These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Population structure and evolution of Rhinoviruses.  

PubMed

Rhinoviruses, formerly known as Human rhinoviruses, are the most common cause of air-borne upper respiratory tract infections in humans. Rhinoviruses belong to the family Picornaviridae and are divided into three species namely, Rhinovirus A, -B and -C, which are antigenically diverse. Genetic recombination is found to be one of the important causes for diversification of Rhinovirus species. Although emerging lineages within Rhinoviruses have been reported, their population structure has not been studied yet. The availability of complete genome sequences facilitates study of population structure, genetic diversity and underlying evolutionary forces, such as mutation, recombination and selection pressure. Analysis of complete genomes of Rhinoviruses using a model-based population genetics approach provided a strong evidence for existence of seven genetically distinct subpopulations. As a result of diversification, Rhinovirus A and -C populations are divided into four and two subpopulations, respectively. Genetically, the Rhinovirus B population was found to be homogeneous. Intra-species recombination was observed to be prominent in Rhinovirus A and -C species. Significant evidence of episodic positive selection was obtained for several sites within coding sequences of structural and non-structural proteins. This corroborates well with known phenotypic properties such as antigenicity of structural proteins. Episodic positive selection appears to be responsible for emergence of new lineages especially in Rhinovirus A. In summary, the Rhinovirus population is an ensemble of seven distinct lineages. In case of Rhinovirus A, intra-species recombination and episodic positive selection contribute to its further diversification. In case of Rhinovirus C, intra- and inter-species recombinations are responsible for observed diversity. Population genetics approach was further useful to analyze phylogenetic tree topologies pertaining to recombinant strains, especially when trees are derived using complete genomes. Understanding of population structure serves as a foundation for designing new vaccines and drugs as well as to explain emergence of drug resistance amongst subpopulations. PMID:24586469

Waman, Vaishali P; Kolekar, Pandurang S; Kale, Mohan M; Kulkarni-Kale, Urmila

2014-01-01

2

Genome-wide diversity and selective pressure in the human rhinovirus  

Microsoft Academic Search

BACKGROUND: The human rhinoviruses (HRV) are one of the most common and diverse respiratory pathogens of humans. Over 100 distinct HRV serotypes are known, yet only 6 genomes are available. Due to the paucity of HRV genome sequence, little is known about the genetic diversity within HRV or the forces driving this diversity. Previous comparative genome sequence analyses indicate that

Amy L Kistler; Dale R Webster; Silvi Rouskin; Vince Magrini; Joel J Credle; David P Schnurr; Homer A Boushey; Elaine R Mardis; Hao Li; Joseph L DeRisi

2007-01-01

3

Structure-infectivity analysis of the human rhinovirus genomic RNA 3' non-coding region.  

PubMed Central

The specific recognition of genomic positive strand RNAS as templates for the synthesis of intermediate negative strands by the picornavirus replication machinery is presumably mediated by cis-acting sequences within the genomic RNA 3' non-coding region (NCR). A structure-infectivity analysis was conducted on the 44 nt human rhinovirus 14 (HRV14) 3' NCR to identify the primary sequence and/or secondary structure determinants required for viral replication. Using biochemical RNA secondary structure probing techniques, we have demonstrated the existence of a single stem-loop structure contained entirely within the 3' NCR, which appears to be phylogenetically conserved within the rhinovirus genus. We also report the in vivo analysis of a number of 3' NCR deletion mutations engineered into infectious cDNA clones which were designed to disrupt the stem-loop secondary structure to varying degrees. Large deletions (up to 37 nt) resulted in defective growth phenotypes, although they were not lethal. We propose that the absolute requirements for initiation of negative strand synthesis are less stringent than previously postulated, even though defined RNA secondary structure determinants may have evolved to facilitate and/or regulate the process of viral RNA replication. PMID:8668546

Todd, S; Semler, B L

1996-01-01

4

Evolution of bacterial genomes  

Microsoft Academic Search

This review examines evolution of bacterial genomes with an emphasis on RNA based life, the transition to functional DNA and small evolving genomes (possibly plasmids) that led to larger, functional bacterial genomes.

J. T. Trevors

1997-01-01

5

Human Rhinoviruses  

PubMed Central

Human rhinoviruses (HRVs), first discovered in the 1950s, are responsible for more than one-half of cold-like illnesses and cost billions of dollars annually in medical visits and missed days of work. Advances in molecular methods have enhanced our understanding of the genomic structure of HRV and have led to the characterization of three genetically distinct HRV groups, designated groups A, B, and C, within the genus Enterovirus and the family Picornaviridae. HRVs are traditionally associated with upper respiratory tract infection, otitis media, and sinusitis. In recent years, the increasing implementation of PCR assays for respiratory virus detection in clinical laboratories has facilitated the recognition of HRV as a lower respiratory tract pathogen, particularly in patients with asthma, infants, elderly patients, and immunocompromised hosts. Cultured isolates of HRV remain important for studies of viral characteristics and disease pathogenesis. Indeed, whether the clinical manifestations of HRV are related directly to viral pathogenicity or secondary to the host immune response is the subject of ongoing research. There are currently no approved antiviral therapies for HRVs, and treatment remains primarily supportive. This review provides a comprehensive, up-to-date assessment of the basic virology, pathogenesis, clinical epidemiology, and laboratory features of and treatment and prevention strategies for HRVs. PMID:23297263

Lamson, Daryl M.; St. George, Kirsten; Walsh, Thomas J.

2013-01-01

6

Integrating sequence, evolution and functional genomics in regulatory genomics  

PubMed Central

With genome analysis expanding from the study of genes to the study of gene regulation, 'regulatory genomics' utilizes sequence information, evolution and functional genomics measurements to unravel how regulatory information is encoded in the genome. PMID:19226437

Vingron, Martin; Brazma, Alvis; Coulson, Richard; van Helden, Jacques; Manke, Thomas; Palin, Kimmo; Sand, Olivier; Ukkonen, Esko

2009-01-01

7

VIRAL EVOLUTION Genomic surveillance elucidates  

E-print Network

VIRAL EVOLUTION Genomic surveillance elucidates Ebola virus origin and transmission during the 2014,12,13 � Robert F. Garry,8 � S. Humarr Khan,3 � Pardis C. Sabeti1,2 � In its largest outbreak, Ebola virus disease is spreading through Guinea, Liberia, Sierra Leone, and Nigeria. We sequenced 99 Ebola virus genomes from 78

Napp, Nils

8

Evolution of the cancer genome  

PubMed Central

The advent of massively parallel sequencing technologies has allowed the characterization of cancer genomes at an unprecedented resolution. Investigation of the mutational landscape of tumours is providing new insights into cancer genome evolution, laying bare the interplay of somatic mutation, adaptation of clones to their environment and natural selection. These studies have demonstrated the extent of the heterogeneity of cancer genomes, have allowed inferences to be made about the forces that act on nascent cancer clones as they evolve and have shown insight into the mutational processes that generate genetic variation. Here we review our emerging understanding of the dynamic evolution of the cancer genome and of the implications for basic cancer biology and the development of antitumour therapy. PMID:23044827

Yates, Lucy R.; Campbell, Peter J.

2013-01-01

9

Genomes and evolution  

Microsoft Academic Search

Biology celebrates two significant jubilee dates in 2009: 200 years from the birth of C. Darwin and 150 years from the publication\\u000a of his book On the Origin of Species by Means of Natural Selection, which laid the foundation for the theory of evolution. Since the times of Darwin, evolutionary biology has changed radically.\\u000a At present, evolution is studied not

Mikhail Sergeevich Gelfand

2009-01-01

10

Widespread Recurrent Evolution of Genomic Features  

PubMed Central

The recent explosion of genome sequences from all major phylogenetic groups has unveiled an unexpected wealth of cases of recurrent evolution of strikingly similar genomic features in different lineages. Here, we review the diverse known types of recurrent evolution in eukaryotic genomes, with a special focus on metazoans, ranging from reductive genome evolution to origins of splice-leader trans-splicing, from tandem exon duplications to gene family expansions. We first propose a general classification scheme for evolutionary recurrence at the genomic level, based on the type of driving forcemutation or selectionand the environmental and genomic circumstances underlying these forces. We then discuss various cases of recurrent genomic evolution under this scheme. Finally, we provide a broader context for repeated genomic evolution, including the unique relationship of genomic recurrence with the genotypephenotype map, and the ways in which the study of recurrent genomic evolution can be used to understand fundamental evolutionary processes. PMID:22417916

Maeso, Ignacio; Roy, Scott William; Irimia, Manuel

2012-01-01

11

Genomic repeats, genome plasticity and the dynamics of Mycoplasma evolution  

Microsoft Academic Search

Mycoplasmas evolved by a drastic reduction in genome size, but their genomes contain numerous repeated sequences with important roles in their evolution. We have established a bioinformatic strategy to detect the major recombination hot-spots in the genomes of Mycoplasma pneumoniae, Myco- plasma genitalium, Ureaplasma urealyticum and Mycoplasma pulmonis. This allowed the identifica- tion of large numbers of potentially variable regions,

Eduardo P. C. Rocha; Alain Blanchard

2002-01-01

12

Critical Analysis of Rhinovirus RNA Load Quantification by Real-Time Reverse Transcription-PCR  

PubMed Central

Rhinoviruses are the most frequent cause of human respiratory infections, and quantitative rhinovirus diagnostic tools are needed for clinical investigations. Although results obtained by real-time reverse-transcription PCR (RT-PCR) assays are frequently converted to viral RNA loads, this presents several limitations regarding accurate virus RNA quantification, particularly given the need to reliably quantify all known rhinovirus genotypes with a single assay. Using an internal extraction control and serial dilutions of an in vitro-transcribed rhinovirus RNA reference standard, we validated a quantitative one-step real-time PCR assay. We then used chimeric rhinovirus genomes with 5?-untranslated regions (5?UTRs) originating from the three rhinovirus species and from one enterovirus to estimate the impact of the 5?UTR diversity. Respiratory specimens from infected patients were then also analyzed. The assay quantification ability ranged from 4.10 to 9.10 log RNA copies/ml, with an estimated error margin of 10%. This variation was mainly linked to target variability and interassay variability. Taken together, our results indicate that our assay can reliably estimate rhinovirus RNA load, provided that the appropriate error margin is used. In contrast, due to the lack of a universal rhinovirus RNA standard and the variability related to sample collection procedures, accurate absolute rhinovirus RNA quantification in respiratory specimens is currently hardly feasible. PMID:22718934

Yerly, Sabine; Vieille, Gael; Docquier, Mylene; Turin, Lara; Kaiser, Laurent; Tapparel, Caroline

2012-01-01

13

Leading Edge Bacterial Genomics and Pathogen Evolution  

E-print Network

Leading Edge Review Bacterial Genomics and Pathogen Evolution David M. Raskin,1 Rekha Seshadri,2 Medical School, Boston, MA 02115, USA 2 The Institute for Genomic Research, 9712 Medical Center Drive.02.002 The availability of hundreds of bacterial genome sequences has altered the study of bacte- rial pathogenesis

Mekalanos, John

14

Genomics and Evolution of Cellular Organelles  

Microsoft Academic Search

The structure, functions, and evolution of cellular organelles are reviewed. The mitochondrial genomes of eukaryotes differ considerably in size and structural organization mainly due to the length variation in noncoding regions and the presence of introns. The mitochondrial genomes of angiosperms are the largest and most complicated. Gene content in eukaryotic mitochondrial genomes is similar. They usually encode all types

M. S. Odintsova; N. P. Yurina

2005-01-01

15

The Evolution of Genomic Imprinting  

PubMed Central

In some mammalian genes, the paternally and maternally derived alleles are expressed differently: this phenomenon is called genomic imprinting. Here we study the evolution of imprinting using multivariate quantitative genetic models to examine the feasibility of the genetic conflict hypothesis. This hypothesis explains the observed imprinting patterns as an evolutionary outcome of the conflict between the paternal and maternal alleles. We consider the expression of a zygotic gene, which codes for an embryonic growth factor affecting the amount of maternal resources obtained through the placenta. We assume that the gene produces the growth factor in two different amounts depending on its parental origin. We show that genomic imprinting evolves easily if females have some probability of multiple partners. This is in conflict with the observation that not all genes controlling placental development are imprinted and that imprinting in some genes is not conserved between mice and humans. We show however that deleterious mutations in the coding region of the gene create selection against imprinting. PMID:8913768

Mochizuki, A.; Takeda, Y.; Iwasa, Y.

1996-01-01

16

Molecular evolution of genes in avian genomes  

Microsoft Academic Search

BackgroundObtaining a draft genome sequence of the zebra finch (Taeniopygia guttata), the second bird genome to be sequenced, provides the necessary resource for whole-genome comparative analysis of gene sequence\\u000a evolution in a non-mammalian vertebrate lineage. To analyze basic molecular evolutionary processes during avian evolution,\\u000a and to contrast these with the situation in mammals, we aligned the protein-coding sequences of 8,384

Kiwoong Nam; Carina Mugal; Benoit Nabholz; Holger Schielzeth; Jochen BW Wolf; Niclas Backstrm; Axel Knstner; Christopher N Balakrishnan; Andreas Heger; Chris P Ponting; David F Clayton; Hans Ellegren

2010-01-01

17

Transmission and control of rhinovirus colds  

Microsoft Academic Search

With the expanding knowledge of rhinovirus transmission and rhinovirus chemistry, the outlook for control of infections with these agents has brightened considerably. Although rhinoviruses are probably the world's leading cause of respiratory illness, they are surprisingly reluctant transmitters, infecting only about 50% of susceptibles in family-like settings. Current research suggests that rhinoviruses are spread chiefly by aerosol, rather than by

L. C. Jennings; E. C. Dick

1987-01-01

18

The Genomic Palimpsest: Genomics in Evolution and Ecology  

NSDL National Science Digital Library

This peer-reviewed resource from Bioscience journal is about the role of genomics in evolution and ecology. Genomics is the discipline that has grown up around the sequencing and analysis of complete genomes. It has typically emphasized questions that involve the biological function of individual organisms, and has been somewhat isolated from the fields of evolutionary biology and ecology. However, genomic approaches also provide powerful tools for studying populations, interactions among organisms, and evolutionary history. Because of the large number of microbial genomes available, the first widespread use of genomic methods in evolution and ecology was in the study of bacteria and archaea, but similar approaches are being applied to eukaryotes. Genomic approaches have revolutionized the study of in situ microbial populations and facilitated the reconstruction of early events in the evolution of photosynthetic eukaryotes. Fields that have been largely unaffected by genomics will feel its influence in the near future, and greater interaction will benefit all of these historically distinct fields of study.

CHARLES F. DELWICHE (;)

2004-11-01

19

Integrons: natural tools for bacterial genome evolution  

Microsoft Academic Search

Integrons were first identified as the primary mechanism for antibiotic resistance gene capture and dissemination among Gram-negative bacteria. More recently, their role in genome evolution has been extended with the discovery of larger integron structures, the super-integrons, as genuine components of the genomes of many species throughout the ?-proteobacterial radiation. The functional platforms of these integrons appear to be sedentary,

Dean A Rowe-Magnus; Didier Mazel

2001-01-01

20

Reticulate evolution of the rye genome.  

PubMed

Rye (Secale cereale) is closely related to wheat (Triticum aestivum) and barley (Hordeum vulgare). Due to its large genome (~8 Gb) and its regional importance, genome analysis of rye has lagged behind other cereals. Here, we established a virtual linear gene order model (genome zipper) comprising 22,426 or 72% of the detected set of 31,008 rye genes. This was achieved by high-throughput transcript mapping, chromosome survey sequencing, and integration of conserved synteny information of three sequenced model grass genomes (Brachypodium distachyon, rice [Oryza sativa], and sorghum [Sorghum bicolor]). This enabled a genome-wide high-density comparative analysis of rye/barley/model grass genome synteny. Seventeen conserved syntenic linkage blocks making up the rye and barley genomes were defined in comparison to model grass genomes. Six major translocations shaped the modern rye genome in comparison to a putative Triticeae ancestral genome. Strikingly dissimilar conserved syntenic gene content, gene sequence diversity signatures, and phylogenetic networks were found for individual rye syntenic blocks. This indicates that introgressive hybridizations (diploid or polyploidy hybrid speciation) and/or a series of whole-genome or chromosome duplications played a role in rye speciation and genome evolution. PMID:24104565

Martis, Mihaela M; Zhou, Ruonan; Haseneyer, Grit; Schmutzer, Thomas; Vrna, Jan; Kubalkov, Marie; Knig, Susanne; Kugler, Karl G; Scholz, Uwe; Hackauf, Bernd; Korzun, Viktor; Schn, Chris-Carolin; Dolezel, Jaroslav; Bauer, Eva; Mayer, Klaus F X; Stein, Nils

2013-10-01

21

Genomic disorders: A window into human gene and genome evolution  

PubMed Central

Gene duplications alter the genetic constitution of organisms and can be a driving force of molecular evolution in humans and the great apes. In this context, the study of genomic disorders has uncovered the essential role played by the genomic architecture, especially low copy repeats (LCRs) or segmental duplications (SDs). In fact, regardless of the mechanism, LCRs can mediate or stimulate rearrangements, inciting genomic instability and generating dynamic and unstable regions prone to rapid molecular evolution. In humans, copy-number variation (CNV) has been implicated in common traits such as neuropathy, hypertension, color blindness, infertility, and behavioral traits including autism and schizophrenia, as well as disease susceptibility to HIV, lupus nephritis, and psoriasis among many other clinical phenotypes. The same mechanisms implicated in the origin of genomic disorders may also play a role in the emergence of segmental duplications and the evolution of new genes by means of genomic and gene duplication and triplication, exon shuffling, exon accretion, and fusion/fission events. PMID:20080665

Carvalho, Claudia M. B.; Zhang, Feng; Lupski, James R.

2010-01-01

22

Are There Laws of Genome Evolution?  

PubMed Central

Research in quantitative evolutionary genomics and systems biology led to the discovery of several universal regularities connecting genomic and molecular phenomic variables. These universals include the log-normal distribution of the evolutionary rates of orthologous genes; the power lawlike distributions of paralogous family size and node degree in various biological networks; the negative correlation between a gene's sequence evolution rate and expression level; and differential scaling of functional classes of genes with genome size. The universals of genome evolution can be accounted for by simple mathematical models similar to those used in statistical physics, such as the birth-death-innovation model. These models do not explicitly incorporate selection; therefore, the observed universal regularities do not appear to be shaped by selection but rather are emergent properties of gene ensembles. Although a complete physical theory of evolutionary biology is inconceivable, the universals of genome evolution might qualify as laws of evolutionary genomics in the same sense law is understood in modern physics. PMID:21901087

Koonin, Eugene V.

2011-01-01

23

Evolution of the chloroplast genome.  

PubMed Central

We discuss the suggestion that differences in the nucleotide composition between plastid and nuclear genomes may provide a selective advantage in the transposition of genes from plastid to nucleus. We show that in the adenine, thymine (AT)-rich genome of Borrelia burgdorferi several genes have an AT-content lower than the average for the genome as a whole. However, genes whose plant homologues have moved from plastid to nucleus are no less AT-rich than genes whose plant homologues have remained in the plastid, indicating that both classes of gene are able to support a high AT-content. We describe the anomalous organization of dinoflagellate plastid genes. These are located on small circles of 2-3 kbp, in contrast to the usual plastid genome organization of a single large circle of 100-200 kbp. Most circles contain a single gene. Some circles contain two genes and some contain none. Dinoflagellate plastids have retained far fewer genes than other plastids. We discuss a similarity between the dinoflagellate minicircles and the bacterial integron system. PMID:12594920

Howe, Christopher J; Barbrook, Adrian C; Koumandou, V Lila; Nisbet, R Ellen R; Symington, Hamish A; Wightman, Tom F

2003-01-01

24

Genomes and evolution Editorial overview  

E-print Network

, culture, historical circumstances and economic implications, as well as basic research considerations have stimulated much research. Apart from the intrinsic biological interest of the nematode genome by the nematode sequence. Interestingly, -2.5% of the genes are contained in operons, an observation

Boguski, Mark S.

25

Evolution of gastropod mitochondrial genome arrangements  

PubMed Central

Background Gastropod mitochondrial genomes exhibit an unusually great variety of gene orders compared to other metazoan mitochondrial genome such as e.g those of vertebrates. Hence, gastropod mitochondrial genomes constitute a good model system to study patterns, rates, and mechanisms of mitochondrial genome rearrangement. However, this kind of evolutionary comparative analysis requires a robust phylogenetic framework of the group under study, which has been elusive so far for gastropods in spite of the efforts carried out during the last two decades. Here, we report the complete nucleotide sequence of five mitochondrial genomes of gastropods (Pyramidella dolabrata, Ascobulla fragilis, Siphonaria pectinata, Onchidella celtica, and Myosotella myosotis), and we analyze them together with another ten complete mitochondrial genomes of gastropods currently available in molecular databases in order to reconstruct the phylogenetic relationships among the main lineages of gastropods. Results Comparative analyses with other mollusk mitochondrial genomes allowed us to describe molecular features and general trends in the evolution of mitochondrial genome organization in gastropods. Phylogenetic reconstruction with commonly used methods of phylogenetic inference (ME, MP, ML, BI) arrived at a single topology, which was used to reconstruct the evolution of mitochondrial gene rearrangements in the group. Conclusion Four main lineages were identified within gastropods: Caenogastropoda, Vetigastropoda, Patellogastropoda, and Heterobranchia. Caenogastropoda and Vetigastropoda are sister taxa, as well as, Patellogastropoda and Heterobranchia. This result rejects the validity of the derived clade Apogastropoda (Caenogastropoda + Heterobranchia). The position of Patellogastropoda remains unclear likely due to long-branch attraction biases. Within Heterobranchia, the most heterogeneous group of gastropods, neither Euthyneura (because of the inclusion of P. dolabrata) nor Pulmonata (polyphyletic) nor Opisthobranchia (because of the inclusion S. pectinata) were recovered as monophyletic groups. The gene order of the Vetigastropoda might represent the ancestral mitochondrial gene order for Gastropoda and we propose that at least three major rearrangements have taken place in the evolution of gastropods: one in the ancestor of Caenogastropoda, another in the ancestor of Patellogastropoda, and one more in the ancestor of Heterobranchia. PMID:18302768

2008-01-01

26

Genome evolution during progression to breast cancer.  

PubMed

Cancer evolution involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that eventually culminate in the carcinoma phenotype. Early neoplasias, which are often found concurrently with carcinomas and are histologically distinguishable from normal breast tissue, are less advanced in phenotype than carcinomas and are thought to represent precursor stages. To elucidate their role in cancer evolution we performed comparative whole-genome sequencing of early neoplasias, matched normal tissue, and carcinomas from six patients, for a total of 31 samples. By using somatic mutations as lineage markers we built trees that relate the tissue samples within each patient. On the basis of these lineage trees we inferred the order, timing, and rates of genomic events. In four out of six cases, an early neoplasia and the carcinoma share a mutated common ancestor with recurring aneuploidies, and in all six cases evolution accelerated in the carcinoma lineage. Transition spectra of somatic mutations are stable and consistent across cases, suggesting that accumulation of somatic mutations is a result of increased ancestral cell division rather than specific mutational mechanisms. In contrast to highly advanced tumors that are the focus of much of the current cancer genome sequencing, neither the early neoplasia genomes nor the carcinomas are enriched with potentially functional somatic point mutations. Aneuploidies that occur in common ancestors of neoplastic and tumor cells are the earliest events that affect a large number of genes and may predispose breast tissue to eventual development of invasive carcinoma. PMID:23568837

Newburger, Daniel E; Kashef-Haghighi, Dorna; Weng, Ziming; Salari, Raheleh; Sweeney, Robert T; Brunner, Alayne L; Zhu, Shirley X; Guo, Xiangqian; Varma, Sushama; Troxell, Megan L; West, Robert B; Batzoglou, Serafim; Sidow, Arend

2013-07-01

27

Genome evolution during progression to breast cancer  

PubMed Central

Cancer evolution involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that eventually culminate in the carcinoma phenotype. Early neoplasias, which are often found concurrently with carcinomas and are histologically distinguishable from normal breast tissue, are less advanced in phenotype than carcinomas and are thought to represent precursor stages. To elucidate their role in cancer evolution we performed comparative whole-genome sequencing of early neoplasias, matched normal tissue, and carcinomas from six patients, for a total of 31 samples. By using somatic mutations as lineage markers we built trees that relate the tissue samples within each patient. On the basis of these lineage trees we inferred the order, timing, and rates of genomic events. In four out of six cases, an early neoplasia and the carcinoma share a mutated common ancestor with recurring aneuploidies, and in all six cases evolution accelerated in the carcinoma lineage. Transition spectra of somatic mutations are stable and consistent across cases, suggesting that accumulation of somatic mutations is a result of increased ancestral cell division rather than specific mutational mechanisms. In contrast to highly advanced tumors that are the focus of much of the current cancer genome sequencing, neither the early neoplasia genomes nor the carcinomas are enriched with potentially functional somatic point mutations. Aneuploidies that occur in common ancestors of neoplastic and tumor cells are the earliest events that affect a large number of genes and may predispose breast tissue to eventual development of invasive carcinoma. PMID:23568837

Newburger, Daniel E.; Kashef-Haghighi, Dorna; Weng, Ziming; Salari, Raheleh; Sweeney, Robert T.; Brunner, Alayne L.; Zhu, Shirley X.; Guo, Xiangqian; Varma, Sushama; Troxell, Megan L.; West, Robert B.; Batzoglou, Serafim; Sidow, Arend

2013-01-01

28

Genome duplication, extinction and vertebrate evolution  

E-print Network

Genome duplication, extinction and vertebrate evolution Philip C.J. Donoghue1 and Mark A. Purnell2 considered fundamental, and it pervades all discussions of animal biology. With the recognition of incomplete taxonomic sampling. Evolutionary jumps, fossils and extinction A fundamental problem

Brierley, Andrew

29

Integrons: natural tools for bacterial genome evolution.  

PubMed

Integrons were first identified as the primary mechanism for antibiotic resistance gene capture and dissemination among Gram-negative bacteria. More recently, their role in genome evolution has been extended with the discovery of larger integron structures, the super-integrons, as genuine components of the genomes of many species throughout the gamma-proteobacterial radiation. The functional platforms of these integrons appear to be sedentary, whereas their gene cassette contents are highly variable. Nevertheless, the gene cassettes for which an activity has been experimentally demonstrated encode proteins related to simple adaptive functions and their recruitment is seen as providing the bacterial host with a selective advantage. The widespread occurrence of the integron system among Gram-negative bacteria is discussed, with special focus on the super-integrons. Some of the adaptive functions encoded by these genes are also reviewed, and implications of integron-mediated genome evolution in the emergence of novel bacterial species are highlighted. PMID:11587934

Rowe-Magnus, D A; Mazel, D

2001-10-01

30

Constraints and plasticity in genome and molecular-phenome evolution  

Microsoft Academic Search

Multiple constraints variously affect different parts of the genomes of diverse life forms. The selective pressures that shape the evolution of viral, archaeal, bacterial and eukaryotic genomes differ markedly, even among relatively closely related animal and bacterial lineages; by contrast, constraints affecting protein evolution seem to be more universal. The constraints that shape the evolution of genomes and phenomes are

Yuri I. Wolf; Eugene V. Koonin

2010-01-01

31

Evolutionary Relationships within the Human Rhinovirus Genus: Comparison of Serotypes 89, 2, and 14  

Microsoft Academic Search

The complete nucleotide sequence of the genome of human rhinovirus type 89 was determined from the cDNA that had been cloned into Escherichia coli. The genome is 7152 nucleotides long and contains a single large open reading frame of 2164 codons. Translation commences at position 619 and ends 42 nucleotides before the poly(A) tract. The positions of three proteolytic cleavage

Marcus Duechler; Tim Skern; Wolfgang Sommergruber; Christoph Neubauer; Peter Gruendler; Ingrid Fogy; Dieter Blaas; Ernst Kuechler

1987-01-01

32

On some operations suggested by genome evolution  

SciTech Connect

Three operations involved in the genome evolution namely, inversion, transposition and duplication, are considered as operations on strings and languages. We show that, for any pair of these operations, there is a language family which is closed under one of the operations and not closed under the second one; however, under some mild conditions the closure of a language family under one of the operations implies that it also closed with respect to another one. 15 refs.

Dassow, J. [Univ. of Magdeburg (Germany); Mitrana, V. [Univ. of Bucharest (Romania)

1996-12-31

33

Dynamics in genome evolution of Vibrio cholerae.  

PubMed

Vibrio cholerae, the etiological agent of the acute secretary diarrheal disease cholera, is still a major public health concern in developing countries. In former centuries cholera was a permanent threat even to the highly developed populations of Europe, North America, and the northern part of Asia. Extensive studies on the cholera bug over more than a century have made significant advances in our understanding of the disease and ways of treating patients. V. cholerae has more than 200 serogroups, but only few serogroups have caused disease on a worldwide scale. Until the present, the evolutionary relationship of these pandemic causing serogroups was not clear. In the last decades, we have witnessed a shift involving genetically and phenotypically varied pandemic clones of V. cholerae in Asia and Africa. The exponential knowledge on the genome of several representatives V. cholerae strains has been used to identify and analyze the key determinants for rapid evolution of cholera pathogen. Recent comparative genomic studies have identified the presence of various integrative mobile genetic elements (IMGEs) in V. cholerae genome, which can be used as a marker of differentiation of all seventh pandemic clones with very similar core genome. This review attempts to bring together some of the important researches in recent times that have contributed towards understanding the genetics, epidemiology and evolution of toxigenic V. cholerae strains. PMID:24462909

Banerjee, Rachana; Das, Bhabatosh; Balakrish Nair, G; Basak, Surajit

2014-04-01

34

Evolution of Genome Size in Brassicaceae  

PubMed Central

Background and Aims Brassicaceae, with nearly 340 genera and more than 3350 species, anchors the low range of angiosperm genome sizes. The relatively narrow range of DNA content (016 pg < 1C < 195 pg) was maintained in spite of extensive chromosomal change. The aim of this study was to erect a cytological and molecular phylogenetic framework for a selected subset of the Brassicacae, and use this as a template to examine genome size evolution in Brassicaceae. Methods DNA contents were determined by flow cytometry and chromosomes were counted for 34 species of the family Brassicaceae and for ten Arabidopsis thaliana ecotypes. The amplified and sequenced ITS region for 23 taxa (plus six other taxa with known ITS sequences) were aligned and used to infer evolutionary relationship by parsimony analysis. Key Results DNA content in the species studied ranged over 8-fold (1C = 016131 pg), and 44-fold (1C = 016071 pg) excluding allotetraploid Brassica species. The 1C DNA contents of ten Arabidopsis thaliana ecotypes showed little variation, ranging from 016 pg to 017 pg. Conclusions The tree roots at an ancestral genome size of approximately 1x = 02 pg. Arabidopsis thaliana (1C = 016 pg; ~157 Mbp) has the smallest genome size in Brassicaceae studied here and apparently represents an evolutionary decrease in genome size. Two other branches that represent probable evolutionary decreases in genome size terminate in Lepidium virginicum and Brassica rapa. Branches in the phylogenetic tree that represent probable evolutionary increases in genome size terminate in Arabidopsis halleri, A. lyrata, Arabis hirsuta, Capsella rubella, Caulanthus heterophyllus, Crucihimalaya, Lepidium sativum, Sisymbrium and Thlaspi arvense. Branches within one clade containing Brassica were identified that represent two ancient ploidy events (2x to 4x and 4x to 6x) that were predicted from published comparative mapping studies. PMID:15596470

SPENCER JOHNSTON, J.; PEPPER, ALAN E.; HALL, ANNE E.; JEFFREY CHEN, Z.; HODNETT, GEORGE; DRABEK, JANICE; LOPEZ, REBECCA; JAMES PRICE, H.

2007-01-01

35

A model for genome size evolution.  

PubMed

We present a model for genome size evolution that takes into account both local mutations such as small insertions and small deletions, and large chromosomal rearrangements such as duplications and large deletions. We introduce the possibility of undergoing several mutations within one generation. The model, albeit minimalist, reveals a non-trivial spontaneous dynamics of genome size: in the absence of selection, an arbitrary large part of genomes remains beneath a finite size, even for a duplication rate 2.6-fold higher than the rate of large deletions, and even if there is also a systematic bias toward small insertions compared to small deletions. Specifically, we show that the condition of existence of an asymptotic stationary distribution for genome size non-trivially depends on the rates and mean sizes of the different mutation types. We also give upper bounds for the median and other quantiles of the genome size distribution, and argue that these bounds cannot be overcome by selection. Taken together, our results show that the spontaneous dynamics of genome size naturally prevents it from growing infinitely, even in cases where intuition would suggest an infinite growth. Using quantitative numerical examples, we show that, in practice, a shrinkage bias appears very quickly in genomes undergoing mutation accumulation, even though DNA gains and losses appear to be perfectly symmetrical at first sight. We discuss this spontaneous dynamics in the light of the other evolutionary forces proposed in the literature and argue that it provides them a stability-related size limit below which they can act. PMID:25142746

Fischer, Stephan; Bernard, Samuel; Beslon, Guillaume; Knibbe, Carole

2014-09-01

36

Localizing Recent Adaptive Evolution in the Human Genome  

E-print Network

Localizing Recent Adaptive Evolution in the Human Genome Scott H. Williamson1* , Melissa J. Hubisz1, Bustamante CD, et al. (2007) Localizing recent adaptive evolution in the human genome. PLoS Genet 3(6): e90 interest is the effect of very recent adaptive evolution in humans. If one can localize adaptive events

Nielsen, Rasmus

37

Examination of Prokaryotic Multipartite Genome Evolution through Experimental Genome Reduction  

PubMed Central

Many bacteria carry two or more chromosome-like replicons. This occurs in pathogens such as Vibrio cholerea and Brucella abortis as well as in many N2-fixing plant symbionts including all isolates of the alfalfa root-nodule bacteria Sinorhizobium meliloti. Understanding the evolution and role of this multipartite genome organization will provide significant insight into these important organisms; yet this knowledge remains incomplete, in part, because technical challenges of large-scale genome manipulations have limited experimental analyses. The distinct evolutionary histories and characteristics of the three replicons that constitute the S. meliloti genome (the chromosome (3.65 Mb), pSymA megaplasmid (1.35 Mb), and pSymB chromid (1.68 Mb)) makes this a good model to examine this topic. We transferred essential genes from pSymB into the chromosome, and constructed strains that lack pSymB as well as both pSymA and pSymB. This is the largest reduction (45.4%, 3.04 megabases, 2866 genes) of a prokaryotic genome to date and the first removal of an essential chromid. Strikingly, strains lacking pSymA and pSymB (?pSymAB) lost the ability to utilize 55 of 74 carbon sources and various sources of nitrogen, phosphorous and sulfur, yet the ?pSymAB strain grew well in minimal salts media and in sterile soil. This suggests that the core chromosome is sufficient for growth in a bulk soil environment and that the pSymA and pSymB replicons carry genes with more specialized functions such as growth in the rhizosphere and interaction with the plant. These experimental data support a generalized evolutionary model, in which non-chromosomal replicons primarily carry genes with more specialized functions. These large secondary replicons increase the organism's niche range, which offsets their metabolic burden on the cell (e.g. pSymA). Subsequent co-evolution with the chromosome then leads to the formation of a chromid through the acquisition of functions core to all niches (e.g. pSymB). PMID:25340565

diCenzo, George C.; MacLean, Allyson M.; Milunovic, Branislava; Golding, G. Brian; Finan, Turlough M.

2014-01-01

38

Disparate modes of evolution in chloroplast and nuclear genomes.  

E-print Network

??This thesis explores evolution of gene order in chloroplasts, genome duplications in flowering plants, and the relationship between phylogenetic position, polyploidy, and gene numbers. Comparisons (more)

Cui, Liying

2006-01-01

39

Comparative Genomics and Evolution of Molybdenum Utilization  

PubMed Central

The trace element molybdenum (Mo) is the catalytic component of important enzymes involved in global nitrogen, sulfur, and carbon metabolism in both prokaryotes and eukaryotes. With the exception of nitrogenase, Mo is complexed by a pterin compound thus forming the biologically active molybdenum cofactor (Moco) at the catalytic sites of molybdoenzymes. The physiological roles and biochemical functions of many molybdoenzymes have been characterized. However, our understanding of the occurrence and evolution of Mo utilization is limited. This article focuses on recent advances in comparative genomics of Mo utilization in the three domains of life. We begin with a brief introduction of Mo transport systems, the Moco biosynthesis pathway, the role of posttranslational modifications, and enzymes that utilize Mo. Then, we proceed to recent computational and comparative genomics studies of Mo utilization, including a discussion on novel Moco-binding proteins that contain the C-terminal domain of the Moco sulfurase and that are suggested to represent a new family of molybdoenzymes. As most molybdoenzymes need additional cofactors for their catalytic activity, we also discuss interactions between Mo metabolism and other trace elements and finish with an analysis of factors that may influence evolution of Mo utilization. PMID:22451726

Zhang, Yan; Rump, Steffen; Gladyshev, Vadim N.

2011-01-01

40

Productive Entry Pathways of Human Rhinoviruses  

PubMed Central

Currently, complete or partial genome sequences of more than 150 human rhinovirus (HRV) isolates are known. Twelve species A use members of the low-density lipoprotein receptor family for cell entry, whereas the remaining HRV-A and all HRV-B bind ICAM-1. HRV-Cs exploit an unknown receptor. At least all A and B type viruses depend on receptor-mediated endocytosis for infection. In HeLa cells, they are internalized mainly by a clathrin- and dynamin-dependent mechanism. Upon uptake into acidic compartments, the icosahedral HRV capsid expands by ~4% and holes open at the 2-fold axes, close to the pseudo-3-fold axes and at the base of the star-shaped dome protruding at the vertices. RNA-protein interactions are broken and new ones are established, the small internal myristoylated capsid protein VP4 is expelled, and amphipathic N-terminal sequences of VP1 become exposed. The now hydrophobic subviral particle attaches to the inner surface of endosomes and transfers its genomic (+) ssRNA into the cytosol. The RNA leaves the virus starting with the poly(A) tail at its 3?-end and passes through a membrane pore contiguous with one of the holes in the capsid wall. Alternatively, the endosome is disrupted and the RNA freely diffuses into the cytoplasm. PMID:23227049

Fuchs, Renate; Blaas, Dieter

2012-01-01

41

[Evolution of genomic imprinting in mammals: what a zoo!].  

PubMed

Genomic imprinting imposes an obligate mode of biparental reproduction in mammals. This phenomenon results from the monoparental expression of a subset of genes. This specific gene regulation mechanism affects viviparous mammals, especially eutherians, but also marsupials to a lesser extent. Oviparous mammals, or monotremes, do not seem to demonstrate monoparental allele expression. This phylogenic confinement suggests that the evolution of the placenta imposed a selective pressure for the emergence of genomic imprinting. This physiological argument is now complemented by recent genomic evidence facilitated by the sequencing of the platypus genome, a rare modern day case of a monotreme. Analysis of the platypus genome in comparison to eutherian genomes shows a chronological and functional coincidence between the appearance of genomic imprinting and transposable element accumulation. The systematic comparative analyses of genomic sequences in different species is essential for the further understanding of genomic imprinting emergence and divergent evolution along mammalian speciation. PMID:20510148

Proudhon, Charlotte; Bourc'his, Dborah

2010-05-01

42

Implications of the Plastid Genome Sequence of Typha (Typhaceae, Poales) for Understanding Genome Evolution in Poaceae  

Microsoft Academic Search

Plastid genomes of the grasses (Poaceae) are unusual in their organization and rates of sequence evolution. There has been\\u000a a recent surge in the availability of grass plastid genome sequences, but a comprehensive comparative analysis of genome evolution\\u000a has not been performed that includes any related families in the Poales. We report on the plastid genome of Typha latifolia, the

Mary M. GuisingerTimothy; Timothy W. Chumley; Jennifer V. Kuehl; Jeffrey L. Boore; Robert K. Jansen

2010-01-01

43

The amphioxus genome and the evolution of the chordate karyotype  

E-print Network

ARTICLES The amphioxus genome and the evolution of the chordate karyotype Nicholas H. Putnam1,2 Lancelets (`amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate

Utrecht, Universiteit

44

An algebraic view of bacterial genome evolution.  

PubMed

Rearrangements of bacterial chromosomes can be studied mathematically at several levels, most prominently at a local, or sequence level, as well as at a topological level. The biological changes involved locally are inversions, deletions, and transpositions, while topologically they are knotting and catenation. These two modelling approaches share some surprising algebraic features related to braid groups and Coxeter groups. The structural approach that is at the core of algebra has long found applications in sciences such as physics and analytical chemistry, but only in a small number of ways so far in biology. And yet there are examples where an algebraic viewpoint may capture a deeper structure behind biological phenomena. This article discusses a family of biological problems in bacterial genome evolution for which this may be the case, and raises the prospect that the tools developed by algebraists over the last century might provide insight to this area of evolutionary biology. PMID:24375264

Francis, Andrew R

2014-12-01

45

Apprehending multicellularity: regulatory networks, genomics and evolution  

PubMed Central

The genomic revolution has provided the first glimpses of the architecture of regulatory networks. Combined with evolutionary information, the network view of life processes leads to remarkable insights into how biological systems have been shaped by various forces. This understanding is critical because biological systems, including regulatory networks, are not products of engineering but of historical contingencies. In this light, we attempt a synthetic overview of the natural history of regulatory networks operating in the development and differentiation of multicellular organisms. We first introduce regulatory networks and their organizational principles as can be deduced using ideas from the graph theory. We then discuss findings from comparative genomics to illustrate the effects of lineage-specific expansions, gene-loss, and non-protein-coding DNA on the architecture of networks. We consider the interaction between expansions of transcription factors, and cis regulatory and more general chromatin state stabilizing elements in the emergence of morphological complexity. Finally, we consider a case study of the Notch sub-network, which is present throughout Metazoa, to examine how such a regulatory system has been pieced together in evolution from new innovations and pre-existing components that were originally functionally distinct. PMID:19530132

Aravind, L.; Anantharaman, Vivek; Venancio, Thiago M.

2009-01-01

46

The tomato genome: implications for plant breeding, genomics and evolution  

PubMed Central

The genome sequence of tomato (Solanum lycopersicum), one of the most important vegetable crops, has recently been decoded. We address implications of the tomato genome for plant breeding, genomics and evolutionary studies, and its potential to fuel future crop biology research. PMID:22943138

2012-01-01

47

Ecological and Temporal Constraints in the Evolution of Bacterial Genomes  

PubMed Central

Studies on the experimental evolution of microorganisms, on their in vivo evolution (mainly in the case of bacteria producing chronic infections), as well as the availability of multiple full genomic sequences, are placing bacteria in the playground of evolutionary studies. In the present article we review the differential contribution to the evolution of bacterial genomes that processes such as gene modification, gene acquisition and gene loss may have when bacteria colonize different habitats that present characteristic ecological features. In particular, we review how the different processes contribute to evolution in microbial communities, in free-living bacteria or in bacteria living in isolation. In addition, we discuss the temporal constraints in the evolution of bacterial genomes, considering bacterial evolution from the perspective of processes of short-sighted evolution and punctual acquisition of evolutionary novelties followed by long stasis periods. PMID:24710293

Boto, Luis; Martnez, Jose Luis

2011-01-01

48

Genome reduction as the dominant mode of evolution  

PubMed Central

A common belief is that evolution generally proceeds towards greater complexity at both the organismal and the genomic level, numerous examples of reductive evolution of parasites and symbionts notwithstanding. However, recent evolutionary reconstructions challenge this notion. Two notable examples are the reconstruction of the complex archaeal ancestor and the intron-rich ancestor of eukaryotes. In both cases, evolution in most of the lineages was apparently dominated by extensive loss of genes and introns, respectively. These and many other cases of reductive evolution are consistent with a general model composed of two distinct evolutionary phases: the short, explosive, innovation phase that leads to an abrupt increase in genome complexity, followed by a much longer reductive phase, which encompasses either a neutral ratchet of genetic material loss or adaptive genome streamlining. Quantitatively, the evolution of genomes appears to be dominated by reduction and simplification, punctuated by episodes of complexification. PMID:23801028

Wolf, Yuri I; Koonin, Eugene V

2013-01-01

49

Genome size diversity in orchids: consequences and evolution  

PubMed Central

Background The amount of DNA comprising the genome of an organism (its genome size) varies a remarkable 40 000-fold across eukaryotes, yet most groups are characterized by much narrower ranges (e.g. 14-fold in gymnosperms, 3- to 4-fold in mammals). Angiosperms stand out as one of the most variable groups with genome sizes varying nearly 2000-fold. Nevertheless within angiosperms the majority of families are characterized by genomes which are small and vary little. Species with large genomes are mostly restricted to a few monocots families including Orchidaceae. Scope A survey of the literature revealed that genome size data for Orchidaceae are comparatively rare representing just 327 species. Nevertheless they reveal that Orchidaceae are currently the most variable angiosperm family with genome sizes ranging 168-fold (1C = 033554 pg). Analysing the data provided insights into the distribution, evolution and possible consequences to the plant of this genome size diversity. Conclusions Superimposing the data onto the increasingly robust phylogenetic tree of Orchidaceae revealed how different subfamilies were characterized by distinct genome size profiles. Epidendroideae possessed the greatest range of genome sizes, although the majority of species had small genomes. In contrast, the largest genomes were found in subfamilies Cypripedioideae and Vanilloideae. Genome size evolution within this subfamily was analysed as this is the only one with reasonable representation of data. This approach highlighted striking differences in genome size and karyotype evolution between the closely related Cypripedium, Paphiopedilum and Phragmipedium. As to the consequences of genome size diversity, various studies revealed that this has both practical (e.g. application of genetic fingerprinting techniques) and biological consequences (e.g. affecting where and when an orchid may grow) and emphasizes the importance of obtaining further genome size data given the considerable phylogenetic gaps which have been highlighted by the current study. PMID:19168860

Leitch, I. J.; Kahandawala, I.; Suda, J.; Hanson, L.; Ingrouille, M. J.; Chase, M. W.; Fay, M. F.

2009-01-01

50

Evolution, language and analogy in functional genomics  

NASA Technical Reports Server (NTRS)

Almost a century ago, Wittgenstein pointed out that theory in science is intricately connected to language. This connection is not a frequent topic in the genomics literature. But a case can be made that functional genomics is today hindered by the paradoxes that Wittgenstein identified. If this is true, until these paradoxes are recognized and addressed, functional genomics will continue to be limited in its ability to extrapolate information from genomic sequences.

Benner, S. A.; Gaucher, E. A.

2001-01-01

51

Supplementary Online A time-invariant principle of genome evolution  

E-print Network

Supplementary Online Material A time-invariant principle of genome evolution Subhajyoti De and M cells... 13 Figure SF13: Specific examples from cancer cells....................................14 Figure SF15: Specific examples from cells genetica

Babu, M. Madan

52

The amphioxus genome and the evolution of the chordate karyotype  

SciTech Connect

Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage with a fossil record dating back to the Cambrian. We describe the structure and gene content of the highly polymorphic {approx}520 million base pair genome of the Florida lancelet Branchiostoma floridae, and analyze it in the context of chordate evolution. Whole genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets, and vertebrates), and allow reconstruction of not only the gene complement of the last common chordate ancestor, but also a partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.

Putnam, Nicholas H.; Butts, Thomas; Ferrier, David E.K.; Furlong, Rebecca F.; Hellsten, Uffe; Kawashima, Takeshi; Robinson-Rechavi, Marc; Shoguchi, Eiichi; Terry, Astrid; Yu, Jr-Kai; Benito-Gutierrez, Elia; Dubchak, Inna; Garcia-Fernandez, Jordi; Gibson-Brown, Jeremy J.; Grigoriev, Igor V.; Horton, Amy C.; de Jong, Pieter J.; Jurka, Jerzy; Kapitonov, Vladimir; Kohara, Yuji; Kuroki, Yoko; Lindquist, Erika; Lucas, Susan; Osoegawa, Kazutoyo; Pennacchio, Len A.; Salamov, Asaf A.; Satou, Yutaka; Sauka-Spengler, Tatjana; Schmutz [, Jeremy; Shin-I, Tadasu; Toyoda, Atsushi; Bronner-Fraser, Marianne; Fujiyama, Asao; Holland, Linda Z.; Holland, Peter W. H.; Satoh, Nori; Rokhsar, Daniel S.

2008-04-01

53

The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes.  

PubMed

Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus. PMID:24852848

Liu, Shengyi; Liu, Yumei; Yang, Xinhua; Tong, Chaobo; Edwards, David; Parkin, Isobel A P; Zhao, Meixia; Ma, Jianxin; Yu, Jingyin; Huang, Shunmou; Wang, Xiyin; Wang, Junyi; Lu, Kun; Fang, Zhiyuan; Bancroft, Ian; Yang, Tae-Jin; Hu, Qiong; Wang, Xinfa; Yue, Zhen; Li, Haojie; Yang, Linfeng; Wu, Jian; Zhou, Qing; Wang, Wanxin; King, Graham J; Pires, J Chris; Lu, Changxin; Wu, Zhangyan; Sampath, Perumal; Wang, Zhuo; Guo, Hui; Pan, Shengkai; Yang, Limei; Min, Jiumeng; Zhang, Dong; Jin, Dianchuan; Li, Wanshun; Belcram, Harry; Tu, Jinxing; Guan, Mei; Qi, Cunkou; Du, Dezhi; Li, Jiana; Jiang, Liangcai; Batley, Jacqueline; Sharpe, Andrew G; Park, Beom-Seok; Ruperao, Pradeep; Cheng, Feng; Waminal, Nomar Espinosa; Huang, Yin; Dong, Caihua; Wang, Li; Li, Jingping; Hu, Zhiyong; Zhuang, Mu; Huang, Yi; Huang, Junyan; Shi, Jiaqin; Mei, Desheng; Liu, Jing; Lee, Tae-Ho; Wang, Jinpeng; Jin, Huizhe; Li, Zaiyun; Li, Xun; Zhang, Jiefu; Xiao, Lu; Zhou, Yongming; Liu, Zhongsong; Liu, Xuequn; Qin, Rui; Tang, Xu; Liu, Wenbin; Wang, Yupeng; Zhang, Yangyong; Lee, Jonghoon; Kim, Hyun Hee; Denoeud, France; Xu, Xun; Liang, Xinming; Hua, Wei; Wang, Xiaowu; Wang, Jun; Chalhoub, Boulos; Paterson, Andrew H

2014-01-01

54

Evolution of linear chromosomes and multipartite genomes in yeast mitochondria  

E-print Network

Evolution of linear chromosomes and multipartite genomes in yeast mitochondria Matus Valach1 mitochondria contain linear (cir- cularly permuted) concatemers that are heterogeneous in size (termed, mitochondria of numerous organisms contain multipartite genome; i.e. fragmented into multiple (from few

Brejova, Brona

55

The amphioxus genome and the evolution of the chordate karyotype  

Microsoft Academic Search

Lancelets (`amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic ~520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate

Nicholas H. Putnam; Thomas Butts; David E. K. Ferrier; Rebecca F. Furlong; Uffe Hellsten; Takeshi Kawashima; Marc Robinson-Rechavi; Eiichi Shoguchi; Astrid Terry; Yu-Kai Jr.; lia Benito-Gutirrez; Inna Dubchak; Jordi Garcia-Fernndez; Jeremy J. Gibson-Brown; Igor V. Grigoriev; Amy C. Horton; Pieter J. de Jong; Jerzy Jurka; Vladimir V. Kapitonov; Yuji Kohara; Yoko Kuroki; Erika Lindquist; Susan Lucas; Kazutoyo Osoegawa; Len A. Pennacchio; Asaf A. Salamov; Yutaka Satou; Tatjana Sauka-Spengler; Jeremy Schmutz; Tadasu Shin-I; Atsushi Toyoda; Marianne Bronner-Fraser; Asao Fujiyama; Linda Z. Holland; Peter W. H. Holland; Nori Satoh; Daniel S. Rokhsar

2008-01-01

56

Molecular Evolution in Nonrecombining Regions of the Drosophila melanogaster Genome  

E-print Network

Molecular Evolution in Nonrecombining Regions of the Drosophila melanogaster Genome Jose´ L. Campos on the Drosophila melanogaster genome, analyzing more than 200 new genes that lack crossing-over and employing a novel orthology search among species of the melanogaster subgroup. These genes are located

57

Mobile elements and mammalian genome evolution Prescott L Deininger  

E-print Network

Mobile elements and mammalian genome evolution Prescott L Deininger� , John V Morany , Mark A Batzerz and Haig H Kazazian Jr� Mobile elements make up large portions of most eukaryotic genomes and the development of innovative new assays to test the function of mobile elements have increased our understanding

Feschotte, Cedric

58

Genome analysis of the platypus reveals unique signatures of evolution  

E-print Network

ARTICLES Genome analysis of the platypus reveals unique signatures of evolution A list of authors and their affiliations appears at the end of the paper We present a draft genome sequence of the platypus. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay

Ray, David

59

Fatal respiratory infections associated with rhinovirus outbreak, Vietnam.  

PubMed

During an outbreak of severe acute respiratory infections in 2 orphanages, Vietnam, 7/12 hospitalized children died. All hospitalized children and 26/43 children from outbreak orphanages tested positive for rhinovirus versus 9/40 control children (p = 0.0005). Outbreak rhinoviruses formed a distinct genetic cluster. Human rhinovirus is an underappreciated cause of severe pneumonia in vulnerable groups. PMID:23092635

Hai, Le Thanh; Bich, Vu Thi Ngoc; Ngai, Le Kien; Diep, Nguyen Thi Ngoc; Phuc, Phan Huu; Hung, Viet Pham; Taylor, Walter R; Horby, Peter; Liem, Nguyen Thanh; Wertheim, Heiman F L

2012-11-01

60

Chloroplast Genome Evolution in the Genus Avena  

Microsoft Academic Search

The genus Avena contains five different chloroplast genomes, I-V. A physical map of chloroplast (ct) DNA of Avena sativa (type I chloroplast genome) was constructed using three restriction endo- nucleases, PstI, Sal1 and SmaI. This genome is ca. 135.5 kbp in size, and contains two inverted repeats of ca. 22.5 kbp each, separated by a large (ca. 79.0 kbp) and

Koji Murai; Koichiro Tsunewaki

1987-01-01

61

Evolution of linear chromosomes and multipartite genomes in yeast mitochondria  

PubMed Central

Mitochondrial genome diversity in closely related species provides an excellent platform for investigation of chromosome architecture and its evolution by means of comparative genomics. In this study, we determined the complete mitochondrial DNA sequences of eight Candida species and analyzed their molecular architectures. Our survey revealed a puzzling variability of genome architecture, including circular- and linear-mapping and multipartite linear forms. We propose that the arrangement of large inverted repeats identified in these genomes plays a crucial role in alterations of their molecular architectures. In specific arrangements, the inverted repeats appear to function as resolution elements, allowing genome conversion among different topologies, eventually leading to genome fragmentation into multiple linear DNA molecules. We suggest that molecular transactions generating linear mitochondrial DNA molecules with defined telomeric structures may parallel the evolutionary emergence of linear chromosomes and multipartite genomes in general and may provide clues for the origin of telomeres and pathways implicated in their maintenance. PMID:21266473

Valach, Matus; Farkas, Zoltan; Fricova, Dominika; Kovac, Jakub; Brejova, Brona; Vinar, Tomas; Pfeiffer, Ilona; Kucsera, Judit; Tomaska, Lubomir; Lang, B. Franz; Nosek, Jozef

2011-01-01

62

Chloroplast Genome Evolution in the Genus Avena  

PubMed Central

The genus Avena contains five different chloroplast genomes, I-V. A physical map of chloroplast (ct) DNA of Avena sativa (type I chloroplast genome) was constructed using three restriction endonucleases, PstI, SalI and SmaI. This genome is ca. 135.5 kbp in size, and contains two inverted repeats of ca. 22.5 kbp each, separated by a large (ca. 79.0 kbp) and small (ca. 12.5 kbp) single copy region. The rbcL gene which codes for the large subunit of ribulose 1,5-bisphosphate carboxylase, was located in the map. Restriction fragment patterns of all five chloroplast genomes were compared, and among them five fragment size and five restriction site mutations were disclosed. Four site mutations were found in two or more chloroplast genomes, the other site and five fragment size mutations were specific to one or another of the chloroplast genomes. A dendrogram showing phylogenetic relationships among the five chloroplast genomes, based on the distribution of the common and specific mutations among them, indicates that chloroplast genome divergence characterized by three restriction site mutations occurred first between two diploid groups, each carrying A and C genome (nuclear), respectively, followed by further speciation in each group. PMID:17246394

Murai, Koji; Tsunewaki, Koichiro

1987-01-01

63

Insights into bilaterian evolution from three spiralian genomes  

PubMed Central

Current genomic perspectives on animal diversity neglect two prominent phyla, the molluscs and annelids, that together account for nearly one-third of known marine species and are important both ecologically and as experimental systems in classical embryology13. Here we describe the draft genomes of the owl limpet (Lottia gigantea), a marine polychaete (Capitella teleta) and a freshwater leech (Helobdella robusta), and compare them with other animal genomes to investigate the origin and diversification of bilaterians from a genomic perspective. We find that the genome organization, gene structure and functional content of these species are more similar to those of some invertebrate deuterostome genomes (for example, amphioxus and sea urchin) than those of other protostomes that have been sequenced to date (flies, nematodes and flatworms). The conservation of these genomic features enables us to expand the inventory of genes present in the last common bilaterian ancestor, establish the tripartite diversification of bilaterians using multiple genomic characteristics and identify ancient conserved long- and short-range genetic linkages across metazoans. Superimposed on this broadly conserved pan-bilaterian background we find examples of lineage-specific genome evolution, including varying rates of rearrangement, intron gain and loss, expansions and contractions of gene families, and the evolution of clade-specific genes that produce the unique content of each genome. PMID:23254933

Simakov, Oleg; Marletaz, Ferdinand; Cho, Sung-Jin; Edsinger-Gonzales, Eric; Havlak, Paul; Hellsten, Uffe; Kuo, Dian-Han; Larsson, Tomas; Lv, Jie; Arendt, Detlev; Savage, Robert; Osoegawa, Kazutoyo; de Jong, Pieter; Grimwood, Jane; Chapman, Jarrod A.; Shapiro, Harris; Aerts, Andrea; Otillar, Robert P.; Terry, Astrid Y.; Boore, Jeffrey L.; Grigoriev, Igor V.; Lindberg, David R.; Seaver, Elaine C.; Weisblat, David A.; Putnam, Nicholas H.; Rokhsar, Daniel S.

2014-01-01

64

Reticulate Evolution of the Rye Genome[W][OPEN  

PubMed Central

Rye (Secale cereale) is closely related to wheat (Triticum aestivum) and barley (Hordeum vulgare). Due to its large genome (?8 Gb) and its regional importance, genome analysis of rye has lagged behind other cereals. Here, we established a virtual linear gene order model (genome zipper) comprising 22,426 or 72% of the detected set of 31,008 rye genes. This was achieved by high-throughput transcript mapping, chromosome survey sequencing, and integration of conserved synteny information of three sequenced model grass genomes (Brachypodium distachyon, rice [Oryza sativa], and sorghum [Sorghum bicolor]). This enabled a genome-wide high-density comparative analysis of rye/barley/model grass genome synteny. Seventeen conserved syntenic linkage blocks making up the rye and barley genomes were defined in comparison to model grass genomes. Six major translocations shaped the modern rye genome in comparison to a putative Triticeae ancestral genome. Strikingly dissimilar conserved syntenic gene content, gene sequence diversity signatures, and phylogenetic networks were found for individual rye syntenic blocks. This indicates that introgressive hybridizations (diploid or polyploidy hybrid speciation) and/or a series of whole-genome or chromosome duplications played a role in rye speciation and genome evolution. PMID:24104565

Martis, Mihaela M.; Zhou, Ruonan; Haseneyer, Grit; Schmutzer, Thomas; Vrana, Jan; Kubalakova, Marie; Konig, Susanne; Kugler, Karl G.; Scholz, Uwe; Hackauf, Bernd; Korzun, Viktor; Schon, Chris-Carolin; Dolezel, Jaroslav; Bauer, Eva; Mayer, Klaus F.X.; Stein, Nils

2013-01-01

65

Genomic Fossils Calibrate the Long-Term Evolution of Hepadnaviruses  

E-print Network

Because most extant viruses mutate rapidly and lack a true fossil record, their deep evolution and longGenomic Fossils Calibrate the Long-Term Evolution of Hepadnaviruses Cle�ment Gilbert*, Ce-term vertical inheritance. Such endogenous viruses are highly valuable as they provide a molecular fossil record

Feschotte, Cedric

66

The Norway spruce genome sequence and conifer genome evolution.  

PubMed

Conifers have dominated forests for more than 200?million years and are of huge ecological and economic importance. Here we present the draft assembly of the 20-gigabase genome of Norway spruce (Picea abies), the first available for any gymnosperm. The number of well-supported genes (28,354) is similar to the >100 times smaller genome of Arabidopsis thaliana, and there is no evidence of a recent whole-genome duplication in the gymnosperm lineage. Instead, the large genome size seems to result from the slow and steady accumulation of a diverse set of long-terminal repeat transposable elements, possibly owing to the lack of an efficient elimination mechanism. Comparative sequencing of Pinus sylvestris, Abies sibirica, Juniperus communis, Taxus baccata and Gnetum gnemon reveals that the transposable element diversity is shared among extant conifers. Expression of 24-nucleotide small RNAs, previously implicated in transposable element silencing, is tissue-specific and much lower than in other plants. We further identify numerous long (>10,000?base pairs) introns, gene-like fragments, uncharacterized long non-coding RNAs and short RNAs. This opens up new genomic avenues for conifer forestry and breeding. PMID:23698360

Nystedt, Bjrn; Street, Nathaniel R; Wetterbom, Anna; Zuccolo, Andrea; Lin, Yao-Cheng; Scofield, Douglas G; Vezzi, Francesco; Delhomme, Nicolas; Giacomello, Stefania; Alexeyenko, Andrey; Vicedomini, Riccardo; Sahlin, Kristoffer; Sherwood, Ellen; Elfstrand, Malin; Gramzow, Lydia; Holmberg, Kristina; Hllman, Jimmie; Keech, Olivier; Klasson, Lisa; Koriabine, Maxim; Kucukoglu, Melis; Kller, Max; Luthman, Johannes; Lysholm, Fredrik; Niittyl, Totte; Olson, Ake; Rilakovic, Nemanja; Ritland, Carol; Rossell, Josep A; Sena, Juliana; Svensson, Thomas; Talavera-Lpez, Carlos; Theien, Gnter; Tuominen, Hannele; Vanneste, Kevin; Wu, Zhi-Qiang; Zhang, Bo; Zerbe, Philipp; Arvestad, Lars; Bhalerao, Rishikesh; Bohlmann, Joerg; Bousquet, Jean; Garcia Gil, Rosario; Hvidsten, Torgeir R; de Jong, Pieter; MacKay, John; Morgante, Michele; Ritland, Kermit; Sundberg, Bjrn; Thompson, Stacey Lee; Van de Peer, Yves; Andersson, Bjrn; Nilsson, Ove; Ingvarsson, Pr K; Lundeberg, Joakim; Jansson, Stefan

2013-05-30

67

Marsupial Genome Sequences: Providing Insight into Evolution and Disease  

PubMed Central

Marsupials (metatherians), with their position in vertebrate phylogeny and their unique biological features, have been studied for many years by a dedicated group of researchers, but it has only been since the sequencing of the first marsupial genome that their value has been more widely recognised. We now have genome sequences for three distantly related marsupial species (the grey short-tailed opossum, the tammar wallaby, and Tasmanian devil), with the promise of many more genomes to be sequenced in the near future, making this a particularly exciting time in marsupial genomics. The emergence of a transmissible cancer, which is obliterating the Tasmanian devil population, has increased the importance of obtaining and analysing marsupial genome sequence for understanding such diseases as well as for conservation efforts. In addition, these genome sequences have facilitated studies aimed at answering questions regarding gene and genome evolution and provided insight into the evolution of epigenetic mechanisms. Here I highlight the major advances in our understanding of evolution and disease, facilitated by marsupial genome projects, and speculate on the future contributions to be made by such sequences. PMID:24278712

Deakin, Janine E.

2012-01-01

68

An Inherited Efficiencies Model of Non-Genomic Evolution  

NASA Technical Reports Server (NTRS)

A model for the evolution of biological systems in the absence of a nucleic acid-like genome is proposed and applied to model the earliest living organisms -- protocells composed of membrane encapsulated peptides. Assuming that the peptides can make and break bonds between amino acids, and bonds in non-functional peptides are more likely to be destroyed than in functional peptides, it is demonstrated that the catalytic capabilities of the system as a whole can increase. This increase is defined to be non-genomic evolution. The relationship between the proposed mechanism for evolution and recent experiments on self-replicating peptides is discussed.

New, Michael H.; Pohorille, Andrew

1999-01-01

69

Computational comparative genomics : genes, regulation, evolution  

E-print Network

Understanding the biological signals encoded in a genome is a key challenge of computational biology. These signals are encoded in the four-nucleotide alphabet of DNA and are responsible for all molecular processes in the ...

Kamvysselis, Manolis, 1977-

2003-01-01

70

Genomic Evolution of Saccharomyces cerevisiae under Chinese Rice Wine Fermentation  

PubMed Central

Rice wine fermentation represents a unique environment for the evolution of the budding yeast, Saccharomyces cerevisiae. To understand how the selection pressure shaped the yeast genome and gene regulation, we determined the genome sequence and transcriptome of a S. cerevisiae strain YHJ7 isolated from Chinese rice wine (Huangjiu), a popular traditional alcoholic beverage in China. By comparing the genome of YHJ7 to the lab strain S288c, a Japanese sake strain K7, and a Chinese industrial bioethanol strain YJSH1, we identified many genomic sequence and structural variations in YHJ7, which are mainly located in subtelomeric regions, suggesting that these regions play an important role in genomic evolution between strains. In addition, our comparative transcriptome analysis between YHJ7 and S288c revealed a set of differentially expressed genes, including those involved in glucose transport (e.g., HXT2, HXT7) and oxidoredutase activity (e.g., AAD10, ADH7). Interestingly, many of these genomic and transcriptional variations are directly or indirectly associated with the adaptation of YHJ7 strain to its specific niches. Our molecular evolution analysis suggested that Japanese sake strains (K7/UC5) were derived from Chinese rice wine strains (YHJ7) at least approximately 2,300 years ago, providing the first molecular evidence elucidating the origin of Japanese sake strains. Our results depict interesting insights regarding the evolution of yeast during rice wine fermentation, and provided a valuable resource for genetic engineering to improve industrial wine-making strains. PMID:25212861

Li, Yudong; Zhang, Weiping; Zheng, Daoqiong; Zhou, Zhan; Yu, Wenwen; Zhang, Lei; Feng, Lifang; Liang, Xinle; Guan, Wenjun; Zhou, Jingwen; Chen, Jian; Lin, Zhenguo

2014-01-01

71

Evolution of genome size in Carex (Cyperaceae) in relation to chromosome number and genomic base composition  

PubMed Central

Background and Aims The genus Carex exhibits karyological peculiarities related to holocentrism, specifically extremely broad and almost continual variation in chromosome number. However, the effect of these peculiarities on the evolution of the genome (genome size, base composition) remains unknown. While in monocentrics, determining the arithmetic relationship between the chromosome numbers of related species is usually sufficient for the detection of particular modes of karyotype evolution (i.e. polyploidy and dysploidy), in holocentrics where chromosomal fission and fusion occur such detection requires knowledge of the DNA content. Methods The genome size and GC content were estimated in 157 taxa using flow cytometry. The exact chromosome numbers were known for 96 measured samples and were taken from the available literature for other taxa. All relationships were tested in a phylogenetic framework using the ITS tree of 105 species. Key Results The 1C genome size varied between 024 and 164 pg in Carex secalina and C. cuspidata, respectively. The genomic GC content varied from 348 % to 406 % from C. secalina to C. firma. Both genomic parameters were positively correlated. Seven polyploid and two potentially polyploid taxa were detected in the core Carex clade. A strong negative correlation between genome size and chromosome number was documented in non-polyploid taxa. Non-polyploid taxa of the core Carex clade exhibited a higher rate of genome-size evolution compared with the Vignea clade. Three dioecious taxa exhibited larger genomes, larger chromosomes, and a higher GC content than their hermaphrodite relatives. Conclusions Genomes of Carex are relatively small and very GC-poor compared with other angiosperms. We conclude that the evolution of genome and karyotype in Carex is promoted by frequent chromosomal fissions/fusions, rare polyploidy and common repetitive DNA proliferation/removal. PMID:23175591

Lipnerova, Ivana; Bures, Petr; Horova, Lucie; Smarda, Petr

2013-01-01

72

Genome evolution of a tertiary dinoflagellate plastid.  

PubMed

The dinoflagellates have repeatedly replaced their ancestral peridinin-plastid by plastids derived from a variety of algal lineages ranging from green algae to diatoms. Here, we have characterized the genome of a dinoflagellate plastid of tertiary origin in order to understand the evolutionary processes that have shaped the organelle since it was acquired as a symbiont cell. To address this, the genome of the haptophyte-derived plastid in Karlodinium veneficum was analyzed by Sanger sequencing of library clones and 454 pyrosequencing of plastid enriched DNA fractions. The sequences were assembled into a single contig of 143 kb, encoding 70 proteins, 3 rRNAs and a nearly full set of tRNAs. Comparative genomics revealed massive rearrangements and gene losses compared to the haptophyte plastid; only a small fraction of the gene clusters usually found in haptophytes as well as other types of plastids are present in K. veneficum. Despite the reduced number of genes, the K. veneficum plastid genome has retained a large size due to expanded intergenic regions. Some of the plastid genes are highly diverged and may be pseudogenes or subject to RNA editing. Gene losses and rearrangements are also features of the genomes of the peridinin-containing plastids, apicomplexa and Chromera, suggesting that the evolutionary processes that once shaped these plastids have occurred at multiple independent occasions over the history of the Alveolata. PMID:21541332

Gabrielsen, Tove M; Minge, Marianne A; Espelund, Mari; Tooming-Klunderud, Ave; Patil, Vishwanath; Nederbragt, Alexander J; Otis, Christian; Turmel, Monique; Shalchian-Tabrizi, Kamran; Lemieux, Claude; Jakobsen, Kjetill S

2011-01-01

73

Genome Evolution of a Tertiary Dinoflagellate Plastid  

PubMed Central

The dinoflagellates have repeatedly replaced their ancestral peridinin-plastid by plastids derived from a variety of algal lineages ranging from green algae to diatoms. Here, we have characterized the genome of a dinoflagellate plastid of tertiary origin in order to understand the evolutionary processes that have shaped the organelle since it was acquired as a symbiont cell. To address this, the genome of the haptophyte-derived plastid in Karlodinium veneficum was analyzed by Sanger sequencing of library clones and 454 pyrosequencing of plastid enriched DNA fractions. The sequences were assembled into a single contig of 143 kb, encoding 70 proteins, 3 rRNAs and a nearly full set of tRNAs. Comparative genomics revealed massive rearrangements and gene losses compared to the haptophyte plastid; only a small fraction of the gene clusters usually found in haptophytes as well as other types of plastids are present in K. veneficum. Despite the reduced number of genes, the K. veneficum plastid genome has retained a large size due to expanded intergenic regions. Some of the plastid genes are highly diverged and may be pseudogenes or subject to RNA editing. Gene losses and rearrangements are also features of the genomes of the peridinin-containing plastids, apicomplexa and Chromera, suggesting that the evolutionary processes that once shaped these plastids have occurred at multiple independent occasions over the history of the Alveolata. PMID:21541332

Espelund, Mari; Tooming-Klunderud, Ave; Patil, Vishwanath; Nederbragt, Alexander J.; Otis, Christian; Turmel, Monique; Shalchian-Tabrizi, Kamran; Lemieux, Claude; Jakobsen, Kjetill S.

2011-01-01

74

Rhinovirus-induced modulation of gene expression in bronchial epithelial cells from subjects with asthma  

Microsoft Academic Search

Rhinovirus (RV) infections trigger asthma exacerbations. Genome-wide expression analysis of RV1A-infected primary bronchial epithelial cells from normal and asthmatic donors was performed to determine whether asthma is associated with a unique pattern of RV-induced gene expression. Virus replication rates were similar in cells from normal and asthmatic donors. Overall, RV downregulated 975 and upregulated 69 genes. Comparisons of transcriptional profiles

Y A Bochkov; K M Hanson; S Keles; R A Brockman-Schneider; N N Jarjour; J E Gern

2010-01-01

75

Evolution of Genome Size in Brassicaceae  

Microsoft Academic Search

? Background and Aims Brassicaceae, with nearly 340 genera and more than 3350 species, anchors the low range of angiosperm genome sizes. The relatively narrow range of DNA content (0? 16 pg < 1C < 1? 95 pg) was maintained in spite of extensive chromosomal change. The aim of this study was to erect a cytological and molecular phylogenetic framework

J. SPENCER JOHNSTON; ALAN E. PEPPER; ANNE E. HALL; Z. JEFFREY CHEN; GEORGE HODNETT; JANICE DRABEK; REBECCA LOPEZ; H. JAMES PRICE

2005-01-01

76

Horizontal gene transfer, genome innovation and evolution  

Microsoft Academic Search

To what extent is the tree of life the best representation of the evolutionary history of microorganisms? Recent work has shown that, among sets of prokaryotic genomes in which most homologous genes show extremely low sequence divergence, gene content can vary enormously, implying that those genes that are variably present or absent are frequently horizontally transferred. Traditionally, successful horizontal gene

J. Peter Gogarten; Jeffrey P. Townsend

2005-01-01

77

Genome Evolution of a Tertiary Dinoflagellate Plastid  

Microsoft Academic Search

The dinoflagellates have repeatedly replaced their ancestral peridinin-plastid by plastids derived from a variety of algal lineages ranging from green algae to diatoms. Here, we have characterized the genome of a dinoflagellate plastid of tertiary origin in order to understand the evolutionary processes that have shaped the organelle since it was acquired as a symbiont cell. To address this, the

Tove M. Gabrielsen; Marianne A. Minge; Mari Espelund; Ave Tooming-Klunderud; Vishwanath Patil; Alexander J. Nederbragt; Christian Otis; Monique Turmel; Kamran Shalchian-Tabrizi; Claude Lemieux; Kjetill S. Jakobsen; Nikolas Nikolaidis

2011-01-01

78

Dynamic Evolution of Rht-1 Homologous Regions in Grass Genomes  

PubMed Central

Hexaploid bread wheat contains A, B, and D three subgenomes with its well-characterized ancestral genomes existed at diploid and tetraploid levels, making the wheat act as a good model species for studying evolutionary genomic dynamics. Here, we performed intra- and inter-species comparative analyses of wheat and related grass genomes to examine the dynamics of homologous regions surrounding Rht-1, a well-known green revolution gene. Our results showed that the divergence of the two A genomes in the Rht-1 region from the diploid and tetraploid species is greater than that from the tetraploid and hexaploid wheat. The divergence of D genome between diploid and hexaploid is lower than those of A genome, suggesting that D genome diverged latter than others. The divergence among the A, B and D subgenomes was larger than that among different ploidy levels for each subgenome which mainly resulted from genomic structural variation of insertions and, perhaps deletions, of the repetitive sequences. Meanwhile, the repetitive sequences caused genome expansion further after the divergence of the three subgenomes. However, several conserved non-coding sequences were identified to be shared among the three subgenomes of wheat, suggesting that they may have played an important role to maintain the homolog of three subgenomes. This is a pilot study on evolutionary dynamics across the wheat ploids, subgenomes and differently related grasses. Our results gained new insights into evolutionary dynamics of Rht-1 region at sequence level as well as the evolution of wheat during the plolyploidization process. PMID:24086561

Wu, Jing; Kong, Xiuying; Shi, Chao; Gu, Yongqiang; Jin, Cuiyun; Gao, Lizhi; Jia, Jizeng

2013-01-01

79

Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements  

PubMed Central

Recent genome sequencing studies have identified several classes of complex genomic rearrangements that appear to be derived from a single catastrophic event. These discoveries identify ways that genomes can be altered in single large jumps rather than by many incremental steps. Here we compare and contrast these phenomena and examine the evidence that they arise all at once. We consider the impact of massive chromosomal change for the development of diseases such as cancer and for evolution more generally. Finally, we summarize current models for underlying mechanisms and discuss strategies for testing these models. PMID:24298051

Zhang, Cheng-Zhong; Leibowitz, Mitchell L.; Pellman, David

2013-01-01

80

Evolution of bacterial genomes under horizontal gene transfer  

E-print Network

Unraveling the evolutionary forces shaping bacterial diversity can today be tackled using a growing amount of genomic data. While the genome of eukaryotes is highly stable, bacterial genomes from cells of the same species highly vary in gene content. This huge variation in gene content led to the concepts of the distributed genome of bacteria and their pangenome (Tettelin et al.,2005; Ehrlich et al.,2005). We present a population genetic model for gene content evolution which accounts for several mechanisms. Gene uptake from the environment is modeled by events of gene gain along the genealogical tree relating the population. Pseudogenization may lead to deletion of genes and is incoporated by gene loss. These two mechanisms were studied by Huson and Steel (2004) using a fixed phylogenetic tree. Taking the random genealogy given by the coalescent (Kingman, 1982; Hudson, 1983), we studied the resulting genomic diversity already in Baumdicker et al. (2010). In the present paper, we extend the model in order to ...

Baumdicker, Franz

2011-01-01

81

Monitoring RNA release from human rhinovirus by dynamic force microscopy.  

PubMed

Human rhinoviruses were imaged under physiological conditions by dynamic force microscopy. Topographical images revealed various polygonal areas on the surfaces of the 30-nm viral particles. RNA release was initiated by exposure to a low-pH buffer. The lengths of the RNAs that were released but still connected to the virus capsid varied between 40 and 330 nm, whereas RNA molecules that were completely released from the virus were observed with lengths up to 1 micro m. Fork-like structure elements with 30-nm extensions were sometimes resolved at one end of the RNA molecules. They possibly correspond to the characteristic multi-stem-loop conformation, the internal ribosomal entry site, located at the 5' region of the genome. This study demonstrates that dynamic force microscopy can be used to study viral RNA release in situ under physiological conditions. PMID:15016841

Kienberger, Ferry; Zhu, Rong; Moser, Rosita; Blaas, Dieter; Hinterdorfer, Peter

2004-04-01

82

The importance of genomic novelty in social evolution.  

PubMed

Insect societies dominate the natural world: They mould landscapes, sculpt habitats, pollinate plants, sow seeds and control pests. The secret to their success lies in the evolution of queen (reproductive) and worker (provisioner and carer) castes (Oster & Wilson 1978). A major problem in evolutionary biology is explaining the evolution of insect castes, particularly the workers (Darwin 1859). Next-generation sequencing technologies now make it possible to understand how genomic material is born, lost and reorganized in the evolution of alternative phenotypes. Such analyses are revealing a general role for novel (e.g. taxonomically restricted) genes in phenotypic innovations across the animal kingdom (Chen et al. 2013). In this issue of molecular ecology, Feldmeyer et al. (2014) provide overwhelming evidence for the importance of novel genes in caste evolution in an ant. Feldmeyer et al.'s study is important and exciting because it cements the role of genomic novelty, as well as conservation, firmly into the molecular jigsaw of social evolution. Evolution is eclectic in its exploitation of both old and new genomic material to generate replicated phenotypic innovations across the tree of life. PMID:24372753

Sumner, Seirian

2014-01-01

83

Genome Size Variation and Evolution in Veronica  

PubMed Central

Background and Aims The amount of DNA per chromosome set is known to be a fairly constant characteristic of a species. Its interspecific variation is enormous, but the biological significance of this variation is little understood. Some of the characters believed to be correlated with DNA amount are alpine habitat, life history and breeding system. In the present study, the aim is to distinguish between direct causal connections and chance correlation of the amount of DNA in the genus Veronica. Methods Estimates of DNA amount were analysed for 42 members of Veroniceae in connection with results from a phylogenetic analysis of plastid trnL-F DNA sequences and tested correlations using standard statistical tests, phylogenetically independent contrasts and a model-based generalized least squares method to distinguish the phylogenetic effect on the results. Key Results There appears to be a lower upper limit for DNA amount in annuals than in perennials. Most DNAC-values in Veroniceae are below the mean DNA C-value for annuals in angiosperms as a whole. However, the long-debated correlation of low genome size with annual life history is not significant (P = 012) using either standard statistical tests or independent contrasts, but it is significant with the generalized least squares method (P < 001). Conclusions The correlation of annual life history and low genome size found in earlier studies could be due to the association of annual life history and selfing, which is significantly correlated with low genome size using any of the three tests applied. This correlation can be explained by models showing a reduction in transposable elements in selfers. A significant correlation of higher genome sizes with alpine habitats was also detected. PMID:15520022

ALBACH, DIRK C.; GREILHUBER, J.

2004-01-01

84

The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates.  

PubMed

Vertebrate evolution has been shaped by several rounds of whole-genome duplications (WGDs) that are often suggested to be associated with adaptive radiations and evolutionary innovations. Due to an additional round of WGD, the rainbow trout genome offers a unique opportunity to investigate the early evolutionary fate of a duplicated vertebrate genome. Here we show that after 100 million years of evolution the two ancestral subgenomes have remained extremely collinear, despite the loss of half of the duplicated protein-coding genes, mostly through pseudogenization. In striking contrast is the fate of miRNA genes that have almost all been retained as duplicated copies. The slow and stepwise rediploidization process characterized here challenges the current hypothesis that WGD is followed by massive and rapid genomic reorganizations and gene deletions. PMID:24755649

Berthelot, Camille; Brunet, Frdric; Chalopin, Domitille; Juanchich, Amlie; Bernard, Maria; Nol, Benjamin; Bento, Pascal; Da Silva, Corinne; Labadie, Karine; Alberti, Adriana; Aury, Jean-Marc; Louis, Alexandra; Dehais, Patrice; Bardou, Philippe; Montfort, Jrme; Klopp, Christophe; Cabau, Cdric; Gaspin, Christine; Thorgaard, Gary H; Boussaha, Mekki; Quillet, Edwige; Guyomard, Ren; Galiana, Delphine; Bobe, Julien; Volff, Jean-Nicolas; Gent, Carine; Wincker, Patrick; Jaillon, Olivier; Roest Crollius, Hugues; Guiguen, Yann

2014-01-01

85

Programming cells by multiplex genome engineering and accelerated evolution  

E-print Network

and outdated genetic engineering techniques. Whereas in vivo methods such as recombination-based genetic engineering (recombineering) have enabled efficient modification of single genetic targets using singleLETTERS Programming cells by multiplex genome engineering and accelerated evolution Harris H. Wang1

Church, George M.

86

AnimalEvolution Genomes, Fossils,andTrees  

E-print Network

AnimalEvolution Genomes, Fossils,andTrees Editedby MaximilianJ.Telford and0.1.J.Littlewood #12, and cell biology. Comparisons of choa noflagellates (micro eukaryote relatives of metazoa ns) with sponges ctional integration of tissues. The most anc ient tissues- d ifferentiated epithelia-a re found in sponges

87

Evolution of Genomic Structures on Mammalian Sex Chromosomes  

PubMed Central

Throughout mammalian evolution, recombination between the two sex chromosomes was suppressed in a stepwise manner. It is thought that the suppression of recombination led to an accumulation of deleterious mutations and frequent genomic rearrangements on the Y chromosome. In this article, we review three evolutionary aspects related to genomic rearrangements and structures, such as inverted repeats (IRs) and palindromes (PDs), on the mammalian sex chromosomes. First, we describe the stepwise manner in which recombination between the X and Y chromosomes was suppressed in placental mammals and discuss a genomic rearrangement that might have led to the formation of present pseudoautosomal boundaries (PAB). Second, we describe ectopic gene conversion between the X and Y chromosomes, and propose possible molecular causes. Third, we focus on the evolutionary mode and timing of PD formation on the X and Y chromosomes. The sequence of the chimpanzee Y chromosome was recently published by two groups. Both groups suggest that rapid evolution of genomic structure occurred on the Y chromosome. Our re-analysis of the sequences confirmed the species-specific mode of human and chimpanzee Y chromosomal evolution. Finally, we present a general outlook regarding the rapid evolution of mammalian sex chromosomes. PMID:23024603

Katsura, Yukako; Iwase, Mineyo; Satta, Yoko

2012-01-01

88

The Chlamydomonas Genome Reveals the Evolution of Key Animal  

E-print Network

The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions Sabeeha S-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were Grimwood,16 Jeremy Schmutz,16 Chlamydomonas Annotation Team, JGI Annotation Team, Igor V. Grigoriev,2

89

The influence of the accessory genome on bacterial pathogen evolution  

PubMed Central

Bacterial pathogens exhibit significant variation in their genomic content of virulence factors. This reflects the abundance of strategies pathogens evolved to infect host organisms by suppressing host immunity. Molecular arms-races have been a strong driving force for the evolution of pathogenicity, with pathogens often encoding overlapping or redundant functions, such as type III protein secretion effectors and hosts encoding ever more sophisticated immune systems. The pathogens' frequent exposure to other microbes, either in their host or in the environment, provides opportunities for the acquisition or interchange of mobile genetic elements. These DNA elements accessorize the core genome and can play major roles in shaping genome structure and altering the complement of virulence factors. Here, we review the different mobile genetic elements focusing on the more recent discoveries and highlighting their role in shaping bacterial pathogen evolution. PMID:22016845

Vinatzer, Boris; Arnold, Dawn L; Dorus, Steve; Murillo, Jesus

2011-01-01

90

Origin and evolution of photosynthesis: clues from genome comparison Armen Y. Mulkidjanian1,2  

E-print Network

Origin and evolution of photosynthesis: clues from genome comparison Armen Y. Mulkidjanian1 Keywords: origin of photosynthesis, comparative genomics, evolution, cyanobacteria, phototrophic organisms with the recent geological data on the properties of the ancient phototrophs, suggest that photosynthesis has

Steinhoff, Heinz-Jürgen

91

The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system  

E-print Network

The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system Freek. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra

Dalang, Robert C.

92

Genome evolution in pocket gophers (genus Thomomys )  

Microsoft Academic Search

A basic dichotomy exists in the amount and chromosomal position of constitutive heterochromatin (C-bands) in species of pocket gophers, genus Thomomys. Members of the talpoides-group of species (e.g., T. talpoides and T. monticola) have C-bands restricted to the centromeric regions. These taxa are characterized by Robertsonian patterns of karyotypic evolution. In contrast, species within the bottae-group are characterized by extensive

James L. Patton; Steven W. Sherwood

1982-01-01

93

The Marsupial Mitochondrial Genome and the Evolution of Placental Mammals  

PubMed Central

The entire nucleotide sequence of the mitochondrial genome of the American opossum, Didelphis virginiana, was determined. Two major features distinguish this genome from those of other mammals. First, five tRNA genes around the origin of light strand replication are rearranged. Second, the anticodon of tRNA(Asp) is posttranscriptionally changed by an RNA editing process such that its coding capacity is altered. When the complete protein-coding region of the mitochondrial genome is used as an outgroup for placental mammals it can be shown that rodents represent an earlier branch among placental mammals than primates and artiodactyls and that artiodactyls share a common ancestor with carnivores. The overall rates of evolution of most of the mitochondrial genome of placentals are clocklike. Furthermore, the data indicate that the lineages leading to the mouse and rat may have diverged from each other as much as 35 million years ago. PMID:8056314

Janke, A.; Feldmaier-Fuchs, G.; Thomas, W. K.; von-Haeseler, A.; Paabo, S.

1994-01-01

94

Evolution of Metabolic Pathways and Evolution of Genomes  

Microsoft Academic Search

\\u000a Bacteria can be considered as the interface between geochemical cycles and the superior forms of life. Therefore, how the\\u000a origin of life has been constructing metabolic complexity from earth geochemistry and how bacterial evolution is continuously\\u000a modifying it represent major issues cross-linking both geochemical and evolutionary viewpoints.

Giovanni Emiliani; Marco Fondi; Pietro Li; Renato Fani

95

Comparative Genomics in the Grass Family: Molecular Characterization of Grass Genome Structure and Evolution  

PubMed Central

The genomes of grasses are very different in terms of size, ploidy level and chromosome number. Despite these significant differences, it was found by comparative mapping that the linear order (colinearity) of genetic markers and genes is very well conserved between different grass genomes. The potential of such conservation has been exploited in several directions, e.g. in defining rice as a model genome for grasses and in designing better strategies for positional cloning in large genomes. Recently, the development of large insert libraries in species such as maize, rice, barley and diploid wheat has allowed the study of large stretches of DNA sequence and has provided insight into gene organization in grasses. It was found that genes are not distributed randomly along the chromosomes and that there are clusters of high gene density in species with large genomes. Comparative analysis performed at the DNA sequence level has demonstrated that colinearity between the grass genomes is retained at the molecular level (microcolinearity) in most cases. However, detailed analysis has also revealed a number of exceptions to microcolinearity, which have given insight into mechanisms that are involved in grass?genome evolution. In some cases, the use of rice as a model to support gene isolation from other grass genomes will be complicated by local rearrangements. In this Botanical Briefing, we present recent progress and future prospects of comparative genomics in grasses. PMID:12096816

FEUILLET, CATHERINE; KELLER, BEAT

2002-01-01

96

Chloroplast Genome Evolution in Early Diverged Leptosporangiate Ferns  

PubMed Central

In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnV-GCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of co-dons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns. PMID:24823358

Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

2014-01-01

97

Chloroplast genome evolution in early diverged leptosporangiate ferns.  

PubMed

In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnVGCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of codons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns. PMID:24823358

Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

2014-05-01

98

Genome-wide signatures of convergent evolution in echolocating mammals  

PubMed Central

Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes1-3. However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures4,5. Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level6-9. Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution9,10 although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised. PMID:24005325

Parker, Joe; Tsagkogeorga, Georgia; Cotton, James A.; Liu, Yuan; Provero, Paolo; Stupka, Elia; Rossiter, Stephen J.

2013-01-01

99

Phylogenomics and the dynamic genome evolution of the genus Streptococcus.  

PubMed

The genus Streptococcus comprises important pathogens that have a severe impact on human health and are responsible for substantial economic losses to agriculture. Here, we utilize 46 Streptococcus genome sequences (44 species), including eight species sequenced here, to provide the first genomic level insight into the evolutionary history and genetic basis underlying the functional diversity of all major groups of this genus. Gene gain/loss analysis revealed a dynamic pattern of genome evolution characterized by an initial period of gene gain followed by a period of loss, as the major groups within the genus diversified. This was followed by a period of genome expansion associated with the origins of the present extant species. The pattern is concordant with an emerging view that genomes evolve through a dynamic process of expansion and streamlining. A large proportion of the pan-genome has experienced lateral gene transfer (LGT) with causative factors, such as relatedness and shared environment, operating over different evolutionary scales. Multiple gene ontology terms were significantly enriched for each group, and mapping terms onto the phylogeny showed that those corresponding to genes born on branches leading to the major groups represented approximately one-fifth of those enriched. Furthermore, despite the extensive LGT, several biochemical characteristics have been retained since group formation, suggesting genomic cohesiveness through time, and that these characteristics may be fundamental to each group. For example, proteolysis: mitis group; urea metabolism: salivarius group; carbohydrate metabolism: pyogenic group; and transcription regulation: bovis group. PMID:24625962

Richards, Vincent P; Palmer, Sara R; Pavinski Bitar, Paulina D; Qin, Xiang; Weinstock, George M; Highlander, Sarah K; Town, Christopher D; Burne, Robert A; Stanhope, Michael J

2014-04-01

100

Nannochloropsis genomes reveal evolution of microalgal oleaginous traits.  

PubMed

Oleaginous microalgae are promising feedstock for biofuels, yet the genetic diversity, origin and evolution of oleaginous traits remain largely unknown. Here we present a detailed phylogenomic analysis of five oleaginous Nannochloropsis species (a total of six strains) and one time-series transcriptome dataset for triacylglycerol (TAG) synthesis on one representative strain. Despite small genome sizes, high coding potential and relative paucity of mobile elements, the genomes feature small cores of ca. 2,700 protein-coding genes and a large pan-genome of >38,000 genes. The six genomes share key oleaginous traits, such as the enrichment of selected lipid biosynthesis genes and certain glycoside hydrolase genes that potentially shift carbon flux from chrysolaminaran to TAG synthesis. The eleven type II diacylglycerol acyltransferase genes (DGAT-2) in every strain, each expressed during TAG synthesis, likely originated from three ancient genomes, including the secondary endosymbiosis host and the engulfed green and red algae. Horizontal gene transfers were inferred in most lipid synthesis nodes with expanded gene doses and many glycoside hydrolase genes. Thus multiple genome pooling and horizontal genetic exchange, together with selective inheritance of lipid synthesis genes and species-specific gene loss, have led to the enormous genetic apparatus for oleaginousness and the wide genomic divergence among present-day Nannochloropsis. These findings have important implications in the screening and genetic engineering of microalgae for biofuels. PMID:24415958

Wang, Dongmei; Ning, Kang; Li, Jing; Hu, Jianqiang; Han, Danxiang; Wang, Hui; Zeng, Xiaowei; Jing, Xiaoyan; Zhou, Qian; Su, Xiaoquan; Chang, Xingzhi; Wang, Anhui; Wang, Wei; Jia, Jing; Wei, Li; Xin, Yi; Qiao, Yinghe; Huang, Ranran; Chen, Jie; Han, Bo; Yoon, Kangsup; Hill, Russell T; Zohar, Yonathan; Chen, Feng; Hu, Qiang; Xu, Jian

2014-01-01

101

Is mammalian chromosomal evolution driven by regions of genome fragility?  

PubMed Central

Background A fundamental question in comparative genomics concerns the identification of mechanisms that underpin chromosomal change. In an attempt to shed light on the dynamics of mammalian genome evolution, we analyzed the distribution of syntenic blocks, evolutionary breakpoint regions, and evolutionary breakpoints taken from public databases available for seven eutherian species (mouse, rat, cattle, dog, pig, cat, and horse) and the chicken, and examined these for correspondence with human fragile sites and tandem repeats. Results Our results confirm previous investigations that showed the presence of chromosomal regions in the human genome that have been repeatedly used as illustrated by a high breakpoint accumulation in certain chromosomes and chromosomal bands. We show, however, that there is a striking correspondence between fragile site location, the positions of evolutionary breakpoints, and the distribution of tandem repeats throughout the human genome, which similarly reflect a non-uniform pattern of occurrence. Conclusion These observations provide further evidence that certain chromosomal regions in the human genome have been repeatedly used in the evolutionary process. As a consequence, the genome is a composite of fragile regions prone to reorganization that have been conserved in different lineages, and genomic tracts that do not exhibit the same levels of evolutionary plasticity. PMID:17156441

Ruiz-Herrera, Aurora; Castresana, Jose; Robinson, Terence J

2006-01-01

102

Genome-level evolution of resistance genes in Arabidopsis thaliana.  

PubMed Central

Pathogen resistance genes represent some of the most abundant and diverse gene families found within plant genomes. However, evolutionary mechanisms generating resistance gene diversity at the genome level are not well understood. We used the complete Arabidopsis thaliana genome sequence to show that most duplication of individual NBS-LRR sequences occurs at close physical proximity to the parent sequence and generates clusters of closely related NBS-LRR sequences. Deploying the statistical strength of phylogeographic approaches and using chromosomal location as a proxy for spatial location, we show that apparent duplication of NBS-LRR genes to ectopic chromosomal locations is largely the consequence of segmental chromosome duplication and rearrangement, rather than the independent duplication of individual sequences. Although accounting for a smaller fraction of NBS-LRR gene duplications, segmental chromosome duplication and rearrangement events have a large impact on the evolution of this multigene family. Intergenic exchange is dramatically lower between NBS-LRR sequences located in different chromosome regions as compared to exchange between sequences within the same chromosome region. Consequently, once translocated to new chromosome locations, NBS-LRR gene copies have a greater likelihood of escaping intergenic exchange and adopting new functions than do gene copies located within the same chromosomal region. We propose an evolutionary model that relates processes of genome evolution to mechanisms of evolution for the large, diverse, NBS-LRR gene family. PMID:14504238

Baumgarten, Andrew; Cannon, Steven; Spangler, Russ; May, Georgiana

2003-01-01

103

Rhinovirus Viremia in Children with Respiratory Infections  

Microsoft Academic Search

Rationale: Viremia has been implicated in many viral infections; however, viremia due to rhinovirus (RV; rhinoviremia) has been considered not to occur in normal individuals. Objective: To evaluate whether RV enters the bloodstream and identify the possible risk factors. Methods: Nasopharyngeal washes (NPWs) of 221 children with re- spiratoryinfectionswereexaminedforthepresenceofRVbyreverse transcription-polymerase chain reaction. Blood from 88 children, whose NPW wasRV-positive, and

Maria Xatzipsalti; Serena Kyrana; Mariza Tsolia; Stelios Psarras; Apostolos Bossios; Vasile Laza-Stanca; Sebastian L. Johnston; Nikolaos G. Papadopoulos

2005-01-01

104

Early Interaction of Rhinoviruses with Host Cells  

PubMed Central

The rate of attachment of type 2 virions to suspensions of HeLa cells is much greater than that of type 14, but the number of receptor sites per cell is similar for each type. The receptor sites may be partly saturated with excess virions; attachment is greatly reduced after about 104 particles have been taken up per cell. A lack of saturation of type 14 receptors by excess type 2 indicates that their receptor sites are separate on the cell surface. Excess of type 2 blocks attachment of type 1A, however, and excess of type 14 blocks type 51. Attachment of the human rhinoviruses is temperature-dependent with a Q10 of 2.7. The eclipse reaction is also temperature-dependent. At 34.5 C, the irreversible eclipse of cell-associated rhinovirus type 2 requires only a few minutes, whereas the rate of eclipse of cell-associated type 14 is considerably slower. The eclipse product of type 2 rhinovirus has been recovered from infected cells. It sediments at about 90% of the rate of the infective virions and is missing virus polypeptide 4 (the smallest of the capsid polypeptides). Upon being subjected to CsCl gradient centrifugation, virus polypeptide 2 is also lost but the product still contains ribonucleic acid and bands at about 1.45 g/cc. PMID:4333543

Lonberg-Holm, K.; Korant, B. D.

1972-01-01

105

Heterogeneity of genomic evolution and mutational profiles in multiple myeloma.  

PubMed

Multiple myeloma is an incurable plasma cell malignancy with a complex and incompletely understood molecular pathogenesis. Here we use whole-exome sequencing, copy-number profiling and cytogenetics to analyse 84 myeloma samples. Most cases have a complex subclonal structure and show clusters of subclonal variants, including subclonal driver mutations. Serial sampling reveals diverse patterns of clonal evolution, including linear evolution, differential clonal response and branching evolution. Diverse processes contribute to the mutational repertoire, including kataegis and somatic hypermutation, and their relative contribution changes over time. We find heterogeneity of mutational spectrum across samples, with few recurrent genes. We identify new candidate genes, including truncations of SP140, LTB, ROBO1 and clustered missense mutations in EGR1. The myeloma genome is heterogeneous across the cohort, and exhibits diversity in clonal admixture and in dynamics of evolution, which may impact prognostic stratification, therapeutic approaches and assessment of disease response to treatment. PMID:24429703

Bolli, Niccolo; Avet-Loiseau, Herv; Wedge, David C; Van Loo, Peter; Alexandrov, Ludmil B; Martincorena, Inigo; Dawson, Kevin J; Iorio, Francesco; Nik-Zainal, Serena; Bignell, Graham R; Hinton, Jonathan W; Li, Yilong; Tubio, Jose M C; McLaren, Stuart; O' Meara, Sarah; Butler, Adam P; Teague, Jon W; Mudie, Laura; Anderson, Elizabeth; Rashid, Naim; Tai, Yu-Tzu; Shammas, Masood A; Sperling, Adam S; Fulciniti, Mariateresa; Richardson, Paul G; Parmigiani, Giovanni; Magrangeas, Florence; Minvielle, Stephane; Moreau, Philippe; Attal, Michel; Facon, Thierry; Futreal, P Andrew; Anderson, Kenneth C; Campbell, Peter J; Munshi, Nikhil C

2014-01-01

106

Genome evolution, metabolism and Course Computational Biology 2013/2014; Paulien Hogeweg;  

E-print Network

evolution? Evolution of genome size in virtual cells based on "plausable" minimal multilevel 'cell Direct) #12;multilevel model of virual cell + dynamics #12;evolution of virtual cells · Population12 Genome evolution, metabolism and parameters Course Computational Biology 2013/2014; Paulien

Utrecht, Universiteit

107

Evolution After Whole-Genome Duplication: A Network Perspective  

PubMed Central

Gene duplication plays an important role in the evolution of genomes and interactomes. Elucidating how evolution after gene duplication interplays at the sequence and network level is of great interest. In this work, we analyze a data set of gene pairs that arose through whole-genome duplication (WGD) in yeast. All these pairs have the same duplication time, making them ideal for evolutionary investigation. We investigated the interplay between evolution after WGD at the sequence and network levels and correlated these two levels of divergence with gene expression and fitness data. We find that molecular interactions involving WGD genes evolve at rates that are three orders of magnitude slower than the rates of evolution of the corresponding sequences. Furthermore, we find that divergence of WGD pairs correlates strongly with gene expression and fitness data. Because of the role of gene duplication in determining redundancy in biological systems and particularly at the network level, we investigated the role of interaction networks in elucidating the evolutionary fate of duplicated genes. We find that gene neighborhoods in interaction networks provide a mechanism for inferring these fates, and we developed an algorithm for achieving this task. Further epistasis analysis of WGD pairs categorized by their inferred evolutionary fates demonstrated the utility of these techniques. Finally, we find that WGD pairs and other pairs of paralogous genes of small-scale duplication origin share similar properties, giving good support for generalizing our results from WGD pairs to evolution after gene duplication in general. PMID:24048644

Zhu, Yun; Lin, Zhenguo; Nakhleh, Luay

2013-01-01

108

Viral diversity and clonal evolution from unphased genomic data  

PubMed Central

Background Clonal expansion is a process in which a single organism reproduces asexually, giving rise to a diversifying population. It is pervasive in nature, from within-host pathogen evolution to emergent infectious disease outbreaks. Standard phylogenetic tools rely on full-length genomes of individual pathogens or population consensus sequences (phased genotypes). Although high-throughput sequencing technologies are able to sample population diversity, the short sequence reads inherent to them preclude assessing whether two reads originate from the same clone (unphased genotypes). This obstacle severely limits the application of phylogenetic methods and investigation of within-host dynamics of acute infections using this rich data source. Methods We introduce two measures of diversity to study the evolution of clonal populations using unphased genomic data, which eliminate the need to construct full-length genomes. Our method follows a maximum likelihood approach to estimate evolutionary rates and times to the most recent common ancestor, based on a relaxed molecular clock model; independent of a growth model. Deviations from neutral evolution indicate the presence of selection and bottleneck events. Results We evaluated our methods in silico and then compared it against existing approaches with the well-characterized 2009 H1N1 influenza pandemic. We then applied our method to high-throughput genomic data from marburgvirus-infected non-human primates and inferred the time of infection and the intra-host evolutionary rate, and identified purifying selection in viral populations. Conclusions Our method has the power to make use of minor variants present in less than 1% of the population and capture genomic diversification within days of infection, making it an ideal tool for the study of acute RNA viral infection dynamics.

2014-01-01

109

The Amphimedon queenslandica genome and the evolution of animal complexity  

SciTech Connect

Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sponge sequence reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion, and diversification of pan-metazoan transcription factor, signaling pathway, and structural genes. This diverse 'toolkit' of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic and germ cell specification, cell adhesion, innate immunity, and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity.

Srivastava, Mansi; Simakov, Oleg; Chapman, Jarrod; Fahey, Bryony; Gauthier, Marie E.A.; Mitros, Therese; Richards, Gemma S.; Conaco, Cecilia; Dacre, Michael; Hellsten, Uffe; Larroux, Claire; Putnam, Nicholas H.; Stanke, Mario; Adamska, Maja; Darling, Aaron; Degnan, Sandie M.; Oakley, Todd H.; Plachetzki, David C.; Zhai, Yufeng; Adamski, Marcin; Calcino, Andrew; Cummins, Scott F.; Goodstein, David M.; Harris, Christina; Jackson, Daniel J.; Leys, Sally P.; Shu, Shengqiang; Woodcroft, Ben J.; Vervoort, Michel; Kosik, Kenneth S.; Manning, Gerard; Degnan, Bernard M.; Rokhsar, Daniel S.

2010-07-01

110

Tracing Monotreme Venom Evolution in the Genomics Era  

PubMed Central

The monotremes (platypuses and echidnas) represent one of only four extant venomous mammalian lineages. Until recently, monotreme venom was poorly understood. However, the availability of the platypus genome and increasingly sophisticated genomic tools has allowed us to characterize platypus toxins, and provides a means of reconstructing the evolutionary history of monotreme venom. Here we review the physiology of platypus and echidna crural (venom) systems as well as pharmacological and genomic studies of monotreme toxins. Further, we synthesize current ideas about the evolution of the venom system, which in the platypus is likely to have been retained from a venomous ancestor, whilst being lost in the echidnas. We also outline several research directions and outstanding questions that would be productive to address in future research. An improved characterization of mammalian venoms will not only yield new toxins with potential therapeutic uses, but will also aid in our understanding of the way that this unusual trait evolves. PMID:24699339

Whittington, Camilla M.; Belov, Katherine

2014-01-01

111

Tracing monotreme venom evolution in the genomics era.  

PubMed

The monotremes (platypuses and echidnas) represent one of only four extant venomous mammalian lineages. Until recently, monotreme venom was poorly understood. However, the availability of the platypus genome and increasingly sophisticated genomic tools has allowed us to characterize platypus toxins, and provides a means of reconstructing the evolutionary history of monotreme venom. Here we review the physiology of platypus and echidna crural (venom) systems as well as pharmacological and genomic studies of monotreme toxins. Further, we synthesize current ideas about the evolution of the venom system, which in the platypus is likely to have been retained from a venomous ancestor, whilst being lost in the echidnas. We also outline several research directions and outstanding questions that would be productive to address in future research. An improved characterization of mammalian venoms will not only yield new toxins with potential therapeutic uses, but will also aid in our understanding of the way that this unusual trait evolves. PMID:24699339

Whittington, Camilla M; Belov, Katherine

2014-04-01

112

Evolution of genomic structural variation and genomic architecture in the adaptive radiations of African cichlid fishes.  

PubMed

African cichlid fishes are an ideal system for studying explosive rates of speciation and the origin of diversity in adaptive radiation. Within the last few million years, more than 2000 species have evolved in the Great Lakes of East Africa, the largest adaptive radiation in vertebrates. These young species show spectacular diversity in their coloration, morphology and behavior. However, little is known about the genomic basis of this astonishing diversity. Recently, five African cichlid genomes were sequenced, including that of the Nile Tilapia (Oreochromis niloticus), a basal and only relatively moderately diversified lineage, and the genomes of four representative endemic species of the adaptive radiations, Neolamprologus brichardi, Astatotilapia burtoni, Metriaclima zebra, and Pundamila nyererei. Using the Tilapia genome as a reference genome, we generated a high-resolution genomic variation map, consisting of single nucleotide polymorphisms (SNPs), short insertions and deletions (indels), inversions and deletions. In total, around 18.8, 17.7, 17.0, and 17.0 million SNPs, 2.3, 2.2, 1.4, and 1.9 million indels, 262, 306, 162, and 154 inversions, and 3509, 2705, 2710, and 2634 deletions were inferred to have evolved in N. brichardi, A. burtoni, P. nyererei, and M. zebra, respectively. Many of these variations affected the annotated gene regions in the genome. Different patterns of genetic variation were detected during the adaptive radiation of African cichlid fishes. For SNPs, the highest rate of evolution was detected in the common ancestor of N. brichardi, A. burtoni, P. nyererei, and M. zebra. However, for the evolution of inversions and deletions, we found that the rates at the terminal taxa are substantially higher than the rates at the ancestral lineages. The high-resolution map provides an ideal opportunity to understand the genomic bases of the adaptive radiation of African cichlid fishes. PMID:24917883

Fan, Shaohua; Meyer, Axel

2014-01-01

113

Evolution of Prokaryote-Animal Symbiosis from a Genomics Perspective  

Microsoft Academic Search

\\u000a Symbioses involving prokaryotes living in close relationship with eukaryotic cells have been widely studied from a genomic\\u000a perspective, especially in the case of insects. In the process toward host accommodation, symbionts experience major genetic\\u000a and phenotypic changes that can be detected in comparison with free-living relatives. But, as expected, several scenarios\\u000a allowed the evolution of symbiotic associations, from the first

Rosario Gil; Amparo Latorre; Andrs Moya

114

Addressing chromosome evolution in the whole-genome sequence era  

Microsoft Academic Search

The evolution of karyotypes has been the subject of intensive study since the middle of the 20th century. This was motivated\\u000a by the observation that the karyotypes of related species showed remarkable conservation. The recent emergence of whole-genome\\u000a sequencing projects gives the opportunity to complement the cytogenetic approaches by addressing the conservation of karyotypes\\u000a using chromosome sequence comparison. In this

Thomas Faraut

2008-01-01

115

Horizontal Gene Transfer and the Evolution of Microvirid Coliphage Genomes  

Microsoft Academic Search

Bacteriophage genomic evolution has been largely characterized by rampant, promiscuous horizontal gene transfer involving both homologous and nonhomologous source DNA. This pattern has emerged through study of the tailed double-stranded DNA (dsDNA) phages and is based upon a sparse sampling of the enormous diversity of these phages. The single-stranded DNA phages of the family Microviridae, including X174, appear to evolve

D. R. Rokyta; C. L. Burch; S. B. Caudle; H. A. Wichman

2006-01-01

116

Genome-wide analysis of mammalian promoter architecture and evolution  

Microsoft Academic Search

Mammalian promoters can be separated into two classes, conserved TATA boxenriched promoters, which initiate at a well-defined site, and more plastic, broad and evolvable CpG-rich promoters. We have sequenced tags corresponding to several hundred thousand transcription start sites (TSSs) in the mouse and human genomes, allowing precise analysis of the sequence architecture and evolution of distinct promoter classes. Different tissues

Piero Carninci; Albin Sandelin; Boris Lenhard; Shintaro Katayama; Kazuro Shimokawa; Jasmina Ponjavic; Colin A M Semple; Martin S Taylor; Pr G Engstrm; Martin C Frith; Alistair R R Forrest; Wynand B Alkema; Sin Lam Tan; Charles Plessy; Rimantas Kodzius; Timothy Ravasi; Takeya Kasukawa; Shiro Fukuda; Mutsumi Kanamori-Katayama; Yayoi Kitazume; Hideya Kawaji; Chikatoshi Kai; Mari Nakamura; Hideaki Konno; Kenji Nakano; Salim Mottagui-Tabar; Peter Arner; Alessandra Chesi; Stefano Gustincich; Francesca Persichetti; Harukazu Suzuki; Sean M Grimmond; Christine A Wells; Valerio Orlando; Claes Wahlestedt; Edison T Liu; Matthias Harbers; Jun Kawai; Vladimir B Bajic; David A Hume; Yoshihide Hayashizaki

2006-01-01

117

Chronic Rhinovirus Infection in an Adult with Cystic Fibrosis  

PubMed Central

Rhinovirus is a common cause of exacerbations of cystic fibrosis (CF) and is usually considered a self-limiting infection. We report a case of chronic infection with rhinovirus A type 33 in a 43-year-old male with CF which has persisted for over 2 years. PMID:23966488

Bright-Thomas, Rowland J.; Tilston, Peter; Mutton, Kenneth J.; Guiver, Malcolm; Webb, A. Kevin; Jones, Andrew M.

2013-01-01

118

Widespread Genomic Signatures of Natural Selection in Hominid Evolution  

PubMed Central

Selection acting on genomic functional elements can be detected by its indirect effects on population diversity at linked neutral sites. To illuminate the selective forces that shaped hominid evolution, we analyzed the genomic distributions of human polymorphisms and sequence differences among five primate species relative to the locations of conserved sequence features. Neutral sequence diversity in human and ancestral hominid populations is substantially reduced near such features, resulting in a surprisingly large genome average diversity reduction due to selection of 1926% on the autosomes and 1240% on the X chromosome. The overall trends are broadly consistent with background selection or hitchhiking in ancestral populations acting to remove deleterious variants. Average selection is much stronger on exonic (both protein-coding and untranslated) conserved features than non-exonic features. Long term selection, rather than complex speciation scenarios, explains the large intragenomic variation in human/chimpanzee divergence. Our analyses reveal a dominant role for selection in shaping genomic diversity and divergence patterns, clarify hominid evolution, and provide a baseline for investigating specific selective events. PMID:19424416

McVicker, Graham; Gordon, David; Davis, Colleen; Green, Phil

2009-01-01

119

Genome variation and evolution of the malaria parasite Plasmodium falciparum  

PubMed Central

Infections with the malaria parasite Plasmodium falciparum result in more than one million deaths each year worldwide1. The evolutionary history and genetic variation of P. falciparum is of critical importance to the understanding of the evolution of drug resistance, the identification of potential vaccine candidates and an appreciation of the effect of parasite variation upon prevalence and severity of malaria in humans. Most studies of natural variation in P. falciparum have been either in depth over small genomic regions (up to the size of a small chromosome2) or genome-wide but only at low resolution3. In an effort to complement these studies with genome-wide data, we undertook shotgun sequencing of a Ghanaian clinical isolate (5x coverage), the IT laboratory isolate (1x) and the chimpanzee parasite P. reichenowi (2x). These genomes were compared to the fully sequenced clone4. We describe the most salient features of P. falciparum polymorphism and adaptive evolution with relation to gene function, transcript and protein expression and cellular localisation. This analysis reveals the primary evolutionary changes that have occurred since the P. falciparum P. reichenowi speciation, and those that are occurring within P. falciparum. PMID:17159978

Jeffares, Daniel C.; Pain, Arnab; Berry, Andrew; Cox, Anthony V.; Stalker, James; Ingle, Catherine E.; Thomas, Alan; Quail, Michael A.; Siebenthall, Kyle; Uhlemann, Anne-Catrin; Kyes, Sue; Krishna, Sanjeev; Newbold, Chris; Dermitzakis, Emmanouil T.; Berriman, Matthew

2008-01-01

120

The Population Genomics of Sunflowers and Genomic Determinants of Protein Evolution Revealed by RNAseq  

PubMed Central

Few studies have investigated the causes of evolutionary rate variation among plant nuclear genes, especially in recently diverged species still capable of hybridizing in the wild. The recent advent of Next Generation Sequencing (NGS) permits investigation of genome wide rates of protein evolution and the role of selection in generating and maintaining divergence. Here, we use individual whole-transcriptome sequencing (RNAseq) to refine our understanding of the population genomics of wild species of sunflowers (Helianthus spp.) and the factors that affect rates of protein evolution. We aligned 35 GB of transcriptome sequencing data and identified 433,257 polymorphic sites (SNPs) in a reference transcriptome comprising 16,312 genes. Using SNP markers, we identified strong population clustering largely corresponding to the three species analyzed here (Helianthus annuus, H. petiolaris, H. debilis), with one distinct early generation hybrid. Then, we calculated the proportions of adaptive substitution fixed by selection (alpha) and identified gene ontology categories with elevated values of alpha. The response to biotic stimulus category had the highest mean alpha across the three interspecific comparisons, implying that natural selection imposed by other organisms plays an important role in driving protein evolution in wild sunflowers. Finally, we examined the relationship between protein evolution (dN/dS ratio) and several genomic factors predicted to co-vary with protein evolution (gene expression level, divergence and specificity, genetic divergence [FST], and nucleotide diversity pi). We find that variation in rates of protein divergence was correlated with gene expression level and specificity, consistent with results from a broad range of taxa and timescales. This would in turn imply that these factors govern protein evolution both at a microevolutionary and macroevolutionary timescale. Our results contribute to a general understanding of the determinants of rates of protein evolution and the impact of selection on patterns of polymorphism and divergence. PMID:24832509

Renaut, Sebastien; Grassa, Christopher J.; Moyers, Brook T.; Kane, Nolan C.; Rieseberg, Loren H.

2012-01-01

121

Molecular cytogenetic and genomic insights into chromosomal evolution  

PubMed Central

This review summarizes aspects of the extensive literature on the patterns and processes underpinning chromosomal evolution in vertebrates and especially placental mammals. It highlights the growing synergy between molecular cytogenetics and comparative genomics, particularly with respect to fully or partially sequenced genomes, and provides novel insights into changes in chromosome number and structure across deep division of the vertebrate tree of life. The examination of basal numbers in the deeper branches of the vertebrate tree suggest a haploid (n) chromosome number of 1013 in an ancestral vertebrate, with modest increases in tetrapods and amniotes most probably by chromosomal fissioning. Information drawn largely from cross-species chromosome painting in the data-dense Placentalia permits the confident reconstruction of an ancestral karyotype comprising n=23 chromosomes that is similarly retained in Boreoeutheria. Using in silico genome-wide scans that include the newly released frog genome we show that of the nine ancient syntenies detected in conserved karyotypes of extant placentals (thought likely to reflect the structure of ancestral chromosomes), the human syntenic segmental associations 3p/21, 4pq/8p, 7a/16p, 14/15, 12qt/22q and 12pq/22qt predate the divergence of tetrapods. These findings underscore the enhanced quality of ancestral reconstructions based on the integrative molecular cytogenetic and comparative genomic approaches that collectively highlight a pattern of conserved syntenic associations that extends back ?360 million years ago. PMID:22108627

Ruiz-Herrera, A; Farre, M; Robinson, T J

2012-01-01

122

Massive comparative genomic analysis reveals convergent evolution of specialized bacteria  

PubMed Central

Background Genome size and gene content in bacteria are associated with their lifestyles. Obligate intracellular bacteria (i.e., mutualists and parasites) have small genomes that derived from larger free-living bacterial ancestors; however, the different steps of bacterial specialization from free-living to intracellular lifestyle have not been studied comprehensively. The growing number of available sequenced genomes makes it possible to perform a statistical comparative analysis of 317 genomes from bacteria with different lifestyles. Results Compared to free-living bacteria, host-dependent bacteria exhibit fewer rRNA genes, more split rRNA operons and fewer transcriptional regulators, linked to slower growth rates. We found a function-dependent and non-random loss of the same 100 orthologous genes in all obligate intracellular bacteria. Thus, we showed that obligate intracellular bacteria from different phyla are converging according to their lifestyle. Their specialization is an irreversible phenomenon characterized by translation modification and massive gene loss, including the loss of transcriptional regulators. Although both mutualists and parasites converge by genome reduction, these obligate intracellular bacteria have lost distinct sets of genes in the context of their specific host associations: mutualists have significantly more genes that enable nutrient provisioning whereas parasites have genes that encode Types II, IV, and VI secretion pathways. Conclusion Our findings suggest that gene loss, rather than acquisition of virulence factors, has been a driving force in the adaptation of parasites to eukaryotic cells. This comparative genomic analysis helps to explore the strategies by which obligate intracellular genomes specialize to particular host-associations and contributes to advance our knowledge about the mechanisms of bacterial evolution. Reviewers This article was reviewed by Eugene V. Koonin, Nicolas Galtier, and Jeremy Selengut. PMID:19361336

Merhej, Vicky; Royer-Carenzi, Manuela; Pontarotti, Pierre; Raoult, Didier

2009-01-01

123

Acc homoeoloci and the evolution of wheat genomes  

PubMed Central

The DNA sequences of wheat Acc-1 and Acc-2 loci, encoding the plastid and cytosolic forms of the enzyme acetyl-CoA carboxylase, were analyzed with a view to understanding the evolution of these genes and the origin of the three genomes in modern hexaploid wheat. Acc-1 and Acc-2 loci from each of the wheats Triticum urartu (A genome), Aegilops tauschii (D genome), Triticum turgidum (AB genome), and Triticum aestivum (ABD genome), as well as two Acc-2-related pseudogenes from T. urartu were sequenced. The 2.32.4 Mya divergence time calculated here for the three homoeologous chromosomes, on the basis of coding and intron sequences of the Acc-1 genes, is at the low end of other estimates. Our clock was calibrated by using 60 Mya for the divergence between wheat and maize. On the same time scale, wheat and barley diverged 11.6 Mya, based on sequences of Acc and other genes. The regions flanking the Acc genes are not conserved among the A, B, and D genomes. They are conserved when comparing homoeologous genomes of diploid, tetraploid, and hexaploid wheats. Substitution rates in intergenic regions consisting primarily of repetitive sequences vary substantially along the loci and on average are 3.5-fold higher than the Acc intron substitution rates. The composition of the Acc homoeoloci suggests haplotype divergence exceeding in some cases 0.5 Mya. Such variation might result in a significant overestimate of the time since tetraploid wheat formation, which occurred no more than 0.5 Mya. PMID:18599450

Chalupska, D.; Lee, H. Y.; Faris, J. D.; Evrard, A.; Chalhoub, B.; Haselkorn, R.; Gornicki, P.

2008-01-01

124

Evolution of Weediness and Invasiveness: Charting the Course for Weed Genomics  

E-print Network

Evolution of Weediness and Invasiveness: Charting the Course for Weed Genomics C. Neal Stewart, Jr and their evolution remain poorly understood, but genomic approaches offer tremendous promise for elucidating these important features of weed biology. However, the genomic tools and resources available for weed research

Rieseberg, Loren

125

The genome diversity and karyotype evolution of mammals  

PubMed Central

The past decade has witnessed an explosion of genome sequencing and mapping in evolutionary diverse species. While full genome sequencing of mammals is rapidly progressing, the ability to assemble and align orthologous whole chromosome regions from more than a few species is still not possible. The intense focus on building of comparative maps for companion (dog and cat), laboratory (mice and rat) and agricultural (cattle, pig, and horse) animals has traditionally been used as a means to understand the underlying basis of disease-related or economically important phenotypes. However, these maps also provide an unprecedented opportunity to use multispecies analysis as a tool for inferring karyotype evolution. Comparative chromosome painting and related techniques are now considered to be the most powerful approaches in comparative genome studies. Homologies can be identified with high accuracy using molecularly defined DNA probes for fluorescence in situ hybridization (FISH) on chromosomes of different species. Chromosome painting data are now available for members of nearly all mammalian orders. In most orders, there are species with rates of chromosome evolution that can be considered as 'default' rates. The number of rearrangements that have become fixed in evolutionary history seems comparatively low, bearing in mind the 180 million years of the mammalian radiation. Comparative chromosome maps record the history of karyotype changes that have occurred during evolution. The aim of this review is to provide an overview of these recent advances in our endeavor to decipher the karyotype evolution of mammals by integrating the published results together with some of our latest unpublished results. PMID:21992653

2011-01-01

126

Thermodynamic Basis for the Emergence of Genomes during Prebiotic Evolution  

PubMed Central

The RNA world hypothesis views modern organisms as descendants of RNA molecules. The earliest RNA molecules must have been random sequences, from which the first genomes that coded for polymerase ribozymes emerged. The quasispecies theory by Eigen predicts the existence of an error threshold limiting genomic stability during such transitions, but does not address the spontaneity of changes. Following a recent theoretical approach, we applied the quasispecies theory combined with kinetic/thermodynamic descriptions of RNA replication to analyze the collective behavior of RNA replicators based on known experimental kinetics data. We find that, with increasing fidelity (relative rate of base-extension for Watson-Crick versus mismatched base pairs), replications without enzymes, with ribozymes, and with protein-based polymerases are above, near, and below a critical point, respectively. The prebiotic evolution therefore must have crossed this critical region. Over large regions of the phase diagram, fitness increases with increasing fidelity, biasing random drifts in sequence space toward crystallization. This region encloses the experimental nonenzymatic fidelity value, favoring evolutions toward polymerase sequences with ever higher fidelity, despite error rates above the error catastrophe threshold. Our work shows that experimentally characterized kinetics and thermodynamics of RNA replication allow us to determine the physicochemical conditions required for the spontaneous crystallization of biological information. Our findings also suggest that among many potential oligomers capable of templated replication, RNAs may have evolved to form prebiotic genomes due to the value of their nonenzymatic fidelity. PMID:22693440

Woo, Hyung-June; Vijaya Satya, Ravi; Reifman, Jaques

2012-01-01

127

Genome duplication and the evolution of conspecific pollen precedence  

PubMed Central

Conspecific pollen precedence can be a strong reproductive barrier between polyploid and diploid species, but the role of genome multiplication in the evolution of this barrier has not been investigated. Here, we examine the direct effect of genome duplication on the evolution of pollen siring success in tetraploid Chamerion angustifolium. To separate the effects of genome duplication from selection after duplication, we compared pollen siring success of synthesized tetraploids (neotetraploids) with that of naturally occurring tetraploids by applying 2x, 4x (neo or established) or 2x + 4x pollen to diploid and tetraploid flowers. Seed set increased in diploids and decreased in both types of tetraploids as the proportion of pollen from diploid plants increased. Based on offspring ploidy from mixed-ploidy pollinations, pollen of the maternal ploidy always sired the majority of offspring but was strongest in established tetraploids and weakest in neotetraploids. Pollen from established tetraploids had significantly higher siring rates than neotetraploids when deposited on diploid (4xest = 47.2%, 4xneo = 27.1%) and on tetraploid recipients (4xest = 91.9%, 4xneo = 56.0%). Siring success of established tetraploids exceeded that of neotetraploids despite having similar pollen production per anther and pollen diameter. Our results suggest that, while pollen precedence can arise in association with the duplication event, the strength of polyploid siring success evolves after the duplication event. PMID:21123263

Baldwin, Sarah J.; Husband, Brian C.

2011-01-01

128

Genome duplication and the evolution of conspecific pollen precedence.  

PubMed

Conspecific pollen precedence can be a strong reproductive barrier between polyploid and diploid species, but the role of genome multiplication in the evolution of this barrier has not been investigated. Here, we examine the direct effect of genome duplication on the evolution of pollen siring success in tetraploid Chamerion angustifolium. To separate the effects of genome duplication from selection after duplication, we compared pollen siring success of synthesized tetraploids (neotetraploids) with that of naturally occurring tetraploids by applying 2x, 4x (neo or established) or 2x + 4x pollen to diploid and tetraploid flowers. Seed set increased in diploids and decreased in both types of tetraploids as the proportion of pollen from diploid plants increased. Based on offspring ploidy from mixed-ploidy pollinations, pollen of the maternal ploidy always sired the majority of offspring but was strongest in established tetraploids and weakest in neotetraploids. Pollen from established tetraploids had significantly higher siring rates than neotetraploids when deposited on diploid (4x(est) = 47.2%, 4x(neo) = 27.1%) and on tetraploid recipients (4x(est) = 91.9%, 4x(neo) = 56.0%). Siring success of established tetraploids exceeded that of neotetraploids despite having similar pollen production per anther and pollen diameter. Our results suggest that, while pollen precedence can arise in association with the duplication event, the strength of polyploid siring success evolves after the duplication event. PMID:21123263

Baldwin, Sarah J; Husband, Brian C

2011-07-01

129

Genome Size, Karyotype Polymorphism and Chromosomal Evolution in Trypanosoma cruzi  

PubMed Central

Background The Trypanosoma cruzi genome was sequenced from a hybrid strain (CL Brener). However, high allelic variation and the repetitive nature of the genome have prevented the complete linear sequence of chromosomes being determined. Determining the full complement of chromosomes and establishing syntenic groups will be important in defining the structure of T. cruzi chromosomes. A large amount of information is now available for T. cruzi and Trypanosoma brucei, providing the opportunity to compare and describe the overall patterns of chromosomal evolution in these parasites. Methodology/Principal Findings The genome sizes, repetitive DNA contents, and the numbers and sizes of chromosomes of nine strains of T. cruzi from four lineages (TcI, TcII, TcV and TcVI) were determined. The genome of the TcI group was statistically smaller than other lineages, with the exception of the TcI isolate Tc1161 (Jos-IMT). Satellite DNA content was correlated with genome size for all isolates, but this was not accompanied by simultaneous amplification of retrotransposons. Regardless of chromosomal polymorphism, large syntenic groups are conserved among T. cruzi lineages. Duplicated chromosome-sized regions were identified and could be retained as paralogous loci, increasing the dosage of several genes. By comparing T. cruzi and T. brucei chromosomes, homologous chromosomal regions in T. brucei were identified. Chromosomes Tb9 and Tb11 of T. brucei share regions of syntenic homology with three and six T. cruzi chromosomal bands, respectively. Conclusions Despite genome size variation and karyotype polymorphism, T. cruzi lineages exhibit conservation of chromosome structure. Several syntenic groups are conserved among all isolates analyzed in this study. The syntenic regions are larger than expected if rearrangements occur randomly, suggesting that they are conserved owing to positive selection. Mapping of the syntenic regions on T. cruzi chromosomal bands provides evidence for the occurrence of fusion and split events involving T. brucei and T. cruzi chromosomes. PMID:21857989

Barros, Roberto Moraes; Cortez, Danielle R.; Santos, Michele F.; Cordero, Esteban M.; Ruiz, Jeronimo Conceicao; Goldenberg, Samuel; Teixeira, Marta M. G.; da Silveira, Jose Franco

2011-01-01

130

The complete chloroplast and mitochondrial genome sequences of Boea hygrometrica: insights into the evolution of plant organellar genomes.  

PubMed

The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage. PMID:22291979

Zhang, Tongwu; Fang, Yongjun; Wang, Xumin; Deng, Xin; Zhang, Xiaowei; Hu, Songnian; Yu, Jun

2012-01-01

131

Genomic islands: tools of bacterial horizontal gene transfer and evolution  

PubMed Central

Bacterial genomes evolve through mutations, rearrangements or horizontal gene transfer. Besides the core genes encoding essential metabolic functions, bacterial genomes also harbour a number of accessory genes acquired by horizontal gene transfer that might be beneficial under certain environmental conditions. The horizontal gene transfer contributes to the diversification and adaptation of microorganisms, thus having an impact on the genome plasticity. A significant part of the horizontal gene transfer is or has been facilitated by genomic islands (GEIs). GEIs are discrete DNA segments, some of which are mobile and others which are not, or are no longer mobile, which differ among closely related strains. A number of GEIs are capable of integration into the chromosome of the host, excision, and transfer to a new host by transformation, conjugation or transduction. GEIs play a crucial role in the evolution of a broad spectrum of bacteria as they are involved in the dissemination of variable genes, including antibiotic resistance and virulence genes leading to generation of hospital superbugs, as well as catabolic genes leading to formation of new metabolic pathways. Depending on the composition of gene modules, the same type of GEIs can promote survival of pathogenic as well as environmental bacteria. PMID:19178566

Juhas, Mario; van der Meer, Jan Roelof; Gaillard, Muriel; Harding, Rosalind M; Hood, Derek W; Crook, Derrick W

2009-01-01

132

Microcolinearity and genome evolution in the AdhA region of diploid and polyploid cotton (Gossypium)  

E-print Network

Microcolinearity and genome evolution in the AdhA region of diploid and polyploid cotton (Gossypium Arizona Genomics Institute, University of Arizona, Tucson, AZ 85721, and 3 Plant Genome Mapping Laboratory. Prior analysis of the CesA region in two cotton genomes that diverged 5­10 million years ago (Ma

Wendel, Jonathan F.

133

Camelid genomes reveal evolution and adaptation to desert environments.  

PubMed

Bactrian camel (Camelus bactrianus), dromedary (Camelus dromedarius) and alpaca (Vicugna pacos) are economically important livestock. Although the Bactrian camel and dromedary are large, typically arid-desert-adapted mammals, alpacas are adapted to plateaus. Here we present high-quality genome sequences of these three species. Our analysis reveals the demographic history of these species since the Tortonian Stage of the Miocene and uncovers a striking correlation between large fluctuations in population size and geological time boundaries. Comparative genomic analysis reveals complex features related to desert adaptations, including fat and water metabolism, stress responses to heat, aridity, intense ultraviolet radiation and choking dust. Transcriptomic analysis of Bactrian camels further reveals unique osmoregulation, osmoprotection and compensatory mechanisms for water reservation underpinned by high blood glucose levels. We hypothesize that these physiological mechanisms represent kidney evolutionary adaptations to the desert environment. This study advances our understanding of camelid evolution and the adaptation of camels to arid-desert environments. PMID:25333821

Wu, Huiguang; Guang, Xuanmin; Al-Fageeh, Mohamed B; Cao, Junwei; Pan, Shengkai; Zhou, Huanmin; Zhang, Li; Abutarboush, Mohammed H; Xing, Yanping; Xie, Zhiyuan; Alshanqeeti, Ali S; Zhang, Yanru; Yao, Qiulin; Al-Shomrani, Badr M; Zhang, Dong; Li, Jiang; Manee, Manee M; Yang, Zili; Yang, Linfeng; Liu, Yiyi; Zhang, Jilin; Altammami, Musaad A; Wang, Shenyuan; Yu, Lili; Zhang, Wenbin; Liu, Sanyang; Ba, La; Liu, Chunxia; Yang, Xukui; Meng, Fanhua; Wang, Shaowei; Li, Lu; Li, Erli; Li, Xueqiong; Wu, Kaifeng; Zhang, Shu; Wang, Junyi; Yin, Ye; Yang, Huanming; Al-Swailem, Abdulaziz M; Wang, Jun

2014-01-01

134

A time-invariant principle of genome evolution Subhajyoti De1  

E-print Network

A time-invariant principle of genome evolution Subhajyoti De1 and M. Madan Babu1 Medical Research- invariant and that operate in germ and somatic cells has implications for genome-wide association studies

Babu, M. Madan

135

Evolution of Red Algal Plastid Genomes: Ancient Architectures, Introns, Horizontal Gene Transfer, and  

E-print Network

Evolution of Red Algal Plastid Genomes: Ancient Architectures, Introns, Horizontal Gene Transfer Plastid Genomes: Ancient Architectures, Introns, Horizontal Gene Transfer, and Taxonomic Utility little during red algal diversification, and suggest that plastid-to nucleus gene transfers have been

Martone, Patrick T.

136

Evolution of a transposon in Daphnia hybrid genomes  

PubMed Central

Background Transposable elements play a major role in genome evolution. Their capacity to move and/or multiply in the genome of their host may have profound impacts on phenotypes, and may have dramatic consequences on genome structure. Hybrid and polyploid clones have arisen multiple times in the Daphnia pulex complex and are thought to reproduce by obligate parthenogenesis. Our study examines the evolution of a DNA transposable element named Pokey in the D. pulex complex. Results Portions of Pokey elements inserted in the 28S rRNA genes from various Daphnia hybrids (diploids and polyploids) were sequenced and compared to sequences from a previous study to understand the evolutionary history of the elements. Pokey sequences show a complex phylogenetic pattern. We found evidence of recombination events in numerous Pokey alleles from diploid and polyploid hybrids and also from non-hybrid diploids. The recombination rate in Pokey elements is comparable to recombination rates previously estimated for 28S rRNA genes in the congener, Daphnia obtusa. Some recombinant Pokey alleles were encountered in Daphnia isolates from multiple locations and habitats. Conclusions Phylogenetic and recombination analyses showed that recombination is a major force that shapes Pokey evolution. Based on Pokey phylogenies, reticulation has played and still plays an important role in shaping the diversity of the D. pulex complex. Horizontal transfer of Pokey seems to be rare and hybrids often possess Pokey elements derived from recombination among alleles encountered in the putative parental species. The insertion of Pokey in hotspots of recombination may have important impacts on the diversity and fitness of this transposable element. PMID:23384095

2013-01-01

137

Principles of genome evolution in the Drosophila melanogaster species group.  

E-print Network

Principles of Genome Evolution in the Drosophila melanogaster Species Group Jose M. Ranz1*, Damien Maurin1a, Yuk S. Chan1, Marcin von Grotthuss1, LaDeana W. Hillier2, John Roote1, Michael Ashburner1, Casey M. Bergman1b 1 Department of Genetics... sequences of related species now allows us to study in detail the mechanisms that generate interspecific inversions. We have analyzed the breakpoint regions of the 29 inversions that differentiate the chromosomes of Drosophila melanogaster and two closely...

Ranz, J M; Maurin, D; Chan, Y S; von Grotthuss, M; Hillier, L W; Roote, John; Ashburner, Michael; Bergman, Casey M

2007-06-05

138

Rhinovirus Associated Severe Respiratory Failure in Immunocompetent Adult Patient  

PubMed Central

Rhinovirus infection is typically associated with the common cold and has rarely been reported as a cause of severe pneumonia in immunocompetent adults. A 55-year-old previous healthy woman, who consumed half a bottle of alcohol daily, presented with respiratory failure after one week of upper respiratory infection symptoms. Radiography revealed bilateral, diffuse ground glass opacity with patchy consolidation in the whole lung field; bronchoalveolar lavage fluid analysis indicated that rhinovirus was the causative organism. After five days of conservative support, the symptoms and radiographic findings began to improve. We report this rare case of rhinovirus pneumonia in an otherwise healthy host along with a review of references. PMID:25309608

Kim, Kiwook; Song, Yeon Han; Park, Joo-Hyun; Park, Hye Kyeong; Kim, Su Young; Jung, Hun; Lee, Sung-Soon

2014-01-01

139

Tracing the Evolution of Streptophyte Algae and Their Mitochondrial Genome  

PubMed Central

Six monophyletic groups of charophycean green algae are recognized within the Streptophyta. Although incongruent with earlier studies based on genes from three cellular compartments, chloroplast and nuclear phylogenomic analyses have resolved identical relationships among these groups, placing the Zygnematales or the Zygnematales + Coleochaetales as sister to land plants. The present investigation aimed at determining whether this consensus view is supported by the mitochondrial genome and at gaining insight into mitochondrial DNA (mtDNA) evolution within and across streptophyte algal lineages and during the transition toward the first land plants. We present here the newly sequenced mtDNAs of representatives of the Klebsormidiales (Entransia fimbriata and Klebsormidium spec.) and Zygnematales (Closterium baillyanum and Roya obtusa) and compare them with their homologs in other charophycean lineages as well as in selected embryophyte and chlorophyte lineages. Our results indicate that important changes occurred at the levels of genome size, gene order, and intron content within the Zygnematales. Although the representatives of the Klebsormidiales display more similarity in genome size and intron content, gene order seems more fluid and gene losses more frequent than in other charophycean lineages. In contrast, the two members of the Charales display an extremely conservative pattern of mtDNA evolution. Collectively, our analyses of gene order and gene content and the phylogenies we inferred from 40 mtDNA-encoded proteins failed to resolve the relationships among the Zygnematales, Coleochaetales, and Charales; however, they are consistent with previous phylogenomic studies in favoring that the morphologically complex Charales are not sister to land plants. PMID:24022472

Turmel, Monique; Otis, Christian; Lemieux, Claude

2013-01-01

140

Characterization of severe acute respiratory syndrome coronavirus genomes in Taiwan: Molecular epidemiology and genome evolution  

PubMed Central

Since early March 2003, the severe acute respiratory syndrome (SARS) coronavirus (CoV) infection has claimed 346 cases and 37 deaths in Taiwan. The epidemic occurred in two stages. The first stage caused limited familial or hospital infections and lasted from early March to mid-April. All cases had clear contact histories, primarily from Guangdong or Hong Kong. The second stage resulted in a large outbreak in a municipal hospital, and quickly spread to northern and southern Taiwan from late April to mid-June. During this stage, there were some sporadic cases with untraceable contact histories. To investigate the origin and transmission route of SARS-CoV in Taiwan's epidemic, we conducted a systematic viral lineage study by sequencing the entire viral genome from ten SARS patients. SARS-CoV viruses isolated from Taiwan were found closely related to those from Guangdong and Hong Kong. In addition, all cases from the second stage belonged to the same lineage after the municipal hospital outbreak, including the patients without an apparent contact history. Analyses of these full-length sequences showed a positive selection occurring during SARS-CoV virus evolution. The mismatch distribution indicated that SARS viral genomes did not reach equilibrium and suggested a recent introduction of the viruses into human populations. The estimated genome mutation rate was ?0.1 per genome, demonstrating possibly one of the lowest rates among known RNA viruses. PMID:14983045

Yeh, Shiou-Hwei; Wang, Hurng-Yi; Tsai, Ching-Yi; Kao, Chuan-Liang; Yang, Jyh-Yuan; Liu, Hwan-Wun; Su, Ih-Jen; Tsai, Shih-Feng; Chen, Ding-Shinn; Chen, Pei-Jer

2004-01-01

141

Short-term genome evolution of Listeria monocytogenes in a non-controlled environment  

Microsoft Academic Search

BACKGROUND: While increasing data on bacterial evolution in controlled environments are available, our understanding of bacterial genome evolution in natural environments is limited. We thus performed full genome analyses on four Listeria monocytogenes, including human and food isolates from both a 1988 case of sporadic listeriosis and a 2000 listeriosis outbreak, which had been linked to contaminated food from a

Renato H Orsi; Mark L Borowsky; Peter Lauer; Sarah K Young; Chad Nusbaum; James E Galagan; Bruce W Birren; Reid A Ivy; Qi Sun; Lewis M Graves; Bala Swaminathan; Martin Wiedmann

2008-01-01

142

Genomics-Bioinformatics Day on "Pathogens, Molecular Evolution and Bionformatics" October Thursday 9th 2003  

E-print Network

Genomics-Bioinformatics Day on "Pathogens, Molecular Evolution and Bionformatics" October Thursday Evolution and Bioinformatics. It is our intention to have such a half day beginning of each term. The day will be dedicated to an interesting topic and will also be used to announce Genomics/Bioinformatics in the following

Goldschmidt, Christina

143

Evolution of the Plant Mitochondrial Genome: Dynamics of Duplication and Deletion of Sequences  

E-print Network

genome The plant mitochondrial genome has an unusually dy- namic structure due to recombination betweenEvolution of the Plant Mitochondrial Genome: Dynamics of Duplication and Deletion of Sequences B Plantes, CNRS URA 1128, Bat 630, Universite´ Paris XI, 91405 Orsay cedex, France 3 Institut National

144

The Mitochondrial Genome of Soybean Reveals Complex Genome Structures and Gene Evolution at Intercellular and Phylogenetic Levels  

PubMed Central

Determining mitochondrial genomes is important for elucidating vital activities of seed plants. Mitochondrial genomes are specific to each plant species because of their variable size, complex structures and patterns of gene losses and gains during evolution. This complexity has made research on the soybean mitochondrial genome difficult compared with its nuclear and chloroplast genomes. The present study helps to solve a 30-year mystery regarding the most complex mitochondrial genome structure, showing that pairwise rearrangements among the many large repeats may produce an enriched molecular pool of 760 circles in seed plants. The soybean mitochondrial genome harbors 58 genes of known function in addition to 52 predicted open reading frames of unknown function. The genome contains sequences of multiple identifiable origins, including 6.8 kb and 7.1 kb DNA fragments that have been transferred from the nuclear and chloroplast genomes, respectively, and some horizontal DNA transfers. The soybean mitochondrial genome has lost 16 genes, including nine protein-coding genes and seven tRNA genes; however, it has acquired five chloroplast-derived genes during evolution. Four tRNA genes, common among the three genomes, are derived from the chloroplast. Sizeable DNA transfers to the nucleus, with pericentromeric regions as hotspots, are observed, including DNA transfers of 125.0 kb and 151.6 kb identified unambiguously from the soybean mitochondrial and chloroplast genomes, respectively. The soybean nuclear genome has acquired five genes from its mitochondrial genome. These results provide biological insights into the mitochondrial genome of seed plants, and are especially helpful for deciphering vital activities in soybean. PMID:23431381

Chang, Shengxin; Wang, Yankun; Lu, Jiangjie; Gai, Junyi; Li, Jijie; Chu, Pu; Guan, Rongzhan; Zhao, Tuanjie

2013-01-01

145

Genomic patterns of pleiotropy and the evolution of complexity.  

PubMed

Pleiotropy refers to the phenomenon of a single mutation or gene affecting multiple distinct phenotypic traits and has broad implications in many areas of biology. Due to its central importance, pleiotropy has also been extensively modeled, albeit with virtually no empirical basis. Analyzing phenotypes of large numbers of yeast, nematode, and mouse mutants, we here describe the genomic patterns of pleiotropy. We show that the fraction of traits altered appreciably by the deletion of a gene is minute for most genes and the gene-trait relationship is highly modular. The standardized size of the phenotypic effect of a gene on a trait is approximately normally distributed with variable SDs for different genes, which gives rise to the surprising observation of a larger per-trait effect for genes affecting more traits. This scaling property counteracts the pleiotropy-associated reduction in adaptation rate (i.e., the "cost of complexity") in a nonlinear fashion, resulting in the highest adaptation rate for organisms of intermediate complexity rather than low complexity. Intriguingly, the observed scaling exponent falls in a narrow range that maximizes the optimal complexity. Together, the genome-wide observations of overall low pleiotropy, high modularity, and larger per-trait effects from genes of higher pleiotropy necessitate major revisions of theoretical models of pleiotropy and suggest that pleiotropy has not only allowed but also promoted the evolution of complexity. PMID:20876104

Wang, Zhi; Liao, Ben-Yang; Zhang, Jianzhi

2010-10-19

146

The evolution of X-linked genomic imprinting.  

PubMed Central

We develop a quantitative genetic model to investigate the evolution of X-imprinting. The model compares two forces that select for X-imprinting: genomic conflict caused by polygamy and sex-specific selection. Genomic conflict can only explain small reductions in maternal X gene expression and cannot explain silencing of the maternal X. In contrast, sex-specific selection can cause extreme differences in gene expression, in either direction (lowered maternal or paternal gene expression), even to the point of gene silencing of either the maternal or paternal copy. These conclusions assume that the Y chromosome lacks genetic activity. The presence of an active Y homologue makes imprinting resemble the autosomal pattern, with active paternal alleles (X- and Y-linked) and silenced maternal alleles. This outcome is likely to be restricted as Y-linked alleles are subject to the accumulation of deleterious mutations. Experimental evidence concerning X-imprinting in mouse and human is interpreted in the light of these predictions and is shown to be far more easily explained by sex-specific selection. PMID:11514463

Iwasa, Y; Pomiankowski, A

2001-01-01

147

Modeling Bacterial Evolution with Comparative-Genome-Based Marker Systems: Application to Mycobacterium tuberculosis Evolution and Pathogenesis  

Microsoft Academic Search

The comparative-genomic sequencing of two Mycobacterium tuberculosis strains enabled us to identify single nucleotide polymorphism (SNP) markers for studies of evolution, pathogenesis, and epidemiology in clinical M. tuberculosis. Phylogenetic analysis using these \\

David Alland; Thomas S. Whittam; Megan B. Murray; M. Donald Cave; Manzour H. Hazbon; Kim Dix; Mark Kokoris; Andreas Duesterhoeft; Jonathan A. Eisen; Claire M. Fraser; Robert D. Fleischmann

2003-01-01

148

The Tarenaya hassleriana Genome Provides Insight into Reproductive Trait and Genome Evolution of Crucifers[W][OPEN  

PubMed Central

The Brassicaceae, including Arabidopsis thaliana and Brassica crops, is unmatched among plants in its wealth of genomic and functional molecular data and has long served as a model for understanding gene, genome, and trait evolution. However, genome information from a phylogenetic outgroup that is essential for inferring directionality of evolutionary change has been lacking. We therefore sequenced the genome of the spider flower (Tarenaya hassleriana) from the Brassicaceae sister family, the Cleomaceae. By comparative analysis of the two lineages, we show that genome evolution following ancient polyploidy and gene duplication events affect reproductively important traits. We found an ancient genome triplication in Tarenaya (Th-?) that is independent of the Brassicaceae-specific duplication (At-?) and nested Brassica (Br-?) triplication. To showcase the potential of sister lineage genome analysis, we investigated the state of floral developmental genes and show Brassica retains twice as many floral MADS (for MINICHROMOSOME MAINTENANCE1, AGAMOUS, DEFICIENS and SERUM RESPONSE FACTOR) genes as Tarenaya that likely contribute to morphological diversity in Brassica. We also performed synteny analysis of gene families that confer self-incompatibility in Brassicaceae and found that the critical SERINE RECEPTOR KINASE receptor gene is derived from a lineage-specific tandem duplication. The T. hassleriana genome will facilitate future research toward elucidating the evolutionary history of Brassicaceae genomes. PMID:23983221

Cheng, Shifeng; van den Bergh, Erik; Zeng, Peng; Zhong, Xiao; Xu, Jiajia; Liu, Xin; Hofberger, Johannes; de Bruijn, Suzanne; Bhide, Amey S.; Kuelahoglu, Canan; Bian, Chao; Chen, Jing; Fan, Guangyi; Kaufmann, Kerstin; Hall, Jocelyn C.; Becker, Annette; Brautigam, Andrea; Weber, Andreas P.M.; Shi, Chengcheng; Zheng, Zhijun; Li, Wujiao; Lv, Mingju; Tao, Yimin; Wang, Junyi; Zou, Hongfeng; Quan, Zhiwu; Hibberd, Julian M.; Zhang, Gengyun; Zhu, Xin-Guang; Xu, Xun; Schranz, M. Eric

2013-01-01

149

Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution  

Microsoft Academic Search

We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome-composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes-provides a new perspective on vertebrate genome evolution,

LaDeana W. Hillier; Webb Miller; Ewan Birney; Wesley Warren; Ross C. Hardison; Chris P. Ponting; Peer Bork; David W. Burt; Martien A. M. Groenen; Mary E. Delany; Jerry B. Dodgson; Genome assembly; Asif T. Chinwalla; Paul F. Cliften; Sandra W. Clifton; Kimberly D. Delehaunty; Catrina Fronick; Robert S. Fulton; Tina A. Graves; Colin Kremitzki; Dan Layman; Vincent Magrini; John D. McPherson; Tracie L. Miner; Patrick Minx; William E. Nash; Michael N. Nhan; Joanne O. Nelson; Lachlan G. Oddy; Craig S. Pohl; Jennifer Randall-Maher; Scott M. Smith; John W. Wallis; Shiaw-Pyng Yang; Michael N. Romanov; Catherine M. Rondelli; Bob Paton; Jacqueline Smith; David Morrice; Laura Daniels; Helen G. Tempest; Lindsay Robertson; Julio S. Masabanda; Darren K. Griffin; Alain Vignal; Valerie Fillon; Susanne Kerje; Leif Andersson; Richard P. M. Crooijmans; Jan Aerts; Jan J. van der Poel; Hans Ellegren; cDNA sequencing; Randolph B. Caldwell; Simon J. Hubbard; Darren V. Grafham; Andrzej M. Kierzek; Stuart R. McLaren; Ian M. Overton; Hiroshi Arakawa; Kevin J. Beattie; Yuri Bezzubov; Paul E. Boardman; James K. Bonfield; Michael D. R. Croning; Robert M. Davies; Matthew D. Francis; Sean J. Humphray; Carol E. Scott; Ruth G. Taylor; Cheryll Tickle; William R. A. Brown; Jane Rogers; Jean-Marie Buerstedde; Stuart A. Wilson; Ivan Ovcharenko; Laurie Gordon; Susan Lucas; Marcia M. Miller; Hidetoshi Inoko; Takashi Shiina; Jim Kaufman; Jan Salomonsen; Karsten Skjoedt; Gane Ka-Shu Wong; Jun Wang; Bin Liu; Jian Wang; Jun Yu; Huanming Yang; Mikhail Nefedov; Maxim Koriabine; Pieter J. deJong; Leo Goodstadt; Caleb Webber; Nicholas J. Dickens; Ivica Letunic; Mikita Suyama; David Torrents; Christian von Mering; Evgeny M. Zdobnov; Kateryna Makova; Laura Elnitski; Pallavi Eswara; David C. King; Shan Yang; Svitlana Tyekucheva; Anusha Radakrishnan; Robert S. Harris; Francesca Chiaromonte; James Taylor; Jianbin He; Monique Rijnkels; Sam Griffiths-Jones; Michael M. Hoffman; Jessica Severin; Stephen M. J. Searle; Andy S. Law; David Speed; Dave Waddington; Ze Cheng; Eray Tuzun; Zhirong Bao; Paul Flicek; David D. Shteynberg; Michael R. Brent; Jacqueline M. Bye; Elizabeth J. Huckle; Sourav Chatterji; Colin Dewey; Lior Pachter; Andrei Kouranov; Zissimos Mourelatos; Artemis G. Hatzigeorgiou; Andrew H. Paterson; Robert Ivarie; Mikael Brandstrom; Erik Axelsson; Niclas Backstrom; Matthew T. Webster; Olivier Pourquie; Alexandre Reymond; Catherine Ucla; Stylianos E. Antonarakis; Manyuan Long; J. J. Emerson; Esther Betrn; Isabelle Dupanloup; Henrik Kaessmann; Angie S. Hinrichs; Gill Bejerano; Terrence S. Furey; Rachel A. Harte; Brian Raney; Adam Siepel; W. James Kent; David Haussler; Eduardo Eyras; Robert Castelo; Josep F. Abril; Sergi Castellano; Francisco Camara; Genis Parra; Roderic Guigo; Guillaume Bourque; Glenn Tesler; Pavel A. Pevzner; Arian Smit; Lucinda A. Fulton; Elaine R. Mardis; Richard K. Wilson

2004-01-01

150

The adaptive evolution of the mammalian mitochondrial genome  

PubMed Central

Background The mitochondria produce up to 95% of a eukaryotic cell's energy through oxidative phosphorylation. The proteins involved in this vital process are under high functional constraints. However, metabolic requirements vary across species, potentially modifying selective pressures. We evaluate the adaptive evolution of 12 protein-coding mitochondrial genes in 41 placental mammalian species by assessing amino acid sequence variation and exploring the functional implications of observed variation in secondary and tertiary protein structures. Results Wide variation in the properties of amino acids were observed at functionally important regions of cytochrome b in species with more-specialized metabolic requirements (such as adaptation to low energy diet or large body size, such as in elephant, dugong, sloth, and pangolin, and adaptation to unusual oxygen requirements, for example diving in cetaceans, flying in bats, and living at high altitudes in alpacas). Signatures of adaptive variation in the NADH dehydrogenase complex were restricted to the loop regions of the transmembrane units which likely function as protons pumps. Evidence of adaptive variation in the cytochrome c oxidase complex was observed mostly at the interface between the mitochondrial and nuclear-encoded subunits, perhaps evidence of co-evolution. The ATP8 subunit, which has an important role in the assembly of F0, exhibited the highest signal of adaptive variation. ATP6, which has an essential role in rotor performance, showed a high adaptive variation in predicted loop areas. Conclusion Our study provides insight into the adaptive evolution of the mtDNA genome in mammals and its implications for the molecular mechanism of oxidative phosphorylation. We present a framework for future experimental characterization of the impact of specific mutations in the function, physiology, and interactions of the mtDNA encoded proteins involved in oxidative phosphorylation. PMID:18318906

da Fonseca, Rute R; Johnson, Warren E; O'Brien, Stephen J; Ramos, Maria Joao; Antunes, Agostinho

2008-01-01

151

Rhinovirus Replication in Human Macrophages Induces NFB-Dependent Tumor Necrosis Factor Alpha Production  

Microsoft Academic Search

Rhinoviruses (RV) are the major cause of acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Rhinoviruses have been shown to activate macrophages, but rhinovirus replication in macrophages has not been reported. Tumor necrosis factor alpha (TNF-) is implicated in the pathogenesis of acute exacerbations, but its cellular source and mechanisms of induction by virus infection are unclear. We

Vasile Laza-Stanca; Luminita A. Stanciu; Simon D. Message; Michael R. Edwards; James E. Gern; Sebastian L. Johnston

2006-01-01

152

Genome gymnastics: unique modes of dna evolution and processing in ciliates  

Microsoft Academic Search

In some ciliates, the DNA sequences of the germline genomes have been profoundly modified during evolution, providing unprecedented examples of germline DNA malleability. Although the significance of the modifications and malleability is unclear, they may reflect the evolution of mechanisms that facilitate evolution. Because of the modifications, these ciliates must perform remarkable feats of cutting, splicing, rearrangement and elimination of

David M. Prescott

2000-01-01

153

Evolution of Linear Mitochondrial Genomes in Medusozoan Cnidarians  

PubMed Central

In nearly all animals, mitochondrial DNA (mtDNA) consists of a single circular molecule that encodes several subunits of the protein complexes involved in oxidative phosphorylation as well as part of the machinery for their expression. By contrast, mtDNA in species belonging to Medusozoa (one of the two major lineages in the phylum Cnidaria) comprises one to several linear molecules. Many questions remain on the ubiquity of linear mtDNA in medusozoans and the mechanisms responsible for its evolution, replication, and transcription. To address some of these questions, we determined the sequences of nearly complete linear mtDNA from 24 species representing all four medusozoan classes: Cubozoa, Hydrozoa, Scyphozoa, and Staurozoa. All newly determined medusozoan mitochondrial genomes harbor the 17 genes typical for cnidarians and map as linear molecules with a high degree of gene order conservation relative to the anthozoans. In addition, two open reading frames (ORFs), polB and ORF314, are identified in cubozoan, schyphozoan, staurozoan, and trachyline hydrozoan mtDNA. polB belongs to the B-type DNA polymerase gene family, while the product of ORF314 may act as a terminal protein that binds telomeres. We posit that these two ORFs are remnants of a linear plasmid that invaded the mitochondrial genomes of the last common ancestor of Medusozoa and are responsible for its linearity. Hydroidolinan hydrozoans have lost the two ORFs and instead have duplicated cox1 at each end of their mitochondrial chromosome(s). Fragmentation of mtDNA occurred independently in Cubozoa and Hydridae (Hydrozoa, Hydroidolina). Our broad sampling allows us to reconstruct the evolutionary history of linear mtDNA in medusozoans. PMID:22113796

Kayal, Ehsan; Bentlage, Bastian; Collins, Allen G.; Pirro, Stacy; Lavrov, Dennis V.

2012-01-01

154

A physical map for the Amborella trichopoda genome sheds light on the evolution of angiosperm genome structure  

PubMed Central

Background Recent phylogenetic analyses have identified Amborella trichopoda, an understory tree species endemic to the forests of New Caledonia, as sister to a clade including all other known flowering plant species. The Amborella genome is a unique reference for understanding the evolution of angiosperm genomes because it can serve as an outgroup to root comparative analyses. A physical map, BAC end sequences and sample shotgun sequences provide a first view of the 870 Mbp Amborella genome. Results Analysis of Amborella BAC ends sequenced from each contig suggests that the density of long terminal repeat retrotransposons is negatively correlated with that of protein coding genes. Syntenic, presumably ancestral, gene blocks were identified in comparisons of the Amborella BAC contigs and the sequenced Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera and Oryza sativa genomes. Parsimony mapping of the loss of synteny corroborates previous analyses suggesting that the rate of structural change has been more rapid on lineages leading to Arabidopsis and Oryza compared with lineages leading to Populus and Vitis. The gamma paleohexiploidy event identified in the Arabidopsis, Populus and Vitis genomes is shown to have occurred after the divergence of all other known angiosperms from the lineage leading to Amborella. Conclusions When placed in the context of a physical map, BAC end sequences representing just 5.4% of the Amborella genome have facilitated reconstruction of gene blocks that existed in the last common ancestor of all flowering plants. The Amborella genome is an invaluable reference for inferences concerning the ancestral angiosperm and subsequent genome evolution. PMID:21619600

2011-01-01

155

Orthopoxvirus Genome Evolution: The Role of Gene Loss  

PubMed Central

Poxviruses are highly successful pathogens, known to infect a variety of hosts. The family Poxviridae includes Variola virus, the causative agent of smallpox, which has been eradicated as a public health threat but could potentially reemerge as a bioterrorist threat. The risk scenario includes other animal poxviruses and genetically engineered manipulations of poxviruses. Studies of orthologous gene sets have established the evolutionary relationships of members within the Poxviridae family. It is not clear, however, how variations between family members arose in the past, an important issue in understanding how these viruses may vary and possibly produce future threats. Using a newly developed poxvirus-specific tool, we predicted accurate gene sets for viruses with completely sequenced genomes in the genus Orthopoxvirus. Employing sensitive sequence comparison techniques together with comparison of syntenic gene maps, we established the relationships between all viral gene sets. These techniques allowed us to unambiguously identify the gene loss/gain events that have occurred over the course of orthopoxvirus evolution. It is clear that for all existing Orthopoxvirus species, no individual species has acquired protein-coding genes unique to that species. All existing species contain genes that are all present in members of the species Cowpox virus and that cowpox virus strains contain every gene present in any other orthopoxvirus strain. These results support a theory of reductive evolution in which the reduction in size of the core gene set of a putative ancestral virus played a critical role in speciation and confining any newly emerging virus species to a particular environmental (host or tissue) niche. PMID:21994715

Hendrickson, Robert Curtis; Wang, Chunlin; Hatcher, Eneida L.; Lefkowitz, Elliot J.

2010-01-01

156

Hand contamination with human rhinovirus in Bangladesh.  

PubMed

As one step in developing a measure of hand contamination with respiratory viruses, this study assessed if human rhinovirus (HRV) was detectable on hands in a low income non-temperate community where respiratory disease is a leading cause of child death. Research assistants observed residents in a low income community in Dhaka, Bangladesh. When they observed a resident sneeze or pick their nose, they collected a hand rinse and anterior nare sample from the resident. Samples were first tested for HRV RNA by real-time RT-PCR (rRT-PCR). A subset of rRT-PCR positive samples were cultured into MRC-5 and HeLa Ohio cells. Among 177 hand samples tested for HRV by real-time RT-PCR, 52 (29%) were positive. Among 15 RT-PCR positive hand samples that were cultured, two grew HRV. HRV was detected in each of the sampling months (January, February, June, July, November, and December). This study demonstrates in the natural setting that, at least after sneezing or nasal cleaning, hands were contaminated commonly with potentially infectious HRV. Future research could explore if HRV RNA is present consistently and is associated sufficiently with the incidence of respiratory illness in communities that it may provide a proxy measure of respiratory viral hand contamination. J. Med. Virol. 86:21772180, 2014. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. PMID:24760731

Luby, Stephen P; Lu, Xiaoyan; Cromeans, Theresa; Sharker, M A Yushuf; Kadir, Mohammad Abdul; Erdman, Dean D

2014-12-01

157

A physical map for the Amborella trichopoda genome sheds light on the evolution of angiosperm genome structure  

Microsoft Academic Search

BackgroundRecent phylogenetic analyses have identified Amborella trichopoda, an understory tree species endemic to the forests of New Caledonia, as sister to a clade including all other known flowering\\u000a plant species. The Amborella genome is a unique reference for understanding the evolution of angiosperm genomes because it can serve as an outgroup to\\u000a root comparative analyses. A physical map, BAC end

Andrea Zuccolo; John E Bowers; James C Estill; Zhiyong Xiong; Meizhong Luo; Aswathy Sebastian; Jos Luis Goicoechea; Kristi Collura; Yeisoo Yu; Yuannian Jiao; Jill Duarte; Haibao Tang; Saravanaraj Ayyampalayam; Steve Rounsley; Dave Kudrna; Andrew H Paterson; J Chris Pires; Andre Chanderbali; Douglas E Soltis; Srikar Chamala; Brad Barbazuk; Pamela S Soltis; Victor A Albert; Hong Ma; Dina Mandoli; Jody Banks; John E Carlson; Jeffrey Tomkins; Claude W dePamphilis; Rod A Wing; Jim Leebens-Mack

2011-01-01

158

Rhinovirus antibodies in an isolated Amazon Indian tribe.  

PubMed

In early 1985, the Parakana-Apiterewa, a small, primitive Indian tribe, was contacted in the southern Amazon Basin. The tribe was thought to have been totally isolated from civilization until recent development of their land. Blood specimens were collected in 1985, shortly after the discovery of the tribe, and analyzed for the presence of rhinovirus-neutralizing antibody to nine different immunotypes. Six to forty-seven percent of the serum samples tested contained antibody to at least one immunotype of rhinovirus. The prevalence of rhinovirus antibody in the Parakana-Apiterewa Indians was similar to that reported in United States populations, suggesting that there had been considerable direct or indirect contact in the past between tribe members and persons in the outside world. PMID:8392816

Thwing, C J; Arruda, E; Vieira Filho, J P; Castelo Filho, A; Gwaltney, J M

1993-06-01

159

Evaluation of Isoprinosine in Experimental Human Rhinovirus Infection  

PubMed Central

The prophylactic efficacy of isoprinosine was evaluated in a double-blind fashion in volunteers challenged with two types of rhinovirus. In the rhinovirus 44 and 32 trials, each of 9 men received a placebo, and eight and 11 men received the drug, respectively. Oral isoprinosine, 6 g a day, was given for 2 days prior to intranasal challenge with 100 mean tissue culture infective doses of the virus and for 7 postchallenge days. In both trials the occurrence and severity of colds were greater in the placebo group, but the difference between the two groups was not significant. Higher antibody titers for both viruses and a greater number of rhinovirus 32 isolations were demonstrated in the drug group but without statistically significant differences. The prophylactic isoprinosine treatment may suppress the cold syndrome, but its effect was not convincingly apparent. PMID:15825396

Pachuta, Donald M.; Togo, Yasushi; Hornick, Richard B.; Schwarts, Andrew R.; Tominaga, Suketami

1974-01-01

160

The evolution of genome-scale models of cancer metabolism  

PubMed Central

The importance of metabolism in cancer is becoming increasingly apparent with the identification of metabolic enzyme mutations and the growing awareness of the influence of metabolism on signaling, epigenetic markers, and transcription. However, the complexity of these processes has challenged our ability to make sense of the metabolic changes in cancer. Fortunately, constraint-based modeling, a systems biology approach, now enables one to study the entirety of cancer metabolism and simulate basic phenotypes. With the newness of this field, there has been a rapid evolution of both the scope of these models and their applications. Here we review the various constraint-based models built for cancer metabolism and how their predictions are shedding new light on basic cancer phenotypes, elucidating pathway differences between tumors, and dicovering putative anti-cancer targets. As the field continues to evolve, the scope of these genome-scale cancer models must expand beyond central metabolism to address questions related to the diverse processes contributing to tumor development and metastasis. PMID:24027532

Lewis, Nathan E.; Abdel-Haleem, Alyaa M.

2013-01-01

161

Oxytricha as a modern analog of ancient genome evolution.  

PubMed

Several independent lines of evidence suggest that the modern genetic system was preceded by the 'RNA world' in which RNA genes encoded RNA catalysts. Current gaps in our conceptual framework of early genetic systems make it difficult to imagine how a stable RNA genome may have functioned and how the transition to a DNA genome could have taken place. Here we use the single-celled ciliate, Oxytricha, as an analog to some of the genetic and genomic traits that may have been present in organisms before and during the establishment of a DNA genome. Oxytricha and its close relatives have a unique genome architecture involving two differentiated nuclei, one of which encodes the genome on small, linear nanochromosomes. While its unique genomic characteristics are relatively modern, some physiological processes related to the genomes and nuclei of Oxytricha may exemplify primitive states of the developing genetic system. PMID:22622227

Goldman, Aaron David; Landweber, Laura F

2012-08-01

162

Oxytricha as a modern analog of ancient genome evolution  

PubMed Central

Several independent lines of evidence suggest that the modern genetic system was preceded by the RNA world in which RNA genes encoded RNA catalysts. Current gaps in our conceptual framework of early genetic systems make it difficult to imagine how a stable RNA genome may have functioned and how the transition to a DNA genome could have taken place. Here we use the single-celled ciliate, Oxytricha, as an analog to some of the genetic and genomic traits that may have been present in organisms before and during the establishment of a DNA genome. Oxytricha and its close relatives have a unique genome architecture involving two differentiated nuclei, one of which encodes the genome on small, linear nanochromosomes. While its unique genomic characteristics are relatively modern, some physiological processes related to the genomes and nuclei of Oxytricha may exemplify primitive states of the developing genetic system. PMID:22622227

Goldman, Aaron David; Landweber, Laura F.

2012-01-01

163

Reductive genome evolution at both ends of the bacterial population size spectrum.  

PubMed

Bacterial genomes show substantial variations in size. The smallest bacterial genomes are those of endocellular symbionts of eukaryotic hosts, which have undergone massive genome reduction and show patterns that are consistent with the degenerative processes that are predicted to occur in species with small effective population sizes. However, similar genome reduction is found in some free-living marine cyanobacteria that are characterized by extremely large populations. In this Opinion article, we discuss the different hypotheses that have been proposed to account for this reductive genome evolution at both ends of the bacterial population size spectrum. PMID:25220308

Batut, Brnice; Knibbe, Carole; Marais, Gabriel; Daubin, Vincent

2014-12-01

164

Transposable element contributions to plant gene and genome evolution  

Microsoft Academic Search

Transposable elements were first discovered in plants because they can have tremendous effects on genome structure and gene function. Although only a few or no elements may be active within a genome at any time in any individual, the genomic alterations they cause can have major outcomes for a species. All major element types appear to be present in all

Jeffrey L. Bennetzen

2000-01-01

165

Genome evolution following host jumps in the Irish potato famine pathogen lineage.  

PubMed

Many plant pathogens, including those in the lineage of the Irish potato famine organism Phytophthora infestans, evolve by host jumps followed by specialization. However, how host jumps affect genome evolution remains largely unknown. To determine the patterns of sequence variation in the P. infestans lineage, we resequenced six genomes of four sister species. This revealed uneven evolutionary rates across genomes with genes in repeat-rich regions showing higher rates of structural polymorphisms and positive selection. These loci are enriched in genes induced in planta, implicating host adaptation in genome evolution. Unexpectedly, genes involved in epigenetic processes formed another class of rapidly evolving residents of the gene-sparse regions. These results demonstrate that dynamic repeat-rich genome compartments underpin accelerated gene evolution following host jumps in this pathogen lineage. PMID:21148391

Raffaele, Sylvain; Farrer, Rhys A; Cano, Liliana M; Studholme, David J; MacLean, Daniel; Thines, Marco; Jiang, Rays H Y; Zody, Michael C; Kunjeti, Sridhara G; Donofrio, Nicole M; Meyers, Blake C; Nusbaum, Chad; Kamoun, Sophien

2010-12-10

166

Evolution of nucleosome positioning and gene regulation in yeasts : a genomic and computational approach  

E-print Network

Chromatin organization plays a major role in gene regulation and can affect the function and evolution of new transcriptional programs. Here, we present the first multi-species comparative genomic analysis of the relationship ...

Tsankov, Alex

2010-01-01

167

Methods and analysis of genome-scale gene family evolution across multiple species  

E-print Network

The fields of genomics and evolution have continually benefited from one another in their common goal of understanding the biological world. This partnership has been accelerated by ever increasing sequencing and high-throughput ...

Rasmussen, Matthew D. (Matthew David)

2010-01-01

168

Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses  

Microsoft Academic Search

BackgroundSorghum is the first C4 plant and the second grass with a full genome sequence available. This makes it possible to perform\\u000a a whole-genome-level exploration of C4 pathway evolution by comparing key photosynthetic enzyme genes in sorghum, maize (C4)\\u000a and rice (C3), and to investigate a long-standing hypothesis that a reservoir of duplicated genes is a prerequisite for the\\u000a evolution

Xiyin Wang; Udo Gowik; Haibao Tang; John E Bowers; Peter Westhoff; Andrew H Paterson

2009-01-01

169

Seventeen New Complete mtDNA Sequences Reveal Extensive Mitochondrial Genome Evolution within the Demospongiae  

Microsoft Academic Search

Two major transitions in animal evolution-the origins of multicellularity and bilaterality-correlate with major changes in mitochondrial DNA (mtDNA) organization. Demosponges, the largest class in the phylum Porifera, underwent only the first of these transitions and their mitochondrial genomes display a peculiar combination of ancestral and animal-specific features. To get an insight into the evolution of mitochondrial genomes within the Demospongiae,

Xiujuan Wang; Dennis V. Lavrov

2008-01-01

170

The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution  

Microsoft Academic Search

To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher

Christine G Elsik; Ross L Tellam; Richard A Gibbs; Kim C Worley; Donna M Muzny; George M Weinstock; David L Adelson; Evan E Eichler; Laura Elnitski; Roderic Guig'o; Debora L Hamernik; Harris A Lewin; Steve M Kappes; David J Lynn; Frank W Nicholas; Alexandre Reymond; Monique Rijnkels; Loren C Skow; Evgeny M Zdobnov; Lawrence Schook; James Womack; Tyler Alioto; Stylianos E Antonarakis; Alex Astashyn; Charles E Chapple; Hsiu-Chuan Chen; Jacqueline Chrast; Francisco Cmara; Olga Ermolaeva; Charlotte N Henrichsen; Wratko Hlavina; Yuri Kapustin; Boris Kiryutin; Paul Kitts; Felix Kokocinski; Melissa Landrum; Donna Maglott; Kim Pruitt; Victor Sapojnikov; Stephen M Searle; Victor Solovyev; Alexandre Souvorov; Catherine Ucla; Carine Wyss; Juan M Anzola; Daniel Gerlach; Eran Elhaik; Dan Graur; Justin T Reese; Robert C Edgar; John C McEwan; Gemma M Payne; Joy M Raison; Thomas Junier; Evgenia V Kriventseva; Eduardo Eyras; Mireya Plass; Ravikiran Donthu; Denis M Larkin; James Reecy; Mary Q Yang; Lin Chen; Ze Cheng; Carol G Chitko-mckown; George E Liu; Lakshmi K Matukumalli; Jiuzhou Song; Bin Zhu; Daniel G Bradley; Fiona S L Brinkman; Lilian P L Lau; Matthew D Whiteside; Angela Walker; Thomas T Wheeler; Theresa Casey; J Bruce German; Danielle G Lemay; Nauman J Maqbool; Adrian J Molenaar; Seongwon Seo; Paul Stothard; Cynthia L Baldwin; Rebecca Baxter; Candice L Brinkmeyer-Langford; Wendy C Brown; Christopher P Childers; Shirley A Ellis; Timothy Connelley; Krista Fritz; Elizabeth J Glass; Carolyn T A Herzig; Antti Iivanainen; Kevin K Lahmers; Anna K Bennett; C Michael Dickens; James G R Gilbert; Darren E Hagen; Hanni Salih; Alexandre R Caetano; Brian Dalrymple; Clare A Gill; Jose Fernando Garcia; Stefan G Hiendleder; Erdogan Memili; Diane Spurlock; John L Williams; Lee Alexander; Michael J Brownstein; Leluo Guan; Marco A Marra; Steven J M Jones; Richard Moore; Stephen S Moore; Andy Roberts; Masaaki Taniguchi; Richard C Waterman; Joseph Chacko; Mimi M Chandrabose; Andy Cree; Marvin Diep Dao; Huyen H Dinh; Ramatu Ayiesha Gabisi; Sandra Hines; Jennifer Hume; Shalini N Jhangiani; Vandita Joshi; Christie L Kovar; Lora R Lewis; Yih-Shin Liu; John Lopez; Margaret B Morgan; Ngoc Bich Nguyen; Geoffrey O Okwuonu; San Juana Ruiz; Rita A Wright; Jireh Santibanez; Christian Buhay; Yan Ding; Shannon Dugan-rocha; Judith Herdandez; Michael Holder; Aniko Sabo; Amy Egan; Jason Goodell; Katarzyna Wilczek-Boney; Gerald R Fowler; Matthew Edward Hitchens; Ryan J Lozado; Charles Moen; David Steffen; James T Warren; JingKun Zhang; Readman Chiu; Jacqueline E Schein; K James Durbin; Paul Havlak; Huaiyang Jiang; Yue Liu; Xiang Qin; Yanru Ren; Yufeng Shen; Henry Song; Stephanie Nicole Bell; Clay Davis; Angela Jolivet Johnson; Sandra Lee; Lynne V Nazareth; Bella Mayurkumar Patel; Ling-Ling Pu; Selina Vattathil; Rex Lee Williams; Stacey Curry; Cerissa Hamilton; Erica Sodergren; David A Wheeler; Wes Barris; Gary L Bennett; Andr'e Eggen; Ronnie D Green; Gregory P Harhay; Matthew Hobbs; Oliver Jann; John W Keele; Matthew P Kent; Sigbjo rn Lien; Stephanie D McKay; Sean Mcwilliam; Abhirami Ratnakumar; Robert D Schnabel; Timothy Smith; Warren M Snelling; Tad S Sonstegard; Roger T Stone; Yoshikazu Sugimoto; Akiko Takasuga; Jeremy F Taylor; Curtis P Van Tassell; Michael D Macneil; Colette A Abbey; Antonio R R Abatepaulo; Virpi Ahola; Iassudara G Almeida; Ariel F Amadio; Elen Anatriello; Suria M Bahadue; Fernando H Biase; Jeffery A Carroll; Clayton R Boldt; Wanessa A Carvalho; Eliane P Cervelatti; Elsa Chacko; Jennifer E Chapin; Ye Cheng; Jungwoo Choi; Adam J Colley; Tatiana A de Campos; Marcos De Donato; Isabel K F De Miranda Santos; Carlo J F de Oliveira; Heather Deobald; Eve Devinoy; Kaitlin E Donohue; Peter Dovc; Annett Eberlein; Carolyn J Fitzsimmons; Alessandra M Franzin; Gustavo R Garcia; Sem Genini; Cody J Gladney; Jason R Grant; Marion L Greaser; Jonathan A Green; Darryl L Hadsell; Hatam A Hakimov; Rob Halgren; Jennifer L Harrow; Elizabeth A Hart; Nicola Hastings; Marta Hern'andez; Zhi-Liang Hu; Aaron Ingham; Terhi Iso-Touru; Catherine Jamis; Kirsty Jensen; Dimos Kapetis; Tovah Kerr; Sari S Khalil; Hasan Khatib; Davood Kolbehdari; Charu G Kumar; Dinesh Kumar; Richard Leach; Justin C-M Lee; Changxi Li; Krystin M Logan; Roberto Malinverni; Elisa Marques; William F Martin; Natalia F Martins; Sandra R Maruyama; Raffaele Mazza; Kim L McLean; Juan F Medrano; Barbara T Moreno; Daniela D Mor'e; Carl T Muntean; Hari P Nandakumar; Marcelo F G Nogueira; Ingrid Olsaker; Sameer D Pant; Francesca Panzitta; Rosemeire C P Pastor; Mario A Poli; Nathan Poslusny; Satyanarayana Rachagani; Shoba Ranganathan; Andrej Razpet

2009-01-01

171

Core-SINE blocks comprise a large fraction of monotreme genomes; implications for vertebrate chromosome evolution  

Microsoft Academic Search

The genomes of the egg-laying platypus and echidna are of particular interest because monotremes are the most basal mammal\\u000a group. The chromosomal distribution of an ancient family of short interspersed repeats (SINEs), the core-SINEs, was investigated\\u000a to better understand monotreme genome organization and evolution. Previous studies have identified the core-SINE as the predominant\\u000a SINE in the platypus genome, and in

Patrick J. Kirby; Ian K. Greaves; Edda Koina; Paul D. Waters; Jennifer A. Marshall Graves

2007-01-01

172

Patterns of Genome Evolution among the Microsporidian Parasites Encephalitozoon cuniculi, Antonospora locustae and Enterocytozoon bieneusi  

Microsoft Academic Search

Background. Microsporidia are intracellular parasites that are highly-derived relatives of fungi. They have compacted genomes and, despite a high rate of sequence evolution, distantly related species can share high levels of gene order conservation. To date, only two species have been analysed in detail, and data from one of these largely consists of short genomic fragments. It is therefore difficult

Nicolas Corradi; Donna E. Akiyoshi; Hilary G. Morrison; Xiaochuan Feng; Louis M. Weiss; Saul Tzipori; Patrick J. Keeling

2007-01-01

173

Rapid Genome Change in Synthetic Polyploids of Brassica and Its Implications for Polyploid Evolution  

Microsoft Academic Search

Although the evolutionary success of polyploidy in higher plants has been widely recognized, there is virtually no information on how polyploid genomes have evolved after their formation. In this report, we used synthetic polyploids of Brassica as a model system to study genome evolution in the early generations after polyploidization. The initial polyploids we developed were completely homozygous, and thus,

Keming Song; Ping Lu; Keliang Tang; Thomas C. Osborn

1995-01-01

174

LETTER doi:10.1038/nature12323 Recalibrating Equus evolution using the genome  

E-print Network

LETTER doi:10.1038/nature12323 Recalibrating Equus evolution using the genome sequence of an early of a Late Pleistocene horse (43kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski's horse (E. f. prze- walskii) and a donkey (E. asinus). Our analyses suggest

Cai, Long

175

Evolution and Taxonomic Classification of Human Papillomavirus 16 (HPV16)-Related Variant Genomes  

E-print Network

Evolution and Taxonomic Classification of Human Papillomavirus 16 (HPV16)-Related Variant Genomes of Medicine, Bronx, New York, United States of America Abstract Background: Human papillomavirus 16 (HPV16 and Taxonomic Classification of Human Papillomavirus 16 (HPV16)-Related Variant Genomes: HPV31, HPV33, HPV35

DeSalle, Rob

176

Biology, genome organization, and evolution of parvoviruses in marine shrimp.  

PubMed

As shrimp aquaculture has evolved from a subsistent farming activity to an economically important global industry, viral diseases have also become a serious threat to the sustainable growth and productivity of this industry. Parvoviruses represent an economically important group of viruses that has greatly affected shrimp aquaculture. In the early 1980s, an outbreak of a shrimp parvovirus, infectious hypodermal and hematopoietic necrosis virus (IHHNV), led to the collapse of penaeid shrimp farming in the Americas. Since then, considerable progress has been made in characterizing the parvoviruses of shrimp and developing diagnostic methods aimed to preventing the spread of diseases caused by these viruses. To date, four parvoviruses are known that infect shrimp; these include IHHNV, hepatopancreatic parvovirus (HPV), spawner-isolated mortality virus (SMV), and lymphoid organ parvo-like virus. Due to the economic repercussions that IHHNV and HPV outbreaks have caused to shrimp farming over the years, studies have been focused mostly on these two pathogens, while information on SMV and LPV remains limited. IHHNV was the first shrimp virus to be sequenced and the first for which highly sensitive diagnostic methods were developed. IHHNV-resistant lines of shrimp were also developed to mitigate the losses caused by this virus. While the losses due to IHHNV have been largely contained in recent years, reports of HPV-induced mortalities in larval stages in hatchery and losses due to reduced growth have increased. This review presents a comprehensive account of the history and current knowledge on the biology, diagnostics methods, genomic features, mechanisms of evolution, and management strategies of shrimp parvoviruses. We also highlighted areas where research efforts should be focused in order to gain further insight on the mechanisms of parvoviral pathogenicity in shrimp that will help to prevent future losses caused by these viruses. PMID:24751195

Dhar, Arun K; Robles-Sikisaka, Refugio; Saksmerprome, Vanvimon; Lakshman, Dilip K

2014-01-01

177

Rapid Evolution of Enormous, Multichromosomal Genomes in Flowering Plant Mitochondria with Exceptionally High Mutation Rates  

PubMed Central

Genome size and complexity vary tremendously among eukaryotic species and their organelles. Comparisons across deeply divergent eukaryotic lineages have suggested that variation in mutation rates may explain this diversity, with increased mutational burdens favoring reduced genome size and complexity. The discovery that mitochondrial mutation rates can differ by orders of magnitude among closely related angiosperm species presents a unique opportunity to test this hypothesis. We sequenced the mitochondrial genomes from two species in the angiosperm genus Silene with recent and dramatic accelerations in their mitochondrial mutation rates. Contrary to theoretical predictions, these genomes have experienced a massive proliferation of noncoding content. At 6.7 and 11.3 Mb, they are by far the largest known mitochondrial genomes, larger than most bacterial genomes and even some nuclear genomes. In contrast, two slowly evolving Silene mitochondrial genomes are smaller than average for angiosperms. Consequently, this genus captures approximately 98% of known variation in organelle genome size. The expanded genomes reveal several architectural changes, including the evolution of complex multichromosomal structures (with 59 and 128 circular-mapping chromosomes, ranging in size from 44 to 192 kb). They also exhibit a substantial reduction in recombination and gene conversion activity as measured by the relative frequency of alternative genome conformations and the level of sequence divergence between repeat copies. The evolution of mutation rate, genome size, and chromosome structure can therefore be extremely rapid and interrelated in ways not predicted by current evolutionary theories. Our results raise the hypothesis that changes in recombinational processes, including gene conversion, may be a central force driving the evolution of both mutation rate and genome structure. PMID:22272183

Sloan, Daniel B.; Alverson, Andrew J.; Chuckalovcak, John P.; Wu, Martin; McCauley, David E.; Palmer, Jeffrey D.; Taylor, Douglas R.

2012-01-01

178

A recurring syndrome of accelerated plastid genome evolution in the angiosperm tribe Sileneae (Caryophyllaceae).  

PubMed

In flowering plants, plastid genomes are generally conserved, exhibiting slower rates of sequence evolution than the nucleus and little or no change in structural organization. However, accelerated plastid genome evolution has occurred in scattered angiosperm lineages. For example, some species within the genus Silene have experienced a suite of recent changes to their plastid genomes, including inversions, shifts in inverted repeat boundaries, large indels, intron losses, and rapid rates of amino acid sequence evolution in a subset of protein genes, with the most extreme divergence occurring in the protease gene clpP. To investigate the relationship between the rates of sequence and structural evolution, we sequenced complete plastid genomes from three species (Silene conoidea, S. paradoxa, and Lychnis chalcedonica), representing independent lineages within the tribe Sileneae that were previously shown to have accelerated rates of clpP evolution. We found a high degree of parallel evolution. Elevated rates of amino acid substitution have occurred repeatedly in the same subset of plastid genes and have been accompanied by a recurring pattern of structural change, including cases of identical inversions and intron loss. This "syndrome" of changes was not observed in the closely related outgroup Agrostemma githago or in the more slowly evolving Silene species that were sequenced previously. Although no single mechanism has yet been identified to explain the correlated suite of changes in plastid genome sequence and structure that has occurred repeatedly in angiosperm evolution, we discuss a possible mixture of adaptive and non-adaptive forces that may be responsible. PMID:24373909

Sloan, Daniel B; Triant, Deborah A; Forrester, Nicole J; Bergner, Laura M; Wu, Martin; Taylor, Douglas R

2014-03-01

179

The evolution of mitochondrial genome and proteome in animals.  

E-print Network

??Mitochondria, found in nearly all eukaryotes, are indispensable double membrane organelles that play pivotal roles in several cellular processes. While diversity of mitochondrial genomes among (more)

Wang, Xiujuan

2010-01-01

180

Drug resistant rhinoviruses from the nose of experimentally treated volunteers  

Microsoft Academic Search

Summary Viruses were isolated from nasal washings of volunteers receiving experimental therapy for rhinovirus type 9 infection with intranasal sprays of a new synthetic antiviral R61837. On a screening test nine subjects yielded drug sensitive virus and four resistant virus. In four others the virus was sensitive at first but became resistant later, while in one the reverse occurred. Evidence

C. Dearden; W. Al-Nakib; K. Andries; R. Woestenborghs; D. A. J. Tyrrell

1989-01-01

181

A defective type 1 response to rhinovirus in atopic asthma  

Microsoft Academic Search

Background: Rhinoviruses (RVs) are the most frequent precipitants of the common cold and asthma exacerbations, but little is known about the immune response to these viruses and its potential implications in the pathogenesis of asthma.Methods: Peripheral blood mononuclear cells (PBMC) from patients with atopic asthma and normal subjects were exposed to live or inactivated RV preparations. Levels of interferon (IFN)?

N G Papadopoulos; L A Stanciu; A Papi; S T Holgate; S L Johnston

2002-01-01

182

Rhinovirus-induced Interferon and Airway Responsiveness in Asthma  

Microsoft Academic Search

The majority of asthma exacerbations are caused by respiratory infections, with rhinovirus (RV) being the most common virus. Re- cent evidence has suggested that decreased generation of IFN- is associated with more severe colds and delayed elimination of virus. Whether the generation of IFN- also has any relationship to gen- eral features of asthma severity has yet to be determined.

G. Daniel Brooks; Kim A. Buchta; Cheri A. Swenson; James E. Gern; William W. Busse

2003-01-01

183

An Exercise in Molecular Epidemiology: Human Rhinovirus Prevalence and Genetics  

ERIC Educational Resources Information Center

Human rhinovirus (HRV) is one of the most common human respiratory pathogens and is responsible for the majority of upper respiratory illnesses. Recently, a phylogeny was constructed from all known American Type Culture Collection (ATCC) HRV sequences. From this study, three HRV classifications (HRVA, HRVB, and HRVC) were determined and techniques

Albright, Catherine J.; Hall, David J.

2011-01-01

184

Intranasal pirodavir (R77,975) treatment of rhinovirus colds.  

PubMed Central

A randomized, double-blind, placebo-controlled trial assessed the therapeutic efficacy of intranasal pirodavir in naturally occurring rhinovirus colds. Adults with symptoms of < or = 2 days' duration were randomly assigned to intranasal sprays of pirodavir (2 mg per treatment) or placebo six times daily for 5 days. In people with laboratory-documented rhinovirus colds (53 in the pirodavir group, 55 in the placebo group), no significant differences in the resolution of respiratory symptoms were apparent between the groups. The median duration of illness was 7 days in each group. Similarly, scores for individual symptoms found no differences in favor of pirodavir during or after treatment. In contrast, reduced frequencies of rhinovirus shedding were observed in the pirodavir group on day 3 (70 versus 23%; P < 0.001) and day 5 (38 versus 12%; P = 0.002) but not after the cessation of treatment, on day 7 (19 versus 21%). No pirodavir-resistant viruses were recovered from treated individuals. The pirodavir group had higher rates of nasal dryness, blood in mucus, or unpleasant taste on several study days. In summary, intranasal sprays of pirodavir were associated with significant antiviral effects but no clinical benefit in treating naturally occurring rhinovirus colds. PMID:7726484

Hayden, F G; Hipskind, G J; Woerner, D H; Eisen, G F; Janssens, M; Janssen, P A; Andries, K

1995-01-01

185

Whole genome comparisons of Fragaria, Prunus and Malus reveal different modes of evolution between Rosaceous subfamilies  

PubMed Central

Background Rosaceae include numerous economically important and morphologically diverse species. Comparative mapping between the member species in Rosaceae have indicated some level of synteny. Recently the whole genome of three crop species, peach, apple and strawberry, which belong to different genera of the Rosaceae family, have been sequenced, allowing in-depth comparison of these genomes. Results Our analysis using the whole genome sequences of peach, apple and strawberry identified 1399 orthologous regions between the three genomes, with a mean length of around 100 kb. Each peach chromosome showed major orthology mostly to one strawberry chromosome, but to more than two apple chromosomes, suggesting that the apple genome went through more chromosomal fissions in addition to the whole genome duplication after the divergence of the three genera. However, the distribution of contiguous ancestral regions, identified using the multiple genome rearrangements and ancestors (MGRA) algorithm, suggested that the Fragaria genome went through a greater number of small scale rearrangements compared to the other genomes since they diverged from a common ancestor. Using the contiguous ancestral regions, we reconstructed a hypothetical ancestral genome for the Rosaceae 7 composed of nine chromosomes and propose the evolutionary steps from the ancestral genome to the extant Fragaria, Prunus and Malus genomes. Conclusion Our analysis shows that different modes of evolution may have played major roles in different subfamilies of Rosaceae. The hypothetical ancestral genome of Rosaceae and the evolutionary steps that lead to three different lineages of Rosaceae will facilitate our understanding of plant genome evolution as well as have a practical impact on knowledge transfer among member species of Rosaceae. PMID:22475018

2012-01-01

186

986 nature structural biology structural genomics supplement november 2000 Evolution has produced families of pro-  

E-print Network

progress 986 nature structural biology · structural genomics supplement · november 2000 Evolution and fre- quently have detectably similar sequences. This conservation allows a structural description of all proteins in a family even when only the structure of a single mem- ber is known. Evolution also

Sali, Andrej

187

Protein Communication System: Evolution and Genomic Structure Nidhal Bouaynaya and Dan Schonfeld  

E-print Network

Communication Channel Evolution: Constant Point Mutation Rate The protein communication channel is uniquely. Evolution: Time-Varying Point Mutation Rate Genomic Structure: Deterministic Analysis Analogy to handle the same problems with which we are confronted in this so-called Information Age: problems

Bouaynaya, Nidhal

188

Insights from the Complete Chloroplast Genome into the Evolution of Sesamum indicum L  

PubMed Central

Sesame (Sesamum indicum L.) is one of the oldest oilseed crops. In order to investigate the evolutionary characters according to the Sesame Genome Project, apart from sequencing its nuclear genome, we sequenced the complete chloroplast genome of S. indicum cv. Yuzhi 11 (white seeded) using Illumina and 454 sequencing. Comparisons of chloroplast genomes between S. indicum and the 18 other higher plants were then analyzed. The chloroplast genome of cv. Yuzhi 11 contains 153,338 bp and a total of 114 unique genes (KC569603). The number of chloroplast genes in sesame is the same as that in Nicotiana tabacum, Vitis vinifera and Platanus occidentalis. The variation in the length of the large single-copy (LSC) regions and inverted repeats (IR) in sesame compared to 18 other higher plant species was the main contributor to size variation in the cp genome in these species. The 77 functional chloroplast genes, except for ycf1 and ycf2, were highly conserved. The deletion of the cp ycf1 gene sequence in cp genomes may be due either to its transfer to the nuclear genome, as has occurred in sesame, or direct deletion, as has occurred in Panax ginseng and Cucumis sativus. The sesame ycf2 gene is only 5,721 bp in length and has lost about 1,179 bp. Nucleotides 1585 of ycf2 when queried in BLAST had hits in the sesame draft genome. Five repeats (R10, R12, R13, R14 and R17) were unique to the sesame chloroplast genome. We also found that IR contraction/expansion in the cp genome alters its rate of evolution. Chloroplast genes and repeats display the signature of convergent evolution in sesame and other species. These findings provide a foundation for further investigation of cp genome evolution in Sesamum and other higher plants. PMID:24303020

Zhang, Haiyang; Li, Chun; Miao, Hongmei; Xiong, Songjin

2013-01-01

189

Patterns of Genome Evolution among the Microsporidian Parasites Encephalitozoon cuniculi, Antonospora locustae and Enterocytozoon bieneusi  

PubMed Central

Background Microsporidia are intracellular parasites that are highly-derived relatives of fungi. They have compacted genomes and, despite a high rate of sequence evolution, distantly related species can share high levels of gene order conservation. To date, only two species have been analysed in detail, and data from one of these largely consists of short genomic fragments. It is therefore difficult to determine howconservation has been maintained through microsporidian evolution, and impossible to identify whether certain regions are more prone to genomic stasis. Principal Findings Here, we analyse three large fragments of the Enterocytozoon bieneusi genome (in total 429 kbp), a species of medical significance. A total of 296 ORFs were identified, annotated andtheir context compared with Encephalitozoon cuniculi and Antonospora locustae. Overall, a highdegree of conservation was found between all three species, and interestingly the level of conservation was similar in all three pairwise comparisons, despite the fact that A. locustae is more distantly related to E. cuniculi and E. bieneusi than either are to each other. Conclusions/Significance Any two genes that are found together in any pair of genomes are more likely to be conserved in the third genome as well, suggesting that a core of genes tends to be conserved across the entire group. The mechanisms of rearrangments identified among microsporidian genomes were consistent with a very slow evolution of their architecture, as opposed to the very rapid sequence evolution reported for these parasites. PMID:18060071

Morrison, Hilary G.; Feng, Xiaochuan; Weiss, Louis M.; Tzipori, Saul; Keeling, Patrick J.

2007-01-01

190

Networks of lexical borrowing and lateral gene transfer in language and genome evolution  

PubMed Central

Like biological species, languages change over time. As noted by Darwin, there are many parallels between language evolution and biological evolution. Insights into these parallels have also undergone change in the past 150 years. Just like genes, words change over time, and language evolution can be likened to genome evolution accordingly, but what kind of evolution? There are fundamental differences between eukaryotic and prokaryotic evolution. In the former, natural variation entails the gradual accumulation of minor mutations in alleles. In the latter, lateral gene transfer is an integral mechanism of natural variation. The study of language evolution using biological methods has attracted much interest of late, most approaches focusing on language tree construction. These approaches may underestimate the important role that borrowing plays in language evolution. Network approaches that were originally designed to study lateral gene transfer may provide more realistic insights into the complexities of language evolution. PMID:24375688

List, Johann-Mattis; Nelson-Sathi, Shijulal; Geisler, Hans; Martin, William

2014-01-01

191

Interactions among genomic structure, function, and evolution revealed by comprehensive analysis of the Arabidopsis thaliana genome  

Microsoft Academic Search

The genome in a higher organism consists of a number of types of nucleotide sequence-specialized components, with each having tens of thousands of members or elements. It is crucial for our understanding of how a genome as an entity is organized, functions, and evolves to determine how these components are organized in the genome and how they relate with each

Chengcang Wu; Suojin Wang; Hong-Bin Zhang

2006-01-01

192

Classification: Biological Sciences, Evolution Widespread genomic divergence during sympatric  

E-print Network

, IN 46556-0369, U.S.A. Tel: (574)- 631-4159, Fax: (574)-631-4159; e-mail: feder.2@nd.edu Key Words: Apple maggot fly, Rhagoletis pomonella, host races, genomic continents of speciation, genomic islands

Pfrender, Michael

193

Evolution of pathogenicity and sexual reproduction in eight Candida genomes  

Microsoft Academic Search

Candida species are the most common cause of opportunistic fungal infection worldwide. Here we report the genome sequences of six Candida species and compare these and related pathogens and non-pathogens. There are significant expansions of cell wall, secreted and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly

Geraldine Butler; Matthew D. Rasmussen; Michael F. Lin; Manuel A. S. Santos; Sharadha Sakthikumar; Carol A. Munro; Esther Rheinbay; Manfred Grabherr; Anja Forche; Jennifer L. Reedy; Ino Agrafioti; Martha B. Arnaud; Steven Bates; Alistair J. P. Brown; Sascha Brunke; Maria C. Costanzo; David A. Fitzpatrick; Piet W. J. de Groot; David Harris; Lois L. Hoyer; Bernhard Hube; Frans M. Klis; Chinnappa Kodira; Nicola Lennard; Mary E. Logue; Ronny Martin; Aaron M. Neiman; Elissavet Nikolaou; Michael A. Quail; Janet Quinn; Maria C. Santos; Florian F. Schmitzberger; Gavin Sherlock; Prachi Shah; Kevin A. T. Silverstein; Marek S. Skrzypek; David Soll; Rodney Staggs; Ian Stansfield; Michael P. H. Stumpf; Peter E. Sudbery; Thyagarajan Srikantha; Qiandong Zeng; Judith Berman; Matthew Berriman; Joseph Heitman; Neil A. R. Gow; Michael C. Lorenz; Bruce W. Birren; Manolis Kellis; Christina A. Cuomo

2009-01-01

194

Genome analysis of the platypus reveals unique signatures of evolution  

Microsoft Academic Search

We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these

Wesley C. Warren; Ladeana W. Hillier; Jennifer A. Marshall Graves; Ewan Birney; Chris P. Ponting; Frank Grtzner; Katherine Belov; Webb Miller; Laura Clarke; Asif T. Chinwalla; Shiaw-Pyng Yang; Andreas Heger; Devin P. Locke; Pat Miethke; Paul D. Waters; Frdric Veyrunes; Lucinda Fulton; Bob Fulton; Tina Graves; John Wallis; Xose S. Puente; Carlos Lpez-Otn; Gonzalo R. Ordez; Evan E. Eichler; Lin Chen; Ze Cheng; Janine E. Deakin; Amber Alsop; Katherine Thompson; Patrick Kirby; Anthony T. Papenfuss; Matthew J. Wakefield; Tsviya Olender; Doron Lancet; Gavin A. Huttley; Arian F. A. Smit; Andrew Pask; Peter Temple-Smith; Mark A. Batzer; Jerilyn A. Walker; Miriam K. Konkel; Robert S. Harris; Camilla M. Whittington; Emily S. W. Wong; Neil J. Gemmell; Emmanuel Buschiazzo; Iris M. Vargas Jentzsch; Angelika Merkel; Juergen Schmitz; Anja Zemann; Gennady Churakov; Jan Ole Kriegs; Juergen Brosius; Elizabeth P. Murchison; Ravi Sachidanandam; Carly Smith; Gregory J. Hannon; Enkhjargal Tsend-Ayush; Daniel McMillan; Rosalind Attenborough; Willem Rens; Malcolm Ferguson-Smith; Christophe M. Lefvre; Julie A. Sharp; Kevin R. Nicholas; David A. Ray; Michael Kube; Richard Reinhardt; Thomas H. Pringle; James Taylor; Russell C. Jones; Brett Nixon; Jean-Louis Dacheux; Hitoshi Niwa; Yoko Sekita; Xiaoqiu Huang; Alexander Stark; Pouya Kheradpour; Manolis Kellis; Paul Flicek; Yuan Chen; Caleb Webber; Ross Hardison; Joanne Nelson; Kym Hallsworth-Pepin; Kim Delehaunty; Chris Markovic; Pat Minx; Yucheng Feng; Colin Kremitzki; Makedonka Mitreva; Jarret Glasscock; Todd Wylie; Patricia Wohldmann; Prathapan Thiru; Michael N. Nhan; Craig S. Pohl; Scott M. Smith; Shunfeng Hou; Marilyn B. Renfree; Elaine R. Mardis; Richard K. Wilson

2008-01-01

195

Capsid Protein VP4 of Human Rhinovirus Induces Membrane Permeability by the Formation of a Size-Selective Multimeric Pore  

PubMed Central

Non-enveloped viruses must deliver their viral genome across a cell membrane without the advantage of membrane fusion. The mechanisms used to achieve this remain poorly understood. Human rhinovirus, a frequent cause of the common cold, is a non-enveloped virus of the picornavirus family, which includes other significant pathogens such as poliovirus and foot-and-mouth disease virus. During picornavirus cell entry, the small myristoylated capsid protein VP4 is released from the virus, interacts with the cell membrane and is implicated in the delivery of the viral RNA genome into the cytoplasm to initiate replication. In this study, we have produced recombinant C-terminal histidine-tagged human rhinovirus VP4 and shown it can induce membrane permeability in liposome model membranes. Dextran size-exclusion studies, chemical crosslinking and electron microscopy demonstrated that VP4 forms a multimeric membrane pore, with a channel size consistent with transfer of the single-stranded RNA genome. The membrane permeability induced by recombinant VP4 was influenced by pH and was comparable to permeability induced by infectious virions. These findings present a molecular mechanism for the involvement of VP4 in cell entry and provide a model system which will facilitate exploration of VP4 as a novel antiviral target for the picornavirus family. PMID:25102288

Panjwani, Anusha; Strauss, Mike; Gold, Sarah; Wenham, Hannah; Jackson, Terry; Chou, James J.; Rowlands, David J.; Stonehouse, Nicola J.; Hogle, James M.; Tuthill, Tobias J.

2014-01-01

196

The Sex Chromosomes of Frogs: Variability and Tolerance Offer Clues to Genome Evolution and Function  

PubMed Central

Frog sex chromosomes offer an ideal system for advancing our understanding of genome evolution and function because of the variety of sex determination systems in the group, the diversity of sex chromosome maturation states, the ease of experimental manipulation during early development. After briefly reviewing sex chromosome biology generally, we focus on what is known about frog sex determination, sex chromosome evolution, and recent, genomics-facilitated advances in the field. In closing we highlight gaps in our current knowledge of frog sex chromosomes, and suggest priorities for future research that can advance broad knowledge of gene dose and sex chromosome evolution. PMID:25031658

Malcom, Jacob W.; Kudra, Randal S.; Malone, John H.

2014-01-01

197

Volff J-N (ed): Gene and Protein Evolution. Genome Dyn. Basel, Karger, 2007, vol 3, pp 147162  

E-print Network

genomic entities, TEs are now rec- ognized to occupy a continuum of relationships, ranging from parasitic to mutualistic, with their host genomes. One of the many ways that TEs contribute to the function and evolution

Jordan, King

198

Project 1: Microbial Genomes: A Genomic Approach to Understanding the Evolution of Virulence. Project 2: From Genomes to Life: Drosophilia Development in Space and Time  

SciTech Connect

This project seeks to use the genomes of two close relatives, A. actinomycetemcomitans and H. aphrophilus, to understand the evolutionary changes that take place in a genome to make it more or less virulent. Our primary specific aim of this project was to sequence, annotate, and analyze the genomes of Actinobacillus actinomycetemcomitans (CU1000, serotype f) and Haemophilus aphrophilus. With these genome sequences we have then compared the whole genome sequences to each other and to the current Aa (HK1651 www.genome.ou.edu) genome project sequence along with other fully sequenced Pasteurellaceae to determine inter and intra species differences that may account for the differences and similarities in disease. We also propose to create and curate a comprehensive database where sequence information and analysis for the Pasteurellaceae (family that includes the genera Actinobacillus and Haemophilus) are readily accessible. And finally we have proposed to develop phylogenetic techniques that can be used to efficiently and accurately examine the evolution of genomes. Below we report on progress we have made on these major specific aims. Progress on the specific aims is reported below under two major headings--experimental approaches and bioinformatics and systematic biology approaches.

Robert DeSalle

2004-09-10

199

The common marmoset genome provides insight into primate biology and evolution.  

PubMed

We report the whole-genome sequence of the common marmoset (Callithrix jacchus). The 2.26-Gb genome of a female marmoset was assembled using Sanger read data (6) and a whole-genome shotgun strategy. A first analysis has permitted comparison with the genomes of apes and Old World monkeys and the identification of specific features that might contribute to the unique biology of this diminutive primate, including genetic changes that may influence body size, frequent twinning and chimerism. We observed positive selection in growth hormone/insulin-like growth factor genes (growth pathways), respiratory complex I genes (metabolic pathways), and genes encoding immunobiological factors and proteases (reproductive and immunity pathways). In addition, both protein-coding and microRNA genes related to reproduction exhibited evidence of rapid sequence evolution. This genome sequence for a New World monkey enables increased power for comparative analyses among available primate genomes and facilitates biomedical research application. PMID:25038751

2014-08-01

200

Small regulatory RNAs in mammals : genomics, function and evolution  

E-print Network

This thesis explores two aspects of small regulatory RNAs in mammals: (1) the genomic origin of mammalian piwi-interacting RNAs (piRNAs), (2) the evolutionary and functional implication of the seed-based target recognition ...

Kim, Jin-Kuk

2011-01-01

201

The evolution of isochore patterns in vertebrate genomes  

Microsoft Academic Search

BACKGROUND: Previous work from our laboratory showed that (i) vertebrate genomes are mosaics of isochores, typically megabase-size DNA segments that are fairly homogeneous in base composition; (ii) isochores belong to a small number of families (five in the human genome) characterized by different GC levels; (iii) isochore family patterns are different in fishes\\/amphibians and mammals\\/birds, the latter showing GC-rich isochore

Maria Costantini; Rosalia Cammarano; Giorgio Bernardi

2009-01-01

202

Spatio-temporal patterns of genome evolution in allotetraploid species of the genus Oryza.  

PubMed

Despite knowledge that polyploidy is widespread and a major evolutionary force in flowering plant diversification, detailed comparative molecular studies on polyploidy have been confined to only a few species and families. The genus Oryza is composed of 23 species that are classified into ten distinct 'genome types' (six diploid and four polyploid), and is emerging as a powerful new model system to study polyploidy. Here we report the identification, sequence and comprehensive comparative annotation of eight homoeologous genomes from a single orthologous region (Adh1-Adh2) from four allopolyploid species representing each of the known Oryza genome types (BC, CD, HJ and KL). Detailed comparative phylogenomic analyses of these regions within and across species and ploidy levels provided several insights into the spatio-temporal dynamics of genome organization and evolution of this region in 'natural' polyploids of Oryza. The major findings of this study are that: (i) homoeologous genomic regions within the same nucleus experience both independent and parallel evolution, (ii) differential lineage-specific selection pressures do not occur between polyploids and their diploid progenitors, (iii) there have been no dramatic structural changes relative to the diploid ancestors, (iv) a variation in the molecular evolutionary rate exists between the two genomes in the BC complex species even though the BC and CD polyploid species appear to have arisen <2?million years ago, and (v) there are no clear distinctions in the patterns of genome evolution in the diploid versus polyploid species. PMID:20487382

Ammiraju, Jetty S S; Fan, Chuanzhu; Yu, Yeisoo; Song, Xiang; Cranston, Karen A; Pontaroli, Ana Clara; Lu, Fei; Sanyal, Abhijit; Jiang, Ning; Rambo, Teri; Currie, Jennifer; Collura, Kristi; Talag, Jayson; Bennetzen, Jeffrey L; Chen, Mingsheng; Jackson, Scott; Wing, Rod A

2010-08-01

203

This Dj Vu Feeling--Analysis of Multidomain Protein Evolution in Eukaryotic Genomes  

PubMed Central

Evolutionary innovation in eukaryotes and especially animals is at least partially driven by genome rearrangements and the resulting emergence of proteins with new domain combinations, and thus potentially novel functionality. Given the random nature of such rearrangements, one could expect that proteins with particularly useful multidomain combinations may have been rediscovered multiple times by parallel evolution. However, existing reports suggest a minimal role of this phenomenon in the overall evolution of eukaryotic proteomes. We assembled a collection of 172 complete eukaryotic genomes that is not only the largest, but also the most phylogenetically complete set of genomes analyzed so far. By employing a maximum parsimony approach to compare repertoires of Pfam domains and their combinations, we show that independent evolution of domain combinations is significantly more prevalent than previously thought. Our results indicate that about 25% of all currently observed domain combinations have evolved multiple times. Interestingly, this percentage is even higher for sets of domain combinations in individual species, with, for instance, 70% of the domain combinations found in the human genome having evolved independently at least once in other species. We also show that previous, much lower estimates of this rate are most likely due to the small number and biased phylogenetic distribution of the genomes analyzed. The process of independent emergence of identical domain combination is widespread, not limited to domains with specific functional categories. Besides data from large-scale analyses, we also present individual examples of independent domain combination evolution. The surprisingly large contribution of parallel evolution to the development of the domain combination repertoire in extant genomes has profound consequences for our understanding of the evolution of pathways and cellular processes in eukaryotes and for comparative functional genomics. PMID:23166479

Zmasek, Christian M.; Godzik, Adam

2012-01-01

204

This Dj vu feeling--analysis of multidomain protein evolution in eukaryotic genomes.  

PubMed

Evolutionary innovation in eukaryotes and especially animals is at least partially driven by genome rearrangements and the resulting emergence of proteins with new domain combinations, and thus potentially novel functionality. Given the random nature of such rearrangements, one could expect that proteins with particularly useful multidomain combinations may have been rediscovered multiple times by parallel evolution. However, existing reports suggest a minimal role of this phenomenon in the overall evolution of eukaryotic proteomes. We assembled a collection of 172 complete eukaryotic genomes that is not only the largest, but also the most phylogenetically complete set of genomes analyzed so far. By employing a maximum parsimony approach to compare repertoires of Pfam domains and their combinations, we show that independent evolution of domain combinations is significantly more prevalent than previously thought. Our results indicate that about 25% of all currently observed domain combinations have evolved multiple times. Interestingly, this percentage is even higher for sets of domain combinations in individual species, with, for instance, 70% of the domain combinations found in the human genome having evolved independently at least once in other species. We also show that previous, much lower estimates of this rate are most likely due to the small number and biased phylogenetic distribution of the genomes analyzed. The process of independent emergence of identical domain combination is widespread, not limited to domains with specific functional categories. Besides data from large-scale analyses, we also present individual examples of independent domain combination evolution. The surprisingly large contribution of parallel evolution to the development of the domain combination repertoire in extant genomes has profound consequences for our understanding of the evolution of pathways and cellular processes in eukaryotes and for comparative functional genomics. PMID:23166479

Zmasek, Christian M; Godzik, Adam

2012-01-01

205

Eggs, embryos and the evolution of imprinting: insights from the platypus genome.  

PubMed

Genomic imprinting is widespread in eutherian and marsupial mammals. Although there have been many hypotheses to explain why genomic imprinting evolved in mammals, few have examined how it arose. The host defence hypothesis suggests that imprinting evolved from existing mechanisms within the cell that act to silence foreign DNA elements that insert into the genome. However, the changes to the mammalian genome that accompanied the evolution of imprinting have been hard to define due to the absence of large-scale genomic resources from all extant classes. The recent release of the platypus genome sequence has provided the first opportunity to make comparisons between prototherian (monotreme, which show no signs of imprinting) and therian (marsupial and eutherian, which have imprinting) mammals. We compared the distribution of repeat elements known to attract epigenetic silencing across the genome from monotremes and therian mammals, particularly focusing on the orthologous imprinted regions. Our analyses show that the platypus has significantly fewer repeats of certain classes in the regions of the genome that have become imprinted in therian mammals. The accumulation of repeats, especially long-terminal repeats and DNA elements, in therian imprinted genes and gene clusters therefore appears to be coincident with, and may have been a potential driving force in, the development of mammalian genomic imprinting. Comparative platypus genome analyses of orthologous imprinted regions have provided strong support for the host defence hypothesis to explain the origin of imprinting. PMID:19874717

Renfree, Marilyn B; Papenfuss, Anthony T; Shaw, Geoff; Pask, Andrew J

2009-01-01

206

Evolution and Diversity in Human Herpes Simplex Virus Genomes  

PubMed Central

Herpes simplex virus 1 (HSV-1) causes a chronic, lifelong infection in >60% of adults. Multiple recent vaccine trials have failed, with viral diversity likely contributing to these failures. To understand HSV-1 diversity better, we comprehensively compared 20 newly sequenced viral genomes from China, Japan, Kenya, and South Korea with six previously sequenced genomes from the United States, Europe, and Japan. In this diverse collection of passaged strains, we found that one-fifth of the newly sequenced members share a gene deletion and one-third exhibit homopolymeric frameshift mutations (HFMs). Individual strains exhibit genotypic and potential phenotypic variation via HFMs, deletions, short sequence repeats, and single-nucleotide polymorphisms, although the protein sequence identity between strains exceeds 90% on average. In the first genome-scale analysis of positive selection in HSV-1, we found signs of selection in specific proteins and residues, including the fusion protein glycoprotein H. We also confirmed previous results suggesting that recombination has occurred with high frequency throughout the HSV-1 genome. Despite this, the HSV-1 strains analyzed clustered by geographic origin during whole-genome distance analysis. These data shed light on likely routes of HSV-1 adaptation to changing environments and will aid in the selection of vaccine antigens that are invariant worldwide. PMID:24227835

Gatherer, Derek; Ochoa, Alejandro; Greenbaum, Benjamin; Dolan, Aidan; Bowden, Rory J.; Enquist, Lynn W.; Legendre, Matthieu; Davison, Andrew J.

2014-01-01

207

Identification of host miRNAs that may limit human rhinovirus replication  

PubMed Central

AIM: To test whether the replication of human rhinovirus (HRV) is regulated by microRNAs in human bronchial epithelial cells. METHODS: For the present study, the human cell line BEAS-2B (derived from normal human bronchial epithelial cells) was adopted. DICER knock-down, by siRNA transfection in BEAS-2B cells, was performed in order to inhibit microRNA maturation globally. Alternatively, antisense oligonucleotides (anti-miRs) were transfected to inhibit the activity of specific microRNAs. Cells were infected with HRV-1B. Viral replication was assessed by measuring the genomic viral RNA by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Association between microRNA-induced-silencing-complex and viral RNA was detected by Ago2 co-immunoprecipitation followed by RT-qPCR. Targetscan v.6 was used to predict microRNA target sites on several HRV strains. RESULTS: Here, we show that microRNAs affect replication of HRV-1B. DICER knock-down significantly reduced the expression of mature microRNAs in a bronchial epithelial cell line (BEAS-2B) and in turn, increased the synthesis of HRV-1B RNA. Additionally, HRV-1B RNA co-immunoprecipitated with argonaute 2 protein, an important effector for microRNA activity suggesting that microRNAs bind to viral RNA during infection. In order to identify specific microRNAs involved in this interaction, we employed bioinformatics analysis, and selected a group of microRNAs that have been reported to be under-expressed in asthmatic bronchial epithelial cells and were predicted to target different strains of rhinoviruses (HRV-1B, -16, -14, -27). Our results suggest that, out of this group of microRNAs, miR-128 and miR-155 contribute to the innate defense against HRV-1B: transfection of specific anti-miRs increased viral replication, as anticipated in-silico. CONCLUSION: Taken together, our results suggest that pathological changes in microRNA expression, as already reported for asthma or chronic obstructive pulmonary disease have the potential to affect Rhinovirus replication and therefore may play a role in virus-induced exacerbations.

Bondanese, Victor Paky; Francisco-Garcia, Ana; Bedke, Nicole; Davies, Donna E; Sanchez-Elsner, Tilman

2014-01-01

208

Evolution of closely linked gene pairs in vertebrate genomes.  

PubMed

The orientation of closely linked genes in mammalian genomes is not random: there are more head-to-head (h2h) gene pairs than expected. To understand the origin of this enrichment in h2h gene pairs, we have analyzed the phylogenetic distribution of gene pairs separated by less than 600 bp of intergenic DNA (gene duos). We show here that a lack of head-to-tail (h2t) gene duos is an even more distinctive characteristic of mammalian genomes, with the platypus genome as the only exception. In nonmammalian vertebrate and in nonvertebrate genomes, the frequency of h2h, h2t, and tail-to-tail (t2t) gene duos is close to random. In tetrapod genomes, the h2t and t2t gene duos are more likely to be part of a larger gene cluster of closely spaced genes than h2h gene duos; in fish and urochordate genomes, the reverse is seen. In human and mouse tissues, the expression profiles of gene duos were skewed toward positive coexpression, irrespective of orientation. The organization of orthologs of both members of about 40% of the human gene duos could be traced in other species, enabling a prediction of the organization at the branch points of gnathostomes, tetrapods, amniotes, and euarchontoglires. The accumulation of h2h gene duos started in tetrapods, whereas that of h2t and t2t gene duos only started in amniotes. The apparent lack of evolutionary conservation of h2t and t2t gene duos relative to that of h2h gene duos is thus a result of their relatively late origin in the lineage leading to mammals; we show that once they are formed h2t and t2t gene duos are as stable as h2h gene duos. PMID:18566020

Franck, Erik; Hulsen, Tim; Huynen, Martijn A; de Jong, Wilfried W; Lubsen, Nicolette H; Madsen, Ole

2008-09-01

209

Middle ear abnormalities during natural rhinovirus colds in adults.  

PubMed

To determine middle ear pressure (MEP) changes during natural rhinovirus colds, adults with illness for < or = 3 days were tested by digital tympanometer daily for 5 days (study 1) or every other day for 7 days (study 2). Abnormal MEPs (< -50 or > +20 mm H2O) were found in 72% of 36 patients in study 1 (P < .001, vs. baseline of 11%) and 76% of 55 patients in study 2 (P < .001, vs. 15% of 103 healthy controls). Major abnormalities (> or = +100 or < or = -100 mm H2O) were found in 61% of patients in study 1 (P < .001, vs. baseline of 0) and 47% in study 2 (P < .001, vs. control of 5%). MEP abnormalities usually resolved by day 14. Only 1 subject developed clinically apparent otitis media. Earache or respiratory symptom scores did not correlate with MEP abnormalities. These results indicate that natural rhinovirus colds in adults are frequently associated with marked but transient MEP abnormalities. PMID:8354902

Elkhatieb, A; Hipskind, G; Woerner, D; Hayden, F G

1993-09-01

210

Intrachromosomal rearrangements in avian genome evolution: evidence for regions prone to breakpoints  

PubMed Central

It is generally believed that the organization of avian genomes remains highly conserved in evolution as chromosome number is constant and comparative chromosome painting demonstrated there to be very few interchromosomal rearrangements. The recent sequencing of the zebra finch (Taeniopygia guttata) genome allowed an assessment of the number of intrachromosomal rearrangements between it and the chicken (Gallus gallus) genome, revealing a surprisingly high number of intrachromosomal rearrangements. With the publication of the turkey (Meleagris gallopavo) genome it has become possible to describe intrachromosomal rearrangements between these three important avian species, gain insight into the direction of evolutionary change and assess whether breakpoint regions are reused in birds. To this end, we aligned entire chromosomes between chicken, turkey and zebra finch, identifying syntenic blocks of at least 250?kb. Potential optimal pathways of rearrangements between each of the three genomes were determined, as was a potential Galliform ancestral organization. From this, our data suggest that around one-third of chromosomal breakpoint regions may recur during avian evolution, with 10% of breakpoints apparently recurring in different lineages. This agrees with our previous hypothesis that mechanisms of genome evolution are driven by hotspots of non-allelic homologous recombination. PMID:22045382

Skinner, B M; Griffin, D K

2012-01-01

211

Intrachromosomal rearrangements in avian genome evolution: evidence for regions prone to breakpoints.  

PubMed

It is generally believed that the organization of avian genomes remains highly conserved in evolution as chromosome number is constant and comparative chromosome painting demonstrated there to be very few interchromosomal rearrangements. The recent sequencing of the zebra finch (Taeniopygia guttata) genome allowed an assessment of the number of intrachromosomal rearrangements between it and the chicken (Gallus gallus) genome, revealing a surprisingly high number of intrachromosomal rearrangements. With the publication of the turkey (Meleagris gallopavo) genome it has become possible to describe intrachromosomal rearrangements between these three important avian species, gain insight into the direction of evolutionary change and assess whether breakpoint regions are reused in birds. To this end, we aligned entire chromosomes between chicken, turkey and zebra finch, identifying syntenic blocks of at least 250?kb. Potential optimal pathways of rearrangements between each of the three genomes were determined, as was a potential Galliform ancestral organization. From this, our data suggest that around one-third of chromosomal breakpoint regions may recur during avian evolution, with 10% of breakpoints apparently recurring in different lineages. This agrees with our previous hypothesis that mechanisms of genome evolution are driven by hotspots of non-allelic homologous recombination. PMID:22045382

Skinner, B M; Griffin, D K

2012-01-01

212

Simulation of Genome-Wide Evolution under Heterogeneous Substitution Models and Complex Multispecies Coalescent Histories  

PubMed Central

Genomic evolution can be highly heterogeneous. Here, we introduce a new framework to simulate genome-wide sequence evolution under a variety of substitution models that may change along the genome and the phylogeny, following complex multispecies coalescent histories that can include recombination, demographics, longitudinal sampling, population subdivision/species history, and migration. A key aspect of our simulation strategy is that the heterogeneity of the whole evolutionary process can be parameterized according to statistical prior distributions specified by the user. We used this framework to carry out a study of the impact of variable codon frequencies across genomic regions on the estimation of the genome-wide nonsynonymous/synonymous ratio. We found that both variable codon frequencies across genes and rate variation among sites and regions can lead to severe underestimation of the global dN/dS values. The program SGWESimulation of Genome-Wide Evolutionis freely available from http://code.google.com/p/sgwe-project/, including extensive documentation and detailed examples. PMID:24557445

Arenas, Miguel; Posada, David

2014-01-01

213

Replicon-Dependent Bacterial Genome Evolution: The Case of Sinorhizobium meliloti  

PubMed Central

Many bacterial species, such as the alphaproteobacterium Sinorhizobium meliloti, are characterized by open pangenomes and contain multipartite genomes consisting of a chromosome and other large-sized replicons, such as chromids, megaplasmids, and plasmids. The evolutionary forces in both functional and structural aspects that shape the pangenome of species with multipartite genomes are still poorly understood. Therefore, we sequenced the genomes of 10 new S. meliloti strains, analyzed with four publicly available additional genomic sequences. Results indicated that the three main replicons present in these strains (a chromosome, a chromid, and a megaplasmid) partly show replicon-specific behaviors related to strain differentiation. In particular, the pSymB chromid was shown to be a hot spot for positively selected genes, and, unexpectedly, genes resident in the pSymB chromid were also found to be more widespread in distant taxa than those located in the other replicons. Moreover, through the exploitation of a DNA proximity network, a series of conserved DNA backbones were found to shape the evolution of the genome structure, with the rest of the genome experiencing rearrangements. The presented data allow depicting a scenario where the pSymB chromid has a distinctive role in intraspecies differentiation and in evolution through positive selection, whereas the pSymA megaplasmid mostly contributes to structural fluidity and to the emergence of new functions, indicating a specific evolutionary role for each replicon in the pangenome evolution. PMID:23431003

Galardini, Marco; Pini, Francesco; Bazzicalupo, Marco; Biondi, Emanuele G.; Mengoni, Alessio

2013-01-01

214

Elephant shark genome provides unique insights into gnathostome evolution.  

PubMed

The emergence of jawed vertebrates (gnathostomes) from jawless vertebrates was accompanied by major morphological and physiological innovations, such as hinged jaws, paired fins and immunoglobulin-based adaptive immunity. Gnathostomes subsequently diverged into two groups, the cartilaginous fishes and the bony vertebrates. Here we report the whole-genome analysis of a cartilaginous fish, the elephant shark (Callorhinchus milii). We find that the C.?milii genome is the slowest evolving of all known vertebrates, including the 'living fossil' coelacanth, and features extensive synteny conservation with tetrapod genomes, making it a good model for comparative analyses of gnathostome genomes. Our functional studies suggest that the lack of genes encoding secreted calcium-binding phosphoproteins in cartilaginous fishes explains the absence of bone in their endoskeleton. Furthermore, the adaptive immune system of cartilaginous fishes is unusual: it lacks the canonical CD4 co-receptor and most transcription factors, cytokines and cytokine receptors related to the CD4 lineage, despite the presence of polymorphic major histocompatibility complex class?II molecules. It thus presents a new model for understanding the origin of adaptive immunity. PMID:24402279

Venkatesh, Byrappa; Lee, Alison P; Ravi, Vydianathan; Maurya, Ashish K; Lian, Michelle M; Swann, Jeremy B; Ohta, Yuko; Flajnik, Martin F; Sutoh, Yoichi; Kasahara, Masanori; Hoon, Shawn; Gangu, Vamshidhar; Roy, Scott W; Irimia, Manuel; Korzh, Vladimir; Kondrychyn, Igor; Lim, Zhi Wei; Tay, Boon-Hui; Tohari, Sumanty; Kong, Kiat Whye; Ho, Shufen; Lorente-Galdos, Belen; Quilez, Javier; Marques-Bonet, Tomas; Raney, Brian J; Ingham, Philip W; Tay, Alice; Hillier, LaDeana W; Minx, Patrick; Boehm, Thomas; Wilson, Richard K; Brenner, Sydney; Warren, Wesley C

2014-01-01

215

Elephant shark genome provides unique insights into gnathostome evolution  

PubMed Central

The emergence of jawed vertebrates (gnathostomes) from jawless vertebrates was accompanied by major morphological and physiological innovations, such as hinged jaws, paired fins and immunoglobulin-based adaptive immunity. Gnathostomes subsequently diverged into two groups, the cartilaginous fishes and the bony vertebrates. Here we report the whole-genome analysis of a cartilaginous fish, the elephant shark (Callorhinchus milii). We find that the C. milii genome is the slowest evolving of all known vertebrates, including the living fossil coelacanth, and features extensive synteny conservation with tetrapod genomes, making it a good model for comparative analyses of gnathostome genomes. Our functional studies suggest that the lack of genes encoding secreted calcium-binding phosphoproteins in cartilaginous fishes explains the absence of bone in their endoskeleton. Furthermore, the adaptive immune system of cartilaginous fishes is unusual: it lacks the canonical CD4 co-receptor and most transcription factors, cytokines and cytokine receptors related to the CD4 lineage, despite the presence of polymorphic major histocompatibility complex class II molecules. It thus presents a new model for understanding the origin of adaptive immunity. PMID:24402279

Venkatesh, Byrappa; Lee, Alison P.; Ravi, Vydianathan; Maurya, Ashish K.; Lian, Michelle M.; Swann, Jeremy B.; Ohta, Yuko; Flajnik, Martin F.; Sutoh, Yoichi; Kasahara, Masanori; Hoon, Shawn; Gangu, Vamshidhar; Roy, Scott W.; Irimia, Manuel; Korzh, Vladimir; Kondrychyn, Igor; Lim, Zhi Wei; Tay, Boon-Hui; Tohari, Sumanty; Kong, Kiat Whye; Ho, Shufen; Lorente-Galdos, Belen; Quilez, Javier; Marques-Bonet, Tomas; Raney, Brian J.; Ingham, Philip W.; Tay, Alice; Hillier, LaDeana W.; Minx, Patrick; Boehm, Thomas; Wilson, Richard K.; Brenner, Sydney; Warren, Wesley C.

2014-01-01

216

Diversity and Evolution of Plastids and Their Genomes  

E-print Network

of current views on the evolutionary relationships among the eukaryotic hosts in which they reside. Green of photosynthesis in eukaryotes and, consequently, improve our understanding of the genomic and biochemical, and the ecological and physiological con- ditions that facilitated such an event is not known, but it is commonly

Archibald, John

217

The Global Genome Question: Microbes as the Key to Understanding Evolution and Ecology  

SciTech Connect

A colloquium was convened in Longboat Key, Florida, in October 2002, by the American Academy of Microbiology to discuss the role of genomic techniques in microbiology research. Research professionals from both academia and industry met to discuss the current state of knowledge in microbial genomics. Unanswered questions that should drive future studies, technical challenges for applying genomics in microbial systems, and infrastructure and educational needs were discussed. Particular attention was focused on the great potential of genomic approaches to advance our understanding of microbial communities and ecosystems. Recommendations for activities that might promote and accelerate microbial genome science were identified and discussed. Microbiology has always advanced in tandem with new technologies. Beginning with the first observations of microscopic organisms with early microscopes in the 17th century, the tools and methods for studying microbes have continually evolved. Slowly at first, and now with startling speed, scientists have developed increasingly complex and informative tools for analyzing the functions, interactions, and diversity of microorganisms. Today, genomic technologies are revolutionizing microbiology. Genomics employs all or part of the genome to answer questions about an organism and represents a generic tool that can be used to dissect any or all living cells. In this report, the term ''genomics'' includes structural genomic methods that focus on the determination of genomic sequence and higher order structural features, as well as functional genomic methods, which focus on the activities and products encoded by the genome. To date, microbial genomics has largely been applied to individual, isolated microbial strains, with the results extrapolated to the wider world of microbial diversity. We are now presented with an opportune moment to move beyond studies of single isolates and to apply genome sciences directly to the study of microbial communities. It is now possible to adapt genomic tools and approaches to more realistic models of genome evolution and ecology involving natural microbial communities. Microbial communities are formed by organized groups of microbial species, each having different, often complementary functions or activities. In aggregate, the microbial community has emergent properties greater than the sum of its individual members. Outside the laboratory, virtually all microorganisms exist in complex assemblages, in which they exchange genetic material, nutrients, and biochemical signals with one another. While analysis of individual strains has been a highly profitable enterprise, greater strides can now be made by focusing attention on microbial communities. These are the entities that encompass the bulk of microbial interactions, evolutionary processes, and biogeochemical activities, with resulting immense impacts on human health and the entire planetary biosphere. The natural microbial world can be viewed as a landscape of genes and genome ecology, in which organisms exchange genetic information and co-evolve with one another, shaping themselves and the biosphere over time.

Merry R. Buckley

2004-04-04

218

Genome evolution by matrix algorithms: cellular automata approach to population genetics.  

PubMed

Mammalian genomes are replete with millions of polymorphic sites, among which those genetic variants that are colocated on the same chromosome and exist close to one another form blocks of closely linked mutations known as haplotypes. The linkage within haplotypes is constantly disrupted due to meiotic recombination events. Whole ensembles of such numerous haplotypes are subjected to evolutionary pressure, where mutations influence each other and should be considered as a whole entity-a gigantic matrix, unique for each individual genome. This idea was implemented into a computational approach, named Genome Evolution by Matrix Algorithms (GEMA) to model genomic changes taking into account all mutations in a population. GEMA has been tested for modeling of entire human chromosomes. The program can precisely mimic real biological processes that have influence on genome evolution such as: 1) Authentic arrangements of genes and functional genomic elements, 2) frequencies of various types of mutations in different nucleotide contexts, and 3) nonrandom distribution of meiotic recombination events along chromosomes. Computer modeling with GEMA has demonstrated that the number of meiotic recombination events per gamete is among the most crucial factors influencing population fitness. In humans, these recombinations create a gamete genome consisting on an average of 48 pieces of corresponding parental chromosomes. Such highly mosaic gamete structure allows preserving fitness of population under the intense influx of novel mutations (40 per individual) even when the number of mutations with deleterious effects is up to ten times more abundant than those with beneficial effects. PMID:24723728

Qiu, Shuhao; McSweeny, Andrew; Choulet, Samuel; Saha-Mandal, Arnab; Fedorova, Larisa; Fedorov, Alexei

2014-04-01

219

Genome Evolution by Matrix Algorithms: Cellular Automata Approach to Population Genetics  

PubMed Central

Mammalian genomes are replete with millions of polymorphic sites, among which those genetic variants that are colocated on the same chromosome and exist close to one another form blocks of closely linked mutations known as haplotypes. The linkage within haplotypes is constantly disrupted due to meiotic recombination events. Whole ensembles of such numerous haplotypes are subjected to evolutionary pressure, where mutations influence each other and should be considered as a whole entitya gigantic matrix, unique for each individual genome. This idea was implemented into a computational approach, named Genome Evolution by Matrix Algorithms (GEMA) to model genomic changes taking into account all mutations in a population. GEMA has been tested for modeling of entire human chromosomes. The program can precisely mimic real biological processes that have influence on genome evolution such as: 1) Authentic arrangements of genes and functional genomic elements, 2) frequencies of various types of mutations in different nucleotide contexts, and 3) nonrandom distribution of meiotic recombination events along chromosomes. Computer modeling with GEMA has demonstrated that the number of meiotic recombination events per gamete is among the most crucial factors influencing population fitness. In humans, these recombinations create a gamete genome consisting on an average of 48 pieces of corresponding parental chromosomes. Such highly mosaic gamete structure allows preserving fitness of population under the intense influx of novel mutations (40 per individual) even when the number of mutations with deleterious effects is up to ten times more abundant than those with beneficial effects. PMID:24723728

Qiu, Shuhao; McSweeny, Andrew; Choulet, Samuel; Saha-Mandal, Arnab; Fedorova, Larisa; Fedorov, Alexei

2014-01-01

220

Rhinovirus-induced basic fibroblast growth factor release mediates airway remodeling features  

PubMed Central

Background Human rhinoviruses, major precipitants of asthma exacerbations, induce lower airway inflammation and mediate angiogenesis. The purpose of this study was to assess the possibility that rhinoviruses may also contribute to the fibrotic component of airway remodeling. Methods Levels of basic fibroblast growth factor (bFGF) mRNA and protein were measured following rhinovirus infection of bronchial epithelial cells. The profibrotic effect of epithelial products was assessed by DNA synthesis and matrix metalloproteinase activity assays. Moreover, epithelial cells were exposed to supernatants from cultured peripheral blood mononuclear cells, obtained from healthy donors or atopic asthmatic subjects and subsequently infected by rhinovirus and bFGF release was estimated. bFGF was also measured in respiratory secretions from atopic asthmatic patients before and during rhinovirus-induced asthma exacerbations. Results Rhinovirus epithelial infection stimulated mRNA expression and release of bFGF, the latter being positively correlated with cell death under conditions promoting rhinovirus-induced cytotoxicity. Supernatants from infected cultures induced lung fibroblast proliferation, which was inhibited by anti-bFGF antibody, and demonstrated increased matrix metalloproteinase activity. Rhinovirus-mediated bFGF release was significantly higher in an in vitro simulation of atopic asthmatic environment and, importantly, during rhinovirus-associated asthma exacerbations. Conclusions Rhinovirus infection induces bFGF release by airway epithelium, and stimulates stroma cell proliferation contributing to airway remodeling in asthma. Repeated rhinovirus infections may promote asthma persistence, particularly in the context of atopy; prevention of such infections may influence the natural history of asthma. PMID:22908984

2012-01-01

221

Genome Reduction and Co-evolution between the Primary and Secondary Bacterial Symbionts of Psyllids  

PubMed Central

Genome reduction in obligately intracellular bacteria is one of the most well-established patterns in the field of molecular evolution. In the extreme, many sap-feeding insects harbor nutritional symbionts with genomes that are so reduced that it is not clear how they perform basic cellular functions. For example, the primary symbiont of psyllids (Carsonella) maintains one of the smallest and most AT-rich bacterial genomes ever identified and has surprisingly lost many genes that are thought to be essential for its role in provisioning its host with amino acids. However, our understanding of this extreme case of genome reduction is limited, as genomic data for Carsonella are available from only a single host species, and little is known about the functional role of secondary bacterial symbionts in psyllids. To address these limitations, we analyzed complete Carsonella genomes from pairs of congeneric hosts in three divergent genera within the Psyllidae (Ctenarytaina, Heteropsylla, and Pachypsylla) as well as complete secondary symbiont genomes from two of these host species (Ctenarytaina eucalypti and Heteropsylla cubana). Although the Carsonella genomes are generally conserved in size, structure, and GC content and exhibit genome-wide signatures of purifying selection, we found that gene loss has remained active since the divergence of the host species and had a particularly large impact on the amino acid biosynthesis pathways that define the symbiotic role of Carsonella. In some cases, the presence of additional bacterial symbionts may compensate for gene loss in Carsonella, as functional gene content indicates a high degree of metabolic complementarity between co-occurring symbionts. The genomes of the secondary symbionts also show signatures of long-term evolution as vertically transmitted, intracellular bacteria, including more extensive genome reduction than typically observed in facultative symbionts. Therefore, a history of co-evolution with secondary bacterial symbionts can partially explain the ongoing genome reduction in Carsonella. However, the absence of these secondary symbionts in other host lineages indicates that the relationships are dynamic and that other mechanisms, such as changes in host diet or functional coordination with the host genome, must also be at play. PMID:22821013

Sloan, Daniel B.; Moran, Nancy A.

2012-01-01

222

Retrotransposons - a major driving force in plant genome evolution and a useful tool for genome analysis  

Microsoft Academic Search

As a major part of most plant genomes, retrotransposons are distributed throughout the plant genome ubiquitously with high\\u000a copy number and extensive heterogeneity. Various retrotransposon families with distinct structures differ in their distribution\\u000a and roles among divergent plant species, due to unforeseen transposition activities. Regulation of transposition is relatively\\u000a complex and three factors such as maintaining structure for none- or

Jun Zou; Huihui Gong; Tae-Jin Yang; Jinling Meng

2009-01-01

223

Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses  

PubMed Central

Background Sorghum is the first C4 plant and the second grass with a full genome sequence available. This makes it possible to perform a whole-genome-level exploration of C4 pathway evolution by comparing key photosynthetic enzyme genes in sorghum, maize (C4) and rice (C3), and to investigate a long-standing hypothesis that a reservoir of duplicated genes is a prerequisite for the evolution of C4 photosynthesis from a C3 progenitor. Results We show that both whole-genome and individual gene duplication have contributed to the evolution of C4 photosynthesis. The C4 gene isoforms show differential duplicability, with some C4 genes being recruited from whole genome duplication duplicates by multiple modes of functional innovation. The sorghum and maize carbonic anhydrase genes display a novel mode of new gene formation, with recursive tandem duplication and gene fusion accompanied by adaptive evolution to produce C4 genes with one to three functional units. Other C4 enzymes in sorghum and maize also show evidence of adaptive evolution, though differing in level and mode. Intriguingly, a phosphoenolpyruvate carboxylase gene in the C3 plant rice has also been evolving rapidly and shows evidence of adaptive evolution, although lacking key mutations that are characteristic of C4 metabolism. We also found evidence that both gene redundancy and alternative splicing may have sheltered the evolution of new function. Conclusions Gene duplication followed by functional innovation is common to evolution of most but not all C4 genes. The apparently long time-lag between the availability of duplicates for recruitment into C4 and the appearance of C4 grasses, together with the heterogeneity of origins of C4 genes, suggests that there may have been a long transition process before the establishment of C4 photosynthesis. PMID:19549309

Wang, Xiyin; Gowik, Udo; Tang, Haibao; Bowers, John E; Westhoff, Peter; Paterson, Andrew H

2009-01-01

224

Origin and evolution of a placental-specific microRNA family in the human genome  

Microsoft Academic Search

BACKGROUND: MicroRNAs (miRNAs) are a class of short regulatory RNAs encoded in the genome of DNA viruses, some single cell organisms, plants and animals. With the rapid development of technology, more and more miRNAs are being discovered. However, the origin and evolution of most miRNAs remain obscure. Here we report the origin and evolution dynamics of a human miRNA family.

Zhidong Yuan; Xiao Sun; Dongke Jiang; Yan Ding; Zhiyuan Lu; Lejun Gong; Hongde Liu; Jianming Xie

2010-01-01

225

Genome increase as a clock for the origin and evolution of life  

PubMed Central

Background The size of non-redundant functional genome can be an indicator of biological complexity of living organisms. Several positive feedback mechanisms including gene cooperation and duplication with subsequent specialization may result in the exponential growth of biological complexity in macro-evolution. Results I propose a hypothesis that biological complexity increased exponentially during evolution. Regression of the logarithm of functional non-redundant genome size versus time of origin in major groups of organisms showed a 7.8-fold increase per 1 billion years, and hence the increase of complexity can be viewed as a clock of macro-evolution. A strong version of the exponential hypothesis is that the rate of complexity increase in early (pre-prokaryotic) evolution of life was at most the same (or even slower) than observed in the evolution of prokaryotes and eukaryotes. Conclusion The increase of functional non-redundant genome size in macro-evolution was consistent with the exponential hypothesis. If the strong exponential hypothesis is true, then the origin of life should be dated 10 billion years ago. Thus, the possibility of panspermia as a source of life on earth should be discussed on equal basis with alternative hypotheses of de-novo life origin. Panspermia may be proven if bacteria similar to terrestrial ones are found on other planets or satellites in the solar system. Reviewers This article was reviewed by Eugene V. Koonin, Chris Adami and Arcady Mushegian. PMID:16768805

Sharov, Alexei A

2006-01-01

226

Genome organization and polyploid evolution in the genus Eleusine (Poaceae)  

Microsoft Academic Search

.?Eleusine (Poaceae) includes six diploid and three polyploid species and has three basic chromosome numbers, x=8, 9 and 10. The species\\u000a are annual as well as perennial and all are wild except E. coracana, which is cultivated for grain and fodder in Africa and the Indian subcontinent. Eleusine coracana and E. africana have the same genome and chromosome number (2n=36).

M. S. Bisht; Y. Mukai

2002-01-01

227

Phylogeny, Genome, and Karyotype Evolution of Crucifers (Brassicaceae)  

Microsoft Academic Search

\\u000a Brassicaceae (crucifers or the mustard family) is a large plant family comprising over 330 genera and about 3,700 species,\\u000a including several important crop plants (e.g. Brassica species), ornamentals as well as model organisms in the plant sciences (e.g. Arabidopsis thaliana). In recent years, the wealth of Arabidopsis and Brassica genomic resources along with newly established tools and techniques fostered the

Martin A. Lysak; Marcus A. Koch

228

Evolution of closely linked gene pairs in vertebrate genomes  

Microsoft Academic Search

The orientation of closely linked genes in mammalian genomes is not random: there are more head-to-head (h2h) gene pairs than expected. To understand the origin of this enrichment in h2h gene pairs, we have analyzed the phylogenetic distribution of gene pairs separated by less than 600 bp of intergenic DNA (gene duos). We show here that a lack of head-to-tail

Erik Franck; Tim Hulsen; Martijn A. Huynen; Wilfried W. de Jong; N. H. Lunsen; Ole Madsen

2008-01-01

229

12 Gray, M.W. et al. (2001) The origin and early evolution of mitochondria. Genome Biol. 2, 1018  

E-print Network

12 Gray, M.W. et al. (2001) The origin and early evolution of mitochondria. Genome Biol. 2, 1018 13) A comparative genomics approach to the evolution of eukaryotes and their mitochondria. J. Eukaryot. Micro- biol al. (1997) Evidence for loss of mitochondria in Microsporidia from a mitochondrial-type HSP70

Eisenberg, Eli

230

Insights into the evolution of cotton diploids and polyploids from whole-genome re-1 sequencing2  

E-print Network

1 Insights into the evolution of cotton diploids and polyploids from whole-genome re-1 sequencing2 Department, Brigham Young University, Provo, UT, 846027 2 Plant and Wildlife Science Department, Brigham the composition, evolution, and function of the Gossypium hirsutum (cotton)2 genome is complicated by the joint

Wendel, Jonathan F.

231

The BEAF-32 insulator coordinates genome organization and function during the evolution of Drosophila species  

PubMed Central

Understanding the relationship between genome organization and expression is central to understanding genome function. Closely apposed genes in a head-to-head orientation share the same upstream region and are likely to be coregulated. Here we identify the Drosophila BEAF-32 insulator as a cis regulatory element separating close head-to-head genes with different transcription regulation modes. We then compare the binding landscapes of the BEAF-32 insulator protein in four different Drosophila genomes and highlight the evolutionarily conserved presence of this protein between close adjacent genes. We find that changes in binding of BEAF-32 to sites in the genome of different Drosophila species correlate with alterations in genome organization caused by DNA rearrangements or genome size expansion. The cross-talk between BEAF-32 genomic distribution and genome organization contributes to new gene-expression profiles, which in turn translate into specific and distinct phenotypes. The results suggest a mechanism for the establishment of differences in transcription patterns during evolution. PMID:22895281

Yang, Jingping; Ramos, Edward; Corces, Victor G.

2012-01-01

232

Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum.  

PubMed Central

The replicative retrotransposon life cycle offers the potential for explosive increases in copy number and consequent inflation of genome size. The BARE-1 retrotransposon family of barley is conserved, disperse, and transcriptionally active. To assess the role of BARE-1 in genome evolution, we determined the copy number of its integrase, its reverse transcriptase, and its long terminal repeat (LTR) domains throughout the genus Hordeum. On average, BARE-1 contributes 13.7 x 10(3) full-length copies, amounting to 2.9% of the genome. The number increases with genome size. Two LTRs are associated with each internal domain in intact retrotransposons, but surprisingly, BARE-1 LTRs were considerably more prevalent than would be expected from the numbers of intact elements. The excess in LTRs increases as both genome size and BARE-1 genomic fraction decrease. Intrachromosomal homologous recombination between LTRs could explain the excess, removing BARE-1 elements and leaving behind solo LTRs, thereby reducing the complement of functional retrotransposons in the genome and providing at least a partial "return ticket from genomic obesity." PMID:10488242

Vicient, CM; Suoniemi, A; Anamthawat-Jonsson, K; Tanskanen, J; Beharav, A; Nevo, E; Schulman, AH

1999-01-01

233

Effectiveness of Hand Sanitizers with and without Organic Acids for Removal of Rhinovirus from Hands  

Microsoft Academic Search

These studies evaluated the effectiveness of ethanol hand sanitizers with or without organic acids to remove detectable rhinovirus from the hands and prevent experimental rhinovirus infection. Ethanol hand sanitizers were significantly more effective than hand washing with soap and water. The addition of organic acids to the ethanol provided residual virucidal activity that persisted for at least 4 h. Whether

Ronald B. Turner; Janice L. Fuls; Nancy D. Rodgers

2010-01-01

234

Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus  

Microsoft Academic Search

Rhinoviruses are the major trigger of acute asthma exacerbations and asthmatic subjects are more susceptible to these infections. To investigate the underlying mechanisms of this increased susceptibility, we examined virus replication and innate responses to rhinovirus (RV)-16 infection of primary bronchial epithelial cells from asthmatic and healthy control subjects. Viral RNA expression and late virus release into supernatant was increased

Peter A. B. Wark; Sebastian L. Johnston; Fabio Bucchieri; Robert Powell; Sarah Puddicombe; Vasile Laza-Stanca; Stephen T. Holgate; Donna E. Davies

2005-01-01

235

Genomics of rapid adaptation to antibiotics: convergent evolution and scalable sequence amplification.  

PubMed

Evolutionary adaptation can be extremely fast, especially in response to high selection intensities. A prime example is the surge of antibiotic resistance in bacteria. The genomic underpinnings of such rapid changes may provide information on the genetic processes that enhance fast responses and the particular trait functions under selection. Here, we use experimentally evolved Escherichia coli for a detailed dissection of the genomics of rapid antibiotic resistance evolution. Our new analyses demonstrate that amplification of a sequence region containing several known antibiotic resistance genes represents a fast genomic response mechanism under high antibiotic stress, here exerted by drug combination. In particular, higher dosage of such antibiotic combinations coincided with higher copy number of the sequence region. The amplification appears to be evolutionarily costly, because amplification levels rapidly dropped after removal of the drugs. Our results suggest that amplification is a scalable process, as copy number rapidly changes in response to the selective pressure encountered. Moreover, repeated patterns of convergent evolution were found across the experimentally evolved bacterial populations, including those with lower antibiotic selection intensities. Intriguingly, convergent evolution was identified on different organizational levels, ranging from the above sequence amplification, high variant frequencies in specific genes, prevalence of individual nonsynonymous mutations to the unusual repeated occurrence of a particular synonymous mutation in Glycine codons. We conclude that constrained evolutionary trajectories underlie rapid adaptation to antibiotics. Of the identified genomic changes, sequence amplification seems to represent the most potent, albeit costly genomic response mechanism to high antibiotic stress. PMID:24850796

Laehnemann, David; Pea-Miller, Rafael; Rosenstiel, Philip; Beardmore, Robert; Jansen, Gunther; Schulenburg, Hinrich

2014-06-01

236

Small inverted repeats drive mitochondrial genome evolution in Lake Baikal sponges.  

PubMed

Demosponges, the largest and most diverse class in the phylum Porifera, possess mitochondrial DNA (mtDNA) markedly different from that in other animals. Although several studies investigated evolution of demosponge mtDNA among major lineages of the group, the changes within these groups remain largely unexplored. Recently we determined mitochondrial genomic sequence of the Lake Baikal sponge Lubomirskia baicalensis and described proliferation of small inverted repeats (hairpins) that occurred in it since the divergence between L. baicalensis and the most closely related cosmopolitan freshwater sponge Ephydatia muelleri. Here we report mitochondrial genomes of three additional species of Lake Baikal sponges: Swartschewskia papyracea, Rezinkovia echinata and Baikalospongia intermedia morpha profundalis (Demospongiae, Haplosclerida, Lubomirskiidae) and from a more distantly related freshwater sponge Corvomeyenia sp. (Demospongiae, Haplosclerida, Metaniidae). We use these additional sequences to explore mtDNA evolution in Baikalian sponges, paying particular attention to the variation in the rates of nucleotide substitutions and the distribution of hairpins, abundant in these genomes. We show that most of the changes in Lubomirskiidae mitochondrial genomes are due to insertion/deletion/duplication of these elements rather than single nucleotide substitutions. Thus inverted repeats can act as an important force in evolution of mitochondrial genome architecture and be a valuable marker for population- and species-level studies in this group. In addition, we infer (((Rezinkovia+Lubomirskia)+Swartschewskia)+Baikalospongia) phylogeny for the family Lubomirskiidae based on the analysis of mitochondrial coding sequences from freshwater sponges. PMID:22669046

Lavrov, Dennis V; Maikova, Olga O; Pett, Walker; Belikov, Sergey I

2012-08-15

237

Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution.  

PubMed

We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each arm gene order has been extensively reshuffled, leading to a minimum of 921 syntenic blocks shared between the species. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 25-55 million years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences between the species--but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila. PMID:15632085

Richards, Stephen; Liu, Yue; Bettencourt, Brian R; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Hubisz, Melissa J; Chen, Rui; Meisel, Richard P; Couronne, Olivier; Hua, Sujun; Smith, Mark A; Zhang, Peili; Liu, Jing; Bussemaker, Harmen J; van Batenburg, Marinus F; Howells, Sally L; Scherer, Steven E; Sodergren, Erica; Matthews, Beverly B; Crosby, Madeline A; Schroeder, Andrew J; Ortiz-Barrientos, Daniel; Rives, Catharine M; Metzker, Michael L; Muzny, Donna M; Scott, Graham; Steffen, David; Wheeler, David A; Worley, Kim C; Havlak, Paul; Durbin, K James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lene; Verduzco, Daniel; Clerc-Blankenburg, Kerstin P; Dubchak, Inna; Noor, Mohamed A F; Anderson, Wyatt; White, Kevin P; Clark, Andrew G; Schaeffer, Stephen W; Gelbart, William; Weinstock, George M; Gibbs, Richard A

2005-01-01

238

Genome evolution in cyanobacteria: The stable core and the variable shell  

PubMed Central

Cyanobacteria are the only known prokaryotes capable of oxygenic photosynthesis, the evolution of which transformed the biology and geochemistry of Earth. The rapid increase in published genomic sequences of cyanobacteria provides the first opportunity to reconstruct events in the evolution of oxygenic photosynthesis on the scale of entire genomes. Here, we demonstrate the overall phylogenetic incongruence among 682 orthologous protein families from 13 genomes of cyanobacteria. However, using principal coordinates analysis, we discovered a core set of 323 genes with similar evolutionary trajectories. The core set is highly conserved in amino acid sequence and contains genes encoding the major components in the photosynthetic and ribosomal apparatus. Many of the key proteins are encoded by genome-wide conserved small gene clusters, which often are indicative of proteinprotein, proteinprosthetic group, and proteinlipid interactions. We propose that the macromolecular interactions in complex protein structures and metabolic pathways retard the tempo of evolution of the core genes and hence exert a selection pressure that restricts piecemeal horizontal gene transfer of components of the core. Identification of the core establishes a foundation for reconstructing robust organismal phylogeny in genome space. Our phylogenetic trees constructed from 16S rRNA gene sequences, concatenated orthologous proteins, and the core gene set all suggest that the ancestral cyanobacterium did not fix nitrogen and probably was a thermophilic organism. PMID:18268351

Shi, Tuo; Falkowski, Paul G.

2008-01-01

239

Evolution of an endofungal Lifestyle: Deductions from the Burkholderia rhizoxinica Genome  

PubMed Central

Background Burkholderia rhizoxinica is an intracellular symbiont of the phytopathogenic zygomycete Rhizopus microsporus, the causative agent of rice seedling blight. The endosymbiont produces the antimitotic macrolide rhizoxin for its host. It is vertically transmitted within vegetative spores and is essential for spore formation of the fungus. To shed light on the evolution and genetic potential of this model organism, we analysed the whole genome of B. rhizoxinica HKI 0454 - a type strain of endofungal Burkholderia species. Results The genome consists of a structurally conserved chromosome and two plasmids. Compared to free-living Burkholderia species, the genome is smaller in size and harbors less transcriptional regulator genes. Instead, we observed accumulation of transposons over the genome. Prediction of primary metabolic pathways and transporters suggests that endosymbionts consume host metabolites like citrate, but might deliver some amino acids and cofactors to the host. The rhizoxin biosynthesis gene cluster shows evolutionary traces of horizontal gene transfer. Furthermore, we analysed gene clusters coding for nonribosomal peptide synthetases (NRPS). Notably, B. rhizoxinica lacks common genes which are dedicated to quorum sensing systems, but is equipped with a large number of virulence-related factors and putative type III effectors. Conclusions B. rhizoxinica is the first endofungal bacterium, whose genome has been sequenced. Here, we present models of evolution, metabolism and tools for host-symbiont interaction of the endofungal bacterium deduced from whole genome analyses. Genome size and structure suggest that B. rhizoxinica is in an early phase of adaptation to the intracellular lifestyle (genome in transition). By analysis of tranporters and metabolic pathways we predict how metabolites might be exchanged between the symbiont and its host. Gene clusters for biosynthesis of secondary metabolites represent novel targets for genomic mining of cryptic natural products. In silico analyses of virulence-associated genes, secreted proteins and effectors might inspire future studies on molecular mechanisms underlying bacterial-fungal interaction. PMID:21539752

2011-01-01

240

DNA excision repair and transcription: implications for genome evolution  

Microsoft Academic Search

The past two years have seen a substantial increase in knowledge regarding the enzymology of DNA excision repair. These data support a growing body of information which suggests that transcribed nucleotide sequences are preferentially subject to excision repair. It is possible that these mechanisms, or related ones, are relevant to the molecular evolution of sequences that appear not to evolve

David T. Sullivan

1995-01-01

241

The adaptive evolution of the mammalian mitochondrial genome  

Microsoft Academic Search

BACKGROUND: The mitochondria produce up to 95% of a eukaryotic cell's energy through oxidative phosphorylation. The proteins involved in this vital process are under high functional constraints. However, metabolic requirements vary across species, potentially modifying selective pressures. We evaluate the adaptive evolution of 12 protein-coding mitochondrial genes in 41 placental mammalian species by assessing amino acid sequence variation and exploring

Rute R da Fonseca; Warren E Johnson; Stephen J O'Brien; Maria Joo Ramos; Agostinho Antunes

2008-01-01

242

Analysis of the Complete Human mtDNA Genome: Methodology and Inferences for Human Evolution  

Microsoft Academic Search

The analysis of mitochondrial DNA (mtDNA) sequences has been a potent tool in our understanding of human evolution. However, almost all studies of human evo- lution based on mtDNA sequencing have focused on the control region, which constitutes less than 7% of the mitochondrial genome. The rapid development of technology for automated DNA sequencing has made it possible to study

M. Ingman; U. Gyllensten

2001-01-01

243

Snake mitochondrial genomes: phylogenetic relationships and implications of extended taxon sampling for interpretations of mitogenomic evolution  

Microsoft Academic Search

BACKGROUND: Snake mitochondrial genomes are of great interest in understanding mitogenomic evolution because of gene duplications and rearrangements and the fast evolutionary rate of their genes compared to other vertebrates. Mitochondrial gene sequences have also played an important role in attempts to resolve the contentious phylogenetic relationships of especially the early divergences among alethinophidian snakes. Two recent innovative studies found

Desire A Douglas; David J Gower

2010-01-01

244

A Genomic Approach to Examine the Complex Evolution of Laurasiatherian Mammals  

PubMed Central

Recent phylogenomic studies have failed to conclusively resolve certain branches of the placental mammalian tree, despite the evolutionary analysis of genomic data from 32 species. Previous analyses of single genes and retroposon insertion data yielded support for different phylogenetic scenarios for the most basal divergences. The results indicated that some mammalian divergences were best interpreted not as a single bifurcating tree, but as an evolutionary network. In these studies the relationships among some orders of the super-clade Laurasiatheria were poorly supported, albeit not studied in detail. Therefore, 4775 protein-coding genes (6,196,263 nucleotides) were collected and aligned in order to analyze the evolution of this clade. Additionally, over 200,000 introns were screened in silico, resulting in 32 phylogenetically informative long interspersed nuclear elements (LINE) insertion events. The present study shows that the genome evolution of Laurasiatheria may best be understood as an evolutionary network. Thus, contrary to the common expectation to resolve major evolutionary events as a bifurcating tree, genome analyses unveil complex speciation processes even in deep mammalian divergences. We exemplify this on a subset of 1159 suitable genes that have individual histories, most likely due to incomplete lineage sorting or introgression, processes that can make the genealogy of mammalian genomes complex. These unexpected results have major implications for the understanding of evolution in general, because the evolution of even some higher level taxa such as mammalian orders may sometimes not be interpreted as a simple bifurcating pattern. PMID:22164244

Hallstrom, Bjorn M.; Schneider, Adrian; Zoller, Stefan; Janke, Axel

2011-01-01

245

Genomic demography: a life-history analysis of transposable element evolution  

E-print Network

Genomic demography: a life-history analysis of transposable element evolution Daniel E. L, Box 454004, LasVegas, NV 89154-4004, USA Retrotransposons are ubiquitous mobile genetic elements^transposon coevolution. Evolutionary change in Ty elements depends on their replication and excision rates, which have

Jordan, King

246

Insights into the Evolution of Vitamin B12 Auxotrophy from Sequenced Algal Genomes  

E-print Network

Insights into the Evolution of Vitamin B12 Auxotrophy from Sequenced Algal Genomes Katherine E Abstract Vitamin B12 (cobalamin) is a dietary requirement for humans because it is an essential cofactor microalgal species need the vitamin as a growth supplement, but there is no phylogenetic relationship between

Goldstein, Raymond E.

247

Evolution of oxygenic photosynthesis: genome-wide analysis of the OEC extrinsic proteins  

Microsoft Academic Search

The appearance of oxygenic photosynthesis was a key event in the evolution of our green biosphere. Oxygen in the atmosphere is generally believed to come from the biomolecular water-splitting reaction that occurs in oxyphotosynthetic organisms catalysed by the oxygen evolving centre (OEC) of Photosystem II. Using knowledge from complete genomes and current databases, we have investigated the nature and composition

Javier De Las Rivas; Mnica Balsera; James Barber

2004-01-01

248

Genome Growth and the Evolution of the Genotype-Phenotype Map  

E-print Network

to genetic modification, that can affect the variational properties of the genome and its evolvability. One for genetic variability. Selection in the evolution of new genes can therefore act to sculpt the dimensions quantitative-genetic model with Gaussian selection, and Kauffman's "NK" adaptive landscape model

Altenberg, Lee

249

Genomic Organization and Evolution of Alternative Exons in a Drosophila Calcium Channel Gene  

PubMed Central

The genomic organization of a gene coding for an ?1 subunit of a voltage-gated calcium channel of Drosophila melanogaster (Dmca1A) was determined. Thirty-four exons, distributed over 45 kb of genomic sequence, have been identified and mapped, including exons in three regions involved in alternative splicing and new sites potentially involved in RNA editing. The comparison of the intron/exon boundaries of this channel with a mammalian counterpart shows that the genomic structure of these two genes has remained fairly similar during evolution, with more than half of the Drosophila intron positions being perfectly conserved compared to the human channel. Phylogenetic analysis of the mutually exclusive alternative exons revealed that they have diverged considerably. It is suggested that this divergence, rather than reflecting evolutionary age, is the likely result of accelerated rates of evolution following duplication. PMID:9093853

Peixoto, A. A.; Smith, L. A.; Hall, J. C.

1997-01-01

250

Spatial and temporal diversity in genomic instability processes defines lung cancer evolution.  

PubMed

Spatial and temporal dissection of the genomic changes occurring during the evolution of human non-small cell lung cancer (NSCLC) may help elucidate the basis for its dismal prognosis. We sequenced 25 spatially distinct regions from seven operable NSCLCs and found evidence of branched evolution, with driver mutations arising before and after subclonal diversification. There was pronounced intratumor heterogeneity in copy number alterations, translocations, and mutations associated with APOBEC cytidine deaminase activity. Despite maintained carcinogen exposure, tumors from smokers showed a relative decrease in smoking-related mutations over time, accompanied by an increase in APOBEC-associated mutations. In tumors from former smokers, genome-doubling occurred within a smoking-signature context before subclonal diversification, which suggested that a long period of tumor latency had preceded clinical detection. The regionally separated driver mutations, coupled with the relentless and heterogeneous nature of the genome instability processes, are likely to confound treatment success in NSCLC. PMID:25301630

de Bruin, Elza C; McGranahan, Nicholas; Mitter, Richard; Salm, Max; Wedge, David C; Yates, Lucy; Jamal-Hanjani, Mariam; Shafi, Seema; Murugaesu, Nirupa; Rowan, Andrew J; Grnroos, Eva; Muhammad, Madiha A; Horswell, Stuart; Gerlinger, Marco; Varela, Ignacio; Jones, David; Marshall, John; Voet, Thierry; Van Loo, Peter; Rassl, Doris M; Rintoul, Robert C; Janes, Sam M; Lee, Siow-Ming; Forster, Martin; Ahmad, Tanya; Lawrence, David; Falzon, Mary; Capitanio, Arrigo; Harkins, Timothy T; Lee, Clarence C; Tom, Warren; Teefe, Enock; Chen, Shann-Ching; Begum, Sharmin; Rabinowitz, Adam; Phillimore, Benjamin; Spencer-Dene, Bradley; Stamp, Gordon; Szallasi, Zoltan; Matthews, Nik; Stewart, Aengus; Campbell, Peter; Swanton, Charles

2014-10-10

251

Short-term genome evolution of Listeria monocytogenes in a non-controlled environment  

PubMed Central

Background While increasing data on bacterial evolution in controlled environments are available, our understanding of bacterial genome evolution in natural environments is limited. We thus performed full genome analyses on four Listeria monocytogenes, including human and food isolates from both a 1988 case of sporadic listeriosis and a 2000 listeriosis outbreak, which had been linked to contaminated food from a single processing facility. All four isolates had been shown to have identical subtypes, suggesting that a specific L. monocytogenes strain persisted in this processing plant over at least 12 years. While a genome sequence for the 1988 food isolate has been reported, we sequenced the genomes of the 1988 human isolate as well as a human and a food isolate from the 2000 outbreak to allow for comparative genome analyses. Results The two L. monocytogenes isolates from 1988 and the two isolates from 2000 had highly similar genome backbone sequences with very few single nucleotide (nt) polymorphisms (1 8 SNPs/isolate; confirmed by re-sequencing). While no genome rearrangements were identified in the backbone genome of the four isolates, a 42 kb prophage inserted in the chromosomal comK gene showed evidence for major genome rearrangements. The human-food isolate pair from each 1988 and 2000 had identical prophage sequence; however, there were significant differences in the prophage sequences between the 1988 and 2000 isolates. Diversification of this prophage appears to have been caused by multiple homologous recombination events or possibly prophage replacement. In addition, only the 2000 human isolate contained a plasmid, suggesting plasmid loss or acquisition events. Surprisingly, besides the polymorphisms found in the comK prophage, a single SNP in the tRNA Thr-4 prophage represents the only SNP that differentiates the 1988 isolates from the 2000 isolates. Conclusion Our data support the hypothesis that the 2000 human listeriosis outbreak was caused by a L. monocytogenes strain that persisted in a food processing facility over 12 years and show that genome sequencing is a valuable and feasible tool for retrospective epidemiological analyses. Short-term evolution of L. monocytogenes in non-controlled environments appears to involve limited diversification beyond plasmid gain or loss and prophage diversification, highlighting the importance of phages in bacterial evolution. PMID:19014550

Orsi, Renato H; Borowsky, Mark L; Lauer, Peter; Young, Sarah K; Nusbaum, Chad; Galagan, James E; Birren, Bruce W; Ivy, Reid A; Sun, Qi; Graves, Lewis M; Swaminathan, Bala; Wiedmann, Martin

2008-01-01

252

Gene interactions in the evolution of genomic imprinting.  

PubMed

Numerous evolutionary theories have been developed to explain the epigenetic phenomenon of genomic imprinting. Here, we explore a subset of theories wherein non-additive genetic interactions can favour imprinting. In the simplest genic interaction--the case of underdominance--imprinting can be favoured to hide effectively low-fitness heterozygous genotypes; however, as there is no asymmetry between maternally and paternally inherited alleles in this model, other means of enforcing monoallelic expression may be more plausible evolutionary outcomes than genomic imprinting. By contrast, more successful interaction models of imprinting rely on an asymmetry between the maternally and paternally inherited alleles at a locus that favours the silencing of one allele as a means of coordinating the expression of high-fitness allelic combinations. For example, with interactions between autosomal loci, imprinting functionally preserves high-fitness genotypes that were favoured by selection in the previous generation. In this scenario, once a focal locus becomes imprinted, selection at interacting loci favours a matching imprint. Uniparental transmission generates similar asymmetries for sex chromosomes and cytoplasmic factors interacting with autosomal loci, with selection favouring the expression of either maternal or paternally derived autosomal alleles depending on the pattern of transmission of the uniparentally inherited factor. In a final class of models, asymmetries arise when genes expressed in offspring interact with genes expressed in one of its parents. Under such a scenario, a locus evolves to have imprinted expression in offspring to coordinate the interaction with its parent's genome. We illustrate these models and explore key links and differences using a unified framework. PMID:24619179

Wolf, J B; Brandvain, Y

2014-08-01

253

Multiple Genomic Recombination Events in the Evolution of Saffold Cardiovirus  

PubMed Central

Background Saffold cardiovirus (SAFV) is a new human cardiovirus with 11 identified genotypes. Little is known about the natural history and pathogenicity of SAFVs. Methodology/Principal Findings We sequenced the genome of five SAFV-1 strains which were identified from fecal samples taken from children with viral diarrhea in Beijing, China between March 2006 and November 2007, and analyzed the phylogenetic and phylodynamic properties of SAFVs using the genome sequences of every known SAFV genotypes. We identified multiple recombination events in our SAFV-1 strains, specifically recombination between SAFV-2, -3, -4, -9, -10 and the prototype SAFV-1 strain in the VP4 region and recombination between SAFV-4, -6, -8, -10, -11 and prototype SAFV-1 in the VP1/2A region. Notably, recombination in the structural gene VP4 is a rare event in Cardiovirus. The ratio of nonsynonymous substitutions to synonymous substitutions indicates a purifying selection of the SAFV genome. Phylogenetic and molecular clock analysis indicates the existence of at least two subclades of SAFV-1 with different origins. Subclade 1 includes two strains isolated from Pakistan, whereas subclade 2 includes the prototype strain and strains isolated in China, Pakistan, and Afghanistan. The most recent common ancestor of all SAFV genotypes dates to the 1710s, and SAFV-1, -2, and -3 to the 1940s, 1950s, and 1960s, respectively. No obvious relationship between variation and pathogenicity exists in the critical domains of the CD and EF loops of viral capsid proteins or the multi-functional proteins L based on animo acid sequence identity comparison between SAFV genotypes. Conclusions/Significance Our findings suggest that intertypic recombination plays an important role in the diversity of SAFVs, highlighting the diversity of the five strains with the previously described SAFV-1 strains. PMID:24086404

Ren, Lili; Xiao, Yan; Li, Jianguo; Chen, Lan; Zhang, Jing; Vernet, Guy; Wang, Jianwei

2013-01-01

254

Analysis of Complete Nucleotide Sequences of 12 Gossypium Chloroplast Genomes: Origin and Evolution of Allotetraploids  

PubMed Central

Background Cotton (Gossypium spp.) is a model system for the analysis of polyploidization. Although ascertaining the donor species of allotetraploid cotton has been intensively studied, sequence comparison of Gossypium chloroplast genomes is still of interest to understand the mechanisms underlining the evolution of Gossypium allotetraploids, while it is generally accepted that the parents were A- and D-genome containing species. Here we performed a comparative analysis of 13 Gossypium chloroplast genomes, twelve of which are presented here for the first time. Methodology/Principal Findings The size of 12 chloroplast genomes under study varied from 159,959 bp to 160,433 bp. The chromosomes were highly similar having >98% sequence identity. They encoded the same set of 112 unique genes which occurred in a uniform order with only slightly different boundary junctions. Divergence due to indels as well as substitutions was examined separately for genome, coding and noncoding sequences. The genome divergence was estimated as 0.374% to 0.583% between allotetraploid species and A-genome, and 0.159% to 0.454% within allotetraploids. Forty protein-coding genes were completely identical at the protein level, and 20 intergenic sequences were completely conserved. The 9 allotetraploids shared 5 insertions and 9 deletions in whole genome, and 7-bp substitutions in protein-coding genes. The phylogenetic tree confirmed a close relationship between allotetraploids and the ancestor of A-genome, and the allotetraploids were divided into four separate groups. Progenitor allotetraploid cotton originated 0.430.68 million years ago (MYA). Conclusion Despite high degree of conservation between the Gossypium chloroplast genomes, sequence variations among species could still be detected. Gossypium chloroplast genomes preferred for 5-bp indels and 13-bp indels are mainly attributed to the SSR polymorphisms. This study supports that the common ancestor of diploid A-genome species in Gossypium is the maternal source of extant allotetraploid species and allotetraploids have a monophyletic origin. G. hirsutum AD1 lineages have experienced more sequence variations than other allotetraploids in intergenic regions. The available complete nucleotide sequences of 12 Gossypium chloroplast genomes should facilitate studies to uncover the molecular mechanisms of compartmental co-evolution and speciation of Gossypium allotetraploids. PMID:22876273

Xu, Qin; Xiong, Guanjun; Li, Pengbo; He, Fei; Huang, Yi; Wang, Kunbo; Li, Zhaohu; Hua, Jinping

2012-01-01

255

Genome Size and GC Content Evolution of Festuca: Ancestral Expansion and Subsequent Reduction  

PubMed Central

Background and Aims Plant evolution is well known to be frequently associated with remarkable changes in genome size and composition; however, the knowledge of long-term evolutionary dynamics of these processes still remains very limited. Here a study is made of the fine dynamics of quantitative genome evolution in Festuca (fescue), the largest genus in Poaceae (grasses). Methods Using flow cytometry (PI, DAPI), measurements were made of DNA content (2C-value), monoploid genome size (Cx-value), average chromosome size (C/n-value) and cytosine + guanine (GC) content of 101 Festuca taxa and 14 of their close relatives. The results were compared with the existing phylogeny based on ITS and trnL-F sequences. Key Results The divergence of the fescue lineage from related Poeae was predated by about a 2-fold monoploid genome and chromosome size enlargement, and apparent GC content enrichment. The backward reduction of these parameters, running parallel in both main evolutionary lineages of fine-leaved and broad-leaved fescues, appears to diverge among the existing species groups. The most dramatic reductions are associated with the most recently and rapidly evolving groups which, in combination with recent intraspecific genome size variability, indicate that the reduction process is probably ongoing and evolutionarily young. This dynamics may be a consequence of GC-rich retrotransposon proliferation and removal. Polyploids derived from parents with a large genome size and high GC content (mostly allopolyploids) had smaller Cx- and C/n-values and only slightly deviated from parental GC content, whereas polyploids derived from parents with small genome and low GC content (mostly autopolyploids) generally had a markedly increased GC content and slightly higher Cx- and C/n-values. Conclusions The present study indicates the high potential of general quantitative characters of the genome for understanding the long-term processes of genome evolution, testing evolutionary hypotheses and their usefulness for large-scale genomic projects. Taken together, the results suggest that there is an evolutionary advantage for small genomes in Festuca. PMID:18158307

Smarda, Petr; Bures, Petr; Horova, Lucie; Foggi, Bruno; Rossi, Graziano

2008-01-01

256

The genome and development-dependent transcriptomes of Pyronema confluens: a window into fungal evolution.  

PubMed

Fungi are a large group of eukaryotes found in nearly all ecosystems. More than 250 fungal genomes have already been sequenced, greatly improving our understanding of fungal evolution, physiology, and development. However, for the Pezizomycetes, an early-diverging lineage of filamentous ascomycetes, there is so far only one genome available, namely that of the black truffle, Tuber melanosporum, a mycorrhizal species with unusual subterranean fruiting bodies. To help close the sequence gap among basal filamentous ascomycetes, and to allow conclusions about the evolution of fungal development, we sequenced the genome and assayed transcriptomes during development of Pyronema confluens, a saprobic Pezizomycete with a typical apothecium as fruiting body. With a size of 50 Mb and ~13,400 protein-coding genes, the genome is more characteristic of higher filamentous ascomycetes than the large, repeat-rich truffle genome; however, some typical features are different in the P. confluens lineage, e.g. the genomic environment of the mating type genes that is conserved in higher filamentous ascomycetes, but only partly conserved in P. confluens. On the other hand, P. confluens has a full complement of fungal photoreceptors, and expression studies indicate that light perception might be similar to distantly related ascomycetes and, thus, represent a basic feature of filamentous ascomycetes. Analysis of spliced RNA-seq sequence reads allowed the detection of natural antisense transcripts for 281 genes. The P. confluens genome contains an unusually high number of predicted orphan genes, many of which are upregulated during sexual development, consistent with the idea of rapid evolution of sex-associated genes. Comparative transcriptomics identified the transcription factor gene pro44 that is upregulated during development in P. confluens and the Sordariomycete Sordaria macrospora. The P. confluens pro44 gene (PCON_06721) was used to complement the S. macrospora pro44 deletion mutant, showing functional conservation of this developmental regulator. PMID:24068976

Traeger, Stefanie; Altegoer, Florian; Freitag, Michael; Gabaldon, Toni; Kempken, Frank; Kumar, Abhishek; Marcet-Houben, Marina; Pggeler, Stefanie; Stajich, Jason E; Nowrousian, Minou

2013-01-01

257

Adaptive Evolution and the Birth of CTCF Binding Sites in the Drosophila Genome  

PubMed Central

Changes in the physical interaction between cis-regulatory DNA sequences and proteins drive the evolution of gene expression. However, it has proven difficult to accurately quantify evolutionary rates of such binding change or to estimate the relative effects of selection and drift in shaping the binding evolution. Here we examine the genome-wide binding of CTCF in four species of Drosophila separated by between ?2.5 and 25 million years. CTCF is a highly conserved protein known to be associated with insulator sequences in the genomes of human and Drosophila. Although the binding preference for CTCF is highly conserved, we find that CTCF binding itself is highly evolutionarily dynamic and has adaptively evolved. Between species, binding divergence increased linearly with evolutionary distance, and CTCF binding profiles are diverging rapidly at the rate of 2.22% per million years (Myr). At least 89 new CTCF binding sites have originated in the Drosophila melanogaster genome since the most recent common ancestor with Drosophila simulans. Comparing these data to genome sequence data from 37 different strains of Drosophila melanogaster, we detected signatures of selection in both newly gained and evolutionarily conserved binding sites. Newly evolved CTCF binding sites show a significantly stronger signature for positive selection than older sites. Comparative gene expression profiling revealed that expression divergence of genes adjacent to CTCF binding site is significantly associated with the gain and loss of CTCF binding. Further, the birth of new genes is associated with the birth of new CTCF binding sites. Our data indicate that binding of Drosophila CTCF protein has evolved under natural selection, and CTCF binding evolution has shaped both the evolution of gene expression and genome evolution during the birth of new genes. PMID:23139640

Ni, Xiaochun; Zhang, Yong E.; Negre, Nicolas; Chen, Sidi; Long, Manyuan; White, Kevin P.

2012-01-01

258

Evolution of monoblepharidalean fungi based on complete mitochondrial genome sequences  

PubMed Central

We have determined the complete mitochondrial DNA (mtDNA) sequences of three chytridiomycete fungi, Monoblepharella15, Harpochytrium94 and Harpochytrium105. Our phylogenetic analysis based on concatenated mitochondrial protein sequences confirms the placement of Mono blepharella15 together with Harpochytrium spp. and Hyaloraphidium curvatum within the taxonomic order Monoblepharidales, with overwhelming support. These four mtDNA sequences encode the standard fungal mitochondrial gene complement and, like certain other chytridiomycete fungi, encode a reduced complement of 79 tRNAs, some of which require 5?-tRNA editing to be functional. Highly conserved sequence elements were identified upstream of almost all protein-coding genes in the mtDNAs of Monoblepharella15 and both Harpochytrium species. Finally, a guanosine residue is conserved upstream of the predicted ATG or GTG start codons of almost every protein-coding gene in these genomes. The appearance of this G residue correlates with the presence of a non-canonical cytosine residue at position 37 in the anticodon loop of the mitochondrial initiator tRNAs. Based on the unorthodox features in these four genomes, we propose that a 4 bp interaction between the CAUC anticodon of these tRNAs and GAUG/GGUG codons is involved in translation initiation in monoblepharidalean mitochondria. Intriguingly, a similar interaction may also be involved in mitochondrial translation initiation in the sea anemone Metridium senile. PMID:12626702

Bullerwell, C. E.; Forget, L.; Lang, B. F.

2003-01-01

259

Genome sequence of mungbean and insights into evolution within Vigna species.  

PubMed

Mungbean (Vigna radiata) is a fast-growing, warm-season legume crop that is primarily cultivated in developing countries of Asia. Here we construct a draft genome sequence of mungbean to facilitate genome research into the subgenus Ceratotropis, which includes several important dietary legumes in Asia, and to enable a better understanding of the evolution of leguminous species. Based on the de novo assembly of additional wild mungbean species, the divergence of what was eventually domesticated and the sampled wild mungbean species appears to have predated domestication. Moreover, the de novo assembly of a tetraploid Vigna species (V. reflexo-pilosa var. glabra) provides genomic evidence of a recent allopolyploid event. The species tree is constructed using de novo RNA-seq assemblies of 22 accessions of 18 Vigna species and protein sets of Glycine max. The present assembly of V. radiata var. radiata will facilitate genome research and accelerate molecular breeding of the subgenus Ceratotropis. PMID:25384727

Kang, Yang Jae; Kim, Sue K; Kim, Moon Young; Lestari, Puji; Kim, Kil Hyun; Ha, Bo-Keun; Jun, Tae Hwan; Hwang, Won Joo; Lee, Taeyoung; Lee, Jayern; Shim, Sangrea; Yoon, Min Young; Jang, Young Eun; Han, Kwang Soo; Taeprayoon, Puntaree; Yoon, Na; Somta, Prakit; Tanya, Patcharin; Kim, Kwang Soo; Gwag, Jae-Gyun; Moon, Jung-Kyung; Lee, Yeong-Ho; Park, Beom-Seok; Bombarely, Aureliano; Doyle, Jeffrey J; Jackson, Scott A; Schafleitner, Roland; Srinives, Peerasak; Varshney, Rajeev K; Lee, Suk-Ha

2014-01-01

260

Genome evolution and speciation genetics of clawed frogs (Xenopus and Silurana).  

PubMed

Speciation of clawed frogs occurred through bifurcation and reticulation of evolutionary lineages, and resulted in extant species with different ploidy levels. Duplicate gene evolution and expression in these animals provides a unique perspective into the earliest genomic transformations after vertebrate whole genome duplication (WGD) and suggests that functional constraints are relaxed compared to before duplication but still consistently strong for millions of years following WGD. Additionally, extensive quantitative expression divergence between duplicate genes occurred after WGD. Diversification of clawed frogs was potentially catalyzed by transposition and divergent resolution--processes that occur through different genetic mechanisms but that have analogous implications for genome structure. How sex determination is maintained after genome duplication is fundamental to our understanding of why allopolyploidization is so prevalent in this group, and why clawed frogs violate Haldane's Rule for hybrid sterility. Future studies of expression subfunctionalization in polyploids will shed light on the role and purviews of cis- and trans-regulatory elements in gene regulation. PMID:18508539

Evans, Ben J

2008-01-01

261

What can whole genome expression data tell us about the ecology and evolution of personality?  

PubMed Central

Consistent individual differences in behaviour, aka personality, pose several evolutionary questions. For example, it is difficult to explain within-individual consistency in behaviour because behavioural plasticity is often advantageous. In addition, selection erodes heritable behavioural variation that is related to fitness, therefore we wish to know the mechanisms that can maintain between-individual variation in behaviour. In this paper, we argue that whole genome expression data can reveal new insights into the proximate mechanisms underlying personality, as well as its evolutionary consequences. After introducing the basics of whole genome expression analysis, we show how whole genome expression data can be used to understand whether behaviours in different contexts are affected by the same molecular mechanisms. We suggest strategies for using the power of genomics to understand what maintains behavioural variation, to study the evolution of behavioural correlations and to compare personality traits across diverse organisms. PMID:21078652

Bell, Alison M.; Aubin-Horth, Nadia

2010-01-01

262

Genomic mutation rates that neutralize adaptive evolution and natural selection  

PubMed Central

When mutation rates are low, natural selection remains effective, and increasing the mutation rate can give rise to an increase in adaptation rate. When mutation rates are high to begin with, however, increasing the mutation rate may have a detrimental effect because of the overwhelming presence of deleterious mutations. Indeed, if mutation rates are high enough: (i) adaptive evolution may be neutralized, resulting in a zero (or negative) adaptation rate despite the continued availability of adaptive and/or compensatory mutations, or (ii) natural selection may be neutralized, because the fitness of lineages bearing adaptive and/or compensatory mutationswhether established or newly arisingis eroded by excessive mutation, causing such lineages to decline in frequency. We apply these two criteria to a standard model of asexual adaptive evolution and derive mathematical expressionssome new, some old in new guisedelineating the mutation rates under which either adaptive evolution or natural selection is neutralized. The expressions are simple and require no a priori knowledge of organism- and/or environment-specific parameters. Our discussion connects these results to each other and to previous theory, showing convergence or equivalence of the different results in most cases. PMID:23720539

Gerrish, Philip J.; Colato, Alexandre; Sniegowski, Paul D.

2013-01-01

263

Insights into Minor Group Rhinovirus Uncoating: The X-ray Structure of the HRV2 Empty Capsid  

PubMed Central

Upon attachment to their respective receptor, human rhinoviruses (HRVs) are internalized into the host cell via different pathways but undergo similar structural changes. This ultimately results in the delivery of the viral RNA into the cytoplasm for replication. To improve our understanding of the conformational modifications associated with the release of the viral genome, we have determined the X-ray structure at 3.0 resolution of the end-stage of HRV2 uncoating, the empty capsid. The structure shows important conformational changes in the capsid protomer. In particular, a hinge movement around the hydrophobic pocket of VP1 allows a coordinated shift of VP2 and VP3. This overall displacement forces a reorganization of the inter-protomer interfaces, resulting in a particle expansion and in the opening of new channels in the capsid core. These new breaches in the capsid, opening one at the base of the canyon and the second at the particle two-fold axes, might act as gates for the externalization of the VP1 N-terminus and the extrusion of the viral RNA, respectively. The structural comparison between native and empty HRV2 particles unveils a number of pH-sensitive amino acid residues, conserved in rhinoviruses, which participate in the structural rearrangements involved in the uncoating process. PMID:22241997

Garriga, Damia; Pickl-Herk, Angela; Luque, Daniel; Wruss, Jurgen; Caston, Jose R.; Blaas, Dieter; Verdaguer, Nuria

2012-01-01

264

Shewanella spp. Genomic Evolution for a Cold Marine Lifestyle and In-Situ Explosive Biodegradation  

PubMed Central

Shewanella halifaxensis and Shewanella sediminis were among a few aquatic ?-proteobacteria that were psychrophiles and the first anaerobic bacteria that degraded hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Although many mesophilic or psychrophilic strains of Shewanella and ?-proteobacteria were sequenced for their genomes, the genomic evolution pathways for temperature adaptation were poorly understood. On the other hand, the genes responsible for anaerobic RDX mineralization pathways remain unknown. To determine the unique genomic properties of bacteria responsible for both cold-adaptation and RDX degradation, the genomes of S. halifaxensis and S. sediminis were sequenced and compared with 108 other ?-proteobacteria including Shewanella that differ in temperature and Na+ requirements, as well as RDX degradation capability. Results showed that for coping with marine environments their genomes had extensively exchanged with deep sea bacterial genomes. Many genes for Na+-dependent nutrient transporters were recruited to use the high Na+ content as an energy source. For coping with low temperatures, these two strains as well as other psychrophilic strains of Shewanella and ?-proteobacteria were found to decrease their genome G+C content and proteome alanine, proline and arginine content (p-value <0.01) to increase protein structural flexibility. Compared to poorer RDX-degrading strains, S. halifaxensis and S. sediminis have more number of genes for cytochromes and other enzymes related to RDX metabolic pathways. Experimentally, one cytochrome was found induced in S. halifaxensis by RDX when the chemical was the sole terminal electron acceptor. The isolated protein degraded RDX by mono-denitration and was identified as a multiheme 52 kDa cytochrome using a proteomic approach. The present analyses provided the first insight into divergent genomic evolution of bacterial strains for adaptation to the specific cold marine conditions and to the degradation of the pollutant RDX. The present study also provided the first evidence for the involvement of a specific c-type cytochrome in anaerobic RDX metabolism. PMID:20174598

Zhao, Jian-Shen; Deng, Yinghai; Manno, Dominic; Hawari, Jalal

2010-01-01

265

Dynamic Evolution of Oryza Genomes Is Revealed by Comparative Genomic Analysis of a Genus-Wide Vertical Data Set[W][OA  

PubMed Central

Oryza (23 species; 10 genome types) contains the world's most important food crop rice. Although the rice genome serves as an essential tool for biological research, little is known about the evolution of the other Oryza genome types. They contain a historical record of genomic changes that led to diversification of this genus around the world as well as an untapped reservoir of agriculturally important traits. To investigate the evolution of the collective Oryza genome, we sequenced and compared nine orthologous genomic regions encompassing the Adh1-Adh2 genes (from six diploid genome types) with the rice reference sequence. Our analysis revealed the architectural complexities and dynamic evolution of this region that have occurred over the past ?15 million years. Of the 46 intact genes and four pseudogenes in the japonica genome, 38 (76%) fell into eight multigene families. Analysis of the evolutionary history of each family revealed independent and lineage-specific gain and loss of gene family members as frequent causes of synteny disruption. Transposable elements were shown to mediate massive replacement of intergenic space (>95%), gene disruption, and gene/gene fragment movement. Three cases of long-range structural variation (inversions/deletions) spanning several hundred kilobases were identified that contributed significantly to genome diversification. PMID:19098269

Ammiraju, Jetty S.S.; Lu, Fei; Sanyal, Abhijit; Yu, Yeisoo; Song, Xiang; Jiang, Ning; Pontaroli, Ana Clara; Rambo, Teri; Currie, Jennifer; Collura, Kristi; Talag, Jayson; Fan, Chuanzhu; Goicoechea, Jose Luis; Zuccolo, Andrea; Chen, Jinfeng; Bennetzen, Jeffrey L.; Chen, Mingsheng; Jackson, Scott; Wing, Rod A.

2008-01-01

266

Insights into neural crest development and evolution from genomic analysis  

PubMed Central

The neural crest is an excellent model system for the study of cell type diversification during embryonic development due to its multipotency, motility, and ability to form a broad array of derivatives ranging from neurons and glia, to cartilage, bone, and melanocytes. As a uniquely vertebrate cell population, it also offers important clues regarding vertebrate origins. In the past 30 yr, introduction of recombinant DNA technology has facilitated the dissection of the genetic program controlling neural crest development and has provided important insights into gene regulatory mechanisms underlying cell migration and differentiation. More recently, new genomic approaches have provided a platform and tools that are changing the depth and breadth of our understanding of neural crest development at a systems level. Such advances provide an insightful view of the regulatory landscape of neural crest cells and offer a new perspective on developmental as well as stem cell and cancer biology. PMID:23817048

Simoes-Costa, Marcos; Bronner, Marianne E.

2013-01-01

267

Complete HOX cluster characterization of the coelacanth provides further evidence for slow evolution of its genome  

PubMed Central

The living coelacanth is a lobe-finned fish that represents an early evolutionary departure from the lineage that led to land vertebrates, and is of extreme interest scientifically. It has changed very little in appearance from fossilized coelacanths of the Cretaceous (150 to 65 million years ago), and is often referred to as a living fossil. An important general question is whether long-term stasis in morphological evolution is associated with stasis in genome evolution. To this end we have used targeted genome sequencing for acquiring 1,612,752 bp of high quality finished sequence encompassing the four HOX clusters of the Indonesian coelacanth Latimeria menadoensis. Detailed analyses were carried out on genomic structure, gene and repeat contents, conserved noncoding regions, and relative rates of sequence evolution in both coding and noncoding tracts. Our results demonstrate conclusively that the coelacanth HOX clusters are evolving comparatively slowly and that this taxon should serve as a viable outgroup for interpretation of the genomes of tetrapod species. PMID:20139301

Amemiya, Chris T.; Powers, Thomas P.; Prohaska, Sonja J.; Grimwood, Jane; Schmutz, Jeremy; Dickson, Mark; Miyake, Tsutomu; Schoenborn, Michael A.; Myers, Richard M.; Ruddle, Francis H.; Stadler, Peter F.

2010-01-01

268

Evolution of a morphological novelty occurred before genome compaction in a lineage of extreme parasites.  

PubMed

Intracellular parasitism results in extreme adaptations, whose evolutionary history is difficult to understand, because the parasites and their known free-living relatives are so divergent from one another. Microsporidia are intracellular parasites of humans and other animals, which evolved highly specialized morphological structures, but also extreme physiologic and genomic simplification. They are suggested to be an early-diverging branch on the fungal tree, but comparisons to other species are difficult because their rates of molecular evolution are exceptionally high. Mitochondria in microsporidia have degenerated into organelles called mitosomes, which have lost a genome and the ability to produce ATP. Here we describe a gut parasite of the crustacean Daphnia that despite having remarkable morphological similarity to the microsporidia, has retained genomic features of its fungal ancestors. This parasite, which we name Mitosporidium daphniae gen. et sp. nov., possesses a mitochondrial genome including genes for oxidative phosphorylation, yet a spore stage with a highly specialized infection apparatus-the polar tube-uniquely known only from microsporidia. Phylogenomics places M. daphniae at the root of the microsporidia. A comparative genomic analysis suggests that the reduction in energy metabolism, a prominent feature of microsporidian evolution, was preceded by a reduction in the machinery controlling cell cycle, DNA recombination, repair, and gene expression. These data show that the morphological features unique to M. daphniae and other microsporidia were already present before the lineage evolved the extreme host metabolic dependence and loss of mitochondrial respiration for which microsporidia are well known. PMID:25313038

Haag, Karen L; James, Timothy Y; Pombert, Jean-Franois; Larsson, Ronny; Schaer, Tobias M M; Refardt, Dominik; Ebert, Dieter

2014-10-28

269

Genome Evolution and Phylogenomic Analysis of Candidatus Kinetoplastibacterium, the Betaproteobacterial Endosymbionts of Strigomonas and Angomonas  

PubMed Central

It has been long known that insect-infecting trypanosomatid flagellates from the genera Angomonas and Strigomonas harbor bacterial endosymbionts (Candidatus Kinetoplastibacterium or TPE [trypanosomatid proteobacterial endosymbiont]) that supplement the host metabolism. Based on previous analyses of other bacterial endosymbiont genomes from other lineages, a stereotypical path of genome evolution in such bacteria over the duration of their association with the eukaryotic host has been characterized. In this work, we sequence and analyze the genomes of five TPEs, perform their metabolic reconstruction, do an extensive phylogenomic analyses with all available Betaproteobacteria, and compare the TPEs with their nearest betaproteobacterial relatives. We also identify a number of housekeeping and central metabolism genes that seem to have undergone positive selection. Our genome structure analyses show total synteny among the five TPEs despite millions of years of divergence, and that this lineage follows the common path of genome evolution observed in other endosymbionts of diverse ancestries. As previously suggested by cell biology and biochemistry experiments, Ca. Kinetoplastibacterium spp. preferentially maintain those genes necessary for the biosynthesis of compounds needed by their hosts. We have also shown that metabolic and informational genes related to the cooperation with the host are overrepresented amongst genes shown to be under positive selection. Finally, our phylogenomic analysis shows that, while being in the Alcaligenaceae family of Betaproteobacteria, the closest relatives of these endosymbionts are not in the genus Bordetella as previously reported, but more likely in the Taylorella genus. PMID:23345457

Alves, Joao M.P.; Serrano, Myrna G.; Maia da Silva, Flavia; Voegtly, Logan J.; Matveyev, Andrey V.; Teixeira, Marta M.G.; Camargo, Erney P.; Buck, Gregory A.

2013-01-01

270

Human Rhinovirus Infections in Rural Thailand: Epidemiological Evidence for Rhinovirus as Both Pathogen and Bystander  

PubMed Central

Background We describe human rhinovirus (HRV) detections in SaKaeo province, Thailand. Methods From September 1, 2003August 31, 2005, we tested hospitalized patients with acute lower respiratory illness and outpatient controls without fever or respiratory symptoms for HRVs with polymerase chain reaction and molecularly-typed select HRVs. We compared HRV detection among hospitalized patients and controls and estimated enrollment adjusted incidence. Results HRVs were detected in 315 (16%) of 1919 hospitalized patients and 27 (9.6%) of 280 controls. Children had the highest frequency of HRV detections (hospitalized: <1 year: 29%, 14 year: 29%, ?65 years: 9%; controls: <1 year: 24%, 14 year: 14%, ?65 years: 2.8%). Enrollment adjusted hospitalized HRV detection rates were highest among persons aged <1 year (1038/100,000 persons/year), 14 years (457), and ?65 years (71). All three HRV species were identified, HRV-A was the most common species in most age groups including children aged <1 year (61%) and all adult age groups. HRV-C was the most common species in the 14 year (51%) and 519 year age groups (54%). Compared to controls, hospitalized adults (?19 years) and children were more likely to have HRV detections (odds ratio [OR]: 4.8, 95% confidence interval [CI]: 1.5, 15.8; OR: 2.0, CI: 1.2, 3.3, respectively) and hospitalized children were more likely to have HRV-A (OR 1.7, CI: 0.8, 3.5) or HVR-C (OR 2.7, CI: 1.2, 5.9) detection. Conclusions HRV rates were high among hospitalized children and the elderly but asymptomatic children also had substantial HRV detection. HRV (all species), and HRV-A and HRV-C detections were epidemiologically-associated with hospitalized illness. Treatment or prevention modalities effective against HRV could reduce hospitalizations due to HRV in Thailand. PMID:21479259

Fry, Alicia M.; Lu, Xiaoyan; Olsen, Sonja J.; Chittaganpitch, Malinee; Sawatwong, Pongpun; Chantra, Somrak; Baggett, Henry C.; Erdman, Dean

2011-01-01

271

Correlated evolution of LTR retrotransposons and genome size in the genus eleocharis  

PubMed Central

Background Transposable elements (TEs) are considered to be an important source of genome size variation and genetic and phenotypic plasticity in eukaryotes. Most of our knowledge about TEs comes from large genomic projects and studies focused on model organisms. However, TE dynamics among related taxa from natural populations and the role of TEs at the species or supra-species level, where genome size and karyotype evolution are modulated in concert with polyploidy and chromosomal rearrangements, remain poorly understood. We focused on the holokinetic genus Eleocharis (Cyperaceae), which displays large variation in genome size and the occurrence of polyploidy and agmatoploidy/symploidy. We analyzed and quantified the long terminal repeat (LTR) retrotransposons Ty1-copia and Ty3-gypsy in relation to changes in both genome size and karyotype in Eleocharis. We also examined how this relationship is reflected in the phylogeny of Eleocharis. Results Using flow cytometry, we measured the genome sizes of members of the genus Eleocharis (Cyperaceae). We found positive correlation between the independent phylogenetic contrasts of genome size and chromosome number in Eleocharis. We analyzed PCR-amplified sequences of various reverse transcriptases of the LTR retrotransposons Ty1-copia and Ty3-gypsy (762 sequences in total). Using real-time PCR and dot blot approaches, we quantified the densities of Ty1-copia and Ty3-gypsy within the genomes of the analyzed species. We detected an increasing density of Ty1-copia elements in evolutionarily younger Eleocharis species and found a positive correlation between Ty1-copia densities and C/n-values (an alternative measure of monoploid genome size) in the genus phylogeny. In addition, our analysis of Ty1-copia sequences identified a novel retrotransposon family named Helos1, which is responsible for the increasing density of Ty1-copia. The transition:transversion ratio of Helos1 sequences suggests that Helos1 recently transposed in later-diverging Eleocharis species. Conclusions Using several different approaches, we were able to distinguish between the roles of LTR retrotransposons, polyploidy and agmatoploidy/symploidy in shaping Eleocharis genomes and karyotypes. Our results confirm the occurrence of both polyploidy and agmatoploidy/symploidy in Eleocharis. Additionally, we introduce a new player in the process of genome evolution in holokinetic plants: LTR retrotransposons. PMID:21118487

2010-01-01

272

Evolution of a Pathogen: A Comparative Genomics Analysis Identifies a Genetic Pathway to Pathogenesis in Acinetobacter  

PubMed Central

Acinetobacter baumannii is an emergent and global nosocomial pathogen. In addition to A. baumannii, other Acinetobacter species, especially those in the Acinetobacter calcoaceticus-baumannii (Acb) complex, have also been associated with serious human infection. Although mechanisms of attachment, persistence on abiotic surfaces, and pathogenesis in A. baumannii have been identified, the genetic mechanisms that explain the emergence of A. baumannii as the most widespread and virulent Acinetobacter species are not fully understood. Recent whole genome sequencing has provided insight into the phylogenetic structure of the genus Acinetobacter. However, a global comparison of genomic features between Acinetobacter spp. has not been described in the literature. In this study, 136 Acinetobacter genomes, including 67 sequenced in this study, were compared to identify the acquisition and loss of genes in the expansion of the Acinetobacter genus. A whole genome phylogeny confirmed that A. baumannii is a monophyletic clade and that the larger Acb complex is also a well-supported monophyletic group. The whole genome phylogeny provided the framework for a global genomic comparison based on a blast score ratio (BSR) analysis. The BSR analysis demonstrated that specific genes have been both lost and acquired in the evolution of A. baumannii. In addition, several genes associated with A. baumannii pathogenesis were found to be more conserved in the Acb complex, and especially in A. baumannii, than in other Acinetobacter genomes; until recently, a global analysis of the distribution and conservation of virulence factors across the genus was not possible. The results demonstrate that the acquisition of specific virulence factors has likely contributed to the widespread persistence and virulence of A. baumannii. The identification of novel features associated with transcriptional regulation and acquired by clades in the Acb complex presents targets for better understanding the evolution of pathogenesis and virulence in the expansion of the genus. PMID:23365658

Sahl, Jason W.; Gillece, John D.; Schupp, James M.; Waddell, Victor G.; Driebe, Elizabeth M.; Engelthaler, David M.; Keim, Paul

2013-01-01

273

Evolution of a pathogen: a comparative genomics analysis identifies a genetic pathway to pathogenesis in Acinetobacter.  

PubMed

Acinetobacter baumannii is an emergent and global nosocomial pathogen. In addition to A. baumannii, other Acinetobacter species, especially those in the Acinetobacter calcoaceticus-baumannii (Acb) complex, have also been associated with serious human infection. Although mechanisms of attachment, persistence on abiotic surfaces, and pathogenesis in A. baumannii have been identified, the genetic mechanisms that explain the emergence of A. baumannii as the most widespread and virulent Acinetobacter species are not fully understood. Recent whole genome sequencing has provided insight into the phylogenetic structure of the genus Acinetobacter. However, a global comparison of genomic features between Acinetobacter spp. has not been described in the literature. In this study, 136 Acinetobacter genomes, including 67 sequenced in this study, were compared to identify the acquisition and loss of genes in the expansion of the Acinetobacter genus. A whole genome phylogeny confirmed that A. baumannii is a monophyletic clade and that the larger Acb complex is also a well-supported monophyletic group. The whole genome phylogeny provided the framework for a global genomic comparison based on a blast score ratio (BSR) analysis. The BSR analysis demonstrated that specific genes have been both lost and acquired in the evolution of A. baumannii. In addition, several genes associated with A. baumannii pathogenesis were found to be more conserved in the Acb complex, and especially in A. baumannii, than in other Acinetobacter genomes; until recently, a global analysis of the distribution and conservation of virulence factors across the genus was not possible. The results demonstrate that the acquisition of specific virulence factors has likely contributed to the widespread persistence and virulence of A. baumannii. The identification of novel features associated with transcriptional regulation and acquired by clades in the Acb complex presents targets for better understanding the evolution of pathogenesis and virulence in the expansion of the genus. PMID:23365658

Sahl, Jason W; Gillece, John D; Schupp, James M; Waddell, Victor G; Driebe, Elizabeth M; Engelthaler, David M; Keim, Paul

2013-01-01

274

The sacred lotus genome provides insights into the evolution of flowering plants.  

PubMed

Sacred lotus (Nelumbo nucifera) is an ornamental plant that is also used for food and medicine. This basal eudicot species is especially important from an evolutionary perspective, as it occupies a critical phylogenetic position in flowering plants. Here we report the draft genome of a wild strain of sacred lotus. The assembled genome is 792 Mb, which is approximately 85-90% of genome size estimates. We annotated 392 Mb of repeat sequences and 36,385 protein-coding genes within the genome. Using these sequence data, we constructed a phylogenetic tree and confirmed the basal location of sacred lotus within eudicots. Importantly, we found evidence for a relatively recent whole-genome duplication event; any indication of the ancient paleo-hexaploid event was, however, absent. Genomic analysis revealed evidence of positive selection within 28 embryo-defective genes and one annexin gene that may be related to the long-term viability of sacred lotus seed. We also identified a significant expansion of starch synthase genes, which probably elevated starch levels within the rhizome of sacred lotus. Sequencing this strain of sacred lotus thus provided important insights into the evolution of flowering plant and revealed genetic mechanisms that influence seed dormancy and starch synthesis. PMID:23952714

Wang, Yun; Fan, Guangyi; Liu, Yiman; Sun, Fengming; Shi, Chengcheng; Liu, Xin; Peng, Jing; Chen, Wenbin; Huang, Xinfang; Cheng, Shifeng; Liu, Yuping; Liang, Xinming; Zhu, Honglian; Bian, Chao; Zhong, Lan; Lv, Tian; Dong, Hongxia; Liu, Weiqing; Zhong, Xiao; Chen, Jing; Quan, Zhiwu; Wang, Zhihong; Tan, Benzhong; Lin, Chufa; Mu, Feng; Xu, Xun; Ding, Yi; Guo, An-Yuan; Wang, Jun; Ke, Weidong

2013-11-01

275

The bovine lactation genome: insights into the evolution of mammalian milk  

PubMed Central

Background The newly assembled Bos taurus genome sequence enables the linkage of bovine milk and lactation data with other mammalian genomes. Results Using publicly available milk proteome data and mammary expressed sequence tags, 197 milk protein genes and over 6,000 mammary genes were identified in the bovine genome. Intersection of these genes with 238 milk production quantitative trait loci curated from the literature decreased the search space for milk trait effectors by more than an order of magnitude. Genome location analysis revealed a tendency for milk protein genes to be clustered with other mammary genes. Using the genomes of a monotreme (platypus), a marsupial (opossum), and five placental mammals (bovine, human, dog, mice, rat), gene loss and duplication, phylogeny, sequence conservation, and evolution were examined. Compared with other genes in the bovine genome, milk and mammary genes are: more likely to be present in all mammals; more likely to be duplicated in therians; more highly conserved across Mammalia; and evolving more slowly along the bovine lineage. The most divergent proteins in milk were associated with nutritional and immunological components of milk, whereas highly conserved proteins were associated with secretory processes. Conclusions Although both copy number and sequence variation contribute to the diversity of milk protein composition across species, our results suggest that this diversity is primarily due to other mechanisms. Our findings support the essentiality of milk to the survival of mammalian neonates and the establishment of milk secretory mechanisms more than 160 million years ago. PMID:19393040

Lemay, Danielle G; Lynn, David J; Martin, William F; Neville, Margaret C; Casey, Theresa M; Rincon, Gonzalo; Kriventseva, Evgenia V; Barris, Wesley C; Hinrichs, Angie S; Molenaar, Adrian J; Pollard, Katherine S; Maqbool, Nauman J; Singh, Kuljeet; Murney, Regan; Zdobnov, Evgeny M; Tellam, Ross L; Medrano, Juan F; German, J Bruce; Rijnkels, Monique

2009-01-01

276

Rhinovirus Exacerbates House-Dust-Mite Induced Lung Disease in Adult Mice  

PubMed Central

Human rhinovirus is a key viral trigger for asthma exacerbations. To date, murine studies investigating rhinovirus-induced exacerbation of allergic airways disease have employed systemic sensitisation/intranasal challenge with ovalbumin. In this study, we combined human-rhinovirus infection with a clinically relevant mouse model of aero-allergen exposure using house-dust-mite in an attempt to more accurately understand the links between human-rhinovirus infection and exacerbations of asthma. Adult BALB/c mice were intranasally exposed to low-dose house-dust-mite (or vehicle) daily for 10 days. On day 9, mice were inoculated with human-rhinovirus-1B (or UV-inactivated human-rhinovirus-1B). Forty-eight hours after inoculation, we assessed bronchoalveolar cellular inflammation, levels of relevant cytokines/serum antibodies, lung function and responsiveness/sensitivity to methacholine. House-dust-mite exposure did not result in a classical TH2-driven response, but was more representative of noneosinophilic asthma. However, there were significant effects of house-dust-mite exposure on most of the parameters measured including increased cellular inflammation (primarily macrophages and neutrophils), increased total IgE and house-dust-mite-specific IgG1 and increased responsiveness/sensitivity to methacholine. There were limited effects of human-rhinovirus-1B infection alone, and the combination of the two insults resulted in additive increases in neutrophil levels and lung parenchymal responses to methacholine (tissue elastance). We conclude that acute rhinovirus infection exacerbates house-dust-mite-induced lung disease in adult mice. The similarity of our results using the naturally occurring allergen house-dust-mite, to previous studies using ovalbumin, suggests that the exacerbation of allergic airways disease by rhinovirus infection could act via multiple or conserved mechanisms. PMID:24632596

Phan, Jennifer A.; Kicic, Anthony; Berry, Luke J.; Fernandes, Lynette B.; Zosky, Graeme R.; Sly, Peter D.; Larcombe, Alexander N.

2014-01-01

277

Rhinovirus exacerbates house-dust-mite induced lung disease in adult mice.  

PubMed

Human rhinovirus is a key viral trigger for asthma exacerbations. To date, murine studies investigating rhinovirus-induced exacerbation of allergic airways disease have employed systemic sensitisation/intranasal challenge with ovalbumin. In this study, we combined human-rhinovirus infection with a clinically relevant mouse model of aero-allergen exposure using house-dust-mite in an attempt to more accurately understand the links between human-rhinovirus infection and exacerbations of asthma. Adult BALB/c mice were intranasally exposed to low-dose house-dust-mite (or vehicle) daily for 10 days. On day 9, mice were inoculated with human-rhinovirus-1B (or UV-inactivated human-rhinovirus-1B). Forty-eight hours after inoculation, we assessed bronchoalveolar cellular inflammation, levels of relevant cytokines/serum antibodies, lung function and responsiveness/sensitivity to methacholine. House-dust-mite exposure did not result in a classical TH2-driven response, but was more representative of noneosinophilic asthma. However, there were significant effects of house-dust-mite exposure on most of the parameters measured including increased cellular inflammation (primarily macrophages and neutrophils), increased total IgE and house-dust-mite-specific IgG1 and increased responsiveness/sensitivity to methacholine. There were limited effects of human-rhinovirus-1B infection alone, and the combination of the two insults resulted in additive increases in neutrophil levels and lung parenchymal responses to methacholine (tissue elastance). We conclude that acute rhinovirus infection exacerbates house-dust-mite-induced lung disease in adult mice. The similarity of our results using the naturally occurring allergen house-dust-mite, to previous studies using ovalbumin, suggests that the exacerbation of allergic airways disease by rhinovirus infection could act via multiple or conserved mechanisms. PMID:24632596

Phan, Jennifer A; Kicic, Anthony; Berry, Luke J; Fernandes, Lynette B; Zosky, Graeme R; Sly, Peter D; Larcombe, Alexander N

2014-01-01

278

Accelerated evolution of the mitochondrial genome in an alloplasmic line of durum wheat  

PubMed Central

Background Wheat is an excellent plant species for nuclear mitochondrial interaction studies due to availability of large collection of alloplasmic lines. These lines exhibit different vegetative and physiological properties than their parents. To investigate the level of sequence changes introduced into the mitochondrial genome under the alloplasmic condition, three mitochondrial genomes of the Triticum-Aegilops species were sequenced: 1) durum alloplasmic line with the Ae. longissima cytoplasm that carries the T. turgidum nucleus designated as (lo) durum, 2) the cytoplasmic donor line, and 3) the nuclear donor line. Results The mitochondrial genome of the T. turgidum was 451,678 bp in length with high structural and nucleotide identity to the previously characterized T. aestivum genome. The assembled mitochondrial genome of the (lo) durum and the Ae. longissima were 431,959 bp and 399,005 bp in size, respectively. The high sequence coverage for all three genomes allowed analysis of heteroplasmy within each genome. The mitochondrial genome structure in the alloplasmic line was genetically distant from both maternal and paternal genomes. The alloplasmic durum and the Ae. longissima carry the same versions of atp6, nad6, rps19-p, cob and cox2 exon 2 which are different from the T. turgidum parent. Evidence of paternal leakage was also observed by analyzing nad9 and orf359 among all three lines. Nucleotide search identified a number of open reading frames, of which 27 were specific to the (lo) durum line. Conclusions Several heteroplasmic regions were observed within genes and intergenic regions of the mitochondrial genomes of all three lines. The number of rearrangements and nucleotide changes in the mitochondrial genome of the alloplasmic line that have occurred in less than half a century was significant considering the high sequence conservation between the T. turgidum and the T. aestivum that diverged from each other 10,000 years ago. We showed that the changes in genes were not limited to paternal leakage but were sufficiently significant to suggest that other mechanisms, such as recombination and mutation, were responsible. The newly formed ORFs, differences in gene sequences and copy numbers, heteroplasmy, and substoichiometric changes show the potential of the alloplasmic condition to accelerate evolution towards forming new mitochondrial genomes. PMID:24460856

2014-01-01

279

Fast Evolution from Precast Bricks: Genomics of Young Freshwater Populations of Threespine Stickleback Gasterosteus aculeatus.  

PubMed

Adaptation is driven by natural selection; however, many adaptations are caused by weak selection acting over large timescales, complicating its study. Therefore, it is rarely possible to study selection comprehensively in natural environments. The threespine stickleback (Gasterosteus aculeatus) is a well-studied model organism with a short generation time, small genome size, and many genetic and genomic tools available. Within this originally marine species, populations have recurrently adapted to freshwater all over its range. This evolution involved extensive parallelism: pre-existing alleles that adapt sticklebacks to freshwater habitats, but are also present at low frequencies in marine populations, have been recruited repeatedly. While a number of genomic regions responsible for this adaptation have been identified, the details of selection remain poorly understood. Using whole-genome resequencing, we compare pooled genomic samples from marine and freshwater populations of the White Sea basin, and identify 19 short genomic regions that are highly divergent between them, including three known inversions. 17 of these regions overlap protein-coding genes, including a number of genes with predicted functions that are relevant for adaptation to the freshwater environment. We then analyze four additional independently derived young freshwater populations of known ages, two natural and two artificially established, and use the observed shifts of allelic frequencies to estimate the strength of positive selection. Adaptation turns out to be quite rapid, indicating strong selection acting simultaneously at multiple regions of the genome, with selection coefficients of up to 0.27. High divergence between marine and freshwater genotypes, lack of reduction in polymorphism in regions responsible for adaptation, and high frequencies of freshwater alleles observed even in young freshwater populations are all consistent with rapid assembly of G. aculeatus freshwater genotypes from pre-existing genomic regions of adaptive variation, with strong selection that favors this assembly acting simultaneously at multiple loci. PMID:25299485

Terekhanova, Nadezhda V; Logacheva, Maria D; Penin, Aleksey A; Neretina, Tatiana V; Barmintseva, Anna E; Bazykin, Georgii A; Kondrashov, Alexey S; Mugue, Nikolai S

2014-10-01

280

Fast Evolution from Precast Bricks: Genomics of Young Freshwater Populations of Threespine Stickleback Gasterosteus aculeatus  

PubMed Central

Adaptation is driven by natural selection; however, many adaptations are caused by weak selection acting over large timescales, complicating its study. Therefore, it is rarely possible to study selection comprehensively in natural environments. The threespine stickleback (Gasterosteus aculeatus) is a well-studied model organism with a short generation time, small genome size, and many genetic and genomic tools available. Within this originally marine species, populations have recurrently adapted to freshwater all over its range. This evolution involved extensive parallelism: pre-existing alleles that adapt sticklebacks to freshwater habitats, but are also present at low frequencies in marine populations, have been recruited repeatedly. While a number of genomic regions responsible for this adaptation have been identified, the details of selection remain poorly understood. Using whole-genome resequencing, we compare pooled genomic samples from marine and freshwater populations of the White Sea basin, and identify 19 short genomic regions that are highly divergent between them, including three known inversions. 17 of these regions overlap protein-coding genes, including a number of genes with predicted functions that are relevant for adaptation to the freshwater environment. We then analyze four additional independently derived young freshwater populations of known ages, two natural and two artificially established, and use the observed shifts of allelic frequencies to estimate the strength of positive selection. Adaptation turns out to be quite rapid, indicating strong selection acting simultaneously at multiple regions of the genome, with selection coefficients of up to 0.27. High divergence between marine and freshwater genotypes, lack of reduction in polymorphism in regions responsible for adaptation, and high frequencies of freshwater alleles observed even in young freshwater populations are all consistent with rapid assembly of G. aculeatus freshwater genotypes from pre-existing genomic regions of adaptive variation, with strong selection that favors this assembly acting simultaneously at multiple loci. PMID:25299485

Terekhanova, Nadezhda V.; Logacheva, Maria D.; Penin, Aleksey A.; Neretina, Tatiana V.; Barmintseva, Anna E.; Bazykin, Georgii A.; Kondrashov, Alexey S.; Mugue, Nikolai S.

2014-01-01

281

The Complete Chloroplast Genome of Banana (Musa acuminata, Zingiberales): Insight into Plastid Monocotyledon Evolution  

PubMed Central

Background Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. Methodology/Principal Findings The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp) and a Small Single Copy region (SSC, 10,768 bp) separated by Inverted Repeat regions (IRs, 35,433 bp). Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1) and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. Conclusion The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas. PMID:23840670

Martin, Guillaume; Baurens, Franc-Christophe; Cardi, Celine; Aury, Jean-Marc; D'Hont, Angelique

2013-01-01

282

Recombination drives genome evolution in outbreak-related Legionella pneumophila isolates.  

PubMed

Legionella pneumophila is a strictly environmental pathogen and the etiological agent of legionellosis. It is known that non-vertical processes have a major role in the short-term evolution of pathogens, but little is known about the relevance of these and other processes in environmental bacteria. We report the whole-genome sequencing of 69 L. pneumophila strains linked to recurrent outbreaks in a single location (Alcoy, Spain) over 11 years. We found some examples where the genome sequences of isolates of the same sequence type and outbreak did not cluster together and were more closely related to sequences from different outbreaks. Our analyses identify 16 recombination events responsible for almost 98% of the SNPs detected in the core genome and an apparent acceleration in the evolutionary rate. These results have profound implications for the understanding of microbial populations and for public health interventions in Legionella outbreak investigations. PMID:25282102

Snchez-Bus, Leonor; Comas, Iaki; Jorques, Guillermo; Gonzlez-Candelas, Fernando

2014-11-01

283

Finite Genome Length Corrections for the Mean Fitness and Gene Probabilities in Evolution Models  

NASA Astrophysics Data System (ADS)

Using the Hamilton-Jacobi equation approach to study genomes of length L, we obtain 1/ L corrections for the steady state population distributions and mean fitness functions for horizontal gene transfer model, as well as for the diploid evolution model with general fitness landscapes. Our numerical solutions confirm the obtained analytic equations. Our method could be applied to the general case of nonlinear Markov models.

Kirakosyan, Zara; Saakian, David B.; Hu, Chin-Kun

2011-07-01

284

Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes.  

PubMed

Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species. PMID:25047803

Lin, Yongxiang; Cheng, Ying; Jin, Jing; Jin, Xiaolei; Jiang, Haiyang; Yan, Hanwei; Cheng, Beijiu

2014-01-01

285

Comparative genome sequencing of drosophila pseudoobscura: Chromosomal, gene and cis-element evolution  

SciTech Connect

The genome sequence of a second fruit fly, D. pseudoobscura, presents an opportunity for comparative analysis of a primary model organism D. melanogaster. The vast majority of Drosophila genes have remained on the same arm, but within each arm gene order has been extensively reshuffled leading to the identification of approximately 1300 syntenic blocks. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 35 My since divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome wide average consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than control sequences between the species but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a picture of repeat mediated chromosomal rearrangement, and high co-adaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.

Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Todd, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catherine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenee; Verduzco, Daniel; Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.

2004-04-01

286

Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling  

PubMed Central

Background The Amoebozoa constitute one of the primary divisions of eukaryotes, encompassing taxa of both biomedical and evolutionary importance, yet its genomic diversity remains largely unsampled. Here we present an analysis of a whole genome assembly of Acanthamoeba castellanii (Ac) the first representative from a solitary free-living amoebozoan. Results Ac encodes 15,455 compact intron-rich genes, a significant number of which are predicted to have arisen through inter-kingdom lateral gene transfer (LGT). A majority of the LGT candidates have undergone a substantial degree of intronization and Ac appears to have incorporated them into established transcriptional programs. Ac manifests a complex signaling and cell communication repertoire, including a complete tyrosine kinase signaling toolkit and a comparable diversity of predicted extracellular receptors to that found in the facultatively multicellular dictyostelids. An important environmental host of a diverse range of bacteria and viruses, Ac utilizes a diverse repertoire of predicted pattern recognition receptors, many with predicted orthologous functions in the innate immune systems of higher organisms. Conclusions Our analysis highlights the important role of LGT in the biology of Ac and in the diversification of microbial eukaryotes. The early evolution of a key signaling facility implicated in the evolution of metazoan multicellularity strongly argues for its emergence early in the Unikont lineage. Overall, the availability of an Ac genome should aid in deciphering the biology of the Amoebozoa and facilitate functional genomic studies in this important model organism and environmental host. PMID:23375108

2013-01-01

287

Mechanisms of Gene Duplication and Translocation and Progress towards Understanding Their Relative Contributions to Animal Genome Evolution  

PubMed Central

Duplication of genetic material is clearly a major route to genetic change, with consequences for both evolution and disease. A variety of forms and mechanisms of duplication are recognised, operating across the scales of a few base pairs upto entire genomes. With the ever-increasing amounts of gene and genome sequence data that are becoming available, our understanding of the extent of duplication is greatly improving, both in terms of the scales of duplication events as well as their rates of occurrence. An accurate understanding of these processes is vital if we are to properly understand important events in evolution as well as mechanisms operating at the level of genome organisation. Here we will focus on duplication in animal genomes and how the duplicated sequences are distributed, with the aim of maintaining a focus on principles of evolution and organisation that are most directly applicable to the shaping of our own genome. PMID:22919542

Mendivil Ramos, Olivia; Ferrier, David E. K.

2012-01-01

288

Strict Host-Symbiont Cospeciation and Reductive Genome Evolution in Insect Gut Bacteria  

PubMed Central

Host-symbiont cospeciation and reductive genome evolution have been identified in obligate endocellular insect symbionts, but no such example has been identified from extracellular ones. Here we first report such a case in stinkbugs of the family Plataspidae, wherein a specific gut bacterium is vertically transmitted via symbiont capsule. In all of the plataspid species, females produced symbiont capsules upon oviposition and their gut exhibited specialized traits for capsule production. Phylogenetic analysis showed that the plataspid symbionts constituted a distinct group in the ?-Proteobacteria, whose sister group was the aphid obligate endocellular symbionts Buchnera. Removal of the symbionts resulted in retarded growth, mortality, and sterility of the insects. The host phylogeny perfectly agreed with the symbiont phylogeny, indicating strict host-symbiont cospeciation despite the extracellular association. The symbionts exhibited AT-biased nucleotide composition, accelerated molecular evolution, and reduced genome size, as has been observed in obligate endocellular insect symbionts. These findings suggest that not the endocellular conditions themselves but the population genetic attributes of the vertically transmitted symbionts are probably responsible for the peculiar genetic traits of these insect symbionts. We proposed the designation Candidatus Ishikawaella capsulata for the plataspid symbionts. The plataspid stinkbugs, wherein the host-symbiont associations can be easily manipulated, provide a novel system that enables experimental approaches to previously untouched aspects of the insect-microbe mutualism. Furthermore, comparative analyses of the sister groups, the endocellular Buchnera and the extracellular Ishikawaella, would lead to insights into how the different symbiotic lifestyles have affected their genomic evolution. PMID:17032065

Hosokawa, Takahiro; Kikuchi, Yoshitomo; Nikoh, Naruo; Shimada, Masakazu; Fukatsu, Takema

2006-01-01

289

Getting a better picture of microbial evolution en route to a network of genomes  

PubMed Central

Most current thinking about evolution is couched in the concept of trees. The notion of a tree with recursively bifurcating branches representing recurrent divergence events is a plausible metaphor to describe the evolution of multicellular organisms like vertebrates or land plants. But if we try to force the tree metaphor onto the whole of the evolutionary process, things go badly awry, because the more closely we inspect microbial genomes through the looking glass of gene and genome sequence comparisons, the smaller the amount of the data that fits the concept of a bifurcating tree becomes. That is mainly because among microbes, endosymbiosis and lateral gene transfer are important, two mechanisms of natural variation that differ from the kind of natural variation that Darwin had in mind. For such reasons, when it comes to discussing the relationships among all living things, that is, including the microbes and all of their genes rather than just one or a select few, many biologists are now beginning to talk about networks rather than trees in the context of evolutionary relationships among microbial chromosomes. But talk is not enough. If we were to actually construct networks instead of trees to describe the evolutionary process, what would they look like? Here we consider endosymbiosis and an example of a network of genomes involving 181 sequenced prokaryotes and how that squares off with some ideas about early cell evolution. PMID:19571239

Dagan, Tal; Martin, William

2009-01-01

290

Genomic evidence for the emergence and evolution of pathogenicity and niche preferences in the genus campylobacter.  

PubMed

The genus Campylobacter includes some of the most relevant pathogens for human and animal health; the continuous effort in their characterization has also revealed new species putatively involved in different kind of infections. Nowadays, the available genomic data for the genus comprise a wide variety of species with different pathogenic potential and niche preferences. In this work, we contribute to enlarge this available information presenting the first genome for the species Campylobacter sputorum bv. sputorum and use this and the already sequenced organisms to analyze the emergence and evolution of pathogenicity and niche preferences among Campylobacter species. We found that campylobacters can be unequivocally distinguished in established and putative pathogens depending on their repertory of virulence genes, which have been horizontally acquired from other bacteria because the nonpathogenic Campylobacter ancestor emerged, and posteriorly interchanged between some members of the genus. Additionally, we demonstrated the role of both horizontal gene transfers and diversifying evolution in niche preferences, being able to distinguish genetic features associated to the tropism for oral, genital, and gastrointestinal tissues. In particular, we highlight the role of nonsynonymous evolution of disulphide bond proteins, the invasion antigen B (CiaB), and other secreted proteins in the determination of niche preferences. Our results arise from assessing the previously unmet goal of considering the whole available Campylobacter diversity for genome comparisons, unveiling notorious genetic features that could explain particular phenotypes and set the basis for future research in Campylobacter biology. PMID:25193310

Iraola, Gregorio; Prez, Ruben; Naya, Hugo; Paolicchi, Fernando; Pastor, Eugenia; Valenzuela, Sebastin; Calleros, Luca; Velilla, Alejandra; Hernndez, Martn; Morsella, Claudia

2014-09-01

291

Genomic Evidence for the Emergence and Evolution of Pathogenicity and Niche Preferences in the Genus Campylobacter  

PubMed Central

The genus Campylobacter includes some of the most relevant pathogens for human and animal health; the continuous effort in their characterization has also revealed new species putatively involved in different kind of infections. Nowadays, the available genomic data for the genus comprise a wide variety of species with different pathogenic potential and niche preferences. In this work, we contribute to enlarge this available information presenting the first genome for the species Campylobacter sputorum bv. sputorum and use this and the already sequenced organisms to analyze the emergence and evolution of pathogenicity and niche preferences among Campylobacter species. We found that campylobacters can be unequivocally distinguished in established and putative pathogens depending on their repertory of virulence genes, which have been horizontally acquired from other bacteria because the nonpathogenic Campylobacter ancestor emerged, and posteriorly interchanged between some members of the genus. Additionally, we demonstrated the role of both horizontal gene transfers and diversifying evolution in niche preferences, being able to distinguish genetic features associated to the tropism for oral, genital, and gastrointestinal tissues. In particular, we highlight the role of nonsynonymous evolution of disulphide bond proteins, the invasion antigen B (CiaB), and other secreted proteins in the determination of niche preferences. Our results arise from assessing the previously unmet goal of considering the whole available Campylobacter diversity for genome comparisons, unveiling notorious genetic features that could explain particular phenotypes and set the basis for future research in Campylobacter biology. PMID:25193310

Iraola, Gregorio; Perez, Ruben; Naya, Hugo; Paolicchi, Fernando; Pastor, Eugenia; Valenzuela, Sebastian; Calleros, Lucia; Velilla, Alejandra; Hernandez, Martin; Morsella, Claudia

2014-01-01

292

Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes  

Microsoft Academic Search

BACKGROUND: Comparative analysis of sequenced genomes reveals numerous instances of apparent horizontal gene transfer (HGT), at least in prokaryotes, and indicates that lineage-specific gene loss might have been even more common in evolution. This complicates the notion of a species tree, which needs to be re-interpreted as a prevailing evolutionary trend, rather than the full depiction of evolution, and makes

Boris G Mirkin; Trevor I Fenner; M. Y. Galperin; Eugene V Koonin

2003-01-01

293

Expanding the diversity of mycobacteriophages: insights into genome architecture and evolution.  

PubMed

Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists. PMID:21298013

Pope, Welkin H; Jacobs-Sera, Deborah; Russell, Daniel A; Peebles, Craig L; Al-Atrache, Zein; Alcoser, Turi A; Alexander, Lisa M; Alfano, Matthew B; Alford, Samantha T; Amy, Nichols E; Anderson, Marie D; Anderson, Alexander G; Ang, Andrew A S; Ares, Manuel; Barber, Amanda J; Barker, Lucia P; Barrett, Jonathan M; Barshop, William D; Bauerle, Cynthia M; Bayles, Ian M; Belfield, Katherine L; Best, Aaron A; Borjon, Agustin; Bowman, Charles A; Boyer, Christine A; Bradley, Kevin W; Bradley, Victoria A; Broadway, Lauren N; Budwal, Keshav; Busby, Kayla N; Campbell, Ian W; Campbell, Anne M; Carey, Alyssa; Caruso, Steven M; Chew, Rebekah D; Cockburn, Chelsea L; Cohen, Lianne B; Corajod, Jeffrey M; Cresawn, Steven G; Davis, Kimberly R; Deng, Lisa; Denver, Dee R; Dixon, Breyon R; Ekram, Sahrish; Elgin, Sarah C R; Engelsen, Angela E; English, Belle E V; Erb, Marcella L; Estrada, Crystal; Filliger, Laura Z; Findley, Ann M; Forbes, Lauren; Forsyth, Mark H; Fox, Tyler M; Fritz, Melissa J; Garcia, Roberto; George, Zindzi D; Georges, Anne E; Gissendanner, Christopher R; Goff, Shannon; Goldstein, Rebecca; Gordon, Kobie C; Green, Russell D; Guerra, Stephanie L; Guiney-Olsen, Krysta R; Guiza, Bridget G; Haghighat, Leila; Hagopian, Garrett V; Harmon, Catherine J; Harmson, Jeremy S; Hartzog, Grant A; Harvey, Samuel E; He, Siping; He, Kevin J; Healy, Kaitlin E; Higinbotham, Ellen R; Hildebrandt, Erin N; Ho, Jason H; Hogan, Gina M; Hohenstein, Victoria G; Holz, Nathan A; Huang, Vincent J; Hufford, Ericka L; Hynes, Peter M; Jackson, Arrykka S; Jansen, Erica C; Jarvik, Jonathan; Jasinto, Paul G; Jordan, Tuajuanda C; Kasza, Tomas; Katelyn, Murray A; Kelsey, Jessica S; Kerrigan, Larisa A; Khaw, Daryl; Kim, Junghee; Knutter, Justin Z; Ko, Ching-Chung; Larkin, Gail V; Laroche, Jennifer R; Latif, Asma; Leuba, Kohana D; Leuba, Sequoia I; Lewis, Lynn O; Loesser-Casey, Kathryn E; Long, Courtney A; Lopez, A Javier; Lowery, Nicholas; Lu, Tina Q; Mac, Victor; Masters, Isaac R; McCloud, Jazmyn J; McDonough, Molly J; Medenbach, Andrew J; Menon, Anjali; Miller, Rachel; Morgan, Brandon K; Ng, Patrick C; Nguyen, Elvis; Nguyen, Katrina T; Nguyen, Emilie T; Nicholson, Kaylee M; Parnell, Lindsay A; Peirce, Caitlin E; Perz, Allison M; Peterson, Luke J; Pferdehirt, Rachel E; Philip, Seegren V; Pogliano, Kit; Pogliano, Joe; Polley, Tamsen; Puopolo, Erica J; Rabinowitz, Hannah S; Resiss, Michael J; Rhyan, Corwin N; Robinson, Yetta M; Rodriguez, Lauren L; Rose, Andrew C; Rubin, Jeffrey D; Ruby, Jessica A; Saha, Margaret S; Sandoz, James W; Savitskaya, Judith; Schipper, Dale J; Schnitzler, Christine E; Schott, Amanda R; Segal, J Bradley; Shaffer, Christopher D; Sheldon, Kathryn E; Shepard, Erica M; Shepardson, Jonathan W; Shroff, Madav K; Simmons, Jessica M; Simms, Erika F; Simpson, Brandy M; Sinclair, Kathryn M; Sjoholm, Robert L; Slette, Ingrid J; Spaulding, Blaire C; Straub, Clark L; Stukey, Joseph; Sughrue, Trevor; Tang, Tin-Yun; Tatyana, Lyons M; Taylor, Stephen B; Taylor, Barbara J; Temple, Louise M; Thompson, Jasper V; Tokarz, Michael P; Trapani, Stephanie E; Troum, Alexander P; Tsay, Jonathan; Tubbs, Anthony T; Walton, Jillian M; Wang, Danielle H; Wang, Hannah; Warner, John R; Weisser, Emilie G; Wendler, Samantha C; Weston-Hafer, Kathleen A; Whelan, Hilary M; Williamson, Kurt E; Willis, Angelica N; Wirtshafter, Hannah S; Wong, Theresa W; Wu, Phillip; Yang, Yun jeong; Yee, Brandon C; Zaidins, David A; Zhang, Bo; Zniga, Melina Y; Hendrix, Roger W; Hatfull, Graham F

2011-01-01

294

Genome Analysis of Minibacterium massiliensis Highlights the Convergent Evolution of Water-Living Bacteria  

PubMed Central

Filtration usually eliminates water-living bacteria. Here, we report on the complete genome sequence of Minibacterium massiliensis, a ?-proteobacteria that was recovered from 0.22-?m filtered water used for patients in the hospital. The unexpectedly large 4,110,251-nucleotide genome sequence of M. massiliensis was determined using the traditional shotgun sequencing approach. Bioinformatic analyses shows that the M. massiliensis genome sequence illustrates characteristic features of water-living bacteria, including overrepresentation of genes encoding transporters and transcription regulators. Phylogenomic analysis based on the gene content of available bacterial genome sequences displays a congruent evolution of water-living bacteria from various taxonomic origins, principally for genes involved in energy production and conversion, cell division, chromosome partitioning, and lipid metabolism. This phylogenomic clustering partially results from lateral gene transfer, which appears to be more frequent in water than in other environments. The M. massiliensis genome analyses strongly suggest that water-living bacteria are a common source for genes involved in heavy-metal resistance, antibiotics resistance, and virulence factors. PMID:17722982

Audic, Stphane; Robert, Catherine; Campagna, Bernard; Parinello, Hugues; Claverie, Jean-Michel; Raoult, Didier; Drancourt, Michel

2007-01-01

295

Intragenomic Evolution of a Transcriptional Enhancer in the Genome of Strongylocentrotus purpuratus  

PubMed Central

General principles for how genomic regulatory elements evolve to alter patterns of gene expression remain vague. The purpose of this study was to gain insights into the evolution of genomic regulatory elements by investigating the unique features of a transcriptional enhancer that directs Spec2a gene expression in Strongylocentrotus purpuratus. The Spec2a enhancer is embedded in a repetitive sequence family interspersed throughout the genome. We surveyed the genome and identified 274 of these sequences. They displayed a continuum of sequence divergence defining high and low divergence classes. Alignment of 52 most related to the Spec2a sequence revealed a complex pattern of rearrangements, insertions and deletions, and base-pair changes. A distance tree for the 52 sequences was constructed and correlated with enhancer activity. Unexpectedly, we found a wide range of activities. Notably, repetitive sequences lacking essential cis-elements found in the Spec2a enhancer still had strong activity. We identified short, conserved motifs within the repetitive sequences that may represent novel cis-regulatory elements. Many repetitive sequences with enhancer activity were found nearby genes, suggesting that they regulate gene expression. The results show that the repetitive sequences are rapidly evolving in the S. purpuratus genome and may serve as a renewable pool of transcriptional enhancers. PMID:21798176

Kiyama, Takae; Zhang, Jiexin; Liang, Shoudan; Liang, Shuguang; Klein, William H.

2012-01-01

296

Pseudomonas aeruginosa Genome Evolution in Patients and under the Hospital Environment  

PubMed Central

Pseudomonas aeruginosa is a Gram-negative environmental species and an opportunistic microorganism, establishing itself in vulnerable patients, such as those with cystic fibrosis (CF) or those hospitalized in intensive care units (ICU). It has become a major cause of nosocomial infections worldwide and a serious threat to Public Health because of overuse and misuse of antibiotics that have selected highly resistant strains against which very few therapeutic options exist. Herein is illustrated the intraclonal evolution of the genome of sequential isolates collected in a single CF patient from the early phase of pulmonary colonization to the fatal outcome. We also examined at the whole genome scale a pair of genotypically-related strains made of a drug susceptible, environmental isolate recovered from an ICU sink and of its multidrug resistant counterpart found to infect an ICU patient. Multiple genetic changes accumulated in the CF isolates over the disease time course including SNPs, deletion events and reduction of whole genome size. The strain isolated from the ICU patient displayed an increase in the genome size of 4.8% with major genetic rearrangements as compared to the initial environmental strain. The annotated genomes are given in free access in an interactive web application WallGene designed to facilitate large-scale comparative analysis and thus allowing investigators to explore homologies and syntenies between P. aeruginosa strains, here PAO1 and the five clinical strains described.

Lucchetti-Miganeh, Cline; Redelberger, David; Chambonnier, Gal; Rechenmann, Franois; Elsen, Sylvie; Bordi, Christophe; Jeannot, Katy; Attre, Ina; Plsiat, Patrick; de Bentzmann, Sophie

2014-01-01

297

Strong functional patterns in the evolution of eukaryotic genomes revealed by the reconstruction of ancestral protein domain repertoires  

Microsoft Academic Search

ABSTRACT: BACKGROUND: Genome size and complexity, as measured by the number of genes or protein domains, is remarkably similar in most extant eukaryotes and generally exhibits no correlation with their morphological complexity. Underlying trends in the evolution of the functional content and capabilities of different eukaryotic genomes might be hidden by simultaneous gains and losses of genes. RESULTS: We reconstructed

Christian M Zmasek; Adam Godzik

2011-01-01

298

On the Immortality of Television Sets: "Function" in the Human Genome According to the Evolution-Free Gospel  

E-print Network

On the Immortality of Television Sets: "Function" in the Human Genome According to the Evolution without selection, which implies that at least 80? 10¼ 70% of the genome is perfectly invulnerable Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits

Durand, Dannie

299

The evolution of chloroplast genes and genomes in ferns Paul G. Wolf Joshua P. Der Aaron M. Duffy  

E-print Network

The evolution of chloroplast genes and genomes in ferns Paul G. Wolf · Joshua P. Der · Aaron M little information from their sister group, the ferns. Here we describe several broad evolutionary patterns and processes in fern plastid genomes (plastomes), and we include some new plastome sequence data

300

Bistability of endosymbiont evolution of genome size and host sex control.  

PubMed

Eukaryotic organisms often harbor several genetic factors in their cytoplasm. These cytoplasmic genetic elements (CGEs) include both eukaryotic organelles (mitochondria, chloroplasts) and bacterial endosymbionts, which have evolved from free-living bacteria. A common feature of CGEs is their cytoplasmic inheritance from mother to offspring. A striking difference is that some CGEs have evolved a short genome size (e.g., animal mitochondria), while others cause a sex ratio distortion (SRD) in their hosts (e.g., Wolbachia). In this study, we sought to resolve the evolution of these endosymbiont properties using a population genetics approach. Our model divides the endosymbiont genome into a functional part and a part that can cause SRD, and our results indicate that the cytoplasmic inheritance system at the initiation of symbiosis plays a key role in determining the evolutionary trajectory of CGEs. We show that in endosymbiotic evolution, two states can be bistable, depending on the parameters. The evolution of the cytoplasmic inheritance system from biparental to uniparental can result in hysteresis in the evolution of cytoplasmic symbionts. PMID:22677398

Yamauchi, Atsushi; Telschow, Arndt

2012-09-21

301

Crystal structure of complete rhinovirus RNA polymerase suggests front loading of protein primer.  

PubMed

Picornaviruses utilize virally encoded RNA polymerase and a uridylylated protein primer to ensure replication of the entire viral genome. The molecular details of this mechanism are not well understood due to the lack of structural information. We report the crystal structure of human rhinovirus 16 3D RNA-dependent RNA polymerase (HRV16 3Dpol) at a 2.4-A resolution, representing the first complete polymerase structure from the Picornaviridae family. HRV16 3Dpol shares the canonical features of other known polymerase structures and contains an N-terminal region that tethers the fingers and thumb subdomains, forming a completely encircled active site cavity which is accessible through a small tunnel on the backside of the molecule. The small thumb subdomain contributes to the formation of a large cleft on the front face of the polymerase which also leads to the active site. The cleft appears large enough to accommodate a template:primer duplex during RNA elongation or a protein primer during the uridylylation stage of replication initiation. Based on the structural features of HRV16 3Dpo1 and the catalytic mechanism known for all polymerases, a front-loading model for uridylylation is proposed. PMID:15596823

Appleby, Todd C; Luecke, Hartmut; Shim, Jae Hoon; Wu, Jim Z; Cheney, I Wayne; Zhong, Weidong; Vogeley, Lutz; Hong, Zhi; Yao, Nanhua

2005-01-01

302

Rhinovirus-induced modulation of gene expression in bronchial epithelial cells from subjects with asthma.  

PubMed

Rhinovirus (RV) infections trigger asthma exacerbations. Genome-wide expression analysis of RV1A-infected primary bronchial epithelial cells from normal and asthmatic donors was performed to determine whether asthma is associated with a unique pattern of RV-induced gene expression. Virus replication rates were similar in cells from normal and asthmatic donors. Overall, RV downregulated 975 and upregulated 69 genes. Comparisons of transcriptional profiles generated from microarrays and confirmed by quantitative reverse transcription PCR and cluster analysis showed some up- and downregulated genes in asthma cells involved in immune responses (IL1B, IL1F9, IL24, and IFI44) and airway remodeling (LOXL2, MMP10, FN1). Notably, most of the asthma-related differences in RV-infected cells were also present in the cells before infection. These findings suggest that differences in RV-induced gene expression profiles of cells from normal and mild asthmatic subjects could affect the acute inflammatory response to RV, and subsequent airway repair and remodeling. PMID:19710636

Bochkov, Y A; Hanson, K M; Keles, S; Brockman-Schneider, R A; Jarjour, N N; Gern, J E

2010-01-01

303

CLINICAL SEVERITY OF RHINOVIRUS/ENTEROVIRUS COMPARED TO OTHER RESPIRATORY VIRUSES IN CHILDREN.  

E-print Network

?? Background: Human rhinovirus/enterovirus (HRV/ENT) infections are commonly identified in children with acute respiratory infections (ARIs), but data on their clinical severity remains limited. We (more)

Asner, Sandra Andrea, M.D

2013-01-01

304

Genomic evolution of the placenta using co-option and duplication and divergence  

PubMed Central

The invention of the placenta facilitated the evolution of mammals. How the placenta evolved from the simple structure observed in birds and reptiles into the complex organ that sustains human life is one of the great mysteries of evolution. By using a timecourse microarray analysis including the entire lifetime of the placenta, we uncover molecular and genomic changes that underlie placentation and find that two distinct evolutionary mechanisms were utilized during placental evolution in mice and human. Ancient genes involved in growth and metabolism were co-opted for use during early embryogenesis, likely enabling the accelerated development of extraembryonic tissues. Recently duplicated genes are utilized at later stages of placentation to meet the metabolic needs of a diverse range of pregnancy physiologies. Together, these mechanisms served to develop the specialized placenta, a novel structure that led to expansion of the eutherian mammal, including humankind. PMID:18340042

Knox, Kirstin; Baker, Julie C.

2008-01-01

305

Genome Diversity and Divergence in Drosophila mauritiana: Multiple Signatures of Faster X Evolution  

PubMed Central

Drosophila mauritiana is an Indian Ocean island endemic species that diverged from its two sister species, Drosophila simulans and Drosophila sechellia, approximately 240,000 years ago. Multiple forms of incomplete reproductive isolation have evolved among these species, including sexual, gametic, ecological, and intrinsic postzygotic barriers, with crosses among all three species conforming to Haldanes rule: F1 hybrid males are sterile and F1 hybrid females are fertile. Extensive genetic resources and the fertility of hybrid females have made D. mauritiana, in particular, an important model for speciation genetics. Analyses between D. mauritiana and both of its siblings have shown that the X chromosome makes a disproportionate contribution to hybrid male sterility. But why the X plays a special role in the evolution of hybrid sterility in these, and other, species remains an unsolved problem. To complement functional genetic analyses, we have investigated the population genomics of D. mauritiana, giving special attention to differences between the X and the autosomes. We present a de novo genome assembly of D. mauritiana annotated with RNAseq data and a whole-genome analysis of polymorphism and divergence from ten individuals. Our analyses show that, relative to the autosomes, the X chromosome has reduced nucleotide diversity but elevated nucleotide divergence; an excess of recurrent adaptive evolution at its protein-coding genes; an excess of recent, strong selective sweeps; and a large excess of satellite DNA. Interestingly, one of two centimorgan-scale selective sweeps on the D. mauritiana X chromosome spans a region containing two sex-ratio meiotic drive elements and a high concentration of satellite DNA. Furthermore, genes with roles in reproduction and chromosome biology are enriched among genes that have histories of recurrent adaptive protein evolution. Together, these genome-wide analyses suggest that genetic conflict and frequent positive natural selection on the X chromosome have shaped the molecular evolutionary history of D. mauritiana, refining our understanding of the possible causes of the large X-effect in speciation. PMID:25193308

Garrigan, Daniel; Kingan, Sarah B.; Geneva, Anthony J.; Vedanayagam, Jeffrey P.; Presgraves, Daven C.

2014-01-01

306

Whole genome duplication events in plant evolution reconstructed and predicted using myosin motor proteins  

PubMed Central

Background The evolution of land plants is characterized by whole genome duplications (WGD), which drove species diversification and evolutionary novelties. Detecting these events is especially difficult if they date back to the origin of the plant kingdom. Established methods for reconstructing WGDs include intra- and inter-genome comparisons, KS age distribution analyses, and phylogenetic tree constructions. Results By analysing 67 completely sequenced plant genomes 775 myosins were identified and manually assembled. Phylogenetic trees of the myosin motor domains revealed orthologous and paralogous relationships and were consistent with recent species trees. Based on the myosin inventories and the phylogenetic trees, we have identified duplications of the entire myosin motor protein family at timings consistent with 23 WGDs, that had been reported before. We also predict 6 WGDs based on further protein family duplications. Notably, the myosin data support the two recently reported WGDs in the common ancestor of all extant angiosperms. We predict single WGDs in the Manihot esculenta and Nicotiana benthamiana lineages, two WGDs for Linum usitatissimum and Phoenix dactylifera, and a triplication or two WGDs for Gossypium raimondii. Our data show another myosin duplication in the ancestor of the angiosperms that could be either the result of a single gene duplication or a remnant of a WGD. Conclusions We have shown that the myosin inventories in angiosperms retain evidence of numerous WGDs that happened throughout plant evolution. In contrast to other protein families, many myosins are still present in extant species. They are closely related and have similar domain architectures, and their phylogenetic grouping follows the genome duplications. Because of its broad taxonomic sampling the dataset provides the basis for reliable future identification of further whole genome duplications. PMID:24053117

2013-01-01

307

Detection of rhinovirus in induced sputum at exacerbation of chronic obstructive pulmonary disease  

Microsoft Academic Search

Detection of rhinovirus in induced sputum at exacerbation of chronic obstructive pulmonary disease. T.A.R. Seemungal, R. Harper-Owen, A. Bhowmik, D.J. Jeffries, J.A. Wedzicha. #ERS Journals Ltd 2000. ABSTRACT: Common colds are associated with exacerbations of chronic obstructive pulmonary disease (COPD). However, the role of the common cold virus (human rhinovirus) in the production of symptoms and lower airway inflammation at

T. A. R. Seemungal; R. Harper-Owen; A. Bhowmik; D. J. Jeffries; J. A. Wedzicha

2000-01-01

308

Outgrowth of the Bacterial Airway Microbiome after Rhinovirus Exacerbation of Chronic Obstructive Pulmonary Disease  

PubMed Central

Rationale: Rhinovirus infection is followed by significantly increased frequencies of positive, potentially pathogenic sputum cultures in chronic obstructive pulmonary disease (COPD). However, it remains unclear whether these represent de novo infections or an increased load of organisms from the complex microbial communities (microbiome) in the lower airways. Objectives: To investigate the effect of rhinovirus infection on the airway bacterial microbiome. Methods: Subjects with COPD (n = 14) and healthy control subjects with normal lung function (n = 17) were infected with rhinovirus. Induced sputum was collected at baseline before rhinovirus inoculation and again on Days 5, 15, and 42 after rhinovirus infection and DNA was extracted. The V3V5 region of the bacterial 16S ribosomal RNA gene was amplified and pyrosequenced, resulting in 370,849 high-quality reads from 112 of the possible 124 time points. Measurements and Main Results: At 15 days after rhinovirus infection, there was a sixfold increase in 16S copy number (P = 0.007) and a 16% rise in numbers of proteobacterial sequences, most notably in potentially pathogenic Haemophilus influenzae (P = 2.7 10-20), from a preexisting community. These changes occurred only in the sputum microbiome of subjects with COPD and were still evident 42 days after infection. This was in contrast to the temporal stability demonstrated in the microbiome of healthy smokers and nonsmokers. Conclusions: After rhinovirus infection, there is a rise in bacterial burden and a significant outgrowth of Haemophilus influenzae from the existing microbiota of subjects with COPD. This is not observed in healthy individuals. Our findings suggest that rhinovirus infection in COPD alters the respiratory microbiome and may precipitate secondary bacterial infections. PMID:23992479

Molyneaux, Philip L.; Mallia, Patrick; Cox, Michael J.; Footitt, Joseph; Willis-Owen, Saffron A. G.; Homola, Daniel; Trujillo-Torralbo, Maria-Belen; Elkin, Sarah; Kon, Onn Min; Cookson, William O. C.; Johnston, Sebastian L.

2013-01-01

309

Detection of Enteroviruses and Rhinoviruses in Clinical Specimens by PCR and Liquid-Phase Hybridization  

Microsoft Academic Search

A sensitive method based on PCR followed by liquid-phase hybridization for detection of enterovirus and rhinovirus RNAs in clinical specimens and cell culture supernatants is described. RNA was extracted from stool samples, throat swabs, nasopharyngeal aspirates, cerebrospinal fluid, urine, and plasma with a com- mercial phenol-guanidinium-chloroform reagent and purified on a polysulfone membrane, on which the reversetranscriptasereactionwasalsodone.Twosetsofoligonucleotideprimersfromthe5*noncodingregion ofpicornaviruseswereselectedforDNAamplificationof153-bp(enterovirus)and120-bp(rhinovirus)regions. Double-stranded amplicons

PEKKA HALONEN; ELISABET ROCHA; JOHN HIERHOLZER; BRIAN HOLLOWAY; TIMO HYYPIA; PERTTI HURSKAINEN; ANDMARK PALLANSCH; Wallac Oy

1995-01-01

310

A One-Step, Real-Time PCR Assay for Rapid Detection of Rhinovirus  

PubMed Central

One-step, real-time PCR assays for rhinovirus have been developed for a limited number of PCR amplification platforms and chemistries, and some exhibit cross-reactivity with genetically similar enteroviruses. We developed a one-step, real-time PCR assay for rhinovirus by using a sequence detection system (Applied Biosystems; Foster City, CA). The primers were designed to amplify a 120-base target in the noncoding region of picornavirus RNA, and a TaqMan (Applied Biosystems) degenerate probe was designed for the specific detection of rhinovirus amplicons. The PCR assay had no cross-reactivity with a panel of 76 nontarget nucleic acids, which included RNAs from 43 enterovirus strains. Excellent lower limits of detection relative to viral culture were observed for the PCR assay by using 38 of 40 rhinovirus reference strains representing different serotypes, which could reproducibly detect rhinovirus serotype 2 in viral transport medium containing 10 to 10,000 TCID50 (50% tissue culture infectious dose endpoint) units/ml of the virus. However, for rhinovirus serotypes 59 and 69, the PCR assay was less sensitive than culture. Testing of 48 clinical specimens from children with cold-like illnesses for rhinovirus by the PCR and culture assays yielded detection rates of 16.7% and 6.3%, respectively. For a batch of 10 specimens, the entire assay was completed in 4.5 hours. This real-time PCR assay enables detection of many rhinovirus serotypes with the Applied Biosystems reagent-instrument platform. PMID:19948820

Do, Duc H.; Laus, Stella; Leber, Amy; Marcon, Mario J.; Jordan, Jeanne A.; Martin, Judith M.; Wadowsky, Robert M.

2010-01-01

311

The Mitochondrial Genomes of the Early Land Plants Treubia lacunosa and Anomodon rugelii: Dynamic and Conservative Evolution  

PubMed Central

Early land plant mitochondrial genomes captured important changes of mitochondrial genome evolution when plants colonized land. The chondromes of seed plants show several derived characteristics, e.g., large genome size variation, rapid intra-genomic rearrangement, abundant introns, and highly variable levels of RNA editing. On the other hand, the chondromes of charophytic algae are still largely ancestral in these aspects, resembling those of early eukaryotes. When the transition happened has been a long-standing question in studies of mitochondrial genome evolution. Here we report complete mitochondrial genome sequences from an early-diverging liverwort, Treubia lacunosa, and a late-evolving moss, Anomodon rugelii. The two genomes, 151,983 and 104,239 base pairs in size respectively, contain standard sets of protein coding genes for respiration and protein synthesis, as well as nearly full sets of rRNA and tRNA genes found in the chondromes of the liverworts Marchantia polymorpha and Pleurozia purpurea and the moss Physcomitrella patens. The gene orders of these two chondromes are identical to those of the other liverworts and moss. Their intron contents, with all cis-spliced group I or group II introns, are also similar to those in the previously sequenced liverwort and moss chondromes. These five chondromes plus the two from the hornworts Phaeoceros laevis and Megaceros aenigmaticus for the first time allowed comprehensive comparative analyses of structure and organization of mitochondrial genomes both within and across the three major lineages of bryophytes. These analyses led to the conclusion that the mitochondrial genome experienced dynamic evolution in genome size, gene content, intron acquisition, gene order, and RNA editing during the origins of land plants and their major clades. However, evolution of this organellar genome has remained rather conservative since the origin and initial radiation of early land plants, except within vascular plants. PMID:21998706

Liu, Yang; Xue, Jia-Yu; Wang, Bin; Li, Libo; Qiu, Yin-Long

2011-01-01

312

Airborne rhinovirus detection and effect of ultraviolet irradiation on detection by a semi-nested RT-PCR assay  

Microsoft Academic Search

BackgroundRhinovirus, the most common cause of upper respiratory tract infections, has been implicated in asthma exacerbations and possibly\\u000a asthma deaths. Although the method of transmission of rhinoviruses is disputed, several studies have demonstrated that aerosol\\u000a transmission is a likely method of transmission among adults. As a first step in studies of possible airborne rhinovirus transmission,\\u000a we developed methods to detect

Theodore A Myatt; Sebastian L Johnston; Stephen Rudnick; Donald K Milton

2003-01-01

313

Microgeographic Genome Size Differentiation of the Carob Tree, Ceratonia siliqua, at Evolution Canyon, Israel  

PubMed Central

Background and Aims We tested whether the local differences in genome size recorded earlier in the wild barley, Hordeum spontaneum, at Evolution Canyon, Mount Carmel, Israel, can also be found in other organisms. As a model species for our test we chose the evergreen carob tree, Ceratonia siliqua. Methods Genome size was measured by means of DAPI flow cytometry. Key Results In adults, significantly more DNA was recorded in trees growing on the more illuminated, warmer, drier, microclimatically more fluctuating African south?facing slope than in trees on the opposite, less illuminated, cooler and more humid, European north?facing slope in spite of an interslope distance of only 100 m at the canyon bottom and 400 m at the top. The amount of DNA was significantly negatively correlated with leaf length and tree circumference. In seedlings, interslope differences in the amount of genome DNA were not found. In addition, the first cases of triploidy and tetraploidy were found in C. siliqua. Conclusions The data on C. siliqua at Evolution Canyon showed that local variability in the C?value exists in this species and that ecological stress might be a strong evolutionary driving force in shaping the amount of DNA. PMID:15026300

BURE, PETR; PAVL?EK, TOM; HOROV, LUCIE; NEVO, EVIATAR

2004-01-01

314

Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis  

SciTech Connect

Yersinia pestis, the causative agent of plague, is a highly uniform clone that diverged recently from the enteric pathogen Yersinia pseudotuberculosis. Despite their close genetic relationship, they differ radically in their pathogenicity and transmission. Here, we report the complete genomic sequence of Y. pseudotuberculosis IP32953 and its use for detailed genome comparisons with available Y. pestis sequences. Analyses of identified differences across a panel of Yersinia isolates from around the world reveal 32 Y. pestis chromosomal genes that, together with the two Y. pestis-specific plasmids, to our knowledge, represent the only new genetic material in Y. pestis acquired since the the divergence from Y. pseudotuberculosis. In contrast, 149 other pseudogenes (doubling the previous estimate) and 317 genes absent from Y. pestis were detected, indicating that as many as 13% of Y. pseudotuberculosis genes no longer function in Y. pestis. Extensive insertion sequence-mediated genome rearrangements and reductive evolution through massive gene loss, resulting in elimination and modification of preexisting gene expression pathways, appear to be more important than acquisition of genes in the evolution of Y. pestis. These results provide a sobering example of how a highly virulent epidemic clone can suddenly emerge from a less virulent, closely related progenitor.

Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Carniel, E. [Yersinia Research Unit, Institut Pasteur; Larimer, Frank W [ORNL; Lamerdin, Jane [Lawrence Livermore National Laboratory (LLNL); Vergez, Lisa [Lawrence Livermore National Laboratory (LLNL); Land, Miriam L [ORNL; Motin, V. L. [Lawrence Livermore National Laboratory (LLNL); Brubaker, R. R. [Michigan State University, East Lansing; Fowler, J. [Michigan State University, East Lansing; Hinnebusch, J. [Rocky Mountain Laboratories, Hamilton, MT; Marceau, M. [Institut National de la Sante etdela Recherche Medicale; Medigue, Claudine [Genoscope/Centre National de la Recherche Scientifique-Unite Mixte de Recherche; Simonet, M. [Institut National de la Sante etdela Recherche Medicale; Chenal-Francisque, V. [Yersinia Research Unit, Institut Pasteur; Souza, B. [Lawrence Livermore National Laboratory (LLNL); Dacheux, D. [Yersinia Research Unit, Institut Pasteur; Elliott, J. M. [Lawrence Livermore National Laboratory (LLNL); Derbise, A. [Yersinia Research Unit, Institut Pasteur; Hauser, Loren John [ORNL; Garcia, Emilio [Lawrence Livermore National Laboratory (LLNL)

2004-09-01

315

Whole Genome Analysis of Leptospira licerasiae Provides Insight into Leptospiral Evolution and Pathogenicity  

PubMed Central

The whole genome analysis of two strains of the first intermediately pathogenic leptospiral species to be sequenced (Leptospira licerasiae strains VAR010 and MMD0835) provides insight into their pathogenic potential and deepens our understanding of leptospiral evolution. Comparative analysis of eight leptospiral genomes shows the existence of a core leptospiral genome comprising 1547 genes and 452 conserved genes restricted to infectious species (including L. licerasiae) that are likely to be pathogenicity-related. Comparisons of the functional content of the genomes suggests that L. licerasiae retains several proteins related to nitrogen, amino acid and carbohydrate metabolism which might help to explain why these Leptospira grow well in artificial media compared with pathogenic species. L. licerasiae strains VAR010T and MMD0835 possess two prophage elements. While one element is circular and shares homology with LE1 of L. biflexa, the second is cryptic and homologous to a previously identified but unnamed region in L. interrogans serovars Copenhageni and Lai. We also report a unique O-antigen locus in L. licerasiae comprised of a 6-gene cluster that is unexpectedly short compared with L. interrogans in which analogous regions may include >90 such genes. Sequence homology searches suggest that these genes were acquired by lateral gene transfer (LGT). Furthermore, seven putative genomic islands ranging in size from 5 to 36 kb are present also suggestive of antecedent LGT. How Leptospira become naturally competent remains to be determined, but considering the phylogenetic origins of the genes comprising the O-antigen cluster and other putative laterally transferred genes, L. licerasiae must be able to exchange genetic material with non-invasive environmental bacteria. The data presented here demonstrate that L. licerasiae is genetically more closely related to pathogenic than to saprophytic Leptospira and provide insight into the genomic bases for its infectiousness and its unique antigenic characteristics. PMID:23145189

Selengut, Jeremy D.; Harkins, Derek M.; Patra, Kailash P.; Moreno, Angelo; Lehmann, Jason S.; Purushe, Janaki; Sanka, Ravi; Torres, Michael; Webster, Nicholas J.; Vinetz, Joseph M.; Matthias, Michael A.

2012-01-01

316

Differential Genome Evolution Between Companion Symbionts in an Insect-Bacterial Symbiosis  

PubMed Central

ABSTRACT Obligate symbioses with bacteria allow insects to feed on otherwise unsuitable diets. Some symbionts have extremely reduced genomes and have lost many genes considered to be essential in other bacteria. To understand how symbiont genome degeneration proceeds, we compared the genomes of symbionts in two leafhopper species, Homalodisca vitripennis (glassy-winged sharpshooter [GWSS]) and Graphocephala atropunctata (blue-green sharpshooter [BGSS]) (Hemiptera: Cicadellidae). Each host species is associated with the anciently acquired Candidatus Sulcia muelleri (Bacteroidetes) and the more recently acquired Candidatus Baumannia cicadellinicola (Gammaproteobacteria). BGSS Ca. Baumannia retains 89 genes that are absent from GWSS Ca. Baumannia; these underlie central cellular functions, including cell envelope biogenesis, cellular replication, and stress response. In contrast, Ca. Sulcia strains differ by only a few genes. Although GWSS Ca. Baumannia cells are spherical or pleomorphic (a convergent trait of obligate symbionts), electron microscopy reveals that BGSS Ca. Baumannia maintains a rod shape, possibly due to its retention of genes involved in cell envelope biogenesis and integrity. Phylogenomic results suggest that Ca. Baumannia is derived from the clade consisting of Sodalis and relatives, a group that has evolved symbiotic associations with numerous insect hosts. Finally, the rates of synonymous and nonsynonymous substitutions are higher in Ca. Baumannia than in Ca. Sulcia, which may be due to a lower mutation rate in the latter. Taken together, our results suggest that the two Ca. Baumannia genomes represent different stages of genome reduction in which many essential functions are being lost and likely compensated by hosts. Ca. Sulcia exhibits much greater genome stability and slower sequence evolution, although the mechanisms underlying these differences are poorly understood. PMID:25271287

McCutcheon, John P.; MacDonald, Bradon R.; Romanovicz, Dwight; Moran, Nancy A.

2014-01-01

317

On the genome constitution and evolution of intermediate wheatgrass (Thinopyrum intermedium: Poaceae, Triticeae)  

PubMed Central

Background The wheat tribe Triticeae (Poaceae) is a diverse group of grasses representing a textbook example of reticulate evolution. Apart from globally important grain crops, there are also wild grasses which are of great practical value. Allohexaploid intermediate wheatgrass, Thinopyrum intermedium (2n = 6x = 42), possesses many desirable agronomic traits that make it an invaluable source of genetic material useful in wheat improvement. Although the identification of its genomic components has been the object of considerable investigation, the complete genomic constitution and its potential variability are still being unravelled. To identify the genomic constitution of this allohexaploid, four accessions of intermediate wheatgrass from its native area were analysed by sequencing of chloroplast trnL-F and partial nuclear GBSSI, and genomic in situ hybridization. Results The results confirmed the allopolyploid origin of Thinopyrum intermedium and revealed new aspects in its genomic composition. Genomic heterogeneity suggests a more complex origin of the species than would be expected if it originated through allohexaploidy alone. While Pseudoroegneria is the most probable maternal parent of the accessions analysed, nuclear GBSSI sequences suggested the contribution of distinct lineages corresponding to the following present-day genera: Pseudoroegneria, Dasypyrum, Taeniatherum, Aegilops and Thinopyrum. Two subgenomes of the hexaploid have most probably been contributed by Pseudoroegneria and Dasypyrum, but the identity of the third subgenome remains unresolved satisfactorily. Possibly it is of hybridogenous origin, with contributions from Thinopyrum and Aegilops. Surprising diversity of GBSSI copies corresponding to a Dasypyrum-like progenitor indicates either multiple contributions from different sources close to Dasypyrum and maintenance of divergent copies or the presence of divergent paralogs, or a combination of both. Taeniatherum-like GBSSI copies are most probably pseudogenic, and the mode of their acquisition by Th. intermedium remains unclear. Conclusions Hybridization has played a key role in the evolution of the Triticeae. Transfer of genetic material via extensive interspecific hybridization and/or introgression could have enriched the species' gene pools significantly. We have shown that the genomic heterogeneity of intermediate wheatgrass is higher than has been previously assumed, which is of particular concern to wheat breeders, who frequently use it as a source of desirable traits in wheat improvement. PMID:21592357

2011-01-01

318

Analyses of pig genomes provide insight into porcine demography and evolution.  

PubMed

For 10,000?years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ?1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model. PMID:23151582

Groenen, Martien A M; Archibald, Alan L; Uenishi, Hirohide; Tuggle, Christopher K; Takeuchi, Yasuhiro; Rothschild, Max F; Rogel-Gaillard, Claire; Park, Chankyu; Milan, Denis; Megens, Hendrik-Jan; Li, Shengting; Larkin, Denis M; Kim, Heebal; Frantz, Laurent A F; Caccamo, Mario; Ahn, Hyeonju; Aken, Bronwen L; Anselmo, Anna; Anthon, Christian; Auvil, Loretta; Badaoui, Bouabid; Beattie, Craig W; Bendixen, Christian; Berman, Daniel; Blecha, Frank; Blomberg, Jonas; Bolund, Lars; Bosse, Mirte; Botti, Sara; Bujie, Zhan; Bystrom, Megan; Capitanu, Boris; Carvalho-Silva, Denise; Chardon, Patrick; Chen, Celine; Cheng, Ryan; Choi, Sang-Haeng; Chow, William; Clark, Richard C; Clee, Christopher; Crooijmans, Richard P M A; Dawson, Harry D; Dehais, Patrice; De Sapio, Fioravante; Dibbits, Bert; Drou, Nizar; Du, Zhi-Qiang; Eversole, Kellye; Fadista, Joo; Fairley, Susan; Faraut, Thomas; Faulkner, Geoffrey J; Fowler, Katie E; Fredholm, Merete; Fritz, Eric; Gilbert, James G R; Giuffra, Elisabetta; Gorodkin, Jan; Griffin, Darren K; Harrow, Jennifer L; Hayward, Alexander; Howe, Kerstin; Hu, Zhi-Liang; Humphray, Sean J; Hunt, Toby; Hornshj, Henrik; Jeon, Jin-Tae; Jern, Patric; Jones, Matthew; Jurka, Jerzy; Kanamori, Hiroyuki; Kapetanovic, Ronan; Kim, Jaebum; Kim, Jae-Hwan; Kim, Kyu-Won; Kim, Tae-Hun; Larson, Greger; Lee, Kyooyeol; Lee, Kyung-Tai; Leggett, Richard; Lewin, Harris A; Li, Yingrui; Liu, Wansheng; Loveland, Jane E; Lu, Yao; Lunney, Joan K; Ma, Jian; Madsen, Ole; Mann, Katherine; Matthews, Lucy; McLaren, Stuart; Morozumi, Takeya; Murtaugh, Michael P; Narayan, Jitendra; Nguyen, Dinh Truong; Ni, Peixiang; Oh, Song-Jung; Onteru, Suneel; Panitz, Frank; Park, Eung-Woo; Park, Hong-Seog; Pascal, Geraldine; Paudel, Yogesh; Perez-Enciso, Miguel; Ramirez-Gonzalez, Ricardo; Reecy, James M; Rodriguez-Zas, Sandra; Rohrer, Gary A; Rund, Lauretta; Sang, Yongming; Schachtschneider, Kyle; Schraiber, Joshua G; Schwartz, John; Scobie, Linda; Scott, Carol; Searle, Stephen; Servin, Bertrand; Southey, Bruce R; Sperber, Goran; Stadler, Peter; Sweedler, Jonathan V; Tafer, Hakim; Thomsen, Bo; Wali, Rashmi; Wang, Jian; Wang, Jun; White, Simon; Xu, Xun; Yerle, Martine; Zhang, Guojie; Zhang, Jianguo; Zhang, Jie; Zhao, Shuhong; Rogers, Jane; Churcher, Carol; Schook, Lawrence B

2012-11-15

319

Plant Mitochondrial Genome Evolution Can Be Explained by DNA Repair Mechanisms  

PubMed Central

Plant mitochondrial genomes are notorious for their large and variable size, nonconserved open reading frames of unknown function, and high rates of rearrangement. Paradoxically, the mutation rates are very low. However, mutation rates can only be measured in sequences that can be aligneda very small part of plant mitochondrial genomes. Comparison of the complete mitochondrial genome sequences of two ecotypes of Arabidopsis thaliana allows the alignment of noncoding as well as coding DNA and estimation of the mutation rates in both. A recent chimeric duplication is also analyzed. A hypothesis is proposed that the mechanisms of plant mitochondrial DNA repair account for these features and includes different mechanisms in transcribed and nontranscribed regions. Within genes, a bias toward gene conversion would keep measured mutation rates low, whereas in noncoding regions, break-induced replication (BIR) explains the expansion and rearrangements. Both processes are types of double-strand break repair, but enhanced second-strand capture in transcribed regions versus BIR in nontranscribed regions can explain the two seemingly contradictory features of plant mitochondrial genome evolutionthe low mutation rates in genes and the striking expansions of noncoding sequences. PMID:23645599

Christensen, Alan C.

2013-01-01

320

Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle.  

PubMed

As top predators, falcons possess unique morphological, physiological and behavioral adaptations that allow them to be successful hunters: for example, the peregrine is renowned as the world's fastest animal. To examine the evolutionary basis of predatory adaptations, we sequenced the genomes of both the peregrine (Falco peregrinus) and saker falcon (Falco cherrug), and we present parallel, genome-wide evidence for evolutionary innovation and selection for a predatory lifestyle. The genomes, assembled using Illumina deep sequencing with greater than 100-fold coverage, are both approximately 1.2 Gb in length, with transcriptome-assisted prediction of approximately 16,200 genes for both species. Analysis of 8,424 orthologs in both falcons, chicken, zebra finch and turkey identified consistent evidence for genome-wide rapid evolution in these raptors. SNP-based inference showed contrasting recent demographic trajectories for the two falcons, and gene-based analysis highlighted falcon-specific evolutionary novelties for beak development and olfaction and specifically for homeostasis-related genes in the arid environment-adapted saker. PMID:23525076

Zhan, Xiangjiang; Pan, Shengkai; Wang, Junyi; Dixon, Andrew; He, Jing; Muller, Margit G; Ni, Peixiang; Hu, Li; Liu, Yuan; Hou, Haolong; Chen, Yuanping; Xia, Jinquan; Luo, Qiong; Xu, Pengwei; Chen, Ying; Liao, Shengguang; Cao, Changchang; Gao, Shukun; Wang, Zhaobao; Yue, Zhen; Li, Guoqing; Yin, Ye; Fox, Nick C; Wang, Jun; Bruford, Michael W

2013-05-01

321

Accelerated Evolution of Conserved Noncoding Sequences in theHuman Genome  

SciTech Connect

Genomic comparisons between human and distant, non-primatemammals are commonly used to identify cis-regulatory elements based onconstrained sequence evolution. However, these methods fail to detect"cryptic" functional elements, which are too weakly conserved amongmammals to distinguish from nonfunctional DNA. To address this problem,we explored the potential of deep intra-primate sequence comparisons. Wesequenced the orthologs of 558 kb of human genomic sequence, coveringmultiple loci involved in cholesterol homeostasis, in 6 nonhumanprimates. Our analysis identified 6 noncoding DNA elements displayingsignificant conservation among primates, but undetectable in more distantcomparisons. In vitro and in vivo tests revealed that at least three ofthese 6 elements have regulatory function. Notably, the mouse orthologsof these three functional human sequences had regulatory activity despitetheir lack of significant sequence conservation, indicating that they arecryptic ancestral cis-regulatory elements. These regulatory elementscould still be detected in a smaller set of three primate speciesincluding human, rhesus and marmoset. Since the human and rhesus genomesequences are already available, and the marmoset genome is activelybeing sequenced, the primate-specific conservation analysis describedhere can be applied in the near future on a whole-genome scale, tocomplement the annotation provided by more distant speciescomparisons.

Prambhakar, Shyam; Noonan, James P.; Paabo, Svante; Rubin, EdwardM.

2006-07-06

322

Genomic organization and evolution of immunoglobulin kappa gene enhancers and kappa deleting element in mammals.  

PubMed

We have studied the genomic structure and evolutionary pattern of immunoglobulin kappa deleting element (KDE) and three kappa enhancers (KE5', KE3'P, and KE3'D) in eleven mammalian genomic sequences. Our results show that the relative positions and the genomic organization of the KDE and the kappa enhancers are conserved in all mammals studied and have not been affected by the local rearrangements in the immunoglobulin kappa (IGK) light chain locus over a long evolutionary time ( approximately 120 million years of mammalian evolution). Our observations suggest that the sequence motifs in these regulatory elements have been conserved by purifying selection to achieve proper regulation of the expression of the IGK light chain genes. The conservation of the three enhancers in all mammals indicates that these species may use similar mechanisms to regulate IGK gene expression. However, some activities of the IGK enhancers might have evolved in the eutherian lineage. The presence of the three IGK enhancers, KDE, and other recombining elements (REs) in all mammals (including platypus) suggest that these genomic elements were in place before the mammalian radiation. PMID:19560204

Das, Sabyasachi; Nikolaidis, Nikolas; Nei, Masatoshi

2009-09-01

323

Analyses of pig genomes provide insight into porcine demography and evolution  

PubMed Central

For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ~1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model. PMID:23151582

Groenen, Martien A. M.; Archibald, Alan L.; Uenishi, Hirohide; Tuggle, Christopher K.; Takeuchi, Yasuhiro; Rothschild, Max F.; Rogel-Gaillard, Claire; Park, Chankyu; Milan, Denis; Megens, Hendrik-Jan; Li, Shengting; Larkin, Denis M.; Kim, Heebal; Frantz, Laurent A. F.; Caccamo, Mario; Ahn, Hyeonju; Aken, Bronwen L.; Anselmo, Anna; Anthon, Christian; Auvil, Loretta; Badaoui, Bouabid; Beattie, Craig W.; Bendixen, Christian; Berman, Daniel; Blecha, Frank; Blomberg, Jonas; Bolund, Lars; Bosse, Mirte; Botti, Sara; Bujie, Zhan; Bystrom, Megan; Capitanu, Boris; Silva, Denise Carvalho; Chardon, Patrick; Chen, Celine; Cheng, Ryan; Choi, Sang-Haeng; Chow, William; Clark, Richard C.; Clee, Christopher; Crooijmans, Richard P. M. A.; Dawson, Harry D.; Dehais, Patrice; De Sapio, Fioravante; Dibbits, Bert; Drou, Nizar; Du, Zhi-Qiang; Eversole, Kellye; Fadista, Joo; Fairley, Susan; Faraut, Thomas; Faulkner, Geoffrey J.; Fowler, Katie E.; Fredholm, Merete; Fritz, Eric; Gilbert, James G. R.; Giuffra, Elisabetta; Gorodkin, Jan; Griffin, Darren K.; Harrow, Jennifer L.; Hayward, Alexander; Howe, Kerstin; Hu, Zhi-Liang; Humphray, Sean J.; Hunt, Toby; Hornshj, Henrik; Jeon, Jin-Tae; Jern, Patric; Jones, Matthew; Jurka, Jerzy; Kanamori, Hiroyuki; Kapetanovic, Ronan; Kim, Jaebum; Kim, Jae-Hwan; Kim, Kyu-Won; Kim, Tae-Hun; Larson, Greger; Lee, Kyooyeol; Lee, Kyung-Tai; Leggett, Richard; Lewin, Harris A.; Li, Yingrui; Liu, Wansheng; Loveland, Jane E.; Lu, Yao; Lunney, Joan K.; Ma, Jian; Madsen, Ole; Mann, Katherine; Matthews, Lucy; McLaren, Stuart; Morozumi, Takeya; Murtaugh, Michael P.; Narayan, Jitendra; Nguyen, Dinh Truong; Ni, Peixiang; Oh, Song-Jung; Onteru, Suneel; Panitz, Frank; Park, Eung-Woo; Park, Hong-Seog; Pascal, Geraldine; Paudel, Yogesh; Perez-Enciso, Miguel; Ramirez-Gonzalez, Ricardo; Reecy, James M.; Zas, Sandra Rodriguez; Rohrer, Gary A.; Rund, Lauretta; Sang, Yongming; Schachtschneider, Kyle; Schraiber, Joshua G.; Schwartz, John; Scobie, Linda; Scott, Carol; Searle, Stephen; Servin, Bertrand; Southey, Bruce R.; Sperber, Goran; Stadler, Peter; Sweedler, Jonathan V.; Tafer, Hakim; Thomsen, Bo; Wali, Rashmi; Wang, Jian; Wang, Jun; White, Simon; Xu, Xun; Yerle, Martine; Zhang, Guojie; Zhang, Jianguo; Zhang, Jie; Zhao, Shuhong; Rogers, Jane; Churcher, Carol; Schook, Lawrence B.

2013-01-01

324

Comparative analysis of bat genomes provides insight into the evolution of flight and immunity.  

PubMed

Bats are the only mammals capable of sustained flight and are notorious reservoir hosts for some of the world's most highly pathogenic viruses, including Nipah, Hendra, Ebola, and severe acute respiratory syndrome (SARS). To identify genetic changes associated with the development of bat-specific traits, we performed whole-genome sequencing and comparative analyses of two distantly related species, fruit bat Pteropus alecto and insectivorous bat Myotis davidii. We discovered an unexpected concentration of positively selected genes in the DNA damage checkpoint and nuclear factor ?B pathways that may be related to the origin of flight, as well as expansion and contraction of important gene families. Comparison of bat genomes with other mammalian species has provided new insights into bat biology and evolution. PMID:23258410

Zhang, Guojie; Cowled, Christopher; Shi, Zhengli; Huang, Zhiyong; Bishop-Lilly, Kimberly A; Fang, Xiaodong; Wynne, James W; Xiong, Zhiqiang; Baker, Michelle L; Zhao, Wei; Tachedjian, Mary; Zhu, Yabing; Zhou, Peng; Jiang, Xuanting; Ng, Justin; Yang, Lan; Wu, Lijun; Xiao, Jin; Feng, Yue; Chen, Yuanxin; Sun, Xiaoqing; Zhang, Yong; Marsh, Glenn A; Crameri, Gary; Broder, Christopher C; Frey, Kenneth G; Wang, Lin-Fa; Wang, Jun

2013-01-25

325

The rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte.  

PubMed

The fungus Harpophora oryzae is a close relative of the pathogen Magnaporthe oryzae and a beneficial endosymbiont of wild rice. Here, we show that H. oryzae evolved from a pathogenic ancestor. The overall genomic structures of H. and M. oryzae were found to be similar. However, during interactions with rice, the expression of 11.7% of all genes showed opposing trends in the two fungi, suggesting differences in gene regulation. Moreover, infection patterns, triggering of host defense responses, signal transduction and nutritional preferences exhibited remarkable differentiation between the two fungi. In addition, the H. oryzae genome was found to contain thousands of loci of transposon-like elements, which led to the disruption of 929 genes. Our results indicate that the gain or loss of orphan genes, DNA duplications, gene family expansions and the frequent translocation of transposon-like elements have been important factors in the evolution of this endosymbiont from a pathogenic ancestor. PMID:25048173

Xu, Xi-Hui; Su, Zhen-Zhu; Wang, Chen; Kubicek, Christian P; Feng, Xiao-Xiao; Mao, Li-Juan; Wang, Jia-Ying; Chen, Chen; Lin, Fu-Cheng; Zhang, Chu-Long

2014-01-01

326

Developing insights into the mechanisms of evolution of bacterial pathogens from whole-genome sequences  

PubMed Central

Evolution of bacterial pathogen populations has been detected in a variety of ways including phenotypic tests, such as metabolic activity, reaction to antisera and drug resistance and genotypic tests that measure variation in chromosome structure, repetitive loci and individual gene sequences. While informative, these methods only capture a small subset of the total variation and, therefore, have limited resolution. Advances in sequencing technologies have made it feasible to capture whole-genome sequence variation for each sample under study, providing the potential to detect all changes at all positions in the genome from single nucleotide changes to large-scale insertions and deletions. In this review, we focus on recent work that has applied this powerful new approach and summarize some of the advances that this has brought in our understanding of the details of how bacterial pathogens evolve. PMID:23075447

Bentley, Stephen D

2014-01-01

327

Comparative Methods for the Analysis of Gene-Expression Evolution: An Example Using Yeast Functional Genomic Data  

Microsoft Academic Search

Understanding the evolution of gene function is a primary challenge of modern evolutionary biology. Despite an expanding database from genomic and developmental studies, we are lacking quantitative methods for analyzing the evolution of some important measures of gene function, such as gene-expression patterns. Here, we introduce phylogenetic comparative methods to compare different models of gene-expression evolution in a maximum-likelihood framework.

Todd H. Oakley; Zhenglong Gu; Ehab Abouheif; Nipam H. Patel; Wen-Hsiung Li

2004-01-01

328

Deciphering neo-sex and B chromosome evolution by the draft genome of Drosophila albomicans  

PubMed Central

Background Drosophila albomicans is a unique model organism for studying both sex chromosome and B chromosome evolution. A pair of its autosomes comprising roughly 40% of the whole genome has fused to the ancient X and Y chromosomes only about 0.12 million years ago, thereby creating the youngest and most gene-rich neo-sex system reported to date. This species also possesses recently derived B chromosomes that show non-Mendelian inheritance and significantly influence fertility. Methods We sequenced male flies with B chromosomes at 124.5-fold genome coverage using next-generation sequencing. To characterize neo-Y specific changes and B chromosome sequences, we also sequenced inbred female flies derived from the same strain but without B's at 28.5-fold. Results We assembled a female genome and placed 53% of the sequence and 85% of the annotated proteins into specific chromosomes, by comparison with the 12 Drosophila genomes. Despite its very recent origin, the non-recombining neo-Y chromosome shows various signs of degeneration, including a significant enrichment of non-functional genes compared to the neo-X, and an excess of tandem duplications relative to other chromosomes. We also characterized a B-chromosome linked scaffold that contains an actively transcribed unit and shows sequence similarity to the subcentromeric regions of both the ancient X and the neo-X chromosome. Conclusions Our results provide novel insights into the very early stages of sex chromosome evolution and B chromosome origination, and suggest an unprecedented connection between the births of these two systems in D. albomicans. PMID:22439699

2012-01-01

329

Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae)  

PubMed Central

Background The genus Cuscuta L. (Convolvulaceae), commonly known as dodders, are epiphytic vines that invade the stems of their host with haustorial feeding structures at the points of contact. Although they lack expanded leaves, some species are noticeably chlorophyllous, especially as seedlings and in maturing fruits. Some species are reported as crop pests of worldwide distribution, whereas others are extremely rare and have local distributions and apparent niche specificity. A strong phylogenetic framework for this large genus is essential to understand the interesting ecological, morphological and molecular phenomena that occur within these parasites in an evolutionary context. Results Here we present a well-supported phylogeny of Cuscuta using sequences of the nuclear ribosomal internal transcribed spacer and plastid rps2, rbcL and matK from representatives across most of the taxonomic diversity of the genus. We use the phylogeny to interpret morphological and plastid genome evolution within the genus. At least three currently recognized taxonomic sections are not monophyletic and subgenus Cuscuta is unequivocally paraphyletic. Plastid genes are extremely variable with regards to evolutionary constraint, with rbcL exhibiting even higher levels of purifying selection in Cuscuta than photosynthetic relatives. Nuclear genome size is highly variable within Cuscuta, particularly within subgenus Grammica, and in some cases may indicate the existence of cryptic species in this large clade of morphologically similar species. Conclusion Some morphological characters traditionally used to define major taxonomic splits within Cuscuta are homoplastic and are of limited use in defining true evolutionary groups. Chloroplast genome evolution seems to have evolved in a punctuated fashion, with episodes of loss involving suites of genes or tRNAs followed by stabilization of gene content in major clades. Nearly all species of Cuscuta retain some photosynthetic ability, most likely for nutrient apportionment to their seeds, while complete loss of photosynthesis and possible loss of the entire chloroplast genome is limited to a single small clade of outcrossing species found primarily in western South America. PMID:18078516

McNeal, Joel R; Arumugunathan, Kathiravetpilla; Kuehl, Jennifer V; Boore, Jeffrey L; dePamphilis, Claude W

2007-01-01

330

Laboratory Evolution and Multi-platform Genome Re-sequencing of the Cellulolytic Actinobacterium Thermobifida fusca  

PubMed Central

Biological utilization of cellulose is a complex process involving the coordinated expression of different cellulases, often in a synergistic manner. One possible means of inducing an organism-level change in cellulase activity is to use laboratory adaptive evolution. In this study, evolved strains of the cellulolytic actinobacterium, Thermobifida fusca, were generated for two different scenarios: continuous exposure to cellobiose (strain muC) or alternating exposure to cellobiose and glucose (strain muS). These environmental conditions produced a phenotype specialized for growth on cellobiose (muC) and an adaptable, generalist phenotype (muS). Characterization of cellular phenotypes and whole genome re-sequencing were conducted for both the muC and muS strains. Phenotypically, the muC strain showed decreased cell yield over the course of evolution concurrent with decreased cellulase activity, increased intracellular ATP concentrations, and higher end-product secretions. The muS strain increased its cell yield for growth on glucose and exhibited a more generalist phenotype with higher cellulase activity and growth capabilities on different substrates. Whole genome re-sequencing identified 48 errors in the reference genome and 18 and 14 point mutations in the muC and muS strains, respectively. Among these mutations, the site mutation of Tfu_1867 was found to contribute the specialist phenotype and the site mutation of Tfu_0423 was found to contribute the generalist phenotype. By conducting and characterizing evolution experiments on Thermobifida fusca, we were able to show that evolutionary changes balance ATP energetic considerations with cellulase activity. Increased cellulase activity is achieved in stress environments (switching carbon sources), otherwise cellulase activity is minimized to conserve ATP. PMID:21914801

Deng, Yu; Fong, Stephen S.

2011-01-01

331

Evolution and phylogeny of the mud shrimps (Crustacea: Decapoda) revealed from complete mitochondrial genomes  

PubMed Central

Background The evolutionary history and relationships of the mud shrimps (Crustacea: Decapoda: Gebiidea and Axiidea) are contentious, with previous attempts revealing mixed results. The mud shrimps were once classified in the infraorder Thalassinidea. Recent molecular phylogenetic analyses, however, suggest separation of the group into two individual infraorders, Gebiidea and Axiidea. Mitochondrial (mt) genome sequence and structure can be especially powerful in resolving higher systematic relationships that may offer new insights into the phylogeny of the mud shrimps and the other decapod infraorders, and test the hypothesis of dividing the mud shrimps into two infraorders. Results We present the complete mitochondrial genome sequences of five mud shrimps, Austinogebia edulis, Upogebia major, Thalassina kelanang (Gebiidea), Nihonotrypaea thermophilus and Neaxius glyptocercus (Axiidea). All five genomes encode a standard set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a putative control region. Except for T. kelanang, mud shrimp mitochondrial genomes exhibited rearrangements and novel patterns compared to the pancrustacean ground pattern. Each of the two Gebiidea species (A. edulis and U. major) and two Axiidea species (N. glyptocercus and N. thermophiles) share unique gene order specific to their infraorders and analyses further suggest these two derived gene orders have evolved independently. Phylogenetic analyses based on the concatenated nucleotide and amino acid sequences of 13 protein-coding genes indicate the possible polyphyly of mud shrimps, supporting the division of the group into two infraorders. However, the infraordinal relationships among the Gebiidea and Axiidea, and other reptants are poorly resolved. The inclusion of mt genome from more taxa, in particular the reptant infraorders Polychelida and Glypheidea is required in further analysis. Conclusions Phylogenetic analyses on the mt genome sequences and the distinct gene orders provide further evidences for the divergence between the two mud shrimp infraorders, Gebiidea and Axiidea, corroborating previous molecular phylogeny and justifying their infraordinal status. Mitochondrial genome sequences appear to be promising markers for resolving phylogenetic issues concerning decapod crustaceans that warrant further investigations and our present study has also provided further information concerning the mt genome evolution of the Decapoda. PMID:23153176

2012-01-01

332

The dynamics of gene duplication and transposons in microbial genome evolution  

NASA Astrophysics Data System (ADS)

Evidence indicates that new functional genes emerge from a process of gene duplication coupled with selection for a novel function. Recently, Bergthorsson et al. proposed a model of continuous selection in order to describe this process. Here, we examine their proposed evolutionary scheme, by modeling gene evolution using a stochastic simulation. Our results indicate that this model, and a related one that includes horizontal gene transfer, can account for the distribution of transposons in microbial genomes, and reproduce the observed environmentally-driven spatial dependence of transposon density in marine bacteria.

Chia, Nicholas; Goldenfeld, Nigel

2010-03-01

333

The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution  

PubMed Central

An understanding of ctenophore biology is critical for reconstructing events that occurred early in animal evolution. Towards this goal, we have sequenced, assembled, and annotated the genome of the ctenophore Mnemiopsis leidyi. Our phylogenomic analyses of both amino acid positions and gene content suggests that ctenophores rather than sponges are the sister lineage to all other animals. Mnemiopsis lacks many of the genes found in bilaterian mesodermal cell types, suggesting that these cell types evolved independently. The set of neural genes in Mnemiopsis is similar to that of sponges, indicating that sponges may have lost a nervous system. These results present a new view of early animal evolution that accounts for major losses and/or gains of sophisticated cell types, including nerve and muscle cells. PMID:24337300

Ryan, Joseph F.; Pang, Kevin; Schnitzler, Christine E.; Nguyen, Anh-Dao; Moreland, R. Travis; Simmons, David K.; Koch, Bernard J.; Francis, Warren R.; Havlak, Paul; Smith, Stephen A.; Putnam, Nicholas H.; Haddock, Steven H. D.; Dunn, Casey W.; Wolfsberg, Tyra G.; Mullikin, James C.; Martindale, Mark Q.; Baxevanis, Andreas D.

2014-01-01

334

Evolution of oxygenic photosynthesis: genome-wide analysis of the OEC extrinsic proteins.  

PubMed

The appearance of oxygenic photosynthesis was a key event in the evolution of our green biosphere. Oxygen in the atmosphere is generally believed to come from the biomolecular water-splitting reaction that occurs in oxyphotosynthetic organisms catalysed by the oxygen evolving centre (OEC) of Photosystem II. Using knowledge from complete genomes and current databases, we have investigated the nature and composition of the extrinsic proteins forming the OECs of different organisms, with particular focus on the manganese stabilizing protein that is present in all known oxyphototrophs. This analysis traces the evolution of the extrinsic proteins from ancient cyanobacteria to higher plants and gives hints about the ancestral form of the OEC. PMID:14729215

De Las Rivas, Javier; Balsera, Mnica; Barber, James

2004-01-01

335

Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis  

PubMed Central

Background The mitochondrial genome of higher plants is unusually dynamic, with recombination and nonhomologous end-joining (NHEJ) activities producing variability in size and organization. Plant mitochondrial DNA also generally displays much lower nucleotide substitution rates than mammalian or yeast systems. Arabidopsis displays these features and expedites characterization of the mitochondrial recombination surveillance gene MSH1 (MutS 1 homolog), lending itself to detailed study of de novo mitochondrial genome activity. In the present study, we investigated the underlying basis for unusual plant features as they contribute to rapid mitochondrial genome evolution. Results We obtained evidence of double-strand break (DSB) repair, including NHEJ, sequence deletions and mitochondrial asymmetric recombination activity in Arabidopsis wild-type and msh1 mutants on the basis of data generated by Illumina deep sequencing and confirmed by DNA gel blot analysis. On a larger scale, with mitochondrial comparisons across 72 Arabidopsis ecotypes, similar evidence of DSB repair activity differentiated ecotypes. Forty-seven repeat pairs were active in DNA exchange in the msh1 mutant. Recombination sites showed asymmetrical DNA exchange within lengths of 50- to 556-bp sharing sequence identity as low as 85%. De novo asymmetrical recombination involved heteroduplex formation, gene conversion and mismatch repair activities. Substoichiometric shifting by asymmetrical exchange created the appearance of rapid sequence gain and loss in association with particular repeat classes. Conclusions Extensive mitochondrial genomic variation within a single plant species derives largely from DSB activity and its repair. Observed gene conversion and mismatch repair activity contribute to the low nucleotide substitution rates seen in these genomes. On a phenotypic level, these patterns of rearrangement likely contribute to the reproductive versatility of higher plants. PMID:21951689

2011-01-01

336

Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse.  

PubMed

The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr BP). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43?kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski's horse (E. f. przewalskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0-4.5?million years before present (Myr BP), twice the conventionally accepted time to the most recent common ancestor of the genus Equus. We also find that horse population size fluctuated multiple times over the past 2?Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski's and domestic horse populations diverged 38-72?kyr BP, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski's horse investigated. This supports the contention that Przewalski's horses represent the last surviving wild horse population. We find similar levels of genetic variation among Przewalski's and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski's horse. Such regions could correspond to loci selected early during domestication. PMID:23803765

Orlando, Ludovic; Ginolhac, Aurlien; Zhang, Guojie; Froese, Duane; Albrechtsen, Anders; Stiller, Mathias; Schubert, Mikkel; Cappellini, Enrico; Petersen, Bent; Moltke, Ida; Johnson, Philip L F; Fumagalli, Matteo; Vilstrup, Julia T; Raghavan, Maanasa; Korneliussen, Thorfinn; Malaspinas, Anna-Sapfo; Vogt, Josef; Szklarczyk, Damian; Kelstrup, Christian D; Vinther, Jakob; Dolocan, Andrei; Stenderup, Jesper; Velazquez, Amhed M V; Cahill, James; Rasmussen, Morten; Wang, Xiaoli; Min, Jiumeng; Zazula, Grant D; Seguin-Orlando, Andaine; Mortensen, Cecilie; Magnussen, Kim; Thompson, John F; Weinstock, Jacobo; Gregersen, Kristian; Red, Knut H; Eisenmann, Vra; Rubin, Carl J; Miller, Donald C; Antczak, Douglas F; Bertelsen, Mads F; Brunak, Sren; Al-Rasheid, Khaled A S; Ryder, Oliver; Andersson, Leif; Mundy, John; Krogh, Anders; Gilbert, M Thomas P; Kjr, Kurt; Sicheritz-Ponten, Thomas; Jensen, Lars Juhl; Olsen, Jesper V; Hofreiter, Michael; Nielsen, Rasmus; Shapiro, Beth; Wang, Jun; Willerslev, Eske

2013-07-01

337

Comparative genomics and evolution of regulons of the LacI-family transcription factors  

PubMed Central

DNA-binding transcription factors (TFs) are essential components of transcriptional regulatory networks in bacteria. LacI-family TFs (LacI-TFs) are broadly distributed among certain lineages of bacteria. The majority of characterized LacI-TFs sense sugar effectors and regulate carbohydrate utilization genes. The comparative genomics approaches enable in silico identification of TF-binding sites and regulon reconstruction. To study the function and evolution of LacI-TFs, we performed genomics-based reconstruction and comparative analysis of their regulons. For over 1300 LacI-TFs from over 270 bacterial genomes, we predicted their cognate DNA-binding motifs and identified target genes. Using the genome context and metabolic subsystem analyses of reconstructed regulons, we tentatively assigned functional roles and predicted candidate effectors for 78 and 67% of the analyzed LacI-TFs, respectively. Nearly 90% of the studied LacI-TFs are local regulators of sugar utilization pathways, whereas the remaining 125 global regulators control large and diverse sets of metabolic genes. The global LacI-TFs include the previously known regulators CcpA in Firmicutes, FruR in Enterobacteria, and PurR in Gammaproteobacteria, as well as the three novel regulatorsGluR, GapR, and PckRthat are predicted to control the central carbohydrate metabolism in three lineages of Alphaproteobacteria. Phylogenetic analysis of regulators combined with the reconstructed regulons provides a model of evolutionary diversification of the LacI protein family. The obtained genomic collection of in silico reconstructed LacI-TF regulons in bacteria is available in the RegPrecise database (http://regprecise.lbl.gov). It provides a framework for future structural and functional classification of the LacI protein family and identification of molecular determinants of the DNA and ligand specificity. The inferred regulons can be also used for functional gene annotation and reconstruction of sugar catabolic networks in diverse bacterial lineages. PMID:24966856

Ravcheev, Dmitry A.; Khoroshkin, Matvei S.; Laikova, Olga N.; Tsoy, Olga V.; Sernova, Natalia V.; Petrova, Svetlana A.; Rakhmaninova, Aleksandra B.; Novichkov, Pavel S.; Gelfand, Mikhail S.; Rodionov, Dmitry A.

2014-01-01

338

Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A  

PubMed Central

Background Xanthomonas oryzae pv. oryzae causes bacterial blight of rice (Oryza sativa L.), a major disease that constrains production of this staple crop in many parts of the world. We report here on the complete genome sequence of strain PXO99A and its comparison to two previously sequenced strains, KACC10331 and MAFF311018, which are highly similar to one another. Results The PXO99A genome is a single circular chromosome of 5,240,075 bp, considerably longer than the genomes of the other strains (4,941,439 bp and 4,940,217 bp, respectively), and it contains 5083 protein-coding genes, including 87 not found in KACC10331 or MAFF311018. PXO99A contains a greater number of virulence-associated transcription activator-like effector genes and has at least ten major chromosomal rearrangements relative to KACC10331 and MAFF311018. PXO99A contains numerous copies of diverse insertion sequence elements, members of which are associated with 7 out of 10 of the major rearrangements. A rapidly-evolving CRISPR (clustered regularly interspersed short palindromic repeats) region contains evidence of dozens of phage infections unique to the PXO99A lineage. PXO99A also contains a unique, near-perfect tandem repeat of 212 kilobases close to the replication terminus. Conclusion Our results provide striking evidence of genome plasticity and rapid evolution within Xanthomonas oryzae pv. oryzae. The comparisons point to sources of genomic variation and candidates for strain-specific adaptations of this pathogen that help to explain the extraordinary diversity of Xanthomonas oryzae pv. oryzae genotypes and races that have been isolated from around the world. PMID:18452608

Salzberg, Steven L; Sommer, Daniel D; Schatz, Michael C; Phillippy, Adam M; Rabinowicz, Pablo D; Tsuge, Seiji; Furutani, Ayako; Ochiai, Hirokazu; Delcher, Arthur L; Kelley, David; Madupu, Ramana; Puiu, Daniela; Radune, Diana; Shumway, Martin; Trapnell, Cole; Aparna, Gudlur; Jha, Gopaljee; Pandey, Alok; Patil, Prabhu B; Ishihara, Hiromichi; Meyer, Damien F; Szurek, Boris; Verdier, Valerie; Koebnik, Ralf; Dow, J Maxwell; Ryan, Robert P; Hirata, Hisae; Tsuyumu, Shinji; Won Lee, Sang; Ronald, Pamela C; Sonti, Ramesh V; Van Sluys, Marie-Anne; Leach, Jan E; White, Frank F; Bogdanove, Adam J

2008-01-01

339

The evolution of the avian genome as revealed by comparative molecular cytogenetics.  

PubMed

Birds are characterised by feathers, flight, a small genome and a very distinctive karyotype. Despite the large numbers of chromosomes, the diploid count of 2n approximately 80 has remained remarkably constant with 63% of birds where 2n = 74-86, 24% with 2n = 66-74 and extremes of 2n = 40 and 2n = 142. Of these, the most studied is the chicken (2n = 78), and molecular cytogenetic probes generated from this species have been used to further understand the evolution of the avian genome. The ancestral karyotype is, it appears, very similar to that of the chicken, with chicken chromosomes 1, 2, 3, 4q, 5, 6, 7, 8, 9, 4p and Z representing the ancestral avian chromosomes 1-10 + Z; chromosome 4 being the most ancient. Avian evolution occurred primarily in three stages: the divergence of the group represented by extant ratites (emu, ostrich etc.) from the rest; divergence of the Galloanserae (chicken, turkey, duck, goose etc.)--the most studied group; and divergence of the 'land' and 'water' higher birds. Other than sex chromosome differentiation in the first divergence there are no specific changes associated with any of these evolutionary milestones although certain families and orders have undergone multiple fusions (and some fissions), which has reduced their chromosome number; the Falconiformes are the best described. Most changes, overall, seem to involve chromosomes 1, 2, 4, 10 and Z where the Z changes are intrachromosomal; there are also some recurring (convergent) events. Of these, the most puzzling involves chromosomes 4 and 10, which appear to have undergone multiple fissions and/or fusions throughout evolution - three possible hypotheses are presented to explain the findings. We conclude by speculating as to the reasons for the strange behaviour of these chromosomes as well as the role of telomeres and nuclear organisation in avian evolution. PMID:17675846

Griffin, D K; Robertson, L B W; Tempest, H G; Skinner, B M

2007-01-01

340

Experimental evolution reveals genome-wide spectrum and dynamics of mutations in the rice blast fungus, Magnaporthe oryzae.  

PubMed

Knowledge on mutation processes is central to interpreting genetic analysis data as well as understanding the underlying nature of almost all evolutionary phenomena. However, studies on genome-wide mutational spectrum and dynamics in fungal pathogens are scarce, hindering our understanding of their evolution and biology. Here, we explored changes in the phenotypes and genome sequences of the rice blast fungus Magnaporthe oryzae during the forced in vitro evolution by weekly transfer of cultures on artificial media. Through combination of experimental evolution with high throughput sequencing technology, we found that mutations accumulate rapidly prior to visible phenotypic changes and that both genetic drift and selection seem to contribute to shaping mutational landscape, suggesting the buffering capacity of fungal genome against mutations. Inference of mutational effects on phenotypes through the use of T-DNA insertion mutants suggested that at least some of the DNA sequence mutations are likely associated with the observed phenotypic changes. Furthermore, our data suggest oxidative damages and UV as major sources of mutation during subcultures. Taken together, our work revealed important properties of original source of variation in the genome of the rice blast fungus. We believe that these results provide not only insights into stability of pathogenicity and genome evolution in plant pathogenic fungi but also a model in which evolution of fungal pathogens in natura can be comparatively investigated. PMID:23741492

Jeon, Junhyun; Choi, Jaeyoung; Lee, Gir-Won; Dean, Ralph A; Lee, Yong-Hwan

2013-01-01

341

Phylogeny and molecular evolution of the Acc1 gene within the StH genome species in Triticeae (Poaceae).  

PubMed

To estimate the phylogeny and molecular evolution of a single-copy gene encoding plastid acetyl-CoA carboxylase (Acc1) within the StH genome species, two Acc1 homoeologous sequences were isolated from nearly all the sampled StH genome species and were analyzed with those from 35 diploid taxa representing 19 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1) the StH genome species from the same areas or neighboring geographic regions are closely related to each other; (2) the Acc1 gene sequences of the StH genome species from North America and Eurasia are evolutionarily distinct; (3) Dasypyrum has contributed to the nuclear genome of Elymus repens and Elymus mutabilis; (4) the StH genome polyploids have higher levels of sequence diversity in the H genome homoeolog than the St genome homoeolog; and (5) the Acc1 sequence may evolve faster in the polyploid species than in the diploids. Our result provides some insight on evolutionary dynamics of duplicate Acc1 gene, the polyploidy speciation and phylogeny of the StH genome species. PMID:23911302

Fan, Xing; Sha, Li-Na; Wang, Xiao-Li; Zhang, Hai-Qin; Kang, Hou-Yang; Wang, Yi; Zhou, Yong-Hong

2013-10-15

342

Low-Complexity Regions in Plasmodium falciparum: Missing Links in the Evolution of an Extreme Genome  

PubMed Central

Over the past decade, attempts to explain the unusual size and prevalence of low-complexity regions (LCRs) in the proteins of the human malaria parasite Plasmodium falciparum have used both neutral and adaptive models. This past research has offered conflicting explanations for LCR characteristics and their role in, and influence on, the evolution of genome structure. Here we show that P. falciparum LCRs (PfLCRs) are not a single phenomenon, but rather consist of at least three distinct types of sequence, and this heterogeneity is the source of the conflict in the literature. Using molecular and population genetics, we show that these families of PfLCRs are evolving by different mechanisms. One of these families, named here the HighGC family, is of particular interest because these LCRs act as recombination hotspots, both in genes under positive selection for high levels of diversity which can be created by recombination (antigens) and those likely to be evolving neutrally or under negative selection (metabolic enzymes). We discuss how the discovery of these distinct species of PfLCRs helps to resolve previous contradictory studies on LCRs in malaria and contributes to our understanding of the evolution of the of the parasite's unusual genome. PMID:20427419

Zilversmit, Martine M.; Volkman, Sarah K.; DePristo, Mark A.; Wirth, Dyann F.; Awadalla, Philip; Hartl, Daniel L.

2010-01-01

343

Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution.  

PubMed

Mutualistic symbioses between eukaryotes and beneficial microorganisms of their microbiome play an essential role in nutrition, protection against disease, and development of the host. However, the impact of beneficial symbionts on the evolution of host genomes remains poorly characterized. Here we used the independent loss of the most widespread plant-microbe symbiosis, arbuscular mycorrhization (AM), as a model to address this question. Using a large phenotypic approach and phylogenetic analyses, we present evidence that loss of AM symbiosis correlates with the loss of many symbiotic genes in the Arabidopsis lineage (Brassicales). Then, by analyzing the genome and/or transcriptomes of nine other phylogenetically divergent non-host plants, we show that this correlation occurred in a convergent manner in four additional plant lineages, demonstrating the existence of an evolutionary pattern specific to symbiotic genes. Finally, we use a global comparative phylogenomic approach to track this evolutionary pattern among land plants. Based on this approach, we identify a set of 174 highly conserved genes and demonstrate enrichment in symbiosis-related genes. Our findings are consistent with the hypothesis that beneficial symbionts maintain purifying selection on host gene networks during the evolution of entire lineages. PMID:25032823

Delaux, Pierre-Marc; Varala, Kranthi; Edger, Patrick P; Coruzzi, Gloria M; Pires, J Chris; An, Jean-Michel

2014-07-01

344

Clonal evolution in breast cancer revealed by single nucleus genome sequencing.  

PubMed

Sequencing studies of breast tumour cohorts have identified many prevalent mutations, but provide limited insight into the genomic diversity within tumours. Here we developed a whole-genome and exome single cell sequencing approach called nuc-seq that uses G2/M nuclei to achieve 91% mean coverage breadth. We applied this method to sequence single normal and tumour nuclei from an oestrogen-receptor-positive (ER(+)) breast cancer and a triple-negative ductal carcinoma. In parallel, we performed single nuclei copy number profiling. Our data show that aneuploid rearrangements occurred early in tumour evolution and remained highly stable as the tumour masses clonally expanded. In contrast, point mutations evolved gradually, generating extensive clonal diversity. Using targeted single-molecule sequencing, many of the diverse mutations were shown to occur at low frequencies (<10%) in the tumour mass. Using mathematical modelling we found that the triple-negative tumour cells had an increased mutation rate (13.3), whereas the ER(+) tumour cells did not. These findings have important implications for the diagnosis, therapeutic treatment and evolution of chemoresistance in breast cancer. PMID:25079324

Wang, Yong; Waters, Jill; Leung, Marco L; Unruh, Anna; Roh, Whijae; Shi, Xiuqing; Chen, Ken; Scheet, Paul; Vattathil, Selina; Liang, Han; Multani, Asha; Zhang, Hong; Zhao, Rui; Michor, Franziska; Meric-Bernstam, Funda; Navin, Nicholas E

2014-08-14

345

Analysis of the African coelacanth genome sheds light on tetrapod evolution  

PubMed Central

It was a zoological sensation when a living specimen of the coelacanth was first discovered in 1938, as this lineage of lobe-finned fish was thought to have gone extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features . Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain, and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues demonstrate the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution. PMID:23598338

Amemiya, Chris T.; Alfoldi, Jessica; Lee, Alison P.; Fan, Shaohua; Philippe, Herve; MacCallum, Iain; Braasch, Ingo; Manousaki, Tereza; Schneider, Igor; Rohner, Nicolas; Organ, Chris; Chalopin, Domitille; Smith, Jeramiah J.; Robinson, Mark; Dorrington, Rosemary A.; Gerdol, Marco; Aken, Bronwen; Biscotti, Maria Assunta; Barucca, Marco; Baurain, Denis; Berlin, Aaron M.; Blatch, Gregory L.; Buonocore, Francesco; Burmester, Thorsten; Campbell, Michael S.; Canapa, Adriana; Cannon, John P.; Christoffels, Alan; De Moro, Gianluca; Edkins, Adrienne L.; Fan, Lin; Fausto, Anna Maria; Feiner, Nathalie; Forconi, Mariko; Gamieldien, Junaid; Gnerre, Sante; Gnirke, Andreas; Goldstone, Jared V.; Haerty, Wilfried; Hahn, Mark E.; Hesse, Uljana; Hoffmann, Steve; Johnson, Jeremy; Karchner, Sibel I.; Kuraku, Shigehiro; Lara, Marcia; Levin, Joshua Z.; Litman, Gary W.; Mauceli, Evan; Miyake, Tsutomu; Mueller, M. Gail; Nelson, David R.; Nitsche, Anne; Olmo, Ettore; Ota, Tatsuya; Pallavicini, Alberto; Panji, Sumir; Picone, Barbara; Ponting, Chris P.; Prohaska, Sonja J.; Przybylski, Dariusz; Saha, Nil Ratan; Ravi, Vydianathan; Ribeiro, Filipe J.; Sauka-Spengler, Tatjana; Scapigliati, Giuseppe; Searle, Stephen M. J.; Sharpe, Ted; Simakov, Oleg; Stadler, Peter F.; Stegeman, John J.; Sumiyama, Kenta; Tabbaa, Diana; Tafer, Hakim; Turner-Maier, Jason; van Heusden, Peter; White, Simon; Williams, Louise; Yandell, Mark; Brinkmann, Henner; Volff, Jean-Nicolas; Tabin, Clifford J.; Shubin, Neil; Schartl, Manfred; Jaffe, David; Postlethwait, John H.; Venkatesh, Byrappa; Di Palma, Federica; Lander, Eric S.; Meyer, Axel; Lindblad-Toh, Kerstin

2013-01-01

346

Analysis of horse genomes provides insight into the diversification and adaptive evolution of karyotype  

PubMed Central

Karyotypic diversification is more prominent in Equus species than in other mammals. Here, using next generation sequencing technology, we generated and de novo assembled quality genomes sequences for a male wild horse (Przewalski's horse) and a male domestic horse (Mongolian horse), with about 93-fold and 91-fold coverage, respectively. Portion of Y chromosome from wild horse assemblies (3?M bp) and Mongolian horse (2?M bp) were also sequenced and de novo assembled. We confirmed a Robertsonian translocation event through the wild horse's chromosomes 23 and 24, which contained sequences that were highly homologous with those on the domestic horse's chromosome 5. The four main types of rearrangement, insertion of unknown origin, inserted duplication, inversion, and relocation, are not evenly distributed on all the chromosomes, and some chromosomes, such as the X chromosome, contain more rearrangements than others, and the number of inversions is far less than the number of insertions and relocations in the horse genome. Furthermore, we discovered the percentages of LINE_L1 and LTR_ERV1 are significantly increased in rearrangement regions. The analysis results of the two representative Equus species genomes improved our knowledge of Equus chromosome rearrangement and karyotype evolution. PMID:24828444

Huang, Jinlong; Zhao, Yiping; Shiraigol, Wunierfu; Li, Bei; Bai, Dongyi; Ye, Weixing; Daidiikhuu, Dorjsuren; Yang, Lihua; Jin, Burenqiqige; Zhao, Qinan; Gao, Yahan; Wu, Jing; Bao, Wuyundalai; Li, Anaer; Zhang, Yuhong; Han, Haige; Bai, Haitang; Bao, Yanqing; Zhao, Lele; Zhai, Zhengxiao; Zhao, Wenjing; Sun, Zikui; Zhang, Yan; Meng, He; Dugarjaviin, Manglai

2014-01-01

347

Genomic imprinting in the development and evolution of psychotic spectrum conditions.  

PubMed

I review and evaluate genetic and genomic evidence salient to the hypothesis that the development and evolution of psychotic spectrum conditions have been mediated in part by alterations of imprinted genes expressed in the brain. Evidence from the genetics and genomics of schizophrenia, bipolar disorder, major depression, Prader-Willi syndrome, Klinefelter syndrome, and other neurogenetic conditions support the hypothesis that the etiologies of psychotic spectrum conditions commonly involve genetic and epigenetic imbalances in the effects of imprinted genes, with a bias towards increased relative effects from imprinted genes with maternal expression or other genes favouring maternal interests. By contrast, autistic spectrum conditions, including Kanner autism, Asperger syndrome, Rett syndrome, Turner syndrome, Angelman syndrome, and Beckwith-Wiedemann syndrome, commonly engender increased relative effects from paternally expressed imprinted genes, or reduced effects from genes favouring maternal interests. Imprinted-gene effects on the etiologies of autistic and psychotic spectrum conditions parallel the diametric effects of imprinted genes in placental and foetal development, in that psychotic spectrum conditions tend to be associated with undergrowth and relatively-slow brain development, whereas some autistic spectrum conditions involve brain and body overgrowth, especially in foetal development and early childhood. An important role for imprinted genes in the etiologies of psychotic and autistic spectrum conditions is consistent with neurodevelopmental models of these disorders, and with predictions from the conflict theory of genomic imprinting. PMID:18783362

Crespi, Bernard

2008-11-01

348

Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus  

PubMed Central

Inter-specific hybridization leading to abrupt speciation is a well-known, common mechanism in angiosperm evolution; only recently, however, have similar hybridization and speciation mechanisms been documented to occur frequently among the closely related group of sensu stricto Saccharomyces yeasts. The economically important lager beer yeast Saccharomyces pastorianus is such a hybrid, formed by the union of Saccharomyces cerevisiae and Saccharomyces bayanus-related yeasts; efforts to understand its complex genome, searching for both biological and brewing-related insights, have been underway since its hybrid nature was first discovered. It had been generally thought that a single hybridization event resulted in a unique S. pastorianus species, but it has been recently postulated that there have been two or more hybridization events. Here, we show that there may have been two independent origins of S. pastorianus strains, and that each independent groupdefined by characteristic genome rearrangements, copy number variations, ploidy differences, and DNA sequence polymorphismsis correlated with specific breweries and/or geographic locations. Finally, by reconstructing common ancestral genomes via array-CGH data analysis and by comparing representative DNA sequences of the S. pastorianus strains with those of many different S. cerevisiae isolates, we have determined that the most likely S. cerevisiae ancestral parent for each of the independent S. pastorianus groups was an ale yeast, with different, but closely related ale strains contributing to each groups parentage. PMID:18787083

Dunn, Barbara; Sherlock, Gavin

2008-01-01

349

Exon-phase symmetry and intrinsic structural disorder promote modular evolution in the human genome  

PubMed Central

A key signature of module exchange in the genome is phase symmetry of exons, suggestive of exon shuffling events that occurred without disrupting translation reading frame. At the protein level, intrinsic structural disorder may be another key element because disordered regions often serve as functional elements that can be effectively integrated into a protein structure. Therefore, we asked whether exon-phase symmetry in the human genome and structural disorder in the human proteome are connected, signalling such evolutionary mechanisms in the assembly of multi-exon genes. We found an elevated level of structural disorder of regions encoded by symmetric exons and a preferred symmetry of exons encoding for mostly disordered regions (>70% predicted disorder). Alternatively spliced symmetric exons tend to correspond to the most disordered regions. The genes of mostly disordered proteins (>70% predicted disorder) tend to be assembled from symmetric exons, which often arise by internal tandem duplications. Preponderance of certain types of short motifs (e.g. SH3-binding motif) and domains (e.g. high-mobility group domains) suggests that certain disordered modules have been particularly effective in exon-shuffling events. Our observations suggest that structural disorder has facilitated modular assembly of complex genes in evolution of the human genome. PMID:23460204

Schad, Eva; Kalmar, Lajos; Tompa, Peter

2013-01-01

350

Linking Genomics and Ecology to Investigate the Complex Evolution of an Invasive Drosophila Pest  

PubMed Central

Drosophilid fruit flies have provided science with striking cases of behavioral adaptation and genetic innovation. A recent example is the invasive pest Drosophila suzukii, which, unlike most other Drosophila, lays eggs and feeds on undamaged, ripening fruits. This not only poses a serious threat for fruit cultivation but also offers an interesting model to study evolution of behavioral innovation. We developed genome and transcriptome resources for D. suzukii. Coupling analyses of these data with field observations, we propose a hypothesis of the origin of its peculiar ecology. Using nuclear and mitochondrial phylogenetic analyses, we confirm its Asian origin and reveal a surprising sister relationship between the eugracilis and the melanogaster subgroups. Although the D. suzukii genome is comparable in size and repeat content to other Drosophila species, it has the lowest nucleotide substitution rate among the species analyzed in this study. This finding is compatible with the overwintering diapause of D. suzukii, which results in a reduced number of generations per year compared with its sister species. Genome-scale relaxed clock analyses support a late Miocene origin of D. suzukii, concomitant with paleogeological and climatic conditions that suggest an adaptation to temperate montane forests, a hypothesis confirmed by field trapping. We propose a causal link between the ecological adaptations of D. suzukii in its native habitat and its invasive success in Europe and North America. PMID:23501831

Ometto, Lino; Cestaro, Alessandro; Ramasamy, Sukanya; Grassi, Alberto; Revadi, Santosh; Siozios, Stefanos; Moretto, Marco; Fontana, Paolo; Varotto, Claudio; Pisani, Davide; Dekker, Teun; Wrobel, Nicola; Viola, Roberto; Pertot, Ilaria; Cavalieri, Duccio; Blaxter, Mark; Anfora, Gianfranco; Rota-Stabelli, Omar

2013-01-01

351

Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila pest.  

PubMed

Drosophilid fruit flies have provided science with striking cases of behavioral adaptation and genetic innovation. A recent example is the invasive pest Drosophila suzukii, which, unlike most other Drosophila, lays eggs and feeds on undamaged, ripening fruits. This not only poses a serious threat for fruit cultivation but also offers an interesting model to study evolution of behavioral innovation. We developed genome and transcriptome resources for D. suzukii. Coupling analyses of these data with field observations, we propose a hypothesis of the origin of its peculiar ecology. Using nuclear and mitochondrial phylogenetic analyses, we confirm its Asian origin and reveal a surprising sister relationship between the eugracilis and the melanogaster subgroups. Although the D. suzukii genome is comparable in size and repeat content to other Drosophila species, it has the lowest nucleotide substitution rate among the species analyzed in this study. This finding is compatible with the overwintering diapause of D. suzukii, which results in a reduced number of generations per year compared with its sister species. Genome-scale relaxed clock analyses support a late Miocene origin of D. suzukii, concomitant with paleogeological and climatic conditions that suggest an adaptation to temperate montane forests, a hypothesis confirmed by field trapping. We propose a causal link between the ecological adaptations of D. suzukii in its native habitat and its invasive success in Europe and North America. PMID:23501831

Ometto, Lino; Cestaro, Alessandro; Ramasamy, Sukanya; Grassi, Alberto; Revadi, Santosh; Siozios, Stefanos; Moretto, Marco; Fontana, Paolo; Varotto, Claudio; Pisani, Davide; Dekker, Teun; Wrobel, Nicola; Viola, Roberto; Pertot, Ilaria; Cavalieri, Duccio; Blaxter, Mark; Anfora, Gianfranco; Rota-Stabelli, Omar

2013-01-01

352

Comparative Genomics and the Evolution of Pathogenicity in Human Pathogenic Fungi ?  

PubMed Central

Because most fungi have evolved to be free-living in the environment and because the infections they cause are usually opportunistic in nature, it is often difficult to identify specific traits that contribute to fungal pathogenesis. In recent years, there has been a surge in the number of sequenced genomes of human fungal pathogens, and comparison of these sequences has proved to be an excellent resource for exploring commonalities and differences in how these species interact with their hosts. In order to survive in the human body, fungi must be able to adapt to new nutrient sources and environmental stresses. Therefore, genes involved in carbohydrate and amino acid metabolism and transport and genes encoding secondary metabolites tend to be overrepresented in pathogenic species (e.g., Aspergillus fumigatus). However, it is clear that human commensal yeast species such as Candida albicans have also evolved a range of specific factors that facilitate direct interaction with host tissues. The evolution of virulence across the human pathogenic fungi has occurred largely through very similar mechanisms. One of the most important mechanisms is gene duplication and the expansion of gene families, particularly in subtelomeric regions. Unlike the case for prokaryotic pathogens, horizontal transfer of genes between species and other genera does not seem to have played a significant role in the evolution of fungal virulence. New sequencing technologies promise the prospect of even greater numbers of genome sequences, facilitating the sequencing of multiple genomes and transcriptomes within individual species, and will undoubtedly contribute to a deeper insight into fungal pathogenesis. PMID:21076011

Moran, Gary P.; Coleman, David C.; Sullivan, Derek J.

2011-01-01

353

Evolution of gene regulation of pluripotency - the case for wiki tracks at genome browsers  

PubMed Central

Background Experimentally validated data on gene regulation are hard to obtain. In particular, information about transcription factor binding sites in regulatory regions are scattered around in the literature. This impedes their systematic in-context analysis, e.g. the inference of their conservation in evolutionary history. Results We demonstrate the power of integrative bioinformatics by including curated transcription factor binding site information into the UCSC genome browser, using wiki and custom tracks, which enable easy publication of annotation data. Data integration allows to investigate the evolution of gene regulation of the pluripotency-associated genes Oct4, Sox2 and Nanog. For the first time, experimentally validated transcription factor binding sites in the regulatory regions of all three genes were assembled together based on manual curation of data from 39 publications. Using the UCSC genome browser, these data were then visualized in the context of multi-species conservation based on genomic alignment. We confirm previous hypotheses regarding the evolutionary age of specific regulatory patterns, establishing their "deep homology". We also confirm some other principles of Carroll's "Genetic theory of Morphological Evolution", such as "mosaic pleiotropy", exemplified by the dual role of Sox2 reflected in its regulatory region. Conclusions We were able to elucidate some aspects of the evolution of gene regulation for three genes associated with pluripotency. Based on the expected return on investment for the community, we encourage other scientists to contribute experimental data on gene regulation (original work as well as data collected for reviews) to the UCSC system, to enable studies of the evolution of gene regulation on a large scale, and to report their findings. Reviewers This article was reviewed by Dr. Gustavo Glusman and Dr. Juan Caballero, Institute for Systems Biology, Seattle, USA (nominated by Dr. Doron Lancet, Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel), Dr. Niels Grabe, TIGA Center (BIOQUANT) and Medical Systems Biology Group, Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Germany (nominated by Dr. Mikhail Gelfand, Department of Bioinformatics, Institute of Information Transfer Problems, Russian Academy of Science, Moscow, Russian Federation) and Dr. Franz-Josef Mller, Center for Regenerative Medicine, The Scripps Research Institute, La Jolla, CA, USA and University Hospital for Psychiatry and Psychotherapy (part of ZIP gGmbH), University of Kiel, Germany (nominated by Dr. Trey Ideker, University of California, San Diego, La Jolla CA, United States). PMID:21190561

2010-01-01

354

Defining critical roles for NF-?B p65 and type I interferon in innate immunity to rhinovirus  

PubMed Central

The importance of NF-?B activation and deficient anti-viral interferon induction in the pathogenesis of rhinovirus-induced asthma exacerbations is poorly understood. We provide the first in vivo evidence in man and mouse that rhinovirus infection enhanced bronchial epithelial cell NF-?B p65 nuclear expression, NF-?B p65 DNA binding in lung tissue and NF-?B-regulated airway inflammation. In vitro inhibition of NF-?B reduced rhinovirus-induced pro-inflammatory cytokines but did not affect type I/III interferon induction. Rhinovirus-infected p65-deficient mice exhibited reduced neutrophilic inflammation, yet interferon induction, antiviral responses and virus loads were unaffected, indicating that NF-?B p65 is required for pro-inflammatory responses, but redundant in interferon induction by rhinoviruses in vivo. Conversely, IFNAR1?/? mice exhibited enhanced neutrophilic inflammation with impaired antiviral immunity and increased rhinovirus replication, demonstrating that interferon signalling was critical to antiviral immunity. We thus provide new mechanistic insights into rhinovirus infection and demonstrate the therapeutic potential of targeting NF-?B p65 (to suppress inflammation but preserve anti-viral immunity) and type I IFN signalling (to enhance deficient anti-viral immunity) to treat rhinovirus-induced exacerbations of airway diseases. PMID:23165884

Bartlett, Nathan W; Slater, Louise; Glanville, Nicholas; Haas, Jennifer J; Caramori, Gaetano; Casolari, Paolo; Clarke, Deborah L; Message, Simon D; Aniscenko, Julia; Kebadze, Tatiana; Zhu, Jie; Mallia, Patrick; Mizgerd, Joseph P; Belvisi, Maria; Papi, Alberto; Kotenko, Sergei V; Johnston, Sebastian L; Edwards, Michael R

2012-01-01

355

The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: Evolution during disease progression  

PubMed Central

Helicobacter pylori produces acute superficial gastritis in nearly all of its human hosts. However, a subset of individuals develops chronic atrophic gastritis (ChAG), a condition characterized in part by diminished numbers of acid-producing parietal cells and increased risk for development of gastric adenocarcinoma. Previously, we used a gnotobiotic transgenic mouse model with an engineered ablation of parietal cells to show that loss of parietal cells provides an opportunity for a H. pylori isolate from a patient with ChAG (HPAG1) to bind to, enter, and persist within gastric stem cells. This finding raises the question of how ChAG influences H. pylori genome evolution, physiology, and tumorigenesis. Here we describe the 1,596,366-bp HPAG1 genome. Custom HPAG1 Affymetrix GeneChips, representing 99.6% of its predicted ORFs, were used for whole-genome genotyping of additional H. pylori ChAG isolates obtained from Swedish patients enrolled in a case-control study of gastric cancer, as well as ChAG- and cancer-associated isolates from an individual who progressed from ChAG to gastric adenocarcinoma. The results reveal a shared gene signature among ChAG strains, as well as genes that may have been lost or gained during progression to adenocarcinoma. Whole-genome transcriptional profiling of HPAG1s response to acid during in vitro growth indicates that genes encoding components of metal uptake and utilization pathways, outer membrane proteins, and virulence factors are among those associated with H. pyloris adaptation to ChAG. PMID:16788065

Oh, Jung D.; Kling-Backhed, Helene; Giannakis, Marios; Xu, Jian; Fulton, Robert S.; Fulton, Lucinda A.; Cordum, Holland S.; Wang, Chunyan; Elliott, Glendoria; Edwards, Jennifer; Mardis, Elaine R.; Engstrand, Lars G.; Gordon, Jeffrey I.

2006-01-01

356

Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution  

PubMed Central

Background Thousands of parthenogenetic animal species have been described and cytogenetic manifestations of this reproductive mode are well known. However, little is understood about the molecular determinants of parthenogenesis. The Daphnia pulex genome must contain the molecular machinery for different reproductive modes: sexual (both male and female meiosis) and parthenogenetic (which is either cyclical or obligate). This feature makes D. pulex an ideal model to investigate the genetic basis of parthenogenesis and its consequences for gene and genome evolution. Here we describe the inventory of meiotic genes and their expression patterns during meiotic and parthenogenetic reproduction to help address whether parthenogenesis uses existing meiotic and mitotic machinery, or whether novel processes may be involved. Results We report an inventory of 130 homologs representing over 40 genes encoding proteins with diverse roles in meiotic processes in the genome of D. pulex. Many genes involved in cell cycle regulation and sister chromatid cohesion are characterized by expansions in copy number. In contrast, most genes involved in DNA replication and homologous recombination are present as single copies. Notably, RECQ2 (which suppresses homologous recombination) is present in multiple copies while DMC1 is the only gene in our inventory that is absent in the Daphnia genome. Expression patterns for 44 gene copies were similar during meiosis versus parthenogenesis, although several genes displayed marked differences in expression level in germline and somatic tissues. Conclusion We propose that expansions in meiotic gene families in D. pulex may be associated with parthenogenesis. Taking into account our findings, we provide a mechanistic model of parthenogenesis, highlighting steps that must differ from meiosis including sister chromatid cohesion and kinetochore attachment. PMID:19383157

Schurko, Andrew M; Logsdon, John M; Eads, Brian D

2009-01-01

357

Evolution of four gene families with patchy phylogenetic distributions: influx of genes into protist genomes  

PubMed Central

Background Lateral gene transfer (LGT) in eukaryotes from non-organellar sources is a controversial subject in need of further study. Here we present gene distribution and phylogenetic analyses of the genes encoding the hybrid-cluster protein, A-type flavoprotein, glucosamine-6-phosphate isomerase, and alcohol dehydrogenase E. These four genes have a limited distribution among sequenced prokaryotic and eukaryotic genomes and were previously implicated in gene transfer events affecting eukaryotes. If our previous contention that these genes were introduced by LGT independently into the diplomonad and Entamoeba lineages were true, we expect that the number of putative transfers and the phylogenetic signal supporting LGT should be stable or increase, rather than decrease, when novel eukaryotic and prokaryotic homologs are added to the analyses. Results The addition of homologs from phagotrophic protists, including several Entamoeba species, the pelobiont Mastigamoeba balamuthi, and the parabasalid Trichomonas vaginalis, and a large quantity of sequences from genome projects resulted in an apparent increase in the number of putative transfer events affecting all three domains of life. Some of the eukaryotic transfers affect a wide range of protists, such as three divergent lineages of Amoebozoa, represented by Entamoeba, Mastigamoeba, and Dictyostelium, while other transfers only affect a limited diversity, for example only the Entamoeba lineage. These observations are consistent with a model where these genes have been introduced into protist genomes independently from various sources over a long evolutionary time. Conclusion Phylogenetic analyses of the updated datasets using more sophisticated phylogenetic methods, in combination with the gene distribution analyses, strengthened, rather than weakened, the support for LGT as an important mechanism affecting the evolution of these gene families. Thus, gene transfer seems to be an on-going evolutionary mechanism by which genes are spread between unrelated lineages of all three domains of life, further indicating the importance of LGT from non-organellar sources into eukaryotic genomes. PMID:16551352

Andersson, Jan O; Hirt, Robert P; Foster, Peter G; Roger, Andrew J

2006-01-01

358

Genome organization and the role of centromeres in evolution of the erythroleukaemia cell line HEL  

PubMed Central

Background and objectives: The human erythroleukaemia (HEL) cell line has a highly rearranged genome. We matched whole chromosome analysis with cytogenomic microarray data to build a detailed description of these rearrangements. Methodology: We used a combination of single nucleotide polymorphism array and multiple fluorescence in situ hybridization approaches, and compared our array data with publicly available data for different sublines of HEL. B allele frequencies revealed the fate of each homologue for most chromosomes. Results: At least two instances of the breakagefusionbridge cycle appear to have facilitated amplification of oncogenes and deletion of tumour suppressor genes. Because our study included centromere identification, we found that some abnormal chromosomes had centromeres that did not match the identity of the rest of the chromosome. Conclusions and implications: This study highlights the variety of complementary methods required to understand remodelling of the genome in cancer and uncover some of the mechanisms involved. We present evidence of centromere capture as a means of preserving broken chromosome segments. Testing for another highly repetitive DNA region, the nucleolus organizer region, helped identify the steps involved in chromosome 9 copy number aberrations. Increased use of techniques for identifying centromeres and other repetitive DNA regions will add to our understanding of genome remodelling and evolution. The pattern of chromosome 20 aberration in HEL supports an association of 20q11.21 amplification with erythroleukaemia (acute myeloid leukaemia subtype M6) in the context of 20q12 deletion. The differences between the karyotypes in different HEL sublines highlight the constantly evolving genomes of cultured cell lines. PMID:24481202

MacKinnon, Ruth N.; Wall, Meaghan; Zordan, Adrian; Nutalapati, Srilakshmi; Mercer, Bruce; Peverall, Joanne; Campbell, Lynda J.

2013-01-01

359

Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence  

PubMed Central

The replicative spread of retrotransposons in the genome creates new insertional polymorphisms, increasing retrotransposon numbers and potentially both their share of the genome and genome size. The BARE-1 retrotransposon constitutes a major, dispersed, active component of Hordeum genomes, and BARE-1 number is positively correlated with genome size. We have examined genome size and BARE-1 insertion patterns and number in wild barley, Hordeum spontaneum, in Evolution Canyon, Lower Nahal Oren, Mount Carmel, Israel, along a transect presenting sharply differing microclimates. BARE-1 has been sufficiently active for its insertional pattern to resolve individuals in a way consonant with their ecogeographical distribution in the canyon and to distinguish them from provenances outside the canyon. On both slopes, but especially on the drier south-facing slope, a simultaneous increase in the BARE-1 copy number and a decrease in the relative number lost through recombination, as measured by the abundance of solo long terminal repeats, appear to have driven the BARE-1 share of the genome upward with the height and dryness of the slope. The lower recombinational loss would favor maintenance of more full-length copies, enhancing the ability of the BARE-1 family to contribute to genome size growth. These local data are consistent with regional trends for BARE-1 in H. spontaneum across Israel and therefore may reflect adaptive selection for increasing genome size through retrotransposon activity. PMID:10823912

Kalendar, Ruslan; Tanskanen, Jaakko; Immonen, Sirkka; Nevo, Eviatar; Schulman, Alan H.

2000-01-01

360

Structures of Coxsackievirus, Rhinovirus, and Poliovirus Polymerase Elongation Complexes Solved by Engineering RNA Mediated Crystal Contacts  

PubMed Central

RNA-dependent RNA polymerases play a vital role in the growth of RNA viruses where they are responsible for genome replication, but do so with rather low fidelity that allows for the rapid adaptation to different host cell environments. These polymerases are also a target for antiviral drug development. However, both drug discovery efforts and our understanding of fidelity determinants have been hampered by a lack of detailed structural information about functional polymerase-RNA complexes and the structural changes that take place during the elongation cycle. Many of the molecular details associated with nucleotide selection and catalysis were revealed in our recent structure of the poliovirus polymerase-RNA complex solved by first purifying and then crystallizing stalled elongation complexes. In the work presented here we extend that basic methodology to determine nine new structures of poliovirus, coxsackievirus, and rhinovirus elongation complexes at 2.22.9 resolution. The structures highlight conserved features of picornaviral polymerases and the interactions they make with the template and product RNA strands, including a tight grip on eight basepairs of the nascent duplex, a fully pre-positioned templating nucleotide, and a conserved binding pocket for the +2 position template strand base. At the active site we see a pre-bound magnesium ion and there is conservation of a non-standard backbone conformation of the template strand in an interaction that may aid in triggering RNA translocation via contact with the conserved polymerase motif B. Moreover, by engineering plasticity into RNA-RNA contacts, we obtain crystal forms that are capable of multiple rounds of in-crystal catalysis and RNA translocation. Together, the data demonstrate that engineering flexible RNA contacts to promote crystal lattice formation is a versatile platform that can be used to solve the structures of viral RdRP elongation complexes and their catalytic cycle intermediates. PMID:23667424

Gong, Peng; Kortus, Matthew G.; Nix, Jay C.; Davis, Ralph E.; Peersen, Olve B.

2013-01-01

361

Gene Content Evolution in Discobid Mitochondria Deduced from the Phylogenetic Position and Complete Mitochondrial Genome of Tsukubamonas globosa  

PubMed Central

The unicellular eukaryotic assemblage Discoba (Excavata) comprises four lineages: the Heterolobosea, Euglenozoa, Jakobida, and Tsukubamonadida. Discoba has been considered as a key assemblage for understanding the early evolution of mitochondrial (mt) genomes, as jakobids retain the most gene-rich (i.e., primitive) genomes compared with any other eukaryotes determined to date. However, to date, mt genome sequences have been completed for only a few groups within Discoba, including jakobids, two closely related heteroloboseans, and kinetoplastid euglenozoans. The Tsukubamonadida is the least studied lineage, as the order was only recently established with the description of a sole representative species, Tsukubamonas globosa. The evolutionary relationship between T. globosa and other discobids has yet to be resolved, and no mt genome data are available for this particular organism. Here, we use a phylogenomic approach to resolve the relationship between T. globosa, heteroloboseans, euglenozoans, and jakobids. In addition, we have characterized the mt genome of T. globosa (48,463 bp in length), which encodes 52 putative protein-coding and 29 RNA genes. By mapping the gene repertoires of discobid mt genomes onto the well-resolved Discoba tree, we model gene loss events during the evolution of discobid mt genomes. PMID:24448982

Kamikawa, Ryoma; Kolisko, Martin; Nishimura, Yuki; Yabuki, Akinori; Brown, Matthew W.; Ishikawa, Sohta A.; Ishida, Ken-ichiro; Roger, Andrew J.; Hashimoto, Tetsuo; Inagaki, Yuji

2014-01-01

362

Rhinovirus-mediated endosomal release of transfection complexes.  

PubMed Central

Endocytosis is an efficient method for transfer of genes into mammalian cells. Incorporation of adenovirus particles into gene transfer complexes greatly enhances gene delivery, probably by the release of endocytosed DNA into the cytoplasm. We report here that two different serotypes of human rhinovirus (HRV), HRV2 and HRV14, are also able to enhance receptor-mediated gene transfer. The effect of several compounds known to inhibit viral infection on HRV2- and HRV14-enhanced transfection was examined. WIN I(s) and WIN IV, two compounds which inhibit viral uncoating, had different effects on HRV2- and HRV14-enhanced gene transfer to NIH 3T3 cells. While HRV14-enhanced gene transfer was severely reduced in the presence of these compounds, virtually no effects were observed when HRV2 was used. The use of antiviral compounds thus allowed transfection of human cells, which are normally lysed rapidly upon infection with HRV. Viral activity could be mimicked by using a peptide derived from the N terminus of VP1 of HRV2. This peptide possesses pH-dependent membrane-disrupting activity and enhances gene transfer to NIH 3T3 and HeLa cells. PMID:7815487

Zauner, W; Blaas, D; Kuechler, E; Wagner, E

1995-01-01

363

Universal Pacemaker of Genome Evolution in Animals and Fungi and Variation of Evolutionary Rates in Diverse Organisms  

PubMed Central

Gene evolution is traditionally considered within the framework of the molecular clock (MC) model whereby each gene is characterized by an approximately constant rate of evolution. Recent comparative analysis of numerous phylogenies of prokaryotic genes has shown that a different model of evolution, denoted the Universal PaceMaker (UPM), which postulates conservation of relative, rather than absolute evolutionary rates, yields a better fit to the phylogenetic data. Here, we show that the UPM model is a better fit than the MC for genome wide sets of phylogenetic trees from six species of Drosophila and nine species of yeast, with extremely high statistical significance. Unlike the prokaryotic phylogenies that include distant organisms and multiple horizontal gene transfers, these are simple data sets that cover groups of closely related organisms and consist of gene trees with the same topology as the species tree. The results indicate that both lineage-specific and gene-specific rates are important in genome evolution but the lineage-specific contribution is greater. Similar to the MC, the gene evolution rates under the UPM are strongly overdispersed, approximately 2-fold compared with the expectation from sampling error alone. However, we show that neither Drosophila nor yeast genes form distinct clusters in the tree space. Thus, the gene-specific deviations from the UPM, although substantial, are uncorrelated and most likely depend on selective factors that are largely unique to individual genes. Thus, the UPM appears to be a key feature of genome evolution across the history of cellular life. PMID:24812293

Snir, Sagi; Wolf, Yuri I.; Koonin, Eugene V.

2014-01-01

364

Rhinovirus infection of allergen-sensitized and -challenged mice induces eotaxin release from functionally polarized macrophages.  

PubMed

Human rhinovirus is responsible for the majority of virus-induced asthma exacerbations. To determine the immunologic mechanisms underlying rhinovirus (RV)-induced asthma exacerbations, we combined mouse models of allergic airways disease and human rhinovirus infection. We inoculated OVA-sensitized and challenged BALB/c mice with rhinovirus serotype 1B, a minor group strain capable of infecting mouse cells. Compared with sham-infected, OVA-treated mice, virus-infected mice showed increased lung infiltration with neutrophils, eosinophils and macrophages, airway cholinergic hyperresponsiveness, and increased lung expression of cytokines including eotaxin-1/CCL11, IL-4, IL-13, and IFN-gamma. Administration of anti-eotaxin-1 attenuated rhinovirus-induced airway eosinophilia and responsiveness. Immunohistochemical analysis showed eotaxin-1 in the lung macrophages of virus-infected, OVA-treated mice, and confocal fluorescence microscopy revealed colocalization of rhinovirus, eotaxin-1, and IL-4 in CD68-positive cells. RV inoculation of lung macrophages from OVA-treated, but not PBS-treated, mice induced expression of eotaxin-1, IL-4, and IL-13 ex vivo. Macrophages from OVA-treated mice showed increased expression of arginase-1, Ym-1, Mgl-2, and IL-10, indicating a shift in macrophage activation status. Depletion of macrophages from OVA-sensitized and -challenged mice reduced eosinophilic inflammation and airways responsiveness following RV infection. We conclude that augmented airway eosinophilic inflammation and hyperresponsiveness in RV-infected mice with allergic airways disease is directed in part by eotaxin-1. Airway macrophages from mice with allergic airways disease demonstrate a change in activation state characterized in part by altered eotaxin and IL-4 production in response to RV infection. These data provide a new paradigm to explain RV-induced asthma exacerbations. PMID:20644177

Nagarkar, Deepti R; Bowman, Emily R; Schneider, Dina; Wang, Qiong; Shim, Jee; Zhao, Ying; Linn, Marisa J; McHenry, Christina L; Gosangi, Babina; Bentley, J Kelley; Tsai, Wan C; Sajjan, Umadevi S; Lukacs, Nicholas W; Hershenson, Marc B

2010-08-15

365

Comparative Genomics of 28 Salmonella enterica Isolates: Evidence for CRISPR-Mediated Adaptive Sublineage Evolution ?  

PubMed Central

Despite extensive surveillance, food-borne Salmonella enterica infections continue to be a significant burden on public health systems worldwide. As the S. enterica species comprises sublineages that differ greatly in antigenic representation, virulence, and antimicrobial resistance phenotypes, a better understanding of the species' evolution is critical for the prediction and prevention of future outbreaks. The roles that virulence and resistance phenotype acquisition, exchange, and loss play in the evolution of S. enterica sublineages, which to a certain extent are represented by serotypes, remains mostly uncharacterized. Here, we compare 17 newly sequenced and phenotypically characterized nontyphoidal S. enterica strains to 11 previously sequenced S. enterica genomes to carry out the most comprehensive comparative analysis of this species so far. These phenotypic and genotypic data comparisons in the phylogenetic species context suggest that the evolution of known S. enterica sublineages is mediated mostly by two mechanisms, (i) the loss of coding sequences with known metabolic functions, which leads to functional reduction, and (ii) the acquisition of horizontally transferred phage and plasmid DNA, which provides virulence and resistance functions and leads to increasing specialization. Matches between S. enterica clustered regularly interspaced short palindromic repeats (CRISPR), part of a defense mechanism against invading plasmid and phage DNA, and plasmid and prophage regions suggest that CRISPR-mediated immunity could control short-term phenotype changes and mediate long-term sublineage evolution. CRISPR analysis could therefore be critical in assessing the evolutionary potential of S. enterica sublineages and aid in the prediction and prevention of future S. enterica outbreaks. PMID:21602358

Fricke, W. Florian; Mammel, Mark K.; McDermott, Patrick F.; Tartera, Carmen; White, David G.; LeClerc, J. Eugene; Ravel, Jacques; Cebula, Thomas A.

2011-01-01

366

Differential Temperature Dependence of Tobacco Etch Virus and Rhinovirus 3C Proteases  

PubMed Central

Because of their stringent sequence specificity, the 3C-like proteases from tobacco etch virus (TEV3) and human rhinovirus are often used for the removal of affinity tags. The latter enzyme is rumored to have greater catalytic activity at 4C, the temperature at which fusion protein substrates are usually digested. Here, we report that experiments with fusion protein and peptide substrates confirm this conjecture. Whereas the catalytic efficiency of rhinovirus 3C protease is approximately the same at its optimum temperature (30C) and at 4C, TEV protease is 10-fold less active at the latter temperature, due primarily to a reduction in kcat. PMID:23395976

Raran-Kurussi, Sreejith; Tozser, Jozsef; Cherry, Scott; Tropea, Joseph E.; Waugh, David S.

2014-01-01

367

Bird evolution: testing the Metaves clade with six new mitochondrial genomes  

PubMed Central

Background Evolutionary biologists are often misled by convergence of morphology and this has been common in the study of bird evolution. However, the use of molecular data sets have their own problems and phylogenies based on short DNA sequences have the potential to mislead us too. The relationships among clades and timing of the evolution of modern birds (Neoaves) has not yet been well resolved. Evidence of convergence of morphology remain controversial. With six new bird mitochondrial genomes (hummingbird, swift, kagu, rail, flamingo and grebe) we test the proposed Metaves/Coronaves division within Neoaves and the parallel radiations in this primary avian clade. Results Our mitochondrial trees did not return the Metaves clade that had been proposed based on one nuclear intron sequence. We suggest that the high number of indels within the seventh intron of the ?-fibrinogen gene at this phylogenetic level, which left a dataset with not a single site across the alignment shared by all taxa, resulted in artifacts during analysis. With respect to the overall avian tree, we find the flamingo and grebe are sister taxa and basal to the shorebirds (Charadriiformes). Using a novel site-stripping technique for noise-reduction we found this relationship to be stable. The hummingbird/swift clade is outside the large and very diverse group of raptors, shore and sea birds. Unexpectedly the kagu is not closely related to the rail in our analysis, but because neither the kagu nor the rail have close affinity to any taxa within this dataset of 41 birds, their placement is not yet resolved. Conclusion Our phylogenetic hypothesis based on 41 avian mitochondrial genomes (13,229 bp) rejects monophyly of seven Metaves species and we therefore conclude that the members of Metaves do not share a common evolutionary history within the Neoaves. PMID:18215323

2008-01-01

368

Genome-Scale Evolution and Phylodynamics of Equine H3N8 Influenza A Virus?  

PubMed Central

Equine influenza viruses (EIVs) of the H3N8 and H7N7 subtypes are the causative agents of an important disease of horses. While EIV H7N7 apparently is extinct, H3N8 viruses have circulated for more than 50 years. Like human influenza viruses, EIV H3N8 caused a transcontinental pandemic followed by further outbreaks and epidemics, even in populations with high vaccination coverage. Recently, EIV H3N8 jumped the species barrier to infect dogs. Despite its importance as an agent of infectious disease, the mechanisms that underpin the evolutionary and epidemiological dynamics of EIV are poorly understood, particularly at a genomic scale. To determine the evolutionary history and phylodynamics of EIV H3N8, we conducted an extensive analysis of 82 complete viral genomes sampled during a 45-year span. We show that both intra- and intersubtype reassortment have played a major role in the evolution of EIV, and we suggest that intrasubtype reassortment resulted in enhanced virulence while heterosubtypic reassortment contributed to the extinction of EIV H7N7. We also show that EIV evolves at a slower rate than other influenza viruses, even though it seems to be subject to similar immune selection pressures. However, a relatively high rate of amino acid replacement is observed in the polymerase acidic (PA) segment, with some evidence for adaptive evolution. Most notably, an analysis of viral population dynamics provided evidence for a major population bottleneck of EIV H3N8 during the 1980s, which we suggest resulted from changes in herd immunity due to an increase in vaccination coverage. PMID:21430049

Murcia, Pablo R.; Wood, James L. N.; Holmes, Edward C.

2011-01-01

369

The C. savignyi genetic map and its integration with the reference sequence facilitates insights into chordate genome evolution  

PubMed Central

The urochordate Ciona savignyi is an emerging model organism for the study of chordate evolution, development, and gene regulation. The extreme level of polymorphism in its population has inspired novel approaches in genome assembly, which we here continue to develop. Specifically, we present the reconstruction of all of C. savignyis chromosomes via the development of a comprehensive genetic map, without a physical map intermediate. The resulting genetic map is complete, having one linkage group for each one of the 14 chromosomes. Eighty-three percent of the reference genome sequence is covered. The chromosomal reconstruction allowed us to investigate the evolution of genome structure in highly polymorphic species, by comparing the genome of C. savignyi to its divergent sister species, Ciona intestinalis. Both genomes have been extensively reshaped by intrachromosomal rearrangements. Interchromosomal changes have been extremely rare. This is in striking contrast to what has been observed in vertebrates, where interchromosomal events are commonplace. These results, when considered in light of the neutral theory, suggest fundamentally different modes of evolution of animal species with large versus small population sizes. PMID:18519652

Hill, Matthew M.; Broman, Karl W.; Stupka, Elia; Smith, William C.; Jiang, Di; Sidow, Arend

2008-01-01

370

The Genome of Tolypocladium inflatum: Evolution, Organization, and Expression of the Cyclosporin Biosynthetic Gene Cluster  

PubMed Central

The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921), the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS) that encodes for cyclosporin synthetase (simA) and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc.), and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further investigations of the role of secondary metabolite gene clusters and their metabolites in fungal biology. PMID:23818858

Bushley, Kathryn E.; Raja, Rajani; Jaiswal, Pankaj; Cumbie, Jason S.; Nonogaki, Mariko; Boyd, Alexander E.; Owensby, C. Alisha; Knaus, Brian J.; Elser, Justin; Miller, Daniel; Di, Yanming; McPhail, Kerry L.; Spatafora, Joseph W.

2013-01-01

371

Comparative genomic and phylogenetic approaches to characterize the role of genetic recombination in mycobacterial evolution.  

PubMed

The genus Mycobacterium encompasses over one hundred named species of environmental and pathogenic organisms, including the causative agents of devastating human diseases such as tuberculosis and leprosy. The success of these human pathogens is due in part to their ability to rapidly adapt to their changing environment and host. Recombination is the fastest way for bacterial genomes to acquire genetic material, but conflicting results about the extent of recombination in the genus Mycobacterium have been reported. We examined a data set comprising 18 distinct strains from 13 named species for evidence of recombination. Genomic regions common to all strains (accounting for 10% to 22% of the full genomes of all examined species) were aligned and concatenated in the chromosomal order of one mycobacterial reference species. The concatenated sequence was screened for evidence of recombination using a variety of statistical methods, with each proposed event evaluated by comparing maximum-likelihood phylogenies of the recombinant section with the non-recombinant portion of the dataset. Incongruent phylogenies were identified by comparing the site-wise log-likelihoods of each tree using multiple tests. We also used a phylogenomic approach to identify genes that may have been acquired through horizontal transfer from non-mycobacterial sources. The most frequent associated lineages (and potential gene transfer partners) in the Mycobacterium lineage-restricted gene trees are other members of suborder Corynebacterinae, but more-distant partners were identified as well. In two examined cases of potentially frequent and habitat-directed transfer (M. abscessus to Segniliparus and M. smegmatis to Streptomyces), observed sequence distances were small and consistent with a hypothesis of transfer, while in a third case (M. vanbaalenii to Streptomyces) distances were larger. The analyses described here indicate that whereas evidence of recombination in core regions within the genus is relatively sparse, the acquisition of genes from non-mycobacterial lineages is a significant feature of mycobacterial evolution. PMID:23189179

Smith, Silvia E; Showers-Corneli, Patrice; Dardenne, Caitlin N; Harpending, Henry H; Martin, Darren P; Beiko, Robert G

2012-01-01

372

Hybridization Capture Reveals Evolution and Conservation across the Entire Koala Retrovirus Genome  

PubMed Central

The koala retrovirus (KoRV) is the only retrovirus known to be in the midst of invading the germ line of its host species. Hybridization capture and next generation sequencing were used on modern and museum DNA samples of koala (Phascolarctos cinereus) to examine ca. 130 years of evolution across the full KoRV genome. Overall, the entire proviral genome appeared to be conserved across time in sequence, protein structure and transcriptional binding sites. A total of 138 polymorphisms were detected, of which 72 were found in more than one individual. At every polymorphic site in the museum koalas, one of the character states matched that of modern KoRV. Among non-synonymous polymorphisms, radical substitutions involving large physiochemical differences between amino acids were elevated in env, potentially reflecting anti-viral immune pressure or avoidance of receptor interference. Polymorphisms were not detected within two functional regions believed to affect infectivity. Host sequences flanking proviral integration sites were also captured; with few proviral loci shared among koalas. Recently described variants of KoRV, designated KoRV-B and KoRV-J, were not detected in museum samples, suggesting that these variants may be of recent origin. PMID:24752422

Ishida, Yasuko; Cui, Pin; Vielgrader, Hanna; Helgen, Kristofer M.; Roca, Alfred L.; Greenwood, Alex D.

2014-01-01

373

Does the Cyanophora paradoxa genome revise our view on the evolution of photorespiratory enzymes?  

PubMed

In the present-day O2 -rich atmosphere, the photorespiratory pathway is essential for organisms performing oxygenic photosynthesis; i.e. cyanobacteria, algae and land plants. The presence of enzymes for the plant-like 2-phosphoglycolate cycle in cyanobacteria indicates that, together with oxygenic photosynthesis, genes for photorespiratory enzymes were endosymbiotically conveyed from ancient cyanobacteria to photosynthetic eukaryotes. The genome information for Cyanophora paradoxa, a member of the Glaucophyta representing the first branching group of primary endosymbionts, and for many other eukaryotic algae was used to shed light on the evolutionary relationship of photorespiratory enzymes among oxygenic phototrophs. For example, it became possible to analyse the phylogenies of 2-phosphoglycolate phosphatase, serine:glyoxylate aminotransferase and hydroxypyruvate reductase. Analysis of the Cyanophora genome provided clear evidence that some photorespiratory enzymes originally acquired from cyanobacteria were lost, e.g. glycerate 3-kinase, while others were replaced by the corresponding enzymes from the ?-proteobacterial endosymbiont,