Science.gov

Sample records for reverse genetic applications

  1. Reverse genetics technology for Rift Valley fever virus: current and future applications for the development of therapeutics and vaccines.

    PubMed

    Bouloy, Michele; Flick, Ramon

    2009-11-01

    The advent of reverse genetics technology has revolutionized the study of RNA viruses, making it possible to manipulate their genomes and evaluate the effects of these changes on their biology and pathogenesis. The fundamental insights gleaned from reverse genetics-based studies over the last several years provide a new momentum for the development of designed therapies for the control and prevention of these viral pathogens. This review summarizes the successes and stumbling blocks in the development of reverse genetics technologies for Rift Valley fever virus and their application to the further dissection of its pathogenesis and the design of new therapeutics and safe and effective vaccines. PMID:19682499

  2. Reverse genetics of mononegavirales.

    PubMed

    Conzelmann, K K

    2004-01-01

    "Reverse genetics" or de novo synthesis of nonsegmented negative-sense RNA viruses (Mononegavirales) from cloned cDNA has become a reliable technique to study this group of medically important viruses. Since the first generation of a negative-sense RNA virus entirely from cDNA in 1994, reverse genetics systems have been established for members of most genera of the Rhabdo-, Paramyxo-, and Filoviridae families. These systems are based on intracellular transcription of viral full-length RNAs and simultaneous expression of viral proteins required to form the typical viral ribonucleoprotein complex (RNP). These systems are powerful tools to study all aspects of the virus life cycle as well as the roles of virus proteins in virus-host interplay and pathogenicity. In addition, recombinant viruses can be designed to have specific properties that make them attractive as biotechnological tools and live vaccines. PMID:15298166

  3. [Reverse genetics system for flaviviruses].

    PubMed

    Suzuki, Ryosuke; Konishi, Eiji

    2013-01-01

    Flaviviruses such as Japanese encephalitis virus, West Nile virus, yellow fever virus, dengue virus, and tick-borne encephalitis virus belong to a family Flaviviridae. These viruses are transmitted to vertebrates by infected mosquitoes or ticks, producing diseases, which have a serious impact on global public health. Reverse genetics is a powerful tool for studying the viruses. Although infectious full-length clones have been obtained for multiple flaviviruses, their early-stage development had the difficulty because of the instability problem of the viral cDNA in E. coli. Several strategies have been developed to circumvent the problem of infectious clone instability. The current knowledge accumulated on reverse genetics system of flaviviruses and its application are summarized in this review. PMID:24769573

  4. Reverse genetics of avian metapneumoviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An overview of avian metapneumovirus (aMPV) infection in turkeys and development of a reverse genetics system for aMPV subgroup C (aMPV-C) virus will be presented. By using reverse genetics technology, we generated recombinant aMPV-C viruses containing a different length of glycoprotein (G) gene or...

  5. Reverse genetics for mammalian reovirus.

    PubMed

    Boehme, Karl W; Ikizler, Miné; Kobayashi, Takeshi; Dermody, Terence S

    2011-10-01

    Mammalian orthoreoviruses (reoviruses) are highly tractable models for studies of viral replication and pathogenesis. The versatility of reovirus as an experimental model has been enhanced by development of a plasmid-based reverse genetics system. Infectious reovirus can be recovered from cells transfected with plasmids encoding cDNAs of each reovirus gene segment using a strategy that does not require helper virus and is independent of selection. In this system, transcription of each gene segment is driven by bacteriophage T7 RNA polymerase, which can be supplied transiently by recombinant vaccinia virus (rDIs-T7pol) or by cells that constitutively express the enzyme. Reverse genetics systems have been developed for two prototype reovirus strains, type 1 Lang (T1L) and type 3 Dearing (T3D). Each reovirus cDNA was encoded on an independent plasmid for the first-generation rescue system. The efficiency of virus recovery was enhanced in a second-generation system by combining the cDNAs for multiple reovirus gene segments onto single plasmids to reduce the number of plasmids from 10 to 4. The reduction in plasmid number and the use of baby hamster kidney cells that express T7 RNA polymerase increased the efficiency of viral rescue, reduced the incubation time required to recover infectious virus, and eliminated potential biosafety concerns associated with the use of recombinant vaccinia virus. Reovirus reverse genetics has been used to introduce mutations into viral capsid and nonstructural components to study viral protein-structure activity relationships and can be exploited to engineer recombinant reoviruses for vaccine and oncolytic applications. PMID:21798351

  6. Marburg Virus Reverse Genetics Systems

    PubMed Central

    Schmidt, Kristina Maria; Mühlberger, Elke

    2016-01-01

    The highly pathogenic Marburg virus (MARV) is a member of the Filoviridae family and belongs to the group of nonsegmented negative-strand RNA viruses. Reverse genetics systems established for MARV have been used to study various aspects of the viral replication cycle, analyze host responses, image viral infection, and screen for antivirals. This article provides an overview of the currently established MARV reverse genetic systems based on minigenomes, infectious virus-like particles and full-length clones, and the research that has been conducted using these systems. PMID:27338448

  7. Marburg Virus Reverse Genetics Systems.

    PubMed

    Schmidt, Kristina Maria; Mühlberger, Elke

    2016-01-01

    The highly pathogenic Marburg virus (MARV) is a member of the Filoviridae family and belongs to the group of nonsegmented negative-strand RNA viruses. Reverse genetics systems established for MARV have been used to study various aspects of the viral replication cycle, analyze host responses, image viral infection, and screen for antivirals. This article provides an overview of the currently established MARV reverse genetic systems based on minigenomes, infectious virus-like particles and full-length clones, and the research that has been conducted using these systems. PMID:27338448

  8. Influenza reverse genetics: dissecting immunity and pathogenesis.

    PubMed

    Ye, Siying; Evans, Justin G; Stambas, John

    2014-01-01

    Reverse genetics systems allow artificial generation of non-segmented and segmented negative-sense RNA viruses, like influenza viruses, entirely from cloned cDNA. Since the introduction of reverse genetics systems over a decade ago, the ability to generate 'designer' influenza viruses in the laboratory has advanced both basic and applied research, providing a powerful tool to investigate and characterise host-pathogen interactions and advance the development of novel therapeutic strategies. The list of applications for reverse genetics has expanded vastly in recent years. In this review, we discuss the development and implications of this technique, including the recent controversy surrounding the generation of a transmissible H5N1 influenza virus. We will focus on research involving the identification of viral protein function, development of live-attenuated influenza virus vaccines, host-pathogen interactions, immunity and the generation of recombinant influenza virus vaccine vectors for the prevention and treatment of infectious diseases and cancer. PMID:24528628

  9. Reverse Genetics in Ecological Research

    PubMed Central

    Schwachtje, Jens; Kutschbach, Susan; Baldwin, Ian T.

    2008-01-01

    By precisely manipulating the expression of individual genetic elements thought to be important for ecological performance, reverse genetics has the potential to revolutionize plant ecology. However, untested concerns about possible side-effects of the transformation technique, caused by Agrobacterium infection and tissue culture, on plant performance have stymied research by requiring onerous sample sizes. We compare 5 independently transformed Nicotiana attenuata lines harboring empty vector control (EVC) T-DNA lacking silencing information with isogenic wild types (WT), and measured a battery of ecologically relevant traits, known to be important in plant-herbivore interactions: phytohormones, secondary metabolites, growth and fitness parameters under stringent competitive conditions, and transcriptional regulation with microarrays. As a positive control, we included a line silenced in trypsin proteinase inhibitor gene (TPI) expression, a potent anti-herbivore defense known to exact fitness costs in its expression, in the analysis. The experiment was conducted twice, with 10 and 20 biological replicates per genotype. For all parameters, we detected no difference between any EVC and WT lines, but could readily detect a fitness benefit of silencing TPI production. A statistical power analyses revealed that the minimum sample sizes required for detecting significant fitness differences between EVC and WT was 2–3 orders of magnitude larger than the 10 replicates required to detect a fitness effect of TPI silencing. We conclude that possible side-effects of transformation are far too low to obfuscate the study of ecologically relevant phenotypes. PMID:18253491

  10. RNA Virus Reverse Genetics and Vaccine Design

    PubMed Central

    Stobart, Christopher C.; Moore, Martin L.

    2014-01-01

    RNA viruses are capable of rapid spread and severe or potentially lethal disease in both animals and humans. The development of reverse genetics systems for manipulation and study of RNA virus genomes has provided platforms for designing and optimizing viral mutants for vaccine development. Here, we review the impact of RNA virus reverse genetics systems on past and current efforts to design effective and safe viral therapeutics and vaccines. PMID:24967693

  11. CRISPR: a versatile tool for both forward and reverse genetics research.

    PubMed

    Gurumurthy, Channabasavaiah B; Grati, M'hamed; Ohtsuka, Masato; Schilit, Samantha L P; Quadros, Rolen M; Liu, Xue Zhong

    2016-09-01

    Human genetics research employs the two opposing approaches of forward and reverse genetics. While forward genetics identifies and links a mutation to an observed disease etiology, reverse genetics induces mutations in model organisms to study their role in disease. In most cases, causality for mutations identified by forward genetics is confirmed by reverse genetics through the development of genetically engineered animal models and an assessment of whether the model can recapitulate the disease. While many technological advances have helped improve these approaches, some gaps still remain. CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated), which has emerged as a revolutionary genetic engineering tool, holds great promise for closing such gaps. By combining the benefits of forward and reverse genetics, it has dramatically expedited human genetics research. We provide a perspective on the power of CRISPR-based forward and reverse genetics tools in human genetics and discuss its applications using some disease examples. PMID:27384229

  12. Reverse Genetics Approaches to Control Arenavirus.

    PubMed

    Martínez-Sobrido, Luis; Cheng, Benson Yee Hin; de la Torre, Juan Carlos

    2016-01-01

    Several arenavirus cause hemorrhagic fever disease in humans and pose a significant public health problem in their endemic regions. To date, no licensed vaccines are available to combat human arenavirus infections, and anti-arenaviral drug therapy is limited to an off-label use of ribavirin that is only partially effective. The development of arenavirus reverse genetics approaches provides investigators with a novel and powerful approach for the investigation of the arenavirus molecular and cell biology. The use of cell-based minigenome systems has allowed examining the cis- and trans-acting factors involved in arenavirus replication and transcription and the identification of novel anti-arenaviral drug targets without requiring the use of live forms of arenaviruses. Likewise, it is now feasible to rescue infectious arenaviruses entirely from cloned cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis, as well as to facilitate screens to identify anti-arenaviral drugs and development of novel live-attenuated arenavirus vaccines. Recently, reverse genetics have also allowed the generation of tri-segmented arenaviruses expressing foreign genes, facilitating virus detection and opening the possibility of implementing live-attenuated arenavirus-based vaccine vector approaches. Likewise, the development of single-cycle infectious, reporter-expressing, arenaviruses has provided a new experimental method to study some aspects of the biology of highly pathogenic arenaviruses without the requirement of high-security biocontainment required to study HF-causing arenaviruses. In this chapter we summarize the current knowledge on arenavirus reverse genetics and the implementation of plasmid-based reverse genetics techniques for the development of arenavirus vaccines and vaccine vectors. PMID:27076139

  13. Developments in Plant Negative-Strand RNA Virus Reverse Genetics.

    PubMed

    Jackson, Andrew O; Li, Zhenghe

    2016-08-01

    Twenty years ago, breakthroughs for reverse genetics analyses of negative-strand RNA (NSR) viruses were achieved by devising conditions for generation of infectious viruses in susceptible cells. Recombinant strategies have subsequently been engineered for members of all vertebrate NSR virus families, and research arising from these advances has profoundly increased understanding of infection cycles, pathogenesis, and complexities of host interactions of animal NSR viruses. These strategies also permitted development of many applications, including attenuated vaccines and delivery vehicles for therapeutic and biotechnology proteins. However, for a variety of reasons, it was difficult to devise procedures for reverse genetics analyses of plant NSR viruses. In this review, we discuss advances that have circumvented these problems and resulted in construction of a recombinant system for Sonchus yellow net nucleorhabdovirus. We also discuss possible extensions to other plant NSR viruses as well as the applications that may emanate from recombinant analyses of these pathogens. PMID:27359368

  14. Reverse genetics: Its origins and prospects

    SciTech Connect

    Berg, P. )

    1991-04-01

    The nucleotide sequence of a gene and its flanking segments alone will not tell us how its expression is regulated during development and differentiation, or in response to environmental changes. To comprehend the physiological significance of the molecular details requires biological analysis. Recombinant DNA techniques provide a powerful experimental approach. A strategy termed reverse genetics' utilizes the analysis of the activities of mutant and normal genes and experimentally constructed mutants to explore the relationship between gene structure and function thereby helping elucidate the relationship between genotype and phenotype.

  15. Establishment of an entirely plasmid-based reverse genetics system for Bluetongue virus.

    PubMed

    Pretorius, Jakobus M; Huismans, Henk; Theron, Jacques

    2015-12-01

    Bluetongue virus (BTV), the type species of the genus Orbivirus within the family Reoviridae, has a genome consisting of 10 linear double-stranded RNA genome segments. Current reverse genetics approaches for engineering the BTV genome rely upon in vitro synthesis of capped RNA transcripts from cloned cDNA corresponding to viral genome segments. In an effort to expand the utility of BTV reverse genetics, we constructed a reverse genetics vector containing a T7 RNA polymerase promoter, hepatitis delta ribozyme sequence and T7 RNA polymerase terminator sequence. Viable virus was recovered following transfection of mammalian cells, expressing T7 RNA polymerase, with 10 plasmid constructs representing the cloned BTV-1 genome. Furthermore, the plasmid-based reverse genetics system was used successfully to isolate viable cross-serotype reassortant viruses and a mutant virus containing a defined mutation in the replicating viral genome. The new reverse genetics platform established here for BTV is likely applicable to other orbiviruses. PMID:26408855

  16. Reverse genetics in rice using Tos17.

    PubMed

    Mieulet, Delphine; Diévart, Anne; Droc, Gaëtan; Lanau, Nadège; Guiderdoni, Emmanuel

    2013-01-01

    Transposon of Oryza sativa 17 (Tos17), a Ty1-Copia Class I retroelement, is one of the few active retroelements identified in rice, the main cereal crop of human consumption and the model genome for cereals. Tos17 exists in two copies in the standard Nipponbare japonica genome (n = 12 and 379 Mb). Tos17 copies are inactive in the plant grown under normal conditions. However, the copy located on chromosome 7 can be activated upon tissue culture. Plants regenerated from 3- and 5-month-old tissue cultures harbor, respectively, an average of 3.5 and 8 newly transposed copies that are stably inserted at new positions in the genome. Due to its favorable features, Tos17 has been extensively used for insertion mutagenesis of the model genome and 31,403 sequence indexed inserts harbored by regenerants/T-DNA plants are available in the databases. The corresponding seed stocks can be ordered from the laboratories which generated them. Both forward genetics and reverse genetics approaches using these lines have allowed the deciphering of gene function in rice. We report here two protocols for ascertaining the presence of a Tos17 insertion in a gene of interest among R2/T2 seeds received from Tos17 mutant stock centers: The first protocol is PCR-based and allows the identification of azygous, heterozygous and homozygous plants among progenies segregating the insertion. The second protocol is based on DNA blot analysis and can be used to identify homozygous plants carrying the Tos17 copy responsible for gene disruption while cleaning the mutant background from other unwitting mutagen inserts. PMID:23918431

  17. Tackling feline infectious peritonitis via reverse genetics

    PubMed Central

    Thiel, Volker; Thiel, Heinz-Jürgen; Tekes, Gergely

    2014-01-01

    Feline infectious peritonitis (FIP) is caused by feline coronaviruses (FCoVs) and represents one of the most important lethal infectious diseases of cats. To date, there is no efficacious prevention and treatment, and our limited knowledge on FIP pathogenesis is mainly based on analysis of experiments with field isolates. In a recent study, we reported a promising approach to study FIP pathogenesis using reverse genetics. We generated a set of recombinant FCoVs and investigated their pathogenicity in vivo. The set included the type I FCoV strain Black, a type I FCoV strain Black with restored accessory gene 7b, two chimeric type I/type II FCoVs and the highly pathogenic type II FCoV strain 79–1146. All recombinant FCoVs and the reference strain isolates were found to establish productive infections in cats. While none of the type I FCoVs and chimeric FCoVs induced FIP, the recombinant type II FCoV strain 79–1146 was as pathogenic as the parental isolate. Interestingly, an intact ORF 3c was confirmed to be restored in all viruses (re)isolated from FIP-diseased animals. PMID:25482087

  18. Tackling feline infectious peritonitis via reverse genetics.

    PubMed

    Thiel, Volker; Thiel, Heinz-Jürgen; Tekes, Gergely

    2014-01-01

    Feline infectious peritonitis (FIP) is caused by feline coronaviruses (FCoVs) and represents one of the most important lethal infectious diseases of cats. To date, there is no efficacious prevention and treatment, and our limited knowledge on FIP pathogenesis is mainly based on analysis of experiments with field isolates. In a recent study, we reported a promising approach to study FIP pathogenesis using reverse genetics. We generated a set of recombinant FCoVs and investigated their pathogenicity in vivo. The set included the type I FCoV strain Black, a type I FCoV strain Black with restored accessory gene 7b, two chimeric type I/type II FCoVs and the highly pathogenic type II FCoV strain 79-1146. All recombinant FCoVs and the reference strain isolates were found to establish productive infections in cats. While none of the type I FCoVs and chimeric FCoVs induced FIP, the recombinant type II FCoV strain 79-1146 was as pathogenic as the parental isolate. Interestingly, an intact ORF 3c was confirmed to be restored in all viruses (re)isolated from FIP-diseased animals. PMID:25482087

  19. Reversible gelation of genetically engineered macromolecules

    NASA Astrophysics Data System (ADS)

    Petka, Wendy Ann

    Genetic engineering of protein-based polymers offers distinct advantages over conventional synthesis of polymers. Microorganisms can synthesize high molecular weight materials, in relatively large quantities, that are inherently stereoregular, monodisperse, and of controlled sequence. In addition, specific secondary and higher order structures are determined by this protein sequence. As a result, scientists can design polymers to have unique structural features found in natural protein materials and functional properties that are inherent in certain peptide sequences. For this reason, genetic engineering principles were used to create a set of artificial genes that encode twelve macromolecules having both alpha-helical and disordered coil protein sequences with the last amino acid being cysteine (cys) or tryptophan (trp). Triblock copolymer sequences having coiled-coil protein ends, A or B, where A and B represent alpha-helical acidic and basic leucine zipper proteins, separated by a water soluble flexible spacer coil protein, C, where C represents ((AG)sb3PEG) sbn (n = 10 or 28), showed reversible physical gelation behavior. This behavior is believed to result from the aggregation of two or more helices that form physical crosslinks with the disordered coil domain retaining solvent and preventing precipitation of the chain. Diffising wave spectroscopy was used to investigate the gelation behavior of ACsb{10}Acys in buffer when environmental conditions such as pH, temperature, and concentration were varied. The dynamic intensity autocorrelation function recorded over time for 5% (w/v) ACsb{10}Acys showed that the protein behaved as a gel at pH 6.7-8.0 and that the melting point was between 40sp°C and 48sp°C. In addition to the triblock results, the incorporation of 5sp',5sp',5sp'-trifluoroleucine (Tfl) in place of leucine (Leu) in the A and B blocks was accomplished by synthesizing proteins in bacterial hosts auxotrophic for Leu. The substitution of Tfl for Leu

  20. Genetic Dissection of Behavioral Flexibility: Reversal Learning in Mice

    PubMed Central

    Laughlin, Rick E.; Grant, Tara L.; Williams, Robert W.; Jentsch, J. David

    2011-01-01

    Background Behavioral inflexibility is a feature of schizophrenia, attention deficit-hyperactivity disorder, and behavior addictions that likely results from heritable deficits in the inhibitory control over behavior. Here, we investigate the genetic basis of individual differences in flexibility, measured using an operant reversal learning task. Methods We quantified discrimination acquisition and subsequent reversal learning in a cohort of 51 BXD strains of mice (2–5 mice/strain, N = 176) for which we have matched data on sequence, gene expression in key CNS regions, and neuroreceptor levels. Results Strain variation in trials to criterion on acquisition and reversal was high, with moderate heritability (~0.3). Acquisition and reversal learning phenotypes did not covary at the strain level, suggesting that these traits are effectively under independent genetic control. Reversal performance did covary with dopamine D2 receptor levels in the ventral midbrain, consistent with a similar observed relationship between impulsivity and D2 receptors in humans. Reversal, but not acquisition, is linked to a locus on mouse chromosome 10 with a peak LRS at 86.2Mb (p <.05 genome-wide). Variance in mRNA levels of select transcripts expressed in neocortex, hippocampus, and striatum correlated with the reversal learning phenotype, including Syn3, Nt5dc3 and Hcfc2. Conclusions This work demonstrates the clear trait independence between, and genetic control of, discrimination acquisition and reversal and illustrates how globally coherent data sets for a single panel of highly-related strains can be interrogated and integrated to uncover genetic sources and molecular and neuropharmacological candidates of complex behavioral traits relevant to human psychopathology. PMID:21392734

  1. CORONAVIRUS REVERSE GENETIC SYSTEMS: INFECTIOUS CLONES AND REPLICONS

    PubMed Central

    Almazán, Fernando; Sola, Isabel; Zuñiga, Sonia; Marquez-Jurado, Silvia; Morales, Lucia; Becares, Martina; Enjuanes, Luis

    2016-01-01

    Coronaviruses (CoVs) infect humans and many animal species, and are associated with respiratory, enteric, hepatic, and central nervous system diseases. The large size of the CoV genome and the instability of some CoV replicase gene sequences during its propagation in bacteria, represent serious obstacles for the development of reverse genetic systems similar to those used for smaller positive sense RNA viruses. To overcome these limitations, several alternatives to more conventional plasmid-based approaches have been established in the last thirteen years. In this report, we briefly review and discuss the different reverse genetic systems developed for CoVs, paying special attention to the severe acute respiratory syndrome CoV (SARS-CoV). PMID:24930446

  2. Reverse Genetics System for Studying Human Rhinovirus Infections

    PubMed Central

    Lee, Wai-Ming; Wang, Wensheng; Bochkov, Yury A; Lee, Iris

    2015-01-01

    SUMMARY Human rhinovirus (HRV) contains a 7.2 Kb messenger-sense RNA genome which is the template for reproducing progeny viruses after it enters the cytoplasm of a host cell. Reverse genetics refers to the regeneration of progeny viruses from an artificial cDNA copy of the RNA genome of an RNA virus. It has been a powerful molecular genetic tool for studying HRV and other RNA viruses because the artificial DNA stage makes it practical to introduce specific mutations into the viral RNA genome. This chapter uses HRV-16 as the model virus to illustrate the strategy and the methods for constructing and cloning the artificial cDNA copy of a full-length HRV genome, identifying the infectious cDNA clone isolates, and selecting the most vigorous cDNA clone isolate to serve as the standard parental clone for future molecular genetic study of the virus. PMID:25261313

  3. Feline Genetics: Clinical Applications and Genetic Testing

    PubMed Central

    Lyons, Leslie A.

    2010-01-01

    DNA testing for domestic cat diseases and appearance traits is a rapidly growing asset for veterinary medicine. Approximately thirty-three genes contain fifty mutations that cause feline health problems or alterations in the cat’s appearance. A variety of commercial laboratories can now perform cat genetic diagnostics, allowing both the veterinary clinician and the private owner to obtain DNA test results. DNA is easily obtained from a cat via a buccal swab using a standard cotton bud or cytological brush, allowing DNA samples to be easily sent to any laboratory in the world. The DNA test results identify carriers of the traits, predict the incidence of traits from breeding programs, and influence medical prognoses and treatments. An overall goal of identifying these genetic mutations is the correction of the defect via gene therapies and designer drug therapies. Thus, genetic testing is an effective preventative medicine and a potential ultimate cure. However, genetic diagnostic tests may still be novel for many veterinary practitioners and their application in the clinical setting needs to have the same scrutiny as any other diagnostic procedure. This article will review the genetic tests for the domestic cat, potential sources of error for genetic testing, and the pros and cons of DNA results in veterinary medicine. Highlighted are genetic tests specific to the individual cat, which are a part of the cat’s internal genome. PMID:21147473

  4. Feline genetics: clinical applications and genetic testing.

    PubMed

    Lyons, Leslie A

    2010-11-01

    DNA testing for domestic cat diseases and appearance traits is a rapidly growing asset for veterinary medicine. Approximately 33 genes contain 50 mutations that cause feline health problems or alterations in the cat's appearance. A variety of commercial laboratories can now perform cat genetic diagnostics, allowing both the veterinary clinician and the private owner to obtain DNA test results. DNA is easily obtained from a cat via a buccal swab with a standard cotton bud or cytological brush, allowing DNA samples to be easily sent to any laboratory in the world. The DNA test results identify carriers of the traits, predict the incidence of traits from breeding programs, and influence medical prognoses and treatments. An overall goal of identifying these genetic mutations is the correction of the defect via gene therapies and designer drug therapies. Thus, genetic testing is an effective preventative medicine and a potential ultimate cure. However, genetic diagnostic tests may still be novel for many veterinary practitioners and their application in the clinical setting needs to have the same scrutiny as any other diagnostic procedure. This article will review the genetic tests for the domestic cat, potential sources of error for genetic testing, and the pros and cons of DNA results in veterinary medicine. Highlighted are genetic tests specific to the individual cat, which are a part of the cat's internal genome. PMID:21147473

  5. The application of reverse genetics technology in the study of rabies virus (RV) pathogenesis and for the development of novel RV vaccines.

    PubMed

    Schnell, Matthias J; Tan, Gene S; Dietzschold, Bernhard

    2005-02-01

    Rabies is a central nervous system (CNS) disease that is almost invariably fatal. Neurotropism, neuroinvasiveness, and transsynaptic spread are the main features that determine the pathogenesis of rabies. Recent advances in rabies virus (RV) research, which made direct genetic manipulations of the RV genome possible, greatly improved the understanding of the role of different viral and host cell factors in the pathogenesis of rabies. Here the authors discuss molecular mechanisms associated with rabies RV infection and its spread to the CNS. PMID:15804964

  6. Forward and reverse genetic analysis of microtubule motors in Chlamydomonas.

    PubMed

    Pazour, G J; Witman, G B

    2000-12-01

    The ability to integrate biochemical, cell biological, and genetic approaches makes Chlamydomonas reinhardtii the premier model organism for studies of the eukaryotic flagellum and its associated molecular motors. Hundreds of motility mutations have been identified in Chlamydomonas, including many that affect dyneins and kinesins. These mutations have yielded much information on the structure and function of the motors as well as the roles of individual subunits within the motors. The development of insertional mutagenesis has opened the door to powerful new approaches for genetic analysis in Chlamydomonas. Insertional mutants are created by transforming cells with DNA-containing selectable markers. The DNA is randomly integrated throughout the genome and usually deletes part of the chromosome at the site of insertion, thereby creating mutations that are marked by the integrated DNA. These mutations can be used for forward genetic approaches where one characterizes a mutant phenotype and then clones the relevant gene using the integrated DNA as a tag. The insertional mutants also may be used in a reverse genetic approach in which mutants lacking a gene of interest are identified by DNA hybridization. We describe methods to generate and characterize insertional mutants, using mutations that affect the outer dynein arm as examples. PMID:11133235

  7. Development of an improved reverse genetics system for Akabane bunyavirus.

    PubMed

    Takenaka-Uema, Akiko; Sugiura, Keita; Bangphoomi, Norasuthi; Shioda, Chieko; Uchida, Kazuyuki; Kato, Kentaro; Haga, Takeshi; Murakami, Shin; Akashi, Hiroomi; Horimoto, Taisuke

    2016-06-01

    Akabane disease, caused by the insect-transmitted Akabane virus (AKAV), affects livestock by causing life-threatening deformities or mortality of fetuses. Therefore, Akabane disease has led to notable economic losses in numerous countries, including Japan. In this short communication, a new T7 RNA polymerase-based AKAV reverse genetics system was developed. Using this system, in which three plasmids transcribing antigenomic RNAs were transfected into cells stably expressing T7 polymerase, we successfully reconstituted the live attenuated vaccine TS-C2 strain (named rTTT), and also generated a mutant AKAV (rTTTΔNSs) that lacked the gene encoding the nonstructural NSs protein, which is regarded as a virulence factor. Analysis of growth kinetics revealed that rTTTΔNSs grew at a much slower rate than the rTTT and TS-C2 virus. These results suggest that our established reverse genetics system is a powerful tool that can be used for AKAV vaccine studies with gene-manipulated viruses. PMID:26927704

  8. Reverse Genetics System for Severe Fever with Thrombocytopenia Syndrome Virus

    PubMed Central

    Brennan, Benjamin; Li, Ping; Zhang, Shuo; Li, Aqian; Liang, Mifang; Li, Dexin

    2014-01-01

    ABSTRACT Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne pathogen that was first reported in China in 2009. Phylogenetic analysis of the viral genome showed that SFTS virus represents a new lineage within the Phlebovirus genus, distinct from the existing sandfly fever and Uukuniemi virus groups, in the family Bunyaviridae. SFTS disease is characterized by gastrointestinal symptoms, chills, joint pain, myalgia, thrombocytopenia, leukocytopenia, and some hemorrhagic manifestations with a case fatality rate of about 2 to 15%. Here we report the development of reverse genetics systems to study STFSV replication and pathogenesis. We developed and optimized functional T7 polymerase-based M- and S-segment minigenome assays, which revealed errors in the published terminal sequences of the S segment of the Hubei 29 strain of SFTSV. We then generated recombinant viruses from cloned cDNAs prepared to the antigenomic RNAs both of the minimally passaged virus (HB29) and of a cell culture-adapted strain designated HB29pp. The growth properties, pattern of viral protein synthesis, and subcellular localization of viral N and NSs proteins of wild-type HB29pp (wtHB29pp) and recombinant HB29pp viruses were indistinguishable. We also show that the viruses fail to shut off host cell polypeptide production. The robust reverse genetics system described will be a valuable tool for the design of therapeutics and the development of killed and attenuated vaccines against this important emerging pathogen. IMPORTANCE SFTSV and related tick-borne phleboviruses such as Heartland virus are emerging viruses shown to cause severe disease in humans in the Far East and the United States, respectively. Study of these novel pathogens would be facilitated by technology to manipulate these viruses in a laboratory setting using reverse genetics. Here, we report the generation of infectious SFTSV from cDNA clones and demonstrate that the behavior of recombinant viruses

  9. Marker reconstitution mutagenesis: a simple and efficient reverse genetic approach.

    PubMed

    Tang, Xie; Huang, Junqi; Padmanabhan, Anup; Bakka, Kavya; Bao, Yun; Tan, Brenda Yuelin; Cande, W Zacheus; Balasubramanian, Mohan K

    2011-03-01

    A novel reverse genetic approach termed 'marker reconstitution mutagenesis' was designed to generate mutational allelic series in genes of interest. This approach consists of two simple steps which utilize two selective markers. First, using one selective marker, a partial fragment of another selective marker gene is inserted adjacently to a gene of interest by homologous recombination. Second, random mutations are introduced precisely into the gene of interest, together with the reconstitution of the latter selective marker by homologous recombination. This approach was successfully tested for several genes in the fission yeast Schizosaccharomyces pombe. It circumvents the problems encountered with other methods and should be adaptable to any organism that incorporates exogenous DNA by homologous recombination. PMID:21360732

  10. Integrating chemical mutagenesis and whole genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia

    PubMed Central

    Kokes, Marcela; Dunn, Joe Dan; Granek, Joshua A.; Nguyen, Bidong D.; Barker, Jeffrey R.; Valdivia, Raphael H.; Bastidas, Robert J.

    2015-01-01

    SUMMARY Gene inactivation by transposon insertion or allelic exchange is a powerful approach to probe gene function. Unfortunately, many microbes, including Chlamydia, are not amenable to routine molecular genetic manipulations. Here we describe an arrayed library of chemically-induced mutants of the genetically-intransigent pathogen Chlamydia trachomatis, in which all mutations have been identified by whole genome sequencing, providing a platform for reverse genetic applications. An analysis of possible loss-of-function mutations in the collection uncovered plasticity in the central metabolic properties of this obligate intracellular pathogen. We also describe the use of the library in a forward genetic screen that identified InaC as a bacterial factor that binds host ARF and 14-3-3 proteins to modulate F-actin assembly and Golgi redistribution around the pathogenic vacuole. This work provides a robust platform for reverse and forward genetic approaches in Chlamydia and should serve as a valuable resource to the community. PMID:25920978

  11. Reverse genetics mediated recovery of infectious murine norovirus.

    PubMed

    Arias, Armando; Ureña, Luis; Thorne, Lucy; Yunus, Muhammad A; Goodfellow, Ian

    2012-01-01

    efficiency of viral recovery by conventional reverse genetics approaches. Here we report two different strategies based on the generation of murine norovirus-1 (referred to as MNV herewith) transcripts capped at the 5' end. One of the methods involves both in vitro synthesis and capping of viral RNA, whereas the second approach entails the transcription of MNV cDNA in cells expressing T7 RNA polymerase. The availability of these reverse genetics systems for the study of MNV and a small animal model has provided an unprecedented ability to dissect the role of viral sequences in replication and pathogenesis (15-17). PMID:22760450

  12. Silver electrodes for reversible oxygen sensor applications

    NASA Astrophysics Data System (ADS)

    Kim, Taekyeong

    2015-09-01

    We report a single oxygen atomic sensor based on a scanning tunneling microscope break-junction (STM-BJ) technique by using silver electrodes at room temperature. The oxygen concentration was adjusted with argon gas in a glove box. An oxygen atom was inserted in the gap of the Ag electrodes after the Ag metal point contact had been ruptured during stretching of the Ag atomic junctions by moving a piezo. We successfully measured the conductance of a single oxygen atom by forming a series with the Ag contact, Ag-O-Ag bond. We found that the probability of Ag-O-Ag junction formation increased with increasing oxygen concentration. Furthermore, we observed that the peak height in the oxygen conductance histogram was changed reversibly depending on the oxygen concentration in a glove box. It confirms that our STM-BJ can be used for atomic sensor applications in the future.

  13. Live vaccines for human metapneumovirus designed by reverse genetics.

    PubMed

    Buchholz, Ursula J; Nagashima, Kunio; Murphy, Brian R; Collins, Peter L

    2006-10-01

    Human metapneumovirus (HMPV) was first described in 2001 and has quickly become recognized as an important cause of respiratory tract disease worldwide, especially in the pediatric population. A vaccine against HMPV is required to prevent severe disease associated with infection in infancy. The primary strategy is to develop a live-attenuated virus for intranasal immunization, which is particularly well suited against a respiratory virus. Reverse genetics provides a means of developing highly characterized 'designer' attenuated vaccine candidates. To date, several promising vaccine candidates have been developed, each using a different mode of attenuation. One candidate involves deletion of the G glycoprotein, providing attenuation that is probably based on reduced efficiency of attachment. A second candidate involves deletion of the M2-2 protein, which participates in regulating RNA synthesis and whose deletion has the advantageous property of upregulating transcription and increasing antigen synthesis. A third candidate involves replacing the P protein gene of HMPV with its counterpart from the related avian metapneumovirus, thereby introducing attenuation owing to its chimeric nature and host range restriction. Another live vaccine strategy involves using an attenuated parainfluenza virus as a vector to express HMPV protective antigens, providing a bivalent pediatric vaccine. Additional modifications to provide improved vaccines will also be discussed. PMID:17181442

  14. Population admixture may appear to mask, change or reverse genetic effects of genes underlying complex traits.

    PubMed Central

    Deng, H W

    2001-01-01

    Association studies using random population samples are increasingly being applied in the identification and inference of genetic effects of genes underlying complex traits. It is well recognized that population admixture may yield false-positive identification of genetic effects for complex traits. However, it is less well appreciated that population admixture can appear to mask, change, or reverse true genetic effects for genes underlying complex traits. By employing a simple population genetics model, we explore the effects and the conditions of population admixture in masking, changing, or even reversing true genetic effects of genes underlying complex traits. PMID:11729172

  15. Generation of genetically stable recombinant rotaviruses containing novel genome rearrangements and heterologous sequences by reverse genetics.

    PubMed

    Navarro, Aitor; Trask, Shane D; Patton, John T

    2013-06-01

    The rotavirus (RV) genome consists of 11 segments of double-stranded RNA (dsRNA). Typically, each segment contains 5' and 3' untranslated regions (UTRs) that flank an open reading frame (ORF) encoding a single protein. RV variants with segments of atypical size owing to sequence rearrangements have been described. In many cases, the rearrangement originates from a partial head-to-tail sequence duplication that initiates after the stop codon of the ORF, leaving the protein product of the segment unaffected. To probe the limits of the RV genome to accommodate additional genetic sequence, we used reverse genetics to insert duplications (analogous to synthetic rearrangements) and heterologous sequences into the 3' UTR of the segment encoding NSP2 (gene 8). The approach allowed the recovery of recombinant RVs that contained sequence duplications (up to 200 bp) and heterologous sequences, including those for FLAG, the hepatitis C virus E2 epitope, and the internal ribosome entry site of cricket paralysis virus. The recombinant RVs grew to high titer (>10(7) PFU/ml) and remained genetically stable during serial passage. Despite their longer 3' UTRs, rearranged RNAs of recombinant RVs expressed wild-type levels of protein in vivo. Competitive growth experiments indicated that, unlike RV segments with naturally occurring sequence duplications, genetically engineered segments were less efficiently packaged into progeny viruses. Thus, features of naturally occurring rearranged segments, other than their increased length, contribute to their enhanced packaging phenotype. Our results define strategies for developing recombinant RVs as expression vectors, potentially leading to next-generation RV vaccines that induce protection against other infectious agents. PMID:23536662

  16. Experimenting with sex: four approaches to the genetics of sex reversal before 1950.

    PubMed

    Dietrich, Michael R

    2016-04-01

    In the early twentieth century, Tatsuo Aida in Japan, Øjvind Winge in Denmark, Richard Goldschmidt in Germany, and Calvin Bridges in the United States all developed different experimental systems to study the genetics of sex reversal. These locally specific experimental systems grounded these experimenters' understanding of sex reversal as well as their interpretation of claims regarding experimental results and theories. The comparison of four researchers and their experimental systems reveals how those different systems mediated their understanding of genetic phenomena, and influenced their interpretations of sex reversal. PMID:26671265

  17. Genetic Applications in Avian Conservation

    USGS Publications Warehouse

    Haig, Susan M.; Bronaugh, Whitcomb M.; Crowhurst, Rachel S.; D'Elia, Jesse; Eagles-Smith, Collin A.; Epps, Clinton W.; Knaus, Brian; Miller, Mark P.; Moses, Michael L.; Oyler-McCance, Sara; Robinson, W. Douglas; Sidlauskas, Brian

    2011-01-01

    A fundamental need in conserving species and their habitats is defining distinct entities that range from individuals to species to ecosystems and beyond (Table 1; Ryder 1986, Moritz 1994, Mayden and Wood 1995, Haig and Avise 1996, Hazevoet 1996, Palumbi and Cipriano 1998, Hebert et al. 2004, Mace 2004, Wheeler et al. 2004, Armstrong and Ball 2005, Baker 2008, Ellis et al. 2010, Winker and Haig 2010). Rapid progression in this interdisciplinary field continues at an exponential rate; thus, periodic updates on theory, techniques, and applications are important for informing practitioners and consumers of genetic information. Here, we outline conservation topics for which genetic information can be helpful, provide examples of where genetic techniques have been used best in avian conservation, and point to current technical bottlenecks that prevent better use of genomics to resolve conservation issues related to birds. We hope this review will provide geneticists and avian ecologists with a mutually beneficial dialogue on how this integrated field can solve current and future problems.

  18. Reversibility conditions for quantum channels and their applications

    SciTech Connect

    Shirokov, M E

    2013-08-31

    Conditions for a quantum channel (noncommutative Markov operator) to be reversible with respect to complete families of quantum states with bounded rank are obtained. A description of all quantum channels reversible with respect to a given (orthogonal or nonorthogonal) complete family of pure states is given. Some applications in quantum information theory are considered. Bibliography: 20 titles.

  19. Yeast Genetics and Biotechnological Applications

    NASA Astrophysics Data System (ADS)

    Mishra, Saroj; Baranwal, Richa

    Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 μm plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.

  20. Mammalian Reverse Genetics without Crossing Reveals Nr3a as a Short-Sleeper Gene.

    PubMed

    Sunagawa, Genshiro A; Sumiyama, Kenta; Ukai-Tadenuma, Maki; Perrin, Dimitri; Fujishima, Hiroshi; Ukai, Hideki; Nishimura, Osamu; Shi, Shoi; Ohno, Rei-ichiro; Narumi, Ryohei; Shimizu, Yoshihiro; Tone, Daisuke; Ode, Koji L; Kuraku, Shigehiro; Ueda, Hiroki R

    2016-01-26

    The identification of molecular networks at the system level in mammals is accelerated by next-generation mammalian genetics without crossing, which requires both the efficient production of whole-body biallelic knockout (KO) mice in a single generation and high-performance phenotype analyses. Here, we show that the triple targeting of a single gene using the CRISPR/Cas9 system achieves almost perfect KO efficiency (96%-100%). In addition, we developed a respiration-based fully automated non-invasive sleep phenotyping system, the Snappy Sleep Stager (SSS), for high-performance (95.3% accuracy) sleep/wake staging. Using the triple-target CRISPR and SSS in tandem, we reliably obtained sleep/wake phenotypes, even in double-KO mice. By using this system to comprehensively analyze all of the N-methyl-D-aspartate (NMDA) receptor family members, we found Nr3a as a short-sleeper gene, which is verified by an independent set of triple-target CRISPR. These results demonstrate the application of mammalian reverse genetics without crossing to organism-level systems biology in sleep research. PMID:26774482

  1. Site-directed mutagenesis and gene deletion using reverse genetics.

    PubMed

    Muhl, Daniela; Filloux, Alain

    2014-01-01

    Understanding gene function is far easier when tools are available to engineer a bacterial strain lacking a specific gene and phenotypically compare its behavior with the corresponding parental strain. Such mutants could be selected randomly, either by natural selection under particular stress conditions or by random mutagenesis using transposon delivery as described elsewhere in this book. However, with the advent of the genomic era there are now hundreds of bacterial genomes whose sequence is available, and thus, genes can be identified, chosen, and strategies designed to specifically inactivate them. This can be done by using suicide plasmids and is most convenient when the bacterium of interest is easily amenable to genetic manipulation. The method presented here will describe the use of a suicide vector, pKNG101, which allows the selection of a double-recombination event. The first event results in the integration of the pKNG101 derivative carrying the "mutator" fragment onto the chromosome, and could be selected on plates containing appropriate antibiotics. The pKNG101 carries the sacB gene, which induces death when cells are grown on sucrose. Growth on sucrose plates will thus select the second homologous recombination event, which results in removing the plasmid backbone and leaving behind the mutated target gene. This method has been widely used over the last 20 years to inactivate genes in a wide range of gram-negative bacteria and in particular in Pseudomonas aeruginosa. PMID:24818930

  2. Wnt addiction of genetically defined cancers reversed by PORCN inhibition

    PubMed Central

    Madan, B; Ke, Z; Harmston, N; Ho, S Y; Frois, A O; Alam, J; Jeyaraj, D A; Pendharkar, V; Ghosh, K; Virshup, I H; Manoharan, V; Ong, E H Q; Sangthongpitag, K; Hill, J; Petretto, E; Keller, T H; Lee, M A; Matter, A; Virshup, D M

    2016-01-01

    Enhanced sensitivity to Wnts is an emerging hallmark of a subset of cancers, defined in part by mutations regulating the abundance of their receptors. Whether these mutations identify a clinical opportunity is an important question. Inhibition of Wnt secretion by blocking an essential post-translational modification, palmitoleation, provides a useful therapeutic intervention. We developed a novel potent, orally available PORCN inhibitor, ETC-1922159 (henceforth called ETC-159) that blocks the secretion and activity of all Wnts. ETC-159 is remarkably effective in treating RSPO-translocation bearing colorectal cancer (CRC) patient-derived xenografts. This is the first example of effective targeted therapy for this subset of CRC. Consistent with a central role of Wnt signaling in regulation of gene expression, inhibition of PORCN in RSPO3-translocated cancers causes a marked remodeling of the transcriptome, with loss of cell cycle, stem cell and proliferation genes, and an increase in differentiation markers. Inhibition of Wnt signaling by PORCN inhibition holds promise as differentiation therapy in genetically defined human cancers. PMID:26257057

  3. Potato genetics, genomics, and applications

    PubMed Central

    Watanabe, Kazuo

    2015-01-01

    Potato has a variety of reproductive uniquenesses besides its clonal propagation by tubers. These traits are controlled by a different kind of genetic control. The reproductive information has been applied to enable interspecific hybridization to enhance valuable traits, such as disease and pest resistances, from the tuber-bearing Solanum gene pool. While progress has been made in potato breeding, many resources have been invested due to the requirements of large populations and long time frame. This is not only due to the general pitfalls in plant breeding, but also due to the complexity of polyploid genetics. Tetraploid genetics is the most prominent aspect associated with potato breeding. Genetic maps and markers have contributed to potato breeding, and genome information further elucidates questions in potato evolution and supports comprehensive potato breeding. Challenges yet remain on recognizing intellectual property rights to breeding and germplasm, and also on regulatory aspects to incorporate modern biotechnology for increasing genetic variation in potato breeding. PMID:25931980

  4. Sex reversal triggers the rapid transition from genetic to temperature-dependent sex.

    PubMed

    Holleley, Clare E; O'Meally, Denis; Sarre, Stephen D; Marshall Graves, Jennifer A; Ezaz, Tariq; Matsubara, Kazumi; Azad, Bhumika; Zhang, Xiuwen; Georges, Arthur

    2015-07-01

    Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination). Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene-environment interactions. Most mechanistic models of transitions invoke a role for sex reversal. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish and rarely in amphibians. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change. PMID:26135451

  5. Reveal, A General Reverse Engineering Algorithm for Inference of Genetic Network Architectures

    NASA Technical Reports Server (NTRS)

    Liang, Shoudan; Fuhrman, Stefanie; Somogyi, Roland

    1998-01-01

    Given the immanent gene expression mapping covering whole genomes during development, health and disease, we seek computational methods to maximize functional inference from such large data sets. Is it possible, in principle, to completely infer a complex regulatory network architecture from input/output patterns of its variables? We investigated this possibility using binary models of genetic networks. Trajectories, or state transition tables of Boolean nets, resemble time series of gene expression. By systematically analyzing the mutual information between input states and output states, one is able to infer the sets of input elements controlling each element or gene in the network. This process is unequivocal and exact for complete state transition tables. We implemented this REVerse Engineering ALgorithm (REVEAL) in a C program, and found the problem to be tractable within the conditions tested so far. For n = 50 (elements) and k = 3 (inputs per element), the analysis of incomplete state transition tables (100 state transition pairs out of a possible 10(exp 15)) reliably produced the original rule and wiring sets. While this study is limited to synchronous Boolean networks, the algorithm is generalizable to include multi-state models, essentially allowing direct application to realistic biological data sets. The ability to adequately solve the inverse problem may enable in-depth analysis of complex dynamic systems in biology and other fields.

  6. Experimental implementation of reverse time migration for nondestructive evaluation applications.

    PubMed

    Anderson, Brian E; Griffa, Michele; Bas, Pierre-Yves Le; Ulrich, Timothy J; Johnson, Paul A

    2011-01-01

    Reverse time migration (RTM) is a commonly employed imaging technique in seismic applications (e.g., to image reservoirs of oil). Its standard implementation cannot account for multiple scattering/reverberation. For this reason it has not yet found application in nondestructive evaluation (NDE). This paper applies RTM imaging to NDE applications in bounded samples, where reverberation is always present. This paper presents a fully experimental implementation of RTM, whereas in seismic applications, only part of the procedure is done experimentally. A modified RTM imaging condition is able to localize scatterers and locations of disbonding. Experiments are conducted on aluminum samples with controlled scatterers. PMID:21302980

  7. ECOLOGICAL AND EVOLUTIONARY APPLICATIONS FOR ENVIRONMENTAL SEX REVERSAL OF FISH.

    PubMed

    Mcnair, Alistair; Lokman, P Mark; Closs, Gerard P; Nakagawa, Shinichi

    2015-03-01

    Environmental sex reversal (ESR), which results in a mismatch between genotypic and phenotypic sex, is well documented in numerous fish species and may be induced by chemical exposure. Historically, research involving piscine ESR has been carried out with a view to improving profitability in aquaculture or to elucidate the processes governing sex determination and sexual differentiation. However, recent studies in evolution and ecology suggest research on ESR now has much wider applications and ramifications. We begin with an overview of ESR in fish and a brief review of the traditional applications thereof. We then discuss ESR and its potential demographic consequences in wild populations. Theory even suggests sex-reversed fish may be purposefully released to manipulate population dynamics. We suggest new research directions that may prove fruitful in understanding how ESR at the individual level translates to population-level processes. In the latter portion of the review we focus on evolutionary applications of ESR. Sex-reversal studies from the aquaculture literature provide insight in to the evolvability of determinants of sexual phenotype. Additionally, induced sex reversal can provide information about the evolution of sex chromosomes and sex-linked traits. Recently, naturally occurring ESR has been implicated as a mechanism contributing to the evolution of sex chromosomes. PMID:26434164

  8. Development of a PCR-Based Reverse Genetics System for an Attenuated Duck Tembusu Virus Strain

    PubMed Central

    Wu, Xiaogang; Shi, Ying; Yan, Dawei; Li, Xuesong; Yan, Pixi; Gao, Xuyuan; Zhang, Yuee; Yu, Lei; Ren, Chaochao; Li, Guoxin; Yan, Liping; Teng, Qiaoyang; Li, Zejun

    2016-01-01

    The infectious disease caused by the duck Tembusu virus (DTMUV) has resulted in massive economic losses to the Chinese duck industry in China since 2010. Research on the molecular basis of DTMUV pathogenicity has been hampered by the lack of a reliable reverse genetics system for this virus. Here we developed a PCR-based reverse genetics system with high fidelity for the attenuated DTMUV strain FX2010-180P. The rescued virus was characterized by using both indirect immunofluorescence assays (IFA) and whole genome sequencing. The rescued virus (rFX2010-180P) grew to similar titers as compared with the wild-type virus in DF-1 cells, and had similar replication and immunogenicity properties in ducks. To determine whether exogenous proteins could be expressed from DTMUV, both an internal ribosomal entry site (IRES) and the enhanced green fluorescent protein (eGFP) gene were introduced between the NS5 gene and the 3' non-coding sequence of FX2010-180P. A recombinant DTMUV expressing eGFP was rescued, but eGFP expression was unstable after 4 passages in DF-1 cells due to a deletion of 1,294 nucleotides. The establishment of a reliable reverse genetics system for FX2010-180P provides a foundation for future studies of DTMUV. PMID:27248497

  9. An Assessment of Heavy Ion Irradiation Mutagenesis for Reverse Genetics in Wheat (Triticum aestivum L.)

    PubMed Central

    Fitzgerald, Timothy L.; Powell, Jonathan J.; Stiller, Jiri; Weese, Terri L.; Abe, Tomoko; Zhao, Guangyao; Jia, Jizeng; McIntyre, C. Lynne; Li, Zhongyi; Manners, John M.; Kazan, Kemal

    2015-01-01

    Reverse genetic techniques harnessing mutational approaches are powerful tools that can provide substantial insight into gene function in plants. However, as compared to diploid species, reverse genetic analyses in polyploid plants such as bread wheat can present substantial challenges associated with high levels of sequence and functional similarity amongst homoeologous loci. We previously developed a high-throughput method to identify deletions of genes within a physically mutagenized wheat population. Here we describe our efforts to combine multiple homoeologous deletions of three candidate disease susceptibility genes (TaWRKY11, TaPFT1 and TaPLDß1). We were able to produce lines featuring homozygous deletions at two of the three homoeoloci for all genes, but this was dependent on the individual mutants used in crossing. Intriguingly, despite extensive efforts, viable lines possessing homozygous deletions at all three homoeoloci could not be produced for any of the candidate genes. To investigate deletion size as a possible reason for this phenomenon, we developed an amplicon sequencing approach based on synteny to Brachypodium distachyon to assess the size of the deletions removing one candidate gene (TaPFT1) in our mutants. These analyses revealed that genomic deletions removing the locus are relatively large, resulting in the loss of multiple additional genes. The implications of this work for the use of heavy ion mutagenesis for reverse genetic analyses in wheat are discussed. PMID:25719507

  10. Construction and characterisation of a complete reverse genetics system of dengue virus type 3.

    PubMed

    Santos, Jefferson José da Silva; Cordeiro, Marli Tenório; Bertani, Giovani Rota; Marques, Ernesto Torres de Azevedo; Gil, Laura Helena Vega Gonzales

    2013-12-01

    Dengue virulence and fitness are important factors that determine disease outcome. However, dengue virus (DENV) molecular biology and pathogenesis are not completely elucidated. New insights on those mechanisms have been facilitated by the development of reverse genetic systems in the past decades. Unfortunately, instability of flavivirus genomes cloned in Escherichia coli has been a major problem in these systems. Here, we describe the development of a complete reverse genetics system, based on the construction of an infectious clone and replicon for a low passage DENV-3 genotype III of a clinical isolate. Both constructs were assembled into a newly designed yeast-E. coli shuttle vector by homologous recombination technique and propagated in yeast to prevent any possible genome instability in E. coli. RNA transcripts derived from the infectious clone are infectious upon transfection into BHK-21 cells even after repeated passages of the plasmid in yeast. Transcript-derived DENV-3 exhibited growth kinetics, focus formation size comparable to original DENV-3 in mosquito C6/36 cell culture. In vitro characterisation of DENV-3 replicon confirmed its identity and ability to replicate transiently in BHK-21 cells. The reverse genetics system reported here is a valuable tool that will facilitate further molecular studies in DENV replication, virus attenuation and pathogenesis. PMID:24402142

  11. Genetic engineering strategies for environmental applications.

    PubMed

    de Lorenzo, V

    1992-06-01

    Environmental applications of genetically engineered microorganisms are currently hampered not only by legal regulations restricting their release, but also by the frequent dearth of adequate genetic tools for their construction in the laboratory. Recent approaches to strain development include the use of non-antibiotic markers as selection determinants, the use of transposon-vectors for the permanent acquisition of recombinant genes, and the utilization of expression devices based on promoters from promiscuous plasmids and biodegradative pathway genes. PMID:1369388

  12. Mouse Models of Cancer: Sleeping Beauty Transposons for Insertional Mutagenesis Screens and Reverse Genetic Studies

    PubMed Central

    Tschida, Barbara R.; Largaespada, David A.; Keng, Vincent W.

    2014-01-01

    The genetic complexity and heterogeneity of cancer has posed a problem in designing rationally targeted therapies effective in a large proportion of human cancer. Genomic characterization of many cancer types has provided a staggering amount of data that needs to be interpreted to further our understanding of this disease. Forward genetic screening in mice using Sleeping Beauty (SB) based insertional mutagenesis is an effective method for candidate cancer gene discovery that can aid in distinguishing driver from passenger mutations in human cancer. This system has been adapted for unbiased screens to identify drivers of multiple cancer types. These screens have already identified hundreds of candidate cancer-promoting mutations. These can be used to develop new mouse models for further study, which may prove useful for therapeutic testing. SB technology may also hold the key for rapid generation of reverse genetic mouse models of cancer, and has already been used to model glioblastoma and liver cancer. PMID:24468652

  13. Reverse engineering of metabolic pathways from observed data using genetic programming.

    PubMed

    Koza, J R; Mydlowec, W; Lanza, G; Yu, J; Keane, M A

    2001-01-01

    Recent work has demonstrated that genetic programming is capable of automatically creating complex networks (such as analog electrical circuits and controllers) whose behavior is modeled by linear and non-linear continuous-time differential equations and whose behavior matches prespecified output values. The concentrations of substances participating in networks of chemical reactions are also modeled by non-linear continuous-time differential equations. This paper demonstrates that it is possible to automatically create (reverse engineer) a network of chemical reactions from observed time-domain data. Genetic programming starts with observed time-domain concentrations of input substances and automatically creates both the topology of the network of chemical reactions and the rates of each reaction within the network such that the concentration of the final product of the automatically created network matches the observed time-domain data. Specifically, genetic programming automatically created metabolic pathways involved in the phospholipid cycle and the synthesis and degradation of ketone bodies. PMID:11262962

  14. Development of a reverse genetics system to generate a recombinant Ebola virus Makona expressing a green fluorescent protein

    SciTech Connect

    Albariño, César G. Wiggleton Guerrero, Lisa; Lo, Michael K.; Nichol, Stuart T.; Towner, Jonathan S.

    2015-10-15

    Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulness as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies.

  15. Mobile Timekeeping Application Built on Reverse-Engineered JPL Infrastructure

    NASA Technical Reports Server (NTRS)

    Witoff, Robert J.

    2013-01-01

    Every year, non-exempt employees cumulatively waste over one man-year tracking their time and using the timekeeping Web page to save those times. This app eliminates this waste. The innovation is a native iPhone app. Libraries were built around a reverse- engineered JPL API. It represents a punch-in/punch-out paradigm for timekeeping. It is accessible natively via iPhones, and features ease of access. Any non-exempt employee can natively punch in and out, as well as save and view their JPL timecard. This app is built on custom libraries created by reverse-engineering the standard timekeeping application. Communication is through custom libraries that re-route traffic through BrowserRAS (remote access service). This has value at any center where employees track their time.

  16. Evolved resistance to colistin and its loss due to genetic reversion in Pseudomonas aeruginosa

    PubMed Central

    Lee, Ji-Young; Park, Young Kyoung; Chung, Eun Seon; Na, In Young; Ko, Kwan Soo

    2016-01-01

    The increased reliance on colistin for treating multidrug-resistant Gram-negative bacterial infections has resulted in the emergence of colistin-resistant Pseudomonas aeruginosa. We attempted to identify genetic contributors to colistin resistance in vitro evolved isogenic colistin-resistant and -susceptible strains of two P. aeruginosa lineages (P5 and P155). Their evolutionary paths to acquisition and loss of colistin resistance were also tracked. Comparative genomic analysis revealed 13 and five colistin resistance determinants in the P5 and P155 lineages, respectively. Lipid A in colistin-resistant mutants was modified through the addition of 4-amino-L-arabinose; this modification was absent in colistin-susceptible revertant strains. Many amino acid substitutions that emerged during the acquisition of colistin resistance were reversed in colistin-susceptible revertants. We demonstrated that evolved colistin resistance in P. aeruginosa was mediated by a complicated regulatory network that likely emerges through diverse genetic alterations. Colistin-resistant P. aeruginosa became susceptible to the colistin upon its withdrawal because of genetic reversion. The mechanisms through which P. aeruginosa acquires and loses colistin resistance have implications on the treatment options that can be applied against P. aeruginosa infections, with respect to improving bactericidal efficacy and preventing further resistance to antibiotics. PMID:27150578

  17. Evolved resistance to colistin and its loss due to genetic reversion in Pseudomonas aeruginosa.

    PubMed

    Lee, Ji-Young; Park, Young Kyoung; Chung, Eun Seon; Na, In Young; Ko, Kwan Soo

    2016-01-01

    The increased reliance on colistin for treating multidrug-resistant Gram-negative bacterial infections has resulted in the emergence of colistin-resistant Pseudomonas aeruginosa. We attempted to identify genetic contributors to colistin resistance in vitro evolved isogenic colistin-resistant and -susceptible strains of two P. aeruginosa lineages (P5 and P155). Their evolutionary paths to acquisition and loss of colistin resistance were also tracked. Comparative genomic analysis revealed 13 and five colistin resistance determinants in the P5 and P155 lineages, respectively. Lipid A in colistin-resistant mutants was modified through the addition of 4-amino-L-arabinose; this modification was absent in colistin-susceptible revertant strains. Many amino acid substitutions that emerged during the acquisition of colistin resistance were reversed in colistin-susceptible revertants. We demonstrated that evolved colistin resistance in P. aeruginosa was mediated by a complicated regulatory network that likely emerges through diverse genetic alterations. Colistin-resistant P. aeruginosa became susceptible to the colistin upon its withdrawal because of genetic reversion. The mechanisms through which P. aeruginosa acquires and loses colistin resistance have implications on the treatment options that can be applied against P. aeruginosa infections, with respect to improving bactericidal efficacy and preventing further resistance to antibiotics. PMID:27150578

  18. Identification of Host Genes Involved in Geminivirus Infection Using a Reverse Genetics Approach

    PubMed Central

    Luna, Ana P.; Bejarano, Eduardo R.

    2011-01-01

    Geminiviruses, like all viruses, rely on the host cell machinery to establish a successful infection, but the identity and function of these required host proteins remain largely unknown. Tomato yellow leaf curl Sardinia virus (TYLCSV), a monopartite geminivirus, is one of the causal agents of the devastating Tomato yellow leaf curl disease (TYLCD). The transgenic 2IRGFP N. benthamiana plants, used in combination with Virus Induced Gene Silencing (VIGS), entail an important potential as a tool in reverse genetics studies to identify host factors involved in TYLCSV infection. Using these transgenic plants, we have made an accurate description of the evolution of TYLCSV replication in the host in both space and time. Moreover, we have determined that TYLCSV and Tobacco rattle virus (TRV) do not dramatically influence each other when co-infected in N. benthamiana, what makes the use of TRV-induced gene silencing in combination with TYLCSV for reverse genetic studies feasible. Finally, we have tested the effect of silencing candidate host genes on TYLCSV infection, identifying eighteen genes potentially involved in this process, fifteen of which had never been implicated in geminiviral infections before. Seven of the analyzed genes have a potential anti-viral effect, whereas the expression of the other eleven is required for a full infection. Interestingly, almost half of the genes altering TYLCSV infection play a role in postranslational modifications. Therefore, our results provide new insights into the molecular mechanisms underlying geminivirus infections, and at the same time reveal the 2IRGFP/VIGS system as a powerful tool for functional reverse genetics studies. PMID:21818318

  19. Divergent genetic mechanisms underlie reversals to radial floral symmetry from diverse zygomorphic flowered ancestors

    PubMed Central

    Zhang, Wenheng; Steinmann, Victor W.; Nikolov, Lachezar; Kramer, Elena M.; Davis, Charles C.

    2013-01-01

    Malpighiaceae possess flowers with a unique bilateral symmetry (zygomorphy), which is a hypothesized adaptation associated with specialization on neotropical oil bee pollinators. Gene expression of two representatives of the CYC2 lineage of floral symmetry TCP genes, CYC2A and CYC2B, demarcate the adaxial (dorsal) region of the flower in the characteristic zygomorphic flowers of most Malpighiaceae. Several clades within the family, however, have independently lost their specialized oil bee pollinators and reverted to radial flowers (actinomorphy) like their ancestors. Here, we investigate CYC2 expression associated with four independent reversals to actinomorphy. We demonstrate that these reversals are always associated with alteration of the highly conserved CYC2 expression pattern observed in most New World (NW) Malpighiaceae. In NW Lasiocarpus and Old World (OW) Microsteria, the expression of CYC2-like genes has expanded to include the ventral region of the corolla. Thus, the pattern of gene expression in these species has become radialized, which is comparable to what has been reported in the radial flowered legume clade Cadia. In striking contrast, in NW Psychopterys and OW Sphedamnocarpus, CYC2-like expression is entirely absent or at barely detectable levels. This is more similar to the pattern of CYC2 expression observed in radial flowered Arabidopsis. These results collectively indicate that, regardless of geographic distribution, reversals to similar floral phenotypes in this large tropical angiosperm clade have evolved via different genetic changes from an otherwise highly conserved developmental program. PMID:23970887

  20. A Multi-Stage Reverse Logistics Network Problem by Using Hybrid Priority-Based Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Eun; Gen, Mitsuo; Rhee, Kyong-Gu

    Today remanufacturing problem is one of the most important problems regarding to the environmental aspects of the recovery of used products and materials. Therefore, the reverse logistics is gaining become power and great potential for winning consumers in a more competitive context in the future. This paper considers the multi-stage reverse Logistics Network Problem (m-rLNP) while minimizing the total cost, which involves reverse logistics shipping cost and fixed cost of opening the disassembly centers and processing centers. In this study, we first formulate the m-rLNP model as a three-stage logistics network model. Following for solving this problem, we propose a Genetic Algorithm pri (GA) with priority-based encoding method consisting of two stages, and introduce a new crossover operator called Weight Mapping Crossover (WMX). Additionally also a heuristic approach is applied in the 3rd stage to ship of materials from processing center to manufacturer. Finally numerical experiments with various scales of the m-rLNP models demonstrate the effectiveness and efficiency of our approach by comparing with the recent researches.

  1. Evolutionary reversion of live viral vaccines: Can genetic engineering subdue it?

    PubMed Central

    Bull, J. J.

    2016-01-01

    Attenuated, live viral vaccines have been extraordinarily successful in protecting against many diseases. The main drawbacks in their development and use have been reliance on an unpredictable method of attenuation and the potential for evolutionary reversion to high virulence. Methods of genetic engineering now provide many safer alternatives to live vaccines, so if live vaccines are to compete with these alternatives in the future, they must either have superior immunogenicity or they must be able to overcome these former disadvantages. Several live vaccine designs that were historically inaccessible are now feasible because of advances in genome synthesis. Some of those methods are addressed here, with an emphasis on whether they enable predictable levels of attenuation and whether they are stable against evolutionary reversion. These new designs overcome many of the former drawbacks and position live vaccines to be competitive with alternatives. Not only do new methods appear to retard evolutionary reversion enough to prevent vaccine-derived epidemics, but it may even be possible to permanently attenuate live vaccines that are transmissible but cannot evolve to higher virulence under prolonged adaptation. PMID:27034780

  2. Application of Molecular Genetics and Transformation to Barley Improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter of the new barley monograph summarizes current applications of molecular genetics and transformation to barley improvement. The chapter describes recent applications of molecular markers including association genetics, QTL mapping and marker assisted selection in barley programs, and in...

  3. Evaluation of a genetically modified foot-and-mouth disease virus vaccine candidate generated by reverse genetics

    PubMed Central

    2012-01-01

    Background Foot-and-mouth disease (FMD) is the most economically important and highly contagious disease of cloven-hoofed animals worldwide. Control of the disease has been mainly based on large-scale vaccinations with whole-virus inactivated vaccines. In recent years, a series of outbreaks of type O FMD occurred in China (including Chinese Taipei, Chinese Hong Kong) posed a tremendous threat to Chinese animal husbandry. Its causative agent, type O FMDV, has evolved into three topotypes (East–South Asia (ME-SA), Southeast Asia (SEA), Cathay (CHY)) in these regions, which represents an important obstacle to disease control. The available FMD vaccine in China shows generally good protection against ME-SA and SEA topotype viruses infection, but affords insufficient protection against some variants of the CHY topotype. Therefore, the choice of a new vaccine strain is of fundamental importance. Results The present study describes the generation of a full-length infectious cDNA clone of FMDV vaccine strain and a genetically modified virus with some amino acid substitutions in antigenic sites 1, 3, and 4, based on the established infectious clone. The recombinant viruses had similar growth properties to the wild O/HN/CHA/93 virus. All swine immunized with inactivated vaccine prepared from the O/HN/CHA/93 were fully protected from challenge with the viruses of ME-SA and SEA topotypes and partially protected against challenge with the virus of CHY topotype at 28 days post-immunization. In contrast, the swine inoculated with the genetically modified vaccine were completely protected from the infection of viruses of the three topotypes. Conclusions Some amino acid substitutions in the FMDV vaccine strain genome did not have an effect on the ability of viral replication in vitro. The vaccine prepared from genetically modified FMDV by reverse genetics significantly improved the protective efficacy to the variant of the CHY topotype, compared with the wild O/HN/CHA/93 virus

  4. The Applications of Genetic Algorithms in Medicine.

    PubMed

    Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin

    2015-11-01

    A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.]. PMID:26676060

  5. The Applications of Genetic Algorithms in Medicine

    PubMed Central

    Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin

    2015-01-01

    A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.] PMID:26676060

  6. Improved dual promotor-driven reverse genetics system for influenza viruses.

    PubMed

    Mostafa, Ahmed; Kanrai, Pumaree; Ziebuhr, John; Pleschka, Stephan

    2013-11-01

    Reverse genetic systems for influenza A virus (IAV) allow the generation of genetically manipulated infectious virus from a set of transfected plasmid DNAs encoding the eight genomic viral RNA segments (vRNA). For this purpose, cDNAs representing these eight vRNA segments are cloned into specific plasmid vectors that allow the generation of vRNA-like transcripts using polymerase I (Pol I). In addition, these plasmids support the transcription of viral mRNA by polymerase II (Pol II), leading to the expression of viral protein(s) encoded by the respective transcripts. In an effort to develop this system further, we constructed the bi-directional vector pMPccdB. It is based on pHW2000 (Hoffmann et al., 2000b) but contains additionally (i) the ccdB gene whose expression is lethal for most Escherichia coli strains and therefore used as a negative selection marker and (ii) more efficient AarI cloning sites that flank the ccdB gene on either side. Furthermore, we used a modified one-step restriction/ligation protocol to insert the desired cDNA into the respective pMPccdB vector DNA. Both the use of a negative selection marker and an improved cloning protocol were shown to facilitate the generation of genetically engineered IAV as illustrated in this study by the cloning and rescue of the 2009 pandemic isolate A/Giessen/6/2009 (Gi-H1N1). PMID:23886561

  7. Identification of genetic changes associated with drug resistance by reverse in situ hybridization.

    PubMed Central

    Hoare, S. F.; Freeman, C. A.; Coutts, J. C.; Varley, J. M.; James, L.; Keith, W. N.

    1997-01-01

    The molecular cytogenetic techniques of comparative genomic hybridization (CGH) and reverse in situ hybridization (REVISH) allow the entire genomes of tumours to be screened for genetic changes without the requirement for specific probes or markers. In order to define the ability of REVISH to detect and map regions of amplification associated with drug resistance, we investigated a panel of cell lines selected for resistance to doxorubicin and intrinsic sensitivity to topoisomerase II-inhibitory drugs. We have defined a modified REVISH protocol, which involves double hybridizations with genomic DNA from the test cell lines and chromosome-specific whole chromosome paints to identify the chromosomes to which the amplicons localize. Sites of amplification are then mapped by fractional length measurements (Flpter), using published genome databases. Our findings show that amplification of the topoisomerase II alpha gene is readily detected and mapped, as is amplification of the MDR and MRP loci. Interestingly, REVISH detected a new amplicon in the doxorubicin-resistant lung cancer cell line, GLC4-ADR, which mapped to chromosome 1q. REVISH is therefore ideally suited to characterize genetic changes specific for drug resistance within a background of genetic anomalies associated with tumour progression. Images Figure 1 Figure 2 Figure 3 PMID:9010038

  8. Applications of Time-Reversal Processing for Planetary Surface Communications

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2007-01-01

    Due to the power constraints imposed on wireless sensor and communication networks deployed on a planetary surface during exploration, energy efficient transfer of data becomes a critical issue. In situations where groups of nodes within a network are located in relatively close proximity, cooperative communication techniques can be utilized to improve the range, data rate, power efficiency, and lifetime of the network. In particular, if the point-to-point communication channels on the network are well modeled as frequency non-selective, distributed or cooperative beamforming can employed. For frequency-selective channels, beamforming itself is not generally appropriate, but a natural generalization of it, time-reversal communication (TRC), can still be effective. Time-reversal processing has been proposed and studied previously for other applications, including acoustical imaging, electromagnetic imaging, underwater acoustic communication, and wireless communication channels. In this paper, we study both the theoretical advantages and the experimental performance of cooperative TRC for wireless communication on planetary surfaces. We give a brief introduction to TRC and present several scenarios where TRC could be profitably employed during planetary exploration. We also present simulation results illustrating the performance of cooperative TRC employed in a complex multipath environment and discuss the optimality of cooperative TRC for data aggregation in wireless sensor networks

  9. Light metal alanates and amides for reversible hydrogen storage applications

    NASA Astrophysics Data System (ADS)

    Lu, Jun

    Hydrogen is undoubtedly one of the key alternatives to replace petroleum products as a clean energy carrier for both transportation and stationary applications. Although there have been numerous material systems studied as potential candidates for hydrogen storage applications, none of the materials known to date has demonstrated sufficient hydrogen capacity or efficiency in the required operating temperature ranges. There are still considerable opportunities for the discovery of new materials that could lead to advances in science as well as commercial technologies in this area. In this study, two new hydrogen-storage systems, i.e. alanate/amide and LiMgN, are investigated. Firstly, we found that if LiAlH4 and LiNH2 are allowed to react in a proper molar ratio, the LiH that forms as an intermediate product of the dehydrogenation of LiAlH4 can subsequently react with LiNH2 to release H2 at temperatures below 300°C, much lower than that without LiNH2. However, this system is only partially reversible. The difficulty of reversing the reaction is attributed to the irreversibility of the dehydrogenation reaction of LiAlH4 to Li3AlH6. Further experimental results showed that the reversible storage capacity of the combined alanate/amide material system is increased to 7.0 wt% under 300°C, if LiNH2 were reacted with Li3AlH6, instead of LiAlH4, in a 3:1 molar ratio. We also found that the re-formation of Li3AlH 6 depends strongly on the heating rate during the hydrogenation process. To improve the kinetic and thermodynamic properties of the Li-Al-N-H systems, the reaction between Li3AlH6 and Mg(NH2) 2 was studied based on the understanding of the destabilizing effect of amide on alanates. The Li-Al-Mg-N-H system would have better kinetic properties than the Li-Al-N-H system due to the addition of Mg, based on the published research results on the comparison between the Li-Mg-N-H and Li-N-H systems. A reversible 6.2 wt% H2 storage capacity has been demonstrated under the

  10. Application of Genetic Algorithms in Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Soupios, Pantelis; Akca, Irfan; Mpogiatzis, Petros; Basokur, Ahmet; Papazachos, Constantinos

    2010-05-01

    In the earth sciences several inverse problems that require data fitting and parameter estimation are nonlinear and can involve a large number of unknown parameters. Consequently, the application of analytical inversion or optimization techniques may be quite restrictive. In practice, most analytical methods are local in nature and rely on a linearized form of the problem in question, adopting an iterative procedure using partial derivatives to improve an initial model. This approach can lead to a dependence of the final model solution on the starting model and is prone to entrapment in local misfit minima. Moreover, the calculation of derivatives can be computationally inefficient and create instabilities when numerical approximations are used. In contrast to these local minimization methods, global techniques that do not rely on partial derivatives, are independent of the form of the data misfit criterion, and are computationally robust. Such methods often use random processes to sample a selected wider span of the model space. In this situation, randomly generated models are assessed in terms of their data-fitting quality and the process may be stopped after a certain number of acceptable models is identified or continued until a satisfactory data fit is achieved. A new class of methods known as genetic algorithms achieves the aforementioned approximation through novel model representation and manipulations. Genetic algorithms (GAs) were originally developed in the field of artificial intelligence by John Holland more than 20 years ago, but even in this field it is less than a decade that the methodology has been more generally applied and only recently did the methodology attract the attention of the earth sciences community. Applications have been generally concentrated in geophysics and in particular seismology. As awareness of genetic algorithms grows there surely will be many more and varied applications to earth science problems. In the present work, the

  11. Reversibly switchable photoacoustic tomography using a genetically encoded near-infrared phytochrome

    NASA Astrophysics Data System (ADS)

    Yao, Junjie; Kaberniuk, Andrii A.; Li, Lei; Shcherbakova, Daria M.; Zhang, Ruiying; Wang, Lidai; Li, Guo; Verkhusha, Vladislav V.; Wang, Lihong V.

    2016-03-01

    Optical imaging of genetically encoded probes has revolutionized biomedical studies by providing valuable information about targeted biological processes. Here, we report a novel imaging technique, termed reversibly switchable photoacoustic tomography (RS-PAT), which exhibits large penetration depth, high detection sensitivity, and super-resolution. RS-PAT combines advanced photoacoustic imaging techniques with, for the first time, a nonfluorescent photoswitchable bacterial phytochrome. This bacterial phytochrome is the most near-infrared shifted genetically encoded probe reported so far. Moreover, this bacterial phytochrome is reversibly photoconvertible between its far-red and near-infrared light absorption states. Taking maximum advantage of the powerful imaging capability of PAT and the unique photochemical properties of the phytochrome, RS-PAT has broken through both the optical diffusion limit for deep-tissue imaging and the optical diffraction limit for super-resolution photoacoustic microscopy. Specifically, with RS-PAT we have achieved an unprecedented detection sensitivity of ~2 μM, or as few as ~20 tumor cells, at a centimeter depth. Such high sensitivity is fully demonstrated in our study by monitoring tumor growth and metastasis at whole-body level with ~100 μm resolution. Moreover, our microscopic implementation of RS-PAT is capable of imaging mammalian cells with a sub-diffraction lateral resolution of ~140 nm and axial resolution of ~400 nm, which are respectively ~2-fold and ~75-fold finer than those of our conventional photoacoustic microscopy. Overall, RS-PAT is a new and promising imaging technology for studying biological processes at different length scales.

  12. Establishment of reverse genetics system for infectious bronchitis virus attenuated vaccine strain H120.

    PubMed

    Zhou, Ying Shun; Zhang, Yi; Wang, Hong Ning; Fan, Wen Qiao; Yang, Xin; Zhang, An Yun; Zeng, Fan Ya; Zhang, Zhi Kun; Cao, Hai Peng; Zeng, Cheng

    2013-02-22

    Infectious bronchitis virus (IBV) strain H120 was successfully rescued as infectious clone by reverse genetics. Thirteen 1.5-2.8 kb fragments contiguously spanning the virus genome were amplified and cloned into pMD19-T. Transcription grade complete length cDNA was acquired by a modified "No See'm" ligation strategy, which employed restriction enzyme Bsa I and BsmB I and ligated more than two fragments in one T4 ligase reaction. The full-length genomic cDNA was transcribed and its transcript was transfected by electroporation into BHK-21 together with the transcript of nucleocapsid gene. At 48 h post transfection, the medium to culture the transfected BHK-21 cells was harvested and inoculated into 10-days old SPF embryonated chicken eggs (ECE) to replicate the rescued virus. After passage of the virus in ECE five times, the rescued H120 virus (R-H120) was successfully recovered. R-H120 was subsequently identified to possess the introduced silent mutation site in its genome. Some biological characteristics of R-H120 such as growth curve, EID50 and HA titers, were tested and all of them were very similar to its parent strain H120. In addition, both R-H120 and H120 induced a comparable titer of HA inhibition (HI) antibody in immunized chickens and also provided up to 85% of immune protection to the chickens that were challenged with Mass41 IBV strain. The present study demonstrated that construction of infectious clone from IBV vaccine strain H120 is possible and IBV-H120 can be use as a vaccine vector for the development of novel vaccines through molecular recombination and the modified reverse genetics approach. PMID:22999521

  13. Enterovirus A71 DNA-Launched Infectious Clone as a Robust Reverse Genetic Tool.

    PubMed

    Tan, Chee Wah; Tee, Han Kang; Lee, Michelle Hui Pheng; Sam, I-Ching; Chan, Yoke Fun

    2016-01-01

    Enterovirus A71 (EV-A71) causes major outbreaks of hand, foot and mouth disease, and is occasionally associated with neurological complications and death in children. Reverse genetics is widely used in the field of virology for functional study of viral genes. For EV-A71, such tools are limited to clones that are transcriptionally controlled by T7/SP6 bacteriophage promoter. This is often time-consuming and expensive. Here, we describe the development of infectious plasmid DNA-based EV-A71 clones, for which EV-A71 genome expression is under transcriptional control by the CMV-intermediate early promoter and SV40 transcriptional-termination signal. Transfection of this EV-A71 infectious DNA produces good virus yield similar to in vitro-transcribed EV-A71 infectious RNA, 6.4 and 5.8 log10PFU/ml, respectively. Infectious plasmid with enhanced green fluorescence protein and Nano luciferase reporter genes also produced good virus titers, with 4.3 and 5.0 log10 PFU/ml, respectively. Another infectious plasmid with both CMV and T7 promoters was also developed for easy manipulation of in vitro transcription or direct plasmid transfection. Transfection with either dual-promoter infectious plasmid DNA or infectious RNA derived from this dual-promoter clone produced infectious viral particles. Incorporation of hepatitis delta virus ribozyme, which yields precise 3' ends of the DNA-launched EV-A71 genomic transcripts, increased infectious viral production. In contrast, the incorporation of hammerhead ribozyme in the DNA-launched EV-A71 resulted in lower virus yield, but improved the virus titers for T7 promoter-derived infectious RNA. This study describes rapid and robust reverse genetic tools for EV-A71. PMID:27617744

  14. Detection of infectious bursal disease virus isolates with unknown antigenic properties by reverse genetics.

    PubMed

    Icard, Alan H; Sellers, Holly S; Mundt, Egbert

    2008-12-01

    Infectious bursal disease virus (IBDV) serotype 1 is the causative agent of a highly contagious immunosuppressive disease of young chickens. In the past, a number of antigenic, as well as pathogenic, subtypes have been described. The determination of the antigenic makeup of circulating strains is of vital interest to the poultry industry because changes in the antigenicity of circulating field strains have an impact on the use of vaccines. To obtain a more comprehensive overview of the relationship between the nucleotide and amino acid sequence and the antigenic makeup of field isolates, a system based on reverse genetics of IBDV was established. Using this approach, a database for field isolates from three different states in the United States (Georgia, Alabama, and Louisiana), consisting of nucleotide sequence, amino acid sequence, and a reaction pattern based on a panel of monoclonal antibodies, was established. The obtained results showed that phylogenic analysis, which is based on the similarity of sequences, would lead to false conclusions regarding a possible antigenic makeup of the particular isolate. Sequences of field samples were divided into three groups: 1) those that grouped with variant strain E/Del sequences but were antigenically different, 2) those that did not group with sequences of E/Del but were similar in their antigenic makeup, and 3) those that did not group with E/Del sequences and were antigenically different. In addition, using the reverse-genetics approach, a number of field isolates showed no reactivity with any of the used monoclonal antibodies, indicating that an unknown, antigenic subtype of IBDV serotype 1 is circulating in the field. PMID:19166049

  15. Development of a novel single-step reverse genetics system for the generation of classical swine fever virus.

    PubMed

    Li, Ling; Pang, Huining; Wu, Rui; Zhang, Yanwen; Tan, Yiluo; Pan, Zishu

    2016-07-01

    We describe an alternative reverse genetics system for generating classical swine fever virus (CSFV) based on swine RNA polymerase I promoter (pSPI)-mediated vRNA transcription. The recombinant plasmid pSPTI/SM harboring a full-length CSFV Shimen strain cDNA, flanked by a swine RNA polymerase I (pol I) promoter sequence at the 5' end and a murine pol I terminator sequence at the 3' end, was constructed. When the plasmid pSPTI/SM was introduced into PK-15 cells by transfection, an infectious CSFV with termini identical to those of the parental virus was generated directly. CSFV rescued from this reverse genetics system exhibited similar growth kinetics and plaque formation compared with the parental CSFV. When the novel reverse genetics system was used to generate the CSFV vaccine C-strain, infectious virus was detected in the supernatant of PK-15 cells transfected with the recombinant plasmid pSPTI/C. This novel reverse genetics system is a simple and efficient tool for the investigation of the structure and function of the viral genome, for molecular pathogenicity studies, and for the development of genetically engineered vaccines for CSFV. PMID:27068166

  16. Machine learning applications in genetics and genomics.

    PubMed

    Libbrecht, Maxwell W; Noble, William Stafford

    2015-06-01

    The field of machine learning, which aims to develop computer algorithms that improve with experience, holds promise to enable computers to assist humans in the analysis of large, complex data sets. Here, we provide an overview of machine learning applications for the analysis of genome sequencing data sets, including the annotation of sequence elements and epigenetic, proteomic or metabolomic data. We present considerations and recurrent challenges in the application of supervised, semi-supervised and unsupervised machine learning methods, as well as of generative and discriminative modelling approaches. We provide general guidelines to assist in the selection of these machine learning methods and their practical application for the analysis of genetic and genomic data sets. PMID:25948244

  17. A Reverse Genetics Approach for the Design of Methyltransferase-Defective Live Attenuated Avian Metapneumovirus Vaccines.

    PubMed

    Zhang, Yu; Sun, Jing; Wei, Yongwei; Li, Jianrong

    2016-01-01

    Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis and is associated with swollen head syndrome in chickens. aMPV belongs to the family Paramyxoviridae which includes many important human pathogens such as human respiratory syncytial virus (RSV), human metapneumovirus (hMPV), and human parainfluenza virus type 3 (PIV3). The family also includes highly lethal emerging pathogens such as Nipah virus and Hendra virus, as well as agriculturally important viruses such as Newcastle disease virus (NDV). For many of these viruses, there is no effective vaccine. Here, we describe a reverse genetics approach to develop live attenuated aMPV vaccines by inhibiting the viral mRNA cap methyltransferase. The viral mRNA cap methyltransferase is an excellent target for the attenuation of paramyxoviruses because it plays essential roles in mRNA stability, efficient viral protein translation and innate immunity. We have described in detail the materials and methods used to generate recombinant aMPVs that lack viral mRNA cap methyltransferase activity. We have also provided methods to evaluate the genetic stability, pathogenesis, and immunogenicity of live aMPV vaccine candidates in turkeys. PMID:27076293

  18. A tunable and reversible platform for the intracellular formation of genetically engineered protein microdomains.

    PubMed

    Pastuszka, Martha K; Janib, Siti M; Weitzhandler, Isaac; Okamoto, Curtis T; Hamm-Alvarez, Sarah; Mackay, J Andrew

    2012-11-12

    From mitochondria to the nuclear envelope, the controlled assembly of micro- and nanostructures is essential for life; however, the level at which we can deliberately engineer the assembly of microstructures within intracellular environments remains primitive. To overcome this obstacle, we present a platform to reversibly assemble genetically engineered protein microdomains (GEPMs) on the time scale of minutes within living cells. Biologically inspired from the human protein tropoelastin, these protein polymers form a secondary aqueous phase above a tunable transition temperature. This assembly process is easily manipulated to occur at or near physiological temperature by adjusting molecular weight and hydrophobicity. We fused protein polymers to green fluorescent protein (GFP) to visualize their behavior within the cytoplasm. While soluble, these polymers have a similar intracellular diffusion constant as cytosolic proteins at 7.4 μm(2)/s; however, above their phase transition temperature, the proteins form distinct microdomains (0.1-2 μm) with a reduced diffusion coefficient of 1.1 μm(2)/s. Microdomain assembly and disassembly are both rapid processes with half-lives of 3.8 and 1.0 min, respectively. Via selection of the protein polymer, the assembly temperature is tunable between 20 and 40 °C. This approach may be useful to control intracellular formation of genetically engineered proteins and protein complexes into concentrated microdomains. PMID:23088632

  19. Universal influenza B virus genomic amplification facilitates sequencing, diagnostics, and reverse genetics.

    PubMed

    Zhou, Bin; Lin, Xudong; Wang, Wei; Halpin, Rebecca A; Bera, Jayati; Stockwell, Timothy B; Barr, Ian G; Wentworth, David E

    2014-05-01

    Although human influenza B virus (IBV) is a significant human pathogen, its great genetic diversity has limited our ability to universally amplify the entire genome for subsequent sequencing or vaccine production. The generation of sequence data via next-generation approaches and the rapid cloning of viral genes are critical for basic research, diagnostics, antiviral drugs, and vaccines to combat IBV. To overcome the difficulty of amplifying the diverse and ever-changing IBV genome, we developed and optimized techniques that amplify the complete segmented negative-sense RNA genome from any IBV strain in a single tube/well (IBV genomic amplification [IBV-GA]). Amplicons for >1,000 diverse IBV genomes from different sample types (e.g., clinical specimens) were generated and sequenced using this robust technology. These approaches are sensitive, robust, and sequence independent (i.e., universally amplify past, present, and future IBVs), which facilitates next-generation sequencing and advanced genomic diagnostics. Importantly, special terminal sequences engineered into the optimized IBV-GA2 products also enable ligation-free cloning to rapidly generate reverse-genetics plasmids, which can be used for the rescue of recombinant viruses and/or the creation of vaccine seed stock. PMID:24501036

  20. Genomic and Genetic Analysis of Bordetella Bacteriophages Encoding Reverse Transcriptase-Mediated Tropism-Switching Cassettes

    PubMed Central

    Liu, Minghsun; Gingery, Mari; Doulatov, Sergei R.; Liu, Yichin; Hodes, Asher; Baker, Stephen; Davis, Paul; Simmonds, Mark; Churcher, Carol; Mungall, Karen; Quail, Michael A.; Preston, Andrew; Harvill, Eric T.; Maskell, Duncan J.; Eiserling, Frederick A.; Parkhill, Julian; Miller, Jeff F.

    2004-01-01

    Liu et al. recently described a group of related temperate bacteriophages that infect Bordetella subspecies and undergo a unique template-dependent, reverse transcriptase-mediated tropism switching phenomenon (Liu et al., Science 295: 2091-2094, 2002). Tropism switching results from the introduction of single nucleotide substitutions at defined locations in the VR1 (variable region 1) segment of the mtd (major tropism determinant) gene, which determines specificity for receptors on host bacteria. In this report, we describe the complete nucleotide sequences of the 42.5- to 42.7-kb double-stranded DNA genomes of three related phage isolates and characterize two additional regions of variability. Forty-nine coding sequences were identified. Of these coding sequences, bbp36 contained VR2 (variable region 2), which is highly dynamic and consists of a variable number of identical 19-bp repeats separated by one of three 5-bp spacers, and bpm encodes a DNA adenine methylase with unusual site specificity and a homopolymer tract that functions as a hotspot for frameshift mutations. Morphological and sequence analysis suggests that these Bordetella phage are genetic hybrids of P22 and T7 family genomes, lending further support to the idea that regions encoding protein domains, single genes, or blocks of genes are readily exchanged between bacterial and phage genomes. Bordetella bacteriophages are capable of transducing genetic markers in vitro, and by using animal models, we demonstrated that lysogenic conversion can take place in the mouse respiratory tract during infection. PMID:14973019

  1. Genetically modified plants for law enforcement applications

    NASA Astrophysics Data System (ADS)

    Stewart, C. Neal, Jr.

    2002-08-01

    Plants are ubiquitous in the environment and have the unique ability to respond to their environment physiologically and through altered gene expression profiles (they cannot walk away). In addition, plant genetic transformation techniques and genomic information in plants are becoming increasingly advanced. We have been performing research to express the jellyfish green fluorescent protein (GFP) in plants. GFP emits green light when excited by blue or UV light. In addition, my group and collaborators have developed methods to detect GFP in plants by contact instruments and at a standoff. There are several law enforcement applications for this technology. One involves using tagging and perhaps modifying drug plants genetically. In one instance, we could tag them for destruction. In another, we could adulterate them directly. Another application is one that falls into the chemical terrorism and bioterrorism countermeasures category. We are developing plants to sense toxins and whole organisms covertly. Plants are well adapted to monitor large geographic areas; biosurveillance. Some examples of research being performed focus on plants with plant pathogen inducible promoters fused to GFP for disease sensing, and algae biosensors for chemicals.

  2. Application of time reversal acoustics focusing for nonlinear imaging ms

    NASA Astrophysics Data System (ADS)

    Sarvazyan, Armen; Sutin, Alexander

    2001-05-01

    Time reversal acoustic (TRA) focusing of ultrasound appears to be an effective tool for nonlinear imaging in industrial and medical applications because of its ability to efficiently concentrate ultrasonic energy (close to diffraction limit) in heterogeneous media. In this study, we used two TRA systems to focus ultrasonic beams with different frequencies in coinciding focal points, thus causing the generation of ultrasonic waves with combination frequencies. Measurements of the intensity of these combination frequency waves provide information on the nonlinear parameter of medium in the focal region. Synchronized stirring of two TRA focused beams enables obtaining 3-D acoustic nonlinearity images of the object. Each of the TRA systems employed an aluminum resonator with piezotransducers glued to its facet. One of the free facets of each resonator was submerged into a water tank and served as a virtual phased array capable of ultrasound focusing and beam steering. To mimic a medium with spatially varying acoustical nonlinearity a simplest model such as a microbubble column in water was used. Microbubbles were generated by electrolysis of water using a needle electrode. An order of magnitude increase of the sum frequency component was observed when the ultrasound beams were focused in the area with bubbles.

  3. Deletion of liaR Reverses Daptomycin Resistance in Enterococcus faecium Independent of the Genetic Background

    PubMed Central

    Panesso, Diana; Reyes, Jinnethe; Gaston, Elizabeth P.; Deal, Morgan; Londoño, Alejandra; Nigo, Masayuki; Munita, Jose M.; Miller, William R.; Shamoo, Yousif; Tran, Truc T.

    2015-01-01

    We have shown previously that changes in LiaFSR, a three-component regulatory system predicted to orchestrate the cell membrane stress response, are important mediators of daptomycin (DAP) resistance in enterococci. Indeed, deletion of the gene encoding the response regulator LiaR in a clinical strain of Enterococcus faecalis reversed DAP resistance (DAP-R) and produced a strain hypersusceptible to antimicrobial peptides. Since LiaFSR is conserved in Enterococcus faecium, we investigated the role of LiaR in a variety of clinical E. faecium strains representing the most common DAP-R genetic backgrounds. Deletion of liaR in DAP-R E. faecium R446F (DAP MIC of 16 μg/ml) and R497F (MIC of 24 μg/ml; harboring changes in LiaRS) strains fully reversed resistance (DAP MICs decreasing to 0.25 and 0.094 μg/ml, respectively). Moreover, DAP at concentrations of 13 μg/ml (achieved with human doses of 12 mg/kg body weight) retained bactericidal activity against the mutants. Furthermore, the liaR deletion derivatives of these two DAP-R strains exhibited increased binding of boron-dipyrromethene difluoride (BODIPY)-daptomycin, suggesting that high-level DAP-R mediated by LiaR in E. faecium involves repulsion of the calcium-DAP complex from the cell surface. In DAP-tolerant strains HOU503F and HOU515F (DAP MICs within the susceptible range but bacteria not killed by DAP concentrations of 5× the MIC), deletion of liaR not only markedly decreased the DAP MICs (0.064 and 0.047 μg/ml, respectively) but also restored the bactericidal activity of DAP at concentrations as low as 4 μg/ml (achieved with human doses of 4 mg/kg). Our results suggest that LiaR plays a relevant role in the enterococcal cell membrane adaptive response to antimicrobial peptides independent of the genetic background and emerges as an attractive target to restore the activity of DAP against multidrug-resistant strains. PMID:26369959

  4. Association of genetic polymorphisms in the telomerase reverse transcriptase gene with prostate cancer aggressiveness.

    PubMed

    Wu, Dapeng; Yu, Hongjie; Sun, Jielin; Qi, Jun; Liu, Qiang; Li, Ruipeng; Zheng, Siqun Lily; Xu, Jianfeng; Kang, Jian

    2015-07-01

    Telomerase reverse transcriptase (TERT), encoded by the TERT gene, is an essential component of telomerase, essential for the maintenance of telomere DNA length, chromosomal stability and cellular immortality. The aim of the present study was to evaluate the association between common genetic variations across the TERT gene region and prostate cancer (PCa) aggressiveness in a Chinese population. A total of 12 TERT tagging single-nucleotide polymorphisms (SNPs) were genotyped on the Sequenom Mass-ARRAY iPLEX® platform in a case-case study with 1,210 Chinese patients with PCa. Unconditional logistic regression was used to investigate the association of genotypes with PCa aggressiveness, Gleason grade and risk of developing early-onset PCa. It was observed that the C allele of the TERT intron 2 SNP (rs2736100) was significantly associated with reduced risk of PCa aggressiveness [odds ratio (OR)=0.81; 95% confidence interval (CI): 0.66-0.99; P=0.037]. This allele was also significantly correlated with a reduced risk of developing a tumor with a high Gleason score (>7; OR=0.83; 95% CI: 0.70-0.99; P=0.039). The T allele of the intron 4 SNP (rs10069690) was found to be significantly associated with a decreased risk for an aggressive form of PCa (OR=0.76; 95% CI: 0.59-0.97; P=0.030). In addition, the A allele of rs10078761 located at the 3' end of the TERT gene exhibited a statistically significant association with the reduced risk of developing a higher grade disease (OR=0.48; 95% CI: 0.28-0.81; P=0.006). However, no association between TERT polymorphisms and age at diagnosis was observed in the present study. The present findings demonstrated for the first time, to the best of our knowledge, that genetic variations across the TERT gene are associated with PCa aggressiveness in a Chinese Han population. PMID:25738283

  5. Pharmacological and genetic reversal of age dependent cognitive deficits due to decreased presenilin function

    PubMed Central

    McBride, Sean M. J.; Choi, Catherine H.; Schoenfeld, Brian P.; Bell, Aaron J.; Liebelt, David A.; Ferreiro, David; Choi, Richard J.; Hinchey, Paul; Kollaros, Maria; Terlizzi, Allison M.; Ferrick, Neal J.; Koenigsberg, Eric; Rudominer, Rebecca L.; Sumida, Ai; Chiorean, Stephanie; Siwicki, Kathleen K.; Nguyen, Hanh T.; Fortini, Mark E.; McDonald, Thomas V.; Jongens, Thomas A.

    2010-01-01

    Alzheimer's disease is the leading cause of cognitive loss and neurodegeneration in the developed world. Although its genetic and environmental causes are not generally known, familial forms of the disease (FAD) are due to mutations in a single copy of the Presenilin (PS) and Amyloid Precursor Protein (APP) genes. The dominant inheritance pattern of FAD indicates that it may be due to gain or change of function mutations. Studies of FAD-linked forms of presenilin in model organisms, however, indicate that they are loss of function, leading to the possibility that a reduction in PS activity might contribute to FAD and that proper psn levels are important for maintaining normal cognition throughout life. To explore this issue further, we have tested the effect of reducing psn activity during aging in Drosophila melanogaster males. We have found that flies in which the dosage of psn function is reduced by 50% display age-onset impairments in learning and memory. Treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium during the aging process prevented the onset of these deficits, and treatment of aged flies reversed the age-dependent deficits. Genetic reduction of DmGluRA, the inositol trisphosphate receptor (InsP3R) or IPPase also prevented these age-onset cognitive deficits. These findings suggest that reduced psn activity may contribute to the age onset cognitive loss observed with FAD. They also indicate that enhanced mGluR signaling and calcium release regulated by InsP3R as underlying causes of the age-dependent cognitive phenotypes observed when psn activity is reduced. PMID:20631179

  6. Reverse genetics of Mononegavirales: How they work, new vaccines, and new cancer therapeutics

    PubMed Central

    Pfaller, Christian K.; Cattaneo, Roberto; Schnell, Matthias J.

    2015-01-01

    The order Mononegavirales includes five families: Bornaviridae, Filoviridae, Nyamaviridae, Paramyxoviridae, and Rhabdoviridae. The genome of these viruses is one molecule of negative-sense single strand RNA coding for five to ten genes in a conserved order. The RNA is not infectious until packaged by the nucleocapsid protein and transcribed by the polymerase and co-factors. Reverse genetics approaches have answered fundamental questions about the biology of Mononegavirales. The lack of icosahedral symmetry and modular organization in the genome of these viruses has facilitated engineering of viruses expressing fluorescent proteins, and these fluorescent proteins have provided important insights about the molecular and cellular basis of tissue tropism and pathogenesis. Studies have assessed the relevance for virulence of different receptors and the interactions with cellular proteins governing the innate immune responses. Research has also analyzed the mechanisms of attenuation. Based on these findings, ongoing clinical trials are exploring new live attenuated vaccines and the use of viruses re-engineered as cancer therapeutics. PMID:25702088

  7. Development of reverse genetics for Ibaraki virus to produce viable VP6-tagged IBAV.

    PubMed

    Matsuo, Eiko; Saeki, Keiichi; Roy, Polly; Kawano, Junichi

    2015-01-01

    Ibaraki virus (IBAV) is a member of the epizootic hemorrhagic disease virus (EHDV) serogroup, which belongs to the Orbivirus genus of the Reoviridae family. Although EHDV, including IBAV, represents an ongoing threat to livestock in the world, molecular mechanisms of EHDV replication and pathogenesis have been unclear. The reverse genetics (RG) system is one of the strong tools to understand molecular mechanisms of virus replication. Here, we developed a RG system for IBAV to identify the nonessential region of a minor structural protein, VP6, by generating VP6-truncated IBAV. Moreover, several tags were inserted into the truncated region to produce VP6-tagged IBAV. We demonstrated that all VP6-tagged IBAV could replicate in BHK cells in the absence of any helper VP6 protein. Further, tagged-VP6 proteins were first assembled into puncta in cells infected with VP6-tagged IBAV. Our data suggests that, in order to initiate primary replication, IBAV VP6 is likely to accumulate in some parts of infected cells to assemble efficiently into the primary replication complex (subcore). PMID:26101741

  8. Development of reverse genetics for Ibaraki virus to produce viable VP6-tagged IBAV

    PubMed Central

    Matsuo, Eiko; Saeki, Keiichi; Roy, Polly; Kawano, Junichi

    2015-01-01

    Ibaraki virus (IBAV) is a member of the epizootic hemorrhagic disease virus (EHDV) serogroup, which belongs to the Orbivirus genus of the Reoviridae family. Although EHDV, including IBAV, represents an ongoing threat to livestock in the world, molecular mechanisms of EHDV replication and pathogenesis have been unclear. The reverse genetics (RG) system is one of the strong tools to understand molecular mechanisms of virus replication. Here, we developed a RG system for IBAV to identify the nonessential region of a minor structural protein, VP6, by generating VP6-truncated IBAV. Moreover, several tags were inserted into the truncated region to produce VP6-tagged IBAV. We demonstrated that all VP6-tagged IBAV could replicate in BHK cells in the absence of any helper VP6 protein. Further, tagged-VP6 proteins were first assembled into puncta in cells infected with VP6-tagged IBAV. Our data suggests that, in order to initiate primary replication, IBAV VP6 is likely to accumulate in some parts of infected cells to assemble efficiently into the primary replication complex (subcore). PMID:26101741

  9. Genetic Network Inference: From Co-Expression Clustering to Reverse Engineering

    NASA Technical Reports Server (NTRS)

    Dhaeseleer, Patrik; Liang, Shoudan; Somogyi, Roland

    2000-01-01

    Advances in molecular biological, analytical, and computational technologies are enabling us to systematically investigate the complex molecular processes underlying biological systems. In particular, using high-throughput gene expression assays, we are able to measure the output of the gene regulatory network. We aim here to review datamining and modeling approaches for conceptualizing and unraveling the functional relationships implicit in these datasets. Clustering of co-expression profiles allows us to infer shared regulatory inputs and functional pathways. We discuss various aspects of clustering, ranging from distance measures to clustering algorithms and multiple-duster memberships. More advanced analysis aims to infer causal connections between genes directly, i.e., who is regulating whom and how. We discuss several approaches to the problem of reverse engineering of genetic networks, from discrete Boolean networks, to continuous linear and non-linear models. We conclude that the combination of predictive modeling with systematic experimental verification will be required to gain a deeper insight into living organisms, therapeutic targeting, and bioengineering.

  10. Static Performance of Six Innovative Thrust Reverser Concepts for Subsonic Transport Applications: Summary of the NASA Langley Innovative Thrust Reverser Test Program

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Yetter, Jeffrey A.

    2000-01-01

    The NASA Langley Configuration Aerodynamics Branch has conducted an experimental investigation to study the static performance of innovative thrust reverser concepts applicable to high-bypass-ratio turbofan engines. Testing was conducted on a conventional separate-flow exhaust system configuration, a conventional cascade thrust reverser configuration, and six innovative thrust reverser configurations. The innovative thrust reverser configurations consisted of a cascade thrust reverser with porous fan-duct blocker, a blockerless thrust reverser, two core-mounted target thrust reversers, a multi-door crocodile thrust reverser, and a wing-mounted thrust reverser. Each of the innovative thrust reverser concepts offer potential weight savings and/or design simplifications over a conventional cascade thrust reverser design. Testing was conducted in the Jet-Exit Test Facility at NASA Langley Research Center using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0. All tests were conducted with no external flow and cold, high-pressure air was used to simulate core and fan exhaust flows. Results show that the innovative thrust reverser concepts achieved thrust reverser performance levels which, when taking into account the potential for system simplification and reduced weight, may make them competitive with, or potentially more cost effective than current state-of-the-art thrust reverser systems.

  11. Static Performance of Six Innovative Thrust Reverser Concepts for Subsonic Transport Applications: Summary of the NASA Langley Innovative Thrust Reverser Test Program

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Yetter, Jeffrey A.

    2000-01-01

    The NASA Langley Configuration Aerodynamics Branch has conducted an experimental investigation to study the static performance of innovative thrust reverser concepts applicable to high-bypass-ratio turbofan engines. Testing was conducted on a conventional separate-flow exhaust system configuration, a conventional cascade thrust reverser configuration, and six innovative thrust reverser configurations. The innovative thrust reverser configurations consisted of a cascade thrust reverser with porous fan-duct blocker, a blockerless thrust reverser, two core-mounted target thrust reversers, a multi-door crocodile thrust reverser, and a wing-mounted thrust reverser. Each of the innovative thrust reverser concepts offer potential weight savings and/or design simplifications over a conventional cascade thrust reverser design. Testing was conducted in the Jet-Exit Test Facility at NASA Langley Research Center using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0. All tests were conducted with no external flow and cold, high-pressure air was used to simulate core and fan exhaust flows. Results show that the innovative thrust reverser concepts achieved thrust reverser performance levels which, when taking into account the potential for system simplification and reduced weight, may make them competitive with, or potentially more cost effective than current state-of-the-art thrust reverser systems. All data gathered in this investigation are contained in the CD-ROM.

  12. Development and characterization of reverse genetics system for the Indian West Nile virus lineage 1 strain 68856.

    PubMed

    Pavitrakar, Daya V; Ayachit, Vijay M; Mundhra, Sonal; Bondre, Vijay P

    2015-12-15

    Our previous studies on West Nile virus (WNV) strains isolated from human patients in India suggested substantial variation at the genetic level reflecting their variable pathogenesis. This study describes the development of reverse genetics system for a neurovirulent WNV isolate 68856 and its characterization. Full length viral cDNA was cloned into bacterial artificial chromosome (BAC) under the transcription control of T7 promoter. The RNA transcripts obtained by in vitro transcription were infectious in mammalian cells upon transfection. Cytopathic effect caused by synthetic RNA transcripts in mammalian cells, detection of cell associated viral protein after transfection and recovery of genetic markers in the progeny virus genome marked the successful development of reverse genetics system for WNV. Replication potential and plaque morphology of newly expressed virus along with its antigenic cross reactivity with the parental virus suggests synthesis of biologically identical replicative virus. Comparative neuropathogenesis studies in murine model indicated that the three genetic changes occurred in the recombinant virus during in vitro transcription has no impact on viral pathogenesis. The stable infectious cDNA clone generated from the neurovirulent Indian WNV strain will serve as a valuable experimental tool to study the viral factors contributing towards pathogenesis, host-virus interaction and immune evasion. PMID:26388421

  13. Ontogenic and morphological study of gonadal formation in genetically-modified sex reversal XYPOS mice

    PubMed Central

    UMEMURA, Yuria; MIYAMOTO, Ryosuke; HASHIMOTO, Rie; KINOSHITA, Kyoko; OMOTEHARA, Takuya; NAGAHARA, Daichi; HIRANO, Tetsushi; KUBOTA, Naoto; MINAMI, Kiichi; YANAI, Shogo; MASUDA, Natsumi; YUASA, Hideto; MANTANI, Youhei; MATSUO, Eiko; YOKOYAMA, Toshifumi; KITAGAWA, Hiroshi; HOSHI, Nobuhiko

    2015-01-01

    Mammalian sexual fate is determined by the presence or absence of sex determining region of the Y chromosome (Sry) in the “bipotential” gonads. Recent studies have demonstrated that both male and female sexual development are induced by distinct and active genetic pathways. Breeding the Y chromosome from Mus m. domesticus poschiavinus (POS) strains into C57BL/6J (B6J) mice (B6J-XYPOS) has been shown to induce sex reversal (75%: bilateral ovary, 25%: true hermaphrodites). However, our B6N-XYPOS mice, which were generated by backcrossing of B6J-XYPOS on an inbred B6N-XX, develop as males (36%: bilateral testis with fertility as well as bilateral ovary (34%), and the remainder develop as true hermaphrodites. Here, we investigated in detail the expressions of essential sex-related genes and histological features in B6N-XYPOS mice from the fetal period to adulthood. The onsets of both Sry and SRY-box 9 (Sox9) expressions as determined spatiotemporally by whole-mount immunohistochemistry in the B6N-XYPOS gonads occurred 2–3 tail somites later than those in B6N-XYB6 gonads, but earlier than those in B6J-XYPOS, respectively. It is possible that such a small difference in timing of the Sry expression underlies testicular development in our B6N-XYPOS. Our study is the first to histologically show the expression and ectopic localization of a female-related gene in the XYPOS testes and a male-related gene in the XYPOS ovaries. The results from these and previous experiments indicate that the interplay between genome variants, epigenetics and developmental gene regulation is crucial for testis development. PMID:26194606

  14. Population genetic structure and direct observations reveal sex-reversed patterns of dispersal in a cooperative bird

    PubMed Central

    Harrison, Xavier A; York, Jennifer E; Young, Andrew J

    2014-01-01

    Sex-biased dispersal is pervasive and has diverse evolutionary implications, but the fundamental drivers of dispersal sex biases remain unresolved. This is due in part to limited diversity within taxonomic groups in the direction of dispersal sex biases, which leaves hypothesis testing critically dependent upon identifying rare reversals of taxonomic norms. Here, we use a combination of observational and genetic data to demonstrate a rare reversal of the avian sex bias in dispersal in the cooperatively breeding white-browed sparrow weaver (Plocepasser mahali). Direct observations revealed that (i) natal philopatry was rare, with both sexes typically dispersing locally to breed, and (ii), unusually for birds, males bred at significantly greater distances from their natal group than females. Population genetic analyses confirmed these patterns, as (i) corrected Assignment index (AIc), FST tests and isolation-by-distance metrics were all indicative of longer dispersal distances among males than females, and (ii) spatial autocorrelation analysis indicated stronger within-group genetic structure among females than males. Examining the spatial scale of extra-group mating highlighted that the resulting ‘sperm dispersal’ could have acted in concert with individual dispersal to generate these genetic patterns, but gamete dispersal alone cannot account entirely for the sex differences in genetic structure observed. That leading hypotheses for the evolution of dispersal sex biases cannot readily account for these sex-reversed patterns of dispersal in white-browed sparrow weavers highlights the continued need for attention to alternative explanations for this enigmatic phenomenon. We highlight the potential importance of sex differences in the distances over which dispersal opportunities can be detected. PMID:25346189

  15. Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications.

    PubMed Central

    Fetzner, S; Lingens, F

    1994-01-01

    This review is a survey of bacterial dehalogenases that catalyze the cleavage of halogen substituents from haloaromatics, haloalkanes, haloalcohols, and haloalkanoic acids. Concerning the enzymatic cleavage of the carbon-halogen bond, seven mechanisms of dehalogenation are known, namely, reductive, oxygenolytic, hydrolytic, and thiolytic dehalogenation; intramolecular nucleophilic displacement; dehydrohalogenation; and hydration. Spontaneous dehalogenation reactions may occur as a result of chemical decomposition of unstable primary products of an unassociated enzyme reaction, and fortuitous dehalogenation can result from the action of broad-specificity enzymes converting halogenated analogs of their natural substrate. Reductive dehalogenation either is catalyzed by a specific dehalogenase or may be mediated by free or enzyme-bound transition metal cofactors (porphyrins, corrins). Desulfomonile tiedjei DCB-1 couples energy conservation to a reductive dechlorination reaction. The biochemistry and genetics of oxygenolytic and hydrolytic haloaromatic dehalogenases are discussed. Concerning the haloalkanes, oxygenases, glutathione S-transferases, halidohydrolases, and dehydrohalogenases are involved in the dehalogenation of different haloalkane compounds. The epoxide-forming halohydrin hydrogen halide lyases form a distinct class of dehalogenases. The dehalogenation of alpha-halosubstituted alkanoic acids is catalyzed by halidohydrolases, which, according to their substrate and inhibitor specificity and mode of product formation, are placed into distinct mechanistic groups. beta-Halosubstituted alkanoic acids are dehalogenated by halidohydrolases acting on the coenzyme A ester of the beta-haloalkanoic acid. Microbial systems offer a versatile potential for biotechnological applications. Because of their enantiomer selectivity, some dehalogenases are used as industrial biocatalysts for the synthesis of chiral compounds. The application of dehalogenases or bacterial

  16. Reverse Radial Artery Flap Perforator Anatomy and Clinical Applications.

    PubMed

    White, Colin P; Steve, Anna K; Buchel, Edward W; Hayakawa, Thomas E; Morris, Steven F

    2016-09-01

    The pedicled reverse radial forearm flap is a well-known option for the treatment of a variety of soft tissue wounds including dorsal hand wounds. We document the number, emerging diameter, length from origin, course, and location of all perforators of the radial artery in a series of 6 fresh human cadavers after whole body lead oxide and gelatin injection to confirm and comprehensively document the anatomy of the radial artery perforators. This data provide an anatomic basis for a modification to the reversed radial forearm flap used to decrease venous congestion in the postoperative period. Two case reports are presented to provide clinical demonstration of the importance of this modification. PMID:26678105

  17. Commercial scanner application for reverse engineering and inspection

    NASA Astrophysics Data System (ADS)

    Crump, Craig; Kressin, Ken

    1997-01-01

    A commercial scanner provides economical and extremely accurate images. This paper discuses the scanner and how it is used in the CGI RE1000 reverse engineering and inspection system. The RE1000 complements existing laser, CMM, and x- ray technologies. The RE1000 provides greater accuracy, captures complete internal geometry, and is automatic. For opaque, machinable parts less than 1000 cubic inches, the commercial scanner and CGI RE1000 system produce the best alternative for capturing accurate, internal and external geometry.

  18. Imaging-Genetics Applications in Child Psychiatry

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Ernst, Monique; Leibenluft, Ellen

    2010-01-01

    Objective: To place imaging-genetics research in the context of child psychiatry. Method: A conceptual overview is provided, followed by discussion of specific research examples. Results: Imaging-genetics research is described linking brain function to two specific genes, for the serotonin-reuptake-transporter protein and a monoamine oxidase…

  19. Virus fitness differences observed between two naturally occurring isolates of Ebola virus Makona variant using a reverse genetics approach.

    PubMed

    Albariño, César G; Guerrero, Lisa Wiggleton; Chakrabarti, Ayan K; Kainulainen, Markus H; Whitmer, Shannon L M; Welch, Stephen R; Nichol, Stuart T

    2016-09-01

    During the large outbreak of Ebola virus disease that occurred in Western Africa from late 2013 to early 2016, several hundred Ebola virus (EBOV) genomes have been sequenced and the virus genetic drift analyzed. In a previous report, we described an efficient reverse genetics system designed to generate recombinant EBOV based on a Makona variant isolate obtained in 2014. Using this system, we characterized the replication and fitness of 2 isolates of the Makona variant. These virus isolates are nearly identical at the genetic level, but have single amino acid differences in the VP30 and L proteins. The potential effects of these differences were tested using minigenomes and recombinant viruses. The results obtained with this approach are consistent with the role of VP30 and L as components of the EBOV RNA replication machinery. Moreover, the 2 isolates exhibited clear fitness differences in competitive growth assays. PMID:27366976

  20. Embryonic reversions and lineage infidelities in tumour cells: genome-based models and role of genetic instability

    PubMed Central

    Bignold, Leon P

    2005-01-01

    Reversions to ‘embryonic precursor’-type cells and infidelities of tumour cell lineage (including metaplasias) have been recognized as aspects of various tumour types since the 19th century. Since then, evidence of these phenomena has been obtained from numerous clinical, biochemical, immunological and molecular biological studies. In particular, microarray studies have suggested that ‘aberrant’ expressions of relevant genes are common. An unexplained aspect of the results of these studies is that, in many tumour types, the embryonic reversion or lineage infidelity only occurs in a proportion of cases. As a parallel development during the molecular biological investigation of tumours over the last several decades, genetic instability has been found much more marked, at least in some preparations of tumour cells, than that identified by means of previous karyotypic investigations of tumours. This study reviews examples of embryonic reversion and lineage infidelity phenomena, which have derived from the various lines of investigation of cancer over the last 150 or so years. Four categories of circumstances of the occurrence of embryonic reversions or lineage infidelities have been identified – (i) as part of the defining phenotype of the tumour, and hence being presumably integral to the tumour type, (ii) present ab initio in only some cases of the tumour type, and presumably being regularly associated with, but incidental to, the essential features of the tumour type, (iii) occurring later in the course of the disease and thus being possibly a manifestation of in vivo genetic instability and ‘tumour progression’ and (iv) arising probably by genetic instability, during the processes, especially cell culture, associated with ex vivo investigations. Genomic models are described which might account for the origin of these phenomena in each of these circumstances. PMID:15810978

  1. Reverse osmosis applications to low-level radioactive waste

    SciTech Connect

    Garrett, L.

    1990-09-01

    The Hanford Site at Richland, Washington, is operated for the US Department of Energy (DOE) by Westinghouse Hanford Company. Since the Hanford Site was established in the 1940's, the operation of the various facilities has resulted in the contamination of liquid effluents and some groundwater with radioactive constituents. Westinghouse Hanford Company has been testing various technologies to determine their effectiveness in decontaminating these two types of liquids. Reverse osmosis (RO) has been applied to two process effluents and two groundwaters. Rejection data have been collected for uranium, technetium, tritium, strontium, cesium, and total alpha and beta. 4 refs., 1 fig., 8 tabs.

  2. Design and application of genetically encoded biosensors

    PubMed Central

    Palmer, Amy E.; Qin, Yan; Park, Jungwon Genevieve; McCombs, Janet E.

    2012-01-01

    In the past 5–10 years, the power of the green fluorescent protein (GFP) and its numerous derivatives has been harnessed toward the development of genetically encoded fluorescent biosensors. These sensors are incorporated into cells or organisms as plasmid DNA, which leads the transcriptional and translational machinery of the cell to express a functional sensor. To date, over 100 different genetically encoded biosensors have been developed for targets as diverse as ions, molecules and enzymes. Such sensors are instrumental in providing a window into the real-time biochemistry of living cells and whole organisms, and are providing unprecedented insight into the inner workings of a cell. PMID:21251723

  3. Polyglot Programming in Applications Used for Genetic Data Analysis

    PubMed Central

    Nowak, Robert M.

    2014-01-01

    Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance, flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications and it reduced the time and costs of development. PMID:25197633

  4. Polyglot programming in applications used for genetic data analysis.

    PubMed

    Nowak, Robert M

    2014-01-01

    Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance, flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications and it reduced the time and costs of development. PMID:25197633

  5. Soma to germline inheritance of extrachromosomal genetic information via a LINE-1 reverse transcriptase-based mechanism.

    PubMed

    Spadafora, Corrado

    2016-08-01

    Mature spermatozoa are permeable to foreign DNA and RNA molecules. Here I propose a model, whereby extrachromosomal genetic information, mostly encoded in the form of RNA in somatic cells, can cross the Weismann barrier and reach epididymal spermatozoa. LINE-1 retrotransposon-derived reverse transcriptase (RT) can play key roles in the process by expanding the RNA-encoded information. Retrotransposon-encoded RT is stored in mature gametes, is highly expressed in early embryos and undifferentiated cells, and becomes downregulated in differentiated cells. In turn, RT plays a role in developmental control, as its inhibition arrests developmental progression of early embryos with globally altered transcriptomic profiles. Thus, sperm cells act as recipients, and transgenerational vectors of somatically derived genetic information which they pass to the next generation with the potential to modify the fate of the developing embryos. PMID:27315018

  6. Stable transformation and reverse genetic analysis of Penium margaritaceum: a platform for studies of charophyte green algae, the immediate ancestors of land plants.

    PubMed

    Sørensen, Iben; Fei, Zhangjun; Andreas, Amanda; Willats, William G T; Domozych, David S; Rose, Jocelyn K C

    2014-02-01

    The charophyte green algae (CGA, Streptophyta, Viridiplantae) occupy a key phylogenetic position as the immediate ancestors of land plants but, paradoxically, are less well-studied than the other major plant lineages. This is particularly true in the context of functional genomic studies, where the lack of an efficient protocol for their stable genetic transformation has been a major obstacle. Observations of extant CGA species suggest the existence of some of the evolutionary adaptations that had to occur for land colonization; however, to date, there has been no robust experimental platform to address this genetically. We present a protocol for high-throughput Agrobacterium tumefaciens-mediated transformation of Penium margaritaceum, a unicellular CGA species. The versatility of Penium as a model for studying various aspects of plant cell biology and development was illustrated through non-invasive visualization of protein localization and dynamics in living cells. In addition, the utility of RNA interference (RNAi) for reverse genetic studies was demonstrated by targeting genes associated with cell wall modification (pectin methylesterase) and biosynthesis (cellulose synthase). This provided evidence supporting current models of cell wall assembly and inter-polymer interactions that were based on studies of land plants, but in this case using direct observation in vivo. This new functional genomics platform has broad potential applications, including studies of plant organismal biology and the evolutionary innovations required for transition from aquatic to terrestrial habitats. PMID:24308430

  7. Cloned cDNA of A/swine/Iowa/15/1930 internal genes as a candidate backbone for reverse genetics vaccine against influenza A viruses

    PubMed Central

    Lekcharoensuk, Porntippa; Wiriyarat, Witthawat; Petcharat, Nuntawan; Lekcharoensuk, Chalermpol; Auewarakul, Prasert; Richt, Juergen A

    2012-01-01

    Reverse genetics viruses for influenza vaccine production usually utilize the internal genes of the egg-adapted A/Puerto Rico/8/34 (PR8) strain. This egg-adapted strain provides high production yield in embryonated eggs but does not necessarily give the best yield in mammalian cell culture. In order to generate a reverse genetics viral backbone that is well-adapted to high growth in mammalian cell culture, a swine influenza isolate (A/swine/Iowa/15/30 (H1N1) (rg1930) that was shown to give high yield in Madin-Darby Canine Kidney (MDCK) cells was used as the internal gene donor for reverse genetics plasmids. In this report, the internal genes from rg1930 were used for construction of reverse genetics viruses carrying a cleavage site-modified hemagglutinin (HA) gene and neuraminidase (NA) gene from a highly pathogenic H5N1 virus. The resulting virus (rg1930H5N1) was low pathogenic in vivo. Inactivated rg1930H5N1 vaccine completely protected chickens from morbidity and mortality after challenge with highly pathogenic H5N1. Protective immunity was obtained when chickens were immunized with an inactivated vaccine consisting of at least 29 HA units of the rg1930H5N1 virus. In comparison to the PR8-based reverse genetics viruses carrying the same HA and NA genes from an H5N1 virus, rg1930 based viruses yielded higher viral titers in MDCK and Vero cells. In addition, the reverse genetics derived H3N2 and H5N2 viruses with the rg1930 backbone replicated in MDCK cells better than the cognate viruses with the rgPR8 backbone. It is concluded that this newly established reverse genetics backbone system could serve as a candidate for a master donor strain for development of inactivated influenza vaccines in cell-based systems. PMID:22230579

  8. Applications of Genetic Programming in Cancer Research

    PubMed Central

    Worzel, William P.; Yu, Jianjun; Almal, Arpit A.; Chinnaiyan, Arul M.

    2012-01-01

    The theory of Darwinian evolution is the fundamental keystones of modern biology. Late in the last century, computer scientists began adapting its principles, in particular natural selection, to complex computational challenges, leading to the emergence of evolutionary algorithms. The conceptual model of selective pressure and recombination in evolutionary algorithms allows scientists to efficiently search high dimensional space for solutions to complex problems. In the last decade, genetic programming has been developed and extensively applied for analysis of molecular data to classify cancer subtypes and characterize the mechanisms of cancer pathogenesis and development. This article reviews current successes using genetic programming and discusses its potential impact in cancer research and treatment in the near future. PMID:18929677

  9. Development of a reverse genetics system based on RNA polymerase II for Newcastle disease virus genotype VII.

    PubMed

    Wang, Jianzhong; Wang, Chunfeng; Feng, Na; Wang, Hualei; Zheng, Xuexing; Yang, Songtao; Gao, Yuwei; Xia, Xianzhu; Yin, Renfu; Liu, Xiufan; Hu, Shunlin; Ding, Chan; Yu, Shengqing; Cong, Yanlong; Ding, Zhuang

    2015-02-01

    Newcastle disease virus (NDV) has only a single serotype but diversified genotypes. Genotype VII strains are the prevalent currently circulating genotype worldwide, and in particular, these strains cause outbreaks in waterfowl. In this study, a reverse genetics system for highly virulent NDV isolated from goose flocks was developed independent of conventional T7 RNA polymerase. Infectious virus was successfully generated by an RNA polymerase II promoter to drive transcription of the full-length virus antigenome. A green fluorescent protein (GFP)-expressing virus was generated by inserting an additional transcription cassette coding for the enhanced GFP between the P and M genes of the genome. The expression of GFP was confirmed by western blotting and fluorescence microscopy. The replication kinetics and pathogenicity of the recombinant viruses are indistinguishable from the parental wild-type virus. This reverse genetics system will provide a powerful tool for the analysis of goose-origin NDV dissemination and pathogenesis, as well as preparation for genotype-matched NDV attenuated vaccines. PMID:25384536

  10. Performance of a model cascade thrust reverser for short-haul applications

    NASA Technical Reports Server (NTRS)

    Dietrich, D. A.; Gutierrez, O. A.

    1974-01-01

    Aerodynamic and acoustic characteristics are presented for a cowlmounted, model cascade thrust reverser suitable for short-haul aircraft. Thrust reverser efficiency and the influence on fan performance were determined from isolated fan-driven models under static and forward velocity conditions. Cascade reverser noise characteristics were determined statically in an isolated pipe-flow test, while aerodynamic installation effects were determined with a wind-tunnel, fan-powered airplane model. Application of test results to short-haul aircraft calculations demonstrated that such a cascade thrust reverser may be able to meet both the performance and noise requirements for short-haul aircraft operation. However, aircraft installation effects can be quite significant.

  11. Reversibility of a quantum channel: General conditions and their applications to Bosonic linear channels

    SciTech Connect

    Shirokov, M. E.

    2013-11-15

    The method of complementary channel for analysis of reversibility (sufficiency) of a quantum channel with respect to families of input states (pure states for the most part) are considered and applied to Bosonic linear (quasi-free) channels, in particular, to Bosonic Gaussian channels. The obtained reversibility conditions for Bosonic linear channels have clear physical interpretation and their sufficiency is also shown by explicit construction of reversing channels. The method of complementary channel gives possibility to prove necessity of these conditions and to describe all reversed families of pure states in the Schrodinger representation. Some applications in quantum information theory are considered. Conditions for existence of discrete classical-quantum subchannels and of completely depolarizing subchannels of a Bosonic linear channel are presented.

  12. Use of the FDTD method for time reversal: application to microwave breast cancer detection

    NASA Astrophysics Data System (ADS)

    Kosmas, Panagiotis; Rappaport, Carey

    2004-05-01

    The feasibility of microwave breast cancer detection with a time reversal algorithm is examined. This time reversal algorithm, based on the finite difference time domain method (FDTD), time reverses not only the recorded field, but also the medium. It compensates for the wave decay and therefore is suitable for lossy media. We present two-dimensional (2D) breast models and geometries, and assume knowledge of the system's response in the absence of tumor (distorted wave Born approximation). Our results illustrate the system's detection and localization abilities, and its robustness to dispersion and measurement noise. Good performance using a simple time reversal mirror shows that this method is a promising technique for microwave imaging, and encourages us to further examine its applicability to microwave breast cancer detection.

  13. High volume molecular genetic identification of single nucleotide polymorphisms using Genetic Bit Analysis Application to human genetic diagnosis

    SciTech Connect

    Boyce-Jacino, M.T.; Reynolds, J.; Nikiforov, T.

    1994-09-01

    The most common type of genetic disease-associated mutation is the single nucleotide polymorphism (SNP). Because most genetic diseases can be caused by multiple SNPs in the same gene, effective routine diagnosis of complex genetic diseases is dependent on a simple and reliable method of interrogating SNP sites. Molecular Tool`s solid phase assay capable of direct genotyping (single base sequencing) of SNP sites, Genetic Bit Analysis (GBA), involves hybridization-capture of a single-stranded PCR product to a sequence-specific, microtiter plate-bound oligonucleotide primer. The captured PCR product then acts as template for single-base extension of the capture primer across the polymorphic site, enabling direct determination of the base composition of the polymorphism through a simple colormetric assay. Genotyping in a high volume, semi-automated, processing system with a current capacity of 100 SNP interrogations per technician per day enables the screening of candidate mutations rapidly and cost-effectively, critically important to comprehensive genetic diagnosis. Using this gel-free technology, we have developed prototype diagnostic tests for CFTR and ApoE polymorphisms which enable direct sequencing of the polymorphic base at each site of interest. Routine clinical diagnosis of genetically complex diseases such as cystic fibrosis is dependent on this combination of robust biochemistry and simple format. Additionally, the ability to transfer the format and biochemistry to any disease gene of interest enables the broad application of this technology to clinical diagnostics, especially for genetically complex diseases.

  14. Applications of graph theory to landscape genetics

    PubMed Central

    Garroway, Colin J; Bowman, Jeff; Carr, Denis; Wilson, Paul J

    2008-01-01

    We investigated the relationships among landscape quality, gene flow, and population genetic structure of fishers (Martes pennanti) in ON, Canada. We used graph theory as an analytical framework considering each landscape as a network node. The 34 nodes were connected by 93 edges. Network structure was characterized by a higher level of clustering than expected by chance, a short mean path length connecting all pairs of nodes, and a resiliency to the loss of highly connected nodes. This suggests that alleles can be efficiently spread through the system and that extirpations and conservative harvest are not likely to affect their spread. Two measures of node centrality were negatively related to both the proportion of immigrants in a node and node snow depth. This suggests that central nodes are producers of emigrants, contain high-quality habitat (i.e., deep snow can make locomotion energetically costly) and that fishers were migrating from high to low quality habitat. A method of community detection on networks delineated five genetic clusters of nodes suggesting cryptic population structure. Our analyses showed that network models can provide system-level insight into the process of gene flow with implications for understanding how landscape alterations might affect population fitness and evolutionary potential. PMID:25567802

  15. Genetic data simulators and their applications: an overview

    PubMed Central

    Peng, Bo; Chen, Huann-Sheng; Mechanic, Leah E.; Racine, Ben; Clarke, John; Gillanders, Elizabeth; Feuer, Eric J.

    2016-01-01

    Computer simulations have played an indispensable role in the development and application of statistical models and methods for genetic studies across multiple disciplines. The need to simulate complex evolutionary scenarios and pseudo-datasets for various studies has fueled the development of dozens of computer programs with varying reliability, performance, and application areas. To help researchers compare and choose the most appropriate simulators for their studies, we have created the Genetic Simulation Resources (GSR) website, which allows authors of simulation software to register their applications and describe them with more than 160 defined attributes. This article summarizes the properties of 93 simulators currently registered at GSR and provides an overview of the development and applications of genetic simulators. Unlike other review articles that address technical issues or compare simulators for particular application areas, we focus on software development, maintenance, and features of simulators, often from a historical perspective. Publications that cite these simulators are used to summarize both the applications of genetic simulations and the utilization of simulators. PMID:25504286

  16. Genetic data simulators and their applications: an overview.

    PubMed

    Peng, Bo; Chen, Huann-Sheng; Mechanic, Leah E; Racine, Ben; Clarke, John; Gillanders, Elizabeth; Feuer, Eric J

    2015-01-01

    Computer simulations have played an indispensable role in the development and applications of statistical models and methods for genetic studies across multiple disciplines. The need to simulate complex evolutionary scenarios and pseudo-datasets for various studies has fueled the development of dozens of computer programs with varying reliability, performance, and application areas. To help researchers compare and choose the most appropriate simulators for their studies, we have created the genetic simulation resources (GSR) website, which allows authors of simulation software to register their applications and describe them with more than 160 defined attributes. This article summarizes the properties of 93 simulators currently registered at GSR and provides an overview of the development and applications of genetic simulators. Unlike other review articles that address technical issues or compare simulators for particular application areas, we focus on software development, maintenance, and features of simulators, often from a historical perspective. Publications that cite these simulators are used to summarize both the applications of genetic simulations and the utilization of simulators. PMID:25504286

  17. Application of computer simulators in population genetics.

    PubMed

    Feng, Gao; Haipeng, Li

    2016-08-01

    The genomes of more and more organisms have been sequenced due to the advances in next-generation sequencing technologies. As a powerful tool, computer simulators play a critical role in studying the genome-wide DNA polymorphism pattern. Simulations can be performed both forwards-in-time and backwards-in-time, which complement each other and are suitable for meeting different needs, such as studying the effect of evolutionary dynamics, the estimation of parameters, and the validation of evolutionary hypotheses as well as new methods. In this review, we briefly introduced population genetics related theoretical framework and provided a detailed comparison of 32 simulators published over the last ten years. The future development of new simulators was also discussed. PMID:27531609

  18. Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligonucleotides.

    PubMed

    Sztainberg, Yehezkel; Chen, Hong-mei; Swann, John W; Hao, Shuang; Tang, Bin; Wu, Zhenyu; Tang, Jianrong; Wan, Ying-Wooi; Liu, Zhandong; Rigo, Frank; Zoghbi, Huda Y

    2015-12-01

    Copy number variations have been frequently associated with developmental delay, intellectual disability and autism spectrum disorders. MECP2 duplication syndrome is one of the most common genomic rearrangements in males and is characterized by autism, intellectual disability, motor dysfunction, anxiety, epilepsy, recurrent respiratory tract infections and early death. The broad range of deficits caused by methyl-CpG-binding protein 2 (MeCP2) overexpression poses a daunting challenge to traditional biochemical-pathway-based therapeutic approaches. Accordingly, we sought strategies that directly target MeCP2 and are amenable to translation into clinical therapy. The first question that we addressed was whether the neurological dysfunction is reversible after symptoms set in. Reversal of phenotypes in adult symptomatic mice has been demonstrated in some models of monogenic loss-of-function neurological disorders, including loss of MeCP2 in Rett syndrome, indicating that, at least in some cases, the neuroanatomy may remain sufficiently intact so that correction of the molecular dysfunction underlying these disorders can restore healthy physiology. Given the absence of neurodegeneration in MECP2 duplication syndrome, we propose that restoration of normal MeCP2 levels in MECP2 duplication adult mice would rescue their phenotype. By generating and characterizing a conditional Mecp2-overexpressing mouse model, here we show that correction of MeCP2 levels largely reverses the behavioural, molecular and electrophysiological deficits. We also reduced MeCP2 using an antisense oligonucleotide strategy, which has greater translational potential. Antisense oligonucleotides are small, modified nucleic acids that can selectively hybridize with messenger RNA transcribed from a target gene and silence it, and have been successfully used to correct deficits in different mouse models. We find that antisense oligonucleotide treatment induces a broad phenotypic rescue in adult

  19. The reverse cholesterol transport pathway improves understanding of genetic networks for fat deposition and muscle growth in beef cattle.

    PubMed

    Daniels, Tyler F; Wu, Xiao-Lin; Pan, Zengxiang; Michal, Jennifer J; Wright, Raymond W; Killinger, Karen M; MacNeil, Michael D; Jiang, Zhihua

    2010-01-01

    In the present study, thirteen genes involved in the reverse cholesterol transport (RCT) pathway were investigated for their associations with three fat depositions, eight fatty acid compositions and two growth-related phenotypes in a Wagyu x Limousin reference population, including 6 F(1) bulls, 113 F(1) dams, and 246 F(2) progeny. A total of 37 amplicons were used to screen single nucleotide polymorphisms (SNPs) on 6 F(1) bulls. Among 36 SNPs detected in 11 of these 13 genes, 19 were selected for genotyping by the Sequenom assay design on all F(2) progeny. Single-marker analysis revealed seven SNPs in ATP binding cassette A1, apolipoproteins A1, B and E, phospholipid transfer protein and paraoxinase 1 genes significantly associated with nine phenotypes (P<0.05). Previously, we reported genetic networks associated with 19 complex phenotypes based on a total of 138 genetic polymorphisms derived from 71 known functional genes. Therefore, after Bonferroni correction, these significant (adjusted P<0.05) and suggestive (adjusted P<0.10) associations were then used to identify genetic networks related to the RCT pathway. Multiple-marker analysis suggested possible genetic networks involving the RCT pathway for kidney-pelvic-heart fat percentage, rib-eye area, and subcutaneous fat depth phenotypes with markers derived from paraoxinase 1, apolipoproteins A1 and E, respectively. The present study confirmed that genes involved in cholesterol homeostasis are useful targets for investigating obesity in humans as well as for improving meat quality phenotypes in a livestock production. PMID:21151936

  20. Blue light- and genetically-reversed gravitropic response in protonemata of the moss Ceratodon purpureus.

    PubMed

    Lamparter, T; Hughes, J; Hartmann, E

    1998-09-01

    In darkness, protonemal filaments of Ceratodon purpureus (Brid.) grow negatively gravitropically (upwards). Red light induces a positive phototropic response mediated by the photoreceptor phytochrome. A red light treatment also has an inhibitory effect on the gravitropic response, an effect also mediated by phytochrome. In this study the effects of blue light on phototropism and on gravitropism were analysed. Unilateral blue light resulted in only a weak phototropic response, but markedly randomised growth direction. Blue light given together with a gravitropic stimulus reversed the gravitropism, changing it from negative to positive (filaments grow downward). The effect of blue light was also analysed with the mutant ptr116, which is defective in the biosynthesis of the phytochrome chromophore, and in a newly isolated mutant wwr2, which is positively gravitropic in darkness. Blue light induced the same reversal of gravitropism in ptrll6 as in the wild type, indicating that phytochrome is not involved in this process. In wwr2 the direction of gravitropism was unaltered by the blue light treatment. Light also affects chlorophyll content and the size of plastids, potential statoliths for gravitropism. Red light induced an increase in plastid size and chlorophyll content in the wild type but not in ptr116. Blue light induced a similar change in wild type plastids. It seems as though light-induced alterations of gravitropism are not simply mediated by alterations in plastid properties, and that red light and blue light evoke fundamentally different responses. PMID:11536885

  1. Reversal of diet-induced obesity and insulin resistance by inducible genetic ablation of GRK2.

    PubMed

    Vila-Bedmar, Rocio; Cruces-Sande, Marta; Lucas, Elisa; Willemen, Hanneke L D M; Heijnen, Cobi J; Kavelaars, Annemieke; Mayor, Federico; Murga, Cristina

    2015-07-21

    Insulin resistance is a common feature of obesity and predisposes individuals to various prevalent pathological conditions. G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor kinase 2 (GRK2) integrates several signal transduction pathways and is emerging as a physiologically relevant inhibitor of insulin signaling. GRK2 abundance is increased in humans with metabolic syndrome and in different murine models of insulin resistance. To support GRK2 as a potential drug target in type 2 diabetes and obesity, we investigated whether lowering GRK2 abundance reversed an ongoing systemic insulin-resistant phenotype, using a mouse model of tamoxifen-induced GRK2 ablation after high-fat diet-dependent obesity and insulin resistance. Tamoxifen-triggered GRK2 deletion impeded further body weight gain, normalized fasting glycemia, improved glucose tolerance, and was associated with preserved insulin sensitivity in skeletal muscle and liver, thereby maintaining whole-body glucose homeostasis. Moreover, when continued to be fed a high-fat diet, these animals displayed reduced fat mass and smaller adipocytes, were resistant to the development of liver steatosis, and showed reduced expression of proinflammatory markers in the liver. Our results indicate that GRK2 acts as a hub to control metabolic functions in different tissues, which is key to controlling insulin resistance development in vivo. These data suggest that inhibiting GRK2 could reverse an established insulin-resistant and obese phenotype, thereby putting forward this enzyme as a potential therapeutic target linking glucose homeostasis and regulation of adiposity. PMID:26198359

  2. Molecular genetics of sarcomas: applications to diagnoses and therapy.

    PubMed

    Toguchida, Junya; Nakayama, Tomitaka

    2009-09-01

    Sarcomas are mesenchymal cancers consisting of tumors with various clinical and pathological features. Some of them compel affected individuals to lose important musculoskeletal functions, and some of them are highly malignant and life-threatening. A great amount of genetic information for sarcomas has accumulated during the past two decades, contributing diagnoses and treatments. From the standpoint of molecular genetics, sarcomas are classified into two groups: those with defined genetic alterations and those with various genetic alterations. The genetic alterations in the first group include reciprocal translocations resulting in fusion oncoproteins and oncogenic mutations of defined genes such as those of the c-kit gene in gastrointestinal stromal tumors. The function of fusion proteins includes transcription regulator, signal transducer, chromatic remodeling factor, and growth factor, some of which are suitable targets for the molecular therapy. In tumors belonging to the second group, the number of which is far larger than those of the first group, considerable genetic heterogeneity was found even among tumors with same pathological diagnosis. The disruption of the RB and p53 pathways was frequently found, resulting in the dysregulation of cell cycle and the genomic instability. The application of molecular target therapy for tumors in this group requires novel strategies to overcome cross talk between different signal pathways. Recent evidence from in vitro and in vivo experiments has indicated that the cells of origin of sarcomas are tissue stem cells such as mesenchymal stem cells, and the application of stem cell biology holds the promise of novel treatment options. PMID:19555393

  3. New applications of the H-reversal trajectory using solar sails

    NASA Astrophysics Data System (ADS)

    Zeng, Xiang-Yuan; Baoyin, Hexi; Li, Jun-Feng; Gong, Sheng-Ping

    2011-07-01

    Advanced solar sailing has been an increasingly attractive propulsion system for highly non-Keplerian orbits. Three new applications of the orbital angular momentum reversal (H-reversal) trajectories using solar sails are presented: space observation, heliocentric orbit transfer and collision orbits with asteroids. A theoretical proof for the existence of double H-reversal trajectories (referred to as ‘H2RTs’) is given, and the characteristics of the H2RTs are introduced before a discussion of the mission applications. A new family of H2RTs was obtained using a 3D dynamic model of the two-body frame. In a time-optimal control model, the minimum period H2RTs both inside and outside the ecliptic plane were examined using an ideal solar sail. Due to the quasi-heliostationary property at its two symmetrical aphelia, the H2RTs were deemed suitable for space observation. For the second application, the heliocentric transfer orbit was able to function as the time-optimal H-reversal trajectory, since its perihelion velocity is a circular or elliptic velocity. Such a transfer orbit can place the sailcraft into a clockwise orbit in the ecliptic plane, with a high inclination or displacement above or below the Sun. The third application of the H-reversal trajectory was simulated impacting an asteroid passing near Earth in a head-on collision. The collision point can be designed through selecting different perihelia or different launch windows. Sample orbits of each application were presented through numerical simulation. The results can serve as a reference for theoretical research and engineering design.

  4. Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligos

    PubMed Central

    Sztainberg, Yehezkel; Chen, Hong-mei; Swann, John W.; Hao, Shuang; Tang, Bin; Wu, Zhenyu; Tang, Jianrong; Wan, Ying-Wooi; Liu, Zhandong; Rigo, Frank; Zoghbi, Huda Y.

    2015-01-01

    Copy number variations have been frequently associated with developmental delay, intellectual disability, and autism spectrum disorders1. MECP2 duplication syndrome is one of the most common genomic rearrangements in males2 and is characterized by autism, intellectual disability, motor dysfunction, anxiety, epilepsy, recurrent respiratory tract infections, and early death3–5. The broad range of deficits caused by methyl-CpG-binding protein 2 (MeCP2) overexpression poses a daunting challenge to traditional biochemical pathway-based therapeutic approaches. Accordingly, we sought strategies that directly target MeCP2 and are amenable to translation into clinical therapy. The first question, however, was whether the neurological dysfunction is reversible after symptoms set in. Reversal of phenotypes in adult symptomatic mice has been demonstrated in some models of monogenic loss-of-function neurological disorders6–8, including loss of MeCP2 in Rett syndrome9, indicating that, at least in some cases, the neuroanatomy may remain sufficiently intact so that correction of the molecular dysfunction underlying these disorders can restore healthy physiology. Given the absence of neurodegeneration in MECP2 duplication syndrome, we hypothesized that restoration of normal MeCP2 levels in MECP2 duplication adult mice would rescue their phenotype. Therefore, we first generated and characterized a conditional Mecp2-overexpressing mouse model and showed that correction of MeCP2 levels largely reversed the behavioral, molecular, and electrophysiological deficits. Next, we sought a translational strategy to reduce MeCP2 and turned to antisense oligonucleotides (ASOs). ASOs are small modified nucleic acids that can selectively hybridize with mRNA transcribed from a target gene and silence it10,11, and have been successfully used to correct deficits in different mouse models12–18. We found that ASO treatment induced a broad phenotypic rescue in adult symptomatic transgenic MECP2

  5. The molecular genetics of sex determination and sex reversal in mammals.

    PubMed

    Quinn, Alexander; Koopman, Peter

    2012-10-01

    The process of sex determination in mammals normally unfolds in three distinct stages: (1) establishment of chromosomal sex at fertilization (XX or XY); (2) commitment to the appropriate pathway of gonadal differentiation with respect to chromosomal sex, through the action (or absence) of the Y chromosome gene SRY; and (3) correct development of secondary sexual characteristics, including internal and external genitalia, in accordance with gonadal sex. At any of these three steps, the process of sex determination can go awry, leading to disorders of sexual development. In this article, we review the typical mechanism and process of mammalian sex determination, with an emphasis on the well-characterized mouse and human models. We also consider aberrant mammalian sex determination, focusing on examples of sex reversal stemming from gene defects. PMID:23044871

  6. Adaptable Constrained Genetic Programming: Extensions and Applications

    NASA Technical Reports Server (NTRS)

    Janikow, Cezary Z.

    2005-01-01

    An evolutionary algorithm applies evolution-based principles to problem solving. To solve a problem, the user defines the space of potential solutions, the representation space. Sample solutions are encoded in a chromosome-like structure. The algorithm maintains a population of such samples, which undergo simulated evolution by means of mutation, crossover, and survival of the fittest principles. Genetic Programming (GP) uses tree-like chromosomes, providing very rich representation suitable for many problems of interest. GP has been successfully applied to a number of practical problems such as learning Boolean functions and designing hardware circuits. To apply GP to a problem, the user needs to define the actual representation space, by defining the atomic functions and terminals labeling the actual trees. The sufficiency principle requires that the label set be sufficient to build the desired solution trees. The closure principle allows the labels to mix in any arity-consistent manner. To satisfy both principles, the user is often forced to provide a large label set, with ad hoc interpretations or penalties to deal with undesired local contexts. This unfortunately enlarges the actual representation space, and thus usually slows down the search. In the past few years, three different methodologies have been proposed to allow the user to alleviate the closure principle by providing means to define, and to process, constraints on mixing the labels in the trees. Last summer we proposed a new methodology to further alleviate the problem by discovering local heuristics for building quality solution trees. A pilot system was implemented last summer and tested throughout the year. This summer we have implemented a new revision, and produced a User's Manual so that the pilot system can be made available to other practitioners and researchers. We have also designed, and partly implemented, a larger system capable of dealing with much more powerful heuristics.

  7. Genetic algorithm application in optimization of wireless sensor networks.

    PubMed

    Norouzi, Ali; Zaim, A Halim

    2014-01-01

    There are several applications known for wireless sensor networks (WSN), and such variety demands improvement of the currently available protocols and the specific parameters. Some notable parameters are lifetime of network and energy consumption for routing which play key role in every application. Genetic algorithm is one of the nonlinear optimization methods and relatively better option thanks to its efficiency for large scale applications and that the final formula can be modified by operators. The present survey tries to exert a comprehensive improvement in all operational stages of a WSN including node placement, network coverage, clustering, and data aggregation and achieve an ideal set of parameters of routing and application based WSN. Using genetic algorithm and based on the results of simulations in NS, a specific fitness function was achieved, optimized, and customized for all the operational stages of WSNs. PMID:24693235

  8. Genetic Algorithm Application in Optimization of Wireless Sensor Networks

    PubMed Central

    Norouzi, Ali; Zaim, A. Halim

    2014-01-01

    There are several applications known for wireless sensor networks (WSN), and such variety demands improvement of the currently available protocols and the specific parameters. Some notable parameters are lifetime of network and energy consumption for routing which play key role in every application. Genetic algorithm is one of the nonlinear optimization methods and relatively better option thanks to its efficiency for large scale applications and that the final formula can be modified by operators. The present survey tries to exert a comprehensive improvement in all operational stages of a WSN including node placement, network coverage, clustering, and data aggregation and achieve an ideal set of parameters of routing and application based WSN. Using genetic algorithm and based on the results of simulations in NS, a specific fitness function was achieved, optimized, and customized for all the operational stages of WSNs. PMID:24693235

  9. Pathogenicity study in sheep using reverse-genetics-based reassortant bluetongue viruses

    PubMed Central

    Celma, Cristina C.; Bhattacharya, Bishnupriya; Eschbaumer, Michael; Wernike, Kerstin; Beer, Martin; Roy, Polly

    2014-01-01

    Bluetongue (BT) disease, caused by the non-enveloped bluetongue virus (BTV) belonging to the Reoviridae family, is an economically important disease that affects a wide range of wild and domestic ruminants. Currently, 26 different serotypes of BTV are recognized in the world, of which BTV-8 has been found to exhibit one of the most virulent manifestations of BT disease in livestock. In recent years incursions of BTV-8 in Europe have resulted in significant morbidity and mortality not only in sheep but also in cattle. The molecular and genetic basis of BTV-8 pathogenesis is not known. To understand the genetic basis of BTV-8 pathogenicity, we generated reassortant viruses by replacing the 3 most variable genes, S2, S6 and S10 of a recent isolate of BTV-8, in different combinations into the backbone of an attenuated strain of BTV-1. The growth profiles of these reassortant viruses were then analyzed in two different ovine cell lines derived from different organs, kidney and thymus. Distinct patterns for each reassortant virus in these two cell lines were observed. To determine the pathogenicity of these reassortant viruses, groups of BTV-susceptible sheep were infected with each of these viruses. The data suggested that the clinical manifestations of these two different serotypes, BTV-1 and BTV-8, were slightly distinct and BTV-1, when comprising all 3 genome segments of BTV-8, behaved differently to BTV-1. Our results also suggested that the molecular basis of BT disease is highly complex. PMID:25307940

  10. Silica-based nanocomposites via reverse microemulsions: classifications, preparations, and applications.

    PubMed

    Wang, Jiasheng; Shah, Zameer Hussain; Zhang, Shufen; Lu, Rongwen

    2014-05-01

    Silica-based nanocomposites with amorphous silica as the matrix or carrier along with a functional component have been extensively investigated. These nanocomposites combine the advantages of both silica and the functional components, demonstrating great potential for various applications. To synthesize such composites, one of the most frequently used methods is reverse microemulsion due to its convenient control over the size, shape, and structures. The structures of the composites have a decisive significance for their properties and applications. In this review, we tried to categorize the silica-based nanocomposites via reverse microemulsions based on their structures, discussed the syntheses individually for each structure, summarized their applications, and made some perspectives based on the current progress of this field. PMID:24562100

  11. Applications of Genetic Methods to NASA Design and Operations Problems

    NASA Technical Reports Server (NTRS)

    Laird, Philip D.

    1996-01-01

    We review four recent NASA-funded applications in which evolutionary/genetic methods are important. In the process we survey: the kinds of problems being solved today with these methods; techniques and tools used; problems encountered; and areas where research is needed. The presentation slides are annotated briefly at the top of each page.

  12. Genetic algorithms and their applications in accelerator physics

    SciTech Connect

    Hofler, Alicia S.

    2013-12-01

    Multi-objective optimization techniques are widely used in an extremely broad range of fields. Genetic optimization for multi-objective optimization was introduced in the accelerator community in relatively recent times and quickly spread becoming a fundamental tool in multi-dimensional optimization problems. This discussion introduces the basics of the technique and reviews applications in accelerator problems.

  13. Silica-based nanocomposites via reverse microemulsions: classifications, preparations, and applications

    NASA Astrophysics Data System (ADS)

    Wang, Jiasheng; Shah, Zameer Hussain; Zhang, Shufen; Lu, Rongwen

    2014-04-01

    Silica-based nanocomposites with amorphous silica as the matrix or carrier along with a functional component have been extensively investigated. These nanocomposites combine the advantages of both silica and the functional components, demonstrating great potential for various applications. To synthesize such composites, one of the most frequently used methods is reverse microemulsion due to its convenient control over the size, shape, and structures. The structures of the composites have a decisive significance for their properties and applications. In this review, we tried to categorize the silica-based nanocomposites via reverse microemulsions based on their structures, discussed the syntheses individually for each structure, summarized their applications, and made some perspectives based on the current progress of this field.Silica-based nanocomposites with amorphous silica as the matrix or carrier along with a functional component have been extensively investigated. These nanocomposites combine the advantages of both silica and the functional components, demonstrating great potential for various applications. To synthesize such composites, one of the most frequently used methods is reverse microemulsion due to its convenient control over the size, shape, and structures. The structures of the composites have a decisive significance for their properties and applications. In this review, we tried to categorize the silica-based nanocomposites via reverse microemulsions based on their structures, discussed the syntheses individually for each structure, summarized their applications, and made some perspectives based on the current progress of this field. Electronic supplementary information (ESI) available: The structures of all the surfactants included in this review are listed. See DOI: 10.1039/c3nr06025j

  14. Identification of Genes Important for Cutaneous Function Revealed by a Large Scale Reverse Genetic Screen in the Mouse

    PubMed Central

    DiTommaso, Tia; Jones, Lynelle K.; Cottle, Denny L.; Gerdin, Anna-Karin; Vancollie, Valerie E.; Watt, Fiona M.; Ramirez-Solis, Ramiro; Bradley, Allan; Steel, Karen P.; Sundberg, John P.; White, Jacqueline K.; Smyth, Ian M.

    2014-01-01

    The skin is a highly regenerative organ which plays critical roles in protecting the body and sensing its environment. Consequently, morbidity and mortality associated with skin defects represent a significant health issue. To identify genes important in skin development and homeostasis, we have applied a high throughput, multi-parameter phenotype screen to the conditional targeted mutant mice generated by the Wellcome Trust Sanger Institute's Mouse Genetics Project (Sanger-MGP). A total of 562 different mouse lines were subjected to a variety of tests assessing cutaneous expression, macroscopic clinical disease, histological change, hair follicle cycling, and aberrant marker expression. Cutaneous lesions were associated with mutations in 23 different genes. Many of these were not previously associated with skin disease in the organ (Mysm1, Vangl1, Trpc4ap, Nom1, Sparc, Farp2, and Prkab1), while others were ascribed new cutaneous functions on the basis of the screening approach (Krt76, Lrig1, Myo5a, Nsun2, and Nf1). The integration of these skin specific screening protocols into the Sanger-MGP primary phenotyping pipelines marks the largest reported reverse genetic screen undertaken in any organ and defines approaches to maximise the productivity of future projects of this nature, while flagging genes for further characterisation. PMID:25340873

  15. Development of a reverse genetics system for epizootic hemorrhagic disease virus and evaluation of novel strains containing duplicative gene rearrangements.

    PubMed

    Yang, Tao; Zhang, Jikai; Xu, Qingyuan; Sun, Encheng; Li, Junping; Lv, Shuang; Feng, Yufei; Zhang, Qin; Wang, Haixiu; Wang, Hua; Wu, Donglai

    2015-09-01

    Epizootic haemorrhagic disease is a non-contagious infectious viral disease of wild and domestic ruminants caused by epizootic hemorrhagic disease virus (EHDV). EHDV belongs to the genus Orbivirus within the family Reoviridae and is transmitted by insects of the genus Culicoides. The impact of epizootic haemorrhagic disease is underscored by its designation as a notifiable disease by the Office International des Epizooties. The EHDV genome consists of 10 linear dsRNA segments (Seg1-Seg10). Until now, no reverse genetics system (RGS) has been developed to generate replication-competent EHDV entirely from cloned cDNA, hampering detailed functional analyses of EHDV biology. Here, we report the generation of viable EHDV entirely from cloned cDNAs. A replication-competent EHDV-2 (Ibaraki BK13 strain) virus incorporating a marker mutation was rescued by transfection of BHK-21 cells with expression plasmids and in vitro synthesized RNA transcripts. Using this RGS, two additional modified EHDV-2 viruses were also generated: one that contained a duplex concatemeric Seg9 gene and another that contained a duplex concatemeric Seg10 gene. The modified EHDV-2 with a duplex Seg9 gene was genetically stable during serial passage in BHK-21 cells. In contrast, the modified EHDV-2 with a duplex Seg10 gene was unstable during serial passage, but displayed enhanced replication kinetics in vitro when compared with the WT virus. This RGS provides a new platform for the investigation of EHDV replication, pathogenesis and novel EHDV vaccines. PMID:25998915

  16. Quantitative genetic versions of Hamilton's rule with empirical applications

    PubMed Central

    McGlothlin, Joel W.; Wolf, Jason B.; Brodie, Edmund D.; Moore, Allen J.

    2014-01-01

    Hamilton's theory of inclusive fitness revolutionized our understanding of the evolution of social interactions. Surprisingly, an incorporation of Hamilton's perspective into the quantitative genetic theory of phenotypic evolution has been slow, despite the popularity of quantitative genetics in evolutionary studies. Here, we discuss several versions of Hamilton's rule for social evolution from a quantitative genetic perspective, emphasizing its utility in empirical applications. Although evolutionary quantitative genetics offers methods to measure each of the critical parameters of Hamilton's rule, empirical work has lagged behind theory. In particular, we lack studies of selection on altruistic traits in the wild. Fitness costs and benefits of altruism can be estimated using a simple extension of phenotypic selection analysis that incorporates the traits of social interactants. We also discuss the importance of considering the genetic influence of the social environment, or indirect genetic effects (IGEs), in the context of Hamilton's rule. Research in social evolution has generated an extensive body of empirical work focusing—with good reason—almost solely on relatedness. We argue that quantifying the roles of social and non-social components of selection and IGEs, in addition to relatedness, is now timely and should provide unique additional insights into social evolution. PMID:24686930

  17. The Genetic Basis of HIV-1 Resistance to Reverse Transcriptase and Protease Inhibitors

    PubMed Central

    Shafer, Robert W.; Kantor, Rami; Gonzales, Matthew J.

    2008-01-01

    HIV-1 drug resistance is caused by mutations in the reverse transcriptase (RT) and protease enzymes, the molecular targets of antiretroviral therapy. At the beginning of the year 2000, two expert panels recommended that HIV-1 RT and protease susceptibility testing be used to help select antiretroviral drugs for HIV-1-infected patients. Genotypic assays have been developed to detect HIV-1 mutations known to confer antiretroviral drug resistance. Genotypic assays using dideoxynucleoside sequencing provide extensive insight into the presence of drug-resistant variants in the population of viruses within an individual. However, the interpretation of these assays in clinical settings is formidable because of the large numbers of drug resistance mutations and because these mutations interact with one another and emerge in complex patterns. In addition, cross-resistance between antiretroviral drugs is greater than that anticipated from initial in vitro studies. This review summarises the published data linking HIV-1 RT and protease mutations to in vitro and clinical resistance to the currently available nucleoside RT inhibitors, non-nucleoside RT inhibitors, and protease inhibitors. PMID:19096725

  18. Reversible Thermal Denaturation of a 60-kDa Genetically Engineered β-Sheet Polypeptide

    PubMed Central

    Lednev, Igor K.; Ermolenkov, Vladimir V.; Higashiya, Seiichiro; Popova, Ludmila A.; Topilina, Natalya I.; Welch, John T.

    2006-01-01

    A de novo 687-amino-acid residue polypeptide with a regular 32-amino-acid repeat sequence, (GA)3GY(GA)3GE(GA)3GH(GA)3GK, forms large β-sheet assemblages that exhibit remarkable folding properties and, as well, form fibrillar structures. This construct is an excellent tool to explore the details of β-sheet formation yielding intimate folding information that is otherwise difficult to obtain and may inform folding studies of naturally occurring materials. The polypeptide assumes a fully folded antiparallel β-sheet/turn structure at room temperature, and yet is completely and reversibly denatured at 125°C, adopting a predominant polyproline II conformation. Deep ultraviolet Raman spectroscopy indicated that melting/refolding occurred without any spectroscopically distinct intermediates, yet the relaxation kinetics depend on the initial polypeptide state, as would be indicative of a non-two-state process. Thermal denaturation and refolding on cooling appeared to be monoexponential with characteristic times of ∼1 and ∼60 min, respectively, indicating no detectable formation of hairpin-type nuclei in the millisecond timescale that could be attributed to nonlocal “nonnative” interactions. The polypeptide folding dynamics agree with a general property of β-sheet proteins, i.e., initial collapse precedes secondary structure formation. The observed folding is much faster than expected for a protein of this size and could be attributed to a less frustrated free-energy landscape funnel for folding. The polypeptide sequence suggests an important balance between the absence of strong nonnative contacts (salt bridges or hydrophobic collapse) and limited repulsion of charged side chains. PMID:16891363

  19. Pharmacological or genetic inhibition of LDHA reverses tumor progression of pediatric osteosarcoma.

    PubMed

    Gao, Shan; Tu, Dan-Na; Li, Heng; Jiang, Jian-Xin; Cao, Xin; You, Jin-Bin; Zhou, Xiao-Qin

    2016-07-01

    Reprogrammed energy metabolism is an emerging hallmark of cancer. Lactate dehydrogenase A (LDHA), a key enzyme involved in anaerobic glycolysis, is frequently deregulated in human malignancies. However, limited knowledge is known about its roles in the progression of osteosarcoma (OS). In this study, we found that LDHA is commonly upregulated in four OS cell lines compared with the normal osteoblast cells (hFOB1.19). Treatment with FX11, a specific inhibitor of LDHA, significantly reduced LDHA activity, and inhibited cell proliferation and invasive potential in a dose dependent manner. Genetic silencing of LDHA resulted in a decreased lactate level in the culture medium, reduced cell viability and decreased cell invasion ability. Meanwhile, silencing of LDHA also compromised tumorigenesis in vivo. Furthermore, knockdown of LDHA remarkably reduced extracellular acidification rate (ECAR) as well as glucose consumption. In the presence of 2-DG, a glycolysis inhibitor, LDHA-mediated cell proliferation and invasion were completely blocked, indicating the oncogenic activities of LDHA may dependent on Warburg effect. Finally, pharmacological inhibition of c-Myc or HIF1α significantly attenuated LDHA expression. Taken together, upregulated LDHA facilitates tumor progression of OS and might be a potential target for OS treatment. PMID:27261617

  20. Development and application of biological technologies in fish genetic breeding.

    PubMed

    Xu, Kang; Duan, Wei; Xiao, Jun; Tao, Min; Zhang, Chun; Liu, Yun; Liu, ShaoJun

    2015-02-01

    Fish genetic breeding is a process that remolds heritable traits to obtain neotype and improved varieties. For the purpose of genetic improvement, researchers can select for desirable genetic traits, integrate a suite of traits from different donors, or alter the innate genetic traits of a species. These improved varieties have, in many cases, facilitated the development of the aquaculture industry by lowering costs and increasing both quality and yield. In this review, we present the pertinent literatures and summarize the biological bases and application of selection breeding technologies (containing traditional selective breeding, molecular marker-assisted breeding, genome-wide selective breeding and breeding by controlling single-sex groups), integration breeding technologies (containing cross breeding, nuclear transplantation, germline stem cells and germ cells transplantation, artificial gynogenesis, artificial androgenesis and polyploid breeding) and modification breeding technologies (represented by transgenic breeding) in fish genetic breeding. Additionally, we discuss the progress our laboratory has made in the field of chromosomal ploidy breeding of fish, including distant hybridization, gynogenesis, and androgenesis. Finally, we systematically summarize the research status and known problems associated with each technology. PMID:25595050

  1. Characterization of influenza virus NS1 protein by using a novel helper-virus-free reverse genetic system.

    PubMed

    Enami, M; Enami, K

    2000-06-01

    We have developed a novel helper-virus-free reverse genetic system to genetically manipulate influenza A viruses. The RNPs, which were purified from the influenza A/WSN/33 (WSN) virus, were treated with RNase H in the presence of NS (nonstructural) cDNA fragments. This specifically digested the NS RNP. The NS-digested RNPs thus obtained were transfected into cells together with the in vitro-reconstituted NS RNP. The NS-digested RNPs alone did not rescue viruses; however, cotransfection with the NS RNP did. This protocol was also used to rescue the NP transfectant. We obtained two NS1 mutants, dl12 and N110, using this protocol. The dl12 NS gene contains a deletion of 12 amino acids at positions 66 to 77 near the N terminus. This virus was temperature sensitive in Madin-Darby bovine kidney (MDBK) cells as well as in Vero cells. The translation of all viral proteins as well as cellular proteins was significantly disrupted during a later time of infection at the nonpermissive temperature of 39 degrees C. The N110 mutant consists of 110 amino acids which are the N-terminal 48% of the WSN virus NS1 protein. Growth of this virus was significantly reduced at any temperature. In the virus-infected cells, translation of the M1 protein was reduced to 10 to 20% of that of the wild-type virus; however, the translation of neither the nucleoprotein nor NS1 was significantly interfered with, indicating the important role of NS1 in translational stimulation of the M1 protein. PMID:10823862

  2. Investigating CNS synaptogenesis at single-synapse resolution by combining reverse genetics with correlative light and electron microscopy.

    PubMed

    Urwyler, Olivier; Izadifar, Azadeh; Dascenco, Dan; Petrovic, Milan; He, Haihuai; Ayaz, Derya; Kremer, Anna; Lippens, Saskia; Baatsen, Pieter; Guérin, Christopher J; Schmucker, Dietmar

    2015-01-15

    Determining direct synaptic connections of specific neurons in the central nervous system (CNS) is a major technical challenge in neuroscience. As a corollary, molecular pathways controlling developmental synaptogenesis in vivo remain difficult to address. Here, we present genetic tools for efficient and versatile labeling of organelles, cytoskeletal components and proteins at single-neuron and single-synapse resolution in Drosophila mechanosensory (ms) neurons. We extended the imaging analysis to the ultrastructural level by developing a protocol for correlative light and 3D electron microscopy (3D CLEM). We show that in ms neurons, synaptic puncta revealed by genetically encoded markers serve as a reliable indicator of individual active zones. Block-face scanning electron microscopy analysis of ms axons revealed T-bar-shaped dense bodies and other characteristic ultrastructural features of CNS synapses. For a mechanistic analysis, we directly combined the single-neuron labeling approach with cell-specific gene disruption techniques. In proof-of-principle experiments we found evidence for a highly similar requirement for the scaffolding molecule Liprin-α and its interactors Lar and DSyd-1 (RhoGAP100F) in synaptic vesicle recruitment. This suggests that these important synapse regulators might serve a shared role at presynaptic sites within the CNS. In principle, our CLEM approach is broadly applicable to the developmental and ultrastructural analysis of any cell type that can be targeted with genetically encoded markers. PMID:25503410

  3. Applications of genetic algorithms and neural networks to interatomic potentials

    NASA Astrophysics Data System (ADS)

    Hobday, Steven; Smith, Roger; BelBruno, Joe

    1999-06-01

    Applications of two modern artificial intelligence (AI) techniques, genetic algorithms (GA) and neural networks (NN) to computer simulations are reported. It is shown that the GA are very useful tools for determining the minimum energy structures of clusters of atoms described by interatomic potential functions and generally outperform other optimisation methods for this task. A number of applications are given including covalent, and close packed structures of single or multi-component atomic species. It is also shown that (many body) interatomic potential functions for multi-component systems can be derived by training a specially constructed NN on a variety of structural data.

  4. Novel and potential application of cryopreservation to plant genetic transformation.

    PubMed

    Wang, Biao; Zhang, Zhibo; Yin, Zhenfang; Feng, Chaohong; Wang, Qiaochun

    2012-01-01

    The world population now is 6.7 billion and is predicted to reach 9 billion by 2050. Such a rapid growing population has tremendously increased the challenge for food security. Obviously, it is impossible for traditional agriculture to ensure the food security, while plant biotechnology offers considerable potential to realize this goal. Over the last 15 years, great benefits have been brought to sustainable agriculture by commercial cultivation of genetically modified (GM) crops. Further development of new GM crops will with no doubt contribute to meeting the requirements for food by the increasing population. The present article provides updated comprehensive information on novel and potential application of cryopreservation to genetic transformation. The major progresses that have been achieved in this subject include (1), long-term storage of a large number of valuable plant genes, which offers a good potential for further development of novel cultivars by genetic transformation; (2), retention of regenerative capacity of embryogenic tissues and protoplasts, which ensures efficient plant regeneration system for genetic transformation; (3), improvement of transformation efficiency and plant regeneration of transformed cells; (4), long-term preservation of transgenic materials with stable expression of transgenes and productive ability of recombinant proteins, which allows transgenic materials to be stored in a safe manner before being analyzed and evaluated, and allows establishment of stable seed stocks for commercial production of homologous proteins. Data provided in this article clearly demonstrate that cryo-technique has an important role to play in the whole chain of genetic transformation. Further studies coupling cryotechnique and genetic transformation are expected to significantly improve development of new GM crops. PMID:22079800

  5. Protective efficacy of a high-growth reassortant swine H3N2 inactivated vaccine constructed by reverse genetic manipulation.

    PubMed

    Wen, Feng; Ma, Ji-Hong; Yu, Hai; Yang, Fu-Ru; Huang, Meng; Zhou, Yan-Jun; Li, Ze-Jun; Tong, Guang-Zhi

    2014-01-01

    Novel reassortant H3N2 swine influenza viruses (SwIV) with the matrix gene from the 2009 H1N1 pandemic virus have been isolated in many countries as well as during outbreaks in multiple states in the United States, indicating that H3N2 SwIV might be a potential threat to public health. Since southern China is the world's largest producer of pigs, efficient vaccines should be developed to prevent pigs from acquiring H3N2 subtype SwIV infections, and thus limit the possibility of SwIV infection at agricultural fairs. In this study, a high-growth reassortant virus (GD/PR8) was generated by plasmid-based reverse genetics and tested as a candidate inactivated vaccine. The protective efficacy of this vaccine was evaluated in mice by challenging them with another H3N2 SwIV isolate [A/Swine/Heilongjiang/1/05 (H3N2) (HLJ/05)]. Prime and booster inoculation with GD/PR8 vaccine yielded high-titer serum hemagglutination inhibiting antibodies and IgG antibodies. Complete protection of mice against H3N2 SwIV was observed, with significantly reduced lung lesion and viral loads in vaccine-inoculated mice relative to mock-vaccinated controls. These results suggest that the GD/PR8 vaccine may serve as a promising candidate for rapid intervention of H3N2 SwIV outbreaks in China. PMID:24675833

  6. Development of a tailored vaccine against challenge with very virulent infectious bursal disease virus of chickens using reverse genetics.

    PubMed

    Gao, Li; Qi, Xiaole; Li, Kai; Gao, Honglei; Gao, Yulong; Qin, Liting; Wang, Yongqiang; Wang, Xiaomei

    2011-07-26

    Due to the problems associated with traditional methods for infectious bursal disease virus (IBDV) vaccine development and the pressure of evolution and variation of very virulent strains, it is urgent to develop IBDV vaccine rapidly with novel approaches. Using reverse genetics, the aim of this study was to generate a tailored vaccine strain (rGtHLJVP2) with its VP2 gene similar to very virulent IBDV (vvIBDV) to prevent the prevalence of IBDV. Characteristics of rGtHLJVP2 were evaluated in both cell culture and SPF chickens. rGtHLJVP2 replicated well as its parental strain Gt in vitro and in vivo. Immunization of SPF chickens with rGtHLJVP2 resulted in comparable antibody titers against IBDV as that of the medium virulent live vaccine B87, which was significant higher than that of attenuated vaccine Gt. Challenge studies with 10(4)ELD(50) of prevalent homogeneous or heterogeneous vvIBDV revealed complete (100%) protection in the groups immunized with rGtHLJVP2. No significant clinical and pathological lesions were observed in chickens immunized with rGtHLJVP2. Our data demonstrated that rGtHLJVP2 could be used as a novel vaccine candidate for prevention against vvIBDV. PMID:21658423

  7. Combining Telomerase Reverse Transcriptase Genetic Variant rs2736100 with Epidemiologic Factors in the Prediction of Lung Cancer Susceptibility

    PubMed Central

    Wang, Xu; Ma, Kewei; Chi, Lumei; Cui, Jiuwei; Jin, Lina; Hu, Ji-Fan; Li, Wei

    2016-01-01

    Genetic variants from a considerable number of susceptibility loci have been identified in association with cancer risk, but their interaction with epidemiologic factors in lung cancer remains to be defined. We sought to establish a forecasting model for identifying individuals with high-risk of lung cancer by combing gene single-nucleotide polymorphisms with epidemiologic factors. Genotyping and clinical data from 500 lung cancer cases and 500 controls were used for developing the logistic regression model. We found that lung cancer was associated with telomerase reverse transcriptase (TERT) rs2736100 single-nucleotide polymorphism. The TERT rs2736100 model was still significantly associated with lung cancer risk when combined with environmental and lifestyle factors, including lower education, lower BMI, COPD history, heavy cigarettes smoking, heavy cooking emission, and dietary factors (over-consumption of meat and deficiency in fish/shrimp, vegetables, dairy products, and soybean products). These data suggest that combining TERT SNP and epidemiologic factors may be a useful approach to discriminate high and low-risk individuals for lung cancer. PMID:27162544

  8. Reverse Genetic Morpholino Approach Using Cardiac Ventricular Injection to Transfect Multiple Difficult-to-target Tissues in the Zebrafish Larva

    PubMed Central

    Konantz, Judith; Antos, Christopher L.

    2014-01-01

    The zebrafish is an important model to understand the cell and molecular biology of organ and appendage regeneration. However, molecular strategies to employ reverse genetics have not yet been adequately developed to assess gene function in regeneration or tissue homeostasis during larval stages after zebrafish embryogenesis, and several tissues within the zebrafish larva are difficult to target. Intraventricular injections of gene-specific morpholinos offer an alternative method for the current inability to genomically target zebrafish genes in a temporally controlled manner at these stages. This method allows for complete dispersion and subsequent incorporation of the morpholino into various tissues throughout the body, including structures that were formerly impossible to reach such as those in the larval caudal fin, a structure often used to noninvasively research tissue regeneration. Several genes activated during larval finfold regeneration are also present in regenerating adult vertebrate tissues, so the larva is a useful model to understand regeneration in adults. This morpholino dispersion method allows for the quick and easy identification of genes required for the regeneration of larval tissues as well as other physiological phenomena regulating tissue homeostasis after embryogenesis. Therefore, this delivery method provides a currently needed strategy for temporal control to the evaluation of gene function after embryogenesis.  PMID:24961304

  9. Application of genetic algorithms to tuning fuzzy control systems

    NASA Technical Reports Server (NTRS)

    Espy, Todd; Vombrack, Endre; Aldridge, Jack

    1993-01-01

    Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.

  10. Testing for beneficial reversal of dominance during salinity shifts in the invasive copepod Eurytemora affinis, and implications for the maintenance of genetic variation.

    PubMed

    Posavi, Marijan; Gelembiuk, Gregory William; Larget, Bret; Lee, Carol Eunmi

    2014-11-01

    Maintenance of genetic variation at loci under selection has profound implications for adaptation under environmental change. In temporally and spatially varying habitats, non-neutral polymorphism could be maintained by heterozygote advantage across environments (marginal overdominance), which could be greatly increased by beneficial reversal of dominance across conditions. We tested for reversal of dominance and marginal overdominance in salinity tolerance in the saltwater-to-freshwater invading copepod Eurytemora affinis. We compared survival of F1 offspring generated by crossing saline and freshwater inbred lines (between-salinity F1 crosses) relative to within-salinity F1 crosses, across three salinities. We found evidence for both beneficial reversal of dominance and marginal overdominance in salinity tolerance. In support of reversal of dominance, survival of between-salinity F1 crosses was not different from that of freshwater F1 crosses under freshwater conditions and saltwater F1 crosses under saltwater conditions. In support of marginal overdominance, between-salinity F1 crosses exhibited significantly higher survival across salinities relative to both freshwater and saltwater F1 crosses. Our study provides a rare empirical example of complete beneficial reversal of dominance associated with environmental change. This mechanism might be crucial for maintaining genetic variation in salinity tolerance in E. affinis populations, allowing rapid adaptation to salinity changes during habitat invasions. PMID:25135455

  11. A comparison of AMPV subtypes A and B full genomes, gene transcripts and proteins led to reverse-genetics systems rescuing both subtypes.

    PubMed

    Laconi, Andrea; Clubbe, Jayne; Falchieri, Marco; Lupini, Caterina; Cecchinato, Mattia; Catelli, Elena; Listorti, Valeria; Naylor, Clive J

    2016-06-01

    Avian metapneumovirus (AMPV) infection of poultry causes serious disease in most countries and subtype A reverse-genetic (RG) systems have allowed a generation of viruses of known sequence, and proved useful in developments towards better control by live vaccines. While subtype B viruses are more prevalent, bacterial cloning issues made subtype B RG systems difficult to establish. A molecular comparison of subtype A and B viruses was undertaken to assess whether subtype A RG components could be partially or fully substituted. AMPV subtype A and B gene-end sequences leading to polyadenylation are, to our knowledge, reported for the first time, as well as several leader and trailer sequences. After comparing these alongside previously reported gene starts and protein sequences, it was concluded that subtype B genome copies would be most likely rescued by a subtype A support system, and this assertion was supported when individual subtype A components were successfully substituted. Application of an advanced cloning plasmid permitted eventual completion of a fully subtype B RG system, and proved that all subtype-specific components could be freely exchanged between A and B systems. PMID:26958846

  12. Applications of Molecular Genetics to the Study of Asthma.

    PubMed

    Sanz-Lozano, Catalina S; García-Solaesa, Virginia; Davila, Ignacio; Isidoro-García, María

    2016-01-01

    Asthma is a multifactorial disease. This fact, associated to the diversity of asthma phenotypes, has made difficult to obtain a clear pattern of inheritance. With the huge development of molecular genetics technologies, candidate gene studies are giving way to different types of studies from the genomic point of view.These approaches are allowing the identification of several genes associated with asthma. However, in these studies, there are some conflicting results between different populations and there is still a lack of knowledge about the actual influence of the gene variants. Some confounding factors are, among others, the inappropriate sample size, population stratification, differences in the classification of the phenotypes, or inadequate coverage of the genes.To confirm the real effect of the reported associations, it is necessary to consider both the genetic and environmental factors and perform functional studies that explain the molecular mechanisms mediating between the emergence of gene variants and the development of the disease.The development of experimental techniques opens a new horizon that allows the identification of major genetic factors of susceptibility to asthma. The resulting classification of the population groups based on their genetic characteristics, will allow the application of specific and highly efficient treatments. PMID:27300527

  13. Next generation sequencing and its applications in forensic genetics.

    PubMed

    Børsting, Claus; Morling, Niels

    2015-09-01

    It has been almost a decade since the first next generation sequencing (NGS) technologies emerged and quickly changed the way genetic research is conducted. Today, full genomes are mapped and published almost weekly and with ever increasing speed and decreasing costs. NGS methods and platforms have matured during the last 10 years, and the quality of the sequences has reached a level where NGS is used in clinical diagnostics of humans. Forensic genetic laboratories have also explored NGS technologies and especially in the last year, there has been a small explosion in the number of scientific articles and presentations at conferences with forensic aspects of NGS. These contributions have demonstrated that NGS offers new possibilities for forensic genetic case work. More information may be obtained from unique samples in a single experiment by analyzing combinations of markers (STRs, SNPs, insertion/deletions, mRNA) that cannot be analyzed simultaneously with the standard PCR-CE methods used today. The true variation in core forensic STR loci has been uncovered, and previously unknown STR alleles have been discovered. The detailed sequence information may aid mixture interpretation and will increase the statistical weight of the evidence. In this review, we will give an introduction to NGS and single-molecule sequencing, and we will discuss the possible applications of NGS in forensic genetics. PMID:25704953

  14. Negative-strand RNA viruses: genetic engineering and applications.

    PubMed Central

    Palese, P; Zheng, H; Engelhardt, O G; Pleschka, S; García-Sastre, A

    1996-01-01

    The negative-strand RNA viruses are a broad group of animal viruses that comprise several important human pathogens, including influenza, measles, mumps, rabies, respiratory syncytial, Ebola, and hantaviruses. The development of new strategies to genetically manipulate the genomes of negative-strand RNA viruses has provided us with new tools to study the structure-function relationships of the viral components and their contributions to the pathogenicity of these viruses. It is also now possible to envision rational approaches--based on genetic engineering techniques--to design live attenuated vaccines against some of these viral agents. In addition, the use of different negative-strand RNA viruses as vectors to efficiently express foreign polypeptides has also become feasible, and these novel vectors have potential applications in disease prevention as well as in gene therapy. Images Fig. 1 PMID:8876139

  15. Experimental studies of applications of time-reversal acoustics to noncoherent underwater communications

    NASA Astrophysics Data System (ADS)

    Heinemann, M.; Larraza, A.; Smith, K. B.

    2003-06-01

    The most difficult problem in shallow underwater acoustic communications is considered to be the time-varying multipath propagation because it impacts negatively on data rates. At high data rates the intersymbol interference requires adaptive algorithms on the receiver side that lead to computationally intensive and complex signal processing. A novel technique called time-reversal acoustics (TRA) can environmentally adapt the acoustic propagation effects of a complex medium in order to focus energy at a particular target range and depth. Using TRA, the multipath structure is reduced because all the propagation paths add coherently at the intended target location. This property of time-reversal acoustics suggests a potential application in the field of noncoherent acoustic communications. This work presents results of a tank scale experiment using an algorithm for rapid transmission of binary data in a complex underwater environment with the TRA approach. A simple 15-symbol code provides an example of the simplicity and feasibility of the approach. Covert coding due to the inherent scrambling induced by the environment at points other than the intended receiver is also investigated. The experiments described suggest a high potential in data rate for the time-reversal approach in underwater acoustic communications while keeping the computational complexity low.

  16. Application of Ionic Liquids in High Performance Reversed-Phase Chromatography

    PubMed Central

    Wang, Ye; Tian, Minglei; Bi, Wentao; Row, Kyung Ho

    2009-01-01

    Ionic liquids, considered “green” chemicals, are widely used in many areas of analytical chemistry due to their unique properties. Recently, ionic liquids have been used as a kind of novel additive in separation and combined with silica to synthesize new stationary phase as separation media. This review will focus on the properties and mechanisms of ionic liquids and their potential applications as mobile phase modifier and surface-bonded stationary phase in reversed-phase high performance liquid chromatography (RP-HPLC). Ionic liquids demonstrate advantages and potential in chromatographic field. PMID:19582220

  17. Human Cytokine Genetic Variants Associated With HBsAg Reverse Seroconversion in Rituximab-Treated Non-Hodgkin Lymphoma Patients

    PubMed Central

    Hsiao, Liang-Tsai; Wang, Hao-Yuan; Yang, Ching-Fen; Chiou, Tzeon-Jye; Gau, Jyh-Pyng; Yu, Yuan-Bin; Liu, Hsiao-Ling; Chang, Wen-Chun; Chen, Po-Min; Tzeng, Cheng-Hwai; Chan, Yu-Jiun; Yang, Muh-Hwa; Liu, Jin-Hwang; Huang, Yi-Hsiang

    2016-01-01

    Abstract Hepatitis B virus (HBV) reactivation has been noted in HBV surface antigen (HBsAg)-seronegative patients with CD20+ B-cell non-Hodgkin lymphoma (NHL) undergoing rituximab treatment. Clinically, hepatitis flares are usually associated with the reappearance of HBsAg (reverse seroconversion of HBsAg, HBV-RS). It is unclear whether human genetic factors are related to rituximab-associated HBV reactivation. Unvaccinated HBsAg-seronegative adults (n = 104) with CD20+ NHL who had received rituximab-containing therapy without anti-HBV prophylaxis were enrolled. Eighty-nine candidate single nucleotide polymorphisms (SNPs) of 49 human cytokine genes were chosen and were analyzed using the iPLEX technique. Competing risk regression was used to identify the factors associated with HBV-RS. Participants had a median age of 66.1 years and 56.7% were male (n = 59). The anti-HBs and anti-HBc positivity rates were 82.4% and 94.1%, respectively, among patients for whom data were available (approximately 81%). A mean of 7.14 cycles of rituximab therapy were administered, and a total of 14 (13.4%) patients developed HBV-RS. Nine SNPs showed significant differences in frequency between patients with or without HBV-RS: CD40 rs1883832, IL4 rs2243248 and rs2243263, IL13 rs1295686, IL18 rs243908, IL20 rs1518108, and TNFSF13B rs12428930 and rs12583006. Multivariate analysis showed that ≥6 cycles of rituximab therapy, IL18 rs243908, and the IL4 haplotype rs2243248∼rs2243263 were independently associated with HBV-RS. The IL4 haplotype rs2243248∼rs2243263 was significantly associated with HBV-RS regardless of anti-HBs status. Polymorphisms in human cytokine genes impact the risk of rituximab-associated HBV-RS. PMID:26986131

  18. Ontogenic and morphological study of gonadal formation in genetically-modified sex reversal XY(POS) mice.

    PubMed

    Umemura, Yuria; Miyamoto, Ryosuke; Hashimoto, Rie; Kinoshita, Kyoko; Omotehara, Takuya; Nagahara, Daichi; Hirano, Tetsushi; Kubota, Naoto; Minami, Kiichi; Yanai, Shogo; Masuda, Natsumi; Yuasa, Hideto; Mantani, Youhei; Matsuo, Eiko; Yokoyama, Toshifumi; Kitagawa, Hiroshi; Hoshi, Nobuhiko

    2016-01-01

    Mammalian sexual fate is determined by the presence or absence of sex determining region of the Y chromosome (Sry) in the "bipotential" gonads. Recent studies have demonstrated that both male and female sexual development are induced by distinct and active genetic pathways. Breeding the Y chromosome from Mus m. domesticus poschiavinus (POS) strains into C57BL/6J (B6J) mice (B6J-XY(POS)) has been shown to induce sex reversal (75%: bilateral ovary, 25%: true hermaphrodites). However, our B6N-XY(POS) mice, which were generated by backcrossing of B6J-XY(POS) on an inbred B6N-XX, develop as males (36%: bilateral testis with fertility as well as bilateral ovary (34%), and the remainder develop as true hermaphrodites. Here, we investigated in detail the expressions of essential sex-related genes and histological features in B6N-XY(POS) mice from the fetal period to adulthood. The onsets of both Sry and SRY-box 9 (Sox9) expressions as determined spatiotemporally by whole-mount immunohistochemistry in the B6N-XY(POS) gonads occurred 2-3 tail somites later than those in B6N-XY(B6) gonads, but earlier than those in B6J-XY(POS), respectively. It is possible that such a small difference in timing of the Sry expression underlies testicular development in our B6N-XY(POS). Our study is the first to histologically show the expression and ectopic localization of a female-related gene in the XY(POS) testes and a male-related gene in the XY(POS) ovaries. The results from these and previous experiments indicate that the interplay between genome variants, epigenetics and developmental gene regulation is crucial for testis development. PMID:26194606

  19. Reverse genetics in high throughput: rapid generation of complete negative strand RNA virus cDNA clones and recombinant viruses thereof

    PubMed Central

    Nolden, T.; Pfaff, F.; Nemitz, S.; Freuling, C. M.; Höper, D.; Müller, T.; Finke, Stefan

    2016-01-01

    Reverse genetics approaches are indispensable tools for proof of concepts in virus replication and pathogenesis. For negative strand RNA viruses (NSVs) the limited number of infectious cDNA clones represents a bottleneck as clones are often generated from cell culture adapted or attenuated viruses, with limited potential for pathogenesis research. We developed a system in which cDNA copies of complete NSV genomes were directly cloned into reverse genetics vectors by linear-to-linear RedE/T recombination. Rapid cloning of multiple rabies virus (RABV) full length genomes and identification of clones identical to field virus consensus sequence confirmed the approache’s reliability. Recombinant viruses were recovered from field virus cDNA clones. Similar growth kinetics of parental and recombinant viruses, preservation of field virus characters in cell type specific replication and virulence in the mouse model were confirmed. Reduced titers after reporter gene insertion indicated that the low level of field virus replication is affected by gene insertions. The flexibility of the strategy was demonstrated by cloning multiple copies of an orthobunyavirus L genome segment. This important step in reverse genetics technology development opens novel avenues for the analysis of virus variability combined with phenotypical characterization of recombinant viruses at a clonal level. PMID:27046474

  20. Reverse genetics in high throughput: rapid generation of complete negative strand RNA virus cDNA clones and recombinant viruses thereof.

    PubMed

    Nolden, T; Pfaff, F; Nemitz, S; Freuling, C M; Höper, D; Müller, T; Finke, Stefan

    2016-01-01

    Reverse genetics approaches are indispensable tools for proof of concepts in virus replication and pathogenesis. For negative strand RNA viruses (NSVs) the limited number of infectious cDNA clones represents a bottleneck as clones are often generated from cell culture adapted or attenuated viruses, with limited potential for pathogenesis research. We developed a system in which cDNA copies of complete NSV genomes were directly cloned into reverse genetics vectors by linear-to-linear RedE/T recombination. Rapid cloning of multiple rabies virus (RABV) full length genomes and identification of clones identical to field virus consensus sequence confirmed the approache's reliability. Recombinant viruses were recovered from field virus cDNA clones. Similar growth kinetics of parental and recombinant viruses, preservation of field virus characters in cell type specific replication and virulence in the mouse model were confirmed. Reduced titers after reporter gene insertion indicated that the low level of field virus replication is affected by gene insertions. The flexibility of the strategy was demonstrated by cloning multiple copies of an orthobunyavirus L genome segment. This important step in reverse genetics technology development opens novel avenues for the analysis of virus variability combined with phenotypical characterization of recombinant viruses at a clonal level. PMID:27046474

  1. Web application for genetic modification flux with database to estimate metabolic fluxes of genetic mutants.

    PubMed

    Mohd Ali, Noorlin; Tsuboi, Ryo; Matsumoto, Yuta; Koishi, Daisuke; Inoue, Kentaro; Maeda, Kazuhiro; Kurata, Hiroyuki

    2016-07-01

    Computational analysis of metabolic fluxes is essential in understanding the structure and function of a metabolic network and in rationally designing genetically modified mutants for an engineering purpose. We had presented the genetic modification flux (GMF) that predicts the flux distribution of a broad range of genetically modified mutants. To enhance the feasibility and usability of GMF, we have developed a web application with a metabolic network database to predict a flux distribution of genetically modified mutants. One hundred and twelve data sets of Escherichia coli, Corynebacterium glutamicum, Saccharomyces cerevisiae, and Chinese hamster ovary were registered as standard models. PMID:26777238

  2. Trends in genetic patent applications: the commercialization of academic intellectual property.

    PubMed

    Kers, Jannigje G; Van Burg, Elco; Stoop, Tom; Cornel, Martina C

    2014-10-01

    We studied trends in genetic patent applications in order to identify the trends in the commercialization of research findings in genetics. To define genetic patent applications, the European version (ECLA) of the International Patent Classification (IPC) codes was used. Genetic patent applications data from the PATSTAT database from 1990 until 2009 were analyzed for time trends and regional distribution. Overall, the number of patent applications has been growing. In 2009, 152 000 patent applications were submitted under the Patent Cooperation Treaty (PCT) and within the EP (European Patent) system of the European Patent Office (EPO). The number of genetic patent applications increased until a peak was reached in the year 2000, with >8000 applications, after which it declined by almost 50%. Continents show different patterns over time, with the global peak in 2000 mainly explained by the USA and Europe, while Asia shows a stable number of >1000 per year. Nine countries together account for 98.9% of the total number of genetic patent applications. In The Netherlands, 26.7% of the genetic patent applications originate from public research institutions. After the year 2000, the number of genetic patent applications dropped significantly. Academic leadership and policy as well as patent regulations seem to have an important role in the trend differences. The ongoing investment in genetic research in the past decade is not reflected by an increase of patent applications. PMID:24448546

  3. Trends in genetic patent applications: the commercialization of academic intellectual property

    PubMed Central

    Kers, Jannigje G; Van Burg, Elco; Stoop, Tom; Cornel, Martina C

    2014-01-01

    We studied trends in genetic patent applications in order to identify the trends in the commercialization of research findings in genetics. To define genetic patent applications, the European version (ECLA) of the International Patent Classification (IPC) codes was used. Genetic patent applications data from the PATSTAT database from 1990 until 2009 were analyzed for time trends and regional distribution. Overall, the number of patent applications has been growing. In 2009, 152 000 patent applications were submitted under the Patent Cooperation Treaty (PCT) and within the EP (European Patent) system of the European Patent Office (EPO). The number of genetic patent applications increased until a peak was reached in the year 2000, with >8000 applications, after which it declined by almost 50%. Continents show different patterns over time, with the global peak in 2000 mainly explained by the USA and Europe, while Asia shows a stable number of >1000 per year. Nine countries together account for 98.9% of the total number of genetic patent applications. In The Netherlands, 26.7% of the genetic patent applications originate from public research institutions. After the year 2000, the number of genetic patent applications dropped significantly. Academic leadership and policy as well as patent regulations seem to have an important role in the trend differences. The ongoing investment in genetic research in the past decade is not reflected by an increase of patent applications. PMID:24448546

  4. Two applications of time reversal mirrors: seismic radio and seismic radar.

    PubMed

    Hanafy, Sherif M; Schuster, Gerard T

    2011-10-01

    Two seismic applications of time reversal mirrors (TRMs) are introduced and tested with field experiments. The first one is sending, receiving, and decoding coded messages similar to a radio except seismic waves are used. The second one is, similar to radar surveillance, detecting and tracking a moving object(s) in a remote area, including the determination of the objects speed of movement. Both applications require the prior recording of calibration Green's functions in the area of interest. This reference Green's function will be used as a codebook to decrypt the coded message in the first application and as a moving sensor for the second application. Field tests show that seismic radar can detect the moving coordinates (x(t), y(t), z(t)) of a person running through a calibration site. This information also allows for a calculation of his velocity as a function of location. Results with the seismic radio are successful in seismically detecting and decoding coded pulses produced by a hammer. Both seismic radio and radar are highly robust to signals in high noise environments due to the super-stacking property of TRMs. PMID:21973353

  5. Genetics

    MedlinePlus

    Homozygous; Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  6. Genetics

    MedlinePlus

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  7. The multi-niche crowding genetic algorithm: Analysis and applications

    SciTech Connect

    Cedeno, W.

    1995-09-01

    The ability of organisms to evolve and adapt to the environment has provided mother nature with a rich and diverse set of species. Only organisms well adapted to their environment can survive from one generation to the next, transferring on the traits, that made them successful, to their offspring. Competition for resources and the ever changing environment drives some species to extinction and at the same time others evolve to maintain the delicate balance in nature. In this disertation we present the multi-niche crowding genetic algorithm, a computational metaphor to the survival of species in ecological niches in the face of competition. The multi-niche crowding genetic algorithm maintains stable subpopulations of solutions in multiple niches in multimodal landscapes. The algorithm introduces the concept of crowding selection to promote mating among members with qirnilar traits while allowing many members of the population to participate in mating. The algorithm uses worst among most similar replacement policy to promote competition among members with similar traits while allowing competition among members of different niches as well. We present empirical and theoretical results for the success of the multiniche crowding genetic algorithm for multimodal function optimization. The properties of the algorithm using different parameters are examined. We test the performance of the algorithm on problems of DNA Mapping, Aquifer Management, and the File Design Problem. Applications that combine the use of heuristics and special operators to solve problems in the areas of combinatorial optimization, grouping, and multi-objective optimization. We conclude by presenting the advantages and disadvantages of the algorithm and describing avenues for future investigation to answer other questions raised by this study.

  8. Investigation on application of genetic algorithms to optimal reactive power dispatch of power systems

    NASA Astrophysics Data System (ADS)

    Wu, Q. H.; Ma, J. T.

    1993-09-01

    A primary investigation into application of genetic algorithms in optimal reactive power dispatch and voltage control is presented. The application was achieved, based on (the United Kingdom) National Grid 48 bus network model, using a novel genetic search approach. Simulation results, compared with that obtained using nonlinear programming methods, are included to show the potential of applications of the genetic search methodology in power system economical and secure operations.

  9. Innovative Applications of Genetic Algorithms to Problems in Accelerator Physics

    SciTech Connect

    Hofler, Alicia; Terzic, Balsa; Kramer, Matthew; Zvezdin, Anton; Morozov, Vasiliy; Roblin, Yves; Lin, Fanglei; Jarvis, Colin

    2013-01-01

    The genetic algorithm (GA) is a relatively new technique that implements the principles nature uses in biological evolution in order to optimize a multidimensional nonlinear problem. The GA works especially well for problems with a large number of local extrema, where traditional methods (such as conjugate gradient, steepest descent, and others) fail or, at best, underperform. The field of accelerator physics, among others, abounds with problems which lend themselves to optimization via GAs. In this paper, we report on the successful application of GAs in several problems related to the existing CEBAF facility, the proposed MEIC at Jefferson Lab, and a radio frequency (RF) gun based injector. These encouraging results are a step forward in optimizing accelerator design and provide an impetus for application of GAs to other problems in the field. To that end, we discuss the details of the GAs used, including a newly devised enhancement, which leads to improved convergence to the optimum and make recommendations for future GA developments and accelerator applications.

  10. Application of a genetic algorithm to wind turbine design

    SciTech Connect

    Selig, M.S.; Coverstone-Carroll, V.L.

    1995-09-01

    This paper presents an optimization procedure for stall-regulated horizontal-axis wind-turbines. A hybrid approach is used that combines the advantages of a genetic algorithm and an inverse design method. This method is used to determine the optimum blade pitch and blade chord and twist distributions that maximize the annual energy production. To illustrate the method, a family of 25 wind turbines was designed to examine the sensitivity of annual energy production to changes in the rotor blade length and peak rotor power. Trends are revealed that should aid in the design of new rotors for existing turbines. In the second application, a series of five wind turbines was designed to determine the benefits of specifically tailoring wind turbine blades for the average wind speed at a particular site. The results have important practical implications related to rotors designed for the Midwest versus those where the average wind speed may be greater.

  11. Genetic engineering of the chloroplast: novel tools and new applications.

    PubMed

    Bock, Ralph

    2014-04-01

    The plastid genome represents an attractive target of genetic engineering in crop plants. Plastid transgenes often give high expression levels, can be stacked in operons and are largely excluded from pollen transmission. Recent research has greatly expanded our toolbox for plastid genome engineering and many new proof-of-principle applications have highlighted the enormous potential of the transplastomic technology in both crop improvement and the development of plants as bioreactors for the sustainable and cost-effective production of biopharmaceuticals, enzymes and raw materials for the chemical industry. This review describes recent technological advances with plastid transformation in seed plants. It focuses on novel tools for plastid genome engineering and transgene expression and summarizes progress with harnessing the potential of plastid transformation in biotechnology. PMID:24679252

  12. The strains recommended for use in the bacterial reverse mutation test (OECD guideline 471) can be certified as non-genetically modified organisms.

    PubMed

    Sugiyama, Kei-Ichi; Yamada, Masami; Awogi, Takumi; Hakura, Atsushi

    2016-01-01

    The bacterial reverse mutation test, commonly called Ames test, is used worldwide. In Japan, the genetically modified organisms (GMOs) are regulated under the Cartagena Domestic Law, and organisms obtained by self-cloning and/or natural occurrence would be exempted from the law case by case. The strains of Salmonella typhimurium and Escherichia coli recommended for use in the bacterial reverse mutation test (OECD guideline 471), have been considered as non-GMOs because they can be constructed by self-cloning or naturally occurring bacterial strains, or do not disturb the biological diversity. The present article explains the reasons why these tester strains should be classified as non-GMOs. PMID:27350822

  13. Ormosil approach toward developing a completely reversible hydrogen sensor for aerospace applications

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.; Goswami, Kisholoy; Sampathkumaran, Uma

    2006-08-01

    Optical hydrogen sensors are intrinsically safe since they produce no arc or spark in an explosive environment caused by the leakage of hydrogen. Safety remains a top priority since leakage of hydrogen in air during production, storage, transfer and distribution creates an explosive atmosphere for concentrations between 4% (v/v) - the lower explosive limit (LEL) and 74.5% (v/v) - the upper explosive limit (UEL) at room temperature and pressure. Being a very small molecule, hydrogen is prone to leakage through seals and micro-cracks. Hydrogen detection in space application is very challenging; public acceptance of hydrogen fuel would require the integration of a reliable hydrogen safety sensor. For detecting leakage of cryogenic fluids in spaceport facilities, Launch vehicle industry and NASA are currently relying heavily on the bulky mass spectrometers, which fill one or more equipment racks, and weigh several hundred kilograms. An optical sensor system can decrease pay load while monitoring multiple leak locations in situ and in real time. In this paper design of ormsoil approach for developing a completely reversible optical hydrogen sensors for aerospace application is being discussed.

  14. Reversibility and stability of ZnO-Sb₂Te₃ nanocomposite films for phase change memory applications.

    PubMed

    Wang, Guoxiang; Chen, Yimin; Shen, Xiang; Li, Junjian; Wang, Rongping; Lu, Yegang; Dai, Shixun; Xu, Tiefeng; Nie, Qiuhua

    2014-06-11

    (ZnO)x(Sb2Te3)1-x materials with different ZnO contents have been systemically studied with an aim of finding the most suitable composition for phase change memory applications. It was found that ZnO-doping could improve thermal stability and electrical behavior of Sb2Te3 film. Sb2Te3-rich nanocrystals, surrounded by ZnO-rich amorphous phases, were observed in annealed ZnO-doped Sb2Te3 composite films, and the segregated domains exhibited a relatively uniform distribution. The ZnO-doped Sb2Te3 composite films, especially with 5.2 at% ZnO concentration were found to have higher crystallization temperature, higher crystalline resistance, and faster crystallization speed in comparison with Ge2Sb2Te5. A reversible repetitive optical switching behavior can be observed in (ZnO)5.2(Sb2Te3)94.8, confirming that the ZnO doping is responsible for a fast switching and the compound is stable with cycling. Therefore, it is promising for the applications in phase change memory devices. PMID:24802948

  15. Reversible permeabilization using high-intensity femtosecond laser pulses: applications to biopreservation.

    PubMed

    Kohli, Vikram; Acker, Jason P; Elezzabi, Abdulhakem Y

    2005-12-30

    Non-invasive manipulation of live cells is important for cell-based therapeutics. Herein we report on the uniqueness of using high-intensity femtosecond laser pulses for reversibly permeabilizing mammalian cells for biopreservation applications. When mammalian cells were suspended in a impermeable hyperosmotic cryoprotectant sucrose solution, femtosecond laser pulses were used to transiently permeabilize cells for cytoplasmic solute uptake. The kinetics of cells exposed to 0.2, 0.3, 0.4, and 0.5 M sucrose, following permeabilization, were measured using video microscopy, and post-permeabilization survival was determined by a dual fluorescence membrane integrity assay. Using appropriate laser parameters, we observed the highest cell survival for 0.2 M sucrose solution (>90%), with a progressive decline in cell survival towards higher concentrations. Using diffusion equations describing the transport of solutes, the intracellular osmolarity at the inner surface of the membrane (x = 10 nm) and to a diffusive length of x = 10 microm was estimated, and a high loading efficiency (>98% for x = 10 nm and >70% for x = 10 microm) was calculated for cells suspended in 0.2 M sucrose. This is the first report of using femtosecond laser pulses for permeabilizing cells in the presence of cryoprotectants for biopreservation applications. PMID:16189821

  16. Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis

    PubMed Central

    2014-01-01

    Mobile group II introns are bacterial retrotransposons that combine the activities of an autocatalytic intron RNA (a ribozyme) and an intron-encoded reverse transcriptase to insert site-specifically into DNA. They recognize DNA target sites largely by base pairing of sequences within the intron RNA and achieve high DNA target specificity by using the ribozyme active site to couple correct base pairing to RNA-catalyzed intron integration. Algorithms have been developed to program the DNA target site specificity of several mobile group II introns, allowing them to be made into ‘targetrons.’ Targetrons function for gene targeting in a wide variety of bacteria and typically integrate at efficiencies high enough to be screened easily by colony PCR, without the need for selectable markers. Targetrons have found wide application in microbiological research, enabling gene targeting and genetic engineering of bacteria that had been intractable to other methods. Recently, a thermostable targetron has been developed for use in bacterial thermophiles, and new methods have been developed for using targetrons to position recombinase recognition sites, enabling large-scale genome-editing operations, such as deletions, inversions, insertions, and ‘cut-and-pastes’ (that is, translocation of large DNA segments), in a wide range of bacteria at high efficiency. Using targetrons in eukaryotes presents challenges due to the difficulties of nuclear localization and sub-optimal magnesium concentrations, although supplementation with magnesium can increase integration efficiency, and directed evolution is being employed to overcome these barriers. Finally, spurred by new methods for expressing group II intron reverse transcriptases that yield large amounts of highly active protein, thermostable group II intron reverse transcriptases from bacterial thermophiles are being used as research tools for a variety of applications, including qRT-PCR and next-generation RNA sequencing (RNA

  17. A Neuro-genetic Control Scheme Application for Industrial R 3 Workspaces

    NASA Astrophysics Data System (ADS)

    Irigoyen, E.; Larrea, M.; Valera, J.; Gómez, V.; Artaza, F.

    This work presents a neuro-genetic control scheme for a R 3 workspace application. The solution is based on a Multi Objective Genetic Algorithm reference generator and an Adaptive Predictive Neural Network Controller. Crane position control is presented as an application of the proposed control scheme.

  18. Polarization Reversal Over Flooded Regions and Applications to Large-Scale Flood Mapping with Spaceborne Scatterometers

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Liu, W. Timothy; Xie, Xiao-Su

    1999-01-01

    We present the polarization reversal in backscatter over flooded land regions, and demonstrate for the first time the utility of spaceborne Ku-band scatterometer for large-scale flood mapping. Scatterometer data were collected over the globe by the NASA Scatterometer (NSCAT) operated at 14 GHz on the Japanese ADEOS spacecraft from September 1996 to June 1997. During this time span, several severe floods occurred. Over most land surface, vertical polarization backscatter (Sigma(sub upsilon(upsilon)) is larger than horizontal polarization backscatter (sigma(sub hh)). Such polarization characteristics is reversed and sigma(sub upsilon(upsilon)) is smaller than sigma(sub hh) over flooded regions, except under a dense forest canopy. The total backscatter from the flooded landscape consists of direct backscatter and boundary-interaction backscatter. The direct term is contributed by direct backscattering from objects protruding above the water surface, and by backscattering from waves on the water surface. The boundary-interaction term is contributed by the forward scattering from the protruding objects and then reflected from the water surface, and also by the forward scattering from these objects after the water-surface reflection. Over flooded regions, the boundary-interaction term is dominant at large incidence angles and the strong water-surface reflection is much larger for horizontal polarization than the vertical one due to the Brewster effect in transverse-magnetic waves. These scattering mechanisms cause the polarization reversal over flooded regions. An example obtained with the Analytic Wave Theory is used to illustrate the scattering mechanisms leading to the polarization reversal. We then demonstrate the utility of spaceborne Ku-band scatterometer for large-scale flood mapping. We process NSCAT data to obtain the polarization ratio sigma(sub hh)/sigma(sub upsilon(upsilon)) with colocated data at incidence angles larger than 40 deg. The results over Asian

  19. The reverse cholesterol transport pathway improves understanding of genetic networks for fat deposition and muscle growth in beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the present study, thirteen genes involved in the reverse cholesterol transport (RCT) pathway were investigated for their associations with three fat depositions, eight fatty acid compositions and two growth-related phenotypes in a Wagyu x Limousin reference population, including 6 F1 bulls, 113 ...

  20. Reversible suppression of glutamatergic neurotransmission of cerebellar granule cells in vivo by genetically manipulated expression of tetanus neurotoxin light chain.

    PubMed

    Yamamoto, Mutsuya; Wada, Norio; Kitabatake, Yasuji; Watanabe, Dai; Anzai, Masayuki; Yokoyama, Minesuke; Teranishi, Yutaka; Nakanishi, Shigetada

    2003-07-30

    We developed a novel technique that allowed reversible suppression of glutamatergic neurotransmission in the cerebellar network. We generated two lines of transgenic mice termed Tet and TeNT mice and crossed the two transgenic lines to produce the Tet/TeNT double transgenic mice. In the Tet mice, the tetracycline-controlled reverse activator (rtTA) was expressed selectively in cerebellar granule cells by the promoter function of the GABA(A) receptor alpha6 subunit gene. In the TeNT mice, the fusion gene of tetanus neurotoxin light chain (TeNT) and enhanced green fluorescent protein (EGFP) was designed to be induced by the interaction of doxycycline (DOX)-activated rtTA with the tetracycline-responsive promoter. The Tet/TeNT mice grew normally even after DOX treatment and exhibited a restricted DOX-dependent expression of TeNT in cerebellar granule cells. Along with this expression, TeNT proteolytically cleaved the synaptic vesicle protein VAMP2 (also termed synaptobrevin2) and reduced glutamate release from granule cells. Both cleavage of VAMP2/synaptobrevin2 and reduction of glutamate release were reversed by removal of DOX. Among the four genotypes generated by heterozygous crossing of Tet and TeNT mice, only Tet/TeNT mice showed DOX-dependent reversible motor impairments as analyzed with fixed bar and rota-rod tests. Reversible suppression of glutamatergic neurotransmission thus can be manipulated with spatiotemporal accuracy by DOX treatment and removal. These transgenic mice will serve as an animal model to study the cerebellar function in motor coordination and learning. PMID:12890769

  1. Reverse genetics vaccine seeds for influenza: Proof of concept in the source of PB1 as a determinant factor in virus growth and antigen yield.

    PubMed

    Gíria, Marta; Santos, Luís; Louro, João; Rebelo de Andrade, Helena

    2016-09-01

    Growth deficits of reverse genetics vaccine seeds have compromised effective immunization. The impairment has been attributed to sub-optimal protein interactions. Some level of dependence may exist between PB1 and antigenic glycoproteins, however, further research is necessary to clarify the extent to which it can be used in favor of seed production. Our objective was to establish proof of concept on the phenotypic outcome of PB1 source in the PR8: A(H1N1)pdm09 reassortants. Reassortants were generated with the gene constellation of the classical 6:2 PR8: HA, NApdm09 seed prototype and the 5:3 reassortant PR8: HA, NA, PB1pdm09. Viral growth and antigen yield were evaluated 12-60h post-infection. The 5:3 reassortant presented statistically significant growth and antigen yield improvements when compared to the 6:2. We believe these findings to be of promising value to vaccine research towards an improvement of reverse genetic seeds, an overall more cost-effective vaccine manufacture and timely delivery. PMID:27240145

  2. Application of a hybrid model of neural networks and genetic algorithms to evaluate landslide susceptibility

    NASA Astrophysics Data System (ADS)

    Wang, H. B.; Li, J. W.; Zhou, B.; Yuan, Z. Q.; Chen, Y. P.

    2013-03-01

    In the last few decades, the development of Geographical Information Systems (GIS) technology has provided a method for the evaluation of landslide susceptibility and hazard. Slope units were found to be appropriate for the fundamental morphological elements in landslide susceptibility evaluation. Following the DEM construction in a loess area susceptible to landslides, the direct-reverse DEM technology was employed to generate 216 slope units in the studied area. After a detailed investigation, the landslide inventory was mapped in which 39 landslides, including paleo-landslides, old landslides and recent landslides, were present. Of the 216 slope units, 123 involved landslides. To analyze the mechanism of these landslides, six environmental factors were selected to evaluate landslide occurrence: slope angle, aspect, the height and shape of the slope, distance to river and human activities. These factors were extracted in terms of the slope unit within the ArcGIS software. The spatial analysis demonstrates that most of the landslides are located on convex slopes at an elevation of 100-150 m with slope angles from 135°-225° and 40°-60°. Landslide occurrence was then checked according to these environmental factors using an artificial neural network with back propagation, optimized by genetic algorithms. A dataset of 120 slope units was chosen for training the neural network model, i.e., 80 units with landslide presence and 40 units without landslide presence. The parameters of genetic algorithms and neural networks were then set: population size of 100, crossover probability of 0.65, mutation probability of 0.01, momentum factor of 0.60, learning rate of 0.7, max learning number of 10 000, and target error of 0.000001. After training on the datasets, the susceptibility of landslides was mapped for the land-use plan and hazard mitigation. Comparing the susceptibility map with landslide inventory, it was noted that the prediction accuracy of landslide occurrence

  3. Reversible Size Modulation of Aqueous Microgels via Orthogonal or Combined Application of Thermo- and Phototriggers.

    PubMed

    Phua, Dazril I; Herman, Krisztian; Balaceanu, Andreea; Zakrevski, Juri; Pich, Andrij

    2016-04-26

    Aqueous microgels that respond orthogonally to external temperature and light stimuli and to a combination of both stimuli were developed. N-Vinylcaprolactam (VCL) was copolymerized with small feed amounts (<5 mol %) of 4-[(4-methacryloyloxy)phenylazo] benzenesulfonic acid (ABSA) and cross-linked with N,N'-methylenebis(acrylamide) (BIS) to synthesize monodisperse and colloidally stable P(VCL-BIS-ABSA) microgels. The volume phase transition information on the microgels under both orthogonal and combined application of temperature and light stimuli was investigated in situ by dynamic light scattering (DLS) instrument. Modeling of this information by the Flory-Rehner theory describes and aids the preliminary understanding of the main features in the volume phase transition of these photoresponsive microgels. Interestingly, the microgels rapidly deswell upon UV irradiation (λ = 365 nm), even as the trans-ABSA pendant groups are converted to the more polar cis state. The variation in the content of the pendant azobenzene groups in the microgels allows for reversible modulation of the phototriggered volume change. We propose that the approach of the sulfonic acid groups of cis-ABSA toward the polymer backbone causes the disruption of hydrogen bonding interactions between water molecules and the carbonyl groups of VCL. PMID:26974267

  4. An experimental application of aeroacoustic time-reversal to the Aeolian tone.

    PubMed

    Mimani, A; Prime, Z; Moreau, D J; Doolan, C J

    2016-02-01

    This paper presents an experimental application of the aeroacoustic time-reversal (TR) source localization technique for studying flow-induced noise problems and compares the TR results with those obtained using conventional beamforming (CB). Experiments were conducted in an anechoic wind tunnel for the benchmark test-case of a full-span circular cylinder located in subsonic cross-flow wherein the far-field acoustic pressure was sampled using two line arrays (LAs) of microphones located above and below the cylinder. The source map obtained using the signals recorded at the two LAs without modeling the reflective surfaces of the contraction-outlet and cylinder during TR simulations revealed the lift-dipole nature of aeroacoustic source generated at the Aeolian tone; however, it indicates an error of 3/20 of Aeolian tone wavelength in the predicted location. Modeling the reflective contraction-outlet during TR was shown to improve the focal-resolution of the source and reduce side-lobe levels, especially in the low-frequency range. The experimental TR results were shown to be comparable to (a) the simulation results of an idealized dipole at the cylinder location in wind-tunnel flow and (b) that obtained by monopole and dipole CB, thereby demonstrating the suitability of TR method as a diagnostic tool to analyze flow-induced noise generation mechanism. PMID:26936557

  5. High performance and reversible ionic polypeptide hydrogel based on charge-driven assembly for biomedical applications.

    PubMed

    Cui, Haitao; Zhuang, Xiuli; He, Chaoliang; Wei, Yen; Chen, Xuesi

    2015-01-01

    In the pursuit of new strategies for the design and synthesis of high performance, physically associated hydrogels, dynamic materials formed through electrostatic interactions can serve as a powerful model. Here, we introduce a convenient strategy to obtain biodegradable hydrogels from ABA triblock ionic polypeptides formed by mixing poly(L-glutamic acid)-block-poly(ethylene glycol)-block-poly(L-glutamic acid) (PGA-PEG-PGA) with poly(L-lysine)-block-poly(ethylene glycol)-block-poly(L-lysine) (PLL-PEG-PLL). The hydrogels showed tunable physical properties, high strength and reversible response. The reactive function groups in the ionic blocks can conjugate with oppositely charged drugs or proteins and allow for further modification. These ionic ABA triblock polyelectrolytes can also encapsulate intact cells without significantly compromising cell viability, suggesting that the hydrogels have excellent cytocompatibility. In vivo evaluation performed in rats with subcutaneous injection indicated that the gels were formed and degraded, and hematoxylin and eosin staining suggested good biocompatibility in vivo. In addition, these advantages, combined with the synthetic accessibility of the copolymer, make this cross-linking system a flexible and powerful new tool for the development of injectable hydrogels for biomedical applications. PMID:25242655

  6. Second-law analysis and optimization of reverse brayton cycles of different configurations for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Streit, James Ryder; Razani, Arsalan

    2012-06-01

    Second-law of thermodynamics (2nd law) and exergy analyses and optimization offour Reverse Brayton Refrigeration (RBR) cryogenic cycle configurations: Conventional 1-stage compression cycle; Conventional 2-stage compression cycle; 1-stage compressionModified cycle with intermediate cooling of the recuperator using an auxiliary cooler; andan Integrated 2-stage expansion RBR cycle are performed. The conventional RBR cyclesare analyzed for low and high pressure ratio applications using multistage compressorswith intercooling. Analytical solutions for the conventional cycles are developed includingthermal and fluid flow irreversibilities of the recuperators and all heat exchangers inaddition to the compression and expansion processes. Analytical solutions are used to findthe thermodynamic bounds for the performance of the cycles. Exergy irreversibilitydiagrams of the cycles are developed and the effects of important system parameters onRBR cycle performance are investigated. 2nd law/exergy analyses, and optimization of thecycles with intermediate cooling of the recuperator, considering the cooling temperatureand the recuperator effectiveness and pressure drop, are included. The effect of the 2ndlaw/exergy efficiency of the auxiliary cooler on the total system efficiencies is presented.

  7. Contaminants of emerging concern in reverse osmosis brine concentrate from indirect/direct water reuse applications.

    PubMed

    Romeyn, Travis R; Harijanto, Wesley; Sandoval, Sofia; Delagah, Saied; Sharbatmaleki, Mohamadali

    2016-01-01

    Water shortage is becoming more common due to droughts and global population increases resulting in the increasing popularity of water reuse to create new water sources. Reverse osmosis (RO) membrane systems are popular in these applications since they can produce drinking water quality effluent. Unfortunately, RO systems have the drawback of generating concentrate streams that contain contaminants rejected by the membrane including chemicals of emerging concern (CECs). CECs are chemicals such as hormones, steroids, pesticides, pharmaceuticals, and personal care products that are used for their intended purpose and then released into wastewater. CECs are believed to be detrimental to aquatic wildlife health and pose an unknown human health risk. This research gathered the existing knowledge on CEC presence in concentrate, available proven concentrate treatment methods, their CEC removal abilities, and current CEC regulations. It was found that 127 CECs have been measured in RO concentrate with 100 being detected at least once. The most potent treatment process available is UV/H2O2 as it offers the highest removal rates for the widest range of chemicals. The less expensive process of ozone/biologically activated carbon offers slightly lower removal abilities. This comprehensive report will provide the groundwork for better understanding, regulating and treating concentrate stream CECs. PMID:26819378

  8. Controlled reversal of Co/Pt Dots for nanomagnetic logic applications

    SciTech Connect

    Breitkreutz, Stephan; Kiermaier, Josef; Schmitt-Landsiedel, Doris; Becherer, Markus; Vijay Karthik, Sankar; Csaba, Gyorgy

    2012-04-01

    Domain reversal in perpendicular multilayer films is governed by an intrinsic distribution of anisotropy. However, control of the switching field distribution (SFD) of field-coupled, single domain Co/Pt dots is the key to building large integrated systems for nanomagnetic logic applications. In this work, partial Ga{sup +} focused ion beam (FIB) irradiation of single-domain Co/Pt dots is employed which locally reduces the anisotropy and renders the film-inherent SFD ineffective. Controlled reduction in the switching field compared to non-irradiated dots is achieved, depending on size and dose of irradiation. TEM images of an as-grown and irradiated Co/Pt stack show a change in morphology from distinct Co/Pt interfaces to intermixed and randomly oriented grains due to the Ga{sup +} ion impact. The presented method is highly suitable to control the switching behavior in field-coupled logic devices. Experimental results are used to demonstrate a nanomagnetic fanout operation.

  9. Genetic algorithm and the application for job shop group scheduling

    NASA Astrophysics Data System (ADS)

    Mao, Jianzhong; Wu, Zhiming

    1995-08-01

    Genetic algorithm (GA) is a heuristic and random search technique mimicking nature. This paper first presents the basic principle of GA, the definition and the function of the genetic operators, and the principal character of GA. On the basis of these, the paper proposes using GA as a new solution method of the job-shop group scheduling problem, discusses the coded representation method of the feasible solution, and the particular limitation to the genetic operators.

  10. Hybrid Stirling / Reverse Brayton and Multi-stage Brayton Cryocoolers for Space Applications

    NASA Astrophysics Data System (ADS)

    Kirkconnell, C. S.; Zagarola, M. V.; Russo, J. T.

    2006-04-01

    Space infrared (IR) sensor applications place demanding requirements on the cryogenic cooling system. These systems must typically have 8+ year life and very high reliability, typically >0.95 at eight years. This has been achieved by several companies, including Raytheon with Stirling-class machines and by Creare with reverse turbo Brayton (RTB) devices. Other requirements virtually always present for space cryocoolers include low mass, high efficiency, and low vibration output. For typical space infrared sensor cryogenic cooling applications, existing Stirling-class cryocoolers (which includes pulse tubes) excel relative to the RTB with respect to mass and often efficiency, but the RTB exports much less vibration. An additional requirement sometimes present for a given payload is that the refrigeration must be provided remotely, perhaps several meters from the ambient environment where the cryocooler machinery typically resides and to which the waste heat must be rejected. A Stirling-class machine cannot meet this last requirement unless it is coupled with a single- or two-phase pumped loop, a cryogenic heat pipe, or a recirculating cooling system. One approach is to combine a Stirling-class machine with a Joule-Thomson (JT) cooling system. Another approach, one that embodies important reliability and integration benefits, is to combine a Stirling-class cryocooler with a RTB cryocooler. The case study results for a particular Stirling-Brayton hybrid system are presented, along with a discussion of its integration characteristics. Such a hybrid system, if properly designed, accentuates the advantages and mitigates the weaknesses of the individual technologies. Finally, the hybrid approach is compared to a straightforward multi-stage RTB cryocooler.

  11. Thermally responsive polymer systems for self-healing, reversible adhesion and shape memory applications

    NASA Astrophysics Data System (ADS)

    Luo, Xiaofan

    Responsive polymers are "smart" materials that are capable of performing prescribed, dynamic functions under an applied stimulus. In this dissertation, we explore several novel design strategies to develop thermally responsive polymers and polymer composites for self-healing, reversible adhesion and shape memory applications. In the first case described in Chapters 2 and 3, a thermally triggered self-healing material was prepared by blending a high-temperature epoxy resin with a thermoplastic polymer, poly(epsilon-caprolactone) (PCL). The initially miscible system undergoes polymerization induced phase separation (PIPS) during the curing of epoxy and yields a variety of compositionally dependent morphologies. At a particular PCL loading, the cured blend displays a "bricks-and-mortar" morphology in which epoxy exists as interconnected spheres ("bricks") within a continuous PCL matrix ("mortar"). A heat induced "bleeding" phenomenon was observed in the form of spontaneous wetting of all free surfaces by the molten PCL, and is attributed to the volumetric thermal expansion of PCL above its melting point in excess of epoxy brick expansion, which we term differential expansive bleeding (DEB). This DEB is capable of healing damage such as cracks. In controlled self-healing experiments, heating of a cracked specimen led to PCL bleeding from the bulk that yields a liquid layer bridging the crack gap. Upon cooling, a "scar" composed of PCL crystals was formed at the site of the crack, restoring a significant portion of mechanical strength. We further utilized DEB to enable strong and thermally-reversible adhesion of the material to itself and to metallic substrates, without any requirement for macroscopic softening or flow. After that, Chapters 4--6 present a novel composite strategy for the design and fabrication of shape memory polymer composites. The basic approach involves physically combining two or more functional components into an interpenetrating fiber

  12. Interactions of biomacromolecules with reverse hexagonal liquid crystals: drug delivery and crystallization applications.

    PubMed

    Libster, Dima; Aserin, Abraham; Garti, Nissim

    2011-04-15

    Recently, self-assembled lyotropic liquid crystals (LLCs) of lipids and water have attracted the attention of both scientific and applied research communities, due to their remarkable structural complexity and practical potential in diverse applications. The phase behavior of mixtures of glycerol monooleate (monoolein, GMO) was particularly well studied due to the potential utilization of these systems in drug delivery systems, food products, and encapsulation and crystallization of proteins. Among the studied lyotropic mesophases, reverse hexagonal LLC (H(II)) of monoolein/water were not widely subjected to practical applications since these were stable only at elevated temperatures. Lately, we obtained stable H(II) mesophases at room temperature by incorporating triacylglycerol (TAG) molecules into the GMO/water mixtures and explored the physical properties of these structures. The present feature article summarizes recent systematic efforts in our laboratory to utilize the H(II) mesophases for solubilization, and potential release and crystallization of biomacromolecules. Such a concept was demonstrated in the case of two therapeutic peptides-cyclosporin A (CSA) and desmopressin, as well as RALA peptide, which is a model skin penetration enhancer, and eventually a larger macromolecule-lysozyme (LSZ). In the course of the study we tried to elucidate relationships between the different levels of organization of LLCs (from the microstructural level, through mesoscale, to macroscopic level) and find feasible correlations between them. Since the structural properties of the mesophase systems are a key factor in drug release applications, we investigated the effects of these guest molecules on their conformations and the way these molecules partition within the domains of the mesophases. The examined H(II) mesophases exhibited great potential as transdermal delivery vehicles for bioactive peptides, enabling tuning the release properties according to their chemical

  13. Finite element analysis/hydroburst test data correlation for reverse dome integrated stage application

    NASA Astrophysics Data System (ADS)

    Burson, K. S.; Nowakowski, M.; Tiwari, S.

    1993-02-01

    The U.S. Army's Missile Integrated Stage ('MIST') program has undertaken the development of an advanced strategic interceptor booster's solid-fueled rocket motor. The primary structural components of this booster are a composite case with full-diameter aft closure opening, a titanium reverse dome, and a forced-deflection nozzle plug housing. Attention is presently given to the correlation between the analytical models used in this program and the hydroburst test data obtained for the MIST reverse dome. It is found that the reverse dome exceeded the minimum required burst pressure of 2300 psig.

  14. Cystic fibrosis genetics: from molecular understanding to clinical application

    PubMed Central

    Cutting, Garry R.

    2015-01-01

    The availability of the human genome sequence and tools for interrogating individual genomes provide an unprecedented opportunity to apply genetics to medicine. Mendelian conditions, which are caused by dysfunction of a single gene, offer powerful examples that illustrate how genetics can provide insights into disease. Cystic fibrosis, one of the more common lethalautosomal recessive Mendelian disorders, is presented here as an example. Recent progress in elucidating disease mechanism and causes of phenotypic variation, as well as in the development of treatments, demonstrates that genetics continues to play an important part in cystic fibrosis research 25 years after the d iscove1y of the disease-causing gene. PMID:25404111

  15. Cystic fibrosis genetics: from molecular understanding to clinical application.

    PubMed

    Cutting, Garry R

    2015-01-01

    The availability of the human genome sequence and tools for interrogating individual genomes provide an unprecedented opportunity to apply genetics to medicine. Mendelian conditions, which are caused by dysfunction of a single gene, offer powerful examples that illustrate how genetics can provide insights into disease. Cystic fibrosis, one of the more common lethal autosomal recessive Mendelian disorders, is presented here as an example. Recent progress in elucidating disease mechanism and causes of phenotypic variation, as well as in the development of treatments, demonstrates that genetics continues to play an important part in cystic fibrosis research 25 years after the discovery of the disease-causing gene. PMID:25404111

  16. Reverse time migration: A seismic processing application on the connection machine

    NASA Technical Reports Server (NTRS)

    Fiebrich, Rolf-Dieter

    1987-01-01

    The implementation of a reverse time migration algorithm on the Connection Machine, a massively parallel computer is described. Essential architectural features of this machine as well as programming concepts are presented. The data structures and parallel operations for the implementation of the reverse time migration algorithm are described. The algorithm matches the Connection Machine architecture closely and executes almost at the peak performance of this machine.

  17. Designing a Multistage Supply Chain in Cross-Stage Reverse Logistics Environments: Application of Particle Swarm Optimization Algorithms

    PubMed Central

    Chiang, Tzu-An; Che, Z. H.

    2014-01-01

    This study designed a cross-stage reverse logistics course for defective products so that damaged products generated in downstream partners can be directly returned to upstream partners throughout the stages of a supply chain for rework and maintenance. To solve this reverse supply chain design problem, an optimal cross-stage reverse logistics mathematical model was developed. In addition, we developed a genetic algorithm (GA) and three particle swarm optimization (PSO) algorithms: the inertia weight method (PSOA_IWM), VMax method (PSOA_VMM), and constriction factor method (PSOA_CFM), which we employed to find solutions to support this mathematical model. Finally, a real case and five simulative cases with different scopes were used to compare the execution times, convergence times, and objective function values of the four algorithms used to validate the model proposed in this study. Regarding system execution time, the GA consumed more time than the other three PSOs did. Regarding objective function value, the GA, PSOA_IWM, and PSOA_CFM could obtain a lower convergence value than PSOA_VMM could. Finally, PSOA_IWM demonstrated a faster convergence speed than PSOA_VMM, PSOA_CFM, and the GA did. PMID:24772026

  18. Designing a multistage supply chain in cross-stage reverse logistics environments: application of particle swarm optimization algorithms.

    PubMed

    Chiang, Tzu-An; Che, Z H; Cui, Zhihua

    2014-01-01

    This study designed a cross-stage reverse logistics course for defective products so that damaged products generated in downstream partners can be directly returned to upstream partners throughout the stages of a supply chain for rework and maintenance. To solve this reverse supply chain design problem, an optimal cross-stage reverse logistics mathematical model was developed. In addition, we developed a genetic algorithm (GA) and three particle swarm optimization (PSO) algorithms: the inertia weight method (PSOA_IWM), V(Max) method (PSOA_VMM), and constriction factor method (PSOA_CFM), which we employed to find solutions to support this mathematical model. Finally, a real case and five simulative cases with different scopes were used to compare the execution times, convergence times, and objective function values of the four algorithms used to validate the model proposed in this study. Regarding system execution time, the GA consumed more time than the other three PSOs did. Regarding objective function value, the GA, PSOA_IWM, and PSOA_CFM could obtain a lower convergence value than PSOA_VMM could. Finally, PSOA_IWM demonstrated a faster convergence speed than PSOA_VMM, PSOA_CFM, and the GA did. PMID:24772026

  19. Development of a Reverse Genetic System for Infectious Salmon Anemia Virus: Rescue of Recombinant Fluorescent Virus by Using Salmon Internal Transcribed Spacer Region 1 as a Novel Promoter

    PubMed Central

    Toro-Ascuy, Daniela; Tambley, Carolina; Beltran, Carolina; Mascayano, Carolina; Sandoval, Nicolas; Olivares, Eduardo; Medina, Rafael A.; Spencer, Eugenio

    2014-01-01

    Infectious salmon anemia (ISA) is a serious disease of marine-farmed Atlantic salmon (Salmo salar) caused by ISA virus (ISAV), belonging to the genus Isavirus, family Orthomyxoviridae. There is an urgent need to understand the virulence factors and pathogenic mechanisms of ISAV and to develop new vaccine approaches. Using a recombinant molecular biology approach, we report the development of a plasmid-based reverse genetic system for ISAV, which includes the use of a novel fish promoter, the Atlantic salmon internal transcribed spacer region 1 (ITS-1). Salmon cells cotransfected with pSS-URG-based vectors expressing the eight viral RNA segments and four cytomegalovirus (CMV)-based vectors that express the four proteins of the ISAV ribonucleoprotein complex allowed the generation of infectious recombinant ISAV (rISAV). We generated three recombinant viruses, wild-type rISAV901_09 and rISAVrS6-NotI-HPR containing a NotI restriction site and rISAVS6/EGFP-HPR harboring the open reading frame of enhanced green fluorescent protein (EGFP), both within the highly polymorphic region (HPR) of segment 6. All rescued viruses showed replication activity and cytopathic effect in Atlantic salmon kidney-infected cells. The fluorescent recombinant viruses also showed a characteristic cytopathic effect in salmon cells, and the viruses replicated to a titer of 6.5 × 105 PFU/ml, similar to that of the wild-type virus. This novel reverse genetics system offers a powerful tool to study the molecular biology of ISAV and to develop a new generation of ISAV vaccines to prevent and mitigate ISAV infection, which has had a profound effect on the salmon industry. PMID:25480750

  20. Experimental demonstration of time-reversed reverberation focusing in a rough waveguide. Application to target detection

    NASA Astrophysics Data System (ADS)

    Sabra, Karim G.; Roux, Philippe; Song, Hee-Chun; Hodgkiss, William; Kuperman, William A.; Akal, Tuncay; Stevenson, Mark R.

    2005-09-01

    For most shallow-water waveguides, the backscattered energy measured in a monostatic configuration is dominated by ocean bottom reverberation. A selected time-gated portion of the measured reverberation signals is used to provide a transfer function between a time-reversing array and a corresponding range interval on the bottom. Ultrasonic and at-sea experiments demonstrate focusing capabilities along the rough bottom interface of a time-reversing array using these reverberation signals only. The iterative time-reversal technique facilitates robust focusing along the ocean bottom, with little signal-processing effort involved and a priori information on the environment, and the enhancement of detection and localization of proud or buried targets in complex shallow-water environments. A passive implementation of the iterative time-reversal processing is used to construct reflectivity maps, similar to a sonar map, but with an enhanced contrast for the strongest reflectors (or scatterers), at the water-bottom interface. Ultrasonic and at-sea experiments show that targets lying on the seafloor located up to 400 wavelengths from the time-reversing array were detected over the bottom reverberation.

  1. Genetics of Autism Spectrum Disorder: Current Status and Possible Clinical Applications

    PubMed Central

    2015-01-01

    Autism spectrum disorder (ASD) is one of the most complex behavioral disorders with a strong genetic influence. The objectives of this article are to review the current status of genetic research in ASD, and to provide information regarding the potential candidate genes, mutations, and genetic loci possibly related to pathogenesis in ASD. Investigations on monogenic causes of ASD, candidate genes among common variants, rare de novo mutations, and copy number variations are reviewed. The current possible clinical applications of the genetic knowledge and their future possibilities are highlighted. PMID:26713075

  2. Genetic admixture and obesity: recent perspectives and future applications

    PubMed Central

    Fernández, José R.; Pearson, Keith E.; Kell, Kenneth P.; Brown, Michelle M. Bohan

    2013-01-01

    The process of the colonization of the New World that occurred centuries ago served as a natural experiment, creating unique combinations of genetic material in newly formed admixed populations. The identification and genotyping of ancestry informative markers (AIMs) have allowed for the estimation of proportions of ancestral parental populations among individuals in a sample through the genetic admixture approach. These admixture estimates have been used in different ways to understand the genetic contributions to individual variation in obesity and body composition parameters, particularly among diverse admixed groups known to differ in obesity prevalence within the United States. Although progress has been made through the use of genetic admixture approaches, future investigations are needed in order to explore the interaction of environmental factors with the degree of genetic ancestry in individuals. A challenge to confront at this time would be to further stratify and define environments in progressively more granular terms, including nutrients, muscle biology, stress responses at the cellular level, and the social and built environments. PMID:24081225

  3. Development of a full-length cDNA-derived enterovirus A71 vaccine candidate using reverse genetics technology.

    PubMed

    Yang, Ya-Ting; Chow, Yen-Hung; Hsiao, Kuang-Nan; Hu, Kai-Chieh; Chiang, Jen-Ron; Wu, Suh-Chin; Chong, Pele; Liu, Chia-Chyi

    2016-08-01

    Enterovirus A71 (EV-A71) is responsible for epidemics of hand, foot and mouth disease (HFMD) in young children. To circumvent difficulties in obtaining clinical enterovirus isolates that might be contaminated with other viruses, a platform technology was developed to quickly generate vaccine virus strains based on the published enterovirus genomic sequences. A recombinant plasmid containing the full-length infectious cDNA clone of EV-A71 vaccine strain E59 was directly generated after transfecting the recombinant plasmid into Vero, RD or HEK293A cells, and phenotypic characteristics similar to the parental strain were observed. The cDNA-derived infectious EV-A71 virus grown in Vero cells produced relatively stable virus titers in both T-flasks and microcarrier culture systems. To evaluate the genetic stability of the cDNA-derived EV-A71 viruses, the immunodominant structural proteins, VP1 and VP2, of the recombinant EV-A71 viruses were sequenced and analyzed. The cDNA-derived EV-A71 virus showed weak pathogenicity in a human SCARB2 mouse model. These results show the successful generation of a recombinant virus derived from a published viral genomic sequence that demonstrated good genetic stability and viral yields, which could represent an efficient and safe vaccine strain for cGMP-grade manufacturing. PMID:27387826

  4. Impact localization combined with haptic feedback for touch panel applications based on the time-reversal approach.

    PubMed

    Bai, Mingsian R; Tsai, Yao Kun

    2011-03-01

    In this paper, a combined impact localization and haptic feedback system based on time-reversal signal processing is presented for touch panel applications. Theoretical impulse responses are derived from a propagation model of bending waves in a thin elastic plate. On the basis of the impulse responses, the time-reversal technique is exploited to spot the impact location as well as to generate haptic feedback. The chief advantage of the time-reversal technique lies in its robustness of tackling broadband sources in a reverberant environment. Piezoelectric ceramic plates and voice-coil motors are used as sensors for localization, whereas only voice-coil motors are used as the actuator for haptic feedback. Experimental results demonstrated that the proposed system was effective in precise impact localization for a thin panel, while haptic feedback also implemented using time-reversal principle can generate an impulse at the previously touched position. The combined impact localization and haptic feedback system is capable of enhancing the sensation of man-machine interaction in real time fashion. PMID:21428493

  5. Reverse micelle mediated synthesis, processing, mechanical and biological characterization of hydroxyapatite nanopowders for bone graft application

    NASA Astrophysics Data System (ADS)

    Banerjee, Ashis

    Hydroxyapatite (HA) is the most widely used bioceramic material in bone graft applications because of its compositional similarity with natural bone. However, synthetic HA does not show similar mechanical and biological properties to the inorganic component of bone. Properties of ceramic material depend on starting materials, processing techniques, densification and microstructure of the final product. The objective of this research was to process HA whisker reinforced HA composite using HA nanopowders and whiskers. HA nanopowders with different length scale and morphology were synthesized by reverse micelle system using NP5 and NP12 as surfactants and cyclohexane as organic solvent. The lowest average aspect ratio was 1.357+/-0.39 with average particle size of 66 nm and the highest average aspect ratio was 7.277+/-3.227 with average length of 150 nm and width of 20 nm, were synthesized. Micron sized HA whiskers with aspect ratio between 20 and 50, average particle length of 15 mum and width of 400 nm was synthesized using urea as a precipitating agent. Desired microstructure was obtained after sintering with spherical HA nanopowder and whiskers along with dopants. Addition of whiskers decreased density of the sintered compacts. However, at 10 wt% whisker content sample showed microhardness and fracture toughness of 3.6 GPa and 1.5 MPa.m1/2, respectively, and a compressive strength of 80 MPa was obtained. Mineralization study in simulated body fluid (SBF) showed formation of apatite layer on the dense HA compacts indicating a good tendency of bond formation with natural bone. Cytotoxicity results showed excellent cell attachment on the HA surface. In the Appendices, 3 journal articles have been attached which describe synthesis, processing and characterization of undoped and doped PZT nanopowders. Free standing and agglomerated PZT nanopowders were synthesized by the sucrose templated method and the citrate nitrate autocombustion method. Particle size in the range

  6. Bloat free genetic programming: application to human oral bioavailability prediction.

    PubMed

    Silva, Sara; Vanneschi, Leonardo

    2012-01-01

    Being able to predict the human oral bioavailability for a potential new drug is extremely important for the drug discovery process. This problem has been addressed by several prediction tools, with Genetic Programming providing some of the best results ever achieved. In this paper we use the newest developments of Genetic Programming, in particular the latest bloat control method, Operator Equalisation, to find out how much improvement we can achieve on this problem. We show examples of some actual solutions and discuss their quality, comparing them with previously published results. We identify some unexpected behaviours related to overfitting, and discuss the way for further improving the practical usage of the Genetic Programming approach. PMID:23356009

  7. [Application of single nucleotide polymorphism in crop genetics and improvement].

    PubMed

    Du, Chun-Fang; Liu, Hui-Min; Li, Run-Zhi; Li, Peng-Bo; Ren, Zhi-Qiang

    2003-11-01

    Single nucleotide polymorphism(SNP) is the most common type of sequence difference between alleles, which can be used as a kind of high-throughput genetic marker. Several different routes have been developed to discover and identify SNP. These include the direct sequencing of PCR amplicons, electronic SNP(eSNP) and so on. SNP assays have been made in many crop species such as maize and soybean. The elite germplasm of some crops have been narrowed in genetic diversity, increasing the amount of linkage disequilibrium (LD) present and facilitating the association of SNP haplotypes at candidate gene loci with phenotypes. SNP analysis has been broadly used in the field of plant gene mapping, integration of genetic and physical maps, DNA marker-assisted breeding and functional genomics. PMID:15639972

  8. Asymmetry in Family History Implicates Nonstandard Genetic Mechanisms: Application to the Genetics of Breast Cancer

    PubMed Central

    Weinberg, Clarice R.; Shi, Min; DeRoo, Lisa A.; Taylor, Jack A.; Sandler, Dale P.; Umbach, David M.

    2014-01-01

    Genome-wide association studies typically target inherited autosomal variants, but less studied genetic mechanisms can play a role in complex disease. Sex-linked variants aside, three genetic phenomena can induce differential risk in maternal versus paternal lineages of affected individuals: 1. maternal effects, reflecting the maternal genome's influence on prenatal development; 2. mitochondrial variants, which are inherited maternally; 3. autosomal genes, whose effects depend on parent of origin. We algebraically show that small asymmetries in family histories of affected individuals may reflect much larger genetic risks acting via those mechanisms. We apply these ideas to a study of sisters of women with breast cancer. Among 5,091 distinct families of women reporting that exactly one grandmother had breast cancer, risk was skewed toward maternal grandmothers (p<0.0001), especially if the granddaughter was diagnosed between age 45 and 54. Maternal genetic effects, mitochondrial variants, or variant genes with parent-of-origin effects may influence risk of perimenopausal breast cancer. PMID:24651610

  9. Reverse genetic analysis of Caenorhabditis elegans presenilins reveals redundant but unequal roles for sel-12 and hop-1 in Notch-pathway signaling

    PubMed Central

    Westlund, Bethany; Parry, Dianne; Clover, Ralph; Basson, Michael; Johnson, Carl D.

    1999-01-01

    Mutations in the human presenilin genes PS1 and PS2 cause early-onset Alzheimer’s disease. Studies in Caenorhabditis elegans and in mice indicate that one function of presenilin genes is to facilitate Notch-pathway signaling. Notably, mutations in the C. elegans presenilin gene sel-12 reduce signaling through an activated version of the Notch receptor LIN-12. To investigate the function of a second C. elegans presenilin gene hop-1 and to examine possible genetic interactions between hop-1 and sel-12, we used a reverse genetic strategy to isolate deletion alleles of both loci. Animals bearing both hop-1 and sel-12 deletions displayed new phenotypes not observed in animals bearing either single deletion. These new phenotypes—germ-line proliferation defects, maternal-effect embryonic lethality, and somatic gonad defects—resemble those resulting from a reduction in signaling through the C. elegans Notch receptors GLP-1 and LIN-12. Thus SEL-12 and HOP-1 appear to function redundantly in promoting Notch-pathway signaling. Phenotypic analyses of hop-1 and sel-12 single and double mutant animals suggest that sel-12 provides more presenilin function than does hop-1. PMID:10051671

  10. Application of real-time polymerase chain reaction in the clinical genetic practice

    PubMed Central

    Nagy, Bálint

    2013-01-01

    The development of polymerase chain reaction revolutionized the molecular genetics and diagnostics. Technical improvements helped to make more specific and sensitive target determinations. Introduction of real-time polymerase chain reaction makes possible several applications in clinical genetics like detection of gene mutations, single nucleotide polymorphisms, deletions, measurement of gene expressions, micro ribonucleic acids, free nucleic acids and microbial genomes. Here I discuss a few examples for specific applications in prenatal clinical genetic practice. These are the detection of microbial genomes, deletions, trisomies, mutations, single nucleotide polymorphisms and free nucleic acids.

  11. Detection by Reverse Transcription-PCR and Genetic Characterization of Field Isolates of Swine Hepatitis E Virus from Pigs in Different Geographic Regions of the United States

    PubMed Central

    Huang, F. F.; Haqshenas, G.; Guenette, D. K.; Halbur, P. G.; Schommer, S. K.; Pierson, F. W.; Toth, T.E.; Meng, X. J.

    2002-01-01

    Hepatitis E virus (HEV) is an important public health concern in many developing countries. HEV is also endemic in some industrialized counties, including the United States. With our recent discovery of swine HEV in pigs that is genetically closely related to human HEV, hepatitis E is now considered a zoonotic disease. Human strains of HEV are genetically heterogenic. So far in the United States, only one strain of swine HEV has been identified and characterized from a pig. To determine the extent of genetic variations and the nature of swine HEV infections in U.S. pigs, we developed a universal reverse transcription-PCR (RT-PCR) assay that is capable of detecting genetically divergent strains of HEV. By using this universal RT-PCR assay, we tested fecal and serum samples of pigs of 2 to 4 months of age from 37 different U.S. swine farms for the presence of swine HEV RNA. Thirty-four of the 96 pigs (35%) and 20 of the 37 swine herds (54%) tested were positive for swine HEV RNA. The sequences of a 348-bp region within the ORF2 gene of 27 swine HEV isolates from different geographic regions were determined. Sequence analyses revealed that the 27 U.S. swine HEV isolates shared 88 to 100% nucleotide sequence identities with each other and 89 to 98% identities with the prototype U.S. strain of swine HEV. These U.S. swine HEV isolates are only distantly related to the Taiwanese strains of swine HEV, with about 74 to 78% nucleotide sequence identities; to most known human strains of HEV worldwide, with <79% sequence identities; and to avian HEV, with 54 to 56% sequence identities. Phylogenetic analysis showed that all the U.S. swine HEV isolates identified in this study clustered in the same genotype with the prototype U.S. swine HEV and the two U.S. strains of human HEV. The data from this study indicated that swine HEV is widespread and enzoonotic in U.S. swine herds and that, as is with human HEV, swine HEV isolates from different geographic regions of the world are

  12. Development and Characterization of a Reverse Genetic System for Studying Dengue Virus Serotype 3 Strain Variation and Neutralization

    PubMed Central

    Messer, William B.; Yount, Boyd; Hacker, Kari E.; Donaldson, Eric F.; Huynh, Jeremy P.; de Silva, Aravinda M.; Baric, Ralph S.

    2012-01-01

    Dengue viruses (DENV) are enveloped single-stranded positive-sense RNA viruses transmitted by Aedes spp. mosquitoes. There are four genetically distinct serotypes designated DENV-1 through DENV-4, each further subdivided into distinct genotypes. The dengue scientific community has long contended that infection with one serotype confers lifelong protection against subsequent infection with the same serotype, irrespective of virus genotype. However this hypothesis is under increased scrutiny and the role of DENV genotypic variation in protection from repeated infection is less certain. As dengue vaccine trials move increasingly into field-testing, there is an urgent need to develop tools to better define the role of genotypic variation in DENV infection and immunity. To better understand genotypic variation in DENV-3 neutralization and protection, we designed and constructed a panel of isogenic, recombinant DENV-3 infectious clones, each expressing an envelope glycoprotein from a different DENV-3 genotype; Philippines 1982 (genotype I), Thailand 1995 (genotype II), Sri Lanka 1989 and Cuba 2002 (genotype III) and Puerto Rico 1977 (genotype IV). We used the panel to explore how natural envelope variation influences DENV-polyclonal serum interactions. When the recombinant viruses were tested in neutralization assays using immune sera from primary DENV infections, neutralization titers varied by as much as ∼19-fold, depending on the expressed envelope glycoprotein. The observed variability in neutralization titers suggests that relatively few residue changes in the E glycoprotein may have significant effects on DENV specific humoral immunity and influence antibody mediated protection or disease enhancement in the setting of both natural infection and vaccination. These genotypic differences are also likely to be important in temporal and spatial microevolution of DENV-3 in the background of heterotypic neutralization. The recombinant and synthetic tools described here

  13. Development and characterization of a reverse genetic system for studying dengue virus serotype 3 strain variation and neutralization.

    PubMed

    Messer, William B; Yount, Boyd; Hacker, Kari E; Donaldson, Eric F; Huynh, Jeremy P; de Silva, Aravinda M; Baric, Ralph S

    2012-01-01

    Dengue viruses (DENV) are enveloped single-stranded positive-sense RNA viruses transmitted by Aedes spp. mosquitoes. There are four genetically distinct serotypes designated DENV-1 through DENV-4, each further subdivided into distinct genotypes. The dengue scientific community has long contended that infection with one serotype confers lifelong protection against subsequent infection with the same serotype, irrespective of virus genotype. However this hypothesis is under increased scrutiny and the role of DENV genotypic variation in protection from repeated infection is less certain. As dengue vaccine trials move increasingly into field-testing, there is an urgent need to develop tools to better define the role of genotypic variation in DENV infection and immunity. To better understand genotypic variation in DENV-3 neutralization and protection, we designed and constructed a panel of isogenic, recombinant DENV-3 infectious clones, each expressing an envelope glycoprotein from a different DENV-3 genotype; Philippines 1982 (genotype I), Thailand 1995 (genotype II), Sri Lanka 1989 and Cuba 2002 (genotype III) and Puerto Rico 1977 (genotype IV). We used the panel to explore how natural envelope variation influences DENV-polyclonal serum interactions. When the recombinant viruses were tested in neutralization assays using immune sera from primary DENV infections, neutralization titers varied by as much as ∼19-fold, depending on the expressed envelope glycoprotein. The observed variability in neutralization titers suggests that relatively few residue changes in the E glycoprotein may have significant effects on DENV specific humoral immunity and influence antibody mediated protection or disease enhancement in the setting of both natural infection and vaccination. These genotypic differences are also likely to be important in temporal and spatial microevolution of DENV-3 in the background of heterotypic neutralization. The recombinant and synthetic tools described here

  14. Reversal of Refractory Ulcerative Colitis and Severe Chronic Fatigue Syndrome Symptoms Arising from Immune Disturbance in an HLA-DR/DQ Genetically Susceptible Individual with Multiple Biotoxin Exposures.

    PubMed

    Gunn, Shelly R; Gunn, G Gibson; Mueller, Francis W

    2016-01-01

    BACKGROUND Patients with multisymptom chronic conditions, such as refractory ulcerative colitis (RUC) and chronic fatigue syndrome (CFS), present diagnostic and management challenges for clinicians, as well as the opportunity to recognize and treat emerging disease entities. In the current case we report reversal of co-existing RUC and CFS symptoms arising from biotoxin exposures in a genetically susceptible individual. CASE REPORT A 25-year-old previously healthy male with new-onset refractory ulcerative colitis (RUC) and chronic fatigue syndrome (CFS) tested negative for autoimmune disease biomarkers. However, urine mycotoxin panel testing was positive for trichothecene group and air filter testing from the patient's water-damaged rental house identified the toxic mold Stachybotrys chartarum. HLA-DR/DQ testing revealed a multisusceptible haplotype for development of chronic inflammation, and serum chronic inflammatory response syndrome (CIRS) biomarker testing was positive for highly elevated TGF-beta and a clinically undetectable level of vasoactive intestinal peptide (VIP). Following elimination of biotoxin exposures, VIP replacement therapy, dental extractions, and implementation of a mind body intervention-relaxation response (MBI-RR) program, the patient's symptoms resolved. He is off medications, back to work, and resuming normal exercise. CONCLUSIONS This constellation of RUC and CFS symptoms in an HLA-DR/DQ genetically susceptible individual with biotoxin exposures is consistent with the recently described CIRS disease pathophysiology. Chronic immune disturbance (turbatio immuno) can be identified with clinically available CIRS biomarkers and may represent a treatable underlying disease etiology in a subset of genetically susceptible patients with RUC, CFS, and other immune disorders. PMID:27165859

  15. Reversal of Refractory Ulcerative Colitis and Severe Chronic Fatigue Syndrome Symptoms Arising from Immune Disturbance in an HLADR/DQ Genetically Susceptible Individual with Multiple Biotoxin Exposures

    PubMed Central

    Gunn, Shelly R.; Gibson Gunn, G.; Mueller, Francis W.

    2016-01-01

    Patient: Male, 25 Final Diagnosis: Ulcerative colitis and chronic fatigue syndrome Symptoms: Colitis • profound fatigue • multi-joint pain • cognitive impairment • corneal keratitis Medication: — Clinical Procedure: VIP replacement therapy Specialty: Family Medicine Objective: Unusual clinical course Background: Patients with multisymptom chronic conditions, such as refractory ulcerative colitis (RUC) and chronic fatigue syndrome (CFS), present diagnostic and management challenges for clinicians, as well as the opportunity to recognize and treat emerging disease entities. In the current case we report reversal of co-existing RUC and CFS symptoms arising from biotoxin exposures in a genetically susceptible individual. Case Report: A 25-year-old previously healthy male with new-onset refractory ulcerative colitis (RUC) and chronic fatigue syndrome (CFS) tested negative for autoimmune disease biomarkers. However, urine mycotoxin panel testing was positive for trichothecene group and air filter testing from the patient’s water-damaged rental house identified the toxic mold Stachybotrys chartarum. HLA-DR/DQ testing revealed a multisusceptible haplotype for development of chronic inflammation, and serum chronic inflammatory response syndrome (CIRS) biomarker testing was positive for highly elevated TGF-beta and a clinically undetectable level of vasoactive intestinal peptide (VIP). Following elimination of biotoxin exposures, VIP replacement therapy, dental extractions, and implementation of a mind body intervention-relaxation response (MBI-RR) program, the patient’s symptoms resolved. He is off medications, back to work, and resuming normal exercise. Conclusions: This constellation of RUC and CFS symptoms in an HLA-DR/DQ genetically susceptible individual with biotoxin exposures is consistent with the recently described CIRS disease pathophysiology. Chronic immune disturbance (turbatio immuno) can be identified with clinically available CIRS biomarkers and

  16. Reverse Genetics of Drosophila RNA Polymerase II: Identification and Characterization of Rpii140, the Genomic Locus for the Second-Largest Subunit

    PubMed Central

    Hamilton, B. J.; Mortin, M. A.; Greenleaf, A. L.

    1993-01-01

    We have used a reverse genetics approach to isolate genes encoding two subunits of Drosophila melanogaster RNA polymerase II. RpII18 encodes the 18-kDa subunit and maps cytogenetically to polytene band region 83A. RpII140 encodes the 140-kDa subunit and maps to polytene band region 88A10:B1,2. Focusing on RpII140, we used in situ hybridization to map this gene to a small subinterval defined by the endpoints of a series of deficiencies impinging on the 88A/B region and showed that it does not represent a previously known genetic locus. Two recently defined complementation groups, A5 and Z6, reside in the same subinterval and thus were candidates for the RpII140 locus. Phenotypes of A5 mutants suggested that they affect RNA polymerase II, in that the lethal phase and the interaction with developmental loci such as Ubx resemble those of mutants in the gene for the largest subunit, RpII215. Indeed, we have achieved complete genetic rescue of representative recessive lethal mutations of A5 with a P-element construct containing a 9.1-kb genomic DNA fragment carrying RpII140. Interestingly, the initial construct also rescued lethal alleles in the neighboring complementation group, Z6, revealing that the 9.1-kb insert carries two genes. Deleting coding region sequences of RpII140, however, yielded a transformation vector that failed to rescue A5 alleles but continued to rescue Z6 alleles. These results strongly support the conclusion that the A5 complementation group is equivalent to the genomic RpII140 locus. PMID:8325487

  17. Application of genetic algorithms to autopiloting in aerial combat simulation

    NASA Astrophysics Data System (ADS)

    Kim, Dai Hyun; Erwin, Daniel A.; Kostrzewski, Andrew A.; Kim, Jeongdal; Savant, Gajendra D.

    1998-10-01

    An autopilot algorithm that controls a fighter aircraft in simulated aerial combat is presented. A fitness function, whose arguments are the control settings of the simulated fighter, is continuously maximized by a fuzzied genetic algorithm. Results are presented for one-to-one combat simulated on a personal computer. Generalization to many-to-many combat is discussed.

  18. Reversible assembly of magnetized particles: Application to water-borne pathogen enumeration

    NASA Astrophysics Data System (ADS)

    Ramadan, Qasem

    2009-12-01

    Reversible assembly of magnetized particles and cells has been proposed and implemented. The approach is based on magnetized particles or magnetically labeled cell immobilization in an array of individual particle/cell for optical counting. The device has been tested for few types of magnetic particles and one water-borne pathogen: Giardia Lamblia. An individual particle immobilization efficiency of 92% was achieved.

  19. Reverse Correlation in Neurophysiology

    ERIC Educational Resources Information Center

    Ringach, Dario; Shapley, Robert

    2004-01-01

    This article presents a review of reverse correlation in neurophysiology. We discuss the basis of reverse correlation in linear transducers and in spiking neurons. The application of reverse correlation to measure the receptive fields of visual neurons using white noise and m-sequences, and classical findings about spatial and color processing in…

  20. Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Capsicum represents one of several well characterized Solanaceous genera. A wealth of classical and molecular genetics research is available for the genus. Information gleaned from its cultivated relatives, tomato and potato, provide further insight for basic and applied studies. Early ...

  1. Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maintaining genetic variation in wild populations of Arctic organisms is fundamental to the long-term persistence of high latitude biodiversity. Variability is important because it provides options for species to respond to changing environmental conditions and novel challenges such as emerging path...

  2. Cassava genetic transformation and its application in breeding.

    PubMed

    Liu, Jia; Zheng, Qijie; Ma, Qiuxiang; Gadidasu, Kranthi Kumar; Zhang, Peng

    2011-07-01

    As a major source of food, cassava (Manihot esculenta Crantz) is an important root crop in the tropics and subtropics of Africa and Latin America, and serves as raw material for the production of starches and bioethanol in tropical Asia. Cassava improvement through genetic engineering not only overcomes the high heterozygosity and serious trait separation that occurs in its traditional breeding, but also quickly achieves improved target traits. Since the first report on genetic transformation in cassava in 1996, the technology has gradually matured over almost 15 years of development and has overcome cassava genotype constraints, changing from mode cultivars to farmer-preferred ones. Significant progress has been made in terms of an increased resistance to pests and diseases, biofortification, and improved starch quality, building on the fundamental knowledge and technologies related to planting, nutrition, and the processing of this important food crop that has often been neglected. Therefore, cassava has great potential in food security and bioenergy development worldwide. PMID:21564542

  3. Clinical application of genetically modified T cells in cancer therapy

    PubMed Central

    Kershaw, Michael H; Westwood, Jennifer A; Slaney, Clare Y; Darcy, Phillip K

    2014-01-01

    Immunotherapies are emerging as highly promising approaches for the treatment of cancer. In these approaches, a variety of materials are used to boost immunity against malignant cells. A key component of many of these approaches is functional tumor-specific T cells, but the existence and activity of sufficient T cells in the immune repertoire is not always the case. Recent methods of generating tumor-specific T cells include the genetic modification of patient lymphocytes with receptors to endow them with tumor specificity. These T cells are then expanded in vitro followed by infusion of the patient in adoptive cell transfer protocols. Genes used to modify T cells include those encoding T-cell receptors and chimeric antigen receptors. In this review, we provide an introduction to the field of genetic engineering of T cells followed by details of their use against cancer in the clinic. PMID:25505964

  4. Clinical application of exome sequencing in undiagnosed genetic conditions

    PubMed Central

    Need, Anna C; Shashi, Vandana; Hitomi, Yuki; Schoch, Kelly; Shianna, Kevin V; McDonald, Marie T; Meisler, Miriam H

    2012-01-01

    Background There is considerable interest in the use of next-generation sequencing to help diagnose unidentified genetic conditions, but it is difficult to predict the success rate in a clinical setting that includes patients with a broad range of phenotypic presentations. Methods The authors present a pilot programme of whole-exome sequencing on 12 patients with unexplained and apparent genetic conditions, along with their unaffected parents. Unlike many previous studies, the authors did not seek patients with similar phenotypes, but rather enrolled any undiagnosed proband with an apparent genetic condition when predetermined criteria were met. Results This undertaking resulted in a likely genetic diagnosis in 6 of the 12 probands, including the identification of apparently causal mutations in four genes known to cause Mendelian disease (TCF4, EFTUD2, SCN2A and SMAD4) and one gene related to known Mendelian disease genes (NGLY1). Of particular interest is that at the time of this study, EFTUD2 was not yet known as a Mendelian disease gene but was nominated as a likely cause based on the observation of de novo mutations in two unrelated probands. In a seventh case with multiple disparate clinical features, the authors were able to identify homozygous mutations in EFEMP1 as a likely cause for macular degeneration (though likely not for other features). Conclusions This study provides evidence that next-generation sequencing can have high success rates in a clinical setting, but also highlights key challenges. It further suggests that the presentation of known Mendelian conditions may be considerably broader than currently recognised. PMID:22581936

  5. Application of genetics knowledge to the solution of pedigree problems

    NASA Astrophysics Data System (ADS)

    Hackling, Mark W.

    1994-12-01

    This paper reports on a study of undergraduate genetics students' conceptual and procedural knowledge and how that knowledge influences students' success in pedigree problem solving. Findings indicate that many students lack the knowledge needed to test hypotheses relating to X-linked modes of inheritance using either patterns of inheritance or genotypes. Case study data illustrate how these knowledge deficiencies acted as an impediment to correct and conclusive solutions of pedigree problems.

  6. DNA marker applications to molecular genetics and genomics in tomato

    PubMed Central

    Shirasawa, Kenta; Hirakawa, Hideki

    2013-01-01

    Tomato is an important crop and regarded as an experimental model of the Solanaceae family and of fruiting plants in general. To enhance breeding efficiency and advance the field of genetics, tomato has been subjected to DNA marker studies as one of the earliest targets in plants. The developed DNA markers have been applied to the construction of genetic linkage maps and the resultant maps have contributed to quantitative trait locus (QTL) and gene mappings for agronomically important traits, as well as to comparative genomics of Solanaceae. The recently released whole genome sequences of tomato enable us to develop large numbers of DNA markers comparatively easily, and even promote new genotyping methods without DNA markers. In addition, databases for genomes, DNA markers, genetic linkage maps and other omics data, e.g., transcriptome, proteome, metabolome and phenome information, will provide useful information for molecular breeding in tomatoes. The use of DNA marker technologies in conjunction with new breeding techniques will promise to advance tomato breeding. PMID:23641178

  7. Applications of nanoparticle drug delivery systems for the reversal of multidrug resistance in cancer

    PubMed Central

    HUANG, YINGHONG; COLE, SUSAN P.C.; CAI, TIANGE; CAI, YU

    2016-01-01

    Multidrug resistance (MDR) to chemotherapy presents a major obstacle in the treatment of cancer patients, which directly affects the clinical success rate of cancer therapy. Current research aims to improve the efficiency of chemotherapy, whilst reducing toxicity to prolong the lives of cancer patients. As with good biocompatibility, high stability and drug release targeting properties, nanodrug delivery systems alter the mechanism by which drugs function to reverse MDR, via passive or active targeting, increasing drug accumulation in the tumor tissue or reducing drug elimination. Given the potential role of nanodrug delivery systems used in multidrug resistance, the present study summarizes the current knowledge on the properties of liposomes, lipid nanoparticles, polymeric micelles and mesoporous silica nanoparticles, together with their underlying mechanisms. The current review aims to provide a reliable basis and useful information for the development of new treatment strategies of multidrug resistance reversal using nanodrug delivery systems. PMID:27347092

  8. Quantitative reverse sample genome probing of microbial communities and its application to oil field production waters

    SciTech Connect

    Voordouw, G.; Shen, Y.; Harrington, C.S.; Teland, A.J. ); Jack, T.R. ); Westlake, W.S. )

    1993-12-01

    This paper presents a protocol for quantitative analysis of microbial communities by reverse sample genome probing is presented in which (i) whole community DNA is isolated and labeled in the presence of a known amount of an added internal standard and (ii) the resulting spiked reverse genome probe is hybridized with a master filter on which denatured genomic DNAs from bacterial standards isolated from the target environment were spotted in large amounts (up to 1,500 ng) in order to improve detection sensitivity. This protocol allowed reproducible fingerprinting of the microbial community in oil field production waters at 19 sites from which water and biofilm samples were collected. It appeared that selected sulfate-reducing bacteria were significantly enhanced in biofilms covering the metal surfaces in contact with the production waters.

  9. Application of active-phase plot to the kinetic analysis of lipoxygenase in reverse micelles.

    PubMed Central

    Perez-Gilabert, M; Sanchez-Ferrer, A; Garcia-Carmona, F

    1992-01-01

    A new plot for explaining the complex expression of the enzymic activity in reverse micelles has been developed as an extension of the theoretical model described by our group [Bru, Sánchez-Ferrer & García-Carmona (1990) Biochem. J. 268, 679-684]. The plot describes the changes in the relative volume, amount of enzyme (mumoles), enzyme concentration (microM) and substrate concentration (microM) in the phase where the enzyme is active. To illustrate the usefulness of this plot, the complex activity of soya bean lipoxygenase in reverse micelles acting on its interfacial substrate, octadecadienoic acid, was studied. It showed the key parameters ruling the activity profiles of lipoxygenase with respect to micelle size (omega 0), micelle concentration (theta) and the substrate/surfactant molar ratio (rho), which have never been described before. PMID:1281978

  10. Deactivation of signal amplification by reversible exchange catalysis, progress towards in vivo application.

    PubMed

    Mewis, Ryan E; Fekete, Marianna; Green, Gary G R; Whitwood, Adrian C; Duckett, Simon B

    2015-06-18

    The catalyst which is used in the signal amplification by reversible exchange (SABRE) process facilitates substrate hyperpolarisation while acting to speed up the rate of relaxation. Consequently, the lifetime over which the hyperpolarised contrast agent is visible is drastically reduced. We show that the addition of a chelating ligand, such as bipyridine, rapidly deactivates the SABRE catalyst thereby lengthening the agent's relaxation times and improving the potential of SABRE for diagnostic MRI. PMID:25989727

  11. Reverse engineering biological networks :applications in immune responses to bio-toxins.

    SciTech Connect

    Martino, Anthony A.; Sinclair, Michael B.; Davidson, George S.; Haaland, David Michael; Timlin, Jerilyn Ann; Thomas, Edward Victor; Slepoy, Alexander; Zhang, Zhaoduo; May, Elebeoba Eni; Martin, Shawn Bryan; Faulon, Jean-Loup Michel

    2005-12-01

    Our aim is to determine the network of events, or the regulatory network, that defines an immune response to a bio-toxin. As a model system, we are studying T cell regulatory network triggered through tyrosine kinase receptor activation using a combination of pathway stimulation and time-series microarray experiments. Our approach is composed of five steps (1) microarray experiments and data error analysis, (2) data clustering, (3) data smoothing and discretization, (4) network reverse engineering, and (5) network dynamics analysis and fingerprint identification. The technological outcome of this study is a suite of experimental protocols and computational tools that reverse engineer regulatory networks provided gene expression data. The practical biological outcome of this work is an immune response fingerprint in terms of gene expression levels. Inferring regulatory networks from microarray data is a new field of investigation that is no more than five years old. To the best of our knowledge, this work is the first attempt that integrates experiments, error analyses, data clustering, inference, and network analysis to solve a practical problem. Our systematic approach of counting, enumeration, and sampling networks matching experimental data is new to the field of network reverse engineering. The resulting mathematical analyses and computational tools lead to new results on their own and should be useful to others who analyze and infer networks.

  12. Mapping Genetic Diversity of Cherimoya (Annona cherimola Mill.): Application of Spatial Analysis for Conservation and Use of Plant Genetic Resources

    PubMed Central

    van Zonneveld, Maarten; Scheldeman, Xavier; Escribano, Pilar; Viruel, María A.; Van Damme, Patrick; Garcia, Willman; Tapia, César; Romero, José; Sigueñas, Manuel; Hormaza, José I.

    2012-01-01

    There is a growing call for inventories that evaluate geographic patterns in diversity of plant genetic resources maintained on farm and in species' natural populations in order to enhance their use and conservation. Such evaluations are relevant for useful tropical and subtropical tree species, as many of these species are still undomesticated, or in incipient stages of domestication and local populations can offer yet-unknown traits of high value to further domestication. For many outcrossing species, such as most trees, inbreeding depression can be an issue, and genetic diversity is important to sustain local production. Diversity is also crucial for species to adapt to environmental changes. This paper explores the possibilities of incorporating molecular marker data into Geographic Information Systems (GIS) to allow visualization and better understanding of spatial patterns of genetic diversity as a key input to optimize conservation and use of plant genetic resources, based on a case study of cherimoya (Annona cherimola Mill.), a Neotropical fruit tree species. We present spatial analyses to (1) improve the understanding of spatial distribution of genetic diversity of cherimoya natural stands and cultivated trees in Ecuador, Bolivia and Peru based on microsatellite molecular markers (SSRs); and (2) formulate optimal conservation strategies by revealing priority areas for in situ conservation, and identifying existing diversity gaps in ex situ collections. We found high levels of allelic richness, locally common alleles and expected heterozygosity in cherimoya's putative centre of origin, southern Ecuador and northern Peru, whereas levels of diversity in southern Peru and especially in Bolivia were significantly lower. The application of GIS on a large microsatellite dataset allows a more detailed prioritization of areas for in situ conservation and targeted collection across the Andean distribution range of cherimoya than previous studies could do, i.e. at

  13. Mapping genetic diversity of cherimoya (Annona cherimola Mill.): application of spatial analysis for conservation and use of plant genetic resources.

    PubMed

    Zonneveld, Maarten van; Scheldeman, Xavier; Escribano, Pilar; Viruel, María A; Van Damme, Patrick; Garcia, Willman; Tapia, César; Romero, José; Sigueñas, Manuel; Hormaza, José I

    2012-01-01

    There is a growing call for inventories that evaluate geographic patterns in diversity of plant genetic resources maintained on farm and in species' natural populations in order to enhance their use and conservation. Such evaluations are relevant for useful tropical and subtropical tree species, as many of these species are still undomesticated, or in incipient stages of domestication and local populations can offer yet-unknown traits of high value to further domestication. For many outcrossing species, such as most trees, inbreeding depression can be an issue, and genetic diversity is important to sustain local production. Diversity is also crucial for species to adapt to environmental changes. This paper explores the possibilities of incorporating molecular marker data into Geographic Information Systems (GIS) to allow visualization and better understanding of spatial patterns of genetic diversity as a key input to optimize conservation and use of plant genetic resources, based on a case study of cherimoya (Annona cherimola Mill.), a Neotropical fruit tree species. We present spatial analyses to (1) improve the understanding of spatial distribution of genetic diversity of cherimoya natural stands and cultivated trees in Ecuador, Bolivia and Peru based on microsatellite molecular markers (SSRs); and (2) formulate optimal conservation strategies by revealing priority areas for in situ conservation, and identifying existing diversity gaps in ex situ collections. We found high levels of allelic richness, locally common alleles and expected heterozygosity in cherimoya's putative centre of origin, southern Ecuador and northern Peru, whereas levels of diversity in southern Peru and especially in Bolivia were significantly lower. The application of GIS on a large microsatellite dataset allows a more detailed prioritization of areas for in situ conservation and targeted collection across the Andean distribution range of cherimoya than previous studies could do, i.e. at

  14. A reverse genetics system for the Great Lakes strain of viral hemorrhagic septicemia virus: the NV gene is required for pathogenicity

    USGS Publications Warehouse

    Ammayappan, Arun; Kurath, Gael; Thompson, Tarin M.; Vakharia, Vikram N.

    2011-01-01

    Viral hemorrhagic septicemia virus (VHSV), belonging to the genus Novirhabdovirus in the family of Rhabdoviridae, causes a highly contagious disease of fresh and saltwater fish worldwide. Recently, a novel genotype of VHSV, designated IVb, has invaded the Great Lakes in North America, causing large-scale epidemics in wild fish. An efficient reverse genetics system was developed to generate a recombinant VHSV of genotype IVb from cloned cDNA. The recombinant VHSV (rVHSV) was comparable to the parental wild-type strain both in vitro and in vivo, causing high mortality in yellow perch (Perca flavescens). A modified recombinant VHSV was generated in which the NV gene was substituted with an enhanced green fluorescent protein gene (rVHSV-ΔNV-EGFP), and another recombinant was made by inserting the EGFP gene into the full-length viral clone between the P and M genes (rVHSV-EGFP). The in vitro replication kinetics of rVHSV-EGFP was similar to rVHSV; however, the rVHSV-ΔNV-EGFP grew 2 logs lower. In yellow perch challenges, wtVHSV and rVHSV induced 82-100% cumulative per cent mortality (CPM), respectively, whereas rVHSV-EGFP produced 62% CPM and rVHSV-ΔNV-EGFP caused only 15% CPM. No reversion of mutation was detected in the recovered viruses and the recombinant viruses stably maintained the foreign gene after several passages. These results indicate that the NV gene of VHSV is not essential for viral replication in vitro and in vivo, but it plays an important role in viral replication efficiency and pathogenicity. This system will facilitate studies of VHSV replication, virulence, and production of viral vectored vaccines.

  15. Application of Carbonate Reservoir using waveform inversion and reverse-time migration methods

    NASA Astrophysics Data System (ADS)

    Kim, W.; Kim, H.; Min, D.; Keehm, Y.

    2011-12-01

    Recent exploration targets of oil and gas resources are deeper and more complicated subsurface structures, and carbonate reservoirs have become one of the attractive and challenging targets in seismic exploration. To increase the rate of success in oil and gas exploration, it is required to delineate detailed subsurface structures. Accordingly, migration method is more important factor in seismic data processing for the delineation. Seismic migration method has a long history, and there have been developed lots of migration techniques. Among them, reverse-time migration is promising, because it can provide reliable images for the complicated model even in the case of significant velocity contrasts in the model. The reliability of seismic migration images is dependent on the subsurface velocity models, which can be extracted in several ways. These days, geophysicists try to obtain velocity models through seismic full waveform inversion. Since Lailly (1983) and Tarantola (1984) proposed that the adjoint state of wave equations can be used in waveform inversion, the back-propagation techniques used in reverse-time migration have been used in waveform inversion, which accelerated the development of waveform inversion. In this study, we applied acoustic waveform inversion and reverse-time migration methods to carbonate reservoir models with various reservoir thicknesses to examine the feasibility of the methods in delineating carbonate reservoir models. We first extracted subsurface material properties from acoustic waveform inversion, and then applied reverse-time migration using the inverted velocities as a background model. The waveform inversion in this study used back-propagation technique, and conjugate gradient method was used in optimization. The inversion was performed using the frequency-selection strategy. Finally waveform inversion results showed that carbonate reservoir models are clearly inverted by waveform inversion and migration images based on the

  16. Clinical Application of Antenatal Genetic Diagnosis of Osteogenesis Imperfecta Type IV

    PubMed Central

    Yuan, Jing; Li, Song; Xu, YeYe; Cong, Lin

    2015-01-01

    Background Clinical analysis and genetic testing of a family with osteogenesis imperfecta type IV were conducted, aiming to discuss antenatal genetic diagnosis of osteogenesis imperfecta type IV. Material/Methods Preliminary genotyping was performed based on clinical characteristics of the family members and then high-throughput sequencing was applied to rapidly and accurately detect the changes in candidate genes. Results Genetic testing of the III5 fetus and other family members revealed missense mutation in c.2746G>A, pGly916Arg in COL1A2 gene coding region and missense and synonymous mutation in COL1A1 gene coding region. Conclusions Application of antenatal genetic diagnosis provides fast and accurate genetic counseling and eugenics suggestions for patients with osteogenesis imperfecta type IV and their families. PMID:25835785

  17. Reverse genetics based rgH5N2 vaccine provides protection against high dose challenge of H5N1 avian influenza virus in chicken.

    PubMed

    Bhatia, S; Khandia, R; Sood, R; Bhat, S; Siddiqui, A; Jahagirdhar, G; Mishra, S; Mishra, A; Pateriya, A K; Kulkarni, D D

    2016-08-01

    An inactivated vaccine was developed using the rgH5N2 virus (6 + 2 reassortant) generated by plasmid based reverse genetics system (RGS) with WSN/33/H1N1 as backbone virus. Following mutation of the basic amino acid cleavage site RRRKKR*GLF to IETR*GLF, the H5-HA (haemagglutinin) gene of the selected donor H5N1 virus (A/chicken/West Bengal/80995/2008) of antigenic clade 2.2 was used along with the N2-NA gene from H9N2 field isolate (A/chicken/Uttar Pradesh/2543/2004) for generation of the rgH5N2 virus. A single dose (0.5 ml/bird) of the inactivated rgH5N2 vaccine protected 100% of the vaccinated chickens (n = 10) on 28(th) dpv (early challenge) and 90% of the vaccinated chickens (n = 10) on 200(th) dpv (late challenge) against high dose challenge with HPAI virus (10(9) EID50/bird). Challenge virus shedding via oropharynx and cloaca of the vaccinated chickens was detectable by realtime RT-PCR during 1-5 dpc and 1-9 days dpc in the early and the late challenge, respectively. The protective level of antibodies (mean HI titre > 128) was maintained without booster vaccination for 200 days. The present study provides the experimental evidence about the extent of protection provided by a reverse genetics based vaccine for clade 2.2 H5N1 viruses against challenge with high dose of field virus at two different time points (28 dpv and 200 dpv). The challenge study is uniquely different from the previous similar experiments on account of 1000 times higher dose of challenge and protection at 200 dpv. The protection and virus shedding data of the study may be useful for countries planning to use H5 vaccine in poultry especially against the clade 2.2 H5N1 viruses. PMID:27296706

  18. [Application of population genetics in the field of medicine].

    PubMed

    Octavio-Aguilar, Pablo; Ramos-Frías, Josefina

    2014-01-01

    Human populations follow the same evolutionary principles as other organisms, although mixed with social and cultural elements, which can result in a high prevalence of certain diseases within specific ethnic groups. In this work, the Hardy-Weinberg principle is analyzed from a medical, social and biological viewpoint to understand the evolutionary processes of autosomal recessive diseases. It can be concluded that the incidence of these diseases is inversely related to the levels of genetic variability within populations, which depends on colonization, recolonization and migration events, as well as on social conventions such as racism, social stratification and segregation. PMID:24967923

  19. Application of Genetic Algorithms in Nonlinear Heat Conduction Problems

    PubMed Central

    Khan, Waqar A.

    2014-01-01

    Genetic algorithms are employed to optimize dimensionless temperature in nonlinear heat conduction problems. Three common geometries are selected for the analysis and the concept of minimum entropy generation is used to determine the optimum temperatures under the same constraints. The thermal conductivity is assumed to vary linearly with temperature while internal heat generation is assumed to be uniform. The dimensionless governing equations are obtained for each selected geometry and the dimensionless temperature distributions are obtained using MATLAB. It is observed that GA gives the minimum dimensionless temperature in each selected geometry. PMID:24695517

  20. Next-generation sequencing technologies and applications for human genetic history and forensics

    PubMed Central

    2011-01-01

    Rapid advances in the development of sequencing technologies in recent years have enabled an increasing number of applications in biology and medicine. Here, we review key technical aspects of the preparation of DNA templates for sequencing, the biochemical reaction principles and assay formats underlying next-generation sequencing systems, methods for imaging and base calling, quality control, and bioinformatic approaches for sequence alignment, variant calling and assembly. We also discuss some of the most important advances that the new sequencing technologies have brought to the fields of human population genetics, human genetic history and forensic genetics. PMID:22115430

  1. Water uptake in barley grain: Physiology; genetics and industrial applications.

    PubMed

    Cu, Suong; Collins, Helen M; Betts, Natalie S; March, Timothy J; Janusz, Agnieszka; Stewart, Doug C; Skadhauge, Birgitte; Eglinton, Jason; Kyriacou, Bianca; Little, Alan; Burton, Rachel A; Fincher, Geoffrey B

    2016-01-01

    Water uptake by mature barley grains initiates germination and is the first stage in the malting process. Here we have investigated the effects of starchy endosperm cell wall thickness on water uptake, together with the effects of varying amounts of the wall polysaccharide, (1,3;1,4)-β-glucan. In the latter case, we examined mutant barley lines from a mutant library and transgenic barley lines in which the (1,3;1,4)-β-glucan synthase gene, HvCslF6, was down-regulated by RNA interference. Neither cell wall thickness nor the levels of grain (1,3;1,4)-β-glucan were significantly correlated with water uptake but are likely to influence modification during malting. However, when a barley mapping population was phenotyped for rate of water uptake into grain, quantitative trait locus (QTL) analysis identified specific regions of chromosomes 4H, 5H and 7H that accounted for approximately 17%, 18% and 11%, respectively, of the phenotypic variation. These data indicate that variation in water uptake rates by elite malting cultivars of barley is genetically controlled and a number of candidate genes that might control the trait were identified under the QTL. The genomics data raise the possibility that the genetic variation in water uptake rates might be exploited by breeders for the benefit of the malting and brewing industries. PMID:26566843

  2. Rewiring translation - Genetic code expansion and its applications.

    PubMed

    Neumann, Heinz

    2012-07-16

    With few minor variations, the genetic code is universal to all forms of life on our planet. It is difficult to imagine that one day organisms might exist that use an entirely different code to translate the information of their genome. Recent developments in the field of synthetic biology, however, have opened the gate to their creation. The genetic code of several organisms has been expanded by the heterologous expression of evolved aminoacyl-tRNA synthetase/tRNA(CUA) pairs that mediate the incorporation of unnatural amino acids in response to amber codons. These UAAs introduce exciting new features into proteins, such as spectroscopic probes, UV-inducible crosslinkers, and functional groups for bioorthogonal conjugations or posttranslational modifications. Orthogonal ribosomes provide a parallel translational machinery in Escherichia coli that has lost its evolutionary constraints. Evolved variants of these ribosomes translate amber or quadruplet codons with massively enhanced efficiency. Here, I review these recent developments emphasizing their tremendous potential to facilitate biochemical and cell biological studies. PMID:22710184

  3. On thermodynamic and microscopic reversibility

    SciTech Connect

    Crooks, Gavin E.

    2011-07-12

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa.

  4. A General Reversible Hereditary Constitutive Model. Part 2; Application to a Titanium Alloy

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Saleeb, A. F.; Castelli, M. G.

    1997-01-01

    Given the mathematical framework and specific viscoelastic model in Part 1 our primary goal in this second part is focused on model characterization and assessment for the specific titanium alloy, TIMETAL 21S. The model is motivated by experimental evidence suggesting the presence of significant rate/time effects in the so-called quasilinear, reversible, material response range. An explanation of the various experiments performed and their corresponding results are also included. Finally, model correlations and predictions are presented for a wide temperature range.

  5. Almost isometries of non-reversible metrics with applications to stationary spacetimes

    NASA Astrophysics Data System (ADS)

    Javaloyes, Miguel Angel; Lichtenfelz, Leandro; Piccione, Paolo

    2015-03-01

    We develop the basics of a theory of almost isometries for spaces endowed with a quasi-metric. The case of non-reversible Finsler (more specifically, Randers) metrics is of particular interest, and it is studied in more detail. The main motivation arises from General Relativity, and more specifically in spacetimes endowed with a timelike conformal field K, in which case conformal diffeomorphisms correspond to almost isometries of the Fermat metrics defined in the spatial part. A series of results on the topology and the Lie group structure of conformal maps are discussed.

  6. Function search in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes.

    PubMed Central

    Meissner, R C; Jin, H; Cominelli, E; Denekamp, M; Fuertes, A; Greco, R; Kranz, H D; Penfield, S; Petroni, K; Urzainqui, A; Martin, C; Paz-Ares, J; Smeekens, S; Tonelli, C; Weisshaar, B; Baumann, E; Klimyuk, V; Marillonnet, S; Patel, K; Speulman, E; Tissier, A F; Bouchez, D; Jones, J J; Pereira, A; Wisman, E

    1999-01-01

    More than 92 genes encoding MYB transcription factors of the R2R3 class have been described in Arabidopsis. The functions of a few members of this large gene family have been described, indicating important roles for R2R3 MYB transcription factors in the regulation of secondary metabolism, cell shape, and disease resistance, and in responses to growth regulators and stresses. For the majority of the genes in this family, however, little functional information is available. As the first step to characterizing these genes functionally, the sequences of >90 family members, and the map positions and expression profiles of >60 members, have been determined previously. An important second step in the functional analysis of the MYB family, through a process of reverse genetics that entails the isolation of insertion mutants, is described here. For this purpose, a variety of gene disruption resources has been used, including T-DNA-insertion populations and three distinct populations that harbor transposon insertions. We report the isolation of 47 insertions into 36 distinct MYB genes by screening a total of 73 genes. These defined insertion lines will provide the foundation for subsequent detailed functional analyses for the assignment of specific functions to individual members of the R2R3 MYB gene family. PMID:10521515

  7. Reverse genetic screen for loss-of-function mutations uncovers a frameshifting deletion in the melanophilin gene accountable for a distinctive coat color in Belgian Blue cattle.

    PubMed

    Li, Wanbo; Sartelet, Arnaud; Tamma, Nico; Coppieters, Wouter; Georges, Michel; Charlier, Carole

    2016-02-01

    In the course of a reverse genetic screen in the Belgian Blue cattle breed, we uncovered a 10-bp deletion (c.87_96del) in the first coding exon of the melanophilin gene (MLPH), which introduces a premature stop codon (p.Glu32Aspfs*1) in the same exon, truncating 94% of the protein. Recessive damaging mutations in the MLPH gene are well known to cause skin, hair, coat or plumage color dilution phenotypes in numerous species, including human, mice, dog, cat, mink, rabbit, chicken and quail. Large-scale array genotyping undertaken to identify p.Glu32Aspfs*1 homozygous mutant animals revealed a mutation frequency of 5% in the breed and allowed for the identification of 10 homozygous mutants. As expression of a colored coat requires at least one wild-type allele at the co-dominant Roan locus encoded by the KIT ligand gene (KITLG), homozygous mutants for p.Ala227Asp corresponding with the missense mutation were excluded. The six remaining colored calves displayed a distinctive dilution phenotype as anticipated. This new coat color was named 'cool gray'. It is the first damaging mutation in the MLPH gene described in cattle and extends the already long list of species with diluted color due to recessive mutations in MLPH and broadens the color palette of gray in this breed. PMID:26582259

  8. Optimization of influenza A vaccine virus by reverse genetic using chimeric HA and NA genes with an extended PR8 backbone.

    PubMed

    Medina, Julie; Boukhebza, Houda; De Saint Jean, Amélie; Sodoyer, Régis; Legastelois, Isabelle; Moste, Catherine

    2015-08-20

    The yield of influenza antigen production may significantly vary between vaccine strains; for example the A/California/07/09 (H1N1)-X179A vaccine virus, prepared during 2009 influenza pandemic, presented a low antigen yield in eggs compared to other seasonal H1N1 reassortants. In this study a bi-chimeric virus expressing HA and NA genes with A/Puerto Rico/8/34 (H1N1) (PR8) and X179A domains was rescued by reverse genetics using a mixture of Vero/CHOK1 cell lines (Medina et al. [7]). The bi-chimeric virus obtained demonstrated to yield much larger amounts of HA than X179A in eggs as measured by single-radial-immunodiffusion (SRID), the reference method to quantify HA protein in influenza vaccine. Such kind of optimized virus using PR8 backbone derived chimeric glycoproteins could be used as improved seed viruses for vaccine production. PMID:26206270

  9. Utilisation of ISA Reverse Genetics and Large-Scale Random Codon Re-Encoding to Produce Attenuated Strains of Tick-Borne Encephalitis Virus within Days

    PubMed Central

    Aubry, Fabien; Gould, Ernest A.; de Lamballerie, Xavier

    2016-01-01

    Large-scale codon re-encoding is a new method of attenuating RNA viruses. However, the use of infectious clones to generate attenuated viruses has inherent technical problems. We previously developed a bacterium-free reverse genetics protocol, designated ISA, and now combined it with large-scale random codon-re-encoding method to produce attenuated tick-borne encephalitis virus (TBEV), a pathogenic flavivirus which causes febrile illness and encephalitis in humans. We produced wild-type (WT) and two re-encoded TBEVs, containing 273 or 273+284 synonymous mutations in the NS5 and NS5+NS3 coding regions respectively. Both re-encoded viruses were attenuated when compared with WT virus using a laboratory mouse model and the relative level of attenuation increased with the degree of re-encoding. Moreover, all infected animals produced neutralizing antibodies. This novel, rapid and efficient approach to engineering attenuated viruses could potentially expedite the development of safe and effective new-generation live attenuated vaccines. PMID:27548676

  10. Brainbow: New Resources and Emerging Biological Applications for Multicolor Genetic Labeling and Analysis

    PubMed Central

    Weissman, Tamily A.; Pan, Y. Albert

    2015-01-01

    Brainbow is a genetic cell-labeling technique where hundreds of different hues can be generated by stochastic and combinatorial expression of a few spectrally distinct fluorescent proteins. Unique color profiles can be used as cellular identification tags for multiple applications such as tracing axons through the nervous system, following individual cells during development, or analyzing cell lineage. In recent years, Brainbow and other combinatorial expression strategies have expanded from the mouse nervous system to other model organisms and a wide variety of tissues. Particularly exciting is the application of Brainbow in lineage tracing, where this technique has been instrumental in parsing out complex cellular relationships during organogenesis. Here we review recent findings, new technical improvements, and exciting potential genetic and genomic applications for harnessing this colorful technique in anatomical, developmental, and genetic studies. PMID:25657347

  11. Application of Statistical Thermodynamics To Predict the Adsorption Properties of Polypeptides in Reversed-Phase HPLC.

    PubMed

    Tarasova, Irina A; Goloborodko, Anton A; Perlova, Tatyana Y; Pridatchenko, Marina L; Gorshkov, Alexander V; Evreinov, Victor V; Ivanov, Alexander R; Gorshkov, Mikhail V

    2015-07-01

    The theory of critical chromatography for biomacromolecules (BioLCCC) describes polypeptide retention in reversed-phase HPLC using the basic principles of statistical thermodynamics. However, whether this theory correctly depicts a variety of empirical observations and laws introduced for peptide chromatography over the last decades remains to be determined. In this study, by comparing theoretical results with experimental data, we demonstrate that the BioLCCC: (1) fits the empirical dependence of the polypeptide retention on the amino acid sequence length with R(2) > 0.99 and allows in silico determination of the linear regression coefficients of the log-length correction in the additive model for arbitrary sequences and lengths and (2) predicts the distribution coefficients of polypeptides with an accuracy from 0.98 to 0.99 R(2). The latter enables direct calculation of the retention factors for given solvent compositions and modeling of the migration dynamics of polypeptides separated under isocratic or gradient conditions. The obtained results demonstrate that the suggested theory correctly relates the main aspects of polypeptide separation in reversed-phase HPLC. PMID:26023813

  12. Application of Adjoint Methodology to Supersonic Aircraft Design Using Reversed Equivalent Areas

    NASA Technical Reports Server (NTRS)

    Rallabhandi, Sriram K.

    2013-01-01

    This paper presents an approach to shape an aircraft to equivalent area based objectives using the discrete adjoint approach. Equivalent areas can be obtained either using reversed augmented Burgers equation or direct conversion of off-body pressures into equivalent area. Formal coupling with CFD allows computation of sensitivities of equivalent area objectives with respect to aircraft shape parameters. The exactness of the adjoint sensitivities is verified against derivatives obtained using the complex step approach. This methodology has the benefit of using designer-friendly equivalent areas in the shape design of low-boom aircraft. Shape optimization results with equivalent area cost functionals are discussed and further refined using ground loudness based objectives.

  13. The Application and Performance of Single Nucleotide Polymorphism Markers for Population Genetic Analyses of Lepidoptera

    PubMed Central

    Coates, Brad Steven; Bayles, Darrell O.; Wanner, Kevin W.; Robertson, Hugh M.; Hellmich, Richard L.; Sappington, Thomas W.

    2011-01-01

    Microsatellite markers are difficult to apply within lepidopteran studies due to the lack of locus-specific PCR amplification and the high proportion of “null” alleles, such that erroneous estimations of population genetic parameters often result. Herein single nucleotide polymorphism (SNP) markers are developed from Ostrinia nubilalis (Lepidoptera: Crambidae) using next generation expressed sequence tag (EST) data. A total of 2742 SNPs were predicted within a reference assembly of 7414 EST contigs, and a subset of 763 were incorporated into 24 multiplex PCR reactions. To validate this pipeline, 5 European and North American sample sites were genotyped at 178 SNP loci, which indicated 84 (47.2%) were in Hardy–Weinberg equilibrium. Locus-by-locus FST, analysis of molecular variance, and STRUCTURE analyses indicate significant genetic differentiation may exist between European and North American O. nubilalis. The observed genetic diversity was significantly lower among European sites, which may result from genetic drift, natural selection, a genetic bottleneck, or ascertainment bias due to North American origin of EST sequence data. SNPs are an abundant source of mutation data for molecular genetic marker development in non-model species, with shared ancestral SNPs showing application within closely related species. These markers offer advantages over microsatellite markers for genetic and genomic analyses of Lepidoptera, but the source of mutation data may affect the estimation of population parameters and likely need to be considered in the interpretation of empirical data. PMID:22303334

  14. Non-Genetic Engineering Approaches for Isolating and Generating Novel Yeasts for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Chambers, P. J.; Bellon, J. R.; Schmidt, S. A.; Varela, C.; Pretorius, I. S.

    Generating novel yeast strains for industrial applications should be quite straightforward; after all, research into the genetics, biochemistry and physiology of Baker's Yeast, Saccharomyces cerevisiae, has paved the way for many advances in the modern biological sciences. We probably know more about this humble eukaryote than any other, and it is the most tractable of organisms for manipulation using modern genetic engineering approaches. In many countries, however, there are restrictions on the use of genetically-modified organisms (GMOs), particularly in foods and beverages, and the level of consumer acceptance of GMOs is, at best, variable. Thus, many researchers working with industrial yeasts use genetic engineering techniques primarily as research tools, and strain development continues to rely on non-GM technologies. This chapter explores the non-GM tools and strategies available to such researchers.

  15. Application of genetic algorithm on optimization of laser beam shaping.

    PubMed

    Tsai, Cheng-Mu; Fang, Yi-Chin; Lin, Chia-Te

    2015-06-15

    This study proposes a newly developed optimization method for an aspherical lens system employed in a refractive laser beam shaping system, which performs transformations on laser spots such that they are transformed into flat-tops of any size. In this paper, a genetic algorithm (GA) with multipoint search is proposed as the optimization method, together with macro language in optical simulation software, in order to search for ideal and optimized parameters. In comparison to a traditional two-dimensional (2D) computational method, using the one-dimensional (1D) computation for laser beam shaping can search for the optimal solution approximately twice as fast (after experiments). The optimal results show that when the laser spot shrinks from 3 mm to 1.07 mm, 88% uniformity is achieved, and when the laser spot increases from 3 mm to 5.273 mm, 90% uniformity is achieved. The distances between the lenses for both systems described above are even smaller than the thickness for the first lens, enabling us to conclude that our design objectives of extra light and slimness in the system are achieved. PMID:26193566

  16. Orbit determination by genetic algorithm and application to GEO observation

    NASA Astrophysics Data System (ADS)

    Hinagawa, Hideaki; Yamaoka, Hitoshi; Hanada, Toshiya

    2014-02-01

    This paper demonstrates an initial orbit determination method that solves the problem by a genetic algorithm using two well-known solutions for the Lambert's problem: universal variable method and Battin method. This paper also suggests an intuitive error evaluation method in terms of rotational angle and orbit shape by separating orbit elements into two groups. As reference orbit, mean orbit elements (original two-lines elements) and osculating orbit elements considering the J2 effect are adopted and compared. Our proposed orbit determination method has been tested with actual optical observations of a geosynchronous spacecraft. It should be noted that this demonstration of the orbit determination is limited to one test case. This observation was conducted during approximately 70 min on 2013/05/15 UT. Our method was compared with the orbit elements propagated by SGP4 using the TLE of the spacecraft. The result indicates that our proposed method had a slightly better performance on estimating orbit shape than Gauss's methods and Escobal's method by 120 km. In addition, the result of the rotational angle is closer to the osculating orbit elements than the mean orbit elements by 0.02°, which supports that the estimated orbit is valid.

  17. Genetic algorithms

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  18. A “Reverse-Schur” Approach to Optimization With Linear PDE Constraints: Application to Biomolecule Analysis and Design

    PubMed Central

    Bardhan, Jaydeep P.; Altman, Michael D.

    2009-01-01

    We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule’s electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts–in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method. PMID:23055839

  19. Fibrous proteins: At the crossroads of genetic engineering and biotechnological applications.

    PubMed

    Yigit, Sezin; Dinjaski, Nina; Kaplan, David L

    2016-05-01

    Fibrous proteins, such as silk, elastin and collagen are finding broad impact in biomaterial systems for a range of biomedical and industrial applications. Some of the key advantages of biosynthetic fibrous proteins compared to synthetic polymers include the tailorability of sequence, protein size, degradation pattern, and mechanical properties. Recombinant DNA production and precise control over genetic sequence of these proteins allows expansion and fine tuning of material properties to meet the needs for specific applications. We review current approaches in the design, cloning, and expression of fibrous proteins, with a focus on strategies utilized to meet the challenges of repetitive fibrous protein production. We discuss recent advances in understanding the fundamental basis of structure-function relationships and the designs that foster fibrous protein self-assembly towards predictable architectures and properties for a range of applications. We highlight the potential of functionalization through genetic engineering to design fibrous protein systems for biotechnological and biomedical applications. PMID:26332660

  20. The Concentration Dependence of the (Delta)s Term in the Gibbs Free Energy Function: Application to Reversible Reactions in Biochemistry

    ERIC Educational Resources Information Center

    Gary, Ronald K.

    2004-01-01

    The concentration dependence of (delta)S term in the Gibbs free energy function is described in relation to its application to reversible reactions in biochemistry. An intuitive and non-mathematical argument for the concentration dependence of the (delta)S term in the Gibbs free energy equation is derived and the applicability of the equation to…

  1. Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch

    SciTech Connect

    Mirus, K.A.

    1998-06-01

    In this thesis, the possibility of controlling low- and high-dimensional chaotic systems by periodically driving an accessible system parameter is examined. This method has been carried out on several numerical systems and the MST Reversed Field Pinch. The numerical systems investigated include the logistic equation, the Lorenz equations, the Roessler equations, a coupled lattice of logistic equations, a coupled lattice of Lorenz equations, the Yoshida equations, which model tearing mode fluctuations in a plasma, and a neural net model for magnetic fluctuations on MST. This method was tested on the MST by sinusoidally driving a magnetic flux through the toroidal gap of the device. Numerically, periodic drives were found to be most effective at producing limit cycle behavior or significantly reducing the dimension of the system when the perturbation frequency was near natural frequencies of unstable periodic orbits embedded in the attractor of the unperturbed system. Several different unstable periodic orbits have been stabilized in this way for the low-dimensional numerical systems, sometimes with perturbation amplitudes that were less than 5% of the nominal value of the parameter being perturbed. In high-dimensional systems, limit cycle behavior and significant decreases in the system dimension were also achieved using perturbations with frequencies near the natural unstable periodic orbit frequencies. Results for the MST were not this encouraging, most likely because of an insufficient drive amplitude, the extremely high dimension of the plasma behavior, large amounts of noise, and a lack of stationarity in the transient plasma pulses.

  2. Reverse saphenous conduit flap in small animals: Clinical applications and outcomes.

    PubMed

    Elliott, Ross C

    2014-01-01

    Due to the lack of skin elasticity defects of the distal hind limb can be a challenge to close. This article assesses a well-described, but completely under-used technique for closure of wounds on the distal tarsus. The technique was used with good success in six cases presenting to the Bryanston Veterinary Hospital with a wide range of underlying pathology ranging from trauma to neoplastic disease of the tarsus. All six cases were treated with a reverse saphenous conduit flap and two of them underwent radiation therapy with no adverse side effects. All cases showed excellent results with a very low degree of flap necrosis that never exceeded 15% of the total flap area. This skin flap provides an excellent treatment method that is reliable in closure of defects of the distal tarsus with few adverse effects. To the author's knowledge there has been only one previously published report on the clinical use of this type of skin flap, even though the flap is well described in most texts. PMID:25685994

  3. Application of magneto-optical Kerr effect to first-order reversal curve measurements

    NASA Astrophysics Data System (ADS)

    Gräfe, Joachim; Schmidt, Mathias; Audehm, Patrick; Schütz, Gisela; Goering, Eberhard

    2014-02-01

    First-order reversal curves (FORC) are a powerful method for magnetic sample characterization, separating all magnetic states of an investigated system according to their coercivity and internal magnetic interactions. A major drawback of using measurement techniques like VSM or SQUID, typically applied for FORC acquisition, is the long measurement time, limiting the resolution and the number of measurements due to time constraints. Faster techniques like MOKE result in problems regarding measurement stability over the curse of the acquisition of many minor loops, due to drift and non-absolute magnetization values. Here, we present an approach using a specialized field shape providing two anchor points for each minor loop for applying the magneto-optical Kerr effect (MOKE) technique to FORC measurements. This results in a high field resolution while keeping the total acquisition time to only a few minutes. MOKE FORC measurements are exemplarily applied to a simple permalloy film, an exchange-bias system, and a Gd/Fe multilayer system with perpendicular magnetic anisotropy, showcasing the versatility of the method.

  4. Application of modified reverse panoramic radiograph on lambdoid suture for age estimation

    PubMed Central

    Dwivedy, Shweta; Sah, Kunal; Sinha, Shruti

    2015-01-01

    Background Cranial suture closure has long been recognized as a character of human development related to aging. For this reason, it has been utilized for various forensic and archaeological studies to determine the age of an unidentified/or skeletonized individuals. Various cadaveric studies have established the role of lambdoid suture in age estimation, but not routinely practiced. The objective is to establish if any correlation exists between individual’s age and lambdoid sutures closure status (ectocranially) in mortals through modified reverse panoramic radiograph (RPRg). Methods Total number of 85 subjects, 25 years and beyond were included in the study, and divided into four groups with an age interval of 10 years. Assessment of lambdoid suture closure was done according to Frederic Rating Scale on modified RPRg. Data obtained was subjected to statistical analysis using Spearman’s correlation test. Results A significant difference was observed between the age group and suture closure. Correlation coefficient of 0.570 was obtained, and was interpreted as a good correlation between the age and suture closure status with a P value of <0.001. Conclusions Lambdoid suture can be very effective and practical tool for age assessment in mortals through modified RPRg (ectocranially). PMID:26435915

  5. Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch

    NASA Astrophysics Data System (ADS)

    Mirus, Kevin Andrew

    In this thesis, the possibility of controlling low- and high-dimensional chaotic systems by periodically driving an accessible system parameter is examined. This method has been carried out on several numerical systems and the MST Reversed Field Pinch. The numerical systems investigated include the logistic equation, the Lorenz equations, the Rossler equations, a coupled lattice of logistic equations, a coupled lattice of Lorenz equations, the Yoshida equations, which model tearing mode fluctuations in a plasma, and a neural net model for magnetic fluctuations on MST. This method was tested on the MST by sinusoidally driving a magnetic flux through the toroidal gap of the device. Numerically, periodic drives were found to be most effective at producing limit cycle behavior or significantly reducing the dimension of the system when the perturbation frequency was near natural frequencies of unstable periodic orbits embedded in the attractor of the unperturbed system. Several different unstable periodic orbits have been stabilized in this way for the low-dimensional numerical systems, sometimes with perturbation amplitudes that were less than 5% of the nominal value of the parameter being perturbed. In high- dimensional systems, limit cycle behavior and significant decreases in the system dimension were also achieved using perturbations with frequencies near the natural unstable periodic orbit frequencies. Results for the MST were not this encouraging, most likely because of an insufficient drive amplitude, the extremely high dimension of the plasma behavior, large amounts of noise, and a lack of stationarity in the transient plasma pulses.

  6. Performance and cost of energy transport and storage systems for dish applications using reversible chemical reactions

    NASA Technical Reports Server (NTRS)

    Schredder, J. M.; Fujita, T.

    1984-01-01

    The use of reversible chemical reactions for energy transport and storage for parabolic dish networks is considered. Performance and cost characteristics are estimated for systems using three reactions (sulfur-trioxide decomposition, steam reforming of methane, and carbon-dioxide reforming of methane). Systems are considered with and without storage, and in several energy-delivery configurations that give different profiles of energy delivered versus temperature. Cost estimates are derived assuming the use of metal components and of advanced ceramics. (The latter reduces the costs by three- to five-fold). The process that led to the selection of the three reactions is described, and the effects of varying temperatures, pressures, and heat exchanger sizes are addressed. A state-of-the-art survey was performed as part of this study. As a result of this survey, it appears that formidable technical risks exist for any attempt to implement the systems analyzed in this study, especially in the area of reactor design and performance. The behavior of all components and complete systems under thermal energy transients is very poorly understood. This study indicates that thermochemical storage systems that store reactants as liquids have efficiencies below 60%, which is in agreement with the findings of earlier investigators.

  7. Molecular Imprinting of Silica Nanoparticle Surfaces via Reversible Addition-Fragmentation Polymerization for Optical Biosensing Applications

    NASA Astrophysics Data System (ADS)

    Oluz, Zehra; Nayab, Sana; Kursun, Talya Tugana; Caykara, Tuncer; Yameen, Basit; Duran, Hatice

    Azo initiator modified surface of silica nanoparticles were coated via reversible addition-fragmentation polymerization (RAFT) of methacrylic acid and ethylene glycol dimethacrylate using 2-phenylprop 2-yl dithobenzoate as chain transfer agent. Using L-phenylalanine anilide as template during polymerization led molecularly imprinted nanoparticles. RAFT polymerization offers an efficient control of grafting process, while molecularly imprinted polymers shows enhanced capacity as sensor. L-phenylalanine anilide imprinted silica particles were characterized by X-Ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM). Performances of the particles were followed by surface plasmon resonance spectroscopy (SPR) after coating the final product on gold deposited glass substrate against four different analogous of analyte molecules: D-henylalanine anilide, L-tyrosine, L-tryptophan and L-phenylalanine. Characterizations indicated that silica particles coated with polymer layer do contain binding sites for L-phenylalanine anilide, and are highly selective for the molecule of interest. This project was supported by TUBITAK (Project No:112M804).

  8. Parallelized genetic optimization of spatial light modulator addressing for diffractive applications.

    PubMed

    Haist, Tobias; Lingel, Christian; Adler, Rodolfo; Osten, Wolfgang

    2014-03-01

    We describe a new technique for optimizing the addressing of spatial light modulators in dynamic holographic applications. The method utilizes 200 times parallelization using imaging of subholograms in combination with genetic optimization. Compared to a fixed linear addressing curve for all different gratings, the diffraction efficiency can be improved by up to 25% for a Holoeye Pluto LCoS modulator. PMID:24663371

  9. The application and performance of single nucleotide polymorphism markers for population genetic analyses of Lepidoptera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single nucleotide polymorphisms (SNPs) are nucleotide substitution mutations that tend to be at high densities within eukaryotic genomes. The development of assays that detect allelic variation at SNP loci is attractive for genome mapping, population genetics, and phylogeographic applications. A p...

  10. Optimization of meander line antennas for RFID applications by using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bucuci, Stefania C.; Anchidin, Liliana; Dumitrascu, Ana; Danisor, Alin; Berescu, Serban; Tamas, Razvan D.

    2015-02-01

    In this paper, we propose an approach of optimization of meander line antennas by using genetic algorithm. Such antennas are used in RFID applications. As opposed to other approaches for meander antennas, we propose the use of only two optimization objectives, i.e. gain and size. As an example, we have optimized a single meander dipole antenna, resonating at 869 MHz.

  11. Credit card fraud detection: An application of the gene expression messy genetic algorithm

    SciTech Connect

    Kargupta, H.; Gattiker, J.R.; Buescher, K.

    1996-05-01

    This paper describes an application of the recently introduced gene expression messy genetic algorithm (GEMGA) (Kargupta, 1996) for detecting fraudulent transactions of credit cards. It also explains the fundamental concepts underlying the GEMGA in the light of the SEARCH (Search Envisioned As Relation and Class Hierarchizing) (Kargupta, 1995) framework.

  12. Efficient Reverse Genetics Reveals Genetic Determinants of Budding and Fusogenic Differences between Nipah and Hendra Viruses and Enables Real-Time Monitoring of Viral Spread in Small Animal Models of Henipavirus Infection

    PubMed Central

    Yun, Tatyana; Park, Arnold; Hill, Terence E.; Pernet, Olivier; Beaty, Shannon M.; Juelich, Terry L.; Smith, Jennifer K.; Zhang, Lihong; Wang, Yao E.; Vigant, Frederic; Gao, Junling; Wu, Ping

    2014-01-01

    ABSTRACT Nipah virus (NiV) and Hendra virus (HeV) are closely related henipaviruses of the Paramyxovirinae. Spillover from their fruit bat reservoirs can cause severe disease in humans and livestock. Despite their high sequence similarity, NiV and HeV exhibit apparent differences in receptor and tissue tropism, envelope-mediated fusogenicity, replicative fitness, and other pathophysiologic manifestations. To investigate the molecular basis for these differences, we first established a highly efficient reverse genetics system that increased rescue titers by ≥3 log units, which offset the difficulty of generating multiple recombinants under constraining biosafety level 4 (BSL-4) conditions. We then replaced, singly and in combination, the matrix (M), fusion (F), and attachment glycoprotein (G) genes in mCherry-expressing recombinant NiV (rNiV) with their HeV counterparts. These chimeric but isogenic rNiVs replicated well in primary human endothelial and neuronal cells, indicating efficient heterotypic complementation. The determinants of budding efficiency, fusogenicity, and replicative fitness were dissociable: HeV-M budded more efficiently than NiV-M, accounting for the higher replicative titers of HeV-M-bearing chimeras at early times, while the enhanced fusogenicity of NiV-G-bearing chimeras did not correlate with increased replicative fitness. Furthermore, to facilitate spatiotemporal studies on henipavirus pathogenesis, we generated a firefly luciferase-expressing NiV and monitored virus replication and spread in infected interferon alpha/beta receptor knockout mice via bioluminescence imaging. While intraperitoneal inoculation resulted in neuroinvasion following systemic spread and replication in the respiratory tract, intranasal inoculation resulted in confined spread to regions corresponding to olfactory bulbs and salivary glands before subsequent neuroinvasion. This optimized henipavirus reverse genetics system will facilitate future investigations into

  13. Experimental Pathways towards Developing a Rotavirus Reverse Genetics System: Synthetic Full Length Rotavirus ssRNAs Are Neither Infectious nor Translated in Permissive Cells

    PubMed Central

    Richards, James E.; Desselberger, Ulrich; Lever, Andrew M.

    2013-01-01

    At present the ability to create rationally engineered mutant rotaviruses is limited because of the lack of a tractable helper virus-free reverse genetics system. Using the cell culture adapted bovine RV RF strain (G6P6 [1]), we have attempted to recover infectious RV by co-transfecting in vitro transcribed ssRNAs which are identical in sequence to the positive sense strand of each of the 11 dsRNA genomic segments of the RF strain. The RNAs were produced either from cDNAs cloned by a target sequence-independent procedure, or from purified double layered RV particles (DLPs). We have validated their translational function by in vitro synthesis of 35S-labelled proteins in rabbit reticulocyte lysates; all 11 proteins encoded by the RV genome were expressed. Transfection experiments with DLP- or cDNA-derived ssRNAs suggested that the RNAs do not act independently as mRNAs for protein synthesis, once delivered into various mammalian cell lines, and exhibit cytotoxicity. Transfected RNAs were not infectious since a viral cytopathic effect was not observed after infection of MA104 cells with lysates from transfected cells. By contrast, an engineered mRNA encoding eGFP was expressed when transfected under identical conditions into the same cell lines. Co-expression of plasmids encoding NSP2 and NSP5 using a fowlpox T7 polymerase recombinant virus revealed viroplasm-like structure formation, but this did not enable the translation of transfected RV ssRNAs. Attempts to recover RV from ssRNAs transcribed intracellularly from transfected cDNAs were also unsuccessful and suggested that these RNAs were also not translated, in contrast to successful translation from a transfected cDNA encoding an eGFP mRNA. PMID:24019962

  14. Reverse genetics studies of attenuation of the ca A/AA/6/60 influenza virus: the role of the matrix gene.

    PubMed

    Sweet, T M; Maassab, H F; Herlocher, M L

    2004-11-01

    The matrix (M) gene of influenza virus has been implicated in the attenuation phenotype of the cold adapted (ca) A/AA/6/60 vaccine. Previous studies have evaluated the ca M from A/AA/6/60 in different wild type (wt) virus backgrounds with varying results. In experiments described here, the ca M gene was transfected into the background of its own wt A/AA/6/60 to eliminate the possibility of confounding gene constellation effects. Comparison of the sequence of the wt and the ca A/AA/6/60 revealed one substitution in the nucleotide sequence of M. The molecular techniques of reverse genetics were used to rescue the ca M gene into the virulent wt A/AA/6/60 virus. The selection system used to identify the desired transfectant virus was amantadine resistance, which was introduced into the M2 gene using mutagenesis. The ca A/AA/6/60, the wt A/AA/6/60, a virus which contained wt M and was wt in the remaining seven genes and amantadine resistant (wt/969), a virus which contained the ca M but wt in the other seven genes (ca/969) were all evaluated in mice determine the effect of the ca M. The ca/969 virus was not attenuated in the mouse model when compared to the wt/969 virus, indicating that the ca A/AA/6/60 M does not independently contribute to the attenuation phenotype attributed to the ca A/AA/6/60 vaccine virus. PMID:15511608

  15. Identification of the Mechanisms Causing Reversion to Virulence in an Attenuated SARS-CoV for the Design of a Genetically Stable Vaccine

    PubMed Central

    Nieto-Torres, Jose L.; DeDiego, Marta L.; Castaño-Rodriguez, Carlos; Fernandez-Delgado, Raul; Perlman, Stanley; Enjuanes, Luis

    2015-01-01

    A SARS-CoV lacking the full-length E gene (SARS-CoV-∆E) was attenuated and an effective vaccine. Here, we show that this mutant virus regained fitness after serial passages in cell culture or in vivo, resulting in the partial duplication of the membrane gene or in the insertion of a new sequence in gene 8a, respectively. The chimeric proteins generated in cell culture increased virus fitness in vitro but remained attenuated in mice. In contrast, during SARS-CoV-∆E passage in mice, the virus incorporated a mutated variant of 8a protein, resulting in reversion to a virulent phenotype. When the full-length E protein was deleted or its PDZ-binding motif (PBM) was mutated, the revertant viruses either incorporated a novel chimeric protein with a PBM or restored the sequence of the PBM on the E protein, respectively. Similarly, after passage in mice, SARS-CoV-∆E protein 8a mutated, to now encode a PBM, and also regained virulence. These data indicated that the virus requires a PBM on a transmembrane protein to compensate for removal of this motif from the E protein. To increase the genetic stability of the vaccine candidate, we introduced small attenuating deletions in E gene that did not affect the endogenous PBM, preventing the incorporation of novel chimeric proteins in the virus genome. In addition, to increase vaccine biosafety, we introduced additional attenuating mutations into the nsp1 protein. Deletions in the carboxy-terminal region of nsp1 protein led to higher host interferon responses and virus attenuation. Recombinant viruses including attenuating mutations in E and nsp1 genes maintained their attenuation after passage in vitro and in vivo. Further, these viruses fully protected mice against challenge with the lethal parental virus, and are therefore safe and stable vaccine candidates for protection against SARS-CoV. PMID:26513244

  16. Genetic algorithms and genetic programming for multiscale modeling: Applications in materials science and chemistry and advances in scalability

    NASA Astrophysics Data System (ADS)

    Sastry, Kumara Narasimha

    2007-03-01

    Effective and efficient rnultiscale modeling is essential to advance both the science and synthesis in a, wide array of fields such as physics, chemistry, materials science; biology, biotechnology and pharmacology. This study investigates the efficacy and potential of rising genetic algorithms for rnultiscale materials modeling and addresses some of the challenges involved in designing competent algorithms that solve hard problems quickly, reliably and accurately. In particular, this thesis demonstrates the use of genetic algorithms (GAs) and genetic programming (GP) in multiscale modeling with the help of two non-trivial case studies in materials science and chemistry. The first case study explores the utility of genetic programming (GP) in multi-timescaling alloy kinetics simulations. In essence, GP is used to bridge molecular dynamics and kinetic Monte Carlo methods to span orders-of-magnitude in simulation time. Specifically, GP is used to regress symbolically an inline barrier function from a limited set of molecular dynamics simulations to enable kinetic Monte Carlo that simulate seconds of real time. Results on a non-trivial example of vacancy-assisted migration on a surface of a face-centered cubic (fcc) Copper-Cobalt (CuxCo 1-x) alloy show that GP predicts all barriers with 0.1% error from calculations for less than 3% of active configurations, independent of type of potentials used to obtain the learning set of barriers via molecular dynamics. The resulting method enables 2--9 orders-of-magnitude increase in real-time dynamics simulations taking 4--7 orders-of-magnitude less CPU time. The second case study presents the application of multiobjective genetic algorithms (MOGAs) in multiscaling quantum chemistry simulations. Specifically, MOGAs are used to bridge high-level quantum chemistry and semiempirical methods to provide accurate representation of complex molecular excited-state and ground-state behavior. Results on ethylene and benzene---two common

  17. Reverse Genetics for Fusogenic Bat-Borne Orthoreovirus Associated with Acute Respiratory Tract Infections in Humans: Role of Outer Capsid Protein σC in Viral Replication and Pathogenesis

    PubMed Central

    Kawagishi, Takahiro; Kanai, Yuta; Tani, Hideki; Shimojima, Masayuki; Saijo, Masayuki; Matsuura, Yoshiharu; Kobayashi, Takeshi

    2016-01-01

    Nelson Bay orthoreoviruses (NBVs) are members of the fusogenic orthoreoviruses and possess 10-segmented double-stranded RNA genomes. NBV was first isolated from a fruit bat in Australia more than 40 years ago, but it was not associated with any disease. However, several NBV strains have been recently identified as causative agents for respiratory tract infections in humans. Isolation of these pathogenic bat reoviruses from patients suggests that NBVs have evolved to propagate in humans in the form of zoonosis. To date, no strategy has been developed to rescue infectious viruses from cloned cDNA for any member of the fusogenic orthoreoviruses. In this study, we report the development of a plasmid-based reverse genetics system free of helper viruses and independent of any selection for NBV isolated from humans with acute respiratory infection. cDNAs corresponding to each of the 10 full-length RNA gene segments of NBV were cotransfected into culture cells expressing T7 RNA polymerase, and viable NBV was isolated using a plaque assay. The growth kinetics and cell-to-cell fusion activity of recombinant strains, rescued using the reverse genetics system, were indistinguishable from those of native strains. We used the reverse genetics system to generate viruses deficient in the cell attachment protein σC to define the biological function of this protein in the viral life cycle. Our results with σC-deficient viruses demonstrated that σC is dispensable for cell attachment in several cell lines, including murine fibroblast L929 cells but not in human lung epithelial A549 cells, and plays a critical role in viral pathogenesis. We also used the system to rescue a virus that expresses a yellow fluorescent protein. The reverse genetics system developed in this study can be applied to study the propagation and pathogenesis of pathogenic NBVs and in the generation of recombinant NBVs for future vaccines and therapeutics. PMID:26901882

  18. Application of reverse dot blot hybridization to simultaneous detection and identification of harmful algae.

    PubMed

    Chen, Guo Fu; Zhang, Chun Yun; Wang, Yuan Yuan; Chen, Wen

    2015-07-01

    Warning and monitoring projects of harmful algal blooms require simple and rapid methods for simultaneous and accurate detection and identification of causative algae present in the environmental samples. Here, reverse dot blot hybridization (RDBH) was employed to simultaneously detect several harmful algae by using five representative bloom-forming microalgae along the Chinese coast. A set of specific probes for RDBH were developed by PCR, cloning, and sequencing of the internal transcribed spacer (ITS), alignment analysis, and probe design. Each probe was oligo (dT)-tailed and spotted onto positively charged nylon membrane to make up a low-density oligonucleotide array. Universal primers designed within the conserved regions were used to amplify the ITS sequences by using genomic DNA of target as templates. The digoxigenin (Dig)-labeled PCR products were denatured and then hybridized to the oligonucleotide array. The array produced a unique hybridization pattern for each target species differentiating them from each other. The preparations of oligonucleotide array and hybridization conditions were optimized. The developed RDBH demonstrated a detection limit up to 10 cells. The detection performance of RDBH was relatively stable and not affected by non-target species and the fixation time of target species over at least 30 days. The RDBH could recover all the target species from the simulated field samples and target species confirmed by the subsequent microscopy examination in the environmental samples. These results indicate that RDBH can be a new technical platform for parallel discrimination of harmful algae and is promising for environmental monitoring of these microorganisms. PMID:25731086

  19. Modelling liquid crystal elastomers and potential application as a reversibly switchable adhesive

    NASA Astrophysics Data System (ADS)

    Adams, James

    2013-03-01

    Liquid crystal elastomers (LCEs) are rubbery materials that composed of liquid crystalline polymers (LCPs) crosslinked into a network. The rod-like mesogens incorporated into the LCPs are have random orientations in the high temperature isotropic phase, but can adopt the canonical liquid crystalline phases as the temperature is lowered. Smectic liquid crystal elastomers have highly anisotropic mechanical behaviour. This arises in side chain smectic-A systems because the smectic layers behave as if they are embedded in the rubber matrix. The macroscopic mechanical behaviour of these solids is sensitive to the buckling of the layers, so is a multiscale problem. A coarse grained free energy that includes the fine-scale buckling of the layers has been developed, which enables continuum modelling of these systems. In the first part of this talk I present a model of the mechanical behaviour of side chain smectic elastomers. The properties of nematic LCEs, such as their high loss tangent, and mechanical strain hardening, might enable them to be used as reversibly switchable pressure sensitive adhesive (PSA). PSAs are typically made from viscoelastic polymers. The quality of their adhesion can be measured by the tack energy, which is the work required to separate two bodies. To obtain a high tack energy a PSA should be capable of a large strain. It should strain soften at low strain to produce crack blunting, and then strain harden at high strain to stiffen the fibrils formed late in the debonding process. I will present a model of the tack energy of weakly crosslinked nematic polymers. To describe the constitutive properties of this system the nematic dumbbell model of Maffettone et al. was used. This constutitive model was then combined with the block model of Yamaguchi et al. describing PSAs. It was found that the parallel orientation of the nematic has a higher tack energy than both the isotropic and the perpendicular director orientation. This work is supported by

  20. Application of Site-Specific Spin Labeling for NMR Detecting Inhibitor-Induced Conformational Change of HIV-1 Reverse Transcriptase.

    PubMed

    Seetaha, Supaporn; Yagi-Utsumi, Maho; Yamaguchi, Takumi; Ishii, Kentaro; Hannongbua, Supa; Choowongkomon, Kiattawee; Kato, Koichi

    2016-02-17

    Paramagnetism-assisted nuclear magnetic resonance (NMR) techniques can provide long-range structural information complemented with local information derived from chemical-shift perturbation and nuclear Overhauser effect data. Here, we address the application of paramagnetic relaxation enhancement (PRE) to detect inhibitor-induced conformational change of a drug target protein using human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) as a model protein. Using a site-specific spin-labeled HIV-1 RT mutant with selective (13) C labeling, conformation-dependent PREs were successfully observed reflecting the stabilization of an open conformation of this enzyme caused by inhibitor binding. This study demonstrates that the paramagnetism-assisted NMR approach offers an alternative strategy in protein-based drug screening to identify allosteric inhibitors of a target protein. PMID:26804978

  1. Clostridium perfringens Enterotoxin: Action, Genetics, and Translational Applications

    PubMed Central

    Freedman, John C.; Shrestha, Archana; McClane, Bruce A.

    2016-01-01

    Clostridium perfringens enterotoxin (CPE) is responsible for causing the gastrointestinal symptoms of several C. perfringens food- and nonfood-borne human gastrointestinal diseases. The enterotoxin gene (cpe) is located on either the chromosome (for most C. perfringens type A food poisoning strains) or large conjugative plasmids (for the remaining type A food poisoning and most, if not all, other CPE-producing strains). In all CPE-positive strains, the cpe gene is strongly associated with insertion sequences that may help to assist its mobilization and spread. During disease, CPE is produced when C. perfringens sporulates in the intestines, a process involving several sporulation-specific alternative sigma factors. The action of CPE starts with its binding to claudin receptors to form a small complex; those small complexes then oligomerize to create a hexameric prepore on the membrane surface. Beta hairpin loops from the CPE molecules in the prepore assemble into a beta barrel that inserts into the membrane to form an active pore that enhances calcium influx, causing cell death. This cell death results in intestinal damage that causes fluid and electrolyte loss. CPE is now being explored for translational applications including cancer therapy/diagnosis, drug delivery, and vaccination. PMID:26999202

  2. Clostridium perfringens Enterotoxin: Action, Genetics, and Translational Applications.

    PubMed

    Freedman, John C; Shrestha, Archana; McClane, Bruce A

    2016-01-01

    Clostridium perfringens enterotoxin (CPE) is responsible for causing the gastrointestinal symptoms of several C. perfringens food- and nonfood-borne human gastrointestinal diseases. The enterotoxin gene (cpe) is located on either the chromosome (for most C. perfringens type A food poisoning strains) or large conjugative plasmids (for the remaining type A food poisoning and most, if not all, other CPE-producing strains). In all CPE-positive strains, the cpe gene is strongly associated with insertion sequences that may help to assist its mobilization and spread. During disease, CPE is produced when C. perfringens sporulates in the intestines, a process involving several sporulation-specific alternative sigma factors. The action of CPE starts with its binding to claudin receptors to form a small complex; those small complexes then oligomerize to create a hexameric prepore on the membrane surface. Beta hairpin loops from the CPE molecules in the prepore assemble into a beta barrel that inserts into the membrane to form an active pore that enhances calcium influx, causing cell death. This cell death results in intestinal damage that causes fluid and electrolyte loss. CPE is now being explored for translational applications including cancer therapy/diagnosis, drug delivery, and vaccination. PMID:26999202

  3. An Advanced Reverse Osmosis Technology For Application in Nuclear Desalination Facilities

    SciTech Connect

    Humphries, J.R.; Davies, K.; Ackert, J.A.

    2002-07-01

    The lack of adequate supplies of clean, safe water is a growing global problem that has reached crisis proportions in many parts of the world. It is estimated that 1.5 billion people do not have access to adequate supplies of safe water, and that as a result nearly 10,000 people die every day and thousands more suffer from a range of debilitating illnesses due to water related diseases. Included in this total is an estimated 2.2 million child deaths annually. As the world's need for additional sources of fresh water continues to grow, seawater and brackish water desalination are providing an increasingly important contribution to the solution of this problem. Because desalination is an energy intensive process, nuclear desalination provides an economically attractive and environmentally sound alternative to the burning of fossil fuels for desalination. Nevertheless, the enormity of the problem dictates that additional steps must be taken to improve the efficiency of energy utilization and reduce the cost of water production in order to reduce the financial and environmental burden to communities in need. An advanced reverse osmosis (RO) desalination technology has been developed that emphasizes a nontraditional approach to system design and operation, and makes use of a sophisticated design optimization process that can lead to highly optimized design configurations and operating regimes. The technology can be coupled with a nuclear generating station (NGS) to provide an integrated facility for the co-generation of both water and electricity. Waste heat from the NGS allows the use of 'preheated' feedwater into the RO system, improving the efficiency of the RO process and reducing the cost of water production. Because waste heat, rather than process heat, is used the desalination system can be readily coupled to any existing or advanced reactor technology with little or no impact on reactor design and operation and without introducing additional reactor safety

  4. Justice and Reverse Discrimination.

    ERIC Educational Resources Information Center

    Goldman, Alan H.

    Defining reverse discrimination as hiring or admissions decisions based on normally irrelevant criteria, this book develops principles of rights, compensation, and equal opportunity applicable to the reverse discrimination issue. The introduction defines the issue and discusses deductive and inductive methodology as applied to reverse…

  5. [Application of next-generation semiconductor sequencing technologies in genetic diagnosis of inherited cardiomyopathies].

    PubMed

    Yue, Zhao; Hong, Zhang; Xueshan, Xia

    2015-07-01

    Inherited cardiomyopathy is the most common hereditary cardiac disease. It also causes a significant proportion of sudden cardiac deaths in young adults and athletes. So far, approximately one hundred genes have been reported to be involved in cardiomyopathies through different mechanisms. Therefore, the identification of the genetic basis and disease mechanisms of cardiomyopathies are important for establishing a clinical diagnosis and genetic testing. Next-generation semiconductor sequencing (NGSS) technology platform is a high-throughput sequencer capable of analyzing clinically derived genomes with high productivity, sensitivity and specificity. It was launched in 2010 by Life Technologies of USA, and it is based on a high density semiconductor chip, which was covered with tens of thousands of wells. NGSS has been successfully used in candidate gene mutation screening to identify hereditary disease. In this review, we summarize these genetic variations, challenge and application of NGSS in inherited cardiomyopathy, and its value in disease diagnosis, prevention and treatment. PMID:26351163

  6. Biomedical applications of polymers derived by reversible addition - fragmentation chain-transfer (RAFT).

    PubMed

    Fairbanks, Benjamin D; Gunatillake, Pathiraja A; Meagher, Laurence

    2015-08-30

    RAFT- mediated polymerization, providing control over polymer length and architecture as well as facilitating post polymerization modification of end groups, has been applied to virtually every facet of biomedical materials research. RAFT polymers have seen particularly extensive use in drug delivery research. Facile generation of functional and telechelic polymers permits straightforward conjugation to many therapeutic compounds while synthesis of amphiphilic block copolymers via RAFT allows for the generation of self-assembled structures capable of carrying therapeutic payloads. With the large and growing body of literature employing RAFT polymers as drug delivery aids and vehicles, concern over the potential toxicity of RAFT derived polymers has been raised. While literature exploring this complication is relatively limited, the emerging consensus may be summed up in three parts: toxicity of polymers generated with dithiobenzoate RAFT agents is observed at high concentrations but not with polymers generated with trithiocarbonate RAFT agents; even for polymers generated with dithiobenzoate RAFT agents, most reported applications call for concentrations well below the toxicity threshold; and RAFT end-groups may be easily removed via any of a variety of techniques that leave the polymer with no intrinsic toxicity attributable to the mechanism of polymerization. The low toxicity of RAFT-derived polymers and the ability to remove end groups via straightforward and scalable processes make RAFT technology a valuable tool for practically any application in which a polymer of defined molecular weight and architecture is desired. PMID:26050529

  7. Preparation of genetically engineered A/H5N1 and A/H7N1 pandemic vaccine viruses by reverse genetics in a mixture of Vero and chicken embryo cells

    PubMed Central

    Legastelois, Isabelle; Garcia‐Sastre, Adolfo; Palese, Peter; Tumpey, Terrence M.; Maines, Taronna R.; Katz, Jacqueline M.; Vogel, Frederick R.; Moste, Catherine

    2007-01-01

    Background  In case of influenza pandemic, a robust, easy and clean technique to prepare reassortants would be necessary. Objectives  Using reverse genetics, we prepared two vaccine reassortants (A/H5N1 × PR8 and A/H7N1 × PR8) exhibiting the envelope glycoproteins from non‐pathogenic avian viruses, A/Turkey/Wisconsin/68 (A/H5N9) and A/Rhea/New Caledonia/39482/93 (A/H7N1) and the internal proteins of the attenuated human virus A/Puerto Rico/8/34 (H1N1). Methods  The transfection was accomplished using a mixture of Vero and chicken embryo cells both of which are currently being used for vaccine manufacturing. Results  This process was reproducible, resulting in consistent recovery of influenza viruses in 6 days. Because it is mainly the A/H5N1 strain that has recently crossed the human barrier, it is the A/PR8 × A/H5N1 reassortant (RG5) that was further amplified, either in embryonated hen eggs or Vero cells, to produce vaccine pre‐master seed stocks that met quality control specifications. Safety testing in chickens and ferrets was performed to assess the non‐virulence of the reassortant, and finally analysis using chicken and ferret sera immunized with the RG5 virus showed that the vaccine candidate elicited an antibody response cross‐reactive with the Hong Kong 1997 and 2003 H5N1 strains but not the Vietnam/2004 viruses. Conclusions  The seeds obtained could be used as part of a pandemic vaccine strain ‘library’ available in case of propagation in humans of a new highly pathogenic avian strain. PMID:19453414

  8. Application of a reversible chemical reaction system to solar thermal power plants

    NASA Astrophysics Data System (ADS)

    Hanseth, E. J.; Won, Y. S.; Seibowitz, L. P.

    1980-08-01

    Three distributed dish solar thermal power systems using various applications of SO2/SO3 chemical energy storage and transport technology were comparatively assessed. Each system features various roles for the chemical system: (1) energy storage only, (2) energy transport, or (3) energy transport and storage. These three systems were also compared with the dish-Stirling, using electrical transport and battery storage, and the central receiver Rankine system, with thermal storage, to determine the relative merit of plants employing a thermochemical system. As an assessment criterion, the busbar energy costs were compared. Separate but comparable solar energy cost computer codes were used for distributed receiver and central receiver systems. Calculations were performed for capacity factors ranging from 0.4 to 0.8. The results indicate that SO2/SO3 technology has the potential to be more cost effective in transporting the collected energy than in storing the energy for the storage capacity range studied (2-15 hours)

  9. Nested Quantization Index Modulation for Reversible Watermarking and Its Application to Healthcare Information Management Systems

    PubMed Central

    Ko, Lu-Ting; Chen, Jwu-E.; Shieh, Yaw-Shih; Hsin, Hsi-Chin; Sung, Tze-Yun

    2012-01-01

    Digital watermarking has attracted lots of researches to healthcare information management systems for access control, patients' data protection, and information retrieval. The well-known quantization index modulation-(QIM-) based watermarking has its limitations as the host image will be destroyed; however, the recovery of medical images is essential to avoid misdiagnosis. In this paper, we propose the nested QIM-based watermarking, which is preferable to the QIM-based watermarking for the medical image applications. As the host image can be exactly reconstructed by the nested QIM-based watermarking. The capacity of the embedded watermark can be increased by taking advantage of the proposed nest structure. The algorithm and mathematical model of the nested QIM-based watermarking including forward and inverse model is presented. Due to algorithms and architectures of forward and inverse nested QIM, the concurrent programs and special processors for the nested QIM-based watermarking are easily implemented. PMID:22194776

  10. Application of a reversible chemical reaction system to solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Hanseth, E. J.; Won, Y. S.; Seibowitz, L. P.

    1980-01-01

    Three distributed dish solar thermal power systems using various applications of SO2/SO3 chemical energy storage and transport technology were comparatively assessed. Each system features various roles for the chemical system: (1) energy storage only, (2) energy transport, or (3) energy transport and storage. These three systems were also compared with the dish-Stirling, using electrical transport and battery storage, and the central receiver Rankine system, with thermal storage, to determine the relative merit of plants employing a thermochemical system. As an assessment criterion, the busbar energy costs were compared. Separate but comparable solar energy cost computer codes were used for distributed receiver and central receiver systems. Calculations were performed for capacity factors ranging from 0.4 to 0.8. The results indicate that SO2/SO3 technology has the potential to be more cost effective in transporting the collected energy than in storing the energy for the storage capacity range studied (2-15 hours)

  11. Reversible switches of DNA nanostructures between ``Closed'' and ``Open'' states and their biosensing applications

    NASA Astrophysics Data System (ADS)

    Sheng, Qing-Lin; Liu, Rui-Xiao; Zheng, Jian-Bin; Zhu, Jun-Jie

    2013-07-01

    A novel and versatile biosensing platform based on the structural conversion of 3D DNA nanostructures from ETDNA (Equilateral Triangle) to TPFDNA (Triangular Pyramid Frustum) was proposed for the first time. The inputs of aptamers and their relative targets made the DNA structure change from the ``Open'' to the ``Closed'' state, leading to the faradaic impedance changes as the output signals. The specific properties of excellent stability and specific rigid structure of 3D DNA nanostructures made the biosensor function as a regenerable, reusable and intelligent platform. The sensor exhibited excellent selectivity for IFN-γ detection with a wide linear range of 1.0 × 10-9 to 2.0 × 10-6 M and a low detection limit of 5.2 × 10-10 M. The distinctive features of DNA nanostructures make them potentially advantageous for a broad range of biosensing, bionanoelectronics, and therapeutic applications.A novel and versatile biosensing platform based on the structural conversion of 3D DNA nanostructures from ETDNA (Equilateral Triangle) to TPFDNA (Triangular Pyramid Frustum) was proposed for the first time. The inputs of aptamers and their relative targets made the DNA structure change from the ``Open'' to the ``Closed'' state, leading to the faradaic impedance changes as the output signals. The specific properties of excellent stability and specific rigid structure of 3D DNA nanostructures made the biosensor function as a regenerable, reusable and intelligent platform. The sensor exhibited excellent selectivity for IFN-γ detection with a wide linear range of 1.0 × 10-9 to 2.0 × 10-6 M and a low detection limit of 5.2 × 10-10 M. The distinctive features of DNA nanostructures make them potentially advantageous for a broad range of biosensing, bionanoelectronics, and therapeutic applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01576a

  12. Application of computational methods in genetic study of inflammatory bowel disease

    PubMed Central

    Li, Jin; Wei, Zhi; Hakonarson, Hakon

    2016-01-01

    Genetic factors play an important role in the etiology of inflammatory bowel disease (IBD). The launch of genome-wide association study (GWAS) represents a landmark in the genetic study of human complex disease. Concurrently, computational methods have undergone rapid development during the past a few years, which led to the identification of numerous disease susceptibility loci. IBD is one of the successful examples of GWAS and related analyses. A total of 163 genetic loci and multiple signaling pathways have been identified to be associated with IBD. Pleiotropic effects were found for many of these loci; and risk prediction models were built based on a broad spectrum of genetic variants. Important gene-gene, gene-environment interactions and key contributions of gut microbiome are being discovered. Here we will review the different types of analyses that have been applied to IBD genetic study, discuss the computational methods for each type of analysis, and summarize the discoveries made in IBD research with the application of these methods. PMID:26811639

  13. Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology

    PubMed Central

    Rogalski, Marcelo; do Nascimento Vieira, Leila; Fraga, Hugo P.; Guerra, Miguel P.

    2015-01-01

    During the evolution of the eukaryotic cell, plastids, and mitochondria arose from an endosymbiotic process, which determined the presence of three genetic compartments into the incipient plant cell. After that, these three genetic materials from host and symbiont suffered several rearrangements, bringing on a complex interaction between nuclear and organellar gene products. Nowadays, plastids harbor a small genome with ∼130 genes in a 100–220 kb sequence in higher plants. Plastid genes are mostly highly conserved between plant species, being useful for phylogenetic analysis in higher taxa. However, intergenic spacers have a relatively higher mutation rate and are important markers to phylogeographical and plant population genetics analyses. The predominant uniparental inheritance of plastids is like a highly desirable feature for phylogeny studies. Moreover, the gene content and genome rearrangements are efficient tools to capture and understand evolutionary events between different plant species. Currently, genetic engineering of the plastid genome (plastome) offers a number of attractive advantages as high-level of foreign protein expression, marker gene excision, gene expression in operon and transgene containment because of maternal inheritance of plastid genome in most crops. Therefore, plastid genome can be used for adding new characteristics related to synthesis of metabolic compounds, biopharmaceutical, and tolerance to biotic and abiotic stresses. Here, we describe the importance and applications of plastid genome as tools for genetic and evolutionary studies, and plastid transformation focusing on increasing the performance of horticultural species in the field. PMID:26284102

  14. Development of 10 microsatellite markers from Pantala flavescens and their applicability in studying genetics diversity.

    PubMed

    Cao, Lingzhen; Fu, Xiaowei; Wu, Kongming

    2015-08-01

    Pantala flavescens (Fabricius 1798) is one of the most common species among migration dragonflies. It is often encountered in large swarms during migration or directed dispersal flights. For a better understanding of its gene flow, genetic structure and migration patterns throughout the world, 10 polymorphic microsatellite markers were isolated in this study. We respectively collected 32 P. flavescens from three places (Hunan, Liaoning and Heilongjiang) and 20 P. flavescens from Beijing. Partial genomic libraries containing microsatellite sequences were constructed with magnetic-bead enrichment method. By screening, sequence analysis, PCR amplification and so on, ten 10 polymorphic microsatellite markers were isolated. In order to assess their applicability, genetic diversity of these novel markers was tested in 96 individuals from three populations in China (Hunan, Liaoning and Heilongjiang). These markers were highly polymorphic, with 3-12 alleles per markers. The observed (Ho) and expected (He) heterozygosities ranged 0.321-0.667 and from 0.531 to 0.948 respectively. The genetic difference between Hunan and Liaoning is 0.429, while the genetic difference between Liaoning and Heilongjiang is 0.0508. These microsatellite markers for P. flavescens were developed for the first time, and will be a powerful tool for studying population genetic diversity and dispersal behavior of P. flavescens in China and worldwide. PMID:25788247

  15. Development and application of reverse transcriptase nested polymerase chain reaction test for the detection of exogenous avian leukosis virus.

    PubMed

    García, Maricarmen; El-Attrache, John; Riblet, Sylva M; Lunge, Vagner R; Fonseca, André S K; Villegas, Pedro; Ikuta, Nilo

    2003-01-01

    A polymerase chain reaction (PCR) assay that utilizes nested primers to amplify a fragment of the long terminal repeat of exogenous avian leukosis virus (ALV) was developed and evaluated for detection of ALV subgroup J directly from clinical samples. Compilation of sequence data from different endogenous and exogenous ALVs allowed the selection of a conserved set of nested primers specific for the amplification of exogenous ALV subgroups A, B, C, D, and J and excluded amplification of endogenous viruses or endogenous viral sequences within the chicken genome. The nested primers were successfully used in both PCR and reverse transcriptase (RT)-PCR assays to detect genetically diverse ALV-J field isolates. Detection limits of ALV-J isolate ADOL-Hc1 DNA by nested PCR and RNA by RT-nested PCR were superior to detection of group-specific antigen by enzyme-linked immunosorbent assay (ELISA) in cell culture. Detection of ALV-J in cloacal swabs by RT-nested PCR was compared with direct detection by antigen-capture (ac)-ELISA; RT-nested PCR detected fewer positive samples than ac-ELISA, suggesting that RT-nested PCR excluded detection of endogenous virus in clinical samples. Detection of ALV-J in plasma samples by RT-nested PCR was compared with virus isolation in C/E chicken embryo fibroblasts; the level of agreement between both assays as applied to plasma samples ranged from low to moderate. The main disagreement between both assays was observed for a group of plasma samples found positive by RT-nested PCR and negative by virus isolation, suggesting that RT-nested PCR detected ALV-J genome in plasma samples of transiently or intermittently infected birds. ALV-J transient and intermittent infection profiles are characterized by inconsistent virus isolation responses throughout the life of a naturally infected flock. PMID:12713157

  16. Ultrasonic Time Reversal Mirrors

    NASA Astrophysics Data System (ADS)

    Fink, Mathias; Montaldo, Gabriel; Tanter, Mickael

    2004-11-01

    For more than ten years, time reversal techniques have been developed in many different fields of applications including detection of defects in solids, underwater acoustics, room acoustics and also ultrasound medical imaging and therapy. The essential property that makes time reversed acoustics possible is that the underlying physical process of wave propagation would be unchanged if time were reversed. In a non dissipative medium, the equations governing the waves guarantee that for every burst of sound that diverges from a source there exists in theory a set of waves that would precisely retrace the path of the sound back to the source. If the source is pointlike, this allows focusing back on the source whatever the medium complexity. For this reason, time reversal represents a very powerful adaptive focusing technique for complex media. The generation of this reconverging wave can be achieved by using Time Reversal Mirrors (TRM). It is made of arrays of ultrasonic reversible piezoelectric transducers that can record the wavefield coming from the sources and send back its time-reversed version in the medium. It relies on the use of fully programmable multi-channel electronics. In this paper we present some applications of iterative time reversal mirrors to target detection in medical applications.

  17. Application of genetically engineered microbial whole-cell biosensors for combined chemosensing.

    PubMed

    He, Wei; Yuan, Sheng; Zhong, Wen-Hui; Siddikee, Md Ashaduzzaman; Dai, Chuan-Chao

    2016-02-01

    The progress of genetically engineered microbial whole-cell biosensors for chemosensing and monitoring has been developed in the last 20 years. Those biosensors respond to target chemicals and produce output signals, which offer a simple and alternative way of assessment approaches. As actual pollution caused by human activities usually contains a combination of different chemical substances, how to employ those biosensors to accurately detect real contaminant samples and evaluate biological effects of the combined chemicals has become a realistic object of environmental researches. In this review, we outlined different types of the recent method of genetically engineered microbial whole-cell biosensors for combined chemical evaluation, epitomized their detection performance, threshold, specificity, and application progress that have been achieved up to now. We also discussed the applicability and limitations of this biosensor technology and analyzed the optimum conditions for their environmental assessment in a combined way. PMID:26615397

  18. Applications in genetic risk estimation of data on the induction of dominant skeletal mutations in mice

    SciTech Connect

    Selby, P.B.

    1982-01-01

    Studies on the induction of dominant skeleton mutations and of dominant cataract mutations provide means of estimating genetic hazard to humans from radiation. The breeding-test method of studying the induction of dominant skeletal mutations is slow and cumbersome. In an attempt to devise a more rapid method, three non-breeding-test methods have been developed which are likely to have wider application in mutagenicity testing. (ACR)

  19. Extracting directed information flow networks: An application to genetics and semantics

    NASA Astrophysics Data System (ADS)

    Masucci, A. P.; Kalampokis, A.; Eguíluz, V. M.; Hernández-García, E.

    2011-02-01

    We introduce a general method to infer the directional information flow between populations whose elements are described by n-dimensional vectors of symbolic attributes. The method is based on the Jensen-Shannon divergence and on the Shannon entropy and has a wide range of application. We show here the results of two applications: first we extract the network of genetic flow between meadows of the seagrass Poseidonia oceanica, where the meadow elements are specified by sets of microsatellite markers, and then we extract the semantic flow network from a set of Wikipedia pages, showing the semantic channels between different areas of knowledge.

  20. The ontology of genetic susceptibility factors (OGSF) and its application in modeling genetic susceptibility to vaccine adverse events

    PubMed Central

    2014-01-01

    Background Due to human variations in genetic susceptibility, vaccination often triggers adverse events in a small population of vaccinees. Based on our previous work on ontological modeling of genetic susceptibility to disease, we developed an Ontology of Genetic Susceptibility Factors (OGSF), a biomedical ontology in the domain of genetic susceptibility and genetic susceptibility factors. The OGSF framework was then applied in the area of vaccine adverse events (VAEs). Results OGSF aligns with the Basic Formal Ontology (BFO). OGSF defines ‘genetic susceptibility’ as a subclass of BFO:disposition and has a material basis ‘genetic susceptibility factor’. The ‘genetic susceptibility to pathological bodily process’ is a subclasses of ‘genetic susceptibility’. A VAE is a type of pathological bodily process. OGSF represents different types of genetic susceptibility factors including various susceptibility alleles (e.g., SNP and gene). A general OGSF design pattern was developed to represent genetic susceptibility to VAE and associated genetic susceptibility factors using experimental results in genetic association studies. To test and validate the design pattern, two case studies were populated in OGSF. In the first case study, human gene allele DBR*15:01 is susceptible to influenza vaccine Pandemrix-induced Multiple Sclerosis. The second case study reports genetic susceptibility polymorphisms associated with systemic smallpox VAEs. After the data of the Case Study 2 were represented using OGSF-based axioms, SPARQL was successfully developed to retrieve the susceptibility factors stored in the populated OGSF. A network of data from the Case Study 2 was constructed by using ontology terms and individuals as nodes and ontology relations as edges. Different social network analys is (SNA) methods were then applied to verify core OGSF terms. Interestingly, a SNA hub analysis verified all susceptibility alleles of SNPs and a SNA closeness analysis verified

  1. Genetic algorithm based task reordering to improve the performance of batch scheduled massively parallel scientific applications

    DOE PAGESBeta

    Sankaran, Ramanan; Angel, Jordan; Brown, W. Michael

    2015-04-08

    The growth in size of networked high performance computers along with novel accelerator-based node architectures has further emphasized the importance of communication efficiency in high performance computing. The world's largest high performance computers are usually operated as shared user facilities due to the costs of acquisition and operation. Applications are scheduled for execution in a shared environment and are placed on nodes that are not necessarily contiguous on the interconnect. Furthermore, the placement of tasks on the nodes allocated by the scheduler is sub-optimal, leading to performance loss and variability. Here, we investigate the impact of task placement on themore » performance of two massively parallel application codes on the Titan supercomputer, a turbulent combustion flow solver (S3D) and a molecular dynamics code (LAMMPS). Benchmark studies show a significant deviation from ideal weak scaling and variability in performance. The inter-task communication distance was determined to be one of the significant contributors to the performance degradation and variability. A genetic algorithm-based parallel optimization technique was used to optimize the task ordering. This technique provides an improved placement of the tasks on the nodes, taking into account the application's communication topology and the system interconnect topology. As a result, application benchmarks after task reordering through genetic algorithm show a significant improvement in performance and reduction in variability, therefore enabling the applications to achieve better time to solution and scalability on Titan during production.« less

  2. Genetic algorithm based task reordering to improve the performance of batch scheduled massively parallel scientific applications

    SciTech Connect

    Sankaran, Ramanan; Angel, Jordan; Brown, W. Michael

    2015-04-08

    The growth in size of networked high performance computers along with novel accelerator-based node architectures has further emphasized the importance of communication efficiency in high performance computing. The world's largest high performance computers are usually operated as shared user facilities due to the costs of acquisition and operation. Applications are scheduled for execution in a shared environment and are placed on nodes that are not necessarily contiguous on the interconnect. Furthermore, the placement of tasks on the nodes allocated by the scheduler is sub-optimal, leading to performance loss and variability. Here, we investigate the impact of task placement on the performance of two massively parallel application codes on the Titan supercomputer, a turbulent combustion flow solver (S3D) and a molecular dynamics code (LAMMPS). Benchmark studies show a significant deviation from ideal weak scaling and variability in performance. The inter-task communication distance was determined to be one of the significant contributors to the performance degradation and variability. A genetic algorithm-based parallel optimization technique was used to optimize the task ordering. This technique provides an improved placement of the tasks on the nodes, taking into account the application's communication topology and the system interconnect topology. As a result, application benchmarks after task reordering through genetic algorithm show a significant improvement in performance and reduction in variability, therefore enabling the applications to achieve better time to solution and scalability on Titan during production.

  3. Reversible redox activity of ferrocene functionalized hydroxypropyl cellulose and its application to detect H2O2.

    PubMed

    Li, Pingping; Kang, Hongliang; Zhang, Chao; Li, Weiwei; Huang, Yong; Liu, Ruigang

    2016-04-20

    Novel ferrocene functionalized hydroxypropyl cellulose (HPC-Fc) were prepared by azide-alkyne cycloaddition and characterized. HPC-Fc exhibits an excellent reversible redox activity and could establish amazing electron transfer ability between enzyme and electrode. HPC-Fc and horseradish peroxidase (HRP) were coated on a platinized carbon electrode to prepare an amperometric biosensor for hydrogen peroxide (H2O2) detection. The amperometric response was measured as a function of H2O2 concentration at a fixed potential of 0.35V in 100mM phosphate buffer solution (pH 7.0). The novel biosensor exhibits a fast linear response toward H2O2 in the range of 0.1-8μM with sensitivity of 4.21nA/μM. Moreover, the enzyme assays measured by the spectrophotometer method confirm that abundant hydroxyl groups of HPC backbones are conductive for HRP to maintaining or even enhancing their activity. The redox active HPC-Fc with the unique properties of both ferrocene and cellulose is a good candidate for biosensor applications. PMID:26876825

  4. Synthesis, characterization, and application of reversible PDLLA-PEG-PDLLA copolymer thermogels in vitro and in vivo

    PubMed Central

    Shi, Kun; Wang, Ya-Li; Qu, Ying; Liao, Jin-Feng; Chu, Bing-Yang; Zhang, Hua-Ping; Luo, Feng; Qian, Zhi-Yong

    2016-01-01

    In this study, a series of injectable thermoreversible and thermogelling PDLLA-PEG-PDLLA copolymers were developed and a systematic evaluation of the thermogelling system both in vitro and in vivo was performed. The aqueous PDLLA-PEG-PDLLA solutions above a critical gel concentration could transform into hydrogel spontaneously within 2 minutes around the body temperature in vitro or in vivo. Modulating the molecular weight, block length and polymer concentration could adjust the sol-gel transition behavior and the mechanical properties of the hydrogels. The gelation was thermally reversible due to the physical interaction of copolymer micelles and no crystallization formed during the gelation. Little cytotoxicity and hemolysis of this polymer was found, and the inflammatory response after injecting the hydrogel to small-animal was acceptable. In vitro and in vivo degradation experiments illustrated that the physical hydrogel could retain its integrity as long as several weeks and eventually be degraded by hydrolysis. A rat model of sidewall defect-bowel abrasion was employed, and a significant reduction of post-operative adhesion has been found in the group of PDLLA-PEG-PDLLA hydrogel-treated, compared with untreated control group and commercial hyaluronic acid (HA) anti-adhesion hydrogel group. As such, this PDLLA-PEG-PDLLA hydrogel might be a promising candidate of injectable biomaterial for medical applications. PMID:26752008

  5. Synthesis, characterization, and application of reversible PDLLA-PEG-PDLLA copolymer thermogels in vitro and in vivo.

    PubMed

    Shi, Kun; Wang, Ya-Li; Qu, Ying; Liao, Jin-Feng; Chu, Bing-Yang; Zhang, Hua-Ping; Luo, Feng; Qian, Zhi-Yong

    2016-01-01

    In this study, a series of injectable thermoreversible and thermogelling PDLLA-PEG-PDLLA copolymers were developed and a systematic evaluation of the thermogelling system both in vitro and in vivo was performed. The aqueous PDLLA-PEG-PDLLA solutions above a critical gel concentration could transform into hydrogel spontaneously within 2 minutes around the body temperature in vitro or in vivo. Modulating the molecular weight, block length and polymer concentration could adjust the sol-gel transition behavior and the mechanical properties of the hydrogels. The gelation was thermally reversible due to the physical interaction of copolymer micelles and no crystallization formed during the gelation. Little cytotoxicity and hemolysis of this polymer was found, and the inflammatory response after injecting the hydrogel to small-animal was acceptable. In vitro and in vivo degradation experiments illustrated that the physical hydrogel could retain its integrity as long as several weeks and eventually be degraded by hydrolysis. A rat model of sidewall defect-bowel abrasion was employed, and a significant reduction of post-operative adhesion has been found in the group of PDLLA-PEG-PDLLA hydrogel-treated, compared with untreated control group and commercial hyaluronic acid (HA) anti-adhesion hydrogel group. As such, this PDLLA-PEG-PDLLA hydrogel might be a promising candidate of injectable biomaterial for medical applications. PMID:26752008

  6. Preparation and application of reversed phase Chromatorotor for the isolation of natural products by centrifugal preparative chromatography.

    PubMed

    Muhammad, Ilias; Samoylenko, Volodymyr; Machumi, Francis; Zakia, Mohamed Ahmed; Mohammed, Rabab; Hetta, Mona H; Gillum, Van

    2013-03-01

    A method of preparation of rotors with a reversed phase (RP) solid silica gel sorbent layer has been developed for centrifugal preparative chromatography (CPC), also known as rotational planar chromatography (RPC). The rotors consist of binder free RP solid SiO2 layers of different thicknesses packed between two supported circular glass discs and can be used in any appropriate device for centrifugal chromatography, like Chromatotron and CycloGraph. Polar and /or semi-polar compounds with close R(f) values, as well as extracts and column fractions were separated and/or purified in a preparative and/or semi-preparative scale using the RP rotors, eluted with mixtures of aqueous-based solvents. We herein report three examples of its application, using RP Chromatorotors, for the isolation of the diastereoisomeric alkaloids banistenosides I and II from Banisteriopsis caapi, saponins III and IV from Fagonia cretica, and the sesquiterpenes artemisinin (V) and artemisinic acid (VI) from Artemisia annua. PMID:23678798

  7. Reversal of Acute Complex Regional Pain Syndrome Using the Practical Application of Neurodiagnostic Evaluation Process: A Case Study

    PubMed Central

    Anderson, Karen E

    2013-01-01

    In 2005, a patient in my practice developed complex regional pain syndrome type 1 (CRPS 1) after bunion surgery. The condition was properly diagnosed within 4 weeks with a diagnostic technique that I routinely use to diagnose chronic musculoskeletal pain, and it was successfully treated. The tests, which are based on primitive and postural reflexes in infants, were adapted to reflect normal and abnormal motor behaviors in adults after provocation of reflexes of the autonomic nervous system (afferent C fibers in peripheral nerves). Approximately 60 days after my patient’s operation, the tests indicated a positive reflex at the posterior tibial nerve in the operated foot. Surgery to remove an accessory ossicle from the talus adjacent to this nerve resolved the CRPS 1 within 2 weeks. Since CRPS 1 is a dysfunctional state of the autonomic regulatory control of pain, it was postulated that a test based on autonomic nerve function could isolate the source of CRPS 1. The Practical Application of Neurodiagnostic Evaluation process was shown to be diagnostic for the cause of acute CRPS 1 and to allow its reversal. Further evaluation of the test for diagnosis and treatment of CRPS is needed. PMID:24355904

  8. Applications of Population Genetics to Animal Breeding, from Wright, Fisher and Lush to Genomic Prediction

    PubMed Central

    Hill, William G.

    2014-01-01

    Although animal breeding was practiced long before the science of genetics and the relevant disciplines of population and quantitative genetics were known, breeding programs have mainly relied on simply selecting and mating the best individuals on their own or relatives’ performance. This is based on sound quantitative genetic principles, developed and expounded by Lush, who attributed much of his understanding to Wright, and formalized in Fisher’s infinitesimal model. Analysis at the level of individual loci and gene frequency distributions has had relatively little impact. Now with access to genomic data, a revolution in which molecular information is being used to enhance response with “genomic selection” is occurring. The predictions of breeding value still utilize multiple loci throughout the genome and, indeed, are largely compatible with additive and specifically infinitesimal model assumptions. I discuss some of the history and genetic issues as applied to the science of livestock improvement, which has had and continues to have major spin-offs into ideas and applications in other areas. PMID:24395822

  9. Plant artificial chromosome technology and its potential application in genetic engineering.

    PubMed

    Yu, Weichang; Yau, Yuan-Yeu; Birchler, James A

    2016-05-01

    Genetic engineering with just a few genes has changed agriculture in the last 20 years. The most frequently used transgenes are the herbicide resistance genes for efficient weed control and the Bt toxin genes for insect resistance. The adoption of the first-generation genetically engineered crops has been very successful in improving farming practices, reducing the application of pesticides that are harmful to both human health and the environment, and producing more profit for farmers. However, there is more potential for genetic engineering to be realized by technical advances. The recent development of plant artificial chromosome technology provides a super vector platform, which allows the management of a large number of genes for the next generation of genetic engineering. With the development of other tools such as gene assembly, genome editing, gene targeting and chromosome delivery systems, it should become possible to engineer crops with multiple genes to produce more agricultural products with less input of natural resources to meet future demands. PMID:26369910

  10. Discovery of genetic profiles impacting response to chemotherapy: application to gemcitabine.

    PubMed

    Jarjanazi, Hamdi; Kiefer, Jeffrey; Savas, Sevtap; Briollais, Laurent; Tuzmen, Sukru; Pabalan, Noel; Ibrahim-Zada, Irada; Mousses, Spyro; Ozcelik, Hilmi

    2008-04-01

    Chemotherapy is a major treatment modality for individuals affected by cancer. Currently, a number of genome-based technologies are being adopted to identify genes associated with drug response; however, large-scale genetic association applications are still limited. Here we describe a novel strategy based on the genetic and drug response data of the NCI60 cell lines to discover potential candidate genetic variants associated with variable response to chemotherapy. As an example we have applied this strategy to discover single genetic markers and haplotypes from candidate genes previously implicated in the pharmacobiology of gemcitabine. Single-marker association analyses have implicated the association of four SNPs within the gene loci of CDC5L, EPC2, POLS, and PARP1. We have also investigated the combined effect of SNPs using haplotype-based analysis. Accordingly, we have shown modest association of haplotypes in six genes, whereas the most significant associations included a haplotype of the POLS gene. The hypothesis-generating tool presented in this study can be applied to drugs profiled in the NCI60 cell line screen and provides an effective means for the identification of genes associated with drug response. The results obtained using this novel methodology can be used to better design the clinical trials for effective study of the chemotherapeutic agents and thus provide a basis for individualized chemotherapy. PMID:18330920

  11. Pulse-Reverse Electrodeposition and Micromachining of Graphene-Nickel Composite: An Efficient Strategy toward High-Performance Microsystem Application.

    PubMed

    Li, Jinhua; An, Zhonglie; Wang, Zhuqing; Toda, Masaya; Ono, Takahito

    2016-02-17

    Graphene reinforced nickel (Ni) is an intriguing nanocomposite with tremendous potential for microelectromechanical system (MEMS) applications by remedying mechanical drawbacks of the metal matrix for device optimization, though very few related works have been reported. In this paper, we developed a pulse-reverse electrodeposition method for synthesizing graphene-Ni (G-Ni) composite microcomponents with high content and homogeneously dispersed graphene filler. While the Vickers hardness is largely enhanced by 2.7-fold after adding graphene, the Young's modulus of composite under dynamic condition shows ∼1.4-fold increase based on the raised resonant frequency of a composite microcantilever array. For the first time, we also demonstrate the application of G-Ni composite in microsystems by fabricating a Si micromirror with the composite supporting beams as well as investigate the long-term stability of the mirror at resonant vibration. Compared with the pure Ni counterpart, the composite mirror shows an apparently lessened fluctuations of resonant frequency and scanning angle due to a suppressed plastic deformation even under the sustaining periodic loading. This can be ascribed to the reduced grain size of Ni matrix and dislocation hindering in the presence of graphene by taking into account the crystalline refinement strengthen mechanism. The rational discussions also imply that the strong interface and efficient load transfer between graphene layers and metal matrix play an important role for improving stiffness in composite. It is believed that a proper design of graphene-metal composite makes it a promising structural material candidate for advanced micromechanical devices. PMID:26812267

  12. New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background

    PubMed Central

    Penco, Silvana; Buscema, Massimo; Patrosso, Maria Cristina; Marocchi, Alessandro; Grossi, Enzo

    2008-01-01

    -480 C/T; endothelial nitric oxide synthase 690 C/T and glu298asp; vitamin K-dependent coagulation factor seven arg353glu, glycoprotein Ia/IIa 873 G/A and E-selectin ser128arg. Conclusion This study provides an alternative and reliable method to approach complex diseases. Indeed, the application of a novel artificial intelligence-based method offers a new insight into genetic markers of sporadic ALS pointing out the existence of a strong genetic background. PMID:18513389

  13. Molecular characterization with RAPD-PCR: Application of genetic diagnostics to biological control of the sweetpotato whitefly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of genetic diagnostics under the umbrella of classical taxonomy was imperative for successful development and delivery of the biological control program against the sweet potato whitefly, Bemisia tabaci Gennadius biotype B (= silverleaf whitefly, B. argentifolii Bellows and Perring)....

  14. TANTAMOUNT TO FRAUD?: EXPLORING NON-DISCLOSURE OF GENETIC INFORMATION IN LIFE INSURANCE APPLICATIONS AS GROUNDS FOR POLICY RESCISSION.

    PubMed

    Prince, Anya E R

    2016-01-01

    Many genetic counselors recommend that individuals secure desired insurance policies, such as life insurance, prior to undergoing predictive genetic testing. It has been argued, however, that this practice is "tantamount to fraud" and that failure to disclose genetic test results, or conspiring to secure a policy before testing, opens an individual up to legal recourse. This debate traps affected individuals in a Catch-22. If they apply for life insurance and disclose a genetic test result, they may be denied. If they apply without disclosing the information, they may have committed fraud. The consequences of life insurance fraud are significant: If fraud is found on an application, a life insurer can rescind the policy, in some cases even after the individual has passed away. Such a rescission could leave family members or beneficiaries without the benefits of the life insurance policy payment after the individual's death and place them in in economic difficulty. Although it is clear that lying in response to a direct question about genetic testing would be tantamount to fraud, few, if any, life insurance applications currently include broad questions about genetic testing. This paper investigates whether non-disclosure of unasked for genetic information constitutes fraud and explores varying types of insurance questions that could conceivably be interpreted as seeking genetic information. Life insurance applicants generally have no duty to disclose unasked for information, including genetic information, on an application. However, given the complexities of genetic information, individuals may be exposed to fraud and rescission of their life insurance policy despite honest attempts to truthfully and completely answer all application questions. PMID:27263254

  15. Application of a genetic algorithm for crop model steering using NOAA-AVHRR data

    NASA Astrophysics Data System (ADS)

    de Wit, Allard J. W.

    1999-12-01

    The main objective of this study was to investigate whether AVHRR data could be useful for crop model simulation steering by intrinsically taking the mixed pixel effects into account. The second objective was to determine if the application of a genetic algorithm could be an effective technique for crop model steering. The principles were tested for the Seville test site using synthetic data and AVHRR data from 1995 and 1996 because these years show a large contrast in crop development. The main conclusions are that a genetic algorithm is a very powerful technique for crop model optimization, but adaptations are needed to the current optimization scheme in order to be able to steer the WOFOST crop model on the basis of NOAA-AVHRR data.

  16. Genetic architecture of sex determination in fish: applications to sex ratio control in aquaculture

    PubMed Central

    Martínez, Paulino; Viñas, Ana M.; Sánchez, Laura; Díaz, Noelia; Ribas, Laia; Piferrer, Francesc

    2014-01-01

    Controlling the sex ratio is essential in finfish farming. A balanced sex ratio is usually good for broodstock management, since it enables to develop appropriate breeding schemes. However, in some species the production of monosex populations is desirable because the existence of sexual dimorphism, primarily in growth or first time of sexual maturation, but also in color or shape, can render one sex more valuable. The knowledge of the genetic architecture of sex determination (SD) is convenient for controlling sex ratio and for the implementation of breeding programs. Unlike mammals and birds, which show highly conserved master genes that control a conserved genetic network responsible for gonad differentiation (GD), a huge diversity of SD mechanisms has been reported in fish. Despite theory predictions, more than one gene is in many cases involved in fish SD and genetic differences have been observed in the GD network. Environmental factors also play a relevant role and epigenetic mechanisms are becoming increasingly recognized for the establishment and maintenance of the GD pathways. Although major genetic factors are frequently involved in fish SD, these observations strongly suggest that SD in this group resembles a complex trait. Accordingly, the application of quantitative genetics combined with genomic tools is desirable to address its study and in fact, when applied, it has frequently demonstrated a multigene trait interacting with environmental factors in model and cultured fish species. This scenario has notable implications for aquaculture and, depending upon the species, from chromosome manipulation or environmental control techniques up to classical selection or marker assisted selection programs, are being applied. In this review, we selected four relevant species or fish groups to illustrate this diversity and hence the technologies that can be used by the industry for the control of sex ratio: turbot and European sea bass, two reference species of

  17. The medical examination in United States immigration applications: the potential use of genetic testing leads to heightened privacy concerns.

    PubMed

    Burroughs, A Maxwell

    2005-01-01

    The medical examination has been an integral part of the immigration application process since the passing of the Immigration Act of 1891. Failing the medical examination can result in denial of the application. Over the years the medical examination has been expanded to include questioning about diseases that are scientifically shown to be rooted in an individual's genetic makeup. Recent advances in the fields of genomics and bioinformatics are making accurate and precise screening for these conditions a reality. Government policymakers will soon be faced with decisions regarding whether or not to sanction the use of these newly-developed genetic tests in the immigration application procedure. The terror threat currently facing the United States may ultimately bolster the argument in favor of genetic testing and/or DNA collection of applicants. However, the possibility of a government mandate requiring genetic testing raises a host of ethical issues; including the threat of eugenics and privacy concerns. Genetic testing has the ability to uncover a wealth of sensitive medical information about an individual and currently there are no medical information privacy protections afforded to immigration applicants. This article examines the potential for genetic testing in the immigration application process and the ethical issues surrounding this testing. In particular, this article explores the existing framework of privacy protections afforded to individuals living in the United States and how this and newly-erected standards like those released by the Health and Human Services (HHS) might apply to individuals seeking to immigrate to the United States. PMID:16619448

  18. Application of genetic algorithms to processing of reflectance spectra of semiconductor compounds

    NASA Astrophysics Data System (ADS)

    Zaharov, Ivan S.; Kochura, Alexey V.; Kurkin, Alexandr Y.; Belogorohov, Alexandr I.

    2004-11-01

    The basic task of mathematical processing of reflectance spectra - restoration from them of a view of dependence of inductivity, which is responsible for the response of a crystal to an external electromagnetic field from frequency of incident radia-tion. The most modern and perspective way of the solution of this task is the dis-persion analysis (DA). However DA requires large volume of computing works on selection of optimum parameters of phonons. The rapid development of computer facilities recently promotes overcoming of this difficulty. However without appli-cation of effective methods of optimization practically it is impossible to execute DA for composite reflectance spectra. In this paper the questions of application of Genetic algorithms (GA) to processing reflectance spectra of crystal materials are considered. GA is a rather new class of methods of optimization belonging to family of evolutionary algorithms. The basic features distinguishing GA from algorithms of other classes: - GA is an iterative algorithm of generations, in which the search of an extreme is made not in initial space of search, but in the conjugate set of chromosomes. The set of chromosomes on each step of iterations of algorithm is termed as a popula-tion; - The generation of the new trial solutions in this set is carried out by a set of the special genetic operators. The genetic operators are probabilistic, i.e. the result of their application to the concrete chromosome is not unequivocal; - The creation of a new population from the solutions of the current population and solutions generated by the genetic operators is carried out by special algorithms of selection. The efficiency GA strongly depends on such details, as a method of coding of the solutions, embodying of the genetic operators, mechanisms of selection, adjust-ment of other parameters of algorithm, criterion of success. The theoretical work reflected in the literature devoted to these algorithms does not give the bases

  19. Defect Band Luminescence Intensity Reversal as Related to Application of Anti-Reflection Coating on mc-Si PV Cells: Preprint

    SciTech Connect

    Guthrey, H.; Johnston, S.; Yan, F.; Gorman, B.; Al-Jassim, M.

    2012-06-01

    Photoluminescence (PL) imaging is widely used to identify defective regions within mc-Si PV cells. Recent PL imaging investigations of defect band luminescence (DBL) in mc-Si have revealed a perplexing phenomenon. Namely, the reversal of the DBL intensity in various regions of mc-Si PV material upon the application of a SiNx:H anti-reflective coating (ARC). Regions with low DBL intensity before ARC application often exhibit high DBL intensity afterwards, and the converse is also true. PL imaging alone cannot explain this effect. We have used high resolution cathodoluminescence (CL) spectroscopy and electron beam induced current (EBIC) techniques to elucidate the origin of the DBL intensity reversal. Multiple sub-bandgap energy levels were identified that change in peak position and intensity upon the application of the ARC. Using this data, in addition to EBIC contrast information, we provide an explanation for the DBL intensity reversal based on the interaction of the detected energy levels with the SiNx:H ARC application. Multiple investigations have suggested that this is a global problem for mc-Si PV cells. Our results have the potential to provide mc-Si PV producers a pathway to increased efficiencies through defect mitigation strategies.

  20. Protective efficacy of reverse genetics based on inactivated American and Asian neuraminidase DIVA marker vaccines against highly pathogenic H5N1 avian influenza viruses in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Asian H5N1 highly pathogenic avian influenza has become endemic in several countries, and vaccination is commonly being used. Vaccination can affect surveillance, and therefore there is considerable interest in DIVA (differentiate infected from vaccinated animals) vaccine strategies. Using reverse...

  1. Genetic analysis of the roles of phytochromes A and B1 in the reversed gravitropic response of the lz-2 tomato mutant

    NASA Technical Reports Server (NTRS)

    Behringer, F. J.; Lomax, T. L.

    1999-01-01

    The lz-2 mutation in tomato (Lycopersicon esculentum) causes conditional reversal of shoot gravitropism by light. This response is mediated by phytochrome. To further elicit the mechanism by which phytochrome regulates the lz-2 phenotype, phytochrome-deficient lz-2 plants were generated. Introduction of au alleles, which severely block chromophore biosynthesis, eliminated the reversal of hypocotyl gravitropism in continuous red and far-red light. The fri1 and tri1 alleles were introduced to specifically deplete phytochromes A and B1, respectively. In dark-grown seedlings, phytochrome A was necessary for response to high-irradiance far-red light, a complete response to low fluence red light, and also mediated the effects of blue light in a far-red reversible manner. Loss of phytochrome B1 alone did not significantly affect the behaviour of lz-2 plants under any light treatment tested. However, dark-grown lz-2 plants lacking both phytochrome A and B1 exhibited reduced responses to continuous red and were less responsive to low fluence red light and high fluence blue light than plants that were deficient for phytochrome A alone. In high light, full spectrum greenhouse conditions, lz-2 plants grew downward regardless of the phytochrome deficiency. These results indicate that phytochromes A and B1 play significant roles in mediating the lz-2 phenotype and that at least one additional phytochrome is involved in reversing shoot gravitropism in this mutant.

  2. Genetic Basis for Variation in Wheat Grain Yield in Response to Varying Nitrogen Application

    PubMed Central

    Mahjourimajd, Saba; Taylor, Julian; Sznajder, Beata; Timmins, Andy; Shahinnia, Fahimeh; Rengel, Zed; Khabaz-Saberi, Hossein; Kuchel, Haydn; Okamoto, Mamoru

    2016-01-01

    Nitrogen (N) is a major nutrient needed to attain optimal grain yield (GY) in all environments. Nitrogen fertilisers represent a significant production cost, in both monetary and environmental terms. Developing genotypes capable of taking up N early during development while limiting biomass production after establishment and showing high N-use efficiency (NUE) would be economically beneficial. Genetic variation in NUE has been shown previously. Here we describe the genetic characterisation of NUE and identify genetic loci underlying N response under different N fertiliser regimes in a bread wheat population of doubled-haploid lines derived from a cross between two Australian genotypes (RAC875 × Kukri) bred for a similar production environment. NUE field trials were carried out at four sites in South Australia and two in Western Australia across three seasons. There was genotype-by-environment-by-treatment interaction across the sites and also good transgressive segregation for yield under different N supply in the population. We detected some significant Quantitative Trait Loci (QTL) associated with NUE and N response at different rates of N application across the sites and years. It was also possible to identify lines showing positive N response based on the rankings of their Best Linear Unbiased Predictions (BLUPs) within a trial. Dissecting the complexity of the N effect on yield through QTL analysis is a key step towards elucidating the molecular and physiological basis of NUE in wheat. PMID:27459317

  3. Regularization Methods for High-Dimensional Instrumental Variables Regression With an Application to Genetical Genomics

    PubMed Central

    Lin, Wei; Feng, Rui; Li, Hongzhe

    2014-01-01

    In genetical genomics studies, it is important to jointly analyze gene expression data and genetic variants in exploring their associations with complex traits, where the dimensionality of gene expressions and genetic variants can both be much larger than the sample size. Motivated by such modern applications, we consider the problem of variable selection and estimation in high-dimensional sparse instrumental variables models. To overcome the difficulty of high dimensionality and unknown optimal instruments, we propose a two-stage regularization framework for identifying and estimating important covariate effects while selecting and estimating optimal instruments. The methodology extends the classical two-stage least squares estimator to high dimensions by exploiting sparsity using sparsity-inducing penalty functions in both stages. The resulting procedure is efficiently implemented by coordinate descent optimization. For the representative L1 regularization and a class of concave regularization methods, we establish estimation, prediction, and model selection properties of the two-stage regularized estimators in the high-dimensional setting where the dimensionality of co-variates and instruments are both allowed to grow exponentially with the sample size. The practical performance of the proposed method is evaluated by simulation studies and its usefulness is illustrated by an analysis of mouse obesity data. Supplementary materials for this article are available online. PMID:26392642

  4. Genetic Basis for Variation in Wheat Grain Yield in Response to Varying Nitrogen Application.

    PubMed

    Mahjourimajd, Saba; Taylor, Julian; Sznajder, Beata; Timmins, Andy; Shahinnia, Fahimeh; Rengel, Zed; Khabaz-Saberi, Hossein; Kuchel, Haydn; Okamoto, Mamoru; Langridge, Peter

    2016-01-01

    Nitrogen (N) is a major nutrient needed to attain optimal grain yield (GY) in all environments. Nitrogen fertilisers represent a significant production cost, in both monetary and environmental terms. Developing genotypes capable of taking up N early during development while limiting biomass production after establishment and showing high N-use efficiency (NUE) would be economically beneficial. Genetic variation in NUE has been shown previously. Here we describe the genetic characterisation of NUE and identify genetic loci underlying N response under different N fertiliser regimes in a bread wheat population of doubled-haploid lines derived from a cross between two Australian genotypes (RAC875 × Kukri) bred for a similar production environment. NUE field trials were carried out at four sites in South Australia and two in Western Australia across three seasons. There was genotype-by-environment-by-treatment interaction across the sites and also good transgressive segregation for yield under different N supply in the population. We detected some significant Quantitative Trait Loci (QTL) associated with NUE and N response at different rates of N application across the sites and years. It was also possible to identify lines showing positive N response based on the rankings of their Best Linear Unbiased Predictions (BLUPs) within a trial. Dissecting the complexity of the N effect on yield through QTL analysis is a key step towards elucidating the molecular and physiological basis of NUE in wheat. PMID:27459317

  5. Field application of a genetically engineered microorganism for polycyclic aromatic hydrocarbon bioremediation process monitoring and control

    SciTech Connect

    Sayler, G.S.; Cox, C.D.; Ripp, S.; Nivens, D.E.; Werner, C.; Ahn, Y.; Matrubutham, U.; Burlage, R.

    1998-11-01

    On October 30, 1996, the US Environmental Protection Agency (EPA) commenced the first test release of genetically engineered microorganisms (GEMs) for use in bioremediation. The specific objectives of the investigation were multifaceted and include (1) testing the hypothesis that a GEM can be successfully introduced and maintained in a bioremediation process, (2) testing the concept of using, at the field scale, reporter organisms for direct bioremediation process monitoring and control, and (3) acquiring data that can be used in risk assessment decision making and protocol development for future field release applications of GEMs. The genetically engineered strain under investigation is Pseudomonas fluorescens strain HK44 (King et al., 1990). The original P. fluorescens parent strain was isolated from polycyclic aromatic hydrocarbon (PAH) contaminated manufactured gas plant soil. Thus, this bacterium is able to biodegrade naphthalene (as well as other substituted naphthalenes and other PAHs) and is able to function as a living bioluminescent reporter for the presence of naphthalene contamination, its bioavailability, and the functional process of biodegradation. A unique component of this field investigation was the availability of an array of large subsurface soil lysimeters. This article describes the experience associated with the release of a genetically modified microorganism, the lysimeter facility and its associated instrumentation, as well as representative data collected during the first eighteen months of operation.

  6. Reversible Sterilization

    ERIC Educational Resources Information Center

    Largey, Gale

    1977-01-01

    Notes that difficult questions arise concerning the use of sterilization for alleged eugenic and euthenic purposes. Thus, how reversible sterilization will be used with relation to the poor, mentally ill, mentally retarded, criminals, and minors, is questioned. (Author/AM)

  7. Genetics and Evolution: An iOS Application to Supplement Introductory Courses in Transmission and Evolutionary Genetics

    PubMed Central

    Myers, Russell B.; Millman, Brandon; Noor, Mohamed A. F.

    2014-01-01

    Students in college courses struggle to understand many concepts fundamental to transmission and evolutionary genetics, including multilocus inheritance, recombination, Hardy-Weinberg, and genetic drift. These students consistently ask for more demonstrations and more practice problems. With this demand in mind, the “Genetics and Evolution” app was designed to help students (and their instructors) by providing a suite of tools granting them the ability to: (1) simulate genetic crosses with varying numbers of genes and patterns of inheritance, (2) simulate allele frequency changes under natural selection and/ or genetic drift, (3) quiz themselves to reinforce terminology (customizable by any instructor for their whole classroom), *4) solve various problems (recombination fractions, Hardy-Weinberg, heritability, population growth), and (5) generate literally an infinite number of practice problems in all of these areas to try on their own. Although some of these functions are available elsewhere, the alternatives do not have the ability to instantly generate new practice problems or achieve these diverse functions in devices that students carry in their pockets every day. PMID:24727286

  8. Reversible Cardiomyopathies

    PubMed Central

    Patel, Harsh; Madanieh, Raef; Kosmas, Constantine E; Vatti, Satya K; Vittorio, Timothy J

    2015-01-01

    Cardiomyopathies (CMs) have many etiological factors that can result in severe structural and functional dysregulation. Fortunately, there are several potentially reversible CMs that are known to improve when the root etiological factor is addressed. In this article, we discuss several of these reversible CMs, including tachycardia-induced, peripartum, inflammatory, hyperthyroidism, Takotsubo, and chronic illness–induced CMs. Our discussion also includes a review on their respective pathophysiology, as well as possible management solutions. PMID:26052233

  9. Applications of constant denaturant capillary electrophoresis/high-fidelity polymerase chain reaction to human genetic analysis.

    PubMed

    Li-Sucholeiki, X C; Khrapko, K; André, P C; Marcelino, L A; Karger, B L; Thilly, W G

    1999-06-01

    Constant denaturant capillary electrophoresis (CDCE) permits high-resolution separation of single-base variations occurring in an approximately 100 bp isomelting DNA sequence based on their differential melting temperatures. By coupling CDCE for highly efficient enrichment of mutants with high-fidelity polymerase chain reaction (hifi PCR), we have developed an analytical approach to detecting point mutations at frequencies equal to or greater than 10(-6) in human genomic DNA. In this article, we present several applications of this approach in human genetic studies. We have measured the point mutational spectra of a 100 bp mitochondrial DNA sequence in human tissues and cultured cells. The observations have led to the conclusion that the primary causes of mutation in human mitochondrial DNA are spontaneous in origin. In the course of studying the mitochondrial somatic mutations, we have also identified several nuclear pseudogenes homologous to the analyzed mitochondrial DNA fragment. Recently, through developments of the means to isolate the desired target sequences from bulk genomic DNA and to increase the loading capacity of CDCE, we have extended the CDCE/hifi PCR approach to study a chemically induced mutational spectrum in a single-copy nuclear sequence. Future applications of the CDCE/hifi PCR approach to human genetic analysis include studies of somatic mitochondrial mutations with respect to aging, measurement of mutational spectra of nuclear genes in healthy human tissues and population screening for disease-associated single nucleotide polymorphisms (SNPs) in large pooled samples. PMID:10380762

  10. [Reversibility of alterations induced by sexual steroids in various serum protein fractions, following application of hormonal contraceptives (author's transl)].

    PubMed

    Klinger, G; Stelzner, A; Börner, A; Schubert, H; Krause, G; Scheler, R; Tarnick, M; Carol, W

    1980-01-01

    Reversibility of changes induced by sexual steroids was studied in 19 different serum protein fractions of 20 women. The following preparations were available for testing: Gravistat (ethinyl-oestradiol/norgestrel), Non-Ovlon (ethinyloestradiol/norethisterone-acetate), Ovosiston (mestranol/chlormadinone-acetate), and Deposiston (ethinyloestradiol-sulphonate/norethisterone-acetate). The tests were made towards the end of the 24th cycle on the pill and in the first cycle thereafter.--The proteins tested were found to be affected in a differentiated way and, throughout, depending on oestrogen levels. Reversal was rapid, but the phase of restitution usually was longer than the period of testing and follow-up. The long-lasting action of Deposiston was visualised also in its "reversal effect". PMID:6164184

  11. A Reverse Genetic System Provides a Powerful Tool in the Design of Foot-and-Mouth Disease Viruses with Enhanced Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fact that the foot-and-mouth disease viral (FMDV) RNA can be made infectious in the absence of other components of the virion allows the recovery of genetically engineered new viruses from in vitro-generated RNA molecules. We utilize infectious cDNA technology to produce recombinant FMDV, retain...

  12. MONITORING MYCOTOXIN PRODUCTION AT THE GENETIC LEVEL ON VARIOUS GROWTH SUBSTRATES USING QUANTITATIVE REVERSE TRANSCRIPTION POLYMERASE CHAIN REACTION?EXPERIMENT DESIGN

    EPA Science Inventory

    The paper describes a method of analyzing the production of mycotoxins at the genetic level by monitoring the intracellular levels of messenger RNA (mRNA). Initial work will focus on threshing out the mycotoxin gene clusters in Stachybotrys chartarum followed by analysis of toxin...

  13. Reversible shape memory

    NASA Astrophysics Data System (ADS)

    Sheiko, Sergei; Zhou, Jing; White, Sarah; Ashby, Valerie

    2012-02-01

    An ``Achilles' heel'' of shape memory materials is that shape transformations triggered by an external stimulus are usually irreversible. Here we present a new concept of reversible transitions between two well-defined shapes by controlling hierarchic crystallization of a dual-network elastomer. The reversibility was demonstrated for different types of shape transformations including rod bending, winding of a helical coil, and widening an aperture. The distinct feature of the reversible shape alterations is that both counter-shapes are infinitely stable at a temperature of exploitation. Shape reversibility is highly desirable property in many practical applications such as non-surgical removal of a previously inserted catheter and handfree wrapping up of an earlier unraveled solar sail on a space shuttle.

  14. Update: Biochemistry of Genetic Manipulation.

    ERIC Educational Resources Information Center

    Barker, G. R.

    1983-01-01

    Various topics on the biochemistry of genetic manipulation are discussed. These include genetic transformation and DNA; genetic expression; DNA replication, repair, and mutation; technology of genetic manipulation; and applications of genetic manipulation. Other techniques employed are also considered. (JN)

  15. Preparation and application of reversed phase chromatorotor for the isolation of natural products by centrifugal preparative chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method of preparation of Chromatorotor or plates with a reversed phase (RP) solid silica gel sorbent layer has been developed for preparative centrifugal chromatography. The RP-rotor plates consist of binder free RP solid SiO2 sorbent layers of different thicknesses paked between two supported cir...

  16. An Application of Reverse Engineering to Automatic Item Generation: A Proof of Concept Using Automatically Generated Figures

    ERIC Educational Resources Information Center

    Lorié, William A.

    2013-01-01

    A reverse engineering approach to automatic item generation (AIG) was applied to a figure-based publicly released test item from the Organisation for Economic Cooperation and Development (OECD) Programme for International Student Assessment (PISA) mathematical literacy cognitive instrument as part of a proof of concept. The author created an item…

  17. A School-Based Application of Modified Habit Reversal for Tourette Syndrome via a Translator: A Case Study

    ERIC Educational Resources Information Center

    Gilman, Rich; Connor, Nancy; Haney, Michelle

    2005-01-01

    A school-based modified habit reversal intervention was utilized with an adolescent diagnosed with Tourette syndrome who recently immigrated from Mexico. Because the student possessed little proficiency of the English language, an interpreter was needed to help implement the procedure. The frequency of motor tics markedly decreased from baseline…

  18. Development and application of a hexaplex reverse transcription polymerase chain reaction for screening global citrus tristeza virus isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The discovery of the diversity of Citrus tristeza virus (CTV) genotypes has complicated detection and diagnostic measures. To simplify the identification and differentiation of CTV genotypes, an efficient multiplex reverse transcription polymerase chain reaction (M-RT-PCR) technique for the screenin...

  19. PT-Flax (phenotyping and TILLinG of flax): development of a flax (Linum usitatissimum L.) mutant population and TILLinG platform for forward and reverse genetics

    PubMed Central

    2013-01-01

    Background Flax (Linum usitatissimum L.) is an economically important fiber and oil crop that has been grown for thousands of years. The genome has been recently sequenced and transcriptomics are providing information on candidate genes potentially related to agronomically-important traits. In order to accelerate functional characterization of these genes we have generated a flax EMS mutant population that can be used as a TILLinG (Targeting Induced Local Lesions in Genomes) platform for forward and reverse genetics. Results A population of 4,894 M2 mutant seed families was generated using 3 different EMS concentrations (0.3%, 0.6% and 0.75%) and used to produce M2 plants for subsequent phenotyping and DNA extraction. 10,839 viable M2 plants (4,033 families) were obtained and 1,552 families (38.5%) showed a visual developmental phenotype (stem size and diameter, plant architecture, flower-related). The majority of these families showed more than one phenotype. Mutant phenotype data are organised in a database and can be accessed and searched at UTILLdb (http://urgv.evry.inra.fr/UTILLdb). Preliminary screens were also performed for atypical fiber and seed phenotypes. Genomic DNA was extracted from 3,515 M2 families and eight-fold pooled for subsequent mutant detection by ENDO1 nuclease mis-match cleavage. In order to validate the collection for reverse genetics, DNA pools were screened for two genes coding enzymes of the lignin biosynthesis pathway: Coumarate-3-Hydroxylase (C3H) and Cinnamyl Alcohol Dehydrogenase (CAD). We identified 79 and 76 mutations in the C3H and CAD genes, respectively. The average mutation rate was calculated as 1/41 Kb giving rise to approximately 9,000 mutations per genome. Thirty-five out of the 52 flax cad mutant families containing missense or codon stop mutations showed the typical orange-brown xylem phenotype observed in CAD down-regulated/mutant plants in other species. Conclusions We have developed a flax mutant population that

  20. Power Calculation of Multi-step Combined Principal Components with Applications to Genetic Association Studies

    PubMed Central

    Li, Zhengbang; Zhang, Wei; Pan, Dongdong; Li, Qizhai

    2016-01-01

    Principal component analysis (PCA) is a useful tool to identify important linear combination of correlated variables in multivariate analysis and has been applied to detect association between genetic variants and human complex diseases of interest. How to choose adequate number of principal components (PCs) to represent the original system in an optimal way is a key issue for PCA. Note that the traditional PCA, only using a few top PCs while discarding the other PCs, might significantly lose power in genetic association studies if all the PCs contain non-ignorable signals. In order to make full use of information from all PCs, Aschard and his colleagues have proposed a multi-step combined PCs method (named mCPC) recently, which performs well especially when several traits are highly correlated. However, the power superiority of mCPC has just been illustrated by simulation, while the theoretical power performance of mCPC has not been studied yet. In this work, we attempt to investigate theoretical properties of mCPC and further propose a novel and efficient strategy to combine PCs. Extensive simulation results confirm that the proposed method is more robust than existing procedures. A real data application to detect the association between gene TRAF1-C5 and rheumatoid arthritis further shows good performance of the proposed procedure. PMID:27189724

  1. The evolution of colorectal cancer genetics-Part 2: clinical implications and applications.

    PubMed

    Schlussel, Andrew T; Gagliano, Ronald A; Seto-Donlon, Susan; Eggerding, Faye; Donlon, Timothy; Berenberg, Jeffrey; Lynch, Henry T

    2014-10-01

    The genetic understanding of colorectal cancer (CRC) continues to grow, and it is now estimated that 10% of the population has a known hereditary CRC syndrome. This article will examine the evolving surgical and medical management of hereditary CRC syndromes, and the impact of tumor genetics on therapy. This review will focus on the most common hereditary CRC-prone diseases seen in clinical practice, which include Lynch syndrome (LS), familial adenomatous polyposis (FAP) & attenuated FAP (AFAP), MutYH-associated polyposis (MAP), and serrated polyposis syndrome (SPS). Each section will review the current recommendations in the evaluation and treatment of these syndromes, as well as review surgical management and operative planning. A highly detailed multigeneration cancer family history with verified genealogy and pathology documentation whenever possible, coupled with germline mutation testing when indicated, is critically important to management decisions. Although caring for patients with these syndromes remains complex, the application of this knowledge facilitates better treatment of both individuals and their affected family members for generations to come. PMID:25276406

  2. Using distance covariance for improved variable selection with application to learning genetic risk models.

    PubMed

    Kong, Jing; Wang, Sijian; Wahba, Grace

    2015-05-10

    Variable selection is of increasing importance to address the difficulties of high dimensionality in many scientific areas. In this paper, we demonstrate a property for distance covariance, which is incorporated in a novel feature screening procedure together with the use of distance correlation. The approach makes no distributional assumptions for the variables and does not require the specification of a regression model and hence is especially attractive in variable selection given an enormous number of candidate attributes without much information about the true model with the response. The method is applied to two genetic risk problems, where issues including uncertainty of variable selection via cross validation, subgroup of hard-to-classify cases, and the application of a reject option are discussed. PMID:25640961

  3. Route to genetically targeted optical electrophysiology: development and applications of voltage-sensitive fluorescent proteins

    PubMed Central

    Akemann, Walther; Song, Chenchen; Mutoh, Hiroki; Knöpfel, Thomas

    2015-01-01

    Abstract. The invention of membrane voltage protein indicators widens the reach of optical voltage imaging in cell physiology, most notably neurophysiology, by enabling membrane voltage recordings from genetically defined cell types in chronic and life-long preparations. While the last years have seen a dramatic improvement in the technical performance of these indicators, concomitant innovations in optogenetics, optical axon tracing, and high-speed digital microscopy are beginning to fulfill the age-old vision of an all-optical analysis of neuronal circuits, reaching beyond the limits of traditional electrode-based recordings. We will present our personal account of the development of protein voltage indicators from the pioneering days to the present state, including their applications in neurophysiology that has inspired our own work for more than a decade. PMID:26082930

  4. Optimisation of halogenase enzyme activity by application of a genetic algorithm.

    PubMed

    Muffler, Kai; Retzlaff, Marco; van Pée, Karl-Heinz; Ulber, Roland

    2007-01-10

    A genetic algorithm (GA) was applied for the optimisation of an enzyme assay composition respectively the enzyme activity of a recombinantly produced FADH(2)-dependent halogenating enzyme. The examined enzyme belongs to the class of halogenases and is capable to halogenate tryptophan regioselective in position 5. Therefore, the expressed trp-5-halogenase can be an interesting tool in the manufacturing of serotonin precursors. The application of stochastic search strategies (e.g. GAs) is well suited for fast determination of the global optimum in multidimensional search spaces, where statistical approaches or even the popular classical one-factor-at-a-time method often failures by misleading to local optima. The concentrations of six different medium components were optimised and the maximum yield of the halogenated tryptophan could be increased from 3.5 up to 65%. PMID:16919347

  5. Recent Advances in Genetic Technique of Microbial Report Cells and Their Applications in Cell Arrays

    PubMed Central

    Kim, Do Hyun; Kim, Moon Il; Park, Hyun Gyu

    2015-01-01

    Microbial cell arrays have attracted consistent attention for their ability to provide unique global data on target analytes at low cost, their capacity for readily detectable and robust cell growth in diverse environments, their high degree of convenience, and their capacity for multiplexing via incorporation of molecularly tailored reporter cells. To highlight recent progress in the field of microbial cell arrays, this review discusses research on genetic engineering of reporter cells, technologies for patterning live cells on solid surfaces, cellular immobilization in different polymers, and studies on their application in environmental monitoring, disease diagnostics, and other related fields. On the basis of these results, we discuss current challenges and future prospects for novel microbial cell arrays, which show promise for use as potent tools for unraveling complex biological processes. PMID:26436087

  6. Hypospadias in a male (78,XY; SRY-positive) dog and sex reversal female (78,XX; SRY-negative) dogs: clinical, histological and genetic studies.

    PubMed

    Switonski, M; Payan-Carreira, R; Bartz, M; Nowacka-Woszuk, J; Szczerbal, I; Colaço, B; Pires, M A; Ochota, M; Nizanski, W

    2012-01-01

    Hypospadias is rarely reported in dogs. In this study we pre-sent 2 novel cases of this disorder of sexual development and, in addition, a case of hereditary sex reversal in a female with an enlarged clitoris. The first case was a male Moscow watchdog with a normal karyotype (78,XY) and the presence of the SRY gene. In this dog, perineal hypospadias, bilateral inguinal cryptorchidism and testes were observed. The second case, representing the Cocker spaniel breed, had a small penis with a hypospadic orifice of the urethra, bilateral cryptorchidism, testis and a rudimentary gonad inside an ovarian bursa, a normal female karyotype (78,XX) and a lack of the SRY gene. This animal was classified as a compound sex reversal (78,XX, SRY-negative) with the hypospadias syndrome. The third case was a Cocker spaniel female with an enlarged clitoris and internally located ovotestes. Cytogenetic and molecular analyses revealed a normal female karyotype (78,XX) and a lack of the SRY gene, while histology of the gonads showed an ovotesticular structure. This case was classified as a typical hereditary sex reversal syndrome (78,XX, SRY-negative). Molecular studies were focused on coding sequences of the SRY gene (case 1) and 2 candidates for monogenic hypospadias, namely MAMLD1 (mastermind-like domain containing 1) and SRD5A2 (steroid-5-alpha-reductase, alpha polypeptide 2). Sequencing of the entire SRY gene, including 5'- and 3'-flanking regions, did not reveal any mutation. The entire coding sequence of MAMLD1 and SRD5A2 was analyzed in all the intersexes, as well as in 4 phenotypically normal control dogs (3 females and 1 male). In MAMLD1 2 SNPs, including 1 missense substitution in exon 1 (c.128A>G, Asp43Ser), were identified, whereas in SRD5A2 7 polymorphisms, including 1 missense SNP (c.358G>A, Ala120Thr), were found. None of the identified polymorphisms cosegregated with the intersexual phenotype, thus, we cannot confirm that hypospadias may be associated with polymorphism

  7. The partially reversible formation of Li-metal particles on a solid Li electrolyte: applications toward nanobatteries

    NASA Astrophysics Data System (ADS)

    Arruda, Thomas M.; Kumar, Amit; Kalinin, Sergei V.; Jesse, Stephen

    2012-08-01

    The feasibility of large-scale implementation of Li-air batteries (LABs) hinges on understanding the thermodynamic and kinetic factors that control charge-discharge rates, efficiency and life times. Here, the kinetics of bias-induced reactions is explored locally on the surface of Li-ion conductive glass ceramics, a preferred electrolyte for LABs, using direct current-voltage and strain spectroscopies. Above a critical bias, particle growth kinetics were found to be linear in both the bias and time domains. Partial reversibility was observed for Li particles as evidenced by the presence of anodic peaks following the Li+ reduction, as well an associated reduction in particle height. The degree of reversibility was highest for the smallest particles formed. These observations thus suggest the possibility of producing nanobatteries with an active anode volume of the order of 0.1 al.

  8. The partially reversible formation of Li-metal particles on a solid Li electrolyte: applications toward nanobatteries

    SciTech Connect

    Arruda, Thomas M; Kumar, Amit; Kalinin, Sergei V; Jesse, Stephen

    2012-01-01

    The feasibility of large-scale implementation of Li-air batteries (LABs) hinges on understanding the thermodynamic and kinetic factors that control charge-discharge rates, efficiency and life times. Here, the kinetics of bias-induced reactions is explored locally on the surface of Li-ion conductive glass ceramics, a preferred electrolyte for LABs, using direct current-voltage and strain spectroscopies. Above a critical bias, particle growth kinetics were found to be linear in both the bias and time domains. Partial reversibility was observed for Li particles as evidenced by the presence of anodic peaks following the Li{sup +} reduction, as well an associated reduction in particle height. The degree of reversibility was highest for the smallest particles formed. These observations thus suggest the possibility of producing nanobatteries with an active anode volume of the order of 0.1 al.

  9. Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design

    PubMed Central

    Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057

  10. First application of a microsphere-based immunoassay to the detection of genetically modified organisms (GMOs): quantification of Cry1Ab protein in genetically modified maize.

    PubMed

    Fantozzi, Anna; Ermolli, Monica; Marini, Massimiliano; Scotti, Domenico; Balla, Branko; Querci, Maddalena; Langrell, Stephen R H; Van den Eede, Guy

    2007-02-21

    An innovative covalent microsphere immunoassay, based on the usage of fluorescent beads coupled to a specific antibody, was developed for the quantification of the endotoxin Cry1Ab present in MON810 and Bt11 genetically modified (GM) maize lines. In particular, a specific protocol was developed to assess the presence of Cry1Ab in a very broad range of GM maize concentrations, from 0.1 to 100% [weight of genetically modified organism (GMO)/weight]. Test linearity was achieved in the range of values from 0.1 to 3%, whereas fluorescence signal increased following a nonlinear model, reaching a plateau at 25%. The limits of detection and quantification were equal to 0.018 and 0.054%, respectively. The present study describes the first application of quantitative high-throughput immunoassays in GMO analysis. PMID:17300145

  11. Reverse genetic manipulation of the overlapping coding regions for structural proteins of the type II porcine reproductive and respiratory syndrome virus.

    PubMed

    Yu, Dandan; Lv, Jian; Sun, Zhi; Zheng, Haihong; Lu, Jiaqi; Yuan, Shishan

    2009-01-01

    The overlapping genomic regions coding for structural proteins of porcine reproductive and respiratory syndrome virus (PRRSV) poses problems for molecular dissection of the virus replication process. We constructed five mutant full-length cDNA clones with the overlapping regions unwound and 1 to 3 restriction sites inserted between two adjacent ORFs (ORF1/2, ORF4/5, ORF5/6, ORF 6/7 and ORF7/3' UTR), which generated the recombinant viruses. Our findings demonstrated that 1) the overlapping structural protein ORFs can be physically separated, and is dispensable for virus viability; 2) such ORF separations did not interrupt the subgenomic RNA synthesis; 3) the plaque morphology, growth kinetics, and antigenicity of these mutant viruses were virtually indistinguishable from those of the parental virus in cultured cells; and 4) these mutant viruses remained genetic stable in vitro. This study lays a foundation for further molecular dissection of PRRSV replication process, and development of genetically tagged vaccines against PRRS. PMID:18977502

  12. Development and optimisation of a label-free quantitative proteomic procedure and its application in the assessment of genetically modified tomato fruit.

    PubMed

    Mora, Leticia; Bramley, Peter M; Fraser, Paul D

    2013-06-01

    A key global challenge for plant biotechnology is addressing food security, whereby provision must be made to feed 9 billion people with nutritional feedstuffs by 2050. To achieve this step change in agricultural production new crop varieties are required that are tolerant to environmental stresses imposed by climate change, have better yields, are more nutritious and require less resource input. Genetic modification (GM) and marker-assisted screening will need to be fully utilised to deliver these new crop varieties. To evaluate these varieties both in terms of environmental and food safety and the rational design of traits a systems level characterisation is necessary. To link the transcriptome to the metabolome, quantitative proteomics is required. Routine quantitative proteomics is an important challenge. Gel-based densitometry and MS analysis after stable isotope labeling have been employed. In the present article, we describe the application of a label-free approach that can be used in combination with SDS-PAGE and reverse-phase chromatography to evaluate the changes in the proteome of new crop varieties. The workflow has been optimised for protein coverage, accuracy and robustness, then its application demonstrated using a GM tomato variety engineered to deliver nutrient dense fruit. PMID:23616442

  13. Examination of a genetic algorithm for the application in high-throughput downstream process development.

    PubMed

    Treier, Katrin; Berg, Annette; Diederich, Patrick; Lang, Katharina; Osberghaus, Anna; Dismer, Florian; Hubbuch, Jürgen

    2012-10-01

    Compared to traditional strategies, application of high-throughput experiments combined with optimization methods can potentially speed up downstream process development and increase our understanding of processes. In contrast to the method of Design of Experiments in combination with response surface analysis (RSA), optimization approaches like genetic algorithms (GAs) can be applied to identify optimal parameter settings in multidimensional optimizations tasks. In this article the performance of a GA was investigated applying parameters applicable in high-throughput downstream process development. The influence of population size, the design of the initial generation and selection pressure on the optimization results was studied. To mimic typical experimental data, four mathematical functions were used for an in silico evaluation. The influence of GA parameters was minor on landscapes with only one optimum. On landscapes with several optima, parameters had a significant impact on GA performance and success in finding the global optimum. Premature convergence increased as the number of parameters and noise increased. RSA was shown to be comparable or superior for simple systems and low to moderate noise. For complex systems or high noise levels, RSA failed, while GA optimization represented a robust tool for process optimization. Finally, the effect of different objective functions is shown exemplarily for a refolding optimization of lysozyme. PMID:22700464

  14. Applications of Genetically-Encoded Biosensors for the Construction and Control of Biosynthetic Pathways

    PubMed Central

    Michener, Josh K.; Thodey, Kate; Liang, Joe C.; Smolke, Christina D.

    2011-01-01

    Cells are filled with biosensors, molecular systems that measure the state of the cell and respond by regulating host processes. In much the same way that an engineer would monitor a chemical reactor, the cell uses these sensors to monitor changing intracellular environments and produce consistent behavior despite the variable environment. While natural systems derive a clear benefit from pathway regulation, past research efforts in engineering cellular metabolism have focused on introducing new pathways and removing existing pathway regulation. Synthetic biology is a rapidly growing field that focuses on the development of new tools that support the design, construction, and optimization of biological systems. Recent advances have been made in the design of genetically-encoded biosensors and the application of this class of molecular tools for optimizing and regulating heterologous pathways. Biosensors to cellular metabolites can be taken directly from natural systems, engineered from natural sensors, or constructed entirely in vitro. When linked to reporters, such as antibiotic resistance markers, these metabolite sensors can be used to report on pathway productivity, allowing high-throughput screening for pathway optimization. Future directions will focus on the application of biosensors to introduce feedback control into metabolic pathways, providing dynamic control strategies to increase the efficient use of cellular resources and pathway reliability. PMID:21946159

  15. Vasectomy reversal.

    PubMed

    Belker, A M

    1987-02-01

    A vasovasostomy may be performed on an outpatient basis with local anesthesia, but also may be performed on an outpatient basis with epidural or general anesthesia. Local anesthesia is preferred by most of my patients, the majority of whom choose this technique. With proper preoperative and intraoperative sedation, patients sleep lightly through most of the procedure. Because of the length of time often required for bilateral microsurgical vasoepididymostomy, epidural or general anesthesia and overnight hospitalization are usually necessary. Factors influencing the preoperative choice for vasovasostomy or vasoepididymostomy in patients undergoing vasectomy reversal are considered. The preoperative planned choice of vasovasostomy or vasoepididymostomy for patients having vasectomy reversal described herein does not have the support of all urologists who regularly perform these procedures. My present approach has evolved as the data reported in Tables 1 and 2 have become available, but it may change as new information is evaluated. However, it offers a logical method for planning choices of anesthesia and inpatient or outpatient status for patients undergoing vasectomy reversal procedures. PMID:3811050

  16. Graphite-teflon composite bienzyme electrodes for the determination of cholesterol in reversed micelles. Application to food samples.

    PubMed

    Peña, N; Ruiz, G; Reviejo, A J; Pingarrón, J M

    2001-03-15

    A bienzyme amperometric composite biosensor for the determination of free and total cholesterol in food samples is reported. Cholesterol oxidase and horseradish peroxidase, together with potassium ferrocyanide as a mediator, are incorporated into a graphite-70% Teflon matrix. The compatibility of this biosensor design with predominantly nonaqueous media allows the use of reversed micelles as working medium. The reversed micelles are formed with ethyl acetate as continuous phase (in which cholesterol is soluble), a 4% final concentration of 0.05 mol L(-1) phosphate buffer solution, pH 7.4, as dispersed phase, and 0.1 mol L(-1) AOT as emulsifying agent. Studies on the repeatability of the amperometric response obtained at +0.10 V, with and without regeneration of the electrode surface by polishing, on the useful lifetime of one single biosensor and on the reproducibility in the fabrication of different pellets illustrate the robustness of the biosensor design. Determination of free and total cholesterol in food samples such as butter, lard, and egg yoke was carried out, and the obtained results were advantageously compared with those provided by using a commercial Boehringer test kit. PMID:11305650

  17. Application of Microsatellite Markers in Conservation Genetics and Fisheries Management: Recent Advances in Population Structure Analysis and Conservation Strategies

    PubMed Central

    Abdul-Muneer, P. M.

    2014-01-01

    Microsatellites are the most popular and versatile genetic marker with myriads of applications in population genetics, conservation biology, and evolutionary biology. These are the arrays of DNA sequences, consisting of tandemly repeating mono-, di-, tri-, and tetranucleotide units, which are distributed throughout the genomes of most eukaryotic species. Microsatellites are codominant in nature, highly polymorphic, easily typed, and Mendelian inherited, all properties which make them very suitable for the study of population structure and pedigree analysis and capable of detecting differences among closely related species. PCR for microsatellites can be automated for identifying simple sequence repeat polymorphism. Small amount of blood samples or alcohol preserved tissue is adequate for analyzing them. Most of the microsatellites are noncoding, and therefore variations are independent of natural selection. These properties make microsatellites ideal genetic markers for conservation genetics and fisheries management. This review addresses the applications of microsatellite markers in conservation genetics and recent advances in population structure analysis in the context of fisheries management. PMID:24808959

  18. A Kernel Machine Method for Detecting Effects of Interaction Between Multidimensional Variable Sets: An Imaging Genetics Application

    PubMed Central

    Ge, Tian; Nichols, Thomas E.; Ghosh, Debashis; Mormino, Elizabeth C.

    2015-01-01

    Measurements derived from neuroimaging data can serve as markers of disease and/or healthy development, are largely heritable, and have been increasingly utilized as (intermediate) phenotypes in genetic association studies. To date, imaging genetic studies have mostly focused on discovering isolated genetic effects, typically ignoring potential interactions with non-genetic variables such as disease risk factors, environmental exposures, and epigenetic markers. However, identifying significant interaction effects is critical for revealing the true relationship between genetic and phenotypic variables, and shedding light on disease mechanisms. In this paper, we present a general kernel machine based method for detecting effects of interaction between multidimensional variable sets. This method can model the joint and epistatic effect of a collection of single nucleotide polymorphisms (SNPs), accommodate multiple factors that potentially moderate genetic influences, and test for nonlinear interactions between sets of variables in a flexible framework. As a demonstration of application, we applied the method to data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to detect the effects of the interactions between candidate Alzheimer's disease (AD) risk genes and a collection of cardiovascular disease (CVD) risk factors, on hippocampal volume measurements derived from structural brain magnetic resonance imaging (MRI) scans. Our method identified that two genes, CR1 and EPHA1, demonstrate significant interactions with CVD risk factors on hippocampal volume, suggesting that CR1 and EPHA1 may play a role in influencing AD-related neurodegeneration in the presence of CVD risks. PMID:25600633

  19. A kernel machine method for detecting effects of interaction between multidimensional variable sets: an imaging genetics application.

    PubMed

    Ge, Tian; Nichols, Thomas E; Ghosh, Debashis; Mormino, Elizabeth C; Smoller, Jordan W; Sabuncu, Mert R

    2015-04-01

    Measurements derived from neuroimaging data can serve as markers of disease and/or healthy development, are largely heritable, and have been increasingly utilized as (intermediate) phenotypes in genetic association studies. To date, imaging genetic studies have mostly focused on discovering isolated genetic effects, typically ignoring potential interactions with non-genetic variables such as disease risk factors, environmental exposures, and epigenetic markers. However, identifying significant interaction effects is critical for revealing the true relationship between genetic and phenotypic variables, and shedding light on disease mechanisms. In this paper, we present a general kernel machine based method for detecting effects of the interaction between multidimensional variable sets. This method can model the joint and epistatic effect of a collection of single nucleotide polymorphisms (SNPs), accommodate multiple factors that potentially moderate genetic influences, and test for nonlinear interactions between sets of variables in a flexible framework. As a demonstration of application, we applied the method to the data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to detect the effects of the interactions between candidate Alzheimer's disease (AD) risk genes and a collection of cardiovascular disease (CVD) risk factors, on hippocampal volume measurements derived from structural brain magnetic resonance imaging (MRI) scans. Our method identified that two genes, CR1 and EPHA1, demonstrate significant interactions with CVD risk factors on hippocampal volume, suggesting that CR1 and EPHA1 may play a role in influencing AD-related neurodegeneration in the presence of CVD risks. PMID:25600633

  20. Development of a SNP array and its application to genetic mapping and diversity assessment in pepper (Capsicum spp.).

    PubMed

    Cheng, Jiaowen; Qin, Cheng; Tang, Xin; Zhou, Huangkai; Hu, Yafei; Zhao, Zicheng; Cui, Junjie; Li, Bo; Wu, Zhiming; Yu, Jiping; Hu, Kailin

    2016-01-01

    The development and application of single nucleotide polymorphisms (SNPs) is in its infancy for pepper. Here, a set of 15,000 SNPs were chosen from the resequencing data to develop an array for pepper with 12,720 loci being ultimately synthesized. Of these, 8,199 (~64.46%) SNPs were found to be scorable and covered ~81.18% of the whole genome. With this array, a high-density interspecific genetic map with 5,569 SNPs was constructed using 297 F2 individuals, and genetic diversity of a panel of 399 pepper elite/landrace lines was successfully characterized. Based on the genetic map, one major QTL, named Up12.1, was detected for the fruit orientation trait. A total of 65 protein-coding genes were predicted within this QTL region based on the current annotation of the Zunla-1 genome. In summary, the thousands of well-validated SNP markers, high-density genetic map and genetic diversity information will be useful for molecular genetics and innovative breeding in pepper. Furthermore, the mapping results lay foundation for isolating the genes underlying variation in fruit orientation of Capsicum. PMID:27623541

  1. Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development

    SciTech Connect

    Jin, Huanan; Song, Zhihong; Nikolau, Basil J.

    2012-03-31

    Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl CoA molecules to form acetoacetyl CoA. Two AACT‐encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional expression in yeast. Promoter::GUS fusion experiments indicated that AACT1 is primarily expressed in the vascular system and AACT2 is highly expressed in root tips, young leaves, top stems and anthers. Characterization of T‐DNA insertion mutant alleles at each AACT locus established that AACT2 function is required for embryogenesis and for normal male gamete transmission. In contrast, plants lacking AACT1 function are completely viable and show no apparent growth phenotypes, indicating that AACT1 is functionally redundant with respect to AACT2 function. RNAi lines that express reduced levels of AACT2 show pleiotropic phenotypes, including reduced apical dominance, elongated life span and flowering duration, sterility, dwarfing, reduced seed yield and shorter root length. Microscopic analysis reveals that the reduced stature is caused by a reduction in cell size and fewer cells, and male sterility is caused by loss of the pollen coat and premature degeneration of the tapetal cells. Biochemical analyses established that the roots of AACT2 RNAi plants show quantitative and qualitative alterations in phytosterol profiles. These phenotypes and biochemical alterations are reversed when AACT2 RNAi plants are grown in the presence of mevalonate, which is consistent with the role of AACT2 in generating the bulk of the acetoacetyl CoA precursor required for the cytosol‐localized, mevalonate‐derived isoprenoid biosynthetic pathway.

  2. Reversal of Aggregation Using β-Breaker Dipeptide Containing Peptides: Application to Aβ(1–40) Self-Assembly and Its Inhibition

    PubMed Central

    2014-01-01

    Reversion of protein or peptide aggregation is a formidable task, important in various domains of research at the interface of chemistry, medicine, and nanoscience. A novel class of dipeptides, termed as β-breaker dipeptides (BBDPs), is identified, which can be incorporated into the self-recognizing sequences to generate a novel class of conformational switch which forms β-sheet at an initial stage and then converts in a controlled manner to random coil at specific conditions. Incorporation of BBDPs in a well designed amyloidogenic peptides generates a special class of β-sheet breaker peptides those undergo a chemical change at physiological condition generating a breaker element in situ. These β-breaker peptides are shown to first incorporate into the amyloid and then disrupt it. Such conformational switches may be used to study agrregation/disaggregation process and may find many biomedical applications relevant to aggregation related disorders. Such strategy for reversion of peptide aggregation using chemical tricks may find application in material chemistry as well. PMID:24661180

  3. Reversal of aggregation using β-breaker dipeptide containing peptides: Application to Aβ(1-40) self-assembly and its inhibition.

    PubMed

    Nadimpally, Krishna Chaitanya; Paul, Ashim; Mandal, Bhubaneswar

    2014-05-21

    Reversion of protein or peptide aggregation is a formidable task, important in various domains of research at the interface of chemistry, medicine, and nanoscience. A novel class of dipeptides, termed as β-breaker dipeptides (BBDPs), is identified, which can be incorporated into the self-recognizing sequences to generate a novel class of conformational switch which forms β-sheet at an initial stage and then converts in a controlled manner to random coil at specific conditions. Incorporation of BBDPs in a well designed amyloidogenic peptides generates a special class of β-sheet breaker peptides those undergo a chemical change at physiological condition generating a breaker element in situ. These β-breaker peptides are shown to first incorporate into the amyloid and then disrupt it. Such conformational switches may be used to study agrregation/disaggregation process and may find many biomedical applications relevant to aggregation related disorders. Such strategy for reversion of peptide aggregation using chemical tricks may find application in material chemistry as well. PMID:24661180

  4. Reverse osmosis reverses conventional wisdom with Superfund cleanup success

    SciTech Connect

    Collins, M. ); Miller, K. )

    1994-09-01

    Although widely recognized as the most efficient means of water purification, reverse osmosis has not been considered effective for remediating hazardous wastewater. Scaling and fouling, which can cause overruns and downtime, and require membrane replacement, have inhibited success in high-volume wastewater applications. Despite this background, a reverse osmosis technology developed in Europe recently was used successfully to treat large volumes of contaminated water at a major Superfund site in Texas. The technology's success there may increase the chances for reverse osmosis to find wider use in future cleanups and other waste treatment applications.

  5. Alternative stable qP wave equations in TTI media with their applications for reverse time migration

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Wang, Huazhong; Liu, Wenqing

    2015-10-01

    Numerical instabilities may arise if the spatial variation of symmetry axis is handled improperly when implementing P-wave modeling and reverse time migration in heterogeneous tilted transversely isotropic (TTI) media, especially in the cases where fast changes exist in TTI symmetry axis’ directions. Based on the pseudo-acoustic approximation to anisotropic elastic wave equations in Cartesian coordinates, alternative second order qP (quasi-P) wave equations in TTI media are derived in this paper. Compared with conventional stable qP wave equations, the proposed equations written in stress components contain only spatial derivatives of wavefield variables (stress components) and are free from spatial derivatives involving media parameters. These lead to an easy and efficient implementation for stable P-wave modeling and imaging. Numerical experiments demonstrate the stability and computational efficiency of the presented equations in complex TTI media.

  6. Design and application of an expert system for mobile phase optimisation in reversed-phase liquid chromatography.

    PubMed

    Fell, A F; Bridge, T P; Williams, M H

    1988-01-01

    The selection of the optimum composition for the mobile phase in reversed-phase high-performance liquid chromatography (HPLC) is a complex task; conventional approaches require the expenditure of significant amounts of time by the analyst, particularly for complex mixtures of solutes of biological origin. Some of the existing strategies for the automated optimisation of mobile phase composition (e.g. Simplex), may fail if the elution order of the components changes; or they may require that standards be chromatographed in order to establish the retention behaviour of each component in a mixture (e.g. resolution mapping). These problems may be overcome if the retention behaviour of each individual solute can be established from the chromatogram of the mixture. In this regard, components can be tracked by exploiting the spectral information generated by a rapid scanning photodiode array detector. Unfortunately this information is often insufficiently detailed to allow an unambiguous model of retention behaviour to be constructed. The system developed by the Authors uses these spectral data as a basis for constructing one or more hypothetical retention models, each of which is refined or rejected as further information is obtained during the progress of the experiment. To improve the reliability of the retention models proposed by the system, the spectral data are utilised in a number of tests designed to assess the purity of each chromatographic peak. The information so generated may be used in conjunction with any previously acquired spectral data both to select an appropriate method for extracting spectra for each component from the matrix of (A, lambda, t) data and to establish reliability parameters for the resultant spectra. The development and philosophy of the expert system developed for eluent optimisation in reversed-phase HPLC is discussed. PMID:16867321

  7. Genetically Modified Networks: A Genetic Algorithm contribution to Space Geodesy. Application to the transformation of SLR and DORIS EOP time series into ITRF2005.

    NASA Astrophysics Data System (ADS)

    Coulot, D.; Collilieux, X.; Pollet, A.; Berio, P.; Gobinddass, M. L.; Soudarin, L.; Willis, P.

    2009-04-01

    In this study, we apply Genetic Algorithms (GAs) in order to optimize the referencing (and consequently the precision - stability - and the accuracy) of the EOPs with respect to ITRF2005. These EOPs are derived from SLR or DORIS data at a daily sampling, simultaneously with weekly station positions. GAs are evolutionary algorithms, i.e. stochastic algorithms based on the evolution theory and using some genetic operators such as chromosome crossover and gene mutations. They are currently used for a broad spectrum of activities, from medicine to defence to finance. They have also been used in Earth and Space sciences (remote sensing, geophysics, meteorology, astrophysics, astronomy, etc.) since the early nineties. But, as far as we know, the present work is the first application of GAs in the framework of Space Geodesy. In this work, we use an algorithm based on GAs to find weekly optimal sub-networks over which applying minimum constraints in order to reference EOPs. Each week, the three rotations of the involved terrestrial frames are forced to be zero with respect to ITRF2005 through minimum constraints applied over these sub-networks, which are called Genetically Modified Networks (GMNs). The reference system effects are used as objectives to optimize with GAs. Regarding SLR, our approach provides an improvement of 10 % in accuracy for polar motion in comparison to the results obtained with the network specially designed for EOP referencing by the Analysis Working Group of the International Laser Ranging Service. This improvement of nearly 25 as represents 50 % of the current precision of the IERS 05 C04 reference series. We also show preliminary results regarding such GMNs for the DORIS technique using two different solutions (IGN and CNES/CLS solutions). Finally, for practical applications, we also test, for the SLR and the DORIS techniques, the possible emergence of global core networks to be used for EOP referencing on the basis of GAs.

  8. Linking genetically-defined neurons to behavior through a broadly applicable silencing allele

    PubMed Central

    Kim, Jun Chul.; Cook, Melloni N.; Carey, Megan R.; Shen, Chung; Regehr, Wade G.; Dymecki, Susan M.

    2009-01-01

    Summary Tools for suppressing synaptic transmission gain power when able to target highly selective neuron subtypes, thereby sharpening attainable links between neuron type, behavior, and disease; and when able to silence most any neuron subtype, thereby offering broad applicability. Here we present such a tool, RC::PFtox, that harnesses breadth in scope along with high cell-type selection via combinatorial gene expression to deliver tetanus toxin light chain (tox), an inhibitor of vesicular neurotransmission. When applied in mice, we observed cell-type specific disruption of vesicle exocytosis accompanied by loss of excitatory postsynaptic currents and commensurately perturbed behaviors. Among various test populations, we applied RC::PFtox to silence serotonergic neurons, en masse or a subset defined combinatorially. Of the behavioral phenotypes observed upon en masse serotonergic silencing, only one mapped to the combinatorially defined subset. These findings provide evidence for separability by genetic lineage of serotonin-modulated behaviors; collectively, these findings demonstrate broad utility of RC::PFtox for dissecting neuron functions. PMID:19679071

  9. Genetic characterization of caffeine degradation by bacteria and its potential applications

    PubMed Central

    Summers, Ryan M; Mohanty, Sujit K; Gopishetty, Sridhar; Subramanian, Mani

    2015-01-01

    The ability of bacteria to grow on caffeine as sole carbon and nitrogen source has been known for over 40 years. Extensive research into this subject has revealed two distinct pathways, N-demethylation and C-8 oxidation, for bacterial caffeine degradation. However, the enzymological and genetic basis for bacterial caffeine degradation has only recently been discovered. This review article discusses the recent discoveries of the genes responsible for both N-demethylation and C-8 oxidation. All of the genes for the N-demethylation pathway, encoding enzymes in the Rieske oxygenase family, reside on 13.2-kb genomic DNA fragment found in Pseudomonas putida CBB5. A nearly identical DNA fragment, with homologous genes in similar orientation, is found in Pseudomonas sp. CES. Similarly, genes for C-8 oxidation of caffeine have been located on a 25.2-kb genomic DNA fragment of Pseudomonas sp. CBB1. The C-8 oxidation genes encode enzymes similar to those found in the uric acid metabolic pathway of Klebsiella pneumoniae. Various biotechnological applications of these genes responsible for bacterial caffeine degradation, including bio-decaffeination, remediation of caffeine-contaminated environments, production of chemical and fuels and development of diagnostic tests have also been demonstrated. PMID:25678373

  10. Genetic characterization of caffeine degradation by bacteria and its potential applications.

    PubMed

    Summers, Ryan M; Mohanty, Sujit K; Gopishetty, Sridhar; Subramanian, Mani

    2015-05-01

    The ability of bacteria to grow on caffeine as sole carbon and nitrogen source has been known for over 40 years. Extensive research into this subject has revealed two distinct pathways, N-demethylation and C-8 oxidation, for bacterial caffeine degradation. However, the enzymological and genetic basis for bacterial caffeine degradation has only recently been discovered. This review article discusses the recent discoveries of the genes responsible for both N-demethylation and C-8 oxidation. All of the genes for the N-demethylation pathway, encoding enzymes in the Rieske oxygenase family, reside on 13.2-kb genomic DNA fragment found in Pseudomonas putida CBB5. A nearly identical DNA fragment, with homologous genes in similar orientation, is found in Pseudomonas sp. CES. Similarly, genes for C-8 oxidation of caffeine have been located on a 25.2-kb genomic DNA fragment of Pseudomonas sp. CBB1. The C-8 oxidation genes encode enzymes similar to those found in the uric acid metabolic pathway of Klebsiella pneumoniae. Various biotechnological applications of these genes responsible for bacterial caffeine degradation, including bio-decaffeination, remediation of caffeine-contaminated environments, production of chemical and fuels and development of diagnostic tests have also been demonstrated. PMID:25678373

  11. CRISPR-Cas9 for medical genetic screens: applications and future perspectives.

    PubMed

    Xue, Hui-Ying; Ji, Li-Juan; Gao, Ai-Mei; Liu, Ping; He, Jing-Dong; Lu, Xiao-Jie

    2016-02-01

    CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated nuclease 9) systems have emerged as versatile and convenient (epi)genome editing tools and have become an important player in medical genetic research. CRISPR-Cas9 and its variants such as catalytically inactivated Cas9 (dead Cas9, dCas9) and scaffold-incorporating single guide sgRNA (scRNA) have been applied in various genomic screen studies. CRISPR screens enable high-throughput interrogation of gene functions in health and diseases. Compared with conventional RNAi screens, CRISPR screens incur less off-target effects and are more versatile in that they can be used in multiple formats such as knockout, knockdown and activation screens, and can target coding and non-coding regions throughout the genome. This powerful screen platform holds the potential of revolutionising functional genomic studies in the near future. Herein, we introduce the mechanisms of (epi)genome editing mediated by CRISPR-Cas9 and its variants, introduce the procedures and applications of CRISPR screen in functional genomics, compare it with conventional screen tools and at last discuss current challenges and opportunities and propose future directions. PMID:26673779

  12. Linear genetic programming application for successive-station monthly streamflow prediction

    NASA Astrophysics Data System (ADS)

    Danandeh Mehr, Ali; Kahya, Ercan; Yerdelen, Cahit

    2014-09-01

    In recent decades, artificial intelligence (AI) techniques have been pronounced as a branch of computer science to model wide range of hydrological phenomena. A number of researches have been still comparing these techniques in order to find more effective approaches in terms of accuracy and applicability. In this study, we examined the ability of linear genetic programming (LGP) technique to model successive-station monthly streamflow process, as an applied alternative for streamflow prediction. A comparative efficiency study between LGP and three different artificial neural network algorithms, namely feed forward back propagation (FFBP), generalized regression neural networks (GRNN), and radial basis function (RBF), has also been presented in this study. For this aim, firstly, we put forward six different successive-station monthly streamflow prediction scenarios subjected to training by LGP and FFBP using the field data recorded at two gauging stations on Çoruh River, Turkey. Based on Nash-Sutcliffe and root mean squared error measures, we then compared the efficiency of these techniques and selected the best prediction scenario. Eventually, GRNN and RBF algorithms were utilized to restructure the selected scenario and to compare with corresponding FFBP and LGP. Our results indicated the promising role of LGP for successive-station monthly streamflow prediction providing more accurate results than those of all the ANN algorithms. We found an explicit LGP-based expression evolved by only the basic arithmetic functions as the best prediction model for the river, which uses the records of the both target and upstream stations.

  13. [Genetic polymorphism of FIBRA,DHFRP2 and ACTBP2 and their forensic application in Yunnan Han population].

    PubMed

    Jing, Qiang; Nie, Sheng-Jie

    2002-09-01

    To investigate the genetic polymorphism of FIBRA,DHFRP2 and ACTBP2 in Yunnan Han population as well as their application in forensic science, EDTA-blood specimens were collected from 200 healthy individuals. The DNA were extracted either by the Chloro form, phenol method or by the Chelex-100 method. The PCR products were analyzed by PAG vertical electrophoresis,following by silver staining. All gene frequencies, discrimination power (DP), exclusion of paternity probability (EPP), heterozygosity (H),polymorphisms information content (PIC),matching probability (PM) as well as the Hardy-Weinberg test were calculated. The obtained data are beneficial in the understanding of population genetics of the three STR loci in Yunnan Han population and the results suggest that these loci are valuable genetic markers for paternity testing and personal identification in forensic science practice. PMID:16135442

  14. Structural Variation (SV) Markers in the Basidiomycete Volvariella volvacea and Their Application in the Construction of a Genetic Map.

    PubMed

    Wang, Wei; Chen, Bingzhi; Zhang, Lei; Yan, Junjie; Lu, Yuanping; Zhang, Xiaoyin; Jiang, Yuji; Wu, Taju; van Peer, Arend Frans; Li, Shaojie; Xie, Baogui

    2015-01-01

    Molecular markers and genetic maps are useful tools in genetic studies. Novel molecular markers and their applications have been developed in recent years. With the recent advancements in sequencing technology, the genomic sequences of an increasingly great number of fungi have become available. A novel type of molecular marker was developed to construct the first reported linkage map of the edible and economically important basidiomycete Volvariella volvacea by using 104 structural variation (SV) markers that are based on the genomic sequences. Because of the special and simple life cycle in basidiomycete, SV markers can be effectively developed by genomic comparison and tested in single spore isolates (SSIs). This stable, convenient and rapidly developed marker may assist in the construction of genetic maps and facilitate genomic research for other species of fungi. PMID:26204838

  15. Genetic algorithm based input selection for a neural network function approximator with applications to SSME health monitoring

    NASA Technical Reports Server (NTRS)

    Peck, Charles C.; Dhawan, Atam P.; Meyer, Claudia M.

    1991-01-01

    A genetic algorithm is used to select the inputs to a neural network function approximator. In the application considered, modeling critical parameters of the space shuttle main engine (SSME), the functional relationship between measured parameters is unknown and complex. Furthermore, the number of possible input parameters is quite large. Many approaches have been used for input selection, but they are either subjective or do not consider the complex multivariate relationships between parameters. Due to the optimization and space searching capabilities of genetic algorithms they were employed to systematize the input selection process. The results suggest that the genetic algorithm can generate parameter lists of high quality without the explicit use of problem domain knowledge. Suggestions for improving the performance of the input selection process are also provided.

  16. Application of whole genome shotgun sequencing for detection and characterization of genetically modified organisms and derived products.

    PubMed

    Holst-Jensen, Arne; Spilsberg, Bjørn; Arulandhu, Alfred J; Kok, Esther; Shi, Jianxin; Zel, Jana

    2016-07-01

    The emergence of high-throughput, massive or next-generation sequencing technologies has created a completely new foundation for molecular analyses. Various selective enrichment processes are commonly applied to facilitate detection of predefined (known) targets. Such approaches, however, inevitably introduce a bias and are prone to miss unknown targets. Here we review the application of high-throughput sequencing technologies and the preparation of fit-for-purpose whole genome shotgun sequencing libraries for the detection and characterization of genetically modified and derived products. The potential impact of these new sequencing technologies for the characterization, breeding selection, risk assessment, and traceability of genetically modified organisms and genetically modified products is yet to be fully acknowledged. The published literature is reviewed, and the prospects for future developments and use of the new sequencing technologies for these purposes are discussed. PMID:27100228

  17. Structural Variation (SV) Markers in the Basidiomycete Volvariella volvacea and Their Application in the Construction of a Genetic Map

    PubMed Central

    Wang, Wei; Chen, Bingzhi; Zhang, Lei; Yan, Junjie; Lu, Yuanping; Zhang, Xiaoyin; Jiang, Yuji; Wu, Taju; van Peer, Arend Frans; Li, Shaojie; Xie, Baogui

    2015-01-01

    Molecular markers and genetic maps are useful tools in genetic studies. Novel molecular markers and their applications have been developed in recent years. With the recent advancements in sequencing technology, the genomic sequences of an increasingly great number of fungi have become available. A novel type of molecular marker was developed to construct the first reported linkage map of the edible and economically important basidiomycete Volvariella volvacea by using 104 structural variation (SV) markers that are based on the genomic sequences. Because of the special and simple life cycle in basidiomycete, SV markers can be effectively developed by genomic comparison and tested in single spore isolates (SSIs). This stable, convenient and rapidly developed marker may assist in the construction of genetic maps and facilitate genomic research for other species of fungi. PMID:26204838

  18. Application of human haploid cell genetic screening model in identifying the genes required for resistance to environmental toxicants: Chlorpyrifos as a case study

    PubMed Central

    Zhu, Jinqiu; Dubois, Amber; Ge, Yichen; Olson, James A.; Ren, Xuefeng

    2016-01-01

    Introduction High-throughput loss-of-function genetic screening tools in yeast or other model systems except in mammalian cells have been implemented to study human susceptibility to chemical toxicity. Here, we employed a newly developed human haploid cell (KBM7)-based mutagenic screening model (KBM7-mu cells) and examined its applicability in identifying genes whose absence allows cells to survive and proliferate in the presence of chemicals. Methods KBM7-mucells were exposed to 200 µM Chlorpyrifos (CPF), a widely used organophosphate pesticide, a dose causing approximately 50% death of cells after 48 h of treatment. After a 2–3 week period of continuous CPF exposure, survived single cell colonies were recovered and used for further analysis. DNA isolated from these cells was amplified using Splinkerette PCR with specific designed primers, and sequenced to determine the genomic locations with virus insertion and identify genes affected by the insertion. Quantitative realtime reverse transcription PCR (qRT-PCR) was used to confirm the knockdown of transcription of identified target genes. Results We identified total 9 human genes in which the cells carrying these genes conferred the resistance to CPF, including AGPAT6, AIG1, ATP8B2, BIK, DCAF12, FNBP4, LAT2, MZF1-AS1 and PPTC7. MZF1-AS1 is an antisense RNA and not included in the further analysis. qRT-PCR results showed that the expression of 6 genes was either significantly reduced or completely lost. There were no changes in the expression of DCAF12 and AGPAT6 genes between the KBM7-mu and the control KBM7 cells. Discussion The KBM7-mu genetic screening system can be modified and applied to identify novel susceptibility genes in response to environmental toxicants, which could provide valuable insights into potential mechanisms of toxicity. PMID:26299976

  19. Boron as a surrogate for N-nitrosodimethylamine rejection by reverse osmosis membranes in potable water reuse applications.

    PubMed

    Tu, Kha L; Fujioka, Takahiro; Khan, Stuart J; Poussade, Yvan; Roux, Annalie; Drewes, Jörg E; Chivas, Allan R; Nghiem, Long D

    2013-06-18

    The results of this study reveal a strong linear correlation (R(2) = 0.95) between the rejections of boron and N-nitrosodimethylamine (NDMA) by six different reverse osmosis (RO) membranes, suggesting that boron can be used as a surrogate for NDMA rejection. This proposal is based on the premise that the rejection of both boric acid and NDMA is governed by steric hindrance and that they have similar molecular dimensions. The concept proposed here is shown to be valid at pH 8 or below where boron exists as the neutral boric acid species and NDMA is also a neutral solute. Observed changes in the rejections of these two species, as a function of permeate fluxes and feed solution temperatures, were also almost identical. Boron rejection increased from 21 to 79%, and the correlation coefficient of the linear regression between boron and NDMA rejections was 0.99 as the permeate flux increased from 5 to 60 L m(-2)h(-1). Similarly, a linear correlation between boron and NDMA rejections was observed as the feed solution temperature increased from 10 to 40 °C. This linear correlation was also validated in a tertiary treated effluent matrix. PMID:23668550

  20. A Reversible Crystallinity-Preserving Phase Transition in Metal-Organic Frameworks: Discovery, Mechanistic Studies, and Potential Applications.

    PubMed

    Liu, Dahuan; Liu, Tian-Fu; Chen, Ying-Pin; Zou, Lanfang; Feng, Dawei; Wang, Kecheng; Zhang, Qiang; Yuan, Shuai; Zhong, Chongli; Zhou, Hong-Cai

    2015-06-24

    A quenching-triggered reversible single-crystal-to-single-crystal (SC-SC) phase transition was discovered in a metal-organic framework (MOF) PCN-526. During the phase transition, the one-dimensional channel of PCN-526 distorts from square to rectangular in shape while maintaining single crystallinity. Although SC-SC transformations have been frequently observed in MOFs, most reports have focused on describing the resulting structural alterations without shedding light on the mechanism for the transformation. Interestingly, modifying the occupancy or species of metal ions in the extra-framework sites, which provides mechanistic insight into the causes for the transformation, can forbid this phase transition. Moreover, as a host scaffold, PCN-526 presents a platform for modulation of the photoluminescence properties by encapsulation of luminescent guest molecules. Through judicious choice of these guest molecules, responsive luminescence caused by SC-SC transformations can be detected, introducing a new strategy for the design of novel luminescent MOF materials. PMID:26011818

  1. Application of reverse-phase HPLC to quantify oligopeptide acetylation eliminates interference from unspecific acetyl CoA hydrolysis

    PubMed Central

    Evjenth, Rune; Hole, Kristine; Ziegler, Mathias; Lillehaug, Johan R

    2009-01-01

    Protein acetylation is a common modification that plays a central role in several cellular processes. The most widely used methods to study these modifications are either based on the detection of radioactively acetylated oligopetide products or an enzyme-coupled reaction measuring conversion of the acetyl donor acetyl CoA to the product CoASH. Due to several disadvantages of these methods, we designed a new method to study oligopeptide acetylation. Based on reverse phase HPLC we detect both reaction products in a highly robust and reproducible way. The method reported here is also fully compatible with subsequent product analysis, e.g. by mass spectroscopy. The catalytic subunit, hNaa30p, of the human NatC protein N-acetyltransferase complex was used for N-terminal oligopeptide acetylation. We show that unacetylated and acetylated oligopeptides can be efficiently separated and quantified by the HPLC-based analysis. The method is highly reproducible and enables reliable quantification of both substrates and products. It is therefore well-suited to determine kinetic parameters of acetyltransferases. PMID:19660098

  2. Reversible Semiconducting-to-Metallic Phase Transition in Chemical Vapor Deposition Grown Monolayer WSe2 and Applications for Devices

    NASA Astrophysics Data System (ADS)

    Ma, Yuqiang; Liu, Bilu; Zhang, Anyi; Chen, Liang; Fathi, Mohammad; Shen, Chenfei; Abbas, Ahmad; Ge, Mingyuan; Mecklenburg, Matthew; Zhou, Chongwu; Usc Nanolab Team

    Two-dimensional (2D) semiconducting monolayer transition metal dichalcogenides (TMDCs) have stimulated lots of interest because they are direct bandgap materials that have reasonably good mobility values. However, contact between most metals and semiconducting TMDCs like 2H phase WSe2 is highly resistive, thus degrading the performance of field effect transistors (FETs) fabricated with WSe2 as active channel materials. We applied a phase engineering method to chemical vapor deposition (CVD) grown monolayer 2H-WSe2 and demonstrated semiconducting-to-metallic phase transition in atomically thin WSe2. We have also shown that metallic phase WSe2 can be converted back to semiconducting phase, demonstrating the reversibility of this phase transition. In addition, we fabricated FETs based on these CVD-grown WSe2 flakes with phase-engineered metallic 1T-WSe2 as contact regions and intact semiconducting 2H-WSe2 as active channel materials. The device performance is substantially improved with metallic phase source/drain electrodes, showing on/off current ratios of 107 and mobilities up to 66 cm2/Vs for monolayer WSe2. PI name: Chongwu Zhou.

  3. Application of reversed-phase liquid chromatography and prepacked C18 cartridges for the analysis of oxytetracycline and related compounds.

    PubMed

    Fedeniuk, R W; Ramamurthi, S; McCurdy, A R

    1996-03-01

    The reversed-phase (RP) chromatographic separation of oxytetracycline (OTC) 4-epioxytetracycline (4-epiOTC), alpha-apooxytetracycline (alpha-apoOTC), and beta-apooxytetracycline (beta-apoOTC) has been accomplished on an Inertsil C8 column at ambient temperature. Using the simplex method of solvent optimization, a 0.1 M ammonium acetate buffer (pH 3.0)-acetonitrile-tetrahydrofuran (72.5:12.5:15, v/v/v) mobile phase was found to give excellent separation of the compounds. OTC, 4-epiOTC, alpha-apoOTC and beta-apoOTC were resolved in 35 min with calculated detection limits of 40, 20, 50 and 140 ng/ml, respectively. Solid-phase extraction (using RP C18 cartridges) of OTC and OTC degradation compounds from distilled water and porcine muscle was tested at four concentration levels ranging from 200 to 2000 ng/ml (g); overall mean recovery of OTC from distilled water and porcine tissue was greater than 90% and 70%, respectively. PMID:8704932

  4. A reversed-phase/hydrophilic interaction mixed-mode C18-Diol stationary phase for multiple applications.

    PubMed

    Wang, Qing; Ye, Mao; Xu, Li; Shi, Zhi-guo

    2015-08-12

    A mixed-mode chromatographic packing material, C18 and diol groups modified silica (C18-Diol), was prepared with controllable hydrophobicity and hydrophilicity. It demonstrated excellent aqueous compatibility and stability in aqueous mobile phase; compared to the traditional C18 column, improved peak shape of basic analytes was also obtained. Additionally, it exhibited both reversed-phase liquid chromatographic (RPLC) and hydrophilic interaction chromatographic (HILIC) performance; the analyte separation scope was thus enlarged, demonstrated by simultaneous separation of twenty acids, bases and neutrals. More interestingly, a novel on-line two-dimensional liquid chromatography on the single column (2D-LC-1C) was established by modifying the high performance liquid chromatographic instrument only with the addition of an extra six-port two-position valve. The early co-eluted components of the extract of Lonicera japonica on the 1st-dimension (RPLC) were collected for the online re-injection to the 2nd-dimension (HILIC) by conveniently varying the mobile phase components. Six more peaks were obtained. The established system was simple, easy operation and low cost, which had advantages in analyzing complicated samples. PMID:26320974

  5. Application of restriction site amplified polymorphism (RSAP) to genetic diversity in Saccharina japonica

    NASA Astrophysics Data System (ADS)

    Zhao, Cui; Liu, Cui; Li, Wei; Chi, Shan; Feng, Rongfang; Liu, Tao

    2013-07-01

    Restriction site amplified polymorphism (RSAP) was used, for the first time, to analyze the genetic structure and diversity of four, mainly cultivated, varieties of the brown alga, Saccharina japonica. Eighty-eight samples from varieties " Rongfu ", " Fujian ", " Ailunwan " and " Shengchanzhong " were used for the genetic analyses. One hundred and ninety-eight bands were obtained using eight combinations of primers. One hundred and ninety-one (96.46%) were polymorphic bands. Nei's genetic diversity was 0.360, and the coefficient of genetic differentiation was 0.357. No inbreeding-type recession was found in the four brown alga varieties and the results of the " Ailunwan " variety using samples from 2 years showed that the variety was becoming less diverse during the selection inherent in the breeding program. Genetic diversity and cluster analyses results were consistent with these genetic relationships. The results show the RSAP method is suitable for genetic analysis. Continuous inbreeding and selection could reduce the genetic diversity effectively; therefore periodical supervision is required.

  6. Teaching Applied Genetics and Molecular Biology to Agriculture Engineers. Application of the European Credit Transfer System

    ERIC Educational Resources Information Center

    Weiss, J.; Egea-Cortines, M.

    2008-01-01

    We have been teaching applied molecular genetics to engineers and adapted the teaching methodology to the European Credit Transfer System. We teach core principles of genetics that are universal and form the conceptual basis of most molecular technologies. The course then teaches widely used techniques and finally shows how different techniques…

  7. Genetic analysis without replications: Model evaluation and application in spring wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic data collected from plant breeding and genetic studies may not be replicated in field designs even though field variation is present. In this study, we addressed this problem using spring wheat (Triticum eastivum L.) trial data collected from two locations. There were no intra-location repl...

  8. Applications of genetic data to improve management and conservation of river fishes and their habitats

    USGS Publications Warehouse

    Scribner, Kim T; Lowe, Winsor H.; Landguth, Erin L.; Luikart, Gordon; Infante, Dana M.; Whelan, Gary; Muhlfeld, Clint C.

    2015-01-01

    Environmental variation and landscape features affect ecological processes in fluvial systems; however, assessing effects at management-relevant temporal and spatial scales is challenging. Genetic data can be used with landscape models and traditional ecological assessment data to identify biodiversity hotspots, predict ecosystem responses to anthropogenic effects, and detect impairments to underlying processes. We show that by combining taxonomic, demographic, and genetic data of species in complex riverscapes, managers can better understand the spatial and temporal scales over which environmental processes and disturbance influence biodiversity. We describe how population genetic models using empirical or simulated genetic data quantify effects of environmental processes affecting species diversity and distribution. Our summary shows that aquatic assessment initiatives that use standardized data sets to direct management actions can benefit from integration of genetic data to improve the predictability of disturbance–response relationships of river fishes and their habitats over a broad range of spatial and temporal scales.

  9. Genetic Aberrations in Childhood Acute Lymphoblastic Leukaemia: Application of High-Density Single Nucleotide Polymorphism Array

    PubMed Central

    Sulong, Sarina

    2010-01-01

    Screening of the entire human genome using high-density single nucleotide polymorphism array (SNPA) has become a powerful technique used in cancer genetics and population genetics studies. The GeneChip® Mapping Array, introduced by Affymetrix, is one SNPA platform utilised for genotyping studies. This GeneChip system allows researchers to gain a comprehensive view of cancer biology on a single platform for the quantification of chromosomal amplifications, deletions, and loss of heterozygosity or for allelic imbalance studies. Importantly, this array analysis has the potential to reveal novel genetic findings involved in the multistep development of cancer. Given the importance of genetic factors in leukaemogenesis and the usefulness of screening the whole genome, SNPA analysis has been utilised in many studies to characterise genetic aberrations in childhood acute lymphoblastic leukaemia. PMID:22135543

  10. Application of pre-stack reverse time migration based on FWI velocity estimation to ground penetrating radar data

    NASA Astrophysics Data System (ADS)

    Liu, Sixin; Lei, Linlin; Fu, Lei; Wu, Junjun

    2014-08-01

    Reverse-time migration (RTM) is used for subsurface imaging to handle complex velocity models including steeply dipping interfaces and dramatic lateral variations and promises better imaging results compared to traditional migration method such as Kirchhoff migration algorithm. RTM has been increasingly used in seismic surveys for hydrocarbon resource explorations. Based on the similarity of kinematics and dynamics between electromagnetic wave and elastic wave, we develop pre-stack RTM method and apply it to process ground penetrating radar (GPR) data. Finite-difference time domain (FDTD) numerical method is used to simulate the electromagnetic wave propagation including forward and backward extrapolations, the cross-correlation imaging condition is used to obtain the final image. In order to provide a velocity model with relatively higher accuracy as the initial velocity model for RTM, we apply a full waveform inversion (FWI) in time domain to estimate the subsurface velocity structure based on reflection radar data. For testing the effectiveness of the algorithm, we have constructed a complex geological model, common-offset radar data and common-shot profile (CSP) radar reflection data are synthesized. All data are migrated with traditional Kirchhoff migration method and pre-stack RTM method separately, the migration results from pre-stack RTM show better coincidence with the true model. Furthermore, we have performed a physical experiment in a sandbox where a polyvinyl chloride (PVC) box is buried in the sand, the obtained common-offset radar data and common-shot radar data are migrated by using Kirchhoff migration method and pre-stack RTM algorithm separately, the pre-stack RTM result shows that RTM algorithm could get better imaging results.

  11. Highly Reversible Zinc-Ion Intercalation into Chevrel Phase Mo6S8 Nanocubes and Applications for Advanced Zinc-Ion Batteries.

    PubMed

    Cheng, Yingwen; Luo, Langli; Zhong, Li; Chen, Junzheng; Li, Bin; Wang, Wei; Mao, Scott X; Wang, Chongmin; Sprenkle, Vincent L; Li, Guosheng; Liu, Jun

    2016-06-01

    This work describes the synthesis of Chevrel phase Mo6S8 nanocubes and its application as the anode material for rechargeable Zn-ion batteries. Mo6S8 can host Zn(2+) ions reversibly in both aqueous and nonaqueous electrolytes with specific capacities around 90 mAh/g, and exhibited remarkable intercalation kinetics and cyclic stability. In addition, we assembled full cells by integrating Mo6S8 anodes with zinc-polyiodide (I(-)/I3(-))-based catholytes, and demonstrated that such full cells were also able to deliver outstanding rate performance and cyclic stability. This first demonstration of a zinc-intercalating anode could inspire the design of advanced Zn-ion batteries. PMID:27182714

  12. Ternary Cu2SnS3 cabbage-like nanostructures: large-scale synthesis and their application in Li-ion batteries with superior reversible capacity

    NASA Astrophysics Data System (ADS)

    Qu, Baihua; Li, Hongxing; Zhang, Ming; Mei, Lin; Chen, Libao; Wang, Yanguo; Li, Qiuhong; Wang, Taihong

    2011-10-01

    In this paper, novel ternary Cu2SnS3 cabbage-like nanostructures are synthesized on a large scale via a facile solvothermal route. The individual Cu2SnS3 cabbage-like hierarchitecture is constructed from 2D nanosheets with thickness of about 15.6 nm. The Cu2SnS3 electrodes exhibit an initial reversible capacity of 842 mAh g-1 and still reach 621 mAh g-1 after 50 cycles. Such an admirable performance could be related to their 3D porous structural features as well as the high electrical conductivity induced by Cu. The electrochemical properties of the 3D hierarchical nanostructures imply its potential application in high energy density Li-ion batteries.

  13. A Genetic Algorithm Variational Approach to Data Assimilation and Application to Volcanic Emissions

    NASA Astrophysics Data System (ADS)

    Schmehl, Kerrie J.; Haupt, Sue Ellen; Pavolonis, Michael J.

    2012-03-01

    Variational data assimilation methods optimize the match between an observed and a predicted field. These methods normally require information on error variances of both the analysis and the observations, which are sometimes difficult to obtain for transport and dispersion problems. Here, the variational problem is set up as a minimization problem that directly minimizes the root mean squared error of the difference between the observations and the prediction. In the context of atmospheric transport and dispersion, the solution of this optimization problem requires a robust technique. A genetic algorithm (GA) is used here for that solution, forming the GA-Variational (GA-Var) technique. The philosophy and formulation of the technique is described here. An advantage of the technique includes that it does not require observation or analysis error covariances nor information about any variables that are not directly assimilated. It can be employed in the context of either a forward assimilation problem or used to retrieve unknown source or meteorological information by solving the inverse problem. The details of the method are reviewed. As an example application, GA-Var is demonstrated for predicting the plume from a volcanic eruption. First the technique is employed to retrieve the unknown emission rate and the steering winds of the volcanic plume. Then that information is assimilated into a forward prediction of its transport and dispersion. Concentration data are derived from satellite data to determine the observed ash concentrations. A case study is made of the March 2009 eruption of Mount Redoubt in Alaska. The GA-Var technique is able to determine a wind speed and direction that matches the observations well and a reasonable emission rate.

  14. An application of LOH analysis for detecting the genetic influences of space environmental radiation

    NASA Astrophysics Data System (ADS)

    Yatagai, F.; Umebayashi, Y.; Honma, M.; Abe, T.; Suzuki, H.; Shimazu, T.; Ishioka, N.; Iwaki, M.

    To detect the genetic influence of space environmental radiation at the chromosome level we proposed an application of loss of heterozygosity LOH analysis system for the mutations induced in human lymphoblastoid TK6 cells Surprisingly we succeeded the mutation detection in the frozen dells which were exposed to a low-dose 10 cGy of carbon-ion beam irradiation Mutation assays were performed within a few days or after about one month preservation at --80 r C following irradiation The results showed an increase in mutation frequency at the thymidine kinase TK gene locus 1 6-fold 2 5 X 10 -6 to 3 9 X 10 -6 and 2 1-fold 2 5 X 10 -6 to 5 3 X 10 -6 respectively Although the relative distributions of mutation classes were not changed by the radiation exposure in either assay an interesting characteristic was detected using this LOH analysis system two TK locus markers and eleven microsatellite loci spanning chromosome 17 The radiation-specific patterns of interstitial deletions were observed in the hemizygous LOH mutants which were considered as a result of end-joining repair of carbon ion-induced DNA double-strand breaks These results clearly demonstrate that this analysis can be used for the detection of low-dose ionizing radiation effects in the frozen cells In addition we performed so called adaptive response experiments in which TK6 cells were pre-irradiated with low-dose 2 5 sim 10 cGy of X-ray and then exposed to challenging dose 2Gy of X-rays Interestingly the

  15. Principles of genetic variations and molecular diseases: applications in hemophilia A.

    PubMed

    Lannoy, N; Hermans, C

    2016-08-01

    DNA structure alterations are the ultimate source of genetic variations. Without them, evolution would be impossible. While they are essential for DNA diversity, defects in DNA synthesis can lead to numerous genetic diseases. Due to increasingly innovative technologies, our knowledge of the human genome and genetic diseases has grown considerably over the last few years, allowing us to detect another class of variants affecting the chromosomal structure. DNA sequence can be altered in multiple ways: DNA sequence changes by substitution, deletion, or duplication of some nucleotides; chromosomal structure alterations by deletion, duplication, translocation, and inversion, ranging in size from kilobases to mega bases; changes in the cell's genome size. If the alteration is located within a gene and sufficiently deleterious, it can cause genetic disorders. Due to the F8 gene's high rate of new small mutations and its location at the tip of X chromosome, containing high repetitive sequences, a wide variety of genetic variants has been described as the cause of hemophilia A (HA). In addition to the F8 intron 22 repeat inversion, HA can also result from point mutations, other inversions, complex rearrangements, such as duplications or deletions, and transposon insertions causing phenotypes of variable severity characterized by complete or partial deficiency of circulating FVIII. This review aims to present the origins, mechanisms, and consequences of F8 alterations. A sound understanding of the multiple genetic mechanisms responsible for HA is essential to determine the appropriate strategy for molecular diagnosis and detected each type of genetic variant. PMID:27296059

  16. Integrative Bayesian analysis of neuroimaging-genetic data with application to cocaine dependence.

    PubMed

    Azadeh, Shabnam; Hobbs, Brian P; Ma, Liangsuo; Nielsen, David A; Moeller, F Gerard; Baladandayuthapani, Veerabhadran

    2016-01-15

    Neuroimaging and genetic studies provide distinct and complementary information about the structural and biological aspects of a disease. Integrating the two sources of data facilitates the investigation of the links between genetic variability and brain mechanisms among different individuals for various medical disorders. This article presents a general statistical framework for integrative Bayesian analysis of neuroimaging-genetic (iBANG) data, which is motivated by a neuroimaging-genetic study in cocaine dependence. Statistical inference necessitated the integration of spatially dependent voxel-level measurements with various patient-level genetic and demographic characteristics under an appropriate probability model to account for the multiple inherent sources of variation. Our framework uses Bayesian model averaging to integrate genetic information into the analysis of voxel-wise neuroimaging data, accounting for spatial correlations in the voxels. Using multiplicity controls based on the false discovery rate, we delineate voxels associated with genetic and demographic features that may impact diffusion as measured by fractional anisotropy (FA) obtained from DTI images. We demonstrate the benefits of accounting for model uncertainties in both model fit and prediction. Our results suggest that cocaine consumption is associated with FA reduction in most white matter regions of interest in the brain. Additionally, gene polymorphisms associated with GABAergic, serotonergic and dopaminergic neurotransmitters and receptors were associated with FA. PMID:26484829

  17. Molecular Genetic Analysis of Chlamydia Species.

    PubMed

    Sixt, Barbara S; Valdivia, Raphael H

    2016-09-01

    Species of Chlamydia are the etiologic agent of endemic blinding trachoma, the leading cause of bacterial sexually transmitted diseases, significant respiratory pathogens, and a zoonotic threat. Their dependence on an intracellular growth niche and their peculiar developmental cycle are major challenges to elucidating their biology and virulence traits. The last decade has seen tremendous advances in our ability to perform a molecular genetic analysis of Chlamydia species. Major achievements include the generation of large collections of mutant strains, now available for forward- and reverse-genetic applications, and the introduction of a system for plasmid-based transformation enabling complementation of mutations; expression of foreign, modified, or reporter genes; and even targeted gene disruptions. This review summarizes the current status of the molecular genetic toolbox for Chlamydia species and highlights new insights into their biology and new challenges in the nascent field of Chlamydia genetics. PMID:27607551

  18. Development of SNP markers and their application for genetic diversity analysis in the oil palm (Elaeis guineensis).

    PubMed

    Ong, P W; Maizura, I; Abdullah, N A P; Rafii, M Y; Ooi, L C L; Low, E T L; Singh, R

    2015-01-01

    The genetic evaluation of oil palm germplasm collections is required for insight into the variability among populations. The information obtained is also useful for incorporating new genetic materials into current breeding programs. Single nucleotide polymorphisms (SNPs) have been widely used in many plant genetic studies due to the availability of large numbers of genomic sequences and expressed sequence tags. The present study examined 219 oil palms collected from two natural Angolan populations, a few hundred kilometers apart. A total of 62 SNPs were designed from oil palm genomic sequences and converted to cleaved amplified polymorphic sequence (CAPS). Of these, nine were found to be informative across the two populations. The nine informative SNPs revealed mean major allele frequency of 0.693. The average expected and observed heterozygosities were 0.398 and 0.400, respectively. The mean polymorphism information content was 0.315 (ranging between 0.223 and 0.375). None of the loci deviated from Hardy-Weinberg equilibrium and no rare alleles were detected. In cluster analysis using unweighted pair group method with arithmetic, the 219 oil palms fell into two clusters. This was further supported by the population structure analysis result (K = 2), suggesting that the samples were divided into two main genetic groups. However, the two groups did not coincide with the geographic populations. Analysis of molecular variance indicated that within-population variation contributed 93% of the total genetic variation. This study showed that SNP-based CAPS markers are useful for studying the genetic diversity of oil palm and have potential application for marker-trait association studies. PMID:26505369

  19. Network Reverse Engineering Approach in Synthetic Biology

    NASA Astrophysics Data System (ADS)

    Zhang, Haoqian; Liu, Ao; Lu, Yuheng; Sheng, Ying; Wu, Qianzhu; Yin, Zhenzhen; Chen, Yiwei; Liu, Zairan; Pan, Heng; Ouyang, Qi

    2013-12-01

    Synthetic biology is a new branch of interdisciplinary science that has been developed in recent years. The main purpose of synthetic biology is to apply successful principles that have been developed in electronic and chemical engineering to develop basic biological functional modules, and through rational design, develop man-made biological systems that have predicted useful functions. Here, we discuss an important principle in rational design of functional biological circuits: the reverse engineering design. We will use a research project that was conducted at Peking University for the International Genetic Engineering Machine Competition (iGEM) to illustrate the principle: synthesis a cell which has a semi-log dose-response to the environment. Through this work we try to demonstrate the potential application of network engineering in synthetic biology.

  20. Application of Long-Range and Binding Reverse Transcription-Quantitative PCR To Indicate the Viral Integrities of Noroviruses

    PubMed Central

    De Keuckelaere, Ann; Uyttendaele, Mieke

    2014-01-01

    This study intends to establish and apply methods evaluating both viral capsid and genome integrities of human noroviruses (NoVs), which thus far remain nonculturable. Murine norovirus 1 (MNV-1) and human NoV GII.4 in phosphate-buffered saline suspensions were treated with heat, UV light, or ethanol and detected by reverse transcription-quantitative PCR (RT-qPCR), long-range RT-qPCR, binding RT-qPCR, and binding long-range RT-qPCR. For MNV-1 heated at 60°C for 2 and 30 min, limited reductions of genomic copies (<0.3-log) were obtained by RT-qPCR and long-range RT-qPCR, while the cell-binding pretreatments obtained higher reductions (>1.89-log reduction after 60°C for 30 min by binding long-range RT-qPCR). The human NoV GII.4 was found to be more heat resistant than MNV-1. For both MNV-1 and human NoV GII.4 after UV treatments of 20 and 200 mJ/cm2, no significant difference (P > 0.05) was observed between the dose-dependent reductions obtained by the four detection methodologies. Treatment of 70% ethanol for 1 min was shown to be more effective for inactivation of both MNV-1 and human NoV GII.4 than the heat and UV treatments used in this study. Subsequently, eight raspberry and four shellfish samples previously shown to be naturally contaminated with human NoVs by RT-qPCR (GI and GII; thus, 24 RT-qPCR signals) were subjected to comparison by this method. RT-qPCR, long-range RT-qPCR, binding RT-qPCR, and binding long-range RT-qPCR detected 20/24, 14/24, 24/24, and 23/24 positive signals, respectively, indicating the abundant presence of intact NoV particles. PMID:25107982

  1. Genetics of Type 2 Diabetes: Insights into the Pathogenesis and Its Clinical Application

    PubMed Central

    Sun, Xue; Yu, Weihui; Hu, Cheng

    2014-01-01

    With rapidly increasing prevalence, diabetes has become one of the major causes of mortality worldwide. According to the latest studies, genetic information makes substantial contributions towards the prediction of diabetes risk and individualized antidiabetic treatment. To date, approximately 70 susceptibility genes have been identified as being associated with type 2 diabetes (T2D) at a genome-wide significant level (P < 5 × 10−8). However, all the genetic loci identified so far account for only about 10% of the overall heritability of T2D. In addition, how these novel susceptibility loci correlate with the pathophysiology of the disease remains largely unknown. This review covers the major genetic studies on the risk of T2D based on ethnicity and briefly discusses the potential mechanisms and clinical utility of the genetic information underlying T2D. PMID:24864266

  2. Control of Wettability of Carbon Nanotube Array by Reversible Dry Oxidation for Superhydrophobic Coating and Supercapacitor Applications

    NASA Astrophysics Data System (ADS)

    Aria, Adrianus Indrat

    In this thesis, dry chemical modification methods involving UV/ozone, oxygen plasma, and vacuum annealing treatments are explored to precisely control the wettability of CNT arrays. The effect of oxidation using UV/ozone and oxygen plasma treatments is highly reversible as long as the O/C ratio of the CNT arrays is kept below 18%. At O/C ratios higher than 18%, the effect of oxidation is no longer reversible. This irreversible oxidation is caused by irreversible changes to the CNT atomic structure during the oxidation process. During the oxidation process, CNT arrays undergo three different processes. For CNT arrays with O/C ratios lower than 40%, the oxidation process results in the functionalization of CNT outer walls by oxygenated groups. Although this functionalization process introduces defects, vacancies and micropores opening, the graphitic structure of the CNT is still largely intact. For CNT arrays with O/C ratios between 40% and 45%, the oxidation process results in the etching of CNT outer walls. This etching process introduces large scale defects and holes that can be obviously seen under TEM at high magnification. Most of these holes are found to be several layers deep and, in some cases, a large portion of the CNT side walls are cut open. For CNT arrays with O/C ratios higher than 45%, the oxidation process results in the exfoliation of the CNT walls and amorphization of the remaining CNT structure. This amorphization process can be implied from the disappearance of C-C sp2 peak in the XPS spectra associated with the pi-bond network. The impact behavior of water droplet impinging on superhydrophobic CNT arrays in a low viscosity regime is investigated for the first time. Here, the experimental data are presented in the form of several important impact behavior characteristics including critical Weber number, volume ratio, restitution coefficient, and maximum spreading diameter. As observed experimentally, three different impact regimes are identified

  3. Establishment and application of a multiplex genetic mutation-detection method of lung cancer based on MassARRAY platform

    PubMed Central

    Tian, Hong-Xia; Zhang, Xu-Chao; Wang, Zhen; Chen, Jian-Guang; Chen, Shi-Liang; Guo, Wei-Bang; Wu, Yi-Long

    2016-01-01

    Objective: This study aims to establish a method for highly parallel multiplexed detection of genetic mutations in Chinese lung cancer samples through Agena iPLEX chemistry and matrix-assisted laser desorption ionization time-of-flight analysis on MassARRAY mass spectrometry platform. Methods: We reviewed the related literature and data on lung cancer treatments. We also identified 99 mutation hot spots in 13 target genes closely related to the pathogenesis, drug resistance, and metastasis of lung cancer. A total of 297 primers, composed of 99 paired forward and reverse amplification primers and 99 matched extension primers, were designed using Assay Design software. The detection method was established by analyzing eight cell lines and six lung cancer specimens. The proposed method was then validated through comparisons by using a LungCartaTM kit. The sensitivity and specificity of the proposed method were evaluated by directly sequencing EGFR and KRAS genes in 100 lung cancer cases. Results: The proposed method was able to detect multiplex genetic mutations in lung cancer cell lines. This finding was consistent with the observations on previously reported mutations. The proposed method can also detect such mutations in clinical lung cancer specimens. This result was consistent with the observations with LungCartaTM kit. However, an FGFR2 mutation was detected only through the proposed method. The measured sensitivity and specificity were 100% and 96.3%, respectively. Conclusions: The proposed MassARRAY technology-based multiplex method can detect genetic mutations in Chinese lung cancer patients. Therefore, the proposed method can be applied to detect mutations in other cancer tissues. PMID:27144063

  4. The Application of Genetic Risk Scores in Age-Related Macular Degeneration: A Review

    PubMed Central

    Cooke Bailey, Jessica N.; Hoffman, Joshua D.; Sardell, Rebecca J.; Scott, William K.; Pericak-Vance, Margaret A.; Haines, Jonathan L.

    2016-01-01

    Age-related macular degeneration (AMD), a highly prevalent and impactful disease of aging, is inarguably influenced by complex interactions between genetic and environmental factors. Various risk scores have been tested that assess measurable genetic and environmental contributions to disease. We herein summarize and review the ability and utility of these numerous models for prediction of AMD and suggest additional risk factors to be incorporated into clinically useful predictive models of AMD. PMID:26959068

  5. The Application of Genetic Risk Scores in Age-Related Macular Degeneration: A Review.

    PubMed

    Cooke Bailey, Jessica N; Hoffman, Joshua D; Sardell, Rebecca J; Scott, William K; Pericak-Vance, Margaret A; Haines, Jonathan L

    2016-01-01

    Age-related macular degeneration (AMD), a highly prevalent and impactful disease of aging, is inarguably influenced by complex interactions between genetic and environmental factors. Various risk scores have been tested that assess measurable genetic and environmental contributions to disease. We herein summarize and review the ability and utility of these numerous models for prediction of AMD and suggest additional risk factors to be incorporated into clinically useful predictive models of AMD. PMID:26959068

  6. Using needs-based frameworks for evaluating new technologies: an application to genetic tests.

    PubMed

    Rogowski, Wolf H; Schleidgen, Sebastian

    2015-02-01

    Given the multitude of newly available genetic tests in the face of limited healthcare budgets, the European Society of Human Genetics assessed how genetic services can be prioritized fairly. Using (health) benefit maximizing frameworks for this purpose has been criticized on the grounds that rather than maximization, fairness requires meeting claims (e.g. based on medical need) equitably. This study develops a prioritization score for genetic tests to facilitate equitable allocation based on need-based claims. It includes attributes representing health need associated with hereditary conditions (severity and progression), a genetic service's suitability to alleviate need (evidence of benefit and likelihood of positive result) and costs to meet the needs. A case study for measuring the attributes is provided and a suggestion is made how need-based claims can be quantified in a priority function. Attribute weights can be informed by data from discrete-choice experiments. Further work is needed to measure the attributes across the multitude of genetic tests and to determine appropriate weights. The priority score is most likely to be considered acceptable if developed within a decision process which meets criteria of procedural fairness and if the priority score is interpreted as "strength of recommendation" rather than a fixed cut-off value. PMID:25488566

  7. Analysis of Genetic Variation and Potential Applications in Genome-Scale Metabolic Modeling

    PubMed Central

    Cardoso, João G. R.; Andersen, Mikael Rørdam; Herrgård, Markus J.; Sonnenschein, Nikolaus

    2015-01-01

    Genetic variation is the motor of evolution and allows organisms to overcome the environmental challenges they encounter. It can be both beneficial and harmful in the process of engineering cell factories for the production of proteins and chemicals. Throughout the history of biotechnology, there have been efforts to exploit genetic variation in our favor to create strains with favorable phenotypes. Genetic variation can either be present in natural populations or it can be artificially created by mutagenesis and selection or adaptive laboratory evolution. On the other hand, unintended genetic variation during a long term production process may lead to significant economic losses and it is important to understand how to control this type of variation. With the emergence of next-generation sequencing technologies, genetic variation in microbial strains can now be determined on an unprecedented scale and resolution by re-sequencing thousands of strains systematically. In this article, we review challenges in the integration and analysis of large-scale re-sequencing data, present an extensive overview of bioinformatics methods for predicting the effects of genetic variants on protein function, and discuss approaches for interfacing existing bioinformatics approaches with genome-scale models of cellular processes in order to predict effects of sequence variation on cellular phenotypes. PMID:25763369

  8. [Novel methods and their applicability in the evaluation of the genetic background of endocrine system tumours].

    PubMed

    Patócs, Attila; Likó, István; Butz, Henriett; Baghy, Kornélia; Rácz, Károly

    2015-12-20

    The technical developments leading to revolution in clinical genetic testing offer new approaches for patients with cancer. From one mutation or one gene approach the scale of genetic testing moved to whole exome or whole genome scale. It is well known that many tumours are genetically determined and they are part of familial tumour syndromes. In addition, some mutations indicate specific molecular targeted therapies. Although sampling and sample preparation are different for testing germline and somatic mutations, the technical background of the analysis is the same. The aim of clinical genetic testing is to identify patients who are carriers of disease-causing mutations or to test tumour tissue for the presence of genetic alterations which may be targets for therapeutic approaches. In this review the authors summarize novel possibilities offered by next-generation sequencing in clinical genetic testing of patients with endocrine tumours. In addition, the authors review recent guidelines on technical and ethical issues related to these novel methods. PMID:26654542

  9. Molecularly Regulated Reversible DNA Polymerization.

    PubMed

    Chen, Niancao; Shi, Xuechen; Wang, Yong

    2016-06-01

    Natural polymers are synthesized and decomposed under physiological conditions. However, it is challenging to develop synthetic polymers whose formation and reversibility can be both controlled under physiological conditions. Here we show that both linear and branched DNA polymers can be synthesized via molecular hybridization in aqueous solutions, on the particle surface, and in the extracellular matrix (ECM) without the involvement of any harsh conditions. More importantly, these polymers can be effectively reversed to dissociate under the control of molecular triggers. Since nucleic acids can be conjugated with various molecules or materials, we anticipate that molecularly regulated reversible DNA polymerization holds potential for broad biological and biomedical applications. PMID:27100911

  10. Reliable In Silico Identification of Sequence Polymorphisms and Their Application for Extending the Genetic Map of Sugar Beet (Beta vulgaris)

    PubMed Central

    Holtgräwe, Daniela; Sörensen, Thomas Rosleff; Viehöver, Prisca; Schneider, Jessica; Schulz, Britta; Borchardt, Dietrich; Kraft, Thomas; Himmelbauer, Heinz; Weisshaar, Bernd

    2014-01-01

    Molecular markers are a highly valuable tool for creating genetic maps. Like in many other crops, sugar beet (Beta vulgaris L.) breeding is increasingly supported by the application of such genetic markers. Single nucleotide polymorphism (SNP) based markers have a high potential for automated analysis and high-throughput genotyping. We developed a bioinformatics workflow that uses Sanger and 2nd-generation sequence data for detection, evaluation and verification of new transcript-associated SNPs from sugar beet. RNAseq data from one parent of an established mapping population were produced by 454-FLX sequencing and compared to Sanger ESTs derived from the other parent. The workflow established for SNP detection considers the quality values of both types of reads, provides polymorphic alignments as well as selection criteria for reliable SNP detection and allows painless generation of new genetic markers within genes. We obtained a total of 14,323 genic SNPs and InDels. According to empirically optimised settings for the quality parameters, we classified these SNPs into four usability categories. Validation of a subset of the in silico detected SNPs by genotyping the mapping population indicated a high success rate of the SNP detection. Finally, a total of 307 new markers were integrated with existing data into a new genetic map of sugar beet which offers improved resolution and the integration of terminal markers. PMID:25302600

  11. Development and application of SINE multilocus and quantitative genetic markers to study oilseed rape (Brassica napus L.) crops.

    PubMed

    Allnutt, T R; Roper, K; Henry, C

    2008-01-23

    A genetic marker system based on the S1 Short Interspersed Elements (SINEs) in the important commercial crop, oilseed rape ( Brassica napus L.) has been developed. SINEs provided a successful multilocus, dominant marker system that was capable of clearly delineating winter- and spring-type crop varieties. Sixteen of 20 varieties tested showed unique profiles from the 17 polymorphic SINE markers generated. The 3' or 5' flank region of nine SINE markers were cloned, and DNA was sequenced. In addition, one putative pre-transposition SINE allele was cloned and sequenced. Two SINE flanking sequences were used to design real-time PCR assays. These quantitative SINE assays were applied to study the genetic structure of eight fields of oilseed rape crops. Studied fields were more genetically diverse than expected for the chosen loci (mean H T = 0.23). The spatial distribution of SINE marker frequencies was highly structured in some fields, suggesting locations of volunteer impurities within the crop. In one case, the assay identified a mislabeling of the crop variety. SINE markers were a useful tool for crop genetics, phylogenetics, variety identification, and purity analysis. The use and further application of quantitative, real-time PCR markers are discussed. PMID:18092752

  12. Application of integrated genetic monitoring: the optimal approach for detecting environmental carcinogens.

    PubMed Central

    Legator, M S; Au, W W

    1994-01-01

    Short-term in vitro genetic toxicity assays have not fulfilled their anticipated role in predicting the carcinogenicity of environmental agents reliably and economically. A reduction in emphasis from nonanimal systems to relevant animal assays and population monitoring will help to reestablish the credibility of this field. An analysis of the various steps in the carcinogenic process indicates the biological responses occurring during these stages can be utilized for early detection of environmental carcinogens. Emphasis should be placed on using the earliest significant response that indicates genetic damage (e.g., gene mutations and chromosome alterations). Assays that detect pregenomic damage (e.g., adduct formation), without evidence of subsequent heritable genetic alterations, may produce misleading results for risk assessment and should not be considered as stand-alone monitoring procedures. Late biological responses may occur in tissues or organs where genetic damage may be difficult to measure, and the opportunity for intervention diminishes as we approach the clinical outcome. For example, analyzing localized cells that contain activated protooncogenes and inactivated tumor suppressor genes, although they further document adverse response from exposure to carcinogens, may be of greater value for indicating clinical outcome than for genetic monitoring. With few notable exceptions, the window of opportunity for genetic monitoring is the period after exposure where genetic damage is evident and where circulating lymphocytes can faithfully record this damage. An ongoing study of butadiene-exposed workers illustrates an optimum protocol, where multiple assays can be carried out and correlated with both external and internal measurements of exposure.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7698074

  13. Fast and sensitive method to determine parabens by capillary electrophoresis using automatic reverse electrode polarity stacking mode: application to hair samples.

    PubMed

    Sako, Alysson V F; Dolzan, Maressa D; Micke, Gustavo Amadeu

    2015-09-01

    This paper describes a fast and sensitive method for the determination of methyl, ethyl, propyl, and butylparaben in hair samples by capillary electrophoresis using automatic reverse electrode polarity stacking mode. In the proposed method, solutions are injected using the flush command of the analysis software (940 mbar) and the polarity switching is carried out automatically immediately after the sample injection. The advantages compared with conventional stacking methods are the increased analytical frequency, repeatability, and inter-day precision. All analyses were performed in a fused silica capillary (50 cm, 41.5 cm in effective length, 50 μm i.d.), and the background electrolyte was composed of 20 mmol L(-1) sodium tetraborate in 10 % of methanol, pH 9.3. For the reverse polarity, -25 kV/35 s was applied followed by application of +30 kV for the electrophoretic run. Temperature was set at 20 °C, and all analytes were monitored at 297 nm. The method showed acceptable linearity (r (2) > 0.997) in the studied range of 0.1-5.0 mg L(-1), limits of detection below 0.017 mg L(-1), and inter-day, intra-day, and instrumental precision better than 6.2, 3.6, and 4.6 %, respectively. Considering parabens is widely used as a preservative in many products and the reported possibility of damage to the hair and also to human health caused by these compounds, the proposed method was applied to evaluate the adsorption of parabens in hair samples. The results indicate that there is a greater adsorption of methylparaben compared to the other parabens tested and also dyed hairs had a greater adsorption capacity for parabens than natural hairs. PMID:26168974

  14. Quantitative determination of casein genetic variants in goat milk: Application in Girgentana dairy goat breed.

    PubMed

    Montalbano, Maria; Segreto, Roberta; Di Gerlando, Rosalia; Mastrangelo, Salvatore; Sardina, Maria Teresa

    2016-02-01

    The study was conducted to develop a high-performance liquid chromatographic (HPLC) method to quantify casein genetic variants (αs2-, β-, and κ-casein) in milk of homozygous individuals of Girgentana goat breed. For calibration experiments, pure genetic variants were extracted from individual milk samples of animals with known genotypes. The described HPLC approach was precise, accurate and highly suitable for quantification of goat casein genetic variants of homozygous individuals. The amount of each casein per allele was: αs2-casein A = 2.9 ± 0.8 g/L and F = 1.8 ± 0.4 g/L; β-casein C = 3.0 ± 0.8 g/L and C1 = 2.0 ± 0.7 g/L and κ-casein A = 1.6 ± 0.3 g/L and B = 1.1 ± 0.2 g/L. A good correlation was found between the quantities of αs2-casein genetic variants A and F, and β-casein C and C1 with other previously described method. The main important result was obtained for κ-casein because, till now, no data were available on quantification of single genetic variants for this protein. PMID:26304408

  15. Reverse Genetics of Respiratory Syncytial Virus.

    PubMed

    Stobart, Christopher C; Hotard, Anne L; Meng, Jia; Moore, Martin L

    2016-01-01

    Respiratory syncytial virus (RSV) is a negative-strand RNA virus that is associated with severe lower respiratory tract infections in young infants and the elderly. RSV remains a leading cause worldwide of infant mortality, and despite the high clinical and economic burden of the virus there are currently no available vaccines. Here, we describe the methods for recovery of recombinant RSV viruses using a bacterial artificial chromosome and methods related to procurement and expansion of stocks of RSV mutants. PMID:27464692

  16. Applications of Multiple Nuclear Genes to the Molecular Phylogeny, Population Genetics and Hybrid Identification in the Mangrove Genus Rhizophora

    PubMed Central

    Chen, Yongmei; Hou, Yansong; Guo, Zixiao; Wang, Wenqing; Zhong, Cairong; Zhou, Renchao; Shi, Suhua

    2015-01-01

    The genus Rhizophora is one of the most important components of mangrove forests. It is an ideal system for studying biogeography, molecular evolution, population genetics, hybridization and conservation genetics of mangroves. However, there are no sufficient molecular markers to address these topics. Here, we developed 77 pairs of nuclear gene primers, which showed successful PCR amplifications across all five Rhizophora species and sequencing in R. apiculata. Here, we present three tentative applications using a subset of the developed nuclear genes to (I) reconstruct the phylogeny, (II) examine the genetic structure and (III) identify natural hybridization in Rhizophora. Phylogenetic analyses support the hypothesis that Rhizophora had disappeared in the Atlantic-East Pacific (AEP) region and was re-colonized from the IWP region approximately 12.7 Mya. Population genetics analyses in four natural populations of R. apiculata in Hainan, China, revealed extremely low genetic diversity, strong population differentiation and extensive admixture, suggesting that the Pleistocene glaciations, particularly the last glacial maximum, greatly influenced the population dynamics of R. apiculata in Hainan. We also verified the hybrid status of a morphologically intermediate individual between R. apiculata and R. stylosa in Hainan. Based on the sequences of five nuclear genes and one chloroplast intergenic spacer, this individual is likely to be an F1 hybrid, with R. stylosa as its maternal parent. The nuclear gene markers developed in this study should be of great value for characterizing the hybridization and introgression patterns in other cases of this genus and testing the role of natural selection using population genomics approaches. PMID:26674070

  17. Applications of Multiple Nuclear Genes to the Molecular Phylogeny, Population Genetics and Hybrid Identification in the Mangrove Genus Rhizophora.

    PubMed

    Chen, Yongmei; Hou, Yansong; Guo, Zixiao; Wang, Wenqing; Zhong, Cairong; Zhou, Renchao; Shi, Suhua

    2015-01-01

    The genus Rhizophora is one of the most important components of mangrove forests. It is an ideal system for studying biogeography, molecular evolution, population genetics, hybridization and conservation genetics of mangroves. However, there are no sufficient molecular markers to address these topics. Here, we developed 77 pairs of nuclear gene primers, which showed successful PCR amplifications across all five Rhizophora species and sequencing in R. apiculata. Here, we present three tentative applications using a subset of the developed nuclear genes to (I) reconstruct the phylogeny, (II) examine the genetic structure and (III) identify natural hybridization in Rhizophora. Phylogenetic analyses support the hypothesis that Rhizophora had disappeared in the Atlantic-East Pacific (AEP) region and was re-colonized from the IWP region approximately 12.7 Mya. Population genetics analyses in four natural populations of R. apiculata in Hainan, China, revealed extremely low genetic diversity, strong population differentiation and extensive admixture, suggesting that the Pleistocene glaciations, particularly the last glacial maximum, greatly influenced the population dynamics of R. apiculata in Hainan. We also verified the hybrid status of a morphologically intermediate individual between R. apiculata and R. stylosa in Hainan. Based on the sequences of five nuclear genes and one chloroplast intergenic spacer, this individual is likely to be an F1 hybrid, with R. stylosa as its maternal parent. The nuclear gene markers developed in this study should be of great value for characterizing the hybridization and introgression patterns in other cases of this genus and testing the role of natural selection using population genomics approaches. PMID:26674070

  18. Genetic Engineering of Mesenchymal Stem Cells and Its Application in Human Disease Therapy

    PubMed Central

    Hodgkinson, Conrad P.; Gomez, José A.; Mirotsou, Maria

    2010-01-01

    Abstract The use of stem cells for tissue regeneration and repair is advancing both at the bench and bedside. Stem cells isolated from bone marrow are currently being tested for their therapeutic potential in a variety of clinical conditions including cardiovascular injury, kidney failure, cancer, and neurological and bone disorders. Despite the advantages, stem cell therapy is still limited by low survival, engraftment, and homing to damage area as well as inefficiencies in differentiating into fully functional tissues. Genetic engineering of mesenchymal stem cells is being explored as a means to circumvent some of these problems. This review presents the current understanding of the use of genetically engineered mesenchymal stem cells in human disease therapy with emphasis on genetic modifications aimed to improve survival, homing, angiogenesis, and heart function after myocardial infarction. Advancements in other disease areas are also discussed. PMID:20825283

  19. Characterization of reverse genetics-derived cold-adapted master donor virus A/Leningrad/134/17/57 (H2N2) and reassortants with H5N1 surface genes in a mouse model.

    PubMed

    Isakova-Sivak, Irina; Chen, Li-Mei; Bourgeois, Melissa; Matsuoka, Yumiko; Voeten, J Theo M; Heldens, Jacco G M; van den Bosch, Han; Klimov, Alexander; Rudenko, Larisa; Cox, Nancy J; Donis, Ruben O

    2014-05-01

    Live attenuated influenza vaccines (LAIV) offer significant advantages over subunit or split inactivated vaccines to mitigate an eventual influenza pandemic, including simpler manufacturing processes and more cross-protective immune responses. Using an established reverse genetics (rg) system for wild-type (wt) A/Leningrad/134/1957 and cold-adapted (ca) A/Leningrad/134/17/1957 (Len17) master donor virus (MDV), we produced and characterized three rg H5N1 reassortant viruses carrying modified HA and intact NA genes from either A/Vietnam/1203/2004 (H5N1, VN1203, clade 1) or A/Egypt/321/2007 (H5N1, EG321, clade 2) virus. A mouse model of infection was used to determine the infectivity and tissue tropism of the parental wt viruses compared to the ca master donor viruses as well as the H5N1 reassortants. All ca viruses showed reduced replication in lungs and enhanced replication in nasal epithelium. In addition, the H5N1 HA and NA enhanced replication in lungs unless it was restricted by the internal genes of the ca MDV. Mice inoculated twice 4 weeks apart with the H5N1 reassortant LAIV candidate viruses developed serum hemagglutination inhibition HI and IgA antibody titers to the homologous and heterologous viruses consistent with protective immunity. These animals remained healthy after challenge inoculation with a lethal dose with homologous or heterologous wt H5N1 highly pathogenic avian influenza (HPAI) viruses. The profiles of viral replication in respiratory tissues and the immunogenicity and protective efficacy characteristics of the two ca H5N1 candidate LAIV viruses warrant further development into a vaccine for human use. PMID:24648485

  20. The Cre/loxP system in Giardia lamblia: genetic manipulations in a binucleate tetraploid protozoan.

    PubMed

    Wampfler, Petra B; Faso, Carmen; Hehl, Adrian B

    2014-07-01

    The bacteriophage-derived Cre/loxP system is a valuable tool that has revolutionised genetic and cell biological research in many organisms. We implemented this system in the intestinal parasite Giardia lamblia, an evolutionarily diverged protozoan whose binucleate and tetraploid genome organisation severely limits the application of reverse genetic approaches. We show that Cre-recombinase is functionally expressed in G. lamblia and demonstrate "recycling" of selectable markers. Providing the means for more complex and versatile genetic modifications, this technique massively increases the scope of functional investigations in G. lamblia and other protozoa with similar limitations with respect to genetic manipulation. PMID:24747534

  1. Reversible DNA compaction.

    PubMed

    González-Pérez, Alfredo

    2014-01-01

    In this review we summarize and discuss the different methods we can use to achieve reversible DNA compaction in vitro. Reversible DNA compaction is a natural process that occurs in living cells and viruses. As a result these process long sequences of DNA can be concentrated in a small volume (compacted) to be decompacted only when the information carried by the DNA is needed. In the current work we review the main artificial compacting agents looking at their suitability for decompaction. The different approaches used for decompaction are strongly influenced by the nature of the compacting agent that determines the mechanism of compaction. We focus our discussion on two main artificial compacting agents: multivalent cations and cationic surfactants that are the best known compacting agents. The reversibility of the process can be achieved by adding chemicals like divalent cations, alcohols, anionic surfactants, cyclodextrins or by changing the chemical nature of the compacting agents via pH modifications, light induced conformation changes or by redox-reactions. We stress the relevance of electrostatic interactions and self-assembly as a main approach in order to tune up the DNA conformation in order to create an on-off switch allowing a transition between coil and compact states. The recent advances to control DNA conformation in vitro, by means of molecular self-assembly, result in a better understanding of the fundamental aspects involved in the DNA behavior in vivo and serve of invaluable inspiration for the development of potential biomedical applications. PMID:24444152

  2. Application of marker selection to enhance estimation of genetic effects and gene interaction in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selection on important genetic markers can improve estimates of additive and dominance association effects. A composite population of beef cattle was selected for intermediate frequencies of myostatin (GDF8) F94L and µ-calpain (CAPN1) polymorphisms. Important additive associations of the GDF8 locu...

  3. Application of DNA Hybridization Biosensor as a Screening Method for the Detection of Genetically Modified Food Components

    PubMed Central

    Tichoniuk, Mariusz; Ligaj, Marta; Filipiak, Marian

    2008-01-01

    An electrochemical biosensor for the detection of genetically modified food components is presented. The biosensor was based on 21-mer single-stranded oligonucleotide (ssDNA probe) specific to either 35S promoter or nos terminator, which are frequently present in transgenic DNA cassettes. ssDNA probe was covalently attached by 5′-phosphate end to amino group of cysteamine self-assembled monolayer (SAM) on gold electrode surface with the use of activating reagents – water soluble 1-ethyl-3(3′-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxy-sulfosuccinimide (NHS). The hybridization reaction on the electrode surface was detected via methylene blue (MB) presenting higher affinity to ssDNA probe than to DNA duplex. The electrode modification procedure was optimized using 19-mer oligoG and oligoC nucleotides. The biosensor enabled distinction between DNA samples isolated from soybean RoundupReady® (RR soybean) and non-genetically modified soybean. The frequent introduction of investigated DNA sequences in other genetically modified organisms (GMOs) give a broad perspectives for analytical application of the biosensor.

  4. Surfactant-Free Vanadium Oxides from Reverse Micelles and Organic Oxidants: Solution Processable Nanoribbons with Potential Applicability as Battery Insertion Electrodes Assembled in Different Configurations.

    PubMed

    Tartaj, Pedro; Amarilla, Jose M; Vazquez-Santos, Maria B

    2015-11-17

    Vanadium oxides similar to other metal transition oxides are prototypes of multifunctionality. Implementing new synthesis routes that lead to dry vanadium oxide nanomaterials with good functional and structural properties as well as good processing capabilities is thus of general interest. Here we report a facile method based on reverse micelles for the growth at room temperature and atmospheric pressure of surfactant-free vanadium oxide nanoribbons that retain after drying excellent solution-processable capabilities. Essential for the success of the method is the use of a soluble organic oxidant that acts as oxidant and cosurfactant during the synthesis, and facilitates surfactant removal with a simple washing protocol. Interestingly, this simple surfactant removal protocol could be of general applicability. As a proof-of-concept of the functional, structural, and processing capabilities of the dry vanadium oxide nanoribbons here prepared, we have checked their lithium insertion capabilities as battery cathodes built upon different configurations. Specifically, we show efficient insertion both in dry nanoribbons processed as films using doctor blade and organic solvents and in dry nanoribbons infiltrated in three-dimensional metal collectors from aqueous suspensions. PMID:26513340

  5. Reversible ion exchange and structural stability of garnet-type Nb-doped Li7La3Zr2O12 in water for applications in lithium batteries

    NASA Astrophysics Data System (ADS)

    Liu, Cai; Rui, Kun; Shen, Chen; Badding, Michael E.; Zhang, Gaoxiao; Wen, Zhaoyin

    2015-05-01

    H+/Li+ ion exchange and structural stability of the high ionic conductivity Nb-doped Zr-garnet Li6.75La3Nb0.25Zr1.75O12 (LLNZO) are investigated in this study. Relationships between ion exchange and Li-population per unit cell, which are necessary to establish the practical framework of garnet electrolytes, are deduced for garnet oxides within ion-exchange process. H+/Li+ ion exchange of cubic LLNZO powder is performed continuously in distilled water and products with various exchange levels are obtained via this simple method. FTIR spectra show the evolution of H-O bonding through the ion-exchange process. A maximum of 74.8% exchange of Li+ by H+ was found, consistent with a preferential replacement of octahedrally coordinated Li. The cubic garnet phase is maintained throughout all levels of proton exchange observed. The formation of garnet-type solid solution of Li6.75-xHxLa3Nb0.25Zr1.75O12 is indicated by well-resolved lattice fringes as well as the linear evolution of crystal lattice parameters with the ion exchange level. The reverse ion exchange of H+ by Li+ is successfully achieved in Li+ containing aqueous solutions, demonstrating its high structural stability and good compatibility for promising applications in lithium batteries.

  6. Preparation, characterization and application of a reversed phase liquid chromatography/hydrophilic interaction chromatography mixed-mode C18-DTT stationary phase.

    PubMed

    Wang, Qing; Long, Yao; Yao, Lin; Xu, Li; Shi, Zhi-Guo; Xu, Lanying

    2016-01-01

    A mixed-mode chromatographic stationary phase, C18-DTT (dithiothreitol) silica (SiO2) was prepared through "thiol-ene" click chemistry. The obtained material was characterized by fourier transform infrared spectroscope, nitrogen adsorption analysis and contact angle analysis. Chromatographic performance of the C18-DTT was systemically evaluated by studying the effect of acetonitrile content, pH, buffer concentration of the mobile phase and column temperature. It was demonstrated that the novel stationary phase possessed reversed phase liquid chromatography (RPLC)/hydrophilic interaction liquid chromatography (HILIC) mixed-mode property. The stop-flow test revealed that C18-DTT exhibited excellent compatibility with 100% aqueous mobile phase. Additionally, the stability and column-to-column reproducibility of the C18-DTT material were satisfactory, with relative standard deviations of retention factor of the tested analytes (verapamil, fenbufen, guanine, tetrandrine and nicotinic acid) in the range of 1.82-3.72% and 0.85-1.93%, respectively. Finally, the application of C18-DTT column was demonstrated in the separation of non-steroidal anti-inflammatory drugs, aromatic carboxylic acids, alkaloids, nucleo-analytes and polycyclic aromatic hydrocarbons. It had great resolving power in the analysis of various compounds in HILIC and RPLC chromatographic conditions and was a promising RPLC/HILIC mixed-mode stationary phase. PMID:26695288

  7. Synthesis of magnetic molecularly imprinted polymers by reversible addition fragmentation chain transfer strategy and its application in the Sudan dyes residue analysis.

    PubMed

    Xie, Xiaoyu; Chen, Liang; Pan, Xiaoyan; Wang, Sicen

    2015-07-31

    Magnetic molecularly imprinted polymers (MMIPs) have become a hotspot owing to the dual functions of target recognition and magnetic separation. In this study, the MMIPs were obtained by the surface-initiated reversible addition fragmentation chain transfer (RAFT) polymerization using Sudan I as the template. The resultant MMIPs were characterized by transmission electron microscope, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, vibrating sample magnetometer, and X-ray diffraction. Benefiting from the controlled/living property of the RAFT strategy, the uniform MIP layer was successfully grafted on the surface of RAFT agent-modified Fe3O4@SiO2 nanoparticles, favoring the fast mass transfer and rapid binding kinetics. The developed MMIPs were used as the solid-phase extraction sorbents to selectively extract four Sudan dyes (Sudan I, II, III, and IV) from chili powder samples. The recoveries of the spiked samples in chili powder samples ranged from 74.1 to 93.3% with RSD lower than 6.4% and the relative standard uncertainty lower than 0.029. This work provided a good platform for the extraction and removal of Sudan dyes in complicated matrixes and demonstrated a bright future for the application of the well-constructed MMIPs in the field of solid-phase extraction. PMID:26077971

  8. Evaluation of Residual Static Corrections by Hybrid Genetic Algorithm Steepest Ascent Autostatics Inversion.Application southern Algerian fields

    NASA Astrophysics Data System (ADS)

    Eladj, Said; bansir, fateh; ouadfeul, sid Ali

    2016-04-01

    The application of genetic algorithm starts with an initial population of chromosomes representing a "model space". Chromosome chains are preferentially Reproduced based on Their fitness Compared to the total population. However, a good chromosome has a Greater opportunity to Produce offspring Compared To other chromosomes in the population. The advantage of the combination HGA / SAA is the use of a global search approach on a large population of local maxima to Improve Significantly the performance of the method. To define the parameters of the Hybrid Genetic Algorithm Steepest Ascent Auto Statics (HGA / SAA) job, we Evaluated by testing in the first stage of "Steepest Ascent," the optimal parameters related to the data used. 1- The number of iterations "Number of hill climbing iteration" is equal to 40 iterations. This parameter defines the participation of the algorithm "SA", in this hybrid approach. 2- The minimum eigenvalue for SA '= 0.8. This is linked to the quality of data and S / N ratio. To find an implementation performance of hybrid genetic algorithms in the inversion for estimating of the residual static corrections, tests Were Performed to determine the number of generation of HGA / SAA. Using the values of residual static corrections already calculated by the Approaches "SAA and CSAA" learning has Proved very effective in the building of the cross-correlation table. To determine the optimal number of generation, we Conducted a series of tests ranging from [10 to 200] generations. The application on real seismic data in southern Algeria allowed us to judge the performance and capacity of the inversion with this hybrid method "HGA / SAA". This experience Clarified the influence of the corrections quality estimated from "SAA / CSAA" and the optimum number of generation hybrid genetic algorithm "HGA" required to have a satisfactory performance. Twenty (20) generations Were enough to Improve continuity and resolution of seismic horizons. This Will allow

  9. Use of Embryos Extracted from Individual Cannabis sativa Seeds for Genetic Studies and Forensic Applications.

    PubMed

    Soler, Salvador; Borràs, Dionís; Vilanova, Santiago; Sifres, Alicia; Andújar, Isabel; Figàs, Maria R; Llosa, Ernesto R; Prohens, Jaime

    2016-03-01

    Legal limits on the psychoactive tetrahydrocannabinol (THC) content in Cannabis sativa plants have complicated genetic and forensic studies in this species. However, Cannabis seeds present very low THC levels. We developed a method for embryo extraction from seeds and an improved protocol for DNA extraction and tested this method in four hemp and six marijuana varieties. This embryo extraction method enabled the recovery of diploid embryos from individual seeds. An improved DNA extraction protocol (CTAB3) was used to obtain DNA from individual embryos at a concentration and quality similar to DNA extracted from leaves. DNA extracted from embryos was used for SSR molecular characterization in individuals from the 10 varieties. A unique molecular profile for each individual was obtained, and a clear differentiation between hemp and marijuana varieties was observed. The combined embryo extraction-DNA extraction methodology and the new highly polymorphic SSR markers facilitate genetic and forensic studies in Cannabis. PMID:27404624

  10. Potential applications of cryogenic technologies to plant genetic improvement and pathogen eradication.

    PubMed

    Wang, Biao; Wang, Ren-Rui; Cui, Zhen-Hua; Bi, Wen-Lu; Li, Jing-Wei; Li, Bai-Quan; Ozudogru, Elif Aylin; Volk, Gayle M; Wang, Qiao-Chun

    2014-01-01

    Rapid increases in human populations provide a great challenge to ensure that adequate quantities of food are available. Sustainable development of agricultural production by breeding more productive cultivars and by increasing the productive potential of existing cultivars can help meet this demand. The present paper provides information on the potential uses of cryogenic techniques in ensuring food security, including: (1) long-term conservation of a diverse germplasm and successful establishment of cryo-banks; (2) maintenance of the regenerative ability of embryogenic tissues that are frequently the target for genetic transformation; (3) enhancement of genetic transformation and plant regeneration of transformed cells, and safe, long-term conservation for transgenic materials; (4) production and maintenance of viable protoplasts for transformation and somatic hybridization; and (5) efficient production of pathogen-free plants. These roles demonstrate that cryogenic technologies offer opportunities to ensure food security. PMID:24681087

  11. Development and Application of Microsatellites in Carcinus maenas: Genetic Differentiation between Northern and Central Portuguese Populations

    PubMed Central

    Pascoal, Sónia; Creer, Simon; Taylor, Martin I.; Queiroga, Henrique; Carvalho, Gary; Mendo, Sónia

    2009-01-01

    Carcinus maenas, the common shore crab of European coastal waters, has recently gained notoriety due to its globally invasive nature associated with drastic ecological and economic effects. The native ubiquity and worldwide importance of C. maenas has resulted in it becoming one of the best-studied estuarine crustacean species globally. Accordingly, there is significant interest in investigating the population genetic structure of this broadly distributed crab along European and invaded coastlines. Here, we developed polymerase chain reaction (PCR) primers for one dinucleotide and two trinucleotide microsatellite loci, resulting from an enrichment process based on Portuguese populations. Combining these three new markers with six existing markers, we examined levels of genetic diversity and population structure of C. maenas in two coastal regions from Northern and Central Portugal. Genotypes showed that locus polymorphism ranged from 10 to 42 alleles (N = 135) and observed heterozygosity per locus ranged from 0.745 to 0.987 with expected heterozygosity ranging from 0.711 to 0.960; values typical of marine decapods. The markers revealed weak, but significant structuring among populations (global FST = 0.004) across a 450 km (over-water distance) spatial scale. Combinations of these and existing markers will be useful for studying population genetic parameters at a range of spatial scales of C. maenas throughout its expanding species range. PMID:19789651

  12. Improving reversal median computation using commuting reversals and cycle information.

    PubMed

    Arndt, William; Tang, Jijun

    2008-10-01

    In the past decade, genome rearrangements have attracted increasing attention from both biologists and computer scientists as a new type of data for phylogenetic analysis. Methods for reconstructing phylogeny from genome rearrangements include distance-based methods, MCMC methods, and direct optimization methods. The latter, pioneered by Sankoff and extended with the software suites GRAPPA and MGR, is the most accurate approach, but is very limited due to the difficulty of its scoring procedure--it must solve multiple instances of the reversal median problem to compute the score of a given tree. The reversal median problem is known to be NP-hard and all existing solvers are extremely slow when the genomes are distant. In this paper, we present a new reversal median heuristic for unichromosomal genomes. The new method works by applying sets of reversals in a batch where all such reversals both commute and do not break the cycle of any other. Our testing using simulated datasets shows that this method is much faster than the leading solver for difficult datasets with only a slight accuracy penalty, yet retains better accuracy than other heuristics with comparable speed, and provides the additional option of searching for multiple medians. This method dramatically increases the speed of current direct optimization methods and enables us to extend the range of their applicability to organellar and small nuclear genomes with more than 50 reversals along each edge. PMID:18774904

  13. Reverse-Genetic Analysis of the Two Biotin-Containing Subunit Genes of the Heteromeric Acetyl-Coenzyme A Carboxylase in Arabidopsis Indicates a Unidirectional Functional Redundancy1[C][W][OA

    PubMed Central

    Li, Xu; Ilarslan, Hilal; Brachova, Libuse; Qian, Hui-Rong; Li, Ling; Che, Ping; Wurtele, Eve Syrkin; Nikolau, Basil J.

    2011-01-01

    The heteromeric acetyl-coenzyme A carboxylase catalyzes the first and committed reaction of de novo fatty acid biosynthesis in plastids. This enzyme is composed of four subunits: biotin carboxyl-carrier protein (BCCP), biotin carboxylase, α-carboxyltransferase, and β-carboxyltransferase. With the exception of BCCP, single-copy genes encode these subunits in Arabidopsis (Arabidopsis thaliana). Reverse-genetic approaches were used to individually investigate the physiological significance of the two paralogous BCCP-coding genes, CAC1A (At5g16390, codes for BCCP1) and CAC1B (At5g15530, codes for BCCP2). Transfer DNA insertional alleles that completely eliminate the accumulation of BCCP2 have no perceptible effect on plant growth, development, and fatty acid accumulation. In contrast, transfer DNA insertional null allele of the CAC1A gene is embryo lethal and deleteriously affects pollen development and germination. During seed development the effect of the cac1a null allele first becomes apparent at 3-d after flowering, when the synchronous development of the endosperm and embryo is disrupted. Characterization of CAC1A antisense plants showed that reducing BCCP1 accumulation to 35% of wild-type levels, decreases fatty acid accumulation and severely affects normal vegetative plant growth. Detailed expression analysis by a suite of approaches including in situ RNA hybridization, promoter:reporter transgene expression, and quantitative western blotting reveal that the expression of CAC1B is limited to a subset of the CAC1A-expressing tissues, and CAC1B expression levels are only about one-fifth of CAC1A expression levels. Therefore, a likely explanation for the observed unidirectional redundancy between these two paralogous genes is that whereas the BCCP1 protein can compensate for the lack of BCCP2, the absence of BCCP1 cannot be tolerated as BCCP2 levels are not sufficient to support heteromeric acetyl-coenzyme A carboxylase activity at a level that is required for

  14. Genetic variation and its maintenance

    SciTech Connect

    Roberts, D.F.; De Stefano, G.F.

    1986-01-01

    This book contains several papers divided among three sections. The section titles are: Genetic Diversity--Its Dimensions; Genetic Diversity--Its Origin and Maintenance; and Genetic Diversity--Applications and Problems of Complex Characters.

  15. Application of Massively Parallel Sequencing to Genetic Diagnosis in Multiplex Families with Idiopathic Sensorineural Hearing Impairment

    PubMed Central

    Wu, Chen-Chi; Lin, Yin-Hung; Lu, Ying-Chang; Chen, Pei-Jer; Yang, Wei-Shiung; Hsu, Chuan-Jen; Chen, Pei-Lung

    2013-01-01

    Despite the clinical utility of genetic diagnosis to address idiopathic sensorineural hearing impairment (SNHI), the current strategy for screening mutations via Sanger sequencing suffers from the limitation that only a limited number of DNA fragments associated with common deafness mutations can be genotyped. Consequently, a definitive genetic diagnosis cannot be achieved in many families with discernible family history. To investigate the diagnostic utility of massively parallel sequencing (MPS), we applied the MPS technique to 12 multiplex families with idiopathic SNHI in which common deafness mutations had previously been ruled out. NimbleGen sequence capture array was designed to target all protein coding sequences (CDSs) and 100 bp of the flanking sequence of 80 common deafness genes. We performed MPS on the Illumina HiSeq2000, and applied BWA, SAMtools, Picard, GATK, Variant Tools, ANNOVAR, and IGV for bioinformatics analyses. Initial data filtering with allele frequencies (<5% in the 1000 Genomes Project and 5400 NHLBI exomes) and PolyPhen2/SIFT scores (>0.95) prioritized 5 indels (insertions/deletions) and 36 missense variants in the 12 multiplex families. After further validation by Sanger sequencing, segregation pattern, and evolutionary conservation of amino acid residues, we identified 4 variants in 4 different genes, which might lead to SNHI in 4 families compatible with autosomal dominant inheritance. These included GJB2 p.R75Q, MYO7A p.T381M, KCNQ4 p.S680F, and MYH9 p.E1256K. Among them, KCNQ4 p.S680F and MYH9 p.E1256K were novel. In conclusion, MPS allows genetic diagnosis in multiplex families with idiopathic SNHI by detecting mutations in relatively uncommon deafness genes. PMID:23451214

  16. Nonparametric Methods for Incorporating Genomic Information Into Genetic Evaluations: An Application to Mortality in Broilers

    PubMed Central

    González-Recio, Oscar; Gianola, Daniel; Long, Nanye; Weigel, Kent A.; Rosa, Guilherme J. M.; Avendaño, Santiago

    2008-01-01

    Four approaches using single-nucleotide polymorphism (SNP) information (F∞-metric model, kernel regression, reproducing kernel Hilbert spaces (RKHS) regression, and a Bayesian regression) were compared with a standard procedure of genetic evaluation (E-BLUP) of sires using mortality rates in broilers as a response variable, working in a Bayesian framework. Late mortality (14–42 days of age) records on 12,167 progeny of 200 sires were precorrected for fixed and random (nongenetic) effects used in the model for genetic evaluation and for the mate effect. The average of the corrected records was computed for each sire. Twenty-four SNPs seemingly associated with late mortality were included in three methods used for genomic assisted evaluations. One thousand SNPs were included in the Bayesian regression, to account for markers along the whole genome. The posterior mean of heritability of mortality was 0.02 in the E-BLUP approach, suggesting that genetic evaluation could be improved if suitable molecular markers were available. Estimates of posterior means and standard deviations of the residual variance were 24.38 (3.88), 29.97 (3.22), 17.07 (3.02), and 20.74 (2.87) for E-BLUP, the linear model on SNPs, RKHS regression, and the Bayesian regression, respectively, suggesting that RKHS accounted for more variance in the data. The two nonparametric methods (kernel and RKHS regression) fitted the data better, having a lower residual sum of squares. Predictive ability, assessed by cross-validation, indicated advantages of the RKHS approach, where accuracy was increased from 25 to 150%, relative to other methods. PMID:18430951

  17. Encore: Genetic Association Interaction Network Centrality Pipeline and Application to SLE Exome Data

    PubMed Central

    Davis, Nicholas A.; Lareau, Caleb A.; White, Bill C.; Pandey, Ahwan; Wiley, Graham; Montgomery, Courtney G.; Gaffney, Patrick M.; McKinney, B.A.

    2014-01-01

    Open source tools are needed to facilitate the construction, analysis, and visualization of gene-gene interaction networks for sequencing data. To address this need, we present Encore, an open source network analysis pipeline for GWAS and rare variant data. Encore constructs Genetic Association Interaction Networks or Epistasis Networks using two optional approaches: our previous information-theory method or a generalized linear model approach. Additionally, Encore includes multiple data filtering options, including Random Forest/Random Jungle for main effect enrichment and Evaporative Cooling and Relief-F filters for enrichment of interaction effects. Encore implements SNPrank network centrality for identifying susceptibility hubs (nodes containing a large amount of disease susceptibility information through the combination of multivariate main effects and multiple gene-gene interactions in the network), and it provides appropriate files for interactive visualization of a network using tools from our online Galaxy instance. We implemented these algorithms in C++ using OpenMP for shared-memory parallel analysis on a server or desktop. To demonstrate Encore’s utility in analysis of genetic sequencing data, we present an analysis of exome resequencing data from healthy individuals and those with Systemic Lupus Erythematous (SLE). Our results verify the importance of the previously associated SLE genes HLA-DRB and NCF2, and these two genes had the highest gene-gene interaction degrees among the susceptibility hubs. An additional 14 genes previously associated with SLE emerged in our epistasis network model of the exome data, and three novel candidate genes, ST8SIA4, CMTM4, and C2CD4B, were implicated in the model. In summary, we present a comprehensive tool for epistasis network analysis and the first such analysis of exome data from a genetic study of SLE. Software Availability: http://insilico.utulsa.edu/encore.php. PMID:23740754

  18. Distributed Genetic Algorithm for Feature Selection in Gaia RVS Spectra: Application to ANN Parameterization

    NASA Astrophysics Data System (ADS)

    Fustes, Diego; Ordóñez, Diego; Dafonte, Carlos; Manteiga, Minia; Arcay, Bernardino

    This work presents an algorithm that was developed to select the most relevant areas of a stellar spectrum to extract its basic atmospheric parameters. We consider synthetic spectra obtained from models of stellar atmospheres in the spectral region of the radial velocity spectrograph instrument of the European Space Agency's Gaia space mission. The algorithm that demarcates the areas of the spectra sensitive to each atmospheric parameter (effective temperature and gravity, metallicity, and abundance of alpha elements) is a genetic algorithm, and the parameterization takes place through the learning of artificial neural networks. Due to the high computational cost of processing, we present a distributed implementation in both multiprocessor and multicomputer environments.

  19. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    USGS Publications Warehouse

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  20. Application of BP Neural Network Based on Genetic Algorithm in Quantitative Analysis of Mixed GAS

    NASA Astrophysics Data System (ADS)

    Chen, Hongyan; Liu, Wenzhen; Qu, Jian; Zhang, Bing; Li, Zhibin

    Aiming at the problem of mixed gas detection in neural network and analysis on the principle of gas detection. Combining BP algorithm of genetic algorithm with hybrid gas sensors, a kind of quantitative analysis system of mixed gas is designed. The local minimum of network learning is the main reason which affects the precision of gas analysis. On the basis of the network study to improve the learning algorithms, the analyses and tests for CO, CO2 and HC compounds were tested. The results showed that the above measures effectively improve and enhance the accuracy of the neural network for gas analysis.

  1. Telegenetics: application of a tele-education program in genetic syndromes for Brazilian students.

    PubMed

    Maximino, Luciana Paula; Picolini-Pereira, Mirela Machado; Carvalho, José Luiz Brito

    2014-01-01

    With the high occurrence of genetic anomalies in Brazil and the manifestations of communication disorders associated with these conditions, the development of educative actions that comprise these illnesses can bring unique benefits in the identification and appropriate treatment of these clinical pictures. Objective The aim of this study was to develop and analyze an educational program in genetic syndromes for elementary students applied in two Brazilian states, using an Interactive Tele-education model. Material and Methods The study was carried out in 4 schools: two in the state of São Paulo, Southeast Region, Brazil, and two in the state of Amazonas, North Region, Brazil. Forty-five students, both genders, aged between 13 and 14 years, of the 9th grade of the basic education of both public and private system, were divided into two groups: 21 of São Paulo Group (SPG) and 24 of Amazonas Group (AMG). The educational program lasted about 3 months and was divided into two stages including both classroom and distance activities on genetic syndromes. The classroom activity was carried out separately in each school, with expository lessons, graphs and audiovisual contents. In the activity at a distance the educational content was presented to students by means of the Interactive Tele-education model. In this stage, the students had access a Cybertutor, using the Young Doctor Project methodology. In order to measure the effectiveness of the educational program, the Problem Situation Questionnaire (PSQ) and the Web Site Motivational Analysis Checklist adapted (FPM) were used. Results The program developed was effective for knowledge acquisition in 80% of the groups. FPM showed a high satisfaction index from the participants in relation to the Interactive Tele-education, evaluating the program as "awesome course". No statistically significant differences between the groups regarding type of school or state were observed. Conclusion Thus, the Tele-Education Program can

  2. Telegenetics: application of a tele-education program in genetic syndromes for Brazilian students

    PubMed Central

    MAXIMINO, Luciana Paula; PICOLINI-PEREIRA, Mirela Machado; CARVALHO, José Luiz Brito

    2014-01-01

    With the high occurrence of genetic anomalies in Brazil and the manifestations of communication disorders associated with these conditions, the development of educative actions that comprise these illnesses can bring unique benefits in the identification and appropriate treatment of these clinical pictures. Objective The aim of this study was to develop and analyze an educational program in genetic syndromes for elementary students applied in two Brazilian states, using an Interactive Tele-education model. Material and Methods The study was carried out in 4 schools: two in the state of São Paulo, Southeast Region, Brazil, and two in the state of Amazonas, North Region, Brazil. Forty-five students, both genders, aged between 13 and 14 years, of the 9th grade of the basic education of both public and private system, were divided into two groups: 21 of São Paulo Group (SPG) and 24 of Amazonas Group (AMG). The educational program lasted about 3 months and was divided into two stages including both classroom and distance activities on genetic syndromes. The classroom activity was carried out separately in each school, with expository lessons, graphs and audiovisual contents. In the activity at a distance the educational content was presented to students by means of the Interactive Tele-education model. In this stage, the students had access a Cybertutor, using the Young Doctor Project methodology. In order to measure the effectiveness of the educational program, the Problem Situation Questionnaire (PSQ) and the Web Site Motivational Analysis Checklist adapted (FPM) were used. Results The program developed was effective for knowledge acquisition in 80% of the groups. FPM showed a high satisfaction index from the participants in relation to the Interactive Tele-education, evaluating the program as "awesome course". No statistically significant differences between the groups regarding type of school or state were observed. Conclusion Thus, the Tele-Education Program can

  3. Forward and reverse mutagenesis in C. elegans

    PubMed Central

    Kutscher, Lena M.; Shaham, Shai

    2014-01-01

    Mutagenesis drives natural selection. In the lab, mutations allow gene function to be deciphered. C. elegans is highly amendable to functional genetics because of its short generation time, ease of use, and wealth of available gene-alteration techniques. Here we provide an overview of historical and contemporary methods for mutagenesis in C. elegans, and discuss principles and strategies for forward (genome-wide mutagenesis) and reverse (target-selected and gene-specific mutagenesis) genetic studies in this animal. PMID:24449699

  4. Clinical application of intrauterine bone marrow transplantation for treatment of genetic diseases--feasibility studies.

    PubMed

    Slavin, S; Naparstek, E; Ziegler, M; Lewin, A

    1992-01-01

    Intrauterine bone marrow transplantation (BMT) may represent a new approach for correction of a large variety of genetic disorders in utero. The procedure may become feasible for more genetic disorders in the future, since a large majority of potentially correctible diseases can be diagnosed at an early stage of gestation in utero using molecular probes that permit analysis of small biologic samples and even few cells that may be obtained by chorionic villi biopsy and/or amniocentesis. Haploidentical paternal marrow (2 cases) and sibling bone marrow cells from a disease-free family members, were infused into the fetus. GVHD was avoided following in vitro T-lymphocyte depletion using monoclonal antilymphocyte (CDW52) antibodies (Campath-1) without affecting stem cell viability, similarly to the procedures in routine use in clinical BMT programs in man. Three women underwent intrauterine BMT at 34, 23 and 25 weeks of gestation for metachromatic leucodystrophy (Arylsulfatase A deficiency, 2 cases) and beta thalassemia major (1 case), respectively. A total of 33 x 10(8), 30 x 10(8) and 30 x 10(8) bone marrow cells were infused intraperitoneally (1 case), intraportally plus intraperitoneally (2 cases) with no fetal distress. Although the procedure was uneventful and no clinical evidence of GVHD was observed following delivery, correction of the basic disorders was not accomplished because of anticipated rejection of marrow allografts.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1504665

  5. Representation of DNA sequences in genetic codon context with applications in exon and intron prediction.

    PubMed

    Yin, Changchuan

    2015-04-01

    To apply digital signal processing (DSP) methods to analyze DNA sequences, the sequences first must be specially mapped into numerical sequences. Thus, effective numerical mappings of DNA sequences play key roles in the effectiveness of DSP-based methods such as exon prediction. Despite numerous mappings of symbolic DNA sequences to numerical series, the existing mapping methods do not include the genetic coding features of DNA sequences. We present a novel numerical representation of DNA sequences using genetic codon context (GCC) in which the numerical values are optimized by simulation annealing to maximize the 3-periodicity signal to noise ratio (SNR). The optimized GCC representation is then applied in exon and intron prediction by Short-Time Fourier Transform (STFT) approach. The results show the GCC method enhances the SNR values of exon sequences and thus increases the accuracy of predicting protein coding regions in genomes compared with the commonly used 4D binary representation. In addition, this study offers a novel way to reveal specific features of DNA sequences by optimizing numerical mappings of symbolic DNA sequences. PMID:25491390

  6. Manteia, a predictive data mining system for vertebrate genes and its applications to human genetic diseases

    PubMed Central

    Tassy, Olivier; Pourquié, Olivier

    2014-01-01

    The function of genes is often evolutionarily conserved, and comparing the annotation of ortholog genes in different model organisms has proved to be a powerful predictive tool to identify the function of human genes. Here, we describe Manteia, a resource available online at http://manteia.igbmc.fr. Manteia allows the comparison of embryological, expression, molecular and etiological data from human, mouse, chicken and zebrafish simultaneously to identify new functional and structural correlations and gene-disease associations. Manteia is particularly useful for the analysis of gene lists produced by high-throughput techniques such as microarrays or proteomics. Data can be easily analyzed statistically to characterize the function of groups of genes and to correlate the different aspects of their annotation. Sophisticated querying tools provide unlimited ways to merge the information contained in Manteia along with the possibility of introducing custom user-designed biological questions into the system. This allows for example to connect all the animal experimental results and annotations to the human genome, and take advantage of data not available for human to look for candidate genes responsible for genetic disorders. Here, we demonstrate the predictive and analytical power of the system to predict candidate genes responsible for human genetic diseases. PMID:24038354

  7. Novel applications of multitask learning and multiple output regression to multiple genetic trait prediction

    PubMed Central

    Kuhn, David; Parida, Laxmi

    2016-01-01

    Given a set of biallelic molecular markers, such as SNPs, with genotype values encoded numerically on a collection of plant, animal or human samples, the goal of genetic trait prediction is to predict the quantitative trait values by simultaneously modeling all marker effects. Genetic trait prediction is usually represented as linear regression models. In many cases, for the same set of samples and markers, multiple traits are observed. Some of these traits might be correlated with each other. Therefore, modeling all the multiple traits together may improve the prediction accuracy. In this work, we view the multitrait prediction problem from a machine learning angle: as either a multitask learning problem or a multiple output regression problem, depending on whether different traits share the same genotype matrix or not. We then adapted multitask learning algorithms and multiple output regression algorithms to solve the multitrait prediction problem. We proposed a few strategies to improve the least square error of the prediction from these algorithms. Our experiments show that modeling multiple traits together could improve the prediction accuracy for correlated traits. Availability and implementation: The programs we used are either public or directly from the referred authors, such as MALSAR (http://www.public.asu.edu/~jye02/Software/MALSAR/) package. The Avocado data set has not been published yet and is available upon request. Contact: dhe@us.ibm.com PMID:27307640

  8. Application of a New Genetic Deafness Microarray for Detecting Mutations in the Deaf in China

    PubMed Central

    Wu, Hong; Feng, Yong; Jiang, Lu; Pan, Qian; Liu, Yalan; Liu, Chang; He, Chufeng; Chen, Hongsheng; Liu, Xueming; Hu, Chang; Hu, Yiqiao; Mei, Lingyun

    2016-01-01

    Objective The aim of this study was to evaluate the GoldenGate microarray as a diagnostic tool and to elucidate the contribution of the genes on this array to the development of both nonsyndromic and syndromic sensorineural hearing loss in China. Methods We developed a microarray to detect 240 mutations underlying syndromic and nonsyndromic sensorineural hearing loss. The microarray was then used for analysis of 382 patients with nonsyndromic sensorineural hearing loss (including 15 patients with enlarged vestibular aqueduct syndrome), 21 patients with Waardenburg syndrome, and 60 unrelated controls. Subsequently, we analyzed the sensitivity, specificity, and reproducibility of this new approach after Sanger sequencing-based verification, and also determined the contribution of the genes on this array to the development of distinct hearing disorders. Results The sensitivity and specificity of the microarray chip were 98.73% and 98.34%, respectively. Genetic defects were identified in 61.26% of the patients with nonsyndromic sensorineural hearing loss, and 9 causative genes were identified. The molecular etiology was confirmed in 19.05% and 46.67% of the patients with Waardenburg syndrome and enlarged vestibular aqueduct syndrome, respectively. Conclusion Our new mutation-based microarray comprises an accurate and comprehensive genetic tool for the detection of sensorineural hearing loss. This microarray-based detection method could serve as a first-pass screening (before next-generation-sequencing screening) for deafness-causing mutations in China. PMID:27018795

  9. Manteia, a predictive data mining system for vertebrate genes and its applications to human genetic diseases.

    PubMed

    Tassy, Olivier; Pourquié, Olivier

    2014-01-01

    The function of genes is often evolutionarily conserved, and comparing the annotation of ortholog genes in different model organisms has proved to be a powerful predictive tool to identify the function of human genes. Here, we describe Manteia, a resource available online at http://manteia.igbmc.fr. Manteia allows the comparison of embryological, expression, molecular and etiological data from human, mouse, chicken and zebrafish simultaneously to identify new functional and structural correlations and gene-disease associations. Manteia is particularly useful for the analysis of gene lists produced by high-throughput techniques such as microarrays or proteomics. Data can be easily analyzed statistically to characterize the function of groups of genes and to correlate the different aspects of their annotation. Sophisticated querying tools provide unlimited ways to merge the information contained in Manteia along with the possibility of introducing custom user-designed biological questions into the system. This allows for example to connect all the animal experimental results and annotations to the human genome, and take advantage of data not available for human to look for candidate genes responsible for genetic disorders. Here, we demonstrate the predictive and analytical power of the system to predict candidate genes responsible for human genetic diseases. PMID:24038354

  10. Study on the application of parent-of-origin specific DNA methylation markers to forensic genetics.

    PubMed

    Zhao, Guisen; Yang, Qingen; Huang, Daixin; Yu, Chunying; Yang, Rongzhi; Chen, Hui; Mei, Kun

    2005-11-25

    In paternity test, especially in motherless cases, the allele inherited from father (obligatory gene, OG) often cannot be determined. The paternity exclusion probability (PE) of a genetic marker is reduced considerably. Therefore, it is necessary to develop a new technique, by which the parental origin of alleles can be determined without genealogical analysis. In this paper, we explored the possibility of using parent-of-origin specific DNA methylation markers to determine the parental origin of alleles, choosing the imprinted single nucleotide polymorphism (SNP) locus rs220028 (A/G) as a model system. We typed the SNP by mutagenically separated PCR (MS-PCR). The frequencies of alleles were A = 0.5085, G = 0.4915; the unbiased heterozygosity was 0.5020. In order to discriminate between the maternal allele and paternal allele, post-digestion MS-PCR, a novel PCR based methylation analysis and SNP typing technique was developed and performed on 18 heterozygous children, and the methylated maternal allele was detected specifically. As a pilot study on the use of epigenetic markers in forensic genetics, our results demonstrated the feasibility of using parent-of-origin specific DNA methylation markers to determine the parental origin of alleles. PMID:16182958

  11. Dynamics of the Genetic Diversity of Subsurface Microbial Communities and Their Applications to Contaminated Site Cleanups

    EPA Science Inventory

    When compared to traditional approaches, the utilization of molecular and genomic techniques to soil and groundwater cleanup investigations can reduce inherent parameter variability when conducting bench and pilot-scale investigations or carrying out full-scale field applications...

  12. Reversible Thermoset Adhesives

    NASA Technical Reports Server (NTRS)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  13. Application of carrier testing to genetic counseling for X-linked agammaglobulinemia

    SciTech Connect

    Allen, R.C.; Nachtman, R.G.; Belmont, J.W.; Rosenblatt, H.M.

    1994-01-01

    Bruton X-linked agammaglobulinemia (XLA) is a phenotypically recessive genetic disorder of B lymphocyte development. Female carriers of XLA, although asymptomatic, have a characteristic B cell lineage-specific skewing of the pattern of X inactivation. Skewing apparently results from defective growth and maturation of B cell precursors bearing a mutant active X chromosome. In this study, carrier status was tested in 58 women from 22 families referred with a history of agammaglobulinemia. Primary carrier analysis to examine patterns of X inactivation in CD19[sup +] peripheral blood cells (B lymphocytes) was conducted using quantitative PCR at the androgen-receptor locus. Obligate carriers of XLA demonstrated >95% skewing of X inactivation in peripheral blood CD19[sup +] cells but not in CD19[sup [minus

  14. Applications of genetic algorithms on the structure-activity relationship analysis of some cinnamamides.

    PubMed

    Hou, T J; Wang, J M; Liao, N; Xu, X J

    1999-01-01

    Quantitative structure-activity relationships (QSARs) for 35 cinnamamides were studied. By using a genetic algorithm (GA), a group of multiple regression models with high fitness scores was generated. From the statistical analyses of the descriptors used in the evolution procedure, the principal features affecting the anticonvulsant activity were found. The significant descriptors include the partition coefficient, the molar refraction, the Hammet sigma constant of the substituents on the benzene ring, and the formation energy of the molecules. It could be found that the steric complementarity and the hydrophobic interaction between the inhibitors and the receptor were very important to the biological activity, while the contribution of the electronic effect was not so obvious. Moreover, by construction of the spline models for these four principal descriptors, the effective range for each descriptor was identified. PMID:10529984

  15. Application of cryopreservation to genetic analyses of a photosynthetic picoeukaryote community.

    PubMed

    Kawachi, Masanobu; Kataoka, Takafumi; Sato, Mayumi; Noël, Mary-Hélène; Kuwata, Akira; Demura, Mikihide; Yamaguchi, Haruyo

    2016-02-01

    Cryopreservation is useful for long-term maintenance of living strains in microbial culture collections. We applied this technique to environmental specimens from two monitoring sites at Sendai Bay, Japan and compared the microbial diversity of photosynthetic picoeukaryotes in samples before and after cryopreservation. Flow cytometry (FCM) showed no considerable differences between specimens. We used 2500 cells sorted with FCM for next-generation sequencing of 18S rRNA gene amplicons and after removing low-quality sequences obtained 10,088-37,454 reads. Cluster analysis and comparative correlation analysis of observed high-level operational taxonomic units indicated similarity between specimens before and after cryopreservation. The effects of cryopreservation on cells were assessed with representative culture strains, including fragile cryptophyte cells. We confirmed the usefulness of cryopreservation for genetic studies on environmental specimens, and found that small changes in FCM cytograms after cryopreservation may affect biodiversity estimation. PMID:26506442

  16. Identifying plausible genetic models based on association and linkage results: application to type 2 diabetes.

    PubMed

    Guan, Weihua; Boehnke, Michael; Pluzhnikov, Anna; Cox, Nancy J; Scott, Laura J

    2012-12-01

    When planning resequencing studies for complex diseases, previous association and linkage studies can constrain the range of plausible genetic models for a given locus. Here, we explore the combinations of causal risk allele frequency (RAFC ) and genotype relative risk (GRRC ) consistent with no or limited evidence for affected sibling pair (ASP) linkage and strong evidence for case-control association. We find that significant evidence for case-control association combined with no or moderate evidence for ASP linkage can define a lower bound for the plausible RAFC . Using data from large type 2 diabetes (T2D) linkage and genome-wide association study meta-analyses, we find that under reasonable model assumptions, 23 of 36 autosomal T2D risk loci are unlikely to be due to causal variants with combined RAFC < 0.005, and four of the 23 are unlikely to be due to causal variants with combined RAFC < 0.05. PMID:22865662

  17. A new genetic distance with application to constrained variation at microsatellite loci.

    PubMed

    Zhivotovsky, L A

    1999-04-01

    Genetic variation at microsatellite loci is supposed to be constrained within some range in allele size. In this case, the average-square distance (delta mu)2 between two diverged populations moves asymptotically around and underestimates the time since the populations had split. A distance based on the between-locus correlation in the mean repeat scores, DR, is introduced. Numerical simulations show that DR is a linear function of time if the constraints are approximated by a linear centripetal force, which might be due to mutation bias toward a definite range or be caused both by directional mutation bias toward larger allele size and by selection against the greater number of repeats. PMID:10331272

  18. Calibration of neural networks using genetic algorithms, with application to optimal path planning

    NASA Technical Reports Server (NTRS)

    Smith, Terence R.; Pitney, Gilbert A.; Greenwood, Daniel

    1987-01-01

    Genetic algorithms (GA) are used to search the synaptic weight space of artificial neural systems (ANS) for weight vectors that optimize some network performance function. GAs do not suffer from some of the architectural constraints involved with other techniques and it is straightforward to incorporate terms into the performance function concerning the metastructure of the ANS. Hence GAs offer a remarkably general approach to calibrating ANS. GAs are applied to the problem of calibrating an ANS that finds optimal paths over a given surface. This problem involves training an ANS on a relatively small set of paths and then examining whether the calibrated ANS is able to find good paths between arbitrary start and end points on the surface.

  19. Analysis of a stochastic predator-prey model with applications to intrahost HIV genetic diversity.

    PubMed

    Leviyang, Sivan

    2012-12-01

    During an infection, HIV experiences strong selection by immune system T cells. Recent experimental work has shown that MHC escape mutations form an important pathway for HIV to avoid such selection. In this paper, we study a model of MHC escape mutation. The model is a predator-prey model with two prey, composed of two HIV variants, and one predator, the immune system CD8 cells. We assume that one HIV variant is visible to CD8 cells and one is not. The model takes the form of a system of stochastic differential equations. Motivated by well-known results concerning the short life-cycle of HIV intrahost, we assume that HIV population dynamics occur on a faster time scale then CD8 population dynamics. This separation of time scales allows us to analyze our model using an asymptotic approach. Using this model we study the impact of an MHC escape mutation on the population dynamics and genetic evolution of the intrahost HIV population. From the perspective of population dynamics, we show that the competition between the visible and invisible HIV variants can reach steady states in which either a single variant exists or in which coexistence occurs depending on the parameter regime. We show that in some parameter regimes the end state of the system is stochastic. From a genetics perspective, we study the impact of the population dynamics on the lineages of an HIV sample taken after an escape mutation occurs. We show that the lineages go through severe bottlenecks and that in certain parameter regimes the lineage distribution can be characterized by a Kingman coalescent. Our results depend on methods from diffusion theory and coalescent theory. PMID:22139471

  20. Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines.

    PubMed Central

    Powell, W; Morgante, M; McDevitt, R; Vendramin, G G; Rafalski, J A

    1995-01-01

    Simple sequence repeats (SSRs), consisting of tandemly repeated multiple copies of mono-, di-, tri-, or tetranucleotide motifs, are ubiquitous in eukaryotic genomes and are frequently used as genetic markers, taking advantage of their length polymorphism. We have examined the polymorphism of such sequences in the chloroplast genomes of plants, by using a PCR-based assay. GenBank searches identified the presence of several (dA)n.(dT)n mononucleotide stretches in chloroplast genomes. A chloroplast (cp) SSR was identified in three pine species (Pinus contorta, Pinus sylvestris, and Pinus thunbergii) 312 bp upstream of the psbA gene. DNA amplification of this repeated region from 11 pine species identified nine length variants. The polymorphic amplified fragments were isolated and the DNA sequence was determined, confirming that the length polymorphism was caused by variation in the length of the repeated region. In the pines, the chloroplast genome is transmitted through pollen and this PCR assay may be used to monitor gene flow in this genus. Analysis of 305 individuals from seven populations of Pinus leucodermis Ant. revealed the presence of four variants with intrapopulational diversities ranging from 0.000 to 0.629 and an average of 0.320. Restriction fragment length polymorphism analysis of cpDNA on the same populations previously failed to detect any variation. Population subdivision based on cpSSR was higher (Gst = 0.22, where Gst is coefficient of gene differentiation) than that revealed in a previous isozyme study (Gst = 0.05). We anticipate that SSR loci within the chloroplast genome should provide a highly informative assay for the analysis of the genetic structure of plant populations. Images Fig. 2 PMID:7644491

  1. Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding.

    PubMed

    Brown, James K M; Chartrain, Laëtitia; Lasserre-Zuber, Pauline; Saintenac, Cyrille

    2015-06-01

    This paper reviews current knowledge about genes for resistance to Septoria tritici blotch (STB) of wheat, caused by Zymoseptoria tritici (formerly Mycosphaerella graminicola). These genes can be placed into two classes, although a few may have characteristics of both classes. Qualitative resistance is controlled by genes which control large fractions of genetic variation, 21 of which have been discovered and mapped so far. Most of them have been shown to be genotype-specific, being effective against the minority of Z. tritici isolates which are avirulent, and Stb6 has been shown to control a gene-for-gene relationship. Most qualitative resistances are unlikely to be durable and some formerly effective genes have been overcome by the evolution of pathogen virulence. Quantitative resistance is generally controlled by genes with small-to-moderate effects on STB. They have generally weaker specificity than qualitative genes and have provided more durable resistance. 89 genome regions carrying quantitative trait loci (QTL) or meta-QTL have been identified to date. Some QTL have been mapped at or near loci of qualitative genes, especially Stb6, which is present in several sources of resistance. Another gene of particular interest is Stb16q, which has been effective against all Z. tritici isolates tested so far. In addition to resistance, the susceptibility of wheat cultivars to STB can also be reduced by disease escape traits, some of which may be undesirable in breeding. The fundamental requirements for breeding for STB-resistance are genetic diversity for resistance in wheat germplasm and a field trial site at which STB epidemics occur regularly and effective selection can be conducted for resistance combined with other desirable traits. If these are in place, knowledge of resistance genes can be applied to improving control of STB. PMID:26092788

  2. Application of Genetic Algorithm to Predict Optimal Sowing Region and Timing for Kentucky Bluegrass in China

    PubMed Central

    Peng, Tingting; Jiang, Bo; Guo, Jiangfeng; Lu, Hongfei; Du, Liqun

    2015-01-01

    Temperature is a predominant environmental factor affecting grass germination and distribution. Various thermal-germination models for prediction of grass seed germination have been reported, in which the relationship between temperature and germination were defined with kernel functions, such as quadratic or quintic function. However, their prediction accuracies warrant further improvements. The purpose of this study is to evaluate the relative prediction accuracies of genetic algorithm (GA) models, which are automatically parameterized with observed germination data. The seeds of five P. pratensis (Kentucky bluegrass, KB) cultivars were germinated under 36 day/night temperature regimes ranging from 5/5 to 40/40°C with 5°C increments. Results showed that optimal germination percentages of all five tested KB cultivars were observed under a fluctuating temperature regime of 20/25°C. Meanwhile, the constant temperature regimes (e.g., 5/5, 10/10, 15/15°C, etc.) suppressed the germination of all five cultivars. Furthermore, the back propagation artificial neural network (BP-ANN) algorithm was integrated to optimize temperature-germination response models from these observed germination data. It was found that integrations of GA-BP-ANN (back propagation aided genetic algorithm artificial neural network) significantly reduced the Root Mean Square Error (RMSE) values from 0.21~0.23 to 0.02~0.09. In an effort to provide a more reliable prediction of optimum sowing time for the tested KB cultivars in various regions in the country, the optimized GA-BP-ANN models were applied to map spatial and temporal germination percentages of blue grass cultivars in China. Our results demonstrate that the GA-BP-ANN model is a convenient and reliable option for constructing thermal-germination response models since it automates model parameterization and has excellent prediction accuracy. PMID:26154163

  3. Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding

    PubMed Central

    Brown, James K.M.; Chartrain, Laëtitia; Lasserre-Zuber, Pauline; Saintenac, Cyrille

    2015-01-01

    This paper reviews current knowledge about genes for resistance to Septoria tritici blotch (STB) of wheat, caused by Zymoseptoria tritici (formerly Mycosphaerella graminicola). These genes can be placed into two classes, although a few may have characteristics of both classes. Qualitative resistance is controlled by genes which control large fractions of genetic variation, 21 of which have been discovered and mapped so far. Most of them have been shown to be genotype-specific, being effective against the minority of Z. tritici isolates which are avirulent, and Stb6 has been shown to control a gene-for-gene relationship. Most qualitative resistances are unlikely to be durable and some formerly effective genes have been overcome by the evolution of pathogen virulence. Quantitative resistance is generally controlled by genes with small-to-moderate effects on STB. They have generally weaker specificity than qualitative genes and have provided more durable resistance. 89 genome regions carrying quantitative trait loci (QTL) or meta-QTL have been identified to date. Some QTL have been mapped at or near loci of qualitative genes, especially Stb6, which is present in several sources of resistance. Another gene of particular interest is Stb16q, which has been effective against all Z. tritici isolates tested so far. In addition to resistance, the susceptibility of wheat cultivars to STB can also be reduced by disease escape traits, some of which may be undesirable in breeding. The fundamental requirements for breeding for STB-resistance are genetic diversity for resistance in wheat germplasm and a field trial site at which STB epidemics occur regularly and effective selection can be conducted for resistance combined with other desirable traits. If these are in place, knowledge of resistance genes can be applied to improving control of STB. PMID:26092788

  4. Detection of nonauthorized genetically modified organisms using differential quantitative polymerase chain reaction: application to 35S in maize.

    PubMed

    Cankar, Katarina; Chauvensy-Ancel, Valérie; Fortabat, Marie-Noelle; Gruden, Kristina; Kobilinsky, André; Zel, Jana; Bertheau, Yves

    2008-05-15

    Detection of nonauthorized genetically modified organisms (GMOs) has always presented an analytical challenge because the complete sequence data needed to detect them are generally unavailable although sequence similarity to known GMOs can be expected. A new approach, differential quantitative polymerase chain reaction (PCR), for detection of nonauthorized GMOs is presented here. This method is based on the presence of several common elements (e.g., promoter, genes of interest) in different GMOs. A statistical model was developed to study the difference between the number of molecules of such a common sequence and the number of molecules identifying the approved GMO (as determined by border-fragment-based PCR) and the donor organism of the common sequence. When this difference differs statistically from zero, the presence of a nonauthorized GMO can be inferred. The interest and scope of such an approach were tested on a case study of different proportions of genetically modified maize events, with the P35S promoter as the Cauliflower Mosaic Virus common sequence. The presence of a nonauthorized GMO was successfully detected in the mixtures analyzed and in the presence of (donor organism of P35S promoter). This method could be easily transposed to other common GMO sequences and other species and is applicable to other detection areas such as microbiology. PMID:18346452

  5. Characterization and genetic manipulation of human umbilical cord vein mesenchymal stem cells: potential application in cell-based gene therapy.

    PubMed

    Kermani, Abbas Jafari; Fathi, Fardin; Mowla, Seyed Javad

    2008-04-01

    Stem cells are defined by two main characteristics: self-renewal capacity and commitment to multi-lineage differentiation. The cells have a great therapeutic potential in repopulating damaged tissues as well as being genetically manipulated and used in cell-based gene therapy. Umbilical cord vein is a readily available and inexpensive source of stem cells that are capable of generating various cell types. Despite the recent isolation of human umbilical cord vein mesenchymal stem cells (UVMSC), the self-renewal capacity and the potential clinical application of the cells are not well known. In the present study, we have successfully isolated and cultured human UVMSCs. Our data further revealed that the isolated cells express the self-renewal genes Oct-4, Nanog, ZFX, Bmi-1, and Nucleostemin; but not Zic-3, Hoxb-4, TCL-1, Tbx-3 and Esrrb. In addition, our immunocytochemistry results revealed the expression of SSEA-4, but not SSEA-3, TRA-1-60, and TRA-1-81 embryonic stem cell surface markers in the cells. Also, we were able to transfect the cells with a reporter, enhanced green fluorescent protein (EGFP), and a therapeutic human brain-derived neurotrophic factor (hBDNF) gene by means of electroporation and obtained a stable cell line, which could constantly express both transgenes. The latter data provide further evidence on the usefulness of umbilical cord vein mesenchymal stem cells as a readily available source of stem cells, which could be genetically manipulated and used in cell-based gene therapy applications. PMID:18399786

  6. A Hierarchical and Distributed Approach for Mapping Large Applications to Heterogeneous Grids using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Sanyal, Soumya; Jain, Amit; Das, Sajal K.; Biswas, Rupak

    2003-01-01

    In this paper, we propose a distributed approach for mapping a single large application to a heterogeneous grid environment. To minimize the execution time of the parallel application, we distribute the mapping overhead to the available nodes of the grid. This approach not only provides a fast mapping of tasks to resources but is also scalable. We adopt a hierarchical grid model and accomplish the job of mapping tasks to this topology using a scheduler tree. Results show that our three-phase algorithm provides high quality mappings, and is fast and scalable.

  7. Application of genetic algorithms and constructive neural networks for the analysis of microarray cancer data

    PubMed Central

    2014-01-01

    Background Extracting relevant information from microarray data is a very complex task due to the characteristics of the data sets, as they comprise a large number of features while few samples are generally available. In this sense, feature selection is a very important aspect of the analysis helping in the tasks of identifying relevant genes and also for maximizing predictive information. Methods Due to its simplicity and speed, Stepwise Forward Selection (SFS) is a widely used feature selection technique. In this work, we carry a comparative study of SFS and Genetic Algorithms (GA) as general frameworks for the analysis of microarray data with the aim of identifying group of genes with high predictive capability and biological relevance. Six standard and machine learning-based techniques (Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), Naive Bayes (NB), C-MANTEC Constructive Neural Network, K-Nearest Neighbors (kNN) and Multilayer perceptron (MLP)) are used within both frameworks using six free-public datasets for the task of predicting cancer outcome. Results Better cancer outcome prediction results were obtained using the GA framework noting that this approach, in comparison to the SFS one, leads to a larger selection set, uses a large number of comparison between genetic profiles and thus it is computationally more intensive. Also the GA framework permitted to obtain a set of genes that can be considered to be more biologically relevant. Regarding the different classifiers used standard feedforward neural networks (MLP), LDA and SVM lead to similar and best results, while C-MANTEC and k-NN followed closely but with a lower accuracy. Further, C-MANTEC, MLP and LDA permitted to obtain a more limited set of genes in comparison to SVM, NB and kNN, and in particular C-MANTEC resulted in the most robust classifier in terms of changes in the parameter settings. Conclusions This study shows that if prediction accuracy is the objective, the GA

  8. A case study of crop model applications in an increasing diversity of genetically modified traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to develop variety files for six GM cultivars. Several experiments were conducted between 2001 and 2006 by varying cultivars, nitrogen, irrigation, and PIX applications on two different soils in two different growing seasons. In each experiment, plant height and numbers of main...

  9. Applications of High-Performance Computing (HPC) in Plant Breeding, Conservation, and Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasingly powerful and informative DNA sequencing and genotyping techniques, instruments, and software are being developed and used for a wide variety of applications in agriculture. However, the increasing flux and accumulation of data will also require more HPC facilities and expertise. In co...

  10. Genetics and Epigenetics of Glioblastoma: Applications and Overall Incidence of IDH1 Mutation

    PubMed Central

    Liu, Aizhen; Hou, Chunfeng; Chen, Hongfang; Zong, Xuan; Zong, Peijun

    2016-01-01

    Glioblastoma is the most fatal brain cancer found in humans. Patients suffering from glioblastoma have a dismal prognosis, with a median survival of 15 months. The tumor may develop rapidly de novo in older patients or through progression from anaplastic astrocytomas in younger patients if glioblastoma is primary or secondary, respectively. During the past decade, significant advances have been made in the understanding of processes leading to glioblastoma, and several important genetic defects that appear to be important for the development and progression of this tumor have been identified. Particularly, the discovery of recurrent mutations in the isocitrate dehydrogenase 1 (IDH1) gene has shed new light on the molecular landscape in glioblastoma. Indeed, emerging research on the consequences of mutant IDH1 protein expression suggests that its neomorphic enzymatic activity catalyzing the production of the oncometabolite 2-hydroxyglutarate influences a range of cellular programs that affect the epigenome and contribute to glioblastoma development. One of the exciting observations is the presence of IDH1 mutation in the vast majority of secondary glioblastoma, while it is almost absent in primary glioblastoma. Growing data indicate that this particular mutation has clinical and prognostic importance and will become a critical early distinction in diagnosis of glioblastoma. PMID:26858939

  11. Application of mitochondrial genes sequences for measuring the genetic diversity of Arabian oryx.

    PubMed

    Khan, Haseeb A; Arif, Ibrahim A; Shobrak, Mohammad; Homaidan, Ali A Al; Farhan, Ahmad H Al; Sadoon, Mohammad Al

    2011-01-01

    Arabian oryx (Oryx leucoryx) had faced extinction in the wild more than three decades ago and was saved by the prudent efforts of captive breeding programs. A clear understanding of the molecular diversity of contemporary Arabian oryx population is important for the long term success of captive breeding and reintroduction of this potentially endangered species. We have sequenced the segments of mitochondrial DNA including12S rRNA, 16S rRNA, cytochrome b (Cyt-b) and control region (CR) genes of 24 captive-bred and reintroduced animals. Although the sequences of 12S rRNA, 16S rRNA and Cyt-b were found to be identical for all the samples, typical sequence variations in the CR gene were observed in the form of 7 haplotypes. One of these haplotypes has been reported earlier while the remaining 6 haplotypes are novel and represent different lineages from the founders. The haplotype and nucleotide diversities were found to be 0.789 and 0.009 respectively. The genetic distances among the 7 mtDNA haplotypes varied from 0.001 to 0.017. These findings are of potential relevance to the management of captive breeding programs for the conservation of Arabian oryx. PMID:21498924

  12. MicroRNA-mediated gene regulation: potential applications for plant genetic engineering.

    PubMed

    Zhou, Man; Luo, Hong

    2013-09-01

    Food security is one of the most important issues challenging the world today. Any strategies to solve this problem must include increasing crop yields and quality. MicroRNA-based genetic modification technology (miRNA-based GM tech) can be one of the most promising solutions that contribute to agricultural productivity directly by developing superior crop cultivars with enhanced biotic and abiotic stress tolerance and increased biomass yields. Indirectly, the technology may increase usage of marginal soils and decrease pesticide use, among other benefits. This review highlights the most recent progress of transgenic studies utilizing various miRNAs and their targets for plant trait modifications, and analyzes the potential of miRNA-mediated gene regulation for use in crop improvement. Strategies for manipulating miRNAs and their targets in transgenic plants including constitutive, stress-induced, or tissue-specific expression of miRNAs or their targets, RNA interference, expressing miRNA-resistant target genes, artificial target mimic and artificial miRNAs were discussed. We also discussed potential risks of utilizing miRNA-based GM tech. In general, miRNAs and their targets not only provide an invaluable source of novel transgenes, but also inspire the development of several new GM strategies, allowing advances in breeding novel crop cultivars with agronomically useful characteristics. PMID:23771582

  13. Teaching biology through statistics: application of statistical methods in genetics and zoology courses.

    PubMed

    Colon-Berlingeri, Migdalisel; Burrowes, Patricia A

    2011-01-01

    Incorporation of mathematics into biology curricula is critical to underscore for undergraduate students the relevance of mathematics to most fields of biology and the usefulness of developing quantitative process skills demanded in modern biology. At our institution, we have made significant changes to better integrate mathematics into the undergraduate biology curriculum. The curricular revision included changes in the suggested course sequence, addition of statistics and precalculus as prerequisites to core science courses, and incorporating interdisciplinary (math-biology) learning activities in genetics and zoology courses. In this article, we describe the activities developed for these two courses and the assessment tools used to measure the learning that took place with respect to biology and statistics. We distinguished the effectiveness of these learning opportunities in helping students improve their understanding of the math and statistical concepts addressed and, more importantly, their ability to apply them to solve a biological problem. We also identified areas that need emphasis in both biology and mathematics courses. In light of our observations, we recommend best practices that biology and mathematics academic departments can implement to train undergraduates for the demands of modern biology. PMID:21885822

  14. Genetic editing of HLA expression in hematopoietic stem cells to broaden their human application

    PubMed Central

    Torikai, Hiroki; Mi, Tiejuan; Gragert, Loren; Maiers, Martin; Najjar, Amer; Ang, Sonny; Maiti, Sourindra; Dai, Jianliang; Switzer, Kirsten C.; Huls, Helen; Dulay, Gladys P.; Reik, Andreas; Rebar, Edward J.; Holmes, Michael C.; Gregory, Philip D.; Champlin, Richard E.; Shpall, Elizabeth J.; Cooper, Laurence J. N.

    2016-01-01

    Mismatch of human leukocyte antigens (HLA) adversely impacts the outcome of patients after allogeneic hematopoietic stem-cell transplantation (alloHSCT). This translates into the clinical requirement to timely identify suitable HLA-matched donors which in turn curtails the chances of recipients, especially those from a racial minority, to successfully undergo alloHSCT. We thus sought to broaden the existing pool of registered unrelated donors based on analysis that eliminating the expression of the HLA-A increases the chance for finding a donor matched at HLA-B, -C, and -DRB1 regardless of a patient’s race. Elimination of HLA-A expression in HSC was achieved using artificial zinc finger nucleases designed to target HLA-A alleles. Significantly, these engineered HSCs maintain their ability to engraft and reconstitute hematopoiesis in immunocompromised mice. This introduced loss of HLA-A expression decreases the need to recruit large number of donors to match with potential recipients and has particular importance for patients whose HLA repertoire is under-represented in the current donor pool. Furthermore, the genetic engineering of stem cells provides a translational approach to HLA-match a limited number of third-party donors with a wide number of recipients. PMID:26902653

  15. Preimplantation genetic diagnosis for inherited breast cancer: first clinical application and live birth in Spain.

    PubMed

    Ramón Y Cajal, Teresa; Polo, Ana; Martínez, Olga; Giménez, Carles; Arjona, César; Llort, Gemma; Bassas, Lluís; Viscasillas, Pere; Calaf, Joaquin

    2012-06-01

    Carriers of a mutation in BRCA1/2 genes confront a high lifetime risk of breast and ovarian cancer and fifty percent probability of passing the mutation to their offspring. Current options for risk management influence childbearing decisions. The indications for preimplantation genetic diagnosis (PGD) have now been expanded to include predisposition for single-gene, late-onset cancer but few cases have been reported to date despite the favorable opinion among professionals and carriers. A 28-year-old BRCA1 mutation carrier (5273G>A in exon 19) with a strong maternal history of breast cancer and 2 years of infertility decided to pursue PGD to have a healthy descendent after an accurate assessment of her reproductive options. The procedure was approved by the national regulation authority and a PGD cycle was initiated. Four out of 6 embryos harbored the mutation. The two unaffected embryos were implanted in the uterus. A singleton pregnancy was achieved and a male baby was delivered at term. Consented umbilical cord blood testing confirmed the accuracy of the technique. Individualized PGD for inherited breast predisposition is feasible in the context of a multidisciplinary team. PMID:22179695

  16. Applications of colored petri net and genetic algorithms to cluster tool scheduling

    NASA Astrophysics Data System (ADS)

    Liu, Tung-Kuan; Kuo, Chih-Jen; Hsiao, Yung-Chin; Tsai, Jinn-Tsong; Chou, Jyh-Horng

    2005-12-01

    In this paper, we propose a method, which uses Coloured Petri Net (CPN) and genetic algorithm (GA) to obtain an optimal deadlock-free schedule and to solve re-entrant problem for the flexible process of the cluster tool. The process of the cluster tool for producing a wafer usually can be classified into three types: 1) sequential process, 2) parallel process, and 3) sequential parallel process. But these processes are not economical enough to produce a variety of wafers in small volume. Therefore, this paper will propose the flexible process where the operations of fabricating wafers are randomly arranged to achieve the best utilization of the cluster tool. However, the flexible process may have deadlock and re-entrant problems which can be detected by CPN. On the other hand, GAs have been applied to find the optimal schedule for many types of manufacturing processes. Therefore, we successfully integrate CPN and GAs to obtain an optimal schedule with the deadlock and re-entrant problems for the flexible process of the cluster tool.

  17. Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics

    PubMed Central

    Jin, Yan; Shi, Yonggang; Zhan, Liang; Gutman, Boris; de Zubicaray, Greig I.; McMahon, Katie L.; Wright, Margaret J.; Toga, Arthur W.; Thompson, Paul M.

    2014-01-01

    To understand factors that affect brain connectivity and integrity, it is beneficial to automatically cluster white matter (WM) fibers into anatomically recognizable tracts. Whole brain tractography, based on diffusion-weighted MRI, generates vast sets of fibers throughout the brain; clustering them into consistent and recognizable bundles can be difficult as there are wide individual variations in the trajectory and shape of WM pathways. Here we introduce a novel automated tract clustering algorithm based on label fusion – a concept from traditional intensity-based segmentation. Streamline tractography generates many incorrect fibers, so our top-down approach extracts tracts consistent with known anatomy, by mapping multiple hand-labeled atlases into a new dataset. We fuse clustering results from different atlases, using a mean distance fusion scheme. We reliably extracted the major tracts from 105-gradient high angular resolution diffusion images (HARDI) of 198 young normal twins. To compute population statistics, we use a point-wise correspondence method to match, compare, and average WM tracts across subjects. We illustrate our method in a genetic study of white matter tract heritability in twins. PMID:24821529

  18. Application of discrete Fourier inter-coefficient difference for assessing genetic sequence similarity.

    PubMed

    King, Brian R; Aburdene, Maurice; Thompson, Alex; Warres, Zach

    2014-01-01

    Digital signal processing (DSP) techniques for biological sequence analysis continue to grow in popularity due to the inherent digital nature of these sequences. DSP methods have demonstrated early success for detection of coding regions in a gene. Recently, these methods are being used to establish DNA gene similarity. We present the inter-coefficient difference (ICD) transformation, a novel extension of the discrete Fourier transformation, which can be applied to any DNA sequence. The ICD method is a mathematical, alignment-free DNA comparison method that generates a genetic signature for any DNA sequence that is used to generate relative measures of similarity among DNA sequences. We demonstrate our method on a set of insulin genes obtained from an evolutionarily wide range of species, and on a set of avian influenza viral sequences, which represents a set of highly similar sequences. We compare phylogenetic trees generated using our technique against trees generated using traditional alignment techniques for similarity and demonstrate that the ICD method produces a highly accurate tree without requiring an alignment prior to establishing sequence similarity. PMID:24991213

  19. Application of genetic programming and Landsat multi-date imagery for urban growth monitoring

    NASA Astrophysics Data System (ADS)

    Djerriri, Khelifa; Malki, Mimoun

    2013-10-01

    Monitoring of earth surface changes from space by using multi-date satellite imagery was always a main concern to researchers in the field of remotely sensed image processing. Thus, several techniques have been proposed to saving technicians from interpreting and digitizing hundreds of areas by hand. The exploiting of simple, easy to memorize and often comprehensible mathematical models such band-ratios and indices are one of the widely used techniques in remote sensing for the extraction of particular land-cover/land-use like urban and vegetation areas. The results of these models generally only need the definition of adequate threshold or using simple unsupervised classification algorithms to discriminate between the class of interest and the background. In our work a genetic programming based approach has been adopted to evolve simple mathematical expression to extract urban areas from image series. The model is built from a single image by using a basic set of operators between spectral bands and maximizing a fitness function, which is based on the using of the M-statistic criterion. The model was constructed from the Landsat 5 TM image acquired in 2006 by using training samples extracted with the help of a Quick-bird high spatial resolution satellite image acquired the same day as the Landsat image over the city of Oran, Algeria. The model has been tested to extract urban areas from multi-date series of Landsat TM imagery

  20. Application of Genetic Algorithm for Discovery of Core Effective Formulae in TCM Clinical Data

    PubMed Central

    Yang, Ming; Poon, Josiah; Wang, Shaomo; Jiao, Lijing; Poon, Simon; Cui, Lizhi; Chen, Peiqi; Sze, Daniel Man-Yuen; Xu, Ling

    2013-01-01

    Research on core and effective formulae (CEF) does not only summarize traditional Chinese medicine (TCM) treatment experience, it also helps to reveal the underlying knowledge in the formulation of a TCM prescription. In this paper, CEF discovery from tumor clinical data is discussed. The concepts of confidence, support, and effectiveness of the CEF are defined. Genetic algorithm (GA) is applied to find the CEF from a lung cancer dataset with 595 records from 161 patients. The results had 9 CEF with positive fitness values with 15 distinct herbs. The CEF have all had relative high average confidence and support. A herb-herb network was constructed and it shows that all the herbs in CEF are core herbs. The dataset was divided into CEF group and non-CEF group. The effective proportions of former group are significantly greater than those of latter group. A Synergy index (SI) was defined to evaluate the interaction between two herbs. There were 4 pairs of herbs with high SI values to indicate the synergy between the herbs. All the results agreed with the TCM theory, which demonstrates the feasibility of our approach. PMID:24288577

  1. Modeling an aquatic ecosystem: application of an evolutionary algorithm with genetic doping to reduce prediction uncertainty

    NASA Astrophysics Data System (ADS)

    Friedel, Michael; Buscema, Massimo

    2016-04-01

    Aquatic ecosystem models can potentially be used to understand the influence of stresses on catchment resource quality. Given that catchment responses are functions of natural and anthropogenic stresses reflected in sparse and spatiotemporal biological, physical, and chemical measurements, an ecosystem is difficult to model using statistical or numerical methods. We propose an artificial adaptive systems approach to model ecosystems. First, an unsupervised machine-learning (ML) network is trained using the set of available sparse and disparate data variables. Second, an evolutionary algorithm with genetic doping is applied to reduce the number of ecosystem variables to an optimal set. Third, the optimal set of ecosystem variables is used to retrain the ML network. Fourth, a stochastic cross-validation approach is applied to quantify and compare the nonlinear uncertainty in selected predictions of the original and reduced models. Results are presented for aquatic ecosystems (tens of thousands of square kilometers) undergoing landscape change in the USA: Upper Illinois River Basin and Central Colorado Assessment Project Area, and Southland region, NZ.

  2. Teaching Biology through Statistics: Application of Statistical Methods in Genetics and Zoology Courses

    PubMed Central

    Colon-Berlingeri, Migdalisel; Burrowes, Patricia A.

    2011-01-01

    Incorporation of mathematics into biology curricula is critical to underscore for undergraduate students the relevance of mathematics to most fields of biology and the usefulness of developing quantitative process skills demanded in modern biology. At our institution, we have made significant changes to better integrate mathematics into the undergraduate biology curriculum. The curricular revision included changes in the suggested course sequence, addition of statistics and precalculus as prerequisites to core science courses, and incorporating interdisciplinary (math–biology) learning activities in genetics and zoology courses. In this article, we describe the activities developed for these two courses and the assessment tools used to measure the learning that took place with respect to biology and statistics. We distinguished the effectiveness of these learning opportunities in helping students improve their understanding of the math and statistical concepts addressed and, more importantly, their ability to apply them to solve a biological problem. We also identified areas that need emphasis in both biology and mathematics courses. In light of our observations, we recommend best practices that biology and mathematics academic departments can implement to train undergraduates for the demands of modern biology. PMID:21885822

  3. Application of reversal electron attachment for ultrasensitive detection of thermal electron-attaching molecules - CCl4 and C6H5O2

    NASA Technical Reports Server (NTRS)

    Bernius, Mark T.; Chutjian, Ara

    1990-01-01

    A standard gas-dilution method was used to determine the selective response of the reversal electron attachment detector to carbon tetrachloride concentrations in nitrogen. Data are provided that determine the lowest concentration of sample detectable with the present instrumental configuration as being below 1.0 part per trillion by volume. The incorporation of a 90-deg electrostatic deflector with the quadrupole mass spectrometer is shown to be vital, and with it, negative-ion quadrupole mass spectrometry is used to characterize the ionization process. Observations are also made of the reversal electron attachment response to nitrobenzene. The analytical potential of reversal electron capture negative-ion mass spectrometry is examined, and areas for future development are discussed.

  4. Reverse Sample Genome Probing, a New Technique for Identification of Bacteria in Environmental Samples by DNA Hybridization, and Its Application to the Identification of Sulfate-Reducing Bacteria in Oil Field Samples

    PubMed Central

    Voordouw, Gerrit; Voordouw, Johanna K.; Karkhoff-Schweizer, Roxann R.; Fedorak, Phillip M.; Westlake, Donald W. S.

    1991-01-01

    A novel method for the identification of bacteria in environmental samples by DNA hybridization is presented. It is based on the fact that, even within a genus, the genomes of different bacteria may have little overall sequence homology. This allows the use of the labeled genomic DNA of a given bacterium (referred to as a “standard”) to probe for its presence and that of bacteria with highly homologous genomes in total DNA obtained from an environmental sample. Alternatively, total DNA extracted from the sample can be labeled and used to probe filters on which denatured chromosomal DNA from relevant bacterial standards has been spotted. The latter technique is referred to as reverse sample genome probing, since it is the reverse of the usual practice of deriving probes from reference bacteria for analyzing a DNA sample. Reverse sample genome probing allows identification of bacteria in a sample in a single step once a master filter with suitable standards has been developed. Application of reverse sample genome probing to the identification of sulfate-reducing bacteria in 31 samples obtained primarily from oil fields in the province of Alberta has indicated that there are at least 20 genotypically different sulfate-reducing bacteria in these samples. Images PMID:16348574

  5. Reverse Engineering Adverse Outcome Pathways in Ecotoxicology

    EPA Science Inventory

    The toxicological effects of many stressors are mediated through unknown, or incompletely characterized, mechanisms of action. We describe the application of reverse engineering complex interaction networks from high dimensional omics data (gene, protein, meabolic, signaling) t...

  6. Application of TILLING and EcoTILLING as Reverse Genetic Approaches to Elucidate the Function of Genes in Plants and Animals.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the fairly advent of inexpensive, rapid sequencing technologies that over time continues to improve sequencing efficiency and accuracy, many species of animals, plants and microbes have complete annotated genome information publicly available. The focus on genomics has thus been shifting from ...

  7. Application of TILLING and EcoTILLING as Reverse Genetic Approaches to Elucidate the Function of Genes in Plants and Animals.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the fairly recent advent of inexpensive, rapid sequencing technologies that continue to improve sequencing efficiency and accuracy, many species of animals, plants, and microbes have annotated genomic information publicly available. The focus on genomics has thus been shifting from the collecti...

  8. Surface fluid registration of conformal representation: application to detect disease burden and genetic influence on hippocampus.

    PubMed

    Shi, Jie; Thompson, Paul M; Gutman, Boris; Wang, Yalin

    2013-09-01

    In this paper, we develop a new automated surface registration system based on surface conformal parameterization by holomorphic 1-forms, inverse consistent surface fluid registration, and multivariate tensor-based morphometry (mTBM). First, we conformally map a surface onto a planar rectangle space with holomorphic 1-forms. Second, we compute surface conformal representation by combining its local conformal factor and mean curvature and linearly scale the dynamic range of the conformal representation to form the feature image of the surface. Third, we align the feature image with a chosen template image via the fluid image registration algorithm, which has been extended into the curvilinear coordinates to adjust for the distortion introduced by surface parameterization. The inverse consistent image registration algorithm is also incorporated in the system to jointly estimate the forward and inverse transformations between the study and template images. This alignment induces a corresponding deformation on the surface. We tested the system on Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline dataset to study AD symptoms on hippocampus. In our system, by modeling a hippocampus as a 3D parametric surface, we nonlinearly registered each surface with a selected template surface. Then we used mTBM to analyze the morphometry difference between diagnostic groups. Experimental results show that the new system has better performance than two publicly available subcortical surface registration tools: FIRST and SPHARM. We also analyzed the genetic influence of the Apolipoprotein E[element of]4 allele (ApoE4), which is considered as the most prevalent risk factor for AD. Our work successfully detected statistically significant difference between ApoE4 carriers and non-carriers in both patients of mild cognitive impairment (MCI) and healthy control subjects. The results show evidence that the ApoE genotype may be associated with accelerated brain atrophy so that our

  9. On the applicability of genetic algorithms to fast solar spectropolarimetric inversions for vector magnetography

    NASA Astrophysics Data System (ADS)

    Harker, Brian J.

    The measurement of vector magnetic fields on the sun is one of the most important diagnostic tools for characterizing solar activity. The ubiquitous solar wind is guided into interplanetary space by open magnetic field lines in the upper solar atmosphere. Highly-energetic solar flares and Coronal Mass Ejections (CMEs) are triggered in lower layers of the solar atmosphere by the driving forces at the visible "surface" of the sun, the photosphere. The driving forces there tangle and interweave the vector magnetic fields, ultimately leading to an unstable field topology with large excess magnetic energy, and this excess energy is suddenly and violently released by magnetic reconnection, emitting intense broadband radiation that spans the electromagnetic spectrum, accelerating billions of metric tons of plasma away from the sun, and finally relaxing the magnetic field to lower-energy states. These eruptive flaring events can have severe impacts on the near-Earth environment and the human technology that inhabits it. This dissertation presents a novel inversion method for inferring the properties of the vector magnetic field from telescopic measurements of the polarization states (Stokes vector) of the light received from the sun, in an effort to develop a method that is fast, accurate, and reliable. One of the long-term goals of this work is to develop such a method that is capable of rapidly-producing characterizations of the magnetic field from time-sequential data, such that near real-time projections of the complexity and flare- productivity of solar active regions can be made. This will be a boon to the field of solar flare forecasting, and should help mitigate the harmful effects of space weather on mankind's space-based endeavors. To this end, I have developed an inversion method based on genetic algorithms (GA) that have the potential for achieving such high-speed analysis.

  10. Quantum Operation Time Reversal

    SciTech Connect

    Crooks, Gavin E.

    2008-03-25

    The dynamics of an open quantum system can be described by a quantum operation: A linear, complete positive map of operators. Here, I exhibit a compact expression for the time reversal of a quantum operation, which is closely analogous to the time reversal of a classical Markov transition matrix. Since open quantum dynamics are stochastic, and not, in general, deterministic, the time reversal is not, in general, an inversion of the dynamics. Rather, the system relaxes toward equilibrium in both the forward and reverse time directions. The probability of a quantum trajectory and the conjugate, time reversed trajectory are related by the heat exchanged with the environment.

  11. An improved method for prenatal diagnosis of genetic diseases by analysis of amplified DNA sequences. Application to hemophilia A.

    PubMed

    Kogan, S C; Doherty, M; Gitschier, J

    1987-10-15

    We report the development of a rapid nonradioactive technique for the genetic prediction of human disease and its diagnostic application to hemophilia A. This method is based on enzymatic amplification of short segments of human genes associated with inherited disorders. A novel feature of the procedure is the use of a heat-stable DNA polymerase, which allows the repeated rounds of DNA synthesis to proceed at 63 degrees C. The high sequence specificity of the amplification reaction at this elevated temperature permits restriction-site polymorphisms, contained in the amplified samples, to be analyzed by visual inspection of their digestion products on polyacrylamide gels. By means of this method, we have performed carrier detection and prenatal diagnosis of hemophilia in two families with use of the factor VIII intragenic polymorphisms identified by the restriction enzymes BclI and XbaI. Predictions can be made directly from chorionic villi, without previous DNA extraction, and fetal sex can be determined by amplification of sequences specific for the Y chromosome. Specific amplification of genomic sequences with heat-stable DNA polymerase is applicable to the diagnosis of a wide variety of inherited disorders. These include diseases diagnosed by restriction-site variation, such as Duchenne's muscular dystrophy and sickle cell anemia, those due to a collection of known mutations, such as beta-thalassemia, and those due to gene deletion, such as alpha-thalassemia. PMID:3657865

  12. Application of genotyping-by-sequencing on semiconductor sequencing platforms: A comparison of genetic and reference-based marker ordering in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rapid development of next generation sequencing platforms has enabled the use of sequencing for routine genotyping across a range of genetics studies and breeding applications. Genotyping-by-sequencing (GBS), a low-cost, reduced representation sequencing method, is becoming a common approach fo...

  13. A method for detecting IBD regions simultaneously in multiple individuals--with applications to disease genetics.

    PubMed

    Moltke, Ida; Albrechtsen, Anders; Hansen, Thomas V O; Nielsen, Finn C; Nielsen, Rasmus

    2011-07-01

    All individuals in a finite population are related if traced back long enough and will, therefore, share regions of their genomes identical by descent (IBD). Detection of such regions has several important applications-from answering questions about human evolution to locating regions in the human genome containing disease-causing variants. However, IBD regions can be difficult to detect, especially in the common case where no pedigree information is available. In particular, all existing non-pedigree based methods can only infer IBD sharing between two individuals. Here, we present a new Markov Chain Monte Carlo method for detection of IBD regions, which does not rely on any pedigree information. It is based on a probabilistic model applicable to unphased SNP data. It can take inbreeding, allele frequencies, genotyping errors, and genomic distances into account. And most importantly, it can simultaneously infer IBD sharing among multiple individuals. Through simulations, we show that the simultaneous modeling of multiple individuals makes the method more powerful and accurate than several other non-pedigree based methods. We illustrate the potential of the method by applying it to data from individuals with breast and/or ovarian cancer, and show that a known disease-causing mutation can be mapped to a 2.2-Mb region using SNP data from only five seemingly unrelated affected individuals. This would not be possible using classical linkage mapping or association mapping. PMID:21493780

  14. Application of Association Mapping to Understanding the Genetic Diversity of Plant Germplasm Resources

    PubMed Central

    Abdurakhmonov, Ibrokhim Y.; Abdukarimov, Abdusattor

    2008-01-01

    Compared to the conventional linkage mapping, linkage disequilibrium (LD)-mapping, using the nonrandom associations of loci in haplotypes, is a powerful high-resolution mapping tool for complex quantitative traits. The recent advances in the development of unbiased association mapping approaches for plant population with their successful applications in dissecting a number of simple to complex traits in many crop species demonstrate a flourish of the approach as a “powerful gene tagging” tool for crops in the plant genomics era of 21st century. The goal of this review is to provide nonexpert readers of crop breeding community with (1) the basic concept, merits, and simple description of existing methodologies for an association mapping with the recent improvements for plant populations, and (2) the details of some of pioneer and recent studies on association mapping in various crop species to demonstrate the feasibility, success, problems, and future perspectives of the efforts in plants. This should be helpful for interested readers of international plant research community as a guideline for the basic understanding, choosing the appropriate methods, and its application. PMID:18551188

  15. Human genetics

    SciTech Connect

    Carlson, E.A.

    1984-01-01

    This text provides full and balanced coverage of the concepts requisite for a thorough understanding of human genetics. Applications to both the individual and society are integrated throughout the lively and personal narrative, and the essential principles of heredity are clearly presented to prepare students for informed participation in public controversies. High-interest, controversial topics, including recombinant DNA technology, oncogenes, embryo transfer, environmental mutagens and carcinogens, IQ testing, and eugenics encourage understanding of important social issues.

  16. Molecular Breeding to Create Optimized Crops: From Genetic Manipulation to Potential Applications in Plant Factories

    PubMed Central

    Hiwasa-Tanase, Kyoko; Ezura, Hiroshi

    2016-01-01

    Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems. PMID:27200016

  17. Application of Faecalibacterium 16S rDNA genetic marker for accurate identification of duck faeces.

    PubMed

    Sun, Da; Duan, Chuanren; Shang, Yaning; Ma, Yunxia; Tan, Lili; Zhai, Jun; Gao, Xu; Guo, Jingsong; Wang, Guixue

    2016-04-01

    The aim of this study was to judge the legal duty of pollution liabilities by assessing a duck faeces-specific marker, which can exclude distractions of residual bacteria from earlier contamination accidents. With the gene sequencing technology and bioinformatics method, we completed the comparative analysis of Faecalibacterium sequences, which were associated with ducks and other animal species, and found the sequences unique to duck faeces. Polymerase chain reaction (PCR) and agarose gel electrophoresis techniques were used to verify the reliability of both human and duck faeces-specific primers. The duck faeces-specific primers generated an amplicon of 141 bp from 43.3 % of duck faecal samples, 0 % of control samples and 100 % of sewage wastewater samples that contained duck faeces. We present here the initial evidence of Faecalibacterium-based applicability as human faeces-specificity in China. Meanwhile, this study represents the initial report of a Faecalibacterium marker for duck faeces and suggests an independent or supplementary environmental biotechnology of microbial source tracking (MST). PMID:26743644

  18. Genetic relatedness analysis of nocardia strains by random amplification polymorphic Dna: validation and applications.

    PubMed

    Laurent, F; Provost, F; Couble, A; Casoli, E; Boiron, P

    2000-05-01

    Until now, no simple and rapid technique existed for epidemiological study of strains belonging to the Nocardia genus. The application of the arbitrarily primed PCR procedure to generate randomly amplified polymorphic DNA (RAPD) fingerprints for such analysis of Nocardia isolates was investigated. Fifty-one unrelated clinical isolates of N. asteroides were tested. Two conditions of RAPD using two different primers generated RAPD fingerprints that allowed the differentiation of all strains. The patterns were reproducible and discriminating. The results highlight the diversity of N. asteroides species and confirm that RAPD analysis is a highly valuable tool for studying the epidemiology of the Nocardia genus. Several examples describe the advantage of RAPD analysis for establishing the relationship between isolates from a given patient (long-term infections, coinfections) and from different patients (i.e. during an outbreak). In the future, this technique will help us to investigate the source of infection in cases of nosocomial transmission, to understand the outcome of nocardiosis, and to follow the evolution and acquisition of resistance to Nocardia strains. PMID:10875283

  19. Molecular Breeding to Create Optimized Crops: From Genetic Manipulation to Potential Applications in Plant Factories.

    PubMed

    Hiwasa-Tanase, Kyoko; Ezura, Hiroshi

    2016-01-01

    Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems. PMID:27200016

  20. Slip reversals on active normal faults related to the inflation and deflation of magma chambers: Numerical modeling with application to the Yellowstone-Teton region

    NASA Astrophysics Data System (ADS)

    Hampel, Andrea; Hetzel, Ralf

    2008-04-01

    Earthquakes and coseismic slip on faults are the common response of Earth's crust to plate-tectonic forces. Here we demonstrate, using three-dimensional numerical experiments, that pulses of magmatic activity may alter the slip behavior of nearby tectonic faults by causing unusual aseismic creep and even reversals in the sense of slip. We apply our results to the Teton normal fault, Wyoming, which experienced hitherto unexplained episodes of reverse and normal creep between 1988 and 2001, to show that its anomalous behavior can be explained by inflation and deflation of two magma chambers beneath the Yellowstone caldera. Our findings imply a strong coupling between magmatism and tectonic faulting, which requires coordinated monitoring of both processes to improve our understanding of the resulting spatial and temporal strain pattern.