Science.gov

Sample records for rhic insulating vacuum

  1. Modeling of RHIC insulating vacuum for system pumpdown characteristics

    SciTech Connect

    Todd, R.J.; Pate, D.J.; Welch, K.M.

    1993-06-01

    This paper presents a model for predicting the pumpdown characteristics of a 480 m RHIC (Relativistic Heavy Ion Collider) vacuum cryostat. The longitudinal and transverse conductances of a typical cryostat were calculated. A voltage analogue of these conductances was constructed for room temperature conditions. The total longitudinal conductance of a room temperature cryostat was thereby achieved. This conductance was then used to calculate the diameter of an equivalent long outgassing tube, having more convenient analytical expressions for pressure profiles when pumped. The equivalent of a unit outgassing rate for this tube was obtained using previously published MLI (multi-layer insulation) outgassing data. With this model one is then able to predict a cryostat pumpdown rate as a function of the location and size of roughing pumps.

  2. The RHIC vacuum systems

    NASA Astrophysics Data System (ADS)

    Burns, R.; Hseuh, H. C.; Lee, R. C.; McIntyre, G.; Pate, D.; Smart, L.; Sondericker, J.; Weiss, D.; Welch, K.

    2003-03-01

    There are three vacuum systems in RHIC: the insulating vacuum vessels housing the superconducting magnets, the cold beam tubes surrounded by the superconducting magnets, and the warm beam tube sections at the insertion regions and the experimental regions. These systems have a cumulative length over 10 km and a total volume over 3000 m 3. Conventional ultrahigh vacuum technology was used in the design and construction of the cold and warm beam vacuum systems with great success. The long and large insulating vacuum volumes without vacuum barriers require careful management of the welding and leak checking of the numerous helium line joints. There are about 1500 vacuum gauges and pumps serial-linked to eight PLCs distributed around RHIC, which allow the monitoring and control of these devices through Ethernet networks to remote control consoles. With the exception of helium leaks through the cryogenic valve boxes into the insulating vacuum volumes, the RHIC vacuum systems have performed well beyond expectations.

  3. Compact vacuum insulation embodiments

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  4. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  5. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  6. Compact vacuum insulation embodiments

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  7. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  8. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  9. Small gap magnets and vacuum chambers for eRHIC

    SciTech Connect

    Meng,W.; Bengtsson, J.; Hao, Y.; Mahler, G.; Tuozzolo, J.; Litvinenko, V. N.

    2009-05-04

    eRHIC[1][2][3], a future high luminosity electron-ion collider at Brookhaven National Laboratory (BNL), will add polarized electrons to the list of colliding species in RHIC. A 10-30 GeV electron energy recovery linac (ERL) will require up to six passes around the RHIC 3.8 km circumference. We are developing and testing small (5 mm) gap dipole and quadrupole magnets and vacuum chambers for cost-effective eRHIC passes [4]. We are also studying the sensitivity of eRHIC pass optics to magnet and alignment errors in such a small magnet structure. We present the magnetic and mechanical designs of the small gap eRHIC components and prototyping test progress.

  10. Vacuum foil insulation system

    DOEpatents

    Hanson, John P.; Sabolcik, Rudolph E.; Svedberg, Robert C.

    1976-11-16

    In a multifoil thermal insulation package having a plurality of concentric cylindrical cups, means are provided for reducing heat loss from the penetration region which extends through the cups. At least one cup includes an integral skirt extending from one end of the cup to intersection with the penetration means. Assembly of the insulation package with the skirted cup is facilitated by splitting the cup to allow it to be opened up and fitted around the other cups during assembly.

  11. ELECTRON DETECTORS FOR VACUUM PRESSURE RISE DIAGNOSTICS AT RHIC.

    SciTech Connect

    IRISO-ARIZ,U.DREES,A.FISCHER,W.GASSNER,D.GOULD,O.GULLOTTA,J.LEE,R.PONNAIYAN,V.TRBOJEVIC,D.ZENO,K.ZHANG,S.Y.

    2003-05-12

    In the RHIC 2001 run, an unexpected vacuum pressure rise versus bunch increasing currents was observed in both gold and proton operations. This pressure increase due to molecular desorption is suspected to be induced mainly by electron multipacting, but other causes may coexist, such as ion desorption due to halo scraping. In order to get a reliable diagnostic of the phenomenon electron detectors have been installed along the RHIC ring. In this report we describe results measured by the electron detectors with energy filters during the RHIC 2002/2003 run.

  12. Vacuum-insulated catalytic converter

    DOEpatents

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  13. Improved Aerogel Vacuum Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Ruemmele, Warren P.; Bue, Grant C.

    2009-01-01

    An improved design concept for aerogel vacuum thermal-insulation panels calls for multiple layers of aerogel sandwiched between layers of aluminized Mylar (or equivalent) poly(ethylene terephthalate), as depicted in the figure. This concept is applicable to both the rigid (brick) form and the flexible (blanket) form of aerogel vacuum thermal-insulation panels. Heretofore, the fabrication of a typical aerogel vacuum insulating panel has involved encapsulation of a single layer of aerogel in poly(ethylene terephthalate) and pumping of gases out of the aerogel-filled volume. A multilayer panel according to the improved design concept is fabricated in basically the same way: Multiple alternating layers of aerogel and aluminized poly(ethylene terephthalate) are assembled, then encapsulated in an outer layer of poly(ethylene terephthalate), and then the volume containing the multilayer structure is evacuated as in the single-layer case. The multilayer concept makes it possible to reduce effective thermal conductivity of a panel below that of a comparable single-layer panel, without adding weight or incurring other performance penalties. Implementation of the multilayer concept is simple and relatively inexpensive, involving only a few additional fabrication steps to assemble the multiple layers prior to evacuation. For a panel of the blanket type, the multilayer concept, affords the additional advantage of reduced stiffness.

  14. Electrical Strength of Multilayer Vacuum Insulators

    SciTech Connect

    Harris, J R; Kendig, M; Poole, B; Sanders, D M; Caporaso, G J

    2008-07-01

    The electrical strength of vacuum insulators is a key constraint in the design of particle accelerators and pulsed power systems. Vacuum insulating structures assembled from alternating layers of metal and dielectric can result in improved performance compared to conventional insulators, but previous attempts to optimize their design have yielded seemingly inconsistent results. Here, we present two models for the electrical strength of these structures, one assuming failure by vacuum arcing between adjacent metal layers and the other assuming failure by vacuum surface flashover. These models predict scaling laws which are in agreement with the experimental data currently available.

  15. UPGRADE OF RHIC VACUUM SYSTEMS FOR HIGH LUMINOSITY OPERATION.

    SciTech Connect

    HSEUH, H.C.; MAPES, M.; SMART, L.A.; TODD, R.; WEISS, D.

    2005-05-16

    With increasing ion beam intensity during recent RHIC operations, rapid pressure rises of several decades were observed at most warm sections and at a few cold sections. The pressure rises are associated with electron multi-pacting, electron stimulated desorption and beam ion induced desorption and have been one of the major intensity and luminosity limiting factors for RHIC. Improvement of the warm sections has been carried out in the last few years. Extensive in-situ bakes, additional UHV pumping and anti-grazing ridges have been implemented. Several hundred meters of NEG coated beam pipes have been installed and activated. Vacuum monitoring and logging were enhanced. Preventive measures, such as pumping before cool down to reduce monolayer condensates, were also taken to suppress the pressure rises in the cold sections. The effectiveness of these measures in reducing the pressure rises during machine studies and during physics runs are discussed and summarized.

  16. Cryogenic Insulation System for Soft Vacuum

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.

    1999-01-01

    The development of a cryogenic insulation system for operation under soft vacuum is presented in this paper. Conventional insulation materials for cryogenic applications can be divided into three levels of thermal performance, in terms of apparent thermal conductivity [k-value in milliwatt per meter-kelvin (mW/m-K)]. System k-values below 0.1 can be achieved for multilayer insulation operating at a vacuum level below 1 x 10(exp -4) torr. For fiberglass or powder operating below 1 x 10(exp -3) torr, k-values of about 2 are obtained. For foam and other materials at ambient pressure, k-values around 30 are typical. New industry and aerospace applications require a versatile, robust, low-cost thermal insulation with performance in the intermediate range. The target for the new composite insulation system is a k-value below 4.8 mW/m-K (R-30) at a soft vacuum level (from 1 to 10 torr) and boundary temperatures of approximately 77 and 293 kelvin (K). Many combinations of radiation shields, spacers, and composite materials were tested from high vacuum to ambient pressure using cryostat boiloff methods. Significant improvement over conventional systems in the soft vacuum range was demonstrated. The new layered composite insulation system was also shown to provide key benefits for high vacuum applications as well.

  17. Helium pressures in RHIC vacuum cryostats and relief valve requirements from magnet cooling line failure

    SciTech Connect

    Liaw, C.J.; Than, Y.; Tuozzolo, J.

    2011-03-28

    A catastrophic failure of the RHIC magnet cooling lines, similar to the LHC superconducting bus failure incident, would pressurize the insulating vacuum in the magnet and transfer line cryostats. Insufficient relief valves on the cryostats could cause a structural failure. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the vacuum cryostat and discharging via the reliefs into the RHIC tunnel, had been developed to calculate the helium pressure inside the cryostat. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces were included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Existing relief valve sizes were reviewed to make sure that the maximum stresses, caused by the calculated maximum pressures inside the cryostats, did not exceed the allowable stresses, based on the ASME Code B31.3 and ANSYS results. The conclusions are as follows: (1) The S/F simulation results show that the highest internal pressure in the cryostats, due to the magnet line failure, is {approx}37 psig (255115 Pa); (2) Based on the simulation, the temperature on the cryostat chamber, INJ Q8-Q9, could drop to 228 K, which is lower than the material minimum design temperature allowed by the Code; (3) Based on the ASME Code and ANSYS results, the reliefs on all the cryostats inside the RHIC tunnel are adequate to protect the vacuum chambers when the magnet cooling lines fail; and (4) In addition to the pressure loading, the thermal deformations, due to the temperature decrease on the cryostat chambers, could also cause a high stress on the chamber, if not properly supported.

  18. Nearly Seamless Vacuum-Insulated Boxes

    NASA Technical Reports Server (NTRS)

    Stepanian, Christopher J.; Ou, Danny; Hu, Xiangjun

    2010-01-01

    A design concept, and a fabrication process that would implement the design concept, have been proposed for nearly seamless vacuum-insulated boxes that could be the main structural components of a variety of controlled-temperature containers, including common household refrigerators and insulating containers for shipping foods. In a typical case, a vacuum-insulated box would be shaped like a rectangular parallelepiped conventional refrigerator box having five fully closed sides and a hinged door on the sixth side. Although it is possible to construct the five-closed-side portion of the box as an assembly of five unitary vacuum-insulated panels, it is not desirable to do so because the relatively high thermal conductances of the seams between the panels would contribute significant amounts of heat leakage, relative to the leakage through the panels themselves. In contrast, the proposal would make it possible to reduce heat leakage by constructing the five-closed-side portion of the box plus the stationary portion (if any) of the sixth side as a single, seamless unit; the only remaining seam would be the edge seal around the door. The basic cross-sectional configuration of each side of a vacuum-insulated box according to the proposal would be that of a conventional vacuum-insulated panel: a low-density, porous core material filling a partially evacuated space between face sheets. However, neither the face sheets nor the core would be conventional. The face sheets would be opposite sides of a vacuum bag. The core material would be a flexible polymer-modified silica aerogel of the type described in Silica/Polymer and Silica/Polymer/Fiber Composite Aero - gels (MSC-23736) in this issue of NASA Tech Briefs. As noted in that article, the stiffness of this core material against compression is greater than that of prior aerogels. This is an important advantage because it translates to greater retention of thickness and, hence, of insulation performance when pressure is

  19. Laser sealed vacuum insulation window

    DOEpatents

    Benson, David K.; Tracy, C. Edwin

    1987-01-01

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  20. Laser sealed vacuum insulating window

    DOEpatents

    Benson, D.K.; Tracy, C.E.

    1985-08-19

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  1. Cryogenic Vacuum Insulation for Vessels and Piping

    NASA Technical Reports Server (NTRS)

    Kogan, A.; Fesmire, J.; Johnson, W.; Minnick, J.

    2010-01-01

    Cryogenic vacuum insulation systems, with proper materials selection and execution, can offer the highest levels of thermal performance. Three areas of consideration are vital to achieve the optimum result: materials, representative test conditions, and engineering approach for the particular application. Deficiency in one of these three areas can prevent optimum performance and lead to severe inefficiency. Materials of interest include micro-fiberglass, multilayer insulation, and composite arrangements. Cylindrical liquid nitrogen boil-off calorimetry methods were used. The need for standard thermal conductivity data is addressed through baseline testing. Engineering analysis and design factors such as layer thickness, density, and practicality are also considered.

  2. Vacuum Insulator Studies for the Dielectric Wall Accelerator

    SciTech Connect

    Harris, J R; Chen, Y J; Blackfield, D; Sanders, D M; Caporaso, G J; Krogh, M

    2007-06-11

    As part of our ongoing development of the Dielectric Wall Accelerator, we are studying the performance of multilayer high-gradient insulators. These vacuum insulating structures are composed of thin, alternating layers of metal and dielectric, and have been shown to withstand higher gradients than conventional vacuum insulator materials. This paper describes these structures and presents some of our recent results.

  3. Material-controlled dynamic vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1996-10-08

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  4. Radiation-controlled dynamic vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1995-01-01

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  5. Material-controlled dynamic vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1996-10-08

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  6. Radiation-controlled dynamic vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1995-07-18

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  7. Outgassing of solid material into vacuum thermal insulation spaces

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1994-01-01

    Many cryogenic storage tanks use vacuum between inner and outer tank for thermal insulation. These cryogenic tanks also use a radiation shield barrier in the vacuum space to prevent radiation heat transfer. This shield is usually constructed by using multiple wraps of aluminized mylar and glass paper as inserts. For obtaining maximum thermal performance, a good vacuum level must be maintained with the insulation system. It has been found that over a period of time solid insulation materials will vaporize into the vacuum space and the vacuum will degrade. In order to determine the degradation of vacuum, the rate of outgassing of the insulation materials must be determined. Outgassing rate of several insulation materials obtained from literature search were listed in tabular form.

  8. The design of a die with a vacuum thermal insulation

    NASA Astrophysics Data System (ADS)

    Baginski, A. G.; Utyev, O. M.; Kondratyeva, Y. M.

    2016-04-01

    A new design of a die for the polymer underwater granulation plants has been developed. It differs from similar plants in the design of heat-insulating elements. Vacuum hollows are used as a heat insulator. A vacuumization process does not require a separate operation, and it is conducted simultaneously with connection of all the elements of the die by a brazing method.

  9. Vacuum Insulator Development for the Dielectric Wall Accelerator

    SciTech Connect

    Harris, J R; Blackfield, D; Caporaso, G J; Chen, Y; Hawkins, S; Kendig, M; Poole, B; Sanders, D M; Krogh, M; Managan, J E

    2008-03-17

    At Lawrence Livermore National Laboratory, we are developing a new type of accelerator, known as a Dielectric Wall Accelerator, in which compact pulse forming lines directly apply an accelerating field to the beam through an insulating vacuum boundary. The electrical strength of this insulator may define the maximum gradient achievable in these machines. To increase the system gradient, we are using 'High Gradient Insulators' composed of alternating layers of dielectric and metal for the vacuum insulator. In this paper, we present our recent results from experiment and simulation, including the first test of a High Gradient Insulator in a functioning Dielectric Wall Accelerator cell.

  10. Economical evaluation of damaged vacuum insulation panels in buildings

    NASA Astrophysics Data System (ADS)

    Kim, Y. M.; Lee, H. Y.; Choi, G. S.; Kang, J. S.

    2015-12-01

    In Korea, thermal insulation standard of buildings have been tightened annually to satisfy the passive house standard from the year 2009. The current domestic policies about disseminating green buildings are progressively conducted. All buildings should be the zero energy building in the year 2025, obligatorily. The method is applied to one of the key technologies for high-performance insulation for zero energy building. The vacuum insulation panel is an excellent high performance insulation. But thermal performance of damaged vacuum insulation panels is reduced significantly. In this paper, the thermal performance of damaged vacuum insulation panels was compared and analyzed. The measurement result of thermal performance depends on the core material type. The insulation of building envelope is usually selected by economic feasibility. To evaluate the economic feasibility of VIPs, the operation cost was analyzed by simulation according to the types and damaged ratio of VIPs

  11. Investigation of Vacuum Insulator Surface Dielectric Strength with Nanosecond Pulses

    SciTech Connect

    Nunnally, W C; Krogh, M; Williams, C; Trimble, D; Sampayan, S; Caporaso, G

    2003-06-03

    The maximum vacuum insulator surface dielectric strength determines the acceleration electric field gradient possible in a short pulse accelerator. Previous work has indicated that higher electric field strengths along the insulator-vacuum interface might be obtained as the pulse duration is decreased. In this work, a 250 kV, single ns wide impulse source was applied to small diameter, segmented insulators samples in a vacuum to evaluate the multi-layer surface dielectric strength of the sample construction. Resonances in the low inductance test geometry were used to obtain unipolar, pulsed electric fields in excess of 100 MV/m on the insulator surface. The sample construction, experimental arrangement and experimental results are presented for the initial data in this work. Modeling of the multi-layer structure is discussed and methods of improving insulator surface dielectric strength in a vacuum are proposed.

  12. Lightweight Vacuum Jacket for Cryogenic Insulation. Volume 1

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.; Bell, J. E.; Brogren, E. W.; Straayer, J. W.

    1975-01-01

    The feasibility of producing a lightweight vacuum jacket using state-of-the-art technology and materials was examined. Design and analytical studies were made on a full-scale, orbital maneuvering system fuel tank. Preliminary design details were made for the tank assembly, including an optimized vacuum jacket and multilayer insulation system. A half-scale LH2 test model was designed and fabricated, and a force/stiffness proof test was conducted on the vacuum jacket. A vacuum leak rate of .000001 atmosphere ml of helium per second was measured, approximately 1500 hours of vacuum pressure were sustained, and 29 vacuum-pressure cycles were experienced prior to failure.

  13. Design of a variable-conductance vacuum insulation

    SciTech Connect

    Benson, D K; Potter, T F; Tracy, C E

    1994-01-01

    This paper describes one approach to the design of a variable-conductance vacuum insulation. In this design, the vacuum insulation consists of a permanently sealed, thin sheet steel, evacuated envelope of whatever geometry is required for the application. The steel envelope is supported internally against the atmospheric pressure loads by an array of discrete, low-conductance, ceramic supports, and radiative heat transfer is blocked by layers of thin metal radiation shields. Thermal conductance through this insulation is controlled electronically by changing the temperature of a small metal hydride connected to the vacuum envelope. The hydride reversibly absorbs/desorbs hydrogen to produce a hydrogen pressure typically within the range from less than 10{sup {minus}6} to as much as 1 torr. Design calculations are compared with results from laboratory tests of bench scale samples, and some possible automotive applications for this variable-conductance vacuum insulation are suggested.

  14. Progress on Simulating the Initiation of Vacuum Insulator Flashover

    SciTech Connect

    Perkins, M P; Houck, T L; Javedani, J B; Vogtlin, G E; Goerz, D A

    2009-06-26

    Vacuum insulators are critical components in many pulsed power systems. The insulators separate the vacuum and non-vacuum regions, often under great stress due to high electric fields. The insulators will often flashover at the dielectric vacuum interface for electric field values much lower than for the bulk breakdown through the material. Better predictive models and computational tools are needed to enable insulator designs in a timely and inexpensive manner for advanced pulsed power systems. In this article we will discuss physics models that have been implemented in a PIC code to better understand the initiation of flashover. The PIC code VORPAL has been ran on the Linux cluster Hera at LLNL. Some of the important physics modules that have been implemented to this point will be discussed for simple angled insulators. These physics modules include field distortion due to the dielectric, field emission, secondary electron emission, insulator charging, and the effects of magnitude fields. In the future we will incorporate physics modules to investigate the effects of photoemission, electron stimulated desorption, and gas ionization. This work will lead to an improved understanding of flashover initiation and better computational tools for advanced insulator design.

  15. Testing of a Vacuum Insulated Flexible Line with Flowing Liquid Nitrogen during the Loss of Insulating Vacuum

    NASA Astrophysics Data System (ADS)

    Demko, J. A.; Duckworth, R. C.; Roden, M.; Gouge, M.

    2008-03-01

    Long length vacuum insulated lines are used to carry flowing liquid nitrogen in several high temperature superconducting cable projects. An important, but rare, failure scenario is the abrupt or catastrophic loss of the thermal insulating vacuum producing a rapid increase in heat transfer to the liquid nitrogen stream. In this experimental investigation, a vacuum superinsulated 3 inch by 5 inch nominal pipe size (NPS) (88.9 mm by 141.3 mm) flexible cryostat is subjected to an abrupt loss of vacuum in order to measure the thermal response of a flowing liquid nitrogen stream and the temperature response of the cryostat. The measured outlet stream temperature has a slight peak shortly after the loss of vacuum incident and decreases as the cryostat warms up. The heat loads measured before and after the vacuum loss event are reported. Measurements of the temperatures in the multi-layer superinsulation are also discussed.

  16. Surface discharge through an insulator in a vacuum

    NASA Technical Reports Server (NTRS)

    Boersch, H.; Hamisch, H.; Ehrlich, W.

    1985-01-01

    A model for the mechanism of stationary discharges over insulators in a vacuum was developed. Upon introduction of this discharge, the insulator charges as a result of secondary emissions, in such a way that electrons coming from the cathode strike with an average secondary electron yield of 1, and so that the secondary electrons return again to the insulator through the electric field near the insulator. When the secondary electrons strike, electrons with an average yield of 1 are released again. The electrons move in short faults toward the anode, which they strike with lesser energy.

  17. Inexpensive cryogenic insulation replaces vacuum jacketed line

    NASA Technical Reports Server (NTRS)

    Fuchs, C. E.

    1967-01-01

    Commercially available aluminized Mylar, cork and fiber glass form a multilayered sealed system and provide rugged and economical field installed insulation for cryogenic /liquid nitrogen or oxygen/ pipe lines in an exposed environment.

  18. Understanding High Voltage Vacuum Insulators for Microsecond Pulses

    SciTech Connect

    J.B., J; D.A., G; T.L., H; E.J., L; R.D., S; L.K., T; G.E., V

    2007-08-15

    High voltage insulation is one of the main areas of pulsed power research and development since the surface of an insulator exposed to vacuum can fail electrically at an applied field more than an order or magnitude below the bulk dielectric strength of the insulator. This is troublesome for applications where high voltage conditioning of the insulator and electrodes is not practical and where relatively long pulses, on the order of several microseconds, are required. Here we give a summary of our approach to modeling and simulation efforts and experimental investigations for understanding flashover mechanism. The computational work is comprised of both filed and particle-in-cell modeling with state-of-the-art commercial codes. Experiments were performed in using an available 100-kV, 10-{micro}s pulse generator and vacuum chamber. The initial experiments were done with polyethylene insulator material in the shape of a truncated cone cut at +45{sup o} angle between flat electrodes with a gap of 1.0 cm. The insulator was sized so there were no flashovers or breakdowns under nominal operating conditions. Insulator flashover or gap closure was induced by introducing a plasma source, a tuft of velvet, in proximity to the insulator or electrode.

  19. Understanding and Improving High Voltage Vacuum Insulators for Microsecond Pulses

    SciTech Connect

    Javedani, J B; Goerz, D A; Houck, T L; Lauer, E J; Speer, R D; Tully, L K; Vogtlin, G E; White, A D

    2007-03-05

    High voltage insulation is one of the main areas of pulsed power research and development, and dielectric breakdown is usually the limiting factor in attaining the highest possible performance in pulsed power devices. For many applications the delivery of pulsed power into a vacuum region is the most critical aspect of operation. The surface of an insulator exposed to vacuum can fail electrically at an applied field more than an order or magnitude below the bulk dielectric strength of the insulator. This mode of breakdown, called surface flashover, imposes serious limitations on the power flow into a vacuum region. This is especially troublesome for applications where high voltage conditioning of the insulator and electrodes is not practical and for applications where relatively long pulses, on the order of several microseconds, are required. The goal of this project is to establish a sound fundamental understanding of the mechanisms that lead to surface flashover, and then evaluate the most promising techniques to improve vacuum insulators and enable high voltage operation at stress levels near the intrinsic bulk breakdown limits of the material. The approach we proposed and followed was to develop this understanding through a combination of theoretical and computation methods coupled with experiments to validate and quantify expected behaviors. In this report we summarize our modeling and simulation efforts, theoretical studies, and experimental investigations. The computational work began by exploring the limits of commercially available codes and demonstrating methods to examine field enhancements and defect mechanisms at microscopic levels. Plasma simulations with particle codes used in conjunction with circuit models of the experimental apparatus enabled comparisons with experimental measurements. The large scale plasma (LSP) particle-in-cell (PIC) code was run on multiprocessor platforms and used to simulate expanding plasma conditions in vacuum gap regions

  20. Prototype of a tubeless vacuum insulated accelerator

    NASA Astrophysics Data System (ADS)

    Boggia, A.; Brautti, G.; Raino, A.; Stagno, V.; Ceci, N.; Valentino, V.; Variale, V.

    1996-02-01

    The construction of a small prototype of a new kind of Cockroft-Walton accelerator is in progress. The onion-wise disposal of the capacitor plates allows a high-gradient compact machine, as well as the assurance of reliability. This kind of machine can overcome the problem of having an accelerating column of high perveance. In fact, because of its peculiar electromechanical structure, the whole high voltage generator can be settled inside a vacuum chamber and then an electron beam can be accelerated directly by the capacitor plates of the voltage multipliers. The scaled-up version of this machine seems to be particularly suited for high-current, high-efficiency applications, like FEL, ion acceleration for plasma heating or containment. The status report of the experiment will be presented.

  1. Design validation of the PBFA-Z vacuum insulator stack

    SciTech Connect

    Shoup, R.W.; Long, F.; Martin, T.H.

    1997-07-01

    Sandia has developed PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack. and MITLs on PBFA II with hardware of a new design. The PBFA-Z accelerator was designed to deliver 20 MA to a 15-mg z-pinch load in 100 ns. The accelerator was modeled using circuit codes to determine the time-dependent voltage and current waveforms at the input and output of the water lines, the insulator stack, and the MITLs. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITL interface requirements, and the machine operations and maintenance requirements. The insulator stack consists of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathode conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time-dependent performance of the insulator stacks was evaluated using IVORY, a 2-D PIC code. This paper will describe the insulator stack design, present the results of the ELECTRO and IVORY analyses, and show the results of the stack measurements.

  2. Venting and High Vacuum Performance of Low Density Multilayer Insulation

    NASA Astrophysics Data System (ADS)

    Riesco, M. E.; McLean, C. H.; Mills, G. L.; Buerger, S.; Meyer, M. L.

    2010-04-01

    The NASA Exploration Program is currently studying the use liquid oxygen, liquid methane and liquid hydrogen for propulsion in future spacecraft for Exploration of the Moon and Mars. This will require the efficient long term, on-orbit storage of these cryogenic propellants. Multilayer Insulation (MLI) will be critical to achieving the required thermal performance since it has much lower heat transfer than any other insulation when used in a vacuum. MLI with a low density (⩽10 layers/cm) has been shown in previous work to be the most mass efficient. The size and mass constraints of these propulsion systems will not allow a structural shell to be used to provide vacuum for the MLI during ground hold and launch. The baseline approach is to purge the MLI during ground hold with an inert gas which is then vented during launch ascent and on-orbit. This paper presents the results on experimental tests and modeling performed by Ball Aerospace on low density, non-perforated MLI used to insulate a cryogenic tank simulating an Exploration cryogenic propellant storage vessel. These include measurements of the rate of venting and of the heat transfer of gas filled insulation, fully evacuated insulation and during the transition in between. Results of transient computer modeling of the MLI venting and heat transfer process are also presented. Previous work by some of the authors performed vent testing using MLI with perforations and slits and a slow pump down rate.

  3. Workshop on Transient Induced Insulator Flashover in Vacuum

    NASA Astrophysics Data System (ADS)

    A workshop to discuss the state-of-the-art in transient induced insulator flashover in vacuum was convened at the Pleasanton Hilton at the Club Hotel on August 24-25, 1988. The workshop was attended by 39 participants. Flashover of vacuum-insulator surfaces is the limiting factor in virtually all well designed high voltage, pulsed systems where such interfaces are needed. They are critical to many LLNL present and future applications. The workshop participants attempted via presentations and lively discussions to summarize the state-of-the-art in the field and to outline the critical research topics which could lead to advances in understanding and applications. Several new results were presented at the workshop and an intense discussion session resulted in the formulation of a set of research recommendations and priorities.

  4. A new concept of a vacuum insulation tandem accelerator.

    PubMed

    Sorokin, I; Taskaev, S

    2015-12-01

    A tandem accelerator with vacuum insulation has been proposed and developed in the Budker Institute of Nuclear Physics. Negative hydrogen ions are accelerated by the positive 1 MV potential of the high voltage electrode, converted into protons in the gas stripping target inside the electrode, and then the protons are accelerated again by the same potential. The potential for high voltage and intermediate electrodes is supplied by the sectioned rectifier through a sectioned bushing insulator with a resistive divider. In this work, we propose a radical improvement of the accelerator concept. It is proposed to abandon the separate placement of the accelerator and the power supply and connect them through the bushing insulator. The source of high voltage is proposed to be located inside the accelerator insulator with high voltage and intermediate electrodes mounted on it. This will reduce the facility height from 7 m to 3m and make it really compact and attractive for placing in a clinic. This will significantly increase the stability of the accelerator because the potential for intermediate electrodes can be fed directly from the relevant sections of the rectifier. PMID:26122976

  5. Parametric scaling study of a magnetically insulated thermionic vacuum switch

    SciTech Connect

    Vanderberg, B.H.; Eninger, J.E.

    1996-02-01

    A parametric scaling study is performed on MINOS (Magnetically INsulated Opening Switch), a novel fast ({approximately}100 ns) high-power opening switch concept based on a magnetically insulated thermionic vacuum diode. Principal scaling parameters are the switch dimensions, voltage, current, applied magnetic field, and switching time. The scaling range of interest covers voltages up to 100 kV and currents of several kA. Fundamental scaling properties are derived from models of space-charge flow and magnetic cutoff. The scaling is completed with empirical results from the experimental MX-1 switch operated in an inductive storage pulsed power generator. Results are presented in diagrams showing voltage, current, power, and efficiency relationships and their limitations. The scaling is illustrated by the design of a megawatt average power opening switch for pulsed power applications. Trade-offs in the engineering of this type of switch are discussed.

  6. Flexible edge seal for vacuum insulating glazing units

    SciTech Connect

    Bettger, Kenneth J.; Stark, David H.

    2012-12-11

    A flexible edge seal is provided for a vacuum insulating glazing unit having a first glass pane and a second glass pane spaced-apart from the first. The edge seal comprises a seal member formed of a hermetically bondable material and having a first end, a second end and a center section disposed therebetween. The first end is hermetically bondable to a first glass pane. The second end is hermetically bondable to a second glass pane. The center section comprises a plurality of convolutes.

  7. Coating Properties which Increase the Vacuum Flashover Strength of Insulators.

    NASA Astrophysics Data System (ADS)

    Leiker, Gary Robert

    The surface flashover strengths in vacuum for several common insulators, including Lexan, Lucite, polyethylene, Macor, quartz, alumina, and an alumina-filled epoxy, have been increased using a vacuum spark discharge treatment. Analysis of the treated surfaces using Electron Spectroscopy for Chemical Analysis (ESCA) show them to be coated with a thin hydrocarbon/metal oxide layer. The formation of this high-flashover coating is strongly dependent on the amount of water vapor in the chamber during treatment. Measurements of the secondary electron emission coefficient (SEEC) show that the treated surfaces produce many more secondary electrons at energies of a few keV than do untreated samples. In current theories of electrical breakdown, an avalanche of monoenergetic secondary electrons along the dielectric surface from the cathode to the anode is believed to cause gas desorption and initiate a surface flashover. A new theory is proposed in which the monoenergetic nature of this secondary electron avalanche is destroyed due to electron -gas molecule collisions before the onset of breakdown. This phenomenon, coupled with the larger number of secondaries produced at high energies, could lead to a modified charge distribution on the surface of the treated insulators, which delays the breakdown process.

  8. VecLoader HEPA Vacuum Insulation Removal System

    SciTech Connect

    None, None

    1999-09-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the deactivation and decommissioning (D&D) of nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area (DDFA) of the DOE’s Office of Science and Technology sponsors Large-Scale Demonstration Projects (LSDPs) at which developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to DOE’s projects and to others in the D&D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, decreased costs and shortened schedules. The U.S. Department of Energy (DOE) Fernald Environmental Management Project’s (FEMP’s) Decontamination and Decommissioning (D&D) Plan requires that interior and exterior walls of buildings that are being demolished be disassembled and all insulating materials removed prior to demolition. This report provides a comparative analysis of the baseline manual insulation removal technique currently employed at the FEMP, with an innovative vacuum insulation removal system.

  9. Vacuum polarization at the boundary of a topological insulator

    NASA Astrophysics Data System (ADS)

    Muniz, C. R.; Tahim, M. O.; Saraiva, G. D.; Cunha, M. S.

    2015-07-01

    In this paper we study the polarized vacuum energy on the conducting surface of a topological insulator characterized by both Z2 topological index and time reversal symmetry. This boundary is subject to the action of a static and spatially homogeneous magnetic field perpendicular to it as well as of an electric field that is uniform near the considered surface and produced by a biased voltage, at zero temperature. To do this, we consider modifications in the Gauss law that arise due to the nonzero gradient of the axionlike pseudoscalar factor coupled to the applied magnetic field, which accounts for the topological properties of the system. Such a term allows us to find a correction to the induced charges which modifies the quantum vacuum of the spinor field regarding an ordinary surface. The polarized vacuum energy is calculated in both the weak-field approximation and in the general case, and since the found energy depends on a length defined on the boundary, we show that there is a radial density of force or a surface shear stress that tends to shrink it.

  10. Flashover of a vacuum-insulator interface: A statistical model

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Ives, H. C.; Wagoner, T. C.; Lott, J. A.; Anaya, V.; Harjes, H. C.; Corley, J. P.; Shoup, R. W.; Fehl, D. L.; Mowrer, G. R.; Wallace, Z. R.; Anderson, R. A.; Boyes, J. D.; Douglas, J. W.; Horry, M. L.; Jaramillo, T. F.; Johnson, D. L.; Long, F. W.; Martin, T. H.; McDaniel, D. H.; Milton, O.; Mostrom, M. A.; Muirhead, D. A.; Mulville, T. D.; Ramirez, J. J.; Ramirez, L. E.; Romero, T. M.; Seamen, J. F.; Smith, J. W.; Speas, C. S.; Spielman, R. B.; Struve, K. W.; Vogtlin, G. E.; Walsh, D. E.; Walsh, E. D.; Walsh, M. D.; Yamamoto, O.

    2004-07-01

    We have developed a statistical model for the flashover of a 45° vacuum-insulator interface (such as would be found in an accelerator) subject to a pulsed electric field. The model assumes that the initiation of a flashover plasma is a stochastic process, that the characteristic statistical component of the flashover delay time is much greater than the plasma formative time, and that the average rate at which flashovers occur is a power-law function of the instantaneous value of the electric field. Under these conditions, we find that the flashover probability is given by 1-exp(-EβpteffC/kβ), where Ep is the peak value in time of the spatially averaged electric field E(t), teff≡∫[E(t)/Ep]βdt is the effective pulse width, C is the insulator circumference, k∝exp(λ/d), and β and λ are constants. We define E(t) as V(t)/d, where V(t) is the voltage across the insulator and d is the insulator thickness. Since the model assumes that flashovers occur at random azimuthal locations along the insulator, it does not apply to systems that have a significant defect, i.e., a location contaminated with debris or compromised by an imperfection at which flashovers repeatedly take place, and which prevents a random spatial distribution. The model is consistent with flashover measurements to within 7% for pulse widths between 0.5 ns and 10 μs, and to within a factor of 2 between 0.5 ns and 90 s (a span of over 11 orders of magnitude). For these measurements, Ep ranges from 64 to 651 kV/cm, d from 0.50 to 4.32 cm, and C from 4.96 to 95.74 cm. The model is significantly more accurate, and is valid over a wider range of parameters, than the J. C. Martin flashover relation that has been in use since 1971 [J. C. Martin on Pulsed Power, edited by T. H. Martin, A. H. Guenther, and M. Kristiansen (Plenum, New York, 1996)]. We have generalized the statistical model to estimate the total-flashover probability of an insulator stack (i.e., an assembly of insulator-electrode systems

  11. Laser Glass Frit Sealing for Encapsulation of Vacuum Insulation Glasses

    NASA Astrophysics Data System (ADS)

    Kind, H.; Gehlen, E.; Aden, M.; Olowinsky, A.; Gillner, A.

    Laser glass frit sealing is a joining method predestined in electronics for the sealing of engineered materials housings in dimensions of some 1 mm2 to several 10 mm2. The application field ranges from encapsulation of display panels to sensor housings. Laser glass frit sealing enables a hermetical closure excluding humidity and gas penetration. But the seam quality is also interesting for other applications requiring a hermetical sealing. One application is the encapsulation of vacuum insulation glass. The gap between two panes must be evacuated for reducing the thermal conductivity. Only an efficient encapsulating technique ensures durable tight joints of two panes for years. Laser glass frit sealing is an alternative joining method even though the material properties of soda lime glass like sensitivity to thermal stresses are much higher as known from engineered materials. An adapted thermal management of the process is necessary to prevent the thermal stresses within the pane to achieve crack free and tight glass frit seams.

  12. Gas-controlled dynamic vacuum insulation with gas gate

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber.

  13. Gas-controlled dynamic vacuum insulation with gas gate

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.

  14. High Reliability R-10 Windows Using Vacuum Insulating Glass Units

    SciTech Connect

    Stark, David

    2012-08-16

    The objective of this effort was for EverSealed Windows (“EverSealed” or “ESW”) to design, assemble, thermally and environmentally test and demonstrate a Vacuum Insulating Glass Unit (“VIGU” or “VIG”) that would enable a whole window to meet or exceed the an R-10 insulating value (U-factor ≤ 0.1). To produce a VIGU that could withstand any North American environment, ESW believed it needed to design, produce and use a flexible edge seal system. This is because a rigid edge seal, used by all other know VIG producers and developers, limits the size and/or thermal environment of the VIG to where the unit is not practical for typical IG sizes and cannot withstand severe outdoor environments. The rigid-sealed VIG’s use would be limited to mild climates where it would not have a reasonable economic payback when compared to traditional double-pane or triple-pane IGs. ESW’s goals, in addition to achieving a sufficiently high R-value to enable a whole window to achieve R-10, included creating a VIG design that could be produced for a cost equal to or lower than a traditional triple-pane IG (low-e, argon filled). ESW achieved these goals. EverSealed produced, tested and demonstrated a flexible edge-seal VIG that had an R-13 insulating value and the edge-seal system durability to operate reliably for at least 40 years in the harshest climates of North America.

  15. Application of porcelain enamel as an ultra-high-vacuum-compatible electrical insulator

    SciTech Connect

    Biscardi, C.; Hseuh, H.; Mapes, M.

    2000-07-01

    Many accelerator vacuum system components require electrical insulation internal to the vacuum system. Some accelerator components at Brookhaven National Laboratory are installed in ultra-high-vacuum systems which require the insulation to have excellent vacuum characteristics, be radiation resistant, and be able to withstand high temperatures when used on baked systems. Porcelain enamel satisfies all these requirements. This article describes the process and application of coating metal parts with porcelain enamel to provide electrical insulation. The mechanical and vacuum testing of Marman flanges coated with porcelain and using metal Helicoflex seals to form a zero-length electrical break are detailed. The use of porcelain enameled parts is attractive since it can be done quickly, is inexpensive and environmentally safe, and most of all satisfies stringent vacuum system requirements. (c) 2000 American Vacuum Society.

  16. Scaling experiments on a magnetically insulated thermionic vacuum switch

    SciTech Connect

    Eninger, J.E.; Vanderberg, B.H.

    1994-12-31

    Magnetic insulation of the electron flow in a cylindrical thermionic vacuum diode has been proposed as a way to achieve a fast high-voltage high-power opening switch. The expected performance of this type of device can be derived from a set of basic scaling laws combined with empirical relationships obtained from experimental studies. Switch losses are mainly due to anode dissipation W{sub a}, which can be normalized to the transferred pulse energy. Leakage current and switch hold-off voltage depend on device geometry, materials, vacuum conditions etc and must be determined experimentally. For this purpose, the MX-1 experiment has been designed and operated. This device is basically a smooth-bore cylindrical magnetron with a 5 cm radius, 400 cm{sup 2} area thermionic dispenser cathode separated from the coaxial water-cooled anode by a few mm wide gap. This design allows pulsed operation at up to {approximately}100 kV, {approximately}4 kA and average power levels of {approximately}1 MW. The MX-1 switch is used as an opening switch to produce 1--2 {mu}s long square pulses from an inductive storage PFN. The current-voltage characteristics of the switch are determined as a function of the applied magnetic field and load condition. Plasma wave measurements are performed to investigate the stability of the electron flow. Results are summarized in the form of scaling diagrams for the important switch parameters, showing possible performance levels and physical and technical limitations identified as far in this work.

  17. Lightweight Vacuum Jacket for Cryogenic Insulation - Appendices to Final Report. Volume 2

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.; Bell, J. E.; Brogren, E. W.; Straayer, J. W.

    1975-01-01

    The feasibility is demonstrated of producing a lightweight vacuum jacket using state-of-the-art technology and materials. Design and analytical studies were made on an orbital maneuvering system fuel tank. Preliminary design details were completed for the tank assembly which included an optimized vacuum jacket and multilayered insulation system. A half-scale LH2 test model was designed and fabricated and a force/stiffness proof test was conducted on the vacuum jacket. A vacuum leak rate of 0.00001 was measured, approximately 1500 hours of vacuum pressure was sustained, and 29 vacuum pressure cycles were experienced prior to failure. For vol. 1, see N75-26192.

  18. Thermal Performance of Exterior Insulation and Finish Systems Containing Vacuum Insulation Panels

    SciTech Connect

    Childs, Kenneth W; Stovall, Therese K; Biswas, Kaushik; Carbary, Lawrence D

    2013-01-01

    A high-performance wall system is under development to improve wall thermal performance to a level of U-factor of 0.19 W/(m2 K) (R-30 [h ft2 F]/Btu) in a standard wall thickness by incorporating vacuum insulation panels (VIPs) into an exterior insulation finish system (EIFS). Such a system would be applicable to new construction and will offer a solution to more challenging retrofit situations as well. Multiple design options were considered to balance the need to protect theVIPs during construction and building operation, while minimizing heat transfer through the wall system. The results reported here encompass an indepth assessment of potential system performances including thermal modeling, detailed laboratory measurements under controlled conditions on the component, and system levels according to ASTM C518 (ASTM 2010). The results demonstrate the importance of maximizing the VIP coverage over the wall face. The results also reveal the impact of both the design and execution of system details, such as the joints between adjacent VIPs. The test results include an explicit modeled evaluation of the system performance in a clear wall.

  19. Flammability, odor, offgassing, thermal vacuum stability, and compatibility with aerospace fluids of wire insulations

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Johnson, Harry

    1994-01-01

    The NASA Lewis Research Center requested NASA Johnson Space Center White Sands Test Facility to conduct flammability, odor, offgassing, thermal vacuum stability, and compatibility tests with aerospace fluids of several wire insulations.

  20. SECONDARY ELECTRON TRAJECTORIES IN HIGH-GRADIENT VACUUM INSULATORS WITH FAST HIGH-VOLTAGE PULSES

    SciTech Connect

    Chen, Y; Blackfield, D; Nelson, S D; Poole, B

    2010-04-21

    Vacuum insulators composed of alternating layers of metal and dielectric, known as high-gradient insulators (HGIs), have been shown to withstand higher electric fields than conventional insulators. Primary or secondary electrons (emitted from the insulator surface) can be deflected by magnetic fields from external sources, the high-current electron beam, the conduction current in the transmission line, or the displacement current in the insulator. These electrons are deflected either toward or away from the insulator surface and this affects the performance of the vacuum insulator. This paper shows the effects of displacement current from short voltage pulses on the performance of high gradient insulators. Generally, vacuum insulator failure is due to surface flashover, initiated by electrons emitted from a triple junction. These electrons strike the insulator surface thus producing secondary electrons, and can lead to a subsequent electron cascade along the surface. The displacement current in the insulator can deflect electrons either toward or away from the insulator surface, and affects the performance of the vacuum insulator when the insulator is subjected to a fast high-voltage pulse. Vacuum insulators composed of alternating layers of metal and dielectric, known as high-gradient insulators (HGIs), have been shown to withstand higher electric fields than conventional insulators. HGIs, being tolerant of the direct view of high-current electron and ion beams, and having desirable RF properties for accelerators, are a key enabling technology for the dielectric-wall accelerators (DWA) being developed at Lawrence Livermore National Laboratory (LLNL). Characteristically, insulator surface breakdown thresholds go up as the applied voltage pulse width decreases. To attain the highest accelerating gradient in the DWA, short accelerating voltage pulses are only applied locally, along the HGI accelerator tube, in sync with the charged particle bunch, and the effects of

  1. An experimental investigation of electric flashover across solid insulators in vacuum

    NASA Technical Reports Server (NTRS)

    Vonbaeyer, H. C.

    1984-01-01

    The insulation of high voltage conductors often employs solid insulators for many applications. In such applications, an unexpected electric flashover may occur along the insulator surface. Under conditions of high vacuum, the flashover voltage across the insulator is observed to be lower compared with that of the same electrode separation without an insulator. The reason for such an extreme reduction of flashover voltage is not well understood. Several models based on the secondary electron emission, were proposed to explain the onset of the surface flashover. The starting point and the developing velocity of the surface flashover were determined. An intensified image converter camera was used to observe the initial stage of electrical flashover along the insulator surface parallel to the electric field. Several different insulator materials were used as test pieces to determine the effect of the dielectric constant on the flashover voltage characteristics.

  2. Polarization of vacuum-pressure-impregnated high voltage epoxy-mica insulations

    SciTech Connect

    Keskinen, E.; Jaeppinen, J.

    1996-12-31

    In this paper the electrical behavior of modern epoxy-mica high voltage insulation is investigated with the help of two-layer insulation model. The simplified model help to understand the charging phenomenon in actual high voltage insulation. The behavior of Vacuum-Pressure-Impregnated (VPI`ed) epoxy-mica insulation is compared with Shellac-Micafolium insulation. It is illustrated that because of higher volume resistivity the rate of change of the field distribution due to charging is considerably slower in epoxy-mica insulation. This tends to result in lower polarization index (PI) value for the epoxy-mica insulation than typically obtained for Shellac-Micafolium insulations. It is also illustrated that the faster PI measurement method (ratio of the 60 seconds value to the 15 seconds value) gives clearly lower PI value than the method defined in IEEE 43 (1974) (ratio of 600 s value to 60 s value). Finally, the effect of moisture on insulation resistance and PI of VPI`ed epoxy-mica winding insulation is discussed.

  3. Optimization of the vacuum insulator stack of the MIG pulsed power generator

    NASA Astrophysics Data System (ADS)

    Khamzakhan, G.; Chaikovsky, S. A.

    2014-11-01

    The MIG multi-purpose pulsed power machine is intended to generate voltage pulses of amplitude up to 6 MV with electron-beam loads and current pulses of amplitude up to 2.5 MA and rise time '00 ns with inductive loads like Z pinches. The MIG generator is capable of producing a peak power of 2.5 TW. Its water transmission line is separated from the vacuum line by an insulator stack. In the existing design of the insulator, some malfunctions have been detected. The most serious problems revealed are the vacuum surface flashover occurring before the current peaks and the deep discharge traces on the water-polyethylene interface of the two rings placed closer to the ground. A comprehensive numerical simulation of the electric field distribution in the insulator of the MIG generator has been performed. It has been found that the chief drawbacks are nonuniform voltage grading across the insulator rings and significant enhancement of the electric field at anode triple junctions. An improved design of the insulator stack has been developed. It is expected that the proposed modification that requires no rearrangement of either the water line or the load-containing vacuum chamber will provide higher electric strength of the insulator.

  4. Insulator breakdown measurements in a poor vacuum and their interpretation

    SciTech Connect

    Vogtlin, G.E.

    1990-06-01

    Breakdown measurements have been made on insulators with 0 and 45 degree angle surfaces. A technique of observing the electrons produced from the process has given some insight into the mechanisms involved. A three nanosecond pulse was used to induce breakdown. The electrons striking the anode were observed with a plastic fluor and open shutter camera. Two breakdown patterns were interpreted as cathode initiated and anode initiated breakdown. The breakdown process normally encountered was anode initiated with a positive 45 degree insulator. If the anode side was relieved with an internal electrode, the breakdown changed to cathode initiated at a higher level. If the cathode surface was then anodized, the breakdown switched back to the anode at an even higher level. Individual explosive emission sites on the cathode surface could be observed. Insulator breakdown was usually not associated with these sites. Multiple pulses allowed measurement of plasma expansion of the explosive emission sites. It is believed that breakdown with longer pulses is due to the expansion of the explosive emission site plasma to the insulator surface. Measurements were conducted with and without voltage conditioning. It appears that conditioning is achieved without explosive emission. It is believed that this is due to organic fibers that are removed by the conditioning. Organic fibers were used to induce both anode and cathode breakdown. Measurements of fiberous material have shown explosive emission a low as 100 kV on a three nanosecond time scale and below 20 kv/cm on a longer time scale. 8 refs., 5 figs.

  5. Study of Vacuum Insulator Flashover for Pulse Lengths of Multi-Microseconds

    SciTech Connect

    Houck, T; Goerz, D; Javedani, J; Lauer, E; Tully, L; Vogtlin, G

    2006-07-31

    We are studying the flashover of vacuum insulators for applications where high voltage conditioning of the insulator and electrodes is not practical and for pulse lengths on the order of several microseconds. The study is centered about experiments performed with a 100-kV, 10-ms pulsed power system and supported by a combination of theoretical and computational modeling. The base line geometry is a cylindrically symmetric, +45{sup o} insulator between flat electrodes. In the experiments, flashovers or breakdowns are localized by operating at field stresses slightly below the level needed for explosive emissions with the base line geometry. The electrodes and/or insulator are then seeded with an emission source, e.g. a tuft of velvet, or a known mechanical defect. Various standard techniques are employed to suppress cathode-originating flashovers/breakdowns. We present the results of our experiments and discuss the capabilities of modeling insulator flashover.

  6. Suppression of an unwanted flow of charged particles in a tandem accelerator with vacuum insulation

    NASA Astrophysics Data System (ADS)

    Ivanov, A.; Kasatov, D.; Koshkarev, A.; Makarov, A.; Ostreinov, Yu.; Shchudlo, I.; Sorokin, I.; Taskaev, S.

    2016-04-01

    In the construction of a tandem accelerator with vacuum insulation several changes were made. This allowed us to suppress the unwanted flow of charged particles in the accelerator, to improve its high-voltage stability, and to increase the proton beam current from 1.6 mA to 5 mA.

  7. Low-cost insulation system for cryostats eliminates need for a vacuum

    NASA Technical Reports Server (NTRS)

    Calvert, H. F.

    1964-01-01

    In order to eliminate the hazard caused by residual air trapped between the concentric shells of a cryostat, these annular spaces are pressurized with helium gas. This system is more economical than the use of powdered insulation maintained at low vacuums.

  8. Initiation of vacuum insulator surface high-voltage flashover with electrons produced by laser illumination

    NASA Astrophysics Data System (ADS)

    Krasik, Ya. E.; Leopold, J. G.

    2015-08-01

    In this paper, experiments are described in which cylindrical vacuum insulator samples and samples inclined at 45° relative to the cathode were stressed by microsecond timescale high-voltage pulses and illuminated by focused UV laser beam pulses. In these experiments, we were able to distinguish between flashover initiated by the laser producing only photo-electrons and when plasma is formed. It was shown that flashover is predominantly initiated near the cathode triple junction. Even dense plasma formed near the anode triple junction does not necessarily lead to vacuum surface flashover. The experimental results directly confirm our conjecture that insulator surface breakdown can be avoided by preventing its initiation [J. G. Leopold et al., Phys. Rev. ST Accel. Beams 10, 060401 (2007)] and complement our previous experimental results [J. Z. Gleizer et al., IEEE Trans. Dielectr. Electr. Insul. 21, 2394 (2014) and J. Z. Gleizer et al., J. Appl. Phys. 117, 073301 (2015)].

  9. Initiation of vacuum insulator surface high-voltage flashover with electrons produced by laser illumination

    SciTech Connect

    Krasik, Ya. E.; Leopold, J. G.

    2015-08-15

    In this paper, experiments are described in which cylindrical vacuum insulator samples and samples inclined at 45° relative to the cathode were stressed by microsecond timescale high-voltage pulses and illuminated by focused UV laser beam pulses. In these experiments, we were able to distinguish between flashover initiated by the laser producing only photo-electrons and when plasma is formed. It was shown that flashover is predominantly initiated near the cathode triple junction. Even dense plasma formed near the anode triple junction does not necessarily lead to vacuum surface flashover. The experimental results directly confirm our conjecture that insulator surface breakdown can be avoided by preventing its initiation [J. G. Leopold et al., Phys. Rev. ST Accel. Beams 10, 060401 (2007)] and complement our previous experimental results [J. Z. Gleizer et al., IEEE Trans. Dielectr. Electr. Insul. 21, 2394 (2014) and J. Z. Gleizer et al., J. Appl. Phys. 117, 073301 (2015)].

  10. Improved design of a high-voltage vacuum-insulator interface

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Lott, J. A.; Wagoner, T. C.; Anaya, V.; Harjes, H. C.; Ives, H. C.; Wallace, Z. R.; Mowrer, G. R.; Shoup, R. W.; Corley, J. P.; Anderson, R. A.; Vogtlin, G. E.; Savage, M. E.; Elizondo, J. M.; Stoltzfus, B. S.; Andercyk, D. M.; Fehl, D. L.; Jaramillo, T. F.; Johnson, D. L.; McDaniel, D. H.; Muirhead, D. A.; Radman, J. M.; Ramirez, J. J.; Ramirez, L. E.; Spielman, R. B.; Struve, K. W.; Walsh, D. E.; Walsh, E. D.; Walsh, M. D.

    2005-05-01

    We have conducted a series of experiments designed to measure the flashover strength of various azimuthally symmetric 45° vacuum-insulator configurations. The principal objective of the experiments was to identify a configuration with a flashover strength greater than that of the standard design, which consists of a 45° polymethyl-methacrylate (PMMA) insulator between flat electrodes. The thickness d and circumference C of the insulators tested were held constant at 4.318 and 95.74 cm, respectively. The peak voltage applied to the insulators ranged from 0.8 to 2.2 MV. The rise time of the voltage pulse was 40 60 ns; the effective pulse width [as defined in Phys. Rev. ST Accel. Beams 7, 070401 (2004), PRABFM, 1098-4402, 10.1103/PhysRevSTAB.7.070401] was on the order of 10 ns. Experiments conducted with flat aluminum electrodes demonstrate that the flashover strength of a crosslinked polystyrene (Rexolite) insulator is (18±7)% higher than that of PMMA. Experiments conducted with a Rexolite insulator and an anode plug, i.e., an extension of the anode into the insulator, demonstrate that a plug can increase the flashover strength by an additional (44±11)%. The results are consistent with the Anderson model of anode-initiated flashover, and confirm previous measurements. It appears that a Rexolite insulator with an anode plug can, in principle, increase the peak electromagnetic power that can be transmitted across a vacuum interface by a factor of [(1.18)(1.44)]2=2.9 over that which can be achieved with the standard design.

  11. Investigations of the electrical breakdown properties of insulator materials used in high voltage vacuum diodes

    SciTech Connect

    Shurter, R.P.; Carlson, R.L.; Melton, J.G.

    1993-08-01

    The Injector for the proposed Dual-Axis Radiographic Hydrodynamic Testing (DARHT) Facility at Los Alamos utilizes a monolithic insulator deployed in a radial configuration. The 1.83-m-diam {times} 25.4-cm-thick insulator with embedded grading rings separates the output oil transmission line from the vacuum vessel that contains the re-entrant anode and cathode assemblies. Although much work has been done by the pulse power community in studying surface flash-over of insulating materials used in both axial and radial configurations, dendrite growth at the roots of grading rings embedded in materials suitable for very large insulators is less well characterized. Degradation of several acrylic insulators has been observed in the form of dendrites growing at the roots of the grading rings for large numbers (100`s) of pulses on the prototype DARHT Injector and other machines using similar radial geometries. In a few cases, these dendrites have led to catastrophic bulk breakdown of the acrylic between two grading rings making the insulator a costly loss. Insulating materials under investigation are acrylic (Lucite), epoxy (Furane), and cross-linked polystyrene (Rexolite); each of these materials has its own particular mechanical and electrical merits. All of these materials have been cast and machined into the required large size for the Injector. Test methods and the results of investigations into the breakdown strength of various interface geometries and the susceptibility of these materials to dendrite growth are reported.

  12. Vacuum insulation of the high energy negative ion source for fusion application.

    PubMed

    Kojima, A; Hanada, M; Hilmi, A; Inoue, T; Watanabe, K; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Kobayashi, S; Yamano, Y; Grisham, L R

    2012-02-01

    Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of ∼2 m(2). The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A, 500 keV D(-) ion beams for 100 s. PMID:22380274

  13. Vacuum insulation of the high energy negative ion source for fusion application

    SciTech Connect

    Kojima, A.; Hanada, M.; Inoue, T.; Watanabe, K.; Taniguchi, M.; Kashiwagi, M.; Umeda, N.; Tobari, H.; Hilmi, A.; Kobayashi, S.; Yamano, Y.; Grisham, L. R.

    2012-02-15

    Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of {approx}2 m{sup 2}. The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A, 500 keV D{sup -} ion beams for 100 s.

  14. Design and analysis of the PBFA-Z vacuum insulator stack

    SciTech Connect

    Shoup, R.W. |; Long, F.; Martin, T.H.

    1996-06-01

    Sandia is developing PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack, and MITLs on PBFA II with new hardware. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITL interface requirements, and the machine operations and maintenance requirements. The insulator stack will consist of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathode conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time dependent performance of the insulator stack was evaluated using IVORY, a 2-D PIC code. This paper will describe the insulator stack design and present the results of the ELECTRO and IVORY analyses.

  15. Modeling the pressure increase in liquid helium cryostats after failure of the insulating vacuum

    NASA Astrophysics Data System (ADS)

    Heidt, C.; Grohmann, S.; Süßer, M.

    2014-01-01

    The pressure relief system of liquid helium cryostats requires a careful design, due to helium's low enthalpy of vaporization and due to the low operating temperature. Hazard analyses often involve the failure of the insulating vacuum in the worst-case scenario. The venting of the insulating vacuum and the implications for the pressure increase in the helium vessel, however, have not yet been fully analyzed. Therefore, the dimensioning of safety devices often requires experience and reference to very few experimental data. In order to provide a better foundation for the design of cryogenic pressure relief systems, this paper presents an analytic approach for the strongly dynamic process induced by the loss of insulating vacuum. The model is based on theoretical considerations and on differential equation modeling. It contains only few simplifying assumptions, which will be further investigated in future experiments. The numerical solutions of example calculations are presented with regard to the heat flux into the helium vessel, the helium pressure increase and the helium flow rate through the pressure relief device. Implications concerning two-phase flow and the influence of kinetic energy are discussed.

  16. Modeling the pressure increase in liquid helium cryostats after failure of the insulating vacuum

    SciTech Connect

    Heidt, C.; Grohmann, S.; Süßer, M.

    2014-01-29

    The pressure relief system of liquid helium cryostats requires a careful design, due to helium's low enthalpy of vaporization and due to the low operating temperature. Hazard analyses often involve the failure of the insulating vacuum in the worst-case scenario. The venting of the insulating vacuum and the implications for the pressure increase in the helium vessel, however, have not yet been fully analyzed. Therefore, the dimensioning of safety devices often requires experience and reference to very few experimental data. In order to provide a better foundation for the design of cryogenic pressure relief systems, this paper presents an analytic approach for the strongly dynamic process induced by the loss of insulating vacuum. The model is based on theoretical considerations and on differential equation modeling. It contains only few simplifying assumptions, which will be further investigated in future experiments. The numerical solutions of example calculations are presented with regard to the heat flux into the helium vessel, the helium pressure increase and the helium flow rate through the pressure relief device. Implications concerning two-phase flow and the influence of kinetic energy are discussed.

  17. Two-dimensional simulation research of secondary electron emission avalanche discharge on vacuum insulator surface

    NASA Astrophysics Data System (ADS)

    Cai, Libing; Wang, Jianguo; Zhu, Xiangqin; Wang, Yue; Zhang, Dianhui

    2015-01-01

    Based on the secondary electron emission avalanche (SEEA) model, the SEEA discharge on the vacuum insulator surface is simulated by using a 2D PIC-MCC code developed by ourselves. The evolutions of the number of discharge electrons, insulator surface charge, current, and 2D particle distribution are obtained. The effects of the strength of the applied electric field, secondary electron yield coefficient, rise time of the pulse, length of the insulator on the discharge are investigated. The results show that the number of the SEEA electrons presents a quadratic dependence upon the applied field strength. The SEEA current, which is on the order of Ampere, is directly proportional to the field strength and secondary electron yield coefficient. Finally, the electron-stimulated outgassing is included in the simulation code, and a three-phase discharge curve is presented by the simulation, which agrees with the experimental data.

  18. Two-dimensional simulation research of secondary electron emission avalanche discharge on vacuum insulator surface

    SciTech Connect

    Cai, Libing; Wang, Jianguo; Zhu, Xiangqin; Wang, Yue; Zhang, Dianhui

    2015-01-15

    Based on the secondary electron emission avalanche (SEEA) model, the SEEA discharge on the vacuum insulator surface is simulated by using a 2D PIC-MCC code developed by ourselves. The evolutions of the number of discharge electrons, insulator surface charge, current, and 2D particle distribution are obtained. The effects of the strength of the applied electric field, secondary electron yield coefficient, rise time of the pulse, length of the insulator on the discharge are investigated. The results show that the number of the SEEA electrons presents a quadratic dependence upon the applied field strength. The SEEA current, which is on the order of Ampere, is directly proportional to the field strength and secondary electron yield coefficient. Finally, the electron-stimulated outgassing is included in the simulation code, and a three-phase discharge curve is presented by the simulation, which agrees with the experimental data.

  19. A ceramic radial insulation structure for a relativistic electron beam vacuum diode.

    PubMed

    Xun, Tao; Yang, Hanwu; Zhang, Jiande; Liu, Zhenxiang; Wang, Yong; Zhao, Yansong

    2008-06-01

    For one kind of a high current diode composed of a small disk-type alumina ceramic insulator water/vacuum interface, the insulation structure was designed and experimentally investigated. According to the theories of vacuum flashover and the rules for radial insulators, a "cone-column" anode outline and the cathode shielding rings were adopted. The electrostatic field along the insulator surface was obtained by finite element analysis simulating. By adjusting the outline of the anode and reshaping the shielding rings, the electric fields were well distributed and the field around the cathode triple junction was effectively controlled. Area weighted statistical method was applied to estimate the surface breakdown field. In addition, the operating process of an accelerator based on a spiral pulse forming line (PFL) was simulated through the PSPICE software to get the waveform of charging and diode voltage. The high voltage test was carried out on a water dielectric spiral PFL accelerator with long pulse duration, and results show that the diode can work stably in 420 kV, 200 ns conditions. The experimental results agree with the theoretical and simulated results. PMID:18601401

  20. RHIC Beam Position Monitor Assemblies

    SciTech Connect

    Cameron, P.R.; Grau, M.C.; Ryan, W.A.; Shea, T.J.; Sikora, R.E.

    1993-09-01

    Design calculations, design details, and fabrication techniques for the RHIC BPM Assemblies are discussed. The 69 mm aperture single plane detectors are 23 cm long short-circuited 50 ohm strip transmission lines subtending 80 degrees. They are mounted on the sextupole end of the Corrector-Quadrupole-Sextupole package and operate at liquid helium temperature. The 69 cm aperture was selected to be the same as that of the beampipe in the CQS package, dc 23 cm length is a compromise between mechanical stability and electrical sensitivity to the long low-intensity proton and heavy ion bunches to be found in RHIC during commissioning, and the 80 degree subtended angle maximizes linear aperture. The striplines are aligned after brazing to maintain electrical-to-mechanical centers within 0.1 mm radius, eliminating the need for individual calibration. Because the cryogenic feedthrus isolate the UHV beam vacuum only from the HV insulating vacuum, and do not see liquid helium, a replaceable mini-ConFlat design was chosen to simplify fabrication, calibration, and maintenance.

  1. Helium release rates and ODH calculations from RHIC magnet cooling line failure

    SciTech Connect

    Liaw, C.J.; Than, Y.; Tuozzolo, J.

    2011-03-28

    A catastrophic failure of the magnet cooling lines, similar to the LHC superconducting bus failure incident, could discharge cold helium into the RHIC tunnel and cause an Oxygen Deficiency Hazard (ODH) problem. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the insulating vacuum volumes and discharging via the reliefs into the RHIC tunnel, had been developed. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces are included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Results, including helium discharge rates, helium inventory loss, and the resulting oxygen concentration in the RHIC tunnel area, are reported. Good agreement had been achieved when comparing the simulation results, a RHIC sector depressurization test measurement, and some simple analytical calculations.

  2. A review of vacuum insulation research and development in the Building Materials Group of the Oak Ridge National Laboratory

    SciTech Connect

    Kollie, T.G.; McElroy, D.L.; Fine, H.A.; Childs, K.W.; Graves, R.S.; Weaver, F.J.

    1991-09-01

    This report is a summary of the development work on flat-vacuum insulation performed by the Building Materials Group (BMG) in the Metals and Ceramics Division of the Oak Ridge National Laboratory (ORNL) during the last two years. A historical review of the technology of vacuum insulation is presented, and the role that ORNL played in this development is documented. The ORNL work in vacuum insulation has been concentrated in Powder-filled Evacuated Panels (PEPs) that have a thermal resistivity over 2.5 times that of insulating foams and seven times that of many batt-type insulations, such as fiberglass. Experimental results of substituting PEPs for chlorofluorocarbon (CFC) foal insulation in Igloo Corporation ice coolers are summarized. This work demonstrated that one-dimensional (1D) heat flow models overestimated the increase in thermal insulation of a foam/PEP-composite insulation, but three-dimensional (3D) models provided by a finite-difference, heat-transfer code (HEATING-7) accurately predicted the resistance of the composites. Edges and corners of the ice coolers were shown to cause the errors in the 1D models as well as shunting of the heat through the foam and around the PEPs. The area of coverage of a PEP in a foam/PEP composite is established as an important parameter in maximizing the resistance of such composites. 50 refs., 27 figs,. 22 tabs.

  3. Suppression of shunting current in a magnetically insulated coaxial vacuum diode

    SciTech Connect

    Yalandin, M. I.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.; Ulmaskulov, M. R.; Mesyats, G. A.; Rostov, V. V.

    2015-06-08

    Real-time investigations of the dynamics of explosive electron emission from a high-voltage cathode holder made of nonmagnetic stainless steel in a magnetically insulated coaxial vacuum diode have been performed. It has been shown that aging the cathode with several tens of voltage pulses at a field of 1–2 MV/cm provides a stray emission delay ranging from hundreds of picoseconds to a nanosecond or more. In addition, the magnetic field must be configured so that the magnetic lines would not cross the vacuum gap between the diode case and the cathode holder in the region behind the emitting edge of the cathode. These efforts provide conditions for stable emission of the working beam from a graphite cathode with a sharp emitting edge.

  4. Suppression of shunting current in a magnetically insulated coaxial vacuum diode

    NASA Astrophysics Data System (ADS)

    Yalandin, M. I.; Mesyats, G. A.; Rostov, V. V.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.; Ulmaskulov, M. R.

    2015-06-01

    Real-time investigations of the dynamics of explosive electron emission from a high-voltage cathode holder made of nonmagnetic stainless steel in a magnetically insulated coaxial vacuum diode have been performed. It has been shown that aging the cathode with several tens of voltage pulses at a field of 1-2 MV/cm provides a stray emission delay ranging from hundreds of picoseconds to a nanosecond or more. In addition, the magnetic field must be configured so that the magnetic lines would not cross the vacuum gap between the diode case and the cathode holder in the region behind the emitting edge of the cathode. These efforts provide conditions for stable emission of the working beam from a graphite cathode with a sharp emitting edge.

  5. Highly radiation-resistant vacuum impregnation resin systems for fusion magnet insulation

    NASA Astrophysics Data System (ADS)

    Fabian, P. E.; Munshi, N. A.; Denis, R. J.

    2002-05-01

    Magnets built for fusion devices such as the newly proposed Fusion Ignition Research Experiment (FIRE) need to be highly reliable, especially in a high radiation environment. Insulation materials are often the weak link in the design of superconducting magnets due to their sensitivity to high radiation doses, embrittlement at cryogenic temperatures, and the limitations on their fabricability. An insulation system capable of being vacuum impregnated with desirable properties such as a long pot-life, high strength, and excellent electrical integrity and which also provides high resistance to radiation would greatly improve magnet performance and reduce the manufacturing costs. A new class of insulation materials has been developed utilizing cyanate ester chemistries combined with other known radiation-resistant resins, such as bismaleimides and polyimides. These materials have been shown to meet the demanding requirements of the next generation of devices, such as FIRE. Post-irradiation testing to levels that exceed those required for FIRE showed no degradation in mechanical properties. In addition, the cyanate ester-based systems showed excellent performance at cryogenic temperatures and possess a wide range of processing variables, which will enable cost-effective fabrication of new magnets. This paper details the processing parameters, mechanical properties at 76 K and 4 K, as well as post-irradiation testing to dose levels surpassing 108 Gy.

  6. Electro-magnetic stress-induced degradation of insulation vacuum of a large cryo-magnetic system

    NASA Astrophysics Data System (ADS)

    Bhattachryya, Pranab; Gupta, Anjan Dutta; Dhar, S.; Pal, Gautam; Mukherjee, Paramita

    2016-07-01

    In superconducting magnets, the cold mass is placed in a vacuum vessel to reduce heat load to the liquid helium system. Helium leaks into the vacuum vessel can degrade the insulation vacuum, which can, in turn, cause an increase in the heat load to the liquid helium system. These leaks are called cold leaks, as they show up when the coil is cooled with liquid helium. K500 superconducting cyclotron magnet at Variable Energy Cyclotron Centre, Kolkata has such cold leaks in the helium vessel that developed during cool down. The leak rate increases with the increase of current in the superconducting coils. This paper describes a series of experiments carried out on the superconducting cyclotron magnet to find the level of degradation of insulation vacuum and measure the increase in heat load with magnet current. The leak rate was also measured and the leak size was estimated analytically. Detail magneto-structural analysis was done using Finite Element Method (FEM) to identify highly stressed zones in the helium vessel and found out that highly stressed zones coincide with the weld zones. The magneto-structural stress was applied on an estimated size of single crack and found that crack tip stress could reach beyond elastic limit of the material. We can predict that the full design current may be unachievable in this situation. Mitigation of increased heat load was also done using an additional vacuum pump for the insulation vacuum space.

  7. Characterization of vacuum-multifoil insulation for long-life thermal batteries

    SciTech Connect

    GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.; KAUN,THOMAS

    2000-04-17

    The use of vacuum multifoil (VMF) container for thermal insulation in long-life thermal batteries was investigated in a proof-of-concept demonstration. An InvenTek-designed VMF container 4.9 inches in diameter by 10 inches long was used with an internally heated aluminum block, to simulate a thermal-battery stack. The block was heated to 525 C or 600 C and allowed to cool while monitoring the temperature of the block and the external case at three locations with time. The data indicate that it should be possible to build an equivalent-sized thermal battery that should last up to six hours, which would meet the requirements for a long-life sonobuoy application.

  8. Proton beam of 2 MeV 1.6 mA on a tandem accelerator with vacuum insulation

    NASA Astrophysics Data System (ADS)

    Kasatov, D.; Kuznetsov, A.; Makarov, A.; Shchudlo, I.; Sorokin, I.; Taskaev, S.

    2014-12-01

    A source of epithermal neutrons based on a tandem accelerator with vacuum insulation for boron neutron capture therapy of malignant tumors was proposed and constructed. Stationary proton beam with 2 MeV energy, 1.6 mA current, 0.1% energy monochromaticity and 0.5% current stability has just been obtained.

  9. Filament-strung stand-off elements for maintaining pane separation in vacuum insulating glazing units

    DOEpatents

    Bettger, Kenneth J; Stark, David H

    2013-08-20

    A vacuum insulating glazing unit (VIGU) comprises first and second panes of transparent material, first and second anchors, a plurality of filaments, a plurality of stand-off elements, and seals. The first and second panes of transparent material have edges and inner and outer faces, are disposed with their inner faces substantially opposing one another, and are separated by a gap having a predetermined height. The first and second anchors are disposed at opposite edges of one pane of the VIGU. Each filament is attached at one end to the first anchor and at the other end to the second anchor, and the filaments are collectively disposed between the panes substantially parallel to one another. The stand-off elements are affixed to each filament at predetermined positions along the filament, and have a height substantially equal to the predetermined height of the gap such that the each stand-off element touches the inner surfaces of both panes. The seals are disposed about the edges of the panes, enclosing the stand-off elements within a volume between the panes from which the atmosphere may be evacuated to form a partial vacuum.

  10. Ultra high vacuum fabrication of metallic contacts for molecular devices on an insulating surface

    NASA Astrophysics Data System (ADS)

    Fostner, Shawn

    The preparation and characterization of metallic wires on insulating substrates by a variety of mechanisms has been explored. A multi-scale approach utilizing microfabricated silicon stencil masks, feedback controlled electromigration, and field induced metal cluster deposition in a novel geometry has been explored on potassium bromide (KBr), indium phosphide (InP), and silicon oxide substrates in an ultra-high vacuum environment (UHV). The initial deposition of gold, and tantalum wires between one hundred nanometers and micrometers in size was performed using reinforced silicon nanostencils. The stencil fabrication was discussed, and an examination of the deformation of the integrated structures under the deposition of highly stressed tantalum films was shown to be significantly smaller than typical structures. Metallic wires deposited using these stencils as well as electron beam lithography were electrically stressed and the breaking characteristics analyzed. Typical nanometer scale gaps were observed, as well as larger features more commonly found in the breaking of bamboo-like structures in gold wires 100 nm in size or less, particularly with a significant series resistance. These larger gaps are expected to be more applicable for the deposition of subsequent metallic clusters and preparation of molecular devices. As a step towards connecting the initially deposited wires as well as localized molecules in an a fashion allowing atomic scale imaging by AFM, modelling and experiments of field induced deposition of gold clusters on KBr and InP substrates was carried out. Deposition on InP substrates with a backside 2D electron gas as a counter-electrode demonstrated the feability of this deposition technique in UHV. Subsequent depositions on or adjacent to metallic pads on the bulk insulating KBr provided a proof of principle of the technique, though some experimental limitations such as large current pulses with the tip in close proximity to the surface are

  11. Non-CFC vacuum alternatives for the energy-efficient insulation of household refrigerators: Design and use

    SciTech Connect

    Potter, T.F.; Benson, D.K.

    1991-01-01

    Energy efficiency, environmental issues, and market incentives all encourage government and industry to continue work on thin-profile vacuum insulations for domestic refrigerators and freezers (R/Fs). Vacuum insulations promise significant improvement in thermal savings over current insulations; the technical objective of one design is an R-value of better than 10 (hr-ft{sup 2}-F/Btu) in 0.1 in. thickness. If performance is improved by a factor of 10 over that of CFC-blown insulating foams, the new insulations (made without CFCs or other potentially troublesome fill gases) will change the design and improve the efficiency of refrigerators. Such changes will meet the conservation, regulatory, and market drivers now strong in developed countries and likely to increase in developing countries. Prototypes of various designs have been tested in the laboratory and in factories, and results to date confirm the good thermal performance of these thin-profile alternatives. The next step is to resolve issues of reliability and cost effectiveness. 34 refs., 4 figs.

  12. Ageing of organic electrical insulating materials due to radiation. Physical properties of a cycloaliphatic epoxy resin irradiated under vacuum

    NASA Astrophysics Data System (ADS)

    Sparado, G.; Calderaro, E.; Schifani, R.; Tutone, R.; Rizzo, G.

    Physical properties of a cycloaliphatic epoxy resin irradiated under vacuum have been investigated. In particular dynamic-mechanical, dielectric and tensile measurements have been performed. This is a useful basis with a view to studying the ageing phenomenon of organic insulating materials due to radiation under the combined effect of environmental conditions. The results indicate that, in the dose range investigated (0-1.5 x 10 6Gy), the main effect of γ-rays under vacuum is to increase the degree of crosslinking

  13. Obtaining a proton beam with 5-mA current in a tandem accelerator with vacuum insulation

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.; Kasatov, D. A.; Koshkarev, A. M.; Makarov, A. N.; Ostreinov, Yu. M.; Sorokin, I. N.; Taskaev, S. Yu.; Shchudlo, I. M.

    2016-06-01

    Suppression of parasitic electron flows and positive ions formed in the beam tract of a tandem accelerator with vacuum insulation allowed a more than threefold increase (from 1.6 to 5 mA) in the current of accelerated 2-MeV protons. Details of the modification are described. Results of experimental investigation of the suppression of secondary charged particles and data on the characteristics of accelerated proton beam with increased current are presented.

  14. Micro-Vibration Measurements on Thermally Loaded Multi-Layer Insulation Samples in Vacuum

    NASA Technical Reports Server (NTRS)

    Deutsch, Georg; Grillenbeck, Anton

    2008-01-01

    Some scientific missions require to an extreme extent the absence of any on-board microvibration. Recent projects dedicated to measuring the Earth's gravity field and modeling the geoid with extremely high accuracy are examples. Their missions demand for extremely low micro-vibration environment on orbit for: (1) Not disturbing the measurement of earth gravity effects with the installed gradiometer or (2) Even not damaging the very high sensitive instruments. Based on evidence from ongoing missions multi-layer insulation (MLI) type thermal control blankets have been identified as a structural element of spacecrafts which might deform under temperature variations being caused by varying solar irradiation in orbit. Any such deformation exerts tiny forces which may cause small reactions resulting in micro-vibrations, in particular by exciting the spacecraft eigenmodes. The principle of the test set-up for the micro-vibration test was as follows. A real side wall panel of the spacecraft (size about 0.25 m2) was low-frequency suspended in a thermal vacuum chamber. On the one side of this panel, the MLI samples were fixed by using the standard methods. In front of the MLI, an IR-rig was installed which provided actively controlled IR-radiation power of about 6 kW/m2 in order to heat the MLI surface. The cooling was passive using the shroud temperature at a chamber pressure <1E-5mbar. The resulting micro-vibrations due to MLI motion in the heating and the cooling phase were measured via seismic accelerometers which were rigidly mounted to the panel. Video recording was used to correlate micro-vibration events to any visual MLI motion. Different MLI sample types were subjected to various thermal cycles in a temperature range between -60 C to +80 C. In this paper, the experience on these micro-vibration measurements will be presented and the conclusions for future applications will be discussed

  15. Insulation.

    ERIC Educational Resources Information Center

    Rhea, Dennis

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with insulation. Its objective is for the student to be able to determine insulation needs of new or existing structures, select type to use, use installation techniques, calculate costs, and apply safety factors. Some topics covered…

  16. Self-consistent simulation of the initiation of the flashover discharge on vacuum insulator surface

    SciTech Connect

    Cai, L. B.; Zhang, D. H.; Du, T. J.; Zhu, X. Q.; Wang, Y.; Wang, J. G.

    2012-07-15

    A 2D particle-in-cell code, including the space charge effects of insulator surface charge, is established to simulate the initiation of insulator surface flashover. The simulation is started with a field electron emission, which provides the seed electrons of the surface flashover discharge. Then the secondary electron emission is caused by the seed electrons on the insulator surface, gets into an avalanche, and saturates rapidly in a region between the cathode and anode. And the saturation region spreads to the anode at a speed of {approx}10{sup 7} m/s, which is coincident with the experiment measurement.

  17. RHIC status

    SciTech Connect

    Peggs, S.

    1997-08-01

    The design and construction status of the Relativistic Heavy Ion Collider, RHIC, which is in the seventh year of a nine year construction cycle, is discussed. Those novel performance features of a heavy ion collider that are distinct from hadron colliders in general are noted. These features are derived from the experimental requirements of operation with a variety of ion species over a wide energy range, including collisions between protons and ions, and between ions of unequal energies. Section 1 gives a brief introduction to the major parameters and overall layout of RHIC. A review of the superconducting magnet program is given in Section 2. Activities during the recent Sextant Test are briefly reviewed in Section 3. Finally, Section 4 presents the plans for RHIC commissioning in 1999.

  18. RHIC cryogenics

    NASA Astrophysics Data System (ADS)

    Iarocci, M. A.; Brown, D.; Sondericker, J.; Wu, K. C.; Benson, J.; Farah, Y.; Lac, C.; Morgillo, A.; Nicoletti, A.; Quimby, E.; Rank, J.; Rehak, M.; Werner, A.

    2003-03-01

    An integrated helium cryogenic system was designed with the specific performance goal of cooling and refrigerating the cryogenic magnets to below their nominal operating temperature. These magnets make up the steering and focusing elements for the Relativistic Heavy Ion Collider (RHIC). In addition to meeting the accelerator demands, reliability, flexibility, safety, and ease of operation were key considerations during the design phase of the project. The refrigerator, with a capacity of 25 kW at about 4 K, was originally designed to match the load for the Colliding Beam Accelerator Project. The existing refrigerator, along with its complimentary warm compressor system was reconfigured slightly to meet the cooling process cycle design for RHIC. The original VAX based process control system was also adapted for RHIC, and later expanded upon to integrate a new programmable logic controller based ring resident control system, hence forming a common system to monitor and control all cryogenic components.

  19. Maximum Expected Wall Heat Flux and Maximum Pressure After Sudden Loss of Vacuum Insulation on the Stratospheric Observatory for Infrared Astronomy (SOFIA) Liquid Helium (LHe) Dewars

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.

    2014-01-01

    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared observation experiments. The experiments carry sensors cooled to liquid helium (LHe) temperatures. A question arose regarding the heat input and peak pressure that would result from a sudden loss of the dewar vacuum insulation. Owing to concerns about the adequacy of dewar pressure relief in the event of a sudden loss of the dewar vacuum insulation, the SOFIA Program engaged the NASA Engineering and Safety Center (NESC). This report summarizes and assesses the experiments that have been performed to measure the heat flux into LHe dewars following a sudden vacuum insulation failure, describes the physical limits of heat input to the dewar, and provides an NESC recommendation for the wall heat flux that should be used to assess the sudden loss of vacuum insulation case. This report also assesses the methodology used by the SOFIA Program to predict the maximum pressure that would occur following a loss of vacuum event.

  20. Commercialization Plan Support for Development of Low Cost Vacuum Insulating Glazing: Cooperative Research and Development Final Report, CRADA Number CRD-11-449

    SciTech Connect

    Dameron, Arrelaine

    2015-07-09

    During the duration of this CRADA, V-Glass and NREL will partner in testing, analysis, performance forecasting, costing, and evaluation of V-Glass’s GRIPWELD™ process technology for creating a low cost hermetic seal for conventional and vacuum glazing. Upon successful evaluation of hermeticity, V-Glass’s GRIPWELD™ will be evaluated for its potential use in highly insulating window glazing.

  1. Insulation degradation behavior of multilayer ceramic capacitors clarified by Kelvin probe force microscopy under ultra-high vacuum

    NASA Astrophysics Data System (ADS)

    Suzuki, Keigo; Okamoto, Takafumi; Kondo, Hiroyuki; Tanaka, Nobuhiko; Ando, Akira

    2013-02-01

    We investigated surface potential images on the cross section of degraded multilayer ceramic capacitors (MLCCs) by Kelvin probe force microscopy measured under a dc bias voltage in ultra-high vacuum. A highly accelerated lifetime test (HALT) was conducted to obtain degraded MLCCs. The high energy resolution of the present measurement allows us to observe the step-like voltage drops on dielectric layers of as-fired MLCCs. The step-like voltage drops disappear on the dielectric layers of degraded MLCCs, indicating that the resistance at grain boundaries declines with the progress of insulation degradation. Furthermore, the electric field concentrations near the electrodes are clearly observed under forward and backward bias. The discussion based on energy band diagrams suggests that the electric field concentrations near electrodes are attributable to energy barrier formed at the interface between electrode and dielectrics. In particular, the electric field concentration at cathode in HALT measured under backward bias is much higher than that at anode in HALT measured under forward bias. This implies that oxygen vacancies accumulated during HALT cause band bending near the cathode in HALT. We propose that the initial decline of resistance at grain boundaries and following electric-field concentrations at anode in HALT is essential to the insulation degradation on dielectric layers of MLCCs under dc bias voltage.

  2. Optimization of the contents of hollow glass microsphere and sodium hexametaphosphate for glass fiber vacuum insulation panel

    NASA Astrophysics Data System (ADS)

    Li, C. D.; Chen, Z. F.; Zhou, J. M.

    2016-07-01

    In this paper, various additive amounts of hollow glass microspheres (HGMs) and sodium hexametaphosphate (SHMP) powders were blended with flame attenuated glass wool (FAGW) to form hybrid core materials (HCMs) through the wet method. Among them, the SHMP was dissolved in the glass fiber suspension and coated on the surface of glass fibers while the HGMs were insoluble in the glass fiber suspension and filled in the fiber-fiber pores. The average pore diameter of the FAGW/HGM HCMs was 8-11 μm which was near the same as that of flame attenuated glass fiber mats (FAGMs, i.e., 10.5 µm). The tensile strength of the SHMP coated FAGMs was enhanced from 160 N/m to 370 N/m when SHMP content increased from 0 wt.% to 0.2 wt.%. By contrast, the tensile strength of the FAGW/HGM HCMs decreased from 160 N/m to 40 N/m when HGM content increased from 0 wt.% to 50 wt.%. Both the FAGW/HGM HCMs and SHMP coated FAGMs were vacuumed completely to form vacuum insulation panels (VIPs). The results showed that both the addition of SHMP and HGM led a slight increase in the thermal conductivity of the corresponding VIPs. To obtain a high-quality VIP, the optimal SHMP content and HGM content in glass fiber suspension was 0.12-0.2 wt.% and 0 wt.%.

  3. RHIC instrumentation

    SciTech Connect

    Shea, T. J.; Witkover, R. L.

    1998-12-10

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 10{sup 11} protons to 250 GeV, or 10{sup 9} fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test.

  4. RHIC instrumentation

    NASA Astrophysics Data System (ADS)

    Shea, T. J.; Witkover, R. L.

    1998-12-01

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 1011 protons to 250 GeV, or 109 fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test.

  5. RHIC instrumentation

    SciTech Connect

    Shea, T.J.; Witkover, R.L.

    1998-12-01

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 10{sup 11} protons to 250 GeV, or 10{sup 9} fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test. {copyright} {ital 1998 American Institute of Physics.}

  6. RHIC Status

    NASA Astrophysics Data System (ADS)

    Peggs, Steve

    1997-05-01

    The design and construction status of the Relativistic Heavy Ion Collider, RHIC, is discussed. Those novel performance features of a heavy ion collider that are distinct from hadron colliders in general are noted. These features are derived from the experimental requirements of operation with a variety of ion species over a wide energy range, including collisions between protons and ions, and between ions of unequal energies. The project is in the fifth year of a seven year construction cycle. A brief review of the recent Sextant Test is given, together with progress to date on machine construction.

  7. HYDROGEN AND ITS DESORPTION IN RHIC.

    SciTech Connect

    HSEUH,H.C.

    2002-11-11

    Hydrogen is the dominating gas specie in room temperature, ultrahigh vacuum systems of particle accelerators and storage rings, such as the Relativistic Heavy Ion Collider (RHIC) at Brookhaven. Rapid pressure increase of a few decades in hydrogen and other residual gases was observed during RHIC's recent high intensity gold and proton runs. The type and magnitude of the pressure increase were analyzed and compared with vacuum conditioning, beam intensity, number of bunches and bunch spacing. Most of these pressure increases were found to be consistent with those induced by beam loss and/or electron stimulated desorption from electron multipacting.

  8. Numerical simulation of cathode plasma dynamics in magnetically insulated vacuum transmission lines

    SciTech Connect

    Thoma, C.; Genoni, T. C.; Welch, D. R.; Rose, D. V.; Clark, R. E.; Miller, C. L.; Stygar, W. A.; Kiefer, M. L.

    2015-03-15

    A novel algorithm for the simulation of cathode plasmas in particle-in-cell codes is described and applied to investigate cathode plasma evolution in magnetically insulated transmission lines (MITLs). The MITL electron sheath is modeled by a fully kinetic electron species. Electron and ion macroparticles, both modeled as fluid species, form a dense plasma which is initially localized at the cathode surface. Energetic plasma electron particles can be converted to kinetic electrons to resupply the electron flux at the plasma edge (the “effective” cathode). Using this model, we compare results for the time evolution of the cathode plasma and MITL electron flow with a simplified (isothermal) diffusion model. Simulations in 1D show a slow diffusive expansion of the plasma from the cathode surface. But in multiple dimensions, the plasma can expand much more rapidly due to anomalous diffusion caused by an instability due to the strong coupling of a transverse magnetic mode in the electron sheath with the expanding resistive plasma layer.

  9. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion.

    PubMed

    Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings. PMID:26932032

  10. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion

    NASA Astrophysics Data System (ADS)

    Kojima, A.; Hanada, M.; Tobari, H.; Nishikiori, R.; Hiratsuka, J.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K.; Yamano, Y.; Grisham, L. R.

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  11. Thermal insulator

    SciTech Connect

    Yamamoto, R.; Asada, Y.; Matsuo, Y.; Mikoda, M.

    1985-07-16

    A thermal insulator comprises an expanded resin body having embedded therein an evacuated powder insulation portion which consists of fine powder and a container of film-like plastics or a film-like composite of plastics and metal for enclosing the powder. The resin body has been expanded by a Freon gas as a blowing agent. Since a Freon gas has a larger molecular diameter than the constituent gases of air, it is less likely to permeate through the container than air. Thus present invention provides a novel composite insulator which fully utilizes the benefits of vacuum insulation without necessitating a strong and costly material for a vacuum container.

  12. A new test method for the assessment of the arc tracking properties of wire insulation in air, oxygen enriched atmospheres and vacuum

    NASA Technical Reports Server (NTRS)

    Koenig, Dieter

    1994-01-01

    Development of a new test method suitable for the assessment of the resistance of aerospace cables to arc tracking for different specific environmental and network conditions of spacecraft is given in view-graph format. The equipment can be easily adapted for tests at different realistic electrical network conditions incorporating circuit protection and the test system works equally well whatever the test atmosphere. Test results confirm that pure Kapton insulated wire has bad arcing characteristics and ETFE insulated wire is considerably better in air. For certain wires, arc tracking effects are increased at higher oxygen concentrations and significantly increased under vacuum. All tests on different cable insulation materials and in different environments, including enriched oxygen atmospheres, resulted in a more or less rapid extinguishing of all high temperature effects at the beginning of the post-test phase. In no case was a self-maintained fire initiated by the arc.

  13. Printable Top-Gate-Type Polymer Light-Emitting Transistors with Surfaces of Amorphous Fluoropolymer Insulators Modified by Vacuum Ultraviolet Light Treatment

    NASA Astrophysics Data System (ADS)

    Kajii, Hirotake; Terashima, Daiki; Kusumoto, Yusuke; Ikezoe, Ikuya; Ohmori, Yutaka

    2013-04-01

    We investigated the fabrication and electrical and optical properties of top-gate-type polymer light-emitting transistors with the surfaces of amorphous fluoropolymer insulators, CYTOP (Asahi Glass) modified by vacuum ultraviolet light (VUV) treatment. The surface energy of CYTOP, which has a good solution barrier property was increased by VUV irradiation, and the gate electrode was fabricated by solution processing on the CYTOP film using the Ag nano-ink. The influence of VUV irradiation on the optical properties of poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) films with various gate insulators was investigated to clarify the passivation effect of gate insulators. It was found that the poly(methyl methacrylate) (PMMA) film prevented the degradation of the F8BT layer under VUV irradiation because the PMMA film can absorb VUV. The solution-processed F8BT device with multilayer PMMA/CYTOP insulators utilizing a gate electrode fabricated using the Ag nano-ink exhibited both the ambipolar characteristics and yellow-green emission.

  14. THE RHIC INJECTION SYSTEM.

    SciTech Connect

    FISCHER,W.; GLENN,J.W.; MACKAY,W.W.; PTITSIN,V.; ROBINSON,T.G.; TSOUPAS,N.

    1999-03-29

    The RHIC injection system has to transport beam from the AGS-to-RHIC transfer line onto the closed orbits of the RHIC Blue and Yellow rings. This task can be divided into three problems. First, the beam has to be injected into either ring. Second, once injected the beam needs to be transported around the ring for one turn. Third, the orbit must be closed and coherent beam oscillations around the closed orbit should be minimized. We describe our solutions for these problems and report on system tests conducted during the RHIC Sextant test performed in 1997. The system will be fully commissioned in 1999.

  15. Sunspot: A program to model the behavior of hypervelocity impact damaged multilayer insulation in the Sunspot thermal vacuum chamber of Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Hayashida, K. B.

    1992-01-01

    The development of a computer program to predict the degradation of the insulating capabilities of the multilayer insulation (MLI) blanket of Space Station Freedom due to a hypervelocity impact with a space debris particle is described. A finite difference scheme is used for the calculations. The computer program was written in Microsoft BASIC. Also described is a test program that was undertaken to validate the numerical model. Twelve MLI specimens were impacted at hypervelocities with simulated debris particles using a light gas gun at Marshall Space Flight Center. The impact-damaged MLI specimens were then tested for insulating capability in the space environment of the Sunspot thermal vacuum chamber at MSFC. Two undamaged MLI specimens were also tested for comparison with the test results of the damaged specimens. The numerical model was found to adequately predict behavior of the MLI specimens in the Sunspot chamber. A parameter, called diameter ratio, was developed to relate the nominal MLI impact damage to the apparent (for thermal analysis purposes) impact damage based on the hypervelocity impact conditions of a specimen.

  16. Longitudinal impedance of RHIC

    SciTech Connect

    Blaskiewicz, M.; Brennan, J. M.; Mernick, K.

    2015-05-03

    The longitudinal impedance of the two RHIC rings has been measured using the effect of potential well distortion on longitudinal Schottky measurements. For the blue RHIC ring Im(Z/n) = 1.5±0.2Ω. For the yellow ring Im(Z/n) = 5.4±1Ω.

  17. Stochastic cooling in RHIC

    SciTech Connect

    Brennan,J.M.; Blaskiewicz, M. M.; Severino, F.

    2009-05-04

    After the success of longitudinal stochastic cooling of bunched heavy ion beam in RHIC, transverse stochastic cooling in the vertical plane of Yellow ring was installed and is being commissioned with proton beam. This report presents the status of the effort and gives an estimate, based on simulation, of the RHIC luminosity with stochastic cooling in all planes.

  18. TUNE FEEDBACK AT RHIC

    SciTech Connect

    CAMERON,P.; CERNIGLIA,P.; CONNOLLY,R.; CUPOLO,J.; DAWSON,W.C.; DEGEN,C.; DELLAPENNA,A.; DELONG,J.; DREES,A.; HUHN,A.; KESSELMAN,M.; MARUSIC,A.; OERTER,B.; MEAD,J.; SCHULTHEISS,C.; SIKORA,R.; VAN ZEIJTS,J.

    2001-06-18

    Preliminary phase-locked loop betatron tune measurement results were obtained during RHIC 2000 with a resonant Beam Position Monitor. These results suggested the possibility of incorporating PLL tune measurement into a tune feedback system for RHIC 2001. Tune feedback is useful in a superconducting accelerator, where the machine cycle time is long and inefficient acceleration due to resonance crossing is not comfortably tolerated. This is particularly true with the higher beam intensities planned for RHIC 2001. We present descriptions of a PLL tune measurement system implemented in the DSP/FPGA environment of a RHIC BPM electronics module and the feedback system into which the measurement is incorporated to regulate tune. In addition, we present results from the commissioning of this system during RHIC 2001.

  19. Experimental study on the effect of applying a crossed magnetic field on the insulator flashover behavior in high vacuum

    NASA Astrophysics Data System (ADS)

    Abu-Elabass, K.

    2015-09-01

    In this study, a possible method of reducing the flashover stress is achieved by the effect of an additional magnetic field in the transverse direction on the main applied electric field. The degree of vacuum used in this study was 5×10-5 Pa. The magnetic flux density B employed in this study extends from 4×10-3 to 24×10-3 T. From the results obtained throughout this work, the transverse magnetic field increases the flashover voltage and decreases the leakage current. The effect of the transverse magnetic field on the surface flashover of the dielectric solid in vacuum shows a marked dependence on the material and the thickness of the test specimen, the vacuum degree, the type of electric field (AC or DC) as well as the type of magnetic field (AC or DC).

  20. Foam Insulation for Cryogenic Flowlines

    NASA Technical Reports Server (NTRS)

    Sonju, T. R.; Carbone, R. L.; Oves, R. E.

    1985-01-01

    Welded stainless-steel vacuum jackets on cryogenic ducts replaced by plastic foam-insulation jackets that weigh 12 percent less. Foam insulation has 85 percent of insulating ability of stainless-steel jacketing enclosing vacuum of 10 microns of mercury. Foam insulation easier to install than vacuum jacket. Moreover, foam less sensitive to damage and requires minimal maintenance. Resists vibration and expected to have service life of at least 10 years.

  1. TRANSVERSE INSTABILITIES IN RHIC.

    SciTech Connect

    Blaskiewicz, M; Cameron, P; Catalan-Lasheras, N; Dawson, C; Degen, C; Drees, K; Fischer, W; Koropsak, E; Michnoff, R; Montag, C; Roser, T

    2003-05-12

    The beam quality in RHIC can be significantly impacted by a transverse instability which can occur just after transition [1]. Data characterizing the instability are presented and analyzed. Techniques for ameliorating the situation are considered.

  2. RHIC Renaissance Celebration

    SciTech Connect

    Brookhaven Lab

    2009-07-31

    A celebration of the contribution that Renaissance Technologies, Inc., made to the Relativistic Heavy Ion Collider, during which the entire Lab community participated in a series of RHIC Renaissance events, beginning with the Roads to Discovery ceremony,

  3. RHIC progress and future

    SciTech Connect

    Montag,C.

    2009-05-04

    The talk reviews RHIC performance, including unprecedented manipulations of polarized beams and recent low energy operations. Achievements and limiting factors of RHIC operation are discussed, such as intrabeam scattering, electron cloud, beam-beam effects, magnet vibrations, and the efficiency of novel countermeasures such as bunched beam stochastic cooling, beam scrubbing and chamber coatings. Future upgrade plans and the pertinent R&D program will also be presented.

  4. Multilayer High-Gradient Insulators

    SciTech Connect

    Harris, J R; Anaya, R M; Blackfield, D; Chen, Y -; Falabella, S; Hawkins, S; Holmes, C; Paul, A C; Sampayan, S; Sanders, D M; Watson, J A; Caporaso, G J; Krogh, M

    2006-11-15

    High voltage systems operated in vacuum require insulating materials to maintain spacing between conductors held at different potentials, and may be used to maintain a nonconductive vacuum boundary. Traditional vacuum insulators generally consist of a single material, but insulating structures composed of alternating layers of dielectric and metal can also be built. These ''High-Gradient Insulators'' have been experimentally shown to withstand higher voltage gradients than comparable conventional insulators. As a result, they have application to a wide range of high-voltage vacuum systems where compact size is important. This paper describes ongoing research on these structures, as well as the current theoretical understanding driving this work.

  5. OBSERVATION OF ELECTRON-ION EFFECTS AT RHIC TRANSITION.

    SciTech Connect

    WEI,J.; IRISO, U.; BAI, M.; ET AL.

    2005-05-16

    Electron cloud is found to be a serious obstacle on the upgrade path of the Relativistic Heavy Ion Collider (RHIC). At twice the design number of bunches, electron-ion interactions cause significant instability, emittance growth, and beam loss along with vacuum pressure rises when the beam is accelerated across the transition.

  6. Magnetically insulated coaxial vacuum diode with partial space-charge-limited explosive emission from edge-type cathode

    NASA Astrophysics Data System (ADS)

    Belomyttsev, S. Ya.; Rostov, V. V.; Romanchenko, I. V.; Shunailov, S. A.; Kolomiets, M. D.; Mesyats, G. A.; Sharypov, K. A.; Shpak, V. G.; Ulmaskulov, M. R.; Yalandin, M. I.

    2016-01-01

    The vacuum current associated with any type of electron emission for arbitrary configuration of the diode depends on the combination of the applied electric field and vacuum space charge (VSC) field created by the current. Such fundamental statement should give very close links between the diode current and the normalized cathode field θ which has been introduced by Forbes in 2008 for planar diodes as a reduction in the cathode surface field: θ = field-with/field-without VSC. This article reports the universal approximation of the type of cos(πθ/2) that is the ratio of the actual current and the fully space-charge-limited current. Also, the theoretical treatment and the experimental method of determination of the dynamic emissive characteristics of the macroscopic explosive emission from edge-type cathodes in the coaxial diode are developed. The experimental results obtained with a picosecond time reference between the cathode voltage and the onset of the high-current electron beam exhibit a good coincidence with the theoretical predictions. The presented methods enable the analysis of a real-time-resolved dynamics associated with the dense, magnetized electron beam formation, acceleration and drift motion, including kinematic effects and the phase-stable excitation of high-power microwave oscillators.

  7. Tune Measurement in RHIC

    NASA Astrophysics Data System (ADS)

    Brennan, M.; Cameron, P.; Cerniglia, P.; Connolly, R.; Cupolo, J.; Dawson, W.; Degen, C.; DellaPenna, A.; DeLong, J.; Drees, A.; Gassner, D.; Kesselman, M.; Lee, R.; Marusic, A.; Mead, J.; Michnoff, R.; Schultheiss, C.; Sikora, R.; Van Zeijts, J.

    2002-12-01

    Three basic tune measurement methods are employed in RHIC; kicked beam, Schottky, and phase-locked loop. The kicked beam and 2GHz Schottky systems have been in operation since the first commissioning of circulating beam in RHIC in 1999. Preliminary PLL measurements utilizing a commercial off-the-shelf lockin amplifier were completed during that run, and the resonant BPM used in that system also delivered 230MHz Schottky spectra. With encouraging preliminary results and the thought of tune feedback in mind, a PLL tune system was implemented in the FPGA/DSP environment of the RHIC BPM system for the RHIC 2001 run. During that run this system functioned at the level of the present state-of-the-art in tune measurement accuracy and resolution, and was successfully incorporated into a tune feedback system for use during acceleration. Each of the tune measurement systems has particular strengths and weaknesses. We present specific and comparative details of systems design and operation. In addition, we present detailed tune measurements and their utilization in the measurement of chromaticity and the implementation of tune feedback. Finally, we discuss planned upgrades for the RHIC 2003 run.

  8. Coordinating the 2009 RHIC Run

    ScienceCinema

    Brookhaven Lab - Mei Bai

    2010-01-08

    Physicists working at the Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC) are exploring the puzzle of proton spin as they begin taking data during the 2009 RHIC run. For the first time, RHIC is running at a record energy of 500 giga-elect

  9. Coordinating the 2009 RHIC Run

    SciTech Connect

    Brookhaven Lab - Mei Bai

    2009-04-13

    Physicists working at the Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC) are exploring the puzzle of proton spin as they begin taking data during the 2009 RHIC run. For the first time, RHIC is running at a record energy of 500 giga-elect

  10. Thermal Performance of Aged and Weathered Spray-On Foam Insulation (SOFI) Materials Under Cryogenic Vacuum Conditions (Cryostat-4)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The NASA Cryogenics Test Laboratory at Kennedy Space Center conducted long-term testing of SOFI materials under actual-use cryogenic conditions with Cryostat-4. The materials included in the testing were NCFI 24-124 (acreage foam), BX-265 (close-out foam, including intertank flange and bipod areas), and a potential alternate material, NCFI 27-68, (acreage foam with the flame retardant removed). Specimens of these materials were placed at two locations: a site that simulated aging (the Vehicle Assembly Building [VAB]) and a site that simulated weathering (the Atmospheric Exposure Test Site [beach site]). After aging/weathering intervals of 3, 6, and 12 months, the samples were retrieved and tested for their thermal performance under cryogenic vacuum conditions with test apparatus Cryostat-4.

  11. RHIC PROGRESS REPORT

    SciTech Connect

    PEGGS, S.

    1998-06-26

    The design and construction status of the Relativistic Heavy Ion Collider, RHIC, which is in the eighth year of a nine year construction cycle, is discussed [1]. Those performance features of a heavy ion collider that are distinct from hadron colliders in general are noted. These features are derived from the experimental requirements of operation with a variety of ion species over a wide energy range, including collisions between ions of unequal energies, between protons and ions, and between polarized protons. Section 1 gives a brief introduction to the major parameters and overall layout of RHIC. A review of the superconducting magnet program is given in Section 2. Machine performance is reviewed in Section 3, and the plans for RHIC commissioning in 1999 are presented in Section 4.

  12. SNAKE CALIBRATION IN RHIC.

    SciTech Connect

    RANJBAR,V.; BAI,M.; LUCCIO,A.; MACKAY,W.W.; ROSER,T.; LEET,S.Y.

    2002-06-02

    A proper understanding of the response of the spin orientation due to the currents in the four helices which make up each snake is necessary to control spin tune, avoid snake resonances and facilitate the operation of the RHIC spin flipper. The effect of the helical dipole snakes in RHIC is to rotate the spin orientation an angle {mu} about an axis at an angle {phi} in the horizontal plane. With two snakes the combined effect gives rise to a spin precession frequency which is determined by the {mu} and {phi} angles at each snake. Depolarization or spin flipping can occur when this spin tune is near an external driving frequency. We employed the RHIC spin flipper in this way to determine the spin tune and thus verify spin tune predictions based upon previous field measurements of the snake. We also considered the response of snake resonances locations to spin tune as another way of verifying spin tune predictions.

  13. RHIC progress report

    SciTech Connect

    Peggs, S.

    1998-08-01

    The design and construction status of the Relativistic Heavy Ion Collider, RHIC, which is in the eighth year of a nine year construction cycle, is discussed. Those performance features of a heavy ion collider that are distinct from hadron colliders in general are noted. These features are derived from the experimental requirements of operation with a variety of ion species over a wide energy range, including collisions between ions of unequal energies, between protons and ions, and between polarized protons. Section 1 gives a brief introduction to the major parameters and overall layout of RHIC. A review of the superconducting magnet program is given in Section 2. Machine performance is reviewed in Section 3, and the plans for RHIC commissioning in 1999 are presented in Section 4.

  14. STOCHASTIC COOLING FOR RHIC.

    SciTech Connect

    BLASKIEWICZ,M.BRENNAN,J.M.CAMERON,P.WEI,J.

    2003-05-12

    Emittance growth due to Intra-Beam Scattering significantly reduces the heavy ion luminosity lifetime in RHIC. Stochastic cooling of the stored beam could improve things considerably by counteracting IBS and preventing particles from escaping the rf bucket [1]. High frequency bunched-beam stochastic cooling is especially challenging but observations of Schottky signals in the 4-8 GHz band indicate that conditions are favorable in RHIC [2]. We report here on measurements of the longitudinal beam transfer function carried out with a pickup kicker pair on loan from FNAL TEVATRON. Results imply that for ions a coasting beam description is applicable and we outline some general features of a viable momentum cooling system for RHIC.

  15. RHIC STATUS AND PLANS.

    SciTech Connect

    PILAT,R.

    2002-06-02

    RHIC ended successfully its second year of operation in January 2002 after a six month run with gold ions and two months of polarized proton collisions. I will review the machine performance and accomplishments, that include reaching design energy (100 GeV/u) and design luminosity during the gold run, and the first high energy (100 GeV) polarized proton collisions. I will also discuss the machine development strategy and the main performance milestones. The goals and plans for the shutdown and the nest run, scheduled to start in November 2002 have been the focus of a RHIC Retreat in March 2002. I will summarize findings and plans for the upcoming run and outline a vision for the nest few years of RHIC operation and upgrades.

  16. Improving the performance of organic thin film transistors formed on a vacuum flash-evaporated acrylate insulator

    SciTech Connect

    Ding, Z. Abbas, G. A.; Assender, H. E.; Morrison, J. J.; Sanchez-Romaguera, V.; Yeates, S. G.; Taylor, D. M.

    2013-12-02

    A systematic investigation has been undertaken, in which thin polymer buffer layers with different ester content have been spin-coated onto a flash-evaporated, cross-linked diacrylate gate-insulator to form bottom-gate, top-contact organic thin-film transistors. The highest device mobilities, ∼0.65 cm{sup 2}/V s and ∼1.00 cm{sup 2}/V s for pentacene and dinaphtho[2,3-b:2′,3′-f]-thieno[3,2-b]thiophene (DNTT), respectively, were only observed for a combination of large-grain (∼1–2 μm) semiconductor morphology coupled with a non-polar dielectric surface. No correlation was found between semiconductor grain size and dielectric surface chemistry. The threshold voltage of pentacene devices shifted from −10 V to −25 V with decreasing surface ester content, but remained close to 0 V for DNTT.

  17. Loss maps of RHIC

    SciTech Connect

    Robert-Demolaize,G.

    2007-10-01

    State-of-the-art tracking tools were recently developed at CERN to study the cleaning efficiency of the Large Hadron Collider (LHC) collimation system [1]. These tools are fully transportable, meaning that any accelerator lattice that includes a collimation system can be simulated. Each of the two Relativistic Heavy Ion Collider (RHIC) [2] beam lines features a multi-stage collimation system, therefore dedicated datasets from RHIC operations with proton beams can be used to benchmark the tracking codes and assess the accuracy of the predicted hot spots along the LHC.

  18. RHIC prefire protection masks

    SciTech Connect

    Drees, A.; Biscardi, C.; Curcio, T.; Gassner, D.; DeSanto, L.; Fu, W.; Liaw, C. J.; Montag, C.; Thieberger, P.; Yip, K.

    2015-01-07

    The protection of the RHIC experimental detectors from damage due to beam hitting close upstream elements in cases of abort kicker prefires requires some dedicated precautionary measures with two general options: to bring the beam close to a limiting aperture (i.e. the beam pipe wall), as far upstream of the detector components as possible or, alternatively, to bring a limiting aperture close to the circulating beam. Spontaneous and random prefires of abort kicker modules (Pulse Forming Network, PFN) have a history as long as RHIC is being operated. The abort system consist of 5 kickers in per ring, each of them equipped with its own dedicated PFN.

  19. ANISOTROPIC FLOW AT RHIC.

    SciTech Connect

    TANG,A.H.

    2004-03-15

    We present the first measurement of directed flow (v{sub 1}) at the Relativistic Heavy Ion Collider (RHIC). v{sub 1} is found to be consistent with zero at pseudorapidities {eta} from -1.2 to 1.2, then rises to the level of a couple of percent over the range 2.4 < |{eta}| < 4. The latter observation is similar to that from NA49 if the SPS rapidities are shifted by the difference in beam rapidity between RHIC and SPS. We studied the evolution of elliptic flow from p + p collisions through d + Au collision, and onto Au + Au collisions. Measurements of higher harmonics are presented and discussed.

  20. RHIC SPIN FLIPPER

    SciTech Connect

    BAI,M.; ROSER, T.

    2007-06-25

    This paper proposes a new design of spin flipper for RHIC to obtain full spin flip with the spin tune staying at half integer. The traditional technique of using an rf dipole or solenoid as spin flipper to achieve full spin flip in the presence of full Siberian snake requires one to change the snake configuration to move the spin tune away from half integer. This is not practical for an operational high energy polarized proton collider like RHIC where beam lifetime is sensitive to small betatron tune change. The design of the new spin flipper as well as numerical simulations are presented.

  1. COLLIMATION EXPERIENCE AT RHIC.

    SciTech Connect

    DREES,K.A.FLILLER,R.TRBOJEVIC,D.KAIN,V.

    2003-05-19

    In the Relativistic Heavy Ion Collider (RHIC) the abort kicker magnets are the limiting aperture. Continuous losses at this location could deteriorate the kicker performance. In addition, losses especially in the triplet area cause backgrounds in the experimental detectors. The RHIC one-stage collimation system was used to reduce these backgrounds as well as losses at the abort kickers. Collimation performance and results from various runs with even and uneven species (Au-Au, pp and d-Au) are presented and compared. Upgrades of the system for the upcoming high luminosity runs are outlined.

  2. Study of orbit correction for eRHIC FFAG design

    SciTech Connect

    Liu, C.; Hao, Y.; Litvinenko, V.; Meot, F.; Minty, M.; Ptitsyn, V.; Trbojevic, D.

    2015-05-03

    The unique feature of the orbits in the eRHIC Fixed Field Alternating Gradient (FFAG) design is that multiple accelerating and decelerating bunches pass through the same magnets with different horizontal offsets. Therefore, it is critical for the eRHIC FFAG to correct multiple orbits in the same vacuum pipe for better spin transmission and alignment of colliding beams. In this report, the effects on orbits from multiple error sources will be studied. The orbit correction method will be described and results will be presented.

  3. Chromaticity Feedback at RHIC

    SciTech Connect

    Marusic, A.; Minty, M.; Tepikian, S.

    2010-05-23

    Chromaticity feedback during the ramp to high beam energies has been demonstrated in the Relativistic Heavy Ion Collider (RHIC). In this report we review the feedback design and measurement technique. Commissioning experiences including interaction with existing tune and coupling feedback are presented together with supporting experimental data.

  4. Virtual Tour of RHIC

    ScienceCinema

    Brookhaven Lab

    2010-01-08

    An animation that follows polarized protons as they travel through the Relativistic Heavy Ion Collider (RHIC) accelerator complex to the experiments. The arrows indicate the direction of each proton's spin. The animation concludes with a fly-by of the RHI

  5. Beam injection into RHIC

    SciTech Connect

    Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.

    1997-07-01

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.

  6. Beam Injection into RHIC

    NASA Astrophysics Data System (ADS)

    Fischer, W.; Hahn, H.; Mackay, W. W.; Tsoupas, N.

    1997-05-01

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. We describe the injection zone and its bottlenecks, the application program to steer the beam and the injection kickers. We report on the commissioning of the injection systems and on measurements of the kickers.

  7. Virtual Tour of RHIC

    SciTech Connect

    Brookhaven Lab

    2009-06-11

    An animation that follows polarized protons as they travel through the Relativistic Heavy Ion Collider (RHIC) accelerator complex to the experiments. The arrows indicate the direction of each proton's spin. The animation concludes with a fly-by of the RHI

  8. RHIC beam permit and quench detection communications system

    SciTech Connect

    Conkling, C.R. Jr.

    1997-07-01

    A beam permit module has been developed to concentrate RHIC, subsystem sensor outputs, permit beam, and initiate emergency shutdowns. The modules accept inputs from the vacuum, cryogenic, power supply, beam loss, and superconducting magnet quench detection systems. Modules are located at equipment locations around the RHIC ring. The modules are connected by three fiberoptic communications links; a beam permit link, and two magnet power supply interlock links. During operation, carrier presence allows beam. If a RHIC subsystem detects a fault, the beam permit carrier terminates - initiating a beam dump. If the fault was a superconducting magnet quench, a power supply interlock carrier terminates - initiating an emergency magnet power dump. In addition, the master module triggers an event to cause remote sensors to log and hold data at the time-of-failure.

  9. The RHIC cryogenic control system

    SciTech Connect

    Farah, Y.; Sondericker, J.

    1993-08-01

    A cryogenic process control system for the RHIC Project is discussed. It is independent of the main RHIC Control System, consisting of an upgrade of the existing 24.8 Kw helium refrigerator control section with the addition of a ring control section that regulates and monitors all cryogenic signals in the RHIC tunnel. The system is fully automated, which can run without the continuous presence of operators.

  10. Polarized beams at RHIC

    SciTech Connect

    Roser, T.

    1995-11-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 {times} 10{sup 32} cm{sup {minus}2} s{sup {minus}1}. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes, which will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production.

  11. RHIC - Exploring the Universe Within

    SciTech Connect

    BNL

    2008-08-12

    A guided tour of Brookhaven's Relativistic Heavy Ion Collider (RHIC) conducted by past Laboratory Director John Marburger. RHIC is a world-class scientific research facility that began operation in 2000, following 10 years of development and construction. Hundreds of physicists from around the world use RHIC to study what the universe may have looked like in the first few moments after its creation. RHIC drives two intersecting beams of gold ions head-on, in a subatomic collision. What physicists learn from these collisions may help us understand more about why the physical world works the way it does, from the smallest subatomic particles, to the largest stars.

  12. RHIC - Exploring the Universe Within

    ScienceCinema

    BNL

    2009-09-01

    A guided tour of Brookhaven's Relativistic Heavy Ion Collider (RHIC) conducted by past Laboratory Director John Marburger. RHIC is a world-class scientific research facility that began operation in 2000, following 10 years of development and construction. Hundreds of physicists from around the world use RHIC to study what the universe may have looked like in the first few moments after its creation. RHIC drives two intersecting beams of gold ions head-on, in a subatomic collision. What physicists learn from these collisions may help us understand more about why the physical world works the way it does, from the smallest subatomic particles, to the largest stars.

  13. RHIC PLANS TOWARDS HIGHER LUMINOSITY

    SciTech Connect

    FEDOTOV,A.

    2007-06-25

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide luminosity over a wide range of beam energies and species, including heavy ions, polarized protons, and tric beam collisions. In the first seven years of operation there has been a rapid increase in the achieved peak and average luminosity, substantially exceeding design values. Work is presently underway to achieve the Enhanced Design parameters. Planned major upgrades include the Electron Beam Ion Source (EBIS), RHIC-11, and construction of an electron-ion collider (eRHIC). We review the expected RHIC upgrade performance. Electron cooling and its impact on the luminosity both for heavy ions and protons are discussed in detail.

  14. RHIC The Perfect Liquid

    ScienceCinema

    BNL

    2009-09-01

    Evidence to date suggests that gold-gold collisions the Relativistic Heavy Ion Collider at Brookhaven are indeed creating a new state of hot, dense matter, but one quite different and even more remarkable than had been predicted. Instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a "perfect" liquid.

  15. Polarized protons at RHIC

    SciTech Connect

    Makdisi, Y.

    1992-10-01

    The approval for construction of the Relativistic Heavy Ion Collider (RHIC) provides a potential opportunity to collide polarized proton beams at energies up to 500 GeV in the center of mass and high luminosities approaching 2 {times} 10{sup 32}/cm{sup 2}/sec. This capability is enhanced by the fact that the AGS has already accelerated polarized protons and relies on the newly completed Accumulator/Booster for providing the required polarized proton intensity and a system of spin rotators (Siberian snakes) to retain the polarization. The RHIC Spin Collaboration was formed and submitted a Letter of Intent to construct this polarized collider capability and utilize its physics opportunities. In this presentation, I will discuss the plans to upgrade the AGS, the proposed layout of the RHIC siberian snakes, and timetables. The physics focus is the measurement of the spin dependent parton distributions with such accessible probes including high p(t) jets, direct photons, and Drell Yan. The attainable sensitivities and the progress that has been reached in defining the detector requirements will be outlined.

  16. Polarized protons at RHIC

    SciTech Connect

    Makdisi, Y.

    1992-01-01

    The approval for construction of the Relativistic Heavy Ion Collider (RHIC) provides a potential opportunity to collide polarized proton beams at energies up to 500 GeV in the center of mass and high luminosities approaching 2 {times} 10{sup 32}/cm{sup 2}/sec. This capability is enhanced by the fact that the AGS has already accelerated polarized protons and relies on the newly completed Accumulator/Booster for providing the required polarized proton intensity and a system of spin rotators (Siberian snakes) to retain the polarization. The RHIC Spin Collaboration was formed and submitted a Letter of Intent to construct this polarized collider capability and utilize its physics opportunities. In this presentation, I will discuss the plans to upgrade the AGS, the proposed layout of the RHIC siberian snakes, and timetables. The physics focus is the measurement of the spin dependent parton distributions with such accessible probes including high p(t) jets, direct photons, and Drell Yan. The attainable sensitivities and the progress that has been reached in defining the detector requirements will be outlined.

  17. The RHIC status update

    SciTech Connect

    Ozaki, S.

    1995-07-15

    The construction of the Relativistic Heavy Ion Collider (RHIC) began in 1991, with the completion date originally scheduled for 1997. Significant reduction of the funding levels in FY 1993 and 1994, and the funding level cap for FY 1995 and later years caused a 19-month stretchout of the construction period to the second quarter of FY 1999, and an increase of the total estimated cost (TEC) to $475 M. The Project, therefore, is now at the halfway mark of the construction period with actual cost and schedule performance tracking close to the DOE-approved baseline. Construction funding through FY 1994 reached close to 60% of the TEC. Incidentally, if one adds the current value of preexisting facilities which will be incorporated into RHIC, such as the injection system (Tandem Van de Graaff - the Booster - the AGS), the esixting 3.8 km tunnel, the 24 kW helium refrigerator, etc., the total value of the RHIC facility, when completed, will reach one billion dollars, if not more. The accelerator lattice design was finalized in 1992 after an intensive study was made to optimize the collider design for performance, operational flexibility, and value engineering. The civil construciton, including the collider enclosure, magnet access ports to the ring tunnel, and six service buildings for accelerator power supplies and cryogenic control boxes was completed.

  18. Transverse Spin at RHIC

    NASA Astrophysics Data System (ADS)

    Wang, Xiaorong

    2016-03-01

    In recent years, there has been exciting development in both experimental and theoretical studies of transverse spin asymmetries in polarized p+p and and DIS collisions. As a unique polarized proton-proton collider, Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) provides a unique opportunity to investigate the novel physics mechanisms that cause the large single spin asymmetry at the forward rapidity. Both PHENIX and STAR experiments have been studying the transverse spin asymmetries with a variety of final state particles in different kinematic regimes since 2006. Especially, recent theoretical development on scattering a polarized probe on the saturated nuclear may provide a unique way to probe the gluon and quark TMDs. RHIC successfully ran polarized p+Au collisions in 2015. We will expect to have new results from polarized d+Au to compare with existing results from p+p collision to extend our understanding of QCD. Further more, In 2015, PHENIX installed MPC-ex calorimeter at very forward region to measure direct photon AN and STAR installed Roman Pots to study the diffractive events in polarized p+p and p+Au collisions. The recent results on transverse polarized p+p and p+Au collisions from both PHENIX and STAR experiments will be presented in this talk. I will also briefly discuss the possibility for the transverse Spin program at future experiments sPHENIX and forward sPHENIX at RHIC. Supported by US Department of Energy and RIKEN Brookhaven Research Center.

  19. Multilayer High-Gradient Insulators

    SciTech Connect

    Harris, J R

    2006-08-16

    Multilayer High-Gradient Insulators are vacuum insulating structures composed of thin, alternating layers of dielectric and metal. They are currently being developed for application to high-current accelerators and related pulsed power systems. This paper describes some of the High-Gradient Insulator research currently being conducted at Lawrence Livermore National Laboratory.

  20. Microsphere Insulation Panels

    NASA Technical Reports Server (NTRS)

    Mohling, R.; Allen, M.; Baumgartner, R.

    2006-01-01

    Microsphere insulation panels (MIPs) have been developed as lightweight, longlasting replacements for the foam and vacuum-jacketed systems heretofore used for thermally insulating cryogenic vessels and transfer ducts. The microsphere core material of a typical MIP consists of hollow glass bubbles, which have a combination of advantageous mechanical, chemical, and thermal-insulation properties heretofore available only separately in different materials. In particular, a core filling of glass microspheres has high crush strength and low density, is noncombustible, and performs well in soft vacuum.

  1. RHIC Spin Flipper Commissioning Status

    SciTech Connect

    Bai, M.; Meot, F.; Dawson, C.; Oddo, P.; Pai, C.; Pile, P.; Makdisi, Y.; Meng, W.; Roser, T.

    2010-05-23

    The commissioning of the RHIC spin flipper in the RHIC Blue ring during the RHIC polarized proton run in 2009 showed the detrimental effects of global vertical coherent betatron oscillation induced by the 2-AC dipole plus 4-DC dipole configuration. This global orbital coherent oscillation of the RHIC beam in the Blue ring in the presence of collision modulated the beam-beam interaction between the two RHIC beams and affected Yellow beam polarization. The experimental data at injection with different spin tunes by changing the snake current also demonstrated that it was not possible to induce a single isolated spin resonance with the global vertical coherent betatron oscillation excited by the two AC dipoles. Hence, a new design was proposed to eliminate the coherent vertical betatron oscillation outside the spin flipper by adding three additional AC dipoles. This paper presents the experimental results as well as the new design.

  2. RHIC Polarized proton operation

    SciTech Connect

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D'Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R,; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; J.; Severino, F.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J. Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP{sup 4}. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  3. CRYSTAL COLLIMATION AT RHIC.

    SciTech Connect

    FLILLER,III, R.P.; DREES,A.; GASSNER,D.; HAMMONS,L.; MCINTYRE,G.; PEGGS,S.; TRBOJEVIC,D.; BIRYUKOV,V.; CHESNKOV,Y.; TEREKHOV,V.

    2002-06-02

    For the year 2001 run, a bent crystal was installed in the yellow ring of the Relativistic Heavy Ion Collider (RHIC). The crystal forms the first stage of a two stage collimation system. By aligning the crystal to the beam, halo particles are channeled through the crystal and deflected into a copper scraper. The purpose is to reduce beam halo with greater efficiency than with a scraper alone. In this paper we present the first results from the use of the crystal collimator. We compare the crystal performance under various conditions, such as different particle species, and beta functions.

  4. The RHIC project

    SciTech Connect

    Harrison, M.A.

    1996-07-01

    The design and construction status of the Relativistic Heavy Ion collider (RHIC) is discussed. Those novel features of a heavy ion collider that are distinct from hadron colliders in general are noted. These features are derived from the experimental requirements of operation with a variety of ion species over a wide energy range including collisions between ions of unequal energies. The project is in the fourth year of a seven year construction cycle. A review of the superconducting magnet program is given together with progress to date on the machine construction.

  5. RHIC electron lenses upgrades

    SciTech Connect

    Gu, X.; Altinbas, Z.; Bruno, D.; Binello, S.; Costanzo, M.; Drees, A.; Fischer, W.; Gassner, D. M.; Hock, J.; Hock, K.; Harvey, M.; Luo, Y.; Marusic, A.; Mi, C.; Mernick, K.; Minty, M.; Michnoff, R.; Miller, T. A.; Pikin, A. I.; Robert-Demolaize, G.; Samms, T.; Shrey, T. C.; Schoefer, V.; Tan, Y.; Than, R.; Thieberger, P.; White, S. M.

    2015-05-03

    In the Relativistic Heavy Ion Collider (RHIC) 100 GeV polarized proton run in 2015, two electron lenses were used to partially compensate for the head-on beam-beam effect for the first time. Here, we describe the design of the current electron lens, detailing the hardware modifications made after the 2014 commissioning run with heavy ions. A new electron gun with 15-mm diameter cathode is characterized. The electron beam transverse profile was measured using a YAG screen and fitted with a Gaussian distribution. During operation, the overlap of the electron and proton beams was achieved using the electron backscattering detector in conjunction with an automated orbit control program.

  6. MeRHIC - staging approach to eRHIC

    SciTech Connect

    Ptitsyn,V.; Beebe-Wang, J.; Ben-Zvi, I.; Deshpande, A.; Fedotov, A.; Hao, Y.; Kayran, D.; Litvinenko, V. N.; Montag, C.; Pozdeyev, E.; Roser, T.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.

    2009-05-04

    Design of a medium energy electron-ion collider (MeRHIC) is under development at the Collider-Accelerator Department at BNL. The design envisions construction of a 4 GeV electron accelerator in a local area inside and near the RHIC tunnel. Electrons will be produced by a polarized electron source and accelerated in energy recovery linacs. Collisions of the electron beam with 100 GeV/u heavy ions or with 250 GeV polarized protons will be arranged in the existing IP2 interaction region of RHIC. The luminosity of electron-proton collisions at the 10{sup 32} cm{sup -2}s{sup -1} level will be achieved with 50 mA CW electron current and presently available proton beam parameters. Efficient proton beam cooling at collision energy may bring the luminosity to 10{sup 33} cm{sup -2}s{sup -1}. An important feature of MeRHIC is that it serves as a first stage of eRHIC, a future electron-ion collider at BNL with both higher luminosity and energy reach. The majority of MeRHIC accelerator components will be used in eRHIC.

  7. Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.; Wikstrom, J. P.

    1999-01-01

    The results of a comparative study of cryogenic insulation systems performed are presented. The key aspects of thermal insulation relative to cryogenic system design, testing, manufacturing, and maintenance are discussed. An overview of insulation development from an energy conservation perspective is given. Conventional insulation materials for cryogenic applications provide three levels of thermal conductivity. Actual thermal performance of standard multilayer insulation (MLI) is several times less than laboratory performance and often 10 times worse than ideal performance. The cost-effectiveness of the insulation system depends on thermal performance; flexibility and durability; ease of use in handling, installation, and maintenance; and overall cost including operations, maintenance, and life cycle. Results of comprehensive testing of both conventional and novel materials such as aerogel composites using cryostat boil-off methods are given. The development of efficient, robust cryogenic insulation systems that operate at a soft vacuum level is the primary focus of this paper.

  8. A study of LC-39 cryogenic systems. Part 1: A study of the vacuum insulated transfer lines at Kennedy Space Center. Part 2: Cooldown pressure surges

    NASA Technical Reports Server (NTRS)

    Ludtke, P. R.; Voth, R. O.

    1971-01-01

    The vacuum liquid hydrogen and liquid oxygen transfer lines at Kennedy Space Center were studied to evaluate the feasibility of using a condensing gas such as CO2 inside the vacuum spaces to achieve a condensing-vacuum. The study indicates that at ambient temperature, a maximum vacuum hyphen space pressure of 4000 microns is acceptable for the LH2 transfer lines. In addition, the cooldown procedures for the 14-inch cross-country liquid oxygen line was studied using a simplified mathematical model. Preliminary cooldown times are presented for various heat leak rates to the line and for two vent configurations.

  9. ABSOLUTE POLARIMETRY AT RHIC.

    SciTech Connect

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  10. Partonic collectivity at RHIC

    NASA Astrophysics Data System (ADS)

    Shi, Shusu

    2009-10-01

    The measurement of event anisotropy, often called v2, provides a powerful tool for studying the properties of hot and dense medium created in high-energy nuclear collisions. The important discoveries of partonic collectivity and the brand-new process for hadronization - quark coalescence were obtained through a systematic analysis of the v2 for 200 GeV Au+Au collisions at RHIC [1]. However, early dynamic information might be masked by later hadronic rescatterings. Multistrange hadrons (φ, ξ and φ) with their large mass and presumably small hadronic cross sections should be less sensitive to hadronic rescattering in the later stage of the collisions and therefore a good probe of the early stage of the collision. We will present the measurement of v2 of π, p, KS^0, λ, ξ, φ and φ in heavy ion collisions. In minimum-bias Au+Au collisions at √sNN = 200 GeV, a significant amount of elliptic flow, almost identical to other mesons and baryons, is observed for φ and φ. Experimental observations of pT dependence of v2 of identified particles at RHIC support partonic collectivity. [4pt] [1] B. I. Abelev et al., (STAR Collaboration), Phys. Rev. C 77, 054901 (2008).

  11. Direct Photons at RHIC

    SciTech Connect

    Gabor,D.

    2008-07-29

    Direct photons are ideal tools to investigate kinematical and thermodynamical conditions of heavy ion collisions since they are emitted from all stages of the collision and once produced they leave the interaction region without further modification by the medium. The PHENIX experiment at RHIC has measured direct photon production in p+p and Au+Au collisions at 200 GeV over a wide transverse momentum (p{sub T}) range. The p+p measurements allow a fundamental test of QCD, and serve as a baseline when we try to disentangle more complex mechanisms producing high p{sub T} direct photons in Au+Au. As for thermal photons in Au+Au we overcome the difficulties due to the large background from hadronic decays by measuring 'almost real' virtual photons which appear as low invariant mass e{sup +}e{sup -} pairs: a significant excess of direct photons is measured above the above next-to-leading order perturbative quantum chromodynamics calculations. Additional insights on the origin of direct photons can be gained with the study of the azimuthal anisotropy which benefits from the increased statistics and reaction plane resolution achieved in RHIC Year-7 data.

  12. Composite Flexible Blanket Insulation

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A. (Inventor); Pitts, William C. (Inventor); Goldstein, Howard E. (Inventor); Sawko, Paul M. (Inventor)

    1991-01-01

    Composite flexible multilayer insulation systems (MLI) were evaluated for thermal performance and compared with the currently used fibrous silica (baseline) insulation system. The systems described are multilayer insulations consisting of alternating layers of metal foil and scrim ceramic cloth or vacuum metallized polymeric films quilted together using ceramic thread. A silicon carbide thread for use in the quilting and the method of making it are also described. These systems are useful in providing lightweight insulation for a variety of uses, particularly on the surface of aerospace vehicles subject to very high temperatures during flight.

  13. RHIC spin flipper commissioning results

    SciTech Connect

    Bai M.; Roser, T.; Dawson, C.; Kewisch, J.; Makdisi, Y.; Oddo, P.; Pai, C.; Pile, P.

    2012-05-20

    The five AC dipole RHIC spin flipper design in the RHIC Blue ring was first tested during the RHIC 2012 polarized proton operation. The advantage of this design is to eliminate the vertical coherent betatron oscillations outside the spin flipper. The closure of each ac dipole vertical bump was measured with orbital response as well as spin. The effect of the rotating field on the spin motion by the spin flipper was also confirmed by measuring the suppressed resonance at Q{sub s} = 1 - Q{sub osc}.

  14. A Prototype Ionization Profile Monitor for RHIC.

    NASA Astrophysics Data System (ADS)

    Connolly, R.; Cameron, P.; Ryan, W.; Shea, T.; Sikora, R.; Tsoupas, N.

    1997-05-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPMs). Each IPM will measure the integrated distribution of electrons in one plane resulting from residual gas ionization during bunch passage. The high space-charge electric field of the beam makes it necessary to image with electrons which are guided by a magnetic field. A prototype detector was tested in the injection line during the RHIC Sextant Test. It consists of a collector circuit board mounted on one side of the beam and a parallel electrode on the other to provide an electric sweep field. The collector board has 48 electrodes oriented parallel to the beam with a chevron microchannel plate amplifier mounted in front of the collection traces. The detector vacuum chamber is placed in the gap of a magnet. At each bunch passage the charge pulses are integrated, amplified, and digitized for display as a profile histogram. This paper describes the prototype detector and gives results from the beam tests.

  15. Breakdown-Resistant RF Connectors for Vacuum

    NASA Technical Reports Server (NTRS)

    Caro, Edward R.; Bonazza, Walter J.

    1987-01-01

    Resilient inserts compensate for insulation shrinkage. Coaxial-cable connector for radio-frequency (RF) energy resists electrical breakdown in vacuum. Used on RF equipment in vacuum chambers as well as in spaceborne radar and communication gear.

  16. Vacuum-Gauge Connection For Shipping Container

    NASA Technical Reports Server (NTRS)

    Henry, Robert H.

    1990-01-01

    External connector enables measurement of vacuum in stored part. Remote-readout connector added to shipping container and connected to thermo-couple vacuum gauge in vacuum-insulated cryogenic line packed in container. Enables monitoring of condition of vacuum without opening container.

  17. FAST AUTOMATED DECOUPLING AT RHIC.

    SciTech Connect

    BEEBE-WANG,J.J.

    2005-05-16

    Coupling correction is essential for the operational performance of RHIC. The independence of the transverse degrees of freedom makes diagnostics and tune control easier, and it is advantageous to operate an accelerator close to the coupling resonance to minimize nearby nonlinear sidebands. An automated coupling correction application iDQmini has been developed for RHIC routine operations. The application decouples RHIC globally by minimizing the tune separation through finding the optimal settings of two orthogonal skew quadrupole families. The program iDQmini provides options of automatic, semi-automatic and manual decoupling operations. It accesses tune information from all RHIC tune measurement systems: the PLL (phase lock loop), the high frequency Schottky system and the tune meter. It also supplies tune and skew quadrupole scans, finding the minimum tune separation, display the real time results and interface with the RHIC control system. We summarize the capabilities of the coupling correction application iDQmini, and discuss the operational protections incorporated in the program.

  18. Spin physics at RHIC

    SciTech Connect

    Tannenbaum, M.J.

    1996-09-06

    Operation of RHIC with two beams of highly polarized protons (70%, either longitudinal or transverse) at high luminosity L = 2 x 10{sup 32} cm{sup -2} sec{sup -1} for two months/year will allow the STAR and PHENIX detectors to perform high statististics studies of polarization phenomena in the perturbative region of hard scattering where both QCD and ElectroWeak theory make detailed predictions for polarization effects. The collision c.m. energy, {radical}s = 200 - 500 GeV, represents a new domain for the study of spin. Direct photon production will be used to measure the gluon polarization in the polarized proton. A new twist comes from W-boson production which is expected to be 100% parity violating and will thus allow measurements of flavor separated Quark and antiquark (u, {bar u}, d, {bar d}) polarization distributions. Searches for parity violation in strong interaction processes such as jet and leading particle production will be a sensitive way to look for new physics beyond the standard model, one possibility being quark substructure.

  19. Stochastic cooling in RHIC

    SciTech Connect

    Brennan J. M.; Blaskiewicz, M.; Mernick, K.

    2012-05-20

    The full 6-dimensional [x,x'; y,y'; z,z'] stochastic cooling system for RHIC was completed and operational for the FY12 Uranium-Uranium collider run. Cooling enhances the integrated luminosity of the Uranium collisions by a factor of 5, primarily by reducing the transverse emittances but also by cooling in the longitudinal plane to preserve the bunch length. The components have been deployed incrementally over the past several runs, beginning with longitudinal cooling, then cooling in the vertical planes but multiplexed between the Yellow and Blue rings, next cooling both rings simultaneously in vertical (the horizontal plane was cooled by betatron coupling), and now simultaneous horizontal cooling has been commissioned. The system operated between 5 and 9 GHz and with 3 x 10{sup 8} Uranium ions per bunch and produces a cooling half-time of approximately 20 minutes. The ultimate emittance is determined by the balance between cooling and emittance growth from Intra-Beam Scattering. Specific details of the apparatus and mathematical techniques for calculating its performance have been published elsewhere. Here we report on: the method of operation, results with beam, and comparison of results to simulations.

  20. Electron Cooling of RHIC

    SciTech Connect

    I. Ben-Zvi; D.S. Barton; D.B. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X.Y. Chang; R. Connolly; Yu.I. Eidelman; A.V. Fedotov; W. Fischer; D.M. Gassner; H. Hahn; M. Harrison; A. Hershcovitch; H.-C. Hseuh; A.K. Jain; P.D.J. Johnson; D. Kayran; J. Kewisch; R.F. Lambiase; V. Litvinenko; W.W. MacKay; G.J. Mahler; N. Malitsky; G.T. McIntyre; W. Meng; K.A.M. Mirabella; C. Montag; T.C.N. Nehring; T. Nicoletti; B. Oerter; G. Parzen; D. Pate; J. Rank; T. Rao; T. Roser; T. Russo; J. Scaduto; K. Smith; D. Trbojevic; G. Wang; J. Wei; N.W.W. Williams; K.-C. Wu; V. Yakimenko; A. Zaltsman; Y. Zhao; D.T. Abell; D.L. Bruhwiler; H. Bluem; A. Burger; M.D. Cole; A.J. Favale; D. Holmes; J. Rathke; T. Schultheiss; A.M.M. Todd; A.V. Burov; S. Nagaitsev; J.R. Delayen; Y.S. Derbenev; L. W. Funk; P. Kneisel; L. Merminga; H.L. Phillips; J.P. Preble; I. Koop; V.V. Parkhomchuk; Y.M. Shatunov; A.N. Skrinsky; I. Koop; V.V. Parkhomchuk; Y.M. Shatunov; A.N. Skrinsky; J.S. Sekutowicz

    2005-05-16

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.agsrhichome.bnl.gov/eCool/.

  1. The RHIC Injection Kicker

    NASA Astrophysics Data System (ADS)

    Hahn, H.; Tuozzolo, J. E.; Tsoupas, N.

    1997-05-01

    Beam transfer from the AGS to RHIC is performed in single-bunch mode. Close spacing of the bunches in the collider requires an injection kicker with a rise time of <95 nsec, suggesting adoption of a travelling wave solution. The required vertical kick of 0.186 T.m is provided by 4 units, each 1.12 m long with a 48.4× 48.4 mm aperture and operated at 1.6 kA. The kicker is constructed as a ``C'' cross section magnet, in which ferrite and high-permittivity ( ~ 100) dielectric sections alternate. The dielectric blocks provide the capacity necessary for the nominally 25 Ohm characteristic impedance of the travelling wave structure, but impose the practical limit on the peak voltage, and thus current, achievable. Computer studies to minimize local electric field enhancements resulted in a configuration capable of holding >50 kV, with adequate safety margin over the nominal 40 kV. Tests indicated the possibility of lowering the nominal voltage by operating mismatched into 20 Ohm terminations without degrading the pulse shape. In this paper, the experience gained in the fabrication of the four kicker units for the ``Sextant Test'' and the results from various single-unit tests and operation in beam are reported.

  2. The RHIC injection kicker

    SciTech Connect

    Hahn, H.; Tsoupas, N.; Tuozzolo, J.E.

    1997-07-01

    Beam transfer from the AGS to RHIC is performed in single-bunch mode. Close spacing of the bunches in the collider requires an injection kicker with a rise time of <90 nsec, suggesting adoption of a travelling wave structure. The required vertical kick of 0.186 t{center_dot}m is provided by 4 magnets, each 1.12 m long with a 48.4 x 48.4 mm aperture and operated at 1.6 kA. The kicker is constructed as a {open_quotes}C{close_quotes} cross section magnet, in which ferrite and high-permittivity dielectric sections alternate. The dielectric blocks provide the capacity necessary for the nominally 25 {Omega} characteristic impedance of the travelling wave structure, but impose the practical limit on the peak voltage, and thus current, achievable. Computer studies to minimize local electric field enhancements resulted in a configuration capable of holding {approximately} 50 kV, with adequate safety margin over the nominal 40 kV. Equivalent circuit analysis indicated the possibility of lowering the nominal voltage by operating mismatched into 20 {Omega} terminations without degrading the pulse shape. In this paper, the experience gained in the fabrication of the production units and the results from various single-unit tests and operation of four kickers with beam in the {open_quotes}Sextant Test{close_quotes} are reported.

  3. RESEARCH PLAN FOR SPIN PHYSICS AT RHIC.

    SciTech Connect

    AIDALA, C.; BUNCE, G.; ET AL.

    2005-02-01

    In this report we present the research plan for the RHIC spin program. The report covers (1) the science of the RHIC spin program in a world-wide context; (2) the collider performance requirements for the RHIC spin program; (3) the detector upgrades required, including timelines; (4) time evolution of the spin program.

  4. Configuration Manual Polarized Proton Collider at RHIC

    SciTech Connect

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S. Y.; Luccio, A.; MacKay, W. W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Svirida, D.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.

    2006-01-01

    In this report we present our design to accelerate and store polarized protons in RHIC, with the level of polarization, luminosity, and control of systematic errors required by the approved RHIC spin physics program. We provide an overview of the physics to be studied using RHIC with polarized proton beams, and a brief description of the accelerator systems required for the project.

  5. CONFIGURATION MANUAL POLARIZED PROTON COLLIDER AT RHIC.

    SciTech Connect

    ROSER,T.; MACKAY,W.W.; ALEKSEEV,I.; BAI,M.; BROWN,K.; BUNCE,G.; CAMERON,P.; COURANT,E.; ET AL.

    2001-03-01

    In this report, the authors present their design to accelerate and store polarized protons in RHIC, with the level of polarization, luminosity, and control of systematic errors required by the approved RHIC spin physics program. They provide an overview of the physics to be studied using RHIC with polarized proton beams, and a brief description of the accelerator systems required for the project.

  6. Ion optics of RHIC EBIS

    SciTech Connect

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

    2011-09-10

    RHIC EBIS has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  7. Superconducting Storage Cavity for RHIC

    SciTech Connect

    Ben-Zvi,I.

    2009-01-02

    This document provides a top-level description of a superconducting cavity designed to store hadron beams in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It refers to more detailed documents covering the various issues in designing, constructing and operating this cavity. The superconducting storage cavity is designed to operate at a harmonic of the bunch frequency of RHIC at a relatively low frequency of 56 MHz. The current storage cavities of RHIC operate at 197 MHz and are normal-conducting. The use of a superconducting cavity allows for a high gap voltage, over 2 MV. The combination of a high voltage and low frequency provides various advantages stemming from the resulting large longitudinal acceptance bucket.

  8. BEAM DIFFUSION MEASUREMENTS AT RHIC.

    SciTech Connect

    FLILLER,R.P.,IIIDREES,A.GASSNER,D.MCINTYRE,G.PEGGS,S.TRBOJEVIC,D.

    2003-05-12

    During a store, particles from the beam core continually diffuse outwards into the halo through a variety of mechanisms. Understanding the diffusion rate as a function of particle amplitude can help discover which processes are important to halo growth. A collimator can be used to measure the amplitude growth rate as a function of the particle amplitude. In this paper we present results of diffusion measurements performed at the Relativistic Heavy Ion Collider (RHIC) with fully stripped gold ions, deuterons, and protons. We compare these results with measurements from previous years, and simulations, and discuss any factors that relate to beam growth in RHIC.

  9. POLARIZED NEUTRONS IN RHIC

    SciTech Connect

    COURANT,E.D.

    1998-04-27

    There does not appear to be any obvious way to accelerate neutrons, polarized or otherwise, to high energies by themselves. To investigate the behavior of polarized neutrons the authors therefore have to obtain them by accelerating them as components of heavier nuclei, and then sorting out the contribution of the neutrons in the analysis of the reactions produced by the heavy ion beams. The best neutron carriers for this purpose are probably {sup 3}He nuclei and deuterons. A polarized deuteron is primarily a combination of a proton and a neutron with their spins pointing in the same direction; in the {sup 3}He nucleus the spins of the two protons are opposite and the net spin (and magnetic moment) is almost the same as that of a free neutron. Polarized ions other than protons may be accelerated, stored and collided in a ring such as RHIC provided the techniques proposed for polarized proton operation can be adapted (or replaced by other strategies) for these ions. To accelerate polarized particles in a ring, one must make provisions for overcoming the depolarizing resonances that occur at certain energies. These resonances arise when the spin tune (ratio of spin precession frequency to orbit frequency) resonates with a component present in the horizontal field. The horizontal field oscillates with the vertical motion of the particles (due to vertical focusing); its frequency spectrum is dominated by the vertical oscillation frequency and its modulation by the periodic structure of the accelerator ring. In addition, the magnet imperfections that distort the closed orbit vertically contain all integral Fourier harmonics of the orbit frequency.

  10. Lightweight Electrical Insulation

    NASA Technical Reports Server (NTRS)

    Schroeder, J. E.

    1985-01-01

    Hollow plastic spheres expanded and fused together. Hollow, gasfilled plastic spheres piled in mold. Heating in vacuum softens and expands spheres, forcing them together into nearly regular hexagonal close packing. Foam used as lightweight, electrically insulating material in place of solid ceramic, glass, or polymer. Padding to protect against mechanical shocks another application for such dense, regular foam.

  11. Method and apparatus for filling thermal insulating systems

    DOEpatents

    Arasteh, Dariush K.

    1992-01-01

    A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air.

  12. Method and apparatus for filling thermal insulating systems

    DOEpatents

    Arasteh, D.K.

    1992-01-14

    A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air. 3 figs.

  13. RHIC BBLR measurements in 2009

    SciTech Connect

    Calaga, R.; Robert-Demolaize, G.; Fischer, W.

    2010-05-23

    Long range beam-beam experiments were conducted during the Run 2009 in the Yellow and the Blue beams of the RHIC accelerator with DC wires. The effects of a long-range interaction with a DC wire on colliding and non-colliding bunches with the aid of beam losses, orbits, tunes were studied. Results from distance scans and an attempt to compensate a long-range interaction with a DC wire is presented. Two DC wires in the vertical plane were installed in the RHIC accelerator in 2006 with the aim of investigating long range (LR) beam-beam effects and a potential compensation. Extensive experiments were conducted focusing mainly on the effect of a wire on single ion beams from 2006-2009. A unique opportunity to compare the effect of the wire on colliding beams and compensation of a single LR beam-beam interaction were conducted in Run2009 with protons at 100 GeV. Due to aperture considerations for decreasing {beta}*, the Blue wire was removed during the shutdown after the Run2009 and the Yellow wire is foreseen to be removed in the near future. Therefore, these experiments serve as the final set of measurements for LR beam-beam with RHIC as a test bed. The relevant RHIC beam and lattice parameters are listed in Table 1 for the experiments in Run2009.

  14. DEVELOPMENT OF NEG COATING FOR RHIC EXPERIMENTAL BEAMTUBES.

    SciTech Connect

    WEISS, D.; HE, P.; HSEUH, H.C.; TODD, R.

    2005-05-16

    As RHIC beam intensity increases beyond original scope, pressure rises have been observed in some regions. The luminosity limiting pressure rises are associated with electron multi-pacting, electron stimulated desorption and beam induced desorption. Non-Evaporable Getter (NEG) coated beamtubes have been proven effective to suppress pressure rise in synchrotron radiation facilities. Standard beamtubes have been NEG coated by a vendor and added to many RHIC UHV regions. BNL is developing a cylindrical magnetron sputtering system to NEG coat special beryllium beamtubes installed in RHIC experimental regions, It features a hollow, liquid cooled cathode producing power density of 500 W/m and deposition rate of 5000 Angstrom/hr on 7.5cm OD beamtube. The cathode, a titanium tube partially covered with zirconium and vanadium ribbons, is oriented for horizontal coating of 4m long chambers. Ribbons and magnets are arranged to provide uniform sputtering distribution and deposited NEG composition. Vacuum performance of NEG coated tubes was measured. Coating was analyzed with energy dispersion spectroscopy, auger electron spectroscopy and scanning electron microscopy. System design, development, and analysis results are presented.

  15. Residual gas fluorescence monitor for relativistic heavy ions at RHIC

    NASA Astrophysics Data System (ADS)

    Tsang, T.; Gassner, D.; Minty, M.

    2013-10-01

    A residual gas fluorescence beam profile monitor at the Relativistic Heavy Ion Collider (RHIC) has successfully recorded beam images of various species of relativistic heavy ions during FY2012 operations. These fully striped ions include gold, copper, and uranium at 100, 99.9, and 96.4GeV/n, respectively. Their beam profiles give an independent measurement of the RHIC beam size and emittance. We estimated their corresponding fluorescence cross sections to be 2.1×10-16, 1.8×10-17, and 2.6×10-16cm2, and obtained their rms transverse beam sizes of 0.36, 0.37, 0.24 mm for gold, copper, and uranium ions, respectively. They are the smallest ion beam width, thus lowest beam emittance, ever produced at RHIC or any other high-energy heavy ion colliders. These extremely small beam sizes may have reached a fundamental limit to residual gas fluorescence based beam profile monitor. Nevertheless, this beam diagnostic technique, utilizing the beam-induced fluorescence from residual gas where hydrogen is still the dominant constituent in nearly all vacuum systems, represents a passive, robust, truly noninvasive, monitor for high-energy ion beams.

  16. Advances in Microsphere Insulation Systems

    NASA Astrophysics Data System (ADS)

    Allen, M. S.; Baumgartner, R. G.; Fesmire, J. E.; Augustynowicz, S. D.

    2004-06-01

    Microsphere insulation, typically consisting of hollow glass bubbles, combines in a single material the desirable properties that other insulations only have individually. The material has high crush strength, low density, is noncombustible, and performs well in soft vacuum. Microspheres provide robust, low-maintenance insulation systems for cryogenic transfer lines and dewars. They also do not suffer from compaction problems typical of perlite that result in the necessity to reinsulate dewars because of degraded thermal performance and potential damage to its support system. Since microspheres are load bearing, autonomous insulation panels enveloped with lightweight vacuum-barrier materials can be created. Comprehensive testing performed at the Cryogenics Test Laboratory located at the NASA Kennedy Space Center demonstrated competitive thermal performance with other bulk materials. Test conditions were representative of actual-use conditions and included cold vacuum pressure ranging from high vacuum to no vacuum and compression loads from 0 to 20 psi. While microspheres have been recognized as a legitimate insulation material for decades, actual implementation has not been pursued. Innovative microsphere insulation system configurations and applications are evaluated.

  17. R&D ERL: Vacuum

    SciTech Connect

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the {approx}10{sup -9} torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2{sup o}K is reduced to low 10{sup -11} torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The

  18. Physics with tagged forward protons at RHIC

    SciTech Connect

    Yip,K.

    2009-08-30

    The physics reach of the STAR detector at RHIC has been extended to include elastic and inelastic diffraction measurements with tagged forward protons. This program has started at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run.

  19. RHIC Sextant Test -- Physics and performance

    SciTech Connect

    Wei, J.; Fischer, W.; Ahrens, L.

    1997-07-01

    This paper presents beam physics and machine performance results of the Relativistic Heavy Ion Collider (RHIC) Sextant and AGS-to-RHIC (AtR) transfer line during the Sextant Test in early 1997. Techniques used to measure both machine properties (difference orbits, dispersion, and beamline optics) and beam parameters (energy, intensity, transverse and longitudinal emittances) are described. Good agreement was achieved between measured and design lattice optics. The gold ion beam quality was shown to approach RHIC design requirements.

  20. RHIC PERFORMANCE AND FUTURE PLANS

    SciTech Connect

    FISCHER,W.

    2004-10-10

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, consisting of two 3.8 km long superconducting rings, was commissioned in 1999. Since then the machine collided fully stripped gold ions at five different energies, up to 100 GeV/u, deuterons with gold ions at 100 GeV/u, and protons at 100 GeV with a beam polarizations of up 45%. Over four operating periods the heavy ion luminosity has increased by two orders of magnitude, and now exceeds the design value by a factor of 2. Another factor of 2 is targeted for the next 4 years, as well as a more than 10-fold increase in the proton luminosity and a 2-fold increase in the polarization. Possible further upgrades include an Electron Beam Ion Source (EBIS), stochastic and electron cooling, and an electron ring to form an electron-ion collider (eRHIC).

  1. Workshop on the RHIC performance

    SciTech Connect

    Khiari, F.; Milutinovic, J.; Ratti, A.; Rhoades-Brown, M.J.

    1988-07-01

    The most recent conceptual design manual for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven was published in May 1986 (BNL 51932). The purpose of this workshop was to review the design specifications in this RHIC reference manual, and to discuss in detail possible improvements in machine performance by addressing four main areas. These areas are beam-beam interactions, stochastic cooling, rf and bunch instabilities. The contents of this proceedings are as follows. Following an overview of the workshop, in which the motivation and goals are discussed in detail, transcripts of the first day talks are given. Many of these transcripts are copies of the original transparencies presented at the meeting. The following four sections contain contributed papers, that resulted from discussions at the workshop within each of the four working groups. In addition, there is a group summary for each of the four working groups at the beginning of each section. Finally, a list of participants is given.

  2. Beam emittance measurements in RHIC

    SciTech Connect

    Zelenski,A.; Bazilevsky, A.; Bunce, G.; Gill, R.; Huang, H.; Makdisi, Y.; Morozov, B.; Nemesure, S.; Russo, t.; Steski, D.; Sivertz, M.

    2009-05-04

    The RHIC proton polarimeters can operate in scanning mode, giving polarization profiles and transverse beam intensity profile (beam emittance) measurements. The polarimeters function as wire scanners, providing a very good signal/noise ratio and high counting rate. This allows accurate bunch-by-bunch emittance measurements during fast target sweeps (<1 s) through the beam. Very thin carbon strip targets make these measurements practically non-destructive. Bunch by bunch emittance measurements are a powerful tool for machine set-up; in RHIC, individual proton beam transverse emittances can only be measured by CNI polarimeter scans. We discuss the consistency of these measurements with Ionization Profile Monitors (IPMs) and vernier scan luminosity measurements. Absolute accuracy limitations and cross-calibration of different techniques are also discussed.

  3. The PHENIX experiment at RHIC

    SciTech Connect

    Morrison, D.P.; Akiba, Y.; Alford, O.; PHENIX Collaboration

    1997-12-01

    The primary goals of the heavy-ion program of the PHENIX collaboration are the detection of the quark-gluon plasma and the subsequent characterization of its physical properties. To address these aims, PHENIX will pursue a wide range of high energy heavy-ion physics topics. The breadth of the physics program represents the expectation that it will require the synthesis of a number of measurements to investigate the physics of the quark-gluon plasma. The broad physics agenda of the collaboration is also reflected in the design of the PHENIX detector itself, which is capable of measuring hadrons, leptons and photons with excellent momentum and energy resolution. PHENIX has chosen to instrument a selective acceptance with multiple detector technologies to provide very discriminating particle identification abilities. Additionally, PHENIX will take advantage of RHIC`s capability to collide beams of polarized protons with a vigorous spin physics program, a subject covered in a separable contribution to these proceedings.

  4. Polarized proton beams in RHIC

    SciTech Connect

    Zelenski, A.

    2010-10-04

    The polarized beam for RHIC is produced in the optically-pumped polarized H{sup -} ion source and then accelerated in Linac to 200 MeV for strip-injection to Booster and further accelerated 24.3 GeV in AGS for injection in RHIC. In 2009 Run polarized protons was successfully accelerated to 250 GeV beam energy. The beam polarization of about 60% at 100 GeV beam energy and 36-42% at 250 GeV beam energy was measured with the H-jet and p-Carbon CNI polarimeters. The gluon contribution to the proton spin was studied in collisions of longitudinally polarized proton beams at 100 x 100 GeV. At 250 x 250 GeV an intermediate boson W production with the longitudinally polarized beams was studied for the first time.

  5. Monolithic readout circuits for RHIC

    SciTech Connect

    O`Connor, P.; Harder, J.

    1991-12-31

    Several CMOS ASICs have been developed for a proposed RHIC experiment. This paper discusses why ASIC implementation was chosen for certain functions, circuit specifications and the design techniques used to meet them, and results of simulations and early prototypes. By working closely together from an early stage in the planning process, in-house ASIC designers and detector and data acquisition experimenters can achieve optimal use of this important technology.

  6. The STAR experiment at RHIC

    SciTech Connect

    Marx, J.N.; STAR Collaboration

    1994-01-01

    STAR (Solenoidal Tracker at RHIC) will be one of two large, sophisticated experiments ready to take data when the Relativistic Heavy Ion Collider (RHIC) comes on-line in 1999. The design of STAR, its construction and commissioning and the physics program using the detector are the responsibility of a collaboration of over 250 members from 30 institutions, world-wide. The overall approach of the STAR Collaboration to the physics challenge of studying collisions of highly relativistic nuclei is to focus on measurements of the properties of the many hadrons produced in the collisions. The STAR detector is optimized to detect and identify hadrons over a large solid angle so that individual events can be characterized, in detail, based on their hadronic content. The broad capabilities of the STAR detector will permit an examination of a wide variety of proposed signatures for the Quark Gluon Plasma (QGP), using the sample of events which, on an event-by-event basis, appear to come from collisions resulting in a large energy density over a nuclear volume. In order to achieve this goal, the STAR experiment is based on a solenoid geometry with tracking detectors using the time projection chamber approach and covering a large range of pseudo-rapidity so that individual tracks can be seen within the very high track density expected in central collisions at RHIC. STAR also uses particle identification by the dE/dx technique and by time-of-flight. Electromagnetic energy is detected in a large, solid-angle calorimeter. The construction of STAR, which will be located in the Wide Angle Hall at the 6 o`clock position at RHIC, formally began in early 1993.

  7. High intensity protons in RHIC

    SciTech Connect

    Montag, C.; Ahrens, L.; Blaskiewicz, M.; Brennan, J. M.; Drees, K. A.; Fischer, W.; Huang, H.; Minty, M.; Robert-Demolaize, G.; Thieberger, P.; Yip, K.

    2012-01-05

    During the 2012 summer shutdown a pair of electron lenses will be installed in RHIC, allowing the beam-beam parameter to be increased by roughly 50 percent. To realize the corresponding luminosity increase bunch intensities have to be increased by 50 percent, to 2.5 {center_dot} 10{sup 11} protons per bunch. We list the various RHIC subsystems that are most affected by this increase, and propose beam studies to ensure their readiness. The proton luminosity in RHIC is presently limited by the beam-beam effect. To overcome this limitation, electron lenses will be installed in IR10. With the help of these devices, the headon beam-beam kick experienced during proton-proton collisions will be partially compensated, allowing for a larger beam-beam tuneshift at these collision points, and therefore increasing the luminosity. This will be accomplished by increasing the proton bunch intensity from the presently achieved 1.65 {center_dot} 10{sup 11} protons per bunch in 109 bunches per beam to 2.5 {center_dot} 10{sup 11}, thus roughly doubling the luminosity. In a further upgrade we aim for bunch intensities up to 3 {center_dot} 10{sup 11} protons per bunch. With RHIC originally being designed for a bunch intensity of 1 {center_dot} 10{sup 11} protons per bunch in 56 bunches, this six-fold increase in the total beam intensity by far exceeds the design parameters of the machine, and therefore potentially of its subsystems. In this note, we present a list of major subsystems that are of potential concern regarding this intensity upgrade, show their demonstrated performance at present intensities, and propose measures and beam experiments to study their readiness for the projected future intensities.

  8. Load responsive multilayer insulation performance testing

    SciTech Connect

    Dye, S.; Kopelove, A.; Mills, G. L.

    2014-01-29

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI.

  9. RHIC stochastic cooling motion control

    SciTech Connect

    Gassner, D.; DeSanto, L.; Olsen, R.H.; Fu, W.; Brennan, J.M.; Liaw, CJ; Bellavia, S.; Brodowski, J.

    2011-03-28

    Relativistic Heavy Ion Collider (RHIC) beams are subject to Intra-Beam Scattering (IBS) that causes an emittance growth in all three-phase space planes. The only way to increase integrated luminosity is to counteract IBS with cooling during RHIC stores. A stochastic cooling system for this purpose has been developed, it includes moveable pick-ups and kickers in the collider that require precise motion control mechanics, drives and controllers. Since these moving parts can limit the beam path aperture, accuracy and reliability is important. Servo, stepper, and DC motors are used to provide actuation solutions for position control. The choice of motion stage, drive motor type, and controls are based on needs defined by the variety of mechanical specifications, the unique performance requirements, and the special needs required for remote operations in an accelerator environment. In this report we will describe the remote motion control related beam line hardware, position transducers, rack electronics, and software developed for the RHIC stochastic cooling pick-ups and kickers.

  10. Theoretical Status of the RHIC Program

    SciTech Connect

    Jalilian-Marian, Jamal

    2006-09-25

    Since the beginning of its operation, the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Lab has produced a wealth of exciting and interesting results. I give a brief overview of the theoretical aspects of the main results from the RHIC program.

  11. Heavy Ion Physics in eRHIC

    SciTech Connect

    Jalilian-Marian, Jamal

    2005-10-06

    We review the physics of gluon saturation in heavy ions at small x and consider the applications of Color Glass Condensate formalism to Deep Inelastic Scattering (DIS) of leptons on nuclei and discuss the overlapping physics between high energy heavy ion collisions at RHIC and DIS in eRHIC.

  12. Elastic proton-proton scattering at RHIC

    SciTech Connect

    Yip, K.

    2011-09-03

    Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.

  13. Anisotropic flow at the SPS and RHIC

    SciTech Connect

    Poskanzer, Arthur M.

    2001-10-19

    The results on directed and elliptic flow for Pb + Pb at the full energy of the SPS (158 GeV/A) and from the first year of Au + Au at RHIC ({radical}s{sub NN} = 130 GeV) are reviewed. The different experiments agree well and a consistent picture has emerged indicating early time thermalization at RHIC.

  14. FAST IR ORBIT FEEDBACK AT RHIC.

    SciTech Connect

    MONTAG, C.; MICHNOFF, R.; SATOGATA, T.; ET AL.

    2005-05-16

    Mechanical low-{beta} triplet vibrations lead to horizontal jitter of RHIC beams at frequencies around 10 Hz. The resulting beam offsets at the interaction points are considered detrimental to RHIC luminosity performance. To stabilize beam orbits at the interaction points, installation of a fast orbit feedback is foreseen. A prototype of this system is being developed and tested. Recent results will be presented.

  15. RHIC sextant test: Accelerator systems and performance

    SciTech Connect

    Pilat, F.; Trbojevic, D.; Ahrens, L.

    1997-08-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning.

  16. THE COLOR GLASS CONDENSATE, RHIC AND HERA.

    SciTech Connect

    MCLERRAN,L.

    2002-04-30

    In this talk, I discuss a universal form of matter, the Color Glass Condensate. It is this matter which composes the low x part of all hadronic wavefunctions. The experimental programs at RHIC and HERA, and future programs at LHC and eRHIC may allow us to probe and study the properties of this matter.

  17. Vacuum force

    NASA Astrophysics Data System (ADS)

    Han, Yongquan

    2015-03-01

    To study on vacuum force, we must clear what is vacuum, vacuum is a space do not have any air and also ray. There is not exist an absolute the vacuum of space. The vacuum of space is relative, so that the vacuum force is relative. There is a certain that vacuum vacuum space exists. In fact, the vacuum space is relative, if the two spaces compared to the existence of relative vacuum, there must exist a vacuum force, and the direction of the vacuum force point to the vacuum region. Any object rotates and radiates. Rotate bend radiate- centripetal, gravity produced, relative gravity; non gravity is the vacuum force. Gravity is centripetal, is a trend that the objects who attracted wants to Centripetal, or have been do Centripetal movement. Any object moves, so gravity makes the object curve movement, that is to say, the radiation range curve movement must be in the gravitational objects, gravity must be existed in non vacuum region, and make the object who is in the region of do curve movement (for example: The earth moves around the sun), or final attracted in the form gravitational objects, and keep relatively static with attract object. (for example: objects on the earth moves but can't reach the first cosmic speed).

  18. Global Orbit Feedback in RHIC

    SciTech Connect

    Minty, M.; Hulsart, R.; Marusic, A.; Michnoff, R.; Ptitsyn, V.; Robert-Demolaize, G.; Satogata, T.

    2010-05-23

    For improved reproducibility of good operating conditions and ramp commissioning efficiency, new dual-plane slow orbit feedback during the energy ramp was implemented during run-10 in the Relativistic Heavy Ion Collider (RHIC). The orbit feedback is based on steering the measured orbit, after subtraction of the dispersive component, to either a design orbit or to a previously saved reference orbit. Using multiple correctors and beam position monitors, an SVD-based algorithm is used for determination of the applied corrections. The online model is used as a basis for matrix computations. In this report we describe the feedback design, review the changes made to realize its implementation, and assess system performance.

  19. TRANSVERSE ECHO MEASUREMENTS IN RHIC.

    SciTech Connect

    FISCHER, W.

    2005-09-18

    Diffusion counteracts cooling and the knowledge of diffusion rates is important for the calculation of cooling times and equilibrium beam sizes. Echo measurements are a potentially sensitive method to determine diffusion rates, and longitudinal measurements were done in a number of machines. We report on transverse echo measurements in RHIC and the observed dependence of echo amplitudes on a number of parameters for beams of gold and copper ions, and protons. In particular they examine the echo amplitudes of gold and copper ion bunches of varying intensity, which exhibit different diffusion rates from intrabeam scattering.

  20. Surprises in the RHIC data

    SciTech Connect

    Thomas, J.H.

    2003-05-22

    The data from RHIC have produced many unanticipated results. I will describe a few of the surprises that occur in the soft spectra while my colleagues at this conference will summarize the hard spectra. One particularly important discovery is that properties of the initial state have an impact on the final state in relativistic heavy ion collisions. Another important discovery is that the collision zone is opaque to the passage of hadrons and perhaps even partons. And finally, the data tell us very precisely where the colliding systems hadronize on the phase diagram for nuclear matter.

  1. RHIC warm-bore systems

    SciTech Connect

    Welch, K.M.

    1994-07-01

    Pressure profiles, in time, are calculated as a consequence of anticipated outgassing of various beam components (e.g., rf cavities, etc.) and warm-bore beam pipes. Gold beam lifetimes and transverse beam emittance growth are given for calculated average pressures. Examples of undesirable warm-bore conditions are presented such as contaminated experimental beam pipes and warm-bore magnets (i.e., DX). These examples may prove instructive. The methods used in making these calculations are presented in Section 2. They are applicable to all linear systems. The calculations given apply to the RHIC accelerator and more specifically to warm-bore regions of the machine.

  2. Transverse Echo Measurements in RHIC

    SciTech Connect

    Fischer, Wolfram

    2006-03-20

    Diffusion counteracts cooling and the knowledge of diffusion rates is important for the calculation of cooling times and equilibrium beam sizes. Echo measurements are a potentially sensitive method to determine diffusion rates, and longitudinal measurements were done in a number of machines. We report on transverse echo measurements in RHIC and the observed dependence of echo amplitudes on a number of parameters for beams of gold and copper ions, and protons. In particular we examine the echo amplitudes of gold and copper ion bunches of varying intensity, which exhibit different diffusion rates from intrabeam scattering.

  3. Multipurpose Thermal Insulation Test Apparatus

    NASA Technical Reports Server (NTRS)

    Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)

    2002-01-01

    A multi-purpose thermal insulation test apparatus is used for testing insulation materials, or other components. The test apparatus is a fluid boil-off calorimeter system for calibrated measurement of the apparent thermal conductivity (k-value) of a specimen material at a fixed vacuum level. The apparatus includes an inner vessel for receiving a fluid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the inner vessel and thermal guards, is suspended from the top of the vacuum chamber. Handling tools attach to the cold mass assembly for convenient manipulation of the assembly and for the installation or wrapping of insulation test materials. Liquid nitrogen is typically supplied to the inner vessel using a fill tube with funnel. A single port through the top of the vacuum chamber facilitates both filling and venting. Aerogel composite stacks with reflective films are fastened to the top and the bottom of the inner vessel as thermal guards. The comparative k-value of the insulation material is determined by measuring the boil-off flow rate of gas, the temperature differential across the insulation thickness, and the dimensions (length and diameters) of the test specimen.

  4. Thermal Insulation Test Apparatuses

    NASA Technical Reports Server (NTRS)

    Berman, Brion

    2005-01-01

    The National Aeronautics and Space Administration (NASA) seeks to license its Thermal Insulation Test Apparatuses. Designed by the Cryogenics Test Laboratory at the John F. Kennedy Space Center (KSC) in Florida, these patented technologies (U.S. Patent Numbers: Cryostat 1 - 6,742,926, Cryostat 2 - 6,487,866, and Cryostat 4 - 6,824,306) allow manufacturers to fabricate and test cryogenic insulation at their production and/or laboratory facilities. These new inventions allow for the thermal performance characterization of cylindrical and flat specimens (e.g., bulk-fill, flat-panel, multilayer, or continuously rolled) over the full range of pressures, from high vacuum to no vacuum, and over the full range of temperatures from 77K to 300K. In today's world, efficient, low-maintenance, low-temperature refrigeration is taking a more significant role, from the food industry, transportation, energy, and medical applications to the Space Shuttle. Most countries (including the United States) have laws requiring commercially available insulation materials to be tested and rated by an accepted methodology. The new Cryostat methods go beyond the formal capabilities of the ASTM methods to provide testing for real systems, including full-temperature differences plus full-range vacuum conditions.

  5. RHIC GAMMA TRANSITION JUMP POWER SUPPLY PROTOTYPE TEST.

    SciTech Connect

    MI,J.; GANETIS,G.; LOUIE,W.; BRUNO,D.; ZAPASEK,R.; SANDBERG,J.; ZHANG,W.

    2001-06-18

    This paper describes the principle and test results of the prototype RHIC Gamma Transition Jump Power Supply. The jump power supply principle is introduced and illustrated along with diagrams in this paper. The prototype is built with Insulated Gate Bipolar Transistors (IGBT) as current direction switch components. Optically coupled IGBT drivers are used for the jump control switch. The jump time among the power supplies is synchronized from 40 to 60 milliseconds to meet the RHIC beam transition-crossing requirement. The short jump time is needed to avoid particle loss and to preserve the initial bunch area during the transition, thus successfully transferring the ion beams from the acceleration RF system to storage system. There are a total of twenty four jump power supplies that will be used. They synchronously switch the direction of the magnets current while the beam is being accelerated through the transition to reach the top storage energy. Each power supply will energize a group of super conducting magnets, which consists of four magnets that are connected in series. At the end, test results are listed, accompanied with the dummy load current waveform and prototype power supply picture.

  6. Robust Multilayer Insulation for Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Augustynowicz, S. D.; Scholtens, B. E.

    2008-03-01

    New requirements for thermal insulation include robust Multilayer insulation (MLI) systems that work for a range of environments from high vacuum to no vacuum. Improved MLI systems must be simple to install and maintain while meeting the life-cycle cost and thermal performance objectives. Performance of actual MLI systems has been previously shown to be much worse than ideal MLI. Spacecraft that must contain cryogens for both lunar service (high vacuum) and ground launch operations (no vacuum) are planned. Future cryogenic spacecraft for the soft vacuum environment of Mars are also envisioned. Industry products using robust MLI can benefit from improved cost-efficiency and system safety. Novel materials have been developed to operate as excellent thermal insulators at vacuum levels that are much less stringent than the absolute high vacuum requirement of current MLI systems. One such robust system, Layered Composite Insulation (LCI), has been developed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. The experimental testing and development of LCI is the focus of this paper. LCI thermal performance under cryogenic conditions is shown to be six times better than MLI at soft vacuum and similar to MLI at high vacuum. The experimental apparent thermal conductivity (k-value) and heat flux data for LCI systems are compared with other MLI systems.

  7. Robust Multilayer Insulation for Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Scholtens, B. F.; Augustynowicz, S. D.

    2007-01-01

    New requirements for thermal insulation include robust Multilayer insulation (MU) systems that work for a range of environments from high vacuum to no vacuum. Improved MLI systems must be simple to install and maintain while meeting the life-cycle cost and thermal performance objectives. Performance of actual MLI systems has been previously shown to be much worse than ideal MLI. Spacecraft that must contain cryogens for both lunar service (high vacuum) and ground launch operations (no vacuum) are planned. Future cryogenic spacecraft for the soft vacuum environment of Mars are also envisioned. Industry products using robust MLI can benefit from improved cost-efficiency and system safety. Novel materials have been developed to operate as excellent thermal insulators at vacuum levels that are much less stringent than the absolute high vacuum requirement of current MLI systems. One such robust system, Layered Composite Insulation (LCI), has been developed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. The experimental testing and development of LCI is the focus of this paper. LCI thermal performance under cryogenic conditions is shown to be six times better than MLI at soft vacuum and similar to MLI at high vacuum. The experimental apparent thermal conductivity (k-value) and heat flux data for LCI systems are compared with other MLI systems.

  8. HIGH PERFORMANCE EBIS FOR RHIC.

    SciTech Connect

    ALESSI,J.; BEEBE, E.; GOULD, O.; KPONOU, A.; LOCKEY, R.; PIKIN, A.; RAPARIA, D.; RITTER, J.; SNYDSTRUP, L.

    2007-06-25

    An Electron Beam Ion Source (EBIS), capable of producing high charge states and high beam currents of any heavy ion species in short pulses, is ideally suited for injection into a synchrotron. An EBIS-based, high current, heavy ion preinjector is now being built at Brookhaven to provide increased capabilities for the Relativistic Heavy Ion Collider (RHIC), and the NASA Space Radiation Laboratory (NSRL). Benefits of the new preinjector include the ability to produce ions of any species, fast switching between species to serve the simultaneous needs of multiple programs, and lower operating and maintenance costs. A state-of-the-art EBIS, operating with an electron beam current of up to 10 A, and producing multi-milliamperes of high charge state heavy ions, has been developed at Brookhaven, and has been operating very successfully on a test bench for several years. The present performance of this high-current EBIS is presented, along with details of the design of the scaled-up EBIS for RHIC, and the status of its construction. Other aspects of the project, including design and construction of the heavy ion RFQ, Linac, and matching beamlines, are also mentioned.

  9. Transverse mode coupling in RHIC

    SciTech Connect

    Raka, E.

    1990-02-21

    In the Proceedings of the Workshop on the RHIC Performance, it was stated that the transverse mode coupling instability, posed a potential intensity limitation for protons. This was based on the expression I{sub b} = 4(E{sub t}/qe) Q{sub s} 4 {radical}{pi} {sigma} {ell}/(Im (Z{sub {perpendicular}}) < {beta}{sub {perpendicular}} > R 3) where E{sub t} is the total energy, q the charge state, Q{sub s} the synchrotron tune, < {beta}{sub {perpendicular}} > the average beta function, R the machine radius, and {sigma}{sub {ell}} the rms bunch length of a Gaussian distribution in longitudinal phase space. For a < {beta}{sub {perpendicular}} > of 55 m and 10{sup 11} protons/bunch, the allowed impedance Z{sub {perpendicular}} for protons at injection, where Q{sub s} = 0.11 {times} 10{sup {minus}3}, would be less than 1.2 M{Omega}/m. The purpose of this report is to discuss the consequences of two factors that were omitted in this equation, which comes from the ZAP program, to RHIC. These are the space charge impedance and the incoherent tune spread of the beam.

  10. Insulated Honeycomb

    NASA Technical Reports Server (NTRS)

    Bhat, Balakrishna T.

    1989-01-01

    Proposed insulated honeycomb structure similar to reinforced honeycomb structure described in NPO-17538. Panels of insulated honeycomb used to make supports for solar-energy collectors and radar antennas.

  11. Control Dewar Secondary Vacuum Container

    SciTech Connect

    Rucinski, R.; /Fermilab

    1993-10-04

    This engineering note provides background information regarding the control dewar secondary vacuum container. The secondary vacuum container has it's origin with the CDP control dewar design. The name secondary vacuum container replaced the CDP term 'Watt can' which was named after Bob Watt (SLAC), a PAC/DOE review committee member who participated in a review of CDP and recommended a secondary vacuum enclosure. One of the most fragile parts of the control dewar design is the ceramic electrical feed throughs located in the secondary vacuum container. The secondary vacuum container is provided to guard against potential leaks in these ceramic insulating feed throughs. The secondary vacuum container has a pumping line separate from the main solenoid/control dewar insulating vacuum. This pumping line is connected to the inlet of the turbo pump for initial pumpdown. Under normal operation the container is isolated. Should a feedthrough develop a small leak, alternate pumping arrangements for the secondary vacuum container could be arranged. The pressure in the secondary vacuum container should be kept in a range that the breakdown voltage is kept at a maximum. The breakdown voltage is known to be a function of pressure and is described by a Paschen curve. I cannot find a copy of the curve at this time, but from what I remember, the breakdown voltage is a minimum somewhere around 10-3 torr. Ideally the pressure in the secondary vacuum can should be kept very low, around 10 E-6 or 10 E-7 torr for maximum breakdown voltage. If however a leak developed and this was not possible, then one could operate at a pressure higher than the minima point.

  12. RHIC OPERATION WITH LONGITUDINALLY POLARIZED PROTONS.

    SciTech Connect

    HUANG,H.BAI,M.BEEBE-WANG,J.ET AL.

    2004-07-05

    Polarized proton beams have been accelerated, stored and collided at 100GeV per beam in the Relativistic Heavy Ion Collider (RHIC) with longitudinal polarization. The essential equipment includes four Siberian snakes, eight spin rotators and fast relative polarimeters in each of the two RHIC rings as well as local polarimeters at the STAR and PHENIX detectors. This paper summarizes the performance of RHIC as a polarized proton collider in the FY03 run with emphasis on polarization issues. Preliminary data from the FY04 run is also shown.

  13. BEAM PIPE DESORPTION RATE IN RHIC.

    SciTech Connect

    HUANG, H.; FISCHER, W.; HE, P.; HSEUH, H.C.; IRISO, U.; PTITSYN, V.; TRBOJEVIC, D.; WEI, J.; YANG, S.Y.

    2006-06-23

    In the past, an increase of beam intensity in RHIC has caused several decades of pressure rises in the warm sections during operation. This has been a major factor limiting the RHIC luminosity. About 430 meters of NEG coated beam pipes have been installed in the warm sections to ameliorate this problem. Beam ion induced desorption is one possible cause of pressure rises. A series beam studies in RHIC has been dedicated to estimate the desorption rate of various beam pipes (regular and NEG coated) at various warm sections. Correctors were used to generate local beam losses and consequently local pressure rises. The experimental results are presented and analyzed in this paper.

  14. RHIC Sextant Test - Accelerator Systems and Performance

    NASA Astrophysics Data System (ADS)

    Pilat, F.; Ahrens, L.; Brown, K.; Connolly, R.; dell, G. F.; Fischer, W.; Kewisch, J.; Mackay, W.; Mane, V.; Peggs, S.; Satogata, T.; Tepikian, S.; Thompson, P.; Trbojevic, D.; Tsoupas, N.; Wei, J.

    1997-05-01

    One sextant of the RHIC collider and the full AtR (AGS to RHIC) transfer line have been commissioned in early 1997 with beam. We describe here the design and performance of the accelerator systems during the test, such as the magnet and power supply systems, instrumentation subsystems and application software. After reviewing the main milestones of the commissioning we describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems preformance and their impact on the plannig for RHIC installation and commissioning.

  15. Conceptual design of the Relativistic Heavy Ion Collider: RHIC

    SciTech Connect

    Samios, Nicholas P.

    1986-05-01

    The complete Relativistic Heavy Ion Collider (RHIC) facility will be a complex set of accelerators and beam transfer equipment connecting them. A significant portion of the total facility either exists or is under construction. Two existing Tandem Van de Graaff accelerators will serve for the initial ion acceleration. Ions with a charge of -1 would be accelerated from ground to +15 MV potential, pass through a stripping foil, and accelerate back to ground potential, where they would pass through a second stripping foil. From there the ions will traverse a long transfer line to the AGS tunnel and be injected into the Booster accelerator. The Booster accelerates the ion bunch, and then the ions pass through one more stripper and then enter the Alternating Gradient Synchrotron (AGS), where they are accelerated to the top AGS energy and transferred to the collider. Bending and focusing of ion beams is to be achieved by superconducting magnets. The physics goals behind the RHIC are enumerated, particularly as regards the study of quark matter and the characteristics of high energy nucleus-nucleus collisions. The design of the collider and all its components is described, including the injector, the lattice, magnet system, cryogenic and vacuum systems, beam transfer, injection, and dump, rf system, and beam instrumentation and control system. Also given are cost estimates, construction schedules, and a management plan. (LEW)

  16. Hybrid Multifoil Aerogel Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey; Paik, Jong-Ah; Jones, Steven; Nesmith, Bill

    2008-01-01

    This innovation blends the merits of multifoil insulation (MFI) with aerogel-based insulation to develop a highly versatile, ultra-low thermally conductive material called hybrid multifoil aerogel thermal insulation (HyMATI). The density of the opacified aerogel is 240 mg/cm3 and has thermal conductivity in the 20 mW/mK range in high vacuum and 25 mW/mK in 1 atmosphere of gas (such as argon) up to 800 C. It is stable up to 1,000 C. This is equal to commercially available high-temperature thermal insulation. The thermal conductivity of the aerogel is 36 percent lower compared to several commercially available insulations when tested in 1 atmosphere of argon gas up to 800 C.

  17. Distributing Radiant Heat in Insulation Tests

    NASA Technical Reports Server (NTRS)

    Freitag, H. J.; Reyes, A. R.; Ammerman, M. C.

    1986-01-01

    Thermally radiating blanket of stepped thickness distributes heat over insulation sample during thermal vacuum testing. Woven of silicon carbide fibers, blanket spreads heat from quartz lamps evenly over insulation sample. Because of fewer blanket layers toward periphery of sample, more heat initially penetrates there for more uniform heat distribution.

  18. Methods of Testing Thermal Insulation and Associated Test Apparatus

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The system and method for testing thermal insulation uses a cryostatic insulation tester having a vacuum chamber and a cold mass including a test chamber and upper and lower guard chambers adjacent thereto. The thermal insulation is positioned within the vacuum chamber and adjacent the cold mass. Cryogenic liquid is supplied to the test chamber, upper guard and lower guard to create a first gas layer in an upper portion of the lower guard chamber and a second gas layer in an upper portion of the test chamber. Temperature are sensed within the vacuum chamber to test the thermal insulation.

  19. DC CHARACTERIZATION OF HIGH GRADIENT MULTILAYER INSULATORS

    SciTech Connect

    Watson, J A; Caporaso, G J; Sampayan, S E; Sanders, D M; Krogh, M L

    2005-05-26

    We have developed a novel insulator concept that involves the use of alternating layers of conductors and insulators with periods less than 1 mm. We have demonstrated that these structures perform 2 to 5 times better than conventional insulators in long pulse, short pulse, and alternating polarity applications. We present new testing results showing exceptional behavior at DC, with gradients in excess of 110kV/cm in vacuum.

  20. ISABELLE vacuum systems

    SciTech Connect

    Halama, H J

    1980-01-01

    The Intersecting Storage Accelerator (ISABELLE) consists of two rings having a circumference of 3.8 km each. In these rings superconducting magnets, held at 4 K, bend and focus the proton beam which is accelerated up to 400 GeV. Due to very different pressure requirements, ISABELLE has two completely independent vacuum systems. One, which operates at 1 x 10/sup -11/ Torr, provides a very clean environment for the circulating proton beam. Here only ion and titanium sublimation pumps are used to provide the vacuum. The other system maintains superconducting magnet vessels at a pressure below 1 x 10/sup -4/ Torr, since at this pressure the gas conduction becomes negligible. In this so-called insulating vacuum system, turbomolecular pumps pump the inadvertent small helium leaks. Other gases are cryocondensed on the cold surfaces of the cryogenic system. The basic element of ISABELLE known as Full Cell containing 45 meters of beam tube, 8 pumping stations, 8 superconducting magnets and complete instrumentation has been constructed, leak checked and tested. All design parameters have been achieved in both vacuum systems. The two vacuum systems are described with particular emphasis on the influence of superconducting magnets in the selection of materials and UHV components.

  1. GLOBAL DECOUPLING ON THE RHIC RAMP.

    SciTech Connect

    LUO, Y.; CAMERON, P.; DELLA PENNA, A.; FISCHER, W.; ET AL.

    2005-05-16

    The global betatron decoupling on the ramp is an important issue for the operation of the Relativistic Heavy Ion Collider (RHIC), especially in the RHIC polarized proton (pp) run. To avoid the major betatron and spin resonances on the ramp, the betatron tunes are constrained. And the rms value of the vertical closed orbit should be smaller than 0.5mm. Both require the global coupling on the ramp to be well corrected. Several ramp decoupling schemes were found and tested at RHIC, like N-turn map decoupling, three-ramp correction, coupling amplitude modulation, and coupling phase modulation. In this article, the principles of these methods are shortly reviewed and compared. Among them, coupling angle modulation is a robust and fast one. It has been applied to the global decoupling in the routine RHIC operation.

  2. RHIC low energy tests and initial operations

    SciTech Connect

    Satogata,T.; Ahrens, L.; Bai, M.; Brennan, J.M.; Bruno, D.; Butler, J.; Drees, A.; Fedotov, A.; Fischer, W.; Harvey, M.; Hayes, T.; Jappe, W.; Lee, R.C.; Mackay, W.W.; Malitsky, N.; Marr, G.; Michnoff, R.; Oerter, B.; Pozdeyev, E.; Roser, T.; Severino, F.; Smith, K.; Tepikian, S.; Tsoupas, N.

    2009-05-04

    Future Relativistic Heavy Ion Collider (RHIC) runs, including a portion of FY10 heavy ion operations, will explore collisions at center of mass energies of 5-50 GeV/n (GeV/nucleon). Operations at these energies is motivated by a search for the QCD phase transition critical point. The lowest end of this energy range is nearly a factor of four below the nominal RHIC injection center of mass energy of {radical} s = 20.8 GeV/n. There are several operational challenges in the RHIC low-energy regime, including harmonic number changes, small longitudinal acceptance, lowered magnet field quality, nonlinear orbit control, and luminosity monitoring. We report on the experience with some of these challenges during beam tests with gold in March 2008, including first RHIC operations at {radical}s = 9.18 GeV/n and first beam experience at {radical}s = 5 GeV/n.

  3. Polarization transmission at RHIC, numerical simulations

    SciTech Connect

    Meot F.; Bai, M.; Liu, C.; Minty, M.; Ranjbar, V.

    2012-05-20

    Typical tracking simulations regarding the transmission of the polarization in the proton-proton collider RHIC are discussed. They participate in general studies aimed at understanding and improving polarization performances during polarized proton-proton runs.

  4. RHIC Sextant Test --- Physics and Performance

    NASA Astrophysics Data System (ADS)

    Wei, J.; Fischer, W.; Ahrens, L.; Brennan, J. M.; Brown, K.; Connolly, R.; dell, G. F.; Harrison, M.; Kewisch, J.; Mackay, W. W.; Mane, V.; Peggs, S.; Pilat, F.; Satogata, T.; Tepikian, S.; Thompson, P.; Trahern, C. G.; Trbojevic, D.; Tsoupas, N.

    1997-05-01

    This paper presents beam physics and machine performance results of the Relativistic Heavy Ion Collider (RHIC) Sextant and AGS-to-RHIC (ATR) transfer line during the Sextant test in early 1997. Techniques used to measure both machine properties (difference orbits, dispersion, and beamline optics) and beam parameters (energy, intensity, transverse and longitudinal emittances) are described. The flexibility of the ATR and RHIC Sextant lattices is demonstrated by a widely tunable range of phase advance per cell. Longitudinal tomography is employed to reconstruct beam motion in phase space. Digitized two-dimensional video profile monitors are used to measure transverse beam emittances and beamline optics. The gold ion beam parameters are shown to be comparable to the RHIC design requirements.

  5. Summary of the RHIC Retreat 2007

    SciTech Connect

    Pilat,F.; Gardner, C.; Montag, C.; Roser, T.

    2008-08-01

    The RHIC Retreat 2007 took place on July 16-17 2007 at the Foxwoods Resort in CT, about 3 weeks after the end of the RHIC Run-7. The goal of the Retreat is traditionally to plan the upcoming run in the light of the results from the previous one, by providing a snapshot of the present understanding of the machine and a forum for free and frank discussion. A particular attention was paid to the challenge of increasing the time at store, and the related issue of system reliability. An interesting Session covered all new developments aimed to improve the machine performance and luminosity. In Section 2 we summarize the results from Run-7 for RHIC and the injectors and discuss the present objectives of the RHIC program and performance. Sections 3-6 are summaries of the Retreat sessions focused on preparation for deuteron gold and polarized protons, respectively, machine availability and new developments.

  6. ABORT GAP CLEANING IN RHIC.

    SciTech Connect

    DREES,A.; AHRENS,L.; III FLILLER,R.; GASSNER,D.; MCINTYRE,G.T.; MICHNOFF,R.; TRBOJEVIC,D.

    2002-06-03

    During the RHIC Au-run in 2001 the 200 MHz storage cavity system was used for the first time. The rebucketing procedure caused significant beam debunching in addition to amplifying debunching due to other mechanisms. At the end of a four hour store, debunched beam could account for approximately 30%-40% of the total beam intensity. Some of it will be in the abort gap. In order to minimize the risk of magnet quenching due to uncontrolled beam losses at the time of a beam dump, a combination of a fast transverse kicker and copper collimators were used to clean the abort gap. This report gives an overview of the gap cleaning procedure and the achieved performance.

  7. Central exclusive production at RHIC

    NASA Astrophysics Data System (ADS)

    Adamczyk, Leszek; Guryn, Włodek; Turnau, Jacek

    2014-11-01

    The present status and future plans of the physics program of Central Exclusive Production (CEP) at RHIC are described. The measurements are based on the detection of the forward protons from the Double Pomeron Exchange (DPE) process in the Roman Pot system and of the recoil system of charged particles from the DPE process measured in the STAR experiment's Time Projection Chamber (TPC). The data described here were taken using polarized proton-proton collisions at √ {s} = 200 GeV. The preliminary spectra of two-pion mass reconstructed by STAR TPC in central region of pseudorapidity |η| < 1, are presented. Near future plans to take data with the current system at center-of-mass energy √ {s} = 200 GeV and plans to upgrade the forward proton tagging system are presented. Also a possible addition of the RPs to the sPHENIX detector is discussed.

  8. The RHIC project -- Physical challenges

    SciTech Connect

    Wei, J.

    1997-11-01

    The design and construction status of the Relativistic Heavy Ion Collider, RHIC, is discussed. Those novel features of a heavy ion Collider that are distinct from conventional hadron Colliders in general are noted. These features are derived from the experimental requirements of operation with a variety of ion species over a wide energy range including collisions between ions of unequal energies. The project is in the fifth year of a seven-year construction cycle. A review of the superconducting magnet program is given together with progress to date on the machine construction and commissioning. Emphasis is made on challenging issues including intrabeam scattering, interaction-region error compensation, magnet alignments, and matched transition-energy jump.

  9. Central exclusive production at RHIC

    SciTech Connect

    Adamczyk, Leszek; Guryn, Włodek; Turnau, Jacek

    2014-11-10

    The present status and future plans of the physics program of Central Exclusive Production (CEP) at RHIC are described. The measurements are based on the detection of the forward protons from the Double Pomeron Exchange (DPE) process in the Roman Pot system and of the recoil system of charged particles from the DPE process measured in the STAR experiment’s Time Projection Chamber (TPC). The data described here were taken using polarized proton-proton collisions at ps = 200 GeV. The preliminary spectra of two pion and four pion invariant mass reconstructed by STAR TPC in central region of pseudo-rapidity | | < 1, are presented. Near future plans to take data with the current system at center-of-mass energy ps = 200 GeV and plans to upgrade the forward proton tagging sys- tem are presented. Also a possible addition of the Roman Pots to the sPHENIX detector is discussed.

  10. Diffusion Simulation and Lifetime Calculation at RHIC

    SciTech Connect

    Abreu,N.P.; Fischer, W.; Luo, Y.; Robert-Demolaize, G.

    2009-01-02

    The beam lifetime is an important parameter for any storage ring. For protons in RHIC it is dominated by the non-linear nature of the head-on collisions that causes the particles to diffuse outside the stable area in phase space. In this report we show results from diffusion simulation and lifetime calculation for the 2006 and 2008 polarized proton runs in RHIC.