Science.gov

Sample records for rhinovirus genome evolution

  1. Human Rhinovirus B and C Genomes from Rural Coastal Kenya.

    PubMed

    Agoti, Charles N; Kiyuka, Patience K; Kamau, Everlyn; Munywoki, Patrick K; Bett, Anne; van der Hoek, Lia; Kellam, Paul; Nokes, D James; Cotten, Matthew

    2016-01-01

    Primer-independent agnostic deep sequencing was used to generate three human rhinovirus (HRV) B genomes and one HRV C genome from samples collected in a household respiratory survey in rural coastal Kenya. The study provides the first rhinovirus genomes from Kenya and will help improve the sensitivity of local molecular diagnostics. PMID:27469941

  2. Human Rhinovirus B and C Genomes from Rural Coastal Kenya

    PubMed Central

    Agoti, Charles N.; Kiyuka, Patience K.; Kamau, Everlyn; Munywoki, Patrick K.; Bett, Anne; van der Hoek, Lia; Kellam, Paul; Nokes, D. James

    2016-01-01

    Primer-independent agnostic deep sequencing was used to generate three human rhinovirus (HRV) B genomes and one HRV C genome from samples collected in a household respiratory survey in rural coastal Kenya. The study provides the first rhinovirus genomes from Kenya and will help improve the sensitivity of local molecular diagnostics. PMID:27469941

  3. The genomic signature of human rhinoviruses A, B and C.

    PubMed

    Megremis, Spyridon; Demetriou, Philippos; Makrinioti, Heidi; Manoussaki, Alkistis E; Papadopoulos, Nikolaos G

    2012-01-01

    Human rhinoviruses are single stranded positive sense RNA viruses that are presented in more than 50% of acute upper respiratory tract infections. Despite extensive studies on the genetic diversity of the virus, little is known about the forces driving it. In order to explain this diversity, many research groups have focused on protein sequence requirements for viable, functional and transmissible virus but have missed out an important aspect of viral evolution such as the genomic ontology of the virus. This study presents for the first time the genomic signature of 111 fully sequenced HRV strains from all three groups HRV-A, HRV-B and HRV-C. We observed an HRV genome tendency to eliminate CpG and UpA dinucleotides, coupling with over-representation of UpG and CpA. We propose a specific mechanism which describes how rapid changes in the HRV genomic sequence can take place under the strict control of conservation of the polypeptide backbone. Moreover, the distribution of the observed under- and over-represented dinucleotides along the HRV genome is presented. Distance matrice tables based on CpG and UpA odds ratios were constructed and viewed as heatmaps and distance trees. None of the suppressions can be attributed to codon usage or in RNA secondary structure requirements. Since viral recognition is dependent on RNA motifs rich in CpG and UpA, it is possible that the overall described genome evolution mechanism acts in order to protect the virus from host recognition. PMID:23028561

  4. The Genomic Signature of Human Rhinoviruses A, B and C

    PubMed Central

    Megremis, Spyridon; Demetriou, Philippos; Makrinioti, Heidi; Manoussaki, Alkistis E.; Papadopoulos, Nikolaos G.

    2012-01-01

    Human rhinoviruses are single stranded positive sense RNA viruses that are presented in more than 50% of acute upper respiratory tract infections. Despite extensive studies on the genetic diversity of the virus, little is known about the forces driving it. In order to explain this diversity, many research groups have focused on protein sequence requirements for viable, functional and transmissible virus but have missed out an important aspect of viral evolution such as the genomic ontology of the virus. This study presents for the first time the genomic signature of 111 fully sequenced HRV strains from all three groups HRV-A, HRV-B and HRV-C. We observed an HRV genome tendency to eliminate CpG and UpA dinucleotides, coupling with over-representation of UpG and CpA. We propose a specific mechanism which describes how rapid changes in the HRV genomic sequence can take place under the strict control of conservation of the polypeptide backbone. Moreover, the distribution of the observed under- and over-represented dinucleotides along the HRV genome is presented. Distance matrice tables based on CpG and UpA odds ratios were constructed and viewed as heatmaps and distance trees. None of the suppressions can be attributed to codon usage or in RNA secondary structure requirements. Since viral recognition is dependent on RNA motifs rich in CpG and UpA, it is possible that the overall described genome evolution mechanism acts in order to protect the virus from host recognition. PMID:23028561

  5. Comparative Genetic Analyses of Human Rhinovirus C (HRV-C) Complete Genome from Malaysia

    PubMed Central

    Khaw, Yam Sim; Chan, Yoke Fun; Jafar, Faizatul Lela; Othman, Norlijah; Chee, Hui Yee

    2016-01-01

    Human rhinovirus-C (HRV-C) has been implicated in more severe illnesses than HRV-A and HRV-B, however, the limited number of HRV-C complete genomes (complete 5′ and 3′ non-coding region and open reading frame sequences) has hindered the in-depth genetic study of this virus. This study aimed to sequence seven complete HRV-C genomes from Malaysia and compare their genetic characteristics with the 18 published HRV-Cs. Seven Malaysian HRV-C complete genomes were obtained with newly redesigned primers. The seven genomes were classified as HRV-C6, C12, C22, C23, C26, C42, and pat16 based on the VP4/VP2 and VP1 pairwise distance threshold classification. Five of the seven Malaysian isolates, namely, 3430-MY-10/C22, 8713-MY-10/C23, 8097-MY-11/C26, 1570-MY-10/C42, and 7383-MY-10/pat16 are the first newly sequenced complete HRV-C genomes. All seven Malaysian isolates genomes displayed nucleotide similarity of 63–81% among themselves and 63–96% with other HRV-Cs. Malaysian HRV-Cs had similar putative immunogenic sites, putative receptor utilization and potential antiviral sites as other HRV-Cs. The genomic features of Malaysian isolates were similar to those of other HRV-Cs. Negative selections were frequently detected in HRV-Cs complete coding sequences indicating that these sequences were under functional constraint. The present study showed that HRV-Cs from Malaysia have diverse genetic sequences but share conserved genomic features with other HRV-Cs. This genetic information could provide further aid in the understanding of HRV-C infection. PMID:27199901

  6. Comparative Genetic Analyses of Human Rhinovirus C (HRV-C) Complete Genome from Malaysia.

    PubMed

    Khaw, Yam Sim; Chan, Yoke Fun; Jafar, Faizatul Lela; Othman, Norlijah; Chee, Hui Yee

    2016-01-01

    Human rhinovirus-C (HRV-C) has been implicated in more severe illnesses than HRV-A and HRV-B, however, the limited number of HRV-C complete genomes (complete 5' and 3' non-coding region and open reading frame sequences) has hindered the in-depth genetic study of this virus. This study aimed to sequence seven complete HRV-C genomes from Malaysia and compare their genetic characteristics with the 18 published HRV-Cs. Seven Malaysian HRV-C complete genomes were obtained with newly redesigned primers. The seven genomes were classified as HRV-C6, C12, C22, C23, C26, C42, and pat16 based on the VP4/VP2 and VP1 pairwise distance threshold classification. Five of the seven Malaysian isolates, namely, 3430-MY-10/C22, 8713-MY-10/C23, 8097-MY-11/C26, 1570-MY-10/C42, and 7383-MY-10/pat16 are the first newly sequenced complete HRV-C genomes. All seven Malaysian isolates genomes displayed nucleotide similarity of 63-81% among themselves and 63-96% with other HRV-Cs. Malaysian HRV-Cs had similar putative immunogenic sites, putative receptor utilization and potential antiviral sites as other HRV-Cs. The genomic features of Malaysian isolates were similar to those of other HRV-Cs. Negative selections were frequently detected in HRV-Cs complete coding sequences indicating that these sequences were under functional constraint. The present study showed that HRV-Cs from Malaysia have diverse genetic sequences but share conserved genomic features with other HRV-Cs. This genetic information could provide further aid in the understanding of HRV-C infection. PMID:27199901

  7. Human Rhinoviruses

    PubMed Central

    Lamson, Daryl M.; St. George, Kirsten; Walsh, Thomas J.

    2013-01-01

    Human rhinoviruses (HRVs), first discovered in the 1950s, are responsible for more than one-half of cold-like illnesses and cost billions of dollars annually in medical visits and missed days of work. Advances in molecular methods have enhanced our understanding of the genomic structure of HRV and have led to the characterization of three genetically distinct HRV groups, designated groups A, B, and C, within the genus Enterovirus and the family Picornaviridae. HRVs are traditionally associated with upper respiratory tract infection, otitis media, and sinusitis. In recent years, the increasing implementation of PCR assays for respiratory virus detection in clinical laboratories has facilitated the recognition of HRV as a lower respiratory tract pathogen, particularly in patients with asthma, infants, elderly patients, and immunocompromised hosts. Cultured isolates of HRV remain important for studies of viral characteristics and disease pathogenesis. Indeed, whether the clinical manifestations of HRV are related directly to viral pathogenicity or secondary to the host immune response is the subject of ongoing research. There are currently no approved antiviral therapies for HRVs, and treatment remains primarily supportive. This review provides a comprehensive, up-to-date assessment of the basic virology, pathogenesis, clinical epidemiology, and laboratory features of and treatment and prevention strategies for HRVs. PMID:23297263

  8. Reverse transcription genome exponential amplification reaction assay for rapid and universal detection of human rhinoviruses.

    PubMed

    Guan, Li; Zhao, Lin-Qing; Zhou, Hang-Yu; Nie, Kai; Li, Xin-Na; Zhang, Dan; Song, Juan; Qian, Yuan; Ma, Xue-Jun

    2016-07-01

    Human rhinoviruses (HRVs) have long been recognized as the cause of more than one-half of acute viral upper respiratory illnesses, and they are associated with more-serious diseases in children, such as asthma, acute otitis media and pneumonia. A rapid and universal test for of HRV infection is in high demand. In this study, a reverse transcription genome exponential amplification reaction (RT-GEAR) assay targeting the HRV 5' untranslated region (UTR) was developed for pan-HRV detection. The reaction was performed in a single tube in one step at 65 °C for 60 min using a real-time fluorometer (Genie(®)II; Optigene). The RT-GEAR assay showed no cross-reactivity with common human enteroviruses, including HEV71, CVA16, CVA6, CVA10, CVA24, CVB5, Echo30, and PV1-3 or with other common respiratory viruses including FluA H3, FluB, PIV1-4, ADV3, RSVA, RSVB and HMPV. With in vitro-transcribed RNA containing the amplified regions of HRV-A60, HRV-B06 and HRV-C07 as templates, the sensitivity of the RT-GEAR assay was 5, 50 and 5 copies/reaction, respectively. Experiments to evaluate the clinical performance of the RT-GEAR assay were also carried out with a panel of 143 previously verified samples, and the results were compared with those obtained using a published semi-nested PCR assay followed by sequencing. The tested panel comprised 91 HRV-negative samples and 52 HRV-positive samples (18 HRV-A-positive samples, 3 HRV-B-positive samples and 31 HRV-C-positive samples). The sensitivity and specificity of the pan-HRVs RT-GEAR assay was 98.08 % and 100 %, respectively. The kappa correlation between the two methods was 0.985. The RT-GEAR assay based on a portable Genie(®)II fluorometer is a sensitive, specific and rapid assay for the universal detection of HRV infection. PMID:27132014

  9. Mechanism of human rhinovirus infections.

    PubMed

    Blaas, Dieter; Fuchs, Renate

    2016-12-01

    About 150 human rhinovirus serotypes are responsible for more than 50 % of recurrent upper respiratory infections. Despite having similar 3D structures, some bind members of the low-density lipoprotein receptor family, some ICAM-1, and some use CDHR3 for host cell infection. This is also reflected in the pathways exploited for cellular entry. We found that even rhinovirus serotypes binding the same receptor can travel along different endocytic pathways and release their RNA genome into the cytosol at different locations. How this may account for distinct immune responses elicited by various rhinoviruses and the observed symptoms of the common cold is briefly discussed. PMID:27251607

  10. Evolution of genome architecture.

    PubMed

    Koonin, Eugene V

    2009-02-01

    Charles Darwin believed that all traits of organisms have been honed to near perfection by natural selection. The empirical basis underlying Darwin's conclusions consisted of numerous observations made by him and other naturalists on the exquisite adaptations of animals and plants to their natural habitats and on the impressive results of artificial selection. Darwin fully appreciated the importance of heredity but was unaware of the nature and, in fact, the very existence of genomes. A century and a half after the publication of the "Origin", we have the opportunity to draw conclusions from the comparisons of hundreds of genome sequences from all walks of life. These comparisons suggest that the dominant mode of genome evolution is quite different from that of the phenotypic evolution. The genomes of vertebrates, those purported paragons of biological perfection, turned out to be veritable junkyards of selfish genetic elements where only a small fraction of the genetic material is dedicated to encoding biologically relevant information. In sharp contrast, genomes of microbes and viruses are incomparably more compact, with most of the genetic material assigned to distinct biological functions. However, even in these genomes, the specific genome organization (gene order) is poorly conserved. The results of comparative genomics lead to the conclusion that the genome architecture is not a straightforward result of continuous adaptation but rather is determined by the balance between the selection pressure, that is itself dependent on the effective population size and mutation rate, the level of recombination, and the activity of selfish elements. Although genes and, in many cases, multigene regions of genomes possess elaborate architectures that ensure regulation of expression, these arrangements are evolutionarily volatile and typically change substantially even on short evolutionary scales when gene sequences diverge minimally. Thus, the observed genome

  11. Evolution of plant genome architecture.

    PubMed

    Wendel, Jonathan F; Jackson, Scott A; Meyers, Blake C; Wing, Rod A

    2016-01-01

    We have witnessed an explosion in our understanding of the evolution and structure of plant genomes in recent years. Here, we highlight three important emergent realizations: (1) that the evolutionary history of all plant genomes contains multiple, cyclical episodes of whole-genome doubling that were followed by myriad fractionation processes; (2) that the vast majority of the variation in genome size reflects the dynamics of proliferation and loss of lineage-specific transposable elements; and (3) that various classes of small RNAs help shape genomic architecture and function. We illustrate ways in which understanding these organism-level and molecular genetic processes can be used for crop plant improvement. PMID:26926526

  12. Integrating sequence, evolution and functional genomics in regulatory genomics

    PubMed Central

    Vingron, Martin; Brazma, Alvis; Coulson, Richard; van Helden, Jacques; Manke, Thomas; Palin, Kimmo; Sand, Olivier; Ukkonen, Esko

    2009-01-01

    With genome analysis expanding from the study of genes to the study of gene regulation, 'regulatory genomics' utilizes sequence information, evolution and functional genomics measurements to unravel how regulatory information is encoded in the genome. PMID:19226437

  13. Rhinovirus and the developing lung.

    PubMed

    Cox, D W; Le Souëf, P N

    2014-09-01

    Human rhinovirus (HRV) infections are now widely accepted as the commonest cause of acute respiratory illnesses (ARIs) in children. Advanced PCR techniques have enabled HRV infections to be identified as causative agents in most common ARIs in childhood including bronchiolitis, acute asthma, pneumonia and croup. However, the long-term implications of rhinovirus infections are less clear. The aim of this review is to examine the relationship between rhinovirus infections and disorders of the lower airways in childhood. PMID:24767866

  14. Genome size evolution: sizing mammalian genomes.

    PubMed

    Redi, C A; Capanna, E

    2012-01-01

    The study of genome size (GS) and its variation is so fascinating to the scientific community because it constitutes the link between the present-day analytical and molecular studies of the genome and the old trunk of the holistic and synthetic view of the genome. The GS of several taxa vary over a broad range and do not correlate with the complexity of the organisms (the C-value paradox). However, the biology of transposable elements has let us reach a satisfactory view of the molecular mechanisms that give rise to GS variation and novelties, providing a less perplexing view of the significance of the GS (C-enigma). The knowledge of the composition and structure of a genome is a pre-requisite for trying to understand the evolution of the main genome signature: its size. The radiation of mammals provides an approximately 180-million-year test case for theories of how GS evolves. It has been found from data-mining GS databases that GS is a useful cyto-taxonomical instrument at the level of orders/superorders, providing genomic signatures characterizing Monotremata, Marsupialia, Afrotheria, Xenarthra, Laurasiatheria, and Euarchontoglires. A hypothetical ancestral mammalian-like GS of 2.9-3.7 pg has been suggested. This value appears compatible with the average values calculated for the high systematic levels of the extant Monotremata (∼2.97 pg) and Marsupialia (∼4.07 pg), suggesting invasion of mobile DNA elements concurrently with the separation of the older clades of Afrotheria (∼5.5 pg) and Xenarthra (∼4.5 pg) with larger GS, leaving the Euarchontoglires (∼3.4 pg) and Laurasiatheria (∼2.8 pg) genomes with fewer transposable elements. However, the paucity of GS data (546 mammalian species sized from 5,488 living species) for species, genera, and families calls for caution. Considering that mammalian species may be vanished even before they are known, GS data are sorely needed to phenotype the effects brought about by their variation and to validate any

  15. MOLECULAR ANALYSIS OF BOVINE RHINOVIRUS TYPE 2 SHOWS A CLOSE RELATIONSHIP TO THE APHTHOVIRUSES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine rhinovirus 2 (BRV-2) the causative agent of respiratory disease in cattle is currently an unclassified species tentatively assigned to the genus Rhinovirus in the family Picornaviridae. However, previous analysis of the sequence from partial amplicons in the 3D and P1 regions of the genome su...

  16. Cell Death in Genome Evolution

    PubMed Central

    Teng, Xinchen; Hardwick, J. Marie

    2015-01-01

    Inappropriate survival of abnormal cells underlies tumorigenesis. Most discoveries about programmed cell death have come from studying model organisms. Revisiting the experimental contexts that inspired these discoveries helps explain confounding biases that inevitably accompany such discoveries. Amending early biases has added a newcomer to the collection of cell death models. Analysis of gene-dependent death in yeast revealed the surprising influence of single gene mutations on subsequent eukaryotic genome evolution. Similar events may influence the selection for mutations during early tumorigenesis. The possibility that an early random mutation might drive the selection for a cancer driver mutation is conceivable but difficult to demonstrate. This was tested in yeast, revealing that mutation of almost any gene appears to specify the selection for a new second mutation. Some human tumors contain pairs of mutant genes homologous to co-occurring mutant genes in yeast. Here we consider how yeast again provide novel insights into tumorigenesis. PMID:25725369

  17. Darwinian evolution in the light of genomics

    PubMed Central

    Koonin, Eugene V.

    2009-01-01

    Comparative genomics and systems biology offer unprecedented opportunities for testing central tenets of evolutionary biology formulated by Darwin in the Origin of Species in 1859 and expanded in the Modern Synthesis 100 years later. Evolutionary-genomic studies show that natural selection is only one of the forces that shape genome evolution and is not quantitatively dominant, whereas non-adaptive processes are much more prominent than previously suspected. Major contributions of horizontal gene transfer and diverse selfish genetic elements to genome evolution undermine the Tree of Life concept. An adequate depiction of evolution requires the more complex concept of a network or ‘forest’ of life. There is no consistent tendency of evolution towards increased genomic complexity, and when complexity increases, this appears to be a non-adaptive consequence of evolution under weak purifying selection rather than an adaptation. Several universals of genome evolution were discovered including the invariant distributions of evolutionary rates among orthologous genes from diverse genomes and of paralogous gene family sizes, and the negative correlation between gene expression level and sequence evolution rate. Simple, non-adaptive models of evolution explain some of these universals, suggesting that a new synthesis of evolutionary biology might become feasible in a not so remote future. PMID:19213802

  18. Association of Rhinovirus Infections with Asthma

    PubMed Central

    Gern, James E.; Busse, William W.

    1999-01-01

    Rhinoviruses are the most common cause of the common cold, but they can cause more severe illnesses in people with underlying lung disorders such as asthma, chronic obstructive pulmonary disease, or cystic fibrosis. Epidemiologic studies with sensitive detection methods such as PCR have identified rhinovirus infection as a major source of asthma exacerbations in both children and adults, especially during the spring and fall. Since rhinoviruses cause little tissue destruction, it is presumed that the immune response to the infection may play an important role in the pathogenesis of rhinovirus-induced exacerbations of asthma. This review examines the epidemiologic association between rhinovirus infections and exacerbations of asthma and outlines current information on immune responses to rhinovirus infection and potential connections between antiviral responses and preexisting allergic inflammation. Finally, current and future strategies for treating rhinovirus infections and virus-induced exacerbations of asthma are discussed. PMID:9880472

  19. Genome size evolution in macroparasites.

    PubMed

    Sundberg, Lotta-Riina; Pulkkinen, Katja

    2015-04-01

    Reduction in genome size has been associated not only with a parasitic lifestyle in intracellular microparasites but also in some macroparasitic insects and nematodes. We collected the available data on genome size for flatworms, annelids, nematodes and arthropods, compared those with available data for the phylogenetically closest free-living taxa and found evidence of smaller genome sizes for parasites in six of nine comparisons. Our results suggest that despite great differences in evolutionary history and life cycles, parasitism as a lifestyle promotes convergent genome size reduction in macroparasites. We discuss factors that could be associated with small genome size in parasites which require further exploration in the future. PMID:25724591

  20. Evolution of small prokaryotic genomes

    PubMed Central

    Martínez-Cano, David J.; Reyes-Prieto, Mariana; Martínez-Romero, Esperanza; Partida-Martínez, Laila P.; Latorre, Amparo; Moya, Andrés; Delaye, Luis

    2015-01-01

    As revealed by genome sequencing, the biology of prokaryotes with reduced genomes is strikingly diverse. These include free-living prokaryotes with ∼800 genes as well as endosymbiotic bacteria with as few as ∼140 genes. Comparative genomics is revealing the evolutionary mechanisms that led to these small genomes. In the case of free-living prokaryotes, natural selection directly favored genome reduction, while in the case of endosymbiotic prokaryotes neutral processes played a more prominent role. However, new experimental data suggest that selective processes may be at operation as well for endosymbiotic prokaryotes at least during the first stages of genome reduction. Endosymbiotic prokaryotes have evolved diverse strategies for living with reduced gene sets inside a host-defined medium. These include utilization of host-encoded functions (some of them coded by genes acquired by gene transfer from the endosymbiont and/or other bacteria); metabolic complementation between co-symbionts; and forming consortiums with other bacteria within the host. Recent genome sequencing projects of intracellular mutualistic bacteria showed that previously believed universal evolutionary trends like reduced G+C content and conservation of genome synteny are not always present in highly reduced genomes. Finally, the simplified molecular machinery of some of these organisms with small genomes may be used to aid in the design of artificial minimal cells. Here we review recent genomic discoveries of the biology of prokaryotes endowed with small gene sets and discuss the evolutionary mechanisms that have been proposed to explain their peculiar nature. PMID:25610432

  1. Genomic tumor evolution of breast cancer.

    PubMed

    Sato, Fumiaki; Saji, Shigehira; Toi, Masakazu

    2016-01-01

    Owing to recent technical development of comprehensive genome-wide analysis such as next generation sequencing, deep biological insights of breast cancer have been revealed. Information of genomic mutations and rearrangements in patients' tumors is indispensable to understand the mechanism in carcinogenesis, progression, metastasis, and resistance to systemic treatment of breast cancer. To date, comprehensive genomic analyses illustrate not only base substitution patterns and lists of driver mutations and key rearrangements, but also a manner of tumor evolution. Breast cancer genome is dynamically changing and evolving during cancer development course from non-invasive disease via invasive primary tumor to metastatic tumor, and during treatment exposure. The accumulation pattern of base substitution and genomic rearrangement looks gradual and punctuated, respectively, in analogy with contrasting theories for evolution manner of species, Darwin's phyletic gradualism, and Eldredge and Gould's "punctuated equilibrium". Liquid biopsy is a non-invasive method to detect the genomic evolution of breast cancer. Genomic mutation patterns in circulating tumor cells and circulating cell-free tumor DNA represent those of tumors existing in patient body. Liquid biopsy methods are now under development for future application to clinical practice of cancer treatment. In this article, latest knowledge regarding breast cancer genome, especially in terms of 'tumor evolution', is summarized. PMID:25998191

  2. The Genomic Landscape of Compensatory Evolution

    PubMed Central

    Kalapis, Dorottya; Kovács, Károly; Fekete, Gergely; Farkas, Zoltán; Lázár, Viktória; Hrtyan, Mónika; Kemmeren, Patrick; Groot Koerkamp, Marian J. A.; Rutkai, Edit; Holstege, Frank C. P.; Papp, Balázs; Pál, Csaba

    2014-01-01

    Adaptive evolution is generally assumed to progress through the accumulation of beneficial mutations. However, as deleterious mutations are common in natural populations, they generate a strong selection pressure to mitigate their detrimental effects through compensatory genetic changes. This process can potentially influence directions of adaptive evolution by enabling evolutionary routes that are otherwise inaccessible. Therefore, the extent to which compensatory mutations shape genomic evolution is of central importance. Here, we studied the capacity of the baker's yeast genome to compensate the complete loss of genes during evolution, and explored the long-term consequences of this process. We initiated laboratory evolutionary experiments with over 180 haploid baker's yeast genotypes, all of which initially displayed slow growth owing to the deletion of a single gene. Compensatory evolution following gene loss was rapid and pervasive: 68% of the genotypes reached near wild-type fitness through accumulation of adaptive mutations elsewhere in the genome. As compensatory mutations have associated fitness costs, genotypes with especially low fitnesses were more likely to be subjects of compensatory evolution. Genomic analysis revealed that as compensatory mutations were generally specific to the functional defect incurred, convergent evolution at the molecular level was extremely rare. Moreover, the majority of the gene expression changes due to gene deletion remained unrestored. Accordingly, compensatory evolution promoted genomic divergence of parallel evolving populations. However, these different evolutionary outcomes are not phenotypically equivalent, as they generated diverse growth phenotypes across environments. Taken together, these results indicate that gene loss initiates adaptive genomic changes that rapidly restores fitness, but this process has substantial pleiotropic effects on cellular physiology and evolvability upon environmental change. Our work

  3. Molecular and Phylogenetic Analyses of Bovine Rhinovirus Type 2 Shows it is Closely Related to Foot-and-Mouth Disease Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine rhinovirus 2 (BRV2), a causative agent of respiratory disease in cattle, is currently an unclassified species tentatively assigned to the genus rhinovirus in the family Picornaviridae. A nearly full-length cDNA of the BRV2 genome was cloned and the nucleotide sequence from the poly(C) to the ...

  4. Genome plasticity and systems evolution in Streptomyces

    PubMed Central

    2012-01-01

    Background Streptomycetes are filamentous soil-dwelling bacteria. They are best known as the producers of a great variety of natural products such as antibiotics, antifungals, antiparasitics, and anticancer agents and the decomposers of organic substances for carbon recycling. They are also model organisms for the studies of gene regulatory networks, morphological differentiation, and stress response. The availability of sets of genomes from closely related Streptomyces strains makes it possible to assess the mechanisms underlying genome plasticity and systems adaptation. Results We present the results of a comprehensive analysis of the genomes of five Streptomyces species with distinct phenotypes. These streptomycetes have a pan-genome comprised of 17,362 orthologous families which includes 3,096 components in the core genome, 5,066 components in the dispensable genome, and 9,200 components that are uniquely present in only one species. The core genome makes up about 33%-45% of each genome repertoire. It contains important genes for Streptomyces biology including those involved in gene regulation, secretion, secondary metabolism and morphological differentiation. Abundant duplicate genes have been identified, with 4%-11% of the whole genomes composed of lineage-specific expansions (LSEs), suggesting that frequent gene duplication or lateral gene transfer events play a role in shaping the genome diversification within this genus. Two patterns of expansion, single gene expansion and chromosome block expansion are observed, representing different scales of duplication. Conclusions Our results provide a catalog of genome components and their potential functional roles in gene regulatory networks and metabolic networks. The core genome components reveal the minimum requirement for streptomycetes to sustain a successful lifecycle in the soil environment, reflecting the effects of both genome evolution and environmental stress acting upon the expressed phenotypes. A

  5. New genomes clarify mimicry evolution.

    PubMed

    Mallet, James

    2015-04-01

    For over 100 years, it has been known that polymorphic mimicry is often switched by simple mendelian factors, yet the physical nature of these loci had escaped characterization. Now, the genome sequences of two swallowtail butterfly (Papilio) species have enabled the precise identification of a locus underlying mimicry, adding to unprecedented recent discoveries in mimicry genetics. PMID:25814305

  6. Phenotypic Evolution With and Beyond Genome Evolution.

    PubMed

    Félix, M-A

    2016-01-01

    DNA does not make phenotypes on its own. In this volume entitled "Genes and Phenotypic Evolution," the present review draws the attention on the process of phenotype construction-including development of multicellular organisms-and the multiple interactions and feedbacks between DNA, organism, and environment at various levels and timescales in the evolutionary process. First, during the construction of an individual's phenotype, DNA is recruited as a template for building blocks within the cellular context and may in addition be involved in dynamical feedback loops that depend on the environmental and organismal context. Second, in the production of phenotypic variation among individuals, stochastic, environmental, genetic, and parental sources of variation act jointly. While in controlled laboratory settings, various genetic and environmental factors can be tested one at a time or in various combinations, they cannot be separated in natural populations because the environment is not controlled and the genotype can rarely be replicated. Third, along generations, genotype and environment each have specific properties concerning the origin of their variation, the hereditary transmission of this variation, and the evolutionary feedbacks. Natural selection acts as a feedback from phenotype and environment to genotype. This review integrates recent results and concrete examples that illustrate these three points. Although some themes are shared with recent calls and claims to a new conceptual framework in evolutionary biology, the viewpoint presented here only means to add flesh to the standard evolutionary synthesis. PMID:27282029

  7. Chimeric Rhinoviruses Obtained via Genetic Engineering or Artificially Induced Recombination Are Viable Only if the Polyprotein Coding Sequence Derives from the Same Species

    PubMed Central

    Schibler, Manuel; Piuz, Isabelle; Hao, Weidong

    2015-01-01

    ABSTRACT Recombination is a widespread phenomenon that ensures both the stability and variation of RNA viruses. This phenomenon occurs with different frequencies within species of the Enterovirus genus. Intraspecies recombination is described frequently among non-rhinovirus enteroviruses but appears to be sporadic in rhinoviruses. Interspecies recombination is even rarer for rhinoviruses and mostly is related to ancient events which contributed to the speciation of these viruses. We reported that artificially engineered 5′ untranslated region (UTR) interspecies rhinovirus/rhinovirus or rhinovirus/non-rhinovirus enterovirus recombinants are fully viable. Using a similar approach, we demonstrated in this study that exchanges of the P1-2A polyprotein region between members of the same rhinovirus species, but not between members of different species, give rise to competent chimeras. To further assess the rhinovirus intra- and interspecies recombination potential, we used artificially induced recombination by cotransfection of 5′-end-deleted and 3′-end-deleted and replication-deficient genomes. In this system, intraspecies recombination also resulted in viable viruses with high frequency, whereas no interspecies rhinovirus recombinants could be recovered. Mapping intraspecies recombination sites within the polyprotein highlighted recombinant hotspots in nonstructural genes and at gene boundaries. Notably, all recombinants occurring at gene junctions presented in-frame sequence duplications, whereas most intragenic recombinants were homologous. Taken together, our results suggest that only intraspecies recombination gives rise to viable rhinovirus chimeras in the polyprotein coding region and that recombination hotspots map to nonstructural genes with in-frame duplications at gene boundaries. These data provide new insights regarding the mechanism and limitations of rhinovirus recombination. IMPORTANCE Recombination represents a means to ensure both the stability

  8. Comparative genomics reveals insights into avian genome evolution and adaptation

    PubMed Central

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M.; Lee, Chul; Storz, Jay F.; Antunes, Agostinho; Greenwold, Matthew J.; Meredith, Robert W.; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R.; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T.; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V.; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S.; Gatesy, John; Hoffmann, Federico G.; Opazo, Juan C.; Håstad, Olle; Sawyer, Roger H.; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F.; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A.; Green, Richard E.; O’Brien, Stephen J.; Griffin, Darren; Johnson, Warren E.; Haussler, David; Ryder, Oliver A.; Willerslev, Eske; Graves, Gary R.; Alström, Per; Fjeldså, Jon; Mindell, David P.; Edwards, Scott V.; Braun, Edward L.; Rahbek, Carsten; Burt, David W.; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D.; Gilbert, M. Thomas P.; Wang, Jun

    2015-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  9. Comparative genomics reveals insights into avian genome evolution and adaptation.

    PubMed

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M; Lee, Chul; Storz, Jay F; Antunes, Agostinho; Greenwold, Matthew J; Meredith, Robert W; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S; Gatesy, John; Hoffmann, Federico G; Opazo, Juan C; Håstad, Olle; Sawyer, Roger H; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A; Green, Richard E; O'Brien, Stephen J; Griffin, Darren; Johnson, Warren E; Haussler, David; Ryder, Oliver A; Willerslev, Eske; Graves, Gary R; Alström, Per; Fjeldså, Jon; Mindell, David P; Edwards, Scott V; Braun, Edward L; Rahbek, Carsten; Burt, David W; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D; Gilbert, M Thomas P; Wang, Jun

    2014-12-12

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  10. Genomic and systems evolution in Vibrionaceae species

    PubMed Central

    Gu, Jianying; Neary, Jennifer; Cai, Hong; Moshfeghian, Audrey; Rodriguez, Stephen A; Lilburn, Timothy G; Wang, Yufeng

    2009-01-01

    Background The steadily increasing number of prokaryotic genomes has accelerated the study of genome evolution; in particular, the availability of sets of genomes from closely related bacteria has facilitated the exploration of the mechanisms underlying genome plasticity. The family Vibrionaceae is found in the Gammaproteobacteria and is abundant in aquatic environments. Taxa from the family Vibrionaceae are diversified in their life styles; some species are free living, others are symbiotic, and others are human pathogens. This diversity makes this family a useful set of model organisms for studying bacterial evolution. This evolution is driven by several forces, among them gene duplication and lateral gene transfer, which are believed to provide raw material for functional redundancy and novelty. The resultant gene copy increase in one genome is then detected as lineage-specific expansion (LSE). Results Here we present the results of a detailed comparison of the genomes of eleven Vibrionaceae strains that have distinct life styles and distinct phenotypes. The core genome shared by all eleven strains is composed of 1,882 genes, which make up about 31%–50% of the genome repertoire. We further investigated the distribution and features of genes that have been specifically expanded in one unique lineage of the eleven strains. Abundant duplicate genes have been identified in the eleven Vibrionaceae strains, with 1–11% of the whole genomes composed lineage specific radiations. These LSEs occurred in two distinct patterns: the first type yields one or more copies of a single gene; we call this a single gene expansion. The second pattern has a high evolutionary impact, as the expansion involves two or more gene copies in a block, with the duplicated block located next to the original block (a contiguous block expansion) or at some distance from the original block (a discontiguous block expansion). We showed that LSEs involve genes that are tied to defense and

  11. Comparative genomics of brain size evolution

    PubMed Central

    Enard, Wolfgang

    2014-01-01

    Which genetic changes took place during mammalian, primate and human evolution to build a larger brain? To answer this question, one has to correlate genetic changes with brain size changes across a phylogeny. Such a comparative genomics approach provides unique information to better understand brain evolution and brain development. However, its statistical power is limited for example due to the limited number of species, the presumably complex genetics of brain size evolution and the large search space of mammalian genomes. Hence, it is crucial to add functional information, for example by limiting the search space to genes and regulatory elements known to play a role in the relevant cell types during brain development. Similarly, it is crucial to experimentally follow up on hypotheses generated by such a comparative approach. Recent progress in understanding the molecular and cellular mechanisms of mammalian brain development, in genome sequencing and in genome editing, promises to make a close integration of evolutionary and experimental methods a fruitful approach to better understand the genetics of mammalian brain size evolution. PMID:24904382

  12. Integrons: natural tools for bacterial genome evolution.

    PubMed

    Rowe-Magnus, D A; Mazel, D

    2001-10-01

    Integrons were first identified as the primary mechanism for antibiotic resistance gene capture and dissemination among Gram-negative bacteria. More recently, their role in genome evolution has been extended with the discovery of larger integron structures, the super-integrons, as genuine components of the genomes of many species throughout the gamma-proteobacterial radiation. The functional platforms of these integrons appear to be sedentary, whereas their gene cassette contents are highly variable. Nevertheless, the gene cassettes for which an activity has been experimentally demonstrated encode proteins related to simple adaptive functions and their recruitment is seen as providing the bacterial host with a selective advantage. The widespread occurrence of the integron system among Gram-negative bacteria is discussed, with special focus on the super-integrons. Some of the adaptive functions encoded by these genes are also reviewed, and implications of integron-mediated genome evolution in the emergence of novel bacterial species are highlighted. PMID:11587934

  13. Meiotic recombination and genome evolution in plants.

    PubMed

    Melamed-Bessudo, Cathy; Shilo, Shay; Levy, Avraham A

    2016-04-01

    Homologous recombination affects genome evolution through crossover, gene conversion and point mutations. Whole genome sequencing together with a detailed epigenome analysis have shed new light on our understanding of how meiotic recombination shapes plant genes and genome structure. Crossover events are associated with DNA sequence motifs, together with an open chromatin signature (hypomethylated CpGs, low nucleosome occupancy or specific histone modifications). The crossover landscape may differ between male and female meiocytes and between species. At the gene level, crossovers occur preferentially in promoter regions in Arabidopsis. In recent years, there is rising support suggesting that biased mismatch repair during meiotic recombination may increase GC content genome-wide and may be responsible for the GC content gradient found in many plant genes. PMID:26939088

  14. Microsatellites in Pursuit of Microbial Genome Evolution

    PubMed Central

    Saeed, Abdullah F.; Wang, Rongzhi; Wang, Shihua

    2016-01-01

    Microsatellites or short sequence repeats are widespread genetic markers which are hypermutable 1–6 bp long short nucleotide motifs. Significantly, their applications in genetics are extensive due to their ceaseless mutational degree, widespread length variations and hypermutability skills. These features make them useful in determining the driving forces of evolution by using powerful molecular techniques. Consequently, revealing important questions, for example, what is the significance of these abundant sequences in DNA, what are their roles in genomic evolution? The answers of these important questions are hidden in the ways these short motifs contributed in altering the microbial genomes since the origin of life. Even though their size ranges from 1 –to- 6 bases, these repeats are becoming one of the most popular genetic probes in determining their associations and phylogenetic relationships in closely related genomes. Currently, they have been widely used in molecular genetics, biotechnology and evolutionary biology. However, due to limited knowledge; there is a significant gap in research and lack of information concerning hypermutational mechanisms. These mechanisms play a key role in microsatellite loci point mutations and phase variations. This review will extend the understandings of impacts and contributions of microsatellite in genomic evolution and their universal applications in microbiology. PMID:26779133

  15. Genomic repeats, genome plasticity and the dynamics of Mycoplasma evolution

    PubMed Central

    Rocha, Eduardo P. C.; Blanchard, Alain

    2002-01-01

    Mycoplasmas evolved by a drastic reduction in genome size, but their genomes contain numerous repeated sequences with important roles in their evolution. We have established a bioinformatic strategy to detect the major recombination hot-spots in the genomes of Mycoplasma pneumoniae, Mycoplasma genitalium, Ureaplasma urealyticum and Mycoplasma pulmonis. This allowed the identification of large numbers of potentially variable regions, as well as a comparison of the relative recombination potentials of different genomic regions. Different trends are perceptible among mycoplasmas, probably due to different functional and structural constraints. The largest potential for illegitimate recombination in M.pulmonis is found at the vsa locus and its comparison in two different strains reveals numerous changes since divergence. On the other hand, the main M.pneumoniae and M.genitalium adhesins rely on large distant repeats and, hence, homologous recombination for variation. However, the relation between the existence of repeats and antigenic variation is not necessarily straightforward, since repeats of P1 adhesin were found to be anti-correlated with epitopes recognized by patient antibodies. These different strategies have important consequences for the structures of genomes, since large distant repeats correlate well with the major chromosomal rearrangements. Probably to avoid such events, mycoplasmas strongly avoid inverse repeats, in comparison to co-oriented repeats. PMID:11972343

  16. Genomic Evolution of the Ascomycete Yeasts

    SciTech Connect

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf; Boundy-Mills, Kyria; Goker, Markus; Hittinger, Chris; Klenk, Hans-Peter; Lopes, Mariana; Meir-Kolthoff, Jan P.; Rokas, Antonis; Rosa, Carlos; Scheuner, Carmen; Soares, Marco; Stielow, Benjamin; Wisecaver, Jennifer H.; Wolfe, Ken; Blackwell, Meredith; Kurtzman, Cletus; Grigoriev, Igor; Jeffries, Thomas

    2015-03-16

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and a tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.

  17. Genome Evolution in the 21st Century

    NASA Astrophysics Data System (ADS)

    Shapiro, James

    2006-03-01

    Assume no previous theories about genetics and evolution. What conclusions would we draw from molecular data (e.g. genome sequences)? We start from basic principles of cellular information processing: cells behave cognitively using signal transduction networks; signal transduction involves weak noncovalent interactions; allosteric properties of biomolecules; multivalent storage of information in DNA sequences and nucleoprotein complexes; inertness of naked DNA. Genome informatics thus requires formation of nucleoprotein complexes. Complex formation requires generic repeated signals in the DNA; repetition also permits cooperativity to stabilize weak interactions. DNA is a functional structural component of nucleoprotein complexes, not a passive data tape. Specificity in DNA nucleoprotein complex formation involves combining multiple generic signals and/or sequence recognition by small RNAs. Novel combinations of generic signals and coding sequences arise in genomes by iteration and rearrangement. Cells possess natural genetic engineering functions that actively restructure DNA molecules. These internal DNA remodeling functions act cognitively in response to internal and external inputs. They operate non-randomly with respect to (1) the types of new structures produced and (2) the regions of the genome modified. Whole genome sequence data increasingly documents the historical role of natural genetic engineering in evolutionary changes. Basic principles of cellular molecular biology and DNA function lead to a complex interactive systems view of genome organization. This view incorporates different DNA components found in sequenced genomes. Regulated cellular natural genetic engineering functions permit genomes to serve as Read-Write information storage systems, not just Read-Only memories subject to accidental change. These 21st Century conclusions are most compatible with a systems engineering view of the evolutionary process.

  18. Human Rhinovirus Subviral A Particle Binds to Lipid Membranes over a Twofold Axis of Icosahedral Symmetry

    PubMed Central

    Kumar, Mohit

    2013-01-01

    Minor group human rhinoviruses bind low-density lipoprotein (LDL) receptors for endocytosis. Once they are inside endosomes, the acidic pH triggers their dissociation from the receptors and conversion into hydrophobic subviral A particles; these attach to the membrane and transfer their single-strand, positive-sense RNA genome into the cytosol. Here, we allowed human rhinovirus 2 (HRV2) A particles, produced in vitro by incubation at pH 5.4, to attach to liposomes; cryo-electron microscopy 3-dimensional single-particle image reconstruction revealed that they bind to the membrane around a 2-fold icosahedral symmetry axis. PMID:23946453

  19. Chromosome Evolution and Genome Miniaturization in Minifish

    PubMed Central

    Liu, Shaojun; Hui, Tan Heok; Tan, Sze Ley; Hong, Yunhan

    2012-01-01

    Background Paedocypris is a newly established genus of fish in Southeast Asia. Paedocypris is characterized by several unique features, including a tiny adult size (thus named miniature fish or minifish), fragmentary habitats of acidic peat blackwater swamps, an unusual reproduction mode and truncated development. These peculiarities lend themselves excellent for studying chromosome evolution and rapid speciation in vertebrates but also make them highly controversial for the phylogenetic position. Methodology and Principal Findings We have established an organ procedure to prepare chromosome spreads from tiny organs of minifish and performed a cytogenetic study on two species of the genus Paedocypris, namely P. carbunculus (Pc) and P. sp. “Singkep” (Ps). We found 30 and 34 chromosomes in diploid cells of Pc and Ps, respectively, which are unusual in teleost fishes. The diploid metaphase has 5 pairs of metacentrics and 7 pairs of subtelocentrics in Pc compared to 3 pairs of metacentrics and 11 pairs of subtelocentrics in Ps, whereas the haploid metaphase contains 5 metacentrics and 7 subtelocentrics in Pc compared to 3 metacentrics and 11 subtelocentrics Ps. Chromosome behavior in first meiosis revealed the presence of a chromosomal ring consisting of 2 metacentrics in Pc, suggesting that centric fusion rather than fission was responsible for the karyotypic evolution from Ps to Pc. Flow cytometry revealed that Pc had a 45% nuclear staining intensity relative to medaka whose genome is 700 Mb in size and contains 0.81 pg DNA. The Pc genome should have 315 Mb in length and 0.36 pg of DNA, which represent one of the smallest values in vertebrates, suggesting genome miniaturization in this organism. Conclusions Our data demonstrate that gross chromosome rearrangements and genome miniaturization have accompanied the evolution of Paedocypris fishes. Our data also place Paedocypris outside currently described taxa of the Cypriniformes. PMID:22615970

  20. Reverse Genetics System for Studying Human Rhinovirus Infections

    PubMed Central

    Lee, Wai-Ming; Wang, Wensheng; Bochkov, Yury A; Lee, Iris

    2015-01-01

    SUMMARY Human rhinovirus (HRV) contains a 7.2 Kb messenger-sense RNA genome which is the template for reproducing progeny viruses after it enters the cytoplasm of a host cell. Reverse genetics refers to the regeneration of progeny viruses from an artificial cDNA copy of the RNA genome of an RNA virus. It has been a powerful molecular genetic tool for studying HRV and other RNA viruses because the artificial DNA stage makes it practical to introduce specific mutations into the viral RNA genome. This chapter uses HRV-16 as the model virus to illustrate the strategy and the methods for constructing and cloning the artificial cDNA copy of a full-length HRV genome, identifying the infectious cDNA clone isolates, and selecting the most vigorous cDNA clone isolate to serve as the standard parental clone for future molecular genetic study of the virus. PMID:25261313

  1. Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis

    SciTech Connect

    Lykidis, Athanasios

    2006-12-01

    Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.

  2. Mitochondrial genome evolution in fire ants (Hymenoptera: Formicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Complete mitochondrial genome sequences have become important tools for the study of genome architecture, phylogeny, and molecular evolution. Despite the rapid increase in available mitogenomes, the taxonomic sampling often poorly reflects phylogenetic diversity and is often also biased ...

  3. Examination of Prokaryotic Multipartite Genome Evolution through Experimental Genome Reduction

    PubMed Central

    diCenzo, George C.; MacLean, Allyson M.; Milunovic, Branislava; Golding, G. Brian; Finan, Turlough M.

    2014-01-01

    Many bacteria carry two or more chromosome-like replicons. This occurs in pathogens such as Vibrio cholerea and Brucella abortis as well as in many N2-fixing plant symbionts including all isolates of the alfalfa root-nodule bacteria Sinorhizobium meliloti. Understanding the evolution and role of this multipartite genome organization will provide significant insight into these important organisms; yet this knowledge remains incomplete, in part, because technical challenges of large-scale genome manipulations have limited experimental analyses. The distinct evolutionary histories and characteristics of the three replicons that constitute the S. meliloti genome (the chromosome (3.65 Mb), pSymA megaplasmid (1.35 Mb), and pSymB chromid (1.68 Mb)) makes this a good model to examine this topic. We transferred essential genes from pSymB into the chromosome, and constructed strains that lack pSymB as well as both pSymA and pSymB. This is the largest reduction (45.4%, 3.04 megabases, 2866 genes) of a prokaryotic genome to date and the first removal of an essential chromid. Strikingly, strains lacking pSymA and pSymB (ΔpSymAB) lost the ability to utilize 55 of 74 carbon sources and various sources of nitrogen, phosphorous and sulfur, yet the ΔpSymAB strain grew well in minimal salts media and in sterile soil. This suggests that the core chromosome is sufficient for growth in a bulk soil environment and that the pSymA and pSymB replicons carry genes with more specialized functions such as growth in the rhizosphere and interaction with the plant. These experimental data support a generalized evolutionary model, in which non-chromosomal replicons primarily carry genes with more specialized functions. These large secondary replicons increase the organism's niche range, which offsets their metabolic burden on the cell (e.g. pSymA). Subsequent co-evolution with the chromosome then leads to the formation of a chromid through the acquisition of functions core to all niches (e.g. p

  4. Fatal respiratory infections associated with rhinovirus outbreak, Vietnam.

    PubMed

    Hai, Le Thanh; Bich, Vu Thi Ngoc; Ngai, Le Kien; Diep, Nguyen Thi Ngoc; Phuc, Phan Huu; Hung, Viet Pham; Taylor, Walter R; Horby, Peter; Liem, Nguyen Thanh; Wertheim, Heiman F L

    2012-11-01

    During an outbreak of severe acute respiratory infections in 2 orphanages, Vietnam, 7/12 hospitalized children died. All hospitalized children and 26/43 children from outbreak orphanages tested positive for rhinovirus versus 9/40 control children (p = 0.0005). Outbreak rhinoviruses formed a distinct genetic cluster. Human rhinovirus is an underappreciated cause of severe pneumonia in vulnerable groups. PMID:23092635

  5. Evolution of Genome Size in Asexual Digital Organisms

    PubMed Central

    Gupta, Aditi; LaBar, Thomas; Miyagi, Michael; Adami, Christoph

    2016-01-01

    Genome sizes have evolved to vary widely, from 250 bases in viroids to 670 billion bases in some amoebas. This remarkable variation in genome size is the outcome of complex interactions between various evolutionary factors such as mutation rate and population size. While comparative genomics has uncovered how some of these evolutionary factors influence genome size, we still do not understand what drives genome size evolution. Specifically, it is not clear how the primordial mutational processes of base substitutions, insertions, and deletions influence genome size evolution in asexual organisms. Here, we use digital evolution to investigate genome size evolution by tracking genome edits and their fitness effects in real time. In agreement with empirical data, we find that mutation rate is inversely correlated with genome size in asexual populations. We show that at low point mutation rate, insertions are significantly more beneficial than deletions, driving genome expansion and the acquisition of phenotypic complexity. Conversely, the high mutational load experienced at high mutation rates inhibits genome growth, forcing the genomes to compress their genetic information. Our analyses suggest that the inverse relationship between mutation rate and genome size is a result of the tradeoff between evolving phenotypic innovation and limiting the mutational load. PMID:27181837

  6. Evolution of Genome Size in Asexual Digital Organisms.

    PubMed

    Gupta, Aditi; LaBar, Thomas; Miyagi, Michael; Adami, Christoph

    2016-01-01

    Genome sizes have evolved to vary widely, from 250 bases in viroids to 670 billion bases in some amoebas. This remarkable variation in genome size is the outcome of complex interactions between various evolutionary factors such as mutation rate and population size. While comparative genomics has uncovered how some of these evolutionary factors influence genome size, we still do not understand what drives genome size evolution. Specifically, it is not clear how the primordial mutational processes of base substitutions, insertions, and deletions influence genome size evolution in asexual organisms. Here, we use digital evolution to investigate genome size evolution by tracking genome edits and their fitness effects in real time. In agreement with empirical data, we find that mutation rate is inversely correlated with genome size in asexual populations. We show that at low point mutation rate, insertions are significantly more beneficial than deletions, driving genome expansion and the acquisition of phenotypic complexity. Conversely, the high mutational load experienced at high mutation rates inhibits genome growth, forcing the genomes to compress their genetic information. Our analyses suggest that the inverse relationship between mutation rate and genome size is a result of the tradeoff between evolving phenotypic innovation and limiting the mutational load. PMID:27181837

  7. RNAi-Assisted Genome Evolution (RAGE) in Saccharomyces cerevisiae.

    PubMed

    Si, Tong; Zhao, Huimin

    2016-01-01

    RNA interference (RNAi)-assisted genome evolution (RAGE) applies directed evolution principles to engineer Saccharomyces cerevisiae genomes. Here, we use acetic acid tolerance as a target trait to describe the key steps of RAGE. Briefly, iterative cycles of RNAi screening are performed to accumulate multiplex knockdown modifications, enabling directed evolution of the yeast genome and continuous improvement of a target phenotype. Detailed protocols are provided on the reconstitution of RNAi machinery, creation of genome-wide RNAi libraries, identification and integration of beneficial knockdown cassettes, and repeated RAGE cycles. PMID:27581294

  8. Law of genome evolution direction: Coding information quantity grows

    NASA Astrophysics Data System (ADS)

    Luo, Liao-Fu

    2009-06-01

    The problem of the directionality of genome evolution is studied. Based on the analysis of C-value paradox and the evolution of genome size, we propose that the function-coding information quantity of a genome always grows in the course of evolution through sequence duplication, expansion of code, and gene transfer from outside. The function-coding information quantity of a genome consists of two parts, p-coding information quantity that encodes functional protein and n-coding information quantity that encodes other functional elements. The evidences on the law of the evolutionary directionality are indicated. The needs of function are the motive force for the expansion of coding information quantity, and the information quantity expansion is the way to make functional innovation and extension for a species. Therefore, the increase of coding information quantity of a genome is a measure of the acquired new function, and it determines the directionality of genome evolution.

  9. Apprehending multicellularity: regulatory networks, genomics and evolution

    PubMed Central

    Aravind, L.; Anantharaman, Vivek; Venancio, Thiago M.

    2009-01-01

    The genomic revolution has provided the first glimpses of the architecture of regulatory networks. Combined with evolutionary information, the “network view” of life processes leads to remarkable insights into how biological systems have been shaped by various forces. This understanding is critical because biological systems, including regulatory networks, are not products of engineering but of historical contingencies. In this light, we attempt a synthetic overview of the natural history of regulatory networks operating in the development and differentiation of multicellular organisms. We first introduce regulatory networks and their organizational principles as can be deduced using ideas from the graph theory. We then discuss findings from comparative genomics to illustrate the effects of lineage-specific expansions, gene-loss, and non-protein-coding DNA on the architecture of networks. We consider the interaction between expansions of transcription factors, and cis regulatory and more general chromatin state stabilizing elements in the emergence of morphological complexity. Finally, we consider a case study of the Notch sub-network, which is present throughout Metazoa, to examine how such a regulatory system has been pieced together in evolution from new innovations and pre-existing components that were originally functionally distinct. PMID:19530132

  10. Apprehending multicellularity: regulatory networks, genomics, and evolution.

    PubMed

    Aravind, L; Anantharaman, Vivek; Venancio, Thiago M

    2009-06-01

    The genomic revolution has provided the first glimpses of the architecture of regulatory networks. Combined with evolutionary information, the "network view" of life processes leads to remarkable insights into how biological systems have been shaped by various forces. This understanding is critical because biological systems, including regulatory networks, are not products of engineering but of historical contingencies. In this light, we attempt a synthetic overview of the natural history of regulatory networks operating in the development and differentiation of multicellular organisms. We first introduce regulatory networks and their organizational principles as can be deduced using ideas from the graph theory. We then discuss findings from comparative genomics to illustrate the effects of lineage-specific expansions, gene-loss, and nonprotein-coding DNA on the architecture of networks. We consider the interaction between expansions of transcription factors, and cis regulatory and more general chromatin state stabilizing elements in the emergence of morphological complexity. Finally, we consider a case study of the Notch subnetwork, which is present throughout Metazoa, to examine how such a regulatory system has been pieced together in evolution from new innovations and pre-existing components that were originally functionally distinct. PMID:19530132

  11. Ecological and Temporal Constraints in the Evolution of Bacterial Genomes

    PubMed Central

    Boto, Luis; Martínez, Jose Luis

    2011-01-01

    Studies on the experimental evolution of microorganisms, on their in vivo evolution (mainly in the case of bacteria producing chronic infections), as well as the availability of multiple full genomic sequences, are placing bacteria in the playground of evolutionary studies. In the present article we review the differential contribution to the evolution of bacterial genomes that processes such as gene modification, gene acquisition and gene loss may have when bacteria colonize different habitats that present characteristic ecological features. In particular, we review how the different processes contribute to evolution in microbial communities, in free-living bacteria or in bacteria living in isolation. In addition, we discuss the temporal constraints in the evolution of bacterial genomes, considering bacterial evolution from the perspective of processes of short-sighted evolution and punctual acquisition of evolutionary novelties followed by long stasis periods. PMID:24710293

  12. Mechanisms of genome evolution of Streptococcus

    PubMed Central

    Andam, Cheryl P.; Hanage, William P.

    2014-01-01

    The genus Streptococcus contains 104 recognized species, many of which are associated with human or animal hosts. A globally prevalent human pathogen in this group is Streptococcus pneumoniae (the pneumococcus). While being a common resident of the upper respiratory tract, it is also a major cause of otitis media, pneumonia, bacteremia and meningitis, accounting for a high burden of morbidity and mortality worldwide. Recent findings demonstrate the importance of recombination and selection in driving the population dynamics and evolution of different pneumococcal lineages, allowing them to successfully evade the impacts of selective pressures such as vaccination and antibiotic treatment. We highlight the ability of pneumococci to respond to these pressures through processes including serotype replacement, capsular switching and horizontal gene transfer (HGT) of antibiotic resistance genes. The challenge in controlling this pathogen also lies in the exceptional genetic and phenotypic variation among different pneumococcal lineages, particularly in terms of their pathogenicity and resistance to current therapeutic strategies. The widespread use of pneumococcal conjugate vaccines, which target only a small subset of the more than 90 pneumococcal serotypes, provides us with a unique opportunity to elucidate how the processes of selection and recombination interact to generate a remarkable level of plasticity and heterogeneity in the pneumococcal genome. These processes also play an important role in the emergence and spread of multi-resistant strains, which continues to pose a challenge in disease control and/or eradication. The application of population of genomic approaches at different spatial and temporal scales will help improve strategies to control this global pathogen, and potentially other pathogenic streptococci. PMID:25461843

  13. Mechanisms of genome evolution of Streptococcus.

    PubMed

    Andam, Cheryl P; Hanage, William P

    2015-07-01

    The genus Streptococcus contains 104 recognized species, many of which are associated with human or animal hosts. A globally prevalent human pathogen in this group is Streptococcus pneumoniae (the pneumococcus). While being a common resident of the upper respiratory tract, it is also a major cause of otitis media, pneumonia, bacteremia and meningitis, accounting for a high burden of morbidity and mortality worldwide. Recent findings demonstrate the importance of recombination and selection in driving the population dynamics and evolution of different pneumococcal lineages, allowing them to successfully evade the impacts of selective pressures such as vaccination and antibiotic treatment. We highlight the ability of pneumococci to respond to these pressures through processes including serotype replacement, capsular switching and horizontal gene transfer (HGT) of antibiotic resistance genes. The challenge in controlling this pathogen also lies in the exceptional genetic and phenotypic variation among different pneumococcal lineages, particularly in terms of their pathogenicity and resistance to current therapeutic strategies. The widespread use of pneumococcal conjugate vaccines, which target only a small subset of the more than 90 pneumococcal serotypes, provides us with a unique opportunity to elucidate how the processes of selection and recombination interact to generate a remarkable level of plasticity and heterogeneity in the pneumococcal genome. These processes also play an important role in the emergence and spread of multi-resistant strains, which continues to pose a challenge in disease control and/or eradication. The application of population of genomic approaches at different spatial and temporal scales will help improve strategies to control this global pathogen, and potentially other pathogenic streptococci. PMID:25461843

  14. The Small Nuclear Genomes of Selaginella Are Associated with a Low Rate of Genome Size Evolution.

    PubMed

    Baniaga, Anthony E; Arrigo, Nils; Barker, Michael S

    2016-01-01

    The haploid nuclear genome size (1C DNA) of vascular land plants varies over several orders of magnitude. Much of this observed diversity in genome size is due to the proliferation and deletion of transposable elements. To date, all vascular land plant lineages with extremely small nuclear genomes represent recently derived states, having ancestors with much larger genome sizes. The Selaginellaceae represent an ancient lineage with extremely small genomes. It is unclear how small nuclear genomes evolved in Selaginella We compared the rates of nuclear genome size evolution in Selaginella and major vascular plant clades in a comparative phylogenetic framework. For the analyses, we collected 29 new flow cytometry estimates of haploid genome size in Selaginella to augment publicly available data. Selaginella possess some of the smallest known haploid nuclear genome sizes, as well as the lowest rate of genome size evolution observed across all vascular land plants included in our analyses. Additionally, our analyses provide strong support for a history of haploid nuclear genome size stasis in Selaginella Our results indicate that Selaginella, similar to other early diverging lineages of vascular land plants, has relatively low rates of genome size evolution. Further, our analyses highlight that a rapid transition to a small genome size is only one route to an extremely small genome. PMID:27189987

  15. The Small Nuclear Genomes of Selaginella Are Associated with a Low Rate of Genome Size Evolution

    PubMed Central

    Baniaga, Anthony E.; Arrigo, Nils; Barker, Michael S.

    2016-01-01

    The haploid nuclear genome size (1C DNA) of vascular land plants varies over several orders of magnitude. Much of this observed diversity in genome size is due to the proliferation and deletion of transposable elements. To date, all vascular land plant lineages with extremely small nuclear genomes represent recently derived states, having ancestors with much larger genome sizes. The Selaginellaceae represent an ancient lineage with extremely small genomes. It is unclear how small nuclear genomes evolved in Selaginella. We compared the rates of nuclear genome size evolution in Selaginella and major vascular plant clades in a comparative phylogenetic framework. For the analyses, we collected 29 new flow cytometry estimates of haploid genome size in Selaginella to augment publicly available data. Selaginella possess some of the smallest known haploid nuclear genome sizes, as well as the lowest rate of genome size evolution observed across all vascular land plants included in our analyses. Additionally, our analyses provide strong support for a history of haploid nuclear genome size stasis in Selaginella. Our results indicate that Selaginella, similar to other early diverging lineages of vascular land plants, has relatively low rates of genome size evolution. Further, our analyses highlight that a rapid transition to a small genome size is only one route to an extremely small genome. PMID:27189987

  16. Genome size diversity in orchids: consequences and evolution

    PubMed Central

    Leitch, I. J.; Kahandawala, I.; Suda, J.; Hanson, L.; Ingrouille, M. J.; Chase, M. W.; Fay, M. F.

    2009-01-01

    Background The amount of DNA comprising the genome of an organism (its genome size) varies a remarkable 40 000-fold across eukaryotes, yet most groups are characterized by much narrower ranges (e.g. 14-fold in gymnosperms, 3- to 4-fold in mammals). Angiosperms stand out as one of the most variable groups with genome sizes varying nearly 2000-fold. Nevertheless within angiosperms the majority of families are characterized by genomes which are small and vary little. Species with large genomes are mostly restricted to a few monocots families including Orchidaceae. Scope A survey of the literature revealed that genome size data for Orchidaceae are comparatively rare representing just 327 species. Nevertheless they reveal that Orchidaceae are currently the most variable angiosperm family with genome sizes ranging 168-fold (1C = 0·33–55·4 pg). Analysing the data provided insights into the distribution, evolution and possible consequences to the plant of this genome size diversity. Conclusions Superimposing the data onto the increasingly robust phylogenetic tree of Orchidaceae revealed how different subfamilies were characterized by distinct genome size profiles. Epidendroideae possessed the greatest range of genome sizes, although the majority of species had small genomes. In contrast, the largest genomes were found in subfamilies Cypripedioideae and Vanilloideae. Genome size evolution within this subfamily was analysed as this is the only one with reasonable representation of data. This approach highlighted striking differences in genome size and karyotype evolution between the closely related Cypripedium, Paphiopedilum and Phragmipedium. As to the consequences of genome size diversity, various studies revealed that this has both practical (e.g. application of genetic fingerprinting techniques) and biological consequences (e.g. affecting where and when an orchid may grow) and emphasizes the importance of obtaining further genome size data given the considerable

  17. Classification of Life by the Mechanism of Genome Size Evolution

    NASA Astrophysics Data System (ADS)

    Li, Dirson Jian; Zhang, Shengli

    We find that the global relationships among species should be of circular phylogeny, which is quite different from common sense based on phylogenetic trees. A domain can be defined by a distinct phylogenetic circle, which is a global and stable characteristic of the living system. The mechanism in genome size evolution has been clarified; hence the main component questions on C-value enigma can be explained. We find the intrinsic relationship between genome size evolution and protein length evolution; that is the genome size and non-coding DNA ratio can be calculated based on protein length distributions.

  18. Interpreting Mammalian Evolution using Fugu Genome Comparisons

    SciTech Connect

    Stubbs, L; Ovcharenko, I; Loots, G G

    2004-04-02

    Comparative sequence analysis of the human and the pufferfish Fugu rubripes (fugu) genomes has revealed several novel functional coding and noncoding regions in the human genome. In particular, the fugu genome has been extremely valuable for identifying transcriptional regulatory elements in human loci harboring unusually high levels of evolutionary conservation to rodent genomes. In such regions, the large evolutionary distance between human and fishes provides an additional filter through which functional noncoding elements can be detected with high efficiency.

  19. Evolution, language and analogy in functional genomics

    NASA Technical Reports Server (NTRS)

    Benner, S. A.; Gaucher, E. A.

    2001-01-01

    Almost a century ago, Wittgenstein pointed out that theory in science is intricately connected to language. This connection is not a frequent topic in the genomics literature. But a case can be made that functional genomics is today hindered by the paradoxes that Wittgenstein identified. If this is true, until these paradoxes are recognized and addressed, functional genomics will continue to be limited in its ability to extrapolate information from genomic sequences.

  20. Molecular Epidemiology of Human Rhinoviruses and Enteroviruses Highlights Their Diversity in Sub-Saharan Africa

    PubMed Central

    L’Huillier, Arnaud G.; Kaiser, Laurent; Petty, Tom J.; Kilowoko, Mary; Kyungu, Esther; Hongoa, Philipina; Vieille, Gaël; Turin, Lara; Genton, Blaise; D’Acremont, Valérie; Tapparel, Caroline

    2015-01-01

    Human rhinoviruses (HRVs) and enteroviruses (HEVs) belong to the Enterovirus genus and are the most frequent cause of infection worldwide, but data on their molecular epidemiology in Africa are scarce. To understand HRV and HEV molecular epidemiology in this setting, we enrolled febrile pediatric patients participating in a large prospective cohort assessing the causes of fever in Tanzanian children. Naso/oropharyngeal swabs were systematically collected and tested by real-time RT-PCR for HRV and HEV. Viruses from positive samples were sequenced and phylogenetic analyses were then applied to highlight the HRV and HEV types as well as recombinant or divergent strains. Thirty-eight percent (378/1005) of the enrolled children harboured an HRV or HEV infection. Although some types were predominant, many distinct types were co-circulating, including a vaccinal poliovirus, HEV-A71 and HEV-D68. Three HRV-A recombinants were identified: HRV-A36/HRV-A67, HRV-A12/HRV-A67 and HRV-A96/HRV-A61. Four divergent HRV strains were also identified: one HRV-B strain and three HRV-C strains. This is the first prospective study focused on HRV and HEV molecular epidemiology in sub-Saharan Africa. This systematic and thorough large screening with careful clinical data management confirms the wide genomic diversity of these viruses, brings new insights about their evolution and provides data about associated symptoms. PMID:26670243

  1. Evolution of Genome Size and Complexity in the Rhabdoviridae

    PubMed Central

    Walker, Peter J.; Firth, Cadhla; Widen, Steven G.; Blasdell, Kim R.; Guzman, Hilda; Wood, Thomas G.; Paradkar, Prasad N.; Holmes, Edward C.; Tesh, Robert B.; Vasilakis, Nikos

    2015-01-01

    RNA viruses exhibit substantial structural, ecological and genomic diversity. However, genome size in RNA viruses is likely limited by a high mutation rate, resulting in the evolution of various mechanisms to increase complexity while minimising genome expansion. Here we conduct a large-scale analysis of the genome sequences of 99 animal rhabdoviruses, including 45 genomes which we determined de novo, to identify patterns of genome expansion and the evolution of genome complexity. All but seven of the rhabdoviruses clustered into 17 well-supported monophyletic groups, of which eight corresponded to established genera, seven were assigned as new genera, and two were taxonomically ambiguous. We show that the acquisition and loss of new genes appears to have been a central theme of rhabdovirus evolution, and has been associated with the appearance of alternative, overlapping and consecutive ORFs within the major structural protein genes, and the insertion and loss of additional ORFs in each gene junction in a clade-specific manner. Changes in the lengths of gene junctions accounted for as much as 48.5% of the variation in genome size from the smallest to the largest genome, and the frequency with which new ORFs were observed increased in the 3’ to 5’ direction along the genome. We also identify several new families of accessory genes encoded in these regions, and show that non-canonical expression strategies involving TURBS-like termination-reinitiation, ribosomal frame-shifts and leaky ribosomal scanning appear to be common. We conclude that rhabdoviruses have an unusual capacity for genomic plasticity that may be linked to their discontinuous transcription strategy from the negative-sense single-stranded RNA genome, and propose a model that accounts for the regular occurrence of genome expansion and contraction throughout the evolution of the Rhabdoviridae. PMID:25679389

  2. A taste of pineapple evolution through genome sequencing.

    PubMed

    Xu, Qing; Liu, Zhong-Jian

    2015-12-01

    The genome sequence assembly of the highly heterozygous Ananas comosus and its varieties is an impressive technical achievement. The sequence opens the door to a greater understanding of pineapple morphology and evolution. PMID:26620110

  3. Flexible genomic islands as drivers of genome evolution.

    PubMed

    Rodriguez-Valera, Francisco; Martin-Cuadrado, Ana-Belen; López-Pérez, Mario

    2016-06-01

    Natural prokaryotic populations are composed of multiple clonal lineages that are different in their core genomes in a range that varies typically between 95 and 100% nucleotide identity. Each clonal lineage also carries a complement of not shared flexible genes that can be very large. The compounded flexible genome provides polyclonal populations with enormous gene diversity that can be used to efficiently exploit resources. This has fundamental repercussions for interpreting individual bacterial genomes. They are better understood as parts rather than the whole. Multiple genomes are required to understand how the population interacts with its biotic and abiotic environment. PMID:27085300

  4. Retroelements and their impact on genome evolution and functioning.

    PubMed

    Gogvadze, Elena; Buzdin, Anton

    2009-12-01

    Retroelements comprise a considerable fraction of eukaryotic genomes. Since their initial discovery by Barbara McClintock in maize DNA, retroelements have been found in genomes of almost all organisms. First considered as a "junk DNA" or genomic parasites, they were shown to influence genome functioning and to promote genetic innovations. For this reason, they were suggested as an important creative force in the genome evolution and adaptation of an organism to altered environmental conditions. In this review, we summarize the up-to-date knowledge of different ways of retroelement involvement in structural and functional evolution of genes and genomes, as well as the mechanisms generated by cells to control their retrotransposition. PMID:19649766

  5. The amphioxus genome and the evolution of the chordate karyotype

    SciTech Connect

    Putnam, Nicholas H.; Butts, Thomas; Ferrier, David E.K.; Furlong, Rebecca F.; Hellsten, Uffe; Kawashima, Takeshi; Robinson-Rechavi, Marc; Shoguchi, Eiichi; Terry, Astrid; Yu, Jr-Kai; Benito-Gutierrez, Elia; Dubchak, Inna; Garcia-Fernandez, Jordi; Gibson-Brown, Jeremy J.; Grigoriev, Igor V.; Horton, Amy C.; de Jong, Pieter J.; Jurka, Jerzy; Kapitonov, Vladimir; Kohara, Yuji; Kuroki, Yoko; Lindquist, Erika; Lucas, Susan; Osoegawa, Kazutoyo; Pennacchio, Len A.; Salamov, Asaf A.; Satou, Yutaka; Sauka-Spengler, Tatjana; Schmutz [, Jeremy; Shin-I, Tadasu; Toyoda, Atsushi; Bronner-Fraser, Marianne; Fujiyama, Asao; Holland, Linda Z.; Holland, Peter W. H.; Satoh, Nori; Rokhsar, Daniel S.

    2008-04-01

    Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage with a fossil record dating back to the Cambrian. We describe the structure and gene content of the highly polymorphic {approx}520 million base pair genome of the Florida lancelet Branchiostoma floridae, and analyze it in the context of chordate evolution. Whole genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets, and vertebrates), and allow reconstruction of not only the gene complement of the last common chordate ancestor, but also a partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.

  6. Genome size shifts: karyotype evolution in Crepis section Neglectoides (Asteraceae).

    PubMed

    Enke, N; Kunze, R; Pustahija, F; Glöckner, G; Zimmermann, J; Oberländer, J; Kamari, G; Siljak-Yakovlev, S

    2015-07-01

    Plant genome size evolution is a very dynamic process: the ancestral genome of angiosperms was initially most likely small, which led to a tendency towards genome increase during evolution. However, findings in several angiosperm lineages demonstrate mechanisms that also led to genome size contraction. Recent molecular investigations on the Asteraceae genus Crepis suggest that several genomic reduction events have occurred during the evolution of the genus. This study focuses on the Mediterranean Crepis sect. Neglectoides, which includes three species with some of the smallest genomes within the whole genus. Crepis neglecta has the largest genome in sect. Neglectoides, approximately twice the size of the two species Crepis cretica and Crepis hellenica. Whereas C. cretica and C. hellencia are more closely related to each other than to C. neglecta the karyotypes of the latter species and C. cretica are similar, while that of C. hellenica differs considerably. Here, the karyotypic organisation of the three species is investigated with fluorescence in-situ hybridisation and studied in a molecular phylogenetic framework based on the nuclear markers Actin, CHR12, CPN60B, GPCR1 and XTH23. Our findings further corroborate the occurrence of genome size contraction in Crepis, and suggest that the difference in genome size between C. neglecta and C. cretica is mostly due to elimination of dispersed repetitive elements, whereas chromosomal reorganisation was involved in the karyotype formation of C. hellenica. PMID:25683604

  7. Evolution Analysis of Simple Sequence Repeats in Plant Genome

    PubMed Central

    Qin, Zhen; Wang, Yanping; Wang, Qingmei; Li, Aixian; Hou, Fuyun; Zhang, Liming

    2015-01-01

    Simple sequence repeats (SSRs) are widespread units on genome sequences, and play many important roles in plants. In order to reveal the evolution of plant genomes, we investigated the evolutionary regularities of SSRs during the evolution of plant species and the plant kingdom by analysis of twelve sequenced plant genome sequences. First, in the twelve studied plant genomes, the main SSRs were those which contain repeats of 1–3 nucleotides combination. Second, in mononucleotide SSRs, the A/T percentage gradually increased along with the evolution of plants (except for P. patens). With the increase of SSRs repeat number the percentage of A/T in C. reinhardtii had no significant change, while the percentage of A/T in terrestrial plants species gradually declined. Third, in dinucleotide SSRs, the percentage of AT/TA increased along with the evolution of plant kingdom and the repeat number increased in terrestrial plants species. This trend was more obvious in dicotyledon than monocotyledon. The percentage of CG/GC showed the opposite pattern to the AT/TA. Forth, in trinucleotide SSRs, the percentages of combinations including two or three A/T were in a rising trend along with the evolution of plant kingdom; meanwhile with the increase of SSRs repeat number in plants species, different species chose different combinations as dominant SSRs. SSRs in C. reinhardtii, P. patens, Z. mays and A. thaliana showed their specific patterns related to evolutionary position or specific changes of genome sequences. The results showed that, SSRs not only had the general pattern in the evolution of plant kingdom, but also were associated with the evolution of the specific genome sequence. The study of the evolutionary regularities of SSRs provided new insights for the analysis of the plant genome evolution. PMID:26630570

  8. Architecture and evolution of a minute plant genome

    PubMed Central

    Ibarra-Laclette, Enrique; Lyons, Eric; Hernández-Guzmán, Gustavo; Pérez-Torres, Claudia Anahí; Carretero-Paulet, Lorenzo; Chang, Tien-Hao; Lan, Tianying; Welch, Andreanna J.; Juárez, María Jazmín Abraham; Simpson, June; Fernández-Cortés, Araceli; Arteaga-Vázquez, Mario; Góngora-Castillo, Elsa; Acevedo-Hernández, Gustavo; Schuster, Stephan C.; Himmelbauer, Heinz; Minoche, André E.; Xu, Sen; Lynch, Michael; Oropeza-Aburto, Araceli; Cervantes-Pérez, Sergio Alan; de Jesús Ortega-Estrada, María; Cervantes-Luevano, Jacob Israel; Michael, Todd P.; Mockler, Todd; Bryant, Douglas; Herrera-Estrella, Alfredo; Albert, Victor A.; Herrera-Estrella, Luis

    2016-01-01

    It has been argued that the evolution of plant genome size is principally unidirectional and increasing owing to the varied action of whole-genome duplications (WGDs) and mobile element proliferation1. However, extreme genome size reductions have been reported in the angiosperm family tree. Here we report the sequence of the 82-megabase genome of the carnivorous bladderwort plant Utricularia gibba. Despite its tiny size, the U. gibba genome accommodates a typical number of genes for a plant, with the main difference from other plant genomes arising from a drastic reduction in non-genic DNA. Unexpectedly, we identified at least three rounds of WGD in U. gibba since common ancestry with tomato (Solanum) and grape (Vitis). The compressed architecture of the U. gibba genome indicates that a small fraction of intergenic DNA, with few or no active retrotransposons, is sufficient to regulate and integrate all the processes required for the development and reproduction of a complex organism. PMID:23665961

  9. Architecture and evolution of a minute plant genome.

    PubMed

    Ibarra-Laclette, Enrique; Lyons, Eric; Hernández-Guzmán, Gustavo; Pérez-Torres, Claudia Anahí; Carretero-Paulet, Lorenzo; Chang, Tien-Hao; Lan, Tianying; Welch, Andreanna J; Juárez, María Jazmín Abraham; Simpson, June; Fernández-Cortés, Araceli; Arteaga-Vázquez, Mario; Góngora-Castillo, Elsa; Acevedo-Hernández, Gustavo; Schuster, Stephan C; Himmelbauer, Heinz; Minoche, André E; Xu, Sen; Lynch, Michael; Oropeza-Aburto, Araceli; Cervantes-Pérez, Sergio Alan; de Jesús Ortega-Estrada, María; Cervantes-Luevano, Jacob Israel; Michael, Todd P; Mockler, Todd; Bryant, Douglas; Herrera-Estrella, Alfredo; Albert, Victor A; Herrera-Estrella, Luis

    2013-06-01

    It has been argued that the evolution of plant genome size is principally unidirectional and increasing owing to the varied action of whole-genome duplications (WGDs) and mobile element proliferation. However, extreme genome size reductions have been reported in the angiosperm family tree. Here we report the sequence of the 82-megabase genome of the carnivorous bladderwort plant Utricularia gibba. Despite its tiny size, the U. gibba genome accommodates a typical number of genes for a plant, with the main difference from other plant genomes arising from a drastic reduction in non-genic DNA. Unexpectedly, we identified at least three rounds of WGD in U. gibba since common ancestry with tomato (Solanum) and grape (Vitis). The compressed architecture of the U. gibba genome indicates that a small fraction of intergenic DNA, with few or no active retrotransposons, is sufficient to regulate and integrate all the processes required for the development and reproduction of a complex organism. PMID:23665961

  10. Insights into bilaterian evolution from three spiralian genomes

    PubMed Central

    Simakov, Oleg; Marletaz, Ferdinand; Cho, Sung-Jin; Edsinger-Gonzales, Eric; Havlak, Paul; Hellsten, Uffe; Kuo, Dian-Han; Larsson, Tomas; Lv, Jie; Arendt, Detlev; Savage, Robert; Osoegawa, Kazutoyo; de Jong, Pieter; Grimwood, Jane; Chapman, Jarrod A.; Shapiro, Harris; Aerts, Andrea; Otillar, Robert P.; Terry, Astrid Y.; Boore, Jeffrey L.; Grigoriev, Igor V.; Lindberg, David R.; Seaver, Elaine C.; Weisblat, David A.; Putnam, Nicholas H.; Rokhsar, Daniel S.

    2014-01-01

    Current genomic perspectives on animal diversity neglect two prominent phyla, the molluscs and annelids, that together account for nearly one-third of known marine species and are important both ecologically and as experimental systems in classical embryology1–3. Here we describe the draft genomes of the owl limpet (Lottia gigantea), a marine polychaete (Capitella teleta) and a freshwater leech (Helobdella robusta), and compare them with other animal genomes to investigate the origin and diversification of bilaterians from a genomic perspective. We find that the genome organization, gene structure and functional content of these species are more similar to those of some invertebrate deuterostome genomes (for example, amphioxus and sea urchin) than those of other protostomes that have been sequenced to date (flies, nematodes and flatworms). The conservation of these genomic features enables us to expand the inventory of genes present in the last common bilaterian ancestor, establish the tripartite diversification of bilaterians using multiple genomic characteristics and identify ancient conserved long- and short-range genetic linkages across metazoans. Superimposed on this broadly conserved pan-bilaterian background we find examples of lineage-specific genome evolution, including varying rates of rearrangement, intron gain and loss, expansions and contractions of gene families, and the evolution of clade-specific genes that produce the unique content of each genome. PMID:23254933

  11. Insights into bilaterian evolution from three spiralian genomes

    SciTech Connect

    Simakov, Oleg; Marletaz, Ferdinand; Cho, Sung-Jin; Edsinger-Gonzales, Eric; Havlak, Paul; Hellsten, Uffe; Kuo, Dian-Han; Larsson, Tomas; Lv, Jie; Arendt, Detlev; Savage, Robert; Osoegawa, Kazutoyo; de Jong, Pieter; Grimwood, Jane; Chapman, Jarrod A.; Shapiro, Harris; Otillar, Robert P.; Terry, Astrid Y.; Boore, Jeffrey L.; Grigoriev, Igor V.; Lindberg, David R.; Seaver, Elaine C.; Weisblat, David A.; Putnam, Nicholas H.; Rokhsar, Daniel S.; Aerts, Andrea

    2012-01-07

    Current genomic perspectives on animal diversity neglect two prominent phyla, the molluscs and annelids, that together account for nearly one-third of known marine species and are important both ecologically and as experimental systems in classical embryology1, 2, 3. Here we describe the draft genomes of the owl limpet (Lottia gigantea), a marine polychaete (Capitella teleta) and a freshwater leech (Helobdella robusta), and compare them with other animal genomes to investigate the origin and diversification of bilaterians from a genomic perspective. We find that the genome organization, gene structure and functional content of these species are more similar to those of some invertebrate deuterostome genomes (for example, amphioxus and sea urchin) than those of other protostomes that have been sequenced to date (flies, nematodes and flatworms). The conservation of these genomic features enables us to expand the inventory of genes present in the last common bilaterian ancestor, establish the tripartite diversification of bilaterians using multiple genomic characteristics and identify ancient conserved long- and short-range genetic linkages across metazoans. Superimposed on this broadly conserved pan-bilaterian background we find examples of lineage-specific genome evolution, including varying rates of rearrangement, intron gain and loss, expansions and contractions of gene families, and the evolution of clade-specific genes that produce the unique content of each genome.

  12. Convergent evolution of the genomes of marine mammals.

    PubMed

    Foote, Andrew D; Liu, Yue; Thomas, Gregg W C; Vinař, Tomáš; Alföldi, Jessica; Deng, Jixin; Dugan, Shannon; van Elk, Cornelis E; Hunter, Margaret E; Joshi, Vandita; Khan, Ziad; Kovar, Christie; Lee, Sandra L; Lindblad-Toh, Kerstin; Mancia, Annalaura; Nielsen, Rasmus; Qin, Xiang; Qu, Jiaxin; Raney, Brian J; Vijay, Nagarjun; Wolf, Jochen B W; Hahn, Matthew W; Muzny, Donna M; Worley, Kim C; Gilbert, M Thomas P; Gibbs, Richard A

    2015-03-01

    Marine mammals from different mammalian orders share several phenotypic traits adapted to the aquatic environment and therefore represent a classic example of convergent evolution. To investigate convergent evolution at the genomic level, we sequenced and performed de novo assembly of the genomes of three species of marine mammals (the killer whale, walrus and manatee) from three mammalian orders that share independently evolved phenotypic adaptations to a marine existence. Our comparative genomic analyses found that convergent amino acid substitutions were widespread throughout the genome and that a subset of these substitutions were in genes evolving under positive selection and putatively associated with a marine phenotype. However, we found higher levels of convergent amino acid substitutions in a control set of terrestrial sister taxa to the marine mammals. Our results suggest that, whereas convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare. PMID:25621460

  13. Convergent evolution of the genomes of marine mammals

    USGS Publications Warehouse

    Foote, Andrew D.; Liu, Yue; Thomas, Gregg W.C.; Vinař, Tomáš; Alföldi, Jessica; Deng, Jixin; Dugan, Shannon; van Elk, Cornelis E.; Hunter, Margaret; Joshi, Vandita; Khan, Ziad; Kovar, Christie; Lee, Sandra L.; Lindblad-Toh, Kerstin; Mancia, Annalaura; Nielsen, Rasmus; Qin, Xiang; Qu, Jiaxin; Raney, Brian J.; Vijay, Nagarjun; Wolf, Jochen B. W.; Hahn, Matthew W.; Muzny, Donna M.; Worley, Kim C.; Gilbert, M. Thomas P.; Gibbs, Richard A.

    2015-01-01

    Marine mammals from different mammalian orders share several phenotypic traits adapted to the aquatic environment and therefore represent a classic example of convergent evolution. To investigate convergent evolution at the genomic level, we sequenced and performed de novo assembly of the genomes of three species of marine mammals (the killer whale, walrus and manatee) from three mammalian orders that share independently evolved phenotypic adaptations to a marine existence. Our comparative genomic analyses found that convergent amino acid substitutions were widespread throughout the genome and that a subset of these substitutions were in genes evolving under positive selection and putatively associated with a marine phenotype. However, we found higher levels of convergent amino acid substitutions in a control set of terrestrial sister taxa to the marine mammals. Our results suggest that, whereas convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare.

  14. Convergent evolution of the genomes of marine mammals

    PubMed Central

    Foote, Andrew D.; Liu, Yue; Thomas, Gregg W.C.; Vinař, Tomáš; Alföldi, Jessica; Deng, Jixin; Dugan, Shannon; van Elk, Cornelis E.; Hunter, Margaret E.; Joshi, Vandita; Khan, Ziad; Kovar, Christie; Lee, Sandra L.; Lindblad-Toh, Kerstin; Mancia, Annalaura; Nielsen, Rasmus; Qin, Xiang; Qu, Jiaxin; Raney, Brian J.; Vijay, Nagarjun; Wolf, Jochen B. W.; Hahn, Matthew W.; Muzny, Donna M.; Worley, Kim C.; Gilbert, M. Thomas P.; Gibbs, Richard A.

    2015-01-01

    Marine mammals from different mammalian orders share several phenotypic traits adapted to the aquatic environment and are therefore a classic example of convergent evolution. To investigate convergent evolution at the genomic level, we sequenced and de novo assembled the genomes of three species of marine mammals (the killer whale, walrus and manatee) from three mammalian orders that share independently evolved phenotypic adaptations to a marine existence. Our comparative genomic analyses found that convergent amino acid substitutions were widespread throughout the genome, and that a subset were in genes evolving under positive selection and putatively associated with a marine phenotype. However, we found higher levels of convergent amino acid substitutions in a control set of terrestrial sister taxa to the marine mammals. Our results suggest that while convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare. PMID:25621460

  15. Chloroplast Genome Evolution in the Euglenaceae.

    PubMed

    Bennett, Matthew S; Triemer, Richard E

    2015-01-01

    Over the last few years multiple studies have been published outlining chloroplast genomes that represent many of the photosynthetic euglenid genera. However, these genomes were scattered throughout the euglenophyceaean phylogenetic tree, and focused on comparisons with Euglena gracilis. Here, we present a study exclusively on taxa within the Euglenaceae. Six new chloroplast genomes were characterized, those of Cryptoglena skujai, E. gracilis var. bacillaris, Euglena viridis, Euglenaria anabaena, Monomorphina parapyrum, and Trachelomonas volvocina, and added to six previously published chloroplast genomes to determine if trends existed within the family. With this study: at least one genome has now been characterized for each genus, the genomes of different strains from two taxa were characterized to explore intraspecific variability, and a second taxon has been characterized for the genus Monomorphina to examine intrageneric variability. Overall results showed a large amount of variability among the genomes, though a few trends could be identified both within Euglenaceae and within Euglenophyta. In addition, the intraspecific analysis indicated that the similarity of a genome sequence between strains was taxon dependent, and the intrageneric analysis indicated that the majority of the evolutionary changes within the Euglenaceae occurred intergenerically. PMID:25976746

  16. An Inherited Efficiencies Model of Non-Genomic Evolution

    NASA Technical Reports Server (NTRS)

    New, Michael H.; Pohorille, Andrew

    1999-01-01

    A model for the evolution of biological systems in the absence of a nucleic acid-like genome is proposed and applied to model the earliest living organisms -- protocells composed of membrane encapsulated peptides. Assuming that the peptides can make and break bonds between amino acids, and bonds in non-functional peptides are more likely to be destroyed than in functional peptides, it is demonstrated that the catalytic capabilities of the system as a whole can increase. This increase is defined to be non-genomic evolution. The relationship between the proposed mechanism for evolution and recent experiments on self-replicating peptides is discussed.

  17. Marsupial genome sequences: providing insight into evolution and disease.

    PubMed

    Deakin, Janine E

    2012-01-01

    Marsupials (metatherians), with their position in vertebrate phylogeny and their unique biological features, have been studied for many years by a dedicated group of researchers, but it has only been since the sequencing of the first marsupial genome that their value has been more widely recognised. We now have genome sequences for three distantly related marsupial species (the grey short-tailed opossum, the tammar wallaby, and Tasmanian devil), with the promise of many more genomes to be sequenced in the near future, making this a particularly exciting time in marsupial genomics. The emergence of a transmissible cancer, which is obliterating the Tasmanian devil population, has increased the importance of obtaining and analysing marsupial genome sequence for understanding such diseases as well as for conservation efforts. In addition, these genome sequences have facilitated studies aimed at answering questions regarding gene and genome evolution and provided insight into the evolution of epigenetic mechanisms. Here I highlight the major advances in our understanding of evolution and disease, facilitated by marsupial genome projects, and speculate on the future contributions to be made by such sequences. PMID:24278712

  18. CRISPR Immunity Drives Rapid Phage Genome Evolution in Streptococcus thermophilus

    PubMed Central

    Paez-Espino, David; Sharon, Itai; Morovic, Wesley; Stahl, Buffy; Thomas, Brian C.

    2015-01-01

    ABSTRACT Many bacteria rely on CRISPR-Cas systems to provide adaptive immunity against phages, predation by which can shape the ecology and functioning of microbial communities. To characterize the impact of CRISPR immunization on phage genome evolution, we performed long-term bacterium-phage (Streptococcus thermophilus-phage 2972) coevolution experiments. We found that in this species, CRISPR immunity drives fixation of single nucleotide polymorphisms that accumulate exclusively in phage genome regions targeted by CRISPR. Mutation rates in phage genomes highly exceed those of the host. The presence of multiple phages increased phage persistence by enabling recombination-based formation of chimeric phage genomes in which sequences heavily targeted by CRISPR were replaced. Collectively, our results establish CRISPR-Cas adaptive immunity as a key driver of phage genome evolution under the conditions studied and highlight the importance of multiple coexisting phages for persistence in natural systems. PMID:25900652

  19. Evolution of genome size: new approaches to an old problem.

    PubMed

    Petrov, D A

    2001-01-01

    Eukaryotic genomes come in a wide variety of sizes. Haploid DNA contents (C values) range > 80,000-fold without an apparent correlation with either the complexity of the organism or the number of genes. This puzzling observation, the C-value paradox, has remained a mystery for almost half a century, despite much progress in the elucidation of the structure and function of genomes. Here I argue that new approaches focussing on the genetic mechanisms that generate genome-size differences could shed much light on the evolution of genome size. PMID:11163918

  20. Identification of a Novel Human Rhinovirus C Type by Antibody Capture VIDISCA-454

    PubMed Central

    Jazaeri Farsani, Seyed Mohammad; Oude Munnink, Bas B.; Canuti, Marta; Deijs, Martin; Cotten, Matthew; Jebbink, Maarten F.; Verhoeven, Joost; Kellam, Paul; Loens, Katherine; Goossens, Herman; Ieven, Margareta; van der Hoek, Lia

    2015-01-01

    Causative agents for more than 30 percent of respiratory infections remain unidentified, suggesting that unknown respiratory pathogens might be involved. In this study, antibody capture VIDISCA-454 (virus discovery cDNA-AFLP combined with Roche 454 high-throughput sequencing) resulted in the discovery of a novel type of rhinovirus C (RV-C). The virus has an RNA genome of at least 7054 nt and carries the characteristics of rhinovirus C species. The gene encoding viral protein 1, which is used for typing, has only 81% nucleotide sequence identity with the closest known RV-C type, and, therefore, the virus represents the first member of a novel type, named RV-C54. PMID:25606972

  1. Genomic evolution of the ascomycetous yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphr...

  2. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs

    PubMed Central

    Green, Richard E; Braun, Edward L; Armstrong, Joel; Earl, Dent; Nguyen, Ngan; Hickey, Glenn; Vandewege, Michael W; St John, John A; Capella-Gutiérrez, Salvador; Castoe, Todd A; Kern, Colin; Fujita, Matthew K; Opazo, Juan C; Jurka, Jerzy; Kojima, Kenji K; Caballero, Juan; Hubley, Robert M; Smit, Arian F; Platt, Roy N; Lavoie, Christine A; Ramakodi, Meganathan P; Finger, John W; Suh, Alexander; Isberg, Sally R; Miles, Lee; Chong, Amanda Y; Jaratlerdsiri, Weerachai; Gongora, Jaime; Moran, Christopher; Iriarte, Andrés; McCormack, John; Burgess, Shane C; Edwards, Scott V; Lyons, Eric; Williams, Christina; Breen, Matthew; Howard, Jason T; Gresham, Cathy R; Peterson, Daniel G; Schmitz, Jürgen; Pollock, David D; Haussler, David; Triplett, Eric W; Zhang, Guojie; Irie, Naoki; Jarvis, Erich D; Brochu, Christopher A; Schmidt, Carl J; McCarthy, Fiona M; Faircloth, Brant C; Hoffmann, Federico G; Glenn, Travis C; Gabaldón, Toni; Paten, Benedict; Ray, David A

    2015-01-01

    To provide context for the diversifications of archosaurs, the group that includes crocodilians, dinosaurs and birds, we generated draft genomes of three crocodilians, Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the relatively rapid evolution of bird genomes represents an autapomorphy within that clade. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these new data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs. PMID:25504731

  3. Genomic Evolution of Saccharomyces cerevisiae under Chinese Rice Wine Fermentation

    PubMed Central

    Li, Yudong; Zhang, Weiping; Zheng, Daoqiong; Zhou, Zhan; Yu, Wenwen; Zhang, Lei; Feng, Lifang; Liang, Xinle; Guan, Wenjun; Zhou, Jingwen; Chen, Jian; Lin, Zhenguo

    2014-01-01

    Rice wine fermentation represents a unique environment for the evolution of the budding yeast, Saccharomyces cerevisiae. To understand how the selection pressure shaped the yeast genome and gene regulation, we determined the genome sequence and transcriptome of a S. cerevisiae strain YHJ7 isolated from Chinese rice wine (Huangjiu), a popular traditional alcoholic beverage in China. By comparing the genome of YHJ7 to the lab strain S288c, a Japanese sake strain K7, and a Chinese industrial bioethanol strain YJSH1, we identified many genomic sequence and structural variations in YHJ7, which are mainly located in subtelomeric regions, suggesting that these regions play an important role in genomic evolution between strains. In addition, our comparative transcriptome analysis between YHJ7 and S288c revealed a set of differentially expressed genes, including those involved in glucose transport (e.g., HXT2, HXT7) and oxidoredutase activity (e.g., AAD10, ADH7). Interestingly, many of these genomic and transcriptional variations are directly or indirectly associated with the adaptation of YHJ7 strain to its specific niches. Our molecular evolution analysis suggested that Japanese sake strains (K7/UC5) were derived from Chinese rice wine strains (YHJ7) at least approximately 2,300 years ago, providing the first molecular evidence elucidating the origin of Japanese sake strains. Our results depict interesting insights regarding the evolution of yeast during rice wine fermentation, and provided a valuable resource for genetic engineering to improve industrial wine-making strains. PMID:25212861

  4. Evolution of parasitism along convergent lines: from ecology to genomics.

    PubMed

    Poulin, Robert; Randhawa, Haseeb S

    2015-02-01

    SUMMARY From hundreds of independent transitions from a free-living existence to a parasitic mode of life, separate parasite lineages have converged over evolutionary time to share traits and exploit their hosts in similar ways. Here, we first summarize the evidence that, at a phenotypic level, eukaryotic parasite lineages have all converged toward only six general parasitic strategies: parasitoid, parasitic castrator, directly transmitted parasite, trophically transmitted parasite, vector-transmitted parasite or micropredator. We argue that these strategies represent adaptive peaks, with the similarities among unrelated taxa within any strategy extending to all basic aspects of host exploitation and transmission among hosts and transcending phylogenetic boundaries. Then, we extend our examination of convergent patterns by looking at the evolution of parasite genomes. Despite the limited taxonomic coverage of sequenced parasite genomes currently available, we find some evidence of parallel evolution among unrelated parasite taxa with respect to genome reduction or compaction, and gene losses or gains. Matching such changes in parasite genomes with the broad phenotypic traits that define the convergence of parasites toward only six strategies of host exploitation is not possible at present. Nevertheless, as more parasite genomes become available, we may be able to detect clear trends in the evolution of parasitic genome architectures representing true convergent adaptive peaks, the genomic equivalents of the phenotypic strategies used by all parasites. PMID:24229807

  5. Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny.

    PubMed

    Clark, James; Hidalgo, Oriane; Pellicer, Jaume; Liu, Hongmei; Marquardt, Jeannine; Robert, Yannis; Christenhusz, Maarten; Zhang, Shouzhou; Gibby, Mary; Leitch, Ilia J; Schneider, Harald

    2016-05-01

    The genome evolution of ferns has been considered to be relatively static compared with angiosperms. In this study, we analyse genome size data and chromosome numbers in a phylogenetic framework to explore three hypotheses: the correlation of genome size and chromosome number, the origin of modern ferns from ancestors with high chromosome numbers, and the occurrence of several whole-genome duplications during the evolution of ferns. To achieve this, we generated new genome size data, increasing the percentage of fern species with genome sizes estimated to 2.8% of extant diversity, and ensuring a comprehensive phylogenetic coverage including at least three species from each fern order. Genome size was correlated with chromosome number across all ferns despite some substantial variation in both traits. We observed a trend towards conservation of the amount of DNA per chromosome, although Osmundaceae and Psilotaceae have substantially larger chromosomes. Reconstruction of the ancestral genome traits suggested that the earliest ferns were already characterized by possessing high chromosome numbers and that the earliest divergences in ferns were correlated with substantial karyological changes. Evidence for repeated whole-genome duplications was found across the phylogeny. Fern genomes tend to evolve slowly, albeit genome rearrangements occur in some clades. PMID:26756823

  6. Genome evolution of a tertiary dinoflagellate plastid.

    PubMed

    Gabrielsen, Tove M; Minge, Marianne A; Espelund, Mari; Tooming-Klunderud, Ave; Patil, Vishwanath; Nederbragt, Alexander J; Otis, Christian; Turmel, Monique; Shalchian-Tabrizi, Kamran; Lemieux, Claude; Jakobsen, Kjetill S

    2011-01-01

    The dinoflagellates have repeatedly replaced their ancestral peridinin-plastid by plastids derived from a variety of algal lineages ranging from green algae to diatoms. Here, we have characterized the genome of a dinoflagellate plastid of tertiary origin in order to understand the evolutionary processes that have shaped the organelle since it was acquired as a symbiont cell. To address this, the genome of the haptophyte-derived plastid in Karlodinium veneficum was analyzed by Sanger sequencing of library clones and 454 pyrosequencing of plastid enriched DNA fractions. The sequences were assembled into a single contig of 143 kb, encoding 70 proteins, 3 rRNAs and a nearly full set of tRNAs. Comparative genomics revealed massive rearrangements and gene losses compared to the haptophyte plastid; only a small fraction of the gene clusters usually found in haptophytes as well as other types of plastids are present in K. veneficum. Despite the reduced number of genes, the K. veneficum plastid genome has retained a large size due to expanded intergenic regions. Some of the plastid genes are highly diverged and may be pseudogenes or subject to RNA editing. Gene losses and rearrangements are also features of the genomes of the peridinin-containing plastids, apicomplexa and Chromera, suggesting that the evolutionary processes that once shaped these plastids have occurred at multiple independent occasions over the history of the Alveolata. PMID:21541332

  7. Genome Evolution of a Tertiary Dinoflagellate Plastid

    PubMed Central

    Espelund, Mari; Tooming-Klunderud, Ave; Patil, Vishwanath; Nederbragt, Alexander J.; Otis, Christian; Turmel, Monique; Shalchian-Tabrizi, Kamran; Lemieux, Claude; Jakobsen, Kjetill S.

    2011-01-01

    The dinoflagellates have repeatedly replaced their ancestral peridinin-plastid by plastids derived from a variety of algal lineages ranging from green algae to diatoms. Here, we have characterized the genome of a dinoflagellate plastid of tertiary origin in order to understand the evolutionary processes that have shaped the organelle since it was acquired as a symbiont cell. To address this, the genome of the haptophyte-derived plastid in Karlodinium veneficum was analyzed by Sanger sequencing of library clones and 454 pyrosequencing of plastid enriched DNA fractions. The sequences were assembled into a single contig of 143 kb, encoding 70 proteins, 3 rRNAs and a nearly full set of tRNAs. Comparative genomics revealed massive rearrangements and gene losses compared to the haptophyte plastid; only a small fraction of the gene clusters usually found in haptophytes as well as other types of plastids are present in K. veneficum. Despite the reduced number of genes, the K. veneficum plastid genome has retained a large size due to expanded intergenic regions. Some of the plastid genes are highly diverged and may be pseudogenes or subject to RNA editing. Gene losses and rearrangements are also features of the genomes of the peridinin-containing plastids, apicomplexa and Chromera, suggesting that the evolutionary processes that once shaped these plastids have occurred at multiple independent occasions over the history of the Alveolata. PMID:21541332

  8. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis

    PubMed Central

    McCutcheon, John P.; Moran, Nancy A.

    2007-01-01

    Obligate symbioses with nutrient-provisioning bacteria have originated often during animal evolution and have been key to the ecological diversification of many invertebrate groups. To date, genome sequences of insect nutritional symbionts have been restricted to a related cluster within Gammaproteobacteria and have revealed distinctive features, including extreme reduction, rapid evolution, and biased nucleotide composition. Using recently developed sequencing technologies, we show that Sulcia muelleri, a member of the Bacteroidetes, underwent similar genomic changes during coevolution with its sap-feeding insect host (sharpshooters) and the coresident symbiont Baumannia cicadellinicola (Gammaproteobacteria). At 245 kilobases, Sulcia's genome is approximately one tenth of the smallest known Bacteroidetes genome and among the smallest for any cellular organism. Analysis of the coding capacities of Sulcia and Baumannia reveals striking complementarity in metabolic capabilities. PMID:18048332

  9. Mitochondrial genome evolution and the origin of eukaryotes.

    PubMed

    Lang, B F; Gray, M W; Burger, G

    1999-01-01

    Recent results from ancestral (minimally derived) protists testify to the tremendous diversity of the mitochondrial genome in various eukaryotic lineages, but also reinforce the view that mitochondria, descendants of an endosymbiotic alpha-Proteobacterium, arose only once in evolution. The serial endosymbiosis theory, currently the most popular hypothesis to explain the origin of mitochondria, postulates the capture of an alpha-proteobacterial endosymbiont by a nucleus-containing eukaryotic host resembling extant amitochondriate protists. New sequence data have challenged this scenario, instead raising the possibility that the origin of the mitochondrion was coincident with, and contributed substantially to, the origin of the nuclear genome of the eukaryotic cell. Defining more precisely the alpha-proteobacterial ancestry of the mitochondrial genome, and the contribution of the endosymbiotic event to the nuclear genome, will be essential for a full understanding of the origin and evolution of the eukaryotic cell as a whole. PMID:10690412

  10. Population genomics of intrapatient HIV-1 evolution.

    PubMed

    Zanini, Fabio; Brodin, Johanna; Thebo, Lina; Lanz, Christa; Bratt, Göran; Albert, Jan; Neher, Richard A

    2015-01-01

    Many microbial populations rapidly adapt to changing environments with multiple variants competing for survival. To quantify such complex evolutionary dynamics in vivo, time resolved and genome wide data including rare variants are essential. We performed whole-genome deep sequencing of HIV-1 populations in 9 untreated patients, with 6-12 longitudinal samples per patient spanning 5-8 years of infection. The data can be accessed and explored via an interactive web application. We show that patterns of minor diversity are reproducible between patients and mirror global HIV-1 diversity, suggesting a universal landscape of fitness costs that control diversity. Reversions towards the ancestral HIV-1 sequence are observed throughout infection and account for almost one third of all sequence changes. Reversion rates depend strongly on conservation. Frequent recombination limits linkage disequilibrium to about 100 bp in most of the genome, but strong hitch-hiking due to short range linkage limits diversity. PMID:26652000

  11. Genome evolution in maize: from genomes back to genes.

    PubMed

    Schnable, James C

    2015-01-01

    Maize occupies dual roles as both (a) one of the big-three grain species (along with rice and wheat) responsible for providing more than half of the calories consumed around the world, and (b) a model system for plant genetics and cytogenetics dating back to the origin of the field of genetics in the early twentieth century. The long history of genetic investigation in this species combined with modern genomic and quantitative genetic data has provided particular insight into the characteristics of genes linked to phenotypes and how these genes differ from many other sequences in plant genomes that are not easily distinguishable based on molecular data alone. These recent results suggest that the number of genes in plants that make significant contributions to phenotype may be lower than the number of genes defined by current molecular criteria, and also indicate that syntenic conservation has been underemphasized as a marker for gene function. PMID:25494463

  12. Evolution of genome size in Carex (Cyperaceae) in relation to chromosome number and genomic base composition

    PubMed Central

    Lipnerová, Ivana; Bureš, Petr; Horová, Lucie; Šmarda, Petr

    2013-01-01

    Background and Aims The genus Carex exhibits karyological peculiarities related to holocentrism, specifically extremely broad and almost continual variation in chromosome number. However, the effect of these peculiarities on the evolution of the genome (genome size, base composition) remains unknown. While in monocentrics, determining the arithmetic relationship between the chromosome numbers of related species is usually sufficient for the detection of particular modes of karyotype evolution (i.e. polyploidy and dysploidy), in holocentrics where chromosomal fission and fusion occur such detection requires knowledge of the DNA content. Methods The genome size and GC content were estimated in 157 taxa using flow cytometry. The exact chromosome numbers were known for 96 measured samples and were taken from the available literature for other taxa. All relationships were tested in a phylogenetic framework using the ITS tree of 105 species. Key Results The 1C genome size varied between 0·24 and 1·64 pg in Carex secalina and C. cuspidata, respectively. The genomic GC content varied from 34·8 % to 40·6 % from C. secalina to C. firma. Both genomic parameters were positively correlated. Seven polyploid and two potentially polyploid taxa were detected in the core Carex clade. A strong negative correlation between genome size and chromosome number was documented in non-polyploid taxa. Non-polyploid taxa of the core Carex clade exhibited a higher rate of genome-size evolution compared with the Vignea clade. Three dioecious taxa exhibited larger genomes, larger chromosomes, and a higher GC content than their hermaphrodite relatives. Conclusions Genomes of Carex are relatively small and very GC-poor compared with other angiosperms. We conclude that the evolution of genome and karyotype in Carex is promoted by frequent chromosomal fissions/fusions, rare polyploidy and common repetitive DNA proliferation/removal. PMID:23175591

  13. Retrotransposon evolution in diverse plant genomes.

    PubMed Central

    Langdon, T; Seago, C; Mende, M; Leggett, M; Thomas, H; Forster, J W; Jones, R N; Jenkins, G

    2000-01-01

    Retrotransposon or retrotransposon-like sequences have been reported to be conserved components of cereal centromeres. Here we show that the published sequences are derived from a single conventional Ty3-gypsy family or a nonautonomous derivative. Both autonomous and nonautonomous elements are likely to have colonized Poaceae centromeres at the time of a common ancestor but have been maintained since by active retrotransposition. The retrotransposon family is also present at a lower copy number in the Arabidopsis genome, where it shows less pronounced localization. The history of the family in the two types of genome provides an interesting contrast between "boom and bust" and persistent evolutionary patterns. PMID:10978295

  14. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs.

    PubMed

    Green, Richard E; Braun, Edward L; Armstrong, Joel; Earl, Dent; Nguyen, Ngan; Hickey, Glenn; Vandewege, Michael W; St John, John A; Capella-Gutiérrez, Salvador; Castoe, Todd A; Kern, Colin; Fujita, Matthew K; Opazo, Juan C; Jurka, Jerzy; Kojima, Kenji K; Caballero, Juan; Hubley, Robert M; Smit, Arian F; Platt, Roy N; Lavoie, Christine A; Ramakodi, Meganathan P; Finger, John W; Suh, Alexander; Isberg, Sally R; Miles, Lee; Chong, Amanda Y; Jaratlerdsiri, Weerachai; Gongora, Jaime; Moran, Christopher; Iriarte, Andrés; McCormack, John; Burgess, Shane C; Edwards, Scott V; Lyons, Eric; Williams, Christina; Breen, Matthew; Howard, Jason T; Gresham, Cathy R; Peterson, Daniel G; Schmitz, Jürgen; Pollock, David D; Haussler, David; Triplett, Eric W; Zhang, Guojie; Irie, Naoki; Jarvis, Erich D; Brochu, Christopher A; Schmidt, Carl J; McCarthy, Fiona M; Faircloth, Brant C; Hoffmann, Federico G; Glenn, Travis C; Gabaldón, Toni; Paten, Benedict; Ray, David A

    2014-12-12

    To provide context for the diversification of archosaurs--the group that includes crocodilians, dinosaurs, and birds--we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the comparatively rapid evolution is derived in birds. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs, thereby providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs. PMID:25504731

  15. Polyploidy-associated genome modifications during land plant evolution

    PubMed Central

    Jiao, Yuannian; Paterson, Andrew H.

    2014-01-01

    The occurrence of polyploidy in land plant evolution has led to an acceleration of genome modifications relative to other crown eukaryotes and is correlated with key innovations in plant evolution. Extensive genome resources provide for relating genomic changes to the origins of novel morphological and physiological features of plants. Ancestral gene contents for key nodes of the plant family tree are inferred. Pervasive polyploidy in angiosperms appears likely to be the major factor generating novel angiosperm genes and expanding some gene families. However, most gene families lose most duplicated copies in a quasi-neutral process, and a few families are actively selected for single-copy status. One of the great challenges of evolutionary genomics is to link genome modifications to speciation, diversification and the morphological and/or physiological innovations that collectively compose biodiversity. Rapid accumulation of genomic data and its ongoing investigation may greatly improve the resolution at which evolutionary approaches can contribute to the identification of specific genes responsible for particular innovations. The resulting, more ‘particulate’ understanding of plant evolution, may elevate to a new level fundamental knowledge of botanical diversity, including economically important traits in the crop plants that sustain humanity. PMID:24958928

  16. Genome evolution: groping in the soil interstices.

    PubMed

    Minelli, Alessandro

    2015-03-01

    Centipedes are a very old lineage of terrestrial animals. The first completely sequenced myriapod genome reveals that the blind centipede Strigamia maritima has no gene for light-sensory proteins, lacks the canonical circadian clock and possesses unusual features related to chemosensory perception. PMID:25734267

  17. Genome sequence analysis of the model grass Brachypodium distachyon: insights into grass genome evolution

    SciTech Connect

    Schulman, Al

    2009-08-09

    Three subfamilies of grasses, the Erhardtoideae (rice), the Panicoideae (maize, sorghum, sugar cane and millet), and the Pooideae (wheat, barley and cool season forage grasses) provide the basis of human nutrition and are poised to become major sources of renewable energy. Here we describe the complete genome sequence of the wild grass Brachypodium distachyon (Brachypodium), the first member of the Pooideae subfamily to be completely sequenced. Comparison of the Brachypodium, rice and sorghum genomes reveals a precise sequence- based history of genome evolution across a broad diversity of the grass family and identifies nested insertions of whole chromosomes into centromeric regions as a predominant mechanism driving chromosome evolution in the grasses. The relatively compact genome of Brachypodium is maintained by a balance of retroelement replication and loss. The complete genome sequence of Brachypodium, coupled to its exceptional promise as a model system for grass research, will support the development of new energy and food crops

  18. Evolution and function of genomic imprinting in plants

    PubMed Central

    Rodrigues, Jessica A.; Zilberman, Daniel

    2015-01-01

    Genomic imprinting, an inherently epigenetic phenomenon defined by parent of origin-dependent gene expression, is observed in mammals and flowering plants. Genome-scale surveys of imprinted expression and the underlying differential epigenetic marks have led to the discovery of hundreds of imprinted plant genes and confirmed DNA and histone methylation as key regulators of plant imprinting. However, the biological roles of the vast majority of imprinted plant genes are unknown, and the evolutionary forces shaping plant imprinting remain rather opaque. Here, we review the mechanisms of plant genomic imprinting and discuss theories of imprinting evolution and biological significance in light of recent findings. PMID:26680300

  19. Genetic Tailors: CTCF and Cohesin Shape the Genome During Evolution.

    PubMed

    Vietri Rudan, Matteo; Hadjur, Suzana

    2015-11-01

    Research into chromosome structure and organization is an old field that has seen some fascinating progress in recent years. Modern molecular methods that can describe the shape of chromosomes have begun to revolutionize our understanding of genome organization and the mechanisms that regulate gene activity. A picture is beginning to emerge of chromatin loops representing a widespread organizing principle of the chromatin fiber and the proteins cohesin and CCCTC-binding factor (CTCF) as key players anchoring such chromatin loops. Here we review our current understanding of the features of CTCF- and cohesin-mediated genome organization and how their evolution may have helped to shape genome structure. PMID:26439501

  20. The importance of genomic novelty in social evolution.

    PubMed

    Sumner, Seirian

    2014-01-01

    Insect societies dominate the natural world: They mould landscapes, sculpt habitats, pollinate plants, sow seeds and control pests. The secret to their success lies in the evolution of queen (reproductive) and worker (provisioner and carer) castes (Oster & Wilson 1978). A major problem in evolutionary biology is explaining the evolution of insect castes, particularly the workers (Darwin 1859). Next-generation sequencing technologies now make it possible to understand how genomic material is born, lost and reorganized in the evolution of alternative phenotypes. Such analyses are revealing a general role for novel (e.g. taxonomically restricted) genes in phenotypic innovations across the animal kingdom (Chen et al. 2013). In this issue of molecular ecology, Feldmeyer et al. (2014) provide overwhelming evidence for the importance of novel genes in caste evolution in an ant. Feldmeyer et al.'s study is important and exciting because it cements the role of genomic novelty, as well as conservation, firmly into the molecular jigsaw of social evolution. Evolution is eclectic in its exploitation of both old and new genomic material to generate replicated phenotypic innovations across the tree of life. PMID:24372753

  1. Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition

    PubMed Central

    Lefébure, Tristan; Stanhope, Michael J

    2007-01-01

    Background The genus Streptococcus is one of the most diverse and important human and agricultural pathogens. This study employs comparative evolutionary analyses of 26 Streptococcus genomes to yield an improved understanding of the relative roles of recombination and positive selection in pathogen adaptation to their hosts. Results Streptococcus genomes exhibit extreme levels of evolutionary plasticity, with high levels of gene gain and loss during species and strain evolution. S. agalactiae has a large pan-genome, with little recombination in its core-genome, while S. pyogenes has a smaller pan-genome and much more recombination of its core-genome, perhaps reflecting the greater habitat, and gene pool, diversity for S. agalactiae compared to S. pyogenes. Core-genome recombination was evident in all lineages (18% to 37% of the core-genome judged to be recombinant), while positive selection was mainly observed during species differentiation (from 11% to 34% of the core-genome). Positive selection pressure was unevenly distributed across lineages and biochemical main role categories. S. suis was the lineage with the greatest level of positive selection pressure, the largest number of unique loci selected, and the largest amount of gene gain and loss. Conclusion Recombination is an important evolutionary force in shaping Streptococcus genomes, not only in the acquisition of significant portions of the genome as lineage specific loci, but also in facilitating rapid evolution of the core-genome. Positive selection, although undoubtedly a slower process, has nonetheless played an important role in adaptation of the core-genome of different Streptococcus species to different hosts. PMID:17475002

  2. Spatiotemporal Evolution of the Primary Glioblastoma Genome.

    PubMed

    Kim, Jinkuk; Lee, In-Hee; Cho, Hee Jin; Park, Chul-Kee; Jung, Yang-Soon; Kim, Yanghee; Nam, So Hee; Kim, Byung Sup; Johnson, Mark D; Kong, Doo-Sik; Seol, Ho Jun; Lee, Jung-Il; Joo, Kyeung Min; Yoon, Yeup; Park, Woong-Yang; Lee, Jeongwu; Park, Peter J; Nam, Do-Hyun

    2015-09-14

    Tumor recurrence following treatment is the major cause of mortality for glioblastoma multiforme (GBM) patients. Thus, insights on the evolutionary process at recurrence are critical for improved patient care. Here, we describe our genomic analyses of the initial and recurrent tumor specimens from each of 38 GBM patients. A substantial divergence in the landscape of driver alterations was associated with distant appearance of a recurrent tumor from the initial tumor, suggesting that the genomic profile of the initial tumor can mislead targeted therapies for the distally recurred tumor. In addition, in contrast to IDH1-mutated gliomas, IDH1-wild-type primary GBMs rarely developed hypermutation following temozolomide (TMZ) treatment, indicating low risk for TMZ-induced hypermutation for these tumors under the standard regimen. PMID:26373279

  3. Genome evolution in the eremothecium clade of the Saccharomyces complex revealed by comparative genomics.

    PubMed

    Wendland, Jürgen; Walther, Andrea

    2011-12-01

    We used comparative genomics to elucidate the genome evolution within the pre-whole-genome duplication genus Eremothecium. To this end, we sequenced and assembled the complete genome of Eremothecium cymbalariae, a filamentous ascomycete representing the Eremothecium type strain. Genome annotation indicated 4712 gene models and 143 tRNAs. We compared the E. cymbalariae genome with that of its relative, the riboflavin overproducer Ashbya (Eremothecium) gossypii, and the reconstructed yeast ancestor. Decisive changes in the Eremothecium lineage leading to the evolution of the A. gossypii genome include the reduction from eight to seven chromosomes, the downsizing of the genome by removal of 10% or 900 kb of DNA, mostly in intergenic regions, the loss of a TY3-Gypsy-type transposable element, the re-arrangement of mating-type loci, and a massive increase of its GC content. Key species-specific events are the loss of MNN1-family of mannosyltransferases required to add the terminal fourth and fifth α-1,3-linked mannose residue to O-linked glycans and genes of the Ehrlich pathway in E. cymbalariae and the loss of ZMM-family of meiosis-specific proteins and acquisition of riboflavin overproduction in A. gossypii. This reveals that within the Saccharomyces complex genome, evolution is not only based on genome duplication with subsequent gene deletions and chromosomal rearrangements but also on fungi associated with specific environments (e.g. involving fungal-insect interactions as in Eremothecium), which have encountered challenges that may be reflected both in genome streamlining and their biosynthetic potential. PMID:22384365

  4. Genome Evolution in the Eremothecium Clade of the Saccharomyces Complex Revealed by Comparative Genomics

    PubMed Central

    Wendland, Jürgen; Walther, Andrea

    2011-01-01

    We used comparative genomics to elucidate the genome evolution within the pre–whole-genome duplication genus Eremothecium. To this end, we sequenced and assembled the complete genome of Eremothecium cymbalariae, a filamentous ascomycete representing the Eremothecium type strain. Genome annotation indicated 4712 gene models and 143 tRNAs. We compared the E. cymbalariae genome with that of its relative, the riboflavin overproducer Ashbya (Eremothecium) gossypii, and the reconstructed yeast ancestor. Decisive changes in the Eremothecium lineage leading to the evolution of the A. gossypii genome include the reduction from eight to seven chromosomes, the downsizing of the genome by removal of 10% or 900 kb of DNA, mostly in intergenic regions, the loss of a TY3-Gypsy–type transposable element, the re-arrangement of mating-type loci, and a massive increase of its GC content. Key species-specific events are the loss of MNN1-family of mannosyltransferases required to add the terminal fourth and fifth α-1,3-linked mannose residue to O-linked glycans and genes of the Ehrlich pathway in E. cymbalariae and the loss of ZMM-family of meiosis-specific proteins and acquisition of riboflavin overproduction in A. gossypii. This reveals that within the Saccharomyces complex genome, evolution is not only based on genome duplication with subsequent gene deletions and chromosomal rearrangements but also on fungi associated with specific environments (e.g. involving fungal-insect interactions as in Eremothecium), which have encountered challenges that may be reflected both in genome streamlining and their biosynthetic potential. PMID:22384365

  5. Genomic Aberrations Drive Clonal Evolution of Neuroendocrine Tumors.

    PubMed

    Kaushik, Akash Kumar; Sreekumar, Arun

    2016-05-01

    Molecular features of castration-resistant neuroendocrine prostate cancer (CRPC-NE) are not well characterized. A recent study that investigated genomic aberrations of CRPC-NE tumors suggests their clonal evolution from CRPC adenocarcinoma. Furthermore, the existence of a distinct DNA methylation profile in CRPC-NE implicates a critical role for epigenetic modification in the development of CRPC-NE. PMID:27037211

  6. Mitochondrial genome evolution in fire ants (Hymenoptera: Formicidae)

    PubMed Central

    2010-01-01

    Background Complete mitochondrial genome sequences have become important tools for the study of genome architecture, phylogeny, and molecular evolution. Despite the rapid increase in available mitogenomes, the taxonomic sampling often poorly reflects phylogenetic diversity and is often also biased to represent deeper (family-level) evolutionary relationships. Results We present the first fully sequenced ant (Hymenoptera: Formicidae) mitochondrial genomes. We sampled four mitogenomes from three species of fire ants, genus Solenopsis, which represent various evolutionary depths. Overall, ant mitogenomes appear to be typical of hymenopteran mitogenomes, displaying a general A+T-bias. The Solenopsis mitogenomes are slightly more compact than other hymentoperan mitogenomes (~15.5 kb), retaining all protein coding genes, ribosomal, and transfer RNAs. We also present evidence of recombination between the mitogenomes of the two conspecific Solenopsis mitogenomes. Finally, we discuss potential ways to improve the estimation of phylogenies using complete mitochondrial genome sequences. Conclusions The ant mitogenome presents an important addition to the continued efforts in studying hymenopteran mitogenome architecture, evolution, and phylogenetics. We provide further evidence that the sampling across many taxonomic levels (including conspecifics and congeners) is useful and important to gain detailed insights into mitogenome evolution. We also discuss ways that may help improve the use of mitogenomes in phylogenetic analyses by accounting for non-stationary and non-homogeneous evolution among branches. PMID:20929580

  7. Insights into hominid evolution from the gorilla genome sequence.

    PubMed

    Scally, Aylwyn; Dutheil, Julien Y; Hillier, LaDeana W; Jordan, Gregory E; Goodhead, Ian; Herrero, Javier; Hobolth, Asger; Lappalainen, Tuuli; Mailund, Thomas; Marques-Bonet, Tomas; McCarthy, Shane; Montgomery, Stephen H; Schwalie, Petra C; Tang, Y Amy; Ward, Michelle C; Xue, Yali; Yngvadottir, Bryndis; Alkan, Can; Andersen, Lars N; Ayub, Qasim; Ball, Edward V; Beal, Kathryn; Bradley, Brenda J; Chen, Yuan; Clee, Chris M; Fitzgerald, Stephen; Graves, Tina A; Gu, Yong; Heath, Paul; Heger, Andreas; Karakoc, Emre; Kolb-Kokocinski, Anja; Laird, Gavin K; Lunter, Gerton; Meader, Stephen; Mort, Matthew; Mullikin, James C; Munch, Kasper; O'Connor, Timothy D; Phillips, Andrew D; Prado-Martinez, Javier; Rogers, Anthony S; Sajjadian, Saba; Schmidt, Dominic; Shaw, Katy; Simpson, Jared T; Stenson, Peter D; Turner, Daniel J; Vigilant, Linda; Vilella, Albert J; Whitener, Weldon; Zhu, Baoli; Cooper, David N; de Jong, Pieter; Dermitzakis, Emmanouil T; Eichler, Evan E; Flicek, Paul; Goldman, Nick; Mundy, Nicholas I; Ning, Zemin; Odom, Duncan T; Ponting, Chris P; Quail, Michael A; Ryder, Oliver A; Searle, Stephen M; Warren, Wesley C; Wilson, Richard K; Schierup, Mikkel H; Rogers, Jane; Tyler-Smith, Chris; Durbin, Richard

    2012-03-01

    Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution. PMID:22398555

  8. Evolution of genomic structures on Mammalian sex chromosomes.

    PubMed

    Katsura, Yukako; Iwase, Mineyo; Satta, Yoko

    2012-04-01

    Throughout mammalian evolution, recombination between the two sex chromosomes was suppressed in a stepwise manner. It is thought that the suppression of recombination led to an accumulation of deleterious mutations and frequent genomic rearrangements on the Y chromosome. In this article, we review three evolutionary aspects related to genomic rearrangements and structures, such as inverted repeats (IRs) and palindromes (PDs), on the mammalian sex chromosomes. First, we describe the stepwise manner in which recombination between the X and Y chromosomes was suppressed in placental mammals and discuss a genomic rearrangement that might have led to the formation of present pseudoautosomal boundaries (PAB). Second, we describe ectopic gene conversion between the X and Y chromosomes, and propose possible molecular causes. Third, we focus on the evolutionary mode and timing of PD formation on the X and Y chromosomes. The sequence of the chimpanzee Y chromosome was recently published by two groups. Both groups suggest that rapid evolution of genomic structure occurred on the Y chromosome. Our re-analysis of the sequences confirmed the species-specific mode of human and chimpanzee Y chromosomal evolution. Finally, we present a general outlook regarding the rapid evolution of mammalian sex chromosomes. PMID:23024603

  9. Transposable element evolution in Heliconius suggests genome diversity within Lepidoptera

    PubMed Central

    2013-01-01

    Background Transposable elements (TEs) have the potential to impact genome structure, function and evolution in profound ways. In order to understand the contribution of transposable elements (TEs) to Heliconius melpomene, we queried the H. melpomene draft sequence to identify repetitive sequences. Results We determined that TEs comprise ~25% of the genome. The predominant class of TEs (~12% of the genome) was the non-long terminal repeat (non-LTR) retrotransposons, including a novel SINE family. However, this was only slightly higher than content derived from DNA transposons, which are diverse, with several families having mobilized in the recent past. Compared to the only other well-studied lepidopteran genome, Bombyx mori, H. melpomene exhibits a higher DNA transposon content and a distinct repertoire of retrotransposons. We also found that H. melpomene exhibits a high rate of TE turnover with few older elements accumulating in the genome. Conclusions Our analysis represents the first complete, de novo characterization of TE content in a butterfly genome and suggests that, while TEs are able to invade and multiply, TEs have an overall deleterious effect and/or that maintaining a small genome is advantageous. Our results also hint that analysis of additional lepidopteran genomes will reveal substantial TE diversity within the group. PMID:24088337

  10. Ancient population genomics and the study of evolution

    PubMed Central

    Parks, M.; Subramanian, S.; Baroni, C.; Salvatore, M. C.; Zhang, G.; Millar, C. D.; Lambert, D. M.

    2015-01-01

    Recently, the study of ancient DNA (aDNA) has been greatly enhanced by the development of second-generation DNA sequencing technologies and targeted enrichment strategies. These developments have allowed the recovery of several complete ancient genomes, a result that would have been considered virtually impossible only a decade ago. Prior to these developments, aDNA research was largely focused on the recovery of short DNA sequences and their use in the study of phylogenetic relationships, molecular rates, species identification and population structure. However, it is now possible to sequence a large number of modern and ancient complete genomes from a single species and thereby study the genomic patterns of evolutionary change over time. Such a study would herald the beginnings of ancient population genomics and its use in the study of evolution. Species that are amenable to such large-scale studies warrant increased research effort. We report here progress on a population genomic study of the Adélie penguin (Pygoscelis adeliae). This species is ideally suited to ancient population genomic research because both modern and ancient samples are abundant in the permafrost conditions of Antarctica. This species will enable us to directly address many of the fundamental questions in ecology and evolution. PMID:25487332

  11. The compact Selaginella genome identifies changes in gene content associated with the evolution of vascular plants

    SciTech Connect

    Grigoriev, Igor V.; Banks, Jo Ann; Nishiyama, Tomoaki; Hasebe, Mitsuyasu; Bowman, John L.; Gribskov, Michael; dePamphilis, Claude; Albert, Victor A.; Aono, Naoki; Aoyama, Tsuyoshi; Ambrose, Barbara A.; Ashton, Neil W.; Axtell, Michael J.; Barker, Elizabeth; Barker, Michael S.; Bennetzen, Jeffrey L.; Bonawitz, Nicholas D.; Chapple, Clint; Cheng, Chaoyang; Correa, Luiz Gustavo Guedes; Dacre, Michael; DeBarry, Jeremy; Dreyer, Ingo; Elias, Marek; Engstrom, Eric M.; Estelle, Mark; Feng, Liang; Finet, Cedric; Floyd, Sandra K.; Frommer, Wolf B.; Fujita, Tomomichi; Gramzow, Lydia; Gutensohn, Michael; Harholt, Jesper; Hattori, Mitsuru; Heyl, Alexander; Hirai, Tadayoshi; Hiwatashi, Yuji; Ishikawa, Masaki; Iwata, Mineko; Karol, Kenneth G.; Koehler, Barbara; Kolukisaoglu, Uener; Kubo, Minoru; Kurata, Tetsuya; Lalonde, Sylvie; Li, Kejie; Li, Ying; Litt, Amy; Lyons, Eric; Manning, Gerard; Maruyama, Takeshi; Michael, Todd P.; Mikami, Koji; Miyazaki, Saori; Morinaga, Shin-ichi; Murata, Takashi; Mueller-Roeber, Bernd; Nelson, David R.; Obara, Mari; Oguri, Yasuko; Olmstead, Richard G.; Onodera, Naoko; Petersen, Bent Larsen; Pils, Birgit; Prigge, Michael; Rensing, Stefan A.; Riano-Pachon, Diego Mauricio; Roberts, Alison W.; Sato, Yoshikatsu; Scheller, Henrik Vibe; Schulz, Burkhard; Schulz, Christian; Shakirov, Eugene V.; Shibagaki, Nakako; Shinohara, Naoki; Shippen, Dorothy E.; Sorensen, Iben; Sotooka, Ryo; Sugimoto, Nagisa; Sugita, Mamoru; Sumikawa, Naomi; Tanurdzic, Milos; Theilsen, Gunter; Ulvskov, Peter; Wakazuki, Sachiko; Weng, Jing-Ke; Willats, William W.G.T.; Wipf, Daniel; Wolf, Paul G.; Yang, Lixing; Zimmer, Andreas D.; Zhu, Qihui; Mitros, Therese; Hellsten, Uffe; Loque, Dominique; Otillar, Robert; Salamov, Asaf; Schmutz, Jeremy; Shapiro, Harris; Lindquist, Erika; Lucas, Susan; Rokhsar, Daniel

    2011-04-28

    We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by comparative genomics identify genes that likely played important roles in the early evolution of vascular plants and their subsequent evolution

  12. Tolerance whole of genome doubling propagates chromosomal instability and accelerates cancer genome evolution

    PubMed Central

    Burrell, Rebecca A; Rowan, Andrew J; Grönroos, Eva; Endesfelder, David; Joshi, Tejal; Mouradov, Dmitri; Gibbs, Peter; Ward, Robyn L.; Hawkins, Nicholas J.; Szallasi, Zoltan; Sieber, Oliver M.; Swanton, Charles

    2015-01-01

    The contribution of whole genome doubling to chromosomal instability (CIN) and tumour evolution is unclear. We use long-term culture of isogenic tetraploid cells from a stable diploid colon cancer progenitor to investigate how a genome-doubling event affects genome stability over time. Rare cells that survive genome doubling demonstrate increased tolerance to chromosome aberrations. Tetraploid cells do not exhibit increased frequencies of structural or numerical CIN per chromosome. However, the tolerant phenotype in tetraploid cells, coupled with a doubling of chromosome aberrations per cell, allows chromosome abnormalities to evolve specifically in tetraploids, recapitulating chromosomal changes in genomically complex colorectal tumours. Finally, a genome-doubling event is independently predictive of poor relapse-free survival in early stage disease in two independent cohorts in multivariate analyses (discovery data: HR=4.70, 95% CI 1.04-21.37, validation data: HR=1.59, 95% CI 1.05-2.42). These data highlight an important role for the tolerance of genome doubling in driving cancer genome evolution. PMID:24436049

  13. Genome size evolution in pufferfish: an insight from BAC clone-based Diodon holocanthus genome sequencing

    PubMed Central

    2010-01-01

    Background Variations in genome size within and between species have been observed since the 1950 s in diverse taxonomic groups. Serving as model organisms, smooth pufferfish possess the smallest vertebrate genomes. Interestingly, spiny pufferfish from its sister family have genome twice as large as smooth pufferfish. Therefore, comparative genomic analysis between smooth pufferfish and spiny pufferfish is useful for our understanding of genome size evolution in pufferfish. Results Ten BAC clones of a spiny pufferfish Diodon holocanthus were randomly selected and shotgun sequenced. In total, 776 kb of non-redundant sequences without gap representing 0.1% of the D. holocanthus genome were identified, and 77 distinct genes were predicted. In the sequenced D. holocanthus genome, 364 kb is homologous with 265 kb of the Takifugu rubripes genome, and 223 kb is homologous with 148 kb of the Tetraodon nigroviridis genome. The repetitive DNA accounts for 8% of the sequenced D. holocanthus genome, which is higher than that in the T. rubripes genome (6.89%) and that in the Te. nigroviridis genome (4.66%). In the repetitive DNA, 76% is retroelements which account for 6% of the sequenced D. holocanthus genome and belong to known families of transposable elements. More than half of retroelements were distributed within genes. In the non-homologous regions, repeat element proportion in D. holocanthus genome increased to 10.6% compared with T. rubripes and increased to 9.19% compared with Te. nigroviridis. A comparison of 10 well-defined orthologous genes showed that the average intron size (566 bp) in D. holocanthus genome is significantly longer than that in the smooth pufferfish genome (435 bp). Conclusion Compared with the smooth pufferfish, D. holocanthus has a low gene density and repeat elements rich genome. Genome size variation between D. holocanthus and the smooth pufferfish exhibits as length variation between homologous region and different accumulation of non

  14. Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes

    PubMed Central

    Huang, Shengfeng; Chen, Zelin; Yan, Xinyu; Yu, Ting; Huang, Guangrui; Yan, Qingyu; Pontarotti, Pierre Antoine; Zhao, Hongchen; Li, Jie; Yang, Ping; Wang, Ruihua; Li, Rui; Tao, Xin; Deng, Ting; Wang, Yiquan; Li, Guang; Zhang, Qiujin; Zhou, Sisi; You, Leiming; Yuan, Shaochun; Fu, Yonggui; Wu, Fenfang; Dong, Meiling; Chen, Shangwu; Xu, Anlong

    2014-01-01

    Vertebrates diverged from other chordates ~500 Myr ago and experienced successful innovations and adaptations, but the genomic basis underlying vertebrate origins are not fully understood. Here we suggest, through comparison with multiple lancelet (amphioxus) genomes, that ancient vertebrates experienced high rates of protein evolution, genome rearrangement and domain shuffling and that these rates greatly slowed down after the divergence of jawed and jawless vertebrates. Compared with lancelets, modern vertebrates retain, at least relatively, less protein diversity, fewer nucleotide polymorphisms, domain combinations and conserved non-coding elements (CNE). Modern vertebrates also lost substantial transposable element (TE) diversity, whereas lancelets preserve high TE diversity that includes even the long-sought RAG transposon. Lancelets also exhibit rapid gene turnover, pervasive transcription, fastest exon shuffling in metazoans and substantial TE methylation not observed in other invertebrates. These new lancelet genome sequences provide new insights into the chordate ancestral state and the vertebrate evolution. PMID:25523484

  15. Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes.

    PubMed

    Huang, Shengfeng; Chen, Zelin; Yan, Xinyu; Yu, Ting; Huang, Guangrui; Yan, Qingyu; Pontarotti, Pierre Antoine; Zhao, Hongchen; Li, Jie; Yang, Ping; Wang, Ruihua; Li, Rui; Tao, Xin; Deng, Ting; Wang, Yiquan; Li, Guang; Zhang, Qiujin; Zhou, Sisi; You, Leiming; Yuan, Shaochun; Fu, Yonggui; Wu, Fenfang; Dong, Meiling; Chen, Shangwu; Xu, Anlong

    2014-01-01

    Vertebrates diverged from other chordates ~500 Myr ago and experienced successful innovations and adaptations, but the genomic basis underlying vertebrate origins are not fully understood. Here we suggest, through comparison with multiple lancelet (amphioxus) genomes, that ancient vertebrates experienced high rates of protein evolution, genome rearrangement and domain shuffling and that these rates greatly slowed down after the divergence of jawed and jawless vertebrates. Compared with lancelets, modern vertebrates retain, at least relatively, less protein diversity, fewer nucleotide polymorphisms, domain combinations and conserved non-coding elements (CNE). Modern vertebrates also lost substantial transposable element (TE) diversity, whereas lancelets preserve high TE diversity that includes even the long-sought RAG transposon. Lancelets also exhibit rapid gene turnover, pervasive transcription, fastest exon shuffling in metazoans and substantial TE methylation not observed in other invertebrates. These new lancelet genome sequences provide new insights into the chordate ancestral state and the vertebrate evolution. PMID:25523484

  16. Genome-wide signatures of convergent evolution in echolocating mammals

    PubMed Central

    Parker, Joe; Tsagkogeorga, Georgia; Cotton, James A.; Liu, Yuan; Provero, Paolo; Stupka, Elia; Rossiter, Stephen J.

    2013-01-01

    Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes1-3. However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures4,5. Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level6-9. Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution9,10 although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised. PMID:24005325

  17. Genome-wide signatures of convergent evolution in echolocating mammals.

    PubMed

    Parker, Joe; Tsagkogeorga, Georgia; Cotton, James A; Liu, Yuan; Provero, Paolo; Stupka, Elia; Rossiter, Stephen J

    2013-10-10

    Evolution is typically thought to proceed through divergence of genes, proteins and ultimately phenotypes. However, similar traits might also evolve convergently in unrelated taxa owing to similar selection pressures. Adaptive phenotypic convergence is widespread in nature, and recent results from several genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level. Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution, although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show that convergence is not a rare process restricted to several loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four newly sequenced bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the bottlenose dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Unexpectedly, we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognized. PMID:24005325

  18. Horizontal gene transfer, genome innovation and evolution.

    PubMed

    Gogarten, J Peter; Townsend, Jeffrey P

    2005-09-01

    To what extent is the tree of life the best representation of the evolutionary history of microorganisms? Recent work has shown that, among sets of prokaryotic genomes in which most homologous genes show extremely low sequence divergence, gene content can vary enormously, implying that those genes that are variably present or absent are frequently horizontally transferred. Traditionally, successful horizontal gene transfer was assumed to provide a selective advantage to either the host or the gene itself, but could horizontally transferred genes be neutral or nearly neutral? We suggest that for many prokaryotes, the boundaries between species are fuzzy, and therefore the principles of population genetics must be broadened so that they can be applied to higher taxonomic categories. PMID:16138096

  19. Phylogenomics and the Dynamic Genome Evolution of the Genus Streptococcus

    PubMed Central

    Richards, Vincent P.; Palmer, Sara R.; Pavinski Bitar, Paulina D.; Qin, Xiang; Weinstock, George M.; Highlander, Sarah K.; Town, Christopher D.; Burne, Robert A.; Stanhope, Michael J.

    2014-01-01

    The genus Streptococcus comprises important pathogens that have a severe impact on human health and are responsible for substantial economic losses to agriculture. Here, we utilize 46 Streptococcus genome sequences (44 species), including eight species sequenced here, to provide the first genomic level insight into the evolutionary history and genetic basis underlying the functional diversity of all major groups of this genus. Gene gain/loss analysis revealed a dynamic pattern of genome evolution characterized by an initial period of gene gain followed by a period of loss, as the major groups within the genus diversified. This was followed by a period of genome expansion associated with the origins of the present extant species. The pattern is concordant with an emerging view that genomes evolve through a dynamic process of expansion and streamlining. A large proportion of the pan-genome has experienced lateral gene transfer (LGT) with causative factors, such as relatedness and shared environment, operating over different evolutionary scales. Multiple gene ontology terms were significantly enriched for each group, and mapping terms onto the phylogeny showed that those corresponding to genes born on branches leading to the major groups represented approximately one-fifth of those enriched. Furthermore, despite the extensive LGT, several biochemical characteristics have been retained since group formation, suggesting genomic cohesiveness through time, and that these characteristics may be fundamental to each group. For example, proteolysis: mitis group; urea metabolism: salivarius group; carbohydrate metabolism: pyogenic group; and transcription regulation: bovis group. PMID:24625962

  20. Nannochloropsis Genomes Reveal Evolution of Microalgal Oleaginous Traits

    PubMed Central

    Hu, Jianqiang; Han, Danxiang; Wang, Hui; Zeng, Xiaowei; Jing, Xiaoyan; Zhou, Qian; Su, Xiaoquan; Chang, Xingzhi; Wang, Anhui; Wang, Wei; Jia, Jing; Wei, Li; Xin, Yi; Qiao, Yinghe; Huang, Ranran; Chen, Jie; Han, Bo; Yoon, Kangsup; Hill, Russell T.; Zohar, Yonathan; Chen, Feng; Hu, Qiang; Xu, Jian

    2014-01-01

    Oleaginous microalgae are promising feedstock for biofuels, yet the genetic diversity, origin and evolution of oleaginous traits remain largely unknown. Here we present a detailed phylogenomic analysis of five oleaginous Nannochloropsis species (a total of six strains) and one time-series transcriptome dataset for triacylglycerol (TAG) synthesis on one representative strain. Despite small genome sizes, high coding potential and relative paucity of mobile elements, the genomes feature small cores of ca. 2,700 protein-coding genes and a large pan-genome of >38,000 genes. The six genomes share key oleaginous traits, such as the enrichment of selected lipid biosynthesis genes and certain glycoside hydrolase genes that potentially shift carbon flux from chrysolaminaran to TAG synthesis. The eleven type II diacylglycerol acyltransferase genes (DGAT-2) in every strain, each expressed during TAG synthesis, likely originated from three ancient genomes, including the secondary endosymbiosis host and the engulfed green and red algae. Horizontal gene transfers were inferred in most lipid synthesis nodes with expanded gene doses and many glycoside hydrolase genes. Thus multiple genome pooling and horizontal genetic exchange, together with selective inheritance of lipid synthesis genes and species-specific gene loss, have led to the enormous genetic apparatus for oleaginousness and the wide genomic divergence among present-day Nannochloropsis. These findings have important implications in the screening and genetic engineering of microalgae for biofuels. PMID:24415958

  1. Neanderthal genomics and the evolution of modern humans.

    PubMed

    Noonan, James P

    2010-05-01

    Humans possess unique physical and cognitive characteristics relative to other primates. Comparative analyses of the human and chimpanzee genomes are beginning to reveal sequence changes on the human lineage that may have contributed to the evolution of human traits. However, these studies cannot identify the genetic differences that distinguish modern humans from archaic human species. Here, I will discuss efforts to obtain genomic sequence from Neanderthal, the closest known relative of modern humans. Recent studies in this nascent field have focused on developing methods to recover nuclear DNA from Neanderthal remains. The success of these early studies has inspired a Neanderthal genome project, which promises to produce a reference Neanderthal genome sequence in the near future. Technical issues, such as the level of Neanderthal sequence coverage that can realistically be obtained from a single specimen and the presence of modern human contaminating sequences, reduce the detection of authentic human-Neanderthal sequence differences but may be remedied by methodological improvements. More critical for the utility of a Neanderthal genome sequence is the evolutionary relationship of humans and Neanderthals. Current evidence suggests that the modern human and Neanderthal lineages diverged before the emergence of contemporary humans. A fraction of biologically relevant human-chimpanzee sequence differences are thus likely to have arisen and become fixed exclusively on the modern human lineage. A reconstructed Neanderthal genome sequence could be integrated into human-primate genome comparisons to help reveal the evolutionary genetic events that produced modern humans. PMID:20439435

  2. The Sunflower Genome and its Evolution (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Rieseberg, Loren [University of British Columbia

    2013-01-15

    Loren Rieseberg from the University of British Columbia on "The Sunflower Genome and its Evolution" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, California.

  3. The Sunflower Genome and its Evolution (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Rieseberg, Loren

    2012-03-21

    Loren Rieseberg from the University of British Columbia on "The Sunflower Genome and its Evolution" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, California.

  4. [The Role of Viruses in the Genome Evolution].

    PubMed

    Mustafin, R N

    2016-01-01

    The review presents the model of evolution with the participation of selfish genetic elements, the origin of which is directly related to the evolutionary transformation of living organisms, the genome of which is represented by viral sequences. Given the common: origin of exogenous and endogenous viruses, mobile elements of the genome identified particular exchange of genetic information: prokaryotes mainly by using DNA-containing elements, eukaryotes--RNA transposons and endogenous retroviruses. The process of evolutionary variability using exogenous viruses for eukaryotes, unlike prokaryotes, was the least successful, which brought to the fore the endogenous parasitism as the preferred way of adaptation. High dynamics of the eukaryotic genome as a cause of the whole variety of wild life was formed due to the mechanism of viral evolution. The origin of viruses had adaptive value, with the progress of genome evolution in the dynamics increasingly became involved epigenetic mechanisms of regulation of movements and sequences of viral transcription and splicing modifications of proteins and non allelic recombination. PMID:27530045

  5. Genome-level evolution of resistance genes in Arabidopsis thaliana.

    PubMed Central

    Baumgarten, Andrew; Cannon, Steven; Spangler, Russ; May, Georgiana

    2003-01-01

    Pathogen resistance genes represent some of the most abundant and diverse gene families found within plant genomes. However, evolutionary mechanisms generating resistance gene diversity at the genome level are not well understood. We used the complete Arabidopsis thaliana genome sequence to show that most duplication of individual NBS-LRR sequences occurs at close physical proximity to the parent sequence and generates clusters of closely related NBS-LRR sequences. Deploying the statistical strength of phylogeographic approaches and using chromosomal location as a proxy for spatial location, we show that apparent duplication of NBS-LRR genes to ectopic chromosomal locations is largely the consequence of segmental chromosome duplication and rearrangement, rather than the independent duplication of individual sequences. Although accounting for a smaller fraction of NBS-LRR gene duplications, segmental chromosome duplication and rearrangement events have a large impact on the evolution of this multigene family. Intergenic exchange is dramatically lower between NBS-LRR sequences located in different chromosome regions as compared to exchange between sequences within the same chromosome region. Consequently, once translocated to new chromosome locations, NBS-LRR gene copies have a greater likelihood of escaping intergenic exchange and adopting new functions than do gene copies located within the same chromosomal region. We propose an evolutionary model that relates processes of genome evolution to mechanisms of evolution for the large, diverse, NBS-LRR gene family. PMID:14504238

  6. Moments of genome evolution by Double Cut-and-Join

    PubMed Central

    2015-01-01

    We study statistical estimators of the number of genomic events separating two genomes under a Double Cut-and Join (DCJ) rearrangement model, by a method of moment estimation. We first propose an exact, closed, analytically invertible formula for the expected number of breakpoints after a given number of DCJs. This improves over the heuristic, recursive and computationally slower previously proposed one. Then we explore the analogies of genome evolution by DCJ with evolution of binary sequences under substitutions, permutations under transpositions, and random graphs. Each of these are presented in the literature with intuitive justifications, and are used to import results from better known fields. We formalize the relations by proving a correspondence between moments in sequence and genome evolution, provided substitutions appear four by four in the corresponding model. Eventually we prove a bounded error on two estimators of the number of cycles in the breakpoint graph after a given number of rearrangements, by an analogy with cycles in permutations and components in random graphs. PMID:26451469

  7. Genomic perspectives on the evolution and spread of bacterial pathogens

    PubMed Central

    Bentley, Stephen D.

    2015-01-01

    Since the first complete sequencing of a free-living organism, Haemophilus influenzae, genomics has been used to probe both the biology of bacterial pathogens and their evolution. Single-genome approaches provided information on the repertoire of virulence determinants and host-interaction factors, and, along with comparative analyses, allowed the proposal of hypotheses to explain the evolution of many of these traits. These analyses suggested many bacterial pathogens to be of relatively recent origin and identified genome degradation as a key aspect of host adaptation. The advent of very-high-throughput sequencing has allowed for detailed phylogenetic analysis of many important pathogens, revealing patterns of global and local spread, and recent evolution in response to pressure from therapeutics and the human immune system. Such analyses have shown that bacteria can evolve and transmit very rapidly, with emerging clones showing adaptation and global spread over years or decades. The resolution achieved with whole-genome sequencing has shown considerable benefits in clinical microbiology, enabling accurate outbreak tracking within hospitals and across continents. Continued large-scale sequencing promises many further insights into genetic determinants of drug resistance, virulence and transmission in bacterial pathogens. PMID:26702036

  8. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma

    PubMed Central

    Bolli, Niccolo; Avet-Loiseau, Hervé; Wedge, David C.; Van Loo, Peter; Alexandrov, Ludmil B.; Martincorena, Inigo; Dawson, Kevin J.; Iorio, Francesco; Nik-Zainal, Serena; Bignell, Graham R.; Hinton, Jonathan W.; Li, Yilong; Tubio, Jose M.C.; McLaren, Stuart; O' Meara, Sarah; Butler, Adam P.; Teague, Jon W.; Mudie, Laura; Anderson, Elizabeth; Rashid, Naim; Tai, Yu-Tzu; Shammas, Masood A.; Sperling, Adam S.; Fulciniti, Mariateresa; Richardson, Paul G.; Parmigiani, Giovanni; Magrangeas, Florence; Minvielle, Stephane; Moreau, Philippe; Attal, Michel; Facon, Thierry; Futreal, P Andrew; Anderson, Kenneth C.; Campbell, Peter J.; Munshi, Nikhil C.

    2014-01-01

    Multiple myeloma is an incurable plasma cell malignancy with a complex and incompletely understood molecular pathogenesis. Here we use whole-exome sequencing, copy-number profiling and cytogenetics to analyse 84 myeloma samples. Most cases have a complex subclonal structure and show clusters of subclonal variants, including subclonal driver mutations. Serial sampling reveals diverse patterns of clonal evolution, including linear evolution, differential clonal response and branching evolution. Diverse processes contribute to the mutational repertoire, including kataegis and somatic hypermutation, and their relative contribution changes over time. We find heterogeneity of mutational spectrum across samples, with few recurrent genes. We identify new candidate genes, including truncations of SP140, LTB, ROBO1 and clustered missense mutations in EGR1. The myeloma genome is heterogeneous across the cohort, and exhibits diversity in clonal admixture and in dynamics of evolution, which may impact prognostic stratification, therapeutic approaches and assessment of disease response to treatment. PMID:24429703

  9. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma.

    PubMed

    Bolli, Niccolo; Avet-Loiseau, Hervé; Wedge, David C; Van Loo, Peter; Alexandrov, Ludmil B; Martincorena, Inigo; Dawson, Kevin J; Iorio, Francesco; Nik-Zainal, Serena; Bignell, Graham R; Hinton, Jonathan W; Li, Yilong; Tubio, Jose M C; McLaren, Stuart; O' Meara, Sarah; Butler, Adam P; Teague, Jon W; Mudie, Laura; Anderson, Elizabeth; Rashid, Naim; Tai, Yu-Tzu; Shammas, Masood A; Sperling, Adam S; Fulciniti, Mariateresa; Richardson, Paul G; Parmigiani, Giovanni; Magrangeas, Florence; Minvielle, Stephane; Moreau, Philippe; Attal, Michel; Facon, Thierry; Futreal, P Andrew; Anderson, Kenneth C; Campbell, Peter J; Munshi, Nikhil C

    2014-01-01

    Multiple myeloma is an incurable plasma cell malignancy with a complex and incompletely understood molecular pathogenesis. Here we use whole-exome sequencing, copy-number profiling and cytogenetics to analyse 84 myeloma samples. Most cases have a complex subclonal structure and show clusters of subclonal variants, including subclonal driver mutations. Serial sampling reveals diverse patterns of clonal evolution, including linear evolution, differential clonal response and branching evolution. Diverse processes contribute to the mutational repertoire, including kataegis and somatic hypermutation, and their relative contribution changes over time. We find heterogeneity of mutational spectrum across samples, with few recurrent genes. We identify new candidate genes, including truncations of SP140, LTB, ROBO1 and clustered missense mutations in EGR1. The myeloma genome is heterogeneous across the cohort, and exhibits diversity in clonal admixture and in dynamics of evolution, which may impact prognostic stratification, therapeutic approaches and assessment of disease response to treatment. PMID:24429703

  10. Rearrangement and evolution of mitochondrial genomes in parrots.

    PubMed

    Eberhard, Jessica R; Wright, Timothy F

    2016-01-01

    Mitochondrial genome rearrangements that result in control region duplication have been described for a variety of birds, but the mechanisms leading to their appearance and maintenance remain unclear, and their effect on sequence evolution has not been explored. A recent survey of mitochondrial genomes in the Psittaciformes (parrots) found that control region duplications have arisen independently at least six times across the order. We analyzed complete mitochondrial genome sequences from 20 parrot species, including representatives of each lineage with control region duplications, to document the gene order changes and to examine effects of genome rearrangements on patterns of sequence evolution. The gene order previously reported for Amazona parrots was found for four of the six independently derived genome rearrangements, and a previously undescribed gene order was found in Prioniturus luconensis, representing a fifth clade with rearranged genomes; the gene order resulting from the remaining rearrangement event could not be confirmed. In all rearranged genomes, two copies of the control region are present and are very similar at the sequence level, while duplicates of the other genes involved in the rearrangement show signs of degeneration or have been lost altogether. We compared rates of sequence evolution in genomes with and without control region duplications and did not find a consistent acceleration or deceleration associated with the duplications. This could be due to the fact that most of the genome rearrangement events in parrots are ancient, and additionally, to an effect of body size on evolutionary rate that we found for mitochondrial but not nuclear sequences. Base composition analyses found that relative to other birds, parrots have unusually strong compositional asymmetry (AT- and GC-skew) in their coding sequences, especially at fourfold degenerate sites. Furthermore, we found higher AT skew in species with control region duplications. One

  11. The human genome and the human control of natural evolution.

    PubMed

    Sakamoto, H

    2001-10-01

    Recent advances in research on the Human Genome are provoking many critical problems in the global policy regarding the future status of human beings as well as in that of the whole life system on the earth, and consequently, these advances provoke the serious bioethical and philosophical questions. Firstly, how can we comprehend that we are going to have the complete technology to manipulate the system of the human genome and other non-human genomes? Though no science and technology can be complete, we will, I believe, take possession of an almost complete gene technology in the early stage of the next Century. Gene technology will soon fall into the hands of human beings instead of rendering in the province of God. Secondly, which gene technologies will we actually realize and utilize in the early stages of the 21st Century? Most probably, we will adopt these technologies to health care to treat some apparent bodily diseases, for instance, cancer, hemophilia, ADA deficiency, and so forth, and sooner or later we will adopt gene therapy to germ lines, which, in the long run, suggests the possibility of a future "artificial evolution" instead of the "natural evolution" of the past. Thirdly, how is the new concept of "artificial evolution" justified ethically? I believe this kind of manmade evolution is the only way for human beings to survive into the future global environment. There cannot be any serious ethical objection against the idea of artificial evolution. Fourthly, what is the background philosophy for the concept of "artificial evolution"? I will discuss the nature of modern European humanism with individual dignity and fundamental human rights which has led the philosophy of modern culture and modern society, and I will conclude by suggesting that we should abolish an essential part of modern humanism and newly devise some alternative philosophy to fit the new Millennium. PMID:15011660

  12. The evolution of genome mining in microbes - a review.

    PubMed

    Ziemert, Nadine; Alanjary, Mohammad; Weber, Tilmann

    2016-08-27

    Covering: 2006 to 2016The computational mining of genomes has become an important part in the discovery of novel natural products as drug leads. Thousands of bacterial genome sequences are publically available these days containing an even larger number and diversity of secondary metabolite gene clusters that await linkage to their encoded natural products. With the development of high-throughput sequencing methods and the wealth of DNA data available, a variety of genome mining methods and tools have been developed to guide discovery and characterisation of these compounds. This article reviews the development of these computational approaches during the last decade and shows how the revolution of next generation sequencing methods has led to an evolution of various genome mining approaches, techniques and tools. After a short introduction and brief overview of important milestones, this article will focus on the different approaches of mining genomes for secondary metabolites, from detecting biosynthetic genes to resistance based methods and "evo-mining" strategies including a short evaluation of the impact of the development of genome mining methods and tools on the field of natural products and microbial ecology. PMID:27272205

  13. Evolution and Diversity of the Human Hepatitis D Virus Genome

    PubMed Central

    Huang, Chi-Ruei; Lo, Szecheng J.

    2010-01-01

    Human hepatitis delta virus (HDV) is the smallest RNA virus in genome. HDV genome is divided into a viroid-like sequence and a protein-coding sequence which could have originated from different resources and the HDV genome was eventually constituted through RNA recombination. The genome subsequently diversified through accumulation of mutations selected by interactions between the mutated RNA and proteins with host factors to successfully form the infectious virions. Therefore, we propose that the conservation of HDV nucleotide sequence is highly related with its functionality. Genome analysis of known HDV isolates shows that the C-terminal coding sequences of large delta antigen (LDAg) are the highest diversity than other regions of protein-coding sequences but they still retain biological functionality to interact with the heavy chain of clathrin can be selected and maintained. Since viruses interact with many host factors, including escaping the host immune response, how to design a program to predict RNA genome evolution is a great challenging work. PMID:20204073

  14. Update on Human Rhinovirus and Coronavirus Infections.

    PubMed

    Greenberg, Stephen B

    2016-08-01

    Human rhinovirus (HRV) and coronavirus (HCoV) infections are associated with both upper respiratory tract illness ("the common cold") and lower respiratory tract illness (pneumonia). New species of HRVs and HCoVs have been diagnosed in the past decade. More sensitive diagnostic tests such as reverse transcription-polymerase chain reaction have expanded our understanding of the role these viruses play in both immunocompetent and immunosuppressed hosts. Recent identification of severe acute respiratory syndrome and Middle East respiratory syndrome viruses causing serious respiratory illnesses has led to renewed efforts for vaccine development. The role these viruses play in patients with chronic lung disease such as asthma makes the search for antiviral agents of increased importance. PMID:27486736

  15. Evolution After Whole-Genome Duplication: A Network Perspective

    PubMed Central

    Zhu, Yun; Lin, Zhenguo; Nakhleh, Luay

    2013-01-01

    Gene duplication plays an important role in the evolution of genomes and interactomes. Elucidating how evolution after gene duplication interplays at the sequence and network level is of great interest. In this work, we analyze a data set of gene pairs that arose through whole-genome duplication (WGD) in yeast. All these pairs have the same duplication time, making them ideal for evolutionary investigation. We investigated the interplay between evolution after WGD at the sequence and network levels and correlated these two levels of divergence with gene expression and fitness data. We find that molecular interactions involving WGD genes evolve at rates that are three orders of magnitude slower than the rates of evolution of the corresponding sequences. Furthermore, we find that divergence of WGD pairs correlates strongly with gene expression and fitness data. Because of the role of gene duplication in determining redundancy in biological systems and particularly at the network level, we investigated the role of interaction networks in elucidating the evolutionary fate of duplicated genes. We find that gene neighborhoods in interaction networks provide a mechanism for inferring these fates, and we developed an algorithm for achieving this task. Further epistasis analysis of WGD pairs categorized by their inferred evolutionary fates demonstrated the utility of these techniques. Finally, we find that WGD pairs and other pairs of paralogous genes of small-scale duplication origin share similar properties, giving good support for generalizing our results from WGD pairs to evolution after gene duplication in general. PMID:24048644

  16. Non-conflict theories for the evolution of genomic imprinting

    PubMed Central

    Spencer, H G; Clark, A G

    2014-01-01

    Theories focused on kinship and the genetic conflict it induces are widely considered to be the primary explanations for the evolution of genomic imprinting. However, there have appeared many competing ideas that do not involve kinship/conflict. These ideas are often overlooked because kinship/conflict is entrenched in the literature, especially outside evolutionary biology. Here we provide a critical overview of these non-conflict theories, providing an accessible perspective into this literature. We suggest that some of these alternative hypotheses may, in fact, provide tenable explanations of the evolution of imprinting for at least some loci. PMID:24398886

  17. Non-conflict theories for the evolution of genomic imprinting.

    PubMed

    Spencer, H G; Clark, A G

    2014-08-01

    Theories focused on kinship and the genetic conflict it induces are widely considered to be the primary explanations for the evolution of genomic imprinting. However, there have appeared many competing ideas that do not involve kinship/conflict. These ideas are often overlooked because kinship/conflict is entrenched in the literature, especially outside evolutionary biology. Here we provide a critical overview of these non-conflict theories, providing an accessible perspective into this literature. We suggest that some of these alternative hypotheses may, in fact, provide tenable explanations of the evolution of imprinting for at least some loci. PMID:24398886

  18. Reduction and Expansion in Microsporidian Genome Evolution: New Insights from Comparative Genomics

    PubMed Central

    Heinz, Eva; Watson, Andrew K.; Foster, Peter G.; Sendra, Kacper M.; Heaps, Sarah E.; Hirt, Robert P.; Martin Embley, T.

    2013-01-01

    Microsporidia are an abundant group of obligate intracellular parasites of other eukaryotes, including immunocompromised humans, but the molecular basis of their intracellular lifestyle and pathobiology are poorly understood. New genomes from a taxonomically broad range of microsporidians, complemented by published expression data, provide an opportunity for comparative analyses to identify conserved and lineage-specific patterns of microsporidian genome evolution that have underpinned this success. In this study, we infer that a dramatic bottleneck in the last common microsporidian ancestor (LCMA) left a small conserved core of genes that was subsequently embellished by gene family expansion driven by gene acquisition in different lineages. Novel expressed protein families represent a substantial fraction of sequenced microsporidian genomes and are significantly enriched for signals consistent with secretion or membrane location. Further evidence of selection is inferred from the gain and reciprocal loss of functional domains between paralogous genes, for example, affecting transport proteins. Gene expansions among transporter families preferentially affect those that are located on the plasma membrane of model organisms, consistent with recruitment to plug conserved gaps in microsporidian biosynthesis and metabolism. Core microsporidian genes shared with other eukaryotes are enriched in orthologs that, in yeast, are highly expressed, highly connected, and often essential, consistent with strong negative selection against further reduction of the conserved gene set since the LCMA. Our study reveals that microsporidian genome evolution is a highly dynamic process that has balanced constraint, reductive evolution, and genome expansion during adaptation to an extraordinarily successful obligate intracellular lifestyle. PMID:24259309

  19. Tracing monotreme venom evolution in the genomics era.

    PubMed

    Whittington, Camilla M; Belov, Katherine

    2014-04-01

    The monotremes (platypuses and echidnas) represent one of only four extant venomous mammalian lineages. Until recently, monotreme venom was poorly understood. However, the availability of the platypus genome and increasingly sophisticated genomic tools has allowed us to characterize platypus toxins, and provides a means of reconstructing the evolutionary history of monotreme venom. Here we review the physiology of platypus and echidna crural (venom) systems as well as pharmacological and genomic studies of monotreme toxins. Further, we synthesize current ideas about the evolution of the venom system, which in the platypus is likely to have been retained from a venomous ancestor, whilst being lost in the echidnas. We also outline several research directions and outstanding questions that would be productive to address in future research. An improved characterization of mammalian venoms will not only yield new toxins with potential therapeutic uses, but will also aid in our understanding of the way that this unusual trait evolves. PMID:24699339

  20. The Amphimedon queenslandica genome and the evolution of animal complexity

    SciTech Connect

    Srivastava, Mansi; Simakov, Oleg; Chapman, Jarrod; Fahey, Bryony; Gauthier, Marie E.A.; Mitros, Therese; Richards, Gemma S.; Conaco, Cecilia; Dacre, Michael; Hellsten, Uffe; Larroux, Claire; Putnam, Nicholas H.; Stanke, Mario; Adamska, Maja; Darling, Aaron; Degnan, Sandie M.; Oakley, Todd H.; Plachetzki, David C.; Zhai, Yufeng; Adamski, Marcin; Calcino, Andrew; Cummins, Scott F.; Goodstein, David M.; Harris, Christina; Jackson, Daniel J.; Leys, Sally P.; Shu, Shengqiang; Woodcroft, Ben J.; Vervoort, Michel; Kosik, Kenneth S.; Manning, Gerard; Degnan, Bernard M.; Rokhsar, Daniel S.

    2010-07-01

    Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sponge sequence reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion, and diversification of pan-metazoan transcription factor, signaling pathway, and structural genes. This diverse 'toolkit' of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic and germ cell specification, cell adhesion, innate immunity, and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity.

  1. Chromoplexy: a new paradigm in genome remodeling and evolution.

    PubMed

    Wang, Kendric; Wang, Yuzhuo; Collins, Colin C

    2013-11-01

    Early massively-parallel sequencing studies have revealed the mutational landscape of protein-coding genes in prostate cancer. However, most of these studies have not explored the extensive influence of genomic rearrangement in prostate cancer. In a recent Cell article, Baca and colleagues used whole-genome sequencing to tackle this issue, comprehensively surveying the abundance of genomic rearrangements present in a large cohort of 57 prostate cancers. They characterized a wide-spread phenomenon termed 'chromoplexy', which may drive cancer evolution through the phenomena of punctuated equilibrium by concurrently dysregulating numerous cancer genes across multiple chromosomes. While the causes of this event still require elucidation, this defining discovery undoubtedly offers an important glimpse into the evolutionary process of prostate cancer. PMID:23974363

  2. Tracing Monotreme Venom Evolution in the Genomics Era

    PubMed Central

    Whittington, Camilla M.; Belov, Katherine

    2014-01-01

    The monotremes (platypuses and echidnas) represent one of only four extant venomous mammalian lineages. Until recently, monotreme venom was poorly understood. However, the availability of the platypus genome and increasingly sophisticated genomic tools has allowed us to characterize platypus toxins, and provides a means of reconstructing the evolutionary history of monotreme venom. Here we review the physiology of platypus and echidna crural (venom) systems as well as pharmacological and genomic studies of monotreme toxins. Further, we synthesize current ideas about the evolution of the venom system, which in the platypus is likely to have been retained from a venomous ancestor, whilst being lost in the echidnas. We also outline several research directions and outstanding questions that would be productive to address in future research. An improved characterization of mammalian venoms will not only yield new toxins with potential therapeutic uses, but will also aid in our understanding of the way that this unusual trait evolves. PMID:24699339

  3. Evolution of base-substitution gradients in primate mitochondrial genomes

    PubMed Central

    Raina, Sameer Z.; Faith, Jeremiah J.; Disotell, Todd R.; Seligmann, Hervé; Stewart, Caro-Beth; Pollock, David D.

    2005-01-01

    Inferences of phylogenies and dates of divergence rely on accurate modeling of evolutionary processes; they may be confounded by variation in substitution rates among sites and changes in evolutionary processes over time. In vertebrate mitochondrial genomes, substitution rates are affected by a gradient along the genome of the time spent being single-stranded during replication, and different types of substitutions respond differently to this gradient. The gradient is controlled by biological factors including the rate of replication and functionality of repair mechanisms; little is known, however, about the consistency of the gradient over evolutionary time, or about how evolution of this gradient might affect phylogenetic analysis. Here, we evaluate the evolution of response to this gradient in complete primate mitochondrial genomes, focusing particularly on A⇒G substitutions, which increase linearly with the gradient. We developed a methodology to evaluate the posterior probability densities of the response parameter space, and used likelihood ratio tests and mixture models with different numbers of classes to determine whether groups of genomes have evolved in a similar fashion. Substitution gradients usually evolve slowly in primates, but there have been at least two large evolutionary jumps: on the lineage leading to the great apes, and a convergent change on the lineage leading to baboons (Papio). There have also been possible convergences at deeper taxonomic levels, and different types of substitutions appear to evolve independently. The placements of the tarsier and the tree shrew within and in relation to primates may be incorrect because of convergence in these factors. PMID:15867428

  4. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes

    PubMed Central

    Sun, Yan-Bo; Xiong, Zi-Jun; Xiang, Xue-Yan; Liu, Shi-Ping; Zhou, Wei-Wei; Tu, Xiao-Long; Zhong, Li; Wang, Lu; Wu, Dong-Dong; Zhang, Bao-Lin; Zhu, Chun-Ling; Yang, Min-Min; Chen, Hong-Man; Li, Fang; Zhou, Long; Feng, Shao-Hong; Huang, Chao; Zhang, Guo-Jie; Irwin, David; Hillis, David M.; Murphy, Robert W.; Yang, Huan-Ming; Che, Jing; Wang, Jun; Zhang, Ya-Ping

    2015-01-01

    The development of efficient sequencing techniques has resulted in large numbers of genomes being available for evolutionary studies. However, only one genome is available for all amphibians, that of Xenopus tropicalis, which is distantly related from the majority of frogs. More than 96% of frogs belong to the Neobatrachia, and no genome exists for this group. This dearth of amphibian genomes greatly restricts genomic studies of amphibians and, more generally, our understanding of tetrapod genome evolution. To fill this gap, we provide the de novo genome of a Tibetan Plateau frog, Nanorana parkeri, and compare it to that of X. tropicalis and other vertebrates. This genome encodes more than 20,000 protein-coding genes, a number similar to that of Xenopus. Although the genome size of Nanorana is considerably larger than that of Xenopus (2.3 vs. 1.5 Gb), most of the difference is due to the respective number of transposable elements in the two genomes. The two frogs exhibit considerable conserved whole-genome synteny despite having diverged approximately 266 Ma, indicating a slow rate of DNA structural evolution in anurans. Multigenome synteny blocks further show that amphibians have fewer interchromosomal rearrangements than mammals but have a comparable rate of intrachromosomal rearrangements. Our analysis also identifies 11 Mb of anuran-specific highly conserved elements that will be useful for comparative genomic analyses of frogs. The Nanorana genome offers an improved understanding of evolution of tetrapod genomes and also provides a genomic reference for other evolutionary studies. PMID:25733869

  5. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes.

    PubMed

    Sun, Yan-Bo; Xiong, Zi-Jun; Xiang, Xue-Yan; Liu, Shi-Ping; Zhou, Wei-Wei; Tu, Xiao-Long; Zhong, Li; Wang, Lu; Wu, Dong-Dong; Zhang, Bao-Lin; Zhu, Chun-Ling; Yang, Min-Min; Chen, Hong-Man; Li, Fang; Zhou, Long; Feng, Shao-Hong; Huang, Chao; Zhang, Guo-Jie; Irwin, David; Hillis, David M; Murphy, Robert W; Yang, Huan-Ming; Che, Jing; Wang, Jun; Zhang, Ya-Ping

    2015-03-17

    The development of efficient sequencing techniques has resulted in large numbers of genomes being available for evolutionary studies. However, only one genome is available for all amphibians, that of Xenopus tropicalis, which is distantly related from the majority of frogs. More than 96% of frogs belong to the Neobatrachia, and no genome exists for this group. This dearth of amphibian genomes greatly restricts genomic studies of amphibians and, more generally, our understanding of tetrapod genome evolution. To fill this gap, we provide the de novo genome of a Tibetan Plateau frog, Nanorana parkeri, and compare it to that of X. tropicalis and other vertebrates. This genome encodes more than 20,000 protein-coding genes, a number similar to that of Xenopus. Although the genome size of Nanorana is considerably larger than that of Xenopus (2.3 vs. 1.5 Gb), most of the difference is due to the respective number of transposable elements in the two genomes. The two frogs exhibit considerable conserved whole-genome synteny despite having diverged approximately 266 Ma, indicating a slow rate of DNA structural evolution in anurans. Multigenome synteny blocks further show that amphibians have fewer interchromosomal rearrangements than mammals but have a comparable rate of intrachromosomal rearrangements. Our analysis also identifies 11 Mb of anuran-specific highly conserved elements that will be useful for comparative genomic analyses of frogs. The Nanorana genome offers an improved understanding of evolution of tetrapod genomes and also provides a genomic reference for other evolutionary studies. PMID:25733869

  6. Acc homoeoloci and the evolution of wheat genomes

    PubMed Central

    Chalupska, D.; Lee, H. Y.; Faris, J. D.; Evrard, A.; Chalhoub, B.; Haselkorn, R.; Gornicki, P.

    2008-01-01

    The DNA sequences of wheat Acc-1 and Acc-2 loci, encoding the plastid and cytosolic forms of the enzyme acetyl-CoA carboxylase, were analyzed with a view to understanding the evolution of these genes and the origin of the three genomes in modern hexaploid wheat. Acc-1 and Acc-2 loci from each of the wheats Triticum urartu (A genome), Aegilops tauschii (D genome), Triticum turgidum (AB genome), and Triticum aestivum (ABD genome), as well as two Acc-2-related pseudogenes from T. urartu were sequenced. The 2.3–2.4 Mya divergence time calculated here for the three homoeologous chromosomes, on the basis of coding and intron sequences of the Acc-1 genes, is at the low end of other estimates. Our clock was calibrated by using 60 Mya for the divergence between wheat and maize. On the same time scale, wheat and barley diverged 11.6 Mya, based on sequences of Acc and other genes. The regions flanking the Acc genes are not conserved among the A, B, and D genomes. They are conserved when comparing homoeologous genomes of diploid, tetraploid, and hexaploid wheats. Substitution rates in intergenic regions consisting primarily of repetitive sequences vary substantially along the loci and on average are 3.5-fold higher than the Acc intron substitution rates. The composition of the Acc homoeoloci suggests haplotype divergence exceeding in some cases 0.5 Mya. Such variation might result in a significant overestimate of the time since tetraploid wheat formation, which occurred no more than 0.5 Mya. PMID:18599450

  7. Acc homoeoloci and the evolution of wheat genomes.

    PubMed

    Chalupska, D; Lee, H Y; Faris, J D; Evrard, A; Chalhoub, B; Haselkorn, R; Gornicki, P

    2008-07-15

    The DNA sequences of wheat Acc-1 and Acc-2 loci, encoding the plastid and cytosolic forms of the enzyme acetyl-CoA carboxylase, were analyzed with a view to understanding the evolution of these genes and the origin of the three genomes in modern hexaploid wheat. Acc-1 and Acc-2 loci from each of the wheats Triticum urartu (A genome), Aegilops tauschii (D genome), Triticum turgidum (AB genome), and Triticum aestivum (ABD genome), as well as two Acc-2-related pseudogenes from T. urartu were sequenced. The 2.3-2.4 Mya divergence time calculated here for the three homoeologous chromosomes, on the basis of coding and intron sequences of the Acc-1 genes, is at the low end of other estimates. Our clock was calibrated by using 60 Mya for the divergence between wheat and maize. On the same time scale, wheat and barley diverged 11.6 Mya, based on sequences of Acc and other genes. The regions flanking the Acc genes are not conserved among the A, B, and D genomes. They are conserved when comparing homoeologous genomes of diploid, tetraploid, and hexaploid wheats. Substitution rates in intergenic regions consisting primarily of repetitive sequences vary substantially along the loci and on average are 3.5-fold higher than the Acc intron substitution rates. The composition of the Acc homoeoloci suggests haplotype divergence exceeding in some cases 0.5 Mya. Such variation might result in a significant overestimate of the time since tetraploid wheat formation, which occurred no more than 0.5 Mya. PMID:18599450

  8. The Population Genomics of Sunflowers and Genomic Determinants of Protein Evolution Revealed by RNAseq

    PubMed Central

    Renaut, Sébastien; Grassa, Christopher J.; Moyers, Brook T.; Kane, Nolan C.; Rieseberg, Loren H.

    2012-01-01

    Few studies have investigated the causes of evolutionary rate variation among plant nuclear genes, especially in recently diverged species still capable of hybridizing in the wild. The recent advent of Next Generation Sequencing (NGS) permits investigation of genome wide rates of protein evolution and the role of selection in generating and maintaining divergence. Here, we use individual whole-transcriptome sequencing (RNAseq) to refine our understanding of the population genomics of wild species of sunflowers (Helianthus spp.) and the factors that affect rates of protein evolution. We aligned 35 GB of transcriptome sequencing data and identified 433,257 polymorphic sites (SNPs) in a reference transcriptome comprising 16,312 genes. Using SNP markers, we identified strong population clustering largely corresponding to the three species analyzed here (Helianthus annuus, H. petiolaris, H. debilis), with one distinct early generation hybrid. Then, we calculated the proportions of adaptive substitution fixed by selection (alpha) and identified gene ontology categories with elevated values of alpha. The “response to biotic stimulus” category had the highest mean alpha across the three interspecific comparisons, implying that natural selection imposed by other organisms plays an important role in driving protein evolution in wild sunflowers. Finally, we examined the relationship between protein evolution (dN/dS ratio) and several genomic factors predicted to co-vary with protein evolution (gene expression level, divergence and specificity, genetic divergence [FST], and nucleotide diversity pi). We find that variation in rates of protein divergence was correlated with gene expression level and specificity, consistent with results from a broad range of taxa and timescales. This would in turn imply that these factors govern protein evolution both at a microevolutionary and macroevolutionary timescale. Our results contribute to a general understanding of the determinants

  9. Reconstructing the Evolution of Brachypodium Genomes Using Comparative Chromosome Painting

    PubMed Central

    Betekhtin, Alexander; Jenkins, Glyn; Hasterok, Robert

    2014-01-01

    Brachypodium distachyon is a model for the temperate cereals and grasses and has a biology, genomics infrastructure and cytogenetic platform fit for purpose. It is a member of a genus with fewer than 20 species, which have different genome sizes, basic chromosome numbers and ploidy levels. The phylogeny and interspecific relationships of this group have not to date been resolved by sequence comparisons and karyotypical studies. The aims of this study are not only to reconstruct the evolution of Brachypodium karyotypes to resolve the phylogeny, but also to highlight the mechanisms that shape the evolution of grass genomes. This was achieved through the use of comparative chromosome painting (CCP) which hybridises fluorescent, chromosome-specific probes derived from B. distachyon to homoeologous meiotic chromosomes of its close relatives. The study included five diploids (B. distachyon 2n = 10, B. sylvaticum 2n = 18, B. pinnatum 2n = 16; 2n = 18, B. arbuscula 2n = 18 and B. stacei 2n = 20) three allotetraploids (B. pinnatum 2n = 28, B. phoenicoides 2n = 28 and B. hybridum 2n = 30), and two species of unknown ploidy (B. retusum 2n = 38 and B. mexicanum 2n = 40). On the basis of the patterns of hybridisation and incorporating published data, we propose two alternative, but similar, models of karyotype evolution in the genus Brachypodium. According to the first model, the extant genome of B. distachyon derives from B. mexicanum or B. stacei by several rounds of descending dysploidy, and the other diploids evolve from B. distachyon via ascending dysploidy. The allotetraploids arise by interspecific hybridisation and chromosome doubling between B. distachyon and other diploids. The second model differs from the first insofar as it incorporates an intermediate 2n = 18 species between the B. mexicanum or B. stacei progenitors and the dysploidic B. distachyon. PMID:25493646

  10. Reconstructing the Evolution of Brachypodium Genomes Using Comparative Chromosome Painting.

    PubMed

    Betekhtin, Alexander; Jenkins, Glyn; Hasterok, Robert

    2014-01-01

    Brachypodium distachyon is a model for the temperate cereals and grasses and has a biology, genomics infrastructure and cytogenetic platform fit for purpose. It is a member of a genus with fewer than 20 species, which have different genome sizes, basic chromosome numbers and ploidy levels. The phylogeny and interspecific relationships of this group have not to date been resolved by sequence comparisons and karyotypical studies. The aims of this study are not only to reconstruct the evolution of Brachypodium karyotypes to resolve the phylogeny, but also to highlight the mechanisms that shape the evolution of grass genomes. This was achieved through the use of comparative chromosome painting (CCP) which hybridises fluorescent, chromosome-specific probes derived from B. distachyon to homoeologous meiotic chromosomes of its close relatives. The study included five diploids (B. distachyon 2n = 10, B. sylvaticum 2n = 18, B. pinnatum 2n = 16; 2n = 18, B. arbuscula 2n = 18 and B. stacei 2n = 20) three allotetraploids (B. pinnatum 2n = 28, B. phoenicoides 2n = 28 and B. hybridum 2n = 30), and two species of unknown ploidy (B. retusum 2n = 38 and B. mexicanum 2n = 40). On the basis of the patterns of hybridisation and incorporating published data, we propose two alternative, but similar, models of karyotype evolution in the genus Brachypodium. According to the first model, the extant genome of B. distachyon derives from B. mexicanum or B. stacei by several rounds of descending dysploidy, and the other diploids evolve from B. distachyon via ascending dysploidy. The allotetraploids arise by interspecific hybridisation and chromosome doubling between B. distachyon and other diploids. The second model differs from the first insofar as it incorporates an intermediate 2n = 18 species between the B. mexicanum or B. stacei progenitors and the dysploidic B. distachyon. PMID:25493646

  11. Genomes and geography: genomic insights into the evolution and phylogeography of the genus Schistosoma.

    PubMed

    Lawton, Scott P; Hirai, Hirohisa; Ironside, Joe E; Johnston, David A; Rollinson, David

    2011-01-01

    Blood flukes within the genus Schistosoma still remain a major cause of disease in the tropics and subtropics and the study of their evolution has been an area of major debate and research. With the advent of modern molecular and genomic approaches deeper insights have been attained not only into the divergence and speciation of these worms, but also into the historic movement of these parasites from Asia into Africa, via migration and dispersal of definitive and snail intermediate hosts. This movement was subsequently followed by a radiation of Schistosoma species giving rise to the S. mansoni and S. haematobium groups, as well as the S. indicum group that reinvaded Asia. Each of these major evolutionary events has been marked by distinct changes in genomic structure evident in differences in mitochondrial gene order and nuclear chromosomal architecture between the species associated with Asia and Africa. Data from DNA sequencing, comparative molecular genomics and karyotyping are indicative of major constitutional genomic events which would have become fixed in the ancestral populations of these worms. Here we examine how modern genomic techniques may give a more in depth understanding of the evolution of schistosomes and highlight the complexity of speciation and divergence in this group. PMID:21736723

  12. Genomes and geography: genomic insights into the evolution and phylogeography of the genus Schistosoma

    PubMed Central

    2011-01-01

    Blood flukes within the genus Schistosoma still remain a major cause of disease in the tropics and subtropics and the study of their evolution has been an area of major debate and research. With the advent of modern molecular and genomic approaches deeper insights have been attained not only into the divergence and speciation of these worms, but also into the historic movement of these parasites from Asia into Africa, via migration and dispersal of definitive and snail intermediate hosts. This movement was subsequently followed by a radiation of Schistosoma species giving rise to the S. mansoni and S. haematobium groups, as well as the S. indicum group that reinvaded Asia. Each of these major evolutionary events has been marked by distinct changes in genomic structure evident in differences in mitochondrial gene order and nuclear chromosomal architecture between the species associated with Asia and Africa. Data from DNA sequencing, comparative molecular genomics and karyotyping are indicative of major constitutional genomic events which would have become fixed in the ancestral populations of these worms. Here we examine how modern genomic techniques may give a more in depth understanding of the evolution of schistosomes and highlight the complexity of speciation and divergence in this group. PMID:21736723

  13. The genome diversity and karyotype evolution of mammals

    PubMed Central

    2011-01-01

    The past decade has witnessed an explosion of genome sequencing and mapping in evolutionary diverse species. While full genome sequencing of mammals is rapidly progressing, the ability to assemble and align orthologous whole chromosome regions from more than a few species is still not possible. The intense focus on building of comparative maps for companion (dog and cat), laboratory (mice and rat) and agricultural (cattle, pig, and horse) animals has traditionally been used as a means to understand the underlying basis of disease-related or economically important phenotypes. However, these maps also provide an unprecedented opportunity to use multispecies analysis as a tool for inferring karyotype evolution. Comparative chromosome painting and related techniques are now considered to be the most powerful approaches in comparative genome studies. Homologies can be identified with high accuracy using molecularly defined DNA probes for fluorescence in situ hybridization (FISH) on chromosomes of different species. Chromosome painting data are now available for members of nearly all mammalian orders. In most orders, there are species with rates of chromosome evolution that can be considered as 'default' rates. The number of rearrangements that have become fixed in evolutionary history seems comparatively low, bearing in mind the 180 million years of the mammalian radiation. Comparative chromosome maps record the history of karyotype changes that have occurred during evolution. The aim of this review is to provide an overview of these recent advances in our endeavor to decipher the karyotype evolution of mammals by integrating the published results together with some of our latest unpublished results. PMID:21992653

  14. Genome Sequence and Comparative Genome Analysis of Lactobacillus casei: Insights into Their Niche-Associated Evolution

    PubMed Central

    Cai, Hui; Thompson, Rebecca; Budinich, Mateo F.; Broadbent, Jeff R.

    2009-01-01

    Lactobacillus casei is remarkably adaptable to diverse habitats and widely used in the food industry. To reveal the genomic features that contribute to its broad ecological adaptability and examine the evolution of the species, the genome sequence of L. casei ATCC 334 is analyzed and compared with other sequenced lactobacilli. This analysis reveals that ATCC 334 contains a high number of coding sequences involved in carbohydrate utilization and transcriptional regulation, reflecting its requirement for dealing with diverse environmental conditions. A comparison of the genome sequences of ATCC 334 to L. casei BL23 reveals 12 and 19 genomic islands, respectively. For a broader assessment of the genetic variability within L. casei, gene content of 21 L. casei strains isolated from various habitats (cheeses, n = 7; plant materials, n = 8; and human sources, n = 6) was examined by comparative genome hybridization with an ATCC 334-based microarray. This analysis resulted in identification of 25 hypervariable regions. One of these regions contains an overrepresentation of genes involved in carbohydrate utilization and transcriptional regulation and was thus proposed as a lifestyle adaptation island. Differences in L. casei genome inventory reveal both gene gain and gene decay. Gene gain, via acquisition of genomic islands, likely confers a fitness benefit in specific habitats. Gene decay, that is, loss of unnecessary ancestral traits, is observed in the cheese isolates and likely results in enhanced fitness in the dairy niche. This study gives the first picture of the stable versus variable regions in L. casei and provides valuable insights into evolution, lifestyle adaptation, and metabolic diversity of L. casei. PMID:20333194

  15. Genome sequence and comparative genome analysis of Lactobacillus casei: insights into their niche-associated evolution.

    PubMed

    Cai, Hui; Thompson, Rebecca; Budinich, Mateo F; Broadbent, Jeff R; Steele, James L

    2009-01-01

    Lactobacillus casei is remarkably adaptable to diverse habitats and widely used in the food industry. To reveal the genomic features that contribute to its broad ecological adaptability and examine the evolution of the species, the genome sequence of L. casei ATCC 334 is analyzed and compared with other sequenced lactobacilli. This analysis reveals that ATCC 334 contains a high number of coding sequences involved in carbohydrate utilization and transcriptional regulation, reflecting its requirement for dealing with diverse environmental conditions. A comparison of the genome sequences of ATCC 334 to L. casei BL23 reveals 12 and 19 genomic islands, respectively. For a broader assessment of the genetic variability within L. casei, gene content of 21 L. casei strains isolated from various habitats (cheeses, n = 7; plant materials, n = 8; and human sources, n = 6) was examined by comparative genome hybridization with an ATCC 334-based microarray. This analysis resulted in identification of 25 hypervariable regions. One of these regions contains an overrepresentation of genes involved in carbohydrate utilization and transcriptional regulation and was thus proposed as a lifestyle adaptation island. Differences in L. casei genome inventory reveal both gene gain and gene decay. Gene gain, via acquisition of genomic islands, likely confers a fitness benefit in specific habitats. Gene decay, that is, loss of unnecessary ancestral traits, is observed in the cheese isolates and likely results in enhanced fitness in the dairy niche. This study gives the first picture of the stable versus variable regions in L. casei and provides valuable insights into evolution, lifestyle adaptation, and metabolic diversity of L. casei. PMID:20333194

  16. Evolution of galanin receptor genes: insights from the deuterostome genomes.

    PubMed

    Liu, Z; Xu, Y; Wu, L; Zhang, S

    2010-08-01

    Galanin exerts its biological activities through three different G protein-coupled receptors, Galr1, Galr2 and Galr3. To obtain insights into the evolution of Galrs, we searched the genomes of the deuterostomes by extensive BLAST survey and phylogenetic analyses. The Galr2 and Galr3 share similar genomic structures, and most of them are composed of 2 exons and 1 intron. However, most of Galr1 are composed of 3 extrons and 2 introns. We did not detect the typical Galr genes in the genomic databases of invertebrate deutserotomes, but three Galr1/Alstr homologs and two Galr1/Gpr151 homologs in amphioxus, two Galr1/Gpr151 homologs in sea squirt and one Galr1/Gpr151 homologs in sea urchin were identified. It is highly possible that the Galr genes in vertebrates may evolve from the homologous genes of Galr1/Alstr/Gpr151 in invertebrate deuterostomes. We also proposed that Galr3 genes were the products of Galr2 duplication during evolution, while Galr2 genes may evolve from Galr1. PMID:20476798

  17. Genome-wide signals of positive selection in human evolution

    PubMed Central

    Enard, David; Messer, Philipp W.; Petrov, Dmitri A.

    2014-01-01

    The role of positive selection in human evolution remains controversial. On the one hand, scans for positive selection have identified hundreds of candidate loci, and the genome-wide patterns of polymorphism show signatures consistent with frequent positive selection. On the other hand, recent studies have argued that many of the candidate loci are false positives and that most genome-wide signatures of adaptation are in fact due to reduction of neutral diversity by linked deleterious mutations, known as background selection. Here we analyze human polymorphism data from the 1000 Genomes Project and detect signatures of positive selection once we correct for the effects of background selection. We show that levels of neutral polymorphism are lower near amino acid substitutions, with the strongest reduction observed specifically near functionally consequential amino acid substitutions. Furthermore, amino acid substitutions are associated with signatures of recent adaptation that should not be generated by background selection, such as unusually long and frequent haplotypes and specific distortions in the site frequency spectrum. We use forward simulations to argue that the observed signatures require a high rate of strongly adaptive substitutions near amino acid changes. We further demonstrate that the observed signatures of positive selection correlate better with the presence of regulatory sequences, as predicted by the ENCODE Project Consortium, than with the positions of amino acid substitutions. Our results suggest that adaptation was frequent in human evolution and provide support for the hypothesis of King and Wilson that adaptive divergence is primarily driven by regulatory changes. PMID:24619126

  18. Enterovirus 68 is associated with respiratory illness and shares biological features with both the enteroviruses and the rhinoviruses.

    PubMed

    Oberste, M Steven; Maher, Kaija; Schnurr, David; Flemister, Mary R; Lovchik, Judith C; Peters, Heather; Sessions, Wendy; Kirk, Carol; Chatterjee, Nando; Fuller, Susan; Hanauer, J Michael; Pallansch, Mark A

    2004-09-01

    Enterovirus (EV) 68 was originally isolated in California in 1962 from four children with respiratory illness. Since that time, reports of EV68 isolation have been very uncommon. Between 1989 and 2003, 12 additional EV68 clinical isolates were identified and characterized, all of which were obtained from respiratory specimens of patients with respiratory tract illnesses. No EV68 isolates from enteric specimens have been identified from these same laboratories. These recent isolates, as well as the original California strains and human rhinovirus (HRV) 87 (recently shown to be an isolate of EV68 and distinct from the other human rhinoviruses), were compared by partial nucleotide sequencing in three genomic regions (partial sequencing of the 5'-non-translated region and 3D polymerase gene, and complete sequencing of the VP1 capsid gene). The EV68 isolates, including HRV87, were monophyletic in all three regions of the genome. EV68 isolates and HRV87 grew poorly at 37 degrees C relative to growth at 33 degrees C and their titres were reduced by incubation at pH 3.0, whereas the control enterovirus, echovirus 11, grew equally well at 33 and 37 degrees C and its titre was not affected by treatment at pH 3.0. Acid lability and a lower optimum growth temperature are characteristic features of the human rhinoviruses. It is concluded that EV68 is primarily an agent of respiratory disease and that it shares important biological and molecular properties with both the enteroviruses and the rhinoviruses. PMID:15302951

  19. Rates of phenotypic and genomic evolution during the Cambrian explosion.

    PubMed

    Lee, Michael S Y; Soubrier, Julien; Edgecombe, Gregory D

    2013-10-01

    The near-simultaneous appearance of most modern animal body plans (phyla) ~530 million years ago during the Cambrian explosion is strong evidence for a brief interval of rapid phenotypic and genetic innovation, yet the exact speed and nature of this grand adaptive radiation remain debated. Crucially, rates of morphological evolution in the past (i.e., in ancestral lineages) can be inferred from phenotypic differences among living organisms-just as molecular evolutionary rates in ancestral lineages can be inferred from genetic divergences. We here employed Bayesian and maximum likelihood phylogenetic clock methods on an extensive anatomical and genomic data set for arthropods, the most diverse phylum in the Cambrian and today. Assuming an Ediacaran origin for arthropods, phenotypic evolution was ~4 times faster, and molecular evolution ~5.5 times faster, during the Cambrian explosion compared to all subsequent parts of the Phanerozoic. These rapid evolutionary rates are robust to assumptions about the precise age of arthropods. Surprisingly, these fast early rates do not change substantially even if the radiation of arthropods is compressed entirely into the Cambrian (~542 mega-annum [Ma]) or telescoped into the Cryogenian (~650 Ma). The fastest inferred rates are still consistent with evolution by natural selection and with data from living organisms, potentially resolving "Darwin's dilemma." However, evolution during the Cambrian explosion was unusual (compared to the subsequent Phanerozoic) in that fast rates were present across many lineages. PMID:24035543

  20. Phylostratigraphic Bias Creates Spurious Patterns of Genome Evolution

    PubMed Central

    Moyers, Bryan A.; Zhang, Jianzhi

    2015-01-01

    Phylostratigraphy is a method for dating the evolutionary emergence of a gene or gene family by identifying its homologs across the tree of life, typically by using BLAST searches. Applying this method to all genes in a species, or genomic phylostratigraphy, allows investigation of genome-wide patterns in new gene origination at different evolutionary times and thus has been extensively used. However, gene age estimation depends on the challenging task of detecting distant homologs via sequence similarity, which is expected to have differential accuracies for different genes. Here, we evaluate the accuracy of phylostratigraphy by realistic computer simulation with parameters estimated from genomic data, and investigate the impact of its error on findings of genome evolution. We show that 1) phylostratigraphy substantially underestimates gene age for a considerable fraction of genes, 2) the error is especially serious when the protein evolves rapidly, is short, and/or its most conserved block of sites is small, and 3) these errors create spurious nonuniform distributions of various gene properties among age groups, many of which cannot be predicted a priori. Given the high likelihood that conclusions about gene age are faulty, we advocate the use of realistic simulation to determine if observations from phylostratigraphy are explainable, at least qualitatively, by a null model of biased measurement, and in all cases, critical evaluation of results. PMID:25312911

  1. Genomic view of the evolution of the complement system

    PubMed Central

    Kimura, Ayuko

    2006-01-01

    The recent accumulation of genomic information of many representative animals has made it possible to trace the evolution of the complement system based on the presence or absence of each complement gene in the analyzed genomes. Genome information from a few mammals, chicken, clawed frog, a few bony fish, sea squirt, fruit fly, nematoda and sea anemone indicate that bony fish and higher vertebrates share practically the same set of complement genes. This suggests that most of the gene duplications that played an essential role in establishing the mammalian complement system had occurred by the time of the teleost/mammalian divergence around 500 million years ago (MYA). Members of most complement gene families are also present in ascidians, although they do not show a one-to-one correspondence to their counterparts in higher vertebrates, indicating that the gene duplications of each gene family occurred independently in vertebrates and ascidians. The C3 and factor B genes, but probably not the other complement genes, are present in the genome of the cnidaria and some protostomes, indicating that the origin of the central part of the complement system was established more than 1,000 MYA. PMID:16896831

  2. Sequence analysis of a bovine rhinovirus type 1 strain RS3x

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine rhinoviruses, known to cause clinical and subclinical upper respiratory infections in bovines worldwide, include three serotypes. Bovine rhinovirus (BRV) 1, 2 and 3 were originally classified as tentative members of the genus Rhinovirus (family Picornaviridae), however, in 2008 this genus was...

  3. Camelid genomes reveal evolution and adaptation to desert environments.

    PubMed

    Wu, Huiguang; Guang, Xuanmin; Al-Fageeh, Mohamed B; Cao, Junwei; Pan, Shengkai; Zhou, Huanmin; Zhang, Li; Abutarboush, Mohammed H; Xing, Yanping; Xie, Zhiyuan; Alshanqeeti, Ali S; Zhang, Yanru; Yao, Qiulin; Al-Shomrani, Badr M; Zhang, Dong; Li, Jiang; Manee, Manee M; Yang, Zili; Yang, Linfeng; Liu, Yiyi; Zhang, Jilin; Altammami, Musaad A; Wang, Shenyuan; Yu, Lili; Zhang, Wenbin; Liu, Sanyang; Ba, La; Liu, Chunxia; Yang, Xukui; Meng, Fanhua; Wang, Shaowei; Li, Lu; Li, Erli; Li, Xueqiong; Wu, Kaifeng; Zhang, Shu; Wang, Junyi; Yin, Ye; Yang, Huanming; Al-Swailem, Abdulaziz M; Wang, Jun

    2014-01-01

    Bactrian camel (Camelus bactrianus), dromedary (Camelus dromedarius) and alpaca (Vicugna pacos) are economically important livestock. Although the Bactrian camel and dromedary are large, typically arid-desert-adapted mammals, alpacas are adapted to plateaus. Here we present high-quality genome sequences of these three species. Our analysis reveals the demographic history of these species since the Tortonian Stage of the Miocene and uncovers a striking correlation between large fluctuations in population size and geological time boundaries. Comparative genomic analysis reveals complex features related to desert adaptations, including fat and water metabolism, stress responses to heat, aridity, intense ultraviolet radiation and choking dust. Transcriptomic analysis of Bactrian camels further reveals unique osmoregulation, osmoprotection and compensatory mechanisms for water reservation underpinned by high blood glucose levels. We hypothesize that these physiological mechanisms represent kidney evolutionary adaptations to the desert environment. This study advances our understanding of camelid evolution and the adaptation of camels to arid-desert environments. PMID:25333821

  4. The genomic signatures of Shigella evolution, adaptation and geographical spread.

    PubMed

    The, Hao Chung; Thanh, Duy Pham; Holt, Kathryn E; Thomson, Nicholas R; Baker, Stephen

    2016-04-01

    Shigella spp. are some of the key pathogens responsible for the global burden of diarrhoeal disease. These facultative intracellular bacteria belong to the family Enterobacteriaceae, together with other intestinal pathogens, such as Escherichia coli and Salmonella spp. The genus Shigella comprises four different species, each consisting of several serogroups, all of which show phenotypic similarity, including invasive pathogenicity. DNA sequencing suggests that this similarity results from the convergent evolution of different Shigella spp. founders. Here, we review the evolutionary relationships between Shigella spp. and E . coli, and we highlight how the genomic plasticity of these bacteria and their acquisition of a distinctive virulence plasmid have enabled the development of such highly specialized pathogens. Furthermore, we discuss the insights that genotyping and whole-genome sequencing have provided into the phylogenetics and intercontinental spread of Shigella spp. PMID:26923111

  5. Tracking the genomic evolution of esophageal adenocarcinoma through neoadjuvant chemotherapy

    PubMed Central

    Kumar, Sacheen; Abbassi-Ghadi, Nima; Salm, Max; Mitter, Richard; Horswell, Stuart; Rowan, Andrew; Phillimore, Benjamin; Biggs, Jennifer; Begum, Sharmin; Matthews, Nik; Hochhauser, Daniel; Hanna, George B; Swanton, Charles

    2015-01-01

    Esophageal adenocarcinomas (EACs) are associated with dismal prognosis. Deciphering the evolutionary histories of this disease may shed light on therapeutically tractable targets and reveal dynamic mutational processes during the disease course and following neoadjuvant chemotherapy (NAC). We exome sequenced 40 tumor regions from 8 patients with operable EACs, before and after platinum-containing NAC. This revealed the evolutionary genomic landscape of EACs with the presence of heterogeneous driver mutations, parallel evolution, early genome doubling events and an association between high intratumor heterogeneity and poor response to NAC. Multi-region sequencing demonstrated a significant reduction in T>G mutations within a CTT context when comparing early and late mutational processes and the presence of a platinum signature with enrichment of C>A mutations within a CpC context following NAC. EACs are characterized by early chromosomal instability leading to amplifications containing targetable oncogenes persisting through chemotherapy, providing a rationale for future therapeutic approaches. PMID:26003801

  6. Evolutionary Design of Gene Networks: Forced Evolution by Genomic Parasites

    PubMed Central

    Spirov, A. V.; Zagriychuk, E. A.; Holloway, D. M.

    2014-01-01

    The co-evolution of species with their genomic parasites (transposons) is thought to be one of the primary ways of rewiring gene regulatory networks (GRNs). We develop a framework for conducting evolutionary computations (EC) using the transposon mechanism. We find that the selective pressure of transposons can speed evolutionary searches for solutions and lead to outgrowth of GRNs (through co-option of new genes to acquire insensitivity to the attacking transposons). We test the approach by finding GRNs which can solve a fundamental problem in developmental biology: how GRNs in early embryo development can robustly read maternal signaling gradients, despite continued attacks on the genome by transposons. We observed co-evolutionary oscillations in the abundance of particular GRNs and their transposons, reminiscent of predator-prey or host-parasite dynamics. PMID:25558118

  7. Host immune responses to rhinovirus: Mechanisms in asthma

    PubMed Central

    Kelly, John T.; Busse, William W.

    2014-01-01

    Viral respiratory infections can have a profound effect on many aspects of asthma including its inception, exacerbations, and, possibly, severity. Of the many viral respiratory infections that influence asthma, the common cold virus, rhinovirus, has emerged as the most frequent illness associated with exacerbations and other aspects of asthma. The mechanisms by which rhinovirus influences asthma are not fully established, but current evidence indicates that the immune response to this virus is critical in this process. Many airway cell types are involved in the immune response to rhinovirus, but most important are respiratory epithelial cells and possibly macrophages. Infection of epithelial cells generates a variety of proinflammatory mediators to attract inflammatory cells to the airway with a subsequent worsening of underlying disease. Furthermore, there is evidence that the epithelial airway antiviral response to rhinovirus may be defective in asthma. Therefore, understanding the immune response to rhinovirus is a key step in defining mechanisms of asthma, exacerbations, and, perhaps most importantly, improved treatment. PMID:19014757

  8. Genomic fossils calibrate the long-term evolution of hepadnaviruses.

    PubMed

    Gilbert, Clément; Feschotte, Cédric

    2010-01-01

    Because most extant viruses mutate rapidly and lack a true fossil record, their deep evolution and long-term substitution rates remain poorly understood. In addition to retroviruses, which rely on chromosomal integration for their replication, many other viruses replicate in the nucleus of their host's cells and are therefore prone to endogenization, a process that involves integration of viral DNA into the host's germline genome followed by long-term vertical inheritance. Such endogenous viruses are highly valuable as they provide a molecular fossil record of past viral invasions, which may be used to decipher the origins and long-term evolutionary characteristics of modern pathogenic viruses. Hepadnaviruses (Hepadnaviridae) are a family of small, partially double-stranded DNA viruses that include hepatitis B viruses. Here we report the discovery of endogenous hepadnaviruses in the genome of the zebra finch. We used a combination of cross-species analysis of orthologous insertions, molecular dating, and phylogenetic analyses to demonstrate that hepadnaviruses infiltrated repeatedly the germline genome of passerine birds. We provide evidence that some of the avian hepadnavirus integration events are at least 19 My old, which reveals a much deeper ancestry of Hepadnaviridae than could be inferred based on the coalescence times of modern hepadnaviruses. Furthermore, the remarkable sequence similarity between endogenous and extant avian hepadnaviruses (up to 75% identity) suggests that long-term substitution rates for these viruses are on the order of 10(-8) substitutions per site per year, which is a 1,000-fold slower than short-term rates estimated based on the sequences of circulating hepadnaviruses. Together, these results imply a drastic shift in our understanding of the time scale of hepadnavirus evolution, and suggest that the rapid evolutionary dynamics characterizing modern avian hepadnaviruses do not reflect their mode of evolution on a deep time scale. PMID

  9. Proteases of human rhinovirus: role in infection.

    PubMed

    Jensen, Lora M; Walker, Erin J; Jans, David A; Ghildyal, Reena

    2015-01-01

    Human rhinoviruses (HRV) are the major etiological agents of the common cold and asthma exacerbations, with significant worldwide health and economic impact. Although large-scale population vaccination has proved successful in limiting or even eradicating many viruses, the more than 100 distinct serotypes mean that conventional vaccination is not a feasible strategy to combat HRV. An alternative strategy is to target conserved viral proteins such as the HRV proteases, 2A(pro) and 3C(pro), the focus of this review. Necessary for host cell shutoff, virus replication, and pathogenesis, 2A(pro) and 3C(pro) are clearly viable drug targets, and indeed, 3C(pro) has been successfully targeted for treating the common cold in experimental infection. 2A(pro) and 3C(pro) are crucial for virus replication due to their role in polyprotein processing as well as cleavage of key cellular proteins to inhibit cellular transcription and translation. Intriguingly, the action of the HRV proteases also disrupts nucleocytoplasmic trafficking, contributing to HRV cytopathic effects. Improved understanding of the protease-cell interactions should enable new therapeutic approaches to be identified for drug development. PMID:25261311

  10. The complete chloroplast and mitochondrial genome sequences of Boea hygrometrica: insights into the evolution of plant organellar genomes.

    PubMed

    Zhang, Tongwu; Fang, Yongjun; Wang, Xumin; Deng, Xin; Zhang, Xiaowei; Hu, Songnian; Yu, Jun

    2012-01-01

    The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage. PMID:22291979

  11. The evolution of isochore patterns in vertebrate genomes

    PubMed Central

    Costantini, Maria; Cammarano, Rosalia; Bernardi, Giorgio

    2009-01-01

    Background Previous work from our laboratory showed that (i) vertebrate genomes are mosaics of isochores, typically megabase-size DNA segments that are fairly homogeneous in base composition; (ii) isochores belong to a small number of families (five in the human genome) characterized by different GC levels; (iii) isochore family patterns are different in fishes/amphibians and mammals/birds, the latter showing GC-rich isochore families that are absent or very scarce in the former; (iv) there are two modes of genome evolution, a conservative one in which isochore patterns basically do not change (e.g., among mammalian orders), and a transitional one, in which they do change (e.g., between amphibians and mammals); and (v) isochores are tightly linked to a number of basic biological properties, such as gene density, gene expression, replication timing and recombination. Results The present availability of a number of fully sequenced genomes ranging from fishes to mammals allowed us to carry out investigations that (i) more precisely quantified our previous conclusions; (ii) showed that the different isochore families of vertebrate genomes are largely conserved in GC levels and dinucleotide frequencies, as well as in isochore size; and (iii) isochore family patterns can be either conserved or change within both warm- and cold-blooded vertebrates. Conclusion On the basis of the results presented, we propose that (i) the large conservation of GC levels and dinucleotide frequencies may reflect the conservation of chromatin structures; (ii) the conservation of isochore size may be linked to the role played by isochores in chromosome structure and replication; (iii) the formation, the maintainance and the changes of isochore patterns are due to natural selection. PMID:19344507

  12. Genomic organization and evolution of ruminant lysozyme c genes

    PubMed Central

    IRWIN, David M

    2015-01-01

    Ruminant stomach lysozyme is a long established model of adaptive gene evolution. Evolution of stomach lysozyme function required changes in the site of expression of the lysozyme c gene and changes in the enzymatic properties of the enzyme. In ruminant mammals, these changes were associated with a change in the size of the lysozyme c gene family. The recent release of near complete genome sequences from several ruminant species allows a more complete examination of the evolution and diversification of the lysozyme c gene family. Here we characterize the size of the lysozyme c gene family in extant ruminants and demonstrate that their pecoran ruminant ancestor had a family of at least 10 lysozyme c genes, which included at least two pseudogenes. Evolutionary analysis of the ruminant lysozyme c gene sequences demonstrate that each of the four exons of the lysozyme c gene has a unique evolutionary history, indicating that they participated independently in concerted evolution. These analyses also show that episodic changes in the evolutionary constraints on the protein sequences occurred, with lysozyme c genes expressed in the abomasum of the stomach of extant ruminant species showing the greatest levels of selective constraints. PMID:25730456

  13. Whole genome comparative studies between chicken and turkey and their implications for avian genome evolution

    PubMed Central

    Griffin, Darren K; Robertson, Lindsay B; Tempest, Helen G; Vignal, Alain; Fillon, Valérie; Crooijmans, Richard PMA; Groenen, Martien AM; Deryusheva, Svetlana; Gaginskaya, Elena; Carré, Wilfrid; Waddington, David; Talbot, Richard; Völker, Martin; Masabanda, Julio S; Burt, Dave W

    2008-01-01

    Background Comparative genomics is a powerful means of establishing inter-specific relationships between gene function/location and allows insight into genomic rearrangements, conservation and evolutionary phylogeny. The availability of the complete sequence of the chicken genome has initiated the development of detailed genomic information in other birds including turkey, an agriculturally important species where mapping has hitherto focused on linkage with limited physical information. No molecular study has yet examined conservation of avian microchromosomes, nor differences in copy number variants (CNVs) between birds. Results We present a detailed comparative cytogenetic map between chicken and turkey based on reciprocal chromosome painting and mapping of 338 chicken BACs to turkey metaphases. Two inter-chromosomal changes (both involving centromeres) and three pericentric inversions have been identified between chicken and turkey; and array CGH identified 16 inter-specific CNVs. Conclusion This is the first study to combine the modalities of zoo-FISH and array CGH between different avian species. The first insight into the conservation of microchromosomes, the first comparative cytogenetic map of any bird and the first appraisal of CNVs between birds is provided. Results suggest that avian genomes have remained relatively stable during evolution compared to mammalian equivalents. PMID:18410676

  14. Genome Rearrangements in Mammalian Evolution: Lessons From Human and Mouse Genomes

    PubMed Central

    Pevzner, Pavel; Tesler, Glenn

    2003-01-01

    Although analysis of genome rearrangements was pioneered by Dobzhansky and Sturtevant 65 years ago, we still know very little about the rearrangement events that produced the existing varieties of genomic architectures. The genomic sequences of human and mouse provide evidence for a larger number of rearrangements than previously thought and shed some light on previously unknown features of mammalian evolution. In particular, they reveal that a large number of microrearrangements is required to explain the differences in draft human and mouse sequences. Here we describe a new algorithm for constructing synteny blocks, study arrangements of synteny blocks in human and mouse, derive a most parsimonious human–mouse rearrangement scenario, and provide evidence that intrachromosomal rearrangements are more frequent than interchromosomal rearrangements. Our analysis is based on the human–mouse breakpoint graph, which reveals related breakpoints and allows one to find a most parsimonious scenario. Because these graphs provide important insights into rearrangement scenarios, we introduce a new visualization tool that allows one to view breakpoint graphs superimposed with genomic dot-plots. [Supplemental material is available online at www.genome.org.] PMID:12529304

  15. Evolution of Prdm Genes in Animals: Insights from Comparative Genomics.

    PubMed

    Vervoort, Michel; Meulemeester, David; Béhague, Julien; Kerner, Pierre

    2016-03-01

    Prdm genes encode transcription factors with a subtype of SET domain known as the PRDF1-RIZ (PR) homology domain and a variable number of zinc finger motifs. These genes are involved in a wide variety of functions during animal development. As most Prdm genes have been studied in vertebrates, especially in mice, little is known about the evolution of this gene family. We searched for Prdm genes in the fully sequenced genomes of 93 different species representative of all the main metazoan lineages. A total of 976 Prdm genes were identified in these species. The number of Prdm genes per species ranges from 2 to 19. To better understand how the Prdm gene family has evolved in metazoans, we performed phylogenetic analyses using this large set of identified Prdm genes. These analyses allowed us to define 14 different subfamilies of Prdm genes and to establish, through ancestral state reconstruction, that 11 of them are ancestral to bilaterian animals. Three additional subfamilies were acquired during early vertebrate evolution (Prdm5, Prdm11, and Prdm17). Several gene duplication and gene loss events were identified and mapped onto the metazoan phylogenetic tree. By studying a large number of nonmetazoan genomes, we confirmed that Prdm genes likely constitute a metazoan-specific gene family. Our data also suggest that Prdm genes originated before the diversification of animals through the association of a single ancestral SET domain encoding gene with one or several zinc finger encoding genes. PMID:26560352

  16. Evolution of Prdm Genes in Animals: Insights from Comparative Genomics

    PubMed Central

    Vervoort, Michel; Meulemeester, David; Béhague, Julien; Kerner, Pierre

    2016-01-01

    Prdm genes encode transcription factors with a subtype of SET domain known as the PRDF1-RIZ (PR) homology domain and a variable number of zinc finger motifs. These genes are involved in a wide variety of functions during animal development. As most Prdm genes have been studied in vertebrates, especially in mice, little is known about the evolution of this gene family. We searched for Prdm genes in the fully sequenced genomes of 93 different species representative of all the main metazoan lineages. A total of 976 Prdm genes were identified in these species. The number of Prdm genes per species ranges from 2 to 19. To better understand how the Prdm gene family has evolved in metazoans, we performed phylogenetic analyses using this large set of identified Prdm genes. These analyses allowed us to define 14 different subfamilies of Prdm genes and to establish, through ancestral state reconstruction, that 11 of them are ancestral to bilaterian animals. Three additional subfamilies were acquired during early vertebrate evolution (Prdm5, Prdm11, and Prdm17). Several gene duplication and gene loss events were identified and mapped onto the metazoan phylogenetic tree. By studying a large number of nonmetazoan genomes, we confirmed that Prdm genes likely constitute a metazoan-specific gene family. Our data also suggest that Prdm genes originated before the diversification of animals through the association of a single ancestral SET domain encoding gene with one or several zinc finger encoding genes. PMID:26560352

  17. Comparative Genomics Provide Insights into Evolution of Trichoderma Nutrition Style

    PubMed Central

    Xie, Bin-Bin; Qin, Qi-Long; Shi, Mei; Chen, Lei-Lei; Shu, Yan-Li; Luo, Yan; Wang, Xiao-Wei; Rong, Jin-Cheng; Gong, Zhi-Ting; Li, Dan; Sun, Cai-Yun; Liu, Gui-Ming; Dong, Xiao-Wei; Pang, Xiu-Hua; Huang, Feng; Liu, Weifeng; Chen, Xiu-Lan; Zhou, Bai-Cheng; Zhang, Yu-Zhong; Song, Xiao-Yan

    2014-01-01

    Saprotrophy on plant biomass is a recently developed nutrition strategy for Trichoderma. However, the physiology and evolution of this new nutrition strategy is still elusive. We report the deep sequencing and analysis of the genome of Trichoderma longibrachiatum, an efficient cellulase producer. The 31.7-Mb genome, smallest among the sequenced Trichoderma species, encodes fewer nutrition-related genes than saprotrophic T. reesei (Tr), including glycoside hydrolases and nonribosomal peptide synthetase–polyketide synthase. Homology and phylogenetic analyses suggest that a large number of nutrition-related genes, including GH18 chitinases, β-1,3/1,6-glucanases, cellulolytic enzymes, and hemicellulolytic enzymes, were lost in the common ancestor of T. longibrachiatum (Tl) and Tr. dN/dS (ω) calculation indicates that all the nutrition-related genes analyzed are under purifying selection. Cellulolytic enzymes, the key enzymes for saprotrophy on plant biomass, are under stronger purifying selection pressure in Tl and Tr than in mycoparasitic species, suggesting that development of the nutrition strategy of saprotrophy on plant biomass has increased the selection pressure. In addition, aspartic proteases, serine proteases, and metalloproteases are subject to stronger purifying selection pressure in Tl and Tr, suggesting that these enzymes may also play important roles in the nutrition. This study provides insights into the physiology and evolution of the nutrition strategy of Trichoderma. PMID:24482532

  18. Cubozoan genome illuminates functional diversification of opsins and photoreceptor evolution.

    PubMed

    Liegertová, Michaela; Pergner, Jiří; Kozmiková, Iryna; Fabian, Peter; Pombinho, Antonio R; Strnad, Hynek; Pačes, Jan; Vlček, Čestmír; Bartůněk, Petr; Kozmik, Zbyněk

    2015-01-01

    Animals sense light primarily by an opsin-based photopigment present in a photoreceptor cell. Cnidaria are arguably the most basal phylum containing a well-developed visual system. The evolutionary history of opsins in the animal kingdom has not yet been resolved. Here, we study the evolution of animal opsins by genome-wide analysis of the cubozoan jellyfish Tripedalia cystophora, a cnidarian possessing complex lens-containing eyes and minor photoreceptors. A large number of opsin genes with distinct tissue- and stage-specific expression were identified. Our phylogenetic analysis unequivocally classifies cubozoan opsins as a sister group to c-opsins and documents lineage-specific expansion of the opsin gene repertoire in the cubozoan genome. Functional analyses provided evidence for the use of the Gs-cAMP signaling pathway in a small set of cubozoan opsins, indicating the possibility that the majority of other cubozoan opsins signal via distinct pathways. Additionally, these tests uncovered subtle differences among individual opsins, suggesting possible fine-tuning for specific photoreceptor tasks. Based on phylogenetic, expression and biochemical analysis we propose that rapid lineage- and species-specific duplications of the intron-less opsin genes and their subsequent functional diversification promoted evolution of a large repertoire of both visual and extraocular photoreceptors in cubozoans. PMID:26154478

  19. Parallel evolution of transcriptome architecture during genome reorganization.

    PubMed

    Yoon, Sung Ho; Reiss, David J; Bare, J Christopher; Tenenbaum, Dan; Pan, Min; Slagel, Joseph; Moritz, Robert L; Lim, Sujung; Hackett, Murray; Menon, Angeli Lal; Adams, Michael W W; Barnebey, Adam; Yannone, Steven M; Leigh, John A; Baliga, Nitin S

    2011-11-01

    Assembly of genes into operons is generally viewed as an important process during the continual adaptation of microbes to changing environmental challenges. However, the genome reorganization events that drive this process are also the roots of instability for existing operons. We have determined that there exists a statistically significant trend that correlates the proportion of genes encoded in operons in archaea to their phylogenetic lineage. We have further characterized how microbes deal with operon instability by mapping and comparing transcriptome architectures of four phylogenetically diverse extremophiles that span the range of operon stabilities observed across archaeal lineages: a photoheterotrophic halophile (Halobacterium salinarum NRC-1), a hydrogenotrophic methanogen (Methanococcus maripaludis S2), an acidophilic and aerobic thermophile (Sulfolobus solfataricus P2), and an anaerobic hyperthermophile (Pyrococcus furiosus DSM 3638). We demonstrate how the evolution of transcriptional elements (promoters and terminators) generates new operons, restores the coordinated regulation of translocated, inverted, and newly acquired genes, and introduces completely novel regulation for even some of the most conserved operonic genes such as those encoding subunits of the ribosome. The inverse correlation (r=-0.92) between the proportion of operons with such internally located transcriptional elements and the fraction of conserved operons in each of the four archaea reveals an unprecedented view into varying stages of operon evolution. Importantly, our integrated analysis has revealed that organisms adapted to higher growth temperatures have lower tolerance for genome reorganization events that disrupt operon structures. PMID:21750103

  20. The African coelacanth genome provides insights into tetrapod evolution.

    PubMed

    Amemiya, Chris T; Alföldi, Jessica; Lee, Alison P; Fan, Shaohua; Philippe, Hervé; Maccallum, Iain; Braasch, Ingo; Manousaki, Tereza; Schneider, Igor; Rohner, Nicolas; Organ, Chris; Chalopin, Domitille; Smith, Jeramiah J; Robinson, Mark; Dorrington, Rosemary A; Gerdol, Marco; Aken, Bronwen; Biscotti, Maria Assunta; Barucca, Marco; Baurain, Denis; Berlin, Aaron M; Blatch, Gregory L; Buonocore, Francesco; Burmester, Thorsten; Campbell, Michael S; Canapa, Adriana; Cannon, John P; Christoffels, Alan; De Moro, Gianluca; Edkins, Adrienne L; Fan, Lin; Fausto, Anna Maria; Feiner, Nathalie; Forconi, Mariko; Gamieldien, Junaid; Gnerre, Sante; Gnirke, Andreas; Goldstone, Jared V; Haerty, Wilfried; Hahn, Mark E; Hesse, Uljana; Hoffmann, Steve; Johnson, Jeremy; Karchner, Sibel I; Kuraku, Shigehiro; Lara, Marcia; Levin, Joshua Z; Litman, Gary W; Mauceli, Evan; Miyake, Tsutomu; Mueller, M Gail; Nelson, David R; Nitsche, Anne; Olmo, Ettore; Ota, Tatsuya; Pallavicini, Alberto; Panji, Sumir; Picone, Barbara; Ponting, Chris P; Prohaska, Sonja J; Przybylski, Dariusz; Saha, Nil Ratan; Ravi, Vydianathan; Ribeiro, Filipe J; Sauka-Spengler, Tatjana; Scapigliati, Giuseppe; Searle, Stephen M J; Sharpe, Ted; Simakov, Oleg; Stadler, Peter F; Stegeman, John J; Sumiyama, Kenta; Tabbaa, Diana; Tafer, Hakim; Turner-Maier, Jason; van Heusden, Peter; White, Simon; Williams, Louise; Yandell, Mark; Brinkmann, Henner; Volff, Jean-Nicolas; Tabin, Clifford J; Shubin, Neil; Schartl, Manfred; Jaffe, David B; Postlethwait, John H; Venkatesh, Byrappa; Di Palma, Federica; Lander, Eric S; Meyer, Axel; Lindblad-Toh, Kerstin

    2013-04-18

    The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution. PMID:23598338

  1. Tracing the evolution of streptophyte algae and their mitochondrial genome.

    PubMed

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2013-01-01

    Six monophyletic groups of charophycean green algae are recognized within the Streptophyta. Although incongruent with earlier studies based on genes from three cellular compartments, chloroplast and nuclear phylogenomic analyses have resolved identical relationships among these groups, placing the Zygnematales or the Zygnematales + Coleochaetales as sister to land plants. The present investigation aimed at determining whether this consensus view is supported by the mitochondrial genome and at gaining insight into mitochondrial DNA (mtDNA) evolution within and across streptophyte algal lineages and during the transition toward the first land plants. We present here the newly sequenced mtDNAs of representatives of the Klebsormidiales (Entransia fimbriata and Klebsormidium spec.) and Zygnematales (Closterium baillyanum and Roya obtusa) and compare them with their homologs in other charophycean lineages as well as in selected embryophyte and chlorophyte lineages. Our results indicate that important changes occurred at the levels of genome size, gene order, and intron content within the Zygnematales. Although the representatives of the Klebsormidiales display more similarity in genome size and intron content, gene order seems more fluid and gene losses more frequent than in other charophycean lineages. In contrast, the two members of the Charales display an extremely conservative pattern of mtDNA evolution. Collectively, our analyses of gene order and gene content and the phylogenies we inferred from 40 mtDNA-encoded proteins failed to resolve the relationships among the Zygnematales, Coleochaetales, and Charales; however, they are consistent with previous phylogenomic studies in favoring that the morphologically complex Charales are not sister to land plants. PMID:24022472

  2. Tracing the Evolution of Streptophyte Algae and Their Mitochondrial Genome

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2013-01-01

    Six monophyletic groups of charophycean green algae are recognized within the Streptophyta. Although incongruent with earlier studies based on genes from three cellular compartments, chloroplast and nuclear phylogenomic analyses have resolved identical relationships among these groups, placing the Zygnematales or the Zygnematales + Coleochaetales as sister to land plants. The present investigation aimed at determining whether this consensus view is supported by the mitochondrial genome and at gaining insight into mitochondrial DNA (mtDNA) evolution within and across streptophyte algal lineages and during the transition toward the first land plants. We present here the newly sequenced mtDNAs of representatives of the Klebsormidiales (Entransia fimbriata and Klebsormidium spec.) and Zygnematales (Closterium baillyanum and Roya obtusa) and compare them with their homologs in other charophycean lineages as well as in selected embryophyte and chlorophyte lineages. Our results indicate that important changes occurred at the levels of genome size, gene order, and intron content within the Zygnematales. Although the representatives of the Klebsormidiales display more similarity in genome size and intron content, gene order seems more fluid and gene losses more frequent than in other charophycean lineages. In contrast, the two members of the Charales display an extremely conservative pattern of mtDNA evolution. Collectively, our analyses of gene order and gene content and the phylogenies we inferred from 40 mtDNA-encoded proteins failed to resolve the relationships among the Zygnematales, Coleochaetales, and Charales; however, they are consistent with previous phylogenomic studies in favoring that the morphologically complex Charales are not sister to land plants. PMID:24022472

  3. Evolution in an oncogenic bacterial species with extreme genome plasticity: Helicobacter pylori East Asian genomes

    PubMed Central

    2011-01-01

    Background The genome of Helicobacter pylori, an oncogenic bacterium in the human stomach, rapidly evolves and shows wide geographical divergence. The high incidence of stomach cancer in East Asia might be related to bacterial genotype. We used newly developed comparative methods to follow the evolution of East Asian H. pylori genomes using 20 complete genome sequences from Japanese, Korean, Amerind, European, and West African strains. Results A phylogenetic tree of concatenated well-defined core genes supported divergence of the East Asian lineage (hspEAsia; Japanese and Korean) from the European lineage ancestor, and then from the Amerind lineage ancestor. Phylogenetic profiling revealed a large difference in the repertoire of outer membrane proteins (including oipA, hopMN, babABC, sabAB and vacA-2) through gene loss, gain, and mutation. All known functions associated with molybdenum, a rare element essential to nearly all organisms that catalyzes two-electron-transfer oxidation-reduction reactions, appeared to be inactivated. Two pathways linking acetyl~CoA and acetate appeared intact in some Japanese strains. Phylogenetic analysis revealed greater divergence between the East Asian (hspEAsia) and the European (hpEurope) genomes in proteins in host interaction, specifically virulence factors (tipα), outer membrane proteins, and lipopolysaccharide synthesis (human Lewis antigen mimicry) enzymes. Divergence was also seen in proteins in electron transfer and translation fidelity (miaA, tilS), a DNA recombinase/exonuclease that recognizes genome identity (addA), and DNA/RNA hybrid nucleases (rnhAB). Positively selected amino acid changes between hspEAsia and hpEurope were mapped to products of cagA, vacA, homC (outer membrane protein), sotB (sugar transport), and a translation fidelity factor (miaA). Large divergence was seen in genes related to antibiotics: frxA (metronidazole resistance), def (peptide deformylase, drug target), and ftsA (actin-like, drug target

  4. Insights into the genome evolution of Yersinia pestis through whole genome comparison with Yersinia pseudotuberculosis

    SciTech Connect

    Souza, B; Stoutland, P; Derbise, A; Georgescu, A; Elliott, J; Land, M; Marceau, M; Motin, V; Hinnebusch, J; Simonet, M; Medigue, C; Dacheux, D; Chenal-Francisque, V; Regala, W; Brubaker, R R; Carniel, E; Chain, P; Verguez, L; Fowler, J; Garcia, E; Lamerdin, J; Hauser, L; Larimer, F

    2004-01-24

    Yersinia pestis, the causative agent of plague, is a highly uniform clone that diverged recently from the enteric pathogen Yersinia pseudotuberculosis. Despite their close genetic relationship, they differ radically in their pathogenicity and transmission. Here we report the complete genomic sequence of Y. pseudotuberculosis IP32953 and its use for detailed genome comparisons to available Y. pestis sequences. Analyses of identified differences across a panel of Yersinia isolates from around the world reveals 32 Y. pestis chromosomal genes that, together with the two Y. pestis-specific plasmids, represent the only new genetic material in Y. pestis acquired since the divergence from Y. pseudotuberculosis. In contrast, 149 new pseudogenes (doubling the previous estimate) and 317 genes absent from Y. pestis were detected, indicating that as many as 13% of Y. pseudotuberculosis genes no longer function in Y. pestis. Extensive IS-mediated genome rearrangements and reductive evolution through massive gene loss, resulting in elimination and modification of pre-existing gene expression pathways appear to be more important than acquisition of new genes in the evolution of Y. pestis. These results provide a sobering example of how a highly virulent epidemic clone can suddenly emerge from a less virulent, closely related progenitor.

  5. Novel Human Rhinoviruses and Exacerbation of Asthma in Children1

    PubMed Central

    Khetsuriani, Nino; Lu, Xiaoyan; Teague, W. Gerald; Kazerouni, Neely; Anderson, Larry J.

    2008-01-01

    To determine links between human rhinoviruses (HRV) and asthma, we used data from a case–control study, March 2003–February 2004, among children with asthma. Molecular characterization identified several likely new HRVs and showed that association with asthma exacerbations was largely driven by HRV-A and a phylogenetically distinct clade of 8 strains, genogroup C. PMID:18976575

  6. An Exercise in Molecular Epidemiology: Human Rhinovirus Prevalence and Genetics

    ERIC Educational Resources Information Center

    Albright, Catherine J.; Hall, David J.

    2011-01-01

    Human rhinovirus (HRV) is one of the most common human respiratory pathogens and is responsible for the majority of upper respiratory illnesses. Recently, a phylogeny was constructed from all known American Type Culture Collection (ATCC) HRV sequences. From this study, three HRV classifications (HRVA, HRVB, and HRVC) were determined and techniques…

  7. 21 CFR 866.3490 - Rhinovirus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rhinovirus serological reagents. 866.3490 Section 866.3490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3490...

  8. 21 CFR 866.3490 - Rhinovirus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rhinovirus serological reagents. 866.3490 Section 866.3490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3490...

  9. 21 CFR 866.3490 - Rhinovirus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rhinovirus serological reagents. 866.3490 Section 866.3490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3490...

  10. 21 CFR 866.3490 - Rhinovirus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rhinovirus serological reagents. 866.3490 Section 866.3490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3490...

  11. 21 CFR 866.3490 - Rhinovirus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rhinovirus serological reagents. 866.3490 Section 866.3490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3490...

  12. The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a major step toward understanding the biology and evolution of ruminants, the cattle genome was sequenced to ~7x coverage using a combined whole genome shotgun and BAC skim approach. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs found in seven mammalian...

  13. Comparative genomics reveals convergent rates of evolution in ant-plant mutualisms.

    PubMed

    Rubin, Benjamin E R; Moreau, Corrie S

    2016-01-01

    Symbiosis-the close and often long-term interaction of species-is predicted to drive genome evolution in a variety of ways. For example, parasitic interactions have been shown to increase rates of molecular evolution, a trend generally attributed to the Red Queen Hypothesis. However, it is much less clear how mutualisms impact the genome, as both increased and reduced rates of change have been predicted. Here we sequence the genomes of seven species of ants, three that have convergently evolved obligate plant-ant mutualism and four closely related species of non-mutualists. Comparing these sequences, we investigate how genome evolution is shaped by mutualistic behaviour. We find that rates of molecular evolution are higher in the mutualists genome wide, a characteristic apparently not the result of demography. Our results suggest that the intimate relationships of obligate mutualists may lead to selective pressures similar to those seen in parasites, thereby increasing rates of evolution. PMID:27557866

  14. Comparative genomics reveals convergent rates of evolution in ant–plant mutualisms

    PubMed Central

    Rubin, Benjamin E. R.; Moreau, Corrie S.

    2016-01-01

    Symbiosis—the close and often long-term interaction of species—is predicted to drive genome evolution in a variety of ways. For example, parasitic interactions have been shown to increase rates of molecular evolution, a trend generally attributed to the Red Queen Hypothesis. However, it is much less clear how mutualisms impact the genome, as both increased and reduced rates of change have been predicted. Here we sequence the genomes of seven species of ants, three that have convergently evolved obligate plant–ant mutualism and four closely related species of non-mutualists. Comparing these sequences, we investigate how genome evolution is shaped by mutualistic behaviour. We find that rates of molecular evolution are higher in the mutualists genome wide, a characteristic apparently not the result of demography. Our results suggest that the intimate relationships of obligate mutualists may lead to selective pressures similar to those seen in parasites, thereby increasing rates of evolution. PMID:27557866

  15. Diversity and evolution of centromere repeats in the maize genome.

    PubMed

    Bilinski, Paul; Distor, Kevin; Gutierrez-Lopez, Jose; Mendoza, Gabriela Mendoza; Shi, Jinghua; Dawe, R Kelly; Ross-Ibarra, Jeffrey

    2015-03-01

    Centromere repeats are found in most eukaryotes and play a critical role in kinetochore formation. Though centromere repeats exhibit considerable diversity both within and among species, little is understood about the mechanisms that drive centromere repeat evolution. Here, we use maize as a model to investigate how a complex history involving polyploidy, fractionation, and recent domestication has impacted the diversity of the maize centromeric repeat CentC. We first validate the existence of long tandem arrays of repeats in maize and other taxa in the genus Zea. Although we find considerable sequence diversity among CentC copies genome-wide, genetic similarity among repeats is highest within these arrays, suggesting that tandem duplications are the primary mechanism for the generation of new copies. Nonetheless, clustering analyses identify similar sequences among distant repeats, and simulations suggest that this pattern may be due to homoplasious mutation. Although the two ancestral subgenomes of maize have contributed nearly equal numbers of centromeres, our analysis shows that the majority of all CentC repeats derive from one of the parental genomes, with an even stronger bias when examining the largest assembled contiguous clusters. Finally, by comparing maize with its wild progenitor teosinte, we find that the abundance of CentC likely decreased after domestication, while the pericentromeric repeat Cent4 has drastically increased. PMID:25190528

  16. Stability domains of actin genes and genomic evolution

    NASA Astrophysics Data System (ADS)

    Carlon, E.; Dkhissi, A.; Malki, M. Lejard; Blossey, R.

    2007-11-01

    In eukaryotic genes, the protein coding sequence is split into several fragments, the exons, separated by noncoding DNA stretches, the introns. Prokaryotes do not have introns in their genomes. We report calculations of the stability domains of actin genes for various organisms in the animal, plant, and fungi kingdoms. Actin genes have been chosen because they have been highly conserved during evolution. In these genes, all introns were removed so as to mimic ancient genes at the time of the early eukaryotic development, i.e., before intron insertion. Common stability boundaries are found in evolutionarily distant organisms, which implies that these boundaries date from the early origin of eukaryotes. In general, the boundaries correspond with intron positions in the actins of vertebrates and other animals, but not much for plants and fungi. The sharpest boundary is found in a locus where fungi, algae, and animals have introns in positions separated by one nucleotide only, which identifies a hot spot for insertion. These results suggest that some introns may have been incorporated into the genomes through a thermodynamically driven mechanism, in agreement with previous observations on human genes. They also suggest a different mechanism for intron insertion in plants and animals.

  17. Genome-Wide Analysis of Human Metapneumovirus Evolution

    PubMed Central

    Kim, Jin Il; Park, Sehee; Lee, Ilseob; Park, Kwang Sook; Kwak, Eun Jung; Moon, Kwang Mee; Lee, Chang Kyu; Bae, Joon-Yong; Park, Man-Seong; Song, Ki-Joon

    2016-01-01

    Human metapneumovirus (HMPV) has been described as an important etiologic agent of upper and lower respiratory tract infections, especially in young children and the elderly. Most of school-aged children might be introduced to HMPVs, and exacerbation with other viral or bacterial super-infection is common. However, our understanding of the molecular evolution of HMPVs remains limited. To address the comprehensive evolutionary dynamics of HMPVs, we report a genome-wide analysis of the eight genes (N, P, M, F, M2, SH, G, and L) using 103 complete genome sequences. Phylogenetic reconstruction revealed that the eight genes from one HMPV strain grouped into the same genetic group among the five distinct lineages (A1, A2a, A2b, B1, and B2). A few exceptions of phylogenetic incongruence might suggest past recombination events, and we detected possible recombination breakpoints in the F, SH, and G coding regions. The five genetic lineages of HMPVs shared quite remote common ancestors ranging more than 220 to 470 years of age with the most recent origins for the A2b sublineage. Purifying selection was common, but most protein genes except the F and M2-2 coding regions also appeared to experience episodic diversifying selection. Taken together, these suggest that the five lineages of HMPVs maintain their individual evolutionary dynamics and that recombination and selection forces might work on shaping the genetic diversity of HMPVs. PMID:27046055

  18. Diversity and Evolution in the Genome of Clostridium difficile

    PubMed Central

    Knight, Daniel R.; Elliott, Briony; Chang, Barbara J.; Perkins, Timothy T.

    2015-01-01

    SUMMARY Clostridium difficile infection (CDI) is the leading cause of antimicrobial and health care-associated diarrhea in humans, presenting a significant burden to global health care systems. In the last 2 decades, PCR- and sequence-based techniques, particularly whole-genome sequencing (WGS), have significantly furthered our knowledge of the genetic diversity, evolution, epidemiology, and pathogenicity of this once enigmatic pathogen. C. difficile is taxonomically distinct from many other well-known clostridia, with a diverse population structure comprising hundreds of strain types spread across at least 6 phylogenetic clades. The C. difficile species is defined by a large diverse pangenome with extreme levels of evolutionary plasticity that has been shaped over long time periods by gene flux and recombination, often between divergent lineages. These evolutionary events are in response to environmental and anthropogenic activities and have led to the rapid emergence and worldwide dissemination of virulent clonal lineages. Moreover, genome analysis of large clinically relevant data sets has improved our understanding of CDI outbreaks, transmission, and recurrence. The epidemiology of CDI has changed dramatically over the last 15 years, and CDI may have a foodborne or zoonotic etiology. The WGS era promises to continue to redefine our view of this significant pathogen. PMID:26085550

  19. Convergence of ion channel genome content in early animal evolution.

    PubMed

    Liebeskind, Benjamin J; Hillis, David M; Zakon, Harold H

    2015-02-24

    Multicellularity has evolved multiple times, but animals are the only multicellular lineage with nervous systems. This fact implies that the origin of nervous systems was an unlikely event, yet recent comparisons among extant taxa suggest that animal nervous systems may have evolved multiple times independently. Here, we use ancestral gene content reconstruction to track the timing of gene family expansions for the major families of ion-channel proteins that drive nervous system function. We find that animals with nervous systems have broadly similar complements of ion-channel types but that these complements likely evolved independently. We also find that ion-channel gene family evolution has included large loss events, two of which were immediately followed by rounds of duplication. Ctenophores, cnidarians, and bilaterians underwent independent bouts of gene expansion in channel families involved in synaptic transmission and action potential shaping. We suggest that expansions of these family types may represent a genomic signature of expanding nervous system complexity. Ancestral nodes in which nervous systems are currently hypothesized to have originated did not experience large expansions, making it difficult to distinguish among competing hypotheses of nervous system origins and suggesting that the origin of nerves was not attended by an immediate burst of complexity. Rather, the evolution of nervous system complexity appears to resemble a slow fuse in stem animals followed by many independent bouts of gene gain and loss. PMID:25675537

  20. Convergence of ion channel genome content in early animal evolution

    PubMed Central

    Liebeskind, Benjamin J.; Hillis, David M.; Zakon, Harold H.

    2015-01-01

    Multicellularity has evolved multiple times, but animals are the only multicellular lineage with nervous systems. This fact implies that the origin of nervous systems was an unlikely event, yet recent comparisons among extant taxa suggest that animal nervous systems may have evolved multiple times independently. Here, we use ancestral gene content reconstruction to track the timing of gene family expansions for the major families of ion-channel proteins that drive nervous system function. We find that animals with nervous systems have broadly similar complements of ion-channel types but that these complements likely evolved independently. We also find that ion-channel gene family evolution has included large loss events, two of which were immediately followed by rounds of duplication. Ctenophores, cnidarians, and bilaterians underwent independent bouts of gene expansion in channel families involved in synaptic transmission and action potential shaping. We suggest that expansions of these family types may represent a genomic signature of expanding nervous system complexity. Ancestral nodes in which nervous systems are currently hypothesized to have originated did not experience large expansions, making it difficult to distinguish among competing hypotheses of nervous system origins and suggesting that the origin of nerves was not attended by an immediate burst of complexity. Rather, the evolution of nervous system complexity appears to resemble a slow fuse in stem animals followed by many independent bouts of gene gain and loss. PMID:25675537

  1. Genetic conflicts, multiple paternity and the evolution of genomic imprinting.

    PubMed Central

    Spencer, H G; Feldman, M W; Clark, A G

    1998-01-01

    We present nine diallelic models of genetic conflict in which one allele is imprintable and the other is not to examine how genomic imprinting may have evolved. Imprinting is presumed to be either maternal (i.e., the maternally derived gene is inactivated) or paternal. Females are assumed to be either completely monogamous or always bigamous, so that we may see any effect of multiple paternity. In contrast to previous verbal and quantitative genetic models, we find that genetic conflicts need not lead to paternal imprinting of growth inhibitors and maternal imprinting of growth enhancers. Indeed, in some of our models--those with strict monogamy--the dynamics of maternal and paternal imprinting are identical. Multiple paternity is not necessary for the evolution of imprinting, and in our models of maternal imprinting, multiple paternity has no effect at all. Nevertheless, multiple paternity favors the evolution of paternal imprinting of growth inhibitors and hinders that of growth enhancers. Hence, any degree of multiple paternity means that growth inhibitors are more likely to be paternally imprinted, and growth enhancers maternally so. In all of our models, stable polymorphism of imprinting status is possible and mean fitness can decrease over time. Neither of these behaviors have been predicted by previous models. PMID:9504935

  2. The Mitochondrial Genome of Soybean Reveals Complex Genome Structures and Gene Evolution at Intercellular and Phylogenetic Levels

    PubMed Central

    Chang, Shengxin; Wang, Yankun; Lu, Jiangjie; Gai, Junyi; Li, Jijie; Chu, Pu; Guan, Rongzhan; Zhao, Tuanjie

    2013-01-01

    Determining mitochondrial genomes is important for elucidating vital activities of seed plants. Mitochondrial genomes are specific to each plant species because of their variable size, complex structures and patterns of gene losses and gains during evolution. This complexity has made research on the soybean mitochondrial genome difficult compared with its nuclear and chloroplast genomes. The present study helps to solve a 30-year mystery regarding the most complex mitochondrial genome structure, showing that pairwise rearrangements among the many large repeats may produce an enriched molecular pool of 760 circles in seed plants. The soybean mitochondrial genome harbors 58 genes of known function in addition to 52 predicted open reading frames of unknown function. The genome contains sequences of multiple identifiable origins, including 6.8 kb and 7.1 kb DNA fragments that have been transferred from the nuclear and chloroplast genomes, respectively, and some horizontal DNA transfers. The soybean mitochondrial genome has lost 16 genes, including nine protein-coding genes and seven tRNA genes; however, it has acquired five chloroplast-derived genes during evolution. Four tRNA genes, common among the three genomes, are derived from the chloroplast. Sizeable DNA transfers to the nucleus, with pericentromeric regions as hotspots, are observed, including DNA transfers of 125.0 kb and 151.6 kb identified unambiguously from the soybean mitochondrial and chloroplast genomes, respectively. The soybean nuclear genome has acquired five genes from its mitochondrial genome. These results provide biological insights into the mitochondrial genome of seed plants, and are especially helpful for deciphering vital activities in soybean. PMID:23431381

  3. The adaptive evolution of the mammalian mitochondrial genome

    PubMed Central

    da Fonseca, Rute R; Johnson, Warren E; O'Brien, Stephen J; Ramos, Maria João; Antunes, Agostinho

    2008-01-01

    Background The mitochondria produce up to 95% of a eukaryotic cell's energy through oxidative phosphorylation. The proteins involved in this vital process are under high functional constraints. However, metabolic requirements vary across species, potentially modifying selective pressures. We evaluate the adaptive evolution of 12 protein-coding mitochondrial genes in 41 placental mammalian species by assessing amino acid sequence variation and exploring the functional implications of observed variation in secondary and tertiary protein structures. Results Wide variation in the properties of amino acids were observed at functionally important regions of cytochrome b in species with more-specialized metabolic requirements (such as adaptation to low energy diet or large body size, such as in elephant, dugong, sloth, and pangolin, and adaptation to unusual oxygen requirements, for example diving in cetaceans, flying in bats, and living at high altitudes in alpacas). Signatures of adaptive variation in the NADH dehydrogenase complex were restricted to the loop regions of the transmembrane units which likely function as protons pumps. Evidence of adaptive variation in the cytochrome c oxidase complex was observed mostly at the interface between the mitochondrial and nuclear-encoded subunits, perhaps evidence of co-evolution. The ATP8 subunit, which has an important role in the assembly of F0, exhibited the highest signal of adaptive variation. ATP6, which has an essential role in rotor performance, showed a high adaptive variation in predicted loop areas. Conclusion Our study provides insight into the adaptive evolution of the mtDNA genome in mammals and its implications for the molecular mechanism of oxidative phosphorylation. We present a framework for future experimental characterization of the impact of specific mutations in the function, physiology, and interactions of the mtDNA encoded proteins involved in oxidative phosphorylation. PMID:18318906

  4. Human brain evolution: harnessing the genomics (r)evolution to link genes, cognition, and behavior

    PubMed Central

    Konopka, Genevieve; Geschwind, Daniel H.

    2010-01-01

    The evolution of the human brain has resulted in numerous specialized features including higher cognitive processes, such as language. The combination of our newfound communication expertise together with the process of transgenerational evolution at the epigenetic level has led to an exponential increase in human knowledge and abilities. In balance with these beneficent attainments though, the human brain has also acquired vulnerabilities to neuropsychiatric and neurodegenerative diseases, which reflect genetic and environmental factors. To understand the mechanisms of this disease susceptibility, a deeper appreciation of the developmental processes and their relationship to underlying features of brain evolution will be necessary. Knowledge of whole genome sequence and structural variation via high throughput sequencing technology provides an unprecedented opportunity to view human evolution at high resolution. However, phenotype discovery is a critical component of these endeavors and the use of non-traditional model organisms will also be critical for piecing together a complete picture. Ultimately, the union of developmental studies of the brain with studies of unique phenotypes in a myriad of species will result in a more thorough model of the groundwork the human brain built upon. Furthermore, these integrative approaches should provide important insights into human diseases. PMID:20955931

  5. Genomic comparison of closely related Giant Viruses supports an accordion-like model of evolution

    PubMed Central

    Filée, Jonathan

    2015-01-01

    Genome gigantism occurs so far in Phycodnaviridae and Mimiviridae (order Megavirales). Origin and evolution of these Giant Viruses (GVs) remain open questions. Interestingly, availability of a collection of closely related GV genomes enabling genomic comparisons offer the opportunity to better understand the different evolutionary forces acting on these genomes. Whole genome alignment for five groups of viruses belonging to the Mimiviridae and Phycodnaviridae families show that there is no trend of genome expansion or general tendency of genome contraction. Instead, GV genomes accumulated genomic mutations over the time with gene gains compensating the different losses. In addition, each lineage displays specific patterns of genome evolution. Mimiviridae (megaviruses and mimiviruses) and Chlorella Phycodnaviruses evolved mainly by duplications and losses of genes belonging to large paralogous families (including movements of diverse mobiles genetic elements), whereas Micromonas and Ostreococcus Phycodnaviruses derive most of their genetic novelties thought lateral gene transfers. Taken together, these data support an accordion-like model of evolution in which GV genomes have undergone successive steps of gene gain and gene loss, accrediting the hypothesis that genome gigantism appears early, before the diversification of the different GV lineages. PMID:26136734

  6. A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae.

    PubMed

    Pellicer, Jaume; Kelly, Laura J; Leitch, Ilia J; Zomlefer, Wendy B; Fay, Michael F

    2014-03-01

    • Since the occurrence of giant genomes in angiosperms is restricted to just a few lineages, identifying where shifts towards genome obesity have occurred is essential for understanding the evolutionary mechanisms triggering this process. • Genome sizes were assessed using flow cytometry in 79 species and new chromosome numbers were obtained. Phylogenetically based statistical methods were applied to infer ancestral character reconstructions of chromosome numbers and nuclear DNA contents. • Melanthiaceae are the most diverse family in terms of genome size, with C-values ranging more than 230-fold. Our data confirmed that giant genomes are restricted to tribe Parideae, with most extant species in the family characterized by small genomes. Ancestral genome size reconstruction revealed that the most recent common ancestor (MRCA) for the family had a relatively small genome (1C = 5.37 pg). Chromosome losses and polyploidy are recovered as the main evolutionary mechanisms generating chromosome number change. • Genome evolution in Melanthiaceae has been characterized by a trend towards genome size reduction, with just one episode of dramatic DNA accumulation in Parideae. Such extreme contrasting profiles of genome size evolution illustrate the key role of transposable elements and chromosome rearrangements in driving the evolution of plant genomes. PMID:24299166

  7. Genomic comparison of closely related Giant Viruses supports an accordion-like model of evolution.

    PubMed

    Filée, Jonathan

    2015-01-01

    Genome gigantism occurs so far in Phycodnaviridae and Mimiviridae (order Megavirales). Origin and evolution of these Giant Viruses (GVs) remain open questions. Interestingly, availability of a collection of closely related GV genomes enabling genomic comparisons offer the opportunity to better understand the different evolutionary forces acting on these genomes. Whole genome alignment for five groups of viruses belonging to the Mimiviridae and Phycodnaviridae families show that there is no trend of genome expansion or general tendency of genome contraction. Instead, GV genomes accumulated genomic mutations over the time with gene gains compensating the different losses. In addition, each lineage displays specific patterns of genome evolution. Mimiviridae (megaviruses and mimiviruses) and Chlorella Phycodnaviruses evolved mainly by duplications and losses of genes belonging to large paralogous families (including movements of diverse mobiles genetic elements), whereas Micromonas and Ostreococcus Phycodnaviruses derive most of their genetic novelties thought lateral gene transfers. Taken together, these data support an accordion-like model of evolution in which GV genomes have undergone successive steps of gene gain and gene loss, accrediting the hypothesis that genome gigantism appears early, before the diversification of the different GV lineages. PMID:26136734

  8. Comparative Genomic Analyses of the Human NPHP1 Locus Reveal Complex Genomic Architecture and Its Regional Evolution in Primates

    PubMed Central

    Yuan, Bo; Liu, Pengfei; Gupta, Aditya; Beck, Christine R.; Tejomurtula, Anusha; Campbell, Ian M.; Gambin, Tomasz; Simmons, Alexandra D.; Withers, Marjorie A.; Harris, R. Alan; Rogers, Jeffrey; Schwartz, David C.; Lupski, James R.

    2015-01-01

    Many loci in the human genome harbor complex genomic structures that can result in susceptibility to genomic rearrangements leading to various genomic disorders. Nephronophthisis 1 (NPHP1, MIM# 256100) is an autosomal recessive disorder that can be caused by defects of NPHP1; the gene maps within the human 2q13 region where low copy repeats (LCRs) are abundant. Loss of function of NPHP1 is responsible for approximately 85% of the NPHP1 cases—about 80% of such individuals carry a large recurrent homozygous NPHP1 deletion that occurs via nonallelic homologous recombination (NAHR) between two flanking directly oriented ~45 kb LCRs. Published data revealed a non-pathogenic inversion polymorphism involving the NPHP1 gene flanked by two inverted ~358 kb LCRs. Using optical mapping and array-comparative genomic hybridization, we identified three potential novel structural variant (SV) haplotypes at the NPHP1 locus that may protect a haploid genome from the NPHP1 deletion. Inter-species comparative genomic analyses among primate genomes revealed massive genomic changes during evolution. The aggregated data suggest that dynamic genomic rearrangements occurred historically within the NPHP1 locus and generated SV haplotypes observed in the human population today, which may confer differential susceptibility to genomic instability and the NPHP1 deletion within a personal genome. Our study documents diverse SV haplotypes at a complex LCR-laden human genomic region. Comparative analyses provide a model for how this complex region arose during primate evolution, and studies among humans suggest that intra-species polymorphism may potentially modulate an individual’s susceptibility to acquiring disease-associated alleles. PMID:26641089

  9. Evolution of Linear Mitochondrial Genomes in Medusozoan Cnidarians

    PubMed Central

    Kayal, Ehsan; Bentlage, Bastian; Collins, Allen G.; Pirro, Stacy; Lavrov, Dennis V.

    2012-01-01

    In nearly all animals, mitochondrial DNA (mtDNA) consists of a single circular molecule that encodes several subunits of the protein complexes involved in oxidative phosphorylation as well as part of the machinery for their expression. By contrast, mtDNA in species belonging to Medusozoa (one of the two major lineages in the phylum Cnidaria) comprises one to several linear molecules. Many questions remain on the ubiquity of linear mtDNA in medusozoans and the mechanisms responsible for its evolution, replication, and transcription. To address some of these questions, we determined the sequences of nearly complete linear mtDNA from 24 species representing all four medusozoan classes: Cubozoa, Hydrozoa, Scyphozoa, and Staurozoa. All newly determined medusozoan mitochondrial genomes harbor the 17 genes typical for cnidarians and map as linear molecules with a high degree of gene order conservation relative to the anthozoans. In addition, two open reading frames (ORFs), polB and ORF314, are identified in cubozoan, schyphozoan, staurozoan, and trachyline hydrozoan mtDNA. polB belongs to the B-type DNA polymerase gene family, while the product of ORF314 may act as a terminal protein that binds telomeres. We posit that these two ORFs are remnants of a linear plasmid that invaded the mitochondrial genomes of the last common ancestor of Medusozoa and are responsible for its linearity. Hydroidolinan hydrozoans have lost the two ORFs and instead have duplicated cox1 at each end of their mitochondrial chromosome(s). Fragmentation of mtDNA occurred independently in Cubozoa and Hydridae (Hydrozoa, Hydroidolina). Our broad sampling allows us to reconstruct the evolutionary history of linear mtDNA in medusozoans. PMID:22113796

  10. Molecular evolution of the MAGUK family in metazoan genomes

    PubMed Central

    te Velthuis, Aartjan JW; Admiraal, Jeroen F; Bagowski, Christoph P

    2007-01-01

    Background Development, differentiation and physiology of metazoans all depend on cell to cell communication and subsequent intracellular signal transduction. Often, these processes are orchestrated via sites of specialized cell-cell contact and involve receptors, adhesion molecules and scaffolding proteins. Several of these scaffolding proteins important for synaptic and cellular junctions belong to the large family of membrane-associated guanylate kinases (MAGUK). In order to elucidate the origin and the evolutionary history of the MAGUKs we investigated full-length cDNA, EST and genomic sequences of species in major phyla. Results Our results indicate that at least four of the seven MAGUK subfamilies were present in early metazoan lineages, such as Porifera. We employed domain sequence and structure based methods to infer a model for the evolutionary history of the MAGUKs. Notably, the phylogenetic trees for the guanylate kinase (GK)-, the PDZ- and the SH3-domains all suggested a matching evolutionary model which was further supported by molecular modeling of the 3D structures of different GK domains. We found no MAGUK in plants, fungi or other unicellular organisms, which suggests that the MAGUK core structure originated early in metazoan history. Conclusion In summary, we have characterized here the molecular and structural evolution of the large MAGUK family. Using the MAGUKs as an example, our results show that it is possible to derive a highly supported evolutionary model for important multidomain families by analyzing encoded protein domains. It further suggests that larger superfamilies encoded in the different genomes can be analyzed in a similar manner. PMID:17678554

  11. Tracking Marsupial Evolution Using Archaic Genomic Retroposon Insertions

    PubMed Central

    Nilsson, Maria A.; Churakov, Gennady; Sommer, Mirjam; Tran, Ngoc Van; Zemann, Anja; Brosius, Jürgen; Schmitz, Jürgen

    2010-01-01

    The Australasian and South American marsupial mammals, such as kangaroos and opossums, are the closest living relatives to placental mammals, having shared a common ancestor around 130 million years ago. The evolutionary relationships among the seven marsupial orders have, however, so far eluded resolution. In particular, the relationships between the four Australasian and three South American marsupial orders have been intensively debated since the South American order Microbiotheria was taxonomically moved into the group Australidelphia. Australidelphia is significantly supported by both molecular and morphological data and comprises the four Australasian marsupial orders and the South American order Microbiotheria, indicating a complex, ancient, biogeographic history of marsupials. However, the exact phylogenetic position of Microbiotheria within Australidelphia has yet to be resolved using either sequence or morphological data analysis. Here, we provide evidence from newly established and virtually homoplasy-free retroposon insertion markers for the basal relationships among marsupial orders. Fifty-three phylogenetically informative markers were retrieved after in silico and experimental screening of ∼217,000 retroposon-containing loci from opossum and kangaroo. The four Australasian orders share a single origin with Microbiotheria as their closest sister group, supporting a clear divergence between South American and Australasian marsupials. In addition, the new data place the South American opossums (Didelphimorphia) as the first branch of the marsupial tree. The exhaustive computational and experimental evidence provides important insight into the evolution of retroposable elements in the marsupial genome. Placing the retroposon insertion pattern in a paleobiogeographic context indicates a single marsupial migration from South America to Australia. The now firmly established phylogeny can be used to determine the direction of genomic changes and

  12. Insights into the Evolution of Cotton Diploids and Polyploids from Whole-Genome Re-sequencing

    PubMed Central

    Page, Justin T.; Huynh, Mark D.; Liechty, Zach S.; Grupp, Kara; Stelly, David; Hulse, Amanda M.; Ashrafi, Hamid; Van Deynze, Allen; Wendel, Jonathan F.; Udall, Joshua A.

    2013-01-01

    Understanding the composition, evolution, and function of the Gossypium hirsutum (cotton) genome is complicated by the joint presence of two genomes in its nucleus (AT and DT genomes). These two genomes were derived from progenitor A-genome and D-genome diploids involved in ancestral allopolyploidization. To better understand the allopolyploid genome, we re-sequenced the genomes of extant diploid relatives that contain the A1 (Gossypium herbaceum), A2 (Gossypium arboreum), or D5 (Gossypium raimondii) genomes. We conducted a comparative analysis using deep re-sequencing of multiple accessions of each diploid species and identified 24 million SNPs between the A-diploid and D-diploid genomes. These analyses facilitated the construction of a robust index of conserved SNPs between the A-genomes and D-genomes at all detected polymorphic loci. This index is widely applicable for read mapping efforts of other diploid and allopolyploid Gossypium accessions. Further analysis also revealed locations of putative duplications and deletions in the A-genome relative to the D-genome reference sequence. The approximately 25,400 deleted regions included more than 50% deletion of 978 genes, including many involved with starch synthesis. In the polyploid genome, we also detected 1,472 conversion events between homoeologous chromosomes, including events that overlapped 113 genes. Continued characterization of the Gossypium genomes will further enhance our ability to manipulate fiber and agronomic production of cotton. PMID:23979935

  13. Insights into the evolution of cotton diploids and polyploids from whole-genome re-sequencing.

    PubMed

    Page, Justin T; Huynh, Mark D; Liechty, Zach S; Grupp, Kara; Stelly, David; Hulse, Amanda M; Ashrafi, Hamid; Van Deynze, Allen; Wendel, Jonathan F; Udall, Joshua A

    2013-10-01

    Understanding the composition, evolution, and function of the Gossypium hirsutum (cotton) genome is complicated by the joint presence of two genomes in its nucleus (AT and DT genomes). These two genomes were derived from progenitor A-genome and D-genome diploids involved in ancestral allopolyploidization. To better understand the allopolyploid genome, we re-sequenced the genomes of extant diploid relatives that contain the A1 (Gossypium herbaceum), A2 (Gossypium arboreum), or D5 (Gossypium raimondii) genomes. We conducted a comparative analysis using deep re-sequencing of multiple accessions of each diploid species and identified 24 million SNPs between the A-diploid and D-diploid genomes. These analyses facilitated the construction of a robust index of conserved SNPs between the A-genomes and D-genomes at all detected polymorphic loci. This index is widely applicable for read mapping efforts of other diploid and allopolyploid Gossypium accessions. Further analysis also revealed locations of putative duplications and deletions in the A-genome relative to the D-genome reference sequence. The approximately 25,400 deleted regions included more than 50% deletion of 978 genes, including many involved with starch synthesis. In the polyploid genome, we also detected 1,472 conversion events between homoeologous chromosomes, including events that overlapped 113 genes. Continued characterization of the Gossypium genomes will further enhance our ability to manipulate fiber and agronomic production of cotton. PMID:23979935

  14. Multiple Lineages of Ancient CR1 Retroposons Shaped the Early Genome Evolution of Amniotes

    PubMed Central

    Suh, Alexander; Churakov, Gennady; Ramakodi, Meganathan P.; Platt, Roy N.; Jurka, Jerzy; Kojima, Kenji K.; Caballero, Juan; Smit, Arian F.; Vliet, Kent A.; Hoffmann, Federico G.; Brosius, Jürgen; Green, Richard E.; Braun, Edward L.; Ray, David A.; Schmitz, Jürgen

    2015-01-01

    Chicken repeat 1 (CR1) retroposons are long interspersed elements (LINEs) that are ubiquitous within amniote genomes and constitute the most abundant family of transposed elements in birds, crocodilians, turtles, and snakes. They are also present in mammalian genomes, where they reside as numerous relics of ancient retroposition events. Yet, despite their relevance for understanding amniote genome evolution, the diversity and evolution of CR1 elements has never been studied on an amniote-wide level. We reconstruct the temporal and quantitative activity of CR1 subfamilies via presence/absence analyses across crocodilian phylogeny and comparative analyses of 12 crocodilian genomes, revealing relative genomic stasis of retroposition during genome evolution of extant Crocodylia. Our large-scale phylogenetic analysis of amniote CR1 subfamilies suggests the presence of at least seven ancient CR1 lineages in the amniote ancestor; and amniote-wide analyses of CR1 successions and quantities reveal differential retention (presence of ancient relics or recent activity) of these CR1 lineages across amniote genome evolution. Interestingly, birds and lepidosaurs retained the fewest ancient CR1 lineages among amniotes and also exhibit smaller genome sizes. Our study is the first to analyze CR1 evolution in a genome-wide and amniote-wide context and the data strongly suggest that the ancestral amniote genome contained myriad CR1 elements from multiple ancient lineages, and remnants of these are still detectable in the relatively stable genomes of crocodilians and turtles. Early mammalian genome evolution was thus characterized by a drastic shift from CR1 prevalence to dominance and hyperactivity of L2 LINEs in monotremes and L1 LINEs in therians. PMID:25503085

  15. Multiple lineages of ancient CR1 retroposons shaped the early genome evolution of amniotes.

    PubMed

    Suh, Alexander; Churakov, Gennady; Ramakodi, Meganathan P; Platt, Roy N; Jurka, Jerzy; Kojima, Kenji K; Caballero, Juan; Smit, Arian F; Vliet, Kent A; Hoffmann, Federico G; Brosius, Jürgen; Green, Richard E; Braun, Edward L; Ray, David A; Schmitz, Jürgen

    2015-01-01

    Chicken repeat 1 (CR1) retroposons are long interspersed elements (LINEs) that are ubiquitous within amniote genomes and constitute the most abundant family of transposed elements in birds, crocodilians, turtles, and snakes. They are also present in mammalian genomes, where they reside as numerous relics of ancient retroposition events. Yet, despite their relevance for understanding amniote genome evolution, the diversity and evolution of CR1 elements has never been studied on an amniote-wide level. We reconstruct the temporal and quantitative activity of CR1 subfamilies via presence/absence analyses across crocodilian phylogeny and comparative analyses of 12 crocodilian genomes, revealing relative genomic stasis of retroposition during genome evolution of extant Crocodylia. Our large-scale phylogenetic analysis of amniote CR1 subfamilies suggests the presence of at least seven ancient CR1 lineages in the amniote ancestor; and amniote-wide analyses of CR1 successions and quantities reveal differential retention (presence of ancient relics or recent activity) of these CR1 lineages across amniote genome evolution. Interestingly, birds and lepidosaurs retained the fewest ancient CR1 lineages among amniotes and also exhibit smaller genome sizes. Our study is the first to analyze CR1 evolution in a genome-wide and amniote-wide context and the data strongly suggest that the ancestral amniote genome contained myriad CR1 elements from multiple ancient lineages, and remnants of these are still detectable in the relatively stable genomes of crocodilians and turtles. Early mammalian genome evolution was thus characterized by a drastic shift from CR1 prevalence to dominance and hyperactivity of L2 LINEs in monotremes and L1 LINEs in therians. PMID:25503085

  16. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read-Write Genome Evolution as an Active Biological Process.

    PubMed

    Shapiro, James A

    2016-01-01

    The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess "Read-Write Genomes" they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification. PMID:27338490

  17. GenomicusPlants: A Web Resource to Study Genome Evolution in Flowering Plants

    PubMed Central

    Louis, Alexandra; Murat, Florent; Salse, Jérôme; Roest Crollius, Hugues

    2015-01-01

    Comparative genomics combined with phylogenetic reconstructions are powerful approaches to study the evolution of genes and genomes. However, the current rapid expansion of the volume of genomic information makes it increasingly difficult to interrogate, integrate and synthesize comparative genome data while taking into account the maximum breadth of information available. GenomicusPlants (http://www.genomicus.biologie.ens.fr/genomicus-plants) is an extension of the Genomicus webserver that addresses this issue by allowing users to explore flowering plant genomes in an intuitive way, across the broadest evolutionary scales. Extant genomes of 26 flowering plants can be analyzed, as well as 23 ancestral reconstructed genomes. Ancestral gene order provides a long-term chronological view of gene order evolution, greatly facilitating comparative genomics and evolutionary studies. Four main interfaces (‘views’) are available where: (i) PhyloView combines phylogenetic trees with comparisons of genomic loci across any number of genomes; (ii) AlignView projects loci of interest against all other genomes to visualize its topological conservation; (iii) MatrixView compares two genomes in a classical dotplot representation; and (iv) Karyoview visualizes chromosome karyotypes ‘painted’ with colours of another genome of interest. All four views are interconnected and benefit from many customizable features. PMID:25432975

  18. Global deceleration of gene evolution following recent genome hybridizations in fungi.

    PubMed

    Sriswasdi, Sira; Takashima, Masako; Manabe, Ri-Ichiroh; Ohkuma, Moriya; Sugita, Takashi; Iwasaki, Wataru

    2016-08-01

    Polyploidization events such as whole-genome duplication and inter-species hybridization are major evolutionary forces that shape genomes. Although long-term effects of polyploidization have been well-characterized, early molecular evolutionary consequences of polyploidization remain largely unexplored. Here, we report the discovery of two recent and independent genome hybridizations within a single clade of a fungal genus, Trichosporon Comparative genomic analyses revealed that redundant genes are experiencing decelerations, not accelerations, of evolutionary rates. We identified a relationship between gene conversion and decelerated evolution suggesting that gene conversion may improve the genome stability of young hybrids by restricting gene functional divergences. Furthermore, we detected large-scale gene losses from transcriptional and translational machineries that indicate a global compensatory mechanism against increased gene dosages. Overall, our findings illustrate counteracting mechanisms during an early phase of post-genome hybridization and fill a critical gap in existing theories on genome evolution. PMID:27440871

  19. Orthopoxvirus Genome Evolution: The Role of Gene Loss

    PubMed Central

    Hendrickson, Robert Curtis; Wang, Chunlin; Hatcher, Eneida L.; Lefkowitz, Elliot J.

    2010-01-01

    Poxviruses are highly successful pathogens, known to infect a variety of hosts. The family Poxviridae includes Variola virus, the causative agent of smallpox, which has been eradicated as a public health threat but could potentially reemerge as a bioterrorist threat. The risk scenario includes other animal poxviruses and genetically engineered manipulations of poxviruses. Studies of orthologous gene sets have established the evolutionary relationships of members within the Poxviridae family. It is not clear, however, how variations between family members arose in the past, an important issue in understanding how these viruses may vary and possibly produce future threats. Using a newly developed poxvirus-specific tool, we predicted accurate gene sets for viruses with completely sequenced genomes in the genus Orthopoxvirus. Employing sensitive sequence comparison techniques together with comparison of syntenic gene maps, we established the relationships between all viral gene sets. These techniques allowed us to unambiguously identify the gene loss/gain events that have occurred over the course of orthopoxvirus evolution. It is clear that for all existing Orthopoxvirus species, no individual species has acquired protein-coding genes unique to that species. All existing species contain genes that are all present in members of the species Cowpox virus and that cowpox virus strains contain every gene present in any other orthopoxvirus strain. These results support a theory of reductive evolution in which the reduction in size of the core gene set of a putative ancestral virus played a critical role in speciation and confining any newly emerging virus species to a particular environmental (host or tissue) niche. PMID:21994715

  20. A physical map for the Amborella trichopoda genome sheds light on the evolution of angiosperm genome structure

    PubMed Central

    2011-01-01

    Background Recent phylogenetic analyses have identified Amborella trichopoda, an understory tree species endemic to the forests of New Caledonia, as sister to a clade including all other known flowering plant species. The Amborella genome is a unique reference for understanding the evolution of angiosperm genomes because it can serve as an outgroup to root comparative analyses. A physical map, BAC end sequences and sample shotgun sequences provide a first view of the 870 Mbp Amborella genome. Results Analysis of Amborella BAC ends sequenced from each contig suggests that the density of long terminal repeat retrotransposons is negatively correlated with that of protein coding genes. Syntenic, presumably ancestral, gene blocks were identified in comparisons of the Amborella BAC contigs and the sequenced Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera and Oryza sativa genomes. Parsimony mapping of the loss of synteny corroborates previous analyses suggesting that the rate of structural change has been more rapid on lineages leading to Arabidopsis and Oryza compared with lineages leading to Populus and Vitis. The gamma paleohexiploidy event identified in the Arabidopsis, Populus and Vitis genomes is shown to have occurred after the divergence of all other known angiosperms from the lineage leading to Amborella. Conclusions When placed in the context of a physical map, BAC end sequences representing just 5.4% of the Amborella genome have facilitated reconstruction of gene blocks that existed in the last common ancestor of all flowering plants. The Amborella genome is an invaluable reference for inferences concerning the ancestral angiosperm and subsequent genome evolution. PMID:21619600

  1. Natural transformation and genome evolution in Streptococcus pneumoniae.

    PubMed

    Straume, Daniel; Stamsås, Gro Anita; Håvarstein, Leiv Sigve

    2015-07-01

    Streptococcus pneumoniae is a frequent colonizer of the human nasopharynx that has the potential to cause severe infections such as pneumonia, bacteremia and meningitis. Despite considerable efforts to reduce the burden of pneumococcal disease, it continues to be a major public health problem. After the Second World War, antimicrobial therapy was introduced to fight pneumococcal infections, followed by the first effective vaccines more than half a century later. These clinical interventions generated a selection pressure that drove the evolution of vaccine-escape mutants and strains that were highly resistant against antibiotics. The remarkable ability of S. pneumoniae to acquire drug resistance and evade vaccine pressure is due to its recombination-mediated genetic plasticity. S. pneumoniae is competent for natural genetic transformation, a property that enables the pneumococcus to acquire new traits by taking up naked DNA from the environment and incorporating it into its genome through homologous recombination. In the present paper, we review current knowledge on pneumococcal transformation, and discuss how the pneumococcus uses this mechanism to adapt and survive under adverse and fluctuating conditions. PMID:25445643

  2. The evolution of genome-scale models of cancer metabolism

    PubMed Central

    Lewis, Nathan E.; Abdel-Haleem, Alyaa M.

    2013-01-01

    The importance of metabolism in cancer is becoming increasingly apparent with the identification of metabolic enzyme mutations and the growing awareness of the influence of metabolism on signaling, epigenetic markers, and transcription. However, the complexity of these processes has challenged our ability to make sense of the metabolic changes in cancer. Fortunately, constraint-based modeling, a systems biology approach, now enables one to study the entirety of cancer metabolism and simulate basic phenotypes. With the newness of this field, there has been a rapid evolution of both the scope of these models and their applications. Here we review the various constraint-based models built for cancer metabolism and how their predictions are shedding new light on basic cancer phenotypes, elucidating pathway differences between tumors, and dicovering putative anti-cancer targets. As the field continues to evolve, the scope of these genome-scale cancer models must expand beyond central metabolism to address questions related to the diverse processes contributing to tumor development and metastasis. PMID:24027532

  3. Variation in salamanders: an essay on genomes, development, and evolution.

    PubMed

    Brockes, Jeremy P

    2015-01-01

    Regeneration is studied in a few model species of salamanders, but the ten families of salamanders show considerable variation, and this has implications for our understanding of salamander biology. The most recent classification of the families identifies the cryptobranchoidea as the basal group which diverged in the early Jurassic. Variation in the sizes of genomes is particularly obvious, and reflects a major contribution from transposable elements which is already present in the basal group.Limb development has been a focus for evodevo studies, in part because of the variable property of pre-axial dominance which distinguishes salamanders from other tetrapods. This is thought to reflect the selective pressures that operate on a free-living aquatic larva, and might also be relevant for the evolution of limb regeneration. Recent fossil evidence suggests that both pre-axial dominance and limb regeneration were present 300 million years ago in larval temnospondyl amphibians that lived in mountain lakes. A satisfying account of regeneration in salamanders may need to address all these different aspects in the future. PMID:25740473

  4. Identification of host miRNAs that may limit human rhinovirus replication

    PubMed Central

    Bondanese, Victor Paky; Francisco-Garcia, Ana; Bedke, Nicole; Davies, Donna E; Sanchez-Elsner, Tilman

    2014-01-01

    AIM: To test whether the replication of human rhinovirus (HRV) is regulated by microRNAs in human bronchial epithelial cells. METHODS: For the present study, the human cell line BEAS-2B (derived from normal human bronchial epithelial cells) was adopted. DICER knock-down, by siRNA transfection in BEAS-2B cells, was performed in order to inhibit microRNA maturation globally. Alternatively, antisense oligonucleotides (anti-miRs) were transfected to inhibit the activity of specific microRNAs. Cells were infected with HRV-1B. Viral replication was assessed by measuring the genomic viral RNA by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Association between microRNA-induced-silencing-complex and viral RNA was detected by Ago2 co-immunoprecipitation followed by RT-qPCR. Targetscan v.6 was used to predict microRNA target sites on several HRV strains. RESULTS: Here, we show that microRNAs affect replication of HRV-1B. DICER knock-down significantly reduced the expression of mature microRNAs in a bronchial epithelial cell line (BEAS-2B) and in turn, increased the synthesis of HRV-1B RNA. Additionally, HRV-1B RNA co-immunoprecipitated with argonaute 2 protein, an important effector for microRNA activity suggesting that microRNAs bind to viral RNA during infection. In order to identify specific microRNAs involved in this interaction, we employed bioinformatics analysis, and selected a group of microRNAs that have been reported to be under-expressed in asthmatic bronchial epithelial cells and were predicted to target different strains of rhinoviruses (HRV-1B, -16, -14, -27). Our results suggest that, out of this group of microRNAs, miR-128 and miR-155 contribute to the innate defense against HRV-1B: transfection of specific anti-miRs increased viral replication, as anticipated in-silico. CONCLUSION: Taken together, our results suggest that pathological changes in microRNA expression, as already reported for asthma or chronic obstructive pulmonary

  5. The Genome of the Obligate Intracellular Parasite Trachipleistophora hominis: New Insights into Microsporidian Genome Dynamics and Reductive Evolution

    PubMed Central

    Heinz, Eva; Williams, Tom A.; Nakjang, Sirintra; Noël, Christophe J.; Swan, Daniel C.; Goldberg, Alina V.; Harris, Simon R.; Weinmaier, Thomas; Markert, Stephanie; Becher, Dörte; Bernhardt, Jörg; Dagan, Tal; Hacker, Christian; Lucocq, John M.; Schweder, Thomas; Rattei, Thomas; Hall, Neil; Hirt, Robert P.; Embley, T. Martin

    2012-01-01

    The dynamics of reductive genome evolution for eukaryotes living inside other eukaryotic cells are poorly understood compared to well-studied model systems involving obligate intracellular bacteria. Here we present 8.5 Mb of sequence from the genome of the microsporidian Trachipleistophora hominis, isolated from an HIV/AIDS patient, which is an outgroup to the smaller compacted-genome species that primarily inform ideas of evolutionary mode for these enormously successful obligate intracellular parasites. Our data provide detailed information on the gene content, genome architecture and intergenic regions of a larger microsporidian genome, while comparative analyses allowed us to infer genomic features and metabolism of the common ancestor of the species investigated. Gene length reduction and massive loss of metabolic capacity in the common ancestor was accompanied by the evolution of novel microsporidian-specific protein families, whose conservation among microsporidians, against a background of reductive evolution, suggests they may have important functions in their parasitic lifestyle. The ancestor had already lost many metabolic pathways but retained glycolysis and the pentose phosphate pathway to provide cytosolic ATP and reduced coenzymes, and it had a minimal mitochondrion (mitosome) making Fe-S clusters but not ATP. It possessed bacterial-like nucleotide transport proteins as a key innovation for stealing host-generated ATP, the machinery for RNAi, key elements of the early secretory pathway, canonical eukaryotic as well as microsporidian-specific regulatory elements, a diversity of repetitive and transposable elements, and relatively low average gene density. Microsporidian genome evolution thus appears to have proceeded in at least two major steps: an ancestral remodelling of the proteome upon transition to intracellular parasitism that involved reduction but also selective expansion, followed by a secondary compaction of genome architecture in some, but

  6. Oxytricha as a modern analog of ancient genome evolution

    PubMed Central

    Goldman, Aaron David; Landweber, Laura F.

    2012-01-01

    Several independent lines of evidence suggest that the modern genetic system was preceded by the ‘RNA world’ in which RNA genes encoded RNA catalysts. Current gaps in our conceptual framework of early genetic systems make it difficult to imagine how a stable RNA genome may have functioned and how the transition to a DNA genome could have taken place. Here we use the single-celled ciliate, Oxytricha, as an analog to some of the genetic and genomic traits that may have been present in organisms before and during the establishment of a DNA genome. Oxytricha and its close relatives have a unique genome architecture involving two differentiated nuclei, one of which encodes the genome on small, linear nanochromosomes. While its unique genomic characteristics are relatively modern, some physiological processes related to the genomes and nuclei of Oxytricha may exemplify primitive states of the developing genetic system. PMID:22622227

  7. How does rhinovirus cause the common cold cough?

    PubMed Central

    Atkinson, Samantha K; Sadofsky, Laura R; Morice, Alyn H

    2016-01-01

    Cough is a protective reflex to prevent aspiration and can be triggered by a multitude of stimuli. The commonest form of cough is caused by upper respiratory tract infection and has no benefit to the host. The virus hijacks this natural defence mechanism in order to propagate itself through the population. Despite the resolution of the majority of cold symptoms within 2 weeks, cough can persist for some time thereafter. Unfortunately, the mechanism of infectious cough brought on by pathogenic viruses, such as human rhinovirus, during colds, remains elusive despite the extensive work that has been undertaken. For socioeconomic reasons, it is imperative we identify the mechanism of cough. There are several theories which have been proposed as the causative mechanism of cough in rhinovirus infection, encompassing a range of different processes. Those of which hold most promise are physical disruption of the epithelial lining, excess mucus production and an inflammatory response to rhinovirus infection which may be excessive. And finally, neuronal modulation, the most convincing hypothesis, is thought to potentiate cough long after the original stimulus has been cleared. All these hypotheses will be briefly covered in the following sections. PMID:26835135

  8. Dynamic evolution of Rht-1 homologous regions in grass genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bread wheat contains A, B, and D subgenomes with its well characterized ancestral genomes that exist at the diploid and tetraploid levels. Therefore, the wheat genome system acts as a model specie for studying genome evolutionary dynamics. Here, we performed intra- and inter-species comparative ana...

  9. Reductive genome evolution at both ends of the bacterial population size spectrum.

    PubMed

    Batut, Bérénice; Knibbe, Carole; Marais, Gabriel; Daubin, Vincent

    2014-12-01

    Bacterial genomes show substantial variations in size. The smallest bacterial genomes are those of endocellular symbionts of eukaryotic hosts, which have undergone massive genome reduction and show patterns that are consistent with the degenerative processes that are predicted to occur in species with small effective population sizes. However, similar genome reduction is found in some free-living marine cyanobacteria that are characterized by extremely large populations. In this Opinion article, we discuss the different hypotheses that have been proposed to account for this reductive genome evolution at both ends of the bacterial population size spectrum. PMID:25220308

  10. Comparative genomics of the bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and limited gene loss

    PubMed Central

    2010-01-01

    Background The bacterial genus Listeria contains pathogenic and non-pathogenic species, including the pathogens L. monocytogenes and L. ivanovii, both of which carry homologous virulence gene clusters such as the prfA cluster and clusters of internalin genes. Initial evidence for multiple deletions of the prfA cluster during the evolution of Listeria indicates that this genus provides an interesting model for studying the evolution of virulence and also presents practical challenges with regard to definition of pathogenic strains. Results To better understand genome evolution and evolution of virulence characteristics in Listeria, we used a next generation sequencing approach to generate draft genomes for seven strains representing Listeria species or clades for which genome sequences were not available. Comparative analyses of these draft genomes and six publicly available genomes, which together represent the main Listeria species, showed evidence for (i) a pangenome with 2,032 core and 2,918 accessory genes identified to date, (ii) a critical role of gene loss events in transition of Listeria species from facultative pathogen to saprotroph, even though a consistent pattern of gene loss seemed to be absent, and a number of isolates representing non-pathogenic species still carried some virulence associated genes, and (iii) divergence of modern pathogenic and non-pathogenic Listeria species and strains, most likely circa 47 million years ago, from a pathogenic common ancestor that contained key virulence genes. Conclusions Genome evolution in Listeria involved limited gene loss and acquisition as supported by (i) a relatively high coverage of the predicted pan-genome by the observed pan-genome, (ii) conserved genome size (between 2.8 and 3.2 Mb), and (iii) a highly syntenic genome. Limited gene loss in Listeria did include loss of virulence associated genes, likely associated with multiple transitions to a saprotrophic lifestyle. The genus Listeria thus provides

  11. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read–Write Genome Evolution as an Active Biological Process

    PubMed Central

    Shapiro, James A.

    2016-01-01

    The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess “Read–Write Genomes” they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification. PMID:27338490

  12. The Cambrian explosion triggered by critical turning point in genome size evolution.

    PubMed

    Li, Dirson Jian; Zhang, Shengli

    2010-02-01

    The Cambrian explosion is a grand challenge to science today and involves multidisciplinary study. This event is generally believed as a result of genetic innovations, environmental factors and ecological interactions, even though there are many conflicts on nature and timing of metazoan origins. The crux of the matter is that an entire roadmap of the evolution is missing to discern the biological complexity transition and to evaluate the critical role of the Cambrian explosion in the overall evolutionary context. Here, we calculate the time of the Cambrian explosion by a "C-value clock"; our result quite fits the fossil records. We clarify that the intrinsic reason of genome evolution determined the Cambrian explosion. A general formula for evaluating genome size of different species has been found, by which the genome size evolution can be illustrated. The Cambrian explosion, as a major transition of biological complexity, essentially corresponds to a critical turning point in genome size evolution. PMID:20074549

  13. The Laccaria and Tuber Genomes Reveal Unique Signatures of Mycorrhizal Symbiosis Evolution (2010 JGI User Meeting)

    SciTech Connect

    Knapp, Steve

    2010-03-24

    Francis Martin from the French agricultural research institute INRA talks on how "The Laccaria and Tuber genomes reveal unique signatures of mycorrhizal symbiosis evolution" on March 24, 2010 at the 5th Annual DOE JGI User Meeting

  14. Genomics and Evolution in Traditional Medicinal Plants: Road to a Healthier Life

    PubMed Central

    Hao, Da-Cheng; Xiao, Pei-Gen

    2015-01-01

    Medicinal plants have long been utilized in traditional medicine and ethnomedicine worldwide. This review presents a glimpse of the current status of and future trends in medicinal plant genomics, evolution, and phylogeny. These dynamic fields are at the intersection of phytochemistry and plant biology and are concerned with the evolution mechanisms and systematics of medicinal plant genomes, origin and evolution of the plant genotype and metabolic phenotype, interaction between medicinal plant genomes and their environment, the correlation between genomic diversity and metabolite diversity, and so on. Use of the emerging high-end genomic technologies can be expanded from crop plants to traditional medicinal plants, in order to expedite medicinal plant breeding and transform them into living factories of medicinal compounds. The utility of molecular phylogeny and phylogenomics in predicting chemodiversity and bioprospecting is also highlighted within the context of natural-product-based drug discovery and development. Representative case studies of medicinal plant genome, phylogeny, and evolution are summarized to exemplify the expansion of knowledge pedigree and the paradigm shift to the omics-based approaches, which update our awareness about plant genome evolution and enable the molecular breeding of medicinal plants and the sustainable utilization of plant pharmaceutical resources. PMID:26461812

  15. The genome sequence of taurine cattle: A window to ruminant biology and evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (ma...

  16. Genome sequencing of the extinct Eurasian wild aurochs illuminates the phylogeography and evolution of cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interrogation of modern and ancient bovine genome sequences provides a valuable model to study the evolution of cattle. Here, we analyse the first complete wild aurochs (Bos primigenius) genome sequence using DNA extracted from a ~ 6,750 year-old humerus bone retrieved from a cave site in Derbyshire...

  17. Biology, genome organization, and evolution of parvoviruses in marine shrimp.

    PubMed

    Dhar, Arun K; Robles-Sikisaka, Refugio; Saksmerprome, Vanvimon; Lakshman, Dilip K

    2014-01-01

    As shrimp aquaculture has evolved from a subsistent farming activity to an economically important global industry, viral diseases have also become a serious threat to the sustainable growth and productivity of this industry. Parvoviruses represent an economically important group of viruses that has greatly affected shrimp aquaculture. In the early 1980s, an outbreak of a shrimp parvovirus, infectious hypodermal and hematopoietic necrosis virus (IHHNV), led to the collapse of penaeid shrimp farming in the Americas. Since then, considerable progress has been made in characterizing the parvoviruses of shrimp and developing diagnostic methods aimed to preventing the spread of diseases caused by these viruses. To date, four parvoviruses are known that infect shrimp; these include IHHNV, hepatopancreatic parvovirus (HPV), spawner-isolated mortality virus (SMV), and lymphoid organ parvo-like virus. Due to the economic repercussions that IHHNV and HPV outbreaks have caused to shrimp farming over the years, studies have been focused mostly on these two pathogens, while information on SMV and LPV remains limited. IHHNV was the first shrimp virus to be sequenced and the first for which highly sensitive diagnostic methods were developed. IHHNV-resistant lines of shrimp were also developed to mitigate the losses caused by this virus. While the losses due to IHHNV have been largely contained in recent years, reports of HPV-induced mortalities in larval stages in hatchery and losses due to reduced growth have increased. This review presents a comprehensive account of the history and current knowledge on the biology, diagnostics methods, genomic features, mechanisms of evolution, and management strategies of shrimp parvoviruses. We also highlighted areas where research efforts should be focused in order to gain further insight on the mechanisms of parvoviral pathogenicity in shrimp that will help to prevent future losses caused by these viruses. PMID:24751195

  18. Genomic Evolution of 11 Type Strains within Family Planctomycetaceae

    PubMed Central

    Zhou, Yizhuang; Yang, Linfeng; Liu, Tianxiang; Yang, Jinlong; Chen, Yanling; Su, Longxiang; Xu, Jin; Chen, Jing; Liu, Feng; Chen, Jiapeng; Dai, Wenkui; Ni, Peixiang; Fang, Chengxiang; Yang, Ruifu

    2014-01-01

    The species in family Planctomycetaceae are ideal groups for investigating the origin of eukaryotes. Their cells are divided by a lipidic intracytoplasmic membrane and they share a number of eukaryote-like molecular characteristics. However, their genomic structures, potential abilities, and evolutionary status are still unknown. In this study, we searched for common protein families and a core genome/pan genome based on 11 sequenced species in family Planctomycetaceae. Then, we constructed phylogenetic tree based on their 832 common protein families. We also annotated the 11 genomes using the Clusters of Orthologous Groups database. Moreover, we predicted and reconstructed their core/pan metabolic pathways using the KEGG (Kyoto Encyclopedia of Genes and Genomes) orthology system. Subsequently, we identified genomic islands (GIs) and structural variations (SVs) among the five complete genomes and we specifically investigated the integration of two Planctomycetaceae plasmids in all 11 genomes. The results indicate that Planctomycetaceae species share diverse genomic variations and unique genomic characteristics, as well as have huge potential for human applications. PMID:24489782

  19. Microsatellite landscape evolutionary dynamics across 450 million years of vertebrate genome evolution.

    PubMed

    Adams, Richard H; Blackmon, Heath; Reyes-Velasco, Jacobo; Schield, Drew R; Card, Daren C; Andrew, Audra L; Waynewood, Nyimah; Castoe, Todd A

    2016-05-01

    The evolutionary dynamics of simple sequence repeats (SSRs or microsatellites) across the vertebrate tree of life remain largely undocumented and poorly understood. In this study, we analyzed patterns of genomic microsatellite abundance and evolution across 71 vertebrate genomes. The highest abundances of microsatellites exist in the genomes of ray-finned fishes, squamate reptiles, and mammals, while crocodilian, turtle, and avian genomes exhibit reduced microsatellite landscapes. We used comparative methods to infer evolutionary rates of change in microsatellite abundance across vertebrates and to highlight particular lineages that have experienced unusually high or low rates of change in genomic microsatellite abundance. Overall, most variation in microsatellite content, abundance, and evolutionary rate is observed among major lineages of reptiles, yet we found that several deeply divergent clades (i.e., squamate reptiles and mammals) contained relatively similar genomic microsatellite compositions. Archosauromorph reptiles (turtles, crocodilians, and birds) exhibit reduced genomic microsatellite content and the slowest rates of microsatellite evolution, in contrast to squamate reptile genomes that have among the highest rates of microsatellite evolution. Substantial branch-specific shifts in SSR content in primates, monotremes, rodents, snakes, and fish are also evident. Collectively, our results support multiple major shifts in microsatellite genomic landscapes among vertebrates. PMID:27064176

  20. Role of Rhinovirus C in Apparently Life-Threatening Events in Infants, Spain

    PubMed Central

    García, M. Luz; Pozo, Francisco; Reyes, Noelia; Pérez-Breña, Pilar; Casas, Inmaculada

    2009-01-01

    To assess whether infants hospitalized after an apparently life-threatening event had an associated respiratory virus infection, we analyzed nasopharyngeal aspirates from 16 patients. Nine of 11 infants with positive virus results were infected by rhinoviruses. We detected the new genogroup of rhinovirus C in 6 aspirates. PMID:19788827

  1. Networks of lexical borrowing and lateral gene transfer in language and genome evolution

    PubMed Central

    List, Johann-Mattis; Nelson-Sathi, Shijulal; Geisler, Hans; Martin, William

    2014-01-01

    Like biological species, languages change over time. As noted by Darwin, there are many parallels between language evolution and biological evolution. Insights into these parallels have also undergone change in the past 150 years. Just like genes, words change over time, and language evolution can be likened to genome evolution accordingly, but what kind of evolution? There are fundamental differences between eukaryotic and prokaryotic evolution. In the former, natural variation entails the gradual accumulation of minor mutations in alleles. In the latter, lateral gene transfer is an integral mechanism of natural variation. The study of language evolution using biological methods has attracted much interest of late, most approaches focusing on language tree construction. These approaches may underestimate the important role that borrowing plays in language evolution. Network approaches that were originally designed to study lateral gene transfer may provide more realistic insights into the complexities of language evolution. PMID:24375688

  2. Life History Evolution and Genome Size in Subtribe Oncidiinae (Orchidaceae)

    PubMed Central

    CHASE, MARK W.; HANSON, LYNDA; ALBERT, VICTOR A.; WHITTEN, W. MARK; WILLIAMS, NORRIS H.

    2005-01-01

    • Background and Aims Within Oncidiinae, there are several groups of species that are effectively annuals, and we wished to see if these species had smaller genome sizes than average for the subtribe. • Methods Fifty-four genome size estimates (50 of which are new) for species in subtribe Oncidiinae (Orchidaceae) were examined for the first time in a phylogenetic context to evaluate hypotheses concerning genome sizes and life history traits. • Results and Conclusions Within the limits of still relatively sparse sampling, the species that are effectively annuals do appear to have smaller genome sizes than average. However, the genome sizes of their immediate sister group are also small, indicating that changes in genome size preceded the change in life history traits. Genome sizes and chromosome numbers also do not correlate; some slowly growing species have lower chromosome numbers but large genomes and vice versa. Based on a survey of the literature on orchids, it is also clear that epiphytic species have smaller genome sizes than do terrestrial species, which could be an effect of different water relations or the fact that most terrestrial orchids are geophytic or have distinct growth and dormancy phases. PMID:15596466

  3. Patterns of Genome Evolution among the Microsporidian Parasites Encephalitozoon cuniculi, Antonospora locustae and Enterocytozoon bieneusi

    PubMed Central

    Morrison, Hilary G.; Feng, Xiaochuan; Weiss, Louis M.; Tzipori, Saul; Keeling, Patrick J.

    2007-01-01

    Background Microsporidia are intracellular parasites that are highly-derived relatives of fungi. They have compacted genomes and, despite a high rate of sequence evolution, distantly related species can share high levels of gene order conservation. To date, only two species have been analysed in detail, and data from one of these largely consists of short genomic fragments. It is therefore difficult to determine how conservation has been maintained through microsporidian evolution, and impossible to identify whether certain regions are more prone to genomic stasis. Principal Findings Here, we analyse three large fragments of the Enterocytozoon bieneusi genome (in total 429 kbp), a species of medical significance. A total of 296 ORFs were identified, annotated and their context compared with Encephalitozoon cuniculi and Antonospora locustae. Overall, a high degree of conservation was found between all three species, and interestingly the level of conservation was similar in all three pairwise comparisons, despite the fact that A. locustae is more distantly related to E. cuniculi and E. bieneusi than either are to each other. Conclusions/Significance Any two genes that are found together in any pair of genomes are more likely to be conserved in the third genome as well, suggesting that a core of genes tends to be conserved across the entire group. The mechanisms of rearrangments identified among microsporidian genomes were consistent with a very slow evolution of their architecture, as opposed to the very rapid sequence evolution reported for these parasites. PMID:18060071

  4. The evolution of lineage-specific clusters of single nucleotide substitutions in the human genome.

    PubMed

    Xu, Ke; Wang, Jianrong; Elango, Navin; Yi, Soojin V

    2013-10-01

    Genomic regions harboring large numbers of human-specific single nucleotide substitutions are of significant interest since they are potential genomic foci underlying the evolution of human-specific traits as well as human adaptive evolution. Previous studies aimed to identify such regions either used pre-defined genomic locations such as coding sequences and conserved genomic elements or employed sliding window methods. Such approaches may miss clusters of substitutions occurring in regions other than those pre-defined locations, or not be able to distinguish human-specific clusters of substitutions from regions of generally high substitution rates. Here, we conduct a 'maximal segment' analysis to scan the whole human genome to identify clusters of human-specific substitutions that occurred since the divergence of the human and the chimpanzee genomes. This method can identify species-specific clusters of substitutions while not relying on pre-defined regions. We thus identify thousands of clusters of human-specific single nucleotide substitutions. The evolution of such clusters is driven by a combination of several different evolutionary processes including increased regional mutation rate, recombination-associated processes, and positive selection. These newly identified regions of human-specific substitution clusters include large numbers of previously identified human accelerated regions, and exhibit significant enrichments of genes involved in several developmental processes. Our study provides a useful tool to study the evolution of the human genome. PMID:23770436

  5. Whole genome comparisons of Fragaria, Prunus and Malus reveal different modes of evolution between Rosaceous subfamilies

    PubMed Central

    2012-01-01

    Background Rosaceae include numerous economically important and morphologically diverse species. Comparative mapping between the member species in Rosaceae have indicated some level of synteny. Recently the whole genome of three crop species, peach, apple and strawberry, which belong to different genera of the Rosaceae family, have been sequenced, allowing in-depth comparison of these genomes. Results Our analysis using the whole genome sequences of peach, apple and strawberry identified 1399 orthologous regions between the three genomes, with a mean length of around 100 kb. Each peach chromosome showed major orthology mostly to one strawberry chromosome, but to more than two apple chromosomes, suggesting that the apple genome went through more chromosomal fissions in addition to the whole genome duplication after the divergence of the three genera. However, the distribution of contiguous ancestral regions, identified using the multiple genome rearrangements and ancestors (MGRA) algorithm, suggested that the Fragaria genome went through a greater number of small scale rearrangements compared to the other genomes since they diverged from a common ancestor. Using the contiguous ancestral regions, we reconstructed a hypothetical ancestral genome for the Rosaceae 7 composed of nine chromosomes and propose the evolutionary steps from the ancestral genome to the extant Fragaria, Prunus and Malus genomes. Conclusion Our analysis shows that different modes of evolution may have played major roles in different subfamilies of Rosaceae. The hypothetical ancestral genome of Rosaceae and the evolutionary steps that lead to three different lineages of Rosaceae will facilitate our understanding of plant genome evolution as well as have a practical impact on knowledge transfer among member species of Rosaceae. PMID:22475018

  6. The tomato genome sequence provides insight into fleshy fruit evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genome of the inbred tomato cultivar ‘Heinz 1706’ was sequenced and assembled using a combination of Sanger and “next generation” technologies. The predicted genome size is ~900 Mb, consistent with prior estimates, of which 760 Mb were assembled in 91 scaffolds aligned to the 12 tomato chromosom...

  7. A genomic view of 500 million years of cnidarian evolution

    PubMed Central

    Steele, Robert E.; David, Charles N.; Technau, Ulrich

    2010-01-01

    Cnidarians (corals, anemones, jellyfish, and hydras) are a diverse group of animals of interest to evolutionary biologists, ecologists, and developmental biologists. With the publication of the genome sequences of Hydra and Nematostella, whose last common ancestor was the stem cnidarian, we are beginning to see the genomic underpinnings of cnidarian biology. Cnidarians are known for the remarkable plasticity of their morphology and life cycles. This plasticity is reflected in the Hydra and Nematostella genomes, which differ to an exceptional degree in size, base composition, transposable element content, and gene conservation. We now know what cnidarian genomes are capable of doing given 500 million years; the next challenge is to understand how this genomic history has led to the striking diversity we see in cnidarians. PMID:21047698

  8. DNA Transposons and the Evolution of Eukaryotic Genomes

    PubMed Central

    Feschotte, Cédric; Pritham, Ellen J.

    2007-01-01

    Transposable elements are mobile genetic units that exhibit broad diversity in their structure and transposition mechanisms. Transposable elements occupy a large fraction of many eukaryotic genomes and their movement and accumulation represent a major force shaping the genes and genomes of almost all organisms. This review focuses on DNA-mediated or class 2 transposons and emphasizes how this class of elements is distinguished from other types of mobile elements in terms of their structure, amplification dynamics, and genomic effect. We provide an up-to-date outlook on the diversity and taxonomic distribution of all major types of DNA transposons in eukaryotes, including Helitrons and Mavericks. We discuss some of the evolutionary forces that influence their maintenance and diversification in various genomic environments. Finally, we highlight how the distinctive biological features of DNA transposons have contributed to shape genome architecture and led to the emergence of genetic innovations in different eukaryotic lineages. PMID:18076328

  9. Genome sequence of the brown Norway rat yields insights into mammalian evolution

    SciTech Connect

    Gibbs, Richard A.; Weinstock, George M.; Metzker, Michael L.; Muzny, Donna M.; Sodergren, Erica J.; Scherer, Steven; Scott, Graham; Steffen, David; Worley, Kim C.; Burch, Paula E.; Okwuonu, Geoffrey; Hines, Sandra; Lewis, Lora; DeRamo, Christine; Delgado, Oliver; Dugan-Rocha, Shannon; Miner, George; Morgan, Margaret; Hawes, Alicia; Gill, Rachel; Holt, Robert A.; Adams, Mark D.; Amanatides, Peter G.; Baden-Tillson, Holly; Barnstead, Mary; Chin, Soo; Evans, Cheryl A.; Ferriera, Steven; Fosler, Carl; Glodek, Anna; Gu, Zhiping; Jennings, Don; Kraft, Cheryl L.; Nguyen, Trixie; Pfannkoch, Cynthia M.; Sitter, Cynthia; Sutton, Granger G.; Venter, J. Craig; Woodage, Trevor; Smith, Douglas; Lee, Hong-Maei; Gustafson, Erik; Cahill, Patrick; Kana, Arnold; Doucette-Stamm, Lynn; Weinstock, Keith; Fechtel, Kim; Weiss, Robert B.; Dunn, Diane M.; Green, Eric D.; Blakesley, Robert W.; Bouffard, Gerard G.; de Jong, Pieter J.; Osoegawa, Kazutoyo; Zhu, Baoli; Marra, Marco; Schein, Jacqueline; Bosdet, Ian; Fjell, Chris; Jones, Steven; Krzywinski, Martin; Mathewson, Carrie; Siddiqui, Asim; Wye, Natasja; McPherson, John; Zhao, Shaying; Fraser, Claire M.; Shetty, Jyoti; Shatsman, Sofiya; Geer, Keita; Chen, Yixin; Abramzon, Sofyia; Nierman, William C.; Havlak, Paul H.; Chen, Rui; Durbin, K. James; Egan, Amy; Ren, Yanru; Song, Xing-Zhi; Li, Bingshan; Liu, Yue; Qin, Xiang; Cawley, Simon; Cooney, A.J.; D'Souza, Lisa M.; Martin, Kirt; Wu, Jia Qian; Gonzalez-Garay, Manuel L.; Jackson, Andrew R.; Kalafus, Kenneth J.; McLeod, Michael P.; Milosavljevic, Aleksandar; Virk, Davinder; Volkov, Andrei; Wheeler, David A.; Zhang, Zhengdong; Bailey, Jeffrey A.; Eichler, Evan E.; Tuzun, Eray; Birney, Ewan; Mongin, Emmanuel; Ureta-Vidal, Abel; Woodwark, Cara; Zdobnov, Evgeny; Bork, Peer; Suyama, Mikita; Torrents, David; Alexandersson, Marina; Trask, Barbara J.; Young, Janet M.; et al.

    2004-02-02

    The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90 percent of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.

  10. Human Rhinovirus Infections in Rural Thailand: Epidemiological Evidence for Rhinovirus as Both Pathogen and Bystander

    PubMed Central

    Fry, Alicia M.; Lu, Xiaoyan; Olsen, Sonja J.; Chittaganpitch, Malinee; Sawatwong, Pongpun; Chantra, Somrak; Baggett, Henry C.; Erdman, Dean

    2011-01-01

    Background We describe human rhinovirus (HRV) detections in SaKaeo province, Thailand. Methods From September 1, 2003–August 31, 2005, we tested hospitalized patients with acute lower respiratory illness and outpatient controls without fever or respiratory symptoms for HRVs with polymerase chain reaction and molecularly-typed select HRVs. We compared HRV detection among hospitalized patients and controls and estimated enrollment adjusted incidence. Results HRVs were detected in 315 (16%) of 1919 hospitalized patients and 27 (9.6%) of 280 controls. Children had the highest frequency of HRV detections (hospitalized: <1 year: 29%, 1–4 year: 29%, ≥65 years: 9%; controls: <1 year: 24%, 1–4 year: 14%, ≥65 years: 2.8%). Enrollment adjusted hospitalized HRV detection rates were highest among persons aged <1 year (1038/100,000 persons/year), 1–4 years (457), and ≥65 years (71). All three HRV species were identified, HRV-A was the most common species in most age groups including children aged <1 year (61%) and all adult age groups. HRV-C was the most common species in the 1–4 year (51%) and 5–19 year age groups (54%). Compared to controls, hospitalized adults (≥19 years) and children were more likely to have HRV detections (odds ratio [OR]: 4.8, 95% confidence interval [CI]: 1.5, 15.8; OR: 2.0, CI: 1.2, 3.3, respectively) and hospitalized children were more likely to have HRV-A (OR 1.7, CI: 0.8, 3.5) or HVR-C (OR 2.7, CI: 1.2, 5.9) detection. Conclusions HRV rates were high among hospitalized children and the elderly but asymptomatic children also had substantial HRV detection. HRV (all species), and HRV-A and HRV-C detections were epidemiologically-associated with hospitalized illness. Treatment or prevention modalities effective against HRV could reduce hospitalizations due to HRV in Thailand. PMID:21479259