Science.gov

Sample records for reversed electroosmotic flow

  1. Electroosmotic Flow Reversal Outside Glass Nanopores

    PubMed Central

    2015-01-01

    We report observations of a striking reversal in the direction of electroosmotic flow (EOF) outside a conical glass nanopore as a function of salt concentration. At high ionic strengths (>100 mM), we observe EOF in the expected direction as predicted by classical electrokinetic theory, while at low salt concentrations (<1 mM) the direction of the flow is reversed. The critical crossover salt concentration depends on the pore diameter. Finite-element simulations indicate a competition between the EOF generated from the inner and outer walls of the pore, which drives flows in opposite directions. We have developed a simple analytical model which reveals that, as the salt concentration is reduced, the flow rates inside the pore are geometrically constrained, whereas there is no such limit for flows outside the pore. This model captures all of the essential physics of the system and explains the observed data, highlighting the key role the external environment plays in determining the overall electroosmotic behavior. PMID:25490120

  2. Microfluidic point-of-care blood panel based on a novel technique: Reversible electroosmotic flow.

    PubMed

    Mohammadi, Mahdi; Madadi, Hojjat; Casals-Terré, Jasmina

    2015-09-01

    A wide range of diseases and conditions are monitored or diagnosed from blood plasma, but the ability to analyze a whole blood sample with the requirements for a point-of-care device, such as robustness, user-friendliness, and simple handling, remains unmet. Microfluidics technology offers the possibility not only to work fresh thumb-pricked whole blood but also to maximize the amount of the obtained plasma from the initial sample and therefore the possibility to implement multiple tests in a single cartridge. The microfluidic design presented in this paper is a combination of cross-flow filtration with a reversible electroosmotic flow that prevents clogging at the filter entrance and maximizes the amount of separated plasma. The main advantage of this design is its efficiency, since from a small amount of sample (a single droplet [Formula: see text]10 μl) almost 10% of this (approx 1 μl) is extracted and collected with high purity (more than 99%) in a reasonable time (5-8 min). To validate the quality and quantity of the separated plasma and to show its potential as a clinical tool, the microfluidic chip has been combined with lateral flow immunochromatography technology to perform a qualitative detection of the thyroid-stimulating hormone and a blood panel for measuring cardiac Troponin and Creatine Kinase MB. The results from the microfluidic system are comparable to previous commercial lateral flow assays that required more sample for implementing fewer tests. PMID:26396660

  3. Ionic Origin of Electro-osmotic Flow Hysteresis.

    PubMed

    Lim, Chun Yee; Lim, An Eng; Lam, Yee Cheong

    2016-01-01

    Electro-osmotic flow, the driving of fluid at nano- or micro- scales with electric field, has found numerous applications, ranging from pumping to chemical and biomedical analyses in micro-devices. Electro-osmotic flow exhibits a puzzling hysteretic behavior when two fluids with different concentrations displace one another. The flow rate is faster when a higher concentration solution displaces a lower concentration one as compared to the flow in the reverse direction. Although electro-osmotic flow is a surface phenomenon, rather counter intuitively we demonstrate that electro-osmotic flow hysteresis originates from the accumulation or depletion of pH-governing minority ions in the bulk of the fluid, due to the imbalance of electric-field-induced ion flux. The pH and flow velocity are changed, depending on the flow direction. The understanding of electro-osmotic flow hysteresis is critical for accurate fluid flow control in microfluidic devices, and maintaining of constant pH in chemical and biological systems under an electric field. PMID:26923197

  4. Ionic Origin of Electro-osmotic Flow Hysteresis

    PubMed Central

    Lim, Chun Yee; Lim, An Eng; Lam, Yee Cheong

    2016-01-01

    Electro-osmotic flow, the driving of fluid at nano- or micro- scales with electric field, has found numerous applications, ranging from pumping to chemical and biomedical analyses in micro-devices. Electro-osmotic flow exhibits a puzzling hysteretic behavior when two fluids with different concentrations displace one another. The flow rate is faster when a higher concentration solution displaces a lower concentration one as compared to the flow in the reverse direction. Although electro-osmotic flow is a surface phenomenon, rather counter intuitively we demonstrate that electro-osmotic flow hysteresis originates from the accumulation or depletion of pH-governing minority ions in the bulk of the fluid, due to the imbalance of electric-field-induced ion flux. The pH and flow velocity are changed, depending on the flow direction. The understanding of electro-osmotic flow hysteresis is critical for accurate fluid flow control in microfluidic devices, and maintaining of constant pH in chemical and biological systems under an electric field. PMID:26923197

  5. Ionic Origin of Electro-osmotic Flow Hysteresis

    NASA Astrophysics Data System (ADS)

    Lim, Chun Yee; Lim, An Eng; Lam, Yee Cheong

    2016-02-01

    Electro-osmotic flow, the driving of fluid at nano- or micro- scales with electric field, has found numerous applications, ranging from pumping to chemical and biomedical analyses in micro-devices. Electro-osmotic flow exhibits a puzzling hysteretic behavior when two fluids with different concentrations displace one another. The flow rate is faster when a higher concentration solution displaces a lower concentration one as compared to the flow in the reverse direction. Although electro-osmotic flow is a surface phenomenon, rather counter intuitively we demonstrate that electro-osmotic flow hysteresis originates from the accumulation or depletion of pH-governing minority ions in the bulk of the fluid, due to the imbalance of electric-field-induced ion flux. The pH and flow velocity are changed, depending on the flow direction. The understanding of electro-osmotic flow hysteresis is critical for accurate fluid flow control in microfluidic devices, and maintaining of constant pH in chemical and biological systems under an electric field.

  6. Electroosmotic flow hysteresis for dissimilar ionic solutions.

    PubMed

    Lim, An Eng; Lim, Chun Yee; Lam, Yee Cheong

    2015-03-01

    Electroosmotic flow (EOF) with two or more fluids is commonly encountered in various microfluidics applications. However, no investigation has hitherto been conducted to investigate the hysteretic or flow direction-dependent behavior during the displacement flow of solutions with dissimilar ionic species. In this investigation, electroosmotic displacement flow involving dissimilar ionic solutions was studied experimentally through a current monitoring method and numerically through finite element simulations. The flow hysteresis can be characterized by the turning and displacement times; turning time refers to the abrupt gradient change of current-time curve while displacement time is the time for one solution to completely displace the other solution. Both experimental and simulation results illustrate that the turning and displacement times for a particular solution pair can be directional-dependent, indicating that the flow conditions in the microchannel are not the same in the two different flow directions. The mechanics of EOF hysteresis was elucidated through the theoretical model which includes the ionic mobility of each species, a major governing parameter. Two distinct mechanics have been identified as the causes for the EOF hysteresis involving dissimilar ionic solutions: the widening/sharpening effect of interfacial region between the two solutions and the difference in ion concentration distributions (and thus average zeta potentials) in different flow directions. The outcome of this investigation contributes to the fundamental understanding of flow behavior in microfluidic systems involving solution pair with dissimilar ionic species. PMID:25945139

  7. Electroosmotic flow hysteresis for dissimilar ionic solutions

    PubMed Central

    Lim, An Eng; Lam, Yee Cheong

    2015-01-01

    Electroosmotic flow (EOF) with two or more fluids is commonly encountered in various microfluidics applications. However, no investigation has hitherto been conducted to investigate the hysteretic or flow direction-dependent behavior during the displacement flow of solutions with dissimilar ionic species. In this investigation, electroosmotic displacement flow involving dissimilar ionic solutions was studied experimentally through a current monitoring method and numerically through finite element simulations. The flow hysteresis can be characterized by the turning and displacement times; turning time refers to the abrupt gradient change of current-time curve while displacement time is the time for one solution to completely displace the other solution. Both experimental and simulation results illustrate that the turning and displacement times for a particular solution pair can be directional-dependent, indicating that the flow conditions in the microchannel are not the same in the two different flow directions. The mechanics of EOF hysteresis was elucidated through the theoretical model which includes the ionic mobility of each species, a major governing parameter. Two distinct mechanics have been identified as the causes for the EOF hysteresis involving dissimilar ionic solutions: the widening/sharpening effect of interfacial region between the two solutions and the difference in ion concentration distributions (and thus average zeta potentials) in different flow directions. The outcome of this investigation contributes to the fundamental understanding of flow behavior in microfluidic systems involving solution pair with dissimilar ionic species. PMID:25945139

  8. Electro-osmotic flow in bicomponent fluids

    NASA Astrophysics Data System (ADS)

    Bazarenko, Andrei; Sega, Marcello

    The electroosmotic flow (EOF) is a widely used technique that uses the action of external electric fields on solvated ions to move fluids around in microfluidics devices. For homogeneous fluids, the characteristics of the flow can be well approximated by simple analytical models, but in multicomponent systems such as oil-in-water droplets one has to rely to numerical simulations. The purpose of this study is to investigate physical properties of the EOF in a bicomponent fluid by solving the coupled equations of motions of explicit ions in interaction with a continuous model of the flow. To do so we couple the hydrodynamics equations as solved by a Shan-Chen Lattice-Boltzmann method to the molecular dynamics of the ions. The presence of explicit ions allows us to go beyond the simple Poisson-Boltzmann approximations, and investigate a variety of EOF regimes. ETN-COLLDENSE (H2020-MCSA-ITN-2014, Grant No. 642774).

  9. The role of electroosmotic flow in transdermal iontophoresis.

    PubMed

    Pikal, M J

    2001-03-01

    Iontophoresis enhances transdermal drug delivery by three mechanisms: (a) the ion-electric field interaction provides an additional force which drives ions through the skin; (b) flow of electric current increases permeability of skin; and (c) electroosmosis produces bulk motion of the solvent itself that carries ions or neutral species, with the solvent 'stream'. The relative importance of electroosmotic flow is the subject of this review. Experimental observations and theoretical concepts are reviewed to clarify the nature of electroosmotic flow and to define the conditions under which electroosmotic flow is an important effect in transdermal iontophoresis. Electroosmotic flow is bulk fluid flow which occurs when a voltage difference is imposed across a charged membrane. Electroosmotic flow occurs in a wide variety of membranes, is always in the same direction as flow of counterions and may either assist or hinder drug transport. Since both human skin and hairless mouse skin are negatively charged above about pH 4, counterions are positive ions and electroosmotic flow occurs from anode to cathode. Thus, anodic delivery is assisted by electroosmosis, but cathodic delivery is retarded. Water carried by ions as 'hydration water' does not contribute significantly to electroosmotic flow. Rather electroosmotic flow is caused by an electrical volume force acting on the mobile counterions. The simple 'limiting law' theory commonly given in textbooks and some research articles is a very poor approximation for transdermal systems. However, several extensions of the limiting law are compatible with each other and with the available experimental data. One of these theories, the Manning theory, has been incorporated into a theory for the effect of electroosmotic flow on iontophoresis, the latter theory being in good agreement with experiment. Both theory and experimental data indicate that electroosmotic flow increases in importance as the size of the drug ion increases. The

  10. Electroosmotic flow in single PDMS nanochannels

    NASA Astrophysics Data System (ADS)

    Peng, Ran; Li, Dongqing

    2016-06-01

    The electroosmotic flow (EOF) velocity in single PDMS nanochannels with dimensions as small as 20 nm is investigated systematically by the current slope method in this paper. A novel method for the fabrication of single nanochannels on PDMS surfaces is developed. The effects of channel size, ionic concentration of the electrolyte solution and electric field on the EOF velocity in single nanochannels are investigated. The results show that the EOF velocity in smaller nanochannels with overlapped electric double layers (EDL) is proportional to the applied electric field but is smaller than the EOF velocity in microchannels under the same applied electric field. The EOF velocity in relatively large nanochannels without the overlap of EDLs is independent of the channel size and is the same as that in microchannels under the same applied electric field. Furthermore, in smaller nanochannels with overlapped EDLs, the EOF velocity depends on the ionic concentration and also on the channel size. The experimental results reported in this paper are valuable for the future studies of electrokinetic nanofluidics.The electroosmotic flow (EOF) velocity in single PDMS nanochannels with dimensions as small as 20 nm is investigated systematically by the current slope method in this paper. A novel method for the fabrication of single nanochannels on PDMS surfaces is developed. The effects of channel size, ionic concentration of the electrolyte solution and electric field on the EOF velocity in single nanochannels are investigated. The results show that the EOF velocity in smaller nanochannels with overlapped electric double layers (EDL) is proportional to the applied electric field but is smaller than the EOF velocity in microchannels under the same applied electric field. The EOF velocity in relatively large nanochannels without the overlap of EDLs is independent of the channel size and is the same as that in microchannels under the same applied electric field. Furthermore, in

  11. Electro-osmotic flow in coated nanocapillaries: a theoretical investigation.

    PubMed

    Marini Bettolo Marconi, Umberto; Monteferrante, Michele; Melchionna, Simone

    2014-12-14

    Motivated by recent experiments, we present a theoretical investigation of how the electro-osmotic flow occurring in a capillary is modified when its charged surfaces are coated with charged polymers. The theoretical treatment is based on a three-dimensional model consisting of a ternary fluid-mixture, representing the solvent and two species for the ions, confined between two parallel charged plates decorated with a fixed array of scatterers representing the polymer coating. The electro-osmotic flow, generated by a constant electric field applied in a direction parallel to the plates, is studied numerically by means of Lattice Boltzmann simulations. In order to gain further understanding we performed a simple theoretical analysis by extending the Stokes-Smoluchowski equation to take into account the porosity induced by the polymers in the region adjacent to the walls. We discuss the nature of the velocity profiles by focusing on the competing effects of the polymer charges and the frictional forces they exert. We show evidence of the flow reduction and of the flow inversion phenomenon when the polymer charge is opposite to the surface charge. By using the density of polymers and the surface charge as control variables, we propose a phase diagram that discriminates the direct and the reversed flow regimes and determines their dependence on the ionic concentration. PMID:25343500

  12. Electroosmotic Flow Hysteresis for Dissimilar Anionic Solutions.

    PubMed

    Lim, An Eng; Lim, Chun Yee; Lam, Yee Cheong

    2016-08-16

    Electroosmotic flow (EOF) with two or more fluids is often encountered in various microfluidic applications. However, no investigation has hitherto been conducted to investigate the hysteretic or flow direction-dependent behavior during displacement flow of solutions with dissimilar anion species. In this investigation, EOF of dissimilar anionic solutions was studied experimentally through the current monitoring method and numerically through finite element simulations. As opposed to other conventional displacement flows, EOF involving dissimilar anionic solutions exhibits counterintuitive behavior, whereby the current-time curve does not reach the steady-state value of the displacing electrolyte. Two distinct mechanics have been identified as the causes for this observation: (a) ion concentration adjustment when the displacing anions migrate upstream against EOF due to competition between the gradients of electromigrative and convective fluxes and (b) ion concentration readjustment induced by the static diffusive interfacial region between the dissimilar fluids which can only be propagated throughout the entire microchannel with the presence of EOF. The resultant ion distributions lead to the flow rate to be directional-dependent, indicating that the flow conditions are asymmetric between these two different flow directions. The outcomes of this investigation contribute to the in-depth understanding of flow behavior in microfluidic systems involving inhomogeneous fluids, particularly dissimilar anionic solutions. The understanding of EOF hysteresis is fundamentally important for the accurate prediction of analytes transport in microfluidic devices under EOF. PMID:27426052

  13. Optical control of electro-osmotic flow

    NASA Astrophysics Data System (ADS)

    Kirei, Huba; Der, Andras; Oroszi, Laszlo; Ferencz, Karpat; Rakovics, Vilmos; Ormos, Pal

    2005-08-01

    Electro-osmotic pumping is an efficient way to move fluids in microfluidic systems. It is driven by the interaction of the Debye layer formed in the vicinity of the charged channel wall with a tangential electric field. The key parameters that determine the flow properties are the zeta potential of the surface and the electric field that drives the flow. Consequently, the flow can be controlled by appropriately modifying these parameters. Controlling the charge on the channel wall makes it possible to modify fluid flow. Likewise, the electric field close to the surface can be modified by changing the conductivity of the surface. The surface charge of appropriate materials can be changed by light illumination: the application of this phenomenon offers the possibility to optically control flow parameters. We have tested this possibility with several light sensitive surfaces. In the class of materials that change their charge upon illumination TiO2, a well known photoactive material was investigated. Experiments were also performed with the protein bacteriorhodopsin, known to change its surface charge following the release of protons into the solvent upon illumination. CdS was tested as the photoconductive material to modify the electric field by light. Linear microfluidic channels were prepared by soft lithography: a PDMS mold was placed upon a planar glass surface so that a rectangular cross section channel was formed upon the glass. The photosensitive materials covered the bottom glass surface. The experiments show that the flow can be readily modulated by illumination. The results demonstrate that it is possible to dynamically control microfluidic flow, opening up the prospect to create optically controlled complex microfluidic networks.

  14. Electroosmotic flow in single PDMS nanochannels.

    PubMed

    Peng, Ran; Li, Dongqing

    2016-06-16

    The electroosmotic flow (EOF) velocity in single PDMS nanochannels with dimensions as small as 20 nm is investigated systematically by the current slope method in this paper. A novel method for the fabrication of single nanochannels on PDMS surfaces is developed. The effects of channel size, ionic concentration of the electrolyte solution and electric field on the EOF velocity in single nanochannels are investigated. The results show that the EOF velocity in smaller nanochannels with overlapped electric double layers (EDL) is proportional to the applied electric field but is smaller than the EOF velocity in microchannels under the same applied electric field. The EOF velocity in relatively large nanochannels without the overlap of EDLs is independent of the channel size and is the same as that in microchannels under the same applied electric field. Furthermore, in smaller nanochannels with overlapped EDLs, the EOF velocity depends on the ionic concentration and also on the channel size. The experimental results reported in this paper are valuable for the future studies of electrokinetic nanofluidics. PMID:27256765

  15. Electroosmotic Flow Rectification in Pyramidal-Pore Mica Membranes

    SciTech Connect

    Jin, P.; Mukaibo, H.; Horne, L.; Bishop, G.; Martin, C. R.

    2010-02-01

    We demonstrate here a new electrokinetic phenomenon, Electroosmotic flow (EOF) rectification, in synthetic membranes containing asymmetric pores. Mica membranes with pyramidally shaped pores prepared by the track-etch method were used. EOF was driven through these membranes by using an electrode in solutions on either side to pass a constant ionic current through the pores. The velocity of EOF depends on the polarity of the current. A high EOF velocity is obtained when the polarity is such that EOF is driven from the larger base opening to the smaller tip opening of the pore. A smaller EOF velocity is obtained when the polarity is reversed such that EOF goes from tip to base. We show that this rectified EOF phenomenon is the result of ion current-rectification observed in such asymmetric-pore membranes.

  16. Theoretical model of electroosmotic flow for capillary zone electrophoresis

    SciTech Connect

    Tavares, M.F.M.; McGuffin, V.L.

    1995-10-15

    A mathematical model of electroosmotic flow in capillary zone electrophoresis has been developed by taking into consideration of the ion-selective properties of silica surfaces. The electroosmotic velocity was experimentally determined, underboth constant voltage and constant current conditions, by using the resistance-monitoring method. A detailed study of electroosmotic flow characteristics in solutions of singly charged, strong electrolytes (NaCl, LiCl, KCl, NaBr, NaI, NaNO{sub 3}, and NaClO{sub 4}), as well as the phosphate buffer system, revealed a linear correlation between the {Zeta} potential and the logarithm of the cation activity. These results suggest that the capillary surface behaves as an ion-selective electrode. Consequently, the {Zeta} potential can be calculated as a function of the composition and pH of the solution with the corresponding modified Nernst equation for ion-selective electrodes. If the viscosity and dielectric constant of the solution are known, the electroosmotic velocity can then be accurately predicted by means of the Helmholtz-Smoluchowski equation. The proposed model has been successfully applied to phosphate buffer solutions in the range of pH from 4 to 10, containing sodium chloride from 5 to 15 mM, resulting in nearly 3% error in the estimation of the electroosmotic velocity. 53 refs., 8 figs., 2 tabs.

  17. Highly efficient electroosmotic flow through functionalized carbon nanotube membranes

    NASA Astrophysics Data System (ADS)

    Wu, Ji; Gerstandt, Karen; Majumder, Mainak; Zhan, Xin; Hinds, Bruce J.

    2011-08-01

    Carbon nanotube membranes with inner diameter ranging from 1.5-7 nm were examined for enhanced electroosmotic flow. After functionalization via electrochemical diazonium grafting and carbodiimide coupling reaction, it was found that neutral caffeine molecules can be efficiently pumped via electroosmosis. An electroosmotic velocity as high as 0.16 cm s-1 V-1 has been observed. Power efficiencies were 25-110 fold improved compared to related nanoporous materials, which has important applications in chemical separations and compact medical devices. Nearly ideal electroosmotic flow was seen in the case where the mobile cation diameter nearly matched the inner diameter of the single-walled carbon nanotube resulting in a condition of using one ion is to pump one neutral molecule at equivalent concentrations.

  18. Viscoelectric effect on electroosmotic flow in a cylindrical microcapillary

    NASA Astrophysics Data System (ADS)

    Marroquin-Desentis, J.; Méndez, F.; Bautista, O.

    2016-06-01

    Electroosmotic flow, under the Debye–Hückel approximation, has been widely analyzed in the specialized literature. This is a severe restriction in practice, where zeta potentials as high as 100–200 mV are encountered frequently. Under this condition, the variation of the viscosity with the electric field in the electric double layer (EDL), known as the viscoelectric effect, can lead to a considerable variation in comparison to the Helmholtz–Smoluchowsky equation for the electroosmotic velocity. The objective of this work is to analyze the electroosmotic flow in a cylindrical capillary at high zeta potentials in the thin EDL approximation, taking into account the viscoelectric effect. In order to obtain the potential distribution, the Poisson–Boltzmann equation was solved by using the matched asymptotic expansions method, and then, by applying the same technique, the flow field was determined from the momentum equation by considering that the viscosity of the electrolyte changes according to the relationship η ={η }0[1+{{fE}}2], where {η }0 is the viscosity evaluated in the absence of an electric field, f is the viscoelectric constant and E is the intrinsic electric field in direction transversal to the EDL. For asserting the correctness of the asymptotic solution, this result was compared against a numerical solution, and a very good agreement between them was found. The results show that the viscoelectric effect has a noticeable influence by reducing the electroosmotic flow velocity in about 10% in comparison to the standard Helmholtz–Smoluchowski velocity.

  19. Controlling electroosmotic flows by polymer coatings: A joint experimental-theoretical investigation

    NASA Astrophysics Data System (ADS)

    Monteferrante, Michele; Sola, Laura; Cretich, Marina; Chiari, Marcella; Marini Bettolo Marconi, Umberto; Melchionna, Simone

    2015-11-01

    We analyze the electroosmotic flow (EOF) of an electrolytic solution in a polymer coated capillary electrophoresis tube. The polymeric density, charge, thickness, and the capillary tube charge vary as a function of pH and produce a non-trivial modulation of the EOF, including a flow reversal at acid pH conditions. By means of a theoretical argument and numerical simulations, we recover the experimental curve for the EOF, providing a firm approach for predictive analysis of electroosmosis under different polymeric coating conditions. A proposed application of the approach is to determine the near-wall charge of the coating to be used for further quantitative analysis of the electroosmotic flow and mobility.

  20. The surface charge density effect on the electro-osmotic flow in a nanochannel: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Rezaei, M.; Azimian, A. R.; Semiromi, D. Toghraie

    2015-05-01

    The electro-osmotic flow of an aqueous solution of NaCl between two parallel silicon walls is studied through a molecular dynamics simulation. The objective here is to examine the dependency of the electro-osmotic flow on the surface charge density by considering the changes made in the structural properties of the electric double layer (EDL). The ion concentration, velocity profiles, and electric charge density of the electrolyte solution are investigated. Due to the partially charged atoms of the water molecules, water concentration is of a layered type near the wall. The obtained profiles revealed that an increase in the surface charge density, at low surface charges where the governing electrostatic coupling regime is Debye-Hückel, increases both the electro-osmotic velocity and the EDL thickness; whereas, a decreasing trend is observed in these two parameters in the intermediate regime. For high values of surface charge density, due to the charge inversion phenomenon, the reversed electro-osmotic flow will be generated in the channel. Results indicate that the absolute value of the reversed electro-osmotic velocity rises with an increase in the surface charge density.

  1. Effect of electro-osmotic flow on energy conversion on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Seshadri, Gowrishankar; Baier, Tobias

    2013-04-01

    It has been suggested that superhydrophobic surfaces, due to the presence of a no-shear zone, can greatly enhance transport of surface charges, leading to a considerable increase in the streaming potential. This could find potential use in micro-energy harvesting devices. In this paper, we show using analytical and numerical methods, that when a streaming potential is generated in such superhydrophobic geometries, the reverse electro-osmotic flow and hence current generated by this, is significant. A decrease in streaming potential compared to what was earlier predicted is expected. We also show that, due to the electro-osmotic streaming-current, a saturation in both the power extracted and efficiency of energy conversion is achieved in such systems for large values of the free surface charge densities. Nevertheless, under realistic conditions, such microstructured devices with superhydrophobic surfaces have the potential to even reach energy conversion efficiencies only achieved in nanostructured devices so far.

  2. Electro-osmotic flow enhancement in carbon nanotube membranes.

    PubMed

    Mattia, Davide; Leese, Hannah; Calabrò, Francesco

    2016-02-13

    In this work, experimental evidence of the presence of electro-osmotic flow (EOF) in carbon nanotube membranes with diameters close to or in the region of electrical double layer overlap is presented for two different electrolytes for the first time. No EOF in this region should be present according to the simplified theoretical framework commonly used for EOF in micrometre-sized channels. The simplifying assumptions concern primarily the electrolyte charge density structure, based on the Poisson-Boltzmann (P-B) equation. Here, a numerical analysis of the solutions for the simplified case and for the nonlinear and the linearized P-B equations is compared with experimental data. Results show that the simplified solution produces a significant deviation from experimental data, whereas the linearized solution of the P-B equation can be adopted with little error compared with the full P-B case. This work opens the way to using electro-osmotic pumping in a wide range of applications, from membrane-based ultrafiltration and nanofiltration (as a more efficient alternative to mechanical pumping at the nanoscale) to further miniaturization of lab-on-a-chip devices at the nanoscale for in vivo implantation. PMID:26712647

  3. Electroosmotic flow and its contribution to iontophoretic delivery

    PubMed Central

    Herr, Natalie R.; Kile, Brian M.; Carelli, Regina M.; Wightman, R. Mark

    2009-01-01

    Iontophoresis is the movement of charged molecules in solution under applied current using pulled multi-barrel glass capillaries drawn to a sharp tip. The technique is generally non-quantitative, and to address this, we have characterized the ejection of charged and neutral species using carbon-fiber electrodes attached to iontophoretic barrels. Our results show that observed ejections are due to the sum of iontophoretic and electroosmotic forces. Using the neutral, electroactive molecule 2-(4-nitrophenoxy) ethanol (NPE), which is only transported by electroosmotic flow (EOF), a positive correlation between the amount ejected and the diameter of each barrel's tip was found. In addition, using various charged and neutral electroactive compounds we found that, when each compound is paired with the EOF marker, the percentage of the ejection due to EOF remains constant. This percentage varies for each pair of compounds, and the differences in mobility are positively correlated to differences in electrophoretic mobility. Overall, the results show that capillary electrophoresis (CE) can be used to predict the percentage of ejection that will be due to EOF. With this information, quantitative iontophoresis is possible for electrochemically inactive drugs by using NPE as a marker for EOF. PMID:18947198

  4. A handy liquid metal based electroosmotic flow pump.

    PubMed

    Gao, Meng; Gui, Lin

    2014-06-01

    A room temperature liquid metal based electroosmotic flow (EOF) pump has been proposed in this work. This low-cost EOF pump is convenient for both fabrication and integration. It utilizes polydimethylsiloxane (PDMS) microchannels filled with the liquid-metal as non-contact pump electrodes. The electrode channels are fabricated symmetrically to both sides of the pumping channel, having no contact with the pumping channel. To test the pumping performance of the EOF pump, the mean flow velocities of the fluid (DI water) in the EOF pumps were experimentally measured by tracing the fluorescent microparticles in the flow. To provide guidance for designing a low voltage EOF pump, parametric studies on dimensions of the electrode and pumping channels were performed in this work. According to the experimental results, the pumping speed can reach 5.93 μm s(-1) at a driving voltage of only 1.6 V, when the gap between the electrode and the pumping channel is 20 μm. Injecting a room temperature liquid metal into microchannels can provide a simple, rapid, low-cost but accurately self-aligned way to fabricate microelectrodes for EOF pumps, which is a promising method to achieve the miniaturization and integration of the EOF pump in microfluidic systems. The non-contact liquid electrodes have no influence on the fluid in the pumping channel when pumping, reducing Joule heat generation and preventing gas bubble formation at the surface of electrodes. The pump has great potential to drive a wide range of fluids, such as drug reagents, cell suspensions and biological macromolecule solutions. PMID:24706096

  5. Development of polymeric coatings for control of electro-osmotic flow in ASTP MA-011 electrophoresis technology experiment

    NASA Technical Reports Server (NTRS)

    Patterson, W. J.

    1976-01-01

    The development of a methyl cellulose based coating system for control of electro-osmotic flow at the walls of electrophoresis cells is described. Flight electrophoresis columns were coated with this system, resulting in a flight set of six columns. In flight photography of MA-011 electrophoretic separations verified control of electro-osmotic flow.

  6. Continuous flow nanoparticle concentration using alternating current-electroosmotic flow.

    PubMed

    Hoettges, Kai F; McDonnell, Martin B; Hughes, Michael P

    2014-02-01

    Achieving real-time detection of environmental pathogens such as viruses and bacterial spores requires detectors with both rapid action and a suitable detection threshold. However, most biosensors have detection limits of an order of magnitude or more above the potential infection threshold, limiting their usefulness. This can be improved through the use of automated sample preparation techniques such as preconcentration. In this paper, we describe the use of AC electroosmosis to concentrate nanoparticles from a continuous flow. Electrodes at an optimized angle across a flow cell, and energized by a 1 kHz signal, were used to push nanoparticles to one side of a flow cell, and to extract the resulting stream with a high particle concentration from that side of the flow cell. A simple model of the behavior of particles in the flow cell has been developed, which shows good agreement with experimental results. The method indicates potential for higher concentration factors through cascading devices. PMID:24166772

  7. Instability of electro-osmotic channel flow with streamwise conductivity gradients.

    PubMed

    Santos, J Jobim; Storey, Brian D

    2008-10-01

    This work considers the stability of an electro-osmotic microchannel flow with streamwise electrical conductivity gradients, a configuration common in microfluidic applications such as field amplified sample stacking. Previous work on such flows has focused on how streamwise conductivity gradients set a nonuniform electro-osmotic velocity which results in dispersion of the conductivity field. However, it has been known for many years that electric fields can couple with conductivity gradients to generate unstable flows. This work demonstrates that at high electric fields such an electrohydrodynamic instability arises in this configuration and the basic mechanisms are explored through numerical simulations. The instability is unique in that the nonuniform electro-osmotic flow sets the shape of the underlying conductivity field in a way that makes it susceptible to instability. While nonuniform electro-osmotic flow sets the stage, the instability is ultimately the result of electric body forces due to slight departure from electroneutrality in the fluid bulk. A simple stability map is created where two dimensionless numbers can predict system stability reasonably well, even though the system formally depends on six dimensionless groups. PMID:18999535

  8. Electromigration dispersion in a capillary in the presence of electro-osmotic flow

    PubMed Central

    GHOSAL, S.; CHEN, Z.

    2012-01-01

    The differential migration of ions in an applied electric field is the basis for separation of chemical species by capillary electrophoresis. Axial diffusion of the concentration peak limits the separation efficiency. Electromigration dispersion is observed when the concentration of sample ions is comparable to that of the background ions. Under such conditions, the local electrical conductivity is significantly altered in the sample zone making the electric field, and therefore, the ion migration velocity concentration dependent. The resulting nonlinear wave exhibits shock like features, and, under certain simplifying assumptions, is described by Burgers’ equation (S. Ghosal and Z. Chen Bull. Math. Biol. 2010 72, pg. 2047). In this paper, we consider the more general situation where the walls of the separation channel may have a non-zero zeta potential and are therefore able to sustain an electro-osmotic bulk flow. The main result is a one dimensional nonlinear advection diffusion equation for the area averaged concentration. This homogenized equation accounts for the Taylor-Aris dispersion resulting from the variation in the electro-osmotic slip velocity along the wall. It is shown that in a certain range of parameters, the electro-osmotic flow can actually reduce the total dispersion by delaying the formation of a concentration shock. However, if the electro-osmotic flow is sufficiently high, the total dispersion is increased because of the Taylor-Aris contribution. PMID:23390324

  9. Effect of heat transfer on rotating electroosmotic flow through a micro-vessel: haemodynamical applications

    NASA Astrophysics Data System (ADS)

    Sinha, A.; Mondal, A.; Shit, G. C.; Kundu, P. K.

    2016-08-01

    This paper theoretically analyzes the heat transfer characteristics associated with electroosmotic flow of blood through a micro-vessel having permeable walls. The analysis is based on the Debye-Hückel approximation for charge distributions and the Navier-Stokes equations are assumed to represent the flow field in a rotating system. The velocity slip condition at the vessel walls is taken into account. The essential features of the rotating electroosmotic flow of blood and associated heat transfer characteristics through a micro-vessel are clearly highlighted by the variation in the non-dimensional flow velocity, volumetric flow rate and non-dimensional temperature profiles. Moreover, the effect of Joule heating parameter and Prandtl number on the thermal transport characteristics are discussed thoroughly. The study reveals that the flow of blood is appreciably influenced by the elctroosmotic parameter as well as rotating Reynolds number.

  10. Hybrid lattice-Boltzmann and finite-difference simulation of electroosmotic flow in a microchannel

    NASA Astrophysics Data System (ADS)

    Masilamani, Kannan; Ganguly, Suvankar; Feichtinger, Christian; Rüde, Ulrich

    2011-04-01

    A three-dimensional (3D) transient mathematical model is developed to simulate electroosmotic flows (EOFs) in a homogeneous, square cross-section microchannel, with and without considering the effects of axial pressure gradients. The general governing equations for electroosmotic transport are incompressible Navier-Stokes equations for fluid flow and the nonlinear Poisson-Boltzmann (PB) equation for electric potential distribution within the channel. In the present numerical approach, the hydrodynamic equations are solved using a lattice-Boltzmann (LB) algorithm and the PB equation is solved using a finite-difference (FD) method. The hybrid LB-FD numerical scheme is implemented on an iterative framework solving the system of coupled time-dependent partial differential equations subjected to the pertinent boundary conditions. Transient behavior of the EOF and effects due to the variations of different physicochemical parameters on the electroosmotic velocity profile are investigated. Transport characteristics for the case of combined electroosmotic- and pressure-driven microflows are also examined with the present model. For the sake of comparison, the cases of both favorable and adverse pressure gradients are considered. EOF behaviors of the non-Newtonian fluid are studied through implementation of the power-law model in the 3D LB algorithm devised for the fluid flow analysis. Numerical simulations reveal that the rheological characteristic of the fluid changes the EOF pattern to a considerable extent and can have significant consequences in the design of electroosmotically actuated bio-microfluidic systems. To improve the performance of the numerical solver, the proposed algorithm is implemented for parallel computing architectures and the overall parallel performance is found to improve with the number of processors.

  11. Theoretical prediction of stationary positions in the rectangular chamber during asymmetric electroosmotic flow

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Most microscopic cell electrophoretic work depends on the theortical prediction of stationary positions by Smoluchowski and Komagata. Their theoretical solutions are based on the assumption that the electroosmotic flow in a chamber is symmetric. Because experiences with the rectangular chamber indicate that symmetric flow occurs during less than 8% of the experiments, the existing theory for stationary position determination is expanded to include the more general case of asymmetric flow. Smoluchowski's equation for symmetric electroosmotic flow in a rectangular chamber having a width much smaller than its height or length is examined. Smoluchowski's approach is used to approximate stationary positions in rectangular chambers with height/width ratios greater than 40. Support for the theoretical prediction of stationary positions using is given by three types of experimental evidence.

  12. Electroosmotic flow and Joule heating in preparative continuous annular electrochromatography.

    PubMed

    Laskowski, René; Bart, Hans-Jörg

    2015-09-01

    An openFOAM "computational fluid dynamic" simulation model was developed for the description of local interaction of hydrodynamics and Joule heating in annular electrochromatography. A local decline of electrical conductivity of the background eluent is caused by an electrokinetic migration of ions resulting in higher Joule heat generation. The model equations consider the Navier-Stokes equation for incompressible fluids, the energy equation for stationary temperature fields, and the mass transfer equation for the electrokinetic flow. The simulations were embedded in commercial ANSYS Fluent software and in open-source environment openFOAM. The annular gap (1 mm width) contained an inorganic C8 reverse-phase monolith as stationary phase prepared by an in situ sol-gel process. The process temperature generated by Joule heating was determined by thermal camera system. The local hydrodynamics in the prototype was detected by a gravimetric contact-free measurement method and experimental and simulated values matched quite well. PMID:25997390

  13. Multiscale study of nanoparticle-wall interactions in electroosmotic flow

    NASA Astrophysics Data System (ADS)

    Conlisk, A. T.; Zambrano, Harvey; Peng, Zhizi

    2011-11-01

    In electroosmotic transport (EOT), particle mobility results not only from the dragging exerted by the electrolyte, but also from the force exerted by the External Electric Field (EEF), and from the interactions with the walls and with the solvent. The objective of this work is to develop a unified theory of the motion of colloidal particles near walls and compare with the experiments of Kazoe and Yoda for EOT. In the present study a novel continuum approach is developed to study the particle interactions with polystyrene beads. Moreover, we conduct Non-equilibrium Molecular Dynamics Simulations (NEMDS) of a nanoparticle as it moves near a solid-liquid interface subjected to an EEF. We investigate the response of the particle to changes in the surface electrostatics and the electrolyte concentration. Therefore, we perform NEMDS of a silica particle immersed in an electrolyte. The electrolyte solution is mounted on a silica substrate and the particle is constrained to move parallel to the surface so that we can extract the forces acting between the particle and the wall. We vary the electrolyte concentration, the particle size and the surface electrostatics. Supported by the Army Research Office, the National Science Foundation NSEC Center for the Affordable Nanoengineering of Polymeric Biomedical Devices

  14. Mass transfer during catalytic reaction in electroosmotically driven flow in a channel microreactor

    NASA Astrophysics Data System (ADS)

    Sharma, Himanshu; Vasu, Nadapana; de, Sirshendu

    2011-05-01

    Analytical solution for concentration profile in a microreactor is obtained during heterogeneous catalytic reaction. Reaction occurs in rectangular microchannel with catalyst-coated walls. Flow is induced electroosmotically in the microchannel. A general solution is obtained for first order reaction using a power series solution. Profiles of conversion, cup-mixing concentration of reactant, etc. and variation of Sherwood number is analyzed as function of operating variables. Analytical solution is compared with numerical results.

  15. Asymmetric electroosmotic flow and mobility measurements at nonstationary positions in the rectangular chamber

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The electrophoretic mobility of a cell in solution is defined by its velocity divided by the electric field strength it experiences. An obvious way to measure the mobility of cells is to apply a constant electric field to a suspension of cells in a glass chamber and clock the velocities of individual cells through a microscope. This microscope method is the classic technique in cell electrophoresis and it has been used for the bulk of research in this field. Two aspects of the microscope method can critically affect the accuracy and consistency of its cell mobility measurements: (1) the electroosmotic fluctuations in the chamber from measurement to measurement; and (2) the number of cells which can be practically measured for statistically meaningful results. A new method of analyzing microelectrophoretic data using a computer program has been developed which addresses both of these aspects. It makes possible the mobility measurements of individual cells as positions throughout the rectangular chamber depth during asymmetric electroosmotic flow.

  16. Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel.

    PubMed

    Park, H M; Lee, W M

    2008-07-01

    Many lab-on-a-chip based microsystems process biofluids such as blood and DNA solutions. These fluids are viscoelastic and show extraordinary flow behaviors, not existing in Newtonian fluids. Adopting appropriate constitutive equations these exotic flow behaviors can be modeled and predicted reasonably using various numerical methods. In the present paper, we investigate viscoelastic electroosmotic flows through a rectangular straight microchannel with and without pressure gradient. It is shown that the volumetric flow rates of viscoelastic fluids are significantly different from those of Newtonian fluids under the same external electric field and pressure gradient. Moreover, when pressure gradient is imposed on the microchannel there appear appreciable secondary flows in the viscoelastic fluids, which is never possible for Newtonian laminar flows through straight microchannels. The retarded or enhanced volumetric flow rates and secondary flows affect dispersion of solutes in the microchannel nontrivially. PMID:18584093

  17. Direction dependence of displacement time for two-fluid electroosmotic flow

    PubMed Central

    Lim, Chun Yee; Lam, Yee Cheong

    2012-01-01

    Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings. PMID:22662083

  18. Study of three-dimensional electro-osmotic flow with curved boundary via lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Zhang, X. B.; Li, Q.; Jiang, X. S.; Zhou, H. P.

    2016-01-01

    A three-dimensional (3D) lattice Boltzmann model and boundary method is developed to simulate electro-osmotic flow (EOF) with a charged spherical particle immersed in an electrolyte solution. The general governing equations for electro-osmotic transport are Navier-Stokes equations for fluid flow and the Poisson-Boltzmann equation for electric potential distribution around the particle. Two sets of D3Q19 lattice structure with curved boundary conditions are implemented. The simulation results are compared with analytical predictions and are found to be in excellent agreement. The potential distribution appears circularly symmetric and the flow velocity decreases with the cross-sectional area for flow passage increasing due to the mass conservation. The effects of the ionic concentration, the sphere radius, electric potential and external electric field on the velocity profiles are investigated. The flow velocity increases with both the electric potential and the external electric field. However, the variation in flow velocity with the ionic concentration and the sphere radius is complex due to the change in electrical double layer (EDL) thickness.

  19. Electroosmotic flow behaviour of metal contaminated expansive soil.

    PubMed

    Sivapullaiah, P V; Prakash, B S Nagendra

    2007-05-17

    It is important to study the flow behaviour through soil during electrokinetic extraction of contaminants to understand their removal mechanism. The flow through the expansive soil containing montmorillonite is monitored during laboratory electrokinetic extraction of heavy metal contaminants. The permeability of soil, which increases due to the presence of contaminants, is further enhanced during electrokinetic extraction of contaminants due to osmotic permeability. The variations in flow rates through the soil while the extracting fluid is changed to dilute acetic acid (used to control the increase of pH) and EDTA solution (used to desorb the metal ions from soil) are studied. The trends of removal of contaminants vis-a-vis the changes in the flow through the soil during different phases of electrokinetic extraction are established. Chromium ions are removed by flushing of water through the soil and increased osmotic flow is beneficial. Removal of iron ions is enhanced by induced osmotic flow and desorption of ions by electrokinetic processes. PMID:17276001

  20. Experimental Verification of Overlimiting Current by Surface Conduction and Electro-Osmotic Flow in Microchannels

    NASA Astrophysics Data System (ADS)

    Nam, Sungmin; Cho, Inhee; Heo, Joonseong; Lim, Geunbae; Bazant, Martin Z.; Moon, Dustin Jaesuk; Sung, Gun Yong; Kim, Sung Jae

    2015-03-01

    Direct evidence is provided for the transition from surface conduction (SC) to electro-osmotic flow (EOF) above a critical channel depth (d ) of a nanofluidic device. The dependence of the overlimiting conductance (OLC) on d is consistent with theoretical predictions, scaling as d-1 for SC and d4 /5 for EOF with a minimum around d =8 μ m . The propagation of transient deionization shocks is also visualized, revealing complex patterns of EOF vortices and unstable convection with increasing d . This unified picture of surface-driven OLC can guide further advances in electrokinetic theory, as well as engineering applications of ion concentration polarization in microfluidics and porous media.

  1. Chaotic mixing enhancement in electro-osmotic flows by random period modulation

    NASA Astrophysics Data System (ADS)

    Pacheco, J. Rafael; Chen, Kang Ping; Pacheco-Vega, Arturo; Chen, Baisong; Hayes, Mark A.

    2008-02-01

    In this Letter we report a method for enhancing mixing of a passive tracer in an electro-osmotic flow in a rectangular microchannel. A time-periodic electric field across the microchannel, filled with an electrolyte solution, is applied in order to realize a well-mixed state. A random perturbation to the time-periodic electric field is introduced in order to break the invariant tori of the system and achieve better mixing results. It is shown that under such period-modulation the enhancement effect increases with the strength of the modulation, and it is much reduced as diffusion is increased.

  2. Lift forces on colloidal particles in combined electroosmotic and Poiseuille flow.

    PubMed

    Cevheri, Necmettin; Yoda, Minami

    2014-11-25

    Colloidal particles suspended in aqueous electrolyte solutions flowing through microchannels are subject to lift forces that repel the particles from the wall due to the voltage and pressure gradients commonly used to drive flows in microfluidic devices. There are very few studies that have considered particles subject to both an electric field and a pressure gradient, however. Evanescent-wave particle tracking velocimetry was therefore used to investigate the near-wall dynamics of a dilute suspension of 245 nm radius polystyrene particles in a monovalent electrolyte solution in Poiseuille and combined electroosmotic (EO) and Poiseuille flow through 30-μm-deep fused-silica channels. The lift force observed in Poiseuille flow, which is estimated from the near-wall particle distribution, appears to be proportional to the shear rate, a scaling consistent with hydrodynamic lift forces previously reported in field-flow fractionation studies. The estimates of the lift force observed in combined flow suggest that the force magnitude exceeds the sum of the lift forces observed in EO flow at the same electric field or in Poiseuille flow at the same shear rate. Moreover, the force magnitude appears to be proportional to the electric field magnitude and have a power law dependence on the shear rate with an exponent between 0.4 and 0.5. This unexpected scaling suggests that the repulsive lift force observed in combined electroosmotic and Poiseuille flow is a new phenomenon, distinct from previously reported electroviscous, hydrodynamic lift, or dielectrophoretic-like forces, and warrants further study. PMID:25343853

  3. Oscillatory electro-osmotic flow through a slit channel with slipping stripes on walls

    NASA Astrophysics Data System (ADS)

    Chu, Henry C. W.; Ng, Chiu-On

    2013-04-01

    A theoretical model is presented in this paper for time-oscillating electro-osmotic flow through a plane channel bounded by two parallel plates, which are patterned with periodic stripes of distinct hydrodynamic slippage and wall potential. The flow is driven by oscillatory pressure gradient and electric field of the same frequency in the axial direction. Flows that are longitudinal or transverse to the stripes are investigated. Based on the Debye-Hückel approximation, and assuming Stokes flow, the electric potential and the velocity fields are found by the methods of eigenfunction expansion and point collocation. The phenomenological coefficients of the Onsager relations for the fluid and current fluxes are deduced as functions of the channel height, the area fraction of wall with slippage, the intrinsic slip length, the Debye parameter, the zeta potentials and the oscillation parameter. Considering several kinds of wall patterns, we extend the theoretical limits in the steady-flow regime to the oscillatory-flow regime. For a uniformly charged wall, the effective slip length obtained from the hydrodynamic problem can still be used directly in the electro-osmotic flow as if the wall were uniformly slipping. When the slipping stripes are perfectly slipping but uncharged, the presence of such stripes will always have a decreasing effect on the streaming conductance, unlike the steady case in which it gives no net effect on the flow in the limit of a very thin double layer. Furthermore, we confirm the presence of a threshold frequency, beyond which the flow will diminish significantly. The slipping fraction of the wall will always introduce a phase lag to the response and lower the threshold frequency. Increasing the wall potential in the presence of slippage can appreciably increase the streaming conductance and the phase lag.

  4. Experimental and theoretical investigations of non-Newtonian electro-osmotic driven flow in rectangular microchannels.

    PubMed

    Huang, Yi; Chen, Juzheng; Wong, TeckNeng; Liow, Jong-Leng

    2016-07-20

    With the development of microfluidics, electro-osmotic (EO) driven flow has gained intense research interest as a result of its unique flow profile and the corresponding benefits in its application in the transportation of sensitive samples. Sensitive samples, such as DNA, are incapable of enduring strong flow shear induced by conventional hydrodynamic driven methods. EO driven flow is thus a niche area. However, even though there are a few research studies focusing on bio-fluidic samples related to EO driven flow, the majority of them are merely theoretical modeling without solid evidence from experiments due to the inherent complex rheological behavior of the bio-fluids. Challenges occur when the EO driven mechanism meets with complex rheology; vital questions such as can the zeta potential still be assumed to be constant when dealing with fluids with complex rheology? and "Does the shear thinning effect enhance electro-osmotic driven flow?" need to be answered. We conducted experiments using current monitoring and microscopy fluorescence methods, and developed a theoretical model by coupling a generalized Smoluchowski approach with the power-law constitutive model. We calculated the zeta potential and compared the experimental results with modeling to answer the questions. The results show a reduction of zeta potential in the presence of PEO aqueous solutions. A constant zeta potential is also indicated by varying the PEO concentration and the electric field strength.The shear thinning effect is also addressed via experimental data and theoretical calculations. The results show a promising enhancement of the EO driven velocity due to the shear thinning effect. PMID:27381295

  5. Influence of atomistic physics on electro-osmotic flow: An analysis based on density functional theory

    NASA Astrophysics Data System (ADS)

    Nilson, Robert H.; Griffiths, Stewart K.

    2006-10-01

    Molecular density profiles and charge distributions determined by density functional theory (DFT) are used in conjunction with the continuum Navier-Stokes equations to compute electro-osmotic flows in nanoscale channels. The ion species of the electrolyte are represented as centrally charged hard spheres, and the solvent is treated as a dense fluid of neutral hard spheres having a uniform dielectric constant. The model explicitly accounts for Lennard-Jones interactions among fluid and wall molecules, hard sphere repulsions, and short range electrical interactions, as well as long range Coulombic interactions. Only the last of these interactions is included in classical Poisson-Boltzmann (PB) modeling of the electric field. Although the proposed DFT approach is quite general, the sample calculations presented here are limited to symmetric monovalent electrolytes. For a prescribed surface charge, this DFT model predicts larger counterion concentrations near charged channel walls, relative to classical PB modeling, and hence smaller concentrations in the channel center. This shifting of counterions toward the walls reduces the effective thickness of the Debye layer and reduces electro-osmotic velocities as compared to classical PB modeling. Zeta potentials and fluid speeds computed by the DFT model are as much as two or three times smaller than corresponding PB results. This disparity generally increases with increasing electrolyte concentration, increasing surface charge density and decreasing channel width. The DFT results are found to be comparable to those obtained by molecular dynamics simulation, but require considerably less computing time.

  6. A novel microfluidic valve controlledby induced charge electro-osmotic flow

    NASA Astrophysics Data System (ADS)

    Wang, Chengfa; Song, Yongxin; Pan, Xinxiang; Li, Dongqing

    2016-07-01

    In this paper, a novel microfluidic valve by utilizing induced charge electro-osmotic flow (ICEOF) is proposed and analyzed. The key part of the microfluidic valve is a Y-shaped microchannel. A small metal plate is placed at each corner of the junction of the Y-shaped microchannel. When a DC electrical field is applied through the channels, electro-osmotic flows occur in the channels, and two vortices will be formed near each of the metal plates due to the ICEOF. The two vortices behave like virtual ‘blocking columns’ to restrain and direct the flow in the Y-channel. In this paper, effects of the length of the metal plates, the applied voltages, the width of the microchannel, the zeta potential of the non-metal microchannel wall, and the orientation of the branch channels on the flow switching between two outlet channels are numerically investigated. The results show that the flow switching between the two outlet channels can be flexibly achieved by adjusting the applied DC voltages. The critical switching voltage (CSV), under which one outlet channel is closed, decreases with the increase in the metal plate length and the orientation angle of the outlet channels. The CSV, however, increases with the increase in the inlet voltage, the width of the microchannel, and the absolute value of the zeta potential of the non-metal microchannel wall. Compared with other types of micro-valves, the proposed micro-valve is simple in structure without any moving parts. Only a DC power source is needed for its actuation, thus it can operate automatically by controlling the applied voltages.

  7. Modelling of electrokinetic phenomena involving confined polymers: Applications to DNA separation and electroosmotic flow control

    NASA Astrophysics Data System (ADS)

    Tessier, Frederic

    Microfluidic and nanofluidic technology is revolutionizing experimental practices in analytical chemistry, molecular biology and medicine. Indeed, the development of systems of small dimensions for the processing of fluids heralds the miniaturization of traditional, cumbersome laboratory equipment onto robust, portable and efficient microchip devices (similar to the electronic microchips found in computers). Moreover, the conjunction of scale between the smallest man-made device and the largest macromolecules evolved by Nature is fertile ground for the blooming of our knowledge about the key processes of life. In fact, the conjunction is threefold, because modern computational resources also allow us to contemplate a rather explicit modelling of physical systems between the nanoscale and the microscale. In the five articles comprising this thesis, we present the results of computer simulations that address specific questions concerning the operation of two different model systems relevant to the development of small-scale fluidic devices for the manipulation and analysis of biomolecules. First, we use a Bond-Fluctuation Monte Carlo approach to study the electrophoretic drift of macromolecules across an entropic trap array built for the length separation of long, double-stranded DNA molecules. We show that the motion of the molecules is consistent with a simple balance between electric and entropic forces, in terms of a single characteristic parameter. We also extract detailed information on polymer deformation during migration, predict the separation of topoisomers, and investigate innovative ratchet driving regimes. Secondly, we present theoretical derivations, numerical calculations and Molecular Dynamics simulation results for an electrolyte confined in a capillary of nanoscopic dimensions. In particular, we study the effectiveness of neutral grafted polymer chains in reducing the magnitude of electroosmotic flow (fluid flow induced by an external electric field

  8. Digital Flow Control of Electroosmotic Pump: Onsager Coefficients and Interfacial Parameters Determination

    NASA Astrophysics Data System (ADS)

    Xu, Zuli; Miao, Jianying; Wang, Ning; Sheng, Ping

    2011-03-01

    Electroosmosis (EO) and streaming potential (SP) are two complementary electrokinetic processes related by the Onsager relation. In particular, electroosmotic pump (EOP) is potentially useful for a variety of engineering and bio-related applications. By fabricating samples consisting of dry-etched cylindrical pores (50 μ m in length and 3.5 μ m in diameter) on silicon wafers, we demonstrate that the use of digital control via voltage pulses can resolve the flow regulation and stability issues associated with the EOP, so that the intrinsic characteristics of the porous sample medium may be revealed. Through the consistency of the measured electroosmosis and the streaming potential coefficients as required by the Onsager relation, we deduce the zeta potential and the surface conductivity, both physical parameters pertaining to the liquid-solid interface.

  9. Digital flow control of electroosmotic pump: Onsager coefficients and interfacial parameters determination

    NASA Astrophysics Data System (ADS)

    Xu, Zuli; Miao, Jianying; Wang, Ning; Wen, Weijia; Sheng, Ping

    2011-03-01

    Electroosmosis and streaming potential are two complementary electrokinetic processes related by the Onsager relation. In particular, an electroosmotic pump (EOP) is potentially useful for a variety of engineering and bio-related applications. By fabricating samples consisting of dry-etched cylindrical pores (50 μm in length and 3.5 μm in diameter) on silicon wafers, we demonstrate that the use of digital control via voltage pulses can resolve the flow regulation and stability issues associated with the EOP, so that the intrinsic characteristics of the porous sample medium may be revealed. Through the consistency of the measured electroosmosis (EO) and the streaming potential (SP) coefficients as required by the Onsager relation, we deduce the zeta potential and the surface conductivity, both physical parameters pertaining to the liquid-solid interface.

  10. Experimental verification of overlimiting current by surface conduction and electro-osmotic flow in microchannels.

    PubMed

    Nam, Sungmin; Cho, Inhee; Heo, Joonseong; Lim, Geunbae; Bazant, Martin Z; Moon, Dustin Jaesuk; Sung, Gun Yong; Kim, Sung Jae

    2015-03-20

    Direct evidence is provided for the transition from surface conduction (SC) to electro-osmotic flow (EOF) above a critical channel depth (d) of a nanofluidic device. The dependence of the overlimiting conductance (OLC) on d is consistent with theoretical predictions, scaling as d(-1) for SC and d(4/5) for EOF with a minimum around d=8  μm. The propagation of transient deionization shocks is also visualized, revealing complex patterns of EOF vortices and unstable convection with increasing d. This unified picture of surface-driven OLC can guide further advances in electrokinetic theory, as well as engineering applications of ion concentration polarization in microfluidics and porous media. PMID:25839275

  11. Heat-transfer enhancement in AC electro-osmotic micro-flows

    NASA Astrophysics Data System (ADS)

    Liu, Z. P.; Speetjens, M. F. M.; Frijns, A. J. H.; van Steenhoven, A. A.

    2012-11-01

    Heat transfer in micro-flows is essential to emerging technologies as advanced microelectronics cooling systems and chemical processes in lab-on-a-chip applications. The present study explores the potential of AC electro-osmotic (ACEO) flow forcing, a promising technique for the actuation and manipulation of micro-flows, for heat-transfer enhancement. Subjects of investigation include the 3D flow structure due to ACEO forcing via an array of electrodes in a micro-channel by way of 3D velocity measurements. Presence and properties of vortical structures of the 3D flow are quantified in laboratory experiments. Typical outcomes of the experimental study result from a number of 3D particle trajectories obtained by using 3D micro-Particle-Tracking Velocimetry (3D μ-PTV). The steady nature of the flow enables combination of results from a series of measurements into one dense data set. This facilitates accurate evaluation of quantities relevant for heat transfer by data-processing methods. The primary circulation is given above one half of an electrode in terms of the spanwise component of vorticity. The outline of the vortex boundary is determined via the eigenvalues of the strain-rate tensor. To estimate convective heat transfer, wall shear rate above one half of an electrode is quantitatively analyzed as function of voltage amplitude and frequency. These results yield first insights into the characteristics of 3D ACEO flows and ways to exploit and manipulate them for heat-transfer enhancement.

  12. Poisson-Fokker-Planck model for biomolecules translocation through nanopore driven by electroosmotic flow

    NASA Astrophysics Data System (ADS)

    Lin, XiaoHui; Zhang, ChiBin; Gu, Jun; Jiang, ShuYun; Yang, JueKuan

    2014-11-01

    A non-continuous electroosmotic flow model (PFP model) is built based on Poisson equation, Fokker-Planck equation and Navier-Stokse equation, and used to predict the DNA molecule translocation through nanopore. PFP model discards the continuum assumption of ion translocation and considers ions as discrete particles. In addition, this model includes the contributions of Coulomb electrostatic potential between ions, Brownian motion of ions and viscous friction to ion transportation. No ionic diffusion coefficient and other phenomenological parameters are needed in the PFP model. It is worth noting that the PFP model can describe non-equilibrium electroosmotic transportation of ions in a channel of a size comparable with the mean free path of ion. A modified clustering method is proposed for the numerical solution of PFP model, and ion current translocation through nanopore with a radius of 1 nm is simulated using the modified clustering method. The external electric field, wall charge density of nanopore, surface charge density of DNA, as well as ion average number density, influence the electroosmotic velocity profile of electrolyte solution, the velocity of DNA translocation through nanopore and ion current blockade. Results show that the ion average number density of electrolyte and surface charge density of nanopore have a significant effect on the translocation velocity of DNA and the ion current blockade. The translocation velocity of DNA is proportional to the surface charge density of nanopore, and is inversely proportional to ion average number density of electrolyte solution. Thus, the translocation velocity of DNAs can be controlled to improve the accuracy of sequencing by adjusting the external electric field, ion average number density of electrolyte and surface charge density of nanopore. Ion current decreases when the ion average number density is larger than the critical value and increases when the ion average number density is lower than the

  13. Electroosmotic Flow of Power-Law Fluids in a Cylindrical Microcapillary

    NASA Astrophysics Data System (ADS)

    Saidi, M. H.; Babaie, Ashkan; Sadeghi, Arman; Center of Excellence in Energy Conversion Team

    2012-11-01

    In biological applications where most fluids are considered to be non-Newtonian, Newtonian law of viscosity looks insufficient for describing the flow characteristics. In the present work, the electroosmotic flow of power-law fluids in a circular micro tube is investigated. The Poisson-Boltzmann equation for electrical potential is solved numerically in the complete form without using the Debye-Hückel approximation. The physical model includes the Joule heating and viscous dissipation effects. Once the momentum and energy equations are solved numerically, a parametric study is done to investigate the effects of different parameters such as flow behavior index, wall zeta potential and the Debye-Hückel parameter on thermal and hydrodynamic characteristics of the flow. Results show that based on the value of viscous dissipation and the Debye-Hückel parameter the non-Newtonian characteristics of the flow can lead to significant changes regarding to Newtonian behaviors. The provided results in this study would lead to accurate prediction of temperature of biofluids in Lab-on-a-chip devices which is vital for retaining samples in a healthy condition.

  14. 2D Flow patterning in Hele-Shaw configurations using Non-Uniform Electroosmotic Slip

    NASA Astrophysics Data System (ADS)

    Boyko, Evgeniy; Rubin, Shimon; Gat, Amir; Bercovici, Moran

    2015-11-01

    We present an analytical study, validated by numerical simulations, of electroosmotic flow in a Hele-Shaw configuration with non-uniform zeta potential distribution. Applying the lubrication approximation and assuming thin electric double layer, we derive a pair of uncoupled Poisson equations for the pressure and the stream function, and show that the inhomogeneous parts in these equations are governed by gradients in zeta potential parallel and perpendicular to the applied electric field, respectively. We obtain a solution for the case of a disk with uniform zeta potential and show that the flow field created is an exact dipole, even in the immediate vicinity of the disk. We then illustrate the ability to generate complex flow fields using superposition of such disks. Furthermore, we study the inverse problem in which we define the desired flow pattern and solve for the zeta potential distribution required in order to establish it. We demonstrate that such inverse problem solutions can be used to create directional flows confined within narrow regions, without physical walls. We show that these solutions can be assembled to create complex microfluidic networks, composed of intersecting channels and turns, which are basic building blocks in microfluidic devices.

  15. Flow patterning in Hele-Shaw configurations using non-uniform electro-osmotic slip

    NASA Astrophysics Data System (ADS)

    Boyko, Evgeniy; Rubin, Shimon; Gat, Amir D.; Bercovici, Moran

    2015-10-01

    We present an analytical study of electro-osmotic flow in a Hele-Shaw configuration with non-uniform zeta potential distribution. Applying the lubrication approximation and assuming thin electric double layer, we obtain a pair of uncoupled Poisson equations for the pressure and depth-averaged stream function, and show that the inhomogeneous parts in these equations are governed by gradients in zeta potential parallel and perpendicular to the applied electric field, respectively. We obtain a solution for the case of a disk-shaped region with uniform zeta potential and show that the flow field created is an exact dipole, even in the immediate vicinity of the disk. In addition, we study the inverse problem where the desired flow field is known and solve for the zeta potential distribution required in order to establish it. Finally, we demonstrate that such inverse problem solutions can be used to create directional flows confined within narrow regions, without physical walls. Such solutions are equivalent to flow within channels and we show that these can be assembled to create complex microfluidic networks, composed of intersecting channels and turns, which are basic building blocks in microfluidic devices.

  16. Numerical study of active control of mixing in electro-osmotic flows by temperature difference using lattice Boltzmann methods.

    PubMed

    Alizadeh, A; Wang, J K; Pooyan, S; Mirbozorgi, S A; Wang, M

    2013-10-01

    In this paper, the effect of temperature difference between inlet flow and walls on the electro-osmotic flow through a two-dimensional microchannel is investigated. The main objective is to study the effect of temperature variations on the distribution of ions and consequently internal electric potential field, electric body force, and velocity fields in an electro-osmotic flow. We assume constant temperature and zeta potential on walls and use the mean temperature of each cross section to characterize the Boltzmann ion distribution across the channel. Based on these assumptions, the multiphysical transports are still able to be described by the classical Poisson-Boltzmann model. In this work, the Navier-Stokes equation for fluid flow, the Poisson-Boltzmann equation for ion distribution, and the energy equation for heat transfer are solved by a couple lattice Boltzmann method. The modeling results indicate that the temperature difference between walls and the inlet solution may lead to two symmetrical vortices at the entrance region of the microchannel which is appropriate for mixing enhancements. The advantage of this phenomenon for active control of mixing in electro-osmotic flow is the manageability of the vortex scale without extra efforts. For instance, the effective domain of this pattern could broaden by the following modulations: decreasing the external electric potential field, decreasing the electric double layer thickness, or increasing the temperature difference between inlet flow and walls. This work may provide a novel strategy for design or optimization of microsystems. PMID:23859813

  17. Refinement of current monitoring methodology for electroosmotic flow assessment under low ionic strength conditions.

    PubMed

    Saucedo-Espinosa, Mario A; Lapizco-Encinas, Blanca H

    2016-05-01

    Current monitoring is a well-established technique for the characterization of electroosmotic (EO) flow in microfluidic devices. This method relies on monitoring the time response of the electric current when a test buffer solution is displaced by an auxiliary solution using EO flow. In this scheme, each solution has a different ionic concentration (and electric conductivity). The difference in the ionic concentration of the two solutions defines the dynamic time response of the electric current and, hence, the current signal to be measured: larger concentration differences result in larger measurable signals. A small concentration difference is needed, however, to avoid dispersion at the interface between the two solutions, which can result in undesired pressure-driven flow that conflicts with the EO flow. Additional challenges arise as the conductivity of the test solution decreases, leading to a reduced electric current signal that may be masked by noise during the measuring process, making for a difficult estimation of an accurate EO mobility. This contribution presents a new scheme for current monitoring that employs multiple channels arranged in parallel, producing an increase in the signal-to-noise ratio of the electric current to be measured and increasing the estimation accuracy. The use of this parallel approach is particularly useful in the estimation of the EO mobility in systems where low conductivity mediums are required, such as insulator based dielectrophoresis devices. PMID:27375813

  18. Thermal transport characteristics of combined electroosmotic and pressure driven flow in soft nanofluidics.

    PubMed

    Matin, M H; Ohshima, H

    2016-08-15

    The present study deals with thermal transport characteristics of an electrolyte solution flowing through a slit nanochannel with polyelectrolyte walls, known as soft nanochannel. The sources of the fluid flow are the pressure gradient along the channel axis and the electrokinetic effects that trigger an electroosmotic flow under the impact of a uniformly applied electric field. The polyelectrolyte layer (PEL) is denoted as a fixed charge layer (FCL) and the electrolyte ions can be present both inside and outside the PEL. Therefore, the PEL-electrolyte interface acts as a semi-penetrable membrane. To the best of our knowledge, the thermal analysis of mixed electrokinetically and pressure driven flow in such soft nanochannels has never been addressed. The Poisson-Boltzmann equation is solved assuming the Debye-Huckel linearization for the low electric potential to provide us with analytical closed form solutions for the conservation equations. The conservation equations are solved to obtain the electric potential; velocity and temperature distributions in terms of governing dimensionless parameters. Also results for the Nusselt number are presented and discussed in detail. PMID:27214147

  19. Thermal characteristics of time-periodic electroosmotic flow in a circular microchannel

    NASA Astrophysics Data System (ADS)

    Moghadam, Ali Jabari

    2015-10-01

    A theoretical analysis is performed to explore the thermal characteristics of electroosmotic flow in a circular microchannel under an alternating electric field. An analytical approach is presented to solve energy equation, and then, the exact solution of temperature profiles is obtained by using the Green's function method. This study reveals that the temperature field repeats itself for each half-period. Frequency has a strong influence on the thermal behavior of the flow field. For small values of the dimensionless frequency (small channel size, large kinematic viscosity, or small frequency), the advection mechanism is dominant in the whole domain and the resultant heating (Joule heating and wall heat flux) can be transferred by the complete flow field in the axial direction; while, the middle portion of the flow field at high dimensionless frequencies does not have sufficient time to transfer heat by advection, and the bulk fluid temperature, especially in heating, may consequently become greater than the wall temperature. In a particular instance of cooling mode, a constant surface temperature case is temporarily occurred in which the axial temperature gradient will be zero. For relatively high frequencies, the unsteady bulk fluid temperature in some radial positions at some moments may be equal to the wall temperature; hence instantaneous cylindrical surfaces with zero radial heat flux may occur over a period of time. Depending on the value and sign of the thermal scale ratio, the quasi-steady-state Nusselt number (time-averaged at one period) approaches a specific value as the electrokinetic radius becomes infinity.

  20. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow.

    PubMed

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2013-01-01

    This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space. PMID:23554584

  1. Conditions for similitude and the effect of finite Debye length in electroosmotic flows.

    PubMed

    Oh, Jung Min; Kang, Kwan Hyoung

    2007-06-15

    Under certain conditions, the velocity field is similar to the electric field for electroosmotic flow (EOF) inside a channel. There was a disagreement between investigators on the necessity of the infinitesimal-Reynolds-number condition for the similarity when the Helmholtz-Smoluchowski relation is applied throughout the boundaries. What is puzzling is a recent numerical result that showed, contrary to the conventional belief, an evident Reynolds number dependence of the EOF. We show here that the notion that the infinitesimal-Reynolds-number condition is required originates from the misunderstanding that the EOF is the Stokes flow. We point out that the EOF becomes the potential flow when the Helmholtz-Smoluchowski relation is applied at the boundaries. We carry out a numerical simulation to investigate the effect of finiteness of the Debye length and the vorticity layer inherently existing at the channel wall. We show that the Reynolds number dependence of the previous numerical simulation resulted from the finiteness of the Debye length and subsequent convective transport of vorticity toward the bulk flow. We discuss in detail how the convection of vorticity occurs and what factors are involved in the transport process, after carrying out the simulation for different Reynolds numbers, Debye lengths, corner radii, and geometries. PMID:17368472

  2. Non-isothermal electro-osmotic flow in a microchannel with charge-modulated surfaces

    NASA Astrophysics Data System (ADS)

    Bautista, Oscar; Sanchez, Salvador; Mendez, Federico

    2015-11-01

    In this work, we present an theoretical analysis of a nonisothermal electro-osmotic flow of a Newtonian fluid over charge-modulated surfaces in a microchannel. Here, the heating in the microchannel is due to the Joule effect caused by the imposition of an external electric field. The study is conducted through the use of perturbation techniques and is validated by means of numerical simulations. We consider that both, viscosity and electrical conductivity of the fluid are temperature-dependent; therefore, in order to determine the heat transfer process and the corresponding effects on the flow field, the governing equations of continuity, momentum, energy and electric potential have to be solved in a coupled manner. The principal obtained results evidence that the flow patterns are perturbed in a noticeable manner in comparison with the isothernal case. Our results may be used for increasing microfluidics mixing by conjugating thermal effects with the use of charge-modulated surfaces. This work has been supported by the research grants no. 220900 of Consejo Nacional de Ciencia y Tecnología (CONACYT) and 20150919 of SIP-IPN at Mexico. F. Méndez acknowledges also the economical support of PAPIIT-UNAM under contract number IN112215.

  3. Electro-osmotically driven MHD flow and heat transfer in micro-channel

    NASA Astrophysics Data System (ADS)

    Shit, G. C.; Mondal, A.; Sinha, A.; Kundu, P. K.

    2016-05-01

    A theoretical analysis is presented for electro-osmotic flow (EOF) of blood in a hydrophobic micro-channel with externally applied magnetic field. The lumen of micro-channels is assumed to be porous medium in addition to the consideration of permeability of the channel walls. The effects of slip velocity and thermal-slip are taken into consideration. The governing equations in the electrical double layer (EDL) together with the Poisson-Boltzmann equation and the body force exerted by the applied potential are furthermore considered. The flow is governed by the non-Newtonian viscoelastic fluid model. These equations along with the thermal energy equation are approximated by assuming that the channel height is much greater than the thickness of electrical double layer consisting the stern and diffusive layers. The problem is solved analytically and the computed results have presented graphically for various values of the dimensionless parameters. The results presented here have significant impact on the therapeutic treatment in hyperthermia as well as in controlling blood flow and heat transfer in micro-channels.

  4. Conditions for similitude between the fluid velocity and electric field in electroosmotic flow

    SciTech Connect

    E. B. Cummings; S. K. Griffiths; R. H. Nilson; P. H. Paul

    1999-04-01

    Electroosmotic flow is fluid motion driven by an electric field acting on the net fluid charge produced by charge separation at a fluid-solid interface. Under many conditions of practical interest, the resulting fluid velocity is proportional to the local electric field, and the constant of proportionality is everywhere the same. Here the authors show that the main conditions necessary for this similitude are a steady electric field, uniform fluid and electric properties, an electric Debye layer that is thin compared to any physical dimension, and fluid velocities on all inlet and outlet boundaries that satisfy the Helmholtz-Smoluchowski relation normally applicable to fluid-solid boundaries. Under these conditions, the velocity field can be determined directly from the Laplace equation governing the electric potential, without solving either the continuity or momentum equations. Three important consequences of these conditions are that the fluid motion is everywhere irrotational, that fluid velocities in two-dimensional channels bounded by parallel planes are independent of the channel depth, and that such flows exhibit no dependence on the Reynolds number.

  5. Capillary electrophoresis: Imaging of electroosmotic and pressure driven flow profiles in fused silica capillaries

    NASA Technical Reports Server (NTRS)

    Williams, George O., Jr.

    1996-01-01

    This study is a continuation of the summer of 1994 NASA/ASEE Summer Faculty Fellowship Program. This effort is a portion of the ongoing work by the Biophysics Branch of the Marshall Space Flight Center. The work has focused recently on the separation of macromolecules using capillary electrophoresis (CE). Two primary goals were established for the effort this summer. First, we wanted to use capillary electrophoresis to study the electrohydrodynamics of a sample stream. Secondly, there was a need to develop a methodology for using CE for separation of DNA molecules of various sizes. In order to achieve these goals we needed to establish a procedure for detection of a sample plug under the influence of an electric field Detection of the sample with the microscope and image analysis system would be helpful in studying the electrohydrodynamics of this stream under load. Videotaping this process under the influence of an electric field in real time would also be useful. Imaging and photography of the sample/background electrolyte interface would be vital to this study. Finally, detection and imaging of electroosmotic flow and pressure driven flow must be accomplished.

  6. Strong electro-osmotic flows about dielectric surfaces of zero surface charge

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Yariv, Ehud

    2014-04-01

    We analyze electro-osmotic flow about a dielectric solid of zero surface charge, using the prototypic configurations of a spherical particle and an infinite circular cylinder. We assume that the ratio δ of Debye width to particle size is asymptotically small, and consider the flow engendered by the application of a uniform electric field; the control parameter is E—the voltage drop on the particle (normalized by the thermal scale) associated with this field. For moderate fields, E =O(1), the induced ζ potential scales as the product of the applied-field magnitude and the Debye width; being small compared with the thermal voltage, its resolution requires addressing one higher asymptotic order than that resolved in the comparable analysis of electrophoresis of charged particles. For strong fields, E =O(δ-1), the ζ potential becomes comparable to the thermal voltage, depending nonlinearly on δ and E. We obtain a uniform approximation for the ζ-potential distribution, valid for both moderate and strong fields; it holds even under intense fields, E ≫δ-1, where it scales as log|E|. The induced-flow magnitude therefore undergoes a transition from an E2 dependence at moderate fields to an essentially linear variation with |E| at intense fields. Remarkably, surface conduction is negligible as long as E ≪δ-2: the ζ potential, albeit induced, remains mild even under intense fields. Thus, unlike the related problem of induced-charge flow about a perfect conductor, the theoretical velocity predictions in the present problem may actually be experimentally realized.

  7. Strong electro-osmotic flows about dielectric surfaces of zero surface charge.

    PubMed

    Schnitzer, Ory; Yariv, Ehud

    2014-04-01

    We analyze electro-osmotic flow about a dielectric solid of zero surface charge, using the prototypic configurations of a spherical particle and an infinite circular cylinder. We assume that the ratio δ of Debye width to particle size is asymptotically small, and consider the flow engendered by the application of a uniform electric field; the control parameter is E-the voltage drop on the particle (normalized by the thermal scale) associated with this field. For moderate fields, E=O(1), the induced ζ potential scales as the product of the applied-field magnitude and the Debye width; being small compared with the thermal voltage, its resolution requires addressing one higher asymptotic order than that resolved in the comparable analysis of electrophoresis of charged particles. For strong fields, E=O(δ-1), the ζ potential becomes comparable to the thermal voltage, depending nonlinearly on δ and E. We obtain a uniform approximation for the ζ-potential distribution, valid for both moderate and strong fields; it holds even under intense fields, E≫δ-1, where it scales as log|E|. The induced-flow magnitude therefore undergoes a transition from an E2 dependence at moderate fields to an essentially linear variation with |E| at intense fields. Remarkably, surface conduction is negligible as long as E≪δ-2: the ζ potential, albeit induced, remains mild even under intense fields. Thus, unlike the related problem of induced-charge flow about a perfect conductor, the theoretical velocity predictions in the present problem may actually be experimentally realized. PMID:24827330

  8. Design of a single-cell positioning controller using electroosmotic flow and image processing.

    PubMed

    Ay, Chyung; Young, Chao-Wang; Chen, Jhong-Yin

    2013-01-01

    The objective of the current research was not only to provide a fast and automatic positioning platform for single cells, but also improved biomolecular manipulation techniques. In this study, an automatic platform for cell positioning using electroosmotic flow and image processing technology was designed. The platform was developed using a PCI image acquisition interface card for capturing images from a microscope and then transferring them to a computer using human-machine interface software. This software was designed by the Laboratory Virtual Instrument Engineering Workbench, a graphical language for finding cell positions and viewing the driving trace, and the fuzzy logic method for controlling the voltage or time of an electric field. After experiments on real human leukemic cells (U-937), the success of the cell positioning rate achieved by controlling the voltage factor reaches 100% within 5 s. A greater precision is obtained when controlling the time factor, whereby the success rate reaches 100% within 28 s. Advantages in both high speed and high precision are attained if these two voltage and time control methods are combined. The control speed with the combined method is about 5.18 times greater than that achieved by the time method, and the control precision with the combined method is more than five times greater than that achieved by the voltage method. PMID:23698272

  9. Miniature liquid flow sensor and feedback control of electroosmotic and pneumatic flows for a micro gas analysis system.

    PubMed

    Ohira, Shin-Ichi; Toda, Kei

    2006-01-01

    Accurate liquid flow control is important in most chemical analyses. In this work, the measurement of liquid flow in microliters per minute was performed, and feedback control of the flow rate was examined. The flow sensor was arranged on a channel made in a polydimethylsiloxane (PDMS) block. The center of the channel was cooled by a miniature Peltier device, and the change in temperature balance along the channel formed by the flow was measured by two temperature sensors. Using this flow sensor, feedback flow control was examined with two pumping methods. One was the electroosmotic flow method, made by applying a high voltage (HV) between the reagent and waste reservoirs; the other was the piezo valve method, in which a micro-valve-seat was fabricated in a PDMS cavity with a silicone diaphragm. The latter was adopted for a micro gas analysis system (microGAS) for measuring atmospheric H2S and SO2. The obtained baselines were stable, and better limits of detection were obtained. PMID:16429774

  10. Rotating electro-osmotic flow over a plate or between two plates.

    PubMed

    Chang, Chien-Cheng; Wang, Chang-Yi

    2011-11-01

    In this paper, we investigate rotating electro-osmotic (EO) flow over an infinite plate or in a channel formed by two parallel plates. The analysis is based on the Debye-Hückel approximation for charge distributions and the Navier-Stokes equation for a transport electrolyte in the rotating frame. It is shown that, for the single plate, the nondimensional speed of system rotation ω is the singly most important parameter, while for the channel, in addition to ω, the nondimensional electrokinetic width K also plays an important role. However, the parameter ω≡η(2) has different natural appearances in the respective cases of a single plate (SP) and two plates (TPs). More precisely, η(SP) measures the ratio λ(D)/L(K) of the Debye length to the Ekman depth, while η(TP) measures the ratio L/L(K) of the channel width to the Ekman depth. The effect of rotation is always to reduce the axial flow rate along the direction of the applied electric field, accompanied by a (secondary) transverse flow. In the SP case, the plot on the velocity plane for each ω shows an interesting closed EO Ekman spiral. The size of the spiral shrinks with increasing ω. The transverse flow is so significant that the volume transport associated with the EO Ekman spiral turns clockwise 45° to the applied field near ω=0 and gradually turns at a right angle to the applied field as ω is increased. In contrast, in the TP case, the transverse flow rate is smaller than the axial flow rate when ω is small. The transverse flow rates at all K are observed to reach their maxima at ω of order 1. The volume transport is nearly at a zero angle to the applied field near ω=0 and gradually turns to 45° to the applied field as ω is increased. In the limit of ω→∞, for both SP and TP cases, the entire system forms a rigid body rotation-there is neither axial nor transverse flow. PMID:22181511

  11. Rotating electro-osmotic flow over a plate or between two plates

    NASA Astrophysics Data System (ADS)

    Chang, Chien-Cheng; Wang, Chang-Yi

    2011-11-01

    In this paper, we investigate rotating electro-osmotic (EO) flow over an infinite plate or in a channel formed by two parallel plates. The analysis is based on the Debye-Hückel approximation for charge distributions and the Navier-Stokes equation for a transport electrolyte in the rotating frame. It is shown that, for the single plate, the nondimensional speed of system rotation ω is the singly most important parameter, while for the channel, in addition to ω, the nondimensional electrokinetic width K also plays an important role. However, the parameter ω≡η2 has different natural appearances in the respective cases of a single plate (SP) and two plates (TPs). More precisely, η(SP) measures the ratio λD/LK of the Debye length to the Ekman depth, while η(TP) measures the ratio L/LK of the channel width to the Ekman depth. The effect of rotation is always to reduce the axial flow rate along the direction of the applied electric field, accompanied by a (secondary) transverse flow. In the SP case, the plot on the velocity plane for each ω shows an interesting closed EO Ekman spiral. The size of the spiral shrinks with increasing ω. The transverse flow is so significant that the volume transport associated with the EO Ekman spiral turns clockwise 45° to the applied field near ω=0 and gradually turns at a right angle to the applied field as ω is increased. In contrast, in the TP case, the transverse flow rate is smaller than the axial flow rate when ω is small. The transverse flow rates at all K are observed to reach their maxima at ω of order 1. The volume transport is nearly at a zero angle to the applied field near ω=0 and gradually turns to 45° to the applied field as ω is increased. In the limit of ω→∞, for both SP and TP cases, the entire system forms a rigid body rotation—there is neither axial nor transverse flow.

  12. Surface charge, electroosmotic flow and DNA extension in chemically modified thermoplastic nanoslits and nanochannels.

    PubMed

    Uba, Franklin I; Pullagurla, Swathi R; Sirasunthorn, Nichanun; Wu, Jiahao; Park, Sunggook; Chantiwas, Rattikan; Cho, Yoon-Kyoung; Shin, Heungjoo; Soper, Steven A

    2015-01-01

    Thermoplastics have become attractive alternatives to glass/quartz for microfluidics, but the realization of thermoplastic nanofluidic devices has been slow in spite of the rather simple fabrication techniques that can be used to produce these devices. This slow transition has in part been attributed to insufficient understanding of surface charge effects on the transport properties of single molecules through thermoplastic nanochannels. We report the surface modification of thermoplastic nanochannels and an assessment of the associated surface charge density, zeta potential and electroosmotic flow (EOF). Mixed-scale fluidic networks were fabricated in poly(methylmethacrylate), PMMA. Oxygen plasma was used to generate surface-confined carboxylic acids with devices assembled using low temperature fusion bonding. Amination of the carboxylated surfaces using ethylenediamine (EDA) was accomplished via EDC coupling. XPS and ATR-FTIR revealed the presence of carboxyl and amine groups on the appropriately prepared surfaces. A modified conductance equation for nanochannels was developed to determine their surface conductance and was found to be in good agreement with our experimental results. The measured surface charge density and zeta potential of these devices were lower than glass nanofluidic devices and dependent on the surface modification adopted, as well as the size of the channel. This property, coupled to an apparent increase in fluid viscosity due to nanoconfinement, contributed to the suppression of the EOF in PMMA nanofluidic devices by an order of magnitude compared to the micro-scale devices. Carboxylated PMMA nanochannels were efficient for the transport and elongation of λ-DNA while these same DNA molecules were unable to translocate through aminated nanochannels. PMID:25369728

  13. Surface Charge, Electroosmotic Flow and DNA Extension in Chemically Modified Thermoplastic Nanoslits and Nanochannels

    PubMed Central

    Uba, Franklin I.; Pullagurla, Swathi R.; Sirasunthorn, Nichanun; Wu, Jiahao; Park, Sunggook; Chantiwas, Rattikan; Cho, Yoonkyoung; Shin, Heungjoo; Soper, Steven A.

    2014-01-01

    Thermoplastics have become attractive alternatives to glass/quartz for microfluidics, but the realization of thermoplastic nanofluidic devices has been slow in spite of the rather simple fabrication techniques that can be used to produce these devices. This slow transition has in part been attributed to insufficient understanding of surface charge effects on the transport properties of single molecules through thermoplastic nanochannels. We report the surface modification of thermoplastic nanochannels and an assessment of the associated surface charge density, zeta potential and electroosmotic flow (EOF). Mixed-scale fluidic networks were fabricated in poly(methylmethacrylate), PMMA. Oxygen plasma was used to generate surface-confined carboxylic acids with devices assembled using low temperature fusion bonding. Amination of the carboxylated surfaces using ethylenediamine (EDA) was accomplished via EDC coupling. XPS and ATR-FTIR revealed the presence of carboxyl and amine groups on the appropriately prepared surfaces. A modified conductance equation for nanochannels was developed to determine their surface conductance and was found to be in good agreement with our experimental results. The measured surface charge density and zeta potential of these devices were lower than glass nanofluidic devices and dependent on the surface modification adopted, as well as the size of the channel. This property, coupled to an apparent increase in fluid viscosity due to nanoconfinement, contributed to the suppression of the EOF in PMMA nanofluidic devices by an order of magnitude compared to the micro-scale devices. Carboxylated PMMA nanochannels were efficient for the transport and elongation of λ-DNA while these same DNA molecules were unable to translocate through aminated nanochannels. PMID:25369728

  14. Monitoring the electroosmotic flow in capillary electrophoresis using contactless conductivity detection and thermal marks.

    PubMed

    Saito, Renata Mayumi; Neves, Carlos Antonio; Lopes, Fernando Silva; Blanes, Lucas; Brito-Neto, José Geraldo Alves; do Lago, Claudimir Lucio

    2007-01-01

    The fundamental aspects and the capillary electrophoresis usage of thermal marks are presented. The so-called thermal mark is a perturbation of the electrolyte concentration generated by a punctual heating of the capillary while the separation electric field is maintained. The heating pulse is obtained by powering tungsten filaments or surface mount device resistors with 5 V during a few tens to hundreds of milliseconds. In the proposed model, the variation of the transport numbers with the rising temperature leads to the formation of low- and high-concentration regions during the heating. After cooling down, the initial mobilities of the species are restored and these regions (the thermal mark) migrate chiefly due to the electroosmotic flow (EOF). The mark may be recorded with a conductivity detector as part of a usual electropherogram and be used to index the analyte peaks and thus compensate for variations of the EOF. In a favorable case, 10 mmol/L KCl solution, the theory suggests that the error in the measurement of EOF mobility by this mean is only -6.5 x 10(-7) cm2 V-1 s-1. The method was applied to the analysis of alkaline ions in egg white, and the relative standard deviations of the corrected mobilities of these ions were smaller than 1%. This is a challenging matrix, because albumin reduces the EOF to 20% of its initial value after 11 runs. The combination of thermal mark, electrolysis separated, and contactless conductivity detection allowed the measurement of the EOF of a silica capillary with unbuffered KCl solution with constant ionic strength. The overall approach is advantageous, because one can easily control the chemical composition of the solution in contact with the inner surface of the capillary. PMID:17194142

  15. Poly(N,N-Dimethylacrylamide)-Based Coatings to Modulate Electroosmotic Flow and Capillary Surface Properties for Protein Analysis.

    PubMed

    Sola, Laura; Cretich, Marina; Chiari, Marcella

    2016-01-01

    Capillary electrophoresis (CE) is one of the most powerful techniques for the separation of biomolecules. However, the separation efficiency of proteins in CE is often compromised by their tendency to interact with the silanol groups on the surface of the inner capillary and by an uncontrolled electroosmotic flow. Herein, we report on the use of novel hydrophilic polymeric coatings that can modulate the properties of the capillary walls. The novelty of these poly(N,N-dimethylacrylamide)-based copolymers relies on the simultaneous presence of chemically reactive groups (N-acryloyloxysuccinimide and glycidyl methacrylate) and silane groups in the backbone, which results in highly stable films due to the covalent reaction between the polymer and the glass silanols. A careful optimization of monomer concentration confers anti-fouling properties to the polymer coatings, and thus allows for highly efficient acidic and alkaline protein separations. Furthermore, the presence of these monomers makes it possible to modulate the electroosmotic flow from negligible to reduced values, depending on the desired application. PMID:27473485

  16. Ion fluxes and electro-osmotic fluid flow in electrolytes around a metallic nanowire tip under large applied ac voltage.

    PubMed

    Poetschke, M; Bobeth, M; Cuniberti, G

    2013-09-10

    Motivated by the analysis of electrochemical growth of metallic nanowires from solution, we studied ion fluxes near nanoelectrodes in a binary symmetric electrolyte on the basis of the modified Poisson-Nernst-Planck equations in the strongly nonlinear region at large applied ac voltage. For an approximate calculation of the electric field near the nanowire tip, concentric spherical blocking electrodes were considered with radius of the inner electrode being of typically a few ten nanometers. The spatiotemporal evolution of the ion concentrations within this spherical model was calculated numerically by using the finite element method. The potential drop at the electric double layer, the electric field enhancement at the electrode surface, and the field screening in the bulk solution were determined for different bulk concentrations, ac voltages, and frequencies. The appearance of ac electro-osmotic fluid flow at the tip of a growing metallic nanowire is discussed, based on an estimation of the body force in the liquid near the nanowire tip, which was modeled by a cylinder with hemispherical cap. Electric field components tangential to the electrode surface exist near the contact between cylinder and hemisphere. Our analysis suggests that ac electro-osmotic flow causes an additional convective transport of metal complexes to the tip of the growing metal nanowire and thus affects the nanowire growth velocity. PMID:23927385

  17. Investigation of poly(styrene-divinylbenzene-vinylsulfonic acid) as retentive and electroosmotic flow generating phase in open-tubular electrochromatography.

    PubMed

    De Smet, Seppe; Lynen, Frederic

    2015-07-24

    In this work, a new sulfonated polystyrene based porous layer was synthesized on the wall of a capillary by a single step in situ polymerization process. To obtain a capillary suited for electrochromatography, vinylsulfonic acid (VSA) was, next to divinylbenzene (DVB), copolymerized to induce charges for the electroosmotic flow (EOF) generation. The VSA ratio in the monomer mixture and the polymerization time were optimized while the chromatographic characteristics of the obtained open tubular columns were investigated in electrochromatography. To allow unambiguous study of only chromatographic processes, evaluations were performed with a mixture of sufficiently retained and electrophoretically neutral parabens. Comparison of SEM pictures and chromatograms revealed that the polymerization time had a great influence on the polymer layer morphology and on the chromatographic performance. An increase in the VSA ratio, led to an increase in the mobile phase velocity but simultaneously lowered paraben retention. The novel optimized stationary phase could generate a stable and significant electro-osmotic flow (EOF) of 1.1mm/s over a wide pH range which could be produced in a reproducible manner. Minimal plate heights of 10μm, equivalent to the capillary internal diameter, were obtained. The open-tubular character of this optimized porous layer column allowed successful analyses at elevated temperature, resulting in a maximum efficiency of 85,500 plates for a 75cm capillary and linear velocities up to 1.4mm/s. Finally, a thermal gradient was successfully applied, leading to artificial sharpened peaks with a peak capacity of 55 in a 20min time span. PMID:26065568

  18. Transport and reaction of nanoliter samples in a microfluidic reactor using electro-osmotic flow

    NASA Astrophysics Data System (ADS)

    Arumbuliyur Comandur, Kaushik; Bhagat, Ali Asgar S.; Dasgupta, Subhashish; Papautsky, Ian; Banerjee, Rupak K.

    2010-03-01

    The primary focus of the paper is to establish both numerical and experimental methods to control the concentration of samples in a microreactor well. The concentration of the reacting samples is controlled by varying the initial sample size and electric field. Further, the paper numerically investigates the feasibility of mixing and reacting nanoliter samples with a wide variation in reaction rates in the microreactor driven by electro-osmotic pumping. Two discrete samples are measured and transported to the microreactor simultaneously by electro-osmotic pinching and switching. The transported samples are mixed in the microreactor and floated for 4.5 s for reaction to occur. It is seen that the normalized concentration of the product increases from 0.25 to 0.45 during that period. Also the effects of sample size and applied electric field on sample concentration during the switching process are studied. It is found that the normalized final sample concentration increases from 0.03 to 0.11 with an increase in sample size from 60 to 150 µm, at a constant electric field. Further, by increasing the electric field from 100 to 1000 V cm-1, at a constant sample size, there is a significant decrease in the final concentration of the sample from 0.14 to 0.04. Our studies also show that the normalized product concentration depends on the reaction rate and increases from 0.28 to 0.48 as the reaction rate increases from 10 L mol-1 s-1 to 105 L mol-1 s-1. However, the increase in the reaction rate beyond 105 L mol-1 s-1 does not influence the product concentration for the present design of the microreactor. Our microreactor with improved mixing can be used for assessing reactions of biological samples. The optimized sample size along with a controlled electric field for sample injection forms the basis for developing a prototype of a microreactor device for high throughput drug screening.

  19. Electro-osmotic infusion for joule heating soil remediation techniques

    DOEpatents

    Carrigan, Charles R.; Nitao, John J.

    1999-01-01

    Electro-osmotic infusion of ground water or chemically tailored electrolyte is used to enhance, maintain, or recondition electrical conductivity for the joule heating remediation technique. Induced flows can be used to infuse electrolyte with enhanced ionic conductivity into the vicinity of the electrodes, maintain the local saturation of near-electrode regions and resaturate a partially dried out zone with groundwater. Electro-osmotic infusion can also tailor the conductivity throughout the target layer by infusing chemically modified and/or heated electrolyte to improve conductivity contrast of the interior. Periodic polarity reversals will prevent large pH changes at the electrodes. Electro-osmotic infusion can be used to condition the electrical conductivity of the soil, particularly low permeability soil, before and during the heating operation. Electro-osmotic infusion is carried out by locating one or more electrodes adjacent the heating electrodes and applying a dc potential between two or more electrodes. Depending on the polarities of the electrodes, the induced flow will be toward the heating electrodes or away from the heating electrodes. In addition, electrodes carrying a dc potential may be located throughout the target area to tailor the conductivity of the target area.

  20. Effect of pore's geometry on the electroosmotic flow and nanoparticle dynamics in the nanopore

    NASA Astrophysics Data System (ADS)

    Hulings, Zachery; Melnikov, Dmitriy; Gracheva, Maria

    We theoretically study how the electroosmotic fluid velocity in a charged cylindrical nanopore in a solid state membranes depends on the pore's geometry, electrolyte concentration, and applied electrolyte bias. We find that in long pores, the fluid velocity follows the classical von Smoluchowski result for an infinite pore with a maximum along the pore axis. However, when the pore's length is comparable to its diameter, the velocity profile develops a local minimum along the pore axis with a maximum value near the membrane walls. The minimum becomes more pronounced when the electrolyte concentration and/or applied bias become larger. We attribute this effect to the inhomogeneous electric field distribution in the nanopore with the field along the axis of the pore being smaller than along the pore's walls due to the effects of access resistance on each side of the channel. We also investigate repercussions of such a velocity profile on the transport of a nanoparticle through the nanopore. NSF DMR and CBET Grant No. 1352218.

  1. A Theoretical Study of the Use of Electroosmotic Flow to Extend the Read-Length of DNA Sequencing by End Labeled Free Solution Electrophoresis

    NASA Astrophysics Data System (ADS)

    McCormick, Laurette

    2005-03-01

    End Labeled Free Solution Electrophoresis provides a means of separating DNA with free solution capillary electrophoresis, eliminating the need for gels and polymer solutions which increase the run-time and can be difficult to load into a capillary. In free solution electrophoresis, DNA is normally free-draining and all fragments elute at the same time, whereas ELFSE uses an uncharged label molecule attached to each DNA fragment in order to render the electrophoretic mobility size-dependent. We show how an electroosmotic flow could be used to extend the read-length of DNA sequencing with ELFSE. In particular, we demonstrate that the magnitude of the electroosmotic flow must be selected very carefully in order to gain both in speed and in read length. The possibility of having molecules moving in opposite directions is also examined.

  2. AC Electroosmotic Pumping in Nanofluidic Funnels.

    PubMed

    Kneller, Andrew R; Haywood, Daniel G; Jacobson, Stephen C

    2016-06-21

    We report efficient pumping of fluids through nanofluidic funnels when a symmetric AC waveform is applied. The asymmetric geometry of the nanofluidic funnel induces not only ion current rectification but also electroosmotic flow rectification. In the base-to-tip direction, the funnel exhibits a lower ion conductance and a higher electroosmotic flow velocity, whereas, in the tip-to-base direction, the funnel has a higher ion conductance and a lower electroosmotic flow velocity. Consequently, symmetric AC waveforms easily pump fluid through the nanofunnels over a range of frequencies, e.g., 5 Hz to 5 kHz. In our experiments, the nanofunnels were milled into glass substrates with a focused ion beam (FIB) instrument, and the funnel design had a constant 5° taper with aspect ratios (funnel tip width to funnel depth) of 0.1 to 1.0. We tracked ion current rectification by current-voltage (I-V) response and electroosmotic flow rectification by transport of a zwitterionic fluorescent probe. Rectification of ion current and electroosmotic flow increased with increasing electric field applied to the nanofunnel. Our results support three-dimensional simulations of ion transport and electroosmotic transport through nanofunnels, which suggest the asymmetric electroosmotic transport stems from an induced pressure at the junction of the nanochannel and nanofunnel tip. PMID:27230495

  3. Influence of electroosmotic flow on the ionic current rectification in a pH-regulated, conical nanopore

    NASA Astrophysics Data System (ADS)

    Lin, Dong-Huei; Lin, Chih-Yuan; Tseng, Shiojenn; Hsu, Jyh-Ping

    2015-08-01

    The ionic current rectification (ICR) is studied theoretically by considering a pH-regulated, conical nanopore. In particular, the effect of electroosmotic flow (EOF), which was often neglected in previous studies, is investigated by solving a set of coupled Poisson, Nernst-Planck, and Navier-Stokes equations. The behaviors of ICR under various conditions are examined by varying solution pH, bulk ionic concentration, and applied electric potential bias. We show that the EOF effect is significant when the bulk ionic concentration is medium high, the pH is far away from the iso-electric point, and the electric potential bias is high. The percentage deviation in the current rectification ratio arising from neglecting the EOF effect can be on the order of 100%. In addition, the behavior of the current rectification ratio at a high pH taking account of EOF is different both qualitatively and quantitatively from that without taking account of EOF.The ionic current rectification (ICR) is studied theoretically by considering a pH-regulated, conical nanopore. In particular, the effect of electroosmotic flow (EOF), which was often neglected in previous studies, is investigated by solving a set of coupled Poisson, Nernst-Planck, and Navier-Stokes equations. The behaviors of ICR under various conditions are examined by varying solution pH, bulk ionic concentration, and applied electric potential bias. We show that the EOF effect is significant when the bulk ionic concentration is medium high, the pH is far away from the iso-electric point, and the electric potential bias is high. The percentage deviation in the current rectification ratio arising from neglecting the EOF effect can be on the order of 100%. In addition, the behavior of the current rectification ratio at a high pH taking account of EOF is different both qualitatively and quantitatively from that without taking account of EOF. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03433g

  4. Trace analysis of oxidized, nitrated, and chlorinated aromatic amino acids by capillary electrophoresis with electroosmotic flow modification allowing large-volume sample stacking.

    PubMed

    Tábi, Tamás; Magyar, Kálmán; Szöko, Eva

    2005-05-01

    A capillary electrophoresis method has been developed for the simultaneous analysis of the oxidized, nitrated, and chlorinated aromatic amino acids, as well as their parent compounds. These modifications of the aromatic amino acids in proteins or free form are induced by the attack of reactive, mainly free radical species generated during cell stress, and these stable products may serve as biomarkers of cell damage. The analytes tyrosine, phenylalanine, dihydroxyphenylalanine, tryptophan, 3-nitrotyrosine, 3-chlorotyrosine, ortho-tyrosine, meta-tyrosine, 3-hydroxyphenylacetic acid (internal standard 1), and alpha-methyltyrosine (internal standard 2) were separated in their anionic forms in alkaline borate buffer. The polyamine spermine was used as electroosmotic flow (EOF) modifier. Adsorbing to the capillary wall, spermine can either suppress or even reverse the EOF depending on its concentration and the pH. The effects of the pH of the separation buffer, the spermine concentration, the temperature, and the applied field strength on the separation were examined. The modified aromatic amino acids are present in biological fluids in a much lower concentration than their parent compounds, thus high detection sensitivity of the analytical method is required. To achieve good detection sensitivity, field-amplified sample stacking of large injection volumes was applied. Omitting polyamine from the sample buffer allowed local reversal of the EOF, thus removal of the low conductivity sample buffer at the capillary inlet. In this way, 100% of the capillary to the detection window could be filled with the sample, and the detection limits achieved for the modified aromatic amino acids were in the range of 2.5-10 nM. PMID:15818575

  5. Stagnation point reverse flow combustor

    NASA Technical Reports Server (NTRS)

    Zinn, Ben T. (Inventor); Neumeier, Yedidia (Inventor); Seitzman, Jerry M. (Inventor); Jagoda, Jechiel (Inventor); Weksler, Yoav (Inventor)

    2008-01-01

    A method for combusting a combustible fuel includes providing a vessel having an opening near a proximate end and a closed distal end defining a combustion chamber. A combustible reactants mixture is presented into the combustion chamber. The combustible reactants mixture is ignited creating a flame and combustion products. The closed end of the combustion chamber is utilized for directing combustion products toward the opening of the combustion chamber creating a reverse flow of combustion products within the combustion chamber. The reverse flow of combustion products is intermixed with combustible reactants mixture to maintain the flame.

  6. Influence of the Modifier Type and its Concentration on Electroosmotic Flow of the Mobile Phase in Pressurized Planar Electrochromatography.

    PubMed

    Hałka-Grysińska, Aneta; Płocharz, Paweł W; Torbicz, Andrzej; Skwarek, Ewa; Janusz, Władysław; Dzido, Tadeusz H

    2014-01-01

    The aim of this work was to find a relationship between electroosmotic flow (EOF) velocity of the mobile phase in pressurized planar electrochromatography (PPEC) and physicochemical properties like zeta potential, dielectric constant, and viscosity of the mobile phase as well as its composition. The study included different types of organic modifiers (acetonitrile, methanol, ethanol, acetone, formamide, N-methylformamide and N,N-dimethylformamide) in the full concentration range. In all experiments, chromatographic glass plates HPTLC RP-18 W from Merck (Darmstadt) were used as a stationary phase. During the study we found that there is no linear correlation between EOF velocity of the mobile phase and single variables such as zeta potential or dielectric constant or viscosity. However, there is quite strong linear correlation between EOF velocity of the mobile phase and variable obtained by multiplying zeta potential of the stationary phase-mobile phase interface, by dielectric constant of the mobile phase solution and dividing by viscosity of the mobile phase. Therefore, it could be concluded that the PPEC system fulfilled the Helmholtz-Smoluchowski equation. PMID:25067847

  7. Mixing enhancement of low-Reynolds electro-osmotic flows in microchannels with temperature-patterned walls.

    PubMed

    Alizadeh, A; Zhang, L; Wang, M

    2014-10-01

    Mixing becomes challenging in microchannels because of the low Reynolds number. This study aims to present a mixing enhancement method for electro-osmotic flows in microchannels using vortices caused by temperature-patterned walls. Since the fluid is non-isothermal, the conventional form of Nernst-Planck equation is modified by adding a new migration term which is dependent on both temperature and internal electric potential gradient. This term results in the so-called thermo-electrochemical migration phenomenon. The coupled Navier-Stokes, Poisson, modified Nernst-Planck, energy and advection-diffusion equations are iteratively solved by multiple lattice Boltzmann methods to obtain the velocity, internal electric potential, ion distribution, temperature and species concentration fields, respectively. To enhance the mixing, three schemes of temperature-patterned walls have been considered with symmetrical or asymmetrical arrangements of blocks with surface charge and temperature. Modeling results show that the asymmetric arrangement scheme is the most efficient scheme and enhances the mixing of species by 39% when the Reynolds number is on the order of 10(-3). Current results may help improve the design of micro-mixers at low Reynolds number. PMID:24984071

  8. Enhanced capture of magnetic microbeads using combination of reduced magnetic field strength and sequentially switched electroosmotic flow--a numerical study.

    PubMed

    Das, Debarun; Al-Rjoub, Marwan F; Banerjee, Rupak K

    2015-05-01

    Magnetophoretic immunoassay is a widely used technique in lab-on-chip systems for detection and isolation of target cells, pathogens, and biomolecules. In this method, target pathogens (antigens) bind to specific antibodies coated on magnetic microbeads (mMBs) which are then separated using an external magnetic field for further analysis. Better capture of mMB is important for improving the sensitivity and performance of magnetophoretic assay. The objective of this study was to develop a numerical model of magnetophoretic separation in electroosmotic flow (EOF) using magnetic field generated by a miniaturized magnet and to evaluate the capture efficiency (CE) of the mMBs. A finite-volume solver was used to compute the trajectory of mMBs under the coupled effects of EOF and external magnetic field. The effect of steady and time varying (switching) electric fields (150-450 V/cm) on the CE was studied under reduced magnetic field strength. During switching, the electric potential at the inlet and outlet of the microchannel was reversed or switched, causing reversal in flow direction. The CE was a function of the momentum of the mMB in EOF and the applied magnetic field strength. By switching the electric field, CE increased from 75% (for steady electric field) to 95% for lower electric fields (150-200 V/cm) and from 35% to 47.5% for higher electric fields (400-450 V/cm). The CE was lower at higher EOF electric fields because the momentum of the mMB overcame the external magnetic force. Switching allowed improved CE due to the reversal and decrease in EOF velocity and increase in mMB residence time under the reduced magnetic field strength. These improvements in CE, particularly at higher electric fields, made sequential switching of EOF an efficient separation technique of mMBs for use in high throughput magnetophoretic immunoassay devices. The reduced size of the magnet, along with the efficient mMB separation technique of switching can lead to the development

  9. Flow batteries for microfluidic networks: configuring an electroosmotic pump for nonterminal positions.

    PubMed

    He, Chiyang; Lu, Joann J; Jia, Zhijian; Wang, Wei; Wang, Xiayan; Dasgupta, Purnendu K; Liu, Shaorong

    2011-04-01

    A micropump provides flow and pressure for a lab-on-chip device, just as a battery supplies current and voltage for an electronic system. Numerous micropumps have been developed, but none is as versatile as a battery. One cannot easily insert a micropump into a nonterminal position of a fluidic line without affecting the rest of the fluidic system, and one cannot simply connect several micropumps in series to enhance the pressure output, etc. In this work we develop a flow battery (or pressure power supply) to address this issue. A flow battery consists of a +EOP (in which the liquid flows in the same direction as the field gradient) and a -EOP (in which the liquid flows opposite to the electric field gradient), and the outlet of the +EOP is directly connected to the inlet of the -EOP. An external high voltage is applied to this outlet-inlet joint via a short gel-filled capillary that allows ions but not bulk liquid flow, while the +EOP's inlet and the -EOP's outlet (the flow battery's inlet and outlet) are grounded. This flow battery can be deployed anywhere in a fluidic network without electrically affecting the rest of the system. Several flow batteries can be connected in series to enhance the pressure output to drive HPLC separations. In a fluidic system powered by flow batteries, a hydraulic equivalent of Ohm's law can be applied to analyze system pressures and flow rates. PMID:21375230

  10. Electroosmotic access resistance of a nanopore

    NASA Astrophysics Data System (ADS)

    Ghosal, Sandip; Sherwood, John D.; Mao, Mao

    2014-11-01

    Electroosmotic flow through a nanopore that traverses a dielectric membrane with a fixed surface charge density is considered. In the limit where the surface charge is small and the applied electric field weak, the reciprocal theorem is used to derive an expression for the electroosmotic flux through the pore up to quadratures over the fluid volume. Thus, an ``electroosmotic conductance'' (the fluid flux per unit applied voltage) may be defined in analogy to the corresponding electrical conductance of a hole in an insulating membrane immersed in a uniform conductor. In the limit when the membrane is thick compared to the pore diameter, the usual result for the electroosmotic conductance through long cylindrical channels (which varies inversely as the membrane thickness) is recovered. The electroosmotic conductance is shown to approach a finite value for an infinitely thin membrane: this residual electroosmotic resistance (inverse of conductance) is analogous to the concept of ``access resistance of a pore'' in the corresponding electrical problem. The dependence of the electroosmotic conductance on pore radius, Debye length and membrane thickness is investigated. Reference: Supported by the NIH under Grant 4R01HG004842. SG acknowledges a visiting professorship at Cambridge University funded by the Leverhulme Trust, UK. JDS thanks DAMTP (Cambridge University) and Institut de Mecanique des Fluides de Toulouse for hospitality.

  11. The dominant role of surface conduction in electro-osmotic flows through periodically varying narrow channels

    NASA Astrophysics Data System (ADS)

    Ludar, Lotan; Yariv, Ehud

    2015-11-01

    As surface conduction has no effect on electro-osmosis in uniform channel flows, where the tangential Debye-layer currents are longitudinally uniform, it may appear as it would only result in a small modifying correction in lubrication analyses of slowly varying channels. This misconception is refuted here by analyzing flows through periodic channels of slowly varying but otherwise arbitrary geometry. Assuming that the channel width is still large compared with the Debye thickness we employ the simplest thin-double-layer model which incorporates surface conduction. We find that surface conduction affects the leading-order flow and the consequent net volumetric flux, introducing a nonlinear dependence upon the zeta potential. Remarkably, as the channel becomes more and more narrow, the scaled flux approaches a limit which is independent of the Dukhin number yet different from that calculated for zero Dukhin number.

  12. Mixing enhancement in electro-osmotic flows via modulation of electric fields

    NASA Astrophysics Data System (ADS)

    Pacheco, J. R.

    2008-09-01

    The mixing of a passive tracer in a three-dimensional rectangular microchannel is studied numerically. A time-dependent electric field across a microchannel, filled with an electrolyte solution, is applied in order to realize a well-mixed state. Random perturbations to a time-periodic electric field are introduced in order to break the invariant tori of the system and to attain better mixing results. Two types of nonperiodic protocols are used to generate chaotic mixing by modulating the transverse electric field. In each case the quality of mixing is quantified with Lyapunov exponents for nondiffusive tracers and variance in concentration for diffusive tracers. The numerical results suggest that when the Lyapunov exponent is properly scaled, its probability density function measured over various numbers of periods has the same geometrical structure. It was also found that the variance in the concentration of the passive scalar exhibits an exponential decay. For the modulated and periodic systems considered in this investigation, its evolution curves exhibited self-similarity when plotted versus the product of the nondimensional time and the mean Lyapunov exponent of the flow. As the axial flow in this study varies only inside the Debye layer, and the tracers were introduced into the middle pluglike region of the flow, it was found that Taylor dispersion effects are more pronounced for flows (at least in their early stages) with effective mixing in the cross section.

  13. Electroosmotic flow through a microparallel channel with 3D wall roughness.

    PubMed

    Chang, Long; Jian, Yongjun; Buren, Mandula; Sun, Yanjun

    2016-02-01

    In this paper, a perturbation method is introduced to study the EOF in a microparallel channel with 3D wall roughness. The corrugations of the two walls are periodic sinusoidal waves of small amplitude in two directions either in phase or half-period out of phase. Based on linearized Poisson-Boltzmann equation, Laplace equation, and the Navier-Stokes equations, the perturbation solutions of velocity, electrical potential, and volume flow rate are obtained. By using numerical computation, the influences of the wall corrugations on the mean velocity are analyzed. The variations of electrical potential, velocity profile, mean velocity, and their dependences on the wave number α and β of wall corrugations in two directions, the nondimensional electrokinetic width K, and the zeta potential ratio between the lower wall and the upper wall ς are analyzed graphically. PMID:26333852

  14. Multiwire Thermocouples in Reversing Flow

    NASA Technical Reports Server (NTRS)

    Forney, L. J.; Fralick, G. C.

    1995-01-01

    Measurements are recorded for multiwire thermocouples consisting of either two or three wires of unequal diameters. Signals from the multiwire probe are recorded for a reversing gas flow with both a periodic temperature and time constant fluctuation. It is demonstrated that the reconstructed signal from the multiwire thermocouple requires no compensation provided omega/omega(sub 1) less than 2.3 for two wires or omega/omega(sub 1) less than 3.6 for three wires where omega(sub 1) (= 2(pi)f) is the natural frequency of the smaller wire based on the maximum gas velocity. The latter results were possible provided Fourier transformed data from the wires were used and knowledge of the gas velocity phase angle was available.

  15. Modeling of the impact of ionic strength on the electroosmotic flow in capillary electrophoresis with uniform and discontinuous buffer systems.

    PubMed

    Thormann, W; Zhang, C X; Caslavska, J; Gebauer, P; Mosher, R A

    1998-02-01

    A new dynamic computer model permitting the combined simulation of the temporal behavior of electroosmosis and electrophoresis under constant voltage or current conditions and in a capillary which exhibits a pH-dependent surface charge has been constructed and applied to the description of capillary zone electrophoresis, isotachophoresis, and isoelectric focusing with electroosmotic zone displacement. Electroosmosis is calculated via use of a normalized wall titration curve (mobility vs pH). Two approaches employed for normalization of the experimentally determined wall titration data are discussed, one that considers the electroosmotic mobility to be inversely proportional to the square root of the ionic strength (method based on the Gouy-Chapman theory with the counterion layer thickness being equal to the Debye-Hückel length) and one that assumes the double-layer thickness to be the sum of a compact layer of fixed charges and the Debye-Hückel thickness and the existence of a wall adsorption equilibrium of the buffer cation other than the proton (method described by Salomon, K.; et al. J. Chromatogr. 1991, 559, 69). The first approach is shown to overestimate the magnitude of electroosmosis, whereas, with the more complex dependence between the electroosmotic mobility and ionic strength, qualitative agreement between experimental and simulation data is obtained. Using one set of electroosmosis input data, the new model is shown to provide detailed insight into the dynamics of electroosmosis in typical discontinuous buffer systems employed in capillary zone electrophoresis (in which the sample matrix provides the discontinuity), in capillary isotachophoresis, and in capillary isoelectric focusing. PMID:21644753

  16. Streamwise Oscillation of Airfoils into Reverse Flow

    NASA Astrophysics Data System (ADS)

    Granlund, Kenneth; Jones, Anya; Ol, Michael

    2015-11-01

    An airfoil in freestream is oscillated in streamwise direction to cyclically enter reverse flow. Measured lift is compared to analytical blade element theories. Advance ratio, reduced frequency and angle of attack is varied within those typical for helicopters. Experimental results reveal that lift does not become negative in the flow reversal part, contradicting one theory and supported by another. Flow visualization reveal the leading edge vortex advecting against the freestream to a point in front of the leading edge.

  17. Stable electroosmotically driven actuators

    NASA Astrophysics Data System (ADS)

    Sritharan, Deepa; Motsebo, Mylene; Tumbic, Julia; Smela, Elisabeth

    2013-04-01

    We have previously presented "nastic" actuators based on electroosmotic (EO) pumping of fluid in microchannels using high electric fields for potential application in soft robotics. In this work we address two challenges facing this technology: applying EO to meso-scale devices and the stability of the pumping fluid. The hydraulic pressure achieved by EO increases with as 1/d2, where d is the depth of the microchannel, but the flow rate (which determines the stroke and the speed) is proportional to nd, where n is the number of channels. Therefore to get high force and high stroke the device requires a large number of narrow channels, which is not readily achievable using standard microfabrication techniques. Furthermore, for soft robotics the structure must be soft. In this work we present a method of fabricating a three-dimensional porous elastomer to serve as the array of channels based on a sacrificial sugar scaffold. We demonstrate the concept by fabricating small pumps. The flexible devices were made from polydimethylsiloxane (PDMS) and comprise the 3D porous elastomer flanked on either side by reservoirs containing electrodes. The second issue addressed here involves the pumping fluid. Typically, water is used for EO, but water undergoes electrolysis even at low voltages. Since EO takes place at kV, these systems must be open to release the gases. We have recently reported that propylene carbonate (PC) is pumped at a comparable rate as water and is also stable for over 30 min at 8 kV. Here we show that PC is, however, degraded by moisture, so future EO systems must prevent water from reaching the PC.

  18. Flow reversal power limit for the HFBR

    SciTech Connect

    Cheng, Lap Y.; Tichler, P.R.

    1995-10-01

    The High Flux Beam Reactor (HFBR) undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Uncertainties about the afterheat removal capability during the flow reversal has limited the reactor operating power to 30 MW. An experimental and analytical program to address these uncertainties is described in this report. The experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safe operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW.

  19. Time-reversed, flow-reversed ballistics simulations

    SciTech Connect

    Zernow, L.; Chapyak, E. J.; Scheffler, D. R.

    2001-01-01

    Two-dimensional simulations of planar sheet jet formation are studied to examine the hydrodynamic issues involved when simulations are carried out in the inverse direction, that is, with reversed time and flow. Both a realistic copper equation of state and a shockless equation of state were used. These studies are an initial step in evaluating this technique as a ballistics design tool.

  20. A novel micro/nano fabrication process based on the combined use of dielectrophoresis, electroosmotic flow, and electrodeposition for surface patterning

    NASA Astrophysics Data System (ADS)

    Perez-Gonzalez, Victor H.; Ho, Vinh; Vazquez-Pinon, Matias; Martinez-Chapa, Sergio O.; Kulinsky, Lawrence

    2015-11-01

    In this work, a novel application of electrokinetic forces is presented. Employing a gold interdigitated electrode array (IDEA), dielectrophoresis (a force acting on polarizable material) and electroosmosis (a force acting on ionic fluids) were utilized as microfabrication tools. Through electroosmotic flow, particles were dragged toward dielectrophoretic trapping zones, where they were held. Then polypyrrole, an electroconductive material with good mechanical and electrical properties, wide electrochemical window, and ease of fabrication, was electrodeposited onto the gold IDEA surface, permanently entrapping the microparticles within the structure. The process was tested employing organic (polystyrene), inorganic (silicon), and biologic (yeast cells) microparticles, all of which were successfully trapped. Computational models were developed to predict the electrokinetic response of the microparticles and compared to experimental observations. It was demonstrated that this process can be used to produce hierarchical structures through sequential repetition of entrapment cycles. Additionally, it is compatible with the Carbon-MEMS process. The fabrication process presented in this paper opens a wide range of applications that include: energy storage devices, scaffolds for cell culture, biomedical devices, electrochemical sensors, electrokinetic devices, among many others.

  1. Experimental Study on Basic Performance of Electroosmotic Pump with Ion Exchanging Porous Glass Slit

    NASA Astrophysics Data System (ADS)

    Lee, Ho; Kim, Gyu Man; Lee, Choon Young; Park, Cheol Woo; Kim, Dae Joong

    The basic concept and preliminary performance results of a miniaturized electroosmotic pump with diaphragms were included in the present study. The separation of an electroosmotic pumping liquid from a drug using diaphragms is mainly to have a freedom in choosing an electroosmotic pumping liquid and to achieve the optimal drug delivery with its preferable precise control. As a result, the maximum flow rate and current increased linearly according to the increment of applied voltage that is electric potential.

  2. Unsteady Airloads on Airfoils in Reverse Flow

    NASA Astrophysics Data System (ADS)

    Lind, Andrew; Jones, Anya

    2014-11-01

    This work gives insight into the influence of airfoil characteristics on unsteady airloads for rotor applications where local airfoil sections may operate at high and/or reverse flow angles of attack. Two-dimensional wind tunnel experiments have been performed on four airfoil sections to investigate the effects of thickness, camber, and trailing edge shape on unsteady airloads (lift, pressure drag, and pitching moment). These model rotor blades were tested through 360 deg of incidence for 104 <=Re <=106 . Unsteady pressure transducers were mounted on the airfoil surface to measure the high frequency, dynamic pressure variations. The temporal evolution of chordwise pressure distributions and resulting airloads is quantified for each airfoil in each of the three unsteady wake regimes present in reverse flow. Specifically, the influence of the formation, growth, and shedding of vortices on the surface pressure distribution is quantified and compared between airfoils with a sharp geometric trailing edge and those with a blunt geometric trailing edge. These findings are integral to mitigation of rotor blade vibrations for applications where airfoil sections are subjected to reverse flow, such as high-speed helicopters and tidal turbines.

  3. Electro-osmotically driven liquid delivery method and apparatus

    DOEpatents

    Rakestraw, David J.; Anex, Deon S.; Yan, Chao; Dadoo, Rajeev; Zare, Richard N.

    1999-01-01

    Method and apparatus for controlling precisely the composition and delivery of liquid at sub-.mu.L/min flow rate. One embodiment of such a delivery system is an electro-osmotically driven gradient flow delivery system that generates dynamic gradient flows with sub-.mu.L/min flow rates by merging a plurality of electro-osmotic flows. These flows are delivered by a plurality of delivery arms attached to a mixing connector, where they mix and then flow into a receiving means, preferably a column. Each inlet of the plurality of delivery arms is placed in a corresponding solution reservoir. A plurality of independent programmable high-voltage power supplies is used to apply a voltage program to each of the plurality of solution reservoirs to regulate the electro-osmotic flow in each delivery arm. The electro-osmotic flow rates in the delivery arms are changed with time according to each voltage program to deliver the required gradient profile to the column.

  4. Electro-osmotically driven liquid delivery method and apparatus

    DOEpatents

    Rakestraw, D.J.; Anex, D.S.; Yan, C.; Dadoo, R.; Zare, R.N.

    1999-08-24

    Method and apparatus are disclosed for controlling precisely the composition and delivery of liquid at sub-{micro}L/min flow rate. One embodiment of such a delivery system is an electro-osmotically driven gradient flow delivery system that generates dynamic gradient flows with sub-{micro}L/min flow rates by merging a plurality of electro-osmotic flows. These flows are delivered by a plurality of delivery arms attached to a mixing connector, where they mix and then flow into a receiving means, preferably a column. Each inlet of the plurality of delivery arms is placed in a corresponding solution reservoir. A plurality of independent programmable high-voltage power supplies is used to apply a voltage program to each of the plurality of solution reservoirs to regulate the electro-osmotic flow in each delivery arm. The electro-osmotic flow rates in the delivery arms are changed with time according to each voltage program to deliver the required gradient profile to the column. 4 figs.

  5. Flow reversal in enzymatic microfluidic pumps

    NASA Astrophysics Data System (ADS)

    Shum, Henry; Ortiz-Rivera, Isamar; Agrawal, Arjun; Sen, Ayusman; Balazs, Anna

    A chemical reaction occurring at an enzyme-covered patch in a closed fluid chamber generates local solute concentration gradients and, hence, fluid density gradients. This has recently been shown to drive fluid flows with speeds of the order of microns per second. We develop and analyze a model that accounts for fluid density changes due to consumption of the reaction substrate and accumulation of products for such a fluid pump based on the enzyme urease. Hydrolysis of urea by urease produces ammonium bicarbonate, which leads to a net increase in solution density. Higher density fluid is expected to sink and spread horizontally away from the pump. Modeling reveals, however, that the local fluid density is not necessarily greatest near the pump and fluid flow can even reverse in direction after some time. The qualitative behavior depends on two dimensionless parameters, the ratio of solutal expansion coefficients and the ratio of diffusion coefficients for the reaction substrate and product. The predicted reversal of pumping direction is experimentally verified and we show that the direction of pumping also depends on the amount of enzyme present on the patch. A better understanding of these pumps will aid in the design of responsive, chemically powered microfluidic flow control.

  6. 100,000-fold concentration of anions in capillary zone electrophoresis using electroosmotic flow controlled counterflow isotachophoretic stacking under field amplified conditions.

    PubMed

    Breadmore, Michael C; Quirino, Joselito P

    2008-08-15

    An electroosmotic flow (EOF) controlled counterflow isotachophoretic stacking boundary (cf-ITPSB) system under field amplified conditions has been examined as a way to improve the sensitivity of anions separated by capillary zone electrophoresis. The system comprised a high concentration of a high-mobility leading ion (100 mM chloride) and a low concentration of low-mobility terminating ion (1-3 mM MES or CHES) added to the sample in an unmodified fused-silica capillary at pH 8.05, buffered with Tris. Computer simulation studies using the software GENTRANS showed an increase in sensitivity of at least 10-fold over the previous cf-ITPSB system for simple inorganic ions, nitrite and nitrate. The simulations also suggested that the cf-ITPSB became stationary within the capillary and that its stationary position was not adversely affected by the concentration of MES. This was in contrast to experimental results that showed a slow and continual movement of the cf-ITPSB. This was more pronounced at lower concentrations of terminator (i.e., <3 mM) and resulted in a loss of resolution due to the cf-ITPSB being closer to the detector upon separation. This discrepancy was attributed to the change in pH across the capillary due to electrolysis and low buffering capacity in the sample, a phenomenon that cannot be simulated by the GENTRANS software. Replacement of MES with CHES as a lower mobility ion with increased buffer capacity failed to reduce the movement of the cf-ITPSB but did provide a further 3-fold improvement in sensitivity. The potential of this approach for sensitivity enhancement was demonstrated for the co-EOF separation of a mixture of six inorganic and small organic ions, with detection limits at the single-figure nanogram per liter level. These detection limits are 100,000 times better than can be achieved by normal hydrodynamic injection (ions prepared in water) and 250 times better than has been achieved by other online preconcentration approaches. The

  7. Electro-osmotic pumping and ion-concentration polarization based on conical nanopores

    NASA Astrophysics Data System (ADS)

    Yeh, Hung-Chun; Chang, Chih-Chang; Yang, Ruey-Jen

    2015-06-01

    A numerical investigation is performed into the characteristics of an electro-osmotic pump consisting of a negatively charged conical nanopore. It is shown that the dependence of the flow rectification effect on the bias direction is the reverse of that of the ion current rectification effect. Moreover, the nozzle mode (i.e., the bias is applied from the base side of the nanopore to the tip side) has a higher flow rate compared to the diffuser mode (i.e., the bias is applied from the tip side of the nanopore to the base side). The results showed that the ion-concentration polarization effect occurred inside the conical nanopore, resulting in surface conduction dominating in the ionic current. The ions inside the nanopore are depleted and enriched under the nozzle mode and the diffuser mode, respectively. As a result, the electro-osmotic pump yields a greater pumping pressure, flow rate, and energy conversion efficiency when operating in the nozzle mode. In addition, we also investigated the flow rate rectification behavior for the conical nanopore. The best flow rate rectification factor in this work is 2.06 for an electrolyte concentration of 10-3M .

  8. Flow reversals in turbulent convection via vortex reconnections.

    PubMed

    Chandra, Mani; Verma, Mahendra K

    2013-03-15

    We employ detailed numerical simulations to probe the mechanism of flow reversals in two-dimensional turbulent convection. We show that the reversals occur via a vortex reconnection of two attracting corner rolls having the same sign of vorticity, thus leading to major restructuring of the flow. Large fluctuations in heat transport are observed during the reversal due to the flow reconfiguration. The flow configurations during the reversals have been analyzed quantitatively using large-scale modes. Using these tools, we also show why flow reversals occur for a restricted range of Rayleigh and Prandtl numbers. PMID:25166544

  9. Electroosmotic Pumps with Frits Synthesized from Potassium Silicate

    PubMed Central

    Robinson, Nathaniel D.

    2015-01-01

    Electroosmotic pumps employing silica frits synthesized from potassium silicate as a stationary phase show strong electroosmotic flow velocity and resistance to pressure-driven flow. We characterize these pumps and measure an electroosmotic mobility of 2.5×10-8 m2/V s and hydrodynamic resistance per unit length of 70 ×1017 Pa s/m4 with a standard deviation of less than 2% even when varying the amount of water used in the potassium silicate mixture. Furthermore, we demonstrate the simple integration of these pumps into a proof-of-concept PDMS lab-on-a-chip device fabricated from a 3D-printed template. PMID:26629907

  10. Electroosmotic decontamination of concrete

    SciTech Connect

    Bostick, W.D.; Bush, S.A.; Marsh, G.C.; Henson, H.M.; Box, W.D.; Morgan, I.L.

    1993-03-01

    A method is described for the electroosmotic decontamination of concrete surfaces, in which an electrical field is used to induce migration of ionic contaminants from porous concrete into an electrolyte solution that may be disposed of as a low-level liquid radioactive waste (LLRW); alternately, the contaminants from the solution can be sorbed onto anion exchange media in order to prevent contaminant buildup in the solution and to minimize the amount of LLRW generated. We have confirmed the removal of uranium (and infer the removal of {sup 99}Tc) from previously contaminated concrete surfaces. In a typical experimental configuration, a stainless steel mesh is placed in an electrolyte solution contained within a diked cell to serve as the negative electrode (cathode) and contaminant collection medium, respectively, and an existing metal penetration (e.g., piping, conduit, or rebar reinforcement within the concrete surface) serves as the positive electrode (anode) to complete the cell. Typically we have achieved 70 to >90% reductions in surface activity by applying <400 V and <1 A for 1--3 h (energy consumption of 0.4--12 kWh/ft{sup 2}).

  11. High Pressure Reverse Flow APS Engine

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1972-01-01

    A design and test demonstration effort was undertaken to evaluate the concept of the reverse flow engine for the APS engine application. The 1500 lb (6672 N) thrust engine was designed to operate on gaseous hydrogen and gaseous oxygen propellants at a mixture ratio of 4 and to achieve the objective performance of 435 sec (4266 Nsec/kg) specific impulse. Superimposed durability requirements called for a million-cycle capability with 50 hours duration. The program was undertaken as a series of tasks including the initial preliminary design, design of critical test components and finally, the design and demonstration of an altitude engine which could be used interchangeably to examine operating parameters as well as to demonstrate the capability of the concept. The program results are reported with data to indicate that all of the program objectives were met or exceeded within the course of testing on the program. The analysis effort undertaken is also reported in detail and supplemented with test data in some cases where prior definitions could not be made. The results are contained of these analyses as well as the test results conducted throughout the course of the program. Finally, the test data and analytical results were combined to allow recommendations for a flight weight design. This preliminary design effort is also detailed.

  12. Reversed flow injection spectrophotometric determination of chlorate.

    PubMed

    Chuesaard, Thanyarat; Wonganan, Tharinee; Wongchanapiboon, Teerapol; Liawruangrath, Saisunee

    2009-09-15

    An interfacing has been developed to connect a spectrophotometer with a personal computer and used as a readout system for development of a simple, rapid and sensitive reversed flow injection (rFI) procedure for chlorate determination. The method is based on the oxidation of indigo carmine by chlorate ions in an acidic solution (dil. HCl) leading to the decrease in absorbance at 610 nm. The decrease in absorbance is directly related to the chlorate concentration present in the sample solutions. Optimum conditions for chlorate were examined. A linear calibration graph over the range of 0.1-0.5 mg L(-1) chlorate was established with the regression equation of Y=104.5X+1.0, r(2)=0.9961 (n=6). The detection limit (3 sigma) of 0.03 mg L(-1), the limit of quantitation (10 sigma) of 0.10 mg L(-1) and the RSD of 3.2% for 0.3 mg L(-1) chlorate (n=11) together with a sample throughput of 92 h(-1) were obtained. The recovery of the added chlorate in spiked water samples was 98.5+/-3.1%. Major interferences for chlorate determination were found to be BrO(3)(-), ClO(2)(-), ClO(-) and IO(3)(-) which were overcome by using SO(3)(2-) (as Na(2)SO(3)) as masking agent. The method has been successfully applied for the determination of chlorate in spiked water samples with the minimum reagent consumption of 14.0 mL h(-1). Good agreement between the proposed rFIA and the reference methods was found verified by Student's t-test at 95% confidence level. PMID:19615529

  13. Extensional instability in electro-osmotic microflows of polymer solutions

    NASA Astrophysics Data System (ADS)

    Bryce, R. M.; Freeman, M. R.

    2010-03-01

    Fluid transport in microfluidic systems typically is laminar due to the low Reynolds number characteristic of the flow. The inclusion of suspended polymers imparts elasticity to fluids, allowing instabilities to be excited when substantial polymer stretching occurs. For high molecular weight polymer chains we find that flow velocities achievable by standard electro-osmotic pumping are sufficient to excite extensional instabilities in dilute polymer solutions. We observe a dependence in measured fluctuations on polymer concentration which plateaus at a threshold corresponding to the onset of significant molecular crowding in macromolecular solutions; plateauing occurs well below the overlap concentration. Our results show that electro-osmotic flows of complex fluids are disturbed from the steady regime, suggesting potential for enhanced mixing and requiring care in modeling the flow of complex liquids such as biopolymer suspensions.

  14. Electroosmotic transport in polyelectrolyte-grafted nanochannels with pH-dependent charge density

    NASA Astrophysics Data System (ADS)

    Chen, Guang; Das, Siddhartha

    2015-05-01

    "Smart" polyelectrolyte-grafted or "soft" nanochannels with pH-responsiveness have shown great promise for applications like manipulation of ion transport, ion sensing and selection, current rectification, and many more. In this paper, we develop a theory to study the electroosmotic transport in a polyelectrolyte-grafted (or soft) nanochannel with pH-dependent charge density. In one of our recent studies, we have identified that explicit consideration of hydrogen ion concentration is mandatory for appropriately describing the electrostatics of such systems and the resulting monomer concentration must obey a non-unique, cubic distribution. Here, we use this electrostatic calculation to study the corresponding electroosmotic transport. We establish that the effect of pH in the electroosmotic transport in polyelectrolyte-grafted nanochannels introduces two separate issues: first is the consideration of the hydrogen and hydroxyl ion concentrations in describing the electroosmotic body force, and second is the consideration of the appropriate drag force that bears the signature of this cubic monomeric distribution. Our results indicate that the strength of the electroosmotic velocity for the pH-dependent case is always smaller than that for the pH-independent case, with the extent of this difference being a function of the system parameters. Such nature of the electroosmotic transport will be extremely significant in suppressing the electroosmotic flow strength with implications in large number applications such as capillary electrophoresis induced separation, electric field mediated DNA elongation, electrophoretic DNA nanopore sequencing, and many more.

  15. Reverse vortex flow in near-surface explosions

    SciTech Connect

    Jones, E.M.; Whitaker, R.W.

    1981-09-01

    Nuclear explosions conducted near the ground surface but higher than about 5 to 6 m/kt/sup 1/3/ produce a reverse flow (downward along the symmetry axis) after the shock wave is reflected from the ground. This reverse flow persists until destroyed by the buoyant rise of the fireball on time scales of several seconds. Six calculations of bursts with scaled heights-of-burst ranging upward from 15 m/kt/sup 1/3/ are described. The height of the reverse flow is a simple function of the burst height and explosion yield.

  16. Electroosmotic pumps and their applications in microfluidic systems

    PubMed Central

    Wang, Xiayan; Cheng, Chang; Wang, Shili; Liu, Shaorong

    2009-01-01

    Electroosmotic pumping is receiving increasing attention in recent years owing to the rapid development in micro total analytical systems. Compared with other micropumps, electroosmotic pumps (EOPs) offer a number of advantages such as creation of constant pulse-free flows and elimination of moving parts. The flow rates and pumping pressures of EOPs matches well with micro analysis systems. The common materials and fabrication technologies make it readily integrateable with lab-on-a-chip devices. This paper reviews the recent progress on EOP fabrications and applications in order to promote the awareness of EOPs to researchers interested in using micro- and nano-fluidic devices. The pros and cons of EOPs are also discussed, which helps these researchers in designing and constructing their micro platforms. PMID:20126306

  17. Reverse-flow strategy in biofilters treating CS₂ emissions.

    PubMed

    Rojo, Naiara; Gallastegui, Gorka; Gurtubay, Luis; Barona, Astrid; Elías, Ana

    2013-04-01

    The bacteriostatic properties of carbon disulphide (CS₂) hamper its biodegradation in conventional biofilters. The response of four biofilters operating in downflow mode and reverse-flow mode was compared in a laboratory-scale plant treating CS₂ under sudden short-term changes in operating conditions. A process shutdown for 24 h, an inlet concentration increase and an interruption of the inlet air humidification for 48 h at an empty bed residence time (EBRT) of 240 s did not impact significantly on biodegradation performance, regardless of flow mode. Nevertheless, a reduction in the EBRT to 60 s resulted in a significant decrease in removal efficiency in all the biofilters. The CS₂ degradation profile showed that the reverse-flow mode strategy rendered a more homogenous distribution of biomass along the bed height. The benefits of the reverse-flow mode were demonstrated even when the unidirectional flow mode was re-established. PMID:22903570

  18. Reverse Flow Engine Core Having a Ducted Fan with Integrated Secondary Flow Blades

    NASA Technical Reports Server (NTRS)

    Kisska, Michael K. (Inventor); Princen, Norman H. (Inventor); Kuehn, Mark S. (Inventor); Cosentino, Gary B. (Inventor)

    2014-01-01

    Secondary air flow is provided for a ducted fan having a reverse flow turbine engine core driving a fan blisk. The fan blisk incorporates a set of thrust fan blades extending from an outer hub and a set of integral secondary flow blades extending intermediate an inner hub and the outer hub. A nacelle provides an outer flow duct for the thrust fan blades and a secondary flow duct carries flow from the integral secondary flow blades as cooling air for components of the reverse flow turbine engine.

  19. Electro-osmotically induced convection at a permselective membrane

    NASA Astrophysics Data System (ADS)

    Rubinstein, I.; Zaltzman, B.

    2000-08-01

    The paper is concerned with convection at an ion exchange electrodialysis membrane induced by nonequilibrium electro-osmosis in the course of concentration polarization under the passage of electric current through the membrane. Derivation of nonequilibrium electro-osmotic slip condition is recapitulated along with the linear stability analysis of quiescent electrodiffusion through a flat ion exchange membrane. Results of numerical calculation for nonlinear steady state convection, developing from the respective instability, are reported along with those for a slightly wavy membrane. Besides these results, we report those of time dependent calculations for periodic and chaotic oscillations, resulting from instability of the respective steady state flows, and also the results of recent experiments with modified membranes. These latter rule in favor of electro-osmotic versus bulk electroconvective origin of overlimiting conductance through ion exchange membranes.

  20. Maximum efficiency of the electro-osmotic pump

    NASA Astrophysics Data System (ADS)

    Xu, Zuli; Miao, Jianying; Wang, Ning; Wen, Weijia; Sheng, Ping

    2011-06-01

    Electro-osmotic effect in a porous medium arises from the electrically charged double layer at the fluid-solid interface, whereby an externally applied electric field can give rise to fluid flow. The electro-osmotic pump (EOP) is potentially useful for a variety of engineering and biorelated applications, but its generally low efficiency is a negative factor in this regard. A study to determine the optimal efficiency of the EOP and the condition(s) under which it can be realized is therefore of scientific interest and practical importance. We present the results of a theoretical and experimental study on the maximum efficiency optimization of the electrokinetic effect in artificially fabricated porous media with controlled pore diameters. It is shown that whereas the EOP efficiency increases with decreasing channel diameter, from 4.5 to 2.5 μm for samples fabricated on oxidized silicon wafers as expected for the interfacial nature of the electro-osmotic effect, the opposite trend was observed for samples with much smaller channel diameters fabricated on anodized aluminum oxide films, with the pore surface coated with silica. These results are in agreement with the theoretical prediction, based on the competition between interfacial area and the no-slip flow boundary condition, that an optimal efficiency of ˜1% is attained at a microchannel diameter that is five times the Debye length, with a zeta potential of ˜100 mV.

  1. Flow instability and flow reversal in heated annular multichannels with initial downward flow

    SciTech Connect

    Guerrero, H.N.; Hart, C.M.

    1992-01-01

    Experimental and theoretical results are presented regarding the stability of initial downward flow of single phase water in parallel annular channels of the Savannah River Site (SRS) fuel assembly. The test was performed on an electrically heated prototypic mockup of a Mark-22 fuel assembly. The test conditions consisted of mass fluxes, from 98--294 kg/m[sup 2]-sec, and inlet water temperatures of 25[degrees]C and 40[degrees]C. With increased power to the heaters, flow instability was detected, characterized by flow fluctuations and flow redistribution among subchannels of the outer flow channel. With increased power, a condition was observed indicating local subchannel flow reversals where certain subchannel fluid temperatures were high at the inlet and low at the exit. With additional power increased, a critical heat flux condition was observed indicating local subchannel flow reversals where certain subchannel fluid temperatures were high at the inlet and low at the exit. With additional power increases, a critical heat flux condition was reached in the outer channel.

  2. Flow instability and flow reversal in heated annular multichannels with initial downward flow

    SciTech Connect

    Guerrero, H.N.; Hart, C.M.

    1992-12-31

    Experimental and theoretical results are presented regarding the stability of initial downward flow of single phase water in parallel annular channels of the Savannah River Site (SRS) fuel assembly. The test was performed on an electrically heated prototypic mockup of a Mark-22 fuel assembly. The test conditions consisted of mass fluxes, from 98--294 kg/m{sup 2}-sec, and inlet water temperatures of 25{degrees}C and 40{degrees}C. With increased power to the heaters, flow instability was detected, characterized by flow fluctuations and flow redistribution among subchannels of the outer flow channel. With increased power, a condition was observed indicating local subchannel flow reversals where certain subchannel fluid temperatures were high at the inlet and low at the exit. With additional power increased, a critical heat flux condition was observed indicating local subchannel flow reversals where certain subchannel fluid temperatures were high at the inlet and low at the exit. With additional power increases, a critical heat flux condition was reached in the outer channel.

  3. Dynamics of poloidal flows in enhanced reverse shear bifurcation

    SciTech Connect

    Srinivasan, R.; Avinash, K.

    2005-07-15

    A simple reduced enhanced reverse shear (RERS) model is constructed to study the dynamics of poloidal flows during the ERS transition. This model predicts that a reversal of poloidal flow shear occurs just prior to the transition, as seen in experiment [R. E. Bell et al., Phys. Rev. Lett. 81, 1429 (1998)]. This transition front propagates until the radial location where the safety factor (q) is minimum and becomes locked there due to insufficient input power to overcome the threshold requirement for the bifurcation. This study also reveals that there can be many routes to ERS transition depending upon various tunable parameters.

  4. Swelling and electro-osmotic properties of cation-exchange membranes with different structures in methanol-water media

    NASA Astrophysics Data System (ADS)

    Barragán, V. M.; Villaluenga, J. P. G.; Godino, M. P.; Izquierdo-Gil, M. A.; Ruiz-Bauzá, C.; Seoane, B.

    Electro-osmosis experiments through three cation-exchange membranes with different morphology and similar electric properties have been performed using methanol-water solutions under different experimental conditions. The influence on the electro-osmotic transport of the percentage of methanol on solvent with two different electrolytes, NaCl and LiCl, has been studied. The experimental results show that the presence of methanol in the solutions affects strongly the electro-osmotic flow, and this influence is different depending on the membrane morphology. Correlations among electro-osmotic permeability, swelling behavior, and cell resistance are studied for these membrane systems at different percentages of methanol in solvent.

  5. A dynamic model of the electroosmotic droplet switch

    NASA Astrophysics Data System (ADS)

    Barz, Dominik P. J.; Steen, Paul H.

    2013-09-01

    A capillary switch is a bi-stable system of liquid/gas interfaces with a trigger to toggle back and forth between the two stable equilibrium states. We use an electro-osmotic pump as trigger. The pump, consisting of two electrodes and a porous substrate arranged between the droplets, moves volume between the droplets. This bistable system is called an electro-osmotic droplet switch. With the pump off, for low total volumes, the stable states are a pair of identical sub-hemispherical droplets or, for large enough total volumes, a large-small droplet configuration (two mirror-symmetric states). With the pump on, these stationary states are shifted and, if the pump strength is too great, there are no stationary states at all. In this article, we report the pump-on behavior as a modification of the pump-off behavior. To build the dynamic model of the system, we first develop a characterization of the electro-osmotic pump in the spirit of the Blake-Kozeny correlation for viscous flow through a packed bed. The control-volume model is based on center-of-mass motion. Model predictions compare favorably to observation.

  6. Oxford Miniature Vaporiser output with reversed gas flows.

    PubMed

    Donovan, A; Perndt, H

    2007-06-01

    This study was undertaken to investigate and calibrate the isoflurane output of an Oxford Miniature Vaporiser (OMV) draw-over vaporiser with reversed gas flows. Plenum or Boyles type machines have gas flowing left to right through the apparatus. Draw over anaesthesia systems, in contrast, traditionally have the carrier gas, air plus oxygen, flowing right to left through the vaporiser. There are a number of variations in the external design of the OMV vaporiser: 1) a back bar mounted draw-over vaporiser with 23-mm taper and left to right gas flow, 2) the Tri-Service with 22-mm taper and left to right gas flow, and 3) the traditional draw-over OMV with right to left gas flow with a variety of tapers. Non-uniformity leads to a variety of possible connections. The predictable output of the OMV vaporiser assumes the correct direction of gas flows for the device. There are many second hand right to left OMV vaporisers for sale to developing countries where the nuances of vaporiser orientation add unnecessarily to the desired simplicity of anaesthesia. A simple calibration scale for reversed gas flows through the OMV vaporiser would be useful. PMID:17506742

  7. Simultaneous separation of five major ribonucleic acids by capillary electrophoresis with laser-induced fluorescence in the presence of electroosmotic flow: application to the rapid screening of 5S rRNA from ovarian cancer cells.

    PubMed

    Shih, Ya-Chu; Liao, Ching-Ru; Chung, I-Che; Chang, Yu-Sun; Chang, Po-Ling

    2014-10-17

    RNA integrity is important in RNA studies because poor RNA quality may impact downstream methodologies. This study proposes a rapid and cost-effective method for the determination of RNA integrity based on CE-LIF in the presence of electroosmotic flow. The proposed method uses poly(ethylene) oxide (Mavg=4,000,000 Da) as a sieving matrix for total RNA separation. Ethidium bromide (μg mL(-1)) was dissolved in a polymer solution as an interchelating dye for on-column fluorescent labeling. The 28S rRNA, 18S rRNA, 5.8S rRNA, 5S rRNA and tRNA from the total human RNA extracted from the cells were fully separated using the proposed method. The lowest detectable concentration of total RNA achieved was 100 pg μL(-1) with a 6 min sample injection followed by on-column concentration. In addition, the temperature-induced degradation of total RNA was observed by CE-LIF. The electropherograms revealed more fragmentation of 28S and 18S rRNAs by temperature-induced hydrolysis compared with the 5.8S rRNA, 5S rRNA and tRNA. Therefore, the results indicated that RNA degradation should be considered for long-term, high-temperature incubations in RNA-related experiments involving RNA hybridization. The proposed method is furthermore, applied to the determination of 5S rRNA overexpressed in ovarian cancer cells as compared to the cervical cancer cells. Overall, CE-LIF is highly promising for rapid screening of ovarian cancers without tedious pre-amplification steps. PMID:25261903

  8. a Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows in Ducts

    NASA Astrophysics Data System (ADS)

    EVERSMAN, W.

    2001-09-01

    A reverse flow theorem for acoustic propagation in compressible potential flow has been obtained directly from the field equations without recourse to energy conservation arguments. A reciprocity theorem for the scattering matrix for the propagation of acoustic modes in a duct with either acoustically rigid walls or acoustically absorbing walls follows. It is found that for a source at a specific end of the duct, suitably scaled reflection matrices in direct and reverse flow have a reciprocal relationship. Scaled transmission matrices obtained for direct flow and reversed flow with simultaneous switching of source location from one end to the other also have a reciprocal relationship. A related reverse flow theorem specialized to one-dimensional acoustic propagation has also been obtained. Reciprocity relationships for the scattering coefficients for propagation are derived, and are found to be similar though much simpler than in the case of multi-mode propagation. In one-dimensional flow, reciprocal relations and power conservation arguments are used to show that scaled power reflection and transmission coefficients are invariant to flow reversal and switching of source location from one end of the duct to the other. Numerical verification of the reciprocal relationships is given in a companion paper.

  9. Electrokinetic soil remediation: Impact of aqueous phase properties on soil surface charge and electroosmotic efficiency

    SciTech Connect

    Vane, L.M.; Zang, G.M.

    1995-10-01

    The electrokinetic remediation of soils is described. The effect of pore fluid properties on the surface charge of clays was examined. Zeta potential results indicate that the electro-osmotic efficiency (flow/voltage ratio) in bentonite should be relatively insensitive to pH and ionic strength variations. The zeta potential of kaolinite, however, was found to be quite sensitive to pH. The electro-osmotic efficiency for kaolinite was found to be equally sensitive to pH. Zeta potential results further indicate that the electro-osmotic efficiency as well as the direction of electroosmosis in kaolinite will be impacted dramatically by the presence of metal cations. These results suggest that zeta potential measurements could be used to study the impact on electro osmotic efficiency of initial site conditions as well as conditions expected during an electrokinetic remediation process.

  10. Further studies of unsteady boundary layers with flow reversal

    NASA Technical Reports Server (NTRS)

    Nash, J. F.

    1976-01-01

    One set of calculations was performed using the first order, time dependent turbulent boundary layer equations, and extended earlier work by Nash and Patel to a wider range of flows. Another set of calculations was performed for laminar flow using the time dependent Navier-Stokes equations. The results of the calculations confirm previous conclusions concerning the existence of a regime of unseparated flow, containing an embedded region of reversal, which is accessible to first order boundary layer theory. However, certain doubts are cast on the precise nature of the events which accompany the eventual breakdown of the theory due to singularity onset. The earlier view that the singularity appears as the final event in a sequence involving rapid thickening of the boundary layer and the formation of a localized region of steep gradients is called into question by the present results. It appears that singularity onset is not necessarily preceded by rapid boundary layer thickening, or even necessarily produces immediate thickening.

  11. Applications of Electro-Osmotic Transport in the Processing of Textiles

    SciTech Connect

    Cooper, J.F.; Krueger, R.; Hopper, R.; Cherepy, N.

    1999-11-29

    We report development of a pilot process for the industrial rinsing of fabrics. This process combines hydraulic (pressure-driven) transport with electro-osmotic transport. It reduces the total amount of water required in certain rinsing operations by a factor of about five. Cotton exhibits an electro-osmotic transport coefficient of about 6 x 10{sup -9} m{sup 2}/s-V resulting from a partial ionization of hydroxyl groups on the cellulose polymer substrate. This process applies a field transverse to the fabric to effect the movement of water in the spaces between the 10 {micro}m cotton fibers which constitute the yam. The field strength is adjusted so that the induced electro-osmotic flux is comparable to a pressure-driven flux, which moves preferentially in the more open channels between the yams. For a fixed current density, solution conductivity and electro-osmotic transport vary inversely. The process is most practical for removal of liquids of relatively low conductivity (<500 {micro}S/cm). For removal of solutions of conductivity greater than 1200 {micro}S/cm, the rate of electro-osmotic flow may be too low to benefit the rinsing process if current densities are restricted to practical levels of about 30 mA/cm{sup 2}. Electra-osmotic transport may have important applications in wet processing of extremely fine textiles, such as micro fiber fabrics. In addition to rinsing, electro-osmotic transport may also be used to speed the penetration of chemicals and dyestuffs that are applied to the surface of wet textiles.

  12. The phase reversal phenomenon at flow separation and reattachment

    NASA Technical Reports Server (NTRS)

    Stack, J. Pete; Mangalam, S. M.; Kalburgi, V.

    1988-01-01

    Tests were conducted on two different airfoils, one of them in a low-turbulence tunnel, to detect laminar separation and turbulent reattachment locations. A 'nonintrusive' multielement sensor consisting of a large number of closely spaced individual nickel films was vacuum deposited on a thin substrate and bonded to the airfoil model surface. Each sensor element was a part of an independent constant temperature anemometer system. Time history as well as spectral analysis of signals from surface film gauges were used to determine the surface shear flow characteristics. A major breakthrough was achieved with the discovery of phase reversal in low-frequency dynamic shear stress signals across regions of flow separation and reattachment.

  13. An Alternating Current Electroosmotic Pump Based on Conical Nanopore Membranes.

    PubMed

    Wu, Xiaojian; Ramiah Rajasekaran, Pradeep; Martin, Charles R

    2016-04-26

    Electroosmotic flow (EOF) is used to pump solutions through microfluidic devices and capillary electrophoresis columns. We describe here an EOF pump based on membrane EOF rectification, an electrokinetic phenomenon we recently described. EOF rectification requires membranes with asymmetrically shaped pores, and conical pores in a polymeric membrane were used here. We show here that solution flow through the membrane can be achieved by applying a symmetrical sinusoidal voltage waveform across the membrane. This is possible because the alternating current (AC) carried by ions through the pore is rectified, and we previously showed that rectified currents yield EOF rectification. We have investigated the effect of both the magnitude and frequency of the voltage waveform on flow rate through the membrane, and we have measured the maximum operating pressure. Finally, we show that operating in AC mode offers potential advantages relative to conventional DC-mode EOF pumps. PMID:27046145

  14. Compliant Metal Enhanced Convection Cooled Reverse-Flow Annular Combustor

    NASA Technical Reports Server (NTRS)

    Paskin, Marc D.; Acosta, Waldo A.

    1994-01-01

    A joint Army/NASA program was conducted to design, fabricate, and test an advanced, reverse-flow, small gas turbine combustor using a compliant metal enhanced (CME) convection wall cooling concept. The objectives of this effort were to develop a design method (basic design data base and analysis) for the CME cooling technique and tben demonstrate its application to an advanced cycle, small, reverse-flow combustor with 3000 F (1922 K) burner outlet temperature (BOT). The CME concept offers significant improvements in wall cooling effectiveness resulting in a large reduction in cooling air requirements. Therefore, more air is available for control of burner outlet temperature pattern in addition to the benefit of improved efficiency, reduced emissions, and smoke levels. Rig test results demonstrated the benefits and viability of the CME concept meeting or exceeding the aerothermal performance and liner wall temperature characteristics of similar lower temperature-rise combustors, achieving 0.15 pattern factor at 3000 F (1922 K) BOT, while utilizing approximately 80 percent less cooling air than conventional, film-cooled combustion systems.

  15. Flow and convective heat transfer in cylindrical reversed flow combustion chambers

    SciTech Connect

    Kilic, M.

    1996-12-01

    This paper presents a computational study of the flow and convective heat transfer in cylindrical reversed flow combustion chambers. The computations are performed using an elliptic solver incorporates the {kappa}-{epsilon} turbulence model. Heat production by combustion is simulated by adding heat generation source terms in the energy equation. And it is assumed that heat generation occurs only a section of the furnace. A number of different inlet conditions with different geometries are considered, and the changes of flow structure, temperature distribution, convective heat flux rate are presented and compared. The results show that, in general, heat transfer in the reversed flow combustion chamber can be improved by properly chosen geometry for the required output.

  16. Electroosmotic micro-pump array for local control of droplets.

    NASA Astrophysics Data System (ADS)

    Gupta, Amit; Hirsa, Amir; Borca-Tasciuc, Diana-Andra

    2006-11-01

    Droplet-based microfluidic devices have a wide range of applications in various fields such as diagnostics and clinical testing, drug delivery and opto-electronics. This paper presents a novel microfluidic device for actuation and control of individual droplets employing electroosmotic pumping across a nanoporous membrane. To fabricate the device, arrays of gold electrodes pairs are first patterned on both sides of an anodic alumina membrane (Whatman, ˜50 μm in thickness, with parallel cylindrical pores of 150 nm in diameter). One side of the membrane is then attached to a liquid reservoir while the other side is covered partially with Teflon to prevent droplet spreading. When voltage is applied between the two aligned top and bottom gold electrodes electroosmotic flow occurs from the liquid reservoir through the membrane and a droplet forms onto the Teflon-coated surface of the membrane. Actuation time and droplet shape are investigated by video microscopy in order to assess the effect of electrode configuration and electrolyte ionic strength Possible applications for the device include addressable liquid microlens arrays, fast-response droplet switches and fast, sample collection devices for brain microdialysis.

  17. ac electroosmotic pumping induced by noncontact external electrodes

    PubMed Central

    Wang, Shau-Chun; Chen, Hsiao-Ping; Chang, Hsueh-Chia

    2007-01-01

    Electroosmotic (EO) pumps based on dc electroosmosis is plagued by bubble generation and other electrochemical reactions at the electrodes at voltages beyond 1 V for electrolytes. These disadvantages limit their throughput and offset their portability advantage over mechanical syringe or pneumatic pumps. ac electroosmotic pumps at high frequency (>100 kHz) circumvent the bubble problem by inducing polarization and slip velocity on embedded electrodes,1 but they require complex electrode designs to produce a net flow. We report a new high-throughput ac EO pump design based on induced-polarization on the entire channel surface instead of just on the electrodes. Like dc EO pumps, our pump electrodes are outside of the load section and form a cm-long pump unit consisting of three circular reservoirs (3 mm in diameter) connected by a 1×1 mm channel. The field-induced polarization can produce an effective Zeta potential exceeding 1 V and an ac slip velocity estimated as 1 mm∕sec or higher, both one order of magnitude higher than earlier dc and ac pumps, giving rise to a maximum throughput of 1 μl∕sec. Polarization over the entire channel surface, quadratic scaling with respect to the field and high voltage at high frequency without electrode bubble generation are the reasons why the current pump is superior to earlier dc and ac EO pumps. PMID:19693362

  18. Convective flow reversal in self-powered enzyme micropumps.

    PubMed

    Ortiz-Rivera, Isamar; Shum, Henry; Agrawal, Arjun; Sen, Ayusman; Balazs, Anna C

    2016-03-01

    Surface-bound enzymes can act as pumps that drive large-scale fluid flows in the presence of their substrates or promoters. Thus, enzymatic catalysis can be harnessed for “on demand” pumping in nano- and microfluidic devices powered by an intrinsic energy source. The mechanisms controlling the pumping have not, however, been completely elucidated. Herein, we combine theory and experiments to demonstrate a previously unreported spatiotemporal variation in pumping behavior in urease-based pumps and uncover the mechanisms behind these dynamics. We developed a theoretical model for the transduction of chemical energy into mechanical fluid flow in these systems, capturing buoyancy effects due to the solution containing nonuniform concentrations of substrate and product. We find that the qualitative features of the flow depend on the ratios of diffusivities δ=D(P)/D(S) and expansion coefficients β=β(P)/β(S) of the reaction substrate (S) and product (P). If δ>1 and δ>β (or if δ<1 and δ<β ), an unexpected phenomenon arises: the flow direction reverses with time and distance from the pump. Our experimental results are in qualitative agreement with the model and show that both the speed and direction of fluid pumping (i) depend on the enzyme activity and coverage, (ii) vary with the distance from the pump, and (iii) evolve with time. These findings permit the rational design of enzymatic pumps that accurately control the direction and speed of fluid flow without external power sources, enabling effective, self-powered fluidic devices. PMID:26903618

  19. Experimental results from a reverse flow annual combustor

    NASA Astrophysics Data System (ADS)

    Joubert, F. M.; Hattingh, H. V.

    Computer-predicted temperature distributions in the wall liners of a combustion chamber were compared to the experimentally obtained values from combustion tests carried out in a small, full-scale reverse-flow annular combustor at sea level take-off conditionns. The largest discrepancies between the measured and predicted linear temperatures occured in the primary zone, with most of the predictions falling above the measured values, and with neither of the two computer programs satisfying the accuracy of 4 percent (of the experimental values) needed for making estimates on the life of a combustor. On the other hand, the correlation between the measured and predicted liner pressure drop was satisfactory. The validity and usefulnes of simple computer models as aids in the design of gas turbine combustion chambers are discussed.

  20. Computation of unsteady turbulent boundary layers with flow reversal and evaluation of two separate turbulence models

    NASA Technical Reports Server (NTRS)

    Cebeci, T.; Carr, L. W.

    1981-01-01

    A procedure which solves the governing boundary layer equations within Keller's box method was developed for calculating unsteady laminar flows with flow reversal. This method is extended to turbulent boundary layers with flow reversal. Test cases are used to investigate the proposition that unsteady turbulent boundary layers also remain free of singularities. Turbulent flow calculations are performed. The governing equations for both models are solved. As in laminar flows, the unsteady turbulent boundary layers are free from singularities, but there is a clear indication of rapid thickening of the boundary layer with increasing flow reversal. Predictions of both turbulence models are the same for all practical purposes.

  1. High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes.

    PubMed

    Snyder, Jessica L; Getpreecharsawas, Jirachai; Fang, David Z; Gaborski, Thomas R; Striemer, Christopher C; Fauchet, Philippe M; Borkholder, David A; McGrath, James L

    2013-11-12

    We have developed electroosmotic pumps (EOPs) fabricated from 15-nm-thick porous nanocrystalline silicon (pnc-Si) membranes. Ultrathin pnc-Si membranes enable high electroosmotic flow per unit voltage. We demonstrate that electroosmosis theory compares well with the observed pnc-Si flow rates. We attribute the high flow rates to high electrical fields present across the 15-nm span of the membrane. Surface modifications, such as plasma oxidation or silanization, can influence the electroosmotic flow rates through pnc-Si membranes by alteration of the zeta potential of the material. A prototype EOP that uses pnc-Si membranes and Ag/AgCl electrodes was shown to pump microliter per minute-range flow through a 0.5-mm-diameter capillary tubing with as low as 250 mV of applied voltage. This silicon-based platform enables straightforward integration of low-voltage, on-chip EOPs into portable microfluidic devices with low back pressures. PMID:24167263

  2. High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes

    PubMed Central

    Snyder, Jessica L.; Getpreecharsawas, Jirachai; Fang, David Z.; Gaborski, Thomas R.; Striemer, Christopher C.; Fauchet, Philippe M.; Borkholder, David A.; McGrath, James L.

    2013-01-01

    We have developed electroosmotic pumps (EOPs) fabricated from 15-nm-thick porous nanocrystalline silicon (pnc-Si) membranes. Ultrathin pnc-Si membranes enable high electroosmotic flow per unit voltage. We demonstrate that electroosmosis theory compares well with the observed pnc-Si flow rates. We attribute the high flow rates to high electrical fields present across the 15-nm span of the membrane. Surface modifications, such as plasma oxidation or silanization, can influence the electroosmotic flow rates through pnc-Si membranes by alteration of the zeta potential of the material. A prototype EOP that uses pnc-Si membranes and Ag/AgCl electrodes was shown to pump microliter per minute-range flow through a 0.5-mm-diameter capillary tubing with as low as 250 mV of applied voltage. This silicon-based platform enables straightforward integration of low-voltage, on-chip EOPs into portable microfluidic devices with low back pressures. PMID:24167263

  3. Cylindrical Couette flows of a rarefied gas with evaporation and condensation: Reversal and bifurcation of flows

    NASA Astrophysics Data System (ADS)

    Sone, Yoshio; Sugimoto, Hiroshi; Aoki, Kazuo

    1999-02-01

    A rarefied gas between two coaxial circular cylinders made of the condensed phase of the gas is considered, where each cylinder is kept at a uniform temperature and is rotating at a constant angular velocity around its axis (cylindrical Couette flows of a rarefied gas with evaporation or condensation on the cylinders). The steady behavior of the gas, with special interest in bifurcation of a flow, is studied on the basis of kinetic theory from the continuum to the Knudsen limit. The solution shows profound variety: reversal of direction of evaporation-condensation with variation of the speed of rotation of the cylinders; contrary to the conventional cylindrical Couette flow without evaporation and condensation, bifurcation of a flow in a simple case where the state of the gas is circumferentially and axially uniform.

  4. Electroosmotic enhancement of the binding of a neutral molecule to a transmembrane pore

    PubMed Central

    Gu, Li-Qun; Cheley, Stephen; Bayley, Hagan

    2003-01-01

    The flux of solvent water coupled to the transit of ions through protein pores is considerable. The effect of this electroosmotic solvent flow on the binding of a neutral molecule [β-cyclodextrin (βCD)] to sites within the staphylococcal α-hemolysin pore was investigated. Mutant α-hemolysin pores were used to which βCD can bind from either entrance and through which the direction of water flow can be controlled by choosing the charge selectivity of the pore and the polarity of the applied potential. The Kd values for βCD for individual mutant pores varied by >100-fold with the applied potential over a range of –120 to +120 mV. In all cases, the signs of the changes in binding free energy and the influence of potential on the association and dissociation rate constants for βCD were consistent with an electroosmotic effect. PMID:14676320

  5. Gliding arc in tornado using a reverse vortex flow

    SciTech Connect

    Kalra, Chiranjeev S.; Cho, Young I.; Gutsol, Alexander; Fridman, Alexander; Rufael, Tecle S.

    2005-02-01

    The present article reports a new gliding arc (GA) system using a reverse vortex flow ('tornado') in a cylindrical reactor (gliding arc in tornado, or GAT), as used to preserve the main advantages of traditional GA systems and overcome their main drawbacks. The primary advantages of traditional GA systems retained in the present GAT are the possibility to generate transitional plasma and to avoid considerable electrode erosion. In contrast to a traditional GA, the new GAT system ensures much more uniform gas treatment and has a significantly larger gas residence time in the reactor. The present article also describes the design of the new reactor and its stable operation regime when the variation of GAT current is very small. These features are understood to be very important for most viable applications. Additionally the GAT provides near-perfect thermal insulation from the reactor wall, indicating that the present GAT does not require the reactor wall to be constructed of high-temperature materials. The new GAT system, with its unique properties such as a high level of nonequilibrium and a large residence time, looks very promising for many industrial applications including fuel conversion, carbon dioxide conversion to carbon monoxide and oxygen, surface treatment, waste treatment, flame stabilization, hydrogen sulfide treatment, etc.

  6. The reversibility theorem for thin airfoils in subsonic and supersonic flow

    NASA Technical Reports Server (NTRS)

    Brown, Clinton E

    1950-01-01

    A method introduced by Munk is extended to prove that the light-curve slope of thin wings in either subsonic flow or supersonic flow is the same when the direction of flight of the wing is reversed. It is also shown that the wing reversal does not change the thickness drag, damping-in-roll parameter or the damping-in-pitch parameter.

  7. Electroosmotic fluid motion and late-time solute transport at non-negligible zeta potentials

    SciTech Connect

    S. K. Griffiths; R. H. Nilson

    1999-12-01

    Analytical and numerical methods are employed to determine the electric potential, fluid velocity and late-time solute distribution for electroosmotic flow in a tube and channel when the zeta potential is not small. The electric potential and fluid velocity are in general obtained by numerical means. In addition, new analytical solutions are presented for the velocity in a tube and channel in the extremes of large and small Debye layer thickness. The electroosmotic fluid velocity is used to analyze late-time transport of a neutral non-reacting solute. Zeroth and first-order solutions describing axial variation of the solute concentration are determined analytically. The resulting expressions contain eigenvalues representing the dispersion and skewness of the axial concentration profiles. These eigenvalues and the functions describing transverse variation of the concentration field are determined numerically using a shooting technique. Results are presented for both tube and channel geometries over a wide range of the normalized Debye layer thickness and zeta potential. Simple analytical approximations to the eigenvalues are also provided for the limiting cases of large and small values of the Debye layer thickness. The methodology developed here for electroosmotic flow is also applied to the Taylor problem of late-time transport and dispersion in pressure-driven flows.

  8. Effect of Trailing Edge Shape on the Unsteady Aerodynamics of Reverse Flow Dynamic Stall

    NASA Astrophysics Data System (ADS)

    Lind, Andrew; Jones, Anya

    2015-11-01

    This work considers dynamic stall in reverse flow, where flow travels over an oscillating airfoil from the geometric trailing edge towards the leading edge. An airfoil with a sharp geometric trailing edge causes early formation of a primary dynamic stall vortex since the sharp edge acts as the aerodynamic leading edge in reverse flow. The present work experimentally examines the potential merits of using an airfoil with a blunt geometric trailing edge to delay flow separation and dynamic stall vortex formation while undergoing oscillations in reverse flow. Time-resolved and phase-averaged flow fields and pressure distributions are compared for airfoils with different trailing edge shapes. Specifically, the evolution of unsteady flow features such as primary, secondary, and trailing edge vortices is examined. The influence of these flow features on the unsteady pressure distributions and integrated unsteady airloads provide insight on the torsional loading of rotor blades as they oscillate in reverse flow. The airfoil with a blunt trailing edge delays reverse flow dynamic stall, but this leads to greater downward-acting lift and pitching moment. These results are fundamental to alleviating vibrations of high-speed helicopters, where much of the rotor operates in reverse flow.

  9. FLUX ENHANCEMENT IN CROSSFLOW MEMBRANE FILTRATION: FOULING AND IT'S MINIMIZATION BY FLOW REVERSAL

    SciTech Connect

    Shamsuddin Ilias

    2005-01-25

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In this report, we report our application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Based on our ultrafiltration experiments with apple juice, we conclude that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. Thus, flow reversal

  10. Thrust-reverser flow investigation on a twin-engine transport

    NASA Technical Reports Server (NTRS)

    Gatlin, Gregory M.; Quinto, P. Frank

    1988-01-01

    An investigation was conducted in the NASA Langley 14 x 22 foot Subsonic Tunnel to study the effects of engine thrust reversing on an aft-mounted twin-engine transport and to develop effective testing techniques. Testing was done over a fixed and a moving-belt ground plane and over a pressure instrumented ground board. Free-stream dynamic pressure was set at values up to 12.2 psf, which corresponded to a maximum Reynolds number based on the mean aerodynamic chord of 765,000. The thrust reversers examined included cascade, target and four-door configurations. The investigation focused on the range of free-stream velocities and engine thrust-reverser flow rates that would be typical for landing ground-roll conditions. Flow visualization techniques were investigated, and the use of water or smoke injected into the reverser flow proved effective to determine the forward progression of the reversed flow and reingestion limits. When testing over a moving-belt ground plane, as opposed to a fixed ground plane, forward penetration of the reversed flow was reduced. The use of a pressure-instrumented ground board enabled reversed flow ground velocities to be obtained, and it provided a means by which to identify the reversed flow impingement point on the ground.

  11. Static internal performance of a nonaxisymmetric vaned thrust reverser with flow splay capability

    NASA Technical Reports Server (NTRS)

    Bangert, Linda S.; Leavitt, Laurence D.

    1989-01-01

    An investigation was conducted in the Static Test Facility of the Langley 16-Foot Transonic Tunnel on a dual-port, nonaxisymmetric, block-and-turn type thrust reverser model with vane cascades in the reverser ports which turned the flow in the splay direction and aided in turning the flow in the reverse direction. Splaying reverser flow is a method of delaying to lower landing ground roll speeds the reingestion of hot exhaust flow into the inlets. Exhaust flow splay can also help prevent the impingement of hot exhaust gases on the empennage surfaces when the reverser is integrated into an actual airframe. The vane cascades consisted of two sets of perpendicular vanes with a variable number of turning and splay vanes. A skewed vane box was also tested which had only one set of vanes angled to provide both turning and splay. Vane cascades were designed to provide different amounts of flow splay in the top and bottom ports. Inner doors, trim tabs, and an orifice plate all provided means of varying the port area for reverser flow modulation. The outer door position was varied as a means of influencing the flow reverse angle. Nozzle pressure ratio was varied from 1.75 to approximately 6.00.

  12. FLUX ENHANCEMENT IN CROSSFLOW MEMBRANE FILTRATION: FOULING AND IT'S MINIMIZATION BY FLOW REVERSAL

    SciTech Connect

    Shamsuddin Ilias

    2004-06-14

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In our previous report, we reported our work on UF of BSA. In this report, we report our continuing application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using pectin in apple juice as feed show that under flow reversal conditions, the

  13. Flux Enhancement in Crossflow Membrane Filtration: Fouling and It's Minimization by Flow Reversal

    SciTech Connect

    Shamsuddin Ilias

    2005-08-04

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Three feed solutions (Bovine serum albumin (BSA), apple juice and citrus fruit pectin) were studied in crossflow membrane filtration. These solutes are well-known in membrane filtration for their fouling and concentration polarization potentials. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using each of the feed solutes show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and

  14. Buoyancy-driven flow reversal phenomena in radially rotating serpentine ducts

    SciTech Connect

    Hwang, J.J.; Wang, W.J.; Chen, C.K.

    2000-02-01

    Convective characteristics are analyzed numerically in a rotating multipass square duct connecting with 180-deg sharp returns. Isoflux is applied to each duct wall and periodic conditions are used between the entrance and exit of a typical two-pass module. Emphasis is placed on the phenomenon of buoyancy-driven reversed flow in the serpentine duct. Predictions reveal that the radial distance from the rotational axis to the location of flow separation in the radial-outward duct decreases with increasing the Richardson number. In addition, the local buoyancy that is required to yield the radial flow reversal increases with increasing the rotation number. This buoyancy-driven reversed flow in the radial-outward duct always results in local hot spots in the cooling channels. The critical buoyancy for the initiation of flow reversal is therefore concluded for the design purpose.

  15. Descending aortic flow reversal in obstructed total anomalous pulmonary venous connection.

    PubMed

    Nair, Anupama K; Radhakrishnan, Sitaraman; Iyer, Krishna S

    2016-06-01

    In this study, we present the case of a neonate with obstructed infracardiac total anomalous pulmonary venous connection with severe pulmonary hypertension and a patent ductus arteriosus with right-to-left shunting. The patient had an unusual finding of pandiastolic flow reversal in the upper descending thoracic aorta. He underwent emergency surgical re-routing of the pulmonary veins to the left atrium, and postoperative echocardiography showed disappearance of the descending aortic flow reversal. We hypothesise that in severely obstructed total anomalous pulmonary venous connection the left ventricular output may be extremely low, resulting in flow reversal in the descending aorta. PMID:27055647

  16. Experimental and Theoretical Studies of Electroosmotic Membrane Micropumps

    NASA Astrophysics Data System (ADS)

    Xu, Zuli; Miao, Jianying; Wang, Ning; Sheng, Ping

    2008-03-01

    Electroosmotic (EO) effect means fluid flow (through a porous medium) induced by an applied electric field E. EO pumps have the advantages of no moving parts and easily-controlled accurate flow rate at low applied voltages. We have fabricated nano-channel EO membrane pumps using anodic aluminum oxide (AAO) as the template [1]. The diameter of the uniform-sized nanochannels can range from 60-300nm, with a membrane thickness of 30-100 microns. The EO effect is enhanced by coating the nano-channels with silica. By using de-ionized water, the nanopump performance is shown to agree reasonably well with the theoretical model, with factors such as the ratio of the double layer thickness to channel diameter, channel geometry, and treatment of the AAO membranes playing important roles. With silica coating to the nanochannels, the nanopump can produce a maximum pressure of 1 atm and a maximum flow rate of 86,000μL/min.cm2 under an applied field of 0.94 V/μm. Besides DI water, the micropumps have also been tested to work well with salt, acid or base solution. [1] J.Y. Miao, Z.L. Xu, X.Y. Zhang, N. Wang, Z.Y. Yang, P. Sheng, submitted to Advanced Materials (Appeared online: 10.1002/adma.200700767).

  17. Electro-Osmotic Remediation of Fine-Grained Sediments

    SciTech Connect

    Cherepy, N.J.; McNab, W.W.; Wildenschild, D.; Ruiz, R.; Elsholz, A.

    1999-11-22

    The coupled-flow phenomenon, electro-osmosis, whereby water flow results from an applied electrical potential gradient, is being used at Lawrence Livermore National Laboratory to induce water flow through deep (25-40 meters below surface) fine-grained sediments. The scoping work described here lays the groundwork for implementation of this technology to remediate solvent-contaminated clayey zones at the LLNL site. The electro-osmotic conductivity (k{sub e}) measured in-situ between two 37 m deep wells, 3 m apart of 2.3 x 10{sup -9} m{sup 2}/s-V is in good agreement with the value determined from bench-top studies on the core extracted from one of the wells of 0.94 {+-} 0.29 x 10{sup -9} m{sup 2}/s-V. Hydraulic conductivity (k{sub h}) of the same core is measured to be 2.03 {+-} 0.36 x 10{sup -10} m/s. Thus, a voltage gradient of 1 V/cm produces an effective hydraulic conductivity of {approx}1 x 10{sup -7} m/s; an increase in conductivity of nearly three orders of magnitude.

  18. Analysis of HRCT-derived xylem network reveals reverse flow in some vessels.

    PubMed

    Lee, Eric F; Matthews, Mark A; McElrone, Andrew J; Phillips, Ronald J; Shackel, Kenneth A; Brodersen, Craig R

    2013-09-21

    Long distance water and nutrient transport in plants is dependent on the proper functioning of xylem networks, a series of interconnected pipe-like cells that are vulnerable to hydraulic dysfunction as a result of drought-induced embolism and/or xylem-dwelling pathogens. Here, flow in xylem vessels was modeled to determine the role of vessel connectivity by using three dimensional xylem networks derived from High Resolution Computed Tomography (HRCT) images of grapevine (Vitis vinifera cv. 'Chardonnay') stems. Flow in 4-27% of the vessel segments (i.e. any section of vessel elements between connection points associated with intervessel pits) was found to be oriented in the direction opposite to the bulk flow under normal transpiration conditions. In order for the flow in a segment to be in the reverse direction, specific requirements were determined for the location of connections, distribution of vessel endings, diameters of the connected vessels, and the conductivity of the connections. Increasing connectivity and decreasing vessel length yielded increasing numbers of reverse flow segments until a maximum value was reached, after which more interconnected networks and smaller average vessel lengths yielded a decrease in the number of reverse flow segments. Xylem vessel relays also encouraged the formation of reverse flow segments. Based on the calculated flow rates in the xylem network, the downward spread of Xylella fastidiosa bacteria in grape stems was modeled, and reverse flow was shown to be an additional mechanism for the movement of bacteria to the trunk of grapevine. PMID:23743143

  19. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system

    NASA Astrophysics Data System (ADS)

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-12-01

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

  20. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system

    PubMed Central

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-01-01

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices. PMID:26687638

  1. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.

    PubMed

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-01-01

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices. PMID:26687638

  2. Transition zone dynamics in combined isotachophoretic and electro-osmotic transport

    NASA Astrophysics Data System (ADS)

    Schönfeld, Friedhelm; Goet, Gabriele; Baier, Tobias; Hardt, Steffen

    2009-09-01

    The present study focuses on the interplay of isotachophoresis (ITP) and electro-osmotic flow (EOF). While EOF is commonly suppressed in ITP applications, we investigate scenarios of the combination of both EOF and ITP. Experimental results of ITP/EOF experiments within cross-patterned polymer chips show characteristic deformations of fluorescent sample zones sandwiched between leading and trailing electrolytes. A changing curvature of the deformation is observed during ITP/EOF runs, but overall a well defined sample segment is maintained after a transport over a few centimeters. By means of numerical modeling we study the deformation attributed to the mismatch of EOF between leading and trailing electrolytes. The model results are found to qualitatively agree with our experimental findings. We introduce the ratio of the EOF velocities in the leading and trailing electrolyte, expressed via the respective mobilities, as a dimensionless parameter γ and show that in the case where electro-osmotically induced convection dominates over electromigration the deformation width scales as 1-γ. In particular, we find that the EOF-induced dispersion virtually vanishes for the case γ =1. Hence, in this particular case isotachophoretic self-sharpening and electro-osmotic pumping can be combined without any detrimental effects on sample transport even for large EOF velocities.

  3. FLUX ENHANCEMENT IN CROSSFLOW MEMBRANE FILTRATION: FOULING AND IT'S MINIMIZATION BY FLOW REVERSAL

    SciTech Connect

    Shamsuddin Ilias

    2002-03-14

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Bovine serum albumin (BSA) is a well-studied model solute in membrane filtration known for its fouling and concentration polarization capabilities. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using BSA solution as feed show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and operating transmembrane pressure.

  4. Unsteady aerodynamics of reverse flow dynamic stall on an oscillating blade section

    NASA Astrophysics Data System (ADS)

    Lind, Andrew H.; Jones, Anya R.

    2016-07-01

    Wind tunnel experiments were performed on a sinusoidally oscillating NACA 0012 blade section in reverse flow. Time-resolved particle image velocimetry and unsteady surface pressure measurements were used to characterize the evolution of reverse flow dynamic stall and its sensitivity to pitch and flow parameters. The effects of a sharp aerodynamic leading edge on the fundamental flow physics of reverse flow dynamic stall are explored in depth. Reynolds number was varied up to Re = 5 × 105, reduced frequency was varied up to k = 0.511, mean pitch angle was varied up to 15∘, and two pitch amplitudes of 5∘ and 10∘ were studied. It was found that reverse flow dynamic stall of the NACA 0012 airfoil is weakly sensitive to the Reynolds numbers tested due to flow separation at the sharp aerodynamic leading edge. Reduced frequency strongly affects the onset and persistence of dynamic stall vortices. The type of dynamic stall observed (i.e., number of vortex structures) increases with a decrease in reduced frequency and increase in maximum pitch angle. The characterization and parameter sensitivity of reverse flow dynamic stall given in the present work will enable the development of a physics-based analytical model of this unsteady aerodynamic phenomenon.

  5. Fast three dimensional ac electro-osmotic pumps with nonphotolithographic electrode patterning

    PubMed Central

    Senousy, Y. M.; Harnett, C. K.

    2010-01-01

    Three dimensional (3D) stepped electrodes dramatically improve the flow rate and frequency range of ac electro-osmotic pumps, compared to planar electrodes. However, the fabrication of 3D stepped electrodes for ac electro-osmosis (ACEO) pumps usually involves several processing steps. This paper demonstrates results from ACEO pumps produced by a faster and less expensive method to fabricate the 3D electrodes—extending the previous work to disposable devices. The method is based on shadowed evaporation of metal on an insulating substrate that can be injection molded. Flow velocities through the 3D ACEO pump are similar to those seen in the previous work. PMID:20697462

  6. Flow reversal and heat transfer of fully developed mixed convection in vertical channels

    NASA Astrophysics Data System (ADS)

    Cheng, Chin-Hsiang; Kou, Hong-Sen; Huang, Wen-Hsiung

    1990-07-01

    The present analysis is concerned with flow reversal phenomena and heat transfer characteristics of the fully developed laminar combined free and forced convection in the heated vertical channels. Three fundamental combinations of thermal boundary conditions on the respective wall surface (namely isoflux-isoflux, isoflux-isothermal, and isothermal-isothermal) are considered separately so as to investigate extensively their distinct influence on the flow pattern. Results of the velocity distribution and temperature distribution as well as the Nusselt number in terms of bulk mean temperature are carried out. Based on the analytical solutions obtained, flow reversal adjacent to the relatively colder wall is found to exist within the channel as Re/Gr is below a threshold value related to the thermal boundary conditions. Parameter zones for the occurrence of reversed flow are presented. Comparisons and verification are made using the existing numerical solutions at locations far downstream of developing flow.

  7. Asymmetrical reverse vortex flow due to induced-charge electro-osmosis around carbon stacking structures

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki

    2011-05-01

    Broken symmetry of vortices due to induced-charge electro-osmosis (ICEO) around stacking structures is important for the generation of a large net flow in a microchannel. Following theoretical predictions in our previous study, we herein report experimental observations of asymmetrical reverse vortex flows around stacking structures of carbon posts with a large height (~110 μm) in water, prepared by the pyrolysis of a photoresist film in a reducing gas. Further, by the use of a coupled calculation method that considers boundary effects precisely, the experimental results, except for the problem of anomalous flow reversal, are successfully explained. That is, unlike previous predictions, the precise calculations here show that stacking structures accelerate a reverse flow rather than suppressing it for a microfluidic channel because of the deformation of electric fields near the stacking portions; these structures can also generate a large net flow theoretically in the direction opposite that of a previous prediction for a standard vortex flow. Furthermore, by solving the one-dimensional Poisson-Nernst-Plank (PNP) equations in the presence of ac electric fields, we find that the anomalous flow reversal occurs by the phase retardation between the induced diffuse charge and the tangential electric field. In addition, we successfully explain the nonlinearity of the flow velocity on the applied voltage by the PNP analysis. In the future, we expect to improve the pumping performance significantly by using stacking structures of conductive posts along with a low-cost process.

  8. Performance characteristics of plane-wall venturi-like reverse flow diverters

    SciTech Connect

    Smith, G.V.; Counce, R.M.

    1982-01-01

    The results of an analytical and experimental study of plane-wall venturi-like reverse flow diverters (RFD) are presented. In general, the flow characteristics of the RFD are reasonably well predicted by the mathematical model of the RFD, although a divergence between theory and data is observed for the output characteristics in the reverse flow mode as the output impedance is reduced. Overall, the performance of these devices indicates their usefulness in fluid control and fluid power systems, such as displacement pumping systems.

  9. Real-time Assessment of Flow Reversal in an Eccentric Arterial Stenotic Model

    PubMed Central

    Ai, Lisong; Zhang, Lequan; Dai, Wangde; Hu, Changhong; Shung, K. Kirk; Hsiai, Tzung K.

    2010-01-01

    Plaque rupture is the leading cause of acute coronary syndromes and stroke. Plaque formation, or otherwise known as stenosis, preferentially occurs in the regions of arterial bifurcation or curvatures. To date, real-time assessment of stenosis-induced flow reversal remains a clinical challenge. By interfacing Micro-electro-mechanical Systems (MEMS) thermal sensors with the high frequency Pulsed Wave (PW) Doppler ultrasound, we proposed to assess flow reversal in the presence of an eccentric stenosis. We developed a 3-D stenotic model (inner diameter of 6 mm, an eccentric stenosis with a height of 2.75mm and width of 21 mm) simulating a superficial arterial vessel. We demonstrated that heat transfer from the sensing element (2 × 80 μm) to the flow field peaked as a function of flow rates at the throat of the stenosis alone the center/midline of arterial model, and dropped downstream from the stenosis where flow reversal was detected by the high frequency ultrasound device at 45 MHz. Computational fluid dynamics (CFD) codes were in agreement with the ultrasound-acquired flow profiles upstream, downstream, and at the throat of the stenosis. Hence, we characterized regions of eccentric stenosis in terms of changes in heat transfer alone the midline of vessel and identified points of flow reversal with high spatial and temporal resolution. PMID:20655537

  10. Avalanches, breathers, and flow reversal in a continuous Lorenz-96 model.

    PubMed

    Blender, R; Wouters, J; Lucarini, V

    2013-07-01

    For the discrete model suggested by Lorenz in 1996, a one-dimensional long-wave approximation with nonlinear excitation and diffusion is derived. The model is energy conserving but non-Hamiltonian. In a low-order truncation, weak external forcing of the zonal mean flow induces avalanchelike breather solutions which cause reversal of the mean flow by a wave-mean flow interaction. The mechanism is an outburst-recharge process similar to avalanches in a sandpile model. PMID:23944570

  11. Is a high-latitude, second, reversed meridional flow cell the Sun's common choice?

    NASA Astrophysics Data System (ADS)

    Dikpati, M.

    2012-04-01

    Observations of surface Doppler meridional flow show that a high-latitude, reversed (equatorward) meridional flow cell, along with a poleward primary flow-cell, occurred during cycles 20, 21 and 22. The reversed cell vanished during most of cycle 23, but is reappearing in the current cycle 24. We explore theoretically what the Sun's natural choice of polar-region flow can be. We build a hydrodynamical model for computing and understanding the Sun's large-scale high latitude flows that includes Coriolis forces, turbulent diffusion of momentum and gyroscopic pumping. We solve for the meridional flow in a spherical 'polar cap' with a boundary at about 60-degree latitude. We find that there always exists at least one node in the latitudinal flow profile if the turbulent viscosity in the Sun's convection zone is 1010 to 1015 cm2 s-1. The Sun's turbulent viscosity is generally thought to be in the range of 1012 - 1013 cm2 s-1. For certain combinations of turbulent viscosity values and flow-speeds at the polar-cap boundary, our model exhibits 'node merging', producing only one flow-cell going all the way to the pole from the equator. These results suggest that it is more natural for the Sun to have one or more high-latitude reversed cells, but occasionally a single, unusually long primary cell, as was observed in cycle 23.

  12. A fast way to make a monolithic column for a high pressure electroosmotic pump.

    PubMed

    Wang, Rong; Zhang, Feifang; Yang, Bingcheng; Liang, Xinmiao

    2010-01-01

    A simple way was proposed to make a monolithic column for a high pressure electroosmotic pump (EOP). It is in-situ synthesized inside the silica capillary from potassium silicate solution and no frit is required. Compared with common approaches to make columns for EOP, the present method is robust and fast (<4 h). For pure water, a stand-alone EOP operated at 15 kV applied voltage is capable of generating a flow rate of 3.1 microL/min and a maximum static pressure of approximately 5.4 MPa. PMID:20702950

  13. An enzyme-based reversible CNOT logic gate realized in a flow system.

    PubMed

    Moseley, Fiona; Halámek, Jan; Kramer, Friederike; Poghossian, Arshak; Schöning, Michael J; Katz, Evgeny

    2014-04-21

    An enzyme system organized in a flow device was used to mimic a reversible Controlled NOT (CNOT) gate with two input and two output signals. Reversible conversion of NAD(+) and NADH cofactors was used to perform a XOR logic operation, while biocatalytic hydrolysis of p-nitrophenyl phosphate resulted in an Identity operation working in parallel. The first biomolecular realization of a CNOT gate is promising for integration into complex biomolecular networks and future biosensor/biomedical applications. PMID:24603754

  14. Electro-osmotic mobility of non-Newtonian fluids

    PubMed Central

    Zhao, Cunlu; Yang, Chun

    2011-01-01

    Electrokinetically driven microfluidic devices are usually used to analyze and process biofluids which can be classified as non-Newtonian fluids. Conventional electrokinetic theories resulting from Newtonian hydrodynamics then fail to describe the behaviors of these fluids. In this study, a theoretical analysis of electro-osmotic mobility of non-Newtonian fluids is reported. The general Cauchy momentum equation is simplified by incorporation of the Gouy–Chapman solution to the Poisson–Boltzmann equation and the Carreau fluid constitutive model. Then a nonlinear ordinary differential equation governing the electro-osmotic velocity of Carreau fluids is obtained and solved numerically. The effects of the Weissenberg number (Wi), the surface zeta potential (ψ¯s), the power-law exponent(n), and the transitional parameter (β) on electro-osmotic mobility are examined. It is shown that the results presented in this study for the electro-osmotic mobility of Carreau fluids are quite general so that the electro-osmotic mobility for the Newtonian fluids and the power-law fluids can be obtained as two limiting cases. PMID:21503161

  15. Reverse Kebab Structure Formed inside Carbon Nanofibers via Nanochannel Flow.

    PubMed

    Nie, Min; Kalyon, Dilhan M; Fisher, Frank T

    2015-09-15

    The morphology of polymers inside a confined space has raised great interest in recent years. However, polymer crystallization within a one-dimensional carbon nanostructure is challenging due to the difficulty of polar solvents carrying polymers to enter a nonpolar graphitic nanotube in bulk solution at normal temperature and pressure. Here we describe a method whereby nylon-11 was crystallized and periodically distributed on the individual graphitic nanocone structure within hollow carbon nanofibers (CNF). Differential scanning calorimetry and X-ray diffraction indicate that the nylon polymer is in the crystalline phase. A mechanism is suggested for the initiation of nanochannel flow in a bulk solvent as a prerequisite condition to achieve interior polymer crystallization. Selective etching of polymer crystals on the outer wall of CNF indicates that both surface tension and viscosity affect the flow within the CNF. This approach provides an opportunity for the interior functionalization of carbon nanotubes and nanofibers for applications in the biomedical, energy, and related fields. PMID:26313253

  16. On the reverse flow ceiling jet in pool fire-ventilation crossflow interactions in a simulated aircraft cabin interior

    NASA Technical Reports Server (NTRS)

    Kwack, E. Y.; Bankston, C. P.; Shakkottai, P.; Back, L. H.

    1989-01-01

    The behavior of the reverse flow ceiling jet against the ventilation flow from 0.58 to 0.87 m/s was investigated in a 1/3 scale model of a wide body aircraft interior. For all tests, strong reverse-flow ceiling jets of hot gases were detected well upstream of the fire. Both thicknesses of the reverse-flow ceiling jet and the smoke layer increased with the fire-crossflow parameter. The thickness of the smoke layer where the smoke flows along the main flow below the reverse-flow ceiling jet was almost twice that of the reverse-flow ceiling jet. Detailed spatial and time-varying temperatures of the gas in the test section were measured, and velocity profiles were also measured using a temperature compensated hot film.

  17. Structural and temporal requirements for geomagnetic field reversal deduced from lava flows.

    PubMed

    Singer, Brad S; Hoffman, Kenneth A; Coe, Robert S; Brown, Laurie L; Jicha, Brian R; Pringle, Malcolm S; Chauvin, Annick

    2005-03-31

    Reversals of the Earth's magnetic field reflect changes in the geodynamo--flow within the outer core--that generates the field. Constraining core processes or mantle properties that induce or modulate reversals requires knowing the timing and morphology of field changes that precede and accompany these reversals. But the short duration of transitional field states and fragmentary nature of even the best palaeomagnetic records make it difficult to provide a timeline for the reversal process. 40Ar/39Ar dating of lavas on Tahiti, long thought to record the primary part of the most recent 'Matuyama-Brunhes' reversal, gives an age of 795 +/- 7 kyr, indistinguishable from that of lavas in Chile and La Palma that record a transition in the Earth's magnetic field, but older than the accepted age for the reversal. Only the 'transitional' lavas on Maui and one from La Palma (dated at 776 +/- 2 kyr), agree with the astronomical age for the reversal. Here we propose that the older lavas record the onset of a geodynamo process, which only on occasion would result in polarity change. This initial instability, associated with the first of two decreases in field intensity, began approximately 18 kyr before the actual polarity switch. These data support the claim that complete reversals require a significant period for magnetic flux to escape from the solid inner core and sufficiently weaken its stabilizing effect. PMID:15800621

  18. Direct and reverse pollen-mediated gene flow between GM rice and red rice weed

    PubMed Central

    Serrat, X.; Esteban, R.; Peñas, G.; Català, M. M.; Melé, E.; Messeguer, J.

    2013-01-01

    Potential risks of genetically modified (GM) crops must be identified before their commercialization, as happens with all new technologies. One of the major concerns is the proper risk assessment of adventitious presence of transgenic material in rice fields due to cross-pollination. Several studies have been conducted in order to quantify pollen-mediated gene flow from transgenic rice (Oryza sativa) to both conventional rice and red rice weed (O. sativa f. spontanea) under field conditions. Some of these studies reported GM pollen-donor rice transferring GM traits to red rice. However, gene flow also occurs in the opposite direction, in a phenomenon that we have called reverse gene flow, resulting in transgenic seeds that have incorporated the traits of wild red rice. We quantified reverse gene flow using material from two field trials. A molecular analysis based on amplified fragment length polymorphisms was carried out, being complemented with a phenotypic identification of red rice traits. In both field trials, the reverse gene flow detected was greater than the direct gene flow. The rate of direct gene flow varied according to the relative proportions of the donor (GM rice) and receptor (red rice) plants and was influenced by wind direction. The ecological impact of reverse gene flow is limited in comparison with that of direct gene flow because non-shattered and non-dormant seeds would be obtained in the first generation. Hybrid seed would remain in the spike and therefore most of it would be removed during harvesting. Nevertheless, this phenomenon must be considered in fields used for elite seed production and in developing countries where farmers often keep some seed for planting the following year. In these cases, there is a higher risk of GM red rice weed infestation increasing from year to year and therefore a proper monitoring plan needs to be established.

  19. Dynamic Deformation and Recovery Response of Red Blood Cells to a Cyclically Reversing Shear Flow: Effects of Frequency of Cyclically Reversing Shear Flow and Shear Stress Level

    PubMed Central

    Watanabe, Nobuo; Kataoka, Hiroyuki; Yasuda, Toshitaka; Takatani, Setsuo

    2006-01-01

    Dynamic deformation and recovery responses of red blood cells (RBCs) to a cyclically reversing shear flow generated in a 30-μm clearance, with the peak shear stress of 53, 108, 161, and 274 Pa at the frequency of 1, 2, 3, and 5 Hz, respectively, were studied. The RBCs' time-varying velocity varied after the glass plate velocity without any time lag, whereas the L/W change, where L and W were the major and minor axes of RBCs' ellipsoidal shape, exhibited a rapid increase and gradual decay during the deformation and recovery phase. The time of minimum L/W occurrence lagged behind the zero-velocity time of the glass plate (zero stress), and the delay time normalized to the one-cycle duration remained constant at 8.0%. The elongation of RBCs at zero stress time became larger with the reversing frequency. A simple mechanical model consisting of an elastic linear element during a rapid elongation period and a parallel combination of elements such as a spring and dashpot during the nonlinear recovery phase was suggested. The dynamic response behavior of RBCs under a cyclically reversing shear flow was different from the conventional shape change where a steplike force was applied to and completely released from the RBCs. PMID:16766612

  20. Reversing Flows and Heat Spike: Caused by Solar g-Modes?

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Wolff, Charles L.

    2003-01-01

    The Quasi Biennial Oscillation in the Earth s upper atmosphere has an analog deep inside the Sun. As on Earth, the flow is east or west, it is at low latitude, and it reverses direction in a roughly periodic manner. The period in the solar case is 1.3 years. It was detected using solar oscillations similar to the way earthquakes are used to study the Earth's interior. But its cause was not known. We showed that global oscillations (g-modes) can supply enough angular momentum to drive zonal flows with the observed reversal period. This required a calculation of wave dissipation rates inside each flow and in the turbulent layer that separates any two flows of opposite sign. Heat that this process leaves behind causes a thermal spike inside the Sun at the same depth. This may explain an anomaly in observed sound speed that has had no sure explanation.

  1. Blood-clotting-inspired reversible polymer-colloid composite assembly in flow

    NASA Astrophysics Data System (ADS)

    Chen, Hsieh; Fallah, Mohammad A.; Huck, Volker; Angerer, Jennifer I.; Reininger, Armin J.; Schneider, Stefan W.; Schneider, Matthias F.; Alexander-Katz, Alfredo

    2013-01-01

    Blood clotting is a process by which a haemostatic plug is assembled at the site of injury. The formation of such a plug, which is essentially a (bio)polymer-colloid composite, is believed to be driven by shear flow in its initial phase, and contrary to our intuition, its assembly is enhanced under stronger flowing conditions. Here, inspired by blood clotting, we show that polymer-colloid composite assembly in shear flow is a universal process that can be tailored to obtain different types of aggregates including loose and dense aggregates, as well as hydrodynamically induced ‘log’-type aggregates. The process is highly controllable and reversible, depending mostly on the shear rate and the strength of the polymer-colloidbinding potential. Our results have important implications for the assembly of polymer-colloid composites, an important challenge of immense technological relevance. Furthermore, flow-driven reversible composite formation represents a new paradigm in non-equilibrium self-assembly.

  2. Flow reversal of fully developed double diffusive mixed convection in a vertical channel

    NASA Astrophysics Data System (ADS)

    Makhatar, Nur Asiah Mohd; Saleh, Habibis; Hashim, Ishak

    2015-10-01

    The mixed convection flow within a vertical channel having internal heat generation at a rate proportional to a power of the temperature difference is considered. The analysis is concerning the studies of occurrence of flow reversal and the effects of three dimensionless parameters, identified as the internal heat parameter (G), a mixed convection parameter (λ) and the exponent (p) in the local heating term on the fully developed double diffusive mixed convection flow in a vertical channel. The governing equations are solved numerically via MAPLE. It was found that flow reversal occurs with larger values of internal heat parameter and mixed convection parameter, but smaller values of local-heating exponent. They also show that, unlike the internal heat parameter and the local-heating exponent, the mixed convection parameter do not give any significant effect on the temperature.

  3. Electro-osmotic transport in wet processing of textiles

    DOEpatents

    Cooper, J.F.

    1998-09-22

    Electro-osmotic (or electrokinetic) transport is used to efficiently force a solution (or water) through the interior of the fibers or yarns of textile materials for wet processing of textiles. The textile material is passed between electrodes that apply an electric field across the fabric. Used alone or in parallel with conventional hydraulic washing (forced convection), electro-osmotic transport greatly reduces the amount of water used in wet processing. The amount of water required to achieve a fixed level of rinsing of tint can be reduced, for example, to 1--5 lbs water per pound of fabric from an industry benchmark of 20 lbs water/lb fabric. 5 figs.

  4. Electro-osmotic transport in wet processing of textiles

    DOEpatents

    Cooper, John F.

    1998-01-01

    Electro-osmotic (or electrokinetic) transport is used to efficiently force a solution (or water) through the interior of the fibers or yarns of textile materials for wet processing of textiles. The textile material is passed between electrodes that apply an electric field across the fabric. Used alone or in parallel with conventional hydraulic washing (forced convection), electro-osmotic transport greatly reduces the amount of water used in wet processing. The amount of water required to achieve a fixed level of rinsing of tint can be reduced, for example, to 1-5 lbs water per pound of fabric from an industry benchmark of 20 lbs water/lb fabric.

  5. Electroosmotic Trap Against the Electrophoretic Force Near a Protein Nanopore Reveals Peptide Dynamics During Capture and Translocation.

    PubMed

    Asandei, Alina; Schiopu, Irina; Chinappi, Mauro; Seo, Chang Ho; Park, Yoonkyung; Luchian, Tudor

    2016-05-25

    We report on the ability to control the dynamics of a single peptide capture and passage across a voltage-biased, α-hemolysin nanopore (α-HL), under conditions that the electroosmotic force exerted on the analyte dominates the electrophoretic transport. We demonstrate that by extending outside the nanopore, the electroosmotic force is able to capture a peptide at either the lumen or vestibule entry of the nanopore, and transiently traps it inside the nanopore, against the electrophoretic force. Statistical analysis of the resolvable dwell-times of a metastable trapped peptide, as it occupies either the β-barrel or vestibule domain of the α-HL nanopore, reveals rich kinetic details regarding the direction and rates of stochastic movement of a peptide inside the nanopore. The presented approach demonstrates the ability to shuttle and study molecules along the passage pathway inside the nanopore, allows to identify the mesoscopic trajectory of a peptide exiting the nanopore through either the vestibule or β-barrel moiety, thus providing convincing proof of a molecule translocating the pore. The kinetic analysis of a peptide fluctuating between various microstates inside the nanopore, enabled a detailed picture of the free energy description of its interaction with the α-HL nanopore. When studied at the limit of vanishingly low transmembrane potentials, this provided a thermodynamic description of peptide reversible binding to and within the α-HL nanopore, under equilibrium conditions devoid of electric and electroosmotic contributions. PMID:27159806

  6. Performance of a low-pressure fan stage with reverse flow

    NASA Technical Reports Server (NTRS)

    Moore, R. D.; Lewis, G. W., Jr.; Tysl, E. R.

    1976-01-01

    The reverse flow aerodynamic performance of a 51-centimeter-diameter fan stage is presented. The stage was tested with the variable pitch rotor blades set through feather at -75 deg, -80 deg, and -85 deg from design setting angle. Of the three tested the stage with the rotor blades set at -75 deg exhibited the highest pressure ratio and highest flow. For all three configurations, there was little or no flow in the inner third of the exit passage due to the rotor blade being almost perpendicular to the axial direction in the hub region.

  7. A 3D model of a reverse vortex flow gliding arc reactor

    NASA Astrophysics Data System (ADS)

    Trenchev, G.; Kolev, St.; Bogaerts, A.

    2016-06-01

    In this computational study, a gliding arc plasma reactor with a reverse-vortex flow stabilization is modelled for the first time by a fluid plasma description. The plasma reactor operates with argon gas at atmospheric pressure. The gas flow is simulated using the k-ε Reynolds-averaged Navier–Stokes turbulent model. A quasi-neutral fluid plasma model is used for computing the plasma properties. The plasma arc movement in the reactor is observed, and the results for the gas flow, electrical characteristics, plasma density, electron temperature, and gas temperature are analyzed.

  8. Modeling the Material Flow and Heat Transfer in Reverse Dual-Rotation Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Shi, L.; Wu, C. S.; Liu, H. J.

    2014-08-01

    Reverse dual-rotation friction stir welding (RDR-FSW) is a novel modification of conventional friction stir welding (FSW) process. During the RDR-FSW process, the tool pin and the assisted shoulder are separated and rotate with opposite direction independently, so that there are two material flows with reverse direction. The material flow and heat transfer in RDR-FSW have significant effects on the microstructure and properties of the weld joint. A 3D model is developed to quantitatively analyze the effects of the separated tool pin and the assisted shoulder which rotate in reverse direction on the material flow and heat transfer during RDR-FSW process. Numerical simulation is conducted to predict the temperature profile, material flow field, streamlines, strain rate, and viscosity distributions near the tool. The calculated results show that as the rotation speed of the tool pin increases, the temperature near the tool gets higher, the zone with higher temperature expands, and approximately symmetric temperature distribution is obtained near the tool. Along the workpiece thickness direction, the calculated material flow velocity and its layer thickness near the tool get lowered because the effect of the shoulder is weakened as the distance away from the top surface increases. The model is validated by comparing the predicted values of peak temperature at some typical locations with the experimentally measured ones.

  9. Seasonal Reversals of Groundwater Flow Around Lakes and the Relevance to Stagnation Points and Lake Budgets

    NASA Astrophysics Data System (ADS)

    Anderson, Mary P.; Munter, James A.

    1981-08-01

    Several researchers have observed seasonal reversals in the direction of groundwater flow around lakes. If these reversals are prolonged and are accompanied by the formation of a stagnation point, they may have a significant effect on a lake's water and nutrient budgets. The formation of a stagnation point at a flow-through lake (i.e., a lake that receives groundwater through part of the lake basin and recharges the groundwater system over the rest of the lake basin) is accomplished by the formation of a groundwater mound on the downgradient side of the lake. In this paper the seasonal formation of a stagnation point at Snake Lake, Wisconsin, is investigated with the aid of two-dimensional transient computer models applied in cross section and areally. The analysis demonstrates the potential for the seasonal formation of a stagnation point at a flow-through lake and provides some insight into the transient development of the stagnation point.

  10. An experimental study of static and oscillating rotor blade sections in reverse flow

    NASA Astrophysics Data System (ADS)

    Lind, Andrew Hume

    The rotorcraft community has a growing interest in the development of high-speed helicopters to replace outdated fleets. One barrier to the design of such helicopters is the lack of understanding of the aerodynamic behavior of retreating rotor blades in the reverse flow region. This work considers two fundamental models of this complex unsteady flow regime: static and oscillating (i.e., pitching) airfoils in reverse flow. Wind tunnel tests have been performed at the University of Maryland (UMD) and the United States Naval Academy (USNA). Four rotor blade sections are considered: two featuring a sharp geometric trailing edge (NACA 0012 and NACA 0024) and two featuring a blunt geometric trailing edge (ellipse and cambered ellipse). Static airfoil experiments were performed at angles of attack through 180 deg and Reynolds numbers up to one million, representative of the conditions found in the reverse flow region of a full-scale high-speed helicopter. Time-resolved velocity field measurements were used to identify three unsteady flow regimes: slender body vortex shedding, turbulent wake, and deep stall vortex shedding. Unsteady airloads were measured in these three regimes using unsteady pressure transducers. The magnitude of the unsteady airloads is high in the turbulent wake regime when the separated shear layer is close to the airfoil surface and in deep stall due to periodic vortex-induced flow. Oscillating airfoil experiments were performed on a NACA 0012 and cambered ellipse to investigate reverse flow dynamic stall characteristics by modeling cyclic pitching kinematics. The parameter space spanned three Reynolds numbers (165,000; 330,000; and 500,000), five reduced frequencies between 0.100 and 0.511, three mean pitch angles (5,10, and 15 deg), and two pitch amplitudes (5 deg and 10 deg). The sharp aerodynamic leading edge of the NACA 0012 airfoil forces flow separation resulting in deep dynamic stall. The number of associated vortex structures depends strongly

  11. Predicting Flow Reversals in a Computational Fluid Dynamics Simulated Thermosyphon Using Data Assimilation.

    PubMed

    Reagan, Andrew J; Dubief, Yves; Dodds, Peter Sheridan; Danforth, Christopher M

    2016-01-01

    A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth's weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA) methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF) to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD) of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction. PMID:26849061

  12. Predicting Flow Reversals in a Computational Fluid Dynamics Simulated Thermosyphon Using Data Assimilation

    PubMed Central

    Reagan, Andrew J.; Dubief, Yves; Dodds, Peter Sheridan; Danforth, Christopher M.

    2016-01-01

    A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth’s weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA) methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF) to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD) of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction. PMID:26849061

  13. Reversed portal flow: Clinical influence on the long-term outcomes in cirrhosis

    PubMed Central

    Kondo, Takayuki; Maruyama, Hitoshi; Sekimoto, Tadashi; Shimada, Taro; Takahashi, Masanori; Yokosuka, Osamu

    2015-01-01

    AIM: To elucidate the natural history and the longitudinal outcomes in cirrhotic patients with non-forward portal flow (NFPF). METHODS: The present retrospective study consisted of 222 cirrhotic patients (120 males and 102 females; age, 61.7 ± 11.1 years). The portal hemodynamics were evaluated at baseline and during the observation period using both pulsed and color Doppler ultrasonography. The diameter (mm), flow direction, mean flow velocity (cm/s), and mean flow volume (mL/min) were assessed at the portal trunk, the splenic vein, the superior mesenteric vein, and the collateral vessels. The average values from 2 to 4 measurements were used for the data analysis. The portal flow direction was defined as follows: forward portal flow (FPF) for continuous hepatopetal flow; bidirectional flow for to-and-fro flow; and reversed flow for continuous hepatofugal flow. The bidirectional flow and the reversed flow were classified as NFPF in this study. The clinical findings and prognosis were compared between the patients with FPF and those with NFPF. The median follow-up period was 40.9 mo (range, 0.3-156.5 mo). RESULTS: Twenty-four patients (10.8%) demonstrated NFPF, accompanied by lower albumin level, worse Child-Pugh scores, and model for end-stage liver disease scores. The portal hemodynamic features in the patients with NFPF were smaller diameter of the portal trunk; presence of short gastric vein, splenorenal shunt, or inferior mesenteric vein; and advanced collateral vessels (diameter > 8.7 mm, flow velocity > 10.2 cm/s, and flow volume > 310 mL/min). The cumulative incidence rates of NFPF were 6.5% at 1 year, 14.5% at 3 years, and 23.1% at 5 years. The collateral vessels characterized by flow velocity > 9.5 cm/s and those located at the splenic hilum were significant predictive factors for developing NFPF. The cumulative survival rate was significantly lower in the patients with NFPF (72.2% at 1 year, 38.5% at 3 years, 38.5% at 5 years) than in those with forward

  14. Kinetic Stress as a Flow Driver in the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Ding, W. X.; Brower, D. L.; Lin, L.; Bergerson, W. F.; Almagri, A.; den Hartog, D. J.; Reusch, J. A.; Sarff, J. S.

    2011-10-01

    Self-generated or intrinsic parallel flows are routinely observed in the MST RFP where flow parallel to equilibrium magnetic field reverses sign at mid-radius. In the absence of external torque, the intrinsic flow may arise from residual stresses. Kinetic stress, the correlated product of parallel pressure and radial magnetic field fluctuations, has been measured by using a high-speed polarimetry-interferometry diagnostic (for both radial magnetic field and density fluctuations). Away from the sawtooth crash, it is found that the measured kinetic stress has the finite amplitude comparable to the change of flow in the core. This indicates that kinetic stress plays an important role in self-generated flow in high-temperature RFP plasmas. Work supported by US DOE and NSF.

  15. Properties of spikelike shear flow reversals observed in the auroral plasma by Atmosphere Explorer C

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Lennartsson, W.; Hanson, W. B.; Heelis, R. A.; Hoffman, J. H.; Hoffman, R. A.

    1976-01-01

    A study of the characteristics of pairs of oppositely directed spikes in ionospheric convection velocities (or shear flow reversals), as first described by Gurnett, has been conducted by using data from Atmosphere Explorer C. These phenomena tend to occur near the large-scale reversal from sunward to antisunward convection on the nightside of the earth. Generally, the spikelike shear flow reversals involve electric field components along the spacecraft orbit that are directed toward the region between them, in which inverted V type electron precipitation is observed. This relationship between the electron precipitation and the electric field spikes is consistent with an upward-flowing field-aligned current that is fed by Pedersen currents from the adjacent regions of strong convection. In one case a divergent equivalent electric field structure was observed, that is, with the spikelike electric fields pointing away from the region in between, which in this case exhibited a sharp electron flux dropout. This opposite configuration may be an example of counterparts to inverted V structures existing in regions of downward-flowing field-aligned currents.

  16. Electro-osmotic fluxes in multi-well electro-remediation processes.

    PubMed

    López-Vizcaíno, Rubén; Sáez, Cristina; Mena, Esperanza; Villaseñor, Jose; Cañizares, Pablo; Rodrigo, Manuel A

    2011-01-01

    In recent years, electrokinetic techniques on a laboratory scale have been studied but few applications have been assessed at full-scale. In this work, a mock-up plant with two rows of three electrodes positioned in semipermeable electrolyte wells has been used to study the electro-osmotic flux distribution. Water accumulated in the cathodic wells when an electric voltage gradient was applied between the two electrode-well rows. Likewise, slight differences in the water flux were observed depending on the position and number of electrodes used and on the voltage gradient applied. Results show that the electro-osmotic flow did not increase proportionally with the number of electrodes used. During the start-up of the study, there was an abrupt change in the current density, pH and conductivity of the soil portions closest to electrodic wells due to electrokinetic processes. These differences can be explained in terms of the complex current distributions from anode and cathode rows. PMID:22029697

  17. Determination of maximum reactor power level consistent with the requirement that flow reversal occurs without fuel damage

    SciTech Connect

    Rao, D.V.; Darby, J.L.; Ross, S.B.; Clark, R.A.

    1990-04-19

    The High Flux Beam Reactor (HFBR) operated by Brookhaven National Laboratory (BNL) employs forced downflow for heat removal during normal operation. In the event of total loss of forced flow, the reactor will shutdown and the flow reversal valves open. When the downward core flow becomes sufficiently small then the opposing thermal buoyancy induces flow reversal leading to decay heat removal by natural convection. There is some uncertainty as to whether the natural circulation is adequate for decay heat removal after 60 MW operation. BNL- staff carried out a series of calculations to establish the adequacy of flow reversal to remove decay heat. Their calculations are based on a natural convective CHF model. The primary purpose of the present calculations is to review the accuracy and applicability of Fauske`s CHF model for the HFBR, and the assumptions and methodology employed by BNL-staff to determine the heat removal limit in the HFBR during a flow reversal and natural convection situation.

  18. RELAP5 analyses of two hypothetical flow reversal events for the advanced neutron source reactor

    SciTech Connect

    Chen, N.C.J.; Wendel, M.W.; Yoder, G.L. Jr.

    1995-09-01

    This paper presents RELAP5 results of two hypothetical, low flow transients analyzed as part of the Advanced Neutron Source Reactor safety program. The reactor design features four independent coolant loops (three active and one in standby), each containing a main curculation pump (with battery powered pony motor), heat exchanger, an accumulator, and a check valve. The first transient assumes one of these pumps fails, and additionally, that the check valve in that loop remains stuck in the open position. This accident is considered extremely unlikely. Flow reverses in this loop, reducing the core flow because much of the coolant is diverted from the intact loops back through the failed loop. The second transient examines a 102-mm-diam instantaneous pipe break near the core inlet (the worst break location). A break is assumed to occur 90 s after a total loss-of-offsite power. Core flow reversal occurs because accumulator injection overpowers the diminishing pump flow. Safety margins are evaluated against four thermal limits: T{sub wall}=T{sub sat}, incipient boiling, onset of significant void, and critical heat flux. For the first transient, the results show that these limits are not exceeded (at a 95% non-exceedance probability level) if the pony motor battery lasts 30 minutes (the present design value). For the second transient, the results show that the closest approach of the fuel surface temperature to the local saturation temperature during core flow reversal is about 39{degrees}C. Therefore the fuel remains cool during this transient. Although this work is done specifically for the ANSR geometry and operating conditions, the general conclusions may be applicable to other highly subcooled reactor systems.

  19. Method of electric field flow fractionation wherein the polarity of the electric field is periodically reversed

    DOEpatents

    Stevens, Fred J.

    1992-01-01

    A novel method of electric field flow fractionation for separating solute molecules from a carrier solution is disclosed. The method of the invention utilizes an electric field that is periodically reversed in polarity, in a time-dependent, wave-like manner. The parameters of the waveform, including amplitude, frequency and wave shape may be varied to optimize separation of solute species. The waveform may further include discontinuities to enhance separation.

  20. Reverse-flow combustor for small gas turbines with pressure-atomizing fuel injectors

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Mularz, E. J.; Riddlebaugh, S. M.

    1978-01-01

    A reverse flow combustor suitable for a small gas turbine (2 to 3 kg/s mass flow) was used to evalute the effect of pressure atomizing fuel injectors on combustor performance. In these tests an experimental combustor was designed to operate with 18 simplex pressure atomizing fuel injectors at sea level takeoff conditions. To improve performance at low power conditions, fuel was redistributed so that only every other injector was operational. Combustor performance, emissions, and liner temperature were compared over a range of pressure and inlet air temperatures corresponding to simulated idle, cruise, and takeoff conditions typical of a 16 to 1 pressure ratio turbine engine.

  1. Reversible Decrease of Portal Venous Flow in Cirrhotic Patients: A Positive Side Effect of Sorafenib

    PubMed Central

    Coriat, Romain; Gouya, Hervé; Mir, Olivier; Ropert, Stanislas; Vignaux, Olivier; Chaussade, Stanislas; Sogni, Philippe; Pol, Stanislas; Blanchet, Benoit

    2011-01-01

    Portal hypertension, the most important complication with cirrhosis of the liver, is a serious disease. Sorafenib, a tyrosine kinase inhibitor is validated in advanced hepatocellular carcinoma. Because angiogenesis is a pathological hallmark of portal hypertension, the goal of our study was to determine the effect of sorafenib on portal venous flow and portosystemic collateral circulation in patients receiving sorafenib therapy for advanced hepatocellular carcinoma. Porto-collateral circulations were evaluated using a magnetic resonance technique prior sorafenib therapy, and at day 30. All patients under sorafenib therapy had a decrease in portal venous flow of at least 36%. In contrast, no specific change was observed in the azygos vein or the abdominal aorta. No portal venous flow modification was observed in the control group. Sorafenib is the first anti-angiogenic therapy to demonstrate a beneficial and reversible decrease of portal venous flow among cirrhotic patients. PMID:21340026

  2. Experimental investigation of the interaction of a thrust reverser jet with an external subsonic flow

    NASA Astrophysics Data System (ADS)

    Charbonnier, J.-M.; Deckers, K.; Wens, G.

    1993-11-01

    An experimental modelization of a door-type thrust reverser is conducted in a subsonic wind tunnel. The geometry of the model is defined in order to simulate both the internal and external flow of a real thrust reverser. Different door configurations are studied for a selected value of the mass flux injection ratio of three. Visualizations illustrate qualitatively the jet interaction, and extensive mean velocity and pressure measurements are conducted in sections perpendicular to the upstream flow direction with a five hole probe. The total pressure losses and the drag force produced by the thrust reverser are deduced from the measurements. As a result, it shows that the smaller opening angle of the door (56 deg), with a becquet deflection of 15 deg gives the larger drag force. In addition to the classical pair of counter rotating vortices observed in jet in cross flow interactions, a second pair of counter rotating vortices below the main pair is found. The vorticity field is described with good agreement by a simple vortex model simulating the two pairs of vortices.

  3. First Signs of Flow Reversal Within a Separated Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Hammerton, Jared; Lang, Amy

    2015-11-01

    A shark's skin is covered in millions of microscopic scales that have been shown to be able to bristle in a reversing flow. The motive of this project is to further explore a potential bio-inspired passive separation control mechanism which can reduce drag. To better understand this mechanism, a more complete understanding of flow reversal within the turbulent boundary layer is required. In order to capture this phenomenon, water tunnel testing at The University of Alabama was conducted. Using a long flat plate and a rotating cylinder, a large turbulent boundary layer and adverse pressure gradient were generated. Under our testing conditions the boundary layer had a Reynolds number of 200,000 and a boundary layer height in the testing window of 5.6 cm. The adverse pressure gradient causes the viscous length scale to increase and thus increase the size of the individual components of the turbulent boundary layer. This will make the low speed streaks approximately 1 cm in width and thus large enough to measure. Results will be presented that test our hypothesis that the first signs of flow reversal will occur within the section of lowest momentum located furthest from the wall, or within the low speed streaks. This Project was funded by NSF REU Site Award 1358991.

  4. Regular flow reversals in Rayleigh-Bénard convection in a horizontal magnetic field.

    PubMed

    Tasaka, Yuji; Igaki, Kazuto; Yanagisawa, Takatoshi; Vogt, Tobias; Zuerner, Till; Eckert, Sven

    2016-04-01

    Magnetohydrodynamic Rayleigh-Bénard convection was studied experimentally using a liquid metal inside a box with a square horizontal cross section and aspect ratio of five. Systematic flow measurements were performed by means of ultrasonic velocity profiling that can capture time variations of instantaneous velocity profiles. Applying a horizontal magnetic field organizes the convective motion into a flow pattern of quasi-two-dimensional rolls arranged parallel to the magnetic field. The number of rolls has the tendency to decrease with increasing Rayleigh number Ra and to increase with increasing Chandrasekhar number Q. We explored convection regimes in a parameter range, at 2×10^{3}flow reversals in which five rolls periodically change the direction of their circulation with gradual skew of the roll axes can be considered as the most remarkable one. The regime appears around a range of Ra/Q=10, where irregular flow reversals were observed in Yanagisawa et al. We performed the proper orthogonal decomposition (POD) analysis on the spatiotemporal velocity distribution and detected that the regular flow reversals can be interpreted as a periodic emergence of a four-roll state in a dominant five-roll state. The POD analysis also provides the definition of the effective number of rolls as a more objective approach. PMID:27176392

  5. Regular flow reversals in Rayleigh-Bénard convection in a horizontal magnetic field

    NASA Astrophysics Data System (ADS)

    Tasaka, Yuji; Igaki, Kazuto; Yanagisawa, Takatoshi; Vogt, Tobias; Zuerner, Till; Eckert, Sven

    2016-04-01

    Magnetohydrodynamic Rayleigh-Bénard convection was studied experimentally using a liquid metal inside a box with a square horizontal cross section and aspect ratio of five. Systematic flow measurements were performed by means of ultrasonic velocity profiling that can capture time variations of instantaneous velocity profiles. Applying a horizontal magnetic field organizes the convective motion into a flow pattern of quasi-two-dimensional rolls arranged parallel to the magnetic field. The number of rolls has the tendency to decrease with increasing Rayleigh number Ra and to increase with increasing Chandrasekhar number Q . We explored convection regimes in a parameter range, at 2 ×103flow reversals in which five rolls periodically change the direction of their circulation with gradual skew of the roll axes can be considered as the most remarkable one. The regime appears around a range of Ra /Q =10 , where irregular flow reversals were observed in Yanagisawa et al. We performed the proper orthogonal decomposition (POD) analysis on the spatiotemporal velocity distribution and detected that the regular flow reversals can be interpreted as a periodic emergence of a four-roll state in a dominant five-roll state. The POD analysis also provides the definition of the effective number of rolls as a more objective approach.

  6. Reversible and irreversible electroporation of cell suspensions flowing through a localized DC electric field.

    PubMed

    Korohoda, Włodzimierz; Grys, Maciej; Madeja, Zbigniew

    2013-03-01

    Experiments on reversible and irreversible cell electroporation were carried out with an experimental setup based on a standard apparatus for horizontal electrophoresis, a syringe pump with regulated cell suspension flow velocity and a dcEF power supply. Cells in suspension flowing through an orifice in a barrier inserted into the electrophoresis apparatus were exposed to defined localized dcEFs in the range of 0-1000 V/cm for a selected duration in the range 10-1000 ms. This method permitted the determination of the viability of irreversibly electroperforated cells. It also showed that the uptake by reversibly electroperforated cells of fluorescent dyes (calcein, carboxyfluorescein, Alexa Fluor 488 Phalloidin), which otherwise do not penetrate cell membranes, was dependent upon the dcEF strength and duration in any given single electrical field exposure. The method yields reproducible results, makes it easy to load large volumes of cell suspensions with membrane non-penetrating substances, and permits the elimination of irreversibly electroporated cells of diameter greater than desired. The results concur with and elaborate on those in earlier reports on cell electroporation in commercially available electroporators. They proved once more that the observed cell perforation does not depend upon the thermal effects of the electric current upon cells. In addition, the method eliminates many of the limitations of commercial electroporators and disposable electroporation chambers. It permits the optimization of conditions in which reversible and irreversible electroporation are separated. Over 90% of reversibly electroporated cells remain viable after one short (less than 400 ms) exposure to the localized dcEF. Experiments were conducted with the AT-2 cancer prostate cell line, human skin fibroblasts and human red blood cells, but they could be run with suspensions of any cell type. It is postulated that the described method could be useful for many purposes in

  7. Reverse capillary flow of condensed water through aligned multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yun, Jongju; Jeon, Wonjae; Alam Khan, Fakhre; Lee, Jinkee; Baik, Seunghyun

    2015-06-01

    Molecular transport through nanopores has recently received considerable attention as a result of advances in nanofabrication and nanomaterial synthesis technologies. Surprisingly, water transport investigations through carbon nanochannels resulted in two contradicting observations: extremely fast transport or rejection of water molecules. In this paper, we elucidate the mechanism of impeded water vapor transport through the interstitial space of aligned multiwalled carbon nanotubes (aligned-MWCNTs)—capillary condensation, agglomeration, reverse capillary flow, and removal by superhydrophobicity at the tip of the nanotubes. The origin of separation comes from the water’s phase change from gas to liquid, followed by reverse capillary flow. First, the saturation water vapor pressure is decreased in a confined space, which is favorable for the phase change of incoming water vapor into liquid drops. Once continuous water meniscus is formed between the nanotubes by the adsoprtion and agglomeration of water molecules, a high reverse Laplace pressure is induced in the mushroom-shaped liquid meniscus at the entry region of the aligned-MWCNTs. The reverse Laplace pressure can be significantly enhanced by decreasing the pore size. Finally, the droplets pushed backward by the reverse Laplace pressure can be removed by superhydrophobicity at the tip of the aligned-MWCNTs. The analytical analysis was also supported by experiments carried out using 4 mm-long aligned-MWCNTs with different intertube distances. The water rejection rate and the separation factor increased as the intertube distance decreased, resulting in 90% and 10, respectively, at an intertube distance of 4 nm. This mechanism and nanotube membrane may be useful for energy-efficient water vapor separation and dehumidification.

  8. Method and apparatus for cold gas reinjection in through-flow and reverse-flow wave rotors

    NASA Technical Reports Server (NTRS)

    Nalim, M. Razi (Inventor); Paxson, Daniel E. (Inventor)

    1999-01-01

    A method and apparatus for cold gas reinjection in through-flow and reverse-flow wave rotors having a plurality of channels formed around a periphery thereof. A first port injects a supply of cool air into the channels. A second port allows the supply of cool air to exit the channels and flow to a combustor. A third port injects a supply of hot gas from the combustor into the channels. A fourth port allows the supply of hot gas to exit the channels and flow to a turbine. A diverting port and a reinjection port are connected to the second and third ports, respectively. The diverting port diverts a portion of the cool air exiting through the second port as reinjection air. The diverting port is fluidly connected to the reinjection port which reinjects the reinjection air back into the channels. The reinjection air evacuates the channels of the hot gas resident therein and cools the channel walls, a pair of end walls of the rotor, ducts communicating with the rotor and subsequent downstream components. In a second embodiment, the second port receives all of the cool air exiting the channels and the diverting port diverts a portion of the cool air just prior to the cool air flowing to the combustor.

  9. Flow reversal in traveling-wave electrokinetics: an analysis of forces due to ionic concentration gradients.

    PubMed

    García-Sánchez, P; Ramos, A; González, A; Green, N G; Morgan, H

    2009-05-01

    Pumping of electrolytes using ac electric fields from arrays of microelectrodes is a subject of current research. The behavior of fluids at low signal amplitudes (<2-3 V(pp)) is in qualitative agreement with the prediction of the ac electroosmosis theory. At higher voltages, this theory cannot account for the experimental observations. In some cases, net pumping is generated in the direction opposite to that predicted by the theory (flow reversal). In this work, we use fluorescent dyes to study the effect of ionic concentration gradients generated by Faradaic currents. We also evaluate the influence of factors such as the channel height and microelectrode array shape in the pumping of electrolytes with traveling-wave potentials. Induced charge beyond the Debye length is postulated to be responsible for the forces generating the observed flows at higher voltages. Numerical calculations are performed in order to illustrate the mechanisms that might be responsible for generating the flow. PMID:19320476

  10. Plasma flow reversals at the dayside magnetopause and the origin of asymmetric polar cap convection

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Thomsen, M. F.; Bame, S. J.; Elphic, R. C.; Russell, C. T.

    1990-01-01

    Events observed in a fast plasma experiment, where the y-component of the plasma flow within the low latitude boundary layer and magnetopause current layer was oppositely directed to that in the adjacent magnetosheath, are examined. The observations are shown to be qualitatively and quantitatively consistent with previous observations of accelerated flows at the magnetopause and with models of magnetic reconnection, with reconnection occurring at low latitudes near the GSE XY plane, independently of the magnitude or the sign of the y-component ot the local magnetosheath magnetic field. Local magnetic shears at the magnetopause for these events (in 60-180 deg range) and the fact that these events occur at low latitudes do not support the antiparallel merging hypothesis. The observations of B(y)-dependent flow reversals demonstrate how the asymmetric polar cap convection and related phenomena, such as the Svalgaard-Mansurov effect, originate in magnetic reconnection at the dayside magnetopause.

  11. Dilution jet configurations in a reverse flow combustor. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Zizelman, J.

    1985-01-01

    Results of measurements of both temperature and velocity fields within a reverse flow combustor are presented. Flow within the combustor is acted upon by perpendicularly injected cooling jets introduced at three different locations along the inner and outer walls of the combustor. Each experiment is typified by a group of parameters: density ratio, momentum ratio, spacing ratio, and confinement parameter. Measurements of both temperature and velocity are presented in terms of normalized profiles at azimuthal positions through the turn section of the combustion chamber. Jet trajectories defined by minimum temperature and maximum velocity give a qualitative indication of the location of the jet within the cross flow. Results of a model from a previous temperature study are presented in some of the plots of data from this work.

  12. Two-dimensional nonlinear cylindrical equilibria with reversed magnetic shear and sheared flow

    NASA Astrophysics Data System (ADS)

    Kuiroukidis, Ap; Throumoulopoulos, G. N.; Throumoulopoulos

    2014-02-01

    Nonlinear translational symmetric equilibria with up to quartic flux terms in free functions, reversed magnetic shear, and sheared flow are constructed in two ways: (i) quasi-analytically by an ansatz, which reduces the pertinent generalized Grad-Shafranov equation to a set of ordinary differential equations and algebraic constraints which is then solved numerically, and (ii) completely numerically by prescribing analytically a boundary having an X-point. This latter case presented in Sec. 4 is relevant to the International Thermonuclear Experimental Reactor project. The equilibrium characteristics are then examined by means of pressure, safety factor, current density, and electric field. For flows parallel to the magnetic field, the stability of the equilibria constructed is also examined by applying a sufficient condition. It turns out that the equilibrium nonlinearity has a stabilizing impact, which is slightly enhanced by the sheared flow. In addition, the results indicate that the stability is affected by the up-down asymmetry.

  13. Aortic Blood Flow Reversal Determines Renal Function: Potential Explanation for Renal Dysfunction Caused by Aortic Stiffening in Hypertension.

    PubMed

    Hashimoto, Junichiro; Ito, Sadayoshi

    2015-07-01

    Aortic stiffness determines the glomerular filtration rate (GFR) and predicts the progressive decline of the GFR. However, the underlying pathophysiological mechanism remains obscure. Recent evidence has shown a close link between aortic stiffness and the bidirectional (systolic forward and early diastolic reverse) flow characteristics. We hypothesized that the aortic stiffening-induced renal dysfunction is attributable to altered central flow dynamics. In 222 patients with hypertension, Doppler velocity waveforms were recorded at the proximal descending aorta to calculate the reverse/forward flow ratio. Tonometric waveforms were recorded to measure the carotid-femoral (aortic) and carotid-radial (peripheral) pulse wave velocities, to estimate the aortic pressure from the radial waveforms, and to compute the aortic characteristic impedance. In addition, renal hemodynamics was evaluated by duplex ultrasound. The estimated GFR was inversely correlated with the aortic pulse wave velocity, reverse/forward flow ratio, pulse pressure, and characteristic impedance, whereas it was not correlated with the peripheral pulse wave velocity or mean arterial pressure. The association between aortic pulse wave velocity and estimated GFR was independent of age, diabetes mellitus, hypercholesterolemia, and antihypertensive medication. However, further adjustment for the aortic reverse/forward flow ratio and pulse pressure substantially weakened this association, and instead, the reverse/forward flow ratio emerged as the strongest determinant of estimated GFR (P=0.001). A higher aortic reverse/forward flow ratio was also associated with lower intrarenal forward flow velocities. These results suggest that an increase in aortic flow reversal (ie, retrograde flow from the descending thoracic aorta toward the aortic arch), caused by aortic stiffening and impedance mismatch, reduces antegrade flow into the kidney and thereby deteriorates renal function. PMID:25916721

  14. Network modeling for reverse flows of end-of-life vehicles

    SciTech Connect

    Ene, Seval; Öztürk, Nursel

    2015-04-15

    Highlights: • We developed a network model for reverse flows of end-of-life vehicles. • The model considers all recovery operations for end-of-life vehicles. • A scenario-based model is used for uncertainty to improve real case applications. • The model is adequate to real case applications for end-of-life vehicles recovery. • Considerable insights are gained from the model by sensitivity analyses. - Abstract: Product recovery operations are of critical importance for the automotive industry in complying with environmental regulations concerning end-of-life products management. Manufacturers must take responsibility for their products over the entire life cycle. In this context, there is a need for network design methods for effectively managing recovery operations and waste. The purpose of this study is to develop a mathematical programming model for managing reverse flows in end-of-life vehicles’ recovery network. A reverse flow is the collection of used products from consumers and the transportation of these products for the purpose of recycling, reuse or disposal. The proposed model includes all operations in a product recovery and waste management network for used vehicles and reuse for vehicle parts such as collection, disassembly, refurbishing, processing (shredding), recycling, disposal and reuse of vehicle parts. The scope of the network model is to determine the numbers and locations of facilities in the network and the material flows between these facilities. The results show the performance of the model and its applicability for use in the planning of recovery operations in the automotive industry. The main objective of recovery and waste management is to maximize revenue and minimize pollution in end-of-life product operations. This study shows that with an accurate model, these activities may provide economic benefits and incentives in addition to protecting the environment.

  15. Evidence from lava flows for complex polarity transitions: The new composite Steens Mountain reversal record

    USGS Publications Warehouse

    Jarboe, N.A.; Coe, R.S.; Glen, J.M.

    2011-01-01

    Geomagnetic polarity transitions may be significantly more complex than are currently depicted in many sedimentary and lava-flow records. By splicing together paleomagnetic results from earlier studies at Steens Mountain with those from three newly studied sections of Oregon Plateau flood basalts at Catlow Peak and Poker Jim Ridge 70-90 km to the southeast and west, respectively, we provide support for this interpretation with the most detailed account of a magnetic field reversal yet observed in volcanic rocks. Forty-five new distinguishable transitional (T) directions together with 30 earlier ones reveal a much more complex and detailed record of the 16.7 Ma reversed (R)-to-normal (N) polarity transition that marks the end of Chron C5Cr. Compared to the earlier R-T-N-T-N reversal record, the new record can be described as R-T-N-T-N-T-R-T-N. The composite record confirms earlier features, adds new west and up directions and an entire large N-T-R-T segment to the path, and fills in directions on the path between earlier directional jumps. Persistent virtual geomagnetic pole (VGP) clusters and separate VGPs have a preference for previously described longitudinal bands from transition study compilations, which suggests the presence of features at the core-mantle boundary that influence the flow of core fluid and distribution of magnetic flux. Overall the record is consistent with the generalization that VGP paths vary greatly from reversal to reversal and depend on the location of the observer. Rates of secular variation confirm that the flows comprising these sections were erupted rapidly, with maximum rates estimated to be 85-120 m ka-1 at Catlow and 130-195 m ka-1 at Poker Jim South. Paleomagnetic poles from other studies are combined with 32 non-transitional poles found here to give a clockwise rotation of the Oregon Plateau of 11.4???? 5.6?? with respect to the younger Columbia River Basalt Group flows to the north and 14.5???? 4.6?? with respect to cratonic

  16. Flow behaviour analysis of reversible pump-turbine in "S" characteristic operating zone

    NASA Astrophysics Data System (ADS)

    Zhang, S. Q.; Shi, Q. H.; Zhang, K. W.

    2012-11-01

    The pumped storage plant undertakes the task for peak regulation, frequency modulation, phase modulation and accident standby in the electric grid system. Since the design consideration of a pumped storage plant is different from the conventional hydropower plant, the "S" shaped characteristic of pump-turbine will appear in four quadrants characteristic curves, and this characteristic will lead to a series of instabilities while the pump-turbine start at low water head. This paper presents the CFD simulation results of a pump-turbine model with the full flow passage which are compared with model test results. Based on the comparison, the hydraulic reason of the "S" shaped characteristic is discussed and a new concept of partial reverse pump is put forward, i.e. the reverse flow at inlet of runner is the real hydraulic cause of "S" shaped characteristic of a pump-turbine when the unit discharge descends to a certain degree. With the decrease of unit discharge, the effect of partial reverse pump becomes more and more obvious, which leads to an increase of head and finally results the "S" shaped characteristic of a pump-turbine.

  17. Laboratory Investigation of Electro-Osmotic Remediation of Fine-Grained Sediments

    SciTech Connect

    Cherepy, N.; Wildenschild, D.; Elsholz, A.

    2000-02-23

    Electro-osmosis, a coupled-flow phenomenon in which an applied electrical potential gradient drives water flow, may be used to induce water flow through fine-grained sediments. We plan to use this technology to remediate chlorinated solvent-contaminated clayey zones at the LLNL site. The electro-osmotic conductivity (k{sub e}) determined from bench-top studies for a core extracted from a sediment zone 36.4-36.6 m below surface was initially 7.37 x 10{sup -10} m{sup 2}/s-V, decreasing to 3.44 x 10{sup -10} m{sup 2}/s-V, after electro-osmotically transporting 0.70 pore volumes of water through it (195 ml). Hydraulic conductivity (k{sub h}) of the same core was initially measured to be 5.00 x 10{sup -10} m/s, decreasing to 4.08 x 10{sup -10} m/s at the end of processing. This decline in permeability is likely due to formation of a chemical precipitation zone within the core. Water splitting products and ions electromigrate and precipitate within the core; H{sup +} and metal cations migrate toward the cathode, and OH{sup -} from the cathode moves toward the anode. We are now exploring how to minimize this effect using pH control. The significance of this technology is that for this core, a 3 V/cm voltage gradient produced an initial effective hydraulic conductivity of 2.21 x 10{sup -7} m/s, >400x greater than the initial hydraulic conductivity.

  18. Network modeling for reverse flows of end-of-life vehicles.

    PubMed

    Ene, Seval; Öztürk, Nursel

    2015-04-01

    Product recovery operations are of critical importance for the automotive industry in complying with environmental regulations concerning end-of-life products management. Manufacturers must take responsibility for their products over the entire life cycle. In this context, there is a need for network design methods for effectively managing recovery operations and waste. The purpose of this study is to develop a mathematical programming model for managing reverse flows in end-of-life vehicles' recovery network. A reverse flow is the collection of used products from consumers and the transportation of these products for the purpose of recycling, reuse or disposal. The proposed model includes all operations in a product recovery and waste management network for used vehicles and reuse for vehicle parts such as collection, disassembly, refurbishing, processing (shredding), recycling, disposal and reuse of vehicle parts. The scope of the network model is to determine the numbers and locations of facilities in the network and the material flows between these facilities. The results show the performance of the model and its applicability for use in the planning of recovery operations in the automotive industry. The main objective of recovery and waste management is to maximize revenue and minimize pollution in end-of-life product operations. This study shows that with an accurate model, these activities may provide economic benefits and incentives in addition to protecting the environment. PMID:25659298

  19. Nanometer-thick lateral polyelectrolyte micropatterns induce macrosopic electro-osmotic chaotic fluid instabilities

    NASA Astrophysics Data System (ADS)

    Wessling, M.; Morcillo, L. Garrigós; Abdu, S.

    2014-03-01

    Electro-convective vortices in ion concentration polarization under shear flow have been of practical relevance for desalination processes using electrodialysis. The phenomenon has been scientifically disregarded for decades, but is recently embraced by a growing fluid dynamics community due its complex superposition of multi-scale gradients in electrochemical potential and space charge interacting with emerging complex fluid momentum gradients. While the visualization, quantification and fundamental understanding of the often-chaotic fluid dynamics is evolving rapidly due to sophisticated simulations and experimentation, little is known whether these instabilities can be induced and affected by chemical topological heterogeneity in surface properties. In this letter, we report that polyelectrolyte layers applied as micropatterns on ion exchange membranes induce and facilitate the electro-osmotic fluid instabilities. The findings stimulate a variety of fundamental questions comparable to the complexity of today's turbulence research.

  20. Nanometer-thick lateral polyelectrolyte micropatterns induce macrosopic electro-osmotic chaotic fluid instabilities

    PubMed Central

    Wessling, M.; Morcillo, L. Garrigós; Abdu, S.

    2014-01-01

    Electro-convective vortices in ion concentration polarization under shear flow have been of practical relevance for desalination processes using electrodialysis. The phenomenon has been scientifically disregarded for decades, but is recently embraced by a growing fluid dynamics community due its complex superposition of multi-scale gradients in electrochemical potential and space charge interacting with emerging complex fluid momentum gradients. While the visualization, quantification and fundamental understanding of the often-chaotic fluid dynamics is evolving rapidly due to sophisticated simulations and experimentation, little is known whether these instabilities can be induced and affected by chemical topological heterogeneity in surface properties. In this letter, we report that polyelectrolyte layers applied as micropatterns on ion exchange membranes induce and facilitate the electro-osmotic fluid instabilities. The findings stimulate a variety of fundamental questions comparable to the complexity of today's turbulence research. PMID:24598972

  1. Nanometer-thick lateral polyelectrolyte micropatterns induce macrosopic electro-osmotic chaotic fluid instabilities.

    PubMed

    Wessling, M; Morcillo, L Garrigós; Abdu, S

    2014-01-01

    Electro-convective vortices in ion concentration polarization under shear flow have been of practical relevance for desalination processes using electrodialysis. The phenomenon has been scientifically disregarded for decades, but is recently embraced by a growing fluid dynamics community due its complex superposition of multi-scale gradients in electrochemical potential and space charge interacting with emerging complex fluid momentum gradients. While the visualization, quantification and fundamental understanding of the often-chaotic fluid dynamics is evolving rapidly due to sophisticated simulations and experimentation, little is known whether these instabilities can be induced and affected by chemical topological heterogeneity in surface properties. In this letter, we report that polyelectrolyte layers applied as micropatterns on ion exchange membranes induce and facilitate the electro-osmotic fluid instabilities. The findings stimulate a variety of fundamental questions comparable to the complexity of today's turbulence research. PMID:24598972

  2. Development of stable low-electroosmotic mobility coatings. [for use in electrophoresis systems in space

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.

    1979-01-01

    Long-time rinsings of the Z6040-methlycellulose coating used successfully on the ASTP MA=011 experiment indicate the permanency of this coating is inadequate for continuous flowing systems. Two approaches are described for developing coatings which are stable under continuous fluid movement and which exhibit finite and predictable electroosmotic mobility values while being effective on different types of surfaces, such as glass, plastics, and ceramic alumina, such as is currently used as the electrophoresis channel in the GE-SPAR-CPE apparatus. The surface charge modification of polystyrene latex, especially by protein absorption, to be used as model materials for ground-based electrophoresis experiments, and the preliminary work directed towards the seeded polymerization of large-particle-size monodisperse latexes in a microgravity environment are discussed.

  3. Pioneer 7 observations of plasma flow and field reversal regions in the distant geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Walker, R. C.; Lazarus, A. J.; Villante, U.

    1975-01-01

    The present paper gives the results of an extensive analysis of plasma and magnetic-field data from Pioneer 7 taken in the geomagnetic tail approximately 1000 earth radii downstream from earth. The principal observations are: (1) measurable fluxes of protons in the tail, flowing away from earth, sometimes with a double-peaked velocity distribution; (2) field reversal regions in which the field changes from radial to antiradial by a vector rotation in the north-south plane; and (3) general characteristics of the tail similar to those observed near earth with good correlation between taillike magnetic fields and plasma.

  4. [Coverage of anterior knee defect by reverse flow anterolateral thigh flap: About two cases].

    PubMed

    Montoya-Faivre, D; Pineau, V; Colson, T; Brix, M; Simon, E

    2016-08-01

    The coverage of soft-tissue defects concerning the front of the knee and the proximal lower leg is a complex procedure. The reverse flow anterolateral thigh flap represents a good solution for this defects, especially when the coverage surface is large-sized and a free flap is not appropriate regarding the difficulty of the process. Flap retrograde vascularization is based on the anastomosis between the descending branch of the circumflex femoral artery and lateral superior genicular artery. It is an easy solution with low morbidity. The authors have chosen this flap to cover soft-tissue defect of anterior knee from two patients with total knee prothesis. PMID:26169962

  5. Characterization of electroosmotic flow through nanoporous self-assembled arrays.

    PubMed

    Bell, Kevan; Gomes, Mikel; Nazemifard, Neda

    2015-08-01

    Characterization of EOF mobility for Tris and TBE buffer solutions is performed in nanoporous arrays using the fluorescent marker method to examine the magnitude of EOFs through nanopores with mean diameters close to electric double layer thickness (Debye length). Structures made from solid silica nanospheres with effective pore sizes from 104 nm down to 8 nm are produced within the microchannel using an evaporation self-assembly method. EOF results in nanoporous matrices show higher EOF mobilities for stronger electrolyte solutions, which are drastically different compared to microchannel EOF. The effects of scaling are also examined by comparing the EOF mobility for varying ratios of pore diameters to the Debye length, which shows a surprising consistency across all particle sizes examined. This work demonstrates various factors which must be considered when designing nanofluidic devices, and discusses the causes of these small scale effects. PMID:25964193

  6. Effect of broad properties fuel on injector performance in a reverse flow combustor

    NASA Technical Reports Server (NTRS)

    Raddlebaugh, S. M.; Norgren, C. T.

    1983-01-01

    The effect of fuel type on the performance of various fuel injectors was investigated in a reverse flow combustor. Combustor performance and emissions are documented for simplex pressure atomizing, spill flow, and airblast fuel injectors using a broad properties fuel and compared with performance using Jet A fuel. Test conditions simulated a range of flight conditions including sea level take off, low and high altitude cruise, as well as a parametric evaluation of the effect of increased combustor loading. The baseline simplex injector produced higher emission levels with corresponding lower combustion efficiency with the broad properties fuel. There was little or not loss in performance by the two advanced concept injectors with the broad properties fuel. The airblast injector proved to be especially insensitive to fuel type.

  7. Effect of fuel injector type on performance and emissions of reverse-flow combustor

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1981-01-01

    The combustion process in a reverse-flow combustor suitable for a small gas turbine engine was investigated to evaluate the effect of fuel injector type on performance and emissions. Fuel injector configurations using pressure-atomizing, spill-flow, air blast, and air-assist techniques were compared and evaluated on the basis of performance obtained in a full-scale experimental combustor operated at inlet conditions corresponding to takeoff, cruise, low power, and idle and typical of a 16:1-pressure-ratio turbine engine. Major differences in combustor performance and emissions characteristics were experienced with each injector type even though the aerodynamic configuration was common to most combustor models. Performance characteristics obtained with the various fuel injector types could not have been predicted from bench-test injector spray characteristics. The effect of the number of operating fuel injectors on performance and emissions is also presented.

  8. CFD analysis of mine fire smoke spread and reverse flow conditions

    SciTech Connect

    Edwards, J.C.; Hwang, C.C.

    1999-07-01

    A Computational Fluid Dynamics (CFD) program was used to model buoyancy induced Product-Of-Combustion (POC) spread from experimental fires in the National Institute for Occupational Safety and Health (NIOSH), Pittsburgh Research Laboratory (PRL), safety research coal mine. In one application, the CFD program was used to predict spread from fires in an entry under zero airflow conditions. At a location, 0.41 m below the entry's roof at a distance of 30 m from the fire, the measured smoke spread rates were 0.093 and 0.23 m/s for a 30 and a 296 kw fire, respectively. The CFD program predicted spread rates of 0.15 and 0.26 m/s based upon the measured fire heat production rates. Based upon a computation with C{sub 3}H{sub 8} as the hydrocarbon fuel, a predicted 5 ppm CO alert time of 70 s at a distance of 30 m from the fire is to be compared with the measured alert time of 148 S. In a second application, the CFD program was used to analyze smoke flow reversal conditions, and the results were compared with visual observations of smoke reversal for 12 diesel fuel fires. The CFD predictions were in qualitative agreement with visual observations of smoke reversal.

  9. In situ cell retention of a CHO culture by a reverse-flow diafiltration membrane bioreactor.

    PubMed

    Meier, Kristina; Djeljadini, Suzana; Regestein, Lars; Büchs, Jochen; Carstensen, Frederike; Wessling, Matthias; Holland, Tanja; Raven, Nicole

    2014-01-01

    Heterogeneities occur in various bioreactor designs including cell retention devices. Whereas in external devices changing environmental conditions cannot be prevented, cells are retained in their optimal environment in internal devices. Conventional reverse-flow diafiltration utilizes an internal membrane device, but pulsed feeding causes temporal heterogeneities. In this study, the influence of conventional reverse-flow diafiltration on the yeast Hansenula polymorpha is investigated. Alternating 180 s of feeding with 360 s of non-feeding at a dilution rate of 0.2 h(-1) results in an oscillating DOT signal with an amplitude of 60%. Thereby, induced short-term oxygen limitations result in the formation of ethanol and a reduced product concentration of 25%. This effect is enforced at increased dilution rate. To overcome this cyclic problem, sequential operation of three membranes is introduced. Thus, quasi-continuous feeding is achieved reducing the oscillation of the DOT signal to an amplitude of 20% and 40% for a dilution rate of 0.2 h(-1) and 0.5 h(-1) , respectively. Fermentation conditions characterized by complete absence of oxygen limitation and without formation of overflow metabolites could be obtained for dilution rates from 0.1 h(-1) - 0.5 h(-1) . Thus, sequential operation of three membranes minimizes oscillations in the DOT signal providing a nearly homogenous culture over time. PMID:25202924

  10. Effect of flow rate and concentration difference on reverse electrodialysis system

    NASA Astrophysics Data System (ADS)

    Kwon, Kilsugn; Han, Jaesuk; Kim, Daejoong

    2013-11-01

    Various energy conversion technologies have been developed to reduce dependency on limited fossil fuels, including wind power, solar power, hydropower, ocean power, and geothermal power. Among them, reverse electrodialysis (RED), which is one type of salinity gradient power (SGP), has received much attention due to high reliability and simplicity without moving parts. Here, we experimentally evaluated the RED performance with several parameters like flow rate of concentrated and dilute solution, concentration difference, and temperature. RED was composed of endplates, electrodes, spacers, anion exchange membrane, and cation exchange membrane. Endplates are made by a polypropylene. It included the electrodes, flow field for the electrode rinse solution, and path to supply a concentrated and dilute solution. Titanium coated by iridium and ruthenium was used as the electrode. The electrode rinse solution based on hexacyanoferrate system is used to reduce the power loss generated by conversion process form ionic current to electric current. Maximum power monotonously increases as increasing flow rate and concentration difference. Net power has optimal point because pumping power consumption increases with flow rate. This work was supported by Basic Science Research Program (Grat No. NRF-2011-0009993) through the National Research Foundation of Korea.

  11. The Impact of RELAP5 Pipe Break Flow Rates Associated With Reverse Flow Limiter Removal for Steam Generator Replacement

    SciTech Connect

    Dong Zheng; Jarvis, Julie M.; Vieira, Allen T.

    2006-07-01

    Pipe break flow rates are calculated for a main feedwater line break (FWLB) in the main steam valve vault (MSVV) for a PWR Steam Generator Replacement (SGR). A reverse flow limiter is installed in the original steam generator (OSG) feedwater nozzle to limit the blowdown flowrate in the event of a postulated FWLB. This feature is not incorporated in the replacement steam generator (RSG) design. The change in RSG nozzle design in conjunction with new operating conditions results in increased FWLB mass and energy releases which can impact environmental temperatures and pressures and flooding levels. In the United States, benchmarking for safety related analyses is necessary in consideration of 10CFR50.59 requirements. RELAP5/MOD3 is used to model the pipe break flowrates for a FWLB at different break locations. The benchmark FWLB blowdown releases are larger than the OSG design basis blowdown releases due to differences in RELAP5/MOD3 versions which are found to have different algorithms for subcooled choked flow. The SGR FWLB blowdown release rates are determined to have minimal impact on the compartment temperature and pressure response. However, the flooding levels and associated equipment qualification are potentially impacted. Modeling techniques used to minimize the impact of the SGR blowdown releases on MSVV flooding levels include modeling flashing effects, more realistic RSG temperature distribution, inventory depletion and Auxiliary Feedwater (AFW) flow initiation time, and considering loss of offsite power scenarios. A detailed flooding hazard evaluation is needed, which considers the actual main feedwater isolation times to ensure that environmentally qualified safety related components, required to mitigate the effects of a FWLB inside the MSVV, can perform their safety function prior to being submerged. (authors)

  12. Analysis of the flow field generated near an aircraft engine operating in reverse thrust. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ledwith, W. A., Jr.

    1972-01-01

    A computer solution is developed to the exhaust gas reingestion problem for aircraft operating in the reverse thrust mode on a crosswind-free runway. The computer program determines the location of the inlet flow pattern, whether the exhaust efflux lies within the inlet flow pattern or not, and if so, the approximate time before the reversed flow reaches the engine inlet. The program is written so that the user is free to select discrete runway speeds or to study the entire aircraft deceleration process for both the far field and cross-ingestion problems. While developed with STOL applications in mind, the solution is equally applicable to conventional designs. The inlet and reversed jet flow fields involved in the problem are assumed to be noninteracting. The nacelle model used in determining the inlet flow field is generated using an iterative solution to the Neuman problem from potential flow theory while the reversed jet flow field is adapted using an empirical correlation from the literature. Sample results obtained using the program are included.

  13. CO2 Dissociation by Low Current Gliding Discharge in the Reverse Vortex Flow

    NASA Astrophysics Data System (ADS)

    Gutsol, Alexander

    2012-10-01

    If performed with high energy efficiency, plasma-chemical dissociation of carbon dioxide can be a way of converting and storing energy when there is an excess of electric energy, for example generated by solar elements of wind turbines. CO2 dissociation with efficiency of up to 90% was reported earlier for low pressure microwave discharge in supersonic flow. A new plasma-chemical system uses a low current gliding discharge in the reverse vortex flow of plasma gas. The system is a development of the Gliding Arc in Tornado reactor. The system was used to study dissociation of CO2 in wide ranges of the following experimental parameters: reactor pressure (15-150 kPa), discharge current (50-500 mA), gas flow rate (3-30 liters per minute), and electrode gap length (1-10 cm). Additionally, the effect of thermal energy recuperation on CO2 dissociation efficiency was tested. Plasma chemical efficiency of CO2 dissociation is very low (about 3%) in a short discharge at low pressures (about 15 kPa) when it is defined by electronic excitation. The highest efficiency (above 40%) was reached at pressures 50-70 kPa in a long discharge with thermal energy recuperation. It means that the process is controlled by thermal dissociation with subsequent effective quenching. Plasma chemical efficiency was determined from the data of chromatographic analysis and oscilloscope electric power integration, and also was checked calorimetrically by the thermal balance of the system.

  14. Numerical and experimental visualization of reverse flow in an inclined isothermal tube

    SciTech Connect

    Mare, Thierry; Voicu, Ionut; Miriel, Jacques

    2005-10-01

    Combined forced and free convection in the entrance region of tubes occurs in many engineering installations such as heat exchangers, nuclear reactors, solar collectors, etc. The secondary flow induced by the buoyancy force and its effects on the hydrodynamic and thermal fields have therefore been investigated both experimentally and numerically. The present study considers the three dimensional developing laminar flow of water with constant viscosity and conductivity in an isothermal pipe inclined of 60{sup o} from horizontal. At first, the elliptical partial differential equations modelling mixed convection, have been numerically solved using a control volume based finite difference solver for Re=90, Pr=7 and Gr=3.3x10{sup 5}. The axial evolution of the velocity and fluid temperature profiles has shown that the upstream diffusion has an important effect near the inlet of the heating region. The shape and size of the region with negative velocities are detailed. Secondly, an experimental set up is described. The techniques used are based on PIV technology employing micrometer Nylon particles placed in a laser light-sheet and results are recorded by using a CDD camera. Analysed pictures have confirmed the existence of the reverse flow region in accordance with numerical results as obtained for an inclination of 60{sup o}.

  15. Embolisation of the Gastroduodenal Artery is Not Necessary in the Presence of Reversed Flow Before Yttrium-90 Radioembolisation

    SciTech Connect

    Daghir, Ahmed A.; Gungor, Hatice; Haydar, Ali A.; Wasan, Harpreet S.; Tait, Nicholas P.

    2012-08-15

    Introduction: The gastroduodenal artery (GDA) is usually embolised to avoid nontarget dispersal before yttrium-90 (Y{sup 90}) radioembolisation to treat liver metastases. In a minority of patients, there is retrograde flow in the GDA. The purpose of this study was to determine if there is any increased risk from maintaining a patent GDA in patients with reversed flow. Materials and Methods: A retrospective review was performed of all patients undergoing Y{sup 90} radioembolisation at our institution. The incidence of toxicities arising from nontarget radioembolisation by way of the GDA (gastric/duodenal ulceration, gastric/duodenal bleeding, and pancreatitis) and death occurring within 2 months of treatment were compared between the reversed and the antegrade GDA groups. Results: Ninety-two patients underwent preliminary angiography. Reversed GDA flow was found on angiography in 14.1% of cases; the GDA was not embolised in these patients. The GDA was coiled in 55.7% of patients with antegrade GDA flow to prevent inadvertent dispersal of radioembolic material. There was no increased toxicity related to nontarget dispersal by way of the GDA, or increased early mortality, in patients with reversed GDA flow (P > 0.05). Conclusion: In patients with reversed GDA flow, maintenance of a patent GDA before administration of Y{sup 90} radioembolisation does not increase the risk of toxicity from nontarget dispersal. Therapeutic injection, with careful monitoring to identify early vascular stasis, may be safely performed beyond the origin of the patent GDA. A patent GDA with reversed flow provides forward drive for infused particles and may allow alternative access to the hepatic circulation.

  16. Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)--towards water toxicity testing.

    PubMed

    Glawdel, Tomasz; Elbuken, Caglar; Lee, Lucy E J; Ren, Carolyn L

    2009-11-21

    This study presents a microfluidic system that incorporates electroosmotic pumps, a concentration gradient generator and a fish cell line (rainbow trout gill) to perform toxicity testing on fish cells seeded in the system. The system consists of three mechanical components: (1) a toxicity testing chip containing a microfluidic gradient generator which creates a linear concentration distribution of toxicant in a cell test chamber, (2) an electroosmotic (EO) pump chip that controls the flow rate and operation of the toxicity chip, and (3) indirect reservoirs that connect the two chips allowing for the toxicant solution to be pumped separately from the electroosmotic pump solution. The flow rate and stability of the EO pumps was measured and tested by monitoring the gradient generator using fluorescence microscopy. Furthermore, a lethality test was performed with this system setup using a rainbow trout gill cell line (RTgill-W1) as the test cells and sodium dodecyl sulfate as a model toxicant. A gradient of sodium dodecyl sulfate, from 0 to 50 microg mL(-1), was applied for 1 hr to the attached cells, and the results were quantified using a Live/Dead cell assay. This work is a preliminary study on the application of EO pumps in a living cell assay, with the potential to use the pumps in portable water quality testing devices with RTgill-W1 cells as the biosensors. PMID:19865731

  17. Formation of reverse shocks in magnetized high energy density supersonic plasma flows

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergey

    2013-10-01

    There has been considerable effort in developing experiments for studies of both collisionless and radiative shocks in high energy density plasmas (HEDP), but there is still very limited experimental information the concerning properties of HEDP shocks in the presence of a magnetic field. A new experimental platform, based on the use of supersonic ablation plasma flows in inverse wire array z-pinches, was developed for studies of shocks in magnetized HEDP plasmas in a well-defined and diagnosable 1-D interaction geometry. The mechanism of flow generation ensures that the plasma flow (MA ~ 5 - 6 , Vflow 100 km/s, ni ~ 1017 cm-3) has a frozen-in magnetic field at a level sufficient to affect the shocks formed in the interaction with conducting obstacles. Experiments show that in addition to the formation of a ``standard'' reverse shock in a stagnated HEDP plasma, the presence of the magnetic field leads to the formation of an additional shock-like feature in the upstream plasma. This shock is triggered by the pile-up of magnetic flux diffusing into the upstream flow, despite a relatively small initial level of the frozen-in magnetic field (the flow ram pressure being much greater than the magnetic field pressure). The thickness of this shock is much smaller than the m.f.p. for the ion-ion collisions, the shock is formed at a distance of ~c/ωpi from the foil and remains stationary for the duration of the experiment (~100 ns). The plasma parameters in the flow and in the shock are measured using optical Thomson scattering, two-color laser interferometry, monochromatic X-ray radiography and miniature magnetic probes. The quantitative data from this experiment, especially the spatial profiles of the density and of the flow velocity measured simultaneously in the upstream and downstream of the shock, will allow detailed verification of MHD and PIC codes used by the HEDP community. Supported by EPSRC Grant EP/G001324/1 and by the OFES under DOE Cooperative Agreement DESC

  18. Steady shear rheometry of dissipative particle dynamics models of polymer fluids in reverse Poiseuille flow

    PubMed Central

    Fedosov, Dmitry A.; Karniadakis, George Em; Caswell, Bruce

    2010-01-01

    Polymer fluids are modeled with dissipative particle dynamics (DPD) as undiluted bead-spring chains and their solutions. The models are assessed by investigating their steady shear-rate properties. Non-Newtonian viscosity and normal stress coefficients, for shear rates from the lower to the upper Newtonian regimes, are calculated from both plane Couette and plane Poiseuille flows. The latter is realized as reverse Poiseuille flow (RPF) generated from two Poiseuille flows driven by uniform body forces in opposite directions along two-halves of a computational domain. Periodic boundary conditions ensure the RPF wall velocity to be zero without density fluctuations. In overlapping shear-rate regimes the RPF properties are confirmed to be in good agreement with those calculated from plane Couette flow with Lees–Edwards periodic boundary conditions (LECs), the standard virtual rheometer for steady shear-rate properties. The concentration and the temperature dependence of the properties of the model fluids are shown to satisfy the principles of concentration and temperature superposition commonly employed in the empirical correlation of real polymer-fluid properties. The thermodynamic validity of the equation of state is found to be a crucial factor for the achievement of time-temperature superposition. With these models, RPF is demonstrated to be an accurate and convenient virtual rheometer for the acquisition of steady shear-rate rheological properties. It complements, confirms, and extends the results obtained with the standard LEC configuration, and it can be used with the output from other particle-based methods, including molecular dynamics, Brownian dynamics, smooth particle hydrodynamics, and the lattice Boltzmann method. PMID:20405981

  19. A rapid and reversible skull optical clearing method for monitoring cortical blood flow

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Zhao, Yanjie; Shi, Rui; Zhu, Dan

    2016-03-01

    In vivo cortex optical imaging is of great important for revealing both structural and functional architecture of brain with high temporal-spatial resolution. To reduce the limitation of turbid skull, researchers had to establish various skull windows or directly expose cortex through craniotomy. Here we developed a skull optical clearing method to make skull transparent. Laser speckle contrast imaging technique was used to monitor the cortical blood flow after topical treatment with the optical clearing agents. The results indicated that the image contrast increased gradually, and then maintained at a high level after 15 min for adult mice, which made the image quality and resolution of micro-vessels nearly approximate to those of exposed cortex. Both the cortical blood flow velocity almost kept constant after skull became transparent. Besides, the treatment of physiological saline on the skull could make skull return to the initial state again and the skull could become transparent again when SOCS retreated it. Thus, we could conclude that the skull optical clearing method was rapid, valid, reversible and safe, which provided us available approach for performing the cortical structural and functional imaging at high temporal-spatial resolution.

  20. Study of an electroosmotic pump for liquid delivery and its application in capillary column liquid chromatography.

    PubMed

    Chen, Lingxin; Ma, Jiping; Guan, Yafeng

    2004-03-01

    A packed-bed electroosmotic pump (EOP) was constructed and evaluated. The EOP consisted of three capillary columns packed in parallel, a gas-releasing device, Pt electrodes and a high-voltage power supply. The EOP could generate output pressure above 5.0 MPa and constant flow rate in the range of nl/min to a few microl/min for pure water, pure methanol, 2 mM potassium dihydrogenphosphate buffer, the buffer-methanol mixture and the pure water-methanol mixture at applied potentials less than 20 kV. The composition of solvent before/after pumping was quantitatively determined by using a gas chromatograph equipped with both flame ionization detector and thermal conductivity detector. It was found that there were no apparent changes in composition and relative concentrations after pumping process for a methanol-ethanol-acetonitrile mixture and a methanol-water mixture. Theoretical aspect of the EOP was discussed in detail. An capillary HPLC system consisting of the EOP, an injection valve, a 15 cm x 320 microm i.d., 5 microm Spherigel C18 stainless steel analytical column, and an on-column UV detector was connected to evaluate the performance of the EOP. A comparative study was also carried out with a mechanical capillary HPLC pump on the same system. The results demonstrated that the reproducibility of flow rate and the pulsation-free flow property of the EOP are superior to that of mechanical pump in capillary HPLC application. PMID:14989475

  1. Nongassing long-lasting electro-osmotic pump with polyaniline-wrapped aminated graphene electrodes.

    PubMed

    Kumar, Rudra; Jahan, Kousar; Nagarale, Rajaram K; Sharma, Ashutosh

    2015-01-14

    An efficient nongassing electro-osmotic pump (EOP) with long-lasting electrodes and exceptionally stable operation is developed by using novel flow-through polyaniline (PANI)-wrapped aminated graphene (NH2-G) electrodes. The NH2-G/PANI electrode combines the excellent oxidation/reduction capacity of PANI with the exceptional conductivity and inertness of NH2-G. The flow rate varies linearly with voltage but is highly dependent on the electrode composition. The flow rates at a potential of 5 V for pristine NH2-G and PANI electrodes are 71 and 100 μL min(-1) cm(-2), respectively, which increase substantially by the use of NH2-G/PANI electrode. It increased from 125 to 182 μL min(-1) cm(-2) as the fraction of aniline increased from 66.63 to 90.90%. The maximum flux obtained is 40 μL min(-1) V(-1) cm(-2) with NH2-G/PANI-90.9 electrodes. The assembled EOP remained exceptionally stable until the electrode columbic capacity was fully utilized. The prototype shown here delivered 8.0 μL/min at a constant applied voltage of 2 V for over 7 h of continuous operation. The best EOP produces a maximum stall pressure of 3.5 kPa at 3 V. These characteristics make it suitable for a variety of microfluidic/device applications. PMID:25478894

  2. Electro-osmotic drag coefficient of water and methanol in polymer electrolytes at elevated temperatures

    SciTech Connect

    Weng, D.; Wainright, J.S.; Landau, U.; Savinell, R.F.

    1996-04-01

    The electro-osmotic drag coefficient of water in two polymer electrolytes was experimentally determined as a function of water activity and current density for temperatures up to 200 C. The results show that the electro-osmotic drag coefficient varies from 0.2 to 0.6 in Nafion{reg_sign}/H{sub 3}PO{sub 4} membrane electrolyte, but is essentially zero in phosphoric acid-doped PBI (polybenzimidazole) membrane electrolyte over the range of water activity considered. The near-zero electro-osmotic drag coefficient found in PBI indicates that this electrolyte should lessen the problems associated with water redistribution in proton exchange membrane fuel cells.

  3. Preliminary experiments with an electro-osmotic heat pipe laboratory model

    NASA Astrophysics Data System (ADS)

    Vandenassen, D.; Bunk, P. B.

    1983-04-01

    A laboratory model of an electro-osmotic heat pipe filled with ethanol was tested. The heat transport through the pipe and the temperature distribution along the pipe wall and the temperature difference across the pipe were measured. The heat pipe performed like a CCHP under wick limited operation conditions. Superheating of the ethanol in the evaporator caused relatively large variations of the heat transport. With the electro-osmotic pump in operation, the heat pipe showed a fast gas production and corrosion of the electrodes of the electro-osmotic pump, whereas no measurable effect on the heat transport was observed.

  4. Effect of Temperature Reversion on Hot Ductility and Flow Stress-Strain Curves of C-Mn Continuously Cast Steels

    NASA Astrophysics Data System (ADS)

    Dong, Zhihua; Li, Wei; Long, Mujun; Gui, Lintao; Chen, Dengfu; Huang, Yunwei; Vitos, Levente

    2015-08-01

    The influence of temperature reversion in secondary cooling and its reversion rate on hot ductility and flow stress-strain curve of C-Mn steel has been investigated. Tensile specimens were cooled at various regimes. One cooling regime involved cooling at a constant rate of 100 °C min-1 to the test temperature, while the others involved temperature reversion processes at three different reversion rates before deformation. After hot tensile test, the evolution of mechanical properties of steel was analyzed at various scales by means of microstructure observation, ab initio prediction, and thermodynamic calculation. Results indicated that the temperature reversion in secondary cooling led to hot ductility trough occurring at higher temperature with greater depth. With increasing temperature reversion rate, the low temperature end of ductility trough extended toward lower temperature, leading to wider hot ductility trough with slightly reducing depth. Microstructure examinations indicated that the intergranular fracture related to the thin film-like ferrite and (Fe,Mn)S particles did not changed with varying cooling regimes; however, the Widmanstatten ferrite surrounding austenite grains resulted from the temperature reversion process seriously deteriorated the ductility. In addition, after the temperature reversion in secondary cooling, the peak stress on the flow curve slightly declined and the peak of strain to peak stress occurred at higher temperature. With increasing temperature reversion rate, the strain to peak stress slightly increased, while the peak stress showed little variation. The evolution of plastic modulus and strain to peak stress of austenite with varying temperature was in line with the theoretical prediction on Fe.

  5. Heat pump system and heat pump device using a constant flow reverse stirling cycle

    SciTech Connect

    Fineblum, S.S.

    1993-08-31

    A constant flow reverse Stirling cycle heat pump system is described comprising: a constant flow isothermal compression means for compressing a working gas, the compression means including a drive means, an inlet, and an outlet, and further including a cooling means to remove heat of compression from the working gas; a constant flow isothermal expansion means for expanding the working gas, the expansion means including an inlet, an outlet, and a heat source means to provide isothermal expansion of the working gas while removing heat from said heat source means; and a constant volume regenerative heat exchange means for transferring heat from compressed working gas to expanded working gas, the constant volume regenerative heat exchange means comprising: an enclosure, the enclosure containing a high pressure portion with an inlet receiving compressed working gas from the compression means outlet and with an outlet discharging cooled working gas to the expansion means inlet, a low pressure portion with an inlet receiving expanded working gas from the expansion means outlet and with an outlet discharging heated working gas to the compression means inlet, a slotted rotor in a central portion of the enclosure, the rotor containing a plurality of radially extending slots, and a plurality of radially sliding vanes mounted in the slots and extending to seal against a wall of the enclosure, wherein a first portion of the wall having a constant first radial distance from the rotor cooperates with the vanes to form a first constant volume channel defining the high pressure portion and a second portion of the wall having a constant second radial distance from the rotor cooperates with the vanes to form a second constant volume channel defining the low pressure portion; and heat transfer means in thermal contact with the high pressure portion and the low pressure portion for transferring heat from the compressed working gas to the expanded working gas.

  6. Determination of gallic acid with rhodanine by reverse flow injection analysis using simplex optimization.

    PubMed

    Phakthong, Wilaiwan; Liawruangrath, Boonsom; Liawruangrath, Saisunee

    2014-12-01

    A reversed flow injection (rFI) system was designed and constructed for gallic acid determination. Gallic acid was determined based on the formation of chromogen between gallic acid and rhodanine, resulting in a colored product with a λmax at 520 nm. The optimum conditions for determining gallic acid were also investigated. Optimizations of the experimental conditions were carried out based on the so-call univariate method. The conditions obtained were 0.6% (w/v) rhodanine, 70% (v/v) ethanol, 0.9 mol L(-1) NaOH, 2.0 mL min(-1) flow rate, 75 μL injection loop and 600 cm mixing tubing length, respectively. Comparative optimizations of the experimental conditions were also carried out by multivariate or simplex optimization method. The conditions obtained were 1.2% (w/v) rhodanine, 70% (v/v) ethanol, 1.2 mol L(-1) NaOH, flow rate 2.5 mL min(-1), 75 μL injection loop and 600 cm mixing tubing length, respectively. It was found that the optimum conditions obtained by the former optimization method were mostly similar to those obtained by the latter method. The linear relationship between peak height and the concentration of gallic acid was obtained over the range of 0.1-35.0 mg L(-1) with the detection limit 0.081 mg L(-1). The relative standard deviations were found to be in the ranges 0.46-1.96% for 1, 10, 30 mg L(-1) of gallic acid (n=11). The method has the advantages of simplicity extremely high selectivity and high precision. The proposed method was successfully applied to the determination of gallic acid in longan samples without interferent effects from other common phenolic compounds that might be present in the longan samples collected in northern Thailand. PMID:25159449

  7. Effect of small flow reversals on aerosol mixing in the alveolar region of the human lung.

    PubMed

    Darquenne, Chantal; Prisk, G Kim

    2004-12-01

    It has been suggested that irreversibility of alveolar flow combined with a stretched and folded pattern of streamlines can lead to a sudden increase in mixing in the lung. To determine whether this phenomenon is operative in the human lung in vivo, we performed a series of bolus studies with a protocol designed to induce complex folding patterns. Boli of 0.5- and 1-microm-diameter particles were inhaled at penetration volumes (V(p)) of 300 and 1,200 ml in eight subjects during short periods of microgravity aboard the National Aeronautics and Space Administration Microgravity Research Aircraft. Inspiration was from residual volume to 1 liter above 1 G functional residual capacity. This was followed by a 10-s breathhold, during which up to seven 100-ml flow reversals (FR) were imposed at V(p) = 300 ml and up to four 500-ml FR at V(p) = 1,200 ml, and by an expiration to residual volume. Bolus dispersion and deposition were calculated from aerosol concentration and flow rate continuously monitored at the mouth. There was no significant increase in dispersion and deposition with increasing FR except for dispersion between 0 and 7 FR at V(p) = 300 ml with 0.5-microm-diameter particles, and this increase was small. This suggested that either the phenomenon of stretch and fold did not occur within the number of FR we performed or that it had already occurred during the one breathing cycle included in the basic maneuver. We speculate that the phenomenon occurred during the basic maneuver, which is consistent with the high degree of dispersion and deposition observed previously in microgravity. PMID:15298988

  8. Effect of divalent ions on electroosmotic transport in a sodium chloride aqueous solution confined in an amorphous silica nanochannel

    NASA Astrophysics Data System (ADS)

    Conlisk, A. T.; Zambrano, Harvey; Cevheri, Necmettin; Yoda, Minami; Computational Micro-; Nanofluidics Lab Team; The Fluids, Optical; Interfacial Diagnostics Lab Team

    2012-11-01

    A critical enabling technology for the next generation of nanoscale devices, such as nanoscale ``lab on a chip'' systems, is controlling electroosmotic flow (EOF) in nanochannels. In this work, we control EOF in an aqueous sodium chloride (NaCl) solution confined in a silica nanochannel by systematically adding different amounts of divalent ions. Multivalent ions have a different affinity for the silica surface and different hydration characteristics in comparison to monovalent ions. Therefore by adding Mg++ and Ca++ to the sodium chloride solution, the electroosmotic velocity and the structure of the electrical double layer will be modified. The effects of adding Mg++ and Ca++ will be compared using non-equilibrium molecular dynamics simulations of the EOF at different electric fields of a NaCl solution in a silica nanochannel with different fractions of Ca++ and Mg++ ions. In general, the wall zeta-potential magnitude, and hence the EOF velocity, decreases as the Ca++ or Mg++ concentration increases. The system responds linearly with electric field. We will compare the computational results with the experimental data of Cevheri and Yoda (2012). This work is supported by Army Research Office (ARO) grant number W911NF1010290.

  9. On-line concentration of neutral analytes for micellar electrokinetic chromatography. 3. Stacking with reverse migrating micelles.

    PubMed

    Quirino, J P; Terabe, S

    1998-01-01

    On-line concentration of neutral analytes by sample stacking in reversed migration micellar electrokinetic chromatography is presented. Micellar separation solutions of sodium dodecyl sulfate are prepared with acidic buffers to reverse the direction of the migration velocity of neutral analytes owing to a reduced electroosmotic flow. Samples are prepared in nonmicellar matrixes of low conductivity (i.e., water, diluted buffer, or dilute organic/aqueous solvent) to achieve field enhancement in the sample zone. Without polarity switching inherent in large-volume sample stacking, narrowing of analyte bands, removal of sample matrix, and separation of focused analyte bands are achieved. A model is proposed to describe the stacking technique and is supported by experimental results. In addition, equations are derived to describe band broadening associated with the technique. Detector response improvements reaching a 100-fold are confirmed experimentally. Concentration detection limits on the order of low-ppb levels (S/N = 3) are realized with model steroidal compounds. PMID:21644608

  10. Determination of nitrate and nitrite in Hanford defense waste(HDW) by reverse polarity capillary zone electrophoresis (RPCE)method

    SciTech Connect

    Metcalf, S.G.

    1998-06-10

    This paper describes the first application of reverse polarity capillary zone electrophoresis (RPCE) for rapid and accurate determination of nitrate and nitrite in Hanford Defense Waste (HDW). The method development was carried out by using Synthetic Hanford Waste (SHW), followed by the analysis of 4 real HDW samples. Hexamethonium bromide (HMB) was used as electroosmotic flow modifier in borate buffer at pH 9.2 to decrease the electroosmotic flow (EOF) in order to enhance the speed of analysis and the resolution of nitrate and nitrite in high ionic strength HDW samples. The application of this capillary zone electrophoresis method, when compared with ion chromatography for two major components of HDW, nitrate and nitrite slightly reduced analysis time, eliminated most pre-analysis handling of the highly radioactive sample, and cut analysis wastes by more than 2 orders of magnitude. The analysis of real HDW samples that were validated by using sample spikes showed a concentration range of 1.03 to 1.42 M for both nitrate. The migration times of the real HDW and the spiked HDW samples were within a precision of less than 3% relative standard deviation. The selectivity ratio test used for peak confirmation of the spiked samples was within 96% of the real sample. Method reliability was tested by spiking the matrix with 72.4 mM nitrate and nitrite. Recoveries for these spiked samples were 93-103%.