbital, prelimbic, cingulate, motor, somatosensory, and entorhinal cortices, the caudate-putamen, the nucleus accumbens, the thalamus, the substantia nigra, and the ventral tegmental area. With >1.2 million cDNA tags sequenced, this database is a powerful resource to explore brain functions and disorders. As an illustration, we performed interregional comparisons and found 315 differential transcripts. Most of them are poorly characterized and 20% lack functional annotation. For 78 differential transcripts, we provide independent expression level measurements in mouse brain regions by real-time quantitative RT-PCR. We also show examples where we used in situ hybridization to achieve infrastructural resolution. For 30 transcripts, we next demonstrated that regional enrichment is conserved in the human brain. We then quantified the expression levels of region-enriched transcripts in the R6/2 mouse model of Huntington disease and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson disease and observed significant alterations in the striatum, cerebral cortex, thalamus and substantia nigra of R6/2 mice and in the striatum of MPTP-treated mice. These results show that the gene expression data provided here for the mouse brain can be used to explore pathophysiological models and disclose transcripts differentially expressed in human brain regions. PMID:18252803

  16. Joint analysis of deformation, gravity, and lava lake elevation reveals temporal variations in lava lake density at Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Poland, Michael; Patrick, Matthew

    2015-04-01

    We find a tight correlation between (i) changes in lava level within the summit eruptive vent at Kilauea Volcano, Hawaii, observed for at least 2 years since early 2011, and (ii) ground deformation in the vicinity of the vent. The observed correlation indicates that changing pressure within the shallow magma reservoir feeding the lava lake influences both deformation and lava level. However, those two parameters are related to chamber pressure through different properties, namely, the density of the lava filling the vent (for the lava level) and the size/position of the reservoir plus the elastic parameters of the host rock (for the deformation). Joint analyses in the time and frequency domains of lava level (determined from thermal camera imagery of the lava lake) and tilt measured on a borehole instrument (~2 km from the summit vent) reveal a good correlation throughout the studied period. The highest correlation occurs over periods ranging between 1 and 20 days. The ratio between lava level and tilt is not constant over time, however. Using data from a continuously recording gravimeter located near the rim of the summit eruptive vent, we demonstrate that the tilt-lava level ratio is controlled by the fluctuations in the density of the lava inside the vent (i.e., its degree of vesicularity). A second continuous gravimeter was installed near the summit eruptive vent in 2014, providing a new observation point for gravity change associated with summit lava lave activity to test models developed from the previously existing instrument. In addition, a continuous gravimeter was installed on the rim of the Puu Oo eruptive vent on Kilauea's East Rift Zone in 2013. Puu Oo is connected via the subvolcanic magma plumbing system to the summit eruptive vent and often deforms in concert with the summit. This growing network of continuously recording gravimeters at Kilauea can be used to examine correlations in gravity change associated with variations in eruptive activity

  17. Spatial and Species Variations in Bacterial Communities Associated with Corals from the Red Sea as Revealed by Pyrosequencing

    PubMed Central

    Lee, On On; Yang, Jiangke; Bougouffa, Salim; Wang, Yong; Batang, Zenon; Tian, Renmao; Al-Suwailem, Abdulaziz

    2012-01-01

    Microbial associations with corals are common and are most likely symbiotic, although their diversity and relationships with environmental factors and host species remain unclear. In this study, we adopted a 16S rRNA gene tag-pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than 600 ribotypes detected and up to 1,000 species estimated from a single coral species. Altogether, 21 bacterial phyla were recovered from the corals, of which Gammaproteobacteria was the most dominant group, and Chloroflexi, Chlamydiae, and the candidate phylum WS3 were reported in corals for the first time. The associated bacterial communities varied greatly with location, where environmental conditions differed significantly. Corals from disturbed areas appeared to share more similar bacterial communities, but larger variations in community structures were observed between different coral species from pristine waters. Ordination methods identified salinity and depth as the most influential parameters affecting the abundance of Vibrio, Pseudoalteromonas, Serratia, Stenotrophomonas, Pseudomonas, and Achromobacter in the corals. On the other hand, bacteria such as Chloracidobacterium and Endozoicomonas were more sensitive to the coral species, suggesting that the host species type may be influential in the associated bacterial community, as well. The combined influences of the coral host and environmental factors on the associated microbial communities are discussed. This study represents the first comparative study using tag-pyrosequencing technology to investigate the bacterial communities in Red Sea corals. PMID:22865078

  18. Quantitative proteomics of yeast post-Golgi vesicles reveals a discriminating role for Sro7p in protein secretion.

    PubMed

    Forsmark, Annabelle; Rossi, Guendalina; Wadskog, Ingrid; Brennwald, Patrick; Warringer, Jonas; Adler, Lennart

    2011-06-01

    We here report the first comparative proteomics of purified yeast post-Golgi vesicles (PGVs). Vesicle samples isolated from PGV-accumulating sec6-4 mutants were treated with isobaric tags (iTRAQ) for subsequent quantitative tandem mass spectrometric analysis of protein content. After background subtraction, a total of 66 vesicle-associated proteins were identified, including known or assumed vesicle residents as well as a fraction not previously known to be PGV associated. Vesicles isolated from cells lacking the polarity protein Sro7p contained essentially the same catalogue of proteins but showed a reduced content of a subset of cargo proteins, in agreement with a previously shown selective role for Sro7p in cargo sorting. PMID:21477180

  19. Quantitative Circadian Phosphoproteomic Analysis of Arabidopsis Reveals Extensive Clock Control of Key Components in Physiological, Metabolic, and Signaling Pathways*

    PubMed Central

    Choudhary, Mani Kant; Nomura, Yuko; Wang, Lei; Nakagami, Hirofumi; Somers, David E.

    2015-01-01

    The circadian clock provides adaptive advantages to an organism, resulting in increased fitness and survival. The phosphorylation events that regulate circadian-dependent signaling and the processes which post-translationally respond to clock-gated signals are largely unknown. To better elucidate post-translational events tied to the circadian system we carried out a survey of circadian-regulated protein phosphorylation events in Arabidopsis seedlings. A large-scale mass spectrometry-based quantitative phosphoproteomics approach employing TiO2-based phosphopeptide enrichment techniques identified and quantified 1586 phosphopeptides on 1080 protein groups. A total of 102 phosphopeptides displayed significant changes in abundance, enabling the identification of specific patterns of response to circadian rhythms. Our approach was sensitive enough to quantitate oscillations in the phosphorylation of low abundance clock proteins (EARLY FLOWERING4; ELF4 and PSEUDORESPONSE REGULATOR3; PRR3) as well as other transcription factors and kinases. During constant light, extensive cyclic changes in phosphorylation status occurred in critical regulators, implicating direct or indirect regulation by the circadian system. These included proteins influencing transcriptional regulation, translation, metabolism, stress and phytohormones-mediated responses. We validated our analysis using the elf4–211 allele, in which an S45L transition removes the phosphorylation herein identified. We show that removal of this phosphorylatable site diminishes interaction with EARLY FLOWERING3 (ELF3), a key partner in a tripartite evening complex required for circadian cycling. elf4–211 lengthens period, which increases with increasing temperature, relative to the wild type, resulting in a more stable temperature compensation of circadian period over a wider temperature range. PMID:26091701

  20. Quantitative Western ligand blotting reveals common patterns and differential features of IGFBP-fingerprints in domestic ruminant breeds and species.

    PubMed

    Wirthgen, Elisa; Höflich, Christine; Spitschak, Marion; Helmer, Carina; Brand, Bodo; Langbein, Jan; Metzger, Friedrich; Hoeflich, Andreas

    2016-02-01

    The insulin-like growth factor binding proteins (IGFBPs) are determinants of local IGF-effects and thus have an impact on growth and metabolism in vertebrate species. In farm animals, IGFBPs are associated with traits such as growth rate, body composition, milk production, or fertility. It may be assumed, that selective breeding and characteristic phenotypes of breeds are related to differential expression of IGFBPs. Therefore, the aim of the present study was to investigate the effects of selective breeding on blood IGFBP concentrations of farm animals. Breeds of the sheep, goat, and cattle species were investigated. IGFBP-3, -2, and -4 were analyzed with quantitative Western ligand blotting (qWLB), enabling comprehensive monitoring of intact IGFBPs with IGF-binding capacity. We show that in sera of all species and breeds investigated, IGFBP-3, -2, and -4 were simultaneously detectable by qWLB analysis. IGFBP-3 and the total amount of IGFBPs were significantly increased (P<0.05) in Cameroon sheep, if compared to 3 of 4 other sheep breeds, as well as in Dwarf goats versus Toggenburg and Boer goats (P<0.01). IGFBP-2 was elevated in Cameroon sheep and Boer goats, if compared to other breeds of these species (P<0.01), respectively. Holstein Friesian dairy cows had higher levels of IGFBP-4 (P<0.05), if compared to conventional crossbreeds of beef cattle. In Dwarf goats the ratio of IGFBP-3/IGFBP-2 was about 3-fold higher than in other goat breeds (P<0.001). The total IGFBP amount of Toggenburg goats was reduced (P<0.05), compared to the other goat breeds. In conclusion, our data indicate that common and specific features of IGFBP fingerprints are found in different ruminant species and breeds. Our findings may introduce quantitative Western ligand blotting as an attractive tool for biomarker development and molecular phenotyping in farm animal breeds. PMID:26597140

  1. Taking qPCR to a higher level: Analysis of CNV reveals the power of high throughput qPCR to enhance quantitative resolution.

    PubMed

    Weaver, Suzanne; Dube, Simant; Mir, Alain; Qin, Jian; Sun, Gang; Ramakrishnan, Ramesh; Jones, Robert C; Livak, Kenneth J

    2010-04-01

    This paper assesses the quantitative resolution of qPCR using copy number variation (CNV) as a paradigm. An error model is developed for real-time qPCR data showing how the precision of CNV determination varies with the number of replicates. Using samples with varying numbers of X chromosomes, experimental data demonstrates that real-time qPCR can readily distinguish four copes from five copies, which corresponds to a 1.25-fold difference in relative quantity. Digital PCR is considered as an alternative form of qPCR. For digital PCR, an error model is shown that relates the precision of CNV determination to the number of reaction chambers. The quantitative capability of digital PCR is illustrated with an experiment distinguishing four and five copies of the human gene MRGPRX1. For either real-time qPCR or digital PCR, practical application of these models to achieve enhanced quantitative resolution requires use of a high throughput PCR platform that can simultaneously perform thousands of reactions. Comparing the two methods, real-time qPCR has the advantage of throughput and digital PCR has the advantage of simplicity in terms of the assumptions made for data analysis. PMID:20079846

  2. Proteome Differences between Hepatitis B Virus Genotype-B- and Genotype-C-Induced Hepatocellular Carcinoma Revealed by iTRAQ-Based Quantitative Proteomics.

    PubMed

    Wei, Dahai; Zeng, Yongyi; Xing, Xiaohua; Liu, Hongzhi; Lin, Minjie; Han, Xiao; Liu, Xiaolong; Liu, Jingfeng

    2016-02-01

    Hepatitis B virus (HBV) is the main cause of hepatocellular carcinoma (HCC) in southeast Asia where HBV genotype B and genotype C are the most prevalent. Viral genotypes have been reported to significantly affect the clinical outcomes of HCC. However, the underlying molecular differences among different genotypes of HBV virus infected HCC have not been revealed. Here, we applied isobaric tags for relative and absolute quantitation (iTRAQ) technology integrated with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to identify the proteome differences between the HBV genotypes B- and C-induced HCC. In brief, a total of 83 proteins in the surrounding noncancerous tissues and 136 proteins in the cancerous tissues between HBV genotype-B- and genotype-C-induced HCC were identified, respectively. This information revealed that there might be different molecular mechanisms of the tumorigenesis and development of HBV genotypes B- and C-induced HCC. Furthermore, our results indicate that the two proteins ARFIP2 and ANXA1 might be potential biomarkers for distinguishing the HBV genotypes B- and C-induced HCC. Thus, the quantitative proteomic analysis revealed molecular differences between the HBV genotypes B- and C-induced HCC, and might provide fundamental information for further deep study. PMID:26709725

  3. Understanding Variation in Treatment Effects in Education Impact Evaluations: An Overview of Quantitative Methods. NCEE 2014-4017

    ERIC Educational Resources Information Center

    Schochet, Peter Z.; Puma, Mike; Deke, John

    2014-01-01

    This report summarizes the complex research literature on quantitative methods for assessing how impacts of educational interventions on instructional practices and student learning differ across students, educators, and schools. It also provides technical guidance about the use and interpretation of these methods. The research topics addressed…

  4. Microdialysis Sampling from Wound Fluids Enables Quantitative Assessment of Cytokines, Proteins, and Metabolites Reveals Bone Defect-Specific Molecular Profiles

    PubMed Central

    Wissenbach, Dirk K.; Pfeiffer, Susanne E. M.; Baumann, Sven; Hofbauer, Lorenz C.; von Bergen, Martin; Kalkhof, Stefan; Rammelt, Stefan

    2016-01-01

    Bone healing involves a variety of different cell types and biological processes. Although certain key molecules have been identified, the molecular interactions of the healing progress are not completely understood. Moreover, a clinical routine for predicting the quality of bone healing after a fracture in an early phase is missing. This is mainly due to a lack of techniques to comprehensively screen for cytokines, growth factors and metabolites at their local site of action. Since all soluble molecules of interest are present in the fracture hematoma, its in-depth assessment could reveal potential markers for the monitoring of bone healing. Here, we describe an approach for sampling and quantification of cytokines and metabolites by using microdialysis, combined with solid phase extractions of proteins from wound fluids. By using a control group with an isolated soft tissue wound, we could reveal several bone defect-specific molecular features. In bone defect dialysates the neutrophil chemoattractants CXCL1, CXCL2 and CXCL3 were quantified with either a higher or earlier response compared to dialysate from soft tissue wound. Moreover, by analyzing downstream adaptions of the cells on protein level and focusing on early immune response, several proteins involved in the immune cell migration and activity could be identified to be specific for the bone defect group, e.g. immune modulators, proteases and their corresponding inhibitors. Additionally, the metabolite screening revealed different profiles between the bone defect group and the control group. In summary, we identified potential biomarkers to indicate imbalanced healing progress on all levels of analysis. PMID:27441377

  5. Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane

    PubMed Central

    Marelli, Marcello; Smith, Jennifer J.; Jung, Sunhee; Yi, Eugene; Nesvizhskii, Alexey I.; Christmas, Rowan H.; Saleem, Ramsey A.; Tam, Yuen Yi C.; Fagarasanu, Andrei; Goodlett, David R.; Aebersold, Ruedi; Rachubinski, Richard A.; Aitchison, John D.

    2004-01-01

    We have combined classical subcellular fractionation with large-scale quantitative mass spectrometry to identify proteins that enrich specifically with peroxisomes of Saccharomyces cerevisiae. In two complementary experiments, isotope-coded affinity tags and tandem mass spectrometry were used to quantify the relative enrichment of proteins during the purification of peroxisomes. Mathematical modeling of the data from 306 quantified proteins led to a prioritized list of 70 candidates whose enrichment scores indicated a high likelihood of them being peroxisomal. Among these proteins, eight novel peroxisome-associated proteins were identified. The top novel peroxisomal candidate was the small GTPase Rho1p. Although Rho1p has been shown to be tethered to membranes of the secretory pathway, we show that it is specifically recruited to peroxisomes upon their induction in a process dependent on its interaction with the peroxisome membrane protein Pex25p. Rho1p regulates the assembly state of actin on the peroxisome membrane, thereby controlling peroxisome membrane dynamics and biogenesis. PMID:15596542

  6. Quantitative proteomics analysis of the liver reveals immune regulation and lipid metabolism dysregulation in a mouse model of depression.

    PubMed

    Wu, You; Tang, Jianyong; Zhou, Chanjuan; Zhao, Libo; Chen, Jin; Zeng, Li; Rao, Chenglong; Shi, Haiyang; Liao, Li; Liang, Zihong; Yang, Yongtao; Zhou, Jian; Xie, Peng

    2016-09-15

    Major depressive disorder (MDD) is a highly prevalent and debilitating mental illness with substantial impairments in quality of life and functioning. However, the pathophysiology of major depression remains poorly understood. Combining the brain and body should provide a comprehensive understanding of the etiology of MDD. As the largest internal organ of the human body, the liver has an important function, yet no proteomic study has assessed liver protein expression in a preclinical model of depression. Using the chronic unpredictable mild stress (CUMS) mouse model of depression, differential protein expression between CUMS and control (CON) mice was examined in the liver proteome using isobaric tag for relative and absolute quantitation (iTRAQ) coupled with tandem mass spectrometry. More than 4000 proteins were identified and 66 most significantly differentiated proteins were used for further bioinformatic analysis. According to the ingenuity pathway analysis (IPA), we found that proteins related to the inflammation response, immune regulation, lipid metabolism and NFκB signaling network were altered by CUMS. Moreover, four proteins closely associated with these processes, hemopexin, haptoglobin, cytochrome P450 2A4 (CYP2A4) and bile salt sulfotransferase 1 (SULT2A1), were validated by western blotting. In conclusion, we report, for the first time, the liver protein expression profile in the CUMS mouse model of depression. Our findings provide novel insight (liver-brain axis) into the multifaceted mechanisms of major depressive disorder. PMID:27247144

  7. Quantitative Proteomic Analysis of Mitochondrial Proteins Reveals Pro-Survival Mechanisms in the Perpetuation of Radiation-Induced Genomic Instability

    SciTech Connect

    Thomas, Stefani N.; Waters, Katrina M.; Morgan, William F.; Yang, Austin; Baulch, Janet E.

    2012-07-26

    Radiation induced genomic instability is a well-studied phenomenon that is measured as mitotically heritable genetic alterations observed in the progeny of an irradiated cell. The mechanisms that perpetuate this instability are unclear, however, a role for chronic oxidative stress has consistently been demonstrated. In the chromosomally unstable LS12 cell line, oxidative stress and genomic instability were correlated with mitochondrial dysfunction. To clarify this mitochondrial dysfunction and gain insight into the mechanisms underlying radiation induced genomic instability we have evaluated the mitochondrial sub-proteome and performed quantitative mass spectrometry (MS) analysis of LS12 cells. Of 98 quantified mitochondrial proteins, 17 met criteria for fold changes and reproducibility; and 11 were statistically significant in comparison with the stable parental GM10115 cell line. Previous observations implicated defects in the electron transport chain (ETC) in the LS12 cell mitochondrial dysfunction. Proteomic analysis supports these observations, demonstrating significantly reduced levels of mitochondrial cytochrome c, the intermediary between complexes III and IV of the ETC. Results also suggest that LS12 cells compensate for ETC dysfunction and oxidative stress through increased levels of tricarboxylic acid cycle enzymes and up-regulation of proteins that protect against oxidative stress and apoptosis. More than one cellular defect is likely to contribute to the genomic instability phenotype. These data suggest that LS12 cells have adapted mechanisms that allow survival under sub-optimal conditions of oxidative stress and compromised mitochondrial function to perpetuate genomic instability.

  8. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    DOE PAGESBeta

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; Kong, Betty Y.; Gleber, Sophie C.; Vogt, Stefan; Chen, Si; Garwin, Seth A.; Bayer, Amanda R.; Dravid, Vinayak P.; et al

    2014-12-15

    Fertilization of a mammalian egg induces a series of ‘zinc sparks’ that are necessary for inducing the egg-to-embryo transition. Despite the importance of these zinc efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches to resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy dispersive spectroscopy, X-ray fluorescence microscopy, and 3D elemental tomography for high resolution elemental mapping. Here we show that the zinc spark arises from a system of thousands ofmore » zinc-loaded vesicles, each of which contains, on average, 106 zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. We conclude that the discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes.« less

  9. Quantitative phosphoproteomics revealed interplay between Syk and Lyn in the resistance to nilotinib in chronic myeloid leukemia cells.

    PubMed

    Gioia, Romain; Leroy, Cédric; Drullion, Claire; Lagarde, Valérie; Etienne, Gabriel; Dulucq, Stéphanie; Lippert, Eric; Roche, Serge; Mahon, François-Xavier; Pasquet, Jean-Max

    2011-08-25

    In this study, we have addressed how Lyn kinase signaling mediates nilotinib-resistance by quantitative phospho-proteomics using Stable Isotope Labeling with Amino acid in Cell culture. We have found an increased tyrosine phosphorylation of 2 additional tyrosine kinases in nilotinib-resistant cells: the spleen tyrosine kinase Syk and the UFO family receptor tyrosine kinase Axl. This increased tyrosine phosphorylation involved an interaction of these tyrosine kinases with Lyn. Inhibition of Syk by the inhibitors R406 or BAY 61-3606 or by RNA interference restored the capacity of nilotinib to inhibit cell proliferation. Conversely, coexpression of Lyn and Syk were required to fully induce resistance to nilotinib in drug-sensitive cells. Surprisingly, the knockdown of Syk also strongly decreased tyrosine phosphorylation of Lyn and Axl, thus uncovering interplay between Syk and Lyn. We have shown the involvement of the adaptor protein CDCP-1 in resistance to nilotinib. Interestingly, the expression of Axl and CDCP1 were found increased both in a nilotinib-resistant cell line and in nilotinib-resistant CML patients. We conclude that an oncogenic signaling mediated by Lyn and Syk can bypass the need of Bcr-Abl in CML cells. Thus, targeting these kinases may be of therapeutic value to override imatinib or nilotinib resistance in CML. PMID:21730355

  10. Quantitative proteomics reveals the importance of nitrogen source to control glucosinolate metabolism in Arabidopsis thaliana and Brassica oleracea.

    PubMed

    Marino, Daniel; Ariz, Idoia; Lasa, Berta; Santamaría, Enrique; Fernández-Irigoyen, Joaquín; González-Murua, Carmen; Aparicio Tejo, Pedro M

    2016-05-01

    Accessing different nitrogen (N) sources involves a profound adaptation of plant metabolism. In this study, a quantitative proteomic approach was used to further understand how the model plant Arabidopsis thaliana adjusts to different N sources when grown exclusively under nitrate or ammonium nutrition. Proteome data evidenced that glucosinolate metabolism was differentially regulated by the N source and that both TGG1 and TGG2 myrosinases were more abundant under ammonium nutrition, which is generally considered to be a stressful situation. Moreover, Arabidopsis plants displayed glucosinolate accumulation and induced myrosinase activity under ammonium nutrition. Interestingly, these results were also confirmed in the economically important crop broccoli (Brassica oleracea var. italica). Moreover, these metabolic changes were correlated in Arabidopsis with the differential expression of genes from the aliphatic glucosinolate metabolic pathway. This study underlines the importance of nitrogen nutrition and the potential of using ammonium as the N source in order to stimulate glucosinolate metabolism, which may have important applications not only in terms of reducing pesticide use, but also for increasing plants' nutritional value. PMID:27085186

  11. SAFER, an Analysis Method of Quantitative Proteomic Data, Reveals New Interactors of the C. elegans Autophagic Protein LGG-1.

    PubMed

    Yi, Zhou; Manil-Ségalen, Marion; Sago, Laila; Glatigny, Annie; Redeker, Virginie; Legouis, Renaud; Mucchielli-Giorgi, Marie-Hélène

    2016-05-01

    Affinity purifications followed by mass spectrometric analysis are used to identify protein-protein interactions. Because quantitative proteomic data are noisy, it is necessary to develop statistical methods to eliminate false-positives and identify true partners. We present here a novel approach for filtering false interactors, named "SAFER" for mass Spectrometry data Analysis by Filtering of Experimental Replicates, which is based on the reproducibility of the replicates and the fold-change of the protein intensities between bait and control. To identify regulators or targets of autophagy, we characterized the interactors of LGG1, a ubiquitin-like protein involved in autophagosome formation in C. elegans. LGG-1 partners were purified by affinity, analyzed by nanoLC-MS/MS mass spectrometry, and quantified by a label-free proteomic approach based on the mass spectrometric signal intensity of peptide precursor ions. Because the selection of confident interactions depends on the method used for statistical analysis, we compared SAFER with several statistical tests and different scoring algorithms on this set of data. We show that SAFER recovers high-confidence interactors that have been ignored by the other methods and identified new candidates involved in the autophagy process. We further validated our method on a public data set and conclude that SAFER notably improves the identification of protein interactors. PMID:26999449

  12. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation

    SciTech Connect

    Kamada, R.; Anderson, C.; Nomura, T.; Sakaguchi, K.

    2011-01-07

    The tumor suppressor p53, a 393-amino acid transcription factor, induces cell cycle arrest and apoptosis in response to genotoxic stress. Its inactivation via the mutation of its gene is a key step in tumor progression, and tetramer formation is critical for p53 post-translational modification and its ability to activate or repress the transcription of target genes vital in inhibiting tumor growth. About 50% of human tumors have TP53 gene mutations; most are missense ones that presumably lower the tumor suppressor activity of p53. In this study, we explored the effects of known tumor-derived missense mutations on the stability and oligomeric structure of p53; our comprehensive, quantitative analyses encompassed the tetramerization domain peptides representing 49 such substitutions in humans. Their effects on tetrameric structure were broad, and the stability of the mutant peptides varied widely ({Delta}T{sub m} = 4.8 {approx} -46.8 C). Because formation of a tetrameric structure is critical for protein-protein interactions, DNA binding, and the post-translational modification of p53, a small destabilization of the tetrameric structure could result in dysfunction of tumor suppressor activity. We suggest that the threshold for loss of tumor suppressor activity in terms of the disruption of the tetrameric structure of p53 could be extremely low. However, other properties of the tetramerization domain, such as electrostatic surface potential and its ability to bind partner proteins, also may be important.

  13. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    SciTech Connect

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; Kong, Betty Y.; Gleber, Sophie C.; Vogt, Stefan; Chen, Si; Garwin, Seth A.; Bayer, Amanda R.; Dravid, Vinayak P.; Woodruff, Teresa K.; O'Halloran, Thomas V.

    2014-12-15

    Fertilization of a mammalian egg induces a series of ‘zinc sparks’ that are necessary for inducing the egg-to-embryo transition. Despite the importance of these zinc efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches to resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy dispersive spectroscopy, X-ray fluorescence microscopy, and 3D elemental tomography for high resolution elemental mapping. Here we show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 106 zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. We conclude that the discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes.

  14. New insights into the diets of harbor seals in the Salish Sea revealed by quantitative fatty acid signature analysis

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.; Lance, Monique M.; Elliott, Elizabeth W.; Jeffries, Steven J.; Acevedo-Gutiérrez, Alejandro; Kennish, John M.

    2012-01-01

    Harbor seals (Phoca vitulina) are an abundant predator along the west coast of North America, and there is considerable interest in their diet composition, especially in regard to predation on valued fish stocks. Available information on harbor seal diets, primarily derived from scat analysis, suggests that adult salmon (Oncorhynchus spp.), Pacific Herring (Clupea pallasii), and gadids predominate. Because diet assessments based on scat analysis may be biased, we investigated diet composition through quantitative analysis of fatty acid signatures. Blubber samples from 49 harbor seals captured in western North America from haul-outs within the area of the San Juan Islands and southern Strait of Georgia in the Salish Sea were analyzed for fatty acid composition, along with 269 fish and squid specimens representing 27 potential prey classes. Diet estimates varied spatially, demographically, and among individual harbor seals. Findings confirmed the prevalence of previously identified prey species in harbor seal diets, but other species also contributed significantly. In particular, Black (Sebastes melanops) and Yellowtail (S. flavidus) Rockfish were estimated to compose up to 50% of some individual seal diets. Specialization and high predation rates on Black and Yellowtail Rockfish by a subset of harbor seals may play a role in the population dynamics of these regional rockfish stocks that is greater than previously realized.

  15. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    SciTech Connect

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; Kong, Betty Y.; Gleber, Sophie C.; Vogt, Stefan; Chen, Si; Garwin, Seth A.; Bayer, Amanda R.; Dravid, Vinayak P.; Woodruff, Teresa K.; O'Halloran, Thomas V.

    2014-12-15

    Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes

  16. Quantitative proteomics of the human skin secretome reveal a reduction in immune defense mediators in ectodermal dysplasia patients.

    PubMed

    Burian, Marc; Velic, Ana; Matic, Katarina; Günther, Stephanie; Kraft, Beatrice; Gonser, Lena; Forchhammer, Stephan; Tiffert, Yvonne; Naumer, Christian; Krohn, Michael; Berneburg, Mark; Yazdi, Amir S; Maček, Boris; Schittek, Birgit

    2015-03-01

    In healthy human skin host defense molecules such as antimicrobial peptides (AMPs) contribute to skin immune homeostasis. In patients with the congenital disease ectodermal dysplasia (ED) skin integrity is disturbed and as a result patients have recurrent skin infections. The disease is characterized by developmental abnormalities of ectodermal derivatives and absent or reduced sweating. We hypothesized that ED patients have a reduced skin immune defense because of the reduced ability to sweat. Therefore, we performed a label-free quantitative proteome analysis of wash solution of human skin from ED patients or healthy individuals. A clear-cut difference between both cohorts could be observed in cellular processes related to immunity and host defense. In line with the extensive underrepresentation of proteins of the immune system, dermcidin, a sweat-derived AMP, was reduced in its abundance in the skin secretome of ED patients. In contrast, proteins involved in metabolic/catabolic and biosynthetic processes were enriched in the skin secretome of ED patients. In summary, our proteome profiling provides insights into the actual situation of healthy versus diseased skin. The systematic reduction in immune system and defense-related proteins may contribute to the high susceptibility of ED patients to skin infections and altered skin colonization. PMID:25347115

  17. Quantitative analysis of the TNF-α-induced phosphoproteome reveals AEG-1/MTDH/LYRIC as an IKKβ substrate

    PubMed Central

    Krishnan, Ramesh K.; Nolte, Hendrik; Sun, Tianliang; Kaur, Harmandeep; Sreenivasan, Krishnamoorthy; Looso, Mario; Offermanns, Stefan; Krüger, Marcus; Swiercz, Jakub M.

    2015-01-01

    The inhibitor of the nuclear factor-κB (IκB) kinase (IKK) complex is a key regulator of the canonical NF-κB signalling cascade and is crucial for fundamental cellular functions, including stress and immune responses. The majority of IKK complex functions are attributed to NF-κB activation; however, there is increasing evidence for NF-κB pathway-independent signalling. Here we combine quantitative mass spectrometry with random forest bioinformatics to dissect the TNF-α-IKKβ-induced phosphoproteome in MCF-7 breast cancer cells. In total, we identify over 20,000 phosphorylation sites, of which ∼1% are regulated up on TNF-α stimulation. We identify various potential novel IKKβ substrates including kinases and regulators of cellular trafficking. Moreover, we show that one of the candidates, AEG-1/MTDH/LYRIC, is directly phosphorylated by IKKβ on serine 298. We provide evidence that IKKβ-mediated AEG-1 phosphorylation is essential for IκBα degradation as well as NF-κB-dependent gene expression and cell proliferation, which correlate with cancer patient survival in vivo. PMID:25849741

  18. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    NASA Astrophysics Data System (ADS)

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; Kong, Betty Y.; Gleber, Sophie C.; Vogt, Stefan; Chen, Si; Garwin, Seth A.; Bayer, Amanda R.; Dravid, Vinayak P.; Woodruff, Teresa K.; O'Halloran, Thomas V.

    2015-02-01

    Fertilization of a mammalian egg initiates a series of ‘zinc sparks’ that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 106 zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes.

  19. Quantitative phospho-proteomics reveals the Plasmodium merozoite triggers pre-invasion host kinase modification of the red cell cytoskeleton

    PubMed Central

    Zuccala, Elizabeth S.; Satchwell, Timothy J.; Angrisano, Fiona; Tan, Yan Hong; Wilson, Marieangela C.; Heesom, Kate J.; Baum, Jake

    2016-01-01

    The invasive blood-stage malaria parasite – the merozoite – induces rapid morphological changes to the target erythrocyte during entry. However, evidence for active molecular changes in the host cell that accompany merozoite invasion is lacking. Here, we use invasion inhibition assays, erythrocyte resealing and high-definition imaging to explore red cell responses during invasion. We show that although merozoite entry does not involve erythrocyte actin reorganisation, it does require ATP to complete the process. Towards dissecting the ATP requirement, we present an in depth quantitative phospho-proteomic analysis of the erythrocyte during each stage of invasion. Specifically, we demonstrate extensive increased phosphorylation of erythrocyte proteins on merozoite attachment, including modification of the cytoskeletal proteins beta-spectrin and PIEZO1. The association with merozoite contact but not active entry demonstrates that parasite-dependent phosphorylation is mediated by host-cell kinase activity. This provides the first evidence that the erythrocyte is stimulated to respond to early invasion events through molecular changes in its membrane architecture. PMID:26830761

  20. Comprehensive and quantitative proteomic analyses of zebrafish plasma reveals conserved protein profiles between genders and between zebrafish and human

    PubMed Central

    Li, Caixia; Tan, Xing Fei; Lim, Teck Kwang; Lin, Qingsong; Gong, Zhiyuan

    2016-01-01

    Omic approaches have been increasingly used in the zebrafish model for holistic understanding of molecular events and mechanisms of tissue functions. However, plasma is rarely used for omic profiling because of the technical challenges in collecting sufficient blood. In this study, we employed two mass spectrometric (MS) approaches for a comprehensive characterization of zebrafish plasma proteome, i.e. conventional shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) for an overview study and quantitative SWATH (Sequential Window Acquisition of all THeoretical fragment-ion spectra) for comparison between genders. 959 proteins were identified in the shotgun profiling with estimated concentrations spanning almost five orders of magnitudes. Other than the presence of a few highly abundant female egg yolk precursor proteins (vitellogenins), the proteomic profiles of male and female plasmas were very similar in both number and abundance and there were basically no other highly gender-biased proteins. The types of plasma proteins based on IPA (Ingenuity Pathway Analysis) classification and tissue sources of production were also very similar. Furthermore, the zebrafish plasma proteome shares significant similarities with human plasma proteome, in particular in top abundant proteins including apolipoproteins and complements. Thus, the current study provided a valuable dataset for future evaluation of plasma proteins in zebrafish. PMID:27071722

  1. Quantitative proteomics reveals the importance of nitrogen source to control glucosinolate metabolism in Arabidopsis thaliana and Brassica oleracea

    PubMed Central

    Marino, Daniel; Ariz, Idoia; Lasa, Berta; Santamaría, Enrique; Fernández-Irigoyen, Joaquín; González-Murua, Carmen; Aparicio Tejo, Pedro M.

    2016-01-01

    Accessing different nitrogen (N) sources involves a profound adaptation of plant metabolism. In this study, a quantitative proteomic approach was used to further understand how the model plant Arabidopsis thaliana adjusts to different N sources when grown exclusively under nitrate or ammonium nutrition. Proteome data evidenced that glucosinolate metabolism was differentially regulated by the N source and that both TGG1 and TGG2 myrosinases were more abundant under ammonium nutrition, which is generally considered to be a stressful situation. Moreover, Arabidopsis plants displayed glucosinolate accumulation and induced myrosinase activity under ammonium nutrition. Interestingly, these results were also confirmed in the economically important crop broccoli (Brassica oleracea var. italica). Moreover, these metabolic changes were correlated in Arabidopsis with the differential expression of genes from the aliphatic glucosinolate metabolic pathway. This study underlines the importance of nitrogen nutrition and the potential of using ammonium as the N source in order to stimulate glucosinolate metabolism, which may have important applications not only in terms of reducing pesticide use, but also for increasing plants’ nutritional value. PMID:27085186

  2. Quantitative Trait Locus Analysis of Seed Germination and Seedling Vigor in Brassica rapa Reveals QTL Hotspots and Epistatic Interactions

    PubMed Central

    Basnet, Ram K.; Duwal, Anita; Tiwari, Dev N.; Xiao, Dong; Monakhos, Sokrat; Bucher, Johan; Visser, Richard G. F.; Groot, Steven P. C.; Bonnema, Guusje; Maliepaard, Chris

    2015-01-01

    The genetic basis of seed germination and seedling vigor is largely unknown in Brassica species. We performed a study to evaluate the genetic basis of these important traits in a B. rapa doubled haploid population from a cross of a yellow-seeded oil-type yellow sarson and a black-seeded vegetable-type pak choi. We identified 26 QTL regions across all 10 linkage groups for traits related to seed weight, seed germination and seedling vigor under non-stress and salt stress conditions illustrating the polygenic nature of these traits. QTLs for multiple traits co-localized and we identified eight hotspots for quantitative trait loci (QTL) of seed weight, seed germination, and root and shoot lengths. A QTL hotspot for seed germination on A02 mapped at the B. rapa Flowering Locus C (BrFLC2). Another hotspot on A05 with salt stress specific QTLs co-located with the B. rapa Fatty acid desaturase 2 (BrFAD2) locus. Epistatic interactions were observed between QTL hotspots for seed germination on A02 and A10 and with a salt tolerance QTL on A05. These results contribute to the understanding of the genetics of seed quality and seeding vigor in B. rapa and can offer tools for Brassica breeding. PMID:26648948

  3. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    PubMed Central

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; Kong, Betty Y.; Gleber, Sophie C.; Vogt, Stefan; Chen, Si; Garwin, Seth A.; Bayer, Amanda R.; Dravid, Vinayak; Woodruff, Teresa K.; O’Halloran, Thomas V.

    2015-01-01

    Fertilization of a mammalian egg induces a series of ‘zinc sparks’ that are necessary for inducing the egg-to-embryo transition. Despite the importance of these zinc efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches to resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy dispersive spectroscopy, X-ray fluorescence microscopy, and 3D elemental tomography for high resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 106 zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes. PMID:25615666

  4. Comprehensive and quantitative proteomic analyses of zebrafish plasma reveals conserved protein profiles between genders and between zebrafish and human.

    PubMed

    Li, Caixia; Tan, Xing Fei; Lim, Teck Kwang; Lin, Qingsong; Gong, Zhiyuan

    2016-01-01

    Omic approaches have been increasingly used in the zebrafish model for holistic understanding of molecular events and mechanisms of tissue functions. However, plasma is rarely used for omic profiling because of the technical challenges in collecting sufficient blood. In this study, we employed two mass spectrometric (MS) approaches for a comprehensive characterization of zebrafish plasma proteome, i.e. conventional shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) for an overview study and quantitative SWATH (Sequential Window Acquisition of all THeoretical fragment-ion spectra) for comparison between genders. 959 proteins were identified in the shotgun profiling with estimated concentrations spanning almost five orders of magnitudes. Other than the presence of a few highly abundant female egg yolk precursor proteins (vitellogenins), the proteomic profiles of male and female plasmas were very similar in both number and abundance and there were basically no other highly gender-biased proteins. The types of plasma proteins based on IPA (Ingenuity Pathway Analysis) classification and tissue sources of production were also very similar. Furthermore, the zebrafish plasma proteome shares significant similarities with human plasma proteome, in particular in top abundant proteins including apolipoproteins and complements. Thus, the current study provided a valuable dataset for future evaluation of plasma proteins in zebrafish. PMID:27071722

  5. Quantitative phospho-proteomics reveals the Plasmodium merozoite triggers pre-invasion host kinase modification of the red cell cytoskeleton.

    PubMed

    Zuccala, Elizabeth S; Satchwell, Timothy J; Angrisano, Fiona; Tan, Yan Hong; Wilson, Marieangela C; Heesom, Kate J; Baum, Jake

    2016-01-01

    The invasive blood-stage malaria parasite - the merozoite - induces rapid morphological changes to the target erythrocyte during entry. However, evidence for active molecular changes in the host cell that accompany merozoite invasion is lacking. Here, we use invasion inhibition assays, erythrocyte resealing and high-definition imaging to explore red cell responses during invasion. We show that although merozoite entry does not involve erythrocyte actin reorganisation, it does require ATP to complete the process. Towards dissecting the ATP requirement, we present an in depth quantitative phospho-proteomic analysis of the erythrocyte during each stage of invasion. Specifically, we demonstrate extensive increased phosphorylation of erythrocyte proteins on merozoite attachment, including modification of the cytoskeletal proteins beta-spectrin and PIEZO1. The association with merozoite contact but not active entry demonstrates that parasite-dependent phosphorylation is mediated by host-cell kinase activity. This provides the first evidence that the erythrocyte is stimulated to respond to early invasion events through molecular changes in its membrane architecture. PMID:26830761

  6. Fusion-Related Host Proteins Are Actively Regulated by NA during Influenza Infection as Revealed by Quantitative Proteomics Analysis

    PubMed Central

    Sui, Zhiwei; Wen, Bo; Gao, Zhimin; Chen, Quanjiao

    2014-01-01

    Three recombinant influenza A viruses with different neuraminidases (NAs) in the background of A/PR/8/34 (PR8), named rPR8-H5N1NA, rPR8-H9N2NA, and rPR8-H1N1NA, derived from H5N1, H9N2, H1N1 (swine) viruses, respectively, were constructed. We performed a quantitative proteomics analysis to investigate differential protein expression in Madin-Darby canine kidney (MDCK) cells infected with recombinant and wild-type influenza viruses to determine whether NA replacement would alter host cell gene expression. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-TOF MS) and two-dimensional gel electrophoresis (2-DE), we identified 12 up-regulated and 49 down-regulated protein spots, including cytoskeletal proteins, molecular biosynthesis proteins, ubiquitin-proteasome pathway proteins, and heat shock proteins. The most significant changes in infected cells were observed for molecular biosynthesis proteins. We found more differentially expressed protein spots in cells infected with rPR8-H5N1NA or rPR8-H9N2NA viruses than cells infected with wild-type virus. Many of those proteins are postulated to be involved in cell-cell fusion, but the full mechanism remains to be explored. Meanwhile, our data demonstrate that the wild-type virus has evolutionary advantages over recombinant viruses. PMID:25153908

  7. Quantitative profiling of the in vivo enzymatic activity of ricin reveals disparate depurination of different pulmonary cell types.

    PubMed

    Falach, Reut; Sapoznikov, Anita; Gal, Yoav; Israeli, Ofir; Leitner, Moshe; Seliger, Nehama; Ehrlich, Sharon; Kronman, Chanoch; Sabo, Tamar

    2016-09-01

    The plant-derived toxins ricin and abrin, operate by site-specific depurination of ribosomes, which in turn leads to protein synthesis arrest. The clinical manifestation following pulmonary exposure to these toxins is that of a severe lung inflammation and respiratory insufficiency. Deciphering the pathways mediating between the catalytic activity and the developing lung inflammation, requires a quantitative appreciation of the catalytic activity of the toxins, in-vivo. In the present study, we monitored truncated cDNA molecules which are formed by reverse transcription when a depurinated 28S rRNA serves as template. We found that maximal depurination after intranasal exposure of mice to 2LD50 ricin was reached 48h, where nearly 40% of the ribosomes have been depurinated and that depurination can be halted by post-exposure administration of anti-ricin antibodies. We next demonstrated that the effect of ricin intoxication on different cell types populating the lungs differs greatly, and that outstandingly high levels of damage (80% depurination), were observed in particular for pulmonary epithelial cells. Finally, we found that the magnitude of depurination induced by the related plant-derived toxin abrin, was significantly lower in comparison to ricin, and can be attributed mostly to reduced depurination of pulmonary epithelial cells by abrin. This study provides for the first time vital information regarding the scope and timing of the catalytic performance of ricin and abrin in the lungs of intact animals. PMID:27298272

  8. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  9. Chlamydia trachomatis In Vivo to In Vitro Transition Reveals Mechanisms of Phase Variation and Down-Regulation of Virulence Factors

    PubMed Central

    Borges, Vítor; Pinheiro, Miguel; Antelo, Minia; Sampaio, Daniel A.; Vieira, Luís; Ferreira, Rita; Nunes, Alexandra; Almeida, Filipe; Mota, Luís J.; Borrego, Maria J.; Gomes, João P.

    2015-01-01

    Research on the obligate intracellular bacterium Chlamydia trachomatis demands culture in cell-lines, but the adaptive process behind the in vivo to in vitro transition is not understood. We assessed the genomic and transcriptomic dynamics underlying C. trachomatis in vitro adaptation of strains representing the three disease groups (ocular, epithelial-genital and lymphogranuloma venereum) propagated in epithelial cells over multiple passages. We found genetic features potentially underlying phase variation mechanisms mediating the regulation of a lipid A biosynthesis enzyme (CT533/LpxC), and the functionality of the cytotoxin (CT166) through an ON/OFF mechanism. We detected inactivating mutations in CT713/porB, a scenario suggesting metabolic adaptation to the available carbon source. CT135 was inactivated in a tropism-specific manner, with CT135-negative clones emerging for all epithelial-genital populations (but not for LGV and ocular populations) and rapidly increasing in frequency (~23% mutants per 10 passages). RNA-sequencing analyses revealed that a deletion event involving CT135 impacted the expression of multiple virulence factors, namely effectors known to play a role in the C. trachomatis host-cell invasion or subversion (e.g., CT456/Tarp, CT694, CT875/TepP and CT868/ChlaDub1). This reflects a scenario of attenuation of C. trachomatis virulence in vitro, which may take place independently or in a cumulative fashion with the also observed down-regulation of plasmid-related virulence factors. This issue may be relevant on behalf of the recent advances in Chlamydia mutagenesis and transformation where culture propagation for selecting mutants/transformants is mandatory. Finally, there was an increase in the growth rate for all strains, reflecting gradual fitness enhancement over time. In general, these data shed light on the adaptive process underlying the C. trachomatis in vivo to in vitro transition, and indicates that it would be prudent to restrict

  10. Quantitative intravital two-photon excitation microscopy reveals absence of pulmonary vaso-occlusion in unchallenged Sickle Cell Disease mice

    PubMed Central

    Bennewitz, Margaret F.; Watkins, Simon C.; Sundd, Prithu

    2015-01-01

    Sickle cell disease (SCD) is a genetic disorder that leads to red blood cell (RBC) sickling, hemolysis and the upregulation of adhesion molecules on sickle RBCs. Chronic hemolysis in SCD results in a hyper-inflammatory state characterized by activation of circulating leukocytes, platelets and endothelial cells even in the absence of a crisis. A crisis in SCD is often triggered by an inflammatory stimulus and can lead to the acute chest syndrome (ACS), which is a type of lung injury and a leading cause of mortality among SCD patients. Although it is believed that pulmonary vaso-occlusion could be the phenomenon contributing to the development of ACS, the role of vaso-occlusion in ACS remains elusive. Intravital imaging of the cremaster microcirculation in SCD mice has been instrumental in establishing the role of neutrophil-RBC-endothelium interactions in systemic vaso-occlusion; however, such studies, although warranted, have never been done in the pulmonary microcirculation of SCD mice. Here, we show that two-photon excitation fluorescence microscopy can be used to perform quantitative analysis of neutrophil and RBC trafficking in the pulmonary microcirculation of SCD mice. We provide the experimental approach that enables microscopic observations under physiological conditions and use it to show that RBC and neutrophil trafficking is comparable in SCD and control mice in the absence of an inflammatory stimulus. The intravital imaging scheme proposed in this study can be useful in elucidating the cellular and molecular mechanism of pulmonary vaso-occlusion in SCD mice following an inflammatory stimulus. PMID:25995970

  11. Quantitative evaluation of first, second, and third generation hairpin systems reveals the limit of mammalian vector-based RNAi.

    PubMed

    Watanabe, Colin; Cuellar, Trinna L; Haley, Benjamin

    2016-01-01

    Incorporating miRNA-like features into vector-based hairpin scaffolds has been shown to augment small RNA processing and RNAi efficiency. Therefore, defining an optimal, native hairpin context may obviate a need for hairpin-specific targeting design schemes, which confound the movement of functional siRNAs into shRNA/artificial miRNA backbones, or large-scale screens to identify efficacious sequences. Thus, we used quantitative cell-based assays to compare separate third generation artificial miRNA systems, miR-E (based on miR-30a) and miR-3G (based on miR-16-2 and first described in this study) to widely-adopted, first and second generation formats in both Pol-II and Pol-III expression vector contexts. Despite their unique structures and strandedness, and in contrast to first and second-generation RNAi triggers, the third generation formats operated with remarkable similarity to one another, and strong silencing was observed with a significant fraction of the evaluated target sequences within either promoter context. By pairing an established siRNA design algorithm with the third generation vectors we could readily identify targeting sequences that matched or exceeded the potency of those discovered through large-scale sensor-based assays. We find that third generation hairpin systems enable the maximal level of siRNA function, likely through enhanced processing and accumulation of precisely-defined guide RNAs. Therefore, we predict future gains in RNAi potency will come from improved hairpin expression and identification of optimal siRNA-intrinsic silencing properties rather than further modification of these scaffolds. Consequently, third generation systems should be the primary format for vector-based RNAi studies; miR-3G is advantageous due to its small expression cassette and simplified, cost-efficient cloning scheme. PMID:26786363

  12. Quantitative Proteomic Analysis Reveals that Antioxidation Mechanisms Contribute to Cold Tolerance in Plantain (Musa paradisiaca L.; ABB Group) Seedlings*

    PubMed Central

    Yang, Qiao-Song; Wu, Jun-Hua; Li, Chun-Yu; Wei, Yue-Rong; Sheng, Ou; Hu, Chun-Hua; Kuang, Rui-Bin; Huang, Yong-Hong; Peng, Xin-Xiang; McCardle, James A.; Chen, Wei; Yang, Yong; Rose, Jocelyn K. C.; Zhang, Sheng; Yi, Gan-Jun

    2012-01-01

    Banana and its close relative, plantain are globally important crops and there is considerable interest in optimizing their cultivation. Plantain has superior cold tolerance compared with banana and a thorough understanding of the molecular mechanisms and responses of plantain to cold stress has great potential value for developing cold tolerant banana cultivars. In this study, we used iTRAQ-based comparative proteomic analysis to investigate the temporal responses of plantain to cold stress. Plantain seedlings were exposed for 0, 6, and 24 h of cold stress at 8 °C and subsequently allowed to recover for 24 h at 28 °C. A total of 3477 plantain proteins were identified, of which 809 showed differential expression from the three treatments. The majority of differentially expressed proteins were predicted to be involved in oxidation-reduction, including oxylipin biosynthesis, whereas others were associated with photosynthesis, photorespiration, and several primary metabolic processes, such as carbohydrate metabolic process and fatty acid beta-oxidation. Western blot analysis and enzyme activity assays were performed on seven differentially expressed, cold-response candidate plantain proteins to validate the proteomics data. Similar analyses of the seven candidate proteins were performed in cold-sensitive banana to examine possible functional conservation, and to compare the results to equivalent responses between the two species. Consistent results were achieved by Western blot and enzyme activity assays, demonstrating that the quantitative proteomics data collected in this study are reliable. Our results suggest that an increase of antioxidant capacity through adapted ROS scavenging capability, reduced production of ROS, and decreased lipid peroxidation contribute to molecular mechanisms for the increased cold tolerance in plantain. To the best of our knowledge, this is the first report of a global investigation on molecular responses of plantain to cold stress by

  13. Quantitative Mass Spectrometry Reveals Changes in Histone H2B Variants as Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation.

    PubMed

    Rea, Matthew; Jiang, Tingting; Eleazer, Rebekah; Eckstein, Meredith; Marshall, Alan G; Fondufe-Mittendorf, Yvonne N

    2016-07-01

    Exposure to inorganic arsenic, a ubiquitous environmental toxic metalloid, leads to carcinogenesis. However, the mechanism is unknown. Several studies have shown that inorganic arsenic exposure alters specific gene expression patterns, possibly through alterations in chromatin structure. While most studies on understanding the mechanism of chromatin-mediated gene regulation have focused on histone post-translational modifications, the role of histone variants remains largely unknown. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function in arsenic-mediated carcinogenesis, analysis of the histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report the first global mass spectrometric analysis of histone H2B variants as cells undergo arsenic-mediated epithelial to mesenchymal transition. We used electron capture dissociation-based top-down tandem mass spectrometry analysis validated with quantitative reverse transcription real-time polymerase chain reaction to identify changes in the expression levels of H2B variants in inorganic arsenic-mediated epithelial-mesenchymal transition. We identified changes in the expression levels of specific histone H2B variants in two cell types, which are dependent on dose and length of exposure of inorganic arsenic. In particular, we found increases in H2B variants H2B1H/1K/1C/1J/1O and H2B2E/2F, and significant decreases in H2B1N/1D/1B as cells undergo inorganic arsenic-mediated epithelial-mesenchymal transition. The analysis of these histone variants provides a first step toward an understanding of the functional significance of the diversity of histone structures, especially in inorganic arsenic-mediated gene expression and carcinogenesis. PMID:27169413

  14. Quantitative proteomic analysis reveals that antioxidation mechanisms contribute to cold tolerance in plantain (Musa paradisiaca L.; ABB Group) seedlings.

    PubMed

    Yang, Qiao-Song; Wu, Jun-Hua; Li, Chun-Yu; Wei, Yue-Rong; Sheng, Ou; Hu, Chun-Hua; Kuang, Rui-Bin; Huang, Yong-Hong; Peng, Xin-Xiang; McCardle, James A; Chen, Wei; Yang, Yong; Rose, Jocelyn K C; Zhang, Sheng; Yi, Gan-Jun

    2012-12-01

    Banana and its close relative, plantain are globally important crops and there is considerable interest in optimizing their cultivation. Plantain has superior cold tolerance compared with banana and a thorough understanding of the molecular mechanisms and responses of plantain to cold stress has great potential value for developing cold tolerant banana cultivars. In this study, we used iTRAQ-based comparative proteomic analysis to investigate the temporal responses of plantain to cold stress. Plantain seedlings were exposed for 0, 6, and 24 h of cold stress at 8 °C and subsequently allowed to recover for 24 h at 28 °C. A total of 3477 plantain proteins were identified, of which 809 showed differential expression from the three treatments. The majority of differentially expressed proteins were predicted to be involved in oxidation-reduction, including oxylipin biosynthesis, whereas others were associated with photosynthesis, photorespiration, and several primary metabolic processes, such as carbohydrate metabolic process and fatty acid beta-oxidation. Western blot analysis and enzyme activity assays were performed on seven differentially expressed, cold-response candidate plantain proteins to validate the proteomics data. Similar analyses of the seven candidate proteins were performed in cold-sensitive banana to examine possible functional conservation, and to compare the results to equivalent responses between the two species. Consistent results were achieved by Western blot and enzyme activity assays, demonstrating that the quantitative proteomics data collected in this study are reliable. Our results suggest that an increase of antioxidant capacity through adapted ROS scavenging capability, reduced production of ROS, and decreased lipid peroxidation contribute to molecular mechanisms for the increased cold tolerance in plantain. To the best of our knowledge, this is the first report of a global investigation on molecular responses of plantain to cold stress by

  15. Quantitative proteomic analysis of Shigella flexneri and Shigella sonnei Generalized Modules for Membrane Antigens (GMMA) reveals highly pure preparations

    PubMed Central

    Maggiore, Luana; Yu, Lu; Omasits, Ulrich; Rossi, Omar; Dougan, Gordon; Thomson, Nicholas R.; Saul, Allan; Choudhary, Jyoti S.; Gerke, Christiane

    2016-01-01

    Outer membrane blebs are naturally shed by Gram-negative bacteria and are candidates of interest for vaccines development. Genetic modification of bacteria to induce hyperblebbing greatly increases the yield of blebs, called Generalized Modules for Membrane Antigens (GMMA). The composition of the GMMA from hyperblebbing mutants of Shigella flexneri 2a and Shigella sonnei were quantitatively analyzed using high-sensitivity mass spectrometry with the label-free iBAQ procedure and compared to the composition of the solubilized cells of the GMMA-producing strains. There were 2306 proteins identified, 659 in GMMA and 2239 in bacteria, of which 290 (GMMA) and 1696 (bacteria) were common to both S. flexneri 2a and S. sonnei. Predicted outer membrane and periplasmic proteins constituted 95.7% and 98.7% of the protein mass of S. flexneri 2a and S. sonnei GMMA, respectively. Among the remaining proteins, small quantities of ribosomal proteins collectively accounted for more than half of the predicted cytoplasmic protein impurities in the GMMA. In GMMA, the outer membrane and periplasmic proteins were enriched 13.3-fold (S. flexneri 2a) and 8.3-fold (S. sonnei) compared to their abundance in the parent bacteria. Both periplasmic and outer membrane proteins were enriched similarly, suggesting that GMMA have a similar surface to volume ratio as the surface to periplasmic volume ratio in these mutant bacteria. Results in S. flexneri 2a and S. sonnei showed high reproducibility indicating a robust GMMA-producing process and the low contamination by cytoplasmic proteins support the use of GMMA for vaccines. Data are available via ProteomeXchange with identifier PXD002517. PMID:26746581

  16. A quantitative multiplex nuclease protection assay reveals immunotoxicity gene expression profiles in the rabbit model for vaginal drug safety evaluation.

    PubMed

    Fichorova, Raina N; Mendonca, Kevin; Yamamoto, Hidemi S; Murray, Ryan; Chandra, Neelima; Doncel, Gustavo F

    2015-06-15

    Any vaginal product that alters the mucosal environment and impairs the immune barrier increases the risk of sexually transmitted infections, especially HIV infection, which thrives on mucosal damage and inflammation. The FDA-recommended rabbit vaginal irritation (RVI) model serves as a first line selection tool for vaginal products; however, for decades it has been limited to histopathology scoring, insufficient to select safe anti-HIV microbicides. In this study we incorporate to the RVI model a novel quantitative nuclease protection assay (qNPA) to quantify mRNA levels of 25 genes representing leukocyte differentiation markers, toll-like receptors (TLR), cytokines, chemokines, epithelial repair, microbicidal and vascular markers, by designing two multiplex arrays. Tissue sections were obtained from 36 rabbits (6 per treatment arm) after 14 daily applications of a placebo gel, saline, 4% nonoxynol-9 (N-9), and three combinations of the anti-HIV microbicides tenofovir (TFV) and UC781 in escalating concentrations (highest: 10% TFV+2.5%UC781). Results showed that increased expression levels of toll-like receptor (TLR)-4, interleukin (IL)-1β, CXCL8, epithelial membrane protein (EMP)-1 (P<0.05), and decreased levels of TLR2 (P<0.05), TLR3 and bactericidal permeability increasing protein (BPI) (P<0.001) were associated with cervicovaginal mucosal alteration (histopathology). Seven markers showed a significant linear trend predicting epithelial damage (up with CD4, IL-1β, CXCL8, CCL2, CCL21, EMP1 and down with BPI). Despite the low tissue damage RVI scores, the high-dose microbicide combination gel caused activation of HIV host cells (SLC and CD4) while N-9 caused proinflammatory gene upregulation (IL-8 and TLR4) suggesting a potential for increasing risk of HIV via different mechanisms depending on the chemical nature of the test product. PMID:25818602

  17. Quantitative Analysis of the EGF Receptor Autocrine System Reveals Cryptic Regulation of Cell Response by Ligand Capture

    SciTech Connect

    Dewitt, Ann E.; Dong, Jian Y.; Wiley, H S.; Lauffenburger, Douglas A.

    2001-06-15

    Autocrine signaling is important in normal tissue physiology as well as pathological conditions. It is difficult to analyze these systems, however, because they are both self-contained and recursive. To understand how parameters, such as ligand production and receptor expression influence autocrine activity, we investigated a human epidermal growth factor/epidermal growth factor receptor (EGF/EGFR) loop engineered into mouse B82 fibroblasts. We varied the level of ligand production using the tet-off expression system and used metalloprotease inhibitors to modulate ligand release. Receptor expression was varied using antagonistic, blocking antibodies. We compared autocrine ligand release to receptor activation using a microphysiometer-based assay and analyzed our data with a quantitative model of ligand release and receptor dynamics. We found that the activity of our autocrine system could be described in terms of a simple ratio between the rate of ligand production (VL) and the rate of receptor production (VR). At a VL/VR ratio of < 0.3, essentially no ligand was found in the extracellular medium, but a significant number cell receptors (30-40%) were occupied. As the VL/VR ratio increased from 0.3 towards unity, receptor occupancy increased, and significant amounts of ligand now appeared in the medium. Above a VL/VR ratio of 1.0, receptor occupancy approached saturation and most of the released ligand was lost into the medium. Analysis of human mammary epithelial cells showed that a VL/VR ratio of < 5 x 10 -4 was sufficient to evoke >20% of a maximal proliferative response. This suggests that natural autocrine systems are active even when no ligand appears in the extracellular medium; i.e., they operate 'invisibly' to general detection.

  18. Quantitative evaluation of first, second, and third generation hairpin systems reveals the limit of mammalian vector-based RNAi

    PubMed Central

    Watanabe, Colin; Cuellar, Trinna L.; Haley, Benjamin

    2016-01-01

    ABSTRACT Incorporating miRNA-like features into vector-based hairpin scaffolds has been shown to augment small RNA processing and RNAi efficiency. Therefore, defining an optimal, native hairpin context may obviate a need for hairpin-specific targeting design schemes, which confound the movement of functional siRNAs into shRNA/artificial miRNA backbones, or large-scale screens to identify efficacious sequences. Thus, we used quantitative cell-based assays to compare separate third generation artificial miRNA systems, miR-E (based on miR-30a) and miR-3G (based on miR-16-2 and first described in this study) to widely-adopted, first and second generation formats in both Pol-II and Pol-III expression vector contexts. Despite their unique structures and strandedness, and in contrast to first and second-generation RNAi triggers, the third generation formats operated with remarkable similarity to one another, and strong silencing was observed with a significant fraction of the evaluated target sequences within either promoter context. By pairing an established siRNA design algorithm with the third generation vectors we could readily identify targeting sequences that matched or exceeded the potency of those discovered through large-scale sensor-based assays. We find that third generation hairpin systems enable the maximal level of siRNA function, likely through enhanced processing and accumulation of precisely-defined guide RNAs. Therefore, we predict future gains in RNAi potency will come from improved hairpin expression and identification of optimal siRNA-intrinsic silencing properties rather than further modification of these scaffolds. Consequently, third generation systems should be the primary format for vector-based RNAi studies; miR-3G is advantageous due to its small expression cassette and simplified, cost-efficient cloning scheme. PMID:26786363

  19. Quantitative proteomic analysis of mitochondrial proteins reveals prosurvival mechanisms in the perpetuation of radiation-induced genomic instability

    PubMed Central

    Thomas, Stefani N.; Waters, Katrina M.; Morgan, William F.

    2016-01-01

    Radiation-induced genomic instability is a well-studied phenomenon that is measured as mitotically heritable genetic alterations observed in the progeny of an irradiated cell. The mechanisms that perpetuate this instability are unclear; however, a role for chronic oxidative stress has consistently been demonstrated. In the chromosomally unstable LS12 cell line, oxidative stress and genomic instability were correlated with mitochondrial dysfunction. To clarify this mitochondrial dysfunction and gain insight into the mechanisms underlying radiation-induced genomic instability we have evaluated the mitochondrial subproteome and performed quantitative mass spectrometry analysis of LS12 cells. Of 98 quantified mitochondrial proteins, 17 met criteria for fold changes and reproducibility; and 11 were statistically significant in comparison with the stable parental GM10115 cell line. Previous observations implicated defects in the electron transport chain (ETC) in the LS12 cell mitochondrial dysfunction. Proteomic analysis supports these observations, demonstrating significantly reduced levels of mitochondrial cytochrome c, the intermediary between complexes III and IV of the ETC. Results also suggest that LS12 cells compensate for ETC dysfunction and oxidative stress through increased levels of tricarboxylic acid cycle enzymes and upregulation of proteins that protect against oxidative stress and apoptosis. More than one cellular defect is likely to contribute to the genomic instability phenotype, and evaluation of gene and microRNA expression suggests that epigenetics play a role in the phenotype. These data suggest that LS12 cells have adapted mechanisms that allow survival under suboptimal conditions of oxidative stress and compromised mitochondrial function to perpetuate genomic instability. PMID:22569412

  20. Quantitative proteomic analysis of cabernet sauvignon grape cells exposed to thermal stresses reveals alterations in sugar and phenylpropanoid metabolism.

    PubMed

    George, Iniga S; Pascovici, Dana; Mirzaei, Mehdi; Haynes, Paul A

    2015-09-01

    Grapes (Vitis vinifera) are a valuable fruit crop and wine production is a major industry. Global warming and expanded range of cultivation will expose grapes to more temperature stresses in future. Our study investigated protein level responses to abiotic stresses, with particular reference to proteomic changes induced by the impact of four different temperature stress regimes, including both hot and cold temperatures, on cultured grape cells. Cabernet Sauvignon cell suspension cultures grown at 26°C were subjected to 14 h of exposure to 34 and 42°C for heat stress, and 18 and 10°C for cold stress. Cells from the five temperatures were harvested in biological triplicates and label-free quantitative shotgun proteomic analysis was performed. A total of 2042 non-redundant proteins were identified from the five temperature points. Fifty-five proteins were only detected in extreme heat stress conditions (42°C) and 53 proteins were only detected at extreme cold stress conditions (10°C). Gene Ontology (GO) annotations of differentially expressed proteins provided insights into the metabolic pathways that are involved in temperature stress in grape cells. Sugar metabolism displayed switching between alternative and classical pathways during temperature stresses. Additionally, nine proteins involved in the phenylpropanoid pathway were greatly increased in abundance at extreme cold stress, and were thus found to be cold-responsive proteins. All MS data have been deposited in the ProteomeXchange with identifier PXD000977 (http://proteomecentral.proteomexchange.org/dataset/PXD000977). PMID:25959233

  1. Phenotypic variation and quantitative trait locus identification for osmotic potential in an interspecific hybrid inbred F2 poplar pedigree grown in contrasting environments

    SciTech Connect

    Tschaplinski, Timothy J; Tuskan, Gerald A; Sewell, Mitchell; Gebre, G; Todd Jr, Donald E; Pendley, Carrie D

    2006-01-01

    Elucidation of the mechanisms of dehydration tolerance in popular (Populus sp.) trees will permit development of biochemical and molecular indicators to indentify dehydration-tolerant genotypes during genetic selection. The objectives of the study were to characterize the degree of phenotypic variation in osmotic potential (a determinant of dehydration tolerance), determine the relationship between osmotic potential at full turgor and relative growth rate, and identify quantitative trait loci (QTL) for osmotic potential in an advanced-generation, interpsecific popular pedigree established in contrasting environments.

  2. Genetic Variation, Heritability, and Diversity Analysis of Upland Rice (Oryza sativa L.) Genotypes Based on Quantitative Traits.

    PubMed

    Tuhina-Khatun, Mst; Hanafi, Mohamed M; Rafii Yusop, Mohd; Wong, M Y; Salleh, Faezah M; Ferdous, Jannatul

    2015-01-01

    Upland rice is important for sustainable crop production to meet future food demands. The expansion in area of irrigated rice faces limitations due to water scarcity resulting from climate change. Therefore, this research aimed to identify potential genotypes and suitable traits of upland rice germplasm for breeding programmes. Forty-three genotypes were evaluated in a randomised complete block design with three replications. All genotypes exhibited a wide and significant variation for 22 traits. The highest phenotypic and genotypic coefficient of variation was recorded for the number of filled grains/panicle and yields/plant (g). The highest heritability was found for photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO₂, and number of filled grains/panicle and yields/plant (g). Cluster analysis based on 22 traits grouped the 43 rice genotypes into five clusters. Cluster II was the largest and consisted of 20 genotypes mostly originating from the Philippines. The first four principle components of 22 traits accounted for about 72% of the total variation and indicated a wide variation among the genotypes. The selected best trait of the number of filled grains/panicle and yields/plant (g), which showed high heritability and high genetic advance, could be used as a selection criterion for hybridisation programmes in the future. PMID:26258135

  3. Phenotypic variation and identification of quantitative trait loci for ozone injury in a Fiskeby III x Mandarin (Ottawa) soybean population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground-level ozone reduces yield in crops such as soybean (Glycine max (L.) Merr.). Phenotypic variation has been observed for this trait in multiple species; however, breeding for ozone tolerance has been limited. A recombinant inbred population was developed from soybean genotypes differing in tol...

  4. Genetic Variation, Heritability, and Diversity Analysis of Upland Rice (Oryza sativa L.) Genotypes Based on Quantitative Traits

    PubMed Central

    Tuhina-Khatun, Mst.; Hanafi, Mohamed M.; Rafii Yusop, Mohd; Wong, M. Y.; Salleh, Faezah M.; Ferdous, Jannatul

    2015-01-01

    Upland rice is important for sustainable crop production to meet future food demands. The expansion in area of irrigated rice faces limitations due to water scarcity resulting from climate change. Therefore, this research aimed to identify potential genotypes and suitable traits of upland rice germplasm for breeding programmes. Forty-three genotypes were evaluated in a randomised complete block design with three replications. All genotypes exhibited a wide and significant variation for 22 traits. The highest phenotypic and genotypic coefficient of variation was recorded for the number of filled grains/panicle and yields/plant (g). The highest heritability was found for photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2, and number of filled grains/panicle and yields/plant (g). Cluster analysis based on 22 traits grouped the 43 rice genotypes into five clusters. Cluster II was the largest and consisted of 20 genotypes mostly originating from the Philippines. The first four principle components of 22 traits accounted for about 72% of the total variation and indicated a wide variation among the genotypes. The selected best trait of the number of filled grains/panicle and yields/plant (g), which showed high heritability and high genetic advance, could be used as a selection criterion for hybridisation programmes in the future. PMID:26258135

  5. Iris pigmentation as a quantitative trait: variation in populations of European, East Asian and South Asian ancestry and association with candidate gene polymorphisms.

    PubMed

    Edwards, Melissa; Cha, David; Krithika, S; Johnson, Monique; Cook, Gillian; Parra, Esteban J

    2016-03-01

    In this study, we present a new quantitative method to measure iris colour based on high-resolution photographs. We applied this method to analyse iris colour variation in a sample of individuals of East Asian, European and South Asian ancestry. We show that measuring iris colour using the coordinates of the CIELAB colour space uncovers a significant amount of variation that is not captured using conventional categorical classifications, such as 'brown', 'blue' or 'green'. We tested the association of a selected panel of polymorphisms with iris colour in each population group. Six markers showed significant associations with iris colour in the European sample, three in the South Asian sample and two in the East Asian sample. We also observed that the marker HERC2 rs12913832, which is the main determinant of 'blue' versus 'brown' iris colour in European populations, is also significantly associated with central heterochromia in the European sample. PMID:26547379

  6. A quantitative multiplex nuclease protection assay reveals immunotoxicity gene expression profiles in the rabbit model for vaginal drug safety evaluation

    SciTech Connect

    Fichorova, Raina N.; Mendonca, Kevin; Yamamoto, Hidemi S.; Murray, Ryan; Chandra, Neelima; Doncel, Gustavo F.

    2015-06-15

    Any vaginal product that alters the mucosal environment and impairs the immune barrier increases the risk of sexually transmitted infections, especially HIV infection, which thrives on mucosal damage and inflammation. The FDA-recommended rabbit vaginal irritation (RVI) model serves as a first line selection tool for vaginal products; however, for decades it has been limited to histopathology scoring, insufficient to select safe anti-HIV microbicides. In this study we incorporate to the RVI model a novel quantitative nuclease protection assay (qNPA) to quantify mRNA levels of 25 genes representing leukocyte differentiation markers, toll-like receptors (TLR), cytokines, chemokines, epithelial repair, microbicidal and vascular markers, by designing two multiplex arrays. Tissue sections were obtained from 36 rabbits (6 per treatment arm) after 14 daily applications of a placebo gel, saline, 4% nonoxynol-9 (N-9), and three combinations of the anti-HIV microbicides tenofovir (TFV) and UC781 in escalating concentrations (highest: 10% TFV + 2.5%UC781). Results showed that increased expression levels of toll-like receptor (TLR)-4, interleukin (IL)-1β, CXCL8, epithelial membrane protein (EMP)-1 (P < 0.05), and decreased levels of TLR2 (P < 0.05), TLR3 and bactericidal permeability increasing protein (BPI) (P < 0.001) were associated with cervicovaginal mucosal alteration (histopathology). Seven markers showed a significant linear trend predicting epithelial damage (up with CD4, IL-1β, CXCL8, CCL2, CCL21, EMP1 and down with BPI). Despite the low tissue damage RVI scores, the high-dose microbicide combination gel caused activation of HIV host cells (SLC and CD4) while N-9 caused proinflammatory gene upregulation (IL-8 and TLR4) suggesting a potential for increasing risk of HIV via different mechanisms depending on the chemical nature of the test product. - Highlights: • A transcriptome nuclease protection assay assessed microbicides for vaginal safety. • Biomarkers were

  7. Quantitative Mass Spectrometry Reveals that Intact Histone H1 Phosphorylations are Variant Specific and Exhibit Single Molecule Hierarchical Dependence.

    PubMed

    Chen, Yu; Hoover, Michael E; Dang, Xibei; Shomo, Alan A; Guan, Xiaoyan; Marshall, Alan G; Freitas, Michael A; Young, Nicolas L

    2016-03-01

    Breast cancer was the second leading cause of cancer related mortality for females in 2014. Recent studies suggest histone H1 phosphorylation may be useful as a clinical biomarker of breast and other cancers because of its ability to recognize proliferative cell populations. Although monitoring a single phosphorylated H1 residue is adequate to stratify high-grade breast tumors, expanding our knowledge of how H1 is phosphorylated through the cell cycle is paramount to understanding its role in carcinogenesis. H1 analysis by bottom-up MS is challenging because of the presence of highly homologous sequence variants expressed by most cells. These highly basic proteins are difficult to analyze by LC-MS/MS because of the small, hydrophilic nature of peptides produced by tryptic digestion. Although bottom-up methods permit identification of several H1 phosphorylation events, these peptides are not useful for observing the combinatorial post-translational modification (PTM) patterns on the protein of interest. To complement the information provided by bottom-up MS, we utilized a top-down MS/MS workflow to permit identification and quantitation of H1 proteoforms related to the progression of breast cells through the cell cycle. Histones H1.2 and H1.4 were observed in MDA-MB-231 metastatic breast cells, whereas an additional histone variant, histone H1.3, was identified only in nonneoplastic MCF-10A cells. Progressive phosphorylation of histone H1.4 was identified in both cell lines at mitosis (M phase). Phosphorylation occurred first at S172 followed successively by S187, T18, T146, and T154. Notably, phosphorylation at S173 of histone H1.2 and S172, S187, T18, T146, and T154 of H1.4 significantly increases during M phase relative to S phase, suggesting that these events are cell cycle-dependent and may serve as markers for proliferation. Finally, we report the observation of the H1.2 SNP variant A18V in MCF-10A cells. PMID:26209608

  8. Label-free quantitative phosphoproteomics with novel pairwise abundance normalization reveals synergistic RAS and CIP2A signaling

    PubMed Central

    Kauko, Otto; Laajala, Teemu Daniel; Jumppanen, Mikael; Hintsanen, Petteri; Suni, Veronika; Haapaniemi, Pekka; Corthals, Garry; Aittokallio, Tero; Westermarck, Jukka; Imanishi, Susumu Y.

    2015-01-01

    Hyperactivated RAS drives progression of many human malignancies. However, oncogenic activity of RAS is dependent on simultaneous inactivation of protein phosphatase 2A (PP2A) activity. Although PP2A is known to regulate some of the RAS effector pathways, it has not been systematically assessed how these proteins functionally interact. Here we have analyzed phosphoproteomes regulated by either RAS or PP2A, by phosphopeptide enrichment followed by mass-spectrometry-based label-free quantification. To allow data normalization in situations where depletion of RAS or PP2A inhibitor CIP2A causes a large uni-directional change in the phosphopeptide abundance, we developed a novel normalization strategy, named pairwise normalization. This normalization is based on adjusting phosphopeptide abundances measured before and after the enrichment. The superior performance of the pairwise normalization was verified by various independent methods. Additionally, we demonstrate how the selected normalization method influences the downstream analyses and interpretation of pathway activities. Consequently, bioinformatics analysis of RAS and CIP2A regulated phosphoproteomes revealed a significant overlap in their functional pathways. This is most likely biologically meaningful as we observed a synergistic survival effect between CIP2A and RAS expression as well as KRAS activating mutations in TCGA pan-cancer data set, and synergistic relationship between CIP2A and KRAS depletion in colony growth assays. PMID:26278961

  9. Proteomic changes in maize as a response to heavy metal (lead) stress revealed by iTRAQ quantitative proteomics.

    PubMed

    Li, G K; Gao, J; Peng, H; Shen, Y O; Ding, H P; Zhang, Z M; Pan, G T; Lin, H J

    2016-01-01

    Lead (Pb), a heavy metal, has become a crucial pollutant in soil and water, causing not only permanent and irreversible health problems, but also substantial reduction in crop yields. In this study, we conducted proteome analysis of the roots of the non-hyperaccumulator inbred maize line 9782 at four developmental stages (0, 12, 24, and 48 h) under Pb pollution using isobaric tags for relative and absolute quantification technology. A total of 252, 72 and 116 proteins were differentially expressed between M12 (after 12-h Pb treatment) and CK (water-mocked treatment), M24 (after 24-h Pb treatment) and CK, and M48 (after 48-h Pb treatment) and CK, respectively. In addition, 14 differentially expressed proteins were common within each comparison group. Moreover, Cluster of Orthologous Groups enrichment analysis revealed predominance of the proteins involved in posttranslational modification, protein turnover, and chaperones. Additionally, the changes in protein profiles showed a lower concordance with corresponding alterations in transcript levels, indicating important roles for transcriptional and posttranscriptional regulation in the response of maize roots to Pb pollution. Furthermore, enriched functional categories between the successive comparisons showed that the proteins in functional categories of stress, redox, signaling, and transport were highly up-regulated, while those in the functional categories of nucleotide metabolism, amino acid metabolism, RNA, and protein metabolism were down-regulated. This information will help in furthering our understanding of the detailed mechanisms of plant responses to heavy metal stress by combining protein and mRNA profiles. PMID:26909923

  10. Gillespie eco-evolutionary models (GEMs) reveal the role of heritable trait variation in eco-evolutionary dynamics.

    PubMed

    DeLong, John P; Gibert, Jean P

    2016-02-01

    Heritable trait variation is a central and necessary ingredient of evolution. Trait variation also directly affects ecological processes, generating a clear link between evolutionary and ecological dynamics. Despite the changes in variation that occur through selection, drift, mutation, and recombination, current eco-evolutionary models usually fail to track how variation changes through time. Moreover, eco-evolutionary models assume fitness functions for each trait and each ecological context, which often do not have empirical validation. We introduce a new type of model, Gillespie eco-evolutionary models (GEMs), that resolves these concerns by tracking distributions of traits through time as eco-evolutionary dynamics progress. This is done by allowing change to be driven by the direct fitness consequences of model parameters within the context of the underlying ecological model, without having to assume a particular fitness function. GEMs work by adding a trait distribution component to the standard Gillespie algorithm - an approach that models stochastic systems in nature that are typically approximated through ordinary differential equations. We illustrate GEMs with the Rosenzweig-MacArthur consumer-resource model. We show not only how heritable trait variation fuels trait evolution and influences eco-evolutionary dynamics, but also how the erosion of variation through time may hinder eco-evolutionary dynamics in the long run. GEMs can be developed for any parameter in any ordinary differential equation model and, furthermore, can enable modeling of multiple interacting traits at the same time. We expect GEMs will open the door to a new direction in eco-evolutionary and evolutionary modeling by removing long-standing modeling barriers, simplifying the link between traits, fitness, and dynamics, and expanding eco-evolutionary treatment of a greater diversity of ecological interactions. These factors make GEMs much more than a modeling advance, but an important

  11. A quantitative analysis of phenotypic variations of Metrosideros polymorpha within and across populations along environmental gradients on Mauna Loa, Hawaii.

    PubMed

    Tsujii, Yuki; Onoda, Yusuke; Izuno, Ayako; Isagi, Yuji; Kitayama, Kanehiro

    2016-04-01

    Metrosideros polymorpha, a dominant tree species in the Hawaiian Islands, shows an extreme phenotypic polymorphism both across gradients of climatic/edaphic conditions and within populations, making it a potentially useful model species for evolutionary study. In order to understand how the phenotypic diversity is maintained within populations as well as across populations, we examined the diversities of several leaf and stem functional traits across five elevations and two soil substrates on the volcanic mountain of Mauna Loa, on the island of Hawaii. Leaf dry mass per area (LMA), a key leaf functional trait, was particularly focused on and analyzed in relation to its underlying components-namely, tissue LMA and trichome LMA (LMA = tissue LMA + trichome LMA). Across populations, tissue LMA increased linearly with elevation while trichome LMA showed unimodal patterns with elevation, which were better correlated with temperature and rainfall, respectively. Substantial phenotypic variations were also found within populations. Interestingly, the variations of tissue LMA were often negatively correlated to trichome LMA within populations, which contrasts with the cross-populations pattern, where a strong positive correlation between tissue LMA and trichome LMA was found. This suggests that phenotypic variations within populations were substantially influenced by local ecological processes. Soil depth (an indicator of local water availability) and tree size (an indicator of colonized timing) modestly explained the within-population variations, implying other local environmental factors and/or random processes are also important in local phenotypic diversity. This study provides an insight about how phenotypic diversity of plant species is maintained from local to landscape levels. PMID:26260167

  12. Real-Time PCR for Quantitative Analysis of Human Commensal Escherichia coli Populations Reveals a High Frequency of Subdominant Phylogroups

    PubMed Central

    Smati, Mounira; Clermont, Olivier; Le Gal, Frédéric; Schichmanoff, Olivier; Jauréguy, Françoise; Eddi, Alain; Picard, Bertrand

    2013-01-01

    Escherichia coli is divided into four main phylogenetic groups, which each exhibit ecological specialization. To understand the population structure of E. coli in its primary habitat, we directly assessed the relative proportions of these phylogroups from the stools of 100 healthy human subjects using a new real-time PCR method, which allows a large number of samples to be studied. The detection threshold for our technique was 0.1% of the E. coli population, i.e., 105 CFU/g of feces; in other methods based on individual colony analysis, the threshold is 10%. One, two, three, or four phylogenetic groups were simultaneously found in 21%, 48%, 21%, and 8% of the subjects, respectively. Phylogroups present at a threshold of less than 10% of the population were found in 40% of the subjects, revealing high within-individual diversity. Phylogroups A and B2 were detected in 74% and 70% of the subjects, respectively; phylogroups B1 and D were detected in 36% and 32%, respectively. When phylogroup B2 was dominant, it tended not to cooccur with other phylogroups. In contrast, other phylogroups were present when phylogroup A was dominant. These data indicate a complex pattern of interactions between the members of a single species within the human gut and identify a reservoir of clones that are present at a low frequency. The presence of these minor clones could explain the fluctuation in the composition of the E. coli microbiota within single individuals that may be seen over time. They could also constitute reservoirs of virulent and/or resistant strains. PMID:23770894

  13. CeleST: computer vision software for quantitative analysis of C. elegans swim behavior reveals novel features of locomotion.

    PubMed

    Restif, Christophe; Ibáñez-Ventoso, Carolina; Vora, Mehul M; Guo, Suzhen; Metaxas, Dimitris; Driscoll, Monica

    2014-07-01

    In the effort to define genes and specific neuronal circuits that control behavior and plasticity, the capacity for high-precision automated analysis of behavior is essential. We report on comprehensive computer vision software for analysis of swimming locomotion of C. elegans, a simple animal model initially developed to facilitate elaboration of genetic influences on behavior. C. elegans swim test software CeleST tracks swimming of multiple animals, measures 10 novel parameters of swim behavior that can fully report dynamic changes in posture and speed, and generates data in several analysis formats, complete with statistics. Our measures of swim locomotion utilize a deformable model approach and a novel mathematical analysis of curvature maps that enable even irregular patterns and dynamic changes to be scored without need for thresholding or dropping outlier swimmers from study. Operation of CeleST is mostly automated and only requires minimal investigator interventions, such as the selection of videotaped swim trials and choice of data output format. Data can be analyzed from the level of the single animal to populations of thousands. We document how the CeleST program reveals unexpected preferences for specific swim "gaits" in wild-type C. elegans, uncovers previously unknown mutant phenotypes, efficiently tracks changes in aging populations, and distinguishes "graceful" from poor aging. The sensitivity, dynamic range, and comprehensive nature of CeleST measures elevate swim locomotion analysis to a new level of ease, economy, and detail that enables behavioral plasticity resulting from genetic, cellular, or experience manipulation to be analyzed in ways not previously possible. PMID:25033081

  14. CeleST: Computer Vision Software for Quantitative Analysis of C. elegans Swim Behavior Reveals Novel Features of Locomotion

    PubMed Central

    Vora, Mehul M.; Guo, Suzhen; Metaxas, Dimitris; Driscoll, Monica

    2014-01-01

    In the effort to define genes and specific neuronal circuits that control behavior and plasticity, the capacity for high-precision automated analysis of behavior is essential. We report on comprehensive computer vision software for analysis of swimming locomotion of C. elegans, a simple animal model initially developed to facilitate elaboration of genetic influences on behavior. C. elegans swim test software CeleST tracks swimming of multiple animals, measures 10 novel parameters of swim behavior that can fully report dynamic changes in posture and speed, and generates data in several analysis formats, complete with statistics. Our measures of swim locomotion utilize a deformable model approach and a novel mathematical analysis of curvature maps that enable even irregular patterns and dynamic changes to be scored without need for thresholding or dropping outlier swimmers from study. Operation of CeleST is mostly automated and only requires minimal investigator interventions, such as the selection of videotaped swim trials and choice of data output format. Data can be analyzed from the level of the single animal to populations of thousands. We document how the CeleST program reveals unexpected preferences for specific swim “gaits” in wild-type C. elegans, uncovers previously unknown mutant phenotypes, efficiently tracks changes in aging populations, and distinguishes “graceful” from poor aging. The sensitivity, dynamic range, and comprehensive nature of CeleST measures elevate swim locomotion analysis to a new level of ease, economy, and detail that enables behavioral plasticity resulting from genetic, cellular, or experience manipulation to be analyzed in ways not previously possible. PMID:25033081

  15. Quantitative Morphometry of Electrophysiologically Identified CA3b Interneurons Reveals Robust Local Geometry and Distinct Cell Classes

    PubMed Central

    Ascoli, Giorgio A.; Brown, Kerry M.; Calixto, Eduardo; Card, J. Patrick; Galvan, E. J.; Perez-Rosello, T.; Barrionuevo, Germán

    2010-01-01

    The morphological and electrophysiological diversity of inhibitory cells in hippocampal area CA3 may underlie specific computational roles and is not yet fully elucidated. In particular, interneurons with somata in strata radiatum (R) and lacunosum-moleculare (L-M) receive converging stimulation from the dentate gyrus and entorhinal cortex as well as within CA3. Although these cells express different forms of synaptic plasticity, their axonal trees and connectivity are still largely unknown. We investigated the branching and spatial patterns, plus the membrane and synaptic properties, of rat CA3b R and L-M interneurons digitally reconstructed after intracellular labeling. We found considerable variability within but no difference between the two layers, and no correlation between morphological and biophysical properties. Nevertheless, two cell types were identified based on the number of dendritic bifurcations, with significantly different anatomical and electrophysiological features. Axons generally branched an order of magnitude more than dendrites. However, interneurons on both sides of the R/L-M boundary revealed surprisingly modular axo-dendritic arborizations with consistently uniform local branch geometry. Both axons and dendrites followed a lamellar organization, and axons displayed a spatial preference towards the fissure. Moreover, only a small fraction of the axonal arbor extended to the outer portion of the invaded volume, and tended to return towards the proximal region. In contrast, dendritic trees demonstrated more limited but isotropic volume occupancy. These results suggest a role of predominantly local feedforward and lateral inhibitory control for both R and L-M interneurons. Such role may be essential to balance the extensive recurrent excitation of area CA3 underlying hippocampal autoassociative memory function. PMID:19496174

  16. Quantitative analysis of commensal Escherichia coli populations reveals host-specific enterotypes at the intra-species level

    PubMed Central

    Smati, Mounira; Clermont, Olivier; Bleibtreu, Alexandre; Fourreau, Frédéric; David, Anthony; Daubié, Anne-Sophie; Hignard, Cécile; Loison, Odile; Picard, Bertrand; Denamur, Erick

    2015-01-01

    The primary habitat of the Escherichia coli species is the gut of warm-blooded vertebrates. The E. coli species is structured into four main phylogenetic groups A, B1, B2, and D. We estimated the relative proportions of these phylogroups in the feces of 137 wild and domesticated animals with various diets living in the Ile de France (Paris) region by real-time PCR. We distinguished three main clusters characterized by a particular abundance of two or more phylogroups within the E. coli animal commensal populations, which we called “enterocolitypes” by analogy with the enterotypes defined in the human gut microbiota at the genus level. These enterocolitypes were characterized by a dominant (>50%) B2, B1, or A phylogroup and were associated with different host species, diets, and habitats: wild and herbivorous species (wild rabbits and deer), domesticated herbivorous species (domesticated rabbits, horses, sheep, and cows), and omnivorous species (boar, pigs, and chickens), respectively. By analyzing retrospectively the data obtained using the same approach from 98 healthy humans living in Ile de France (Smati et al. 2013, Appl. Environ. Microbiol. 79, 5005–5012), we identified a specific human enterocolitype characterized by the dominant and/or exclusive (>90%) presence of phylogroup B2. We then compared B2 strains isolated from animals and humans, and revealed that human and animal strains differ regarding O-type and B2 subgroup. Moreover, two genes, sfa/foc and clbQ, were associated with the exclusive character of strains, observed only in humans. In conclusion, a complex network of interactions exists at several levels (genus and intra-species) within the intestinal microbiota. PMID:26033772

  17. Spatial and Temporal Variation in Selection of Genes Associated with Pearl Millet Varietal Quantitative Traits In situ.

    PubMed

    Mariac, Cédric; Ousseini, Issaka S; Alio, Abdel-Kader; Jugdé, Hélène; Pham, Jean-Louis; Bezançon, Gilles; Ronfort, Joelle; Descroix, Luc; Vigouroux, Yves

    2016-01-01

    Ongoing global climate changes imply new challenges for agriculture. Whether plants and crops can adapt to such rapid changes is still a widely debated question. We previously showed adaptation in the form of earlier flowering in pearl millet at the scale of a whole country over three decades. However, this analysis did not deal with variability of year to year selection. To understand and possibly manage plant and crop adaptation, we need more knowledge of how selection acts in situ. Is selection gradual, abrupt, and does it vary in space and over time? In the present study, we tracked the evolution of allele frequency in two genes associated with pearl millet phenotypic variation in situ. We sampled 17 populations of cultivated pearl millet over a period of 2 years. We tracked changes in allele frequencies in these populations by genotyping more than seven thousand individuals. We demonstrate that several allele frequencies changes are compatible with selection, by correcting allele frequency changes associated with genetic drift. We found marked variation in allele frequencies from year to year, suggesting a variable selection effect in space and over time. We estimated the strength of selection associated with variations in allele frequency. Our results suggest that the polymorphism maintained at the genes we studied is partially explained by the spatial and temporal variability of selection. In response to environmental changes, traditional pearl millet varieties could rapidly adapt thanks to this available functional variability. PMID:27507986

  18. Spatial and Temporal Variation in Selection of Genes Associated with Pearl Millet Varietal Quantitative Traits In situ

    PubMed Central

    Mariac, Cédric; Ousseini, Issaka S.; Alio, Abdel-Kader; Jugdé, Hélène; Pham, Jean-Louis; Bezançon, Gilles; Ronfort, Joelle; Descroix, Luc; Vigouroux, Yves

    2016-01-01

    Ongoing global climate changes imply new challenges for agriculture. Whether plants and crops can adapt to such rapid changes is still a widely debated question. We previously showed adaptation in the form of earlier flowering in pearl millet at the scale of a whole country over three decades. However, this analysis did not deal with variability of year to year selection. To understand and possibly manage plant and crop adaptation, we need more knowledge of how selection acts in situ. Is selection gradual, abrupt, and does it vary in space and over time? In the present study, we tracked the evolution of allele frequency in two genes associated with pearl millet phenotypic variation in situ. We sampled 17 populations of cultivated pearl millet over a period of 2 years. We tracked changes in allele frequencies in these populations by genotyping more than seven thousand individuals. We demonstrate that several allele frequencies changes are compatible with selection, by correcting allele frequency changes associated with genetic drift. We found marked variation in allele frequencies from year to year, suggesting a variable selection effect in space and over time. We estimated the strength of selection associated with variations in allele frequency. Our results suggest that the polymorphism maintained at the genes we studied is partially explained by the spatial and temporal variability of selection. In response to environmental changes, traditional pearl millet varieties could rapidly adapt thanks to this available functional variability. PMID:27507986

  19. An Integrative Genetic Study of Rice Metabolism, Growth and Stochastic Variation Reveals Potential C/N Partitioning Loci.

    PubMed

    Li, Baohua; Zhang, Yuanyuan; Mohammadi, Seyed Abolghasem; Huai, Dongxin; Zhou, Yongming; Kliebenstein, Daniel J

    2016-01-01

    Studying the genetic basis of variation in plant metabolism has been greatly facilitated by genomic and metabolic profiling advances. In this study, we use metabolomics and growth measurements to map QTL in rice, a major staple crop. Previous rice metabolism studies have largely focused on identifying genes controlling major effect loci. To complement these studies, we conducted a replicated metabolomics analysis on a japonica (Lemont) by indica (Teqing) rice recombinant inbred line population and focused on the genetic variation for primary metabolism. Using independent replicated studies, we show that in contrast to other rice studies, the heritability of primary metabolism is similar to Arabidopsis. The vast majority of metabolic QTLs had small to moderate effects with significant polygenic epistasis. Two metabolomics QTL hotspots had opposing effects on carbon and nitrogen rich metabolites suggesting that they may influence carbon and nitrogen partitioning, with one locus co-localizing with SUSIBA2 (WRKY78). Comparing QTLs for metabolomic and a variety of growth related traits identified few overlaps. Interestingly, the rice population displayed fewer loci controlling stochastic variation for metabolism than was found in Arabidopsis. Thus, it is possible that domestication has differentially impacted stochastic metabolite variation more than average metabolite variation. PMID:27440503

  20. First-generation HapMap in Cajanus spp. reveals untapped variations in parental lines of mapping populations.

    PubMed

    Kumar, Vinay; Khan, Aamir W; Saxena, Rachit K; Garg, Vanika; Varshney, Rajeev K

    2016-08-01

    Whole genome re-sequencing (WGRS) was conducted on a panel of 20 Cajanus spp. accessions (crossing parentals of recombinant inbred lines, introgression lines, multiparent advanced generation intercross and nested association mapping population) comprising of two wild species and 18 cultivated species accessions. A total of 791.77 million paired-end reads were generated with an effective mapping depth of ~12X per accession. Analysis of WGRS data provided 5 465 676 genome-wide variations including 4 686 422 SNPs and 779 254 InDels across the accessions. Large structural variations in the form of copy number variations (2598) and presence and absence variations (970) were also identified. Additionally, 2 630 904 accession-specific variations comprising of 2 278 571 SNPs (86.6%), 166 243 deletions (6.3%) and 186 090 insertions (7.1%) were also reported. Identified polymorphic sites in this study provide the first-generation HapMap in Cajanus spp. which will be useful in mapping the genomic regions responsible for important traits. PMID:26821983

  1. Geographic Variation in Skull Morphology of the Large Japanese Field Mice, Apodemus speciosus (Rodentia: Muridae) Revealed by Geometric Morphometric Analysis.

    PubMed

    Shintaku, Yuta; Motokawa, Masaharu

    2016-04-01

    We analyzed geographic variation in skull morphology of the large Japanese field mouse (Apodemus speciosus) and determined changes in skull morphology that occurred during the evolutionary history of A. speciosus in relation to the estimated distribution range in the last glacial maximum (LGM). We analyzed 1,416 specimens from 78 localities using geometric morphometric techniques applied to the dorsal side of the cranium and mandible. While large variations within and among the populations in Honshu, Shikoku, and Kyushu were observed, geographic patterns were not observed. Hokkaido and peripheral island populations showed shared differentiation from the Honshu, Shikoku, and Kyushu populations with a larger skull and distinct mandible shape. In addition, these two groups also differed from each other in accumulated random shape variation. Common characteristics found in Hokkaido and peripheral island populations were considered to be the ancestral states, which were retained by geographic isolation from the main islands. Random variations in Hokkaido and the peripheral island populations were formed through stochastic processes in relation to their isolation. Characteristic morphologies widely found in the populations of Honshu, Shikoku, and Kyushu were considered to be derived states that expanded after separation from the peripheral islands. Complex geomorphology and a shift in distribution range related to climate change and altitudinal distribution are suggested to have formed the complex geographic variation in this species. PMID:27032678

  2. An Integrative Genetic Study of Rice Metabolism, Growth and Stochastic Variation Reveals Potential C/N Partitioning Loci

    PubMed Central

    Li, Baohua; Zhang, Yuanyuan; Mohammadi, Seyed Abolghasem; Huai, Dongxin; Zhou, Yongming; Kliebenstein, Daniel J.

    2016-01-01

    Studying the genetic basis of variation in plant metabolism has been greatly facilitated by genomic and metabolic profiling advances. In this study, we use metabolomics and growth measurements to map QTL in rice, a major staple crop. Previous rice metabolism studies have largely focused on identifying genes controlling major effect loci. To complement these studies, we conducted a replicated metabolomics analysis on a japonica (Lemont) by indica (Teqing) rice recombinant inbred line population and focused on the genetic variation for primary metabolism. Using independent replicated studies, we show that in contrast to other rice studies, the heritability of primary metabolism is similar to Arabidopsis. The vast majority of metabolic QTLs had small to moderate effects with significant polygenic epistasis. Two metabolomics QTL hotspots had opposing effects on carbon and nitrogen rich metabolites suggesting that they may influence carbon and nitrogen partitioning, with one locus co-localizing with SUSIBA2 (WRKY78). Comparing QTLs for metabolomic and a variety of growth related traits identified few overlaps. Interestingly, the rice population displayed fewer loci controlling stochastic variation for metabolism than was found in Arabidopsis. Thus, it is possible that domestication has differentially impacted stochastic metabolite variation more than average metabolite variation. PMID:27440503

  3. General quantitative analysis of stress partitioning and boundary conditions in undrained biphasic porous media via a purely macroscopic and purely variational approach

    NASA Astrophysics Data System (ADS)

    Serpieri, Roberto; Travascio, Francesco

    2016-03-01

    In poroelasticity, the effective stress law relates the external stress applied to the medium to the macroscopic strain of the solid phase and the interstitial pressure of the fluid saturating the mixture. Such relationship has been formerly introduced by Terzaghi in form of a principle. To date, no poroelastic theory is capable of recovering a stress partitioning law in agreement with Terzaghi's postulated one in the absence of ad hoc constitutive assumptions on the medium. We recently proposed a variational macroscopic continuum description of two-phase poroelasticity to derive a general biphasic formulation at finite deformations, termed variational macroscopic theory of porous media (VMTPM). Such approach proceeds from the inclusion of the intrinsic volumetric strain among the kinematic descriptors aside to macroscopic displacements, and as a variational theory, uses the Hamilton least-action principle as the unique primitive concept of mechanics invoked to derive momentum balance equations. In a previous related work it was shown that, for the subclass of undrained problems, VMTPM predicts that stress is partitioned in the two phases in strict compliance with Terzaghi's law, irrespective of the microstructural and constitutive features of a given medium. In the present contribution, we further develop the linearized framework of VMTPM to arrive at a general operative formula that allows the quantitative determination of stress partitioning in a jacketed test over a generic isotropic biphasic specimen. This formula is quantitative and general, in that it relates the partial phase stresses to the externally applied stress as function of partitioning coefficients that are all derived by strictly following a purely variational and purely macroscopic approach, and in the absence of any specific hypothesis on the microstructural or constitutive features of a given medium. To achieve this result, the stiffness coefficients of the theory are derived by using

  4. Variation in Brain Morphology of Intertidal Gobies: A Comparison of Methodologies Used to Quantitatively Assess Brain Volumes in Fish.

    PubMed

    White, Gemma E; Brown, Culum

    2015-01-01

    When correlating brain size and structure with behavioural and environmental characteristics, a range of techniques can be utilised. This study used gobiid fishes to quantitatively compare brain volumes obtained via three different methods; these included the commonly used techniques of histology and approximating brain volume to an idealised ellipsoid, and the recently established technique of X-ray micro-computed tomography (micro-CT). It was found that all three methods differed significantly from one another in their volume estimates for most brain lobes. The ellipsoid method was prone to over- or under-estimation of lobe size, histology caused shrinkage in the telencephalon, and although micro-CT methods generated the most reliable results, they were also the most expensive. Despite these differences, all methods depicted quantitatively similar relationships among the four different species for each brain lobe. Thus, all methods support the same conclusions that fishes inhabiting rock pool and sandy habitats have different patterns of brain organisation. In particular, fishes from spatially complex rock pool habitats were found to have larger telencephalons, while those from simple homogenous sandy shores had a larger optic tectum. Where possible we recommend that micro-CT be used in brain volume analyses, as it allows for measurements without destruction of the brain and fast identification and quantification of individual brain lobes, and minimises many of the biases resulting from the histology and ellipsoid methods. PMID:26183604

  5. Quantitative woody cover reconstructions from eastern continental Asia of the last 22 kyr reveal strong regional peculiarities

    NASA Astrophysics Data System (ADS)

    Tian, Fang; Cao, Xianyong; Dallmeyer, Anne; Ni, Jian; Zhao, Yan; Wang, Yongbo; Herzschuh, Ulrike

    2016-04-01

    We present a calibration-set based on modern pollen and satellite-based Advanced Very High Resolution Radiometer (AVHRR) observations of woody cover (including needleleaved, broadleaved and total tree cover) in eastern continental Asia, which shows good performance under cross-validation with the modern analogue technique (all the coefficients of determination between observed and predicted values are greater than 0.65). The calibration-set is used to reconstruct woody cover from a taxonomically harmonized and temporally standardized fossil pollen dataset (including 274 cores) with 500-year resolution over the last 22 kyr. The spatial range of forest has not noticeably changed in eastern continental Asia during the last 22 kyr, although woody cover has, especially at the margin of the eastern Tibetan Plateau and in the forest-steppe transition area of north-central China. Vegetation was sparse during the LGM in the present forested regions, but woody cover increased markedly at the beginning of the Bølling/Allerød period (B/A; ca. 14.5 ka BP) and again at the beginning of the Holocene (ca. 11.5 ka BP), and is related to the enhanced strength of the East Asian Summer Monsoon. Forest flourished in the mid-Holocene (ca. 8 ka BP) possibly due to favourable climatic conditions. In contrast, cover was stable in southern China (high cover) and arid central Asia (very low cover) throughout the investigated period. Forest cover increased in the north-eastern part of China during the Holocene. Comparisons of these regional pollen-based results with simulated forest cover from runs of a global climate model (for 9, 6 and 0 ka BP (ECHAM5/JSBACH ∼1.125° spatial resolution)) reveal many similarities in temporal change. The Holocene woody cover history of eastern continental Asia is different from that of other regions, likely controlled by different climatic variables, i.e. moisture in eastern continental Asia; temperature in northern Eurasia and North America.

  6. Multi-tissue analyses reveal limited inter-annual and seasonal variation in mercury exposure in an Antarctic penguin community.

    PubMed

    Brasso, Rebecka L; Polito, Michael J; Emslie, Steven D

    2014-10-01

    Inter-annual variation in tissue mercury concentrations in birds can result from annual changes in the bioavailability of mercury or shifts in dietary composition and/or trophic level. We investigated potential annual variability in mercury dynamics in the Antarctic marine food web using Pygoscelis penguins as biomonitors. Eggshell membrane, chick down, and adult feathers were collected from three species of sympatrically breeding Pygoscelis penguins during the austral summers of 2006/2007-2010/2011. To evaluate the hypothesis that mercury concentrations in penguins exhibit significant inter-annual variation and to determine the potential source of such variation (dietary or environmental), we compared tissue mercury concentrations with trophic levels as indicated by δ(15)N values from all species and tissues. Overall, no inter-annual variation in mercury was observed in adult feathers suggesting that mercury exposure, on an annual scale, was consistent for Pygoscelis penguins. However, when examining tissues that reflected more discrete time periods (chick down and eggshell membrane) relative to adult feathers, we found some evidence of inter-annual variation in mercury exposure during penguins' pre-breeding and chick rearing periods. Evidence of inter-annual variation in penguin trophic level was also limited suggesting that foraging ecology and environmental factors related to the bioavailability of mercury may provide more explanatory power for mercury exposure compared to trophic level alone. Even so, the variable strength of relationships observed between trophic level and tissue mercury concentrations across and within Pygoscelis penguin species suggest that caution is required when selecting appropriate species and tissue combinations for environmental biomonitoring studies in Antarctica. PMID:25085270

  7. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  8. Global Survey of Variation in a Human Olfactory Receptor Gene Reveals Signatures of Non-Neutral Evolution.

    PubMed

    Hoover, Kara C; Gokcumen, Omer; Qureshy, Zoya; Bruguera, Elise; Savangsuksa, Aulaphan; Cobb, Matthew; Matsunami, Hiroaki

    2015-09-01

    Allelic variation at 4 loci in the human olfactory receptor gene OR7D4 is associated with perceptual variation in the sex steroid-derived odorants, androstenone, and androstadienone. Androstadienone has been linked with chemosensory identification whereas androstenone makes pork from uncastrated pigs distasteful ("boar taint"). In a sample of 2224 individuals from 43 populations, we identified 45 OR7D4 single nucleotide polymorphisms. Coalescent modeling of frequency-site-spectrum-based statistics identified significant deviation from neutrality in human OR7D4; individual populations with statistically significant deviations from neutrality include Gujarati, Beijing Han, Great Britain, Iberia, and Puerto Rico. Analysis of molecular variation values indicated statistically significant population differentiation driven mainly by the 4 alleles associated with androstenone perception variation; however, fixation values were low suggesting that genetic structure may not have played a strong role in creating these group divisions. We also studied OR7D4 in the genomes of extinct members of the human lineage: Altai Neandertal and Denisovan. No variants were identified in Altai but 2 were in Denisova, one of which is shared by modern humans and one of which is novel. A functional test of modern human and a synthesized mutant Denisova OR7D4 indicated no statistically significant difference in responses to androstenone between the 2 species. Our results suggest non-neutral evolution for an olfactory receptor gene. PMID:26072518

  9. Effect of qualitative and quantitative variation in allelochemicals on a generalist insect: Iridoid glycosides and the southern armyworm.

    PubMed

    Puttick, G M; Bowers, M D

    1988-01-01

    The behavioral and physiological effects of plant allelochemicals have been difficult to demonstrate; it is not often clear whether the compounds are deterrent, toxic, or both. In this study, we compared the qualitative and quantitative effects of several iridoid glycosides on a generalist lepidopteran herbivore,Spodoptera eridania (Noctuidae). Larval growth and survivorship and larval preference or avoidance were measured on artificial diets containing different iridoid glycosides at different concentrations. We also tested the toxicity/deterrence of these compounds. We found that iridoid glycosides retarded larval growth significantly at relatively low concentrations and that they were usually avoided in preference tests. The toxicity/ deterrence test did not always reflect the results of these other tests. The merits of using a variety of methods for determining deterrence and/or toxicity of plant allelochemicals are discussed. PMID:24277013

  10. A colony multiplex quantitative PCR-Based 3S3DBC method and variations of it for screening DNA libraries.

    PubMed

    An, Yang; Toyoda, Atsushi; Zhao, Chen; Fujiyama, Asao; Agata, Kiyokazu

    2015-01-01

    A DNA library is a collection of DNA fragments cloned into vectors and stored individually in host cells, and is a valuable resource for molecular cloning, gene physical mapping, and genome sequencing projects. To take the best advantage of a DNA library, a good screening method is needed. After describing pooling strategies and issues that should be considered in DNA library screening, here we report an efficient colony multiplex quantitative PCR-based 3-step, 3-dimension, and binary-code (3S3DBC) method we used to screen genes from a planarian genomic DNA fosmid library. This method requires only 3 rounds of PCR reactions and only around 6 hours to distinguish one or more desired clones from a large DNA library. According to the particular situations in different research labs, this method can be further modified and simplified to suit their requirements. PMID:25646755

  11. A Colony Multiplex Quantitative PCR-Based 3S3DBC Method and Variations of It for Screening DNA Libraries

    PubMed Central

    An, Yang; Toyoda, Atsushi; Zhao, Chen; Fujiyama, Asao; Agata, Kiyokazu

    2015-01-01

    A DNA library is a collection of DNA fragments cloned into vectors and stored individually in host cells, and is a valuable resource for molecular cloning, gene physical mapping, and genome sequencing projects. To take the best advantage of a DNA library, a good screening method is needed. After describing pooling strategies and issues that should be considered in DNA library screening, here we report an efficient colony multiplex quantitative PCR-based 3-step, 3-dimension, and binary-code (3S3DBC) method we used to screen genes from a planarian genomic DNA fosmid library. This method requires only 3 rounds of PCR reactions and only around 6 hours to distinguish one or more desired clones from a large DNA library. According to the particular situations in different research labs, this method can be further modified and simplified to suit their requirements. PMID:25646755

  12. Environmental and genetic interactions reveal FLOWERING LOCUS C as a modulator of the natural variation for the plasticity of flowering in Arabidopsis.

    PubMed

    Méndez-Vigo, Belén; Savic, Marija; Ausín, Israel; Ramiro, Mercedes; Martín, Beatriz; Picó, F Xavier; Alonso-Blanco, Carlos

    2016-02-01

    The timing of flowering initiation depends strongly on the environment, a property termed as the plasticity of flowering. Such plasticity determines the adaptive potential of plants because it provides phenotypic buffer against environmental changes, and its natural variation contributes to evolutionary adaptation. We addressed the genetic mechanisms of the natural variation for this plasticity in Arabidopsis thaliana by analysing a population of recombinant inbred lines derived from Don-0 and Ler accessions collected from distinct climates. Quantitative trait locus (QTL) mapping in four environmental conditions differing in photoperiod, vernalization treatment and ambient temperature detected the folllowing: (i) FLOWERING LOCUS C (FLC) as a large effect QTL affecting flowering time differentially in all environments; (ii) numerous QTL displaying smaller effects specifically in some conditions; and (iii) significant genetic interactions between FLC and other loci. Hence, the variation for the plasticity of flowering is determined by a combination of environmentally sensitive and specific QTL, and epistasis. Analysis of FLC from Don identified a new and more active allele likely caused by a cis-regulatory deletion covering the non-coding RNA COLDAIR. Further characterization of four FLC natural alleles showed different environmental and genetic interactions. Thus, FLC appears as a major modulator of the natural variation for the plasticity of flowering to multiple environmental factors. PMID:26173848

  13. A quantitative analysis of the effects of activity and time of day on the diurnal variations of blood pressure.

    PubMed

    Clark, L A; Denby, L; Pregibon, D; Harshfield, G A; Pickering, T G; Blank, S; Laragh, J H

    1987-01-01

    The effects of activity and time of day on blood pressure (BP) were analyzed in 461 patients with untreated hypertension who wore a noninvasive portable BP recorder which took readings every 15 minutes for 24 hours. Patients recorded activity and location in a diary. The data were analyzed separately for two groups of patients: the 190 who stayed at home and the 271 who went to work. The effects of 16 different activities on BP were estimated by relating the BP to the associated activity and to the individual's clinic BP. Blood pressure was higher at work than at home, but the increment of BP for individual activities was similar in the two locations. The overall effect of activities on BP variability was computed using a one-way analysis of covariance model. For the patients who went to work this model accounted for 40% of the observed variation (R2) for systolic and 39% for diastolic BP. A similar model using time of day instead of activity accounted for 33% of variability in both systolic and diastolic BP. Combining activity and time of day was little better than activity alone (41% for both). After allowing for the effects of activity on BP, where sleep is one of the activities, there was no significant diurnal variation of BP. We conclude that there is no important circadian rhythm of BP which is independent of activity. PMID:3597670

  14. Variational formulation and numerical accuracy of a quantitative phase-field model for binary alloy solidification with two-sided diffusion.

    PubMed

    Ohno, Munekazu; Takaki, Tomohiro; Shibuta, Yasushi

    2016-01-01

    We present the variational formulation of a quantitative phase-field model for isothermal low-speed solidification in a binary dilute alloy with diffusion in the solid. In the present formulation, cross-coupling terms between the phase field and composition field, including the so-called antitrapping current, naturally arise in the time evolution equations. One of the essential ingredients in the present formulation is the utilization of tensor diffusivity instead of scalar diffusivity. In an asymptotic analysis, it is shown that the correct mapping between the present variational model and a free-boundary problem for alloy solidification with an arbitrary value of solid diffusivity is successfully achieved in the thin-interface limit due to the cross-coupling terms and tensor diffusivity. Furthermore, we investigate the numerical performance of the variational model and also its nonvariational versions by carrying out two-dimensional simulations of free dendritic growth. The nonvariational model with tensor diffusivity shows excellent convergence of results with respect to the interface thickness. PMID:26871136

  15. Variational formulation and numerical accuracy of a quantitative phase-field model for binary alloy solidification with two-sided diffusion

    NASA Astrophysics Data System (ADS)

    Ohno, Munekazu; Takaki, Tomohiro; Shibuta, Yasushi

    2016-01-01

    We present the variational formulation of a quantitative phase-field model for isothermal low-speed solidification in a binary dilute alloy with diffusion in the solid. In the present formulation, cross-coupling terms between the phase field and composition field, including the so-called antitrapping current, naturally arise in the time evolution equations. One of the essential ingredients in the present formulation is the utilization of tensor diffusivity instead of scalar diffusivity. In an asymptotic analysis, it is shown that the correct mapping between the present variational model and a free-boundary problem for alloy solidification with an arbitrary value of solid diffusivity is successfully achieved in the thin-interface limit due to the cross-coupling terms and tensor diffusivity. Furthermore, we investigate the numerical performance of the variational model and also its nonvariational versions by carrying out two-dimensional simulations of free dendritic growth. The nonvariational model with tensor diffusivity shows excellent convergence of results with respect to the interface thickness.

  16. Evaluation of quantitative imaging methods for organ activity and residence time estimation using a population of phantoms having realistic variations in anatomy and uptake

    PubMed Central

    He, Bin; Du, Yong; Segars, W. Paul; Wahl, Richard L.; Sgouros, George; Jacene, Heather; Frey, Eric C.

    2009-01-01

    Estimating organ residence times is an essential part of patient-specific dosimetry for radioimmunotherapy (RIT). Quantitative imaging methods for RIT are often evaluated using a single physical or simulated phantom but are intended to be applied clinically where there is variability in patient anatomy, biodistribution, and biokinetics. To provide a more relevant evaluation, the authors have thus developed a population of phantoms with realistic variations in these factors and applied it to the evaluation of quantitative imaging methods both to find the best method and to demonstrate the effects of these variations. Using whole body scans and SPECT∕CT images, organ shapes and time-activity curves of 111In ibritumomab tiuxetan were measured in dosimetrically important organs in seven patients undergoing a high dose therapy regimen. Based on these measurements, we created a 3D NURBS-based cardiac-torso (NCAT)-based phantom population. SPECT and planar data at realistic count levels were then simulated using previously validated Monte Carlo simulation tools. The projections from the population were used to evaluate the accuracy and variation in accuracy of residence time estimation methods that used a time series of SPECT and planar scans. Quantitative SPECT (QSPECT) reconstruction methods were used that compensated for attenuation, scatter, and the collimator-detector response. Planar images were processed with a conventional (CPlanar) method that used geometric mean attenuation and triple-energy window scatter compensation and a quantitative planar (QPlanar) processing method that used model-based compensation for image degrading effects. Residence times were estimated from activity estimates made at each of five time points. The authors also evaluated hybrid methods that used CPlanar or QPlanar time-activity curves rescaled to the activity estimated from a single QSPECT image. The methods were evaluated in terms of mean relative error and standard deviation of

  17. Evaluation of quantitative imaging methods for organ activity and residence time estimation using a population of phantoms having realistic variations in anatomy and uptake

    SciTech Connect

    He Bin; Du Yong; Segars, W. Paul; Wahl, Richard L.; Sgouros, George; Jacene, Heather; Frey, Eric C.

    2009-02-15

    Estimating organ residence times is an essential part of patient-specific dosimetry for radioimmunotherapy (RIT). Quantitative imaging methods for RIT are often evaluated using a single physical or simulated phantom but are intended to be applied clinically where there is variability in patient anatomy, biodistribution, and biokinetics. To provide a more relevant evaluation, the authors have thus developed a population of phantoms with realistic variations in these factors and applied it to the evaluation of quantitative imaging methods both to find the best method and to demonstrate the effects of these variations. Using whole body scans and SPECT/CT images, organ shapes and time-activity curves of 111In ibritumomab tiuxetan were measured in dosimetrically important organs in seven patients undergoing a high dose therapy regimen. Based on these measurements, we created a 3D NURBS-based cardiac-torso (NCAT)-based phantom population. SPECT and planar data at realistic count levels were then simulated using previously validated Monte Carlo simulation tools. The projections from the population were used to evaluate the accuracy and variation in accuracy of residence time estimation methods that used a time series of SPECT and planar scans. Quantitative SPECT (QSPECT) reconstruction methods were used that compensated for attenuation, scatter, and the collimator-detector response. Planar images were processed with a conventional (CPlanar) method that used geometric mean attenuation and triple-energy window scatter compensation and a quantitative planar (QPlanar) processing method that used model-based compensation for image degrading effects. Residence times were estimated from activity estimates made at each of five time points. The authors also evaluated hybrid methods that used CPlanar or QPlanar time-activity curves rescaled to the activity estimated from a single QSPECT image. The methods were evaluated in terms of mean relative error and standard deviation of the

  18. Evaluation of quantitative imaging methods for organ activity and residence time estimation using a population of phantoms having realistic variations in anatomy and uptake.

    PubMed

    He, Bin; Du, Yong; Segars, W Paul; Wahl, Richard L; Sgouros, George; Jacene, Heather; Frey, Eric C

    2009-02-01

    Estimating organ residence times is an essential part of patient-specific dosimetry for radioimmunotherapy (RIT). Quantitative imaging methods for RIT are often evaluated using a single physical or simulated phantom but are intended to be applied clinically where there is variability in patient anatomy, biodistribution, and biokinetics. To provide a more relevant evaluation, the authors have thus developed a population of phantoms with realistic variations in these factors and applied it to the evaluation of quantitative imaging methods both to find the best method and to demonstrate the effects of these variations. Using whole body scans and SPECT/CT images, organ shapes and time-activity curves of 111In ibritumomab tiuxetan were measured in dosimetrically important organs in seven patients undergoing a high dose therapy regimen. Based on these measurements, we created a 3D NURBS-based cardiac-torso (NCAT)-based phantom population. SPECT and planar data at realistic count levels were then simulated using previously validated Monte Carlo simulation tools. The projections from the population were used to evaluate the accuracy and variation in accuracy of residence time estimation methods that used a time series of SPECT and planar scans, Quantitative SPECT (QSPECT) reconstruction methods were used that compensated for attenuation, scatter, and the collimator-detector response. Planar images were processed with a conventional (CPlanar) method that used geometric mean attenuation and triple-energy window scatter compensation and a quantitative planar (QPlanar) processing method that used model-based compensation for image degrading effects. Residence times were estimated from activity estimates made at each of five time points. The authors also evaluated hybrid methods that used CPlanar or QPlanar time-activity curves rescaled to the activity estimated from a single QSPECT image. The methods were evaluated in terms of mean relative error and standard deviation of the

  19. Quantitative Proteomic Analysis Reveals That Anti-Cancer Effects of Selenium-Binding Protein 1 In Vivo Are Associated with Metabolic Pathways

    PubMed Central

    Ying, Qi; Ansong, Emmanuel; Diamond, Alan M.; Lu, Zhaoxin; Yang, Wancai; Bie, Xiaomei

    2015-01-01

    Previous studies have shown the tumor-suppressive role of selenium-binding protein 1 (SBP1), but the underlying mechanisms are unclear. In this study, we found that induction of SBP1 showed significant inhibition of colorectal cancer cell growth and metastasis in mice. We further employed isobaric tags for relative and absolute quantitation (iTRAQ) to identify proteins that were involved in SBP1-mediated anti-cancer effects in tumor tissues. We identified 132 differentially expressed proteins, among them, 53 proteins were upregulated and 79 proteins were downregulated. Importantly, many of the differentially altered proteins were associated with lipid/glucose metabolism, which were also linked to Glycolysis, MAPK, Wnt, NF-kB, NOTCH and epithelial-mesenchymal transition (EMT) signaling pathways. These results have revealed a novel mechanism that SBP1-mediated cancer inhibition is through altering lipid/glucose metabolic signaling pathways. PMID:25974208

  20. Lacustrin magnetic parameters reveal the last 3,000 years environmental variation of the Ilan Plain, northeastern Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Yin-Sheng; Lee, Teh-Quei

    2015-04-01

    We discuss the paleo-environmental variation of the Ilan Plain in northeastern Taiwan for the last 3,000 years by using lacustrine magnetic records obtained from Meihua Lake (the MHL-5A core; 24° 38.58' N, 121° 43.96' E) and Longtan Lake (the LTL-9C core; 24° 47.70' N, 121° 44.40' E). The magnetic parameters analyzed in the study include magnetic susceptibility (χ), SIRM (saturated isothermal remnant magnetization), ARM (anhysteretic remnant magnetization), ARM/χ, and ARM/SIRM. The most notable feature in the magnetic records of both cores is an anomaly appeared at ~1,800 years. In the MHL-5A core, the parameters representing magnetic abundance variation (χ, SIRM, and ARM) are relatively higher before ~1,800 years and become lower after the time. On the contrary, the magnetic abundance parameters are lower before ~1,800 years but become higher after the time in the LTL-9C core. Besides, for the last ~700 years, the magnetic parameters in the MHL-5A core show a clear period variation. Also in the LTL-9C core, this period variation could be observed though the period is relatively ambiguous. Moreover, the magnetic grain size parameter ARM/SIRM shows that the grain size of magnetic minerals in both cores became finer gradually for the last ~3,000 years. The reason could be preliminary deduced: The Ilan Plain is a flooding plain and the main river in the plain is a braided river, the Lanyang River. Before ~1,800 years, the channel of the Lanyang River should be in the south of the plain (closer to the Meihua Lake). More sediment was brought into the lake by the flooding of the Lanyang River. After ~1,800 years, the channel of the Lanyang River shifted northward (closer to the Longtan Lake), and therefore the input to the Longtan Lake from the flooding might increase. The period variation after ~700 years could be roughly attributed to the rainfall effect. That is, precipitation variation resulting from the influence of the monsoon system might become significant

  1. Quantitative Proteomics by SWATH-MS Reveals Altered Expression of Nucleic Acid Binding and Regulatory Proteins in HIV-1-Infected Macrophages

    PubMed Central

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection remains a worldwide epidemic, and innovative therapies to combat the virus are needed. Developing a host-oriented antiviral strategy capable of targeting the biomolecules that are directly or indirectly required for viral replication may provide advantages over traditional virus-centric approaches. We used quantitative proteomics by SWATH-MS in conjunction with bioinformatic analyses to identify host proteins, with an emphasis on nucleic acid binding and regulatory proteins, which could serve as candidates in the development of host-oriented antiretroviral strategies. Using SWATH-MS, we identified and quantified the expression of 3608 proteins in uninfected and HIV-1-infected monocyte-derived macrophages. Of these 3608 proteins, 420 were significantly altered upon HIV-1 infection. Bioinformatic analyses revealed functional enrichment for RNA binding and processing as well as transcription regulation. Our findings highlight a novel subset of proteins and processes that are involved in the host response to HIV-1 infection. In addition, we provide an original and transparent methodology for the analysis of label-free quantitative proteomics data generated by SWATH-MS that can be readily adapted to other biological systems. PMID:24564501

  2. Repeatability and variation of region-of-interest methods using quantitative diffusion tensor MR imaging of the brain

    PubMed Central

    2012-01-01

    Background Diffusion tensor imaging (DTI) is increasingly used in various diseases as a clinical tool for assessing the integrity of the brain’s white matter. Reduced fractional anisotropy (FA) and an increased apparent diffusion coefficient (ADC) are nonspecific findings in most pathological processes affecting the brain’s parenchyma. At present, there is no gold standard for validating diffusion measures, which are dependent on the scanning protocols, methods of the softwares and observers. Therefore, the normal variation and repeatability effects on commonly-derived measures should be carefully examined. Methods Thirty healthy volunteers (mean age 37.8 years, SD 11.4) underwent DTI of the brain with 3T MRI. Region-of-interest (ROI) -based measurements were calculated at eleven anatomical locations in the pyramidal tracts, corpus callosum and frontobasal area. Two ROI-based methods, the circular method (CM) and the freehand method (FM), were compared. Both methods were also compared by performing measurements on a DTI phantom. The intra- and inter-observer variability (coefficient of variation, or CV%) and repeatability (intra-class correlation coefficient, or ICC) were assessed for FA and ADC values obtained using both ROI methods. Results The mean FA values for all of the regions were 0.663 with the CM and 0.621 with the FM. For both methods, the FA was highest in the splenium of the corpus callosum. The mean ADC value was 0.727 ×10-3 mm2/s with the CM and 0.747 ×10-3 mm2/s with the FM, and both methods found the ADC to be lowest in the corona radiata. The CV percentages of the derived measures were < 13% with the CM and < 10% with the FM. In most of the regions, the ICCs were excellent or moderate for both methods. With the CM, the highest ICC for FA was in the posterior limb of the internal capsule (0.90), and with the FM, it was in the corona radiata (0.86). For ADC, the highest ICC was found in the genu of the corpus callosum (0.93) with the CM and in

  3. ITRAQ-based quantitative proteomics reveals apolipoprotein A-I and transferrin as potential serum markers in CA19-9 negative pancreatic ductal adenocarcinoma.

    PubMed

    Lin, Chao; Wu, Wen-Chuan; Zhao, Guo-Chao; Wang, Dan-Song; Lou, Wen-Hui; Jin, Da-Yong

    2016-08-01

    Currently the diagnosis of pancreatic ductal adenocarcinoma (PDAC) relies on CA19-9 and radiological means, whereas some patients do not have elevated levels of CA19-9 secondary to pancreatic cancer. The purpose of this study was to identify potential serum biomarkers for CA19-9 negative PDAC.A total of 114 serum samples were collected from 3 groups: CA19-9 negative PDAC patients (n = 34), CA19-9 positive PDAC patients (n = 44), and healthy volunteers (n = 36), whereas the first 12 samples from each group were used for isobaric tags for relative and absolute quantitation (iTRAQ) analysis. Thereafter, candidate biomarkers were selected for validation by enzyme-linked immunosorbent assay (ELISA) with the rest specimens.Using the iTRAQ approach, a total of 5 proteins were identified as significantly different between CA19-9 negative PDAC patients and healthy subjects according to our defined criteria. Apolipoprotein A-I (APOA-I) and transferrin (TF) were selected to validate the proteomic results by ELISA in a further 78 serum specimens. It revealed that TF significantly correlated with the degree of histological differentiation (P = 0.042), and univariate and multivariate analyses indicated that TF is an independent prognostic factor for survival (hazard ratio, 0.302; 95% confidence interval, 0.118-0.774; P = 0.013) of patients with PDAC after curative surgery.ITRAQ-based quantitative proteomics revealed that APOA-I and TF may be potential CA19-9 negative PDAC serum markers. PMID:27495108

  4. ITRAQ-based quantitative proteomics reveals apolipoprotein A-I and transferrin as potential serum markers in CA19-9 negative pancreatic ductal adenocarcinoma

    PubMed Central

    Lin, Chao; Wu, Wen-Chuan; Zhao, Guo-Chao; Wang, Dan-Song; Lou, Wen-Hui; Jin, Da-Yong

    2016-01-01

    Abstract Currently the diagnosis of pancreatic ductal adenocarcinoma (PDAC) relies on CA19-9 and radiological means, whereas some patients do not have elevated levels of CA19-9 secondary to pancreatic cancer. The purpose of this study was to identify potential serum biomarkers for CA19-9 negative PDAC. A total of 114 serum samples were collected from 3 groups: CA19-9 negative PDAC patients (n = 34), CA19-9 positive PDAC patients (n = 44), and healthy volunteers (n = 36), whereas the first 12 samples from each group were used for isobaric tags for relative and absolute quantitation (iTRAQ) analysis. Thereafter, candidate biomarkers were selected for validation by enzyme-linked immunosorbent assay (ELISA) with the rest specimens. Using the iTRAQ approach, a total of 5 proteins were identified as significantly different between CA19-9 negative PDAC patients and healthy subjects according to our defined criteria. Apolipoprotein A-I (APOA-I) and transferrin (TF) were selected to validate the proteomic results by ELISA in a further 78 serum specimens. It revealed that TF significantly correlated with the degree of histological differentiation (P = 0.042), and univariate and multivariate analyses indicated that TF is an independent prognostic factor for survival (hazard ratio, 0.302; 95% confidence interval, 0.118–0.774; P = 0.013) of patients with PDAC after curative surgery. ITRAQ-based quantitative proteomics revealed that APOA-I and TF may be potential CA19-9 negative PDAC serum markers. PMID:27495108

  5. Comparative Analysis of Mycobacterium tuberculosis pe and ppe Genes Reveals High Sequence Variation and an Apparent Absence of Selective Constraints

    PubMed Central

    McEvoy, Christopher R. E.; Cloete, Ruben; Müller, Borna; Schürch, Anita C.; van Helden, Paul D.; Gagneux, Sebastien; Warren, Robin M.; Gey van Pittius, Nicolaas C.

    2012-01-01

    Mycobacterium tuberculosis complex (MTBC) genomes contain 2 large gene families termed pe and ppe. The function of pe/ppe proteins remains enigmatic but studies suggest that they are secreted or cell surface associated and are involved in bacterial virulence. Previous studies have also shown that some pe/ppe genes are polymorphic, a finding that suggests involvement in antigenic variation. Using comparative sequence analysis of 18 publicly available MTBC whole genome sequences, we have performed alignments of 33 pe (excluding pe_pgrs) and 66 ppe genes in order to detect the frequency and nature of genetic variation. This work has been supplemented by whole gene sequencing of 14 pe/ppe (including 5 pe_pgrs) genes in a cohort of 40 diverse and well defined clinical isolates covering all the main lineages of the M. tuberculosis phylogenetic tree. We show that nsSNP's in pe (excluding pgrs) and ppe genes are 3.0 and 3.3 times higher than in non-pe/ppe genes respectively and that numerous other mutation types are also present at a high frequency. It has previously been shown that non-pe/ppe M. tuberculosis genes display a remarkably low level of purifying selection. Here, we also show that compared to these genes those of the pe/ppe families show a further reduction of selection pressure that suggests neutral evolution. This is inconsistent with the positive selection pressure of “classical” antigenic variation. Finally, by analyzing such a large number of genes we were able to detect large differences in mutation type and frequency between both individual genes and gene sub-families. The high variation rates and absence of selective constraints provides valuable insights into potential pe/ppe function. Since pe/ppe proteins are highly antigenic and have been studied as potential vaccine components these results should also prove informative for aspects of M. tuberculosis vaccine design. PMID:22496726

  6. Digital genotyping of macrosatellites and multicopy genes reveals novel biological functions associated with copy number variation of large tandem repeats.

    PubMed

    Brahmachary, Manisha; Guilmatre, Audrey; Quilez, Javier; Hasson, Dan; Borel, Christelle; Warburton, Peter; Sharp, Andrew J

    2014-06-01

    Tandem repeats are common in eukaryotic genomes, but due to difficulties in assaying them remain poorly studied. Here, we demonstrate the utility of Nanostring technology as a targeted approach to perform accurate measurement of tandem repeats even at extremely high copy number, and apply this technology to genotype 165 HapMap samples from three different populations and five species of non-human primates. We observed extreme variability in copy number of tandemly repeated genes, with many loci showing 5-10 fold variation in copy number among humans. Many of these loci show hallmarks of genome assembly errors, and the true copy number of many large tandem repeats is significantly under-represented even in the high quality 'finished' human reference assembly. Importantly, we demonstrate that most large tandem repeat variations are not tagged by nearby SNPs, and are therefore essentially invisible to SNP-based GWAS approaches. Using association analysis we identify many cis correlations of large tandem repeat variants with nearby gene expression and DNA methylation levels, indicating that variations of tandem repeat length are associated with functional effects on the local genomic environment. This includes an example where expansion of a macrosatellite repeat is associated with increased DNA methylation and suppression of nearby gene expression, suggesting a mechanism termed "repeat induced gene silencing", which has previously been observed only in transgenic organisms. We also observed multiple signatures consistent with altered selective pressures at tandemly repeated loci, suggesting important biological functions. Our studies show that tandemly repeated loci represent a highly variable fraction of the genome that have been systematically ignored by most previous studies, copy number variation of which can exert functionally significant effects. We suggest that future studies of tandem repeat loci will lead to many novel insights into their role in modulating

  7. The promoter methylomes of monochorionic twin placentas reveal intrauterine growth restriction-specific variations in the methylation patterns

    PubMed Central

    He, Zhiming; Lu, Hanlin; Luo, Huijuan; Gao, Fei; Wang, Tong; Gao, Yu; Fang, Qun; Wang, Junwen

    2016-01-01

    Intrauterine growth restriction (IUGR) affects the foetus and has a number of pathological consequences throughout life. Recent work has indicated that variations in DNA methylation might cause placental dysfunction, which may be associated with adverse pregnancy complications. Here, we investigated the promoter methylomes of placental shares from seven monochorionic (MC) twins with selective intrauterine growth restriction (sIUGR) using the healthy twin as an ideal control. Our work demonstrated that the IUGR placental shares harboured a distinct DNA hypomethylation pattern and that the methylation variations preferentially occurred in CpG island shores or non-CpG island promoters. The differentially methylated promoters could significantly separate the IUGR placental shares from the healthy ones. Ultra‐performance liquid chromatography/tandem mass spectrometry (UPLC‐MS/MS) further confirmed the genome‐wide DNA hypomethylation and the lower level of hydroxymethylation statuses in the IUGR placental shares. The methylation variations of the LRAT and SLC19A1 promoters, which are involved in vitamin A metabolism and folate transportation, respectively, and the EFS promoter were further validated in an additional 12 pairs of MC twins with sIUGR. Although the expressions of LRAT, SLC19A1 and EFS were not affected, we still speculated that DNA methylation and hydroxymethylation might serve a functional role during in utero foetal development. PMID:26830322

  8. δ13C-CH4 reveals CH4 variations over oceans from mid-latitudes to the Arctic

    NASA Astrophysics Data System (ADS)

    Yu, Juan; Xie, Zhouqing; Sun, Liguang; Kang, Hui; He, Pengzhen; Xing, Guangxi

    2015-09-01

    The biogeochemical cycles of CH4 over oceans are poorly understood, especially over the Arctic Ocean. Here we report atmospheric CH4 levels together with δ13C-CH4 from offshore China (31°N) to the central Arctic Ocean (up to 87°N) from July to September 2012. CH4 concentrations and δ13C-CH4 displayed temporal and spatial variation ranging from 1.65 to 2.63 ppm, and from -50.34% to -44.94% (mean value: -48.55 ± 0.84%), respectively. Changes in CH4 with latitude were linked to the decreasing input of enriched δ13C and chemical oxidation by both OH and Cl radicals as indicated by variation of δ13C. There were complex mixing sources outside and inside the Arctic Ocean. A keeling plot showed the dominant influence by hydrate gas in the Nordic Sea region, while the long range transport of wetland emissions were one of potentially important sources in the central Arctic Ocean. Experiments comparing sunlight and darkness indicate that microbes may also play an important role in regional variations.

  9. Genome-Wide Mapping of Structural Variations Reveals a Copy Number Variant That Determines Reproductive Morphology in Cucumber

    PubMed Central

    Zhang, Zhonghua; Mao, Linyong; Chen, Huiming; Bu, Fengjiao; Li, Guangcun; Sun, Jinjing; Li, Shuai; Sun, Honghe; Jiao, Chen; Blakely, Rachel; Pan, Junsong; Cai, Run; Luo, Ruibang; Van de Peer, Yves; Jacobsen, Evert; Fei, Zhangjun; Huang, Sanwen

    2015-01-01

    Structural variations (SVs) represent a major source of genetic diversity. However, the functional impact and formation mechanisms of SVs in plant genomes remain largely unexplored. Here, we report a nucleotide-resolution SV map of cucumber (Cucumis sativas) that comprises 26,788 SVs based on deep resequencing of 115 diverse accessions. The largest proportion of cucumber SVs was formed through nonhomologous end-joining rearrangements, and the occurrence of SVs is closely associated with regions of high nucleotide diversity. These SVs affect the coding regions of 1676 genes, some of which are associated with cucumber domestication. Based on the map, we discovered a copy number variation (CNV) involving four genes that defines the Female (F) locus and gives rise to gynoecious cucumber plants, which bear only female flowers and set fruit at almost every node. The CNV arose from a recent 30.2-kb duplication at a meiotically unstable region, likely via microhomology-mediated break-induced replication. The SV set provides a snapshot of structural variations in plants and will serve as an important resource for exploring genes underlying key traits and for facilitating practical breeding in cucumber. PMID:26002866

  10. δ13C-CH4 reveals CH4 variations over oceans from mid-latitudes to the Arctic

    PubMed Central

    Yu, Juan; Xie, Zhouqing; Sun, Liguang; Kang, Hui; He, Pengzhen; Xing, Guangxi

    2015-01-01

    The biogeochemical cycles of CH4 over oceans are poorly understood, especially over the Arctic Ocean. Here we report atmospheric CH4 levels together with δ13C-CH4 from offshore China (31°N) to the central Arctic Ocean (up to 87°N) from July to September 2012. CH4 concentrations and δ13C-CH4 displayed temporal and spatial variation ranging from 1.65 to 2.63 ppm, and from −50.34% to −44.94% (mean value: −48.55 ± 0.84%), respectively. Changes in CH4 with latitude were linked to the decreasing input of enriched δ13C and chemical oxidation by both OH and Cl radicals as indicated by variation of δ13C. There were complex mixing sources outside and inside the Arctic Ocean. A keeling plot showed the dominant influence by hydrate gas in the Nordic Sea region, while the long range transport of wetland emissions were one of potentially important sources in the central Arctic Ocean. Experiments comparing sunlight and darkness indicate that microbes may also play an important role in regional variations. PMID:26323236

  11. The promoter methylomes of monochorionic twin placentas reveal intrauterine growth restriction-specific variations in the methylation patterns.