Science.gov

Sample records for rhic insulating vacuum

  1. Modeling of RHIC insulating vacuum for system pumpdown characteristics

    SciTech Connect

    Todd, R.J.; Pate, D.J.; Welch, K.M.

    1993-06-01

    This paper presents a model for predicting the pumpdown characteristics of a 480 m RHIC (Relativistic Heavy Ion Collider) vacuum cryostat. The longitudinal and transverse conductances of a typical cryostat were calculated. A voltage analogue of these conductances was constructed for room temperature conditions. The total longitudinal conductance of a room temperature cryostat was thereby achieved. This conductance was then used to calculate the diameter of an equivalent long outgassing tube, having more convenient analytical expressions for pressure profiles when pumped. The equivalent of a unit outgassing rate for this tube was obtained using previously published MLI (multi-layer insulation) outgassing data. With this model one is then able to predict a cryostat pumpdown rate as a function of the location and size of roughing pumps.

  2. The RHIC vacuum systems

    NASA Astrophysics Data System (ADS)

    Burns, R.; Hseuh, H. C.; Lee, R. C.; McIntyre, G.; Pate, D.; Smart, L.; Sondericker, J.; Weiss, D.; Welch, K.

    2003-03-01

    There are three vacuum systems in RHIC: the insulating vacuum vessels housing the superconducting magnets, the cold beam tubes surrounded by the superconducting magnets, and the warm beam tube sections at the insertion regions and the experimental regions. These systems have a cumulative length over 10 km and a total volume over 3000 m 3. Conventional ultrahigh vacuum technology was used in the design and construction of the cold and warm beam vacuum systems with great success. The long and large insulating vacuum volumes without vacuum barriers require careful management of the welding and leak checking of the numerous helium line joints. There are about 1500 vacuum gauges and pumps serial-linked to eight PLCs distributed around RHIC, which allow the monitoring and control of these devices through Ethernet networks to remote control consoles. With the exception of helium leaks through the cryogenic valve boxes into the insulating vacuum volumes, the RHIC vacuum systems have performed well beyond expectations.

  3. Compact vacuum insulation embodiments

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  4. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  5. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  6. Compact vacuum insulation embodiments

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  7. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  8. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  9. Small gap magnets and vacuum chambers for eRHIC

    SciTech Connect

    Meng,W.; Bengtsson, J.; Hao, Y.; Mahler, G.; Tuozzolo, J.; Litvinenko, V. N.

    2009-05-04

    eRHIC[1][2][3], a future high luminosity electron-ion collider at Brookhaven National Laboratory (BNL), will add polarized electrons to the list of colliding species in RHIC. A 10-30 GeV electron energy recovery linac (ERL) will require up to six passes around the RHIC 3.8 km circumference. We are developing and testing small (5 mm) gap dipole and quadrupole magnets and vacuum chambers for cost-effective eRHIC passes [4]. We are also studying the sensitivity of eRHIC pass optics to magnet and alignment errors in such a small magnet structure. We present the magnetic and mechanical designs of the small gap eRHIC components and prototyping test progress.

  10. Vacuum foil insulation system

    DOEpatents

    Hanson, John P.; Sabolcik, Rudolph E.; Svedberg, Robert C.

    1976-11-16

    In a multifoil thermal insulation package having a plurality of concentric cylindrical cups, means are provided for reducing heat loss from the penetration region which extends through the cups. At least one cup includes an integral skirt extending from one end of the cup to intersection with the penetration means. Assembly of the insulation package with the skirted cup is facilitated by splitting the cup to allow it to be opened up and fitted around the other cups during assembly.

  11. ELECTRON DETECTORS FOR VACUUM PRESSURE RISE DIAGNOSTICS AT RHIC.

    SciTech Connect

    IRISO-ARIZ,U.DREES,A.FISCHER,W.GASSNER,D.GOULD,O.GULLOTTA,J.LEE,R.PONNAIYAN,V.TRBOJEVIC,D.ZENO,K.ZHANG,S.Y.

    2003-05-12

    In the RHIC 2001 run, an unexpected vacuum pressure rise versus bunch increasing currents was observed in both gold and proton operations. This pressure increase due to molecular desorption is suspected to be induced mainly by electron multipacting, but other causes may coexist, such as ion desorption due to halo scraping. In order to get a reliable diagnostic of the phenomenon electron detectors have been installed along the RHIC ring. In this report we describe results measured by the electron detectors with energy filters during the RHIC 2002/2003 run.

  12. Vacuum-insulated catalytic converter

    DOEpatents

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  13. Improved Aerogel Vacuum Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Ruemmele, Warren P.; Bue, Grant C.

    2009-01-01

    An improved design concept for aerogel vacuum thermal-insulation panels calls for multiple layers of aerogel sandwiched between layers of aluminized Mylar (or equivalent) poly(ethylene terephthalate), as depicted in the figure. This concept is applicable to both the rigid (brick) form and the flexible (blanket) form of aerogel vacuum thermal-insulation panels. Heretofore, the fabrication of a typical aerogel vacuum insulating panel has involved encapsulation of a single layer of aerogel in poly(ethylene terephthalate) and pumping of gases out of the aerogel-filled volume. A multilayer panel according to the improved design concept is fabricated in basically the same way: Multiple alternating layers of aerogel and aluminized poly(ethylene terephthalate) are assembled, then encapsulated in an outer layer of poly(ethylene terephthalate), and then the volume containing the multilayer structure is evacuated as in the single-layer case. The multilayer concept makes it possible to reduce effective thermal conductivity of a panel below that of a comparable single-layer panel, without adding weight or incurring other performance penalties. Implementation of the multilayer concept is simple and relatively inexpensive, involving only a few additional fabrication steps to assemble the multiple layers prior to evacuation. For a panel of the blanket type, the multilayer concept, affords the additional advantage of reduced stiffness.

  14. Electrical Strength of Multilayer Vacuum Insulators

    SciTech Connect

    Harris, J R; Kendig, M; Poole, B; Sanders, D M; Caporaso, G J

    2008-07-01

    The electrical strength of vacuum insulators is a key constraint in the design of particle accelerators and pulsed power systems. Vacuum insulating structures assembled from alternating layers of metal and dielectric can result in improved performance compared to conventional insulators, but previous attempts to optimize their design have yielded seemingly inconsistent results. Here, we present two models for the electrical strength of these structures, one assuming failure by vacuum arcing between adjacent metal layers and the other assuming failure by vacuum surface flashover. These models predict scaling laws which are in agreement with the experimental data currently available.

  15. UPGRADE OF RHIC VACUUM SYSTEMS FOR HIGH LUMINOSITY OPERATION.

    SciTech Connect

    HSEUH, H.C.; MAPES, M.; SMART, L.A.; TODD, R.; WEISS, D.

    2005-05-16

    With increasing ion beam intensity during recent RHIC operations, rapid pressure rises of several decades were observed at most warm sections and at a few cold sections. The pressure rises are associated with electron multi-pacting, electron stimulated desorption and beam ion induced desorption and have been one of the major intensity and luminosity limiting factors for RHIC. Improvement of the warm sections has been carried out in the last few years. Extensive in-situ bakes, additional UHV pumping and anti-grazing ridges have been implemented. Several hundred meters of NEG coated beam pipes have been installed and activated. Vacuum monitoring and logging were enhanced. Preventive measures, such as pumping before cool down to reduce monolayer condensates, were also taken to suppress the pressure rises in the cold sections. The effectiveness of these measures in reducing the pressure rises during machine studies and during physics runs are discussed and summarized.

  16. Cryogenic Insulation System for Soft Vacuum

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.

    1999-01-01

    The development of a cryogenic insulation system for operation under soft vacuum is presented in this paper. Conventional insulation materials for cryogenic applications can be divided into three levels of thermal performance, in terms of apparent thermal conductivity [k-value in milliwatt per meter-kelvin (mW/m-K)]. System k-values below 0.1 can be achieved for multilayer insulation operating at a vacuum level below 1 x 10(exp -4) torr. For fiberglass or powder operating below 1 x 10(exp -3) torr, k-values of about 2 are obtained. For foam and other materials at ambient pressure, k-values around 30 are typical. New industry and aerospace applications require a versatile, robust, low-cost thermal insulation with performance in the intermediate range. The target for the new composite insulation system is a k-value below 4.8 mW/m-K (R-30) at a soft vacuum level (from 1 to 10 torr) and boundary temperatures of approximately 77 and 293 kelvin (K). Many combinations of radiation shields, spacers, and composite materials were tested from high vacuum to ambient pressure using cryostat boiloff methods. Significant improvement over conventional systems in the soft vacuum range was demonstrated. The new layered composite insulation system was also shown to provide key benefits for high vacuum applications as well.

  17. Helium pressures in RHIC vacuum cryostats and relief valve requirements from magnet cooling line failure

    SciTech Connect

    Liaw, C.J.; Than, Y.; Tuozzolo, J.

    2011-03-28

    A catastrophic failure of the RHIC magnet cooling lines, similar to the LHC superconducting bus failure incident, would pressurize the insulating vacuum in the magnet and transfer line cryostats. Insufficient relief valves on the cryostats could cause a structural failure. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the vacuum cryostat and discharging via the reliefs into the RHIC tunnel, had been developed to calculate the helium pressure inside the cryostat. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces were included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Existing relief valve sizes were reviewed to make sure that the maximum stresses, caused by the calculated maximum pressures inside the cryostats, did not exceed the allowable stresses, based on the ASME Code B31.3 and ANSYS results. The conclusions are as follows: (1) The S/F simulation results show that the highest internal pressure in the cryostats, due to the magnet line failure, is {approx}37 psig (255115 Pa); (2) Based on the simulation, the temperature on the cryostat chamber, INJ Q8-Q9, could drop to 228 K, which is lower than the material minimum design temperature allowed by the Code; (3) Based on the ASME Code and ANSYS results, the reliefs on all the cryostats inside the RHIC tunnel are adequate to protect the vacuum chambers when the magnet cooling lines fail; and (4) In addition to the pressure loading, the thermal deformations, due to the temperature decrease on the cryostat chambers, could also cause a high stress on the chamber, if not properly supported.

  18. Nearly Seamless Vacuum-Insulated Boxes

    NASA Technical Reports Server (NTRS)

    Stepanian, Christopher J.; Ou, Danny; Hu, Xiangjun

    2010-01-01

    A design concept, and a fabrication process that would implement the design concept, have been proposed for nearly seamless vacuum-insulated boxes that could be the main structural components of a variety of controlled-temperature containers, including common household refrigerators and insulating containers for shipping foods. In a typical case, a vacuum-insulated box would be shaped like a rectangular parallelepiped conventional refrigerator box having five fully closed sides and a hinged door on the sixth side. Although it is possible to construct the five-closed-side portion of the box as an assembly of five unitary vacuum-insulated panels, it is not desirable to do so because the relatively high thermal conductances of the seams between the panels would contribute significant amounts of heat leakage, relative to the leakage through the panels themselves. In contrast, the proposal would make it possible to reduce heat leakage by constructing the five-closed-side portion of the box plus the stationary portion (if any) of the sixth side as a single, seamless unit; the only remaining seam would be the edge seal around the door. The basic cross-sectional configuration of each side of a vacuum-insulated box according to the proposal would be that of a conventional vacuum-insulated panel: a low-density, porous core material filling a partially evacuated space between face sheets. However, neither the face sheets nor the core would be conventional. The face sheets would be opposite sides of a vacuum bag. The core material would be a flexible polymer-modified silica aerogel of the type described in Silica/Polymer and Silica/Polymer/Fiber Composite Aero - gels (MSC-23736) in this issue of NASA Tech Briefs. As noted in that article, the stiffness of this core material against compression is greater than that of prior aerogels. This is an important advantage because it translates to greater retention of thickness and, hence, of insulation performance when pressure is

  19. Laser sealed vacuum insulation window

    DOEpatents

    Benson, David K.; Tracy, C. Edwin

    1987-01-01

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  20. Laser sealed vacuum insulating window

    DOEpatents

    Benson, D.K.; Tracy, C.E.

    1985-08-19

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  1. Cryogenic Vacuum Insulation for Vessels and Piping

    NASA Technical Reports Server (NTRS)

    Kogan, A.; Fesmire, J.; Johnson, W.; Minnick, J.

    2010-01-01

    Cryogenic vacuum insulation systems, with proper materials selection and execution, can offer the highest levels of thermal performance. Three areas of consideration are vital to achieve the optimum result: materials, representative test conditions, and engineering approach for the particular application. Deficiency in one of these three areas can prevent optimum performance and lead to severe inefficiency. Materials of interest include micro-fiberglass, multilayer insulation, and composite arrangements. Cylindrical liquid nitrogen boil-off calorimetry methods were used. The need for standard thermal conductivity data is addressed through baseline testing. Engineering analysis and design factors such as layer thickness, density, and practicality are also considered.

  2. Vacuum Insulator Studies for the Dielectric Wall Accelerator

    SciTech Connect

    Harris, J R; Chen, Y J; Blackfield, D; Sanders, D M; Caporaso, G J; Krogh, M

    2007-06-11

    As part of our ongoing development of the Dielectric Wall Accelerator, we are studying the performance of multilayer high-gradient insulators. These vacuum insulating structures are composed of thin, alternating layers of metal and dielectric, and have been shown to withstand higher gradients than conventional vacuum insulator materials. This paper describes these structures and presents some of our recent results.

  3. Material-controlled dynamic vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1996-10-08

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  4. Radiation-controlled dynamic vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1995-01-01

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  5. Material-controlled dynamic vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1996-10-08

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  6. Radiation-controlled dynamic vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1995-07-18

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  7. Outgassing of solid material into vacuum thermal insulation spaces

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1994-01-01

    Many cryogenic storage tanks use vacuum between inner and outer tank for thermal insulation. These cryogenic tanks also use a radiation shield barrier in the vacuum space to prevent radiation heat transfer. This shield is usually constructed by using multiple wraps of aluminized mylar and glass paper as inserts. For obtaining maximum thermal performance, a good vacuum level must be maintained with the insulation system. It has been found that over a period of time solid insulation materials will vaporize into the vacuum space and the vacuum will degrade. In order to determine the degradation of vacuum, the rate of outgassing of the insulation materials must be determined. Outgassing rate of several insulation materials obtained from literature search were listed in tabular form.

  8. The design of a die with a vacuum thermal insulation

    NASA Astrophysics Data System (ADS)

    Baginski, A. G.; Utyev, O. M.; Kondratyeva, Y. M.

    2016-04-01

    A new design of a die for the polymer underwater granulation plants has been developed. It differs from similar plants in the design of heat-insulating elements. Vacuum hollows are used as a heat insulator. A vacuumization process does not require a separate operation, and it is conducted simultaneously with connection of all the elements of the die by a brazing method.

  9. Vacuum Insulator Development for the Dielectric Wall Accelerator

    SciTech Connect

    Harris, J R; Blackfield, D; Caporaso, G J; Chen, Y; Hawkins, S; Kendig, M; Poole, B; Sanders, D M; Krogh, M; Managan, J E

    2008-03-17

    At Lawrence Livermore National Laboratory, we are developing a new type of accelerator, known as a Dielectric Wall Accelerator, in which compact pulse forming lines directly apply an accelerating field to the beam through an insulating vacuum boundary. The electrical strength of this insulator may define the maximum gradient achievable in these machines. To increase the system gradient, we are using 'High Gradient Insulators' composed of alternating layers of dielectric and metal for the vacuum insulator. In this paper, we present our recent results from experiment and simulation, including the first test of a High Gradient Insulator in a functioning Dielectric Wall Accelerator cell.

  10. Economical evaluation of damaged vacuum insulation panels in buildings

    NASA Astrophysics Data System (ADS)

    Kim, Y. M.; Lee, H. Y.; Choi, G. S.; Kang, J. S.

    2015-12-01

    In Korea, thermal insulation standard of buildings have been tightened annually to satisfy the passive house standard from the year 2009. The current domestic policies about disseminating green buildings are progressively conducted. All buildings should be the zero energy building in the year 2025, obligatorily. The method is applied to one of the key technologies for high-performance insulation for zero energy building. The vacuum insulation panel is an excellent high performance insulation. But thermal performance of damaged vacuum insulation panels is reduced significantly. In this paper, the thermal performance of damaged vacuum insulation panels was compared and analyzed. The measurement result of thermal performance depends on the core material type. The insulation of building envelope is usually selected by economic feasibility. To evaluate the economic feasibility of VIPs, the operation cost was analyzed by simulation according to the types and damaged ratio of VIPs

  11. Investigation of Vacuum Insulator Surface Dielectric Strength with Nanosecond Pulses

    SciTech Connect

    Nunnally, W C; Krogh, M; Williams, C; Trimble, D; Sampayan, S; Caporaso, G

    2003-06-03

    The maximum vacuum insulator surface dielectric strength determines the acceleration electric field gradient possible in a short pulse accelerator. Previous work has indicated that higher electric field strengths along the insulator-vacuum interface might be obtained as the pulse duration is decreased. In this work, a 250 kV, single ns wide impulse source was applied to small diameter, segmented insulators samples in a vacuum to evaluate the multi-layer surface dielectric strength of the sample construction. Resonances in the low inductance test geometry were used to obtain unipolar, pulsed electric fields in excess of 100 MV/m on the insulator surface. The sample construction, experimental arrangement and experimental results are presented for the initial data in this work. Modeling of the multi-layer structure is discussed and methods of improving insulator surface dielectric strength in a vacuum are proposed.

  12. Lightweight Vacuum Jacket for Cryogenic Insulation. Volume 1

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.; Bell, J. E.; Brogren, E. W.; Straayer, J. W.

    1975-01-01

    The feasibility of producing a lightweight vacuum jacket using state-of-the-art technology and materials was examined. Design and analytical studies were made on a full-scale, orbital maneuvering system fuel tank. Preliminary design details were made for the tank assembly, including an optimized vacuum jacket and multilayer insulation system. A half-scale LH2 test model was designed and fabricated, and a force/stiffness proof test was conducted on the vacuum jacket. A vacuum leak rate of .000001 atmosphere ml of helium per second was measured, approximately 1500 hours of vacuum pressure were sustained, and 29 vacuum-pressure cycles were experienced prior to failure.

  13. Design of a variable-conductance vacuum insulation

    SciTech Connect

    Benson, D K; Potter, T F; Tracy, C E

    1994-01-01

    This paper describes one approach to the design of a variable-conductance vacuum insulation. In this design, the vacuum insulation consists of a permanently sealed, thin sheet steel, evacuated envelope of whatever geometry is required for the application. The steel envelope is supported internally against the atmospheric pressure loads by an array of discrete, low-conductance, ceramic supports, and radiative heat transfer is blocked by layers of thin metal radiation shields. Thermal conductance through this insulation is controlled electronically by changing the temperature of a small metal hydride connected to the vacuum envelope. The hydride reversibly absorbs/desorbs hydrogen to produce a hydrogen pressure typically within the range from less than 10{sup {minus}6} to as much as 1 torr. Design calculations are compared with results from laboratory tests of bench scale samples, and some possible automotive applications for this variable-conductance vacuum insulation are suggested.

  14. Progress on Simulating the Initiation of Vacuum Insulator Flashover

    SciTech Connect

    Perkins, M P; Houck, T L; Javedani, J B; Vogtlin, G E; Goerz, D A

    2009-06-26

    Vacuum insulators are critical components in many pulsed power systems. The insulators separate the vacuum and non-vacuum regions, often under great stress due to high electric fields. The insulators will often flashover at the dielectric vacuum interface for electric field values much lower than for the bulk breakdown through the material. Better predictive models and computational tools are needed to enable insulator designs in a timely and inexpensive manner for advanced pulsed power systems. In this article we will discuss physics models that have been implemented in a PIC code to better understand the initiation of flashover. The PIC code VORPAL has been ran on the Linux cluster Hera at LLNL. Some of the important physics modules that have been implemented to this point will be discussed for simple angled insulators. These physics modules include field distortion due to the dielectric, field emission, secondary electron emission, insulator charging, and the effects of magnitude fields. In the future we will incorporate physics modules to investigate the effects of photoemission, electron stimulated desorption, and gas ionization. This work will lead to an improved understanding of flashover initiation and better computational tools for advanced insulator design.

  15. Testing of a Vacuum Insulated Flexible Line with Flowing Liquid Nitrogen during the Loss of Insulating Vacuum

    NASA Astrophysics Data System (ADS)

    Demko, J. A.; Duckworth, R. C.; Roden, M.; Gouge, M.

    2008-03-01

    Long length vacuum insulated lines are used to carry flowing liquid nitrogen in several high temperature superconducting cable projects. An important, but rare, failure scenario is the abrupt or catastrophic loss of the thermal insulating vacuum producing a rapid increase in heat transfer to the liquid nitrogen stream. In this experimental investigation, a vacuum superinsulated 3 inch by 5 inch nominal pipe size (NPS) (88.9 mm by 141.3 mm) flexible cryostat is subjected to an abrupt loss of vacuum in order to measure the thermal response of a flowing liquid nitrogen stream and the temperature response of the cryostat. The measured outlet stream temperature has a slight peak shortly after the loss of vacuum incident and decreases as the cryostat warms up. The heat loads measured before and after the vacuum loss event are reported. Measurements of the temperatures in the multi-layer superinsulation are also discussed.

  16. Surface discharge through an insulator in a vacuum

    NASA Technical Reports Server (NTRS)

    Boersch, H.; Hamisch, H.; Ehrlich, W.

    1985-01-01

    A model for the mechanism of stationary discharges over insulators in a vacuum was developed. Upon introduction of this discharge, the insulator charges as a result of secondary emissions, in such a way that electrons coming from the cathode strike with an average secondary electron yield of 1, and so that the secondary electrons return again to the insulator through the electric field near the insulator. When the secondary electrons strike, electrons with an average yield of 1 are released again. The electrons move in short faults toward the anode, which they strike with lesser energy.

  17. Inexpensive cryogenic insulation replaces vacuum jacketed line

    NASA Technical Reports Server (NTRS)

    Fuchs, C. E.

    1967-01-01

    Commercially available aluminized Mylar, cork and fiber glass form a multilayered sealed system and provide rugged and economical field installed insulation for cryogenic /liquid nitrogen or oxygen/ pipe lines in an exposed environment.

  18. Understanding High Voltage Vacuum Insulators for Microsecond Pulses

    SciTech Connect

    J.B., J; D.A., G; T.L., H; E.J., L; R.D., S; L.K., T; G.E., V

    2007-08-15

    High voltage insulation is one of the main areas of pulsed power research and development since the surface of an insulator exposed to vacuum can fail electrically at an applied field more than an order or magnitude below the bulk dielectric strength of the insulator. This is troublesome for applications where high voltage conditioning of the insulator and electrodes is not practical and where relatively long pulses, on the order of several microseconds, are required. Here we give a summary of our approach to modeling and simulation efforts and experimental investigations for understanding flashover mechanism. The computational work is comprised of both filed and particle-in-cell modeling with state-of-the-art commercial codes. Experiments were performed in using an available 100-kV, 10-{micro}s pulse generator and vacuum chamber. The initial experiments were done with polyethylene insulator material in the shape of a truncated cone cut at +45{sup o} angle between flat electrodes with a gap of 1.0 cm. The insulator was sized so there were no flashovers or breakdowns under nominal operating conditions. Insulator flashover or gap closure was induced by introducing a plasma source, a tuft of velvet, in proximity to the insulator or electrode.

  19. Understanding and Improving High Voltage Vacuum Insulators for Microsecond Pulses

    SciTech Connect

    Javedani, J B; Goerz, D A; Houck, T L; Lauer, E J; Speer, R D; Tully, L K; Vogtlin, G E; White, A D

    2007-03-05

    High voltage insulation is one of the main areas of pulsed power research and development, and dielectric breakdown is usually the limiting factor in attaining the highest possible performance in pulsed power devices. For many applications the delivery of pulsed power into a vacuum region is the most critical aspect of operation. The surface of an insulator exposed to vacuum can fail electrically at an applied field more than an order or magnitude below the bulk dielectric strength of the insulator. This mode of breakdown, called surface flashover, imposes serious limitations on the power flow into a vacuum region. This is especially troublesome for applications where high voltage conditioning of the insulator and electrodes is not practical and for applications where relatively long pulses, on the order of several microseconds, are required. The goal of this project is to establish a sound fundamental understanding of the mechanisms that lead to surface flashover, and then evaluate the most promising techniques to improve vacuum insulators and enable high voltage operation at stress levels near the intrinsic bulk breakdown limits of the material. The approach we proposed and followed was to develop this understanding through a combination of theoretical and computation methods coupled with experiments to validate and quantify expected behaviors. In this report we summarize our modeling and simulation efforts, theoretical studies, and experimental investigations. The computational work began by exploring the limits of commercially available codes and demonstrating methods to examine field enhancements and defect mechanisms at microscopic levels. Plasma simulations with particle codes used in conjunction with circuit models of the experimental apparatus enabled comparisons with experimental measurements. The large scale plasma (LSP) particle-in-cell (PIC) code was run on multiprocessor platforms and used to simulate expanding plasma conditions in vacuum gap regions

  20. Prototype of a tubeless vacuum insulated accelerator

    NASA Astrophysics Data System (ADS)

    Boggia, A.; Brautti, G.; Raino, A.; Stagno, V.; Ceci, N.; Valentino, V.; Variale, V.

    1996-02-01

    The construction of a small prototype of a new kind of Cockroft-Walton accelerator is in progress. The onion-wise disposal of the capacitor plates allows a high-gradient compact machine, as well as the assurance of reliability. This kind of machine can overcome the problem of having an accelerating column of high perveance. In fact, because of its peculiar electromechanical structure, the whole high voltage generator can be settled inside a vacuum chamber and then an electron beam can be accelerated directly by the capacitor plates of the voltage multipliers. The scaled-up version of this machine seems to be particularly suited for high-current, high-efficiency applications, like FEL, ion acceleration for plasma heating or containment. The status report of the experiment will be presented.

  1. Design validation of the PBFA-Z vacuum insulator stack

    SciTech Connect

    Shoup, R.W.; Long, F.; Martin, T.H.

    1997-07-01

    Sandia has developed PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack. and MITLs on PBFA II with hardware of a new design. The PBFA-Z accelerator was designed to deliver 20 MA to a 15-mg z-pinch load in 100 ns. The accelerator was modeled using circuit codes to determine the time-dependent voltage and current waveforms at the input and output of the water lines, the insulator stack, and the MITLs. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITL interface requirements, and the machine operations and maintenance requirements. The insulator stack consists of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathode conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time-dependent performance of the insulator stacks was evaluated using IVORY, a 2-D PIC code. This paper will describe the insulator stack design, present the results of the ELECTRO and IVORY analyses, and show the results of the stack measurements.

  2. Venting and High Vacuum Performance of Low Density Multilayer Insulation

    NASA Astrophysics Data System (ADS)

    Riesco, M. E.; McLean, C. H.; Mills, G. L.; Buerger, S.; Meyer, M. L.

    2010-04-01

    The NASA Exploration Program is currently studying the use liquid oxygen, liquid methane and liquid hydrogen for propulsion in future spacecraft for Exploration of the Moon and Mars. This will require the efficient long term, on-orbit storage of these cryogenic propellants. Multilayer Insulation (MLI) will be critical to achieving the required thermal performance since it has much lower heat transfer than any other insulation when used in a vacuum. MLI with a low density (⩽10 layers/cm) has been shown in previous work to be the most mass efficient. The size and mass constraints of these propulsion systems will not allow a structural shell to be used to provide vacuum for the MLI during ground hold and launch. The baseline approach is to purge the MLI during ground hold with an inert gas which is then vented during launch ascent and on-orbit. This paper presents the results on experimental tests and modeling performed by Ball Aerospace on low density, non-perforated MLI used to insulate a cryogenic tank simulating an Exploration cryogenic propellant storage vessel. These include measurements of the rate of venting and of the heat transfer of gas filled insulation, fully evacuated insulation and during the transition in between. Results of transient computer modeling of the MLI venting and heat transfer process are also presented. Previous work by some of the authors performed vent testing using MLI with perforations and slits and a slow pump down rate.

  3. Workshop on Transient Induced Insulator Flashover in Vacuum

    NASA Astrophysics Data System (ADS)

    A workshop to discuss the state-of-the-art in transient induced insulator flashover in vacuum was convened at the Pleasanton Hilton at the Club Hotel on August 24-25, 1988. The workshop was attended by 39 participants. Flashover of vacuum-insulator surfaces is the limiting factor in virtually all well designed high voltage, pulsed systems where such interfaces are needed. They are critical to many LLNL present and future applications. The workshop participants attempted via presentations and lively discussions to summarize the state-of-the-art in the field and to outline the critical research topics which could lead to advances in understanding and applications. Several new results were presented at the workshop and an intense discussion session resulted in the formulation of a set of research recommendations and priorities.

  4. A new concept of a vacuum insulation tandem accelerator.

    PubMed

    Sorokin, I; Taskaev, S

    2015-12-01

    A tandem accelerator with vacuum insulation has been proposed and developed in the Budker Institute of Nuclear Physics. Negative hydrogen ions are accelerated by the positive 1 MV potential of the high voltage electrode, converted into protons in the gas stripping target inside the electrode, and then the protons are accelerated again by the same potential. The potential for high voltage and intermediate electrodes is supplied by the sectioned rectifier through a sectioned bushing insulator with a resistive divider. In this work, we propose a radical improvement of the accelerator concept. It is proposed to abandon the separate placement of the accelerator and the power supply and connect them through the bushing insulator. The source of high voltage is proposed to be located inside the accelerator insulator with high voltage and intermediate electrodes mounted on it. This will reduce the facility height from 7 m to 3m and make it really compact and attractive for placing in a clinic. This will significantly increase the stability of the accelerator because the potential for intermediate electrodes can be fed directly from the relevant sections of the rectifier. PMID:26122976

  5. Parametric scaling study of a magnetically insulated thermionic vacuum switch

    SciTech Connect

    Vanderberg, B.H.; Eninger, J.E.

    1996-02-01

    A parametric scaling study is performed on MINOS (Magnetically INsulated Opening Switch), a novel fast ({approximately}100 ns) high-power opening switch concept based on a magnetically insulated thermionic vacuum diode. Principal scaling parameters are the switch dimensions, voltage, current, applied magnetic field, and switching time. The scaling range of interest covers voltages up to 100 kV and currents of several kA. Fundamental scaling properties are derived from models of space-charge flow and magnetic cutoff. The scaling is completed with empirical results from the experimental MX-1 switch operated in an inductive storage pulsed power generator. Results are presented in diagrams showing voltage, current, power, and efficiency relationships and their limitations. The scaling is illustrated by the design of a megawatt average power opening switch for pulsed power applications. Trade-offs in the engineering of this type of switch are discussed.

  6. Flexible edge seal for vacuum insulating glazing units

    SciTech Connect

    Bettger, Kenneth J.; Stark, David H.

    2012-12-11

    A flexible edge seal is provided for a vacuum insulating glazing unit having a first glass pane and a second glass pane spaced-apart from the first. The edge seal comprises a seal member formed of a hermetically bondable material and having a first end, a second end and a center section disposed therebetween. The first end is hermetically bondable to a first glass pane. The second end is hermetically bondable to a second glass pane. The center section comprises a plurality of convolutes.

  7. Coating Properties which Increase the Vacuum Flashover Strength of Insulators.

    NASA Astrophysics Data System (ADS)

    Leiker, Gary Robert

    The surface flashover strengths in vacuum for several common insulators, including Lexan, Lucite, polyethylene, Macor, quartz, alumina, and an alumina-filled epoxy, have been increased using a vacuum spark discharge treatment. Analysis of the treated surfaces using Electron Spectroscopy for Chemical Analysis (ESCA) show them to be coated with a thin hydrocarbon/metal oxide layer. The formation of this high-flashover coating is strongly dependent on the amount of water vapor in the chamber during treatment. Measurements of the secondary electron emission coefficient (SEEC) show that the treated surfaces produce many more secondary electrons at energies of a few keV than do untreated samples. In current theories of electrical breakdown, an avalanche of monoenergetic secondary electrons along the dielectric surface from the cathode to the anode is believed to cause gas desorption and initiate a surface flashover. A new theory is proposed in which the monoenergetic nature of this secondary electron avalanche is destroyed due to electron -gas molecule collisions before the onset of breakdown. This phenomenon, coupled with the larger number of secondaries produced at high energies, could lead to a modified charge distribution on the surface of the treated insulators, which delays the breakdown process.

  8. VecLoader HEPA Vacuum Insulation Removal System

    SciTech Connect

    None, None

    1999-09-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the deactivation and decommissioning (D&D) of nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area (DDFA) of the DOE’s Office of Science and Technology sponsors Large-Scale Demonstration Projects (LSDPs) at which developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to DOE’s projects and to others in the D&D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, decreased costs and shortened schedules. The U.S. Department of Energy (DOE) Fernald Environmental Management Project’s (FEMP’s) Decontamination and Decommissioning (D&D) Plan requires that interior and exterior walls of buildings that are being demolished be disassembled and all insulating materials removed prior to demolition. This report provides a comparative analysis of the baseline manual insulation removal technique currently employed at the FEMP, with an innovative vacuum insulation removal system.

  9. Vacuum polarization at the boundary of a topological insulator

    NASA Astrophysics Data System (ADS)

    Muniz, C. R.; Tahim, M. O.; Saraiva, G. D.; Cunha, M. S.

    2015-07-01

    In this paper we study the polarized vacuum energy on the conducting surface of a topological insulator characterized by both Z2 topological index and time reversal symmetry. This boundary is subject to the action of a static and spatially homogeneous magnetic field perpendicular to it as well as of an electric field that is uniform near the considered surface and produced by a biased voltage, at zero temperature. To do this, we consider modifications in the Gauss law that arise due to the nonzero gradient of the axionlike pseudoscalar factor coupled to the applied magnetic field, which accounts for the topological properties of the system. Such a term allows us to find a correction to the induced charges which modifies the quantum vacuum of the spinor field regarding an ordinary surface. The polarized vacuum energy is calculated in both the weak-field approximation and in the general case, and since the found energy depends on a length defined on the boundary, we show that there is a radial density of force or a surface shear stress that tends to shrink it.

  10. Flashover of a vacuum-insulator interface: A statistical model

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Ives, H. C.; Wagoner, T. C.; Lott, J. A.; Anaya, V.; Harjes, H. C.; Corley, J. P.; Shoup, R. W.; Fehl, D. L.; Mowrer, G. R.; Wallace, Z. R.; Anderson, R. A.; Boyes, J. D.; Douglas, J. W.; Horry, M. L.; Jaramillo, T. F.; Johnson, D. L.; Long, F. W.; Martin, T. H.; McDaniel, D. H.; Milton, O.; Mostrom, M. A.; Muirhead, D. A.; Mulville, T. D.; Ramirez, J. J.; Ramirez, L. E.; Romero, T. M.; Seamen, J. F.; Smith, J. W.; Speas, C. S.; Spielman, R. B.; Struve, K. W.; Vogtlin, G. E.; Walsh, D. E.; Walsh, E. D.; Walsh, M. D.; Yamamoto, O.

    2004-07-01

    We have developed a statistical model for the flashover of a 45° vacuum-insulator interface (such as would be found in an accelerator) subject to a pulsed electric field. The model assumes that the initiation of a flashover plasma is a stochastic process, that the characteristic statistical component of the flashover delay time is much greater than the plasma formative time, and that the average rate at which flashovers occur is a power-law function of the instantaneous value of the electric field. Under these conditions, we find that the flashover probability is given by 1-exp(-EβpteffC/kβ), where Ep is the peak value in time of the spatially averaged electric field E(t), teff≡∫[E(t)/Ep]βdt is the effective pulse width, C is the insulator circumference, k∝exp(λ/d), and β and λ are constants. We define E(t) as V(t)/d, where V(t) is the voltage across the insulator and d is the insulator thickness. Since the model assumes that flashovers occur at random azimuthal locations along the insulator, it does not apply to systems that have a significant defect, i.e., a location contaminated with debris or compromised by an imperfection at which flashovers repeatedly take place, and which prevents a random spatial distribution. The model is consistent with flashover measurements to within 7% for pulse widths between 0.5 ns and 10 μs, and to within a factor of 2 between 0.5 ns and 90 s (a span of over 11 orders of magnitude). For these measurements, Ep ranges from 64 to 651 kV/cm, d from 0.50 to 4.32 cm, and C from 4.96 to 95.74 cm. The model is significantly more accurate, and is valid over a wider range of parameters, than the J. C. Martin flashover relation that has been in use since 1971 [J. C. Martin on Pulsed Power, edited by T. H. Martin, A. H. Guenther, and M. Kristiansen (Plenum, New York, 1996)]. We have generalized the statistical model to estimate the total-flashover probability of an insulator stack (i.e., an assembly of insulator-electrode systems

  11. Laser Glass Frit Sealing for Encapsulation of Vacuum Insulation Glasses

    NASA Astrophysics Data System (ADS)

    Kind, H.; Gehlen, E.; Aden, M.; Olowinsky, A.; Gillner, A.

    Laser glass frit sealing is a joining method predestined in electronics for the sealing of engineered materials housings in dimensions of some 1 mm2 to several 10 mm2. The application field ranges from encapsulation of display panels to sensor housings. Laser glass frit sealing enables a hermetical closure excluding humidity and gas penetration. But the seam quality is also interesting for other applications requiring a hermetical sealing. One application is the encapsulation of vacuum insulation glass. The gap between two panes must be evacuated for reducing the thermal conductivity. Only an efficient encapsulating technique ensures durable tight joints of two panes for years. Laser glass frit sealing is an alternative joining method even though the material properties of soda lime glass like sensitivity to thermal stresses are much higher as known from engineered materials. An adapted thermal management of the process is necessary to prevent the thermal stresses within the pane to achieve crack free and tight glass frit seams.

  12. Gas-controlled dynamic vacuum insulation with gas gate

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber.

  13. Gas-controlled dynamic vacuum insulation with gas gate

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.

  14. High Reliability R-10 Windows Using Vacuum Insulating Glass Units

    SciTech Connect

    Stark, David

    2012-08-16

    The objective of this effort was for EverSealed Windows (“EverSealed” or “ESW”) to design, assemble, thermally and environmentally test and demonstrate a Vacuum Insulating Glass Unit (“VIGU” or “VIG”) that would enable a whole window to meet or exceed the an R-10 insulating value (U-factor ≤ 0.1). To produce a VIGU that could withstand any North American environment, ESW believed it needed to design, produce and use a flexible edge seal system. This is because a rigid edge seal, used by all other know VIG producers and developers, limits the size and/or thermal environment of the VIG to where the unit is not practical for typical IG sizes and cannot withstand severe outdoor environments. The rigid-sealed VIG’s use would be limited to mild climates where it would not have a reasonable economic payback when compared to traditional double-pane or triple-pane IGs. ESW’s goals, in addition to achieving a sufficiently high R-value to enable a whole window to achieve R-10, included creating a VIG design that could be produced for a cost equal to or lower than a traditional triple-pane IG (low-e, argon filled). ESW achieved these goals. EverSealed produced, tested and demonstrated a flexible edge-seal VIG that had an R-13 insulating value and the edge-seal system durability to operate reliably for at least 40 years in the harshest climates of North America.

  15. Application of porcelain enamel as an ultra-high-vacuum-compatible electrical insulator

    SciTech Connect

    Biscardi, C.; Hseuh, H.; Mapes, M.

    2000-07-01

    Many accelerator vacuum system components require electrical insulation internal to the vacuum system. Some accelerator components at Brookhaven National Laboratory are installed in ultra-high-vacuum systems which require the insulation to have excellent vacuum characteristics, be radiation resistant, and be able to withstand high temperatures when used on baked systems. Porcelain enamel satisfies all these requirements. This article describes the process and application of coating metal parts with porcelain enamel to provide electrical insulation. The mechanical and vacuum testing of Marman flanges coated with porcelain and using metal Helicoflex seals to form a zero-length electrical break are detailed. The use of porcelain enameled parts is attractive since it can be done quickly, is inexpensive and environmentally safe, and most of all satisfies stringent vacuum system requirements. (c) 2000 American Vacuum Society.

  16. Scaling experiments on a magnetically insulated thermionic vacuum switch

    SciTech Connect

    Eninger, J.E.; Vanderberg, B.H.

    1994-12-31

    Magnetic insulation of the electron flow in a cylindrical thermionic vacuum diode has been proposed as a way to achieve a fast high-voltage high-power opening switch. The expected performance of this type of device can be derived from a set of basic scaling laws combined with empirical relationships obtained from experimental studies. Switch losses are mainly due to anode dissipation W{sub a}, which can be normalized to the transferred pulse energy. Leakage current and switch hold-off voltage depend on device geometry, materials, vacuum conditions etc and must be determined experimentally. For this purpose, the MX-1 experiment has been designed and operated. This device is basically a smooth-bore cylindrical magnetron with a 5 cm radius, 400 cm{sup 2} area thermionic dispenser cathode separated from the coaxial water-cooled anode by a few mm wide gap. This design allows pulsed operation at up to {approximately}100 kV, {approximately}4 kA and average power levels of {approximately}1 MW. The MX-1 switch is used as an opening switch to produce 1--2 {mu}s long square pulses from an inductive storage PFN. The current-voltage characteristics of the switch are determined as a function of the applied magnetic field and load condition. Plasma wave measurements are performed to investigate the stability of the electron flow. Results are summarized in the form of scaling diagrams for the important switch parameters, showing possible performance levels and physical and technical limitations identified as far in this work.

  17. Lightweight Vacuum Jacket for Cryogenic Insulation - Appendices to Final Report. Volume 2

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.; Bell, J. E.; Brogren, E. W.; Straayer, J. W.

    1975-01-01

    The feasibility is demonstrated of producing a lightweight vacuum jacket using state-of-the-art technology and materials. Design and analytical studies were made on an orbital maneuvering system fuel tank. Preliminary design details were completed for the tank assembly which included an optimized vacuum jacket and multilayered insulation system. A half-scale LH2 test model was designed and fabricated and a force/stiffness proof test was conducted on the vacuum jacket. A vacuum leak rate of 0.00001 was measured, approximately 1500 hours of vacuum pressure was sustained, and 29 vacuum pressure cycles were experienced prior to failure. For vol. 1, see N75-26192.

  18. Thermal Performance of Exterior Insulation and Finish Systems Containing Vacuum Insulation Panels

    SciTech Connect

    Childs, Kenneth W; Stovall, Therese K; Biswas, Kaushik; Carbary, Lawrence D

    2013-01-01

    A high-performance wall system is under development to improve wall thermal performance to a level of U-factor of 0.19 W/(m2 K) (R-30 [h ft2 F]/Btu) in a standard wall thickness by incorporating vacuum insulation panels (VIPs) into an exterior insulation finish system (EIFS). Such a system would be applicable to new construction and will offer a solution to more challenging retrofit situations as well. Multiple design options were considered to balance the need to protect theVIPs during construction and building operation, while minimizing heat transfer through the wall system. The results reported here encompass an indepth assessment of potential system performances including thermal modeling, detailed laboratory measurements under controlled conditions on the component, and system levels according to ASTM C518 (ASTM 2010). The results demonstrate the importance of maximizing the VIP coverage over the wall face. The results also reveal the impact of both the design and execution of system details, such as the joints between adjacent VIPs. The test results include an explicit modeled evaluation of the system performance in a clear wall.

  19. Flammability, odor, offgassing, thermal vacuum stability, and compatibility with aerospace fluids of wire insulations

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Johnson, Harry

    1994-01-01

    The NASA Lewis Research Center requested NASA Johnson Space Center White Sands Test Facility to conduct flammability, odor, offgassing, thermal vacuum stability, and compatibility tests with aerospace fluids of several wire insulations.

  20. SECONDARY ELECTRON TRAJECTORIES IN HIGH-GRADIENT VACUUM INSULATORS WITH FAST HIGH-VOLTAGE PULSES

    SciTech Connect

    Chen, Y; Blackfield, D; Nelson, S D; Poole, B

    2010-04-21

    Vacuum insulators composed of alternating layers of metal and dielectric, known as high-gradient insulators (HGIs), have been shown to withstand higher electric fields than conventional insulators. Primary or secondary electrons (emitted from the insulator surface) can be deflected by magnetic fields from external sources, the high-current electron beam, the conduction current in the transmission line, or the displacement current in the insulator. These electrons are deflected either toward or away from the insulator surface and this affects the performance of the vacuum insulator. This paper shows the effects of displacement current from short voltage pulses on the performance of high gradient insulators. Generally, vacuum insulator failure is due to surface flashover, initiated by electrons emitted from a triple junction. These electrons strike the insulator surface thus producing secondary electrons, and can lead to a subsequent electron cascade along the surface. The displacement current in the insulator can deflect electrons either toward or away from the insulator surface, and affects the performance of the vacuum insulator when the insulator is subjected to a fast high-voltage pulse. Vacuum insulators composed of alternating layers of metal and dielectric, known as high-gradient insulators (HGIs), have been shown to withstand higher electric fields than conventional insulators. HGIs, being tolerant of the direct view of high-current electron and ion beams, and having desirable RF properties for accelerators, are a key enabling technology for the dielectric-wall accelerators (DWA) being developed at Lawrence Livermore National Laboratory (LLNL). Characteristically, insulator surface breakdown thresholds go up as the applied voltage pulse width decreases. To attain the highest accelerating gradient in the DWA, short accelerating voltage pulses are only applied locally, along the HGI accelerator tube, in sync with the charged particle bunch, and the effects of

  1. An experimental investigation of electric flashover across solid insulators in vacuum

    NASA Technical Reports Server (NTRS)

    Vonbaeyer, H. C.

    1984-01-01

    The insulation of high voltage conductors often employs solid insulators for many applications. In such applications, an unexpected electric flashover may occur along the insulator surface. Under conditions of high vacuum, the flashover voltage across the insulator is observed to be lower compared with that of the same electrode separation without an insulator. The reason for such an extreme reduction of flashover voltage is not well understood. Several models based on the secondary electron emission, were proposed to explain the onset of the surface flashover. The starting point and the developing velocity of the surface flashover were determined. An intensified image converter camera was used to observe the initial stage of electrical flashover along the insulator surface parallel to the electric field. Several different insulator materials were used as test pieces to determine the effect of the dielectric constant on the flashover voltage characteristics.

  2. Polarization of vacuum-pressure-impregnated high voltage epoxy-mica insulations

    SciTech Connect

    Keskinen, E.; Jaeppinen, J.

    1996-12-31

    In this paper the electrical behavior of modern epoxy-mica high voltage insulation is investigated with the help of two-layer insulation model. The simplified model help to understand the charging phenomenon in actual high voltage insulation. The behavior of Vacuum-Pressure-Impregnated (VPI`ed) epoxy-mica insulation is compared with Shellac-Micafolium insulation. It is illustrated that because of higher volume resistivity the rate of change of the field distribution due to charging is considerably slower in epoxy-mica insulation. This tends to result in lower polarization index (PI) value for the epoxy-mica insulation than typically obtained for Shellac-Micafolium insulations. It is also illustrated that the faster PI measurement method (ratio of the 60 seconds value to the 15 seconds value) gives clearly lower PI value than the method defined in IEEE 43 (1974) (ratio of 600 s value to 60 s value). Finally, the effect of moisture on insulation resistance and PI of VPI`ed epoxy-mica winding insulation is discussed.

  3. Optimization of the vacuum insulator stack of the MIG pulsed power generator

    NASA Astrophysics Data System (ADS)

    Khamzakhan, G.; Chaikovsky, S. A.

    2014-11-01

    The MIG multi-purpose pulsed power machine is intended to generate voltage pulses of amplitude up to 6 MV with electron-beam loads and current pulses of amplitude up to 2.5 MA and rise time '00 ns with inductive loads like Z pinches. The MIG generator is capable of producing a peak power of 2.5 TW. Its water transmission line is separated from the vacuum line by an insulator stack. In the existing design of the insulator, some malfunctions have been detected. The most serious problems revealed are the vacuum surface flashover occurring before the current peaks and the deep discharge traces on the water-polyethylene interface of the two rings placed closer to the ground. A comprehensive numerical simulation of the electric field distribution in the insulator of the MIG generator has been performed. It has been found that the chief drawbacks are nonuniform voltage grading across the insulator rings and significant enhancement of the electric field at anode triple junctions. An improved design of the insulator stack has been developed. It is expected that the proposed modification that requires no rearrangement of either the water line or the load-containing vacuum chamber will provide higher electric strength of the insulator.

  4. Insulator breakdown measurements in a poor vacuum and their interpretation

    SciTech Connect

    Vogtlin, G.E.

    1990-06-01

    Breakdown measurements have been made on insulators with 0 and 45 degree angle surfaces. A technique of observing the electrons produced from the process has given some insight into the mechanisms involved. A three nanosecond pulse was used to induce breakdown. The electrons striking the anode were observed with a plastic fluor and open shutter camera. Two breakdown patterns were interpreted as cathode initiated and anode initiated breakdown. The breakdown process normally encountered was anode initiated with a positive 45 degree insulator. If the anode side was relieved with an internal electrode, the breakdown changed to cathode initiated at a higher level. If the cathode surface was then anodized, the breakdown switched back to the anode at an even higher level. Individual explosive emission sites on the cathode surface could be observed. Insulator breakdown was usually not associated with these sites. Multiple pulses allowed measurement of plasma expansion of the explosive emission sites. It is believed that breakdown with longer pulses is due to the expansion of the explosive emission site plasma to the insulator surface. Measurements were conducted with and without voltage conditioning. It appears that conditioning is achieved without explosive emission. It is believed that this is due to organic fibers that are removed by the conditioning. Organic fibers were used to induce both anode and cathode breakdown. Measurements of fiberous material have shown explosive emission a low as 100 kV on a three nanosecond time scale and below 20 kv/cm on a longer time scale. 8 refs., 5 figs.

  5. Study of Vacuum Insulator Flashover for Pulse Lengths of Multi-Microseconds

    SciTech Connect

    Houck, T; Goerz, D; Javedani, J; Lauer, E; Tully, L; Vogtlin, G

    2006-07-31

    We are studying the flashover of vacuum insulators for applications where high voltage conditioning of the insulator and electrodes is not practical and for pulse lengths on the order of several microseconds. The study is centered about experiments performed with a 100-kV, 10-ms pulsed power system and supported by a combination of theoretical and computational modeling. The base line geometry is a cylindrically symmetric, +45{sup o} insulator between flat electrodes. In the experiments, flashovers or breakdowns are localized by operating at field stresses slightly below the level needed for explosive emissions with the base line geometry. The electrodes and/or insulator are then seeded with an emission source, e.g. a tuft of velvet, or a known mechanical defect. Various standard techniques are employed to suppress cathode-originating flashovers/breakdowns. We present the results of our experiments and discuss the capabilities of modeling insulator flashover.

  6. Low-cost insulation system for cryostats eliminates need for a vacuum

    NASA Technical Reports Server (NTRS)

    Calvert, H. F.

    1964-01-01

    In order to eliminate the hazard caused by residual air trapped between the concentric shells of a cryostat, these annular spaces are pressurized with helium gas. This system is more economical than the use of powdered insulation maintained at low vacuums.

  7. Suppression of an unwanted flow of charged particles in a tandem accelerator with vacuum insulation

    NASA Astrophysics Data System (ADS)

    Ivanov, A.; Kasatov, D.; Koshkarev, A.; Makarov, A.; Ostreinov, Yu.; Shchudlo, I.; Sorokin, I.; Taskaev, S.

    2016-04-01

    In the construction of a tandem accelerator with vacuum insulation several changes were made. This allowed us to suppress the unwanted flow of charged particles in the accelerator, to improve its high-voltage stability, and to increase the proton beam current from 1.6 mA to 5 mA.

  8. Initiation of vacuum insulator surface high-voltage flashover with electrons produced by laser illumination

    SciTech Connect

    Krasik, Ya. E.; Leopold, J. G.

    2015-08-15

    In this paper, experiments are described in which cylindrical vacuum insulator samples and samples inclined at 45° relative to the cathode were stressed by microsecond timescale high-voltage pulses and illuminated by focused UV laser beam pulses. In these experiments, we were able to distinguish between flashover initiated by the laser producing only photo-electrons and when plasma is formed. It was shown that flashover is predominantly initiated near the cathode triple junction. Even dense plasma formed near the anode triple junction does not necessarily lead to vacuum surface flashover. The experimental results directly confirm our conjecture that insulator surface breakdown can be avoided by preventing its initiation [J. G. Leopold et al., Phys. Rev. ST Accel. Beams 10, 060401 (2007)] and complement our previous experimental results [J. Z. Gleizer et al., IEEE Trans. Dielectr. Electr. Insul. 21, 2394 (2014) and J. Z. Gleizer et al., J. Appl. Phys. 117, 073301 (2015)].

  9. Initiation of vacuum insulator surface high-voltage flashover with electrons produced by laser illumination

    NASA Astrophysics Data System (ADS)

    Krasik, Ya. E.; Leopold, J. G.

    2015-08-01

    In this paper, experiments are described in which cylindrical vacuum insulator samples and samples inclined at 45° relative to the cathode were stressed by microsecond timescale high-voltage pulses and illuminated by focused UV laser beam pulses. In these experiments, we were able to distinguish between flashover initiated by the laser producing only photo-electrons and when plasma is formed. It was shown that flashover is predominantly initiated near the cathode triple junction. Even dense plasma formed near the anode triple junction does not necessarily lead to vacuum surface flashover. The experimental results directly confirm our conjecture that insulator surface breakdown can be avoided by preventing its initiation [J. G. Leopold et al., Phys. Rev. ST Accel. Beams 10, 060401 (2007)] and complement our previous experimental results [J. Z. Gleizer et al., IEEE Trans. Dielectr. Electr. Insul. 21, 2394 (2014) and J. Z. Gleizer et al., J. Appl. Phys. 117, 073301 (2015)].

  10. Improved design of a high-voltage vacuum-insulator interface

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Lott, J. A.; Wagoner, T. C.; Anaya, V.; Harjes, H. C.; Ives, H. C.; Wallace, Z. R.; Mowrer, G. R.; Shoup, R. W.; Corley, J. P.; Anderson, R. A.; Vogtlin, G. E.; Savage, M. E.; Elizondo, J. M.; Stoltzfus, B. S.; Andercyk, D. M.; Fehl, D. L.; Jaramillo, T. F.; Johnson, D. L.; McDaniel, D. H.; Muirhead, D. A.; Radman, J. M.; Ramirez, J. J.; Ramirez, L. E.; Spielman, R. B.; Struve, K. W.; Walsh, D. E.; Walsh, E. D.; Walsh, M. D.

    2005-05-01

    We have conducted a series of experiments designed to measure the flashover strength of various azimuthally symmetric 45° vacuum-insulator configurations. The principal objective of the experiments was to identify a configuration with a flashover strength greater than that of the standard design, which consists of a 45° polymethyl-methacrylate (PMMA) insulator between flat electrodes. The thickness d and circumference C of the insulators tested were held constant at 4.318 and 95.74 cm, respectively. The peak voltage applied to the insulators ranged from 0.8 to 2.2 MV. The rise time of the voltage pulse was 40 60 ns; the effective pulse width [as defined in Phys. Rev. ST Accel. Beams 7, 070401 (2004), PRABFM, 1098-4402, 10.1103/PhysRevSTAB.7.070401] was on the order of 10 ns. Experiments conducted with flat aluminum electrodes demonstrate that the flashover strength of a crosslinked polystyrene (Rexolite) insulator is (18±7)% higher than that of PMMA. Experiments conducted with a Rexolite insulator and an anode plug, i.e., an extension of the anode into the insulator, demonstrate that a plug can increase the flashover strength by an additional (44±11)%. The results are consistent with the Anderson model of anode-initiated flashover, and confirm previous measurements. It appears that a Rexolite insulator with an anode plug can, in principle, increase the peak electromagnetic power that can be transmitted across a vacuum interface by a factor of [(1.18)(1.44)]2=2.9 over that which can be achieved with the standard design.

  11. Investigations of the electrical breakdown properties of insulator materials used in high voltage vacuum diodes

    SciTech Connect

    Shurter, R.P.; Carlson, R.L.; Melton, J.G.

    1993-08-01

    The Injector for the proposed Dual-Axis Radiographic Hydrodynamic Testing (DARHT) Facility at Los Alamos utilizes a monolithic insulator deployed in a radial configuration. The 1.83-m-diam {times} 25.4-cm-thick insulator with embedded grading rings separates the output oil transmission line from the vacuum vessel that contains the re-entrant anode and cathode assemblies. Although much work has been done by the pulse power community in studying surface flash-over of insulating materials used in both axial and radial configurations, dendrite growth at the roots of grading rings embedded in materials suitable for very large insulators is less well characterized. Degradation of several acrylic insulators has been observed in the form of dendrites growing at the roots of the grading rings for large numbers (100`s) of pulses on the prototype DARHT Injector and other machines using similar radial geometries. In a few cases, these dendrites have led to catastrophic bulk breakdown of the acrylic between two grading rings making the insulator a costly loss. Insulating materials under investigation are acrylic (Lucite), epoxy (Furane), and cross-linked polystyrene (Rexolite); each of these materials has its own particular mechanical and electrical merits. All of these materials have been cast and machined into the required large size for the Injector. Test methods and the results of investigations into the breakdown strength of various interface geometries and the susceptibility of these materials to dendrite growth are reported.

  12. Vacuum insulation of the high energy negative ion source for fusion application.

    PubMed

    Kojima, A; Hanada, M; Hilmi, A; Inoue, T; Watanabe, K; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Kobayashi, S; Yamano, Y; Grisham, L R

    2012-02-01

    Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of ∼2 m(2). The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A, 500 keV D(-) ion beams for 100 s. PMID:22380274

  13. Vacuum insulation of the high energy negative ion source for fusion application

    SciTech Connect

    Kojima, A.; Hanada, M.; Inoue, T.; Watanabe, K.; Taniguchi, M.; Kashiwagi, M.; Umeda, N.; Tobari, H.; Hilmi, A.; Kobayashi, S.; Yamano, Y.; Grisham, L. R.

    2012-02-15

    Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of {approx}2 m{sup 2}. The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A, 500 keV D{sup -} ion beams for 100 s.

  14. Design and analysis of the PBFA-Z vacuum insulator stack

    SciTech Connect

    Shoup, R.W. |; Long, F.; Martin, T.H.

    1996-06-01

    Sandia is developing PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack, and MITLs on PBFA II with new hardware. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITL interface requirements, and the machine operations and maintenance requirements. The insulator stack will consist of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathode conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time dependent performance of the insulator stack was evaluated using IVORY, a 2-D PIC code. This paper will describe the insulator stack design and present the results of the ELECTRO and IVORY analyses.

  15. Modeling the pressure increase in liquid helium cryostats after failure of the insulating vacuum

    NASA Astrophysics Data System (ADS)

    Heidt, C.; Grohmann, S.; Süßer, M.

    2014-01-01

    The pressure relief system of liquid helium cryostats requires a careful design, due to helium's low enthalpy of vaporization and due to the low operating temperature. Hazard analyses often involve the failure of the insulating vacuum in the worst-case scenario. The venting of the insulating vacuum and the implications for the pressure increase in the helium vessel, however, have not yet been fully analyzed. Therefore, the dimensioning of safety devices often requires experience and reference to very few experimental data. In order to provide a better foundation for the design of cryogenic pressure relief systems, this paper presents an analytic approach for the strongly dynamic process induced by the loss of insulating vacuum. The model is based on theoretical considerations and on differential equation modeling. It contains only few simplifying assumptions, which will be further investigated in future experiments. The numerical solutions of example calculations are presented with regard to the heat flux into the helium vessel, the helium pressure increase and the helium flow rate through the pressure relief device. Implications concerning two-phase flow and the influence of kinetic energy are discussed.

  16. Modeling the pressure increase in liquid helium cryostats after failure of the insulating vacuum

    SciTech Connect

    Heidt, C.; Grohmann, S.; Süßer, M.

    2014-01-29

    The pressure relief system of liquid helium cryostats requires a careful design, due to helium's low enthalpy of vaporization and due to the low operating temperature. Hazard analyses often involve the failure of the insulating vacuum in the worst-case scenario. The venting of the insulating vacuum and the implications for the pressure increase in the helium vessel, however, have not yet been fully analyzed. Therefore, the dimensioning of safety devices often requires experience and reference to very few experimental data. In order to provide a better foundation for the design of cryogenic pressure relief systems, this paper presents an analytic approach for the strongly dynamic process induced by the loss of insulating vacuum. The model is based on theoretical considerations and on differential equation modeling. It contains only few simplifying assumptions, which will be further investigated in future experiments. The numerical solutions of example calculations are presented with regard to the heat flux into the helium vessel, the helium pressure increase and the helium flow rate through the pressure relief device. Implications concerning two-phase flow and the influence of kinetic energy are discussed.

  17. Two-dimensional simulation research of secondary electron emission avalanche discharge on vacuum insulator surface

    SciTech Connect

    Cai, Libing; Wang, Jianguo; Zhu, Xiangqin; Wang, Yue; Zhang, Dianhui

    2015-01-15

    Based on the secondary electron emission avalanche (SEEA) model, the SEEA discharge on the vacuum insulator surface is simulated by using a 2D PIC-MCC code developed by ourselves. The evolutions of the number of discharge electrons, insulator surface charge, current, and 2D particle distribution are obtained. The effects of the strength of the applied electric field, secondary electron yield coefficient, rise time of the pulse, length of the insulator on the discharge are investigated. The results show that the number of the SEEA electrons presents a quadratic dependence upon the applied field strength. The SEEA current, which is on the order of Ampere, is directly proportional to the field strength and secondary electron yield coefficient. Finally, the electron-stimulated outgassing is included in the simulation code, and a three-phase discharge curve is presented by the simulation, which agrees with the experimental data.

  18. Two-dimensional simulation research of secondary electron emission avalanche discharge on vacuum insulator surface

    NASA Astrophysics Data System (ADS)

    Cai, Libing; Wang, Jianguo; Zhu, Xiangqin; Wang, Yue; Zhang, Dianhui

    2015-01-01

    Based on the secondary electron emission avalanche (SEEA) model, the SEEA discharge on the vacuum insulator surface is simulated by using a 2D PIC-MCC code developed by ourselves. The evolutions of the number of discharge electrons, insulator surface charge, current, and 2D particle distribution are obtained. The effects of the strength of the applied electric field, secondary electron yield coefficient, rise time of the pulse, length of the insulator on the discharge are investigated. The results show that the number of the SEEA electrons presents a quadratic dependence upon the applied field strength. The SEEA current, which is on the order of Ampere, is directly proportional to the field strength and secondary electron yield coefficient. Finally, the electron-stimulated outgassing is included in the simulation code, and a three-phase discharge curve is presented by the simulation, which agrees with the experimental data.

  19. A ceramic radial insulation structure for a relativistic electron beam vacuum diode.

    PubMed

    Xun, Tao; Yang, Hanwu; Zhang, Jiande; Liu, Zhenxiang; Wang, Yong; Zhao, Yansong

    2008-06-01

    For one kind of a high current diode composed of a small disk-type alumina ceramic insulator water/vacuum interface, the insulation structure was designed and experimentally investigated. According to the theories of vacuum flashover and the rules for radial insulators, a "cone-column" anode outline and the cathode shielding rings were adopted. The electrostatic field along the insulator surface was obtained by finite element analysis simulating. By adjusting the outline of the anode and reshaping the shielding rings, the electric fields were well distributed and the field around the cathode triple junction was effectively controlled. Area weighted statistical method was applied to estimate the surface breakdown field. In addition, the operating process of an accelerator based on a spiral pulse forming line (PFL) was simulated through the PSPICE software to get the waveform of charging and diode voltage. The high voltage test was carried out on a water dielectric spiral PFL accelerator with long pulse duration, and results show that the diode can work stably in 420 kV, 200 ns conditions. The experimental results agree with the theoretical and simulated results. PMID:18601401

  20. RHIC Beam Position Monitor Assemblies

    SciTech Connect

    Cameron, P.R.; Grau, M.C.; Ryan, W.A.; Shea, T.J.; Sikora, R.E.

    1993-09-01

    Design calculations, design details, and fabrication techniques for the RHIC BPM Assemblies are discussed. The 69 mm aperture single plane detectors are 23 cm long short-circuited 50 ohm strip transmission lines subtending 80 degrees. They are mounted on the sextupole end of the Corrector-Quadrupole-Sextupole package and operate at liquid helium temperature. The 69 cm aperture was selected to be the same as that of the beampipe in the CQS package, dc 23 cm length is a compromise between mechanical stability and electrical sensitivity to the long low-intensity proton and heavy ion bunches to be found in RHIC during commissioning, and the 80 degree subtended angle maximizes linear aperture. The striplines are aligned after brazing to maintain electrical-to-mechanical centers within 0.1 mm radius, eliminating the need for individual calibration. Because the cryogenic feedthrus isolate the UHV beam vacuum only from the HV insulating vacuum, and do not see liquid helium, a replaceable mini-ConFlat design was chosen to simplify fabrication, calibration, and maintenance.

  1. Helium release rates and ODH calculations from RHIC magnet cooling line failure

    SciTech Connect

    Liaw, C.J.; Than, Y.; Tuozzolo, J.

    2011-03-28

    A catastrophic failure of the magnet cooling lines, similar to the LHC superconducting bus failure incident, could discharge cold helium into the RHIC tunnel and cause an Oxygen Deficiency Hazard (ODH) problem. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the insulating vacuum volumes and discharging via the reliefs into the RHIC tunnel, had been developed. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces are included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Results, including helium discharge rates, helium inventory loss, and the resulting oxygen concentration in the RHIC tunnel area, are reported. Good agreement had been achieved when comparing the simulation results, a RHIC sector depressurization test measurement, and some simple analytical calculations.

  2. A review of vacuum insulation research and development in the Building Materials Group of the Oak Ridge National Laboratory

    SciTech Connect

    Kollie, T.G.; McElroy, D.L.; Fine, H.A.; Childs, K.W.; Graves, R.S.; Weaver, F.J.

    1991-09-01

    This report is a summary of the development work on flat-vacuum insulation performed by the Building Materials Group (BMG) in the Metals and Ceramics Division of the Oak Ridge National Laboratory (ORNL) during the last two years. A historical review of the technology of vacuum insulation is presented, and the role that ORNL played in this development is documented. The ORNL work in vacuum insulation has been concentrated in Powder-filled Evacuated Panels (PEPs) that have a thermal resistivity over 2.5 times that of insulating foams and seven times that of many batt-type insulations, such as fiberglass. Experimental results of substituting PEPs for chlorofluorocarbon (CFC) foal insulation in Igloo Corporation ice coolers are summarized. This work demonstrated that one-dimensional (1D) heat flow models overestimated the increase in thermal insulation of a foam/PEP-composite insulation, but three-dimensional (3D) models provided by a finite-difference, heat-transfer code (HEATING-7) accurately predicted the resistance of the composites. Edges and corners of the ice coolers were shown to cause the errors in the 1D models as well as shunting of the heat through the foam and around the PEPs. The area of coverage of a PEP in a foam/PEP composite is established as an important parameter in maximizing the resistance of such composites. 50 refs., 27 figs,. 22 tabs.

  3. Suppression of shunting current in a magnetically insulated coaxial vacuum diode

    SciTech Connect

    Yalandin, M. I.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.; Ulmaskulov, M. R.; Mesyats, G. A.; Rostov, V. V.

    2015-06-08

    Real-time investigations of the dynamics of explosive electron emission from a high-voltage cathode holder made of nonmagnetic stainless steel in a magnetically insulated coaxial vacuum diode have been performed. It has been shown that aging the cathode with several tens of voltage pulses at a field of 1–2 MV/cm provides a stray emission delay ranging from hundreds of picoseconds to a nanosecond or more. In addition, the magnetic field must be configured so that the magnetic lines would not cross the vacuum gap between the diode case and the cathode holder in the region behind the emitting edge of the cathode. These efforts provide conditions for stable emission of the working beam from a graphite cathode with a sharp emitting edge.

  4. Suppression of shunting current in a magnetically insulated coaxial vacuum diode

    NASA Astrophysics Data System (ADS)

    Yalandin, M. I.; Mesyats, G. A.; Rostov, V. V.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.; Ulmaskulov, M. R.

    2015-06-01

    Real-time investigations of the dynamics of explosive electron emission from a high-voltage cathode holder made of nonmagnetic stainless steel in a magnetically insulated coaxial vacuum diode have been performed. It has been shown that aging the cathode with several tens of voltage pulses at a field of 1-2 MV/cm provides a stray emission delay ranging from hundreds of picoseconds to a nanosecond or more. In addition, the magnetic field must be configured so that the magnetic lines would not cross the vacuum gap between the diode case and the cathode holder in the region behind the emitting edge of the cathode. These efforts provide conditions for stable emission of the working beam from a graphite cathode with a sharp emitting edge.

  5. Highly radiation-resistant vacuum impregnation resin systems for fusion magnet insulation

    NASA Astrophysics Data System (ADS)

    Fabian, P. E.; Munshi, N. A.; Denis, R. J.

    2002-05-01

    Magnets built for fusion devices such as the newly proposed Fusion Ignition Research Experiment (FIRE) need to be highly reliable, especially in a high radiation environment. Insulation materials are often the weak link in the design of superconducting magnets due to their sensitivity to high radiation doses, embrittlement at cryogenic temperatures, and the limitations on their fabricability. An insulation system capable of being vacuum impregnated with desirable properties such as a long pot-life, high strength, and excellent electrical integrity and which also provides high resistance to radiation would greatly improve magnet performance and reduce the manufacturing costs. A new class of insulation materials has been developed utilizing cyanate ester chemistries combined with other known radiation-resistant resins, such as bismaleimides and polyimides. These materials have been shown to meet the demanding requirements of the next generation of devices, such as FIRE. Post-irradiation testing to levels that exceed those required for FIRE showed no degradation in mechanical properties. In addition, the cyanate ester-based systems showed excellent performance at cryogenic temperatures and possess a wide range of processing variables, which will enable cost-effective fabrication of new magnets. This paper details the processing parameters, mechanical properties at 76 K and 4 K, as well as post-irradiation testing to dose levels surpassing 108 Gy.

  6. Electro-magnetic stress-induced degradation of insulation vacuum of a large cryo-magnetic system

    NASA Astrophysics Data System (ADS)

    Bhattachryya, Pranab; Gupta, Anjan Dutta; Dhar, S.; Pal, Gautam; Mukherjee, Paramita

    2016-07-01

    In superconducting magnets, the cold mass is placed in a vacuum vessel to reduce heat load to the liquid helium system. Helium leaks into the vacuum vessel can degrade the insulation vacuum, which can, in turn, cause an increase in the heat load to the liquid helium system. These leaks are called cold leaks, as they show up when the coil is cooled with liquid helium. K500 superconducting cyclotron magnet at Variable Energy Cyclotron Centre, Kolkata has such cold leaks in the helium vessel that developed during cool down. The leak rate increases with the increase of current in the superconducting coils. This paper describes a series of experiments carried out on the superconducting cyclotron magnet to find the level of degradation of insulation vacuum and measure the increase in heat load with magnet current. The leak rate was also measured and the leak size was estimated analytically. Detail magneto-structural analysis was done using Finite Element Method (FEM) to identify highly stressed zones in the helium vessel and found out that highly stressed zones coincide with the weld zones. The magneto-structural stress was applied on an estimated size of single crack and found that crack tip stress could reach beyond elastic limit of the material. We can predict that the full design current may be unachievable in this situation. Mitigation of increased heat load was also done using an additional vacuum pump for the insulation vacuum space.

  7. Characterization of vacuum-multifoil insulation for long-life thermal batteries

    SciTech Connect

    GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.; KAUN,THOMAS

    2000-04-17

    The use of vacuum multifoil (VMF) container for thermal insulation in long-life thermal batteries was investigated in a proof-of-concept demonstration. An InvenTek-designed VMF container 4.9 inches in diameter by 10 inches long was used with an internally heated aluminum block, to simulate a thermal-battery stack. The block was heated to 525 C or 600 C and allowed to cool while monitoring the temperature of the block and the external case at three locations with time. The data indicate that it should be possible to build an equivalent-sized thermal battery that should last up to six hours, which would meet the requirements for a long-life sonobuoy application.

  8. Proton beam of 2 MeV 1.6 mA on a tandem accelerator with vacuum insulation

    NASA Astrophysics Data System (ADS)

    Kasatov, D.; Kuznetsov, A.; Makarov, A.; Shchudlo, I.; Sorokin, I.; Taskaev, S.

    2014-12-01

    A source of epithermal neutrons based on a tandem accelerator with vacuum insulation for boron neutron capture therapy of malignant tumors was proposed and constructed. Stationary proton beam with 2 MeV energy, 1.6 mA current, 0.1% energy monochromaticity and 0.5% current stability has just been obtained.

  9. Filament-strung stand-off elements for maintaining pane separation in vacuum insulating glazing units

    DOEpatents

    Bettger, Kenneth J; Stark, David H

    2013-08-20

    A vacuum insulating glazing unit (VIGU) comprises first and second panes of transparent material, first and second anchors, a plurality of filaments, a plurality of stand-off elements, and seals. The first and second panes of transparent material have edges and inner and outer faces, are disposed with their inner faces substantially opposing one another, and are separated by a gap having a predetermined height. The first and second anchors are disposed at opposite edges of one pane of the VIGU. Each filament is attached at one end to the first anchor and at the other end to the second anchor, and the filaments are collectively disposed between the panes substantially parallel to one another. The stand-off elements are affixed to each filament at predetermined positions along the filament, and have a height substantially equal to the predetermined height of the gap such that the each stand-off element touches the inner surfaces of both panes. The seals are disposed about the edges of the panes, enclosing the stand-off elements within a volume between the panes from which the atmosphere may be evacuated to form a partial vacuum.

  10. Ultra high vacuum fabrication of metallic contacts for molecular devices on an insulating surface

    NASA Astrophysics Data System (ADS)

    Fostner, Shawn

    The preparation and characterization of metallic wires on insulating substrates by a variety of mechanisms has been explored. A multi-scale approach utilizing microfabricated silicon stencil masks, feedback controlled electromigration, and field induced metal cluster deposition in a novel geometry has been explored on potassium bromide (KBr), indium phosphide (InP), and silicon oxide substrates in an ultra-high vacuum environment (UHV). The initial deposition of gold, and tantalum wires between one hundred nanometers and micrometers in size was performed using reinforced silicon nanostencils. The stencil fabrication was discussed, and an examination of the deformation of the integrated structures under the deposition of highly stressed tantalum films was shown to be significantly smaller than typical structures. Metallic wires deposited using these stencils as well as electron beam lithography were electrically stressed and the breaking characteristics analyzed. Typical nanometer scale gaps were observed, as well as larger features more commonly found in the breaking of bamboo-like structures in gold wires 100 nm in size or less, particularly with a significant series resistance. These larger gaps are expected to be more applicable for the deposition of subsequent metallic clusters and preparation of molecular devices. As a step towards connecting the initially deposited wires as well as localized molecules in an a fashion allowing atomic scale imaging by AFM, modelling and experiments of field induced deposition of gold clusters on KBr and InP substrates was carried out. Deposition on InP substrates with a backside 2D electron gas as a counter-electrode demonstrated the feability of this deposition technique in UHV. Subsequent depositions on or adjacent to metallic pads on the bulk insulating KBr provided a proof of principle of the technique, though some experimental limitations such as large current pulses with the tip in close proximity to the surface are

  11. Non-CFC vacuum alternatives for the energy-efficient insulation of household refrigerators: Design and use

    SciTech Connect

    Potter, T.F.; Benson, D.K.

    1991-01-01

    Energy efficiency, environmental issues, and market incentives all encourage government and industry to continue work on thin-profile vacuum insulations for domestic refrigerators and freezers (R/Fs). Vacuum insulations promise significant improvement in thermal savings over current insulations; the technical objective of one design is an R-value of better than 10 (hr-ft{sup 2}-F/Btu) in 0.1 in. thickness. If performance is improved by a factor of 10 over that of CFC-blown insulating foams, the new insulations (made without CFCs or other potentially troublesome fill gases) will change the design and improve the efficiency of refrigerators. Such changes will meet the conservation, regulatory, and market drivers now strong in developed countries and likely to increase in developing countries. Prototypes of various designs have been tested in the laboratory and in factories, and results to date confirm the good thermal performance of these thin-profile alternatives. The next step is to resolve issues of reliability and cost effectiveness. 34 refs., 4 figs.

  12. Ageing of organic electrical insulating materials due to radiation. Physical properties of a cycloaliphatic epoxy resin irradiated under vacuum

    NASA Astrophysics Data System (ADS)

    Sparado, G.; Calderaro, E.; Schifani, R.; Tutone, R.; Rizzo, G.

    Physical properties of a cycloaliphatic epoxy resin irradiated under vacuum have been investigated. In particular dynamic-mechanical, dielectric and tensile measurements have been performed. This is a useful basis with a view to studying the ageing phenomenon of organic insulating materials due to radiation under the combined effect of environmental conditions. The results indicate that, in the dose range investigated (0-1.5 x 10 6Gy), the main effect of γ-rays under vacuum is to increase the degree of crosslinking

  13. Obtaining a proton beam with 5-mA current in a tandem accelerator with vacuum insulation

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.; Kasatov, D. A.; Koshkarev, A. M.; Makarov, A. N.; Ostreinov, Yu. M.; Sorokin, I. N.; Taskaev, S. Yu.; Shchudlo, I. M.

    2016-06-01

    Suppression of parasitic electron flows and positive ions formed in the beam tract of a tandem accelerator with vacuum insulation allowed a more than threefold increase (from 1.6 to 5 mA) in the current of accelerated 2-MeV protons. Details of the modification are described. Results of experimental investigation of the suppression of secondary charged particles and data on the characteristics of accelerated proton beam with increased current are presented.

  14. Micro-Vibration Measurements on Thermally Loaded Multi-Layer Insulation Samples in Vacuum

    NASA Technical Reports Server (NTRS)

    Deutsch, Georg; Grillenbeck, Anton

    2008-01-01

    Some scientific missions require to an extreme extent the absence of any on-board microvibration. Recent projects dedicated to measuring the Earth's gravity field and modeling the geoid with extremely high accuracy are examples. Their missions demand for extremely low micro-vibration environment on orbit for: (1) Not disturbing the measurement of earth gravity effects with the installed gradiometer or (2) Even not damaging the very high sensitive instruments. Based on evidence from ongoing missions multi-layer insulation (MLI) type thermal control blankets have been identified as a structural element of spacecrafts which might deform under temperature variations being caused by varying solar irradiation in orbit. Any such deformation exerts tiny forces which may cause small reactions resulting in micro-vibrations, in particular by exciting the spacecraft eigenmodes. The principle of the test set-up for the micro-vibration test was as follows. A real side wall panel of the spacecraft (size about 0.25 m2) was low-frequency suspended in a thermal vacuum chamber. On the one side of this panel, the MLI samples were fixed by using the standard methods. In front of the MLI, an IR-rig was installed which provided actively controlled IR-radiation power of about 6 kW/m2 in order to heat the MLI surface. The cooling was passive using the shroud temperature at a chamber pressure <1E-5mbar. The resulting micro-vibrations due to MLI motion in the heating and the cooling phase were measured via seismic accelerometers which were rigidly mounted to the panel. Video recording was used to correlate micro-vibration events to any visual MLI motion. Different MLI sample types were subjected to various thermal cycles in a temperature range between -60 C to +80 C. In this paper, the experience on these micro-vibration measurements will be presented and the conclusions for future applications will be discussed

  15. Insulation.

    ERIC Educational Resources Information Center

    Rhea, Dennis

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with insulation. Its objective is for the student to be able to determine insulation needs of new or existing structures, select type to use, use installation techniques, calculate costs, and apply safety factors. Some topics covered…

  16. Self-consistent simulation of the initiation of the flashover discharge on vacuum insulator surface

    SciTech Connect

    Cai, L. B.; Zhang, D. H.; Du, T. J.; Zhu, X. Q.; Wang, Y.; Wang, J. G.

    2012-07-15

    A 2D particle-in-cell code, including the space charge effects of insulator surface charge, is established to simulate the initiation of insulator surface flashover. The simulation is started with a field electron emission, which provides the seed electrons of the surface flashover discharge. Then the secondary electron emission is caused by the seed electrons on the insulator surface, gets into an avalanche, and saturates rapidly in a region between the cathode and anode. And the saturation region spreads to the anode at a speed of {approx}10{sup 7} m/s, which is coincident with the experiment measurement.

  17. RHIC status

    SciTech Connect

    Peggs, S.

    1997-08-01

    The design and construction status of the Relativistic Heavy Ion Collider, RHIC, which is in the seventh year of a nine year construction cycle, is discussed. Those novel performance features of a heavy ion collider that are distinct from hadron colliders in general are noted. These features are derived from the experimental requirements of operation with a variety of ion species over a wide energy range, including collisions between protons and ions, and between ions of unequal energies. Section 1 gives a brief introduction to the major parameters and overall layout of RHIC. A review of the superconducting magnet program is given in Section 2. Activities during the recent Sextant Test are briefly reviewed in Section 3. Finally, Section 4 presents the plans for RHIC commissioning in 1999.

  18. RHIC cryogenics

    NASA Astrophysics Data System (ADS)

    Iarocci, M. A.; Brown, D.; Sondericker, J.; Wu, K. C.; Benson, J.; Farah, Y.; Lac, C.; Morgillo, A.; Nicoletti, A.; Quimby, E.; Rank, J.; Rehak, M.; Werner, A.

    2003-03-01

    An integrated helium cryogenic system was designed with the specific performance goal of cooling and refrigerating the cryogenic magnets to below their nominal operating temperature. These magnets make up the steering and focusing elements for the Relativistic Heavy Ion Collider (RHIC). In addition to meeting the accelerator demands, reliability, flexibility, safety, and ease of operation were key considerations during the design phase of the project. The refrigerator, with a capacity of 25 kW at about 4 K, was originally designed to match the load for the Colliding Beam Accelerator Project. The existing refrigerator, along with its complimentary warm compressor system was reconfigured slightly to meet the cooling process cycle design for RHIC. The original VAX based process control system was also adapted for RHIC, and later expanded upon to integrate a new programmable logic controller based ring resident control system, hence forming a common system to monitor and control all cryogenic components.

  19. Maximum Expected Wall Heat Flux and Maximum Pressure After Sudden Loss of Vacuum Insulation on the Stratospheric Observatory for Infrared Astronomy (SOFIA) Liquid Helium (LHe) Dewars

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.

    2014-01-01

    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared observation experiments. The experiments carry sensors cooled to liquid helium (LHe) temperatures. A question arose regarding the heat input and peak pressure that would result from a sudden loss of the dewar vacuum insulation. Owing to concerns about the adequacy of dewar pressure relief in the event of a sudden loss of the dewar vacuum insulation, the SOFIA Program engaged the NASA Engineering and Safety Center (NESC). This report summarizes and assesses the experiments that have been performed to measure the heat flux into LHe dewars following a sudden vacuum insulation failure, describes the physical limits of heat input to the dewar, and provides an NESC recommendation for the wall heat flux that should be used to assess the sudden loss of vacuum insulation case. This report also assesses the methodology used by the SOFIA Program to predict the maximum pressure that would occur following a loss of vacuum event.

  20. Commercialization Plan Support for Development of Low Cost Vacuum Insulating Glazing: Cooperative Research and Development Final Report, CRADA Number CRD-11-449

    SciTech Connect

    Dameron, Arrelaine

    2015-07-09

    During the duration of this CRADA, V-Glass and NREL will partner in testing, analysis, performance forecasting, costing, and evaluation of V-Glass’s GRIPWELD™ process technology for creating a low cost hermetic seal for conventional and vacuum glazing. Upon successful evaluation of hermeticity, V-Glass’s GRIPWELD™ will be evaluated for its potential use in highly insulating window glazing.

  1. Insulation degradation behavior of multilayer ceramic capacitors clarified by Kelvin probe force microscopy under ultra-high vacuum

    NASA Astrophysics Data System (ADS)

    Suzuki, Keigo; Okamoto, Takafumi; Kondo, Hiroyuki; Tanaka, Nobuhiko; Ando, Akira

    2013-02-01

    We investigated surface potential images on the cross section of degraded multilayer ceramic capacitors (MLCCs) by Kelvin probe force microscopy measured under a dc bias voltage in ultra-high vacuum. A highly accelerated lifetime test (HALT) was conducted to obtain degraded MLCCs. The high energy resolution of the present measurement allows us to observe the step-like voltage drops on dielectric layers of as-fired MLCCs. The step-like voltage drops disappear on the dielectric layers of degraded MLCCs, indicating that the resistance at grain boundaries declines with the progress of insulation degradation. Furthermore, the electric field concentrations near the electrodes are clearly observed under forward and backward bias. The discussion based on energy band diagrams suggests that the electric field concentrations near electrodes are attributable to energy barrier formed at the interface between electrode and dielectrics. In particular, the electric field concentration at cathode in HALT measured under backward bias is much higher than that at anode in HALT measured under forward bias. This implies that oxygen vacancies accumulated during HALT cause band bending near the cathode in HALT. We propose that the initial decline of resistance at grain boundaries and following electric-field concentrations at anode in HALT is essential to the insulation degradation on dielectric layers of MLCCs under dc bias voltage.

  2. Optimization of the contents of hollow glass microsphere and sodium hexametaphosphate for glass fiber vacuum insulation panel

    NASA Astrophysics Data System (ADS)

    Li, C. D.; Chen, Z. F.; Zhou, J. M.

    2016-07-01

    In this paper, various additive amounts of hollow glass microspheres (HGMs) and sodium hexametaphosphate (SHMP) powders were blended with flame attenuated glass wool (FAGW) to form hybrid core materials (HCMs) through the wet method. Among them, the SHMP was dissolved in the glass fiber suspension and coated on the surface of glass fibers while the HGMs were insoluble in the glass fiber suspension and filled in the fiber-fiber pores. The average pore diameter of the FAGW/HGM HCMs was 8-11 μm which was near the same as that of flame attenuated glass fiber mats (FAGMs, i.e., 10.5 µm). The tensile strength of the SHMP coated FAGMs was enhanced from 160 N/m to 370 N/m when SHMP content increased from 0 wt.% to 0.2 wt.%. By contrast, the tensile strength of the FAGW/HGM HCMs decreased from 160 N/m to 40 N/m when HGM content increased from 0 wt.% to 50 wt.%. Both the FAGW/HGM HCMs and SHMP coated FAGMs were vacuumed completely to form vacuum insulation panels (VIPs). The results showed that both the addition of SHMP and HGM led a slight increase in the thermal conductivity of the corresponding VIPs. To obtain a high-quality VIP, the optimal SHMP content and HGM content in glass fiber suspension was 0.12-0.2 wt.% and 0 wt.%.

  3. RHIC instrumentation

    SciTech Connect

    Shea, T. J.; Witkover, R. L.

    1998-12-10

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 10{sup 11} protons to 250 GeV, or 10{sup 9} fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test.

  4. RHIC instrumentation

    NASA Astrophysics Data System (ADS)

    Shea, T. J.; Witkover, R. L.

    1998-12-01

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 1011 protons to 250 GeV, or 109 fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test.

  5. RHIC instrumentation

    SciTech Connect

    Shea, T.J.; Witkover, R.L.

    1998-12-01

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 10{sup 11} protons to 250 GeV, or 10{sup 9} fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test. {copyright} {ital 1998 American Institute of Physics.}

  6. RHIC Status

    NASA Astrophysics Data System (ADS)

    Peggs, Steve

    1997-05-01

    The design and construction status of the Relativistic Heavy Ion Collider, RHIC, is discussed. Those novel performance features of a heavy ion collider that are distinct from hadron colliders in general are noted. These features are derived from the experimental requirements of operation with a variety of ion species over a wide energy range, including collisions between protons and ions, and between ions of unequal energies. The project is in the fifth year of a seven year construction cycle. A brief review of the recent Sextant Test is given, together with progress to date on machine construction.

  7. HYDROGEN AND ITS DESORPTION IN RHIC.

    SciTech Connect

    HSEUH,H.C.

    2002-11-11

    Hydrogen is the dominating gas specie in room temperature, ultrahigh vacuum systems of particle accelerators and storage rings, such as the Relativistic Heavy Ion Collider (RHIC) at Brookhaven. Rapid pressure increase of a few decades in hydrogen and other residual gases was observed during RHIC's recent high intensity gold and proton runs. The type and magnitude of the pressure increase were analyzed and compared with vacuum conditioning, beam intensity, number of bunches and bunch spacing. Most of these pressure increases were found to be consistent with those induced by beam loss and/or electron stimulated desorption from electron multipacting.

  8. Numerical simulation of cathode plasma dynamics in magnetically insulated vacuum transmission lines

    SciTech Connect

    Thoma, C.; Genoni, T. C.; Welch, D. R.; Rose, D. V.; Clark, R. E.; Miller, C. L.; Stygar, W. A.; Kiefer, M. L.

    2015-03-15

    A novel algorithm for the simulation of cathode plasmas in particle-in-cell codes is described and applied to investigate cathode plasma evolution in magnetically insulated transmission lines (MITLs). The MITL electron sheath is modeled by a fully kinetic electron species. Electron and ion macroparticles, both modeled as fluid species, form a dense plasma which is initially localized at the cathode surface. Energetic plasma electron particles can be converted to kinetic electrons to resupply the electron flux at the plasma edge (the “effective” cathode). Using this model, we compare results for the time evolution of the cathode plasma and MITL electron flow with a simplified (isothermal) diffusion model. Simulations in 1D show a slow diffusive expansion of the plasma from the cathode surface. But in multiple dimensions, the plasma can expand much more rapidly due to anomalous diffusion caused by an instability due to the strong coupling of a transverse magnetic mode in the electron sheath with the expanding resistive plasma layer.

  9. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion.

    PubMed

    Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings. PMID:26932032

  10. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion

    NASA Astrophysics Data System (ADS)

    Kojima, A.; Hanada, M.; Tobari, H.; Nishikiori, R.; Hiratsuka, J.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K.; Yamano, Y.; Grisham, L. R.

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  11. Thermal insulator

    SciTech Connect

    Yamamoto, R.; Asada, Y.; Matsuo, Y.; Mikoda, M.

    1985-07-16

    A thermal insulator comprises an expanded resin body having embedded therein an evacuated powder insulation portion which consists of fine powder and a container of film-like plastics or a film-like composite of plastics and metal for enclosing the powder. The resin body has been expanded by a Freon gas as a blowing agent. Since a Freon gas has a larger molecular diameter than the constituent gases of air, it is less likely to permeate through the container than air. Thus present invention provides a novel composite insulator which fully utilizes the benefits of vacuum insulation without necessitating a strong and costly material for a vacuum container.

  12. A new test method for the assessment of the arc tracking properties of wire insulation in air, oxygen enriched atmospheres and vacuum

    NASA Technical Reports Server (NTRS)

    Koenig, Dieter

    1994-01-01

    Development of a new test method suitable for the assessment of the resistance of aerospace cables to arc tracking for different specific environmental and network conditions of spacecraft is given in view-graph format. The equipment can be easily adapted for tests at different realistic electrical network conditions incorporating circuit protection and the test system works equally well whatever the test atmosphere. Test results confirm that pure Kapton insulated wire has bad arcing characteristics and ETFE insulated wire is considerably better in air. For certain wires, arc tracking effects are increased at higher oxygen concentrations and significantly increased under vacuum. All tests on different cable insulation materials and in different environments, including enriched oxygen atmospheres, resulted in a more or less rapid extinguishing of all high temperature effects at the beginning of the post-test phase. In no case was a self-maintained fire initiated by the arc.

  13. Printable Top-Gate-Type Polymer Light-Emitting Transistors with Surfaces of Amorphous Fluoropolymer Insulators Modified by Vacuum Ultraviolet Light Treatment

    NASA Astrophysics Data System (ADS)

    Kajii, Hirotake; Terashima, Daiki; Kusumoto, Yusuke; Ikezoe, Ikuya; Ohmori, Yutaka

    2013-04-01

    We investigated the fabrication and electrical and optical properties of top-gate-type polymer light-emitting transistors with the surfaces of amorphous fluoropolymer insulators, CYTOP (Asahi Glass) modified by vacuum ultraviolet light (VUV) treatment. The surface energy of CYTOP, which has a good solution barrier property was increased by VUV irradiation, and the gate electrode was fabricated by solution processing on the CYTOP film using the Ag nano-ink. The influence of VUV irradiation on the optical properties of poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) films with various gate insulators was investigated to clarify the passivation effect of gate insulators. It was found that the poly(methyl methacrylate) (PMMA) film prevented the degradation of the F8BT layer under VUV irradiation because the PMMA film can absorb VUV. The solution-processed F8BT device with multilayer PMMA/CYTOP insulators utilizing a gate electrode fabricated using the Ag nano-ink exhibited both the ambipolar characteristics and yellow-green emission.

  14. THE RHIC INJECTION SYSTEM.

    SciTech Connect

    FISCHER,W.; GLENN,J.W.; MACKAY,W.W.; PTITSIN,V.; ROBINSON,T.G.; TSOUPAS,N.

    1999-03-29

    The RHIC injection system has to transport beam from the AGS-to-RHIC transfer line onto the closed orbits of the RHIC Blue and Yellow rings. This task can be divided into three problems. First, the beam has to be injected into either ring. Second, once injected the beam needs to be transported around the ring for one turn. Third, the orbit must be closed and coherent beam oscillations around the closed orbit should be minimized. We describe our solutions for these problems and report on system tests conducted during the RHIC Sextant test performed in 1997. The system will be fully commissioned in 1999.

  15. Sunspot: A program to model the behavior of hypervelocity impact damaged multilayer insulation in the Sunspot thermal vacuum chamber of Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Hayashida, K. B.

    1992-01-01

    The development of a computer program to predict the degradation of the insulating capabilities of the multilayer insulation (MLI) blanket of Space Station Freedom due to a hypervelocity impact with a space debris particle is described. A finite difference scheme is used for the calculations. The computer program was written in Microsoft BASIC. Also described is a test program that was undertaken to validate the numerical model. Twelve MLI specimens were impacted at hypervelocities with simulated debris particles using a light gas gun at Marshall Space Flight Center. The impact-damaged MLI specimens were then tested for insulating capability in the space environment of the Sunspot thermal vacuum chamber at MSFC. Two undamaged MLI specimens were also tested for comparison with the test results of the damaged specimens. The numerical model was found to adequately predict behavior of the MLI specimens in the Sunspot chamber. A parameter, called diameter ratio, was developed to relate the nominal MLI impact damage to the apparent (for thermal analysis purposes) impact damage based on the hypervelocity impact conditions of a specimen.

  16. Longitudinal impedance of RHIC

    SciTech Connect

    Blaskiewicz, M.; Brennan, J. M.; Mernick, K.

    2015-05-03

    The longitudinal impedance of the two RHIC rings has been measured using the effect of potential well distortion on longitudinal Schottky measurements. For the blue RHIC ring Im(Z/n) = 1.5±0.2Ω. For the yellow ring Im(Z/n) = 5.4±1Ω.

  17. Stochastic cooling in RHIC

    SciTech Connect

    Brennan,J.M.; Blaskiewicz, M. M.; Severino, F.

    2009-05-04

    After the success of longitudinal stochastic cooling of bunched heavy ion beam in RHIC, transverse stochastic cooling in the vertical plane of Yellow ring was installed and is being commissioned with proton beam. This report presents the status of the effort and gives an estimate, based on simulation, of the RHIC luminosity with stochastic cooling in all planes.

  18. TUNE FEEDBACK AT RHIC

    SciTech Connect

    CAMERON,P.; CERNIGLIA,P.; CONNOLLY,R.; CUPOLO,J.; DAWSON,W.C.; DEGEN,C.; DELLAPENNA,A.; DELONG,J.; DREES,A.; HUHN,A.; KESSELMAN,M.; MARUSIC,A.; OERTER,B.; MEAD,J.; SCHULTHEISS,C.; SIKORA,R.; VAN ZEIJTS,J.

    2001-06-18

    Preliminary phase-locked loop betatron tune measurement results were obtained during RHIC 2000 with a resonant Beam Position Monitor. These results suggested the possibility of incorporating PLL tune measurement into a tune feedback system for RHIC 2001. Tune feedback is useful in a superconducting accelerator, where the machine cycle time is long and inefficient acceleration due to resonance crossing is not comfortably tolerated. This is particularly true with the higher beam intensities planned for RHIC 2001. We present descriptions of a PLL tune measurement system implemented in the DSP/FPGA environment of a RHIC BPM electronics module and the feedback system into which the measurement is incorporated to regulate tune. In addition, we present results from the commissioning of this system during RHIC 2001.

  19. Experimental study on the effect of applying a crossed magnetic field on the insulator flashover behavior in high vacuum

    NASA Astrophysics Data System (ADS)

    Abu-Elabass, K.

    2015-09-01

    In this study, a possible method of reducing the flashover stress is achieved by the effect of an additional magnetic field in the transverse direction on the main applied electric field. The degree of vacuum used in this study was 5×10-5 Pa. The magnetic flux density B employed in this study extends from 4×10-3 to 24×10-3 T. From the results obtained throughout this work, the transverse magnetic field increases the flashover voltage and decreases the leakage current. The effect of the transverse magnetic field on the surface flashover of the dielectric solid in vacuum shows a marked dependence on the material and the thickness of the test specimen, the vacuum degree, the type of electric field (AC or DC) as well as the type of magnetic field (AC or DC).

  20. Foam Insulation for Cryogenic Flowlines

    NASA Technical Reports Server (NTRS)

    Sonju, T. R.; Carbone, R. L.; Oves, R. E.

    1985-01-01

    Welded stainless-steel vacuum jackets on cryogenic ducts replaced by plastic foam-insulation jackets that weigh 12 percent less. Foam insulation has 85 percent of insulating ability of stainless-steel jacketing enclosing vacuum of 10 microns of mercury. Foam insulation easier to install than vacuum jacket. Moreover, foam less sensitive to damage and requires minimal maintenance. Resists vibration and expected to have service life of at least 10 years.

  1. TRANSVERSE INSTABILITIES IN RHIC.

    SciTech Connect

    Blaskiewicz, M; Cameron, P; Catalan-Lasheras, N; Dawson, C; Degen, C; Drees, K; Fischer, W; Koropsak, E; Michnoff, R; Montag, C; Roser, T

    2003-05-12

    The beam quality in RHIC can be significantly impacted by a transverse instability which can occur just after transition [1]. Data characterizing the instability are presented and analyzed. Techniques for ameliorating the situation are considered.

  2. RHIC Renaissance Celebration

    SciTech Connect

    Brookhaven Lab

    2009-07-31

    A celebration of the contribution that Renaissance Technologies, Inc., made to the Relativistic Heavy Ion Collider, during which the entire Lab community participated in a series of RHIC Renaissance events, beginning with the Roads to Discovery ceremony,

  3. Multilayer High-Gradient Insulators

    SciTech Connect

    Harris, J R; Anaya, R M; Blackfield, D; Chen, Y -; Falabella, S; Hawkins, S; Holmes, C; Paul, A C; Sampayan, S; Sanders, D M; Watson, J A; Caporaso, G J; Krogh, M

    2006-11-15

    High voltage systems operated in vacuum require insulating materials to maintain spacing between conductors held at different potentials, and may be used to maintain a nonconductive vacuum boundary. Traditional vacuum insulators generally consist of a single material, but insulating structures composed of alternating layers of dielectric and metal can also be built. These ''High-Gradient Insulators'' have been experimentally shown to withstand higher voltage gradients than comparable conventional insulators. As a result, they have application to a wide range of high-voltage vacuum systems where compact size is important. This paper describes ongoing research on these structures, as well as the current theoretical understanding driving this work.

  4. RHIC progress and future

    SciTech Connect

    Montag,C.

    2009-05-04

    The talk reviews RHIC performance, including unprecedented manipulations of polarized beams and recent low energy operations. Achievements and limiting factors of RHIC operation are discussed, such as intrabeam scattering, electron cloud, beam-beam effects, magnet vibrations, and the efficiency of novel countermeasures such as bunched beam stochastic cooling, beam scrubbing and chamber coatings. Future upgrade plans and the pertinent R&D program will also be presented.

  5. OBSERVATION OF ELECTRON-ION EFFECTS AT RHIC TRANSITION.

    SciTech Connect

    WEI,J.; IRISO, U.; BAI, M.; ET AL.

    2005-05-16

    Electron cloud is found to be a serious obstacle on the upgrade path of the Relativistic Heavy Ion Collider (RHIC). At twice the design number of bunches, electron-ion interactions cause significant instability, emittance growth, and beam loss along with vacuum pressure rises when the beam is accelerated across the transition.

  6. Magnetically insulated coaxial vacuum diode with partial space-charge-limited explosive emission from edge-type cathode

    NASA Astrophysics Data System (ADS)

    Belomyttsev, S. Ya.; Rostov, V. V.; Romanchenko, I. V.; Shunailov, S. A.; Kolomiets, M. D.; Mesyats, G. A.; Sharypov, K. A.; Shpak, V. G.; Ulmaskulov, M. R.; Yalandin, M. I.

    2016-01-01

    The vacuum current associated with any type of electron emission for arbitrary configuration of the diode depends on the combination of the applied electric field and vacuum space charge (VSC) field created by the current. Such fundamental statement should give very close links between the diode current and the normalized cathode field θ which has been introduced by Forbes in 2008 for planar diodes as a reduction in the cathode surface field: θ = field-with/field-without VSC. This article reports the universal approximation of the type of cos(πθ/2) that is the ratio of the actual current and the fully space-charge-limited current. Also, the theoretical treatment and the experimental method of determination of the dynamic emissive characteristics of the macroscopic explosive emission from edge-type cathodes in the coaxial diode are developed. The experimental results obtained with a picosecond time reference between the cathode voltage and the onset of the high-current electron beam exhibit a good coincidence with the theoretical predictions. The presented methods enable the analysis of a real-time-resolved dynamics associated with the dense, magnetized electron beam formation, acceleration and drift motion, including kinematic effects and the phase-stable excitation of high-power microwave oscillators.

  7. Tune Measurement in RHIC

    NASA Astrophysics Data System (ADS)

    Brennan, M.; Cameron, P.; Cerniglia, P.; Connolly, R.; Cupolo, J.; Dawson, W.; Degen, C.; DellaPenna, A.; DeLong, J.; Drees, A.; Gassner, D.; Kesselman, M.; Lee, R.; Marusic, A.; Mead, J.; Michnoff, R.; Schultheiss, C.; Sikora, R.; Van Zeijts, J.

    2002-12-01

    Three basic tune measurement methods are employed in RHIC; kicked beam, Schottky, and phase-locked loop. The kicked beam and 2GHz Schottky systems have been in operation since the first commissioning of circulating beam in RHIC in 1999. Preliminary PLL measurements utilizing a commercial off-the-shelf lockin amplifier were completed during that run, and the resonant BPM used in that system also delivered 230MHz Schottky spectra. With encouraging preliminary results and the thought of tune feedback in mind, a PLL tune system was implemented in the FPGA/DSP environment of the RHIC BPM system for the RHIC 2001 run. During that run this system functioned at the level of the present state-of-the-art in tune measurement accuracy and resolution, and was successfully incorporated into a tune feedback system for use during acceleration. Each of the tune measurement systems has particular strengths and weaknesses. We present specific and comparative details of systems design and operation. In addition, we present detailed tune measurements and their utilization in the measurement of chromaticity and the implementation of tune feedback. Finally, we discuss planned upgrades for the RHIC 2003 run.

  8. Coordinating the 2009 RHIC Run

    ScienceCinema

    Brookhaven Lab - Mei Bai

    2010-01-08

    Physicists working at the Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC) are exploring the puzzle of proton spin as they begin taking data during the 2009 RHIC run. For the first time, RHIC is running at a record energy of 500 giga-elect

  9. Coordinating the 2009 RHIC Run

    SciTech Connect

    Brookhaven Lab - Mei Bai

    2009-04-13

    Physicists working at the Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC) are exploring the puzzle of proton spin as they begin taking data during the 2009 RHIC run. For the first time, RHIC is running at a record energy of 500 giga-elect

  10. Thermal Performance of Aged and Weathered Spray-On Foam Insulation (SOFI) Materials Under Cryogenic Vacuum Conditions (Cryostat-4)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The NASA Cryogenics Test Laboratory at Kennedy Space Center conducted long-term testing of SOFI materials under actual-use cryogenic conditions with Cryostat-4. The materials included in the testing were NCFI 24-124 (acreage foam), BX-265 (close-out foam, including intertank flange and bipod areas), and a potential alternate material, NCFI 27-68, (acreage foam with the flame retardant removed). Specimens of these materials were placed at two locations: a site that simulated aging (the Vehicle Assembly Building [VAB]) and a site that simulated weathering (the Atmospheric Exposure Test Site [beach site]). After aging/weathering intervals of 3, 6, and 12 months, the samples were retrieved and tested for their thermal performance under cryogenic vacuum conditions with test apparatus Cryostat-4.

  11. SNAKE CALIBRATION IN RHIC.

    SciTech Connect

    RANJBAR,V.; BAI,M.; LUCCIO,A.; MACKAY,W.W.; ROSER,T.; LEET,S.Y.

    2002-06-02

    A proper understanding of the response of the spin orientation due to the currents in the four helices which make up each snake is necessary to control spin tune, avoid snake resonances and facilitate the operation of the RHIC spin flipper. The effect of the helical dipole snakes in RHIC is to rotate the spin orientation an angle {mu} about an axis at an angle {phi} in the horizontal plane. With two snakes the combined effect gives rise to a spin precession frequency which is determined by the {mu} and {phi} angles at each snake. Depolarization or spin flipping can occur when this spin tune is near an external driving frequency. We employed the RHIC spin flipper in this way to determine the spin tune and thus verify spin tune predictions based upon previous field measurements of the snake. We also considered the response of snake resonances locations to spin tune as another way of verifying spin tune predictions.

  12. RHIC progress report

    SciTech Connect

    Peggs, S.

    1998-08-01

    The design and construction status of the Relativistic Heavy Ion Collider, RHIC, which is in the eighth year of a nine year construction cycle, is discussed. Those performance features of a heavy ion collider that are distinct from hadron colliders in general are noted. These features are derived from the experimental requirements of operation with a variety of ion species over a wide energy range, including collisions between ions of unequal energies, between protons and ions, and between polarized protons. Section 1 gives a brief introduction to the major parameters and overall layout of RHIC. A review of the superconducting magnet program is given in Section 2. Machine performance is reviewed in Section 3, and the plans for RHIC commissioning in 1999 are presented in Section 4.

  13. STOCHASTIC COOLING FOR RHIC.

    SciTech Connect

    BLASKIEWICZ,M.BRENNAN,J.M.CAMERON,P.WEI,J.

    2003-05-12

    Emittance growth due to Intra-Beam Scattering significantly reduces the heavy ion luminosity lifetime in RHIC. Stochastic cooling of the stored beam could improve things considerably by counteracting IBS and preventing particles from escaping the rf bucket [1]. High frequency bunched-beam stochastic cooling is especially challenging but observations of Schottky signals in the 4-8 GHz band indicate that conditions are favorable in RHIC [2]. We report here on measurements of the longitudinal beam transfer function carried out with a pickup kicker pair on loan from FNAL TEVATRON. Results imply that for ions a coasting beam description is applicable and we outline some general features of a viable momentum cooling system for RHIC.

  14. RHIC PROGRESS REPORT

    SciTech Connect

    PEGGS, S.

    1998-06-26

    The design and construction status of the Relativistic Heavy Ion Collider, RHIC, which is in the eighth year of a nine year construction cycle, is discussed [1]. Those performance features of a heavy ion collider that are distinct from hadron colliders in general are noted. These features are derived from the experimental requirements of operation with a variety of ion species over a wide energy range, including collisions between ions of unequal energies, between protons and ions, and between polarized protons. Section 1 gives a brief introduction to the major parameters and overall layout of RHIC. A review of the superconducting magnet program is given in Section 2. Machine performance is reviewed in Section 3, and the plans for RHIC commissioning in 1999 are presented in Section 4.

  15. RHIC STATUS AND PLANS.

    SciTech Connect

    PILAT,R.

    2002-06-02

    RHIC ended successfully its second year of operation in January 2002 after a six month run with gold ions and two months of polarized proton collisions. I will review the machine performance and accomplishments, that include reaching design energy (100 GeV/u) and design luminosity during the gold run, and the first high energy (100 GeV) polarized proton collisions. I will also discuss the machine development strategy and the main performance milestones. The goals and plans for the shutdown and the nest run, scheduled to start in November 2002 have been the focus of a RHIC Retreat in March 2002. I will summarize findings and plans for the upcoming run and outline a vision for the nest few years of RHIC operation and upgrades.

  16. Improving the performance of organic thin film transistors formed on a vacuum flash-evaporated acrylate insulator

    SciTech Connect

    Ding, Z. Abbas, G. A.; Assender, H. E.; Morrison, J. J.; Sanchez-Romaguera, V.; Yeates, S. G.; Taylor, D. M.

    2013-12-02

    A systematic investigation has been undertaken, in which thin polymer buffer layers with different ester content have been spin-coated onto a flash-evaporated, cross-linked diacrylate gate-insulator to form bottom-gate, top-contact organic thin-film transistors. The highest device mobilities, ∼0.65 cm{sup 2}/V s and ∼1.00 cm{sup 2}/V s for pentacene and dinaphtho[2,3-b:2′,3′-f]-thieno[3,2-b]thiophene (DNTT), respectively, were only observed for a combination of large-grain (∼1–2 μm) semiconductor morphology coupled with a non-polar dielectric surface. No correlation was found between semiconductor grain size and dielectric surface chemistry. The threshold voltage of pentacene devices shifted from −10 V to −25 V with decreasing surface ester content, but remained close to 0 V for DNTT.

  17. ANISOTROPIC FLOW AT RHIC.

    SciTech Connect

    TANG,A.H.

    2004-03-15

    We present the first measurement of directed flow (v{sub 1}) at the Relativistic Heavy Ion Collider (RHIC). v{sub 1} is found to be consistent with zero at pseudorapidities {eta} from -1.2 to 1.2, then rises to the level of a couple of percent over the range 2.4 < |{eta}| < 4. The latter observation is similar to that from NA49 if the SPS rapidities are shifted by the difference in beam rapidity between RHIC and SPS. We studied the evolution of elliptic flow from p + p collisions through d + Au collision, and onto Au + Au collisions. Measurements of higher harmonics are presented and discussed.

  18. RHIC SPIN FLIPPER

    SciTech Connect

    BAI,M.; ROSER, T.

    2007-06-25

    This paper proposes a new design of spin flipper for RHIC to obtain full spin flip with the spin tune staying at half integer. The traditional technique of using an rf dipole or solenoid as spin flipper to achieve full spin flip in the presence of full Siberian snake requires one to change the snake configuration to move the spin tune away from half integer. This is not practical for an operational high energy polarized proton collider like RHIC where beam lifetime is sensitive to small betatron tune change. The design of the new spin flipper as well as numerical simulations are presented.

  19. Loss maps of RHIC

    SciTech Connect

    Robert-Demolaize,G.

    2007-10-01

    State-of-the-art tracking tools were recently developed at CERN to study the cleaning efficiency of the Large Hadron Collider (LHC) collimation system [1]. These tools are fully transportable, meaning that any accelerator lattice that includes a collimation system can be simulated. Each of the two Relativistic Heavy Ion Collider (RHIC) [2] beam lines features a multi-stage collimation system, therefore dedicated datasets from RHIC operations with proton beams can be used to benchmark the tracking codes and assess the accuracy of the predicted hot spots along the LHC.

  20. RHIC prefire protection masks

    SciTech Connect

    Drees, A.; Biscardi, C.; Curcio, T.; Gassner, D.; DeSanto, L.; Fu, W.; Liaw, C. J.; Montag, C.; Thieberger, P.; Yip, K.

    2015-01-07

    The protection of the RHIC experimental detectors from damage due to beam hitting close upstream elements in cases of abort kicker prefires requires some dedicated precautionary measures with two general options: to bring the beam close to a limiting aperture (i.e. the beam pipe wall), as far upstream of the detector components as possible or, alternatively, to bring a limiting aperture close to the circulating beam. Spontaneous and random prefires of abort kicker modules (Pulse Forming Network, PFN) have a history as long as RHIC is being operated. The abort system consist of 5 kickers in per ring, each of them equipped with its own dedicated PFN.

  1. COLLIMATION EXPERIENCE AT RHIC.

    SciTech Connect

    DREES,K.A.FLILLER,R.TRBOJEVIC,D.KAIN,V.

    2003-05-19

    In the Relativistic Heavy Ion Collider (RHIC) the abort kicker magnets are the limiting aperture. Continuous losses at this location could deteriorate the kicker performance. In addition, losses especially in the triplet area cause backgrounds in the experimental detectors. The RHIC one-stage collimation system was used to reduce these backgrounds as well as losses at the abort kickers. Collimation performance and results from various runs with even and uneven species (Au-Au, pp and d-Au) are presented and compared. Upgrades of the system for the upcoming high luminosity runs are outlined.

  2. Study of orbit correction for eRHIC FFAG design

    SciTech Connect

    Liu, C.; Hao, Y.; Litvinenko, V.; Meot, F.; Minty, M.; Ptitsyn, V.; Trbojevic, D.

    2015-05-03

    The unique feature of the orbits in the eRHIC Fixed Field Alternating Gradient (FFAG) design is that multiple accelerating and decelerating bunches pass through the same magnets with different horizontal offsets. Therefore, it is critical for the eRHIC FFAG to correct multiple orbits in the same vacuum pipe for better spin transmission and alignment of colliding beams. In this report, the effects on orbits from multiple error sources will be studied. The orbit correction method will be described and results will be presented.

  3. Virtual Tour of RHIC

    ScienceCinema

    Brookhaven Lab

    2010-01-08

    An animation that follows polarized protons as they travel through the Relativistic Heavy Ion Collider (RHIC) accelerator complex to the experiments. The arrows indicate the direction of each proton's spin. The animation concludes with a fly-by of the RHI

  4. Beam injection into RHIC

    SciTech Connect

    Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.

    1997-07-01

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.

  5. Beam Injection into RHIC

    NASA Astrophysics Data System (ADS)

    Fischer, W.; Hahn, H.; Mackay, W. W.; Tsoupas, N.

    1997-05-01

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. We describe the injection zone and its bottlenecks, the application program to steer the beam and the injection kickers. We report on the commissioning of the injection systems and on measurements of the kickers.

  6. Chromaticity Feedback at RHIC

    SciTech Connect

    Marusic, A.; Minty, M.; Tepikian, S.

    2010-05-23

    Chromaticity feedback during the ramp to high beam energies has been demonstrated in the Relativistic Heavy Ion Collider (RHIC). In this report we review the feedback design and measurement technique. Commissioning experiences including interaction with existing tune and coupling feedback are presented together with supporting experimental data.

  7. Virtual Tour of RHIC

    SciTech Connect

    Brookhaven Lab

    2009-06-11

    An animation that follows polarized protons as they travel through the Relativistic Heavy Ion Collider (RHIC) accelerator complex to the experiments. The arrows indicate the direction of each proton's spin. The animation concludes with a fly-by of the RHI

  8. RHIC beam permit and quench detection communications system

    SciTech Connect

    Conkling, C.R. Jr.

    1997-07-01

    A beam permit module has been developed to concentrate RHIC, subsystem sensor outputs, permit beam, and initiate emergency shutdowns. The modules accept inputs from the vacuum, cryogenic, power supply, beam loss, and superconducting magnet quench detection systems. Modules are located at equipment locations around the RHIC ring. The modules are connected by three fiberoptic communications links; a beam permit link, and two magnet power supply interlock links. During operation, carrier presence allows beam. If a RHIC subsystem detects a fault, the beam permit carrier terminates - initiating a beam dump. If the fault was a superconducting magnet quench, a power supply interlock carrier terminates - initiating an emergency magnet power dump. In addition, the master module triggers an event to cause remote sensors to log and hold data at the time-of-failure.

  9. The RHIC cryogenic control system

    SciTech Connect

    Farah, Y.; Sondericker, J.

    1993-08-01

    A cryogenic process control system for the RHIC Project is discussed. It is independent of the main RHIC Control System, consisting of an upgrade of the existing 24.8 Kw helium refrigerator control section with the addition of a ring control section that regulates and monitors all cryogenic signals in the RHIC tunnel. The system is fully automated, which can run without the continuous presence of operators.

  10. Polarized beams at RHIC

    SciTech Connect

    Roser, T.

    1995-11-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 {times} 10{sup 32} cm{sup {minus}2} s{sup {minus}1}. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes, which will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production.

  11. RHIC - Exploring the Universe Within

    ScienceCinema

    BNL

    2009-09-01

    A guided tour of Brookhaven's Relativistic Heavy Ion Collider (RHIC) conducted by past Laboratory Director John Marburger. RHIC is a world-class scientific research facility that began operation in 2000, following 10 years of development and construction. Hundreds of physicists from around the world use RHIC to study what the universe may have looked like in the first few moments after its creation. RHIC drives two intersecting beams of gold ions head-on, in a subatomic collision. What physicists learn from these collisions may help us understand more about why the physical world works the way it does, from the smallest subatomic particles, to the largest stars.

  12. RHIC - Exploring the Universe Within

    SciTech Connect

    BNL

    2008-08-12

    A guided tour of Brookhaven's Relativistic Heavy Ion Collider (RHIC) conducted by past Laboratory Director John Marburger. RHIC is a world-class scientific research facility that began operation in 2000, following 10 years of development and construction. Hundreds of physicists from around the world use RHIC to study what the universe may have looked like in the first few moments after its creation. RHIC drives two intersecting beams of gold ions head-on, in a subatomic collision. What physicists learn from these collisions may help us understand more about why the physical world works the way it does, from the smallest subatomic particles, to the largest stars.

  13. RHIC PLANS TOWARDS HIGHER LUMINOSITY

    SciTech Connect

    FEDOTOV,A.

    2007-06-25

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide luminosity over a wide range of beam energies and species, including heavy ions, polarized protons, and tric beam collisions. In the first seven years of operation there has been a rapid increase in the achieved peak and average luminosity, substantially exceeding design values. Work is presently underway to achieve the Enhanced Design parameters. Planned major upgrades include the Electron Beam Ion Source (EBIS), RHIC-11, and construction of an electron-ion collider (eRHIC). We review the expected RHIC upgrade performance. Electron cooling and its impact on the luminosity both for heavy ions and protons are discussed in detail.

  14. RHIC The Perfect Liquid

    ScienceCinema

    BNL

    2009-09-01

    Evidence to date suggests that gold-gold collisions the Relativistic Heavy Ion Collider at Brookhaven are indeed creating a new state of hot, dense matter, but one quite different and even more remarkable than had been predicted. Instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a "perfect" liquid.

  15. Polarized protons at RHIC

    SciTech Connect

    Makdisi, Y.

    1992-10-01

    The approval for construction of the Relativistic Heavy Ion Collider (RHIC) provides a potential opportunity to collide polarized proton beams at energies up to 500 GeV in the center of mass and high luminosities approaching 2 {times} 10{sup 32}/cm{sup 2}/sec. This capability is enhanced by the fact that the AGS has already accelerated polarized protons and relies on the newly completed Accumulator/Booster for providing the required polarized proton intensity and a system of spin rotators (Siberian snakes) to retain the polarization. The RHIC Spin Collaboration was formed and submitted a Letter of Intent to construct this polarized collider capability and utilize its physics opportunities. In this presentation, I will discuss the plans to upgrade the AGS, the proposed layout of the RHIC siberian snakes, and timetables. The physics focus is the measurement of the spin dependent parton distributions with such accessible probes including high p(t) jets, direct photons, and Drell Yan. The attainable sensitivities and the progress that has been reached in defining the detector requirements will be outlined.

  16. Polarized protons at RHIC

    SciTech Connect

    Makdisi, Y.

    1992-01-01

    The approval for construction of the Relativistic Heavy Ion Collider (RHIC) provides a potential opportunity to collide polarized proton beams at energies up to 500 GeV in the center of mass and high luminosities approaching 2 {times} 10{sup 32}/cm{sup 2}/sec. This capability is enhanced by the fact that the AGS has already accelerated polarized protons and relies on the newly completed Accumulator/Booster for providing the required polarized proton intensity and a system of spin rotators (Siberian snakes) to retain the polarization. The RHIC Spin Collaboration was formed and submitted a Letter of Intent to construct this polarized collider capability and utilize its physics opportunities. In this presentation, I will discuss the plans to upgrade the AGS, the proposed layout of the RHIC siberian snakes, and timetables. The physics focus is the measurement of the spin dependent parton distributions with such accessible probes including high p(t) jets, direct photons, and Drell Yan. The attainable sensitivities and the progress that has been reached in defining the detector requirements will be outlined.

  17. Transverse Spin at RHIC

    NASA Astrophysics Data System (ADS)

    Wang, Xiaorong

    2016-03-01

    In recent years, there has been exciting development in both experimental and theoretical studies of transverse spin asymmetries in polarized p+p and and DIS collisions. As a unique polarized proton-proton collider, Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) provides a unique opportunity to investigate the novel physics mechanisms that cause the large single spin asymmetry at the forward rapidity. Both PHENIX and STAR experiments have been studying the transverse spin asymmetries with a variety of final state particles in different kinematic regimes since 2006. Especially, recent theoretical development on scattering a polarized probe on the saturated nuclear may provide a unique way to probe the gluon and quark TMDs. RHIC successfully ran polarized p+Au collisions in 2015. We will expect to have new results from polarized d+Au to compare with existing results from p+p collision to extend our understanding of QCD. Further more, In 2015, PHENIX installed MPC-ex calorimeter at very forward region to measure direct photon AN and STAR installed Roman Pots to study the diffractive events in polarized p+p and p+Au collisions. The recent results on transverse polarized p+p and p+Au collisions from both PHENIX and STAR experiments will be presented in this talk. I will also briefly discuss the possibility for the transverse Spin program at future experiments sPHENIX and forward sPHENIX at RHIC. Supported by US Department of Energy and RIKEN Brookhaven Research Center.

  18. The RHIC status update

    SciTech Connect

    Ozaki, S.

    1995-07-15

    The construction of the Relativistic Heavy Ion Collider (RHIC) began in 1991, with the completion date originally scheduled for 1997. Significant reduction of the funding levels in FY 1993 and 1994, and the funding level cap for FY 1995 and later years caused a 19-month stretchout of the construction period to the second quarter of FY 1999, and an increase of the total estimated cost (TEC) to $475 M. The Project, therefore, is now at the halfway mark of the construction period with actual cost and schedule performance tracking close to the DOE-approved baseline. Construction funding through FY 1994 reached close to 60% of the TEC. Incidentally, if one adds the current value of preexisting facilities which will be incorporated into RHIC, such as the injection system (Tandem Van de Graaff - the Booster - the AGS), the esixting 3.8 km tunnel, the 24 kW helium refrigerator, etc., the total value of the RHIC facility, when completed, will reach one billion dollars, if not more. The accelerator lattice design was finalized in 1992 after an intensive study was made to optimize the collider design for performance, operational flexibility, and value engineering. The civil construciton, including the collider enclosure, magnet access ports to the ring tunnel, and six service buildings for accelerator power supplies and cryogenic control boxes was completed.

  19. Multilayer High-Gradient Insulators

    SciTech Connect

    Harris, J R

    2006-08-16

    Multilayer High-Gradient Insulators are vacuum insulating structures composed of thin, alternating layers of dielectric and metal. They are currently being developed for application to high-current accelerators and related pulsed power systems. This paper describes some of the High-Gradient Insulator research currently being conducted at Lawrence Livermore National Laboratory.

  20. Microsphere Insulation Panels

    NASA Technical Reports Server (NTRS)

    Mohling, R.; Allen, M.; Baumgartner, R.

    2006-01-01

    Microsphere insulation panels (MIPs) have been developed as lightweight, longlasting replacements for the foam and vacuum-jacketed systems heretofore used for thermally insulating cryogenic vessels and transfer ducts. The microsphere core material of a typical MIP consists of hollow glass bubbles, which have a combination of advantageous mechanical, chemical, and thermal-insulation properties heretofore available only separately in different materials. In particular, a core filling of glass microspheres has high crush strength and low density, is noncombustible, and performs well in soft vacuum.

  1. RHIC Spin Flipper Commissioning Status

    SciTech Connect

    Bai, M.; Meot, F.; Dawson, C.; Oddo, P.; Pai, C.; Pile, P.; Makdisi, Y.; Meng, W.; Roser, T.

    2010-05-23

    The commissioning of the RHIC spin flipper in the RHIC Blue ring during the RHIC polarized proton run in 2009 showed the detrimental effects of global vertical coherent betatron oscillation induced by the 2-AC dipole plus 4-DC dipole configuration. This global orbital coherent oscillation of the RHIC beam in the Blue ring in the presence of collision modulated the beam-beam interaction between the two RHIC beams and affected Yellow beam polarization. The experimental data at injection with different spin tunes by changing the snake current also demonstrated that it was not possible to induce a single isolated spin resonance with the global vertical coherent betatron oscillation excited by the two AC dipoles. Hence, a new design was proposed to eliminate the coherent vertical betatron oscillation outside the spin flipper by adding three additional AC dipoles. This paper presents the experimental results as well as the new design.

  2. RHIC Polarized proton operation

    SciTech Connect

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D'Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R,; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; J.; Severino, F.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J. Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP{sup 4}. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  3. The RHIC project

    SciTech Connect

    Harrison, M.A.

    1996-07-01

    The design and construction status of the Relativistic Heavy Ion collider (RHIC) is discussed. Those novel features of a heavy ion collider that are distinct from hadron colliders in general are noted. These features are derived from the experimental requirements of operation with a variety of ion species over a wide energy range including collisions between ions of unequal energies. The project is in the fourth year of a seven year construction cycle. A review of the superconducting magnet program is given together with progress to date on the machine construction.

  4. CRYSTAL COLLIMATION AT RHIC.

    SciTech Connect

    FLILLER,III, R.P.; DREES,A.; GASSNER,D.; HAMMONS,L.; MCINTYRE,G.; PEGGS,S.; TRBOJEVIC,D.; BIRYUKOV,V.; CHESNKOV,Y.; TEREKHOV,V.

    2002-06-02

    For the year 2001 run, a bent crystal was installed in the yellow ring of the Relativistic Heavy Ion Collider (RHIC). The crystal forms the first stage of a two stage collimation system. By aligning the crystal to the beam, halo particles are channeled through the crystal and deflected into a copper scraper. The purpose is to reduce beam halo with greater efficiency than with a scraper alone. In this paper we present the first results from the use of the crystal collimator. We compare the crystal performance under various conditions, such as different particle species, and beta functions.

  5. RHIC electron lenses upgrades

    SciTech Connect

    Gu, X.; Altinbas, Z.; Bruno, D.; Binello, S.; Costanzo, M.; Drees, A.; Fischer, W.; Gassner, D. M.; Hock, J.; Hock, K.; Harvey, M.; Luo, Y.; Marusic, A.; Mi, C.; Mernick, K.; Minty, M.; Michnoff, R.; Miller, T. A.; Pikin, A. I.; Robert-Demolaize, G.; Samms, T.; Shrey, T. C.; Schoefer, V.; Tan, Y.; Than, R.; Thieberger, P.; White, S. M.

    2015-05-03

    In the Relativistic Heavy Ion Collider (RHIC) 100 GeV polarized proton run in 2015, two electron lenses were used to partially compensate for the head-on beam-beam effect for the first time. Here, we describe the design of the current electron lens, detailing the hardware modifications made after the 2014 commissioning run with heavy ions. A new electron gun with 15-mm diameter cathode is characterized. The electron beam transverse profile was measured using a YAG screen and fitted with a Gaussian distribution. During operation, the overlap of the electron and proton beams was achieved using the electron backscattering detector in conjunction with an automated orbit control program.

  6. MeRHIC - staging approach to eRHIC

    SciTech Connect

    Ptitsyn,V.; Beebe-Wang, J.; Ben-Zvi, I.; Deshpande, A.; Fedotov, A.; Hao, Y.; Kayran, D.; Litvinenko, V. N.; Montag, C.; Pozdeyev, E.; Roser, T.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.

    2009-05-04

    Design of a medium energy electron-ion collider (MeRHIC) is under development at the Collider-Accelerator Department at BNL. The design envisions construction of a 4 GeV electron accelerator in a local area inside and near the RHIC tunnel. Electrons will be produced by a polarized electron source and accelerated in energy recovery linacs. Collisions of the electron beam with 100 GeV/u heavy ions or with 250 GeV polarized protons will be arranged in the existing IP2 interaction region of RHIC. The luminosity of electron-proton collisions at the 10{sup 32} cm{sup -2}s{sup -1} level will be achieved with 50 mA CW electron current and presently available proton beam parameters. Efficient proton beam cooling at collision energy may bring the luminosity to 10{sup 33} cm{sup -2}s{sup -1}. An important feature of MeRHIC is that it serves as a first stage of eRHIC, a future electron-ion collider at BNL with both higher luminosity and energy reach. The majority of MeRHIC accelerator components will be used in eRHIC.

  7. Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.; Wikstrom, J. P.

    1999-01-01

    The results of a comparative study of cryogenic insulation systems performed are presented. The key aspects of thermal insulation relative to cryogenic system design, testing, manufacturing, and maintenance are discussed. An overview of insulation development from an energy conservation perspective is given. Conventional insulation materials for cryogenic applications provide three levels of thermal conductivity. Actual thermal performance of standard multilayer insulation (MLI) is several times less than laboratory performance and often 10 times worse than ideal performance. The cost-effectiveness of the insulation system depends on thermal performance; flexibility and durability; ease of use in handling, installation, and maintenance; and overall cost including operations, maintenance, and life cycle. Results of comprehensive testing of both conventional and novel materials such as aerogel composites using cryostat boil-off methods are given. The development of efficient, robust cryogenic insulation systems that operate at a soft vacuum level is the primary focus of this paper.

  8. A study of LC-39 cryogenic systems. Part 1: A study of the vacuum insulated transfer lines at Kennedy Space Center. Part 2: Cooldown pressure surges

    NASA Technical Reports Server (NTRS)

    Ludtke, P. R.; Voth, R. O.

    1971-01-01

    The vacuum liquid hydrogen and liquid oxygen transfer lines at Kennedy Space Center were studied to evaluate the feasibility of using a condensing gas such as CO2 inside the vacuum spaces to achieve a condensing-vacuum. The study indicates that at ambient temperature, a maximum vacuum hyphen space pressure of 4000 microns is acceptable for the LH2 transfer lines. In addition, the cooldown procedures for the 14-inch cross-country liquid oxygen line was studied using a simplified mathematical model. Preliminary cooldown times are presented for various heat leak rates to the line and for two vent configurations.

  9. ABSOLUTE POLARIMETRY AT RHIC.

    SciTech Connect

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  10. Partonic collectivity at RHIC

    NASA Astrophysics Data System (ADS)

    Shi, Shusu

    2009-10-01

    The measurement of event anisotropy, often called v2, provides a powerful tool for studying the properties of hot and dense medium created in high-energy nuclear collisions. The important discoveries of partonic collectivity and the brand-new process for hadronization - quark coalescence were obtained through a systematic analysis of the v2 for 200 GeV Au+Au collisions at RHIC [1]. However, early dynamic information might be masked by later hadronic rescatterings. Multistrange hadrons (φ, ξ and φ) with their large mass and presumably small hadronic cross sections should be less sensitive to hadronic rescattering in the later stage of the collisions and therefore a good probe of the early stage of the collision. We will present the measurement of v2 of π, p, KS^0, λ, ξ, φ and φ in heavy ion collisions. In minimum-bias Au+Au collisions at √sNN = 200 GeV, a significant amount of elliptic flow, almost identical to other mesons and baryons, is observed for φ and φ. Experimental observations of pT dependence of v2 of identified particles at RHIC support partonic collectivity. [4pt] [1] B. I. Abelev et al., (STAR Collaboration), Phys. Rev. C 77, 054901 (2008).

  11. Direct Photons at RHIC

    SciTech Connect

    Gabor,D.

    2008-07-29

    Direct photons are ideal tools to investigate kinematical and thermodynamical conditions of heavy ion collisions since they are emitted from all stages of the collision and once produced they leave the interaction region without further modification by the medium. The PHENIX experiment at RHIC has measured direct photon production in p+p and Au+Au collisions at 200 GeV over a wide transverse momentum (p{sub T}) range. The p+p measurements allow a fundamental test of QCD, and serve as a baseline when we try to disentangle more complex mechanisms producing high p{sub T} direct photons in Au+Au. As for thermal photons in Au+Au we overcome the difficulties due to the large background from hadronic decays by measuring 'almost real' virtual photons which appear as low invariant mass e{sup +}e{sup -} pairs: a significant excess of direct photons is measured above the above next-to-leading order perturbative quantum chromodynamics calculations. Additional insights on the origin of direct photons can be gained with the study of the azimuthal anisotropy which benefits from the increased statistics and reaction plane resolution achieved in RHIC Year-7 data.

  12. Composite Flexible Blanket Insulation

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A. (Inventor); Pitts, William C. (Inventor); Goldstein, Howard E. (Inventor); Sawko, Paul M. (Inventor)

    1991-01-01

    Composite flexible multilayer insulation systems (MLI) were evaluated for thermal performance and compared with the currently used fibrous silica (baseline) insulation system. The systems described are multilayer insulations consisting of alternating layers of metal foil and scrim ceramic cloth or vacuum metallized polymeric films quilted together using ceramic thread. A silicon carbide thread for use in the quilting and the method of making it are also described. These systems are useful in providing lightweight insulation for a variety of uses, particularly on the surface of aerospace vehicles subject to very high temperatures during flight.

  13. RHIC spin flipper commissioning results

    SciTech Connect

    Bai M.; Roser, T.; Dawson, C.; Kewisch, J.; Makdisi, Y.; Oddo, P.; Pai, C.; Pile, P.

    2012-05-20

    The five AC dipole RHIC spin flipper design in the RHIC Blue ring was first tested during the RHIC 2012 polarized proton operation. The advantage of this design is to eliminate the vertical coherent betatron oscillations outside the spin flipper. The closure of each ac dipole vertical bump was measured with orbital response as well as spin. The effect of the rotating field on the spin motion by the spin flipper was also confirmed by measuring the suppressed resonance at Q{sub s} = 1 - Q{sub osc}.

  14. A Prototype Ionization Profile Monitor for RHIC.

    NASA Astrophysics Data System (ADS)

    Connolly, R.; Cameron, P.; Ryan, W.; Shea, T.; Sikora, R.; Tsoupas, N.

    1997-05-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPMs). Each IPM will measure the integrated distribution of electrons in one plane resulting from residual gas ionization during bunch passage. The high space-charge electric field of the beam makes it necessary to image with electrons which are guided by a magnetic field. A prototype detector was tested in the injection line during the RHIC Sextant Test. It consists of a collector circuit board mounted on one side of the beam and a parallel electrode on the other to provide an electric sweep field. The collector board has 48 electrodes oriented parallel to the beam with a chevron microchannel plate amplifier mounted in front of the collection traces. The detector vacuum chamber is placed in the gap of a magnet. At each bunch passage the charge pulses are integrated, amplified, and digitized for display as a profile histogram. This paper describes the prototype detector and gives results from the beam tests.

  15. Breakdown-Resistant RF Connectors for Vacuum

    NASA Technical Reports Server (NTRS)

    Caro, Edward R.; Bonazza, Walter J.

    1987-01-01

    Resilient inserts compensate for insulation shrinkage. Coaxial-cable connector for radio-frequency (RF) energy resists electrical breakdown in vacuum. Used on RF equipment in vacuum chambers as well as in spaceborne radar and communication gear.

  16. Vacuum-Gauge Connection For Shipping Container

    NASA Technical Reports Server (NTRS)

    Henry, Robert H.

    1990-01-01

    External connector enables measurement of vacuum in stored part. Remote-readout connector added to shipping container and connected to thermo-couple vacuum gauge in vacuum-insulated cryogenic line packed in container. Enables monitoring of condition of vacuum without opening container.

  17. FAST AUTOMATED DECOUPLING AT RHIC.

    SciTech Connect

    BEEBE-WANG,J.J.

    2005-05-16

    Coupling correction is essential for the operational performance of RHIC. The independence of the transverse degrees of freedom makes diagnostics and tune control easier, and it is advantageous to operate an accelerator close to the coupling resonance to minimize nearby nonlinear sidebands. An automated coupling correction application iDQmini has been developed for RHIC routine operations. The application decouples RHIC globally by minimizing the tune separation through finding the optimal settings of two orthogonal skew quadrupole families. The program iDQmini provides options of automatic, semi-automatic and manual decoupling operations. It accesses tune information from all RHIC tune measurement systems: the PLL (phase lock loop), the high frequency Schottky system and the tune meter. It also supplies tune and skew quadrupole scans, finding the minimum tune separation, display the real time results and interface with the RHIC control system. We summarize the capabilities of the coupling correction application iDQmini, and discuss the operational protections incorporated in the program.

  18. Stochastic cooling in RHIC

    SciTech Connect

    Brennan J. M.; Blaskiewicz, M.; Mernick, K.

    2012-05-20

    The full 6-dimensional [x,x'; y,y'; z,z'] stochastic cooling system for RHIC was completed and operational for the FY12 Uranium-Uranium collider run. Cooling enhances the integrated luminosity of the Uranium collisions by a factor of 5, primarily by reducing the transverse emittances but also by cooling in the longitudinal plane to preserve the bunch length. The components have been deployed incrementally over the past several runs, beginning with longitudinal cooling, then cooling in the vertical planes but multiplexed between the Yellow and Blue rings, next cooling both rings simultaneously in vertical (the horizontal plane was cooled by betatron coupling), and now simultaneous horizontal cooling has been commissioned. The system operated between 5 and 9 GHz and with 3 x 10{sup 8} Uranium ions per bunch and produces a cooling half-time of approximately 20 minutes. The ultimate emittance is determined by the balance between cooling and emittance growth from Intra-Beam Scattering. Specific details of the apparatus and mathematical techniques for calculating its performance have been published elsewhere. Here we report on: the method of operation, results with beam, and comparison of results to simulations.

  19. Electron Cooling of RHIC

    SciTech Connect

    I. Ben-Zvi; D.S. Barton; D.B. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X.Y. Chang; R. Connolly; Yu.I. Eidelman; A.V. Fedotov; W. Fischer; D.M. Gassner; H. Hahn; M. Harrison; A. Hershcovitch; H.-C. Hseuh; A.K. Jain; P.D.J. Johnson; D. Kayran; J. Kewisch; R.F. Lambiase; V. Litvinenko; W.W. MacKay; G.J. Mahler; N. Malitsky; G.T. McIntyre; W. Meng; K.A.M. Mirabella; C. Montag; T.C.N. Nehring; T. Nicoletti; B. Oerter; G. Parzen; D. Pate; J. Rank; T. Rao; T. Roser; T. Russo; J. Scaduto; K. Smith; D. Trbojevic; G. Wang; J. Wei; N.W.W. Williams; K.-C. Wu; V. Yakimenko; A. Zaltsman; Y. Zhao; D.T. Abell; D.L. Bruhwiler; H. Bluem; A. Burger; M.D. Cole; A.J. Favale; D. Holmes; J. Rathke; T. Schultheiss; A.M.M. Todd; A.V. Burov; S. Nagaitsev; J.R. Delayen; Y.S. Derbenev; L. W. Funk; P. Kneisel; L. Merminga; H.L. Phillips; J.P. Preble; I. Koop; V.V. Parkhomchuk; Y.M. Shatunov; A.N. Skrinsky; I. Koop; V.V. Parkhomchuk; Y.M. Shatunov; A.N. Skrinsky; J.S. Sekutowicz

    2005-05-16

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.agsrhichome.bnl.gov/eCool/.

  20. The RHIC Injection Kicker

    NASA Astrophysics Data System (ADS)

    Hahn, H.; Tuozzolo, J. E.; Tsoupas, N.

    1997-05-01

    Beam transfer from the AGS to RHIC is performed in single-bunch mode. Close spacing of the bunches in the collider requires an injection kicker with a rise time of <95 nsec, suggesting adoption of a travelling wave solution. The required vertical kick of 0.186 T.m is provided by 4 units, each 1.12 m long with a 48.4× 48.4 mm aperture and operated at 1.6 kA. The kicker is constructed as a ``C'' cross section magnet, in which ferrite and high-permittivity ( ~ 100) dielectric sections alternate. The dielectric blocks provide the capacity necessary for the nominally 25 Ohm characteristic impedance of the travelling wave structure, but impose the practical limit on the peak voltage, and thus current, achievable. Computer studies to minimize local electric field enhancements resulted in a configuration capable of holding >50 kV, with adequate safety margin over the nominal 40 kV. Tests indicated the possibility of lowering the nominal voltage by operating mismatched into 20 Ohm terminations without degrading the pulse shape. In this paper, the experience gained in the fabrication of the four kicker units for the ``Sextant Test'' and the results from various single-unit tests and operation in beam are reported.

  1. The RHIC injection kicker

    SciTech Connect

    Hahn, H.; Tsoupas, N.; Tuozzolo, J.E.

    1997-07-01

    Beam transfer from the AGS to RHIC is performed in single-bunch mode. Close spacing of the bunches in the collider requires an injection kicker with a rise time of <90 nsec, suggesting adoption of a travelling wave structure. The required vertical kick of 0.186 t{center_dot}m is provided by 4 magnets, each 1.12 m long with a 48.4 x 48.4 mm aperture and operated at 1.6 kA. The kicker is constructed as a {open_quotes}C{close_quotes} cross section magnet, in which ferrite and high-permittivity dielectric sections alternate. The dielectric blocks provide the capacity necessary for the nominally 25 {Omega} characteristic impedance of the travelling wave structure, but impose the practical limit on the peak voltage, and thus current, achievable. Computer studies to minimize local electric field enhancements resulted in a configuration capable of holding {approximately} 50 kV, with adequate safety margin over the nominal 40 kV. Equivalent circuit analysis indicated the possibility of lowering the nominal voltage by operating mismatched into 20 {Omega} terminations without degrading the pulse shape. In this paper, the experience gained in the fabrication of the production units and the results from various single-unit tests and operation of four kickers with beam in the {open_quotes}Sextant Test{close_quotes} are reported.

  2. Spin physics at RHIC

    SciTech Connect

    Tannenbaum, M.J.

    1996-09-06

    Operation of RHIC with two beams of highly polarized protons (70%, either longitudinal or transverse) at high luminosity L = 2 x 10{sup 32} cm{sup -2} sec{sup -1} for two months/year will allow the STAR and PHENIX detectors to perform high statististics studies of polarization phenomena in the perturbative region of hard scattering where both QCD and ElectroWeak theory make detailed predictions for polarization effects. The collision c.m. energy, {radical}s = 200 - 500 GeV, represents a new domain for the study of spin. Direct photon production will be used to measure the gluon polarization in the polarized proton. A new twist comes from W-boson production which is expected to be 100% parity violating and will thus allow measurements of flavor separated Quark and antiquark (u, {bar u}, d, {bar d}) polarization distributions. Searches for parity violation in strong interaction processes such as jet and leading particle production will be a sensitive way to look for new physics beyond the standard model, one possibility being quark substructure.

  3. RESEARCH PLAN FOR SPIN PHYSICS AT RHIC.

    SciTech Connect

    AIDALA, C.; BUNCE, G.; ET AL.

    2005-02-01

    In this report we present the research plan for the RHIC spin program. The report covers (1) the science of the RHIC spin program in a world-wide context; (2) the collider performance requirements for the RHIC spin program; (3) the detector upgrades required, including timelines; (4) time evolution of the spin program.

  4. Configuration Manual Polarized Proton Collider at RHIC

    SciTech Connect

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S. Y.; Luccio, A.; MacKay, W. W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Svirida, D.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.

    2006-01-01

    In this report we present our design to accelerate and store polarized protons in RHIC, with the level of polarization, luminosity, and control of systematic errors required by the approved RHIC spin physics program. We provide an overview of the physics to be studied using RHIC with polarized proton beams, and a brief description of the accelerator systems required for the project.

  5. CONFIGURATION MANUAL POLARIZED PROTON COLLIDER AT RHIC.

    SciTech Connect

    ROSER,T.; MACKAY,W.W.; ALEKSEEV,I.; BAI,M.; BROWN,K.; BUNCE,G.; CAMERON,P.; COURANT,E.; ET AL.

    2001-03-01

    In this report, the authors present their design to accelerate and store polarized protons in RHIC, with the level of polarization, luminosity, and control of systematic errors required by the approved RHIC spin physics program. They provide an overview of the physics to be studied using RHIC with polarized proton beams, and a brief description of the accelerator systems required for the project.

  6. Ion optics of RHIC EBIS

    SciTech Connect

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

    2011-09-10

    RHIC EBIS has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  7. Superconducting Storage Cavity for RHIC

    SciTech Connect

    Ben-Zvi,I.

    2009-01-02

    This document provides a top-level description of a superconducting cavity designed to store hadron beams in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It refers to more detailed documents covering the various issues in designing, constructing and operating this cavity. The superconducting storage cavity is designed to operate at a harmonic of the bunch frequency of RHIC at a relatively low frequency of 56 MHz. The current storage cavities of RHIC operate at 197 MHz and are normal-conducting. The use of a superconducting cavity allows for a high gap voltage, over 2 MV. The combination of a high voltage and low frequency provides various advantages stemming from the resulting large longitudinal acceptance bucket.

  8. BEAM DIFFUSION MEASUREMENTS AT RHIC.

    SciTech Connect

    FLILLER,R.P.,IIIDREES,A.GASSNER,D.MCINTYRE,G.PEGGS,S.TRBOJEVIC,D.

    2003-05-12

    During a store, particles from the beam core continually diffuse outwards into the halo through a variety of mechanisms. Understanding the diffusion rate as a function of particle amplitude can help discover which processes are important to halo growth. A collimator can be used to measure the amplitude growth rate as a function of the particle amplitude. In this paper we present results of diffusion measurements performed at the Relativistic Heavy Ion Collider (RHIC) with fully stripped gold ions, deuterons, and protons. We compare these results with measurements from previous years, and simulations, and discuss any factors that relate to beam growth in RHIC.

  9. POLARIZED NEUTRONS IN RHIC

    SciTech Connect

    COURANT,E.D.

    1998-04-27

    There does not appear to be any obvious way to accelerate neutrons, polarized or otherwise, to high energies by themselves. To investigate the behavior of polarized neutrons the authors therefore have to obtain them by accelerating them as components of heavier nuclei, and then sorting out the contribution of the neutrons in the analysis of the reactions produced by the heavy ion beams. The best neutron carriers for this purpose are probably {sup 3}He nuclei and deuterons. A polarized deuteron is primarily a combination of a proton and a neutron with their spins pointing in the same direction; in the {sup 3}He nucleus the spins of the two protons are opposite and the net spin (and magnetic moment) is almost the same as that of a free neutron. Polarized ions other than protons may be accelerated, stored and collided in a ring such as RHIC provided the techniques proposed for polarized proton operation can be adapted (or replaced by other strategies) for these ions. To accelerate polarized particles in a ring, one must make provisions for overcoming the depolarizing resonances that occur at certain energies. These resonances arise when the spin tune (ratio of spin precession frequency to orbit frequency) resonates with a component present in the horizontal field. The horizontal field oscillates with the vertical motion of the particles (due to vertical focusing); its frequency spectrum is dominated by the vertical oscillation frequency and its modulation by the periodic structure of the accelerator ring. In addition, the magnet imperfections that distort the closed orbit vertically contain all integral Fourier harmonics of the orbit frequency.

  10. Lightweight Electrical Insulation

    NASA Technical Reports Server (NTRS)

    Schroeder, J. E.

    1985-01-01

    Hollow plastic spheres expanded and fused together. Hollow, gasfilled plastic spheres piled in mold. Heating in vacuum softens and expands spheres, forcing them together into nearly regular hexagonal close packing. Foam used as lightweight, electrically insulating material in place of solid ceramic, glass, or polymer. Padding to protect against mechanical shocks another application for such dense, regular foam.

  11. Method and apparatus for filling thermal insulating systems

    DOEpatents

    Arasteh, Dariush K.

    1992-01-01

    A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air.

  12. Method and apparatus for filling thermal insulating systems

    DOEpatents

    Arasteh, D.K.

    1992-01-14

    A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air. 3 figs.

  13. RHIC BBLR measurements in 2009

    SciTech Connect

    Calaga, R.; Robert-Demolaize, G.; Fischer, W.

    2010-05-23

    Long range beam-beam experiments were conducted during the Run 2009 in the Yellow and the Blue beams of the RHIC accelerator with DC wires. The effects of a long-range interaction with a DC wire on colliding and non-colliding bunches with the aid of beam losses, orbits, tunes were studied. Results from distance scans and an attempt to compensate a long-range interaction with a DC wire is presented. Two DC wires in the vertical plane were installed in the RHIC accelerator in 2006 with the aim of investigating long range (LR) beam-beam effects and a potential compensation. Extensive experiments were conducted focusing mainly on the effect of a wire on single ion beams from 2006-2009. A unique opportunity to compare the effect of the wire on colliding beams and compensation of a single LR beam-beam interaction were conducted in Run2009 with protons at 100 GeV. Due to aperture considerations for decreasing {beta}*, the Blue wire was removed during the shutdown after the Run2009 and the Yellow wire is foreseen to be removed in the near future. Therefore, these experiments serve as the final set of measurements for LR beam-beam with RHIC as a test bed. The relevant RHIC beam and lattice parameters are listed in Table 1 for the experiments in Run2009.

  14. DEVELOPMENT OF NEG COATING FOR RHIC EXPERIMENTAL BEAMTUBES.

    SciTech Connect

    WEISS, D.; HE, P.; HSEUH, H.C.; TODD, R.

    2005-05-16

    As RHIC beam intensity increases beyond original scope, pressure rises have been observed in some regions. The luminosity limiting pressure rises are associated with electron multi-pacting, electron stimulated desorption and beam induced desorption. Non-Evaporable Getter (NEG) coated beamtubes have been proven effective to suppress pressure rise in synchrotron radiation facilities. Standard beamtubes have been NEG coated by a vendor and added to many RHIC UHV regions. BNL is developing a cylindrical magnetron sputtering system to NEG coat special beryllium beamtubes installed in RHIC experimental regions, It features a hollow, liquid cooled cathode producing power density of 500 W/m and deposition rate of 5000 Angstrom/hr on 7.5cm OD beamtube. The cathode, a titanium tube partially covered with zirconium and vanadium ribbons, is oriented for horizontal coating of 4m long chambers. Ribbons and magnets are arranged to provide uniform sputtering distribution and deposited NEG composition. Vacuum performance of NEG coated tubes was measured. Coating was analyzed with energy dispersion spectroscopy, auger electron spectroscopy and scanning electron microscopy. System design, development, and analysis results are presented.

  15. Residual gas fluorescence monitor for relativistic heavy ions at RHIC

    NASA Astrophysics Data System (ADS)

    Tsang, T.; Gassner, D.; Minty, M.

    2013-10-01

    A residual gas fluorescence beam profile monitor at the Relativistic Heavy Ion Collider (RHIC) has successfully recorded beam images of various species of relativistic heavy ions during FY2012 operations. These fully striped ions include gold, copper, and uranium at 100, 99.9, and 96.4GeV/n, respectively. Their beam profiles give an independent measurement of the RHIC beam size and emittance. We estimated their corresponding fluorescence cross sections to be 2.1×10-16, 1.8×10-17, and 2.6×10-16cm2, and obtained their rms transverse beam sizes of 0.36, 0.37, 0.24 mm for gold, copper, and uranium ions, respectively. They are the smallest ion beam width, thus lowest beam emittance, ever produced at RHIC or any other high-energy heavy ion colliders. These extremely small beam sizes may have reached a fundamental limit to residual gas fluorescence based beam profile monitor. Nevertheless, this beam diagnostic technique, utilizing the beam-induced fluorescence from residual gas where hydrogen is still the dominant constituent in nearly all vacuum systems, represents a passive, robust, truly noninvasive, monitor for high-energy ion beams.

  16. Advances in Microsphere Insulation Systems

    NASA Astrophysics Data System (ADS)

    Allen, M. S.; Baumgartner, R. G.; Fesmire, J. E.; Augustynowicz, S. D.

    2004-06-01

    Microsphere insulation, typically consisting of hollow glass bubbles, combines in a single material the desirable properties that other insulations only have individually. The material has high crush strength, low density, is noncombustible, and performs well in soft vacuum. Microspheres provide robust, low-maintenance insulation systems for cryogenic transfer lines and dewars. They also do not suffer from compaction problems typical of perlite that result in the necessity to reinsulate dewars because of degraded thermal performance and potential damage to its support system. Since microspheres are load bearing, autonomous insulation panels enveloped with lightweight vacuum-barrier materials can be created. Comprehensive testing performed at the Cryogenics Test Laboratory located at the NASA Kennedy Space Center demonstrated competitive thermal performance with other bulk materials. Test conditions were representative of actual-use conditions and included cold vacuum pressure ranging from high vacuum to no vacuum and compression loads from 0 to 20 psi. While microspheres have been recognized as a legitimate insulation material for decades, actual implementation has not been pursued. Innovative microsphere insulation system configurations and applications are evaluated.

  17. R&D ERL: Vacuum

    SciTech Connect

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the {approx}10{sup -9} torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2{sup o}K is reduced to low 10{sup -11} torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The

  18. RHIC Sextant Test -- Physics and performance

    SciTech Connect

    Wei, J.; Fischer, W.; Ahrens, L.

    1997-07-01

    This paper presents beam physics and machine performance results of the Relativistic Heavy Ion Collider (RHIC) Sextant and AGS-to-RHIC (AtR) transfer line during the Sextant Test in early 1997. Techniques used to measure both machine properties (difference orbits, dispersion, and beamline optics) and beam parameters (energy, intensity, transverse and longitudinal emittances) are described. Good agreement was achieved between measured and design lattice optics. The gold ion beam quality was shown to approach RHIC design requirements.

  19. Physics with tagged forward protons at RHIC

    SciTech Connect

    Yip,K.

    2009-08-30

    The physics reach of the STAR detector at RHIC has been extended to include elastic and inelastic diffraction measurements with tagged forward protons. This program has started at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run.

  20. Beam emittance measurements in RHIC

    SciTech Connect

    Zelenski,A.; Bazilevsky, A.; Bunce, G.; Gill, R.; Huang, H.; Makdisi, Y.; Morozov, B.; Nemesure, S.; Russo, t.; Steski, D.; Sivertz, M.

    2009-05-04

    The RHIC proton polarimeters can operate in scanning mode, giving polarization profiles and transverse beam intensity profile (beam emittance) measurements. The polarimeters function as wire scanners, providing a very good signal/noise ratio and high counting rate. This allows accurate bunch-by-bunch emittance measurements during fast target sweeps (<1 s) through the beam. Very thin carbon strip targets make these measurements practically non-destructive. Bunch by bunch emittance measurements are a powerful tool for machine set-up; in RHIC, individual proton beam transverse emittances can only be measured by CNI polarimeter scans. We discuss the consistency of these measurements with Ionization Profile Monitors (IPMs) and vernier scan luminosity measurements. Absolute accuracy limitations and cross-calibration of different techniques are also discussed.

  1. The PHENIX experiment at RHIC

    SciTech Connect

    Morrison, D.P.; Akiba, Y.; Alford, O.; PHENIX Collaboration

    1997-12-01

    The primary goals of the heavy-ion program of the PHENIX collaboration are the detection of the quark-gluon plasma and the subsequent characterization of its physical properties. To address these aims, PHENIX will pursue a wide range of high energy heavy-ion physics topics. The breadth of the physics program represents the expectation that it will require the synthesis of a number of measurements to investigate the physics of the quark-gluon plasma. The broad physics agenda of the collaboration is also reflected in the design of the PHENIX detector itself, which is capable of measuring hadrons, leptons and photons with excellent momentum and energy resolution. PHENIX has chosen to instrument a selective acceptance with multiple detector technologies to provide very discriminating particle identification abilities. Additionally, PHENIX will take advantage of RHIC`s capability to collide beams of polarized protons with a vigorous spin physics program, a subject covered in a separable contribution to these proceedings.

  2. Workshop on the RHIC performance

    SciTech Connect

    Khiari, F.; Milutinovic, J.; Ratti, A.; Rhoades-Brown, M.J.

    1988-07-01

    The most recent conceptual design manual for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven was published in May 1986 (BNL 51932). The purpose of this workshop was to review the design specifications in this RHIC reference manual, and to discuss in detail possible improvements in machine performance by addressing four main areas. These areas are beam-beam interactions, stochastic cooling, rf and bunch instabilities. The contents of this proceedings are as follows. Following an overview of the workshop, in which the motivation and goals are discussed in detail, transcripts of the first day talks are given. Many of these transcripts are copies of the original transparencies presented at the meeting. The following four sections contain contributed papers, that resulted from discussions at the workshop within each of the four working groups. In addition, there is a group summary for each of the four working groups at the beginning of each section. Finally, a list of participants is given.

  3. Polarized proton beams in RHIC

    SciTech Connect

    Zelenski, A.

    2010-10-04

    The polarized beam for RHIC is produced in the optically-pumped polarized H{sup -} ion source and then accelerated in Linac to 200 MeV for strip-injection to Booster and further accelerated 24.3 GeV in AGS for injection in RHIC. In 2009 Run polarized protons was successfully accelerated to 250 GeV beam energy. The beam polarization of about 60% at 100 GeV beam energy and 36-42% at 250 GeV beam energy was measured with the H-jet and p-Carbon CNI polarimeters. The gluon contribution to the proton spin was studied in collisions of longitudinally polarized proton beams at 100 x 100 GeV. At 250 x 250 GeV an intermediate boson W production with the longitudinally polarized beams was studied for the first time.

  4. RHIC PERFORMANCE AND FUTURE PLANS

    SciTech Connect

    FISCHER,W.

    2004-10-10

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, consisting of two 3.8 km long superconducting rings, was commissioned in 1999. Since then the machine collided fully stripped gold ions at five different energies, up to 100 GeV/u, deuterons with gold ions at 100 GeV/u, and protons at 100 GeV with a beam polarizations of up 45%. Over four operating periods the heavy ion luminosity has increased by two orders of magnitude, and now exceeds the design value by a factor of 2. Another factor of 2 is targeted for the next 4 years, as well as a more than 10-fold increase in the proton luminosity and a 2-fold increase in the polarization. Possible further upgrades include an Electron Beam Ion Source (EBIS), stochastic and electron cooling, and an electron ring to form an electron-ion collider (eRHIC).

  5. Monolithic readout circuits for RHIC

    SciTech Connect

    O`Connor, P.; Harder, J.

    1991-12-31

    Several CMOS ASICs have been developed for a proposed RHIC experiment. This paper discusses why ASIC implementation was chosen for certain functions, circuit specifications and the design techniques used to meet them, and results of simulations and early prototypes. By working closely together from an early stage in the planning process, in-house ASIC designers and detector and data acquisition experimenters can achieve optimal use of this important technology.

  6. The STAR experiment at RHIC

    SciTech Connect

    Marx, J.N.; STAR Collaboration

    1994-01-01

    STAR (Solenoidal Tracker at RHIC) will be one of two large, sophisticated experiments ready to take data when the Relativistic Heavy Ion Collider (RHIC) comes on-line in 1999. The design of STAR, its construction and commissioning and the physics program using the detector are the responsibility of a collaboration of over 250 members from 30 institutions, world-wide. The overall approach of the STAR Collaboration to the physics challenge of studying collisions of highly relativistic nuclei is to focus on measurements of the properties of the many hadrons produced in the collisions. The STAR detector is optimized to detect and identify hadrons over a large solid angle so that individual events can be characterized, in detail, based on their hadronic content. The broad capabilities of the STAR detector will permit an examination of a wide variety of proposed signatures for the Quark Gluon Plasma (QGP), using the sample of events which, on an event-by-event basis, appear to come from collisions resulting in a large energy density over a nuclear volume. In order to achieve this goal, the STAR experiment is based on a solenoid geometry with tracking detectors using the time projection chamber approach and covering a large range of pseudo-rapidity so that individual tracks can be seen within the very high track density expected in central collisions at RHIC. STAR also uses particle identification by the dE/dx technique and by time-of-flight. Electromagnetic energy is detected in a large, solid-angle calorimeter. The construction of STAR, which will be located in the Wide Angle Hall at the 6 o`clock position at RHIC, formally began in early 1993.

  7. High intensity protons in RHIC

    SciTech Connect

    Montag, C.; Ahrens, L.; Blaskiewicz, M.; Brennan, J. M.; Drees, K. A.; Fischer, W.; Huang, H.; Minty, M.; Robert-Demolaize, G.; Thieberger, P.; Yip, K.

    2012-01-05

    During the 2012 summer shutdown a pair of electron lenses will be installed in RHIC, allowing the beam-beam parameter to be increased by roughly 50 percent. To realize the corresponding luminosity increase bunch intensities have to be increased by 50 percent, to 2.5 {center_dot} 10{sup 11} protons per bunch. We list the various RHIC subsystems that are most affected by this increase, and propose beam studies to ensure their readiness. The proton luminosity in RHIC is presently limited by the beam-beam effect. To overcome this limitation, electron lenses will be installed in IR10. With the help of these devices, the headon beam-beam kick experienced during proton-proton collisions will be partially compensated, allowing for a larger beam-beam tuneshift at these collision points, and therefore increasing the luminosity. This will be accomplished by increasing the proton bunch intensity from the presently achieved 1.65 {center_dot} 10{sup 11} protons per bunch in 109 bunches per beam to 2.5 {center_dot} 10{sup 11}, thus roughly doubling the luminosity. In a further upgrade we aim for bunch intensities up to 3 {center_dot} 10{sup 11} protons per bunch. With RHIC originally being designed for a bunch intensity of 1 {center_dot} 10{sup 11} protons per bunch in 56 bunches, this six-fold increase in the total beam intensity by far exceeds the design parameters of the machine, and therefore potentially of its subsystems. In this note, we present a list of major subsystems that are of potential concern regarding this intensity upgrade, show their demonstrated performance at present intensities, and propose measures and beam experiments to study their readiness for the projected future intensities.

  8. Load responsive multilayer insulation performance testing

    SciTech Connect

    Dye, S.; Kopelove, A.; Mills, G. L.

    2014-01-29

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI.

  9. RHIC stochastic cooling motion control

    SciTech Connect

    Gassner, D.; DeSanto, L.; Olsen, R.H.; Fu, W.; Brennan, J.M.; Liaw, CJ; Bellavia, S.; Brodowski, J.

    2011-03-28

    Relativistic Heavy Ion Collider (RHIC) beams are subject to Intra-Beam Scattering (IBS) that causes an emittance growth in all three-phase space planes. The only way to increase integrated luminosity is to counteract IBS with cooling during RHIC stores. A stochastic cooling system for this purpose has been developed, it includes moveable pick-ups and kickers in the collider that require precise motion control mechanics, drives and controllers. Since these moving parts can limit the beam path aperture, accuracy and reliability is important. Servo, stepper, and DC motors are used to provide actuation solutions for position control. The choice of motion stage, drive motor type, and controls are based on needs defined by the variety of mechanical specifications, the unique performance requirements, and the special needs required for remote operations in an accelerator environment. In this report we will describe the remote motion control related beam line hardware, position transducers, rack electronics, and software developed for the RHIC stochastic cooling pick-ups and kickers.

  10. FAST IR ORBIT FEEDBACK AT RHIC.

    SciTech Connect

    MONTAG, C.; MICHNOFF, R.; SATOGATA, T.; ET AL.

    2005-05-16

    Mechanical low-{beta} triplet vibrations lead to horizontal jitter of RHIC beams at frequencies around 10 Hz. The resulting beam offsets at the interaction points are considered detrimental to RHIC luminosity performance. To stabilize beam orbits at the interaction points, installation of a fast orbit feedback is foreseen. A prototype of this system is being developed and tested. Recent results will be presented.

  11. RHIC sextant test: Accelerator systems and performance

    SciTech Connect

    Pilat, F.; Trbojevic, D.; Ahrens, L.

    1997-08-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning.

  12. THE COLOR GLASS CONDENSATE, RHIC AND HERA.

    SciTech Connect

    MCLERRAN,L.

    2002-04-30

    In this talk, I discuss a universal form of matter, the Color Glass Condensate. It is this matter which composes the low x part of all hadronic wavefunctions. The experimental programs at RHIC and HERA, and future programs at LHC and eRHIC may allow us to probe and study the properties of this matter.

  13. Elastic proton-proton scattering at RHIC

    SciTech Connect

    Yip, K.

    2011-09-03

    Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.

  14. Anisotropic flow at the SPS and RHIC

    SciTech Connect

    Poskanzer, Arthur M.

    2001-10-19

    The results on directed and elliptic flow for Pb + Pb at the full energy of the SPS (158 GeV/A) and from the first year of Au + Au at RHIC ({radical}s{sub NN} = 130 GeV) are reviewed. The different experiments agree well and a consistent picture has emerged indicating early time thermalization at RHIC.

  15. Theoretical Status of the RHIC Program

    SciTech Connect

    Jalilian-Marian, Jamal

    2006-09-25

    Since the beginning of its operation, the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Lab has produced a wealth of exciting and interesting results. I give a brief overview of the theoretical aspects of the main results from the RHIC program.

  16. Heavy Ion Physics in eRHIC

    SciTech Connect

    Jalilian-Marian, Jamal

    2005-10-06

    We review the physics of gluon saturation in heavy ions at small x and consider the applications of Color Glass Condensate formalism to Deep Inelastic Scattering (DIS) of leptons on nuclei and discuss the overlapping physics between high energy heavy ion collisions at RHIC and DIS in eRHIC.

  17. Vacuum force

    NASA Astrophysics Data System (ADS)

    Han, Yongquan

    2015-03-01

    To study on vacuum force, we must clear what is vacuum, vacuum is a space do not have any air and also ray. There is not exist an absolute the vacuum of space. The vacuum of space is relative, so that the vacuum force is relative. There is a certain that vacuum vacuum space exists. In fact, the vacuum space is relative, if the two spaces compared to the existence of relative vacuum, there must exist a vacuum force, and the direction of the vacuum force point to the vacuum region. Any object rotates and radiates. Rotate bend radiate- centripetal, gravity produced, relative gravity; non gravity is the vacuum force. Gravity is centripetal, is a trend that the objects who attracted wants to Centripetal, or have been do Centripetal movement. Any object moves, so gravity makes the object curve movement, that is to say, the radiation range curve movement must be in the gravitational objects, gravity must be existed in non vacuum region, and make the object who is in the region of do curve movement (for example: The earth moves around the sun), or final attracted in the form gravitational objects, and keep relatively static with attract object. (for example: objects on the earth moves but can't reach the first cosmic speed).

  18. Surprises in the RHIC data

    SciTech Connect

    Thomas, J.H.

    2003-05-22

    The data from RHIC have produced many unanticipated results. I will describe a few of the surprises that occur in the soft spectra while my colleagues at this conference will summarize the hard spectra. One particularly important discovery is that properties of the initial state have an impact on the final state in relativistic heavy ion collisions. Another important discovery is that the collision zone is opaque to the passage of hadrons and perhaps even partons. And finally, the data tell us very precisely where the colliding systems hadronize on the phase diagram for nuclear matter.

  19. Global Orbit Feedback in RHIC

    SciTech Connect

    Minty, M.; Hulsart, R.; Marusic, A.; Michnoff, R.; Ptitsyn, V.; Robert-Demolaize, G.; Satogata, T.

    2010-05-23

    For improved reproducibility of good operating conditions and ramp commissioning efficiency, new dual-plane slow orbit feedback during the energy ramp was implemented during run-10 in the Relativistic Heavy Ion Collider (RHIC). The orbit feedback is based on steering the measured orbit, after subtraction of the dispersive component, to either a design orbit or to a previously saved reference orbit. Using multiple correctors and beam position monitors, an SVD-based algorithm is used for determination of the applied corrections. The online model is used as a basis for matrix computations. In this report we describe the feedback design, review the changes made to realize its implementation, and assess system performance.

  20. TRANSVERSE ECHO MEASUREMENTS IN RHIC.

    SciTech Connect

    FISCHER, W.

    2005-09-18

    Diffusion counteracts cooling and the knowledge of diffusion rates is important for the calculation of cooling times and equilibrium beam sizes. Echo measurements are a potentially sensitive method to determine diffusion rates, and longitudinal measurements were done in a number of machines. We report on transverse echo measurements in RHIC and the observed dependence of echo amplitudes on a number of parameters for beams of gold and copper ions, and protons. In particular they examine the echo amplitudes of gold and copper ion bunches of varying intensity, which exhibit different diffusion rates from intrabeam scattering.

  1. RHIC warm-bore systems

    SciTech Connect

    Welch, K.M.

    1994-07-01

    Pressure profiles, in time, are calculated as a consequence of anticipated outgassing of various beam components (e.g., rf cavities, etc.) and warm-bore beam pipes. Gold beam lifetimes and transverse beam emittance growth are given for calculated average pressures. Examples of undesirable warm-bore conditions are presented such as contaminated experimental beam pipes and warm-bore magnets (i.e., DX). These examples may prove instructive. The methods used in making these calculations are presented in Section 2. They are applicable to all linear systems. The calculations given apply to the RHIC accelerator and more specifically to warm-bore regions of the machine.

  2. Transverse Echo Measurements in RHIC

    SciTech Connect

    Fischer, Wolfram

    2006-03-20

    Diffusion counteracts cooling and the knowledge of diffusion rates is important for the calculation of cooling times and equilibrium beam sizes. Echo measurements are a potentially sensitive method to determine diffusion rates, and longitudinal measurements were done in a number of machines. We report on transverse echo measurements in RHIC and the observed dependence of echo amplitudes on a number of parameters for beams of gold and copper ions, and protons. In particular we examine the echo amplitudes of gold and copper ion bunches of varying intensity, which exhibit different diffusion rates from intrabeam scattering.

  3. Multipurpose Thermal Insulation Test Apparatus

    NASA Technical Reports Server (NTRS)

    Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)

    2002-01-01

    A multi-purpose thermal insulation test apparatus is used for testing insulation materials, or other components. The test apparatus is a fluid boil-off calorimeter system for calibrated measurement of the apparent thermal conductivity (k-value) of a specimen material at a fixed vacuum level. The apparatus includes an inner vessel for receiving a fluid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the inner vessel and thermal guards, is suspended from the top of the vacuum chamber. Handling tools attach to the cold mass assembly for convenient manipulation of the assembly and for the installation or wrapping of insulation test materials. Liquid nitrogen is typically supplied to the inner vessel using a fill tube with funnel. A single port through the top of the vacuum chamber facilitates both filling and venting. Aerogel composite stacks with reflective films are fastened to the top and the bottom of the inner vessel as thermal guards. The comparative k-value of the insulation material is determined by measuring the boil-off flow rate of gas, the temperature differential across the insulation thickness, and the dimensions (length and diameters) of the test specimen.

  4. Thermal Insulation Test Apparatuses

    NASA Technical Reports Server (NTRS)

    Berman, Brion

    2005-01-01

    The National Aeronautics and Space Administration (NASA) seeks to license its Thermal Insulation Test Apparatuses. Designed by the Cryogenics Test Laboratory at the John F. Kennedy Space Center (KSC) in Florida, these patented technologies (U.S. Patent Numbers: Cryostat 1 - 6,742,926, Cryostat 2 - 6,487,866, and Cryostat 4 - 6,824,306) allow manufacturers to fabricate and test cryogenic insulation at their production and/or laboratory facilities. These new inventions allow for the thermal performance characterization of cylindrical and flat specimens (e.g., bulk-fill, flat-panel, multilayer, or continuously rolled) over the full range of pressures, from high vacuum to no vacuum, and over the full range of temperatures from 77K to 300K. In today's world, efficient, low-maintenance, low-temperature refrigeration is taking a more significant role, from the food industry, transportation, energy, and medical applications to the Space Shuttle. Most countries (including the United States) have laws requiring commercially available insulation materials to be tested and rated by an accepted methodology. The new Cryostat methods go beyond the formal capabilities of the ASTM methods to provide testing for real systems, including full-temperature differences plus full-range vacuum conditions.

  5. RHIC GAMMA TRANSITION JUMP POWER SUPPLY PROTOTYPE TEST.

    SciTech Connect

    MI,J.; GANETIS,G.; LOUIE,W.; BRUNO,D.; ZAPASEK,R.; SANDBERG,J.; ZHANG,W.

    2001-06-18

    This paper describes the principle and test results of the prototype RHIC Gamma Transition Jump Power Supply. The jump power supply principle is introduced and illustrated along with diagrams in this paper. The prototype is built with Insulated Gate Bipolar Transistors (IGBT) as current direction switch components. Optically coupled IGBT drivers are used for the jump control switch. The jump time among the power supplies is synchronized from 40 to 60 milliseconds to meet the RHIC beam transition-crossing requirement. The short jump time is needed to avoid particle loss and to preserve the initial bunch area during the transition, thus successfully transferring the ion beams from the acceleration RF system to storage system. There are a total of twenty four jump power supplies that will be used. They synchronously switch the direction of the magnets current while the beam is being accelerated through the transition to reach the top storage energy. Each power supply will energize a group of super conducting magnets, which consists of four magnets that are connected in series. At the end, test results are listed, accompanied with the dummy load current waveform and prototype power supply picture.

  6. Robust Multilayer Insulation for Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Scholtens, B. F.; Augustynowicz, S. D.

    2007-01-01

    New requirements for thermal insulation include robust Multilayer insulation (MU) systems that work for a range of environments from high vacuum to no vacuum. Improved MLI systems must be simple to install and maintain while meeting the life-cycle cost and thermal performance objectives. Performance of actual MLI systems has been previously shown to be much worse than ideal MLI. Spacecraft that must contain cryogens for both lunar service (high vacuum) and ground launch operations (no vacuum) are planned. Future cryogenic spacecraft for the soft vacuum environment of Mars are also envisioned. Industry products using robust MLI can benefit from improved cost-efficiency and system safety. Novel materials have been developed to operate as excellent thermal insulators at vacuum levels that are much less stringent than the absolute high vacuum requirement of current MLI systems. One such robust system, Layered Composite Insulation (LCI), has been developed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. The experimental testing and development of LCI is the focus of this paper. LCI thermal performance under cryogenic conditions is shown to be six times better than MLI at soft vacuum and similar to MLI at high vacuum. The experimental apparent thermal conductivity (k-value) and heat flux data for LCI systems are compared with other MLI systems.

  7. Robust Multilayer Insulation for Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Augustynowicz, S. D.; Scholtens, B. E.

    2008-03-01

    New requirements for thermal insulation include robust Multilayer insulation (MLI) systems that work for a range of environments from high vacuum to no vacuum. Improved MLI systems must be simple to install and maintain while meeting the life-cycle cost and thermal performance objectives. Performance of actual MLI systems has been previously shown to be much worse than ideal MLI. Spacecraft that must contain cryogens for both lunar service (high vacuum) and ground launch operations (no vacuum) are planned. Future cryogenic spacecraft for the soft vacuum environment of Mars are also envisioned. Industry products using robust MLI can benefit from improved cost-efficiency and system safety. Novel materials have been developed to operate as excellent thermal insulators at vacuum levels that are much less stringent than the absolute high vacuum requirement of current MLI systems. One such robust system, Layered Composite Insulation (LCI), has been developed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. The experimental testing and development of LCI is the focus of this paper. LCI thermal performance under cryogenic conditions is shown to be six times better than MLI at soft vacuum and similar to MLI at high vacuum. The experimental apparent thermal conductivity (k-value) and heat flux data for LCI systems are compared with other MLI systems.

  8. Insulated Honeycomb

    NASA Technical Reports Server (NTRS)

    Bhat, Balakrishna T.

    1989-01-01

    Proposed insulated honeycomb structure similar to reinforced honeycomb structure described in NPO-17538. Panels of insulated honeycomb used to make supports for solar-energy collectors and radar antennas.

  9. HIGH PERFORMANCE EBIS FOR RHIC.

    SciTech Connect

    ALESSI,J.; BEEBE, E.; GOULD, O.; KPONOU, A.; LOCKEY, R.; PIKIN, A.; RAPARIA, D.; RITTER, J.; SNYDSTRUP, L.

    2007-06-25

    An Electron Beam Ion Source (EBIS), capable of producing high charge states and high beam currents of any heavy ion species in short pulses, is ideally suited for injection into a synchrotron. An EBIS-based, high current, heavy ion preinjector is now being built at Brookhaven to provide increased capabilities for the Relativistic Heavy Ion Collider (RHIC), and the NASA Space Radiation Laboratory (NSRL). Benefits of the new preinjector include the ability to produce ions of any species, fast switching between species to serve the simultaneous needs of multiple programs, and lower operating and maintenance costs. A state-of-the-art EBIS, operating with an electron beam current of up to 10 A, and producing multi-milliamperes of high charge state heavy ions, has been developed at Brookhaven, and has been operating very successfully on a test bench for several years. The present performance of this high-current EBIS is presented, along with details of the design of the scaled-up EBIS for RHIC, and the status of its construction. Other aspects of the project, including design and construction of the heavy ion RFQ, Linac, and matching beamlines, are also mentioned.

  10. Transverse mode coupling in RHIC

    SciTech Connect

    Raka, E.

    1990-02-21

    In the Proceedings of the Workshop on the RHIC Performance, it was stated that the transverse mode coupling instability, posed a potential intensity limitation for protons. This was based on the expression I{sub b} = 4(E{sub t}/qe) Q{sub s} 4 {radical}{pi} {sigma} {ell}/(Im (Z{sub {perpendicular}}) < {beta}{sub {perpendicular}} > R 3) where E{sub t} is the total energy, q the charge state, Q{sub s} the synchrotron tune, < {beta}{sub {perpendicular}} > the average beta function, R the machine radius, and {sigma}{sub {ell}} the rms bunch length of a Gaussian distribution in longitudinal phase space. For a < {beta}{sub {perpendicular}} > of 55 m and 10{sup 11} protons/bunch, the allowed impedance Z{sub {perpendicular}} for protons at injection, where Q{sub s} = 0.11 {times} 10{sup {minus}3}, would be less than 1.2 M{Omega}/m. The purpose of this report is to discuss the consequences of two factors that were omitted in this equation, which comes from the ZAP program, to RHIC. These are the space charge impedance and the incoherent tune spread of the beam.

  11. Control Dewar Secondary Vacuum Container

    SciTech Connect

    Rucinski, R.; /Fermilab

    1993-10-04

    This engineering note provides background information regarding the control dewar secondary vacuum container. The secondary vacuum container has it's origin with the CDP control dewar design. The name secondary vacuum container replaced the CDP term 'Watt can' which was named after Bob Watt (SLAC), a PAC/DOE review committee member who participated in a review of CDP and recommended a secondary vacuum enclosure. One of the most fragile parts of the control dewar design is the ceramic electrical feed throughs located in the secondary vacuum container. The secondary vacuum container is provided to guard against potential leaks in these ceramic insulating feed throughs. The secondary vacuum container has a pumping line separate from the main solenoid/control dewar insulating vacuum. This pumping line is connected to the inlet of the turbo pump for initial pumpdown. Under normal operation the container is isolated. Should a feedthrough develop a small leak, alternate pumping arrangements for the secondary vacuum container could be arranged. The pressure in the secondary vacuum container should be kept in a range that the breakdown voltage is kept at a maximum. The breakdown voltage is known to be a function of pressure and is described by a Paschen curve. I cannot find a copy of the curve at this time, but from what I remember, the breakdown voltage is a minimum somewhere around 10-3 torr. Ideally the pressure in the secondary vacuum can should be kept very low, around 10 E-6 or 10 E-7 torr for maximum breakdown voltage. If however a leak developed and this was not possible, then one could operate at a pressure higher than the minima point.

  12. RHIC Sextant Test - Accelerator Systems and Performance

    NASA Astrophysics Data System (ADS)

    Pilat, F.; Ahrens, L.; Brown, K.; Connolly, R.; dell, G. F.; Fischer, W.; Kewisch, J.; Mackay, W.; Mane, V.; Peggs, S.; Satogata, T.; Tepikian, S.; Thompson, P.; Trbojevic, D.; Tsoupas, N.; Wei, J.

    1997-05-01

    One sextant of the RHIC collider and the full AtR (AGS to RHIC) transfer line have been commissioned in early 1997 with beam. We describe here the design and performance of the accelerator systems during the test, such as the magnet and power supply systems, instrumentation subsystems and application software. After reviewing the main milestones of the commissioning we describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems preformance and their impact on the plannig for RHIC installation and commissioning.

  13. RHIC OPERATION WITH LONGITUDINALLY POLARIZED PROTONS.

    SciTech Connect

    HUANG,H.BAI,M.BEEBE-WANG,J.ET AL.

    2004-07-05

    Polarized proton beams have been accelerated, stored and collided at 100GeV per beam in the Relativistic Heavy Ion Collider (RHIC) with longitudinal polarization. The essential equipment includes four Siberian snakes, eight spin rotators and fast relative polarimeters in each of the two RHIC rings as well as local polarimeters at the STAR and PHENIX detectors. This paper summarizes the performance of RHIC as a polarized proton collider in the FY03 run with emphasis on polarization issues. Preliminary data from the FY04 run is also shown.

  14. BEAM PIPE DESORPTION RATE IN RHIC.

    SciTech Connect

    HUANG, H.; FISCHER, W.; HE, P.; HSEUH, H.C.; IRISO, U.; PTITSYN, V.; TRBOJEVIC, D.; WEI, J.; YANG, S.Y.

    2006-06-23

    In the past, an increase of beam intensity in RHIC has caused several decades of pressure rises in the warm sections during operation. This has been a major factor limiting the RHIC luminosity. About 430 meters of NEG coated beam pipes have been installed in the warm sections to ameliorate this problem. Beam ion induced desorption is one possible cause of pressure rises. A series beam studies in RHIC has been dedicated to estimate the desorption rate of various beam pipes (regular and NEG coated) at various warm sections. Correctors were used to generate local beam losses and consequently local pressure rises. The experimental results are presented and analyzed in this paper.

  15. Conceptual design of the Relativistic Heavy Ion Collider: RHIC

    SciTech Connect

    Samios, Nicholas P.

    1986-05-01

    The complete Relativistic Heavy Ion Collider (RHIC) facility will be a complex set of accelerators and beam transfer equipment connecting them. A significant portion of the total facility either exists or is under construction. Two existing Tandem Van de Graaff accelerators will serve for the initial ion acceleration. Ions with a charge of -1 would be accelerated from ground to +15 MV potential, pass through a stripping foil, and accelerate back to ground potential, where they would pass through a second stripping foil. From there the ions will traverse a long transfer line to the AGS tunnel and be injected into the Booster accelerator. The Booster accelerates the ion bunch, and then the ions pass through one more stripper and then enter the Alternating Gradient Synchrotron (AGS), where they are accelerated to the top AGS energy and transferred to the collider. Bending and focusing of ion beams is to be achieved by superconducting magnets. The physics goals behind the RHIC are enumerated, particularly as regards the study of quark matter and the characteristics of high energy nucleus-nucleus collisions. The design of the collider and all its components is described, including the injector, the lattice, magnet system, cryogenic and vacuum systems, beam transfer, injection, and dump, rf system, and beam instrumentation and control system. Also given are cost estimates, construction schedules, and a management plan. (LEW)

  16. Hybrid Multifoil Aerogel Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey; Paik, Jong-Ah; Jones, Steven; Nesmith, Bill

    2008-01-01

    This innovation blends the merits of multifoil insulation (MFI) with aerogel-based insulation to develop a highly versatile, ultra-low thermally conductive material called hybrid multifoil aerogel thermal insulation (HyMATI). The density of the opacified aerogel is 240 mg/cm3 and has thermal conductivity in the 20 mW/mK range in high vacuum and 25 mW/mK in 1 atmosphere of gas (such as argon) up to 800 C. It is stable up to 1,000 C. This is equal to commercially available high-temperature thermal insulation. The thermal conductivity of the aerogel is 36 percent lower compared to several commercially available insulations when tested in 1 atmosphere of argon gas up to 800 C.

  17. Distributing Radiant Heat in Insulation Tests

    NASA Technical Reports Server (NTRS)

    Freitag, H. J.; Reyes, A. R.; Ammerman, M. C.

    1986-01-01

    Thermally radiating blanket of stepped thickness distributes heat over insulation sample during thermal vacuum testing. Woven of silicon carbide fibers, blanket spreads heat from quartz lamps evenly over insulation sample. Because of fewer blanket layers toward periphery of sample, more heat initially penetrates there for more uniform heat distribution.

  18. Methods of Testing Thermal Insulation and Associated Test Apparatus

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The system and method for testing thermal insulation uses a cryostatic insulation tester having a vacuum chamber and a cold mass including a test chamber and upper and lower guard chambers adjacent thereto. The thermal insulation is positioned within the vacuum chamber and adjacent the cold mass. Cryogenic liquid is supplied to the test chamber, upper guard and lower guard to create a first gas layer in an upper portion of the lower guard chamber and a second gas layer in an upper portion of the test chamber. Temperature are sensed within the vacuum chamber to test the thermal insulation.

  19. DC CHARACTERIZATION OF HIGH GRADIENT MULTILAYER INSULATORS

    SciTech Connect

    Watson, J A; Caporaso, G J; Sampayan, S E; Sanders, D M; Krogh, M L

    2005-05-26

    We have developed a novel insulator concept that involves the use of alternating layers of conductors and insulators with periods less than 1 mm. We have demonstrated that these structures perform 2 to 5 times better than conventional insulators in long pulse, short pulse, and alternating polarity applications. We present new testing results showing exceptional behavior at DC, with gradients in excess of 110kV/cm in vacuum.

  20. ISABELLE vacuum systems

    SciTech Connect

    Halama, H J

    1980-01-01

    The Intersecting Storage Accelerator (ISABELLE) consists of two rings having a circumference of 3.8 km each. In these rings superconducting magnets, held at 4 K, bend and focus the proton beam which is accelerated up to 400 GeV. Due to very different pressure requirements, ISABELLE has two completely independent vacuum systems. One, which operates at 1 x 10/sup -11/ Torr, provides a very clean environment for the circulating proton beam. Here only ion and titanium sublimation pumps are used to provide the vacuum. The other system maintains superconducting magnet vessels at a pressure below 1 x 10/sup -4/ Torr, since at this pressure the gas conduction becomes negligible. In this so-called insulating vacuum system, turbomolecular pumps pump the inadvertent small helium leaks. Other gases are cryocondensed on the cold surfaces of the cryogenic system. The basic element of ISABELLE known as Full Cell containing 45 meters of beam tube, 8 pumping stations, 8 superconducting magnets and complete instrumentation has been constructed, leak checked and tested. All design parameters have been achieved in both vacuum systems. The two vacuum systems are described with particular emphasis on the influence of superconducting magnets in the selection of materials and UHV components.

  1. Polarization transmission at RHIC, numerical simulations

    SciTech Connect

    Meot F.; Bai, M.; Liu, C.; Minty, M.; Ranjbar, V.

    2012-05-20

    Typical tracking simulations regarding the transmission of the polarization in the proton-proton collider RHIC are discussed. They participate in general studies aimed at understanding and improving polarization performances during polarized proton-proton runs.

  2. RHIC Sextant Test --- Physics and Performance

    NASA Astrophysics Data System (ADS)

    Wei, J.; Fischer, W.; Ahrens, L.; Brennan, J. M.; Brown, K.; Connolly, R.; dell, G. F.; Harrison, M.; Kewisch, J.; Mackay, W. W.; Mane, V.; Peggs, S.; Pilat, F.; Satogata, T.; Tepikian, S.; Thompson, P.; Trahern, C. G.; Trbojevic, D.; Tsoupas, N.

    1997-05-01

    This paper presents beam physics and machine performance results of the Relativistic Heavy Ion Collider (RHIC) Sextant and AGS-to-RHIC (ATR) transfer line during the Sextant test in early 1997. Techniques used to measure both machine properties (difference orbits, dispersion, and beamline optics) and beam parameters (energy, intensity, transverse and longitudinal emittances) are described. The flexibility of the ATR and RHIC Sextant lattices is demonstrated by a widely tunable range of phase advance per cell. Longitudinal tomography is employed to reconstruct beam motion in phase space. Digitized two-dimensional video profile monitors are used to measure transverse beam emittances and beamline optics. The gold ion beam parameters are shown to be comparable to the RHIC design requirements.

  3. RHIC low energy tests and initial operations

    SciTech Connect

    Satogata,T.; Ahrens, L.; Bai, M.; Brennan, J.M.; Bruno, D.; Butler, J.; Drees, A.; Fedotov, A.; Fischer, W.; Harvey, M.; Hayes, T.; Jappe, W.; Lee, R.C.; Mackay, W.W.; Malitsky, N.; Marr, G.; Michnoff, R.; Oerter, B.; Pozdeyev, E.; Roser, T.; Severino, F.; Smith, K.; Tepikian, S.; Tsoupas, N.

    2009-05-04

    Future Relativistic Heavy Ion Collider (RHIC) runs, including a portion of FY10 heavy ion operations, will explore collisions at center of mass energies of 5-50 GeV/n (GeV/nucleon). Operations at these energies is motivated by a search for the QCD phase transition critical point. The lowest end of this energy range is nearly a factor of four below the nominal RHIC injection center of mass energy of {radical} s = 20.8 GeV/n. There are several operational challenges in the RHIC low-energy regime, including harmonic number changes, small longitudinal acceptance, lowered magnet field quality, nonlinear orbit control, and luminosity monitoring. We report on the experience with some of these challenges during beam tests with gold in March 2008, including first RHIC operations at {radical}s = 9.18 GeV/n and first beam experience at {radical}s = 5 GeV/n.

  4. GLOBAL DECOUPLING ON THE RHIC RAMP.

    SciTech Connect

    LUO, Y.; CAMERON, P.; DELLA PENNA, A.; FISCHER, W.; ET AL.

    2005-05-16

    The global betatron decoupling on the ramp is an important issue for the operation of the Relativistic Heavy Ion Collider (RHIC), especially in the RHIC polarized proton (pp) run. To avoid the major betatron and spin resonances on the ramp, the betatron tunes are constrained. And the rms value of the vertical closed orbit should be smaller than 0.5mm. Both require the global coupling on the ramp to be well corrected. Several ramp decoupling schemes were found and tested at RHIC, like N-turn map decoupling, three-ramp correction, coupling amplitude modulation, and coupling phase modulation. In this article, the principles of these methods are shortly reviewed and compared. Among them, coupling angle modulation is a robust and fast one. It has been applied to the global decoupling in the routine RHIC operation.

  5. Summary of the RHIC Retreat 2007

    SciTech Connect

    Pilat,F.; Gardner, C.; Montag, C.; Roser, T.

    2008-08-01

    The RHIC Retreat 2007 took place on July 16-17 2007 at the Foxwoods Resort in CT, about 3 weeks after the end of the RHIC Run-7. The goal of the Retreat is traditionally to plan the upcoming run in the light of the results from the previous one, by providing a snapshot of the present understanding of the machine and a forum for free and frank discussion. A particular attention was paid to the challenge of increasing the time at store, and the related issue of system reliability. An interesting Session covered all new developments aimed to improve the machine performance and luminosity. In Section 2 we summarize the results from Run-7 for RHIC and the injectors and discuss the present objectives of the RHIC program and performance. Sections 3-6 are summaries of the Retreat sessions focused on preparation for deuteron gold and polarized protons, respectively, machine availability and new developments.

  6. The RHIC project -- Physical challenges

    SciTech Connect

    Wei, J.

    1997-11-01

    The design and construction status of the Relativistic Heavy Ion Collider, RHIC, is discussed. Those novel features of a heavy ion Collider that are distinct from conventional hadron Colliders in general are noted. These features are derived from the experimental requirements of operation with a variety of ion species over a wide energy range including collisions between ions of unequal energies. The project is in the fifth year of a seven-year construction cycle. A review of the superconducting magnet program is given together with progress to date on the machine construction and commissioning. Emphasis is made on challenging issues including intrabeam scattering, interaction-region error compensation, magnet alignments, and matched transition-energy jump.

  7. ABORT GAP CLEANING IN RHIC.

    SciTech Connect

    DREES,A.; AHRENS,L.; III FLILLER,R.; GASSNER,D.; MCINTYRE,G.T.; MICHNOFF,R.; TRBOJEVIC,D.

    2002-06-03

    During the RHIC Au-run in 2001 the 200 MHz storage cavity system was used for the first time. The rebucketing procedure caused significant beam debunching in addition to amplifying debunching due to other mechanisms. At the end of a four hour store, debunched beam could account for approximately 30%-40% of the total beam intensity. Some of it will be in the abort gap. In order to minimize the risk of magnet quenching due to uncontrolled beam losses at the time of a beam dump, a combination of a fast transverse kicker and copper collimators were used to clean the abort gap. This report gives an overview of the gap cleaning procedure and the achieved performance.

  8. Central exclusive production at RHIC

    NASA Astrophysics Data System (ADS)

    Adamczyk, Leszek; Guryn, Włodek; Turnau, Jacek

    2014-11-01

    The present status and future plans of the physics program of Central Exclusive Production (CEP) at RHIC are described. The measurements are based on the detection of the forward protons from the Double Pomeron Exchange (DPE) process in the Roman Pot system and of the recoil system of charged particles from the DPE process measured in the STAR experiment's Time Projection Chamber (TPC). The data described here were taken using polarized proton-proton collisions at √ {s} = 200 GeV. The preliminary spectra of two-pion mass reconstructed by STAR TPC in central region of pseudorapidity |η| < 1, are presented. Near future plans to take data with the current system at center-of-mass energy √ {s} = 200 GeV and plans to upgrade the forward proton tagging system are presented. Also a possible addition of the RPs to the sPHENIX detector is discussed.

  9. Central exclusive production at RHIC

    SciTech Connect

    Adamczyk, Leszek; Guryn, Włodek; Turnau, Jacek

    2014-11-10

    The present status and future plans of the physics program of Central Exclusive Production (CEP) at RHIC are described. The measurements are based on the detection of the forward protons from the Double Pomeron Exchange (DPE) process in the Roman Pot system and of the recoil system of charged particles from the DPE process measured in the STAR experiment’s Time Projection Chamber (TPC). The data described here were taken using polarized proton-proton collisions at ps = 200 GeV. The preliminary spectra of two pion and four pion invariant mass reconstructed by STAR TPC in central region of pseudo-rapidity | | < 1, are presented. Near future plans to take data with the current system at center-of-mass energy ps = 200 GeV and plans to upgrade the forward proton tagging sys- tem are presented. Also a possible addition of the Roman Pots to the sPHENIX detector is discussed.

  10. POLARIZED PROTON ACCELERATION IN AGS AND RHIC.

    SciTech Connect

    ROSER,T.

    2007-09-10

    As the first hadron accelerator and collider consisting of two independent superconducting rings RHIC has operated with a wide range of beam energies and particle species including polarized proton beams. The acceleration of polarized beams in both the injector and the collider rings is complicated by numerous depolarizing spin resonances. Partial and full Siberian snakes have made it possible to overcome the depolarization and beam polarizations of up to 65% have been reached at 100 GeV in RHIC.

  11. REAL TIME BETATRON TUNE CONTROL IN RHIC.

    SciTech Connect

    SCHULTHEISS,C.; CAMERON,P.; MARUSIC,A.; VAN ZEIJTS,J.

    2002-06-02

    Precise control of the betatron tunes is necessary to preserve proton polarization during the RHIC ramp. In addition, control of the tunes during beam deceleration is necessary due to hysteresis in the superconducting magnets. A real-time feedback system to control the betatron tunes during ramping has been developed for use in RHIC. This paper describes this system and presents the results from commissioning the system during the polarized proton run.

  12. FEL potential of eRHIC

    SciTech Connect

    Litvinenko, V.N.; Ben-Zvi, I.; Hao, Y.; Kao, C-C.; Kayran, D.; Murphy, J.B.; Ptitsyn, V.; Trbojevic, D.; Tsoupas, N.

    2010-08-23

    Brookhaven National Laboratory plans to build a 5-to-30 GeV energy-recovery linac (ERL) for its future electron-ion collider, eRHIC. In past few months, the Laboratory turned its attention to the potential of this unique machine for free electron lasers (FELS), which we initially assessed earlier. In this paper, we present our current vision of a possible FEL farm, and of narrow-band FEL-oscillators driven by this accelerator. eRHIC, the proposed electron-ion collider at BNL, takes advantage of the existing Relativistic Heavy Ion Collider (RHIC) complex. Plans call for adding a six-pass super-conducting (SRF) ERL to this complex to collide polarized- and unpolarized- electron beams with heavy ions (with energies up to 130 GeV per nucleon) and with polarized protons (with energies up to 325 GeV). RHIC, with a circumference of 3.834 km, has three-fold symmetry and six straight sections each {approx} 250 m long. Two of these straight sections will accommodate 703-MHz SRF linacs. The maximum energy of the electron beam in eRHIC will be reached in stages, from 5 GeV to 30 GeV, by increasing the lengths of its SRF linacs. We plan to install at the start the six-pass magnetic system with small gap magnets. The structure of the eRHIC's electron beam will be identical with that of its hadron beam, viz., 166 bunches will be filled, reserving about a one-microsecond gap for the abort kicker. With modest modifications, we can assure that eRHIC's ERL will become an excellent driver for continuous wave (CW) FELs (see Fig.1). The eRHIC's beam structure will support the operation of several such FELs in parasitic mode.

  13. COMMISSIONING CNI PROTON POLARIMETERS IN RHIC.

    SciTech Connect

    HUANG,H.; BRAVAR,A.; LI,Z.; MACKAY,W.W.; MAKDISI,Y.; RESCIA,S.; ROSER,T.; SURROW,B.; BUNCE,G.; DESHPANDE,A.; GOTO,Y.; ET AL

    2002-06-02

    Two polarimeters based on proton carbon elastic scattering in the Coulomb Nuclear Interference (CNI) region have been installed and commissioned in the Blue and Yellow rings of RHIC during the first RHIC polarized proton collider run. Each polarimeter consists of ultra-thin carbon targets and six silicon detectors. With newly developed wave form digitizers, they provide fast and reliable polarization information for both rings.

  14. Measurements of fast transition instability in RHIC

    SciTech Connect

    Ptitsyn, V.; Blaskiewicz, M.; Fischer, W.; Lee, R.; Zhang, S.Y.

    2010-05-23

    A fast transition instability presents a limiting factor for ion beam intensity in RHIC. Several pieces of evidence show that electron clouds play an important role in establishing the threshold of this instability. In RHIC Runs8 the measurements of the instability, using a button BPM, were done in order to observe details of the instability development on the scale over hundreds and thousands turns. The paper presents and discusses the results of those measurements in time and frequency domains.

  15. RHIC Polarized proton performance in run-8

    SciTech Connect

    Montag,C.; Bai, M.; MacKay, W.W.; Roser, T.; Abreu, N.; Ahrens, L.; Barton, D.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Bunce, G.; Calaga, R.; Cameron, P.; Connolly, R.; D'Ottavio, T.; Drees, A.; Fedotov, A.V.; Fischer, W.; Ganetis, G.; Gardner, C.; Glenn, J.; Hayes, T.; Huang, H.; Ingrassia, P.; Kayran, D.A.; Kewisch, J.; Lee, R.C.; Lin, F.; Litvinenko, V.N.; Luccio, A.U.; Luo, Y.; Makdisi, Y.; Malitsky, N.; Marr, G.; Marusic, A.; Michnoff, R.; Morris, J.; Oerter, B.; Pilat, F.; Pile, P.; Robert-Demolaize, G.; Russo, T.; Satogata, T.; Schultheiss, C.; Sivertz, M.; Smith, K.; Tepikian, S.; D. Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2008-10-06

    During Run-8, the Relativistic Heavy Ion Collider (RHIC) provided collisions of spin-polarized proton beams at two interaction regions. Physics data were taken with vertical orientation of the beam polarization, which in the 'Yellow' RHIC ring was significantly lower than in previous years. We present recent developments and improvements as well as the luminosity and polarization performance achieved during Run-8, and we discuss possible causes of the not as high as previously achieved polarization performance of the 'Yellow' ring.

  16. ANALYSIS OF ELECTRON CLOUD AT RHIC.

    SciTech Connect

    IRISO,U.; BLASKIEWICZ,M.; CAMERON,P.; DREES,A.; FISCHER,W.; ET AL.

    2004-07-05

    Pressure rises with high intense beams are among the main luminosity limitations at RHIC. Observations during the latest runs show beam induced electron multipacting as one of the causes for these pressure rises. Experimental studies are carried out at RHIC using devoted instrumentation to understand the mechanism leading to electron clouds. In the following, we report the experimental electron cloud data and the analyzed results using computer simulation codes.

  17. Diffusion Simulation and Lifetime Calculation at RHIC

    SciTech Connect

    Abreu,N.P.; Fischer, W.; Luo, Y.; Robert-Demolaize, G.

    2009-01-02

    The beam lifetime is an important parameter for any storage ring. For protons in RHIC it is dominated by the non-linear nature of the head-on collisions that causes the particles to diffuse outside the stable area in phase space. In this report we show results from diffusion simulation and lifetime calculation for the 2006 and 2008 polarized proton runs in RHIC.

  18. Superconducting RF systems for eRHIC

    SciTech Connect

    Belomestnykh S.; Ben-Zvi, I.; Brutus, J.C.; Hahn, H. et al

    2012-05-20

    The proposed electron-hadron collider eRHIC will consist of a six-pass 30-GeV electron Energy Recovery Linac (ERL) and one of RHIC storage rings operating with energy up to 250 GeV. The collider design extensively utilizes superconducting RF (SRF) technology in both electron and hadron parts. This paper describes various SRF systems, their requirements and parameters.

  19. Advantages of polarization experiments at RHIC

    SciTech Connect

    Underwood, D.G.

    1990-01-01

    We point out various spin experiments that could be done if the polarized beam option is pursued at RHIC. The advantages of RHIC for investigating several current and future physics problems are discussed. In particular, the gluon spin dependent structure function of the nucleon could be measured cleanly and systematically. Relevant experience developed in conjunction with the Fermilab Polarized Beam program is also presented. 8 refs., 2 tabs.

  20. A luminosity model of RHIC gold runs

    SciTech Connect

    Zhang, S.Y.

    2011-11-01

    In this note, we present a luminosity model for RHIC gold runs. The model is applied to the physics fills in 2007 run without cooling, and with the longitudinal cooling applied to one beam only. Having good comparison, the model is used to project a fill with the longitudinal cooling applied to both beams. Further development and possible applications of the model are discussed. To maximize the integrated luminosity, usually the higher beam intensity, smaller longitudinal and transverse emittance, and smaller {beta} are the directions to work on. In past 10 years, the RHIC gold runs have demonstrated a path toward this goal. Most recently, a successful commissioning of the bunched beam stochastic cooling, both longitudinal and transverse, has offered a chance of further RHIC luminosity improvement. With so many factors involved, a luminosity model would be useful to identify and project gains in the machine development. In this article, a preliminary model is proposed. In Section 2, several secondary factors, which are not yet included in the model, are identified based on the RHIC operation condition and experience in current runs. In Section 3, the RHIC beam store parameters used in the model are listed, and validated. In Section 4, the factors included in the model are discussed, and the luminosity model is presented. In Section 5, typical RHIC gold fills without cooling, and with partial cooling are used for comparison with the model. Then a projection of fills with more coolings is shown. In Section 6, further development of the model is discussed.

  1. Better Thermal Insulation in Solar-Array Laminators

    NASA Technical Reports Server (NTRS)

    Burger, D. R.; Knox, J. F.

    1984-01-01

    Glass marbles improve temperature control. Modified vacuum laminator for photovoltaic solar arrays includes thermal insulation made of conventional glass marbles. Marbles serve as insulation for temperature control of lamination process at cure temperatures as high as 350 degrees F. Used to replace original insulation made of asbestos cement.

  2. Electrostatic Modeling of Vacuum Insulator Triple Junctions

    SciTech Connect

    Tully, L K; White, A D; Goerz, D A; Javedani, J B; Houck, T L

    2007-08-13

    A comprehensive matrix of 60 tests was designed to explore the effect of calcium chloride vs. sodium chloride and the ratio R of nitrate concentration over chloride concentration on the repassivation potential of Alloy 22. Tests were conducted using the cyclic potentiodynamic polarization (CPP) technique at 75 C and at 90 C. Results show that at a ratio R of 0.18 and higher nitrate was able to inhibit the crevice corrosion in Alloy 22 induced by chloride. Current results fail to show in a consistent way a different effect on the repassivation potential of Alloy 22 for calcium chloride solutions than for sodium chloride solutions.

  3. Supplemental multilayer insulation research facility

    SciTech Connect

    Dempsey, P.J.; Stochl, R.J.

    1996-12-31

    The Supplemental Multilayer Insulation Research Facility (SMIRF) provides a small scale test bed for conducting cryogenic experiments in a vacuum environment. The facility vacuum system is capable of simulating a Space Shuttle launch pressure profile as well as providing a steady space vacuum environment of 1.3{times}10{sup -4} N/m{sup 2}(1 x 10{sup -6} torr). Warm side boundary temperatures can be maintained constant between 111 K(200 R) and 361 K(650 R) using a temperature controlled shroud. The shroud can also simulate a typical lunar day-night temperature profile. The test hardware consists of a cryogenic calorimeter supported by the lid of the vacuum chamber. A 0.45 m{sup 3} (120 gal) vacuum jacketed storage/supply tank is available for conditioning the cryogen prior to use in the calorimeter. The facility was initially designed to evaluate the thermal performance of insulation systems for long-term storage in space. The facility has recently been used to evaluate the performance of various new insulation systems for LH{sub 2} and LN{sub 2} ground storage dewars.

  4. Supplemental multilayer insulation research facility

    SciTech Connect

    Dempsey, P.J.; Stochl, R.J.

    1995-07-01

    The Supplemental Multilayer Insulation Research Facility (SMIRF) provides a small scale test bed for conducting cryogenic experiments in a vacuum environment. The facility vacuum system is capable of simulating a Space Shuttle launch pressure profile as well as providing a steady space vacuum environment of 1.3 x 10(exp -4) Newton/sq meter (1 x 10(exp -6) torr). Warm side boundary temperatures can be maintained constant between 111 K (200 R) and 361 K (650 R) using a temperature controlled shroud. The shroud can also simulate a typical lunar day-night temperature profile. The test hardware consists of a cryogenic calorimeter supported by the lid of the vacuum chamber. A 0.45 cu meter (120 gallon) vacuum jacketed storage/supply tank is available for conditioning the cryogen prior to use in the calorimeter. The facility was initially designed to evaluate the thermal performance of insulation systems for long-term storage in space. The facility has recently been used to evaluate the performance of various new insulation systems for LH2 and LN2 ground storage dewars.

  5. Supplemental multilayer insulation research facility

    NASA Technical Reports Server (NTRS)

    Dempsey, P. J.; Stochl, R. J.

    1995-01-01

    The Supplemental Multilayer Insulation Research Facility (SMIRF) provides a small scale test bed for conducting cryogenic experiments in a vacuum environment. The facility vacuum system is capable of simulating a Space Shuttle launch pressure profile as well as providing a steady space vacuum environment of 1.3 x 10(exp -4) Newton/sq meter (1 x 10(exp -6) torr). Warm side boundary temperatures can be maintained constant between 111 K (200 R) and 361 K (650 R) using a temperature controlled shroud. The shroud can also simulate a typical lunar day-night temperature profile. The test hardware consists of a cryogenic calorimeter supported by the lid of the vacuum chamber. A 0.45 cu meter (120 gallon) vacuum jacketed storage/supply tank is available for conditioning the cryogen prior to use in the calorimeter. The facility was initially designed to evaluate the thermal performance of insulation systems for long-term storage in space. The facility has recently been used to evaluate the performance of various new insulation systems for LH2 and LN2 ground storage dewars.

  6. Demonstration of Microsphere Insulation in Cryogenic Vessels

    NASA Astrophysics Data System (ADS)

    Baumgartner, R. G.; Myers, E. A.; Fesmire, J. E.; Morris, D. L.; Sokalski, E. R.

    2006-04-01

    While microspheres have been recognized as a legitimate insulation material for decades, actual use in full-scale cryogenic storage tanks has not been demonstrated until now. The performance and life-cycle-cost advantages previously predicted have now been proven. Most bulk cryogenic storage tanks are insulated with either multilayer insulation (MLI) or perlite. Microsphere insulation, consisting of hollow glass bubbles, combines in a single material the desirable properties that other insulations only have individually. The material has high crush strength, low density, is noncombustible, and performs well in soft vacuum. These properties were proven during recent field testing of two 22,700-L (6,000-gallon) liquid nitrogen tanks, one insulated with microsphere insulation and the other with perlite. Normal evaporation rates (NER) for both tanks were monitored with precision test equipment and insulation levels within the tanks were observed through view ports as an indication of insulation compaction. Specific industrial applications were evaluated based on the test results and beneficial properties of microsphere insulation. Over-the-road trailers previously insulated with perlite will benefit not only from the reduced heat leak, but also the reduced mass of microsphere insulation. Economic assessments for microsphere-insulated cryogenic vessels including life-cycle cost are also presented.

  7. LHeC and eRHIC

    SciTech Connect

    Litvinenko,V.

    2009-07-16

    This paper is focused on possible designs and predicted performances of two proposed high-energy, high-luminosity electron-hadron colliders: eRHIC at Brookhaven National Laboratory (BNL, Upton, NY, USA) and LHeC at Organisation Europeenne pour la Recherche Nucleaire (CERN, Geneve, Switzerland). The Relativistic Heavy Ion Collider (RHIC, BNL) and the Large Hadron Collider (LHC, CERN) are designed as versatile colliders. RHIC is colliding various species of hadrons staring from polarized protons to un-polarized heavy ions (such as fully stripped Au (gold) ions) in various combinations: polarized p-p, d-Au, Cu-Cu, Au-Au. Maximum energy in RHIC is 250 GeV (per beam) for polarized protons and 100 GeV/n for heavy ions. There is planed expansion of the variety of species to include polarized He{sup 3} and unpolarized fully stripped U (uranium). LHeC is designed to collide both un-polarized protons with energy up to 7 TeV per beam and fully stripped Pb (lead) ions with energy up to 3 TeV/n. Both eRHIC and LHeC plan to add polarized electrons (or/and positrons) to the list of colliding species in these versatile hadron colliders. In eRHIC 10-20 GeV electrons would collide with hadrons circulating in RHIC. In LHeC 50-150 GeV polarized leptons will collided with LHC's hadron beams. Both colliders plan to operate in electron-proton (in RHIC case protons are polarized as well) and electron-ion collider modes. eRHIC and LHeC colliders are complimentary both in the energy reach and in their physics goals. I will discuss in this paper possible choices of the accelerator technology for the electron part of the collider for both eRHIC and LHeC, and will present predicted performance for the colliders. In addition, possible staging scenarios for these colliders will be discussed.

  8. Feed-through connector couples RF power into vacuum chamber

    NASA Technical Reports Server (NTRS)

    Grandy, G. L.

    1967-01-01

    Feed-through device connects RF power to an RF coil in a vacuum chamber. The coil and leads are water cooled and vacuum tight seals are provided at the junctions. The device incorporates silver soldered copper tubes, polytetrafluoroethylene electrical insulators, and O-ring vacuum seals.

  9. VACUUM TRAP

    DOEpatents

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  10. Calculation of synchrotron radiation from high intensity electron beam at eRHIC

    SciTech Connect

    Jing Y.; Chubar, O.; Litvinenko, V.

    2012-05-20

    The Electron-Relativistic Heavy Ion Collider (eRHIC) at Brookhaven National Lab is an upgrade project for the existing RHIC. A 30 GeV energy recovery linac (ERL) will provide a high charge and high quality electron beam to collide with proton and ion beams. This will improve the luminosity by at least 2 orders of magnitude. The synchrotron radiation (SR) from the bending magnets and strong quadrupoles for such an intense beam could be penetrating the vacuum chamber and producing hazards to electronic devices and undesired background for detectors. In this paper, we calculate the SR spectral intensity, power density distributions and heat load on the chamber wall. We suggest the wall thickness required to stop the SR and estimate spectral characteristics of the residual and scattered background radiation outside the chamber.

  11. The dipole corrector magnets for the RHIC fast global orbit feedback system

    SciTech Connect

    Thieberger, P.; Arnold, L.; Folz, C.; Hulsart, R.; Jain, A.; Karl, R.; Mahler, G.; Meng, W.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Ptitsyn, V.; Ritter, J.; Smart, L.; Tuozzolo, J.; White, J.

    2011-03-28

    The recently completed RHIC fast global orbit feedback system uses 24 small 'window-frame' horizontal dipole correctors. Space limitations dictated a very compact design. The magnetic design and modelling of these laminated yoke magnets is described as well as the mechanical implementation, coil winding, vacuum impregnation, etc. Test procedures to determine the field quality and frequency response are described. The results of these measurements are presented and discussed. A small fringe field from each magnet, overlapping the opposite RHIC ring, is compensated by a correction winding placed on the opposite ring's magnet and connected in series with the main winding of the first one. Results from measurements of this compensation scheme are shown and discussed.

  12. Vacuum Technology

    SciTech Connect

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  13. Vacuum Virtues

    ERIC Educational Resources Information Center

    Rathey, Allen

    2007-01-01

    Upright vacuums, like cars, vary in quality, features and performance. Like automobiles, some uprights are reliable, others may be problematic, and some become a problem as a result of neglect or improper use. So, how do education institutions make an informed choice and, having done so, ensure that an upright vacuum goes the distance? In this…

  14. Vacuum mechatronics

    NASA Technical Reports Server (NTRS)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  15. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED "ODDERON SEARCHES AT RHIC" (VOLUME 76)

    SciTech Connect

    ORGANIZERS: GURYN, W.; KOVCHEGOV, Y.; VOGELSANG, W.; TRUEMAN, L.

    2005-10-25

    The Odderon, a charge-conjugation-odd partner of the Pomeron, has been a puzzle ever since its introduction in 1973. The Pomeron describes a colorless exchange with vacuum quantum numbers in the t-channel of hadronic scattering at high energies. The concept was originally formulated for the non-perturbative regime of Quantum Chromodynamics (QCD). In perturbation theory, the simplest picture of the Poineron is that of a two-gluon exchange process, whereas an Odderon can be thought of as an exchange of three gluons. Both the Pomeron and the Odderon are expected in QCD. However, while there exists plenty of experimental data that could be successfully described by Pomeron exchanges (for example in electron-proton and hadron-hadron scattering at high energies), no experimental sign of the Odderon has been observed. One of the very few hints so far is the difference in the diffractive minima of elastic proton-proton and proton-antiproton scattering measured at the ISR. The Odderon has recently received renewed attention by QCD researchers, mainly for the following two reasons. First of all, RHIC has entered the scene, offering exciting unique new opportunities for Odderon searches. RHIC provides collisions of nuclei at center-of-mass energies far exceeding those at all previous experiments. RHIC also provides collisions of protons of the highest center-of-mass energy, and in the interval, which has not been explored previously in p {bar p} collisions. In addition, it also has the unique feature of polarization for the proton beams, promising to become a crucial tool in Odderon searches. Indeed, theorists have proposed possible signatures of the Odderon in some spin asymmetries measurable at RHIC. Qualitatively unique signals should be seen in these observables if the Odderon coupling is large. Secondly, the Odderon has recently been shown to naturally emerge from the Color Glass Condensate (CGC), a theory for the high-energy asymptotics of QCD. It has been argued that

  16. Central exclusive production at RHIC

    DOE PAGESBeta

    Adamczyk, Leszek; Guryn, Włodek; Turnau, Jacek

    2014-11-10

    The present status and future plans of the physics program of Central Exclusive Production (CEP) at RHIC are described. The measurements are based on the detection of the forward protons from the Double Pomeron Exchange (DPE) process in the Roman Pot system and of the recoil system of charged particles from the DPE process measured in the STAR experiment’s Time Projection Chamber (TPC). The data described here were taken using polarized proton-proton collisions at ps = 200 GeV. The preliminary spectra of two pion and four pion invariant mass reconstructed by STAR TPC in central region of pseudo-rapidity | |more » < 1, are presented. Near future plans to take data with the current system at center-of-mass energy ps = 200 GeV and plans to upgrade the forward proton tagging sys- tem are presented. Also a possible addition of the Roman Pots to the sPHENIX detector is discussed.« less

  17. Turn, layer and ground insulation for superconducting magnets

    NASA Astrophysics Data System (ADS)

    Evans, D.

    2001-05-01

    The mechanical, electrical and thermal characteristics of insulating materials can have a significant influence on the performance and reliability of superconducting magnets. This paper considers the various ways in which ground, turn and layer insulation may be provided and the likely physical properties of such materials. A comparison between vacuum impregnated insulation and low pressure, pre-impregnated laminated materials is made and details are provided on the bond strength of insulating films that may be included in the insulation layer to provide electrical integrity. One method of providing electrically insulating ‘breaks’ in the liquid helium supply line for superconducting magnets is discussed.

  18. SPIN DYNAMICS IN AGS AND RHIC.

    SciTech Connect

    Mackay, W W; Bai, M; Courant, E D; Brown, K; Glenn, W; Huang, H; Luccio, A; Ptitsyn, V; Roser, T; Satogata, T; Ltepikian, S; Tsoupas, N; Zelenski, A

    2003-05-12

    A fundamental aspect of particle physics is the spin of the particles. With polarized beams, the internal structure of the proton may be probed in ways that are unattainable with unpolarized beams. The Relativistic Heavy Ion Collider (RHIC) has the unique capability of colliding protons with both transverse and longitudinal polarization at center-of-mass energies up to 500 GeV. In this paper we examine the methods used to accelerate and manipulate polarized proton beams in RHIC and its injectors. Special techniques include the use of a partial Siberian snake and an ac dipole in the AGS. In RHIC we use four superconducting helical Siberian snakes (two per ring) for acceleration, and eight superconducting helical rotators for independent control of polarization directions at two interaction regions.

  19. RHIC BEAM LOSS MONITOR SYSTEM INITIAL OPERATION.

    SciTech Connect

    WITKOVER,R.L.; MICHNOFF,R.J.; GELLER,J.M.

    1999-03-29

    The RHIC Beam Loss Monitor (BLM) System is designed to prevent beam loss quenching of the superconducting magnets, and acquire loss data. Four hundred ion chambers are located around the rings to detect losses. The required 8-decade range in signal current is compressed using an RC pre- integrator ahead of a low current amplifier. A beam abort may be triggered if fast or slow losses exceed programmable threshold levels. A micro-controller based VME module sets references and gains and reads trip status for up to 64 channels. Results obtained with the detectors in the RHIC Sextant Test and the prototype electronics in the AGS-to-RHIC (AtR) transfer line are presented along with the present status of the system.

  20. Review of Forward Physics at RHIC

    NASA Astrophysics Data System (ADS)

    Debbe, R.

    2007-03-01

    The RHIC high energy collision of species ranging from p+p, p(d)+A to A+A provide access to the small-x component of the hadron wave function. The RHIC program has brought renewed interest in that subject with its ability to reach values of the parton momentum fraction smaller than 0.01 with studies of particle production at high rapidity. Furthermore, the use of heavy nuclei in the p(d)+A collisions facilitates the study of saturation effects in the gluonic component of the nuclei because the appropriate scale for that regime grows as A. We review the experimental results of the RHIC program that have relevance to small-x emphasizing the physics extracted from d+Au collisions and their comparison to p+p collisions at the same energy.

  1. RHIC OPERATIONAL STATUS AND UPGRADE PLANS.

    SciTech Connect

    FISCHER, W.

    2006-06-23

    Since 2000 RHIC has collided, at 8 energies, 4 combinations of ion species, ranging from gold ions to polarized protons, and including the collisions of deuterons with gold ions. During that time the heavy ion and polarized proton peak luminosities increased by two orders and one order of magnitude respectively. The average proton polarization in store reached 65%. Planned upgrades include the evolution to the Enhanced Design parameters by about 2008, the construction of an Electron Beam Ion Source (EBIS) by 2009, the installation of electron cooling for RHIC II, and the implementation of the electron-ion collider eRHIC. We review the current performance, and the expected performance with these upgrades.

  2. The RHIC polarized H- ion source

    NASA Astrophysics Data System (ADS)

    Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Steski, D.

    2016-02-01

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H- ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H- ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC.

  3. The RHIC polarized H⁻ ion source.

    PubMed

    Zelenski, A; Atoian, G; Raparia, D; Ritter, J; Steski, D

    2016-02-01

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H(-) ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H(-) ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC. PMID:26932068

  4. RHIC BPM system average orbit calculations

    SciTech Connect

    Michnoff,R.; Cerniglia, P.; Degen, C.; Hulsart, R.; et al.

    2009-05-04

    RHIC beam position monitor (BPM) system average orbit was originally calculated by averaging positions of 10000 consecutive turns for a single selected bunch. Known perturbations in RHIC particle trajectories, with multiple frequencies around 10 Hz, contribute to observed average orbit fluctuations. In 2006, the number of turns for average orbit calculations was made programmable; this was used to explore averaging over single periods near 10 Hz. Although this has provided an average orbit signal quality improvement, an average over many periods would further improve the accuracy of the measured closed orbit. A new continuous average orbit calculation was developed just prior to the 2009 RHIC run and was made operational in March 2009. This paper discusses the new algorithm and performance with beam.

  5. RHIC BPM SYSTEM MODIFICATIONS AND PERFORMANCE.

    SciTech Connect

    SATOGATA, T.; CALAGA, R.; CAMERON, P.; ET AL.

    2005-05-16

    The RHIC beam position monitor (BPM) system provides independent average orbit and turn-by-turn (TBT) position measurements. In each ring, there are 162 measurement locations per plane (horizontal and vertical) for a total of 648 BPM planes in the RHIC machine. During 2003 and 2004 shutdowns, BPM processing electronics were moved from the RHIC tunnel to controls alcoves to reduce radiation impact, and the analog signal paths of several dozen modules were modified to eliminate gain-switching relays and improve signal stability. This paper presents results of improved system performance, including stability for interaction region beam-based alignment efforts. We also summarize performance of recently-added DSP profile scan capability, and improved million-turn TBT acquisition channels for 10 Hz triplet vibration, nonlinear dynamics, and echo studies.

  6. A COMPREHENSIVE NEW DETECTOR FOR DETAILED STUDY OF THE QGP, INITIAL CONDITION AND SPIN PHYSICS AT RHIC II.

    SciTech Connect

    HARRIS, J.W.; BELLWIED, R.; SMIRNOV, N.; STEINBERG, P.; SURROW, B.; ULLRICH, T.

    2004-03-15

    A case is presented for compelling physics at a high luminosity RHIC II collider. A comprehensive new detector system is introduced to address this physics. The experimental focus is on detailed jet tomography of the quark gluon plasma (QGP); measuring gluon saturation in the nucleus, investigating the color glass condensate, measuring effects of the QCD vacuum on particle masses, determining the structure and dynamics within the proton and possible new phenomena. The physics and detector capabilities are introduced.

  7. Design Tool for Cryogenic Thermal Insulation Systems

    SciTech Connect

    Demko, Jonathan A; Fesmire, J. E.; Augustynowicz, S. D.

    2008-01-01

    Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed. The approach is to apply thermal analysis to standard shapes (plane walls, cylinders, spheres) that are relatively simple to characterize with a one-dimensional analytical or numerical model. The user describes the system hot and cold boundary geometry and the operating environment. Basic outputs such as heat load and temperature profiles are determined. The user can select from a built-in insulation material database or input user defined materials. Existing information has been combined with the new experimental thermal conductivity data produced by the Cryogenics Test Laboratory for cryogenic and vacuum environments, including high vacuum, soft vacuum, and no vacuum. Materials in the design tool include multilayer insulation, aerogel blankets, aerogel bulk-fill, foams, powders, composites, and other insulation system constructions. A comparison of the design tool to a specific composite thermal insulation system is given.

  8. Silicon crystal growth in vacuum

    NASA Technical Reports Server (NTRS)

    Khattak, C. P.; Schmid, F.

    1982-01-01

    The most developed process for silicon crystal growth is the Czochralski (CZ) method which was in production for over two decades. In an effort to reduce cost of single crystal silicon for photovoltaic applications, a directional solidification technique, Heat Exchanger Method (HEM), was adapted. Materials used in HEM and CZ furnaces are quite similar (heaters, crucibles, insulation, etc.). To eliminate the cost of high purity argon, it was intended to use vacuum operation in HEM. Two of the major problems encountered in vacuum processing of silicon are crucible decomposition and silicon carbide formation in the melt.

  9. SNAKE DEPLORIZING RESONANCE STUDY IN RHIC

    SciTech Connect

    BAI,M.; CAMERON, P.; LUCCIO, A.; HUANG, H.; PITISYN, V.; ET AL.

    2007-06-25

    Snake depolarizing resonances due to the imperfect cancellation of the accumulated perturbations on the spin precession between snakes were observed at the Relativistic Heavy Ion Collider (RHIC). During the RHIC 2005 and 2006 polarized proton runs, we mapped out the spectrum of odd order snake resonance at Q{sub y} = 7/10. Here, Q, is the beam vertical betatron tune. We also studied the beam polarization after crossing the 7/10th resonance as a function of resonance crossing rate. This paper reports the measured resonance spectrum as well as the results of resonance crossing.

  10. RHIC CRITICAL POINT SEARCH: ASSESSING STARs CAPABILITIES.

    SciTech Connect

    SORENSEN,P.

    2006-07-03

    In this report we discuss the capabilities and limitations of the STAR detector to search for signatures of the QCD critical point in a low energy scan at RHIC. We find that a RHIC low energy scan will cover a broad region of interest in the nuclear matter phase diagram and that the STAR detector--a detector designed to measure the quantities that will be of interest in this search--will provide new observables and improve on previous measurements in this energy range.

  11. Experience with split transition lattices at RHIC

    SciTech Connect

    Montag, C.; Tepikian, S.; Blaskiewicz, M.; Brennan, J.M.

    2010-05-23

    During the acceleration process, heavy ion beams in RHIC cross the transition energy. When RHIC was colliding deuterons and gold ions during Run-8, lattices with different integer tunes were used for the two rings. This resulted in the two rings crossing transition at different times, which proved beneficial for the 'Yellow' ring, the RF system of which is slaved to the 'Blue' ring. For the symmetric gold-gold run in FY2010, lattices with different transition energies but equal tunes were implemented. We report the optics design concept as well as operational experience with this configuration.

  12. A prototype ionization profile monitor for RHIC

    SciTech Connect

    Connolly, R.; Cameron, P.; Ryan, W.

    1997-07-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPM`s). Each IPM collects and measures the distribution of electrons in the beamline resulting from residual gas ionization during bunch passage. The electrons are swept transversely from the beamline and collected on strip anodes oriented parallel to the beam axis. At each bunch passage the charge pulses are amplified, integrated, and digitized for display as a profile histogram. A prototype detector was tested in the injection line during the RHIC Sextant Test. This paper describes the detector and gives results from the beam tests.

  13. Physics with the STAR detector at RHIC.

    SciTech Connect

    LeCompte, T. J.

    1998-08-28

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory will collide beams of nuclei (as light as protons and as heavy as gold) at energies of up to 200 GeV per nucleon. At these energies, the probability of detecting a phase transition to a state of matter where quarks and gluons are not confined to nucleons is large. (The nuclear densities are approaching nucleon densities) Additionally, the collision is occurring in a kinematic regime where perturbative QCD is expected to be reliable. I discuss the capabilities of the STAR detector at RHIC and a subset of the physics program the STAR collaboration hopes to undertake with this detector.

  14. Summary of the RHIC Retreat 2008

    SciTech Connect

    Pilat,F.; Brennan, M.; Brown, K.; Fischer, W.; Montag, C.

    2008-08-01

    The main goal of the RHIC Retreat is to review last run's performance and prepare for the next. As always though we also discussed the longer term goals and plans for the facility to put the work in perspective and in the right priority. A straw-man plan for the facility was prepared for the DOE that assumes 30 cryoweek and running 2 species per year. The plan outlines RHIC operations for 2008-2012 and integrates well accelerator and detector upgrades to optimize the physics output with high luminosities. The plans includes guidance from the PAC and has been reviewed by DOE.

  15. Superconducting wire and cable for RHIC

    SciTech Connect

    Garber, M.; Ghosh, A.K.; Greene, A.; McChesney, D.; Morgillo, A.; Shah, R.; DelRe, S.; Epstein, G.; Hong, S.; Lichtenwalner, J.

    1994-06-01

    The superconducting dipole and quadrupole magnets in the RHIC accelerator ring are to be fabricated from 30-strand superconducting cable. The RHIC wire has a diameter of 0.65 mm, copper-to-superconductor ratio of 2.25, filament diameter of 6 {mu}m and high critical current density. Primary emphasis during manufacturing has been on uniformity of materials, processes and performance. Near final results are presented on a production program which has extended over two years. Measured parameters are described which are important for design of superconducting accelerator magnets.

  16. RHIC ABORT KICKER WITH REDUCED COUPLING IMPEDANCE.

    SciTech Connect

    HAHN,H.; DAVINO,D.

    2002-06-02

    Kicker magnets typically represent the most important contributors to the transverse impedance budget of accelerators and storage rings. Methods of reducing the impedance value of the SNS extraction kicker presently under construction and, in view of a future performance upgrade, that of the RHIC abort kicker have been thoroughly studied at this laboratory. In this paper, the investigation of a potential improvement from using ferrite different from the BNL standard CMD5005 is reported. Permeability measurements of several ferrite types have been performed. Measurements on two kicker magnets using CMD5005 and C2050 suggest that the impedance of a magnet without external resistive damping, such as the RHIC abort kicker, would benefit.

  17. BUNCHED BEAM STOCHASTIC COOLING PROJECT FOR RHIC.

    SciTech Connect

    BRENNAN, J.M.; BASKIEWICZ, M.M.

    2005-09-18

    The main performance limitation for RHIC is emittance growth caused by IntraBeam Scattering during the store. We have developed a longitudinal bunched-beam stochastic cooling system in the 5-8 GHz band which will be used to counteract IBS longitudinal emittance growth and prevent de-bunching during the store. Solutions to the technical problems of achieving sufficient kicker voltage and overcoming the electronic saturation effects caused by coherent components within the Schottky spectrum are described. Results from tests with copper ions in RHIC during the FY05 physics run, including the observation of signal suppression, are presented.

  18. Bunched Beam Stochastic Cooling Project for RHIC

    SciTech Connect

    Brennan, J. M.; Blaskiewicz, M.

    2006-03-20

    The main performance limitation for RHIC is emittance growth caused by IntraBeam Scattering during the store. We have developed a longitudinal bunched-beam stochastic cooling system in the 5-8 GHz band which will be used to counteract IBS longitudinal emittance growth and prevent de-bunching during the store. Solutions to the technical problems of achieving sufficient kicker voltage and overcoming the electronic saturation effects caused by coherent components within the Schottky spectrum are described. Results from tests with copper ions in RHIC during the FY05 physics run, including the observation of signal suppression, are presented.

  19. Electron-ion collider eRHIC

    NASA Astrophysics Data System (ADS)

    Litvinenko, Vladimir N.

    In this article, we describe our planned future electron-ion collider (EIC), based on the existing Relativistic Heavy Ion Collider (RHIC) hadron facility, with two intersecting superconducting rings, each 3.8 km in circumference [1]. We plan to add a polarized electron beam with energy tunable within the 5-30-GeV range to collide with variety of species in the existing RHIC accelerator complex, from polarized protons with a maximum energy of 250 GeV, to heavy, fully striped ions with energies up to 100 GeV/u.

  20. QUADRUPOLE BEAM-BASED ALIGNMENT AT RHIC.

    SciTech Connect

    NIEDZIELA, J.; MONTAG, C.; SATOGATA, T.

    2005-05-16

    Successful implementation of a beam-based alignment algorithm, tailored to different types of quadrupoles at RHIC, provides significant benefits to machine operations for heavy ions and polarized protons. This algorithm was used to calibrate beam position monitor centers relative to interaction region quadrupoles to maximize aperture. This approach was also used to determine the optimal orbit through transition jump quadrupoles to minimize orbit changes during the transition jump for heavy ion acceleration. This paper provides background discussion and results from first measurements during the RHIC 2005 run.

  1. RHIC BPM SYSTEM PERFORMANCE, UPGRADES, AND TOOLS.

    SciTech Connect

    SATOGATA,T.; CAMERON,P.; CERNIGLIA,P.; CUPOLO,J.; DAWSON,C.; DEGEN,C.; MEAD,J.; PTITSYN,V.; SIKORA,R.

    2002-06-02

    During the RHIC 2001-2 run, the beam position monitor (BPM) system provided independent average orbit and turn-by-turn (TBT) position measurements at 162 locations in each measurement plane and RHIC ring. TBT acquisition was successfully upgraded from 128 turns to 1024 turns per trigger, including injection. Closed orbits were acquired and automatically archived every two seconds through each acceleration ramp for orbit analysis and feed-forward orbit correction. This paper presents the overall system performance during this run, including precision, reproducibility, radiation damage, and analysis tools. We also summarize future plans, including million-turn TBT acquisition for nonlinear dynamics studies.

  2. MULTI - MILLION - TURN BEAM POSITION MONITORS FOR RHIC.

    SciTech Connect

    SATOGATA,T.CAMERON,P.CERNIGLIA,P.CUPOLO,J.DAWSON,CDEGEN,CMEAD,JVETTER,K

    2003-05-12

    During the RHIC 2003 run, two beam position monitors (BPMs) in each transverse plane in the RHIC blue ring were upgraded with high-capacity mezzanine cards. This upgrade provided these planes with the capability to digitize up to 128 million consecutive turns of RHIC beam, or almost 30 minutes of continuous beam centroid phase space evolution for a single RHIC bunch. This paper describes necessary hardware and software changes and initial system performance. We discuss early uses and results for diagnosis of coherent beam oscillations, turn-by-turn (TBT) acquisition through a RHIC acceleration ramp, and ac-dipole nonlinear dynamics studies.

  3. Integrated Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Dye, Scott

    2009-01-01

    Integrated multilayer insulation (IMLI) is being developed as an improved alternative to conventional multilayer insulation (MLI), which is more than 50 years old. A typical conventional MLI blanket comprises between 10 and 120 metallized polymer films separated by polyester nets. MLI is the best thermal- insulation material for use in a vacuum, and is the insulation material of choice for spacecraft and cryogenic systems. However, conventional MLI has several disadvantages: It is difficult or impossible to maintain the desired value of gap distance between the film layers (and consequently, it is difficult or impossible to ensure consistent performance), and fabrication and installation are labor-intensive and difficult. The development of IMLI is intended to overcome these disadvantages to some extent and to offer some additional advantages over conventional MLI. The main difference between IMLI and conventional MLI lies in the method of maintaining the gaps between the film layers. In IMLI, the film layers are separated by what its developers call a micro-molded discrete matrix, which can be loosely characterized as consisting of arrays of highly engineered, small, lightweight, polymer (typically, thermoplastic) frames attached to, and placed between, the film layers. The term "micro-molded" refers to both the smallness of the frames and the fact that they are fabricated in a process that forms precise small features, described below, that are essential to attainment of the desired properties. The term "discrete" refers to the nature of the matrix as consisting of separate frames, in contradistinction to a unitary frame spanning entire volume of an insulation blanket.

  4. Can wet roof insulation be dried out

    SciTech Connect

    Tobiasson, W.; Korhonen, C.; Coutermarsh, B.; Greatorex, A.

    1983-01-01

    Nondestructive techniques are being widely used to locate wet insulation in compact roofing systems. Now that wet insulation can be found, breather vents and so-called breathable membranes are being promoted to dry out wet insulation, thereby recovering its thermal effectiveness. Exposure tests in New Hampshire indicate that the above venting methods are all rather ineffective in drying sealed specimens of perlite and fibrous glass roof insulation. It would take many decades to dry our specimens at the rates measured over the past two years. Cross-ventilation within the insulation increased the rate of drying. For perlite insulation, the faster rate would still result in a drying time measured in decades. For fibrous glass insulation, the drying time was reduced to 13 years. Fibrous glass insulation in a roof was dried by removing the water with a vacuum cleaner. In a series of tests with a total duration of 134 h, about 0.4 2 m/sup 3/ (110 gal) of water was removed from a 17-m/sup 2/ (180-ft/sup 2/) area of 38-mm (1.5-in.)-thick insulation. Before the water was removed the insulation had only 21% of its dry insulating ability; afterward it had 83%.

  5. Can wet roof insulation be dried out

    SciTech Connect

    Tobiasson, W.; Coutermarsh, B.; Greatorex, A.; Korhonen, C.

    1981-12-01

    Nondestructive techniques are being widely used to locate wet insulation in compact roofing systems. Now that wet insulation can be found, breather vents and so called ''breathable'' membranes are being promoted to dry out wet insulation, thereby recovering its thermal effectiveness. Exposure tests in New Hampshire indicate that the above venting methods are all rather ineffective in drying sealed specimens of perlite and fibrous glass roof insulation. It would take many decades to dry specimens at the rates measured over the past two years. Cross-ventilation within the insulation increased the rate of drying. For perlite insulation, the faster rate would still result in a drying time measured in decades. For fibrous glass insulation, the drying time was reduced to 13 years. The authors have succeeded in drying fibrous glass insulation in a roof by removing the water with a vacuum cleaner. In a series of tests with a total duration of 134 h, about 0.42 m/sup 3/ (110 gal) of water was removed from a 17-m/sup 2/ (180-ft/sup 2/) area of 38-mm (1.5-in.)-thick insulation. Before the water was removed the insulation had only 21 percent of its dry insulating ability; afterward it had 83 percent.

  6. Automotive Insulation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Space Act Agreement between Boeing North America and BSR Products, Space Shuttle Thermal Protection System (TPS) materials are now used to insulate race cars. BSR has created special TPS blanket insulation kits for use on autos that take part in NASCAR events, and other race cars through its nationwide catalog distribution system. Temperatures inside a race car's cockpit can soar to a sweltering 140 to 160 degrees, with the extreme heat coming through the engine firewall, transmission tunnel, and floor. It is common for NASCAR drivers to endure blisters and burns due to the excessive heat. Tests on a car insulated with the TPS material showed a temperature drop of some 50 degrees in the driver's cockpit. BSR-TPS Products, Inc. now manufactures insulation kits for distribution to race car teams around the world.

  7. Thermal Insulation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Commercially known as Solimide, Temptronics, Inc.'s thermal insulation has application in such vehicles as aircraft, spacecraft and surface transportation systems (i.e. rapid transit cars, trains, buses, and ships) as acoustical treatment for door, wall, and ceiling panels, as a means of reducing vibrations, and as thermal insulation (also useful in industrial equipment). Product originated from research conducted by Johnson Space Center on advanced flame-resistant materials for minimizing fire hazard in the Shuttle and other flight vehicles.

  8. MEASUREMENTS OF MECHANICAL TRIPLET VIBRATIONS IN RHIC.

    SciTech Connect

    MONTAG,C.; BRENNAN,M.; BUTLER,J.; BONATI,R.; KOELLO,P.

    2002-06-02

    Mechanical vibrations of the RHIC interaction region triplets has been identified as the dominant source of orbit jitter for frequencies up to 20 Hz. We report the results of detailed measurements that were performed to characterize these effects. We discuss the impact on beam dynamics and possible cures.

  9. Copper coating specification for the RHIC arcs

    SciTech Connect

    Blaskiewicz, M.

    2010-12-01

    Copper coating specifications for the RHIC arcs are given. Various upgrade scenarios are considered and calculations of resistive wall losses in the arcs are used to constrain the necessary quality and surface thickness of a copper coating. We find that 10 {mu}m of high purity copper will suffice.

  10. Single bunch instabilities of the RHIC booster

    SciTech Connect

    Ng, K.Y.

    1986-02-01

    In this paper, we try to estimate the stability limits and impedances of the Brookhaven RHIC booster. Some important data on the booster are shown. From the stability limits and impedances, it is clear that the booster is safe against either fast microwave instabilities or slow mode-colliding single bunch instabilities. 4 figs., 5 tabs.

  11. Polarized proton beam for eRHIC

    SciTech Connect

    Huang, H.; Meot, F.; Ptitsyn, V.; Roser, T.

    2015-05-03

    RHIC has provided polarized proton collisions from 31 GeV to 255 GeV in the past decade. To preserve polarization through numerous depolarizing resonances through the whole accelerator chain, harmonic orbit correction, partial snakes, horizontal tune jump system and full snakes have been used. In addition, close attentions have been paid to betatron tune control, orbit control and beam line alignment. The polarization of 60% at 255 GeV has been delivered to experiments with 1.8×1011 bunch intensity. For the eRHIC era, the beam brightness has to be maintained to reach the desired luminosity. Since we only have one hadron ring in the eRHIC era, existing spin rotator and snakes can be converted to six snake configuration for one hadron ring. With properly arranged six snakes, the polarization can be maintained at 70% at 250 GeV. This paper summarizes the effort and plan to reach high polarization with small emittance for eRHIC.

  12. eRHIC as a Nucleon Tomograph

    NASA Astrophysics Data System (ADS)

    Burton, Thomas

    2012-10-01

    eRHIC is planned as a state-of-the-art Electron-Ion Collider, to be located at Brookhaven National Lab as a major expansion to the existing RHIC complex by the addition of a high-intensity electron beam. The well-understood nature of the electron probe and the extreme luminosity of the eRHIC machine, one thousand times greater than that of HERA, will provide an exquisitely precise characterisation of nucleonic matter and its interactions. By studying both exclusive and semi-inclusive interactions, eRHIC will probe the distribution and motion of partons (quarks and gluons) within the nucleon. With high polarisation of the electron and proton beams, the spin-dependence of these distributions will also be studied. It will allow a detailed tomographic imaging of matter, analogous to MRI and CT technology used in medicine, but at a scale of less than one femtometre. This ``nucleon femtoscope'' will provide us with a novel look at the smallest of scales of the material that composes the visible universe.

  13. PHENIX Measurements of Correlations at RHIC

    NASA Astrophysics Data System (ADS)

    Taranenko, Arkadiy

    2016-01-01

    Relativistic heavy-ion collisions provide a unique opportunity to study the expansion dynamics and the transport properties of the produced strongly interacting quark gluon plasma (QGP). This article reviews the recent soft physics results obtained via correlation measurements from the PHENIX experiment at RHIC: space-time extent of the pion emission source and azimuthal anisotropy of the particle production.

  14. RHIC Proton Luminosity and Polarization Improvement

    SciTech Connect

    Zhang, S. Y.

    2014-01-17

    The RHIC proton beam polarization can be improved by raising the Booster scraping, which also helps to reduce the RHIC transverse emittance, and therefore to improve the luminosity. By doing this, the beam-beam effect would be enhanced. Currently, the RHIC working point is constrained between 2/3 and 7/10, the 2/3 resonance would affect intensity and luminosity lifetime, and the working point close to 7/10 would enhance polarization decay in store. Run 2013 shows that average polarization decay is merely 1.8% in 8 hours, and most fills have the luminosity lifetime better than 14 hours, which is not a problem. Therefore, even without beam-beam correction, there is room to improve for RHIC polarization and luminosity. The key to push the Booster scraping is to raise the Booster input intensity; for that, two approaches can be used. The first is to extend the LINAC tank 9 pulse width, which has been successfully applied in run 2006. The second is to raise the source temperature, which has been successfully applied in run 2006 and run 2012.

  15. HELIUM FLOW INDUCED ORBIT JITTER AT RHIC.

    SciTech Connect

    MONTAG, C.; HE, P.; JIA, L.; NICOLETTI, A.; SATOGATA, T.; ET AL.

    2005-05-16

    Horizontal beam orbit jitter at frequencies around 10 Hz has been observed in RHIC for several years. The distinct frequencies of this jitter have been found at superconducting low-beta quadrupole triplets around the ring, where they coincide with mechanical modes of the cold masses. Recently, we have identified liquid helium flow as the driving force of these oscillations.

  16. Brahms Experiment at RHIC Day-1 Physics

    SciTech Connect

    Videbaek, Flemming

    1999-03-23

    The BRAHMS experiment is designed to measure semi-inclusive spectra of charged hadron over a wide range of rapidity. It will yield information on particle production, both at central rapidity and in the baryon rich fragmentation region. The physics plans for measurements in the first year of running at RHIC are discussed.

  17. Simulations for preliminary design of a multi-cathode DC electron gun for eRHIC

    SciTech Connect

    Wu, Q.; Ben-Zvi, I.; Chang, X.; Skaritka, J.

    2010-05-23

    The proposed electron ion collider, eRHIC, requires a large average polarized electron current of 50 mA, which is more than 20 times higher than the present experimental output of a single, highly polarized electron source, based on cesiated super-lattice GaAs. To meet eRHIC's requirement for current, we designed a multicathode DC electron gun for injection. The twenty-four GaAs cathodes emit electrons in sequence, then are combined on axis by a rotating field (or 'funnelled'). In addition to its ultra-high vacuum requirements, the multicathode DC electron gun will place high demand on the electric field symmetry, the magnetic field shielding, and on preventing arcing. In this paper, we discuss our results from a 3D simulation of the latest model for this gun. The findings will guide the actual design in future. Their preliminary design of a multi-cathode electron source for eRHIC demonstrated tolerable fields and reasonable results in both field and particle simulations.

  18. Improved DC Gun Insulator

    SciTech Connect

    M.L. Neubauer, K.B. Beard, R. Sah, C. Hernandez-Garcia, G. Neil

    2009-05-01

    Many user facilities such as synchrotron light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic, creating a buildup of charge and causing eventual puncture. A novel ceramic manufacturing process is proposed. It will incorporate bulk resistivity in the region where it is needed to bleed off accumulated charge caused by highly energetic electrons. This process will be optimized to provide an appropriate gradient in bulk resistivity from the vacuum side to the air side of the HV standoff ceramic cylinder. A computer model will be used to determine the optimum cylinder dimensions and required resistivity gradient for an example RF gun application. A ceramic material example with resistivity gradient appropriate for use as a DC gun insulator will be fabricated by glazing using doping compounds and tested.

  19. Designing insulation for cryogenic ducts

    NASA Astrophysics Data System (ADS)

    Love, C. C.

    1984-03-01

    It is pointed out that the great temperature difference between the outside of a cryogenic duct and the liquified gas it carries can cause a high heat input unless blocked by a high thermal resistance. High thermal resistance for lines needing maximum insulation is provided by metal vacuum jackets. Low-density foam is satisfactory in cases in which higher heat input can be tolerated. Attention is given to the heat transfer through a duct vacuum jacket, the calculation of heat input and the exterior surface's steady-state temperature for various thicknesses of insulation, the calculation of the heat transfer through gimbal jackets, and design specifications regarding the allowable pressure rise in the jacket's annular space.

  20. Advanced Space Suit Insulation Feasibility Study

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Orndoff, Evelyne S.

    2000-01-01

    For planetary applications, the space suit insulation has unique requirements because it must perform in a dynamic mode to protect humans in the harsh dust, pressure and temperature environments. Since the presence of a gaseous planetary atmosphere adds significant thermal conductance to the suit insulation, the current multi-layer flexible insulation designed for vacuum applications is not suitable in reduced pressure planetary environments such as that of Mars. Therefore a feasibility study has been conducted at NASA to identify the most promising insulation concepts that can be developed to provide an acceptable suit insulation. Insulation concepts surveyed include foams, microspheres, microfibers, and vacuum jackets. The feasibility study includes a literature survey of potential concepts, an evaluation of test results for initial insulation concepts, and a development philosophy to be pursued as a result of the initial testing and conceptual surveys. The recommended focus is on microfibers due to the versatility of fiber structure configurations, the wide choice of fiber materials available, the maturity of the fiber processing industry, and past experience with fibers in insulation applications

  1. Thermal Performance Testing of Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, Stan D.; Scholtens, Brekke E.

    2007-01-01

    Efficient methods for characterizing thermal performance of materials under cryogenic and vacuum conditions have been developed. These methods provide thermal conductivity data on materials under actual-use conditions and are complementary to established methods. The actual-use environment of full temperature difference in combination with vacuum-pressure is essential for understanding insulation system performance. Test articles include solids, foams, powders, layered blankets, composite panels, and other materials. Test methodology and apparatus design for several insulation test cryostats are discussed. The measurement principle is liquid nitrogen boil-off calorimetry. Heat flux capability ranges from approximately 0.5 to 500 watts per square meter; corresponding apparent thermal conductivity values range from below 0.01 up to about 60 mW/m- K. Example data for different insulation materials are also presented. Upon further standardization work, these patented insulation test cryostats can be available to industry for a wide range of practical applications.

  2. Cold cathode vacuum gauging system

    DOEpatents

    Denny, Edward C.

    2004-03-09

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  3. Edge conduction in vacuum glazing

    SciTech Connect

    Simko, T.M.; Collins, R.E.; Beck, F.A.; Arasteh, D.

    1995-03-01

    Vacuum glazing is a form of low-conductance double glazing using in internal vacuum between the two glass sheets to eliminate heat transport by gas conduction and convection. An array of small support pillars separates the sheets; fused solder glass forms the edge seal. Heat transfer through the glazing occurs by radiation across the vacuum gap, conduction through the support pillars, and conduction through the bonded edge seal. Edge conduction is problematic because it affects stresses in the edge region, leading to possible failure of the glazing; in addition, excessive heat transfer because of thermal bridging in the edge region can lower overall window thermal performance and decrease resistance to condensation. Infrared thermography was used to analyze the thermal performance of prototype vacuum glazings, and, for comparison, atmospheric pressure superwindows. Research focused on mitigating the edge effects of vacuum glazings through the use of insulating trim, recessed edges, and framing materials. Experimentally validated finite-element and finite-difference modeling tools were used for thermal analysis of prototype vacuum glazing units and complete windows. Experimental measurements of edge conduction using infrared imaging were found to be in good agreement with finite-element modeling results for a given set of conditions. Finite-element modeling validates an analytic model developed for edge conduction.

  4. Radiation Insulation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Apollo and subsequent spacecraft have had highly effective radiation barriers; made of aluminized polymer film, they bar or let in heat to maintain consistent temperatures inside. Tech 2000, formerly Quantum International Corporation used the NASA technology in its insulating materials, Super "Q" Radiant Barrier, for home, industry and mobile applications. The insulation combines industrial aluminum foil overlaid around a core of another material, usually propylene or mylar. The outer layer reflects up to 97 percent of heat; the central layer creates a thermal break in the structure and thus allows low radiant energy emission. The Quantum Cool Wall, used in cars and trucks, takes up little space while providing superior insulation, thus reducing spoilage and costs. The panels can also dampen sound and engine, exhaust and solar heat.

  5. RF cavity vacuum interlock system

    NASA Astrophysics Data System (ADS)

    Jordan, K.; Crawford, K.; Bundy, R.; Dylla, H. F.; Heckman, J.; Marshall, J.; Nichols, R.; Osullivan, S.; Preble, J.; Robb, J.

    1992-03-01

    The Continuous Electron Beam Accelerator Facility (CEBAF), a continuous wave (CW) 4 GeV Electron Accelerator is undergoing construction in Newport News, Virginia. When completed in 1994, the accelerator will be the largest installation of radio-frequency superconductivity. Production of cryomodules, the fundamental building block of the machine, has started. A cryomodule consists of four sets of pairs of 1497 MHz, 5 cell niobium cavities contained in separate helium vessels and mounted in a cryostat with appropriate end caps for helium supply and return. Beam vacuum of the cavities, the connecting beam piping, the waveguides, and the cryostat insulating vacuum are crucial to the performance of the machine. The design and initial experience of the vacuum systems for the first 2 1/4 cryomodules that makeup the 45 MEV injector are discussed.

  6. Aerogel Beads as Cryogenic Thermal Insulation System

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Augustynowicz, S. D.; Rouanet, S.; Thompson, Karen (Technical Monitor)

    2001-01-01

    An investigation of the use of aerogel beads as thermal insulation for cryogenic applications was conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Steady-state liquid nitrogen boiloff methods were used to characterize the thermal performance of aerogel beads in comparison with conventional insulation products such as perlite powder and multilayer insulation (MLI). Aerogel beads produced by Cabot Corporation have a bulk density below 100 kilograms per cubic meter (kg/cubic m) and a mean particle diameter of 1 millimeter (mm). The apparent thermal conductivity values of the bulk material have been determined under steady-state conditions at boundary temperatures of approximately 293 and 77 kelvin (K) and at various cold vacuum pressures (CVP). Vacuum levels ranged from 10(exp -5) torr to 760 torr. All test articles were made in a cylindrical configuration with a typical insulation thickness of 25 mm. Temperature profiles through the thickness of the test specimens were also measured. The results showed the performance of the aerogel beads was significantly better than the conventional materials in both soft-vacuum (1 to 10 torr) and no-vacuum (760 torr) ranges. Opacified aerogel beads performed better than perlite powder under high-vacuum conditions. Further studies for material optimization and system application are in progress.

  7. Aerogel beads as cryogenic thermal insulation system

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Augustynowicz, S. D.; Rouanet, S.

    2002-05-01

    An investigation of the use of aerogel beads as thermal insulation for cryogenic applications was conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Steady-state liquid nitrogen boiloff methods were used to characterize the thermal performance of aerogel beads in comparison with conventional insulation products such as perlite powder and multilayer insulation (MLI). Aerogel beads produced by Cabot Corporation have a bulk density below 100 kilograms per cubic meter (kg/m3) and a mean particle diameter of 1 millimeter (mm). The apparent thermal conductivity values of the bulk material have been determined under steady-state conditions at boundary temperatures of approximately 293 and 77 kelvin (K) and at various cold vacuum pressures (CVP). Vacuum levels ranged from 10-5 torr to 760 torr. All test articles were made in a cylindrical configuration with a typical insulation thickness of 25 mm. Temperature profiles through the thickness of the test specimens were also measured. The results showed the performance of the aerogel beads was significantly better than the conventional materials in both soft-vacuum (1 to 10 torr) and no-vacuum (760 torr) ranges. Opacified aerogel beads performed better than perlite powder under high-vacuum conditions. Further studies for material optimization and system application are in progress.

  8. Insulation Material

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Manufactured by Hitco Materials Division of Armco, Inc. a ceramic fiber insulation material known as Refrasil has been used extensively as a heat-absorbing ablative reinforcement for such space systems as rocket motor nozzles, combustion chambers, and re-entry shields. Refrasil fibers are highly porous and do not melt or vaporize until fibers exceed 3,100 degrees Fahrenheit. Due to these and other properties, Refrasil has found utility in a number of industrial high temperature applications where glass, asbestos and other materials fail. Hitco used this insulation to assist Richardson Co., Inc. in the manufacturing of hard rubber and plastic molded battery cases.

  9. Fast Diagnostic For Electrical Breakdowns In Vacuum

    SciTech Connect

    Houck, T L; Javedani, J B; Lahowe, D A

    2008-03-25

    The design of an inexpensive, small, high bandwidth diagnostic for the study of vacuum insulator flashover is described. The diagnostic is based on the principle of capacitive coupling and is commonly referred to as a D-dot probe due to its sensitivity to the changing of the electric displacement field. The principle challenge for the design proved to be meeting the required mechanical size for the application rather than bandwidth. An array of these probes was fabricated and used in an insulator test stand. Data from the test stand with detailed analysis is presented. A highlight of the application of the probes to the test stand was the ability to detect the charging of the insulator surface by UV illumination as a prelude to the insulator flashover. The abrupt change in the insulator's surface charge during the flashover was also detected.

  10. Kondo insulators

    SciTech Connect

    Fisk, Z.; Sarrao, J.L.; Thompson, J.D.

    1994-10-01

    The Kondo insulating materials present a particularly simple limiting case of the strongly correlated electron lattice problem: one occupied f-state interacting with a single half-filled conduction band. Experiment shows that the solution to this problem has some remarkably simple aspects. Optical conductivity data display the strong coupling nature of this physics.

  11. Radiation Insulation

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Radiation insulation technology from Apollo and subsequent spacecraft was used to develop superinsulators, used by makers of cold weather apparel, to make parkas, jackets, boots and outdoor gear such as sleeping bags. The radiant barrier technology offers warmth retention at minimal weight and bulk.

  12. Insulation Material

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Apex Mills Corporation's superinsulators are used by makers of cold weather apparel, parkas, jackets, boots and outdoor gear such as sleeping bags. Their attraction in such applications is that radiant barrier insulation offers excellent warmth retention at minimal weight and bulk.

  13. Heavy Flavor Measurements at RHIC in the Near Future

    SciTech Connect

    Xu, Nu

    2006-12-01

    We discuss the recent results on open charm measurements at RHIC. The heavy flavor upgrade program for both PHENIX and STAR experiments are briefly discussed. The completion of the program will yield important information on light flavor thermalization of the partonic matter created in high-energy nuclear collisions at RHIC. A new era of RHIC is ahead of us with the progress of the upgrade program.

  14. Development of a Polarized 3He Ion Source for RHIC

    SciTech Connect

    Milner, Richard G.

    2013-01-15

    The goal of the project was to design and construct a source of polarized 3He atoms for injection into EBIS. This is the initial step in producing polarized 3He beams in RHIC in collaboration with physicists from Columbia University and Brookhaven National Laboratory. These beams can be used to probe the spin structure of the neutron in the existing RHIC complex as well as to measure precisely the Bjorken Sum Rule at a future eRHIC electron-ion collider.

  15. Thermal Performance Testing of Order Dependancy of Aerogels Multilayered Insulation

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Fesmire, James E.; Demko, J. A.

    2009-01-01

    Robust multilayer insulation systems have long been a goal of many research projects. Such insulation systems must provide some degree of structural support and also mechanical integrity during loss of vacuum scenarios while continuing to provide insulative value to the vessel. Aerogel composite blankets can be the best insulation materials in ambient pressure environments; in high vacuum, the thermal performance of aerogel improves by about one order of magnitude. Standard multilayer insulation (MU) is typically 50% worse at ambient pressure and at soft vacuum, but as much as two or three orders of magnitude better at high vacuum. Different combinations of aerogel and multilayer insulation systems have been tested at Cryogenics Test Laboratory of NASA Kennedy Space Center. Analysis performed at Oak Ridge National Laboratory showed an importance to the relative location of the MU and aerogel blankets. Apparent thermal conductivity testing under cryogenic-vacuum conditions was performed to verify the analytical conclusion. Tests results are shown to be in agreement with the analysis which indicated that the best performance is obtained with aerogel layers located in the middle of the blanket insulation system.

  16. Analysis and Testing of Multilayer and Aerogel Insulation Configurations

    NASA Astrophysics Data System (ADS)

    Johnson, W. L.; Demko, J. A.; Fesmire, J. E.

    2010-04-01

    Multilayer insulation systems that have robust operational characteristics have long been a goal of many research projects. Such thermal insulation systems may need to offer some degree of structural support and/or mechanical integrity during loss of vacuum scenarios while continuing to provide insulative value to the vessel. Aerogel-based composite blankets can be the best insulation materials in ambient pressure environments; in high vacuum, the thermal performance of aerogel improves by about one order of magnitude. Standard multilayer insulation (MLI) is typically 50% worse at ambient pressure and at soft vacuum, but as much as two or three orders of magnitude better at high vacuum. Different combinations of aerogel blanket and multilayer insulation materials have been tested at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Analysis performed at Oak Ridge National Laboratory showed an importance to the relative location of the MLI and aerogel blankets. Apparent thermal conductivity testing under cryogenic-vacuum conditions was performed to verify the analytical conclusion. Tests results are shown to be in agreement with the analysis which indicated that the best performance is obtained with aerogel layers located in the middle of the blanket insulation system.

  17. Insulator Surface Flashover Due to UV Illumination

    SciTech Connect

    Javedani, J B; Houck, T L; Lahowe, D A; Vogtlin, G E; Goerz, D A

    2009-07-27

    The surface of an insulator under vacuum and under electrical charge will flashover when illuminated by a critical dose of ultra-violet (UV) radiation - depending on the insulator size and material, insulator cone angle, the applied voltage and insulator shot-history. A testbed comprised of an excimer laser (KrF, 248 nm, {approx}16 MW, 30 ns FWHM,), a vacuum chamber, and a negative polarity dc high voltage power supply ({le} -60 kV) were assembled to test 1.0 cm thick angled insulators for surface-flashover. Several candidate insulator materials, e.g. High Density Polyethylene (HDPE), Rexolite{reg_sign} 1400, Macor{trademark} and Mycalex, of varying cone angles were tested against UV illumination. Commercial energy meters were used to measure the UV fluence of the pulsed laser beam. In-house designed and fabricated capacitive probes (D-dots, >12 GHz bandwidth) were embedded in the anode electrode underneath the insulator to determine the time of UV arrival and time of flashover. Of the tested insulators, the +45 degree Rexolite insulator showed more resistance to UV for surface flashover; at UV fluence level of less than 13 mJ/cm{sup 2}, it was not possible to induce a flashover for up to -60 kV of DC potential across the insulator's surface. The probes also permitted the electrical charge on the insulator before and after flashover to be inferred. Photon to electron conversion efficiency for the surface of Rexolite insulator was determined from charge-balance equation. In order to understand the physical mechanism leading to flashover, we further experimented with the +45 degree Rexolite insulator by masking portions of the UV beam to illuminate only a section of the insulator surface; (1) the half nearest the cathode and subsequently, (2) the half nearest the anode. The critical UV fluence and time to flashover were measured and the results in each case were then compared with the base case of full-beam illumination. It was discovered that the time for the

  18. Microsphere insulation systems

    NASA Technical Reports Server (NTRS)

    Allen, Mark S. (Inventor); Willen, Gary S. (Inventor); Mohling, Robert A. (Inventor)

    2005-01-01

    A new insulation system is provided that contains microspheres. This insulation system can be used to provide insulated panels and clamshells, and to insulate annular spaces around objects used to transfer, store, or transport cryogens and other temperature-sensitive materials. This insulation system provides better performance with reduced maintenance than current insulation systems.

  19. Nanogel Aerogel as Load Bearing Insulation for Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Koravos, J. J.; Miller, T. M.; Fesmire, J. E.; Coffman, B. E.

    2010-04-01

    Load support structures in cryogenic storage, transport and processing systems are large contributors to the total heat leak of the system. Conventional insulation systems require the use of these support members in order to stabilize the process fluid enclosure and prevent degradation of insulation performance due to compression. Removal of these support structures would substantially improve system efficiency. Nanogel aerogel insulation performance is tested at vacuum pressures ranging from high vacuum to atmospheric pressure and under loads from loosely packed to greater than 10,000 Pa. Insulation performance is determined using boil-off calorimetry with liquid nitrogen as the latent heat recipient. Two properties of the aerogel insulation material suit it to act as a load bearing "structure" in a process vessel: (1) Ability to maintain thermal performance under load; (2) Elasticity when subjected to load. Results of testing provide positive preliminary indication that these properties allow Nanogel aerogel to effectively be used as a load bearing insulation in cryogenic systems.

  20. OBSERVATIONS OF SNAKE RESONANCE IN RHIC.

    SciTech Connect

    BAI, M.; HUANG, H.; MACKAY, W.W.; PITISYN, V.; ROSER, T.; TEPIKIAN, S.

    2005-05-16

    Siberian snakes now become essential in the polarized proton acceleration. With proper configuration of Siberian snakes, the spin precession tune of the beam becomes 1/2 which avoids all the spin depolarizing resonance. However, the enhancement of the perturbations on the spin motion can still occur when the spin precession tune is near some low order fractional numbers, called snake resonances, and. the beam can be depolarized when passing through the resonance. The snake resonances have been confirmed in the spin tracking calculations, and observed in RHIC with polarized proton beam. Equipped with two full Siberian snakes in each ring, RHIC provides us a perfect facility for snake resonance studies. This paper presents latest experimental results. New insights are also discussed.

  1. RHIC electron lens test bench diagnostics

    SciTech Connect

    Gassner, D.; Beebe, E.; Fischer, W.; Gu, X.; Hamdi, K.; Hock, J.; Liu, C.; Miller, T.; Pikin, A.; Thieberger, P.

    2011-05-16

    An Electron Lens (E-Lens) system will be installed in RHIC to increase luminosity by counteracting the head-on beam-beam interaction. The proton beam collisions at the RHIC experimental locations will introduce a tune spread due to a difference of tune shifts between small and large amplitude particles. A low energy electron beam will be used to improve luminosity and lifetime of the colliding beams by reducing the betatron tune shift and spread. In preparation for the Electron Lens installation next year, a test bench facility will be used to gain experience with many sub-systems. This paper will discuss the diagnostics related to measuring the electron beam parameters.

  2. Ferrite HOM Absorber for the RHIC ERL

    SciTech Connect

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  3. Studies of eRHIC coherent instabilities

    SciTech Connect

    Wang G.; Blaskiewicz, M.

    2012-05-20

    In the presence of an effective coherent electron cooling, the rms ion bunch length in eRHIC will be kept at 8.3 cm for 250 GeV protons, which is much shorter than the current RHIC 45 cm rms bunch length. Together with the increased bunch intensity and total bunch number, coherent instabilities could be a potential limitation for achieving desired machine performance. In this study, we use the tracking code TRANFT to find thresholds and growth rates for single bunch and coupled bunch instabilities with linear chromaticity and amplitude dependent tune shift taken into account. Based on the simulation results, requirements of machine parameters such as rf voltage, linear chromaticity, and tune dependence of betatron amplitude are specified to suppress these instabilities.

  4. RHIC Au beam in Run 2014

    SciTech Connect

    Zhang, S. Y.

    2014-09-15

    Au beam at the RHIC ramp in run 2014 is reviewed together with the run 2011 and run 2012. Observed bunch length and longitudinal emittance are compared with the IBS simulations. The IBS growth rate of the longitudinal emittance in run 2014 is similar to run 2011, and both are larger than run 2012. This is explained by the large transverse emittance at high intensity observed in run 2012, but not in run 2014. The big improvement of the AGS ramping in run 2014 might be related to this change. The importance of the injector intensity improvement in run 2014 is emphasized, which gives rise to the initial luminosity improvement of 50% in run 2014, compared with the previous Au-Au run 2011. In addition, a modified IBS model, which is calibrated using the RHIC Au runs from 9.8 GeV/n to 100 GeV/n, is presented and used in the study.

  5. Are flow measurements at RHIC reliable?

    NASA Astrophysics Data System (ADS)

    Taranenko, Arkadiy; Vishnyakov, Vladislav

    2016-01-01

    The measurements of collective flow effects in particle production have provided invaluable insights on the transport properties of the strongly interacting matter produced in relativistic heavy-ion collisions at RHIC. The detailed comparison of flow measurements from PHENIX and STAR experiments at RHIC have been presented and discussed. For elliptic flow ν2 of charged hadrons from Au+Au collisions at 200 GeV the two data sets overlap excellently for centralities > 20%, they increasingly diverge at small centralities, with a 30% difference between STAR an PHENIX in the 0-5% centrality bin. For ν3 values the agreement is much worse and coming from the difference in STAR measurements. More investigations are needed to understand the reason for such differences.

  6. KRAKEN, a numerical model of RHIC impedances

    SciTech Connect

    Peggs, S.; Mane, V.

    1995-05-01

    The simulation code KRAKEN confirms analytical predictions of head-tail stability criteria, in the presence of momentum dependent linear coupling. It also confirms that resistive wall transverse wake fields are not a serious threat to strong head-tail stability in RHIC, at the vulnerable stage of proton injection. Equation 10, derived from the perspective of two macroparticles, potentially offers a very convenient seminumerical evaluation of the effects of arbitrary transverse wake potentials. It remains to be seen how well the two macroparticle results correlate with simulations using, say, 100 macroparticles. KRAKEN is still under rapid development. Future plans are to include resonant wakefields, multiple bunches, space charge wakefields, betatron detuning, and a connection to the detailed RHIC impedance database.

  7. Intercomparison of flow measurements at RHIC experiments

    NASA Astrophysics Data System (ADS)

    Vdovkina, S. S.

    2016-02-01

    The measurements of collective flow effects in particle production have provided invaluable insights on the transport properties of the strongly interacting matter produced in relativistic heavy-ion collisions at RHIC. The detailed comparison of flow measurements from PHENIX and STAR experiments at RHIC have been presented and discussed. For elliptic flow v2 of charged hadrons from Au+Au collisions at 200 GeV the two data sets overlap excellently for centralities > 20%, they increasingly diverge at small centralities, with a 30% difference between STAR an PHENIX in the 0-5% centrality bin. For v3 values the agreement is much worse and coming from the difference in STAR measurements. More investigations are needed to understand the reason for such differences.

  8. Quench antennas for RHIC quadrupole magnets

    SciTech Connect

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1995-05-01

    Quench antennas for RHIC quadrupole magnets are being developed jointly by KEK and BNL. A quench antenna is a device to localize a quench origin using arrays of pick-up coils lined up along the magnet bore. Each array contains four pick-up coils: sensitive to normal sextupole, skew sextupole, normal octupole, and skew octupole field. This array configuration allows an azimuthal localization of a quench front while a series of arrays gives an axial localization and a quench propagation velocity. Several antennas have been developed for RHIC magnets and they are now routinely used for quench tests of production magnets. The paper discusses the description of the method and introduces a measured example using an antenna designed for quadrupole magnets.

  9. IBS suppression lattice in RHIC: theory and experimental verification

    SciTech Connect

    Fedotov,A.V.; Bai, M.; Bruno, D.; Cameron, P.; Connolly, R.; Cupolo, J.; Della Penna, A.; Drees, A.; Fischer, W.; Ganetis, G.; Hoff, L.; Litvinenko, V.N.; Louie, W.; Luo, Y.; Malitsky, N.; Marr, G.; Marusic, A.; Montag, C.; Ptitsyn, V.; Roser, T.; Satogata, T.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.

    2008-08-25

    Intra-beam scattering (IBS) is the limiting factor of the luminosity lifetime for Relativistic Heavy Ion Collider (RHIC) operation with heavy ions. Over the last few years the process of IBS was carefully studied in RHIC with dedicated IBS measurements and their comparison with the theoretical models. A new lattice was recently designed and implemented in RHIC to suppress transverse IBS growth, which lowered the average arc dispersion by about 20% [1]. This lattice became operational during RHIC Run-8. We review the IBS suppression mechanism, IBS measurements before and after the lattice change, and comparisons with predictions.

  10. ANALYSIS OF AVAILABILITY AND RELIABILITY IN RHIC OPERATIONS.

    SciTech Connect

    PILAT, F.; INGRASSIA, P.; MICHNOFF, R.

    2006-06-26

    RHIC has been successfully operated for 5 years as a collider for different species, ranging from heavy ions including gold and copper, to polarized protons. We present a critical analysis of reliability data for RHIC that not only identifies the principal factors limiting availability but also evaluates critical choices at design times and assess their impact on present machine performance. RHIC availability data are typical when compared to similar high-energy colliders. The critical analysis of operations data is the basis for studies and plans to improve RHIC machine availability beyond the 50-60% typical of high-energy colliders.

  11. Analysis of RHIC beam dump pre-fires

    SciTech Connect

    Zhang, W.; Ahrens, L.; Fischer, W.; Hahn, H.; Mi, J.; Sandberg, J.; Tan, Y.

    2011-03-28

    It has been speculated that the beam may cause instability of the RHIC Beam Abort Kickers. In this study, we explore the available data of past beam operations, the device history of key modulator components, and the radiation patterns to examine the correlations. The RHIC beam abort kicker system was designed and built in the 90's. Over last decade, we have made many improvements to bring the RHIC beam abort kicker system to a stable operational state. However, the challenge continues. We present the analysis of the pre-fire, an unrequested discharge of kicker, issues which relates to the RHIC machine safety and operational stability.

  12. Conceptual design of a quadrupole magnet for eRHIC

    SciTech Connect

    Witte, H.; Berg, J. S.

    2015-05-03

    eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC) hadron facility at Brookhaven National Laboratory, which would allow collisions of up to 21 GeV polarized electrons with a variety of species from the existing RHIC accelerator. eRHIC employs an Energy Recovery Linac (ERL) and an FFAG lattice for the arcs. The arcs require open-midplane quadrupole magnets of up to 30 T/m gradient of good field quality. In this paper we explore initial quadrupole magnet design concepts based on permanent magnetic material which allow to modify the gradient during operation.

  13. ELECTRON CLOUD OBSERVATIONS AND CURES IN RHIC

    SciTech Connect

    FISCHER,W.; BLASKIEWICZ, M.; HUANG, H.; HSEUH, H.C.; ET AL.

    2007-06-25

    Since 2001 RHIC has experienced electron cloud effects, which have limited the beam intensity. These include dynamic pressure rises - including pressure instabilities, tune shifts, a reduction of the stability threshold for bunches crossing the transition energy, and possibly incoherent emittance growth. We summarize the main observations in operation and dedicated experiments, as well as countermeasures including baking, NEG coated warm beam pipes, solenoids, bunch patterns, anti-grazing rings, pre-pumped cold beam pipes, scrubbing, and operation with long bunches.

  14. The RHIC project -- Status and plans

    SciTech Connect

    Harrison, M.

    1995-05-01

    The Relativistic Heavy Ion Collider (RHIC) Project is in the 4th year of an estimated 8 year construction cycle at Brookhaven National Laboratory. The accelerator complex is designed to collide a variety of ion species at center-of-mass energies up to 100 GeV/nucleon in a two ring superconducting structure. Industrial magnet production is in progress as well as the other accelerator systems. This presentation will outline the status of the construction effort, near and long term goals.

  15. Ion trapping study in eRHIC

    SciTech Connect

    Hao, Y.

    2011-03-28

    The ion trapping effect is an important beam dynamics issue in energy recovery linac (ERL). The ionized residue gas molecules can accumulate at the vicinity of the electron beam path and deteriorate the quality of the electron beam. In this paper, we present calculation results to address this issue in eRHIC and find best beam pattern to eliminate this effect. eRHIC is the future electron ion collider(EIC), which collides 5GeV to 30GeV electron beam from a new electron accelerator with the ion beam from existing RHIC ring. The electron accelerator adopts a multi-pass ERL, which contains 6 passes with 2 linacs per pass. The electron impacted ionization effect needs attention to ensure the quality of the electron beam. The high energy electrons ionize the residue gas in beam pipe. These ions may accumulate and are 'trapped' near the axis of the pipe where the electron beam passes, due to the interaction with the electron beam. The concentration of the ion may produce noticeable space charge field that affects the electron beam and neutralize the electron beam in the linacs. In the paper, we start with cross section of the ionization process and calculate the accumulation time, which are followed by the modeling to determine the criteria of the ion trapping. The ion trapping effect is determined by the longitudinal configuration of the electron bunches. The effect can be reduced or mitigate by some proper electron beam patterns. We will present these patterns with a linearized model. We present the linearized calculation on the ion motion in the cavity of multi-pass ERL and determine the stability of the ion motion from the results. We conclude that the ionized molecules won't accumulated in eRHIC linacs except both 40m ends. Electro-static clearing electrodes should be installed in those regions to remove the ions from accumulation.

  16. Scaling properties of collective effects at RHIC

    NASA Astrophysics Data System (ADS)

    Zaytsev, A. S.

    2016-02-01

    Azimuthal anisotropy is one of the key observables to study the properties of matter created in high energy heavy-ion collisions at RHIC and the LHC. The collective behaviour is quantified in terms of anisotropy coefficients vn measured with respect to their corresponding event planes. Predictions from the viscous hydrodynamics for the scaling of the anisotropic flow coefficients vn with eccentricity, system size and transverse energy are tested using the recent data from PHENIX Collaboration.

  17. TRANSVERSE IMPEDANCE MEASUREMENT AT THE RHIC.

    SciTech Connect

    ZHANG,S.Y.; HUANG,H.; CAMERON,P.; DREES,A.; FLILLER,R.; SATOGATA,T.

    2002-06-02

    The RHIC transverse impedance was measured during the last operation run. Measurement of the imaginary part of the broadband impedance was the main goal. No large difference between the two rings was found nor in either plane. The measured tune shift is larger than the expected by a factor of 2.5 to 3. Several other issues such as the real part impedance measurement are also presented.

  18. Building the RHIC tracking lattice model

    SciTech Connect

    Luo, Y.; Fischer, W.; Tepikian, S.

    2010-01-27

    In this note we outline the procedure to build a realistic lattice model for the RHIC beam-beam tracking simulation. We will install multipole field errors in the arc main dipoles, arc main quadrupols and interaction region magnets (DX, D0, and triplets) and introduce a residual closed orbit, tune ripples, and physical apertures in the tracking lattice model. Nonlinearities such as local IR multipoles, second order chromaticies and third order resonance driving terms are also corrected before tracking.

  19. Source of second order chromaticity in RHIC

    SciTech Connect

    Luo, Y.; Gu, X.; Fischer, W.; Trbojevic, D.

    2011-01-01

    In this note we will answer the following questions: (1) what is the source of second order chromaticities in RHIC? (2) what is the dependence of second order chromaticity on the on-momentum {beta}-beat? (3) what is the dependence of second order chromaticity on {beta}* at IP6 and IP8? To answer these questions, we use the perturbation theory to numerically calculate the contributions of each quadrupole and sextupole to the first, second, and third order chromaticities.

  20. STOCHASTIC COOLING STUDIES IN RHIC, II.

    SciTech Connect

    BLASKIEWICZ,M.BRENNAN,J.M.WEI,J.

    2004-07-05

    Intra-beam scattering (IBS) is unavoidable for highly charged heavy ions and causes emittance growth during the store for collision physics. A longitudinal bunched beam stochastic cooling system will confine the bunch within the RF bucket increasing the useful luminosity. We describe a series of measurements in RHIC that have been used to verify our understanding of the relevant physics and the cooling system architecture that is being prototyped.

  1. OPERATION OF THE RHIC RF SYSTEMS.

    SciTech Connect

    BRENNAN,J.M.; BLASKIEWICZ,M.; DELONG,J.; FISCHER,W.; HAYES,T.; SMITH,K.S.; ZALTSMAN,A.

    2003-05-12

    Operational aspects of the RHIC rf system are described. To date three different beam combinations have been collided for physics production: gold-gold, deuteron-gold, and proton-proton(polarized). To facilitate this flexibility the rf systems of the two rings are independent and self-sufficient. Techniques to cope with problems such as, injection/capture, beam loading, bunch shortening, and rf noise have evolved and are explained.

  2. COMMISSIONING OF RHIC DEUTERON - GOLD COLLISIONS.

    SciTech Connect

    SATOGATA,T.AHRENS,L.BAI,M.BEEBE-WANG,J.

    2003-05-12

    Deuteron and gold beams have been accelerated to a collision energy of {radical}s = 200 GeV/u in the Relativistic Heavy Ion Collider (RHIC), providing the first asymmetric-species collisions of this complex. Necessary changes for this mode of operation include new ramping software and asymmetric crossing angle geometries. This paper reviews machine performance, problem encountered and their solutions, and accomplishments during the 16 weeks of ramp-up and operations.

  3. Estimation of collective instabilities in RHIC

    SciTech Connect

    MacKay, W.W.; Blaskiewicz, M.; Deng, D.; Mane, V.; Peggs, S.; Ratti, A.; Rose, J.; Shea, T.J.; Wei, J.

    1995-05-01

    The authors have estimated the broadband impedance in RHIC to be {vert_bar}Z/n{vert_bar} < 1.2 {Omega} for frequencies above 100 MHz. The Z/n threshold is set for Au{sup +79} ions at transition with an estimated 10% growth in emittance for Z/n = 1.5 {Omega}. They summarize the sources of broad and narrow band impedances in RHIC and investigate the multibunch instability limits throughout the machine cycle. The largest contribution to the broadband impedance comes from the abort and injection kickers. Since RHIC is designed to accelerate fully stripped ions from H{sup +} up to Au{sup +79} they give results for both protons and gold ions; other ions should give results somewhere between these two extremes. All ion species are expected to be stable during storage. At lower energies damping systems and chromaticity corrections will limit any growth to acceptable levels during the short time it takes to inject and accelerate the beams.

  4. RHIC beam loss monitor system design

    SciTech Connect

    Witkover, R.; Zitvogel, E.; Michnoff, R.

    1997-07-01

    The Beam Loss Monitor (BLM) System is designed to prevent the quenching of RHIC magnets due to beam loss, provide quantitative loss data, and the loss history in the event of a beam abort. The system uses 400 ion chambers of a modified Tevatron design. To satisfy fast (single turn) and slow (100 msec) loss beam criteria and provide sensitivity for studies measurements, a range of over 8 decades is needed. An RC pre-integrator reduces the dynamic range for a low current amplifier. This is digitized for data logging. The output is also applied to an analog multiplier which compensates the energy dependence, extending the range of the abort comparators. High and low pass filters separate the signal to dual comparators with independent programmable trip levels. Up to 64 channels, on 8 VME boards, are controlled by a micro-controller based VME module, decoupling it from the front-end computer (FEC) for real-time operation. Results with the detectors in the RHIC Sextant Test and the electronics in the AGS-to-RHIC (AtR) transfer line will be presented.

  5. RHIC spin flipper AC dipole controller

    SciTech Connect

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  6. Understanding Heavy Flavor Production at RHIC

    SciTech Connect

    Vogt, R

    2009-01-08

    Accurate assessments of the charm and bottom cross sections and kinematic distributions in hadron-hadron collisions are needed in order to understand the behavior of heavy flavors in more complex collisions. Neither the charm nor bottom cross sections were measured at {radical}S = 200 GeV before the startup of the Relativistic Heavy Ion Collider (RHIC). The RHIC detectors are capable of measuring the heavy flavor transverse momentum distributions to p{sub T} {approx} 0, making estimates of the total heavy flavor cross section feasible at a collider. It is thus possible to obtain and compare the total heavy flavor cross sections at RHIC with those measured at other energies. The charm production data, in particular, can have a considerable spread in the measured cross sections, even at a single energy. In addition, the small charm mass can lead to large theoretical uncertainties. We assess the theoretical uncertainties on the heavy flavor (charm and bottom) hadroproduction cross section. We discuss the importance of the quark mass, the renormalization and factorization scales and the parton densities on the estimate of the uncertainty.

  7. Pros and cons of vacuum pressure impregnation

    NASA Astrophysics Data System (ADS)

    Wright, T.

    1981-12-01

    The advantages and disadvantages of using a vacuum pressure impregnation process in the application of insulating varnishes to high voltage electric coils are discussed. The process has the advantages of providing a void free system with high dielectric strength, mechanical resilience, chemical and moisture resistance, and good thermal capabilities. The disadvantages of high cost and large tank size requirements are noted.

  8. Heavy flavor in heavy-ion collisions at RHIC and RHIC II

    SciTech Connect

    Frawley, A D; Ullrich, T; Vogt, R

    2008-03-30

    In the initial years of operation, experiments at the Relativistic Heavy Ion Collider (RHIC) have identified a new form of matter formed in nuclei-nuclei collisions at energy densities more than 100 times that of a cold atomic nucleus. Measurements and comparison with relativistic hydrodynamic models indicate that the matter thermalizes in an unexpectedly short time, has an energy density at least 15 times larger than needed for color deconfinement, has a temperature about twice the critical temperature predicted by lattice QCD, and appears to exhibit collective motion with ideal hydrodynamic properties--a 'perfect liquid' that appears to flow with a near-zero viscosity to entropy ratio--lower than any previously observed fluid and perhaps close to a universal lower bound. However, a fundamental understanding of the medium seen in heavy-ion collisions at RHIC does not yet exist. The most important scientific challenge for the field in the next decade is the quantitative exploration of the new state of nuclear matter. That will require new data that will, in turn, require enhanced capabilities of the RHIC detectors and accelerator. In this report we discuss the scientific opportunities for an upgraded RHIC facility --RHIC II--in conjunction with improved capabilities of the two large RHIC detectors, PHENIX and STAR. We focus solely on heavy flavor probes. Their production rates are calculable using the well-established techniques of perturbative QCD and their sizable interactions with the hot QCD medium provide unique and sensitive measurements of its crucial properties making them one of the key diagnostic tools available to us.

  9. Effect of environment on insulation materials, volume 1

    NASA Technical Reports Server (NTRS)

    Parmley, R. T.; Smith, F. J.; Glassford, A. P.; Coleman, J.; Stevenson, D. R.

    1973-01-01

    Twenty candidate multilayer insulation and insulation related materials were subjected to eight conditions that represent possible operational environments. These exposures include ground contaminants, various operational temperatures, space vacuum, space-vented propellants, and tank leakage. The objective of this program was to obtain and evaluate the data from these exposures to provide both a quantitative and qualitative description of the degradation to certain physical and thermal properties, and from this, to obtain a better understanding of the environmental effects on the insulation performance.

  10. SEALED INSULATOR BUSHING

    DOEpatents

    Carmichael, H.

    1952-11-11

    The manufacture of electrode insulators that are mechanically strong, shock-proof, vacuum tight, and are capable of withstanding gas pressures of many atmospheres under intense neutron bombardment, such as may be needed in an ionization chamber, is described. The ansulator comprises a bolt within a quartz tube, surrounded by a bushing held in place by two quartz rings, and tightened to a pressure of 1,000 pounds per square inch by a nut and washer. Quartz is the superior material to meet these conditions, however, to withstand this pressure the quartz must be fire polished, lapped to form smooth and parallel surfaces, and again fire polished to form an extremely smooth and fracture resistant mating surface.

  11. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 57, HIGH PT PHYSICS AT RHIC, DECEMBER 2-6, 2003

    SciTech Connect

    Kretzer, Stefan; Venugopalan, Raju; Vogelsang, Werner

    2004-02-18

    The AuAu, dAu, and pp collision modes of the RHIC collider at BNL have led to the publication of exciting high p{perpendicular} particle production data. There have also been two physics runs with polarized protons, and preliminary results on the double-spin asymmetry for pion production had been presented very recently. The ontological questions behind these measurements are fascinating: Did RHIC collisions create a Quark-Gluon-Plasma phase and did they verify the Color Glass Condensate as the high energy limit of QCD? Will the Spin Crisis finally be resolved in terms of gluon polarization and what new surprises are we yet to meet for Transverse Spin? Phenomena related to sub-microscopic questions as important as these call for interpretations that are footed in solid theory. At large p{perpendicular}, perturbative concepts are legitimately expected to provide useful approaches. The corresponding hard parton dynamics are, in several ways, key to unraveling the initial or final state and collisional phase of hard scattering events in vacuum as well as in hot or cold nuclear matter. Before the advent of RHIC data, a RIKEN-BNL workshop had been held at BNL in March 1999 on ''Hard Parton Physics in High Energy Nuclear Collisions''. The 2003 workshop on ''High p{perpendicular} Physics at RHIC'' was a logical continuation of this previous workshop. It gave the opportunity to revisit the 1999 expectations in the light of what has been found in the meantime and, at the same time, to critically discuss the underlying theoretical concepts. We brought together theorists who have done seminal work on the foundations of parton phenomenology in field theory, with theorists and experimentalists who are presently working on RHIC phenomenology. The participants were both from a high-energy physics and nuclear physics background and it remains only to be said here that this chemistry worked perfectly and the workshop was a great success.

  12. Development of a Polarized Helium-3 Source for RHIC and eRHIC

    NASA Astrophysics Data System (ADS)

    Maxwell, J.; Epstein, C.; Milner, R.; Alessi, J.; Beebe, E.; Pikin, A.; Ritter, J.; Zelenski, A.

    2016-02-01

    The addition of a polarized 3He ion source for use at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory would enable a host of new measurements, particularly in the context of a planned eRHIC. We are developing such a source using metastability exchange optical pumping to polarize helium-3, which will be then transferred into RHIC’s Electron Beam Ion Source for ionization. We aim to deliver nuclear polarization of near 70%, and roughly 1011 doubly-ionized 3He++ ions will be created in each 20 μsec pulse. We discuss the design of the source, and the status of its development.

  13. THE RHIC INJECTOR ACCELERATORS CONFIGURATIONS, AND PERFORMANCE FOR THE RHIC 2003 AU - D PHYSICS RUN.

    SciTech Connect

    Ahrens, L; Benjamin, J; Blaskiewicz, M; Brennan, J M; Brown, K A; Carlson, K A; Delong, J; D' Ottavio, T; Frak, B; Gardner, C J; Glenn, J W; Harvey, M; Hayes, T; Hseuh, H- C; Ingrassia, P; Lowenstein, D; Mackay, W; Marr, G; Morris, J; Roser, T; Satogata, T; Smith, G; Smith, K S; Steski, D; Tsoupas, N; Thieberger, P; Zeno, K

    2003-05-12

    The RHIC 2003 Physics Run [1] required collisions between gold ions and deuterons. The injector necessarily had to deliver adequate quality (transverse and longitudinal emittance) and quantity of both species. For gold this was a continuing evolution from past work [2]. For deuterons it was new territory. For the filling of the RHIC the injector not only had to deliver quality beams but also had to switch between these species quickly. This paper details the collider requirements and our success in meeting these. Some details of the configurations employed are given.

  14. Water absorption and desorption in shuttle ablator and insulation materials

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Smith, C. F.; Wooden, V. A.; Cothren, B. E.; Gregory, H.

    1982-01-01

    Shuttle systems ablator and insulation materials underwent water soak with subsequent water desorption in vacuum. Water accumulation in these materials after a soak for 24 hours ranged from +1.1% for orbiter tile to +161% for solid rocket booster MSA-1. After 1 minute in vacuum, water retention ranged from none in the orbiter tile to +70% for solid rocket booster cork.

  15. RHIC low energy beam loss projections

    SciTech Connect

    Satogata,T.

    2009-08-01

    For RHIC low-energy operations, we plan to collide Au beams with energies of E = 2:5-10 GeV/u in RHIC. Beams are injected into collision optics, and RHIC runs as a storage ring with no acceleration. At these low energies, observed beam lifetimes are minutes, with measured beam lifetimes of 3.5 min (fast) and 50 min (slow) at E=4.6 GeV/u in the March 2008 test run. With these lifetimes we can operate RHIC as a storage ring to produce reasonable integrated luminosity. This note estimates beam losses and collimator/dump energy deposition in normal injection modes of low energy operation. The main question is whether a normal injection run is feasible for an FY10 10-15 week operations run from a radiation safety perspective. A peripheral question is whether continuous injection operations is feasible from a radiation safety perspective. In continuous injection mode, we fill both rings, then continuously extract and reinject the oldest bunches that have suffered the most beam loss to increase the overall integrated luminosity. We expect to gain a factor of 2-3 in integrated luminosity from continuous injection at lowest energies if implemented[1]. Continuous injection is feasible by FY11 from an engineering perspective given enough effort, but the required extra safety controls and hardware dose risk make it unappealing for the projected luminosity improvement. Low-energy electron cooling will reduce beam losses by at least an order of magnitude vs normal low-energy operations, but low energy cooling is only feasible in the FY13 timescale and therefore beyond the scope of this note. For normal injection low energy estimates we assume the following: (1) RHIC beam total energies are E=2.5-10 GeV/u. (Continuous injection mode is probably unnecessary above total energies of E=7-8 GeV/u.); (2) RHIC operates only as a storage ring, with no acceleration; (3) 110 bunches of about 0.5-1.0 x 10{sup 9} initial bunch intensities (50-100% injection efficiency, likely conservative

  16. Experimental effects of orbit on polarization loss in RHIC

    SciTech Connect

    Ranjbar V.; Bai, M.; Huang, H.; Marusic, A.; Ptitsyn, V.; Minty, M.

    2012-05-20

    We are performing several experiments during the RHIC ramp to better understand the impact of orbit errors on the polarization at our current working point. These will be conducted by exciting specified orbit harmonics during the final two large intrinsic resonance crossing in RHIC during the 250 GeV polarized proton ramp. The resultant polarization response will then be measured.

  17. OVERVIEW AND STATUS OF THE STAR DETECTOR AT RHIC.

    SciTech Connect

    CHRISTIE,W.B. FOR THE STAR COLLABORATION

    1999-01-09

    Presented here is the current status of the STAR Detector. STAR is one of the four detectors being constructed at the RHIC collider facility. The STAR detector is scheduled to have its first engineering run with the RHIC beams about six months from the date of this conference. The STAR project is on schedule and expects to recomplete on time.

  18. Measurements of strangeness production in the STAR experiment at RHIC

    SciTech Connect

    Wilson, W.K.

    1995-07-15

    Simulations of the ability of the STAR (Solenoidal Tracker at RHIC) detector to measure strangeness production in central Au+Au collisions at RHIC are presented. Emphasis is placed on the reconstruction of short lived particles using a high resolution inner tracker. The prospects for performing neutral kaon interferometry are discussed. Simulation results for measurements of strange and multi-strange baryons are presented.

  19. Ultra-Violet Induced Insulator Flashover

    SciTech Connect

    Javedani, J B; Houck, T L; Kelly, B T; Lahowe, D A; Shirk, M D; Goerz, D A

    2008-05-21

    Insulators are critical components in high-energy, pulsed power systems. It is known that the vacuum surface of the insulator will flashover when illuminated by ultraviolet (UV) radiation depending on the insulator material, insulator cone angle, applied voltage and insulator shot-history. A testbed comprised of an excimer laser (KrF, 248 nm, {approx} 2 MW/cm{sup 2}, 30 ns FWHM,), a vacuum chamber (low 1.0E-6 torr), and dc high voltage power supply (<60 kV) was assembled for insulator testing to measure the UV dose during a flashover event. Five in-house developed and calibrated fast D-Dot probes (>12 GHz, bandwidth) were embedded in the anode electrode underneath the insulator to determine the time of flashover with respect to UV arrival. A commercial energy meter were used to measure the UV fluence for each pulse. Four insulator materials High Density Polyethylene, Rexolite{reg_sign} 1400, Macor{trademark} and Mycalex with side-angles of 0, {+-}30, and {+-}45 degrees, 1.0 cm thick samples, were tested with a maximum UV fluence of 75 mJ/cm{sup 2} and at varying electrode charge (10 kV to 60 kV). This information clarified/corrected earlier published studies. A new phenomenon was observed related to the UV power level on flashover that as the UV pulse intensity was increased, the UV fluence on the insulator prior to flashover was also increased. This effect would bias the data towards higher minimum flashover fluence.

  20. Using fiberglass volumes for VPI of superconductive magnetic systems' insulation

    NASA Astrophysics Data System (ADS)

    Andreev, I. S.; Bezrukov, A. A.; Bursikov, A. S.; Klimchenko, Y. A.; Marushin, E. L.; Mednikov, A. A.; Pischugin, A. B.; Rodin, I. Y.; Stepanov, D. B.

    2014-01-01

    The paper describes the method of manufacturing fiberglass molds for vacuum pressure impregnation (VPI) of high-voltage insulation of superconductive magnetic systems (SMS) with epoxidian hot-setting compounds. The basic advantages of using such vacuum volumes are improved quality of insulation impregnation in complex-shaped areas, and considerable cost-saving of preparing VPI of large-sized components due to dispensing with the stage of fabricating a metal impregnating volume. Such fiberglass vacuum molds were used for VPI of high-voltage insulation samples of an ITER reactor's PF1 poloidal coil. Electric insulation of these samples has successfully undergone a wide range of high-voltage and mechanical tests at room and cryogenic temperatures. Some results of the tests are also given in this paper.

  1. Using fiberglass volumes for VPI of superconductive magnetic systems’ insulation

    SciTech Connect

    Andreev, I. S.; Bezrukov, A. A.; Pischugin, A. B.; Bursikov, A. S.; Klimchenko, Y. A.; Marushin, E. L.; Mednikov, A. A.; Rodin, I. Y.; Stepanov, D. B.

    2014-01-29

    The paper describes the method of manufacturing fiberglass molds for vacuum pressure impregnation (VPI) of high-voltage insulation of superconductive magnetic systems (SMS) with epoxidian hot-setting compounds. The basic advantages of using such vacuum volumes are improved quality of insulation impregnation in complex-shaped areas, and considerable cost-saving of preparing VPI of large-sized components due to dispensing with the stage of fabricating a metal impregnating volume. Such fiberglass vacuum molds were used for VPI of high-voltage insulation samples of an ITER reactor’s PF1 poloidal coil. Electric insulation of these samples has successfully undergone a wide range of high-voltage and mechanical tests at room and cryogenic temperatures. Some results of the tests are also given in this paper.

  2. Analysis and testing of multilayer and aerogel insulation configurations

    SciTech Connect

    Johnson, W L; Demko, Jonathan A; Fesmire, J. E.

    2010-01-01

    Multilayer insulation systems that have robust operational characteristics have long been a goal of many research projects. Such thermal insulation systems may need to offer some degree of structural support and/or mechanical integrity during loss of vacuum scenarios while continuing to provide insulative value to the vessel. Aerogel-based composite blankets can be the best insulation materials in ambient pressure environments; in high vacuum, the thermal performance of aerogel improves by about one order of magnitude. Standard multilayer insulation (MLI) is typically 50% worse at ambient pressure and at soft vacuum, but as much as two or three orders of magnitude better at high vacuum. Different combinations of aerogel blanket and multilayer insulation materials have been tested at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Analysis performed at Oak Ridge National Laboratory showed an importance to the relative location of the MLI and aerogel blankets. Apparent thermal conductivity testing under cryogenicvacuum conditions was performed to verify the analytical conclusion. Tests results are shown to be in agreement with the analysis which indicated that the best performance is obtained with aerogel layers located in the middle of the blanket insulation system.

  3. Design of the EBIS vacuum system

    SciTech Connect

    Mapes, M.; Smart, L.; Weiss, D.

    2011-03-28

    At Brookhaven National Laboratory the Electron Beam Ion Source (EBIS) is presently being commissioned. The EBIS will be a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC). The new preinjector has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium. The background pressure in the ionization region of the EBIS required to be low enough that it does not produce a significant number of ions from background gas. The pressure in the regions of the electron gun and electron collector can be higher than in the ionization region provided there is efficient vacuum separation between the sections. For injection the ions must be accelerated to 100KV by pulsing the EBIS platform. All associated equipment including the vacuum equipment on the platform is at a 100KV potential. The vacuum system design and the vacuum controls for the EBIS platform and transport system will be presented as well as the interface with the Booster Ring which has a pressure 10-11 Torr.

  4. Cohomological Insulators

    NASA Astrophysics Data System (ADS)

    Alexandradinata, A.; Wang, Zhijun; Bernevig, B. Andrei

    We present a cohomological classification of insulators, in which we extend crystal symmetries by Wilson loops. Such an extended group describes generalized symmetries that combine space-time transformations with quasimomentum translations. Our extension generalizes the construction of nonsymmorphic space groups, which extend point groups by real-space translations. Here, we further extend nonsymmorphic groups by reciprocal translations, thus placing real and quasimomentum space on equal footing. From a broader perspective, cohomology specifies not just the symmetry group, but also the quasimomentum manifold in which the symmetry acts - both data are needed to specify the band topology. In this sense, cohomology underlies band topology.

  5. Proceedings of the third workshop on experiments and detectors for a relativistic heavy ion collider (RHIC)

    SciTech Connect

    Shivakumar, B.; Vincent, P.

    1988-01-01

    This report contains papers on the following topics: the RHIC Project; summary of the working group on calorimetry; J//Psi/ measurements in heavy ion collisions at CERN; QCD jets at RHIC; tracking and particle identification; a 4..pi.. tracking spectrometer for RHIC; Bose-Einstein measurements at RHIC in light of new data; summary of working group on read-out electronics; data acquisition for RHIC; summary of the working group on detector simulation; B-physics at RHIC; and CP violation revisited at BNL, B-physics at RHIC.

  6. RHIC on "How the Universe Works"

    SciTech Connect

    Lisa, Mike

    2014-08-11

    If you want to know how the universe works, part of the answer lies in understanding the building blocks of matter—before they became inextricably bound within the protons, neutrons, and atoms that make up everything visible in our universe today. That’s why producers for the Science Channel’s documentary series “How the Universe Works” made a point of stopping by the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, where physicists recreate post-Big Bang “primal matter” millions of times each day. Learn about RHIC’s role in exploring the building blocks of matter by watching this segment.

  7. FREEEZE-OUT DYNAMICS AT RHIC.

    SciTech Connect

    BARANNIKOVA,O.

    2004-03-15

    Investigation of the final hadronic state properties of ultra-relativistics pp and Au+Au collisions supplies information on freeze-out conditions at RHIC and possible insights into early stages of these collisions. A variety of particle spectra measured by STAR are studied within the framework of chemical and local kinetic equilibrium models. Here we present the extracted chemical and final kinetic freeze-out temperatures, strangeness saturation factor, final collective flow velocity, and the inferred flow velocity at chemical freeze-out. In light of those measurements we discuss dynamical evolution of the collision system.

  8. Revised cross section for RHIC dipole magnets

    SciTech Connect

    Thompson, P.A.; Gupta, R.C.; Kahn, S.A.; Hahn, H.; Morgan, G.H.; Wanderer, P.J.; Willen, E.

    1991-01-01

    Using the experience gained in designing and building Relativistic Heavy Ion Collider (RHIC) dipole prototype magnets an improved cross section has been developed. Significant features of this design include the use of only three wedges for field shaping and wedge cross sections which are sectors of an annulus. To aid in the understanding of the actual magnets, one has been sectioned, and detailed mechanical and photographic measurements made of the wire positions. The comparison of these measurements with the magnetic field measurements will is presented. 2 refs, 3 figs., 2 tabs.

  9. Recent Results from PHOBOS at RHIC

    NASA Astrophysics Data System (ADS)

    Garcia, Edmundo; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; Garcia, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2006-04-01

    The PHOBOS detector is one of four heavy-ion experiments at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. In this paper we will review some of the results of PHOBOS from the data collected in p+p, d+Au and Au+Au collisions at nucleon-nucleon center-of-mass energies up to 200 GeV. In the most central Au+Au collisions at the highest energy, evidence is found for the formation of a very high energy density and highly interactive system, which can not be described in terms of hadrons, and which has a relatively low baryon density.

  10. On perturbative azimuthal asymmetry at RHIC

    SciTech Connect

    Rezaeian, A. H.

    2008-10-13

    We investigate the azimuthal asymmetry of partons and photons produced at the initial stage of nuclear collisions at the RHIC energy originating from quark-nucleus collisions. In our approach, the azimuthal asymmetry results from the correlation between color dipole orientation and impact parameter of the collision. The asymmetry is sensitive to the rapid variation of the nuclear density at the nuclear periphery. We either introduce the color-dipole orientation into the improved Born approximation, or model the dipole partial amplitude which satisfies available DIS data. We conclude that the azimuthal asymmetry coming from these mechanisms can be sizable.

  11. Recent Triplet Vibration Studies in RHIC

    SciTech Connect

    Thieberger, P.; Bonati, R.; Corbin, G.; Jain, A.; Minty, M.; McIntyre, G.; Montag, C.; Muratore, J.; Schultheiss, C.; Seberg, S.; Tuozzolo, J.

    2010-05-23

    We report on recent developments for mitigating vibrations of the quadrupole magnets near the interaction regions of the Relativistic Heavy Ion Collider (RHIC). High precision accelerometers, geophones, and a laser vibrometer were installed around one of the two interaction points to characterize the frequencies of the mechanical motion. In addition actuators were mounted directly on the quadrupole cryostats. Using as input the locally measured motion, dynamic damping of the mechanical vibrations has been demonstrated. In this report we present these measurements and measurements of the beam response. Future options for compensating the vibrations are discussed.

  12. RHIC operation with asymmetric collisions in 2015

    SciTech Connect

    Liu, C.; Aschenauer, C.; Atoian, G.; Blaskiewicz, M.; Brown, K. A.; Bruno, D.; Connolly, R.; Ottavio, T. D.; Drees, K. A.; Fischer, W.; Gardner, C. J.; Gu, X.; Hayes, T.; Huang, H.; Laster, J. S.; Luo, Y.; Makdisi, Y.; Marr, G.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Narayan, G.; Nayak, S.; Nemesure, S.; Pile, P.; Poblaguev, A.; Ranjbar, V.; Robert-Demolaize, G.; Roser, T.; Schmidke, B.; Schoefer, V.; Severino, F.; Shrey, T.; Smith, K.; Steski, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Wang, G.; White, S.; Yip, K.; Zaltsman, A.; Zeno, K.; Zhang, S. Y.

    2015-08-07

    To study low-x shadowing/saturation physics as well as other nuclear effects [1], [2], proton-gold (p-Au, for 5 weeks) and proton-Aluminum (p-Al, for 2 weeks) collisions were provided for experiments in 2015 at the Relativistic Heavy Ion Collider (RHIC), with polarized proton beam in the Blue ring and Au/Al beam in the Yellow ring. The special features of the asymmetric run in 2015 will be introduced. The operation experience will be reviewed as well in the report.

  13. A LOW NOISE RF SOURCE FOR RHIC.

    SciTech Connect

    HAYES,T.

    2004-07-05

    The Relativistic Heavy Ion Collider (RHIC) requires a low noise rf source to ensure that beam lifetime during a store is not limited by the rf system. The beam is particularly sensitive to noise from power line harmonics. Additionally, the rf source must be flexible enough to handle the frequency jump required for rebucketing (transferring bunches from the acceleration to the storage rf systems). This paper will describe the design of a Direct Digital Synthesizer (DDS) based system that provides both the noise performance and the flexibility required.

  14. RHIC spin physics: Proceedings. Volume 7

    SciTech Connect

    1998-12-01

    This proceedings compiles one-page summaries and five transparencies for each talk, with the intention that the speaker should include a web location for additional information in the summary. Also, email addresses are given with the participant list. The order follows the agenda: gluon, polarimetry, accelerator, W production and quark/antiquark polarization, parity violation searches, transversity, single transverse spin, small angle elastic scattering, and the final talk on ep collisions at RHIC. The authors begin the Proceedings with the full set of transparencies from Bob Jaffe`s colloquium on spin, by popular request.

  15. Hadronization via coalescence at RHIC and LHC

    NASA Astrophysics Data System (ADS)

    Minissale, V.; Scardina, F.; Greco, V.

    2016-05-01

    An hadronization model that includes coalescence and fragmentation is used in this work to obtain predictions at both RHIC and LHC energy for light and strange hadrons transverse momentum spectra (π, p, k, Λ) and baryon to meson ratios (p/π, Λ/k) in a wide range of pT. This is accomplished without changing coalescence parameters. The ratios p/π and Λ/K shows the right behaviour except for some lack of baryon yield in a limited pT range around 6 GeV. This would indicate that the AKK fragmentation functions is too flat at pT < 8 GeV.

  16. Recent results from PHOBOS at RHIC

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Niewwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Robert PakThe Phobos Collaboration

    2003-06-01

    The PHOBOS experiment at RHIC has recorded measurements for AuAu collisions spanning nucleon-nucleon center-of-mass energies from √ SNN = 19.6 GeV to 200 GeV. Global observables such as elliptic flow and charged particle multiplicity provide important constraints on model predictions that characterize the state of matter produced in these collisions. The nearly 4π acceptance of the PHOBOS experiment provides excellent coverage for complete flow and multiplicity measurements. Results including beam energy and centrality dependencies are presented and compared to elementary systems.

  17. Some calculations for the RHIC kicker

    SciTech Connect

    Claus, J.

    1996-12-01

    This paper starts with a brief discussion of the design of the RHIC injection kicker magnets which calls for longitudinal and capacitive sections of the same order as the aperture, not much larger nor much smaller. This makes accurate analytical prediction of their behavior very difficult. In order to gain at least some qualitative insight of that behavior, the author preformed calculations which are based on the actual dimensions of the kickers but which neglect the end effects of the individual sections. The effects of the sectionalization are therefore exaggerated relative to reality in the results.

  18. Construction progress of the RHIC electron lenses

    SciTech Connect

    Fischer W.; Altinbas, Z.; Anerella, M.; Beebe, E.; et al

    2012-05-20

    In polarized proton operation the RHIC performance is limited by the head-on beam-beam effect. To overcome this limitation two electron lenses are under construction. We give an overview of the construction progress. Guns, collectors and the warm electron beam transport solenoids with their power supplies have been constructed. The superconducting solenoids that guide the electron beam during the interaction with the proton beam are near completion. A test stand has been set up to verify the performance of the gun, collector and some of the instrumentation. The infrastructure is being prepared for installation, and simulations continue to optimize the performance.

  19. Tank Insulation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    For NASA's Apollo program, McDonnell Douglas Astronautics Company, Huntington Beach, California, developed and built the S-IVB, uppermost stage of the three-stage Saturn V moonbooster. An important part of the development task was fabrication of a tank to contain liquid hydrogen fuel for the stage's rocket engine. The liquid hydrogen had to be contained at the supercold temperature of 423 degrees below zero Fahrenheit. The tank had to be perfectly insulated to keep engine or solar heat from reaching the fuel; if the hydrogen were permitted to warm up, it would have boiled off, or converted to gaseous form, reducing the amount of fuel available to the engine. McDonnell Douglas' answer was a supereffective insulation called 3D, which consisted of a one-inch thickness of polyurethane foam reinforced in three dimensions with fiberglass threads. Over a 13-year development and construction period, the company built 30 tanks and never experienced a failure. Now, after years of additional development, an advanced version of 3D is finding application as part of a containment system for transporting Liquefied Natural Gas (LNG) by ship.

  20. Home Insulation

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Under the Guaranteed Watt Savers (GWS) system, plans for a new home are computer analyzed for anticipated heat loss and gain. Specifications are specifically designed for each structure and a Smart- House Radiant Barrier is installed. Designed to reflect away 95% of the Sun's radiant energy, the radiant barrier is an adaptation of an aluminum shield used on Apollo spacecraft. On completion of a home, technicians using a machine, check for air tightness, by creating a vacuum in the house and computer calculations that measure the amount of air exchanged. A guarantee that only the specified number kilowatt hours will be used is then provided.

  1. Electrical breakdown studies with Mycalex insulators

    SciTech Connect

    Waldron, W.; Greenway, W.; Eylon, S.; Henestroza, E.; Yu, S.

    2003-05-01

    Insulating materials such as alumina and glass-bonded mica (Mycalex) are used in accelerator systems for high voltage feedthroughs, structural supports, and barriers between high voltage insulating oil and the vacuum beam pipe in induction accelerator cells. Electric fields in the triple points should be minimized to prevent voltage breakdown. Mechanical stress can compromise seals and result in oil contamination of the insulator surface. We have tested various insulator cleaning procedures including ultrasonic cleaning with a variety of aqueous-based detergents, and manual scrubbing with various detergents. Water sheeting tests were used to determine the initial results of the cleaning methods. Ultimately, voltage breakdown tests will be used to quantify the benefits of these cleaning procedures.

  2. Insulators for high voltages

    SciTech Connect

    Looms, J.S.T.

    1987-01-01

    This book describes electrical insulators for high voltage applications. Topics considered include the insulating materials, the manufacture of wet process porcelain, the manufacture of tempered glass, the glass-fibre core, the polymeric housing, the common problem - terminating an insulator, mechanical constraints, the physics of pollution flashover, the physics of contamination, testing of insulators, conclusions from testing, remedies for flashover, insulators for special cases, interference and noise, and the insulator of the future.

  3. Micadur: Compact insulation system for medium-sized turbo generators

    NASA Astrophysics Data System (ADS)

    Aare, V.; Schuler, R. H.

    1981-12-01

    A high voltage, Class F, vacuum pressure impregnated insulation system for wound stator cores of the medium size turbogenerators is described. With this total impregnation technique the insulation process has been revolutionized. The excellent characteristics of this synthetic resin insulation system have made it possible to redesign the end winding support system for decisive improvement in reliability. This has been confirmed by operating experience in recent years. Test procedures were modified to suit the new insulation process and new repair procedures have been developed.

  4. Vacuum Bellows, Vacuum Piping, Cryogenic Break, and Copper Joint Failure Rate Estimates for ITER Design Use

    SciTech Connect

    L. C. Cadwallader

    2010-06-01

    The ITER international project design teams are working to produce an engineering design in preparation for construction of the International Thermonuclear Experimental Reactor (ITER) tokamak. During the course of this work, questions have arisen in regard to safety barriers and equipment reliability as important facets of system design. The vacuum system designers have asked several questions about the reliability of vacuum bellows and vacuum piping. The vessel design team has asked about the reliability of electrical breaks and copper-copper joints used in cryogenic piping. Research into operating experiences of similar equipment has been performed to determine representative failure rates for these components. The following chapters give the research results and the findings for vacuum system bellows, power plant stainless steel piping (amended to represent vacuum system piping), cryogenic system electrical insulating breaks, and copper joints.

  5. Upgrade scenario for the RHIC collimation system

    SciTech Connect

    Robert-Demolaize, G.; Drees, A.

    2012-01-19

    The RHIC collimation system is used to reduce background levels in both STAR and PHENIX detectors. With a push for higher luminosity in the near future, it becomes critical to check if and how the level of performance of the collimators can be improved. The following reviews a proposal for additional collimators placed further downstream of the current system and designed to intercept the tertiary halo coming out of the IR8 insertion before it can reach the triplet quadrupoles in either STAR or PHENIX. Simulations have been peformed to quantify the efficiency of additional collimator jaws in RHIC. Each figure presented in this article clearly shows that the additional mask collimators provide the expected reduction in losses around the machine, and especially to the incoming triplet to the STAR experiment (IP6), for the Yellow beam as much as for the Blue beam. Looking at compiled statistics for all three working point cases studied, proton losses around the machine are reduced by roughly one order of magnitude: at most a factor 30 for magnet losses, and at most a factor 40 for losses in spaces between magnets.

  6. The PHOBOS perspective on discoveries at RHIC

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N. K.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C. M.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zhang, J.; Phobos Collaboration

    2005-08-01

    This paper describes the conclusions that can be drawn from the data taken thus far with the PHOBOS detector at RHIC. In the most central Au + Au collisions at the highest beam energy, evidence is found for the formation of a very high energy density system whose description in terms of simple hadronic degrees of freedom is inappropriate. Furthermore, the constituents of this novel system are found to undergo a significant level of interaction. The properties of particle production at RHIC energies are shown to follow a number of simple scaling behaviors, some of which continue trends found at lower energies or in simpler systems. As a function of centrality, the total number of charged particles scales with the number of participating nucleons. When comparing Au + Au at different centralities, the dependence of the yield on the number of participants at higher p ( ˜4 GeV/c) is very similar to that at low transverse momentum. The measured values of charged particle pseudorapidity density and elliptic flow were found to be independent of energy over a broad range of pseudorapidities when effectively viewed in the rest frame of one of the colliding nuclei, a property we describe as "extended longitudinal scaling". Finally, the centrality and energy dependences of several observables were found to factorize to a surprising degree.

  7. CONTINUOUS ABORT GAP CLEANING AT RHIC.

    SciTech Connect

    DREES,A.FLILLER,R.III.FU,W.MICHNOFF,R.

    2004-07-05

    Since the RHIC Au-Au run in the year 2001 the 200 MHz cavity system was used at storage and a 28 MHz system during injection and acceleration. The rebucketing procedure potentially causes a higher debunching rate of heavy ion beams in addition to amplifying debunching due to other mechanisms. At the end of a four hour store, debunched beam can easily account for more than 50% of the total beam intensity. This effect is even stronger with the achieved high intensities of the RHIC Au-Au run in 2004. A beam abort at the presence of a lot of debunched beam bears the risk of magnet quenching and experimental detector damage due to uncontrolled beam losses. Thus it is desirable to avoid any accumulation of debunched beam from the beginning of each store, in particular to anticipate cases of unscheduled beam aborts due to a system failure. A combination of a fast transverse kickers and the new 2-stage copper collimator system are used to clean the abort gap continuously throughout the store with a repetition rate of 1 Hz. This report gives. an overview of the new gap cleaning procedure and the achieved performance.

  8. High luminosity electron-hadron collider eRHIC

    SciTech Connect

    Ptitsyn, V.; Aschenauer, E.; Bai, M.; Beebe-Wang, J.; Belomestnykh, S.; Ben-Zvi, I.; Blaskiewicz, M..; Calaga, R.; Chang, X.; Fedotov, A.; Gassner, D.; Hammons, L.; Hahn, H.; Hammons, L.; He, P.; Hao, Y.; Jackson, W.; Jain, A.; Johnson, E.C.; Kayran, D.; Kewisch, J.; Litvinenko, V.N.; Luo, Y.; Mahler, G.; McIntyre, G.; Meng, W.; Minty, M.; Parker, B.; Pikin, A.; Rao, T.; Roser, T.; Skaritka, J.; Sheehy, B.; Skaritka, J.; Tepikian, S.; Than, Y.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Webb, S.; Wu, Q.; Xu, W.; Pozdeyev, E.; Tsentalovich, E.

    2011-03-28

    We present the design of a future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 10{sup 34} cm{sup -2} s{sup -1} can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling, ERL test facility and the compact magnets for recirculation passes. A natural staging scenario of step-by-step increases of the electron beam energy by building-up of eRHIC's SRF linacs is presented.

  9. Insulation Testing Using Cryostat Apparatus with Sleeve

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Augustynowicz, S. D.

    1999-01-01

    The method and equipment of testing continuously rolled insulation materials is presented in this paper. Testing of blanket and molded products is also facilitated. Materials are installed around a cylindrical copper sleeve using a wrapping machine. The sleeve is slid onto the vertical cold mass of the cryostat. The gap between the cold mass and the sleeve measures less than 1 mm. The cryostat apparatus is a liquid nitrogen boiloff calorimeter system that enables direct measurement of the apparent thermal conductivity (k-value) of the insulation system at any vacuum level between 5 x 10(exp -5) and 760 torr. Sensors are placed between layers of the insulation to provide complete temperature-thickness profiles. The temperatures of the cold mass (maintained at 77.8 kelvin (K)), the sleeve (cold boundary temperature (CBT)), the insulation outer surface (warm boundary temperature (WBT)), and the vacuum can (maintained at 313 K by a thermal shroud) are measured. Plots of CBT, WBT, and layer temperature profiles as functions of vacuum level show the transitions between the three dominant heat transfer modes. For this cryostat apparatus, the measureable heat gain is from 0.2 to 20 watts. The steady-state measurement of k-value is made when all temperatures and the boiloff rate are stable.

  10. MEASUREMENT AND CORRECTION OF NONLINEAR CHROMATICITY IN RHIC.

    SciTech Connect

    TEPIKIAN, S.; CAMERON, P.; DELLA PENNA, A.; PTITSYN, V.

    2005-05-16

    To improve luminosity in RHIC by using smaller {beta}*, higher order chromatic effects may need to be corrected [1]. Measuring of higher order chromaticities is discussed and compared to a model of RHIC, showing agreement. Assuming round beams, four families of octupoles are used to correct the second order chromaticities while keeping under control the amplitude dependent betatron tune spread in the beams. We show that the octupoles can reduce the second order chromaticity in RHIC, but they have insufficient strength for complete correction.

  11. RHIC RF Harmonic Numbers for Low Energy Operations

    SciTech Connect

    Satogata,T.

    2008-05-01

    There have been several test runs of RHIC operations to explore the feasibility of luminosity production at low energies. There is considerable international interest in the possible existence of a QCD phase diagram critical point in the RHIC gold-gold collision energy range of {radical}s{sub NN} = 5-50 GeV[l, 2, 3]. This paper reviews the RF harmonic number constraints for RHIC gold-gold collisions in this energy range, and concludes that optimal simultaneous collisions at both experiments are only feasible when the harmonic number is divisible by 9.

  12. Wake fields effects for the eRHIC project

    SciTech Connect

    Fedotov A. V.; Belomestnykh, S.; Kayran, D.; Litvinenko, V.; Ptitsyn, V.

    2012-05-20

    An Energy Recovery Linac (ERL) with a high peak electron bunch current is proposed for the Electron-Ion collider (eRHIC) project at the Brookhaven National Laboratory. The present design is based on the multi-pass electron beam transport in existing tunnel of the Relativistic Heavy Ion Collider (RHIC). As a result of a high peak current and a very long beam transport, consideration of various collective beam dynamics effects becomes important. Here we summarize effects of the coherent synchrotron radiation, resistive wall, accelerating cavities and wall roughness on the resulting energy spread and energy loss for several scenarios of the eRHIC project.

  13. A number of upgrades on RHIC power supply system

    SciTech Connect

    Mi, C.; Bruno, D.; Drozd, J.; Nolan, T.; Orsatti, F.; Heppener, G.; Di Lieto, A.; Schultheiss, C.; Samms, T.; Zapasek, R.; Sandberg, J.

    2015-05-03

    This year marks the 15th run for the Relativistic Heavy Ion Collider (RHIC). Operation of a reliable superconducting magnet power supply system is a key factor of an accelerator’s performance. Over the past 15 years, the RHIC power supply group has made many improvements to increase the machine availability and reduce failures. During these past 15 years of operating RHIC a lot of problems have been solved or addressed. In this paper some of the essential upgrades/improvements are discussed.

  14. Hypernucleus Production at RHIC and HIRFL-CSR Energy

    SciTech Connect

    Zhang, S.; Xu, Z.; Chen, J.H., Ma, Y.G., Tang, Z.B.

    2010-09-01

    We calculated the hypertriton production at RHIC-STAR and HIRFL-CSR acceptance, with a multi-phase transport model (AMPT) and a relativistic transport model (ART), respectively. In specific, we calculated the Strangeness Population Factor S{sub 3} = {sub {Lambda}}{sup 3}H/({sup 3}H{sub e} x {Lambda}/p) at different beam energy. Our results from AGS to RHIC energy indicated that the collision system may change from hadronic phase at AGS energies to partonic phase at RHIC energies. Our calculation at HIRFL-CSR energy supports the proposal to measure hypertriton at HIRFL-CSR.

  15. Improved cable insulation for superconducting magnets

    SciTech Connect

    Anerella, M.; Ghosh, A.K.; Kelly, E.; Schmalzle, J.; Willen, E.; Fraivillig, J.; Ochsner, J.; Parish, D.J.

    1993-09-01

    Several years ago, Brookhaven joined with DuPont in a cooperative effort to develop improved cable insulation for SSC superconducting dipole magnets. The effort was supported by the SSC Central Design Group and later the SSC Laboratory. It was undertaken because turn-to-turn and midplane shorts were routinely being experienced during the assembly of magnets with coils made of the existing Kapton/Fiberglass (K/FG) system of Kapton film overwrapped with epoxy-impregnated fiberglass tape. Dissection of failed magnets showed that insulation disruption and punch-through was occurring near the inner edges of turns close to the magnet midplane. Coil pressures of greater than 17 kpsi were sufficient to disrupt the insulation at local high spots where wires in neighboring turns crossed one another and where the cable had been strongly compacted in the keystoning operation during cable manufacture. In the joint development program, numerous combinations of polyimide films manufactured by DuPont with varying configurations and properties (including thickness) were subjected to tests at Brookhaven. Early tests were bench trials using wrapped cable samples. The most promising candidates were used in coils and many of these assembled and tested as magnets in both the SSC and RHIC magnet programs currently underway. The Kapton CI (CI) system that has been adopted represents a suitable compromise of numerous competing factors. It exhibits improved performance in the critical parameter of compressive punch-through resistance as well as other advantages over the K/FG system.

  16. Mechanical design of 56 MHz superconducting RF cavity for RHIC collider

    SciTech Connect

    Pai, C.; Ben-Zvi, I.; Burrill, A.; Chang, X.; McIntyre, G.; Than, Y.; Tuozzolo, J.; Wu, Q.

    2011-03-28

    A 56 MHz Superconducting RF Cavity operating at 4.4K is being constructed for the RHIC collider. This cavity is a quarter wave resonator with beam transmission along the centerline. This cavity will increase collision luminosity by providing a large longitudinal bucket for stored bunches of RHIC ion beam. The major components of this assembly are the niobium cavity with the mechanical tuner, its titanium helium vessel and vacuum cryostat, the support system, and the ports for HOM and fundamental dampers. The cavity and its helium vessel must meet equivalent safety with the ASME pressure vessel code and it must not be sensitive to frequency shift due to pressure fluctuations from the helium supply system. Frequency tuning achieved by a two stage mechanical tuner is required to meet performance parameters. This tuner mechanism pushes and pulls the tuning plate in the gap of niobium cavity. The tuner mechanism has two separate drive systems to provide both coarse and fine tuning capabilities. This paper discusses the design detail and how the design requirements are met.

  17. Enhancing RHIC luminosity capabilities with in-situ beam piple coating

    SciTech Connect

    Herschcovitch,A.; Blaskiewicz, M.; Fischer, W.; Poole, H. J.

    2009-05-04

    Electron clouds have been observed in many accelerators, including the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory (BNL). They can limit the machine performance through pressure degradation, beam instabilities or incoherent emittance growth. The formation of electron clouds can be suppressed with beam pipe surfaces that have low secondary electron yield. At the same time, high wall resistivity in accelerators can result in levels of ohmic heating unacceptably high for superconducting magnets. This is a concern for the RHIC machine, as its vacuum chamber in the superconducting dipoles is made from relatively high resistivity 316LN stainless steel. The high resistivity can be addressed with a copper (Cu) coating; a reduction in the secondary electron yield can be achieved with a titanium nitride (TiN) or amorphous carbon (a-C) coating. Applying such coatings in an already constructed machine is rather challenging. We started developing a robotic plasma deposition technique for in-situ coating of long, small diameter tubes. The technique entails fabricating a device comprised of staged magnetrons and/or cathodic arcs mounted on a mobile mole for deposition of about 5 {micro}m (a few skin depths) of Cu followed by about 0.1 {micro}m of TiN (or a-C).

  18. Excavationless Exterior Foundation Insulation Field Study

    SciTech Connect

    Schirber, T.; Mosiman, G.; Ojczyk, C.

    2014-10-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  19. Excavationless Exterior Foundation Insulation Field Study

    SciTech Connect

    Schirber, T.; Mosiman, G.; Ojczyk, C.

    2014-09-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with liquid insulating foam. The team was able to excavate a continuous 4 inches wide by 4 feet to 5 feet deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  20. An ultralightweight, evacuated, load-bearing, high-performance insulation system. [for cryogenic propellant tanks

    NASA Technical Reports Server (NTRS)

    Parmley, R. T.; Cunnington, G. R., Jr.

    1978-01-01

    A new hollow-glass microsphere insulation and a flexible stainless-steel vacuum jacket were demonstrated on a flight-weight cryogenic test tank, 1.17 m in diameter. The weight of the system is three times lighter than the most advanced vacuum-jacketed design demonstrated to date, a free-standing honeycomb hard shell with a multilayer insulation system (for a Space Tug application). Design characteristics of the flexible vacuum jacket are presented along with a model describing the insulation thermal performance as a function of boundary temperatures and emittance, compressive load on the insulation and insulation gas pressure. Test data are compared with model predictions and with prior flat-plate calorimeter test results. Potential applications for this insulation system or a derivative of this system include the cryogenic Space Tug, the Single-Stage-to-Orbit Space Shuttle, LH2 fueled subsonic and hypersonic aircraft, and LNG applications.

  1. Vacuum phenomenon.

    PubMed

    Yanagawa, Youichi; Ohsaka, Hiromichi; Jitsuiki, Kei; Yoshizawa, Toshihiko; Takeuchi, Ikuto; Omori, Kazuhiko; Oode, Yasumasa; Ishikawa, Kouhei

    2016-08-01

    This article describes the theory of the formation of the vacuum phenomenon (VP), the detection of the VP, the different medical causes, the different locations of the presentation of the VP, and the differential diagnoses. In the human body, the cavitation effect is recognized on radiological studies; it is called the VP. The mechanism responsible for the formation of the VP is as follows: if an enclosed tissue space is allowed to expand as a rebound phenomenon after an external impact, the volume within the enclosed space will increase. In the setting of expanding volume, the pressure within the space will decrease. The solubility of the gas in the enclosed space will decrease as the pressure of the space decreases. Decreased solubility allows a gas to leave a solution. Clinically, the pathologies associated with the VP have been reported to mainly include the normal joint motion, degeneration of the intervertebral discs or joints, and trauma. The frequent use of CT for trauma patients and the high spatial resolution of CT images might produce the greatest number of chances to detect the VP in trauma patients. The VP is observed at locations that experience a traumatic impact; thus, an analysis of the VP may be useful for elucidating the mechanism of an injury. When the VP is located in the abdomen, it is important to include perforation of the digestive tract in the differential diagnosis. The presence of the VP in trauma patients does not itself influence the final outcome. PMID:27147527

  2. The Performance of Gas Filled Multilayer Insulation

    NASA Astrophysics Data System (ADS)

    Mills, G. L.; Zeller, C. M.

    2008-03-01

    The NASA Exploration Program is currently planning to use liquid oxygen, methane and hydrogen for propulsion in future spacecraft for the human exploration of the Moon and Mars. This will require the efficient long term, on-orbit storage of these cryogens. Multilayer insulation (MLI) will be critical to achieving the required thermal performance since it has much lower heat transfer than any other insulation when used in a vacuum. However, the size and mass constraints of these propulsion systems will not allow a structural shell to be used to provide vacuum for the MLI during ground hold and launch. One approach is to purge the MLI during ground hold with an inert gas which is then vented during launch ascent and on-orbit. In this paper, we report on experimental tests and modeling that we have done on MLI used to insulate a cryogenic tank. These include measurements of the heat transfer of gas filled insulation, evacuated insulation and during the transition in between.

  3. RHIC POWER SUPPLIES - LESSONS LEARNED FROM THE 1999 - 2001 RHIC RUNS.

    SciTech Connect

    BRUNO,D.ENG,W.GANETIS,G.LAMBIASE,R.F.LOUIE,W.SANDBERG,J.SCHULTHEISS,C.

    2003-05-12

    The Relativistic Heavy Ion Collider (RHIC) was commissioned in 1999 and 2000. The two RHIC rings require a total of 933 power supplies (PSs) to supply currents to highly inductive superconducting magnets. These units function as 4 main PSs, 237 insertion region (02) PSs, 24 sextupole PSs, 24 Gamma-T PSs, 8 snake PSs, 16 spin rotator PSs, and 620 correction PSs. PS reliability in this type of machine is of utmost importance because the IR PSs are nested within other IR PSs, and these are all nested within the main PSs. This means if any main or IR PS trips off due to a PS fault or quench indication, then all the IR and main PSs in that ring must follow. When this happens, the Quench Protection Assemblies (QPA's) for each unit disconnects the PSs from the circuit and absorb the stored energy in the magnets. Commissioning these power supplies and QPA's was and still is a learning experience. A summary of the major problems encountered during these first three RHIC runs will be presented along with solutions.

  4. Spin dependence in polarized proton-proton elastic scattering at RHIC

    NASA Astrophysics Data System (ADS)

    Plyku, Donika

    The STAR (Solenoidal Tracker At RHIC - Relativistic Heavy Ion Collider) experiment is equipped with Roman Pots, insertion devices that allow detectors to be moved close to the beam for the measurement of high energy protons scattered at very small angles. This setup, together with the unique capability of RHIC to collide spin-polarized proton beams, allows STAR to study both the dynamics and the spin-dependence of the proton-proton ( pp) elastic scattering process. Silicon strip detectors, installed inside the Roman Pots, measure tracks of protons scattered diffractively at very small angles. In a dedicated run with special beam optics during the 2009 RHIC run, the collaboration collected about 20 million elastic events with transversely polarized proton beams at the center of mass energy s = 200 GeV and four momentum transfer squared (t) range of 0.003 ≤ |t| ≤ 0.035 (GeV/c) 2, where, due to the Coulomb Nuclear Interference (CNI), a measurable single spin asymmetry arises. While the electromagnetic interaction can be determined in QED, the description of the hadronic interaction at small -t scattering requires the use of nonperturbative techniques in QCD, and, phenomenological models, rather than pQCD, are used to describe the exchange mechanism. High energy diffractive scattering at small-t is dominated by the Pomeron exchange, treated in pQCD as a color singlet combination of two gluons carrying quantum numbers of the vacuum (JPC = 0++). In this dissertation, I report on a high precision measurement of the transverse single spin asymmetry A N at s = 200 GeV in pp elastic scattering at RHIC. The measured AN and its t-dependence are consistent with the absence of a hadronic spin-flip amplitude. The major contribution to the uncertainty in AN comes from the uncertainty in the beam polarization measurement. The presented results provide a precise measurement in the non-perturbative QCD regime, where experimental data are indispensable, and, a significant

  5. A mulitple cathode gun design for the eRHIC polarized electron source

    SciTech Connect

    Chang, X.; Ben-Zvi, I.; Kewisch, J.; Litvinenko, V.; Pikin, A.; Ptitsyn, V.; Rao, T.; Sheehy, B.; Skaritka, J.; Wang, E.; Wu, Q.; Xin, T.

    2011-03-28

    The future electron-ion collider eRHIC requires a high average current ({approx}50 mA), short bunch ({approx}3 mm), low emittance ({approx}20 {micro}m) polarized electron source. The maximum average current of a polarized electron source so far is more than 1 mA, but much less than 50 mA, from a GaAs:Cs cathode. One possible approach to overcome the average current limit and to achieve the required 50 mA beam for eRHIC, is to combine beamlets from multiple cathodes to one beam. In this paper, we present the feasibility studies of this technique. The future eRHIC project, next upgrade of RHIC, will be the first electron-heavy ion collider in the world. It requires polarized electron source with a high average current ({approx}50 mA), short bunch ({approx}3 mm), emittance of about 20 {micro}m and energy spread of {approx}1% at 10 MeV. The state-of-art polarized electron cathode can generate average current of about more than 1 mA, but much less than 50 mA. The current is limited by the low quantum efficiency, space charge and ultra-high vacuum requirement of the polarized cathode. A possible approach to achieve the 50 mA beam is to employ multiple cathodes, such as 20 cathodes, and funnel the multiple bunched beams from cathodes to the same axis. Fig.1 illustrates schematically the concept of combining the multiple beams. We name it as 'Gatling gun' because it bears functional similarity to a Gatling gun. Laser beams strike the cathodes sequentially with revolution frequency of 700 kHz. Each beam bunch is focused by a solenoid and is bent toward the combiner. The combiner with rotating bending field bends all bunches arriving the combiner with a rotational pattern to the same axis. The energy of each bunch is modified by a bunching cavity (112MHz) and a 3rd harmonic cavity (336MHz). The bunch length is compressed ballistically in the drift space and is frozen after energy has been boosted to 10 MeV by the Booster linac. Each beam bunch contains 3.5 nC charge. The

  6. Calcium silicate insulation structure

    DOEpatents

    Kollie, Thomas G.; Lauf, Robert J.

    1995-01-01

    An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

  7. Multiple density layered insulator

    DOEpatents

    Alger, T.W.

    1994-09-06

    A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

  8. Multiple density layered insulator

    DOEpatents

    Alger, Terry W.

    1994-01-01

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  9. Experience with IBS-suppression lattice in RHIC

    SciTech Connect

    Litvinenko,V.N.; Luo, Y.; Ptitsyn, V.; Satogata, T.; Tepikian, S.; Bai, M.; Bruno, D.; Cameron, P.; Connolly, R.; Della Penna, A.; Drees, A.; Fedotov, A.; Ganetis, G.; Hoff, L.; Louie, W.; Malitsky, N.; Marr, G.; Marusic, A.; Montag, C.; Pilat, F.; Roser, T.; Trbojevic, D.; Tsoupas, N.

    2008-06-23

    An intra-beam scattering (IBS) is the limiting factor of the luminosity lifetime for RHIC operating with heavy ions. In order to suppress the IBS we designed and implemented new lattice with higher betatron tunes. This lattice had been developed during last three years and had been used for gold ions in yellow ring of the RHIC during d-Au part of the RHIC Run-8. The use of this lattice allowed both significant increases in the luminosity lifetime and the luminosity levels via reduction of beta-stars in the IPS. In this paper we report on the development, the tests and the performance of IBS-suppression lattice in RHIC, including the resulting increases in the peak and the average luminosity. We also report on our plans for future steps with the IBS suppression.

  10. ON THE FEASIBILITY OF POLARIZED HEAVY IONS IN RHIC.

    SciTech Connect

    MACKAY, W.W.

    2006-06-23

    Heavy nonspherical ions such as uranium have been proposed for collisions in RHIC[1]. When two such ions collide with their long axes aligned parallel to the beams (large helicities), then the plasma density might be as much as 60% higher. Since the collisions might have any orientation of the two nuclei, the alignment of the nuclei must be inferred from a complicated unfolding of multiplicity distributions. Instead, if it would be possible to polarize the ions and control the orientation in RHIC, then a much better sensitivity might be obtained. This paper investigates the manipulation of such polarized ions with highly distorted shapes in RHIC. A number of ion species are considered as possibilities with either full or partial Siberian snakes in RHIC.

  11. PROGRESS OF HIGH-ENERGY ELECTRON COOLING FOR RHIC.

    SciTech Connect

    FEDOTOV,A.V.

    2007-09-10

    The fundamental questions about QCD which can be directly answered at Relativistic Heavy Ion Collider (RHIC) call for large integrated luminosities. The major goal of RHIC-I1 upgrade is to achieve a 10 fold increase in luminosity of Au ions at the top energy of 100 GeV/nucleon. Such a boost in luminosity for RHIC-II is achievable with implementation of high-energy electron cooling. The design of the higher-energy cooler for RHIC-II recently adopted a non-magnetized approach which requires a low temperature electron beam. Such electron beams will be produced with a superconducting Energy Recovery Linac (ERL). Detailed simulations of the electron cooling process and numerical simulations of the electron beam transport including the cooling section were performed. An intensive R&D of various elements of the design is presently underway. Here, we summarize progress in these electron cooling efforts.

  12. Lattice design for the ERL electron ion collider in RHIC

    SciTech Connect

    Trbojevic, D.; Beebe-Wang, J.; Tsoupas, N.; Chang, X.; Kayran, D.; Ptitsyn, V.; Litvinenko, V.; Hao, Y.; Parker, B.; Pozdeyev, E.

    2010-05-23

    We present electron ion collider lattice design for the Relativistic Heavy Ion Collider (eRHIC) where the electrons have multi-passes through recirculating linacs (ERL) and arcs placed in the existing RHIC tunnel. The present RHIC interaction regions (IR's), where the electron ion collisions will occur, are modified to allow for the large luminosity. Staging of eRHIC will bring the electron energy from 4 up to 20 (30) GeV as the superconducting cavities are built and installed sequentially. The synchrotron radiation from electrons at the IR is reduced as they arrive straight to the collision while ions and protons come with 10 mrad crossing angle using the crab cavities.

  13. Evaluation of CBA first string full cell vacuum system

    SciTech Connect

    Foerster, C.L.; Briggs, J.; Christianson, C.; Stattel, P.

    1983-01-01

    The CBA (Colliding Beam Accelerator, formerly known as ISABELLE) Full Cell Magnet System consisting of six superconducting dipole magnets and two superconducting quadrupole magnets requires two separate vacuum systems. One, known as beam vacuum operates below 3 x 10/sup -11/ Torr and the other, known as insulating vacuum, operates at less than 10/sup -7/ Torr to isolate cryo circuits from atmosphere and from the uhv beam tubes. The uhv bore tube is isolated from the 4.0/sup 0/K magnet by thirty-six (36) layers of superinsulation and insulating vacuum. Heat load measurements on the bore tube have been completed and found to agree with data obtained in smaller controlled experiments. Measurements of helium, accumulated on cryogenic pumped charcoal panels over many weeks, have verified sensitive helium mass spectrometer leak detection methods for vacuum integrity, providing sound design of the welded complex. The Full Cell was assembled and operated under conditions that would exist in the completed machine. Pressures below 2 x 10/sup -11/ Torr beam vacuum requirement and below 2 x 10/sup -7/ Torr insulating vacuum, were routinely achieved during all phases of the Full Cell operation and support systems testing.

  14. Thermal Conductivity of Powder Insulations for Cryogenic Storage Vessels

    NASA Astrophysics Data System (ADS)

    Choi, Y. S.; Barrios, M. N.; Chang, H. M.; Van Sciver, S. W.

    2006-04-01

    The objective of the present work was to develop a precise instrument for measuring the thermal conductivity of powder insulating materials over a temperature range from 20 K to near room temperature. The instrument consists of two concentric copper cylinders with the annular space filled with the insulating material. The outer cylinder is thermally anchored to the coldhead of a single stage Gifford-McMahon cryocooler, while the inner copper cylinder is used for generating uniform heat flux through the insulating material. The temperature of both cylinders is measured at several locations to ensure uniform boundary conditions. The entire apparatus is wrapped in multi-layer insulation and suspended in a vacuum cryostat that provides an insulating environment. For a supplied heat flux, the temperature difference between the two cylinders is measured in steady state, from which the thermal conductivity of powder insulation is calculated and compared with published results.

  15. Note on polarized RHIC bunch arrangement

    SciTech Connect

    Underwood, D.

    1996-08-30

    We discuss what combinations of bunch polarization in the two RHIC rings are necessary to do the physics measurements at various interaction regions. We also consider the bunches for both the pion inclusive and p-p elastic polarization measurements. Important factors to consider are the direction of the polarization with respect to the momentum in each bunch, the beam gas backgrounds, and the simulation of zero - polarization in one beam by averaging + and - helicity, and luminosity monitoring for normalization. These considerations can be addressed by setting the relative number of each of the 9 combinations possible at each of the 6 interaction regions. The combinations are (+ empty -) yellow X (+ empty -)blue, where yellow and blue are the counter-rotating rings.

  16. EXOTIC PARTICLE SEARCHES WITH STAR AT RHIC.

    SciTech Connect

    KANABA,S.

    2004-03-15

    We present preliminary results of the STAR experiment at RHIC on exotic particle searches in minimum bias Au + Au collisions at {radical} s{sub NN} = 200 GeV. We observe a narrow peak at 1734 {+-} 0.5 {+-} 5 MeV in the {lambda}K{sub s}{sup 0} invariant mass with width consistent with the experimental resolution of about 6 MeV within the errors. The statistical significance can be quantified between 3 and 6 {sigma} depending on cuts and methods. If this peak corresponds to a real particle state it would be a candidate for the N{sup 0} or the {Xi}{sup 0} I = 1/2 pentaquark states.

  17. ALL-FERRITE RHIC INJECTION KICKER

    SciTech Connect

    HAHN,H.; FISCHER,W.; PTITSYN,V.I.; TUOZZOLO,J.E.

    2001-06-18

    Ion beams are transferred from the AGS into RHIC in boxcar fashion as single bunches. The nominal design assumes 60 bunches per ring but increasing the number of bunches to gain luminosity is possible, thereby requiring injection kickers with a shorter rise time. The original injection system consists of traveling-wave dielectric loaded kicker magnets and a Blumlein pulser with a rise time adequate for the present operation. Voltage breakdown in the dielectric kickers suggested the use of all-ferrite magnets. In order to minimize the conversion cost, the design of the all-ferrite kicker uses the same components as the dielectric loaded units. The all-ferrite kickers showed in bench measured good breakdown properties and a current rise time of < 50 ns. A prototype kicker has been installed in the blue ring and was tested with beam. Beam measurements indicate suitability of all-ferrite kicker magnets for upgraded operation.

  18. Hadron spectroscopy and B physics at RHIC

    SciTech Connect

    Chung, S.U.; Weygand, D.P.; Willutzki, H.J.

    1991-11-01

    A description is given of the physics opportunities at RHIC regarding quark-gluon spectroscopy. The basic idea is to isolate with appropriate triggers the sub-processes pomeron + pomeron {yields} hadrons and {gamma}{sup *} + {gamma}{sup *} {yields} hadrons with the net effective mass of hadrons in the range of 1.0 to 10.0 GeV, in order to study the hadronic states composed of quarks and gluons. The double-pomeron interactions are expected to produce glueballs and hybrids preferentially, while the two-offshell-photon initial states should couple predominantly to quarkonia and multiquark states. Of particular interest is the possibility of carrying out a CP-violation study in the self-tagging B decays, B{sub d}{sup 0} {yields} K{sup +}{pi}{sup {minus}} and {bar B}{sub d}{sup 0} {yields} K{sup {minus}}{pi}{sup +}. 20 refs., 4 figs.

  19. MEASUREMENT OF TRANSVERSE ECHOES IN RHIC.

    SciTech Connect

    FISCHER, W.; SATOGATA, T.; TOMAS. R.

    2005-05-16

    Beam echoes are a very sensitive method to measure diffusion, and longitudinal echo measurements were performed in a number of machines. In RHIC, for the first time, a transverse beam echo was observed after applying a dipole kick followed by a quadrupole .kick. After application of the dipole kick, the dipole moment decohered completely due to lattice nonlinearities. When a quadrupole kick is applied at time {tau} after the dipole kick, the beam re-cohered at time 2{tau} thus showing an echo response. We describe the experimental setup and measurement results. In the measurements the dipole and quadrupole kick amplitudes, amplitude dependent tune shift, and the time between dipole and quadrupole kick were varied. In addition, measurements were taken with gold bunches of different intensities. These should exhibit different transverse diffusion rates due to intra-beam scattering.

  20. RHIC AC DIPOLE DESIGN AND CONSTRUCTION.

    SciTech Connect

    BAI,M.; METH,M.; PAI,C.; PARKER,B.; PEGGS,S.; ROSER,T.; SANDERS,R.; TRBOJEVIC,D.; ZALTSMAN,A.

    2001-06-18

    Two ac dipoles with vertical and horizontal magnetic field have been proposed at RHIC for applications in linear and non-linear beam dynamics and spin manipulations. A magnetic field amplitude of 380 Gm is required to produce a coherent oscillation of 5 times the rms beam size at the top energy. We take the ac dipole frequency to be 1.0% of the revolution frequency away from the betatron frequency. To achieve the strong magnetic field with minimum power loss, an air-core magnet with two seven turn winding of low loss Litz wire resonating at 64 kHz is designed. The system is also designed to allow one to connect the two magnet winding in series to resonate at 37 kHz for the spin manipulation. Measurements of a half length prototype magnet are also presented.

  1. COUPLING MEASUREMENT AND CORRECTION AT RHIC.

    SciTech Connect

    PILAT,F.; BEEBE-WANG,J.; FISCHER,W.; PTITSYN,V.; SATOGATA,T.

    2002-06-02

    Coupling correction at RHIC has been operationally achieved through a two-step process: using local triplet skew quadrupoles to compensate coupling corn rolled low-beta triplet quadrupoles, and minimizing the tune separation and residual coupling with orthogonal global skew quadrupole families. An application has been developed for global correction that allows skew quadrupole tuning and tune display with a choice of different tune measurement techniques, including tune-meter, Schottky and phase lock loop (PLL). Coupling effects have been analysed by using 1024-turn (TBT) information from the beam position monitor (BPM) system. These data allow the reconstruction of the off-diagonal terms of the transfer matrix, a measure of global coupling. At both injection and storage energies, coordination of tune meter kicks with TBT acquisition at 322 BPM's in each ring allows the measurement of local coupling at all BPM locations.

  2. Heavy Flavor Measurements at the RHIC

    SciTech Connect

    Donadelli, Marisilvia

    2010-11-12

    The main focus of the heavy flavor program at the Relativistic Heavy Ion Collider (RHIC) facility is to investigate the properties of the Quark-Gluon Plasma poduced in ultra-relativistic heavy ion collisions, by studying its effect on open heavy flavor and quarkonia production. The measurements shown in this Letter were performed by PHENIX and STAR experiments in p+p, d+Au, Au+Au collisions at {radical}(S{sub NN}) = 200 GeV. Charm and beauty cross sections are measured and compared through single lepton, and lepton-hadron correlations in p+p collisions. R{sub AA} modification factor for single electrons in Au+Au collisions is presented. Quarkonia measurements include J/{Psi}, {Psi}' and {Upsilon} yields as well as rapidity dependence, and modification factors for J/{Psi} in d+Au collisions and for {Upsilon} in Au+Au collisions.

  3. A Helical Magnet Design for RHIC^*.

    NASA Astrophysics Data System (ADS)

    Willen, E.; Gupta, R.; Kelly, E.; Muratore, J.

    1997-05-01

    Helical dipole magnets are required in a project for the Relativistic Heavy Ion Collider (RHIC) to control and preserve the beam polarization in order to allow the collision of polarized proton beams. The project requires superconducting magnets with a 100 mm coil aperture and a 4 Tesla field in which the field rotates 360 degrees over a distance of 2.4 meters. A design restraint is that the magnets operate at relatively low current (less than 500 amperes) in order to minimize the heat load from the current leads. A magnet has been developed that uses a small diameter superconducting cable wound into helical grooves machined into a thick-walled aluminum cylinder. The design and test results of this prototype magnet will be described. ^*Work supported by the U.S. Department of Energy.

  4. Code generation of RHIC accelerator device objects

    SciTech Connect

    Olsen, R.H.; Hoff, L.; Clifford, T.

    1995-12-01

    A RHIC Accelerator Device Object is an abstraction which provides a software view of a collection of collider control points known as parameters. A grammar has been defined which allows these parameters, along with code describing methods for acquiring and modifying them, to be specified efficiently in compact definition files. These definition files are processed to produce C++ source code. This source code is compiled to produce an object file which can be loaded into a front end computer. Each loaded object serves as an Accelerator Device Object class definition. The collider will be controlled by applications which set and get the parameters in instances of these classes using a suite of interface routines. Significant features of the grammar are described with details about the generated C++ code.

  5. RHIC 10 Hz global orbit feedback system

    SciTech Connect

    Michnoff, R.; Arnold, L.; Carboni, L.; Cerniglia, P; Curcio, A.; DeSanto, L.; Folz, C.; Ho, C.; Hoff, L.; Hulsart, R.; Karl, R.; Luo, Y.; Liu, C.; MacKay, W.; Mahler, G.; Meng, W.; Mernick, K.; Minty, M.; Montag, C.; Olsen, R.; Piacentino, J.; Popken, P.; Przybylinski, R.; Ptitsyn, V.; Ritter, J.; Schoenfeld, R.; Thieberger, P.; Tuozzolo, J.; Weston, A.; White, J.; Ziminski, P.; Zimmerman, P.

    2011-03-28

    Vibrations of the cryogenic triplet magnets at the Relativistic Heavy Ion Collider (RHIC) are suspected to be causing the horizontal beam perturbations observed at frequencies around 10 Hz. Several solutions to counteract the effect have been considered in the past, including a local beam feedback system at each of the two experimental areas, reinforcing the magnet base support assembly, and a mechanical servo feedback system. However, the local feedback system was insufficient because perturbation amplitudes outside the experimental areas were still problematic, and the mechanical solutions are very expensive. A global 10 Hz orbit feedback system consisting of 36 beam position monitors (BPMs) and 12 small dedicated dipole corrector magnets in each of the two 3.8 km circumference counter-rotating rings has been developed and commissioned in February 2011. A description of the system architecture and results with beam will be discussed.

  6. Physics at Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect

    Shuryak, E.V.

    1990-08-01

    This introductory talk contains a brief discussion of future experiments at RHIC related to physics of superdense matter. In particular, we consider the relation between space-time picture of the collision and spectra of the observed secondaries. We discuss where one should look for QGP signals and for possible manifestation of the phase transition. We pay more attention to a rather new topic: hadron modification in the gas phase, which is interesting by itself as a collective phenomenon, and also as a precursor indicating what happens with hadrons near the phase transition. We briefly review current understanding of the photon physics, dilepton production, charm and strangeness and J/{psi} suppression. At the end we try to classify all possible experiments. 47 refs., 3 figs.

  7. Polarization effects at RHIC and LHC

    SciTech Connect

    Barros, C. C. Jr.

    2013-03-25

    Recently, the STAR collaboration has measured the {Lambda} and {sup -}{Lambda} polarizations as functions of the transverse momentum and the pseudorapidity in 200 GeV Au-Au collisions at RHIC. In this study, the global polarization has been measured, and the results presents some differences when comparedwith the ones obtained in proton-nucleus collisions. These results can be understood in terms of a model that we recently proposed, that is based on the hydrodynamical model, and taking into account the average effect of the final-state interactions (that occur in the hadronic phase) between the hyperons and other produced particles. In this work, we show how this model may be applied in such collisions, and also will discuss the relation of our results with other models, in order to explain the experimental data.

  8. Polarization simulations in the RHIC run 15 lattice

    SciTech Connect

    Meot, F.; Huang, H.; Luo, Y.; Ranjbar, V.; Robert-Demolaize, G.; White, S.

    2015-05-03

    RHIC polarized proton Run 15 uses a new acceleration ramp optics, compared to RHIC Run 13 and earlier runs, in relation with electron-lens beam-beam compensation developments. The new optics induces different strengths in the depolarizing snake resonance sequence, from injection to top energy. As a consequence, polarization transport along the new ramp has been investigated, based on spin tracking simulations. Sample results are reported and discussed.

  9. Breakthrough: RHIC Explores Matter at the Dawn of Time

    ScienceCinema

    Paul Sorensen

    2013-07-19

    Physicist Paul Sorensen describes discoveries made at the Relativistic Heavy Ion Collider (RHIC), a particle accelerator at the U.S. Department of Energy's Brookhaven National Laboratory. At RHIC, scientists from around the world study what the universe may have looked like in the first microseconds after its birth, helping us to understand more about why the physical world works the way it does -- from the smallest particles to the largest stars.

  10. COOLING DYNAMICS STUDIES AND SCENARIOS FOR THE RHIC COOLER.

    SciTech Connect

    FEDOTOV,A.V.; BEN-ZVI,I.; LITVINENKO, V.

    2005-05-16

    In this paper, we discuss various electron cooling dynamics studies for RHIC. We also present simulations [1] of various possibilities of using electron cooling at RHIC, which includes cooling at the top energy, pre-cooling at low energy, aspects of transverse and longitudinal cooling and their impact on the luminosity. Electron cooling at various collision energies both for heavy ions and protons is also discussed.

  11. Breakthrough: RHIC Explores Matter at the Dawn of Time

    SciTech Connect

    Paul Sorensen

    2012-06-24

    Physicist Paul Sorensen describes discoveries made at the Relativistic Heavy Ion Collider (RHIC), a particle accelerator at the U.S. Department of Energy's Brookhaven National Laboratory. At RHIC, scientists from around the world study what the universe may have looked like in the first microseconds after its birth, helping us to understand more about why the physical world works the way it does -- from the smallest particles to the largest stars.

  12. Tracking studies in eRHIC energy-recovery recirculator

    SciTech Connect

    Meot, F.; Brooks, S.; Ptitsyn, V.; Trbojevic, D.; Tsoupas, N.

    2015-07-13

    Beam and polarization tracking studies in eRHIC energy recovery electron recirculator are presented, based on a very preliminary design of the FFAG lattice. These simulations provide examples of some of the beam and spin optics aspects of the linear FFAG lattice concept and its application in eRHIC, they provide code benchmarking for synchrotron radiation and spin diffusion in addition, and pave the way towards end-to-end 6-D(phasespace)+3D(spin) tracking simulations.

  13. Quadrupole Beam-Based Alignment in the RHIC Interaction Regions

    SciTech Connect

    T. Satogata, J. Ziegler

    2011-03-01

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements.

  14. MEASURING LOCAL GRADIENT AND SKEW QUADRUPOLE ERRORS IN RHIC IRS.

    SciTech Connect

    CARDONA,J.; PEGGS,S.; PILAT,R.; PTITSYN,V.

    2004-07-05

    The measurement of local linear errors at RHIC interaction regions using an ''action and phase'' analysis of difference orbits has already been presented. This paper evaluates the accuracy of this technique using difference orbits that were taken when known gradient errors and skew quadrupole errors were intentionally introduced. It also presents action and phase analysis of simulated orbits when controlled errors are intentionally placed in a RHIC simulation model.

  15. MEASUREMENT OF MULTIPOLE STRENGTHS FROM RHIC BPM DATA.

    SciTech Connect

    TOMAS,R.BAI,M.FISCHER,W.ET AL.

    2004-07-05

    Recently resonance driving terms were successfully measured in the CERN SPS and the BNL RHIC from the Fourier spectrum of BPM data. Based on these measurements a new analysis has been derived to extract multipole strengths. In this paper we present experimental measurements of sextupolar and skew quadrupolar strengths carried out at RHIC. A non-destructive measurement using an AC dipole is also presented.

  16. Sialons as high temperature insulators

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Kuo, Y. S.

    1978-01-01

    Sialons were evaluated for application as high temperature electrical insulators in contact with molybdenum and tungsten components in hard vacuum applications. Both D.C. and variable frequency A.C. resistivity data indicate the sialons to have electrical resistivity similar to common oxide in the 1000 C or higher range. Metallographic evaluations indicate good bonding of the type 15R ALN polytype to molybdenum and tungsten. The beta prime or modified silicon nitride phase was unacceptable in terms of vacuum stability. Additives effect on electrical resistivity. Similar resistivity decreases were produced by additions of molybdenum or tungsten to form cermets. The use of hot pressing at 1800 C with ALN, Al2 O3 and Si3N4 starting powders produced a better product than did a combination of SiO2 and AIN staring powders. It was indicated that sialons will be suitable insulators in the 1600K range in contact with molybdenum or tungsten if they are produced as a pure ceramic and subsequently bonded to the metal components at temperatures in the 1600K range.

  17. Commissioning results from the recently upgraded RHIC LLRF system

    SciTech Connect

    Smith, K.S.; Harvey, M.; Hayes, T.; Narayan, G.; Severino, F.; Yuan, S.; Zaltsman, A.

    2011-03-28

    During RHIC Run 10, the first phase of the LLRF Upgrade was successfully completed. This involved replacing the aging VME based system with a modern digital system based on the recently developed RHIC LLRF Upgrade Platform, and commissioning the system as part of the normal RHIC start up process. At the start of Run 11, the second phase of the upgrade is underway, involving a significant expansion of both hardware and functionality. This paper will review the commissioning effort and provide examples of improvements in system performance, flexibility and scalability afforded by the new platform. The RHIC LLRF upgrade is based on the recently developed RHIC LLRF Upgrade Platform. The major design goals of the platform are: (1) Design a stand alone, generic, digital, modular control architecture which can be configured to satisfy all of the application demands we currently have, and which will be supportable and upgradeable into the foreseeable future; and (2) It should integrate seamlessly into existing controls infrastructure, be easy to deploy, provide access to all relevant control parameters (eliminate knobs), provide vastly improved diagnostic data capabilities, and permit remote reconfiguration. Although the system is still in its infancy, we think the initial commissioning results from RHIC indicate that these goals have been achieved, and that we've only begun to realize the benefits the platform provides.

  18. Proceedings of the symposium on RHIC detector R&D

    SciTech Connect

    Makdisi, Y.; Stevens, A.J.

    1991-12-31

    This report contains papers on the following topics: Development of Analog Memories for RHIC Detector Front-end Electronic Systems; Monolithic Circuit Development for RHIC at Oak Ridge National Laboratory; Highly Integrated Electronics for the STAR TPC; Monolithic Readout Circuits for RHIC; New Methods for Trigger Electronics Development; Neurocomputing methods for Pattern Recognition in Nuclear Physics; The Development of a Silicon Multiplicity Detector System; The Vertex Detector for the Lepton/Photon Collaboration; Simulations of Silicon Vertex Tracker for STAR Experiment at RHIC; Calorimeter/Absorber Optimization for a RHIC Dimuon Experiment (RD-10 Project); Applications of the LAHET simulation Code to Relativistic Heavy Ion Detectors; Highly Segmented, High Resolution Time-of-Flight System; Research and Development on a Sub 100 Picosecond Time-of-Flight System Based on Silicon Avalance Diodes; Behavior of TPC`s in a High Particle Flux Environment; Generic R&D on Undoped Cesium Iodide and Lead Fluoride; and A Transition Radiation Detector for RHIC Featuring Accurate Tracking and dE/dx Particle Identification. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  19. Rugged Preheaters For Vacuum Plasma Spraying

    NASA Technical Reports Server (NTRS)

    Woodford, William H.; Mckechnie, Timothy N.; Sander, Lewis D.; Power, Christopher A.; Sander, Heather L.; Nguyen, Dalton D.

    1994-01-01

    Electric preheater units built to ensure large workpieces to be coated with metals by vacuum plasma spraying heated uniformly to requisite high temperatures by time plasma torch arrives. Units similar to electrical-resistance ribbon heaters in toasters and in some small portable electric "space" heaters. Nichrome resistance-heating ribbons wrapped around ceramic insulating spools on rings and on plates. Round workpiece placed in middle of ring preheater. Plate preheaters stacked as needed near workpiece.

  20. Overview of recent studies and modifications being made to RHIC to mitigate the effects of a potential failure to the helium distribution system

    SciTech Connect

    Tuozzolo, J.; Bruno, D.; DiLieto, A.; Heppner, G.; Karol, R.; Lessard,E.; Liaw, C-J; McIntyre, G; Mi, C.; Reich, J.; Sandberg, J.; Seberg, S.; Smart, L.; Tallerico, T.; Theisen, C.; Todd, R.; Zapasek R.

    2011-03-28

    In order to cool the superconducting magnets in RHIC, its helium refrigerator distributes 4.5 K helium throughout the tunnel along with helium distribution for the magnet line recoolers, the heat shield, and the associated return lines. The worse case for failure would be a release from the magnet distribution line which operates at 3.5 to 4.5 atmospheres and contains the energized magnet but with a potential energy of 70 MJoules should the insulation system fail or an electrical connection opens. Studies were done to determine release rate of the helium and the resultant reduction in O{sub 2} concentration in the RHIC tunnel and service buildings. Equipment and components were also reviewed for design and reliability and modifications were made to reduce the likelihood of failure and to reduce the volume of helium that could be released.

  1. Natural vacuum electronics

    NASA Technical Reports Server (NTRS)

    Leggett, Nickolaus

    1990-01-01

    The ambient natural vacuum of space is proposed as a basis for electron valves. Each valve is an electron controlling structure similiar to a vacuum tube that is operated without a vacuum sustaining envelope. The natural vacuum electron valves discussed offer a viable substitute for solid state devices. The natural vacuum valve is highly resistant to ionizing radiation, system generated electromagnetic pulse, current transients, and direct exposure to space conditions.

  2. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  3. Status and Outlook for the RHIC Luminosity Upgrade

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2010-02-01

    As the world highest energy heavy ion collider, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been the center for exploring the universe at its infant stage. The operations of RHIC over the past decade has produced many results. A new state of matter, the quark-gluon plasma which is believed to only have existed right after the birth of the universe, was first observed at RHIC during the collisions of Au ions. The experimental data also revealed that this new state of matter behaves like a perfect fluid. In addition to the heavy ion program, RHIC is also capable to accelerate polarized proton beams to high energy, which allows one to explore the spin structure of polarized protons. Both the heavy ion program and spin physics program require high luminosities at RHIC. Various efforts aimed at increasing the RHIC luminosity of heavy ion and polarized proton collisions, such as NEG coating beam pipes to reduce electron clouds, using intrabeam scattering lattice for heavy ion operations as well as longitudinal stochastic cooling. The average store luminosity of Au collisions at a beam energy of 100 GeV/u has reached 1027cm-2s-1. The average store luminosity of RHIC polarized proton collisions at a beam energy of 100 GeV reached 28x1030cm-2s-1 and 55x1030 cm-2s-1 for the polarized proton collisions at a beam energy 250 GeV. Currently, the luminosity is limited by beam-beam effects for polarized proton collisions and intrabeam scattering for heavy ion collisions. Novel techniques are explored and under development to address these issues. The addition of transverse stochastic cooling will minimize the beam size growth due to intrabeam scattering and increase the heavy ion luminosity lifetime. The technique of using 9MHz cavity to accelerate polarized protons minimizes the electron cloud effect, which can cause emittance blowup. It also helps to preserve the longitudinal emittance and yields shorter bunches. The technique of employing an

  4. Insulated Foamy Viral Vectors.

    PubMed

    Browning, Diana L; Collins, Casey P; Hocum, Jonah D; Leap, David J; Rae, Dustin T; Trobridge, Grant D

    2016-03-01

    Retroviral vector-mediated gene therapy is promising, but genotoxicity has limited its use in the clinic. Genotoxicity is highly dependent on the retroviral vector used, and foamy viral (FV) vectors appear relatively safe. However, internal promoters may still potentially activate nearby genes. We developed insulated FV vectors, using four previously described insulators: a version of the well-studied chicken hypersensitivity site 4 insulator (650cHS4), two synthetic CCCTC-binding factor (CTCF)-based insulators, and an insulator based on the CCAAT box-binding transcription factor/nuclear factor I (7xCTF/NF1). We directly compared these insulators for enhancer-blocking activity, effect on FV vector titer, and fidelity of transfer to both proviral long terminal repeats. The synthetic CTCF-based insulators had the strongest insulating activity, but reduced titers significantly. The 7xCTF/NF1 insulator did not reduce titers but had weak insulating activity. The 650cHS4-insulated FV vector was identified as the overall most promising vector. Uninsulated and 650cHS4-insulated FV vectors were both significantly less genotoxic than gammaretroviral vectors. Integration sites were evaluated in cord blood CD34(+) cells and the 650cHS4-insulated FV vector had fewer hotspots compared with an uninsulated FV vector. These data suggest that insulated FV vectors are promising for hematopoietic stem cell gene therapy. PMID:26715244

  5. Insulation Test Cryostat with Lift Mechanism

    NASA Technical Reports Server (NTRS)

    Fesmire, James E. (Inventor); Dokos, Adam G. (Inventor)

    2014-01-01

    A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). The apparatus includes an inner vessel for receiving a liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the upper and lower guard chambers and a middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid to allow easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.

  6. Global conservation laws and femtoscopy at RHIC

    NASA Astrophysics Data System (ADS)

    Chajecki, Zbigniew

    It is increasingly important to understand, in details the space and momentum observables in elementary particle collisions (e.g. p + p collisions), as they should serve as a reference to the same observables in heavy-ion collisions. Such a comparison is crucial to claim a discovery of new phenomena in the big system. However, in low-multiplicity systems, global conservation laws generate significant N-body correlations in addition to other physics effects. We discuss a formalism to analytically calculate these effects on single-particle distributions and multi-particle correlation functions. Transverse mass distributions in relativistic heavy ion collisions provide valuable information about the dynamics of the system. The comparison of the spectra from big systems with analogous distribution from p + p collisions led to a claims of discovery of strong collective flow dominating the low momentum part of the spectra in heavy ion collisions. However, we question such a comparison by pointing out the risk of ignoring conservation laws when comparing high- (e.g. Au + Au) and low-multiplicity (e.g. p + p) collisions. Then, we argue that a correct treatment of the effects due to energy and momentum conservation may account for most of the difference between spectra in small and big system. As a result, we show that after this effect is considered, p + p collisions have similar amount of radial flow as Au + Au collisions at RHIC. The effect of phase-space constraints due to energy and momentum conservation project onto two-particle space in a non-trivial way, affecting the shape of the two-particle correlation functions, and therefore, complicating the femtoscopic analysis. We also present results from p + p collisions at s =200 GeV, d + Au collisions at sNN =200 GeV and Au + Au collisions at sNN =19.6 GeV from the STAR Experiment at RHIC. The sizes of homogeneity regions are extracted through femtoscopic analysis of the pion correlations. In small system, we see a

  7. Polarized proton parameters for the 2015 PP-on-Au setup in RHIC

    SciTech Connect

    Gardner, C. J.

    2015-08-25

    Values are given for RHIC circumference shifts due to snakes for various situations. Relevant parameters are tabulated for polarized protons (PP) in the booster and in AGS and RHIC for PP-on-Au stores.

  8. Polarized proton parameters for the 2015 PP-on-Aluminum setup in RHIC

    SciTech Connect

    Gardner, C. J.

    2015-10-02

    Values are given for RHIC circumference shifts due to snakes for various situations. Relevant parameters are tabulated for polarized protons (PP) in the booster and in AGS and RHIC for PP-on-Aluminum stores.

  9. Plasma Sputtering Robotic Device for In-Situ Thick Coatings of Long, Small Diameter Vacuum Tubes

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2014-10-01

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed fabricated & operated. Reason for this endeavor is to alleviate the problems of unacceptable ohmic heating of stainless steel vacuum tubes and of electron clouds, due to high secondary electron yield (SEY), in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase cathode lifetime, movable magnet package was developed, and thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced SEY to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that 10 μm Cu coated stainless steel RHIC tube has conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. Device detail and experimental results will be presented. Work supported by Brookhaven Science Associates, LLC under

  10. Plasma sputtering robotic device for in-situ thick coatings of long, small diameter vacuum tubesa)

    NASA Astrophysics Data System (ADS)

    Hershcovitch, A.; Blaskiewicz, M.; Brennan, J. M.; Custer, A.; Dingus, A.; Erickson, M.; Fischer, W.; Jamshidi, N.; Laping, R.; Liaw, C.-J.; Meng, W.; Poole, H. J.; Todd, R.

    2015-05-01

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed, fabricated, and operated. The reason for this endeavor is to alleviate the problems of unacceptable resistive heating of stainless steel vacuum tubes in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase the cathode lifetime, a movable magnet package was developed, and the thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced secondary electron yield to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that a 10 μm copper coated stainless steel RHIC tube has a conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. The device details and experimental results are described.

  11. Plasma sputtering robotic device for in-situ thick coatings of long, small diameter vacuum tubes

    SciTech Connect

    Hershcovitch, A. Blaskiewicz, M.; Brennan, J. M.; Fischer, W.; Liaw, C.-J.; Meng, W.; Todd, R.; Custer, A.; Dingus, A.; Erickson, M.; Jamshidi, N.; Laping, R.; Poole, H. J.

    2015-05-15

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed, fabricated, and operated. The reason for this endeavor is to alleviate the problems of unacceptable resistive heating of stainless steel vacuum tubes in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase the cathode lifetime, a movable magnet package was developed, and the thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced secondary electron yield to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that a 10 μm copper coated stainless steel RHIC tube has a conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. The device details and experimental results are described.

  12. Indian Vacuum Society: The Indian Vacuum Society

    NASA Astrophysics Data System (ADS)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of

  13. Electron cooling for low-energy RHIC program

    SciTech Connect

    Fedotov, A.; Ben-Zvi, I.; Chang, X.; Kayran, D.; Litvinenko, V.N.; Pendzick, A.; Satogata, T.

    2009-08-31

    Electron cooling was proposed to increase luminosity of the RHIC collider for heavy ion beam energies below 10 GeV/nucleon. Providing collisions at such energies, termed RHIC 'low-energy' operation, will help to answer one of the key questions in the field of QCD about existence and location of critical point on the QCD phase diagram. The electron cooling system should deliver electron beam of required good quality over energies of 0.9-5 MeV. Several approaches to provide such cooling were considered. The baseline approach was chosen and design work started. Here we describe the main features of the cooling system and its expected performance. We have started design work on a low-energy RHIC electron cooler which will operate with kinetic electron energy range 0.86-2.8 (4.9) MeV. Several approaches to an electron cooling system in this energy range are being investigated. At present, our preferred scheme is to transfer the Fermilab Pelletron to BNL after Tevatron shutdown, and to use it for DC non-magnetized cooling in RHIC. Such electron cooling system can significantly increase RHIC luminosities at low-energy operation.

  14. Pixel telescope test in STAR at RHIC

    NASA Astrophysics Data System (ADS)

    Sun, Xiangming; Szelezniak, Michal; Greiner, Leo; Matis, Howard; Vu, Chinh; Stezelberger, Thorsten; Wieman, Howard

    2007-10-01

    The STAR experiment at RHIC is designing a new inner vertex detector called the Heavy Flavor Tracker (HFT). The HFT's innermost two layers is called the PIXEL detector which uses Monolithic Active Pixel Sensor technology (MAPS). To test the MAPS technology, we just constructed and tested a telescope. The telescope uses a stack of three MIMOSTAR2 chips, Each MIMOSTAR2 sensor, which was designed by IPHC, is an array of 132x128 pixels with a square pixel size of 30 μ. The readout of the telescope makes use of the ALICE DDL/SIU cards, which is compatible with the future STAR data acquisition system called DAQ1000. The telescope was first studied in a 1.2 GeV/c electron beam at LBNL's Advanced Light Source. Afterwards, the telescope was outside the STAR magnet, and then later inside it, 145 cm away from STAR's center. We will describe this first test of MAPS technology in a collider environment, and report on the occupancy, particle flux, and performance of the telescope.

  15. Physics opportunities at RHIC and LHC

    SciTech Connect

    Scherer, S.; Bass, S. A.; Bleicher, M.; Brachmann, J.; Dumitru, A.; Ernst, C.; Gerland, L.; Hammon, N.; Hofmann, M.; Konopka, J.; Neise, L.; Reiter, M.; Schramm, S.; Soff, S.; Spieles, C.; Weber, H.; Zschiesche, D.; Maruhn, J. A.; Stoecker, H.; Greiner, W.

    1999-07-02

    Nonequilibrium models (three-fluid hydrodynamics, UrQMD, and quark molecular dynamics) are used to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions from the SPS via RHIC to LHC. It is demonstrated that these models--although they do treat the most interesting early phase of the collisions quite differently (thermalizing QGP vs. coherent color fields with virtual particles)--all yield a reasonable agreement with a large variety of the available heavy ion data. Hadron/hyperon yields, including J/{psi} meson production/suppression, strange matter formation, dileptons, and directed flow (bounce-off and squeeze-out) are investigated. Observations of interesting phenomena in dense matter are reported. However, we emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data. The role of future experiments with the STAR and ALICE detectors is pointed out.

  16. Large high-vacuum systems for CERN accelerators

    NASA Astrophysics Data System (ADS)

    Strubin, P.

    2008-05-01

    CERN operated over the more than 50 years of its existence particle accelerators and storage rings ranging from a few tens of metre to 27 km, the size of its latest project, the Large Hadron Collider (LHC) which is under construction and will be started in 2008. The challenges began with the Intersection Storage Rings (ISR) in the seventies. With a beam pipe length of 2 × 1 km, this accelerator required innovative solutions like bake-out and glow discharge to achieve the required static vacuum level, fight against beam-induced pressure increases and cancel beam neutralisation by trapped electrons. The vacuum system of the Large Electron Positron (LEP) storage ring (in operation between 1989 and 2001) of a total length of 27 km had to cope with very high levels of synchrotron power. The beam vacuum system of LHC (2 × 27 km) integrates some parts at 1.9 K and others at room temperature and will also have to cope with dynamic effects. In addition to the beam vacuum system, LHC requires insulation vacuum for the superconducting magnets and the helium distribution line. Whereas the required pressure is not very low, the leak detection and localisation is significantly more demanding for the insulation vacuum than for the beam vacuum because of the large volumes and the thermal insulation. When the size of an accelerator grows, the difficulties are not only to get a clean and leak tight vacuum system, but also to be able to measure reliably pressure or gas composition over long distances. Furthermore, in the case of LHC the integration of the beam vacuum system was particularly difficult because of the complexity induced by a superconducting magnet scheme and the reduced space available for the beam pipes. Planning and logistics aspects during installation, including the usage of mobile pumping and diagnostic means, were much more difficult to manage in LHC than in previous projects.

  17. The RHIC and RHIC pre-injectors controls systems: status and plans

    SciTech Connect

    Brown, K.A.; Altinbas, Z.; Aronson, J.; Binello, S.; Campbell, I.; Costanzo, M.; D

    2011-10-10

    For the past twelve years experiments at the Relativistic Heavy Ion Collider (RHIC) have recorded data from collisions of heavy ions and polarized protons, leading to important discoveries in nuclear physics and the spin dynamics of quarks and gluons. BNL is the site of one of the first and still operating alternating gradient synchrotrons, the AGS, which first operated in 1960. The accelerator controls systems for these instruments span multiple generations of technologies. In this report we will describe the current status of the Collider-Accelerator Department controls systems, which are used to control seven different accelerator facilities and multiple science programs (high energy nuclear physics, high energy polarized proton physics, NASA programs, isotope production, and multiple accelerator research and development projects). We will describe the status of current projects, such as the just completed Electron Beam Ion Source (EBIS), our R&D programs in superconducting RF and an Energy Recovery LINAC (ERL), innovations in feedback systems and bunched beam stochastic cooling at RHIC, and plans for future controls system developments.

  18. Optimizing process vacuum condensers

    SciTech Connect

    Lines, J.R.; Tice, D.W.

    1997-09-01

    Vacuum condensers play a critical role in supporting vacuum processing operations. Although they may appear similar to atmospheric units, vacuum condensers have their own special designs, considerations and installation needs. By adding vacuum condensers, precondensers and intercondensers, system cost efficiency can be optimized. Vacuum-condensing systems permit reclamation of high-value product by use of a precondenser, or reduce operating costs with intercondensers. A precondenser placed between the vacuum vessel and ejector system will recover valuable process vapors and reduce vapor load to an ejector system--minimizing the system`s capital and operating costs. Similarly, an intercondenser positioned between ejector stages can condense motive steam and process vapors and reduce vapor load to downstream ejectors as well as lower capital and operating costs. The paper describes vacuum condenser systems, types of vacuum condensers, shellside condensing, tubeside condensing, noncondensable gases, precondenser pressure drop, system interdependency, equipment installation, and equipment layout.

  19. Wireless Integrated Microelectronic Vacuum Sensor System

    NASA Technical Reports Server (NTRS)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun

    2013-01-01

    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum

  20. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-03-06

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  1. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-01-01

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  2. Improved Thermal-Insulation Systems for Low Temperatures

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, Stanislaw D.

    2003-01-01

    Improved thermal-insulation materials and structures and the techniques for manufacturing them are undergoing development for use in low-temperature applications. Examples of low-temperature equipment for which these thermal insulation systems could provide improved energy efficiency include storage tanks for cryogens, superconducting electric-power-transmission equipment, containers for transport of food and other perishable commodities, and cold boxes for low-temperature industrial processes. These systems could also be used to insulate piping used to transfer cryogens and other fluids, such as liquefied natural gas, refrigerants, chilled water, crude oil, or low-pressure steam. The present thermal-insulation systems are layer composites based partly on the older class of thermal-insulation systems denoted generally as multilayer insulation (MLI). A typical MLI structure includes an evacuated jacket, within which many layers of radiation shields are stacked or wrapped close together. Low-thermal-conductivity spacers are typically placed between the reflection layers to keep them from touching. MLI can work very well when a high vacuum level (less than 10(exp-4) torr) is maintained and utmost care is taken during installation, but its thermal performance deteriorates sharply as the pressure in the evacuated space rises into the soft vacuum range [pressures greater than 0.1 torr (greater than 13 Pa)]. In addition, the thermal performance of MLI is extremely sensitive to mechanical compression and edge effects and can easily decrease from one to two orders of magnitude from its ideal value even when the MLI is kept under high vacuum condition. The present thermal-insulation systems are designed to perform well under soft vacuum level, in particular the range of 1 to 10 torr. They are also designed with larger interlayer spacings to reduce vulnerability to compression (and consequent heat leak) caused by installation and use. The superiority of these systems is the

  3. Beam lifetime and limitations during low-energy RHIC operation

    SciTech Connect

    Fedotov, A.V.; Bai, M.; Blaskiewicz, M.; Fischer, W.; Kayran, D.; Montag, C.; Satogata, T.; Tepikian, S.; Wang, G.

    2011-03-28

    The low-energy physics program at the Relativistic Heavy Ion Collider (RHIC), motivated by a search for the QCD phase transition critical point, requires operation at low energies. At these energies, large nonlinear magnetic field errors and large beam sizes produce low beam lifetimes. A variety of beam dynamics effects such as Intrabeam Scattering (IBS), space charge and beam-beam forces also contribute. All these effects are important to understand beam lifetime limitations in RHIC at low energies. During the low-energy RHIC physics run in May-June 2010 at beam {gamma} = 6.1 and {gamma} = 4.1, gold beam lifetimes were measured for various values of space-charge tune shifts, transverse acceptance limitation by collimators, synchrotron tunes and RF voltage. This paper summarizes our observations and initial findings.

  4. Spin tune dependence on closed orbit in RHIC

    SciTech Connect

    Ptitsyn, V.; Bai, M.; Roser, T.

    2010-05-23

    Polarized proton beams are accelerated in RHIC to 250 GeV energy with the help of Siberian Snakes. The pair of Siberian Snakes in each RHIC ring holds the design spin tune at 1/2 to avoid polarization loss during acceleration. However, in the presence of closed orbit errors, the actual spin tune can be shifted away from the exact 1/2 value. It leads to a corresponding shift of locations of higher-order ('snake') resonances and limits the available betatron tune space. The largest closed orbit effect on the spin tune comes from the horizontal orbit angle between the two snakes. During RHIC Run in 2009 dedicated measurements with polarized proton beams were taken to verify the dependence of the spin tune on the local orbits at the Snakes. The experimental results are presented along with the comparison with analytical predictions.

  5. Ion optics of RHIC electron beam ion source

    SciTech Connect

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

    2012-02-15

    RHIC electron beam ion source has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  6. Experimental Studies of Quark Gluon Plasma at RHIC

    SciTech Connect

    Esumi, ShinIchi

    2010-05-12

    A new state of matter, Quark Gluon Plasma (QGP) is supposed to exist under extreme temperature and/or density conditions just as a beginning of this early universe after the Big Bang. High energy nucleus-nucleus collisions at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) has been used to form the QGP and to study the properties of QGP. The recent progress on the experimental research of QGP at RHIC experiments and the understanding of the properties are discussed. Major discoveries at RHIC experiments are very strong energy loss of high energy partons in central Au+Au collisions and very large elliptic and collective expansion given by the initial almond geometry in non-central Au+Au collisions. Those two finding and related physics explanations as well as future plans are presented.

  7. THE RHIC/AGS ONLINE MODEL ENVIRONMENT: DESIGN AND OVERVIEW.

    SciTech Connect

    SATOGATA,T.; BROWN,K.; PILAT,F.; TAFTI,A.A.; TEPIKIAN,S.; VAN ZEIJTS,J.

    1999-03-29

    An integrated online modeling environment is currently under development for use by AGS and RHIC physicists and commissioners. This environment combines the modeling efforts of both groups in a CDEV [1] client-server design, providing access to expected machine optics and physics parameters based on live and design machine settings. An abstract modeling interface has been designed as a set of adapters [2] around core computational modeling engines such as MAD and UAL/Teapot++ [3]. This approach allows us to leverage existing survey, lattice, and magnet infrastructure, as well as easily incorporate new model engine developments. This paper describes the architecture of the RHIC/AGS modeling environment, including the application interface through CDEV and general tools for graphical interaction with the model using Tcl/Tk. Separate papers at this conference address the specifics of implementation and modeling experience for AGS and RHIC.

  8. Preparing accelerator systems for the RHIC sextant commissioning

    SciTech Connect

    Trbojevic, D.; Pilat, F.; Ahrens, L.

    1997-07-01

    The Relativistic Heavy Ion Collider (RHIC) construction is progressing steadily towards completion in 1999 when beams will circulate in both collider rings. One of the major tests of the RHIC project was the commissioning of the first sextant with gold ion beams in early 1997. This is a report on preparation of the RHIC accelerator systems for the first sextant test. It includes beam position monitors, timing, injection correction through the magnetic septum and kickers, current transformers, flags and the ionization beam profile monitors, beam loss monitors, beam and quench permit link system, power supply controls, and the configuration database system. The software and hardware development and coordination of the different systems before commissioning were regularly checked during bi-weekly, and (later) weekly, progress report meetings.

  9. Preparing Accelerator Systems for the RHIC Sextant Commissioning

    NASA Astrophysics Data System (ADS)

    Trbojevic, D.; Pilat, F.; Ahrens, L.; Barton, D.; Clifford, T.; Connoly, R.; Fischer, W.; Harrison, M.; Mackay, W.; Olsen, B.; Peggs, S.; Satogata, T.; Tepikian, S.; Thompson, P.; Trahern, C.; Witkover, R.

    1997-05-01

    The Relativistic Heavy Ion Collider (RHIC) construction is progressing steadily towards the beginning of the 1999 when beams will first be circulated in both collider rings. One of the major tests of the RHIC project is the commissioning of the first sextant with gold ion beams. This is a report on the preparation of the RHIC accelerator systems during the first sextant test, including beam position monitors, timing, injection correction through the magnetic septum and kickers, current transformers, ``flags'' and the ionization beam profile monitors, beam loss monitors, beam and quench permit link system, power supply controls, and the CYBASE data base system. The software and hardware development and coordination of the different systems before commissioning were regularly checked during bi-weekly, and (later) weekly, progress report meetings.

  10. Opportunities for Drell-Yan Physics at RHIC

    SciTech Connect

    Aschenauer, E.; Bland, L.; Crawford, H.; Goto, Y.; Eyser, O.; Kang, Z.; Vossen, A.

    2011-05-24

    Drell-Yan (DY) physics gives the unique opportunity to study the parton structure of nucleons in an experimentally and theoretically clean way. With the availability of polarized proton-proton collisions and asymmetric d+Au collisions at the Relativistic Heavy Ion Collider (RHIC), we have the basic (and unique in the world) tools to address several fundamental questions in QCD, including the expected gluon saturation at low partonic momenta and the universality of transverse momentum dependent parton distribution functions. A Drell-Yan program at RHIC is tied closely to the core physics questions of a possible future electron-ion collider, eRHIC. The more than 80 participants of this workshop focused on recent progress in these areas by both theory and experiment, trying to address imminent questions for the near and mid-term future.

  11. RHIC UPGRADES FOR HEAVY IONS AND POLARIZED PROTONS.

    SciTech Connect

    FISCHER, W.; ALESSI, J.; BEN-ZVI, I.; LITVINENKO, V.; ROSER, T.

    2005-10-24

    The Relativistic Heavy Ion Collider (RHIC), in operation since 2000, has exceeded its design parameters. The Enhanced Design parameters, expected to be reached in 2009, call for a 4-fold increase over the heavy ion design luminosity, and a 15-fold increase over the proton design luminosity, the latter with an average polarization of 70%. Also in 2009, it is planned to commission a new Electron Beam Ion Source, offering increased reliability and ion species that cannot be supplied currently. The upgrade to RHIC 11, based on electron cooling of the beams, aims to increase the average heavy ion luminosity by an order of magnitude, and the polarized proton luminosity by a factor 2-5. Plans for an electron-ion collider eRHIC is covered in another article in these proceedings.

  12. Opportunities for Polarized He-3 in RHIC and EIC

    SciTech Connect

    Aschenauer E.; Deshpande, A.; Fischer, W.; Derbenev, S.; Milner, R.; Roser, T.; Zelenski, A.

    2011-10-01

    The workshop on opportunities for polarized He-3 in RHIC and EIC was targeted at finding practical ways of implementing and using polarized He-3 beams. Polarized He-3 beams will provide the unique opportunity for first measurements, i.e, to a full quark flavor separation measuring single spin asymmetries for p{sup +}, p{sup -} and p{sup 0} in hadron-hadron collisions. In electron ion collisions the combination of data recorded with polarized electron proton/He-3 beams allows to determine the quark flavor separated helicity and transverse momentum distributions. The workshop had sessions on polarized He-3 sources, the physics of colliding polarized He-3 beams, polarimetry, and beam acceleration in the AGS Booster, AGS, RHIC, and ELIC. The material presented at the workshop will allow making plans for the implementation of polarized He-3 beams in RHIC.

  13. Experimental Studies of Quark Gluon Plasma at RHIC

    NASA Astrophysics Data System (ADS)

    Esumi, ShinIchi

    2010-05-01

    A new state of matter, Quark Gluon Plasma (QGP) is supposed to exist under extreme temperature and/or density conditions just as a beginning of this early universe after the Big Bang. High energy nucleus-nucleus collisions at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) has been used to form the QGP and to study the properties of QGP. The recent progress on the experimental research of QGP at RHIC experiments and the understanding of the properties are discussed. Major discoveries at RHIC experiments are very strong energy loss of high energy partons in central Au+Au collisions and very large elliptic and collective expansion given by the initial almond geometry in non-central Au+Au collisions. Those two finding and related physics explanations as well as future plans are presented.

  14. Transverse impedance measurement in RHIC and the AGS

    SciTech Connect

    Biancacci, Nicolo; Blaskiewicz, M.; Dutheil, Y.; Liu, C.; Mernick, M.; Minty, M.; White, S. M.

    2014-05-12

    The RHIC luminosity upgrade program aims for an increase of the polarized proton luminosity by a factor 2. To achieve this goal a significant increase in the beam intensity is foreseen. The beam coupling impedance could therefore represent a source of detrimental effects for beam quality and stability at high bunch intensities. For this reason it is essential to quantify the accelerator impedance budget and the major impedance sources, and possibly cure them. In this MD note we summarize the results of the 2013 transverse impedance measurements in the AGS and RHIC. The studies have been performed measuring the tune shift as a function of bunch intensity and deriving the total accelerator machine transverse impedance. For RHIC, we could obtain first promising results of impedance localization measurements as well.

  15. LHC beam-beam compensation studies at RHIC

    SciTech Connect

    Fischer,W.; Abreu, N.; Calaga, R.; Robert-Demolaize, G.; Luo, Y.; Montag, C.

    2009-05-04

    Long-range and head-on beam-beam effects are expected to limit the LHC performance with design parameters. To mitigate long-range effects current carrying wires parallel to the beam were proposed. Two such wires are installed in RHIC where they allow studying the effect of strong long-range beam-beam effects, as well as the compensation of a single long-range interaction. The tests provide benchmark data for simulations and analytical treatments. To reduce the head-on beam-beam effect electron lenses were proposed for both the LHC and RHIC. We present the experimental long-range beam-beam program and report on head-on compensations studies at RHIC, which are based on simulations.

  16. Skew quadrupole in RHIC dipole magnets at high fields

    SciTech Connect

    Jain, A.; Gupta, P.; Thompson, P.; Wanderer, P.

    1995-07-01

    In the RHIC arc dipoles, the center of the cold mass lies above the center of the cryostat. At the maximum design field, the magnetic flux lines leak through the yoke to the asymmetrically located cryostat, which provides an additional return path. This introduces a systematic top-bottom asymmetry leading to a skew quadrupole term at high fields. A similar asymmetry is also created by any difference in weights of the upper and the lower yoke halves. Data from measurements of several RHIC dipoles are presented to study this effect. In the current production series of the RHIC dipoles, an attempt is made to compensate the effect of the cryostat by an asymmetry in the iron yoke. Seven dipoles with this type of yoke have been cold tested, and show a reduced saturation in the skew quadrupole term, as expected.

  17. Feasibility of Electron Cooling for Low-Energy RHIC Operation

    SciTech Connect

    Fedotov,A.; Ben-Zvi, I.; Chang, X.; Kayran, D.; Litvinenko, V.; Pozdeyev, E.; Satogata, T.

    2008-04-01

    A concrete interest in running RHIC at low energies in a range of 2.5-25 GeV/nucleon total energy of a single beam has recently emerged. Providing collisions in this energy range, which in the RHIC case is termed 'low-energy' operation, will help to answer one of the key questions in the field of QCD about existence and location of a critical point on the QCD phase diagram. However, luminosity projections are relatively low for the lowest energy points of interest. Luminosity improvement can be provided with electron cooling applied directly in RHIC at low energies. This report summarizes the expected luminosity improvement with electron cooling, possible technical approaches and various limitations.

  18. The Classical Vacuum.

    ERIC Educational Resources Information Center

    Boyer, Timothy H.

    1985-01-01

    The classical vacuum of physics is not empty, but contains a distinctive pattern of electromagnetic fields. Discovery of the vacuum, thermal spectrum, classical electron theory, zero-point spectrum, and effects of acceleration are discussed. Connection between thermal radiation and the classical vacuum reveals unexpected unity in the laws of…

  19. AN ENGINEERING SOLUTION TO THE RHIC BEAM ABORT KICKER UPGRADE.

    SciTech Connect

    ZHANG,W.ROSER,T.SANDBERG,J.TAN,Y.ET AL.

    2004-05-23

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is the world largest superconducting accelerator for nuclear energy research. Particle beams traveling in opposite directions in two accelerator rings, Blue and Yellow, collide at six interaction regions to create phenomena of the early universe. There are more than 1700 superconducting magnets and very sophisticate and delicate large detectors inside the RHIC tunnel. With high beam intensity and ultra high beam energy, an inadvertent loss of beam can result severe damage to the superconducting magnets and detectors. Beam abort kickers are used to remove beam safely from the ring. The large inductive load, high current capability, short beam gap, and high reliability are the challenging issues of this system design. With high intensity and high momentum beam operation, it is desirable to have all high voltage modulators located outside of RHIC tunnel. However, to generate 22 kA output current per modulator with fast rise time, a conventional low impedance PFN and matched transmission cable design can push the operation voltage easily into 100 kV range. The large quantity of high voltage pulse transmission cables required by conventional design is another difficult issue. Therefore, the existing system has all ten high voltage modulators located inside RHIC tunnel. More than a hundred plastic packaged mineral oil filled high voltage capacitors raise serious concerns of fire and smoking threats. Other issues, such as kicker misfire, device availability in the future, and inaccessibility during operation, also demand an engineering solution for the future upgrade. In this paper, we investigate an unconventional approach to meet the technical challenges of RHIC beam abort system. The proposed design has all modulators outside of the RHIC tunnel. It will transmit output pulse through high voltage cables. The modulators will utilize solid-state switches, and operate at a maximum voltage in 30 to

  20. Insulated solar storage tanks

    SciTech Connect

    Eldighidy, S.M. )

    1991-01-01

    This paper presents the theoretical and experimental investigation of an insulated parallelepiped, outdoor solar, water-filled storage tank of size 1 m {times} 0.5 m {times} 0.3 m, that is made from galvanized iron. The absorption coefficient of the insulating material has been determined. The effects of plastic covers and insulation thickness on the water temperature and the energy gained or lost by water are investigated. Moreover, the effects of insulation thickness on the temperature profiles of the insulating material are discussed. The results show that the absorption coefficient decreases as the insulation thickness increases. Also, it is found that the glass wool insulation of 2.5 cm thickness has the best results compared with the other thicknesses (5 cm, 7.5 cm, and 10 cm) as far as the water temperature and the energy gained by water are concerned.