These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Sequencing and Analyses of All Known Human Rhinovirus Genomes  

E-print Network

Sequencing and Analyses of All Known Human Rhinovirus Genomes Reveal Structure and Evolution Ann C Claire M. Fraser-Liggett,4 Stephen B. Liggett3 Infection by human rhinovirus (HRV) is a major cause-based epidemiologic studies and antiviral or vaccine development. H uman rhinovirus (HRV), the disease agent

2

Population Structure and Evolution of Rhinoviruses  

PubMed Central

Rhinoviruses, formerly known as Human rhinoviruses, are the most common cause of air-borne upper respiratory tract infections in humans. Rhinoviruses belong to the family Picornaviridae and are divided into three species namely, Rhinovirus A, -B and -C, which are antigenically diverse. Genetic recombination is found to be one of the important causes for diversification of Rhinovirus species. Although emerging lineages within Rhinoviruses have been reported, their population structure has not been studied yet. The availability of complete genome sequences facilitates study of population structure, genetic diversity and underlying evolutionary forces, such as mutation, recombination and selection pressure. Analysis of complete genomes of Rhinoviruses using a model-based population genetics approach provided a strong evidence for existence of seven genetically distinct subpopulations. As a result of diversification, Rhinovirus A and -C populations are divided into four and two subpopulations, respectively. Genetically, the Rhinovirus B population was found to be homogeneous. Intra-species recombination was observed to be prominent in Rhinovirus A and -C species. Significant evidence of episodic positive selection was obtained for several sites within coding sequences of structural and non-structural proteins. This corroborates well with known phenotypic properties such as antigenicity of structural proteins. Episodic positive selection appears to be responsible for emergence of new lineages especially in Rhinovirus A. In summary, the Rhinovirus population is an ensemble of seven distinct lineages. In case of Rhinovirus A, intra-species recombination and episodic positive selection contribute to its further diversification. In case of Rhinovirus C, intra- and inter-species recombinations are responsible for observed diversity. Population genetics approach was further useful to analyze phylogenetic tree topologies pertaining to recombinant strains, especially when trees are derived using complete genomes. Understanding of population structure serves as a foundation for designing new vaccines and drugs as well as to explain emergence of drug resistance amongst subpopulations. PMID:24586469

Waman, Vaishali P.; Kolekar, Pandurang S.; Kale, Mohan M.; Kulkarni-Kale, Urmila

2014-01-01

3

Epidemiology, classification and evolution of human rhinoviruses   

E-print Network

Human rhinoviruses (HRV) are extremely common human respiratory pathogens, most commonly associated with mild upper respiratory tract infections. The three known species of HRV (HRV-A, -B and –C) are members of the family ...

McIntyre, Chloe Leanne

2013-07-06

4

Classification and evolution of human rhinoviruses.  

PubMed

The historical classification of human rhinoviruses (RV) by serotyping has been replaced by a logical system of comparative sequencing. Given that strains must diverge within their capsid sequenced by a reasonable degree (>12-13 % pairwise base identities) before becoming immunologically distinct, the new nomenclature system makes allowances for the addition of new, future types, without compromising historical designations. Currently, three species, the RV-A, RV-B, and RV-C, are recognized. Of these, the RV-C, discovered in 2006, are the most unusual in terms of capsid structure, receptor use, and association with severe disease in children. PMID:25261302

Palmenberg, Ann C; Gern, James E

2015-01-01

5

Genome Sequences of Rhinovirus A Isolates from Wisconsin Pediatric Respiratory Studies  

PubMed Central

Full-length or nearly full-length RNA genome sequences for 98 rhinovirus (RV) A isolates (from the Enterovirus genus of the Picornaviridae family), representing 43 different genotypes, were resolved as part of ongoing studies to define RV genetic diversity and its potential link to respiratory disease. PMID:24675855

Liggett, Stephen B.; Bochkov, Yury A.; Pappas, Tressa; Lemanske, Robert F.; Gern, James E.; Sengamalay, Naomi; Zhao, Xuechu; Su, Qi; Fraser, Claire M.

2014-01-01

6

Genome Sequences of Rhinovirus C Isolates from Wisconsin Pediatric Respiratory Studies  

PubMed Central

Human rhinovirus (RV) isolates from the RV-C species are recently discovered infectious agents that are closely linked to asthma and wheezing etiologies in infants. Clinical study samples collected at the University of Wisconsin–Madison describe 41 nearly complete genome sequences representing 21 RV-C genotypes. PMID:24675858

Liggett, Stephen B.; Bochkov, Yury A.; Pappas, Tressa; Lemanske, Robert F.; Gern, James E.; Sengamalay, Naomi; Zhao, Xuechu; Su, Qi; Fraser, Claire M.

2014-01-01

7

Complete sequence of the RNA genome of human rhinovirus 16, a clinically useful common cold virus belonging to the ICAM-1 receptor group  

Microsoft Academic Search

We report here the complete nucleotide sequence and predicted polyprotein sequence of HeLa cell-adapted human rhinovirus 16 (HRV16). This virus is more suitable than human rhinovirus 14 (HRV14) for clinical studies, and its growth and physical properties are favorable for biochemical and crystallographic analysis. The complete message-sense RNA genome of HRV16 is composed of 7124 bases, not including the poly(A)

Wai-Ming Lee; Wensheng Wang; Roland R. Rueckert

1995-01-01

8

Rhinovirus Infections  

MedlinePLUS

... rhinoviruses (rhin means “nose”) are associated with the common cold. Rhinoviruses may also cause some sore throats, ear ... and Symptoms The signs and symptoms of the common cold are familiar to everyone. Your child’s cold may ...

9

A common RNA motif in the 3« end of the genomes of astroviruses, avian infectious bronchitis virus and an equine rhinovirus  

Microsoft Academic Search

In the 3« non-coding region of the genomes of infectious bronchitis virus, an avian coronavirus and the picornavirus equine rhinovirus serotype 2, there is a motif with remarkable similarity, both in sequence and folding, to the second RNA stem-loop from the 3« end of the genomes of human astro- viruses. This motif was also found in astroviruses of sheep, pig

Christine Monceyron Jonassen; Bjørn Grinde

1998-01-01

10

The Rhinovirus Subviral A-Particle Exposes 3?-Terminal Sequences of Its Genomic RNA  

PubMed Central

ABSTRACT Enteroviruses, which represent a large genus within the family Picornaviridae, undergo important conformational modifications during infection of the host cell. Once internalized by receptor-mediated endocytosis, receptor binding and/or the acidic endosomal environment triggers the native virion to expand and convert into the subviral (altered) A-particle. The A-particle is lacking the internal capsid protein VP4 and exposes N-terminal amphipathic sequences of VP1, allowing for its direct interaction with a lipid bilayer. The genomic single-stranded (+)RNA then exits through a hole close to a 2-fold axis of icosahedral symmetry and passes through a pore in the endosomal membrane into the cytosol, leaving behind the empty shell. We demonstrate that in vitro acidification of a prototype of the minor receptor group of common cold viruses, human rhinovirus A2 (HRV-A2), also results in egress of the poly(A) tail of the RNA from the A-particle, along with adjacent nucleotides totaling ?700 bases. However, even after hours of incubation at pH 5.2, 5?-proximal sequences remain inside the capsid. In contrast, the entire RNA genome is released within minutes of exposure to the acidic endosomal environment in vivo. This finding suggests that the exposed 3?-poly(A) tail facilitates the positioning of the RNA exit site onto the putative channel in the lipid bilayer, thereby preventing the egress of viral RNA into the endosomal lumen, where it may be degraded. IMPORTANCE For host cell infection, a virus transfers its genome from within the protective capsid into the cytosol; this requires modifications of the viral shell. In common cold viruses, exit of the RNA genome is prepared by the acidic environment in endosomes converting the native virion into the subviral A-particle. We demonstrate that acidification in vitro results in RNA exit starting from the 3?-terminal poly(A). However, the process halts as soon as about 700 bases have left the viral shell. Conversely, inside the cell, RNA egress completes in about 2 min. This suggests the existence of cellular uncoating facilitators. PMID:24672023

Harutyunyan, Shushan; Kowalski, Heinrich

2014-01-01

11

Human Rhinoviruses  

PubMed Central

Human rhinoviruses (HRVs), first discovered in the 1950s, are responsible for more than one-half of cold-like illnesses and cost billions of dollars annually in medical visits and missed days of work. Advances in molecular methods have enhanced our understanding of the genomic structure of HRV and have led to the characterization of three genetically distinct HRV groups, designated groups A, B, and C, within the genus Enterovirus and the family Picornaviridae. HRVs are traditionally associated with upper respiratory tract infection, otitis media, and sinusitis. In recent years, the increasing implementation of PCR assays for respiratory virus detection in clinical laboratories has facilitated the recognition of HRV as a lower respiratory tract pathogen, particularly in patients with asthma, infants, elderly patients, and immunocompromised hosts. Cultured isolates of HRV remain important for studies of viral characteristics and disease pathogenesis. Indeed, whether the clinical manifestations of HRV are related directly to viral pathogenicity or secondary to the host immune response is the subject of ongoing research. There are currently no approved antiviral therapies for HRVs, and treatment remains primarily supportive. This review provides a comprehensive, up-to-date assessment of the basic virology, pathogenesis, clinical epidemiology, and laboratory features of and treatment and prevention strategies for HRVs. PMID:23297263

Lamson, Daryl M.; St. George, Kirsten; Walsh, Thomas J.

2013-01-01

12

Evolution of Genome Architecture  

PubMed Central

Charles Darwin believed that all traits of organisms have been honed to near perfection by natural selection. The empirical basis underlying Darwin’s conclusions consisted of numerous observations made by him and other naturalists on the exquisite adaptations of animals and plants to their natural habitats and on the impressive results of artificial selection. Darwin fully appreciated the importance of heredity but was unaware of the nature and, in fact, the very existence of genomes. A century and a half after the publication of the “Origin”, we have the opportunity to draw conclusions from the comparisons of hundreds of genome sequences from all walks of life. These comparisons suggest that the dominant mode of genome evolution is quite different from that of the phenotypic evolution. The genomes of vertebrates, those purported paragons of biological perfection, turned out to be veritable junkyards of selfish genetic elements where only a small fraction of the genetic material is dedicated to encoding biologically relevant information. In sharp contrast, genomes of microbes and viruses are incomparably more compact, with most of the genetic material assigned to distinct biological functions. However, even in these genomes, the specific genome organization (gene order) is poorly conserved. The results of comparative genomics lead to the conclusion that the genome architecture is not a straightforward result of continuous adaptation but rather is determined by the balance between the selection pressure, that is itself dependent on the effective population size and mutation rate, the level of recombination, and the activity of selfish elements. Although genes and, in many cases, multigene regions of genomes possess elaborate architectures that ensure regulation of expression, these arrangements are evolutionarily volatile and typically change substantially even on short evolutionary scales when gene sequences diverge minimally. Thus, the observed genome archtiectures are, mostly, products of neutral processes or epiphenomena of more general selective processes, such as selection for genome streamlining in successful lineages with large populations. Selection for specific gene arrangements (elements of genome architecture) seems only to modulate the results of these processes. PMID:18929678

Koonin, Eugene V.

2012-01-01

13

Human rhinoviruses.  

PubMed

Human rhinoviruses are the most important causative agents of upper respiratory infections and are also implicated in more severe clinical entities. Although often present, very little is known about human rhinoviruses. Molecular methods have been used in the classification of this large group of viruses into two separate clades. In addition, one known serotype was found to be a member of enterovirus group D. Laboratory diagnosis of human rhinovirus infection is based on reverse transcription polymerase chain reaction methods or the more tedious virus culture but a rapid "bedside" method is unavailable. Anti-rhinoviral therapy has been under extensive study over the past few decades but symptomatic treatment of the common cold is still the only useful approach in clinical use. More data on circulating human rhinovirus strains would facilitate both detection and treatment of these common pathogens. PMID:12758045

Savolainen, Carita; Blomqvist, Soile; Hovi, Tapani

2003-06-01

14

Genome evolution in yeasts.  

PubMed

Identifying the mechanisms of eukaryotic genome evolution by comparative genomics is often complicated by the multiplicity of events that have taken place throughout the history of individual lineages, leaving only distorted and superimposed traces in the genome of each living organism. The hemiascomycete yeasts, with their compact genomes, similar lifestyle and distinct sexual and physiological properties, provide a unique opportunity to explore such mechanisms. We present here the complete, assembled genome sequences of four yeast species, selected to represent a broad evolutionary range within a single eukaryotic phylum, that after analysis proved to be molecularly as diverse as the entire phylum of chordates. A total of approximately 24,200 novel genes were identified, the translation products of which were classified together with Saccharomyces cerevisiae proteins into about 4,700 families, forming the basis for interspecific comparisons. Analysis of chromosome maps and genome redundancies reveal that the different yeast lineages have evolved through a marked interplay between several distinct molecular mechanisms, including tandem gene repeat formation, segmental duplication, a massive genome duplication and extensive gene loss. PMID:15229592

Dujon, Bernard; Sherman, David; Fischer, Gilles; Durrens, Pascal; Casaregola, Serge; Lafontaine, Ingrid; De Montigny, Jacky; Marck, Christian; Neuvéglise, Cécile; Talla, Emmanuel; Goffard, Nicolas; Frangeul, Lionel; Aigle, Michel; Anthouard, Véronique; Babour, Anna; Barbe, Valérie; Barnay, Stéphanie; Blanchin, Sylvie; Beckerich, Jean-Marie; Beyne, Emmanuelle; Bleykasten, Claudine; Boisramé, Anita; Boyer, Jeanne; Cattolico, Laurence; Confanioleri, Fabrice; De Daruvar, Antoine; Despons, Laurence; Fabre, Emmanuelle; Fairhead, Cécile; Ferry-Dumazet, Hélène; Groppi, Alexis; Hantraye, Florence; Hennequin, Christophe; Jauniaux, Nicolas; Joyet, Philippe; Kachouri, Rym; Kerrest, Alix; Koszul, Romain; Lemaire, Marc; Lesur, Isabelle; Ma, Laurence; Muller, Héloïse; Nicaud, Jean-Marc; Nikolski, Macha; Oztas, Sophie; Ozier-Kalogeropoulos, Odile; Pellenz, Stefan; Potier, Serge; Richard, Guy-Franck; Straub, Marie-Laure; Suleau, Audrey; Swennen, Dominique; Tekaia, Fredj; Wésolowski-Louvel, Micheline; Westhof, Eric; Wirth, Bénédicte; Zeniou-Meyer, Maria; Zivanovic, Ivan; Bolotin-Fukuhara, Monique; Thierry, Agnès; Bouchier, Christiane; Caudron, Bernard; Scarpelli, Claude; Gaillardin, Claude; Weissenbach, Jean; Wincker, Patrick; Souciet, Jean-Luc

2004-07-01

15

Genome dynamics during experimental evolution  

PubMed Central

Evolutionary changes in organismal traits may occur gradually or suddenly. Until recently, however, there has been little direct information about how phenotypic changes are related to the rate and nature of underlying changes in genotype. Technological advances enabling whole-genome and whole-population sequencing coupled with experiments that watch evolution in action have brought new precision and insights to studies of mutation rates and genome evolution. Here, we discuss the evolutionary forces and ecological processes that govern genome dynamics in various laboratory systems in the context of relevant population genetic theory, and we relate these findings to evolution in natural populations. PMID:24166031

Barrick, Jeffrey E.; Lenski, Richard E.

2014-01-01

16

Molecular evolution of the VP1, VP2, and VP3 genes in human rhinovirus species C  

PubMed Central

Human rhinovirus species C (HRV-C) was recently discovered, and this virus has been associated with various acute respiratory illnesses (ARI). However, the molecular evolution of the major antigens of this virus, including VP1, VP2, and VP3, is unknown. Thus, we performed complete VP1, VP2, and VP3 gene analyses of 139 clinical HRV-C strains using RT-PCR with newly designed primer sets and next-generation sequencing. We assessed the time-scale evolution and evolutionary rate of these genes using the Bayesian Markov chain Monte Carlo method. In addition, we calculated the pairwise distance and confirmed the positive/negative selection sites in these genes. The phylogenetic trees showed that the HRV-C strains analyzed using these genes could be dated back approximately 400 to 900 years, and these strains exhibited high evolutionary rates (1.35 to 3.74 × 10?3 substitutions/site/year). Many genotypes (>40) were confirmed in the phylogenetic trees. Furthermore, no positively selected site was found in the VP1, VP2, and VP3 protein. Molecular modeling analysis combined with variation analysis suggested that the exterior surfaces of the VP1, VP2 and VP3 proteins are rich in loops and are highly variable. These results suggested that HRV-C may have an old history and unique antigenicity as an agent of various ARI. PMID:25640899

Kuroda, Makoto; Niwa, Shoichi; Sekizuka, Tsuyoshi; Tsukagoshi, Hiroyuki; Yokoyama, Masaru; Ryo, Akihide; Sato, Hironori; Kiyota, Naoko; Noda, Masahiro; Kozawa, Kunihisa; Shirabe, Komei; Kusaka, Takashi; Shimojo, Naoki; Hasegawa, Shunji; Sugai, Kazuko; Obuchi, Masatsugu; Tashiro, Masato; Oishi, Kazunori; Ishii, Haruyuki; Kimura, Hirokazu

2015-01-01

17

Molecular evolution of the VP1, VP2, and VP3 genes in human rhinovirus species C.  

PubMed

Human rhinovirus species C (HRV-C) was recently discovered, and this virus has been associated with various acute respiratory illnesses (ARI). However, the molecular evolution of the major antigens of this virus, including VP1, VP2, and VP3, is unknown. Thus, we performed complete VP1, VP2, and VP3 gene analyses of 139 clinical HRV-C strains using RT-PCR with newly designed primer sets and next-generation sequencing. We assessed the time-scale evolution and evolutionary rate of these genes using the Bayesian Markov chain Monte Carlo method. In addition, we calculated the pairwise distance and confirmed the positive/negative selection sites in these genes. The phylogenetic trees showed that the HRV-C strains analyzed using these genes could be dated back approximately 400 to 900 years, and these strains exhibited high evolutionary rates (1.35 to 3.74 × 10(-3) substitutions/site/year). Many genotypes (>40) were confirmed in the phylogenetic trees. Furthermore, no positively selected site was found in the VP1, VP2, and VP3 protein. Molecular modeling analysis combined with variation analysis suggested that the exterior surfaces of the VP1, VP2 and VP3 proteins are rich in loops and are highly variable. These results suggested that HRV-C may have an old history and unique antigenicity as an agent of various ARI. PMID:25640899

Kuroda, Makoto; Niwa, Shoichi; Sekizuka, Tsuyoshi; Tsukagoshi, Hiroyuki; Yokoyama, Masaru; Ryo, Akihide; Sato, Hironori; Kiyota, Naoko; Noda, Masahiro; Kozawa, Kunihisa; Shirabe, Komei; Kusaka, Takashi; Shimojo, Naoki; Hasegawa, Shunji; Sugai, Kazuko; Obuchi, Masatsugu; Tashiro, Masato; Oishi, Kazunori; Ishii, Haruyuki; Kimura, Hirokazu

2015-01-01

18

VIRAL EVOLUTION Genomic surveillance elucidates  

E-print Network

VIRAL EVOLUTION Genomic surveillance elucidates Ebola virus origin and transmission during the 2014,12,13 § Robert F. Garry,8 § S. Humarr Khan,3 § Pardis C. Sabeti1,2 § In its largest outbreak, Ebola virus disease is spreading through Guinea, Liberia, Sierra Leone, and Nigeria. We sequenced 99 Ebola virus genomes from 78

Napp, Nils

19

Prospects & Overviews Evolution of eukaryotic genome  

E-print Network

#12;#12;Prospects & Overviews Evolution of eukaryotic genome architecture: Insights from the study influence the evolution of genome architecture Sreenivas Chavali1)Ã? , David A. de Lima Morais2) , Julian insights, which challenges the current understanding of eukaryotic genome evolution. Many genomic features

Babu, M. Madan

20

Experimental human rhinovirus and enterovirus interspecies recombination.  

PubMed

Human rhinoviruses (HRVs) and enteroviruses (HEVs), two important human pathogens, are non-enveloped, positive-sense RNA viruses of the genus Enterovirus within the family Picornaviridae. Intraspecies recombination is known as a driving force for enterovirus and, to a lesser extent, rhinovirus evolution. Interspecies recombination is much less frequent among circulating strains, and supporting evidence for such recombination is limited to ancestral events, as shown by recent phylogenetic analyses reporting ancient HRV-A/HRV-C, HEV-A/HEV-C and HEV-A/HEV-D recombination mainly at the 5'-untranslated region (5' UTR)-polyprotein junction. In this study, chimeric genomes were artificially generated using the 5' UTR from two different clinical HRV-C strains (HRV-Ca and HRV-Cc), an HRV-B strain (HRV-B37) and an HEV-A strain (HEV-A71), and the remaining part of the genome from an HRV-A strain (HRV-A16). Whilst the chimeric viruses were easily propagated in cell culture, the wild-type HRV-A16 retained a replication advantage, both individually and in competition experiments. Assessment of protein synthesis ability did not show a correlation between translation and replication efficiencies. These results reflect the interchangeability of the 5' UTR, including its functional RNA structural elements implicated in both genome translation and replication among different enterovirus species. The 5' UTR-polyprotein junction therefore represents a theoretic interspecies recombination breakpoint. This recombination potential is probably restricted by the need for co-infection opportunities and the requirement for the progeny chimera to outcompete the parental genomes' fitness, explaining the rare occurrence of such events in vivo. PMID:21940413

Schibler, Manuel; Gerlach, Daniel; Martinez, Yannick; Belle, Sandra Van; Turin, Lara; Kaiser, Laurent; Tapparel, Caroline

2012-01-01

21

Rhinovirus infections in the upper airway.  

PubMed

The majority of cold and flulike illnesses are caused by human rhinoviruses (HRVs). Improved detection of HRV has shown that HRVs are also associated with more serious illness, such as exacerbation of asthma, wheezing illnesses in children, chronic obstructive pulmonary disease, cardiopulmonary disease, and fatal pneumonia in immune-compromised patients. HRV is a major cause of acute viral respiratory tract infections in hospitalized children and is among the leading causes of childhood mortality worldwide. Detection of the HRV genome by reverse transcriptase-polymerase chain reaction and genomic sequencing has brought to light a new clade, HRV-C, to the already recognized HRV-A and HRV-B clades. The clinical complications related to all rhinovirus infections include acute otitis media, acute sinusitis, and acute bronchitis. The enormous public health implications from those diseases far overshadow those of the common cold. This article provides an overview of the pathogenesis of rhinovirus infection in the upper airways. Most research has been done in young healthy adults with self-limiting experimental and natural rhinovirus infections, and this may set the stage for understanding rhinovirus infections in the ear, sinus, and lower airways. PMID:21364225

Winther, Birgit

2011-03-01

22

Molecular relationships between 21 human rhinovirus serotypes  

Microsoft Academic Search

We have analysed, by PCR using consensus primers followed by sequencing, 12 human rhinoviruses (HRVs) in a genomic region including that corresponding to the immunogenic site NIm-II. Together with published information, 21 sequences are available for comparison. In the region analysed, which encodes 112 amino acids, the majority (18) of the serotypes exhibited at least 70 % amino acid identity

Christine Horsnell; Rafael E. Gama; Pamela J. Hughes; Glyn Stanway

1995-01-01

23

Detection of Human Rhinovirus C Viral Genome in Blood among Children with Severe Respiratory Infections in the Philippines  

PubMed Central

Human rhinovirus (HRV) C was recently identified as the third species of HRV using a molecular technique. Infections caused by previously identified HRVs (A and B) are thought to be limited to the respiratory tract; however, pathogenesis of HRVC is still largely unknown. A total of 816 nasopharyngeal swabs from hospitalized children with severe respiratory infections in the Philippines (May 2008–May 2009) were tested for HRV by reverse transcription polymerase chain reaction (RT-PCR), and 243 samples (29.8%) were positive for HRV. Among these patients, serum samples were also tested to determine whether specific HRV species were associated with viremia. Only 30 serum samples (12.3%) were positive for HRV. However, the HRV positive rates were different among HRV species, 3% (4/135) for HRVA, 0% (0/25) for HRVB, and 31% (26/83) for HRVC, and were the highest on 2 days after the onset of symptoms. These results suggest that HRVC may have a different pathogenicity and can more commonly cause viremia than HRVA and HRVB. Serum positive rates for HRV are affected by age, i.e., higher positive rates for those aged 1 year or more. HRVC that were detected from serum exhibited the same level of sequence diversity as those positive only for nasopharyngeal samples in phylogenetic analysis. However, all HRVA which were detected from serum were clustered in a monophyletic clade based on their 5? non-coding region (NCR) sequences, which is closely related with a certain HRVC genotype (A2) in 5?-NCR. This finding suggests that the 5?NCR region may be associated with viremia. PMID:22087272

Fuji, Naoko; Suzuki, Akira; Lupisan, Socorro; Sombrero, Lydia; Galang, Hazel; Kamigaki, Taro; Tamaki, Raita; Saito, Mariko; Aniceto, Rapunzel; Olveda, Remigio; Oshitani, Hitoshi

2011-01-01

24

Darwinian evolution in the light of genomics  

PubMed Central

Comparative genomics and systems biology offer unprecedented opportunities for testing central tenets of evolutionary biology formulated by Darwin in the Origin of Species in 1859 and expanded in the Modern Synthesis 100 years later. Evolutionary-genomic studies show that natural selection is only one of the forces that shape genome evolution and is not quantitatively dominant, whereas non-adaptive processes are much more prominent than previously suspected. Major contributions of horizontal gene transfer and diverse selfish genetic elements to genome evolution undermine the Tree of Life concept. An adequate depiction of evolution requires the more complex concept of a network or ‘forest’ of life. There is no consistent tendency of evolution towards increased genomic complexity, and when complexity increases, this appears to be a non-adaptive consequence of evolution under weak purifying selection rather than an adaptation. Several universals of genome evolution were discovered including the invariant distributions of evolutionary rates among orthologous genes from diverse genomes and of paralogous gene family sizes, and the negative correlation between gene expression level and sequence evolution rate. Simple, non-adaptive models of evolution explain some of these universals, suggesting that a new synthesis of evolutionary biology might become feasible in a not so remote future. PMID:19213802

Koonin, Eugene V.

2009-01-01

25

The Genomic Palimpsest: Genomics in Evolution and Ecology  

NSDL National Science Digital Library

This peer-reviewed resource from Bioscience journal is about the role of genomics in evolution and ecology. Genomics is the discipline that has grown up around the sequencing and analysis of complete genomes. It has typically emphasized questions that involve the biological function of individual organisms, and has been somewhat isolated from the fields of evolutionary biology and ecology. However, genomic approaches also provide powerful tools for studying populations, interactions among organisms, and evolutionary history. Because of the large number of microbial genomes available, the first widespread use of genomic methods in evolution and ecology was in the study of bacteria and archaea, but similar approaches are being applied to eukaryotes. Genomic approaches have revolutionized the study of in situ microbial populations and facilitated the reconstruction of early events in the evolution of photosynthetic eukaryotes. Fields that have been largely unaffected by genomics will feel its influence in the near future, and greater interaction will benefit all of these historically distinct fields of study.

CHARLES F. DELWICHE (; )

2004-11-01

26

The cold case: are rhinoviruses perfectly adapted pathogens?  

PubMed

Rhinoviruses, which cause common cold, belong to the Picornaviridae family, small non-enveloped viruses (diameter 15-30 nm) containing a single-stranded RNA genome (about 7 kb). Over 100 different rhinoviral serotypes have been identified thus far, establishing rhinoviruses as the most diverse group of Picornaviridae. Based on receptor binding properties, rhinoviruses are divided into two classes: the major group binding to intracellular adhesion molecule-1 and the minor group binding to the very low density lipoprotein receptors. Interactions between virus and the receptor molecules cause a conformational change in the capsid, which is a prerequisite for viral uptake. Rhinoviruses trigger a chemokine response upon infection that may lead to exacerbation of the symptoms of common cold, i.e. asthma and inflammation. The following review aims to summarize the knowledge about rhinoviral infections and discusses therapeutical approaches against this almost perfectly adapted pathogen. PMID:17131060

Dreschers, S; Dumitru, C A; Adams, C; Gulbins, E

2007-01-01

27

Leading Edge Bacterial Genomics and Pathogen Evolution  

E-print Network

utilized to identify genes that are es- sential for bacterial growth or pathogenesis. There are two generalLeading Edge Review Bacterial Genomics and Pathogen Evolution David M. Raskin,1 Rekha Seshadri,2.02.002 The availability of hundreds of bacterial genome sequences has altered the study of bacte- rial pathogenesis

Mekalanos, John

28

Gene Family Evolution across 12 Drosophila Genomes  

Microsoft Academic Search

Comparison of whole genomes has revealed large and frequent changes in the size of gene families. These changes occur because of high rates of both gene gain (via duplication) and loss (via deletion or pseudogenization), as well as the evolution of entirely new genes. Here we use the genomes of 12 fully sequenced Drosophila species to study the gain and

Matthew W Hahn; Mira V Han; Sang-Gook Han

2007-01-01

29

Human rhinoviruses: coming in from the cold  

PubMed Central

Rhinovirus infections cause at least 70% of virus-related wheezing exacerbations and cold and flu-like illnesses. Infections are also associated with otitis media, sinusitis and pneumonia. The annual impact of human rhinovirus (HRV) infections costs billions of healthcare dollars. To date, 100 serotyped HRV or 'classical' strains have been divided between two genetically distinct species based on subgenomic sequences, but many more, apparently novel strains remain un-characterized, circulating in unknown patterns and causing undefined illnesses. Until recently, the genomes of less than half the classical strains had been sequenced. In April 2009, the remaining classical HRV genome sequences were reported. These data will inform therapeutic development and phylogenetic analysis for this subset of HRV strains but should be viewed as one step in a long road leading to comprehensive HRV characterization. PMID:19439028

2009-01-01

30

MOLECULAR ANALYSIS OF BOVINE RHINOVIRUS TYPE 2 SHOWS A CLOSE RELATIONSHIP TO THE APHTHOVIRUSES  

Technology Transfer Automated Retrieval System (TEKTRAN)

Bovine rhinovirus 2 (BRV-2) the causative agent of respiratory disease in cattle is currently an unclassified species tentatively assigned to the genus Rhinovirus in the family Picornaviridae. However, previous analysis of the sequence from partial amplicons in the 3D and P1 regions of the genome su...

31

Evolution of small prokaryotic genomes  

PubMed Central

As revealed by genome sequencing, the biology of prokaryotes with reduced genomes is strikingly diverse. These include free-living prokaryotes with ?800 genes as well as endosymbiotic bacteria with as few as ?140 genes. Comparative genomics is revealing the evolutionary mechanisms that led to these small genomes. In the case of free-living prokaryotes, natural selection directly favored genome reduction, while in the case of endosymbiotic prokaryotes neutral processes played a more prominent role. However, new experimental data suggest that selective processes may be at operation as well for endosymbiotic prokaryotes at least during the first stages of genome reduction. Endosymbiotic prokaryotes have evolved diverse strategies for living with reduced gene sets inside a host-defined medium. These include utilization of host-encoded functions (some of them coded by genes acquired by gene transfer from the endosymbiont and/or other bacteria); metabolic complementation between co-symbionts; and forming consortiums with other bacteria within the host. Recent genome sequencing projects of intracellular mutualistic bacteria showed that previously believed universal evolutionary trends like reduced G+C content and conservation of genome synteny are not always present in highly reduced genomes. Finally, the simplified molecular machinery of some of these organisms with small genomes may be used to aid in the design of artificial minimal cells. Here we review recent genomic discoveries of the biology of prokaryotes endowed with small gene sets and discuss the evolutionary mechanisms that have been proposed to explain their peculiar nature. PMID:25610432

Martínez-Cano, David J.; Reyes-Prieto, Mariana; Martínez-Romero, Esperanza; Partida-Martínez, Laila P.; Latorre, Amparo; Moya, Andrés; Delaye, Luis

2015-01-01

32

BIOL 430 Genome Evolution 2014 -draft syllabus Instructor: Keith Adams  

E-print Network

browsers, genome project sites, gene expression sites and databases, the human and discoveries in genomics and genome evolution to human disease and other applied. Genomics computer projects and write-ups: After the computer labs on web resources

Wood, Spencer

33

The Genomic Landscape of Compensatory Evolution  

PubMed Central

Adaptive evolution is generally assumed to progress through the accumulation of beneficial mutations. However, as deleterious mutations are common in natural populations, they generate a strong selection pressure to mitigate their detrimental effects through compensatory genetic changes. This process can potentially influence directions of adaptive evolution by enabling evolutionary routes that are otherwise inaccessible. Therefore, the extent to which compensatory mutations shape genomic evolution is of central importance. Here, we studied the capacity of the baker's yeast genome to compensate the complete loss of genes during evolution, and explored the long-term consequences of this process. We initiated laboratory evolutionary experiments with over 180 haploid baker's yeast genotypes, all of which initially displayed slow growth owing to the deletion of a single gene. Compensatory evolution following gene loss was rapid and pervasive: 68% of the genotypes reached near wild-type fitness through accumulation of adaptive mutations elsewhere in the genome. As compensatory mutations have associated fitness costs, genotypes with especially low fitnesses were more likely to be subjects of compensatory evolution. Genomic analysis revealed that as compensatory mutations were generally specific to the functional defect incurred, convergent evolution at the molecular level was extremely rare. Moreover, the majority of the gene expression changes due to gene deletion remained unrestored. Accordingly, compensatory evolution promoted genomic divergence of parallel evolving populations. However, these different evolutionary outcomes are not phenotypically equivalent, as they generated diverse growth phenotypes across environments. Taken together, these results indicate that gene loss initiates adaptive genomic changes that rapidly restores fitness, but this process has substantial pleiotropic effects on cellular physiology and evolvability upon environmental change. Our work also implies that gene content variation across species could be partly due to the action of compensatory evolution rather than the passive loss of genes. PMID:25157590

Kalapis, Dorottya; Kovács, Károly; Fekete, Gergely; Farkas, Zoltán; Lázár, Viktória; Hrtyan, Mónika; Kemmeren, Patrick; Groot Koerkamp, Marian J. A.; Rutkai, Edit; Holstege, Frank C. P.; Papp, Balázs; Pál, Csaba

2014-01-01

34

Reverse genetic engineering of the human rhinovirus serotype 16 genome to introduce an antibody-detectable tag.  

PubMed

The ability to accurately detect viral proteins during infection is essential for virology research, and the lack of specific antibodies can make this detection difficult. Reverse genetic engineering of virus genomes to alter the wild-type genome is a powerful technique to introduce a detectable tag onto a viral protein. Here we outline a method to incorporate an influenza hemagglutinin epitope tag onto the 2A protease of HRV16. The method uses site-directed mutagenesis PCR to introduce the sequence for the HA antigen onto either the C or N termini of 2A protease while keeping the relevant internal cleavage sites intact. The new viral product is then cloned into a wild-type HRV16 plasmid and transfected into Ohio Hela cells to produce recombinant virus. PMID:25261314

Walker, Erin J; Jensen, Lora M; Ghildyal, Reena

2015-01-01

35

Human rhinovirus C: a newly discovered human rhinovirus species  

PubMed Central

Although often ignored, human rhinoviruses (HRVs) are the most frequent causes of respiratory tract infections (RTIs). A group of closely related novel rhinoviruses have recently been discovered. Based on their unique phylogenetic position and distinct genomic features, they are classified as a separate species, HRV-C. After their discovery, HRV-C viruses have been detected in patients worldwide, with a reported prevalence of 1.4–30.9% among tested specimens. This suggests that the species contribute to a significant proportion of RTIs that were unrecognized in the past. HRV-C is also the predominant HRV species, often with a higher detection rate than that of the two previously known species, HRV-A and HRV-B. HRV-C infections appear to peak in fall or winter in most temperate or subtropical countries, but may predominate in the rainy season in the tropics. In children, HRV-C is often associated with upper RTIs, with asthma exacerbation and wheezing episodes being common complications. The virus has also been detected in children with bronchitis, bronchiolitis, pneumonia, otitis media, sinusitis and systemic infections complicated by pericarditis. As for adults, HRV-C has been associated with more severe disease such as pneumonia and exacerbation of chronic obstructive pulmonary disease. However, larger clinical studies with asymptomatic controls are required to better define the significance of HRV-C infection in the adult population. On the basis of VP4 sequence analysis, a potential distinct subgroup within HRV-C has also been identified, although more complete genome sequences are needed to better define the genetic diversity of HRV-C. PMID:22460392

Lau, S K P; Yip, C C Y; Woo, P C Y; Yuen, K-Y

2010-01-01

36

Clinical effects of rhinovirus infections.  

PubMed

Rhinovirus is the major cause of common cold and frequently associates with acute wheezing, otitis media, sinusitis, and pneumonia. High prevalence of rhinovirus in hospitalized children and adults has been documented recently. We screened children > or =1 month of age, hospitalized for any infection, for the presence of rhinoviruses and recruited 24 families with > or =2 children for a 3-week follow-up study. Rhinovirus was detected in 46 (28%) of 163 hospitalizations by study children. Most rhinovirus-positive children (85%) had respiratory symptoms. During the follow-up, rhinoviruses were detected in virtually all children and in one-half of adults in families with a rhinovirus-positive index child, but commonly also in families with a rhinovirus-negative index child. Melting temperature and sequence analysis revealed the transmission routes of the viruses and showed that several virus types could circulate in the families simultaneously. Our studies corroborate the major contribution of rhinovirus to hospitalization of children, most often because of wheezing. Young children with respiratory symptoms are major spreaders of rhinovirus in family setting. PMID:18835215

Peltola, Ville; Waris, Matti; Osterback, Riikka; Susi, Petri; Hyypiä, Timo; Ruuskanen, Olli

2008-12-01

37

Genomic disorders: A window into human gene and genome evolution  

PubMed Central

Gene duplications alter the genetic constitution of organisms and can be a driving force of molecular evolution in humans and the great apes. In this context, the study of genomic disorders has uncovered the essential role played by the genomic architecture, especially low copy repeats (LCRs) or segmental duplications (SDs). In fact, regardless of the mechanism, LCRs can mediate or stimulate rearrangements, inciting genomic instability and generating dynamic and unstable regions prone to rapid molecular evolution. In humans, copy-number variation (CNV) has been implicated in common traits such as neuropathy, hypertension, color blindness, infertility, and behavioral traits including autism and schizophrenia, as well as disease susceptibility to HIV, lupus nephritis, and psoriasis among many other clinical phenotypes. The same mechanisms implicated in the origin of genomic disorders may also play a role in the emergence of segmental duplications and the evolution of new genes by means of genomic and gene duplication and triplication, exon shuffling, exon accretion, and fusion/fission events. PMID:20080665

Carvalho, Claudia M. B.; Zhang, Feng; Lupski, James R.

2010-01-01

38

Genome plasticity and systems evolution in Streptomyces  

PubMed Central

Background Streptomycetes are filamentous soil-dwelling bacteria. They are best known as the producers of a great variety of natural products such as antibiotics, antifungals, antiparasitics, and anticancer agents and the decomposers of organic substances for carbon recycling. They are also model organisms for the studies of gene regulatory networks, morphological differentiation, and stress response. The availability of sets of genomes from closely related Streptomyces strains makes it possible to assess the mechanisms underlying genome plasticity and systems adaptation. Results We present the results of a comprehensive analysis of the genomes of five Streptomyces species with distinct phenotypes. These streptomycetes have a pan-genome comprised of 17,362 orthologous families which includes 3,096 components in the core genome, 5,066 components in the dispensable genome, and 9,200 components that are uniquely present in only one species. The core genome makes up about 33%-45% of each genome repertoire. It contains important genes for Streptomyces biology including those involved in gene regulation, secretion, secondary metabolism and morphological differentiation. Abundant duplicate genes have been identified, with 4%-11% of the whole genomes composed of lineage-specific expansions (LSEs), suggesting that frequent gene duplication or lateral gene transfer events play a role in shaping the genome diversification within this genus. Two patterns of expansion, single gene expansion and chromosome block expansion are observed, representing different scales of duplication. Conclusions Our results provide a catalog of genome components and their potential functional roles in gene regulatory networks and metabolic networks. The core genome components reveal the minimum requirement for streptomycetes to sustain a successful lifecycle in the soil environment, reflecting the effects of both genome evolution and environmental stress acting upon the expressed phenotypes. A better understanding of the LSE gene families will, on the other hand, bring a wealth of new insights into the mechanisms underlying strain-specific phenotypes, such as the production of novel antibiotics, pathogenesis, and adaptive response to environmental challenges. PMID:22759432

2012-01-01

39

Evolution of the chloroplast genome.  

PubMed Central

We discuss the suggestion that differences in the nucleotide composition between plastid and nuclear genomes may provide a selective advantage in the transposition of genes from plastid to nucleus. We show that in the adenine, thymine (AT)-rich genome of Borrelia burgdorferi several genes have an AT-content lower than the average for the genome as a whole. However, genes whose plant homologues have moved from plastid to nucleus are no less AT-rich than genes whose plant homologues have remained in the plastid, indicating that both classes of gene are able to support a high AT-content. We describe the anomalous organization of dinoflagellate plastid genes. These are located on small circles of 2-3 kbp, in contrast to the usual plastid genome organization of a single large circle of 100-200 kbp. Most circles contain a single gene. Some circles contain two genes and some contain none. Dinoflagellate plastids have retained far fewer genes than other plastids. We discuss a similarity between the dinoflagellate minicircles and the bacterial integron system. PMID:12594920

Howe, Christopher J; Barbrook, Adrian C; Koumandou, V Lila; Nisbet, R Ellen R; Symington, Hamish A; Wightman, Tom F

2003-01-01

40

Characterisation of a newly identified human rhinovirus, HRV-QPM, discovered in infants with bronchiolitis  

Microsoft Academic Search

BackgroundHuman rhinoviruses (HRVs) are some of the earliest identified and most commonly detected viruses associated with acute respiratory tract infections (ARTIs) and yet the molecular epidemiology and genomic variation of individual serotypes remains undefined.

P. McErlean; L. A. Shackelton; S. B. Lambert; M. D. Nissen; T. P. Sloots; I. M. Mackay

2007-01-01

41

Genomic and systems evolution in Vibrionaceae species  

PubMed Central

Background The steadily increasing number of prokaryotic genomes has accelerated the study of genome evolution; in particular, the availability of sets of genomes from closely related bacteria has facilitated the exploration of the mechanisms underlying genome plasticity. The family Vibrionaceae is found in the Gammaproteobacteria and is abundant in aquatic environments. Taxa from the family Vibrionaceae are diversified in their life styles; some species are free living, others are symbiotic, and others are human pathogens. This diversity makes this family a useful set of model organisms for studying bacterial evolution. This evolution is driven by several forces, among them gene duplication and lateral gene transfer, which are believed to provide raw material for functional redundancy and novelty. The resultant gene copy increase in one genome is then detected as lineage-specific expansion (LSE). Results Here we present the results of a detailed comparison of the genomes of eleven Vibrionaceae strains that have distinct life styles and distinct phenotypes. The core genome shared by all eleven strains is composed of 1,882 genes, which make up about 31%–50% of the genome repertoire. We further investigated the distribution and features of genes that have been specifically expanded in one unique lineage of the eleven strains. Abundant duplicate genes have been identified in the eleven Vibrionaceae strains, with 1–11% of the whole genomes composed lineage specific radiations. These LSEs occurred in two distinct patterns: the first type yields one or more copies of a single gene; we call this a single gene expansion. The second pattern has a high evolutionary impact, as the expansion involves two or more gene copies in a block, with the duplicated block located next to the original block (a contiguous block expansion) or at some distance from the original block (a discontiguous block expansion). We showed that LSEs involve genes that are tied to defense and pathogenesis mechanisms as well as in the fundamental life cycle of Vibrionaceae species. Conclusion Our results provide evidence of genome plasticity and rapid evolution within the family Vibrionaceae. The comparisons point to sources of genomic variation and candidates for lineage-specific adaptations of each Vibrionaceae pathogen or nonpathogen strain. Such lineage specific expansions could reveal components in bacterial systems that, by their enhanced genetic variability, can be tied to responses to environmental challenges, interesting phenotypes, or adaptive pathogenic responses to host challenges. PMID:19594870

Gu, Jianying; Neary, Jennifer; Cai, Hong; Moshfeghian, Audrey; Rodriguez, Stephen A; Lilburn, Timothy G; Wang, Yufeng

2009-01-01

42

Comparative genomics of brain size evolution  

PubMed Central

Which genetic changes took place during mammalian, primate and human evolution to build a larger brain? To answer this question, one has to correlate genetic changes with brain size changes across a phylogeny. Such a comparative genomics approach provides unique information to better understand brain evolution and brain development. However, its statistical power is limited for example due to the limited number of species, the presumably complex genetics of brain size evolution and the large search space of mammalian genomes. Hence, it is crucial to add functional information, for example by limiting the search space to genes and regulatory elements known to play a role in the relevant cell types during brain development. Similarly, it is crucial to experimentally follow up on hypotheses generated by such a comparative approach. Recent progress in understanding the molecular and cellular mechanisms of mammalian brain development, in genome sequencing and in genome editing, promises to make a close integration of evolutionary and experimental methods a fruitful approach to better understand the genetics of mammalian brain size evolution. PMID:24904382

Enard, Wolfgang

2014-01-01

43

Genome duplication, extinction and vertebrate evolution  

Microsoft Academic Search

Vertebrate evolution has been punctuated by three episodes of widespread gene or genome duplication, which have been linked with the origin of vertebrates, gnathostomes and teleosts, respectively. These three events coincide with bursts of character acquisition and increases in phenotypic complexity, and many researchers have suggested a causal relationship between the two. However, this pattern is derived from data for

Philip C. J. Donoghue; Mark A. Purnell

2005-01-01

44

Integrons: natural tools for bacterial genome evolution.  

PubMed

Integrons were first identified as the primary mechanism for antibiotic resistance gene capture and dissemination among Gram-negative bacteria. More recently, their role in genome evolution has been extended with the discovery of larger integron structures, the super-integrons, as genuine components of the genomes of many species throughout the gamma-proteobacterial radiation. The functional platforms of these integrons appear to be sedentary, whereas their gene cassette contents are highly variable. Nevertheless, the gene cassettes for which an activity has been experimentally demonstrated encode proteins related to simple adaptive functions and their recruitment is seen as providing the bacterial host with a selective advantage. The widespread occurrence of the integron system among Gram-negative bacteria is discussed, with special focus on the super-integrons. Some of the adaptive functions encoded by these genes are also reviewed, and implications of integron-mediated genome evolution in the emergence of novel bacterial species are highlighted. PMID:11587934

Rowe-Magnus, D A; Mazel, D

2001-10-01

45

Clinical and molecular features of human rhinovirus C.  

PubMed

A newly discovered group of human rhinoviruses (HRVs) has been classified as the HRV-C species based on distinct genomic features. HRV-Cs circulate worldwide, and are important causes of upper and lower respiratory illnesses. Methods to culture and produce these viruses have recently been developed, and should enable identification of unique features of HRV-C replication and biology. PMID:22285901

Bochkov, Yury A; Gern, James E

2012-06-01

46

Genomic repeats, genome plasticity and the dynamics of Mycoplasma evolution  

PubMed Central

Mycoplasmas evolved by a drastic reduction in genome size, but their genomes contain numerous repeated sequences with important roles in their evolution. We have established a bioinformatic strategy to detect the major recombination hot-spots in the genomes of Mycoplasma pneumoniae, Mycoplasma genitalium, Ureaplasma urealyticum and Mycoplasma pulmonis. This allowed the identification of large numbers of potentially variable regions, as well as a comparison of the relative recombination potentials of different genomic regions. Different trends are perceptible among mycoplasmas, probably due to different functional and structural constraints. The largest potential for illegitimate recombination in M.pulmonis is found at the vsa locus and its comparison in two different strains reveals numerous changes since divergence. On the other hand, the main M.pneumoniae and M.genitalium adhesins rely on large distant repeats and, hence, homologous recombination for variation. However, the relation between the existence of repeats and antigenic variation is not necessarily straightforward, since repeats of P1 adhesin were found to be anti-correlated with epitopes recognized by patient antibodies. These different strategies have important consequences for the structures of genomes, since large distant repeats correlate well with the major chromosomal rearrangements. Probably to avoid such events, mycoplasmas strongly avoid inverse repeats, in comparison to co-oriented repeats. PMID:11972343

Rocha, Eduardo P. C.; Blanchard, Alain

2002-01-01

47

David A. Jans and Reena Ghildyal (eds.), Rhinoviruses: Methods and Protocols, Methods in Molecular Biology, vol. 1221, DOI 10.1007/978-1-4939-1571-2_1, Springer Science+Business Media New York 2015  

E-print Network

David A. Jans and Reena Ghildyal (eds.), Rhinoviruses: Methods and Protocols, Methods in Molecular Chapter 1 Classification and Evolution of Human Rhinoviruses Ann C. Palmenberg and James E. Gern Abstract The historical classification of human rhinoviruses (RV) by serotyping has been replaced by a logical system

48

On some operations suggested by genome evolution  

SciTech Connect

Three operations involved in the genome evolution namely, inversion, transposition and duplication, are considered as operations on strings and languages. We show that, for any pair of these operations, there is a language family which is closed under one of the operations and not closed under the second one; however, under some mild conditions the closure of a language family under one of the operations implies that it also closed with respect to another one. 15 refs.

Dassow, J. [Univ. of Magdeburg (Germany); Mitrana, V. [Univ. of Bucharest (Romania)

1996-12-31

49

Dynamics in genome evolution of Vibrio cholerae.  

PubMed

Vibrio cholerae, the etiological agent of the acute secretary diarrheal disease cholera, is still a major public health concern in developing countries. In former centuries cholera was a permanent threat even to the highly developed populations of Europe, North America, and the northern part of Asia. Extensive studies on the cholera bug over more than a century have made significant advances in our understanding of the disease and ways of treating patients. V. cholerae has more than 200 serogroups, but only few serogroups have caused disease on a worldwide scale. Until the present, the evolutionary relationship of these pandemic causing serogroups was not clear. In the last decades, we have witnessed a shift involving genetically and phenotypically varied pandemic clones of V. cholerae in Asia and Africa. The exponential knowledge on the genome of several representatives V. cholerae strains has been used to identify and analyze the key determinants for rapid evolution of cholera pathogen. Recent comparative genomic studies have identified the presence of various integrative mobile genetic elements (IMGEs) in V. cholerae genome, which can be used as a marker of differentiation of all seventh pandemic clones with very similar core genome. This review attempts to bring together some of the important researches in recent times that have contributed towards understanding the genetics, epidemiology and evolution of toxigenic V. cholerae strains. PMID:24462909

Banerjee, Rachana; Das, Bhabatosh; Balakrish Nair, G; Basak, Surajit

2014-04-01

50

Molecular evolution of genes in avian genomes  

PubMed Central

Background Obtaining a draft genome sequence of the zebra finch (Taeniopygia guttata), the second bird genome to be sequenced, provides the necessary resource for whole-genome comparative analysis of gene sequence evolution in a non-mammalian vertebrate lineage. To analyze basic molecular evolutionary processes during avian evolution, and to contrast these with the situation in mammals, we aligned the protein-coding sequences of 8,384 1:1 orthologs of chicken, zebra finch, a lizard and three mammalian species. Results We found clear differences in the substitution rate at fourfold degenerate sites, being lowest in the ancestral bird lineage, intermediate in the chicken lineage and highest in the zebra finch lineage, possibly reflecting differences in generation time. We identified positively selected and/or rapidly evolving genes in avian lineages and found an over-representation of several functional classes, including anion transporter activity, calcium ion binding, cell adhesion and microtubule cytoskeleton. Conclusions Focusing specifically on genes of neurological interest and genes differentially expressed in the unique vocal control nuclei of the songbird brain, we find a number of positively selected genes, including synaptic receptors. We found no evidence that selection for beneficial alleles is more efficient in regions of high recombination; in fact, there was a weak yet significant negative correlation between ? and recombination rate, which is in the direction predicted by the Hill-Robertson effect if slightly deleterious mutations contribute to protein evolution. These findings set the stage for studies of functional genetics of avian genes. PMID:20573239

2010-01-01

51

Evolution of Genome Size in Brassicaceae  

PubMed Central

• Background and Aims Brassicaceae, with nearly 340 genera and more than 3350 species, anchors the low range of angiosperm genome sizes. The relatively narrow range of DNA content (0·16 pg < 1C < 1·95 pg) was maintained in spite of extensive chromosomal change. The aim of this study was to erect a cytological and molecular phylogenetic framework for a selected subset of the Brassicacae, and use this as a template to examine genome size evolution in Brassicaceae. • Methods DNA contents were determined by flow cytometry and chromosomes were counted for 34 species of the family Brassicaceae and for ten Arabidopsis thaliana ecotypes. The amplified and sequenced ITS region for 23 taxa (plus six other taxa with known ITS sequences) were aligned and used to infer evolutionary relationship by parsimony analysis. • Key Results DNA content in the species studied ranged over 8-fold (1C = 0·16–1·31 pg), and 4·4-fold (1C = 0·16–0·71 pg) excluding allotetraploid Brassica species. The 1C DNA contents of ten Arabidopsis thaliana ecotypes showed little variation, ranging from 0·16 pg to 0·17 pg. • Conclusions The tree roots at an ancestral genome size of approximately 1x = 0·2 pg. Arabidopsis thaliana (1C = 0·16 pg; ?157 Mbp) has the smallest genome size in Brassicaceae studied here and apparently represents an evolutionary decrease in genome size. Two other branches that represent probable evolutionary decreases in genome size terminate in Lepidium virginicum and Brassica rapa. Branches in the phylogenetic tree that represent probable evolutionary increases in genome size terminate in Arabidopsis halleri, A. lyrata, Arabis hirsuta, Capsella rubella, Caulanthus heterophyllus, Crucihimalaya, Lepidium sativum, Sisymbrium and Thlaspi arvense. Branches within one clade containing Brassica were identified that represent two ancient ploidy events (2x to 4x and 4x to 6x) that were predicted from published comparative mapping studies. PMID:15596470

JOHNSTON, J. SPENCER; PEPPER, ALAN E.; HALL, ANNE E.; CHEN, Z. JEFFREY; HODNETT, GEORGE; DRABEK, JANICE; LOPEZ, REBECCA; PRICE, H. JAMES

2005-01-01

52

Evolutionary relationships within the human rhinovirus genus: comparison of serotypes 89, 2, and 14  

SciTech Connect

The complete nucleotide sequence of the genome of human rhinovirus type 89 was determined from the cDNA that had been cloned into Escherichia coli. The genome is 7152 nucleotides long and contains a single large open reading frame of 2164 codons. Translation commences at position 619 and ends 42 nucleotides before the poly(a) tract. The positions of three proteolytic cleavage sites in the polyprotein were determined by N-terminal amino acid sequencing of the capsid proteins; the remainder were predicted from comparisons with other picornaviruses. Extensive similarity between the derived amino acid sequences of human rhinovirus types 89 and 2 was found, whereas the similarity between human rhinovirus types 89 and 14 was considerably less. It is apparent that human rhinoviruses may be more closely related than has been previously thought.

Duechler, M.; Skern, T.; Sommergruber, W.; Neubauer, C.; Gruendler, P.; Fogy, I.; Blaas, D.; Kuechler, E.

1987-05-01

53

; Evolution of genes and genomes on the Drosophila phylogeny  

E-print Network

ARTICLES ; Evolution of genes and genomes on the Drosophila phylogeny Drosophila 12 Genomes-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental

Kellis, Manolis

54

Evolution of genes and genomes on the Drosophila phylogeny  

E-print Network

ARTICLES Evolution of genes and genomes on the Drosophila phylogeny Drosophila 12 Genomes-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental

Begun, David

55

Genome Size Evolution in Pufferfish: A Comparative Analysis of Diodontid  

E-print Network

Genome Size Evolution in Pufferfish: A Comparative Analysis of Diodontid and Tetraodontid Pufferfish Genomes Daniel E. Neafsey1,3 and Stephen R. Palumbi2 1 Department of Organismic and Evolutionary the smallest vertebrate genomes yet measured. They have a haploid genome size of 400 million bp (Mb), which

Palumbi, Stephen

56

Developmental Constraints on Vertebrate Genome Evolution  

PubMed Central

Constraints in embryonic development are thought to bias the direction of evolution by making some changes less likely, and others more likely, depending on their consequences on ontogeny. Here, we characterize the constraints acting on genome evolution in vertebrates. We used gene expression data from two vertebrates: zebrafish, using a microarray experiment spanning 14 stages of development, and mouse, using EST counts for 26 stages of development. We show that, in both species, genes expressed early in development (1) have a more dramatic effect of knock-out or mutation and (2) are more likely to revert to single copy after whole genome duplication, relative to genes expressed late. This supports high constraints on early stages of vertebrate development, making them less open to innovations (gene gain or gene loss). Results are robust to different sources of data—gene expression from microarrays, ESTs, or in situ hybridizations; and mutants from directed KO, transgenic insertions, point mutations, or morpholinos. We determine the pattern of these constraints, which differs from the model used to describe vertebrate morphological conservation (“hourglass” model). While morphological constraints reach a maximum at mid-development (the “phylotypic” stage), genomic constraints appear to decrease in a monotonous manner over developmental time. PMID:19096706

Roux, Julien; Robinson-Rechavi, Marc

2008-01-01

57

Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis  

SciTech Connect

Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.

Lykidis, Athanasios

2006-12-01

58

Localizing Recent Adaptive Evolution in the Human Genome  

E-print Network

Localizing Recent Adaptive Evolution in the Human Genome Scott H. Williamson1* , Melissa J. Hubisz1, Bustamante CD, et al. (2007) Localizing recent adaptive evolution in the human genome. PLoS Genet 3(6): e90 interest is the effect of very recent adaptive evolution in humans. If one can localize adaptive events

Nielsen, Rasmus

59

Equine rhinovirus serotypes 1 and 2: relationship to each other and to aphthoviruses and cardioviruses  

Microsoft Academic Search

Equine rhinoviruses (ERVs) are picornaviruses which cause a mild respiratory infection in horses. The illness resembles the common cold brought about by rhinoviruses in humans; however, the presence of a viraemia during ERV- 1 infection, the occurrence of persistent infections and the physical properties are all more reminiscent of foot-and-mouth disease virus (FMDV). cDNA cloning and sequencing of the genomes

G. Wutz; H. Auer; N. Nowotny; B. Grosse; T. Skern; E. Kuechler

1996-01-01

60

Mitochondrial genome evolution in fire ants (Hymenoptera: Formicidae)  

Technology Transfer Automated Retrieval System (TEKTRAN)

Background: Complete mitochondrial genome sequences have become important tools for the study of genome architecture, phylogeny, and molecular evolution. Despite the rapid increase in available mitogenomes, the taxonomic sampling often poorly reflects phylogenetic diversity and is often also biased ...

61

Examination of prokaryotic multipartite genome evolution through experimental genome reduction.  

PubMed

Many bacteria carry two or more chromosome-like replicons. This occurs in pathogens such as Vibrio cholerea and Brucella abortis as well as in many N2-fixing plant symbionts including all isolates of the alfalfa root-nodule bacteria Sinorhizobium meliloti. Understanding the evolution and role of this multipartite genome organization will provide significant insight into these important organisms; yet this knowledge remains incomplete, in part, because technical challenges of large-scale genome manipulations have limited experimental analyses. The distinct evolutionary histories and characteristics of the three replicons that constitute the S. meliloti genome (the chromosome (3.65 Mb), pSymA megaplasmid (1.35 Mb), and pSymB chromid (1.68 Mb)) makes this a good model to examine this topic. We transferred essential genes from pSymB into the chromosome, and constructed strains that lack pSymB as well as both pSymA and pSymB. This is the largest reduction (45.4%, 3.04 megabases, 2866 genes) of a prokaryotic genome to date and the first removal of an essential chromid. Strikingly, strains lacking pSymA and pSymB (?pSymAB) lost the ability to utilize 55 of 74 carbon sources and various sources of nitrogen, phosphorous and sulfur, yet the ?pSymAB strain grew well in minimal salts media and in sterile soil. This suggests that the core chromosome is sufficient for growth in a bulk soil environment and that the pSymA and pSymB replicons carry genes with more specialized functions such as growth in the rhizosphere and interaction with the plant. These experimental data support a generalized evolutionary model, in which non-chromosomal replicons primarily carry genes with more specialized functions. These large secondary replicons increase the organism's niche range, which offsets their metabolic burden on the cell (e.g. pSymA). Subsequent co-evolution with the chromosome then leads to the formation of a chromid through the acquisition of functions core to all niches (e.g. pSymB). PMID:25340565

diCenzo, George C; MacLean, Allyson M; Milunovic, Branislava; Golding, G Brian; Finan, Turlough M

2014-10-01

62

Comparative Genomics and Evolution of Molybdenum Utilization  

PubMed Central

The trace element molybdenum (Mo) is the catalytic component of important enzymes involved in global nitrogen, sulfur, and carbon metabolism in both prokaryotes and eukaryotes. With the exception of nitrogenase, Mo is complexed by a pterin compound thus forming the biologically active molybdenum cofactor (Moco) at the catalytic sites of molybdoenzymes. The physiological roles and biochemical functions of many molybdoenzymes have been characterized. However, our understanding of the occurrence and evolution of Mo utilization is limited. This article focuses on recent advances in comparative genomics of Mo utilization in the three domains of life. We begin with a brief introduction of Mo transport systems, the Moco biosynthesis pathway, the role of posttranslational modifications, and enzymes that utilize Mo. Then, we proceed to recent computational and comparative genomics studies of Mo utilization, including a discussion on novel Moco-binding proteins that contain the C-terminal domain of the Moco sulfurase and that are suggested to represent a new family of molybdoenzymes. As most molybdoenzymes need additional cofactors for their catalytic activity, we also discuss interactions between Mo metabolism and other trace elements and finish with an analysis of factors that may influence evolution of Mo utilization. PMID:22451726

Zhang, Yan; Rump, Steffen; Gladyshev, Vadim N.

2011-01-01

63

Community Sees Increase in Children with Rhinovirus  

E-print Network

Community Sees Increase in Children with Rhinovirus FOR IMMEDIATE RELEASE September 3, 2014 infections. While asthma flare-ups typically increase during the fall, local hospitals are seeing a greater-ups to the Rhinovirus. Since Rhinovirus is not a reportable disease, no statistics are available. Physicians say early

Alford, Simon

64

Implications of the Plastid Genome Sequence of Typha (Typhaceae, Poales) for Understanding Genome Evolution in Poaceae  

Microsoft Academic Search

Plastid genomes of the grasses (Poaceae) are unusual in their organization and rates of sequence evolution. There has been\\u000a a recent surge in the availability of grass plastid genome sequences, but a comprehensive comparative analysis of genome evolution\\u000a has not been performed that includes any related families in the Poales. We report on the plastid genome of Typha latifolia, the

Mary M. GuisingerTimothy; Timothy W. Chumley; Jennifer V. Kuehl; Jeffrey L. Boore; Robert K. Jansen

2010-01-01

65

Mitochondrial genome evolution in fire ants (Hymenoptera: Formicidae)  

Microsoft Academic Search

BACKGROUND: Complete mitochondrial genome sequences have become important tools for the study of genome architecture, phylogeny, and molecular evolution. Despite the rapid increase in available mitogenomes, the taxonomic sampling often poorly reflects phylogenetic diversity and is often also biased to represent deeper (family-level) evolutionary relationships. RESULTS: We present the first fully sequenced ant (Hymenoptera: Formicidae) mitochondrial genomes. We sampled four

Dietrich Gotzek; Jessica Clarke; DeWayne Shoemaker

2010-01-01

66

Evolution of mammalian genome organization inferred from comparative gene mapping  

Microsoft Academic Search

Comparative genome analyses, including chromosome painting in over 40 diverse mammalian species, ordered gene maps from several representatives of different mammalian and vertebrate orders, and large-scale sequencing of the human and mouse genomes are beginning to provide insight into the rates and patterns of chromosomal evolution on a whole-genome scale, as well as into the forces that have sculpted the

William J Murphy; Roscoe Stanyon; Stephen J O'Brien

2001-01-01

67

Molecular and Phylogenetic Analyses of Bovine Rhinovirus Type 2 Shows it is Closely Related to Foot-and-Mouth Disease Virus  

Technology Transfer Automated Retrieval System (TEKTRAN)

Bovine rhinovirus 2 (BRV2), a causative agent of respiratory disease in cattle, is currently an unclassified species tentatively assigned to the genus rhinovirus in the family Picornaviridae. A nearly full-length cDNA of the BRV2 genome was cloned and the nucleotide sequence from the poly(C) to the ...

68

Biophysical Studies on Rhinovirus and Poliovirus  

PubMed Central

An explanation has been sought for the high buoyant density of rhinoviruses, which are classified as acid-sensitive picornaviruses. Heat degradation of purified preparations of rhinovirus type 1B and poliovirus type LSc leads to the extrusion of ribonucleoprotein strands. Contour lengths of these strands were measured by electron microscopy, and the molecular weights of rhinovirus and poliovirus ribonucleic acid (RNA) were determined. Values of 2 × 106 and 4 × 106 daltons were obtained for the molecular weight of poliovirus and rhinovirus RNA, respectively. This additional nucleic acid in the rhinovirion probably accounts for the increased density and may be related to the acid sensitivity of the rhinovirus. Images PMID:4316016

McGregor, Sandy; Mayor, Heather D.

1968-01-01

69

An algebraic view of bacterial genome evolution.  

PubMed

Rearrangements of bacterial chromosomes can be studied mathematically at several levels, most prominently at a local, or sequence level, as well as at a topological level. The biological changes involved locally are inversions, deletions, and transpositions, while topologically they are knotting and catenation. These two modelling approaches share some surprising algebraic features related to braid groups and Coxeter groups. The structural approach that is at the core of algebra has long found applications in sciences such as physics and analytical chemistry, but only in a small number of ways so far in biology. And yet there are examples where an algebraic viewpoint may capture a deeper structure behind biological phenomena. This article discusses a family of biological problems in bacterial genome evolution for which this may be the case, and raises the prospect that the tools developed by algebraists over the last century might provide insight to this area of evolutionary biology. PMID:24375264

Francis, Andrew R

2014-12-01

70

Apprehending multicellularity: regulatory networks, genomics and evolution  

PubMed Central

The genomic revolution has provided the first glimpses of the architecture of regulatory networks. Combined with evolutionary information, the “network view” of life processes leads to remarkable insights into how biological systems have been shaped by various forces. This understanding is critical because biological systems, including regulatory networks, are not products of engineering but of historical contingencies. In this light, we attempt a synthetic overview of the natural history of regulatory networks operating in the development and differentiation of multicellular organisms. We first introduce regulatory networks and their organizational principles as can be deduced using ideas from the graph theory. We then discuss findings from comparative genomics to illustrate the effects of lineage-specific expansions, gene-loss, and non-protein-coding DNA on the architecture of networks. We consider the interaction between expansions of transcription factors, and cis regulatory and more general chromatin state stabilizing elements in the emergence of morphological complexity. Finally, we consider a case study of the Notch sub-network, which is present throughout Metazoa, to examine how such a regulatory system has been pieced together in evolution from new innovations and pre-existing components that were originally functionally distinct. PMID:19530132

Aravind, L.; Anantharaman, Vivek; Venancio, Thiago M.

2009-01-01

71

Evolutionary Relationships within the Human Rhinovirus Genus: Comparison of Serotypes 89, 2, and 14  

Microsoft Academic Search

The complete nucleotide sequence of the genome of human rhinovirus type 89 was determined from the cDNA that had been cloned into Escherichia coli. The genome is 7152 nucleotides long and contains a single large open reading frame of 2164 codons. Translation commences at position 619 and ends 42 nucleotides before the poly(A) tract. The positions of three proteolytic cleavage

Marcus Duechler; Tim Skern; Wolfgang Sommergruber; Christoph Neubauer; Peter Gruendler; Ingrid Fogy; Dieter Blaas; Ernst Kuechler

1987-01-01

72

Pathogenesis of Rhinovirus Infection  

PubMed Central

Summary Since its discovery in 1956, rhinovirus (RV) has been recognized as the most important virus producing the common cold syndrome. Despite its ubiquity, little is known concerning the pathogenesis of RV infections, and some of the research in this area has led to contradictions regarding the molecular and cellular mechanisms of RV-induced illness. In this article, we discuss the pathogenesis of this virus as it relates to RV-induced illness in the upper and lower airway, an issue of considerable interest in view of the minimal cytopathology associated with RV infection. We endeavor to explain why many infected individuals exhibit minimal symptoms or remain asymptomatic, while others, especially those with asthma, may have severe, even life-threatening, complications (sequelae). Finally, we discuss the immune responses to RV in the normal and asthmatic host focusing on RV infection and epithelial barrier integrity and maintenance as well as the impact of the innate and adaptive immune responses to RV on epithelial function. PMID:22542099

Kennedy, Joshua L; Turner, Ronald B.; Braciale, Thomas; Heymann, Peter W.; Borish, Larry

2012-01-01

73

Co-evolution between transposable elements and their hosts: a major factor in genome size evolution?  

Microsoft Academic Search

Most models of genome size evolution emphasize changes in relative rates of and\\/or the efficacy of selection on insertions\\u000a and deletions. However, transposable elements (TEs) are a major contributor to genome size evolution, and since they experience\\u000a their own selective pressures for expansion, genome size changes may in part be driven by the dynamics of co-evolution between\\u000a TEs and their

J. Arvid Ågren; Stephen I. Wright

74

Ecological and Temporal Constraints in the Evolution of Bacterial Genomes  

PubMed Central

Studies on the experimental evolution of microorganisms, on their in vivo evolution (mainly in the case of bacteria producing chronic infections), as well as the availability of multiple full genomic sequences, are placing bacteria in the playground of evolutionary studies. In the present article we review the differential contribution to the evolution of bacterial genomes that processes such as gene modification, gene acquisition and gene loss may have when bacteria colonize different habitats that present characteristic ecological features. In particular, we review how the different processes contribute to evolution in microbial communities, in free-living bacteria or in bacteria living in isolation. In addition, we discuss the temporal constraints in the evolution of bacterial genomes, considering bacterial evolution from the perspective of processes of short-sighted evolution and punctual acquisition of evolutionary novelties followed by long stasis periods. PMID:24710293

Boto, Luis; Martínez, Jose Luis

2011-01-01

75

Genome reduction as the dominant mode of evolution  

PubMed Central

A common belief is that evolution generally proceeds towards greater complexity at both the organismal and the genomic level, numerous examples of reductive evolution of parasites and symbionts notwithstanding. However, recent evolutionary reconstructions challenge this notion. Two notable examples are the reconstruction of the complex archaeal ancestor and the intron-rich ancestor of eukaryotes. In both cases, evolution in most of the lineages was apparently dominated by extensive loss of genes and introns, respectively. These and many other cases of reductive evolution are consistent with a general model composed of two distinct evolutionary phases: the short, explosive, innovation phase that leads to an abrupt increase in genome complexity, followed by a much longer reductive phase, which encompasses either a neutral ratchet of genetic material loss or adaptive genome streamlining. Quantitatively, the evolution of genomes appears to be dominated by reduction and simplification, punctuated by episodes of complexification. PMID:23801028

Wolf, Yuri I; Koonin, Eugene V

2013-01-01

76

Evolution of Coding Microsatellites in Primate Genomes  

PubMed Central

Microsatellites (SSRs) are highly susceptible to expansions and contractions. When located in a coding sequence, the insertion or the deletion of a single unit for a mono-, di-, tetra-, or penta(nucleotide)-SSR creates a frameshift. As a consequence, one would expect to find only very few of these SSRs in coding sequences because of their strong deleterious potential. Unexpectedly, genomes contain many coding SSRs of all types. Here, we report on a study of their evolution in a phylogenetic context using the genomes of four primates: human, chimpanzee, orangutan, and macaque. In a set of 5,015 orthologous genes unambiguously aligned among the four species, we show that, except for tri- and hexa-SSRs, for which insertions and deletions are frequently observed, SSRs in coding regions evolve mainly by substitutions. We show that the rate of substitution in all types of coding SSRs is typically two times higher than in the rest of coding sequences. Additionally, we observe that although numerous coding SSRs are created and lost by substitutions in the lineages, their numbers remain constant. This last observation suggests that the coding SSRs have reached equilibrium. We hypothesize that this equilibrium involves a combination of mutation, drift, and selection. We thus estimated the fitness cost of mono-SSRs and show that it increases with the number of units. We finally show that the cost of coding mono-SSRs greatly varies from function to function, suggesting that the strength of the selection that acts against them can be correlated to gene functions. PMID:23315383

Loire, Etienne; Higuet, Dominique; Netter, Pierre; Achaz, Guillaume

2013-01-01

77

Complete Chloroplast Genome of Sedum sarmentosum and Chloroplast Genome Evolution in Saxifragales  

PubMed Central

Comparative chloroplast genome analyses are mostly carried out at lower taxonomic levels, such as the family and genus levels. At higher taxonomic levels, chloroplast genomes are generally used to reconstruct phylogenies. However, little attention has been paid to chloroplast genome evolution within orders. Here, we present the chloroplast genome of Sedum sarmentosum and take advantage of several available (or elucidated) chloroplast genomes to examine the evolution of chloroplast genomes in Saxifragales. The chloroplast genome of S. sarmentosum is 150,448 bp long and includes 82,212 bp of a large single-copy (LSC) region, 16.670 bp of a small single-copy (SSC) region, and a pair of 25,783 bp sequences of inverted repeats (IRs).The genome contains 131 unique genes, 18 of which are duplicated within the IRs. Based on a comparative analysis of chloroplast genomes from four representative Saxifragales families, we observed two gene losses and two pseudogenes in Paeonia obovata, and the loss of an intron was detected in the rps16 gene of Penthorum chinense. Comparisons among the 72 common protein-coding genes confirmed that the chloroplast genomes of S. sarmentosum and Paeonia obovata exhibit accelerated sequence evolution. Furthermore, a strong correlation was observed between the rates of genome evolution and genome size. The detected genome size variations are predominantly caused by the length of intergenic spacers, rather than losses of genes and introns, gene pseudogenization or IR expansion or contraction. The genome sizes of these species are negatively correlated with nucleotide substitution rates. Species with shorter duration of the life cycle tend to exhibit shorter chloroplast genomes than those with longer life cycles. PMID:24205047

Dong, Wenpan; Xu, Chao; Cheng, Tao; Zhou, Shiliang

2013-01-01

78

The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes.  

PubMed

Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus. PMID:24852848

Liu, Shengyi; Liu, Yumei; Yang, Xinhua; Tong, Chaobo; Edwards, David; Parkin, Isobel A P; Zhao, Meixia; Ma, Jianxin; Yu, Jingyin; Huang, Shunmou; Wang, Xiyin; Wang, Junyi; Lu, Kun; Fang, Zhiyuan; Bancroft, Ian; Yang, Tae-Jin; Hu, Qiong; Wang, Xinfa; Yue, Zhen; Li, Haojie; Yang, Linfeng; Wu, Jian; Zhou, Qing; Wang, Wanxin; King, Graham J; Pires, J Chris; Lu, Changxin; Wu, Zhangyan; Sampath, Perumal; Wang, Zhuo; Guo, Hui; Pan, Shengkai; Yang, Limei; Min, Jiumeng; Zhang, Dong; Jin, Dianchuan; Li, Wanshun; Belcram, Harry; Tu, Jinxing; Guan, Mei; Qi, Cunkou; Du, Dezhi; Li, Jiana; Jiang, Liangcai; Batley, Jacqueline; Sharpe, Andrew G; Park, Beom-Seok; Ruperao, Pradeep; Cheng, Feng; Waminal, Nomar Espinosa; Huang, Yin; Dong, Caihua; Wang, Li; Li, Jingping; Hu, Zhiyong; Zhuang, Mu; Huang, Yi; Huang, Junyan; Shi, Jiaqin; Mei, Desheng; Liu, Jing; Lee, Tae-Ho; Wang, Jinpeng; Jin, Huizhe; Li, Zaiyun; Li, Xun; Zhang, Jiefu; Xiao, Lu; Zhou, Yongming; Liu, Zhongsong; Liu, Xuequn; Qin, Rui; Tang, Xu; Liu, Wenbin; Wang, Yupeng; Zhang, Yangyong; Lee, Jonghoon; Kim, Hyun Hee; Denoeud, France; Xu, Xun; Liang, Xinming; Hua, Wei; Wang, Xiaowu; Wang, Jun; Chalhoub, Boulos; Paterson, Andrew H

2014-01-01

79

The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes  

PubMed Central

Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus. PMID:24852848

Liu, Shengyi; Liu, Yumei; Yang, Xinhua; Tong, Chaobo; Edwards, David; Parkin, Isobel A. P.; Zhao, Meixia; Ma, Jianxin; Yu, Jingyin; Huang, Shunmou; Wang, Xiyin; Wang, Junyi; Lu, Kun; Fang, Zhiyuan; Bancroft, Ian; Yang, Tae-Jin; Hu, Qiong; Wang, Xinfa; Yue, Zhen; Li, Haojie; Yang, Linfeng; Wu, Jian; Zhou, Qing; Wang, Wanxin; King, Graham J; Pires, J. Chris; Lu, Changxin; Wu, Zhangyan; Sampath, Perumal; Wang, Zhuo; Guo, Hui; Pan, Shengkai; Yang, Limei; Min, Jiumeng; Zhang, Dong; Jin, Dianchuan; Li, Wanshun; Belcram, Harry; Tu, Jinxing; Guan, Mei; Qi, Cunkou; Du, Dezhi; Li, Jiana; Jiang, Liangcai; Batley, Jacqueline; Sharpe, Andrew G; Park, Beom-Seok; Ruperao, Pradeep; Cheng, Feng; Waminal, Nomar Espinosa; Huang, Yin; Dong, Caihua; Wang, Li; Li, Jingping; Hu, Zhiyong; Zhuang, Mu; Huang, Yi; Huang, Junyan; Shi, Jiaqin; Mei, Desheng; Liu, Jing; Lee, Tae-Ho; Wang, Jinpeng; Jin, Huizhe; Li, Zaiyun; Li, Xun; Zhang, Jiefu; Xiao, Lu; Zhou, Yongming; Liu, Zhongsong; Liu, Xuequn; Qin, Rui; Tang, Xu; Liu, Wenbin; Wang, Yupeng; Zhang, Yangyong; Lee, Jonghoon; Kim, Hyun Hee; Denoeud, France; Xu, Xun; Liang, Xinming; Hua, Wei; Wang, Xiaowu; Wang, Jun; Chalhoub, Boulos; Paterson, Andrew H

2014-01-01

80

Evolution, language and analogy in functional genomics  

NASA Technical Reports Server (NTRS)

Almost a century ago, Wittgenstein pointed out that theory in science is intricately connected to language. This connection is not a frequent topic in the genomics literature. But a case can be made that functional genomics is today hindered by the paradoxes that Wittgenstein identified. If this is true, until these paradoxes are recognized and addressed, functional genomics will continue to be limited in its ability to extrapolate information from genomic sequences.

Benner, S. A.; Gaucher, E. A.

2001-01-01

81

The Nucleotide Sequence of Human Rhinovirus 1B: Molecular Relationships within the Rhinovirus Genus  

Microsoft Academic Search

SUMMARY We have determined the complete nucleotide sequence of human rhinovirus 1B and made comparisons with other rhinoviruses. Extensive homology was found with serotypes 2 and 89 but the similarity to serotype 14 was considerably less. Rhinovirus- specific characteristics have been noted, in particular the length of the 5' non-coding region and the pattern of codon usage, and these may

PAMELA J. HUGHES; CHRISTINE NORTH; CHRISTOPHER H. JELLIS; PHILIP D. MINOR; GLYN STANWAY

1988-01-01

82

Retroelements and their impact on genome evolution and functioning.  

PubMed

Retroelements comprise a considerable fraction of eukaryotic genomes. Since their initial discovery by Barbara McClintock in maize DNA, retroelements have been found in genomes of almost all organisms. First considered as a "junk DNA" or genomic parasites, they were shown to influence genome functioning and to promote genetic innovations. For this reason, they were suggested as an important creative force in the genome evolution and adaptation of an organism to altered environmental conditions. In this review, we summarize the up-to-date knowledge of different ways of retroelement involvement in structural and functional evolution of genes and genomes, as well as the mechanisms generated by cells to control their retrotransposition. PMID:19649766

Gogvadze, Elena; Buzdin, Anton

2009-12-01

83

The amphioxus genome and the evolution of the chordate karyotype  

SciTech Connect

Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage with a fossil record dating back to the Cambrian. We describe the structure and gene content of the highly polymorphic {approx}520 million base pair genome of the Florida lancelet Branchiostoma floridae, and analyze it in the context of chordate evolution. Whole genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets, and vertebrates), and allow reconstruction of not only the gene complement of the last common chordate ancestor, but also a partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.

Putnam, Nicholas H.; Butts, Thomas; Ferrier, David E.K.; Furlong, Rebecca F.; Hellsten, Uffe; Kawashima, Takeshi; Robinson-Rechavi, Marc; Shoguchi, Eiichi; Terry, Astrid; Yu, Jr-Kai; Benito-Gutierrez, Elia; Dubchak, Inna; Garcia-Fernandez, Jordi; Gibson-Brown, Jeremy J.; Grigoriev, Igor V.; Horton, Amy C.; de Jong, Pieter J.; Jurka, Jerzy; Kapitonov, Vladimir; Kohara, Yuji; Kuroki, Yoko; Lindquist, Erika; Lucas, Susan; Osoegawa, Kazutoyo; Pennacchio, Len A.; Salamov, Asaf A.; Satou, Yutaka; Sauka-Spengler, Tatjana; Schmutz [, Jeremy; Shin-I, Tadasu; Toyoda, Atsushi; Bronner-Fraser, Marianne; Fujiyama, Asao; Holland, Linda Z.; Holland, Peter W. H.; Satoh, Nori; Rokhsar, Daniel S.

2008-04-01

84

Rapid Genome Evolution Revealed by Comparative Sequence Analysis of Orthologous Regions from Four Triticeae Genomes  

PubMed Central

Bread wheat (Triticum aestivum) is an allohexaploid species, consisting of three subgenomes (A, B, and D). To study the molecular evolution of these closely related genomes, we compared the sequence of a 307-kb physical contig covering the high molecular weight (HMW)-glutenin locus from the A genome of durum wheat (Triticum turgidum, AABB) with the orthologous regions from the B genome of the same wheat and the D genome of the diploid wheat Aegilops tauschii (Anderson et al., 2003; Kong et al., 2004). Although gene colinearity appears to be retained, four out of six genes including the two paralogous HMW-glutenin genes are disrupted in the orthologous region of the A genome. Mechanisms involved in gene disruption in the A genome include retroelement insertions, sequence deletions, and mutations causing in-frame stop codons in the coding sequences. Comparative sequence analysis also revealed that sequences in the colinear intergenic regions of these different genomes were generally not conserved. The rapid genome evolution in these regions is attributable mainly to the large number of retrotransposon insertions that occurred after the divergence of the three wheat genomes. Our comparative studies indicate that the B genome diverged prior to the separation of the A and D genomes. Furthermore, sequence comparison of two distinct types of allelic variations at the HMW-glutenin loci in the A genomes of different hexaploid wheat cultivars with the A genome locus of durum wheat indicates that hexaploid wheat may have more than one tetraploid ancestor. PMID:15122014

Gu, Yong Qiang; Coleman-Derr, Devin; Kong, Xiuying; Anderson, Olin D.

2004-01-01

85

Antigenic groupings of 90 rhinovirus serotypes.  

PubMed Central

We have completed production in rabbits of potent antisera to the 90 classified rhinovirus serotypes by using methods previously described (M. K. Cooney and G. E. Kenny, Proc. Soc. Exp. Biol. Med. 133:645-650, 1970). Systematic testing by neutralization tests has revealed significant numbers of cross-relationships among rhinovirus types, some of which have already been reported. Herein, our observations are compared with cross-reactions reported in National Institutes of Health reference guinea pig antisera. Also, original rhinovirus isolates, representing serotypes known to be antigenically related to other rhinoviruses, were tested against rabbit antisera to the related serotypes. These tests revealed extensive antigenic variation among isolates identified as rhinovirus 12:78 or 36:58, which are reciprocally related pairs, 41, reciprocally related to 13, and 67, which is related to both 9 and 32. If the rhinovirus serotypes were grouped according to antigenic relationships, 50 types could be included in 16 groups. PMID:6288568

Cooney, M K; Fox, J P; Kenny, G E

1982-01-01

86

Biophysical and Biochemical Studies on Rhinovirus and Poliovirus II. Chemical and Hydrodynamic Analysis of the Rhinovirion  

PubMed Central

Chemical analysis of rhinovirus 14 revealed a ribonucleic acid (RNA) content of 29.8% and a high adenylic acid content (35%). A partial specific volume of 0.682 cm3/g was obtained for the rhinovirion. Rhinovirus and poliovirus had identical sedimentation coefficients of 158S. A diffusion coefficient of 1.71 × 10?7 cm2/sec was consistent with a hydrated diameter of 25 nm for the rhinovirion. The calculated molecular weights of the rhinovirion and its genome were 7.1 × 106 and 2.1 × 106 daltons, respectively. Sedimentation analysis of infectious RNA confirmed the similarity of the molecular size of the poliovirus and rhinovirus genomes. PMID:5543433

McGregor, Sandy; Mayor, Heather D.

1971-01-01

87

Variation of the Mitochondral Genome in the Evolution of Drosophila  

Microsoft Academic Search

The evidence on mitochondrial genome variation and its role in evolution of the genus Drosophila are reviewed. The mitochondrial genome is represented by a circular double-stranded DNA molecule 16 to 19 kb in length. Mitochondrial genes lack introns and recombination. The entire mitochondrial genome can be arbitrarily divided into three parts: (1) protein-coding genes; (2) genes encoding rRNA and tRNA;

V. G. Mitrofanov; S. Yu. Sorokina; B. V. Andrianov

2002-01-01

88

The amphioxus genome and the evolution of the chordate karyotype  

Microsoft Academic Search

Lancelets (`amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic ~520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate

Nicholas H. Putnam; Thomas Butts; David E. K. Ferrier; Rebecca F. Furlong; Uffe Hellsten; Takeshi Kawashima; Marc Robinson-Rechavi; Eiichi Shoguchi; Astrid Terry; Yu-Kai Jr.; Èlia Benito-Gutiérrez; Inna Dubchak; Jordi Garcia-Fernàndez; Jeremy J. Gibson-Brown; Igor V. Grigoriev; Amy C. Horton; Pieter J. de Jong; Jerzy Jurka; Vladimir V. Kapitonov; Yuji Kohara; Yoko Kuroki; Erika Lindquist; Susan Lucas; Kazutoyo Osoegawa; Len A. Pennacchio; Asaf A. Salamov; Yutaka Satou; Tatjana Sauka-Spengler; Jeremy Schmutz; Tadasu Shin-I; Atsushi Toyoda; Marianne Bronner-Fraser; Asao Fujiyama; Linda Z. Holland; Peter W. H. Holland; Nori Satoh; Daniel S. Rokhsar

2008-01-01

89

Structure and evolution of gene regulatory networks in microbial genomes  

Microsoft Academic Search

With the availability of genome sequences for hundreds of microbial genomes, it has become possible to address several questions from a comparative perspective to understand the structure and function of regulatory systems, at least in model organisms. Recent studies have focused on topological properties and the evolution of regulatory networks and their components. Our understanding of natural networks is paving

Sarath Chandra Janga; J. Collado-Vides

2007-01-01

90

Genome analysis of the platypus reveals unique signatures of evolution  

E-print Network

ARTICLES Genome analysis of the platypus reveals unique signatures of evolution A list of authors and their affiliations appears at the end of the paper We present a draft genome sequence of the platypus. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay

Ray, David

91

Evolution of linear chromosomes and multipartite genomes in yeast mitochondria  

E-print Network

Evolution of linear chromosomes and multipartite genomes in yeast mitochondria Matus Valach1 mitochondria contain linear (cir- cularly permuted) concatemers that are heterogeneous in size (termed, mitochondria of numerous organisms contain multipartite genome; i.e. fragmented into multiple (from few

Brejova, Brona

92

Evolution of linear chromosomes and multipartite genomes in yeast mitochondria  

PubMed Central

Mitochondrial genome diversity in closely related species provides an excellent platform for investigation of chromosome architecture and its evolution by means of comparative genomics. In this study, we determined the complete mitochondrial DNA sequences of eight Candida species and analyzed their molecular architectures. Our survey revealed a puzzling variability of genome architecture, including circular- and linear-mapping and multipartite linear forms. We propose that the arrangement of large inverted repeats identified in these genomes plays a crucial role in alterations of their molecular architectures. In specific arrangements, the inverted repeats appear to function as resolution elements, allowing genome conversion among different topologies, eventually leading to genome fragmentation into multiple linear DNA molecules. We suggest that molecular transactions generating linear mitochondrial DNA molecules with defined telomeric structures may parallel the evolutionary emergence of linear chromosomes and multipartite genomes in general and may provide clues for the origin of telomeres and pathways implicated in their maintenance. PMID:21266473

Valach, Matus; Farkas, Zoltan; Fricova, Dominika; Kovac, Jakub; Brejova, Brona; Vinar, Tomas; Pfeiffer, Ilona; Kucsera, Judit; Tomaska, Lubomir; Lang, B. Franz; Nosek, Jozef

2011-01-01

93

Insights into bilaterian evolution from three spiralian genomes  

PubMed Central

Current genomic perspectives on animal diversity neglect two prominent phyla, the molluscs and annelids, that together account for nearly one-third of known marine species and are important both ecologically and as experimental systems in classical embryology1–3. Here we describe the draft genomes of the owl limpet (Lottia gigantea), a marine polychaete (Capitella teleta) and a freshwater leech (Helobdella robusta), and compare them with other animal genomes to investigate the origin and diversification of bilaterians from a genomic perspective. We find that the genome organization, gene structure and functional content of these species are more similar to those of some invertebrate deuterostome genomes (for example, amphioxus and sea urchin) than those of other protostomes that have been sequenced to date (flies, nematodes and flatworms). The conservation of these genomic features enables us to expand the inventory of genes present in the last common bilaterian ancestor, establish the tripartite diversification of bilaterians using multiple genomic characteristics and identify ancient conserved long- and short-range genetic linkages across metazoans. Superimposed on this broadly conserved pan-bilaterian background we find examples of lineage-specific genome evolution, including varying rates of rearrangement, intron gain and loss, expansions and contractions of gene families, and the evolution of clade-specific genes that produce the unique content of each genome. PMID:23254933

Simakov, Oleg; Marletaz, Ferdinand; Cho, Sung-Jin; Edsinger-Gonzales, Eric; Havlak, Paul; Hellsten, Uffe; Kuo, Dian-Han; Larsson, Tomas; Lv, Jie; Arendt, Detlev; Savage, Robert; Osoegawa, Kazutoyo; de Jong, Pieter; Grimwood, Jane; Chapman, Jarrod A.; Shapiro, Harris; Aerts, Andrea; Otillar, Robert P.; Terry, Astrid Y.; Boore, Jeffrey L.; Grigoriev, Igor V.; Lindberg, David R.; Seaver, Elaine C.; Weisblat, David A.; Putnam, Nicholas H.; Rokhsar, Daniel S.

2014-01-01

94

Insights into bilaterian evolution from three spiralian genomes  

SciTech Connect

Current genomic perspectives on animal diversity neglect two prominent phyla, the molluscs and annelids, that together account for nearly one-third of known marine species and are important both ecologically and as experimental systems in classical embryology1, 2, 3. Here we describe the draft genomes of the owl limpet (Lottia gigantea), a marine polychaete (Capitella teleta) and a freshwater leech (Helobdella robusta), and compare them with other animal genomes to investigate the origin and diversification of bilaterians from a genomic perspective. We find that the genome organization, gene structure and functional content of these species are more similar to those of some invertebrate deuterostome genomes (for example, amphioxus and sea urchin) than those of other protostomes that have been sequenced to date (flies, nematodes and flatworms). The conservation of these genomic features enables us to expand the inventory of genes present in the last common bilaterian ancestor, establish the tripartite diversification of bilaterians using multiple genomic characteristics and identify ancient conserved long- and short-range genetic linkages across metazoans. Superimposed on this broadly conserved pan-bilaterian background we find examples of lineage-specific genome evolution, including varying rates of rearrangement, intron gain and loss, expansions and contractions of gene families, and the evolution of clade-specific genes that produce the unique content of each genome.

Simakov, Oleg; Marletaz, Ferdinand; Cho, Sung-Jin; Edsinger-Gonzales, Eric; Havlak, Paul; Hellsten, Uffe; Kuo, Dian-Han; Larsson, Tomas; Lv, Jie; Arendt, Detlev; Savage, Robert; Osoegawa, Kazutoyo; de Jong, Pieter; Grimwood, Jane; Chapman, Jarrod A.; Shapiro, Harris; Otillar, Robert P.; Terry, Astrid Y.; Boore, Jeffrey L.; Grigoriev, Igor V.; Lindberg, David R.; Seaver, Elaine C.; Weisblat, David A.; Putnam, Nicholas H.; Rokhsar, Daniel S.; Aerts, Andrea

2012-01-07

95

Structure, Function, and Evolution of the Thiomonas spp. Genome  

PubMed Central

Bacteria of the Thiomonas genus are ubiquitous in extreme environments, such as arsenic-rich acid mine drainage (AMD). The genome of one of these strains, Thiomonas sp. 3As, was sequenced, annotated, and examined, revealing specific adaptations allowing this bacterium to survive and grow in its highly toxic environment. In order to explore genomic diversity as well as genetic evolution in Thiomonas spp., a comparative genomic hybridization (CGH) approach was used on eight different strains of the Thiomonas genus, including five strains of the same species. Our results suggest that the Thiomonas genome has evolved through the gain or loss of genomic islands and that this evolution is influenced by the specific environmental conditions in which the strains live. PMID:20195515

Arsène-Ploetze, Florence; Koechler, Sandrine; Marchal, Marie; Coppée, Jean-Yves; Chandler, Michael; Bonnefoy, Violaine; Brochier-Armanet, Céline; Barakat, Mohamed; Barbe, Valérie; Battaglia-Brunet, Fabienne; Bruneel, Odile; Bryan, Christopher G.; Cleiss-Arnold, Jessica; Cruveiller, Stéphane; Erhardt, Mathieu; Heinrich-Salmeron, Audrey; Hommais, Florence; Joulian, Catherine; Krin, Evelyne; Lieutaud, Aurélie; Lièvremont, Didier; Michel, Caroline; Muller, Daniel; Ortet, Philippe; Proux, Caroline; Siguier, Patricia; Roche, David; Rouy, Zoé; Salvignol, Grégory; Slyemi, Djamila; Talla, Emmanuel; Weiss, Stéphanie; Weissenbach, Jean; Médigue, Claudine; Bertin, Philippe N.

2010-01-01

96

The function and evolution of the Aspergillus genome  

PubMed Central

Species in the filamentous fungal genus Aspergillus display a wide diversity of lifestyles and are of great importance to humans. The decoding of genome sequences from a dozen species that vary widely in their degree of evolutionary affinity has galvanized studies of the function and evolution of the Aspergillus genome in clinical, industrial, and agricultural environments. Here, we synthesize recent key findings that shed light on the architecture of the Aspergillus genome, on the molecular foundations of the genus’ astounding dexterity and diversity in secondary metabolism, and on the genetic underpinnings of virulence in Aspergillus fumigatus, one of the most lethal fungal pathogens. Many of these insights dramatically expand our knowledge of fungal and microbial eukaryote genome evolution and function and argue that Aspergillus constitutes a superb model clade for the study of functional and comparative genomics. PMID:23084572

Gibbons, John G.; Rokas, Antonis

2012-01-01

97

Genome size and genome evolution in diploid Triticeae species.  

PubMed

One of the intriguing issues concerning the dynamics of plant genomes is the occurrence of intraspecific variation in nuclear DNA amount. The aim of this work was to assess the ranges of intraspecific, interspecific, and intergeneric variation in nuclear DNA content of diploid species of the tribe Triticeae (Poaceae) and to examine the relation between life form or habitat and genome size. Altogether, 438 plants representing 272 lines that belong to 22 species were analyzed. Nuclear DNA content was estimated by flow cytometry. Very small intraspecific variation in DNA amount was found between lines of Triticeae diploid species collected from different habitats or between different morphs. In contrast to the constancy in nuclear DNA amount at the intraspecific level, there are significant differences in genome size between the various diploid species. Within the genus Aegilops, the 1C DNA amount ranged from 4.84 pg in A. caudata to 7.52 pg in A. sharonensis; among genera, the 1C DNA amount ranged from 4.18 pg in Heteranthelium piliferum to 9.45 pg in Secale montanum. No evidence was found for a smaller genome size in annual, self-pollinating species relative to perennial, cross-pollinating ones. Diploids that grow in the southern part of the group's distribution have larger genomes than those growing in other parts of the distribution. The contrast between the low variation at the intraspecific level and the high variation at the interspecific one suggests that changes in genome size originated in close temporal proximity to the speciation event, i.e., before, during, or immediately after it. The possible effects of sudden changes in genome size on speciation processes are discussed. PMID:18059548

Eilam, T; Anikster, Y; Millet, E; Manisterski, J; Sagi-Assif, O; Feldman, M

2007-11-01

98

An Inherited Efficiencies Model of Non-Genomic Evolution  

NASA Technical Reports Server (NTRS)

A model for the evolution of biological systems in the absence of a nucleic acid-like genome is proposed and applied to model the earliest living organisms -- protocells composed of membrane encapsulated peptides. Assuming that the peptides can make and break bonds between amino acids, and bonds in non-functional peptides are more likely to be destroyed than in functional peptides, it is demonstrated that the catalytic capabilities of the system as a whole can increase. This increase is defined to be non-genomic evolution. The relationship between the proposed mechanism for evolution and recent experiments on self-replicating peptides is discussed.

New, Michael H.; Pohorille, Andrew

1999-01-01

99

Non-adaptive evolution of genome complexity  

E-print Network

the tree of life. The difference between genomes of prokaryotes and eukaryotesisparticularly striking.Prokaryotes of them in an increasing order from prokaryotes, to unicellular eukaryotes, and to multicellular eukaryotes.(1,4) The distinction between the genomes of prokaryotes and eukaryotes has been considered

Yi, Soojin

100

Evolution in an oncogenic bacterial species with extreme genome plasticity: Helicobacter pylori East Asian genomes  

Microsoft Academic Search

Background  The genome of Helicobacter pylori, an oncogenic bacterium in the human stomach, rapidly evolves and shows wide geographical divergence. The high incidence\\u000a of stomach cancer in East Asia might be related to bacterial genotype. We used newly developed comparative methods to follow\\u000a the evolution of East Asian H. pylori genomes using 20 complete genome sequences from Japanese, Korean, Amerind, European,

Mikihiko Kawai; Yoshikazu Furuta; Koji Yahara; Takeshi Tsuru; Kenshiro Oshima; Naofumi Handa; Noriko Takahashi; Masaru Yoshida; Takeshi Azuma; Masahira Hattori; Ikuo Uchiyama; Ichizo Kobayashi

2011-01-01

101

Clinical Features and Complete Genome Characterization of a Distinct Human Rhinovirus (HRV) Genetic Cluster, Probably Representing a Previously Undetected HRV Species, HRV-C, Associated with Acute Respiratory Illness in Children  

Microsoft Academic Search

Although human rhinoviruses (HRVs) are common causes of respiratory illness, their molecular epidemi- ology has been poorly investigated. Despite the recent findings of new HRV genotypes, their clinical disease spectrum and phylogenetic positions were not fully understood. In this study, 203 prospectively collected nasopharyngeal aspirates (NPAs), negative for common respiratory viruses (83 were human bocavirus (HBoV) positive and 120 HBoV

Susanna K. P. Lau; Cyril C. Y. Yip; Hoi-wah Tsoi; Rodney A. Lee; Lok-yee So; Yu-lung Lau; Kwok-hung Chan; Patrick C. Y. Woo; Kwok-yung Yuen

2007-01-01

102

Genomic Evolution of Saccharomyces cerevisiae under Chinese Rice Wine Fermentation  

PubMed Central

Rice wine fermentation represents a unique environment for the evolution of the budding yeast, Saccharomyces cerevisiae. To understand how the selection pressure shaped the yeast genome and gene regulation, we determined the genome sequence and transcriptome of a S. cerevisiae strain YHJ7 isolated from Chinese rice wine (Huangjiu), a popular traditional alcoholic beverage in China. By comparing the genome of YHJ7 to the lab strain S288c, a Japanese sake strain K7, and a Chinese industrial bioethanol strain YJSH1, we identified many genomic sequence and structural variations in YHJ7, which are mainly located in subtelomeric regions, suggesting that these regions play an important role in genomic evolution between strains. In addition, our comparative transcriptome analysis between YHJ7 and S288c revealed a set of differentially expressed genes, including those involved in glucose transport (e.g., HXT2, HXT7) and oxidoredutase activity (e.g., AAD10, ADH7). Interestingly, many of these genomic and transcriptional variations are directly or indirectly associated with the adaptation of YHJ7 strain to its specific niches. Our molecular evolution analysis suggested that Japanese sake strains (K7/UC5) were derived from Chinese rice wine strains (YHJ7) at least approximately 2,300 years ago, providing the first molecular evidence elucidating the origin of Japanese sake strains. Our results depict interesting insights regarding the evolution of yeast during rice wine fermentation, and provided a valuable resource for genetic engineering to improve industrial wine-making strains. PMID:25212861

Li, Yudong; Zhang, Weiping; Zheng, Daoqiong; Zhou, Zhan; Yu, Wenwen; Zhang, Lei; Feng, Lifang; Liang, Xinle; Guan, Wenjun; Zhou, Jingwen; Chen, Jian; Lin, Zhenguo

2014-01-01

103

Evolution of parasitism along convergent lines: from ecology to genomics.  

PubMed

SUMMARY From hundreds of independent transitions from a free-living existence to a parasitic mode of life, separate parasite lineages have converged over evolutionary time to share traits and exploit their hosts in similar ways. Here, we first summarize the evidence that, at a phenotypic level, eukaryotic parasite lineages have all converged toward only six general parasitic strategies: parasitoid, parasitic castrator, directly transmitted parasite, trophically transmitted parasite, vector-transmitted parasite or micropredator. We argue that these strategies represent adaptive peaks, with the similarities among unrelated taxa within any strategy extending to all basic aspects of host exploitation and transmission among hosts and transcending phylogenetic boundaries. Then, we extend our examination of convergent patterns by looking at the evolution of parasite genomes. Despite the limited taxonomic coverage of sequenced parasite genomes currently available, we find some evidence of parallel evolution among unrelated parasite taxa with respect to genome reduction or compaction, and gene losses or gains. Matching such changes in parasite genomes with the broad phenotypic traits that define the convergence of parasites toward only six strategies of host exploitation is not possible at present. Nevertheless, as more parasite genomes become available, we may be able to detect clear trends in the evolution of parasitic genome architectures representing true convergent adaptive peaks, the genomic equivalents of the phenotypic strategies used by all parasites. PMID:24229807

Poulin, Robert; Randhawa, Haseeb S

2015-02-01

104

Evolution of genome size in Carex (Cyperaceae) in relation to chromosome number and genomic base composition  

PubMed Central

Background and Aims The genus Carex exhibits karyological peculiarities related to holocentrism, specifically extremely broad and almost continual variation in chromosome number. However, the effect of these peculiarities on the evolution of the genome (genome size, base composition) remains unknown. While in monocentrics, determining the arithmetic relationship between the chromosome numbers of related species is usually sufficient for the detection of particular modes of karyotype evolution (i.e. polyploidy and dysploidy), in holocentrics where chromosomal fission and fusion occur such detection requires knowledge of the DNA content. Methods The genome size and GC content were estimated in 157 taxa using flow cytometry. The exact chromosome numbers were known for 96 measured samples and were taken from the available literature for other taxa. All relationships were tested in a phylogenetic framework using the ITS tree of 105 species. Key Results The 1C genome size varied between 0·24 and 1·64 pg in Carex secalina and C. cuspidata, respectively. The genomic GC content varied from 34·8 % to 40·6 % from C. secalina to C. firma. Both genomic parameters were positively correlated. Seven polyploid and two potentially polyploid taxa were detected in the core Carex clade. A strong negative correlation between genome size and chromosome number was documented in non-polyploid taxa. Non-polyploid taxa of the core Carex clade exhibited a higher rate of genome-size evolution compared with the Vignea clade. Three dioecious taxa exhibited larger genomes, larger chromosomes, and a higher GC content than their hermaphrodite relatives. Conclusions Genomes of Carex are relatively small and very GC-poor compared with other angiosperms. We conclude that the evolution of genome and karyotype in Carex is promoted by frequent chromosomal fissions/fusions, rare polyploidy and common repetitive DNA proliferation/removal. PMID:23175591

Lipnerová, Ivana; Bureš, Petr; Horová, Lucie; Šmarda, Petr

2013-01-01

105

Computational comparative genomics : genes, regulation, evolution  

E-print Network

Understanding the biological signals encoded in a genome is a key challenge of computational biology. These signals are encoded in the four-nucleotide alphabet of DNA and are responsible for all molecular processes in the ...

Kamvysselis, Manolis, 1977-

2003-01-01

106

Reductive genome evolution in Buchnera aphidicola  

Microsoft Academic Search

We have sequenced the genome of the intracellular symbiont Buchnera aphidicola from the aphid Baizongia pistacea. This strain diverged 80-150 million years ago from the common ancestor of two previously sequenced Buchnera strains. Here, a field-collected, nonclonal sample of insects was used as source material for laboratory procedures. As a consequence, the genome assembly unveiled intrapopulational variation, consisting of 1,200

Roeland C. H. J. van Ham; Judith Kamerbeek; Carmen Palacios; Carolina Rausell; Federico Abascal; Ugo Bastolla; Jose M. Fernández; Luis Jiménez; Marina Postigo; Francisco J. Silva; Javier Tamames; Enrique Viguera; Amparo Latorre; Alfonso Valencia; Federico Morán; Andrés Moya

2003-01-01

107

Genome sequence analysis of the model grass Brachypodium distachyon: insights into grass genome evolution  

SciTech Connect

Three subfamilies of grasses, the Erhardtoideae (rice), the Panicoideae (maize, sorghum, sugar cane and millet), and the Pooideae (wheat, barley and cool season forage grasses) provide the basis of human nutrition and are poised to become major sources of renewable energy. Here we describe the complete genome sequence of the wild grass Brachypodium distachyon (Brachypodium), the first member of the Pooideae subfamily to be completely sequenced. Comparison of the Brachypodium, rice and sorghum genomes reveals a precise sequence- based history of genome evolution across a broad diversity of the grass family and identifies nested insertions of whole chromosomes into centromeric regions as a predominant mechanism driving chromosome evolution in the grasses. The relatively compact genome of Brachypodium is maintained by a balance of retroelement replication and loss. The complete genome sequence of Brachypodium, coupled to its exceptional promise as a model system for grass research, will support the development of new energy and food crops

Schulman, Al

2009-08-09

108

Reverse genetics system for studying human rhinovirus infections.  

PubMed

Human rhinovirus (HRV) contains a 7.2 kb messenger-sense RNA genome which is the template for reproducing progeny viruses after it enters the cytoplasm of a host cell. Reverse genetics refers to the regeneration of progeny viruses from an artificial cDNA copy of the RNA genome of an RNA virus. It has been a powerful molecular genetic tool for studying HRV and other RNA viruses because the artificial DNA stage makes it practical to introduce specific mutations into the viral RNA genome. This chapter uses HRV-16 as the model virus to illustrate the strategy and methods for constructing and cloning the artificial cDNA copy of a full-length HRV genome, identifying the infectious cDNA clone isolates, and selecting the most vigorous cDNA clone isolate to serve as the standard parental clone for future molecular genetic study of the virus. PMID:25261313

Lee, Wai-Ming; Wang, Wensheng; Bochkov, Yury A; Lee, Iris

2015-01-01

109

Genome evolution of a tertiary dinoflagellate plastid.  

PubMed

The dinoflagellates have repeatedly replaced their ancestral peridinin-plastid by plastids derived from a variety of algal lineages ranging from green algae to diatoms. Here, we have characterized the genome of a dinoflagellate plastid of tertiary origin in order to understand the evolutionary processes that have shaped the organelle since it was acquired as a symbiont cell. To address this, the genome of the haptophyte-derived plastid in Karlodinium veneficum was analyzed by Sanger sequencing of library clones and 454 pyrosequencing of plastid enriched DNA fractions. The sequences were assembled into a single contig of 143 kb, encoding 70 proteins, 3 rRNAs and a nearly full set of tRNAs. Comparative genomics revealed massive rearrangements and gene losses compared to the haptophyte plastid; only a small fraction of the gene clusters usually found in haptophytes as well as other types of plastids are present in K. veneficum. Despite the reduced number of genes, the K. veneficum plastid genome has retained a large size due to expanded intergenic regions. Some of the plastid genes are highly diverged and may be pseudogenes or subject to RNA editing. Gene losses and rearrangements are also features of the genomes of the peridinin-containing plastids, apicomplexa and Chromera, suggesting that the evolutionary processes that once shaped these plastids have occurred at multiple independent occasions over the history of the Alveolata. PMID:21541332

Gabrielsen, Tove M; Minge, Marianne A; Espelund, Mari; Tooming-Klunderud, Ave; Patil, Vishwanath; Nederbragt, Alexander J; Otis, Christian; Turmel, Monique; Shalchian-Tabrizi, Kamran; Lemieux, Claude; Jakobsen, Kjetill S

2011-01-01

110

Genome Evolution in the Eremothecium Clade of the Saccharomyces Complex Revealed by Comparative Genomics  

PubMed Central

We used comparative genomics to elucidate the genome evolution within the pre–whole-genome duplication genus Eremothecium. To this end, we sequenced and assembled the complete genome of Eremothecium cymbalariae, a filamentous ascomycete representing the Eremothecium type strain. Genome annotation indicated 4712 gene models and 143 tRNAs. We compared the E. cymbalariae genome with that of its relative, the riboflavin overproducer Ashbya (Eremothecium) gossypii, and the reconstructed yeast ancestor. Decisive changes in the Eremothecium lineage leading to the evolution of the A. gossypii genome include the reduction from eight to seven chromosomes, the downsizing of the genome by removal of 10% or 900 kb of DNA, mostly in intergenic regions, the loss of a TY3-Gypsy–type transposable element, the re-arrangement of mating-type loci, and a massive increase of its GC content. Key species-specific events are the loss of MNN1-family of mannosyltransferases required to add the terminal fourth and fifth ?-1,3-linked mannose residue to O-linked glycans and genes of the Ehrlich pathway in E. cymbalariae and the loss of ZMM-family of meiosis-specific proteins and acquisition of riboflavin overproduction in A. gossypii. This reveals that within the Saccharomyces complex genome, evolution is not only based on genome duplication with subsequent gene deletions and chromosomal rearrangements but also on fungi associated with specific environments (e.g. involving fungal-insect interactions as in Eremothecium), which have encountered challenges that may be reflected both in genome streamlining and their biosynthetic potential. PMID:22384365

Wendland, Jürgen; Walther, Andrea

2011-01-01

111

Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs.  

PubMed

To provide context for the diversification of archosaurs--the group that includes crocodilians, dinosaurs, and birds--we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the comparatively rapid evolution is derived in birds. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs, thereby providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs. PMID:25504731

Green, Richard E; Braun, Edward L; Armstrong, Joel; Earl, Dent; Nguyen, Ngan; Hickey, Glenn; Vandewege, Michael W; St John, John A; Capella-Gutiérrez, Salvador; Castoe, Todd A; Kern, Colin; Fujita, Matthew K; Opazo, Juan C; Jurka, Jerzy; Kojima, Kenji K; Caballero, Juan; Hubley, Robert M; Smit, Arian F; Platt, Roy N; Lavoie, Christine A; Ramakodi, Meganathan P; Finger, John W; Suh, Alexander; Isberg, Sally R; Miles, Lee; Chong, Amanda Y; Jaratlerdsiri, Weerachai; Gongora, Jaime; Moran, Christopher; Iriarte, Andrés; McCormack, John; Burgess, Shane C; Edwards, Scott V; Lyons, Eric; Williams, Christina; Breen, Matthew; Howard, Jason T; Gresham, Cathy R; Peterson, Daniel G; Schmitz, Jürgen; Pollock, David D; Haussler, David; Triplett, Eric W; Zhang, Guojie; Irie, Naoki; Jarvis, Erich D; Brochu, Christopher A; Schmidt, Carl J; McCarthy, Fiona M; Faircloth, Brant C; Hoffmann, Federico G; Glenn, Travis C; Gabaldón, Toni; Paten, Benedict; Ray, David A

2014-12-12

112

Dynamic Evolution of Rht-1 Homologous Regions in Grass Genomes  

PubMed Central

Hexaploid bread wheat contains A, B, and D three subgenomes with its well-characterized ancestral genomes existed at diploid and tetraploid levels, making the wheat act as a good model species for studying evolutionary genomic dynamics. Here, we performed intra- and inter-species comparative analyses of wheat and related grass genomes to examine the dynamics of homologous regions surrounding Rht-1, a well-known “green revolution” gene. Our results showed that the divergence of the two A genomes in the Rht-1 region from the diploid and tetraploid species is greater than that from the tetraploid and hexaploid wheat. The divergence of D genome between diploid and hexaploid is lower than those of A genome, suggesting that D genome diverged latter than others. The divergence among the A, B and D subgenomes was larger than that among different ploidy levels for each subgenome which mainly resulted from genomic structural variation of insertions and, perhaps deletions, of the repetitive sequences. Meanwhile, the repetitive sequences caused genome expansion further after the divergence of the three subgenomes. However, several conserved non-coding sequences were identified to be shared among the three subgenomes of wheat, suggesting that they may have played an important role to maintain the homolog of three subgenomes. This is a pilot study on evolutionary dynamics across the wheat ploids, subgenomes and differently related grasses. Our results gained new insights into evolutionary dynamics of Rht-1 region at sequence level as well as the evolution of wheat during the plolyploidization process. PMID:24086561

Wu, Jing; Kong, Xiuying; Shi, Chao; Gu, Yongqiang; Jin, Cuiyun; Gao, Lizhi; Jia, Jizeng

2013-01-01

113

Evolution of genes and genomes on the Drosophila phylogeny.  

PubMed

Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species. PMID:17994087

Clark, Andrew G; Eisen, Michael B; Smith, Douglas R; Bergman, Casey M; Oliver, Brian; Markow, Therese A; Kaufman, Thomas C; Kellis, Manolis; Gelbart, William; Iyer, Venky N; Pollard, Daniel A; Sackton, Timothy B; Larracuente, Amanda M; Singh, Nadia D; Abad, Jose P; Abt, Dawn N; Adryan, Boris; Aguade, Montserrat; Akashi, Hiroshi; Anderson, Wyatt W; Aquadro, Charles F; Ardell, David H; Arguello, Roman; Artieri, Carlo G; Barbash, Daniel A; Barker, Daniel; Barsanti, Paolo; Batterham, Phil; Batzoglou, Serafim; Begun, Dave; Bhutkar, Arjun; Blanco, Enrico; Bosak, Stephanie A; Bradley, Robert K; Brand, Adrianne D; Brent, Michael R; Brooks, Angela N; Brown, Randall H; Butlin, Roger K; Caggese, Corrado; Calvi, Brian R; Bernardo de Carvalho, A; Caspi, Anat; Castrezana, Sergio; Celniker, Susan E; Chang, Jean L; Chapple, Charles; Chatterji, Sourav; Chinwalla, Asif; Civetta, Alberto; Clifton, Sandra W; Comeron, Josep M; Costello, James C; Coyne, Jerry A; Daub, Jennifer; David, Robert G; Delcher, Arthur L; Delehaunty, Kim; Do, Chuong B; Ebling, Heather; Edwards, Kevin; Eickbush, Thomas; Evans, Jay D; Filipski, Alan; Findeiss, Sven; Freyhult, Eva; Fulton, Lucinda; Fulton, Robert; Garcia, Ana C L; Gardiner, Anastasia; Garfield, David A; Garvin, Barry E; Gibson, Greg; Gilbert, Don; Gnerre, Sante; Godfrey, Jennifer; Good, Robert; Gotea, Valer; Gravely, Brenton; Greenberg, Anthony J; Griffiths-Jones, Sam; Gross, Samuel; Guigo, Roderic; Gustafson, Erik A; Haerty, Wilfried; Hahn, Matthew W; Halligan, Daniel L; Halpern, Aaron L; Halter, Gillian M; Han, Mira V; Heger, Andreas; Hillier, LaDeana; Hinrichs, Angie S; Holmes, Ian; Hoskins, Roger A; Hubisz, Melissa J; Hultmark, Dan; Huntley, Melanie A; Jaffe, David B; Jagadeeshan, Santosh; Jeck, William R; Johnson, Justin; Jones, Corbin D; Jordan, William C; Karpen, Gary H; Kataoka, Eiko; Keightley, Peter D; Kheradpour, Pouya; Kirkness, Ewen F; Koerich, Leonardo B; Kristiansen, Karsten; Kudrna, Dave; Kulathinal, Rob J; Kumar, Sudhir; Kwok, Roberta; Lander, Eric; Langley, Charles H; Lapoint, Richard; Lazzaro, Brian P; Lee, So-Jeong; Levesque, Lisa; Li, Ruiqiang; Lin, Chiao-Feng; Lin, Michael F; Lindblad-Toh, Kerstin; Llopart, Ana; Long, Manyuan; Low, Lloyd; Lozovsky, Elena; Lu, Jian; Luo, Meizhong; Machado, Carlos A; Makalowski, Wojciech; Marzo, Mar; Matsuda, Muneo; Matzkin, Luciano; McAllister, Bryant; McBride, Carolyn S; McKernan, Brendan; McKernan, Kevin; Mendez-Lago, Maria; Minx, Patrick; Mollenhauer, Michael U; Montooth, Kristi; Mount, Stephen M; Mu, Xu; Myers, Eugene; Negre, Barbara; Newfeld, Stuart; Nielsen, Rasmus; Noor, Mohamed A F; O'Grady, Patrick; Pachter, Lior; Papaceit, Montserrat; Parisi, Matthew J; Parisi, Michael; Parts, Leopold; Pedersen, Jakob S; Pesole, Graziano; Phillippy, Adam M; Ponting, Chris P; Pop, Mihai; Porcelli, Damiano; Powell, Jeffrey R; Prohaska, Sonja; Pruitt, Kim; Puig, Marta; Quesneville, Hadi; Ram, Kristipati Ravi; Rand, David; Rasmussen, Matthew D; Reed, Laura K; Reenan, Robert; Reily, Amy; Remington, Karin A; Rieger, Tania T; Ritchie, Michael G; Robin, Charles; Rogers, Yu-Hui; Rohde, Claudia; Rozas, Julio; Rubenfield, Marc J; Ruiz, Alfredo; Russo, Susan; Salzberg, Steven L; Sanchez-Gracia, Alejandro; Saranga, David J; Sato, Hajime; Schaeffer, Stephen W; Schatz, Michael C; Schlenke, Todd; Schwartz, Russell; Segarra, Carmen; Singh, Rama S; Sirot, Laura; Sirota, Marina; Sisneros, Nicholas B; Smith, Chris D; Smith, Temple F; Spieth, John; Stage, Deborah E; Stark, Alexander; Stephan, Wolfgang; Strausberg, Robert L; Strempel, Sebastian; Sturgill, David; Sutton, Granger; Sutton, Granger G; Tao, Wei; Teichmann, Sarah; Tobari, Yoshiko N; Tomimura, Yoshihiko; Tsolas, Jason M; Valente, Vera L S; Venter, Eli; Venter, J Craig; Vicario, Saverio; Vieira, Filipe G; Vilella, Albert J; Villasante, Alfredo; Walenz, Brian; Wang, Jun; Wasserman, Marvin; Watts, Thomas; Wilson, Derek; Wilson, Richard K; Wing, Rod A; Wolfner, Mariana F; Wong, Alex; Wong, Gane Ka-Shu; Wu, Chung-I; Wu, Gabriel; Yamamoto, Daisuke; Yang, Hsiao-Pei; Yang, Shiaw-Pyng; Yorke, James A; Yoshida, Kiyohito; Zdobnov, Evgeny; Zhang, Peili; Zhang, Yu; Zimin, Aleksey V; Baldwin, Jennifer; Abdouelleil, Amr; Abdulkadir, Jamal; Abebe, Adal; Abera, Brikti; Abreu, Justin; Acer, St Christophe; Aftuck, Lynne; Alexander, Allen; An, Peter; Anderson, Erica; Anderson, Scott; Arachi, Harindra; Azer, Marc; Bachantsang, Pasang; Barry, Andrew; Bayul, Tashi; Berlin, Aaron; Bessette, Daniel; Bloom, Toby; Blye, Jason; Boguslavskiy, Leonid; Bonnet, Claude; Boukhgalter, Boris; Bourzgui, Imane; Brown, Adam; Cahill, Patrick; Channer, Sheridon; Cheshatsang, Yama

2007-11-01

114

Genome sequence of a polydnavirus: insights into symbiotic virus evolution.  

PubMed

Little is known of the fate of viruses involved in long-term obligatory associations with eukaryotes. For example, many species of parasitoid wasps have symbiotic viruses to manipulate host defenses and to allow development of parasitoid larvae. The complete nucleotide sequence of the DNA enclosed in the virus particles injected by a parasitoid wasp revealed a complex organization, resembling a eukaryote genomic region more than a viral genome. Although endocellular symbiont genomes have undergone a dramatic loss of genes, the evolution of symbiotic viruses appears to be characterized by extensive duplication of virulence genes coding for truncated versions of cellular proteins. PMID:15472078

Espagne, Eric; Dupuy, Catherine; Huguet, Elisabeth; Cattolico, Laurence; Provost, Bertille; Martins, Nathalie; Poirié, Marylène; Periquet, Georges; Drezen, Jean Michel

2004-10-01

115

Genome Evolution in Maize: From Genomes Back to Genes.  

PubMed

Maize occupies dual roles as both (a) one of the big-three grain species (along with rice and wheat) responsible for providing more than half of the calories consumed around the world, and (b) a model system for plant genetics and cytogenetics dating back to the origin of the field of genetics in the early twentieth century. The long history of genetic investigation in this species combined with modern genomic and quantitative genetic data has provided particular insight into the characteristics of genes linked to phenotypes and how these genes differ from many other sequences in plant genomes that are not easily distinguishable based on molecular data alone. These recent results suggest that the number of genes in plants that make significant contributions to phenotype may be lower than the number of genes defined by current molecular criteria, and also indicate that syntenic conservation has been underemphasized as a marker for gene function. Expected final online publication date for the Annual Review of Plant Biology Volume 66 is April 29, 2015. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates. PMID:25494463

Schnable, James C

2014-12-01

116

Genome Evolution of a Tertiary Dinoflagellate Plastid  

Microsoft Academic Search

The dinoflagellates have repeatedly replaced their ancestral peridinin-plastid by plastids derived from a variety of algal lineages ranging from green algae to diatoms. Here, we have characterized the genome of a dinoflagellate plastid of tertiary origin in order to understand the evolutionary processes that have shaped the organelle since it was acquired as a symbiont cell. To address this, the

Tove M. Gabrielsen; Marianne A. Minge; Mari Espelund; Ave Tooming-Klunderud; Vishwanath Patil; Alexander J. Nederbragt; Christian Otis; Monique Turmel; Kamran Shalchian-Tabrizi; Claude Lemieux; Kjetill S. Jakobsen; Nikolas Nikolaidis

2011-01-01

117

Nicotiana chloroplast genome III. Chloroplast DNA evolution  

Microsoft Academic Search

Nicotiana chloroplast genomes exhibit a high degree of diversity and a general similarity as revealed by restriction enzyme analysis. This property can be measured accurately by restriction enzymes which generate over 20 fragments. However, the restriction enzymes which generate a small number (about 10) of fragments are extremely useful not only in constructing the restriction maps but also in establishing

S. D. Kung; Y. S. Zhu; G. F. Shen

1982-01-01

118

Original article Genome size variation and evolution  

E-print Network

Notropis is greater than that between species in other, less speciose cyprinid genera. The hypothesis and variances of genome size difference (distance) between species in the cyprinid genus Notropis (a species and variances in the Notropis versus Lepomis comparisons were greater than unity, suggesting that changes

Boyer, Edmond

119

Tolerance whole of genome doubling propagates chromosomal instability and accelerates cancer genome evolution  

PubMed Central

The contribution of whole genome doubling to chromosomal instability (CIN) and tumour evolution is unclear. We use long-term culture of isogenic tetraploid cells from a stable diploid colon cancer progenitor to investigate how a genome-doubling event affects genome stability over time. Rare cells that survive genome doubling demonstrate increased tolerance to chromosome aberrations. Tetraploid cells do not exhibit increased frequencies of structural or numerical CIN per chromosome. However, the tolerant phenotype in tetraploid cells, coupled with a doubling of chromosome aberrations per cell, allows chromosome abnormalities to evolve specifically in tetraploids, recapitulating chromosomal changes in genomically complex colorectal tumours. Finally, a genome-doubling event is independently predictive of poor relapse-free survival in early stage disease in two independent cohorts in multivariate analyses (discovery data: HR=4.70, 95% CI 1.04-21.37, validation data: HR=1.59, 95% CI 1.05-2.42). These data highlight an important role for the tolerance of genome doubling in driving cancer genome evolution. PMID:24436049

Burrell, Rebecca A; Rowan, Andrew J; Grönroos, Eva; Endesfelder, David; Joshi, Tejal; Mouradov, Dmitri; Gibbs, Peter; Ward, Robyn L.; Hawkins, Nicholas J.; Szallasi, Zoltan; Sieber, Oliver M.; Swanton, Charles

2015-01-01

120

Evolution of genome–phenome diversity under environmental stress  

PubMed Central

The genomic era revolutionized evolutionary biology. The enigma of genotypic-phenotypic diversity and biodiversity evolution of genes, genomes, phenomes, and biomes, reviewed here, was central in the research program of the Institute of Evolution, University of Haifa, since 1975. We explored the following questions. (i) How much of the genomic and phenomic diversity in nature is adaptive and processed by natural selection? (ii) What is the origin and evolution of adaptation and speciation processes under spatiotemporal variables and stressful macrogeographic and microgeographic environments? We advanced ecological genetics into ecological genomics and analyzed globally ecological, demographic, and life history variables in 1,200 diverse species across life, thousands of populations, and tens of thousands of individuals tested mostly for allozyme and partly for DNA diversity. Likewise, we tested thermal, chemical, climatic, and biotic stresses in several model organisms. Recently, we introduced genetic maps and quantitative trait loci to elucidate the genetic basis of adaptation and speciation. The genome–phenome holistic model was deciphered by the global regressive, progressive, and convergent evolution of subterranean mammals. Our results indicate abundant genotypic and phenotypic diversity in nature. The organization and evolution of molecular and organismal diversity in nature at global, regional, and local scales are nonrandom and structured; display regularities across life; and are positively correlated with, and partly predictable by, abiotic and biotic environmental heterogeneity and stress. Biodiversity evolution, even in small isolated populations, is primarily driven by natural selection, including diversifying, balancing, cyclical, and purifying selective regimes, interacting with, but ultimately overriding, the effects of mutation, migration, and stochasticity. PMID:11371642

Nevo, Eviatar

2001-01-01

121

Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes  

PubMed Central

Vertebrates diverged from other chordates ~500?Myr ago and experienced successful innovations and adaptations, but the genomic basis underlying vertebrate origins are not fully understood. Here we suggest, through comparison with multiple lancelet (amphioxus) genomes, that ancient vertebrates experienced high rates of protein evolution, genome rearrangement and domain shuffling and that these rates greatly slowed down after the divergence of jawed and jawless vertebrates. Compared with lancelets, modern vertebrates retain, at least relatively, less protein diversity, fewer nucleotide polymorphisms, domain combinations and conserved non-coding elements (CNE). Modern vertebrates also lost substantial transposable element (TE) diversity, whereas lancelets preserve high TE diversity that includes even the long-sought RAG transposon. Lancelets also exhibit rapid gene turnover, pervasive transcription, fastest exon shuffling in metazoans and substantial TE methylation not observed in other invertebrates. These new lancelet genome sequences provide new insights into the chordate ancestral state and the vertebrate evolution. PMID:25523484

Huang, Shengfeng; Chen, Zelin; Yan, Xinyu; Yu, Ting; Huang, Guangrui; Yan, Qingyu; Pontarotti, Pierre Antoine; Zhao, Hongchen; Li, Jie; Yang, Ping; Wang, Ruihua; Li, Rui; Tao, Xin; Deng, Ting; Wang, Yiquan; Li, Guang; Zhang, Qiujin; Zhou, Sisi; You, Leiming; Yuan, Shaochun; Fu, Yonggui; Wu, Fenfang; Dong, Meiling; Chen, Shangwu; Xu, Anlong

2014-01-01

122

The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates  

PubMed Central

Vertebrate evolution has been shaped by several rounds of whole-genome duplications (WGDs) that are often suggested to be associated with adaptive radiations and evolutionary innovations. Due to an additional round of WGD, the rainbow trout genome offers a unique opportunity to investigate the early evolutionary fate of a duplicated vertebrate genome. Here we show that after 100 million years of evolution the two ancestral subgenomes have remained extremely collinear, despite the loss of half of the duplicated protein-coding genes, mostly through pseudogenization. In striking contrast is the fate of miRNA genes that have almost all been retained as duplicated copies. The slow and stepwise rediploidization process characterized here challenges the current hypothesis that WGD is followed by massive and rapid genomic reorganizations and gene deletions. PMID:24755649

Berthelot, Camille; Brunet, Frédéric; Chalopin, Domitille; Juanchich, Amélie; Bernard, Maria; Noël, Benjamin; Bento, Pascal; Da Silva, Corinne; Labadie, Karine; Alberti, Adriana; Aury, Jean-Marc; Louis, Alexandra; Dehais, Patrice; Bardou, Philippe; Montfort, Jérôme; Klopp, Christophe; Cabau, Cédric; Gaspin, Christine; Thorgaard, Gary H.; Boussaha, Mekki; Quillet, Edwige; Guyomard, René; Galiana, Delphine; Bobe, Julien; Volff, Jean-Nicolas; Genêt, Carine; Wincker, Patrick; Jaillon, Olivier; Crollius, Hugues Roest; Guiguen, Yann

2014-01-01

123

Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes.  

PubMed

Vertebrates diverged from other chordates ~500?Myr ago and experienced successful innovations and adaptations, but the genomic basis underlying vertebrate origins are not fully understood. Here we suggest, through comparison with multiple lancelet (amphioxus) genomes, that ancient vertebrates experienced high rates of protein evolution, genome rearrangement and domain shuffling and that these rates greatly slowed down after the divergence of jawed and jawless vertebrates. Compared with lancelets, modern vertebrates retain, at least relatively, less protein diversity, fewer nucleotide polymorphisms, domain combinations and conserved non-coding elements (CNE). Modern vertebrates also lost substantial transposable element (TE) diversity, whereas lancelets preserve high TE diversity that includes even the long-sought RAG transposon. Lancelets also exhibit rapid gene turnover, pervasive transcription, fastest exon shuffling in metazoans and substantial TE methylation not observed in other invertebrates. These new lancelet genome sequences provide new insights into the chordate ancestral state and the vertebrate evolution. PMID:25523484

Huang, Shengfeng; Chen, Zelin; Yan, Xinyu; Yu, Ting; Huang, Guangrui; Yan, Qingyu; Pontarotti, Pierre Antoine; Zhao, Hongchen; Li, Jie; Yang, Ping; Wang, Ruihua; Li, Rui; Tao, Xin; Deng, Ting; Wang, Yiquan; Li, Guang; Zhang, Qiujin; Zhou, Sisi; You, Leiming; Yuan, Shaochun; Fu, Yonggui; Wu, Fenfang; Dong, Meiling; Chen, Shangwu; Xu, Anlong

2014-01-01

124

The compact Selaginella genome identifies changes in gene content associated with the evolution of vascular plants  

Microsoft Academic Search

We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by comparative genomics identify genes that likely played important roles in the early evolution of vascular plants and their subsequent evolution

Igor V. Grigoriev; Jo Ann Banks; Tomoaki Nishiyama; Mitsuyasu Hasebe; John L. Bowman; Michael Gribskov; Claude dePamphilis; Victor A. Albert; Naoki Aono; Tsuyoshi Aoyama; Barbara A. Ambrose; Neil W. Ashton; Michael J. Axtell; Elizabeth Barker; Michael S. Barker; Jeffrey L. Bennetzen; Nicholas D. Bonawitz; Clint Chapple; Chaoyang Cheng; Luiz Gustavo Guedes Correa; Michael Dacre; Jeremy DeBarry; Ingo Dreyer; Marek Elias; Eric M. Engstrom; Mark Estelle; Liang Feng; Cedric Finet; Sandra K. Floyd; Wolf B. Frommer; Tomomichi Fujita; Lydia Gramzow; Michael Gutensohn; Jesper Harholt; Mitsuru Hattori; Alexander Heyl; Tadayoshi Hirai; Yuji Hiwatashi; Masaki Ishikawa; Mineko Iwata; Kenneth G. Karol; Barbara Koehler; Uener Kolukisaoglu; Minoru Kubo; Tetsuya Kurata; Sylvie Lalonde; Kejie Li; Ying Li; Amy Litt; Eric Lyons; Gerard Manning; Takeshi Maruyama; Todd P. Michael; Koji Mikami; Saori Miyazaki; Shin-ichi Morinaga; Takashi Murata; Bernd Mueller-Roeber; David R. Nelson; Mari Obara; Yasuko Oguri; Richard G. Olmstead; Naoko Onodera; Bent Larsen Petersen; Birgit Pils; Michael Prigge; Stefan A. Rensing; Diego Mauricio Riano-Pachon; Alison W. Roberts; Yoshikatsu Sato; Henrik Vibe Scheller; Burkhard Schulz; Christian Schulz; Eugene V. Shakirov; Nakako Shibagaki; Naoki Shinohara; Dorothy E. Shippen; Iben Sorensen; Ryo Sotooka; Nagisa Sugimoto; Mamoru Sugita; Naomi Sumikawa; Milos Tanurdzic; Gunter Theilsen; Peter Ulvskov; Sachiko Wakazuki; Jing-Ke Weng; William W. G. T. Willats; Daniel Wipf; Paul G. Wolf; Lixing Yang; Andreas D. Zimmer; Qihui Zhu; Therese Mitros; Uffe Hellsten; Dominique Loque; Robert Otillar; Asaf Salamov; Jeremy Schmutz; Harris Shapiro; Erika Lindquist; Susan Lucas; Daniel Rokhsar

2011-01-01

125

Origin and evolution of photosynthesis: clues from genome comparison Armen Y. Mulkidjanian1,2  

E-print Network

Origin and evolution of photosynthesis: clues from genome comparison Armen Y. Mulkidjanian1 Keywords: origin of photosynthesis, comparative genomics, evolution, cyanobacteria, phototrophic organisms with the recent geological data on the properties of the ancient phototrophs, suggest that photosynthesis has

Steinhoff, Heinz-Jürgen

126

The compact Selaginella genome identifies changes in gene content associated with the evolution of vascular plants  

SciTech Connect

We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by comparative genomics identify genes that likely played important roles in the early evolution of vascular plants and their subsequent evolution

Grigoriev, Igor V.; Banks, Jo Ann; Nishiyama, Tomoaki; Hasebe, Mitsuyasu; Bowman, John L.; Gribskov, Michael; dePamphilis, Claude; Albert, Victor A.; Aono, Naoki; Aoyama, Tsuyoshi; Ambrose, Barbara A.; Ashton, Neil W.; Axtell, Michael J.; Barker, Elizabeth; Barker, Michael S.; Bennetzen, Jeffrey L.; Bonawitz, Nicholas D.; Chapple, Clint; Cheng, Chaoyang; Correa, Luiz Gustavo Guedes; Dacre, Michael; DeBarry, Jeremy; Dreyer, Ingo; Elias, Marek; Engstrom, Eric M.; Estelle, Mark; Feng, Liang; Finet, Cedric; Floyd, Sandra K.; Frommer, Wolf B.; Fujita, Tomomichi; Gramzow, Lydia; Gutensohn, Michael; Harholt, Jesper; Hattori, Mitsuru; Heyl, Alexander; Hirai, Tadayoshi; Hiwatashi, Yuji; Ishikawa, Masaki; Iwata, Mineko; Karol, Kenneth G.; Koehler, Barbara; Kolukisaoglu, Uener; Kubo, Minoru; Kurata, Tetsuya; Lalonde, Sylvie; Li, Kejie; Li, Ying; Litt, Amy; Lyons, Eric; Manning, Gerard; Maruyama, Takeshi; Michael, Todd P.; Mikami, Koji; Miyazaki, Saori; Morinaga, Shin-ichi; Murata, Takashi; Mueller-Roeber, Bernd; Nelson, David R.; Obara, Mari; Oguri, Yasuko; Olmstead, Richard G.; Onodera, Naoko; Petersen, Bent Larsen; Pils, Birgit; Prigge, Michael; Rensing, Stefan A.; Riano-Pachon, Diego Mauricio; Roberts, Alison W.; Sato, Yoshikatsu; Scheller, Henrik Vibe; Schulz, Burkhard; Schulz, Christian; Shakirov, Eugene V.; Shibagaki, Nakako; Shinohara, Naoki; Shippen, Dorothy E.; Sorensen, Iben; Sotooka, Ryo; Sugimoto, Nagisa; Sugita, Mamoru; Sumikawa, Naomi; Tanurdzic, Milos; Theilsen, Gunter; Ulvskov, Peter; Wakazuki, Sachiko; Weng, Jing-Ke; Willats, William W.G.T.; Wipf, Daniel; Wolf, Paul G.; Yang, Lixing; Zimmer, Andreas D.; Zhu, Qihui; Mitros, Therese; Hellsten, Uffe; Loque, Dominique; Otillar, Robert; Salamov, Asaf; Schmutz, Jeremy; Shapiro, Harris; Lindquist, Erika; Lucas, Susan; Rokhsar, Daniel

2011-04-28

127

Evolution and comparative genomics of subcellular specializations: EST sequencing of Torpedo electric organ  

E-print Network

Evolution and comparative genomics of subcellular specializations: EST sequencing of Torpedo discovery Open reading frame (ORF) Uncharacterized open reading frames (ORFs) in human genomic sequence Elsevier B.V. All rights reserved. 1. Introduction The availability of complete genomic sequences

Vertes, Akos

128

Genome Size Variation and Evolution in Veronica  

PubMed Central

• Background and Aims The amount of DNA per chromosome set is known to be a fairly constant characteristic of a species. Its interspecific variation is enormous, but the biological significance of this variation is little understood. Some of the characters believed to be correlated with DNA amount are alpine habitat, life history and breeding system. In the present study, the aim is to distinguish between direct causal connections and chance correlation of the amount of DNA in the genus Veronica. • Methods Estimates of DNA amount were analysed for 42 members of Veroniceae in connection with results from a phylogenetic analysis of plastid trnL-F DNA sequences and tested correlations using standard statistical tests, phylogenetically independent contrasts and a model-based generalized least squares method to distinguish the phylogenetic effect on the results. • Key Results There appears to be a lower upper limit for DNA amount in annuals than in perennials. Most DNAC-values in Veroniceae are below the mean DNA C-value for annuals in angiosperms as a whole. However, the long-debated correlation of low genome size with annual life history is not significant (P = 0·12) using either standard statistical tests or independent contrasts, but it is significant with the generalized least squares method (P < 0·01). • Conclusions The correlation of annual life history and low genome size found in earlier studies could be due to the association of annual life history and selfing, which is significantly correlated with low genome size using any of the three tests applied. This correlation can be explained by models showing a reduction in transposable elements in selfers. A significant correlation of higher genome sizes with alpine habitats was also detected. PMID:15520022

ALBACH, DIRK C.; GREILHUBER, J.

2004-01-01

129

Insights into hominid evolution from the gorilla genome sequence  

PubMed Central

Summary Gorillas are humans’ closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago (Mya). In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution. PMID:22398555

Scally, Aylwyn; Dutheil, Julien Y.; Hillier, LaDeana W.; Jordan, Greg E.; Goodhead, Ian; Herrero, Javier; Hobolth, Asger; Lappalainen, Tuuli; Mailund, Thomas; Marques-Bonet, Tomas; McCarthy, Shane; Montgomery, Stephen H.; Schwalie, Petra C.; Tang, Y. Amy; Ward, Michelle C.; Xue, Yali; Yngvadottir, Bryndis; Alkan, Can; Andersen, Lars N.; Ayub, Qasim; Ball, Edward V.; Beal, Kathryn; Bradley, Brenda J.; Chen, Yuan; Clee, Chris M.; Fitzgerald, Stephen; Graves, Tina A.; Gu, Yong; Heath, Paul; Heger, Andreas; Karakoc, Emre; Kolb-Kokocinski, Anja; Laird, Gavin K.; Lunter, Gerton; Meader, Stephen; Mort, Matthew; Mullikin, James C.; Munch, Kasper; O’Connor, Timothy D.; Phillips, Andrew D.; Prado-Martinez, Javier; Rogers, Anthony S.; Sajjadian, Saba; Schmidt, Dominic; Shaw, Katy; Simpson, Jared T.; Stenson, Peter D.; Turner, Daniel J.; Vigilant, Linda; Vilella, Albert J.; Whitener, Weldon; Zhu, Baoli; Cooper, David N.; de Jong, Pieter; Dermitzakis, Emmanouil T.; Eichler, Evan E.; Flicek, Paul; Goldman, Nick; Mundy, Nicholas I.; Ning, Zemin; Odom, Duncan T.; Ponting, Chris P.; Quail, Michael A.; Ryder, Oliver A.; Searle, Stephen M.; Warren, Wesley C.; Wilson, Richard K.; Schierup, Mikkel H.; Rogers, Jane; Tyler-Smith, Chris; Durbin, Richard

2012-01-01

130

Programming cells by multiplex genome engineering and accelerated evolution  

E-print Network

and outdated genetic engineering techniques. Whereas in vivo methods such as recombination-based genetic engineering (recombineering) have enabled efficient modification of single genetic targets using singleLETTERS Programming cells by multiplex genome engineering and accelerated evolution Harris H. Wang1

Church, George M.

131

Acc homoeoloci and the evolution of wheat genomes  

Technology Transfer Automated Retrieval System (TEKTRAN)

We analyzed the DNA sequences of BACs from many wheat libraries containing the Acc-1 and Acc-2 loci, encoding the plastid and cytosolic forms of the enzyme acetyl-CoA carboxylase, to gain understanding of the evolution of these genes and the origin of the three genomes in modern hexaploid wheat. Mor...

132

Evolution of Genomic Structures on Mammalian Sex Chromosomes  

PubMed Central

Throughout mammalian evolution, recombination between the two sex chromosomes was suppressed in a stepwise manner. It is thought that the suppression of recombination led to an accumulation of deleterious mutations and frequent genomic rearrangements on the Y chromosome. In this article, we review three evolutionary aspects related to genomic rearrangements and structures, such as inverted repeats (IRs) and palindromes (PDs), on the mammalian sex chromosomes. First, we describe the stepwise manner in which recombination between the X and Y chromosomes was suppressed in placental mammals and discuss a genomic rearrangement that might have led to the formation of present pseudoautosomal boundaries (PAB). Second, we describe ectopic gene conversion between the X and Y chromosomes, and propose possible molecular causes. Third, we focus on the evolutionary mode and timing of PD formation on the X and Y chromosomes. The sequence of the chimpanzee Y chromosome was recently published by two groups. Both groups suggest that rapid evolution of genomic structure occurred on the Y chromosome. Our re-analysis of the sequences confirmed the species-specific mode of human and chimpanzee Y chromosomal evolution. Finally, we present a general outlook regarding the rapid evolution of mammalian sex chromosomes. PMID:23024603

Katsura, Yukako; Iwase, Mineyo; Satta, Yoko

2012-01-01

133

Ancient population genomics and the study of evolution.  

PubMed

Recently, the study of ancient DNA (aDNA) has been greatly enhanced by the development of second-generation DNA sequencing technologies and targeted enrichment strategies. These developments have allowed the recovery of several complete ancient genomes, a result that would have been considered virtually impossible only a decade ago. Prior to these developments, aDNA research was largely focused on the recovery of short DNA sequences and their use in the study of phylogenetic relationships, molecular rates, species identification and population structure. However, it is now possible to sequence a large number of modern and ancient complete genomes from a single species and thereby study the genomic patterns of evolutionary change over time. Such a study would herald the beginnings of ancient population genomics and its use in the study of evolution. Species that are amenable to such large-scale studies warrant increased research effort. We report here progress on a population genomic study of the Adélie penguin (Pygoscelis adeliae). This species is ideally suited to ancient population genomic research because both modern and ancient samples are abundant in the permafrost conditions of Antarctica. This species will enable us to directly address many of the fundamental questions in ecology and evolution. PMID:25487332

Parks, M; Subramanian, S; Baroni, C; Salvatore, M C; Zhang, G; Millar, C D; Lambert, D M

2015-01-19

134

The Sunflower Genome and its Evolution (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)  

ScienceCinema

Loren Rieseberg from the University of British Columbia on "The Sunflower Genome and its Evolution" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, California.

Rieseberg, Loren [University of British Columbia

2013-01-15

135

The Amphimedon queenslandica genome and the evolution of animal complexity  

PubMed Central

Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sequencing of the sponge genome reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion and diversification of pan-metazoan transcription factor, signalling pathway and structural genes. This diverse ‘toolkit’ of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic- and germ-cell specification, cell adhesion, innate immunity and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity. PMID:20686567

Srivastava, Mansi; Simakov, Oleg; Chapman, Jarrod; Fahey, Bryony; Gauthier, Marie E. A.; Mitros, Therese; Richards, Gemma S.; Conaco, Cecilia; Dacre, Michael; Hellsten, Uffe; Larroux, Claire; Putnam, Nicholas H.; Stanke, Mario; Adamska, Maja; Darling, Aaron; Degnan, Sandie M.; Oakley, Todd H.; Plachetzki, David C.; Zhai, Yufeng; Adamski, Marcin; Calcino, Andrew; Cummins, Scott F.; Goodstein, David M.; Harris, Christina; Jackson, Daniel J.; Leys, Sally P.; Shu, Shengqiang; Woodcroft, Ben J.; Vervoort, Michel; Kosik, Kenneth S.; Manning, Gerard; Degnan, Bernard M.; Rokhsar, Daniel S.

2011-01-01

136

Genome evolution and biodiversity in teleost fish  

Microsoft Academic Search

Teleost fish, which roughly make up half of the extant vertebrate species, exhibit an amazing level of biodiversity affecting their morphology, ecology and behaviour as well as many other aspects of their biology. This huge variability makes fish extremely attractive for the study of many biological questions, particularly of those related to evolution. New insights gained from different teleost species

J-N Volff

2005-01-01

137

Chloroplast Genome Evolution in Early Diverged Leptosporangiate Ferns  

PubMed Central

In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnV-GCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of co-dons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns. PMID:24823358

Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

2014-01-01

138

Naomi A. Sengamalay1, Xuechu Zhao1, Lisa D. Sadzewicz1, Al Godinez1, Erin Hine1, Qi Su1, Carrie McCracken1, Kevin Galens1, Luke J. Tallon1, James E. Gern2, Stephen B. LiggeJ3, and Claire M. Fraser1 1InsNtute for Genome Sciences, University of Maryland Sch  

E-print Network

Nng in the human populaNon, the sequencing of human rhinovirus (RV) isolates has been the rhinovirus genome in clinical samples cost- and Nme-prohibiNve. We have developed likely to yield a full rhinovirus genome sequence, and to prepare

Weber, David J.

139

Eukaryotic genome evolution: rearrangement and coevolution of compartmentalized genetic information.  

PubMed Central

The plant cell operates with an integrated, compartmentalized genome consisting of nucleus/cytosol, plastids and mitochondria that, in its entirety, is regulated in time, quantitatively, in multicellular organisms and also in space. This genome, as do genomes of eukaryotes in general, originated in endosymbiotic events, with at least three cells, and was shaped phylogenetically by a massive and highly complex restructuring and intermixing of the genetic potentials of the symbiotic partners and by lateral gene transfer. This was accompanied by fundamental changes in expression signals in the entire system at almost all regulatory levels. The gross genome rearrangements contrast with a highly specific compartmental interplay, which becomes apparent in interspecific nuclear-plastid cybrids or hybrids. Organelle exchanges, even between closely related species, can greatly disturb the intracellular genetic balance ("hybrid bleaching"), which is indicative of compartmental coevolution and is of relevance for speciation processes. The photosynthetic machinery of plastids, which is embedded in that genetic machinery, is an appealing model to probe into genomic and organismic evolution and to develop functional molecular genomics. We have studied the reciprocal Atropa belladonna-Nicotiana tabacum cybrids, which differ markedly in their phenotypes, and found that transcriptional and post-transcriptional processes can contribute to genome/plastome incompatibility. Allopolyploidy can influence this phenomenon by providing an increased, cryptic RNA editing potential and the capacity to maintain the integrity of organelles of different taxonomic origins. PMID:12594919

Herrmann, Reinhold G; Maier, Rainer M; Schmitz-Linneweber, Christian

2003-01-01

140

Nannochloropsis Genomes Reveal Evolution of Microalgal Oleaginous Traits  

PubMed Central

Oleaginous microalgae are promising feedstock for biofuels, yet the genetic diversity, origin and evolution of oleaginous traits remain largely unknown. Here we present a detailed phylogenomic analysis of five oleaginous Nannochloropsis species (a total of six strains) and one time-series transcriptome dataset for triacylglycerol (TAG) synthesis on one representative strain. Despite small genome sizes, high coding potential and relative paucity of mobile elements, the genomes feature small cores of ca. 2,700 protein-coding genes and a large pan-genome of >38,000 genes. The six genomes share key oleaginous traits, such as the enrichment of selected lipid biosynthesis genes and certain glycoside hydrolase genes that potentially shift carbon flux from chrysolaminaran to TAG synthesis. The eleven type II diacylglycerol acyltransferase genes (DGAT-2) in every strain, each expressed during TAG synthesis, likely originated from three ancient genomes, including the secondary endosymbiosis host and the engulfed green and red algae. Horizontal gene transfers were inferred in most lipid synthesis nodes with expanded gene doses and many glycoside hydrolase genes. Thus multiple genome pooling and horizontal genetic exchange, together with selective inheritance of lipid synthesis genes and species-specific gene loss, have led to the enormous genetic apparatus for oleaginousness and the wide genomic divergence among present-day Nannochloropsis. These findings have important implications in the screening and genetic engineering of microalgae for biofuels. PMID:24415958

Hu, Jianqiang; Han, Danxiang; Wang, Hui; Zeng, Xiaowei; Jing, Xiaoyan; Zhou, Qian; Su, Xiaoquan; Chang, Xingzhi; Wang, Anhui; Wang, Wei; Jia, Jing; Wei, Li; Xin, Yi; Qiao, Yinghe; Huang, Ranran; Chen, Jie; Han, Bo; Yoon, Kangsup; Hill, Russell T.; Zohar, Yonathan; Chen, Feng; Hu, Qiang; Xu, Jian

2014-01-01

141

Phylogenomics and the Dynamic Genome Evolution of the Genus Streptococcus  

PubMed Central

The genus Streptococcus comprises important pathogens that have a severe impact on human health and are responsible for substantial economic losses to agriculture. Here, we utilize 46 Streptococcus genome sequences (44 species), including eight species sequenced here, to provide the first genomic level insight into the evolutionary history and genetic basis underlying the functional diversity of all major groups of this genus. Gene gain/loss analysis revealed a dynamic pattern of genome evolution characterized by an initial period of gene gain followed by a period of loss, as the major groups within the genus diversified. This was followed by a period of genome expansion associated with the origins of the present extant species. The pattern is concordant with an emerging view that genomes evolve through a dynamic process of expansion and streamlining. A large proportion of the pan-genome has experienced lateral gene transfer (LGT) with causative factors, such as relatedness and shared environment, operating over different evolutionary scales. Multiple gene ontology terms were significantly enriched for each group, and mapping terms onto the phylogeny showed that those corresponding to genes born on branches leading to the major groups represented approximately one-fifth of those enriched. Furthermore, despite the extensive LGT, several biochemical characteristics have been retained since group formation, suggesting genomic cohesiveness through time, and that these characteristics may be fundamental to each group. For example, proteolysis: mitis group; urea metabolism: salivarius group; carbohydrate metabolism: pyogenic group; and transcription regulation: bovis group. PMID:24625962

Richards, Vincent P.; Palmer, Sara R.; Pavinski Bitar, Paulina D.; Qin, Xiang; Weinstock, George M.; Highlander, Sarah K.; Town, Christopher D.; Burne, Robert A.; Stanhope, Michael J.

2014-01-01

142

Genome-wide signatures of convergent evolution in echolocating mammals  

PubMed Central

Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes1-3. However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures4,5. Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level6-9. Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution9,10 although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised. PMID:24005325

Parker, Joe; Tsagkogeorga, Georgia; Cotton, James A.; Liu, Yuan; Provero, Paolo; Stupka, Elia; Rossiter, Stephen J.

2013-01-01

143

Genome-wide signatures of convergent evolution in echolocating mammals.  

PubMed

Evolution is typically thought to proceed through divergence of genes, proteins and ultimately phenotypes. However, similar traits might also evolve convergently in unrelated taxa owing to similar selection pressures. Adaptive phenotypic convergence is widespread in nature, and recent results from several genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level. Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution, although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show that convergence is not a rare process restricted to several loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four newly sequenced bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the bottlenose dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Unexpectedly, we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognized. PMID:24005325

Parker, Joe; Tsagkogeorga, Georgia; Cotton, James A; Liu, Yuan; Provero, Paolo; Stupka, Elia; Rossiter, Stephen J

2013-10-10

144

Genome evolution in pocket gophers (genus Thomomys )  

Microsoft Academic Search

A basic dichotomy exists in the amount and chromosomal position of constitutive heterochromatin (C-bands) in species of pocket gophers, genus Thomomys. Members of the “talpoides-group” of species (e.g., T. talpoides and T. monticola) have C-bands restricted to the centromeric regions. These taxa are characterized by Robertsonian patterns of karyotypic evolution. In contrast, species within the “bottae-group” are characterized by extensive

James L. Patton; Steven W. Sherwood

1982-01-01

145

Human evolution and the mitochondrial genome  

Microsoft Academic Search

The use of mitochondrial DNA (mtDNA) continues to dominate studies of human genetic variation and evolution. Recent work has re-affirmed the strict maternal inheritance of mtDNA, yielded new insights into the extent and nature of intra-individual variation, supported a recent African origin of human mtDNA, and amply demonstrated the utility of mtDNA in tracing population history and in analyses of

Mark Stoneking; Himla Soodyall

1996-01-01

146

Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species  

Microsoft Academic Search

The mitochondrial genome (mtDNA) of Metazoa is a good model system for evolutionary genomic studies and the availability of more than 1000 sequences provides an almost unique opportunity to decode the mechanisms of genome evolution over a large phylogenetic range. In this paper, we review several structural features of the metazoan mtDNA, such as gene content, genome size, genome architecture

C Gissi; F Iannelli; G Pesole

2008-01-01

147

ALF--a simulation framework for genome evolution.  

PubMed

In computational evolutionary biology, verification and benchmarking is a challenging task because the evolutionary history of studied biological entities is usually not known. Computer programs for simulating sequence evolution in silico have shown to be viable test beds for the verification of newly developed methods and to compare different algorithms. However, current simulation packages tend to focus either on gene-level aspects of genome evolution such as character substitutions and insertions and deletions (indels) or on genome-level aspects such as genome rearrangement and speciation events. Here, we introduce Artificial Life Framework (ALF), which aims at simulating the entire range of evolutionary forces that act on genomes: nucleotide, codon, or amino acid substitution (under simple or mixture models), indels, GC-content amelioration, gene duplication, gene loss, gene fusion, gene fission, genome rearrangement, lateral gene transfer (LGT), or speciation. The other distinctive feature of ALF is its user-friendly yet powerful web interface. We illustrate the utility of ALF with two possible applications: 1) we reanalyze data from a study of selection after globin gene duplication and test the statistical significance of the original conclusions and 2) we demonstrate that LGT can dramatically decrease the accuracy of two well-established orthology inference methods. ALF is available as a stand-alone application or via a web interface at http://www.cbrg.ethz.ch/alf. PMID:22160766

Dalquen, Daniel A; Anisimova, Maria; Gonnet, Gaston H; Dessimoz, Christophe

2012-04-01

148

A unifying model of genome evolution under parsimony  

PubMed Central

Background Parsimony and maximum likelihood methods of phylogenetic tree estimation and parsimony methods for genome rearrangements are central to the study of genome evolution yet to date they have largely been pursued in isolation. Results We present a data structure called a history graph that offers a practical basis for the analysis of genome evolution. It conceptually simplifies the study of parsimonious evolutionary histories by representing both substitutions and double cut and join (DCJ) rearrangements in the presence of duplications. The problem of constructing parsimonious history graphs thus subsumes related maximum parsimony problems in the fields of phylogenetic reconstruction and genome rearrangement. We show that tractable functions can be used to define upper and lower bounds on the minimum number of substitutions and DCJ rearrangements needed to explain any history graph. These bounds become tight for a special type of unambiguous history graph called an ancestral variation graph (AVG), which constrains in its combinatorial structure the number of operations required. We finally demonstrate that for a given history graph G, a finite set of AVGs describe all parsimonious interpretations of G, and this set can be explored with a few sampling moves. Conclusion This theoretical study describes a model in which the inference of genome rearrangements and phylogeny can be unified under parsimony. PMID:24946830

2014-01-01

149

Evolution of Metabolic Pathways and Evolution of Genomes  

Microsoft Academic Search

\\u000a Bacteria can be considered as the interface between geochemical cycles and the superior forms of life. Therefore, how the\\u000a origin of life has been constructing metabolic complexity from earth geochemistry and how bacterial evolution is continuously\\u000a modifying it represent major issues cross-linking both geochemical and evolutionary viewpoints.

Giovanni Emiliani; Marco Fondi; Pietro Liò; Renato Fani

150

Reduction and Expansion in Microsporidian Genome Evolution: New Insights from Comparative Genomics  

PubMed Central

Microsporidia are an abundant group of obligate intracellular parasites of other eukaryotes, including immunocompromised humans, but the molecular basis of their intracellular lifestyle and pathobiology are poorly understood. New genomes from a taxonomically broad range of microsporidians, complemented by published expression data, provide an opportunity for comparative analyses to identify conserved and lineage-specific patterns of microsporidian genome evolution that have underpinned this success. In this study, we infer that a dramatic bottleneck in the last common microsporidian ancestor (LCMA) left a small conserved core of genes that was subsequently embellished by gene family expansion driven by gene acquisition in different lineages. Novel expressed protein families represent a substantial fraction of sequenced microsporidian genomes and are significantly enriched for signals consistent with secretion or membrane location. Further evidence of selection is inferred from the gain and reciprocal loss of functional domains between paralogous genes, for example, affecting transport proteins. Gene expansions among transporter families preferentially affect those that are located on the plasma membrane of model organisms, consistent with recruitment to plug conserved gaps in microsporidian biosynthesis and metabolism. Core microsporidian genes shared with other eukaryotes are enriched in orthologs that, in yeast, are highly expressed, highly connected, and often essential, consistent with strong negative selection against further reduction of the conserved gene set since the LCMA. Our study reveals that microsporidian genome evolution is a highly dynamic process that has balanced constraint, reductive evolution, and genome expansion during adaptation to an extraordinarily successful obligate intracellular lifestyle. PMID:24259309

Heinz, Eva; Watson, Andrew K.; Foster, Peter G.; Sendra, Kacper M.; Heaps, Sarah E.; Hirt, Robert P.; Martin Embley, T.

2013-01-01

151

Genomics and the evolution, pathogenesis, and diagnosis of tuberculosis  

PubMed Central

Tuberculosis kills nearly 2 million people annually, and current approaches to tuberculosis control are expensive, have limited efficacy, and are vulnerable to being overcome by extensively drug-resistant strains of Mycobacterium tuberculosis. Determination of the genome sequence of M. tuberculosis has revolutionized tuberculosis research, contributed to major advances in the understanding of the evolution and pathogenesis of M. tuberculosis, and facilitated development of new diagnostic tests with increased specificity for tuberculosis. In this review, we describe some of the major progress in tuberculosis research that has resulted from knowledge of the genome sequence and note some of the problems that remain unsolved. PMID:17607348

Ernst, Joel D.; Trevejo-Nuñez, Giraldina; Banaiee, Niaz

2007-01-01

152

21 CFR 866.3490 - Rhinovirus serological reagents.  

Code of Federal Regulations, 2012 CFR

...rhinovirus infections and provides epidemiological information on diseases caused by these viruses. Rhinoviruses cause common colds. (b) Classification. Class I (general controls). The device is exempt from the premarket notification...

2012-04-01

153

21 CFR 866.3490 - Rhinovirus serological reagents.  

Code of Federal Regulations, 2013 CFR

...rhinovirus infections and provides epidemiological information on diseases caused by these viruses. Rhinoviruses cause common colds. (b) Classification. Class I (general controls). The device is exempt from the premarket notification...

2013-04-01

154

21 CFR 866.3490 - Rhinovirus serological reagents.  

Code of Federal Regulations, 2014 CFR

...rhinovirus infections and provides epidemiological information on diseases caused by these viruses. Rhinoviruses cause common colds. (b) Classification. Class I (general controls). The device is exempt from the premarket notification...

2014-04-01

155

21 CFR 866.3490 - Rhinovirus serological reagents.  

Code of Federal Regulations, 2010 CFR

...rhinovirus infections and provides epidemiological information on diseases caused by these viruses. Rhinoviruses cause common colds. (b) Classification. Class I (general controls). The device is exempt from the premarket notification...

2010-04-01

156

21 CFR 866.3490 - Rhinovirus serological reagents.  

Code of Federal Regulations, 2011 CFR

...rhinovirus infections and provides epidemiological information on diseases caused by these viruses. Rhinoviruses cause common colds. (b) Classification. Class I (general controls). The device is exempt from the premarket notification...

2011-04-01

157

Evolution of genomic structural variation and genomic architecture in the adaptive radiations of African cichlid fishes  

PubMed Central

African cichlid fishes are an ideal system for studying explosive rates of speciation and the origin of diversity in adaptive radiation. Within the last few million years, more than 2000 species have evolved in the Great Lakes of East Africa, the largest adaptive radiation in vertebrates. These young species show spectacular diversity in their coloration, morphology and behavior. However, little is known about the genomic basis of this astonishing diversity. Recently, five African cichlid genomes were sequenced, including that of the Nile Tilapia (Oreochromis niloticus), a basal and only relatively moderately diversified lineage, and the genomes of four representative endemic species of the adaptive radiations, Neolamprologus brichardi, Astatotilapia burtoni, Metriaclima zebra, and Pundamila nyererei. Using the Tilapia genome as a reference genome, we generated a high-resolution genomic variation map, consisting of single nucleotide polymorphisms (SNPs), short insertions and deletions (indels), inversions and deletions. In total, around 18.8, 17.7, 17.0, and 17.0 million SNPs, 2.3, 2.2, 1.4, and 1.9 million indels, 262, 306, 162, and 154 inversions, and 3509, 2705, 2710, and 2634 deletions were inferred to have evolved in N. brichardi, A. burtoni, P. nyererei, and M. zebra, respectively. Many of these variations affected the annotated gene regions in the genome. Different patterns of genetic variation were detected during the adaptive radiation of African cichlid fishes. For SNPs, the highest rate of evolution was detected in the common ancestor of N. brichardi, A. burtoni, P. nyererei, and M. zebra. However, for the evolution of inversions and deletions, we found that the rates at the terminal taxa are substantially higher than the rates at the ancestral lineages. The high-resolution map provides an ideal opportunity to understand the genomic bases of the adaptive radiation of African cichlid fishes. PMID:24917883

Fan, Shaohua; Meyer, Axel

2014-01-01

158

Rapid and convergent evolution in the Glioblastoma multiforme genome.  

PubMed

Determining which mutations drive tumor progression is a defining question in cancer genomics. We analyzed sequence evolution in Glioblastoma multiforme (GBM) by computing the number of parallel mutations and by estimating ?=dN/dS, a measure of the strength and direction of selection. The ? values of almost all 7617 mutated genes in GBM are much higher than in germline genes. We identified only 21 genes under significant positive selection in GBM, as well as 29 genes under significant purifying selection, including several zinc finger proteins. Therefore, most of the high ? values in the GBM genome are due to weaker purifying selection rather than positive selection. We also found multiple recurrent mutations in GBM, several of which are associated with patient survival time. Our results suggest that convergence and neutral evolution play a significant role in GBM, and that sites with recurrent mutations can serve as molecular diagnostics of the clinical course of GBM tumors. PMID:25576655

Shpak, Max; Goldberg, Marcus M; Cowperthwaite, Matthew C

2015-03-01

159

Tracing Monotreme Venom Evolution in the Genomics Era  

PubMed Central

The monotremes (platypuses and echidnas) represent one of only four extant venomous mammalian lineages. Until recently, monotreme venom was poorly understood. However, the availability of the platypus genome and increasingly sophisticated genomic tools has allowed us to characterize platypus toxins, and provides a means of reconstructing the evolutionary history of monotreme venom. Here we review the physiology of platypus and echidna crural (venom) systems as well as pharmacological and genomic studies of monotreme toxins. Further, we synthesize current ideas about the evolution of the venom system, which in the platypus is likely to have been retained from a venomous ancestor, whilst being lost in the echidnas. We also outline several research directions and outstanding questions that would be productive to address in future research. An improved characterization of mammalian venoms will not only yield new toxins with potential therapeutic uses, but will also aid in our understanding of the way that this unusual trait evolves. PMID:24699339

Whittington, Camilla M.; Belov, Katherine

2014-01-01

160

Tracing monotreme venom evolution in the genomics era.  

PubMed

The monotremes (platypuses and echidnas) represent one of only four extant venomous mammalian lineages. Until recently, monotreme venom was poorly understood. However, the availability of the platypus genome and increasingly sophisticated genomic tools has allowed us to characterize platypus toxins, and provides a means of reconstructing the evolutionary history of monotreme venom. Here we review the physiology of platypus and echidna crural (venom) systems as well as pharmacological and genomic studies of monotreme toxins. Further, we synthesize current ideas about the evolution of the venom system, which in the platypus is likely to have been retained from a venomous ancestor, whilst being lost in the echidnas. We also outline several research directions and outstanding questions that would be productive to address in future research. An improved characterization of mammalian venoms will not only yield new toxins with potential therapeutic uses, but will also aid in our understanding of the way that this unusual trait evolves. PMID:24699339

Whittington, Camilla M; Belov, Katherine

2014-04-01

161

Evolution of Prokaryote-Animal Symbiosis from a Genomics Perspective  

Microsoft Academic Search

\\u000a Symbioses involving prokaryotes living in close relationship with eukaryotic cells have been widely studied from a genomic\\u000a perspective, especially in the case of insects. In the process toward host accommodation, symbionts experience major genetic\\u000a and phenotypic changes that can be detected in comparison with free-living relatives. But, as expected, several scenarios\\u000a allowed the evolution of symbiotic associations, from the first

Rosario Gil; Amparo Latorre; Andrés Moya

162

Widespread Genomic Signatures of Natural Selection in Hominid Evolution  

PubMed Central

Selection acting on genomic functional elements can be detected by its indirect effects on population diversity at linked neutral sites. To illuminate the selective forces that shaped hominid evolution, we analyzed the genomic distributions of human polymorphisms and sequence differences among five primate species relative to the locations of conserved sequence features. Neutral sequence diversity in human and ancestral hominid populations is substantially reduced near such features, resulting in a surprisingly large genome average diversity reduction due to selection of 19–26% on the autosomes and 12–40% on the X chromosome. The overall trends are broadly consistent with “background selection” or hitchhiking in ancestral populations acting to remove deleterious variants. Average selection is much stronger on exonic (both protein-coding and untranslated) conserved features than non-exonic features. Long term selection, rather than complex speciation scenarios, explains the large intragenomic variation in human/chimpanzee divergence. Our analyses reveal a dominant role for selection in shaping genomic diversity and divergence patterns, clarify hominid evolution, and provide a baseline for investigating specific selective events. PMID:19424416

McVicker, Graham; Gordon, David; Davis, Colleen; Green, Phil

2009-01-01

163

Genomic and epigenomic co-evolution in follicular lymphomas.  

PubMed

Follicular lymphoma (FL) with a t(14;18) is a B-cell neoplasm clinically characterized by multiple recurrencies. In order to investigate the clonal evolution of this lymphoma, we studied paired primary and relapse tumor samples from 33 patients with recurrent non-transformed t(14;18)-positive FL. We reconstructed phylogenetic trees of the evolution by taking advantage of the activation-induced cytidine deaminase (AID)-mediated somatic hypermutation (SHM) active in the germinal center reaction using sequences of the clonal VHDHJH rearrangements of the immunoglobulin heavy chain (IGH) locus. Mutational analysis of the IGH locus showed evidence for ongoing somatic mutation and for counter-selection of mutations affecting the BCR conformation during tumor evolution. We further followed evolutionary divergence by targeted sequencing of gene loci affected by aberrant SHM as well as of known driver genes of lymphomagenesis, and by array-based genome-wide chromosomal imbalance and DNA methylation analysis. We observed a wide spectrum of evolutionary patterns ranging from almost no evolution to divergent evolution within recurrent non-transformed t(14;18) FL. Remarkably, we observed a correlation of the magnitude of evolutionary divergence across all genetic and epigenetic levels suggesting co-evolution. The distribution of coding mutations in driver genes and the correlation with SHM suggest CREBBP and AID to be potential modifiers of genetic and epigenetic co-evolution in FL. PMID:25027518

Loeffler, M; Kreuz, M; Haake, A; Hasenclever, D; Trautmann, H; Arnold, C; Winter, K; Koch, K; Klapper, W; Scholtysik, R; Rosolowski, M; Hoffmann, S; Ammerpohl, O; Szczepanowski, M; Herrmann, D; Küppers, R; Pott, C; Siebert, R

2015-02-01

164

The Population Genomics of Sunflowers and Genomic Determinants of Protein Evolution Revealed by RNAseq  

PubMed Central

Few studies have investigated the causes of evolutionary rate variation among plant nuclear genes, especially in recently diverged species still capable of hybridizing in the wild. The recent advent of Next Generation Sequencing (NGS) permits investigation of genome wide rates of protein evolution and the role of selection in generating and maintaining divergence. Here, we use individual whole-transcriptome sequencing (RNAseq) to refine our understanding of the population genomics of wild species of sunflowers (Helianthus spp.) and the factors that affect rates of protein evolution. We aligned 35 GB of transcriptome sequencing data and identified 433,257 polymorphic sites (SNPs) in a reference transcriptome comprising 16,312 genes. Using SNP markers, we identified strong population clustering largely corresponding to the three species analyzed here (Helianthus annuus, H. petiolaris, H. debilis), with one distinct early generation hybrid. Then, we calculated the proportions of adaptive substitution fixed by selection (alpha) and identified gene ontology categories with elevated values of alpha. The “response to biotic stimulus” category had the highest mean alpha across the three interspecific comparisons, implying that natural selection imposed by other organisms plays an important role in driving protein evolution in wild sunflowers. Finally, we examined the relationship between protein evolution (dN/dS ratio) and several genomic factors predicted to co-vary with protein evolution (gene expression level, divergence and specificity, genetic divergence [FST], and nucleotide diversity pi). We find that variation in rates of protein divergence was correlated with gene expression level and specificity, consistent with results from a broad range of taxa and timescales. This would in turn imply that these factors govern protein evolution both at a microevolutionary and macroevolutionary timescale. Our results contribute to a general understanding of the determinants of rates of protein evolution and the impact of selection on patterns of polymorphism and divergence. PMID:24832509

Renaut, Sébastien; Grassa, Christopher J.; Moyers, Brook T.; Kane, Nolan C.; Rieseberg, Loren H.

2012-01-01

165

Molecular cytogenetic and genomic insights into chromosomal evolution  

PubMed Central

This review summarizes aspects of the extensive literature on the patterns and processes underpinning chromosomal evolution in vertebrates and especially placental mammals. It highlights the growing synergy between molecular cytogenetics and comparative genomics, particularly with respect to fully or partially sequenced genomes, and provides novel insights into changes in chromosome number and structure across deep division of the vertebrate tree of life. The examination of basal numbers in the deeper branches of the vertebrate tree suggest a haploid (n) chromosome number of 10–13 in an ancestral vertebrate, with modest increases in tetrapods and amniotes most probably by chromosomal fissioning. Information drawn largely from cross-species chromosome painting in the data-dense Placentalia permits the confident reconstruction of an ancestral karyotype comprising n=23 chromosomes that is similarly retained in Boreoeutheria. Using in silico genome-wide scans that include the newly released frog genome we show that of the nine ancient syntenies detected in conserved karyotypes of extant placentals (thought likely to reflect the structure of ancestral chromosomes), the human syntenic segmental associations 3p/21, 4pq/8p, 7a/16p, 14/15, 12qt/22q and 12pq/22qt predate the divergence of tetrapods. These findings underscore the enhanced quality of ancestral reconstructions based on the integrative molecular cytogenetic and comparative genomic approaches that collectively highlight a pattern of conserved syntenic associations that extends back ?360 million years ago. PMID:22108627

Ruiz-Herrera, A; Farré, M; Robinson, T J

2012-01-01

166

Genome Sequence and Comparative Genome Analysis of Lactobacillus casei: Insights into Their Niche-Associated Evolution  

PubMed Central

Lactobacillus casei is remarkably adaptable to diverse habitats and widely used in the food industry. To reveal the genomic features that contribute to its broad ecological adaptability and examine the evolution of the species, the genome sequence of L. casei ATCC 334 is analyzed and compared with other sequenced lactobacilli. This analysis reveals that ATCC 334 contains a high number of coding sequences involved in carbohydrate utilization and transcriptional regulation, reflecting its requirement for dealing with diverse environmental conditions. A comparison of the genome sequences of ATCC 334 to L. casei BL23 reveals 12 and 19 genomic islands, respectively. For a broader assessment of the genetic variability within L. casei, gene content of 21 L. casei strains isolated from various habitats (cheeses, n = 7; plant materials, n = 8; and human sources, n = 6) was examined by comparative genome hybridization with an ATCC 334-based microarray. This analysis resulted in identification of 25 hypervariable regions. One of these regions contains an overrepresentation of genes involved in carbohydrate utilization and transcriptional regulation and was thus proposed as a lifestyle adaptation island. Differences in L. casei genome inventory reveal both gene gain and gene decay. Gene gain, via acquisition of genomic islands, likely confers a fitness benefit in specific habitats. Gene decay, that is, loss of unnecessary ancestral traits, is observed in the cheese isolates and likely results in enhanced fitness in the dairy niche. This study gives the first picture of the stable versus variable regions in L. casei and provides valuable insights into evolution, lifestyle adaptation, and metabolic diversity of L. casei. PMID:20333194

Cai, Hui; Thompson, Rebecca; Budinich, Mateo F.; Broadbent, Jeff R.

2009-01-01

167

Genome sequence and comparative genome analysis of Lactobacillus casei: insights into their niche-associated evolution.  

PubMed

Lactobacillus casei is remarkably adaptable to diverse habitats and widely used in the food industry. To reveal the genomic features that contribute to its broad ecological adaptability and examine the evolution of the species, the genome sequence of L. casei ATCC 334 is analyzed and compared with other sequenced lactobacilli. This analysis reveals that ATCC 334 contains a high number of coding sequences involved in carbohydrate utilization and transcriptional regulation, reflecting its requirement for dealing with diverse environmental conditions. A comparison of the genome sequences of ATCC 334 to L. casei BL23 reveals 12 and 19 genomic islands, respectively. For a broader assessment of the genetic variability within L. casei, gene content of 21 L. casei strains isolated from various habitats (cheeses, n = 7; plant materials, n = 8; and human sources, n = 6) was examined by comparative genome hybridization with an ATCC 334-based microarray. This analysis resulted in identification of 25 hypervariable regions. One of these regions contains an overrepresentation of genes involved in carbohydrate utilization and transcriptional regulation and was thus proposed as a lifestyle adaptation island. Differences in L. casei genome inventory reveal both gene gain and gene decay. Gene gain, via acquisition of genomic islands, likely confers a fitness benefit in specific habitats. Gene decay, that is, loss of unnecessary ancestral traits, is observed in the cheese isolates and likely results in enhanced fitness in the dairy niche. This study gives the first picture of the stable versus variable regions in L. casei and provides valuable insights into evolution, lifestyle adaptation, and metabolic diversity of L. casei. PMID:20333194

Cai, Hui; Thompson, Rebecca; Budinich, Mateo F; Broadbent, Jeff R; Steele, James L

2009-01-01

168

A time-invariant principle of genome evolution Subhajyoti De1  

E-print Network

A time-invariant principle of genome evolution Subhajyoti De1 and M. Madan Babu1 Medical Research (received for review December 19, 2009) Uncovering general principles of genome evolution that are time genomes that diverged at different times across germ- and somatic-cell lineages: (i) the reference human

Babu, M. Madan

169

Reconstructing the Evolution of Brachypodium Genomes Using Comparative Chromosome Painting  

PubMed Central

Brachypodium distachyon is a model for the temperate cereals and grasses and has a biology, genomics infrastructure and cytogenetic platform fit for purpose. It is a member of a genus with fewer than 20 species, which have different genome sizes, basic chromosome numbers and ploidy levels. The phylogeny and interspecific relationships of this group have not to date been resolved by sequence comparisons and karyotypical studies. The aims of this study are not only to reconstruct the evolution of Brachypodium karyotypes to resolve the phylogeny, but also to highlight the mechanisms that shape the evolution of grass genomes. This was achieved through the use of comparative chromosome painting (CCP) which hybridises fluorescent, chromosome-specific probes derived from B. distachyon to homoeologous meiotic chromosomes of its close relatives. The study included five diploids (B. distachyon 2n?=?10, B. sylvaticum 2n?=?18, B. pinnatum 2n?=?16; 2n?=?18, B. arbuscula 2n?=?18 and B. stacei 2n?=?20) three allotetraploids (B. pinnatum 2n?=?28, B. phoenicoides 2n?=?28 and B. hybridum 2n?=?30), and two species of unknown ploidy (B. retusum 2n?=?38 and B. mexicanum 2n?=?40). On the basis of the patterns of hybridisation and incorporating published data, we propose two alternative, but similar, models of karyotype evolution in the genus Brachypodium. According to the first model, the extant genome of B. distachyon derives from B. mexicanum or B. stacei by several rounds of descending dysploidy, and the other diploids evolve from B. distachyon via ascending dysploidy. The allotetraploids arise by interspecific hybridisation and chromosome doubling between B. distachyon and other diploids. The second model differs from the first insofar as it incorporates an intermediate 2n?=?18 species between the B. mexicanum or B. stacei progenitors and the dysploidic B. distachyon. PMID:25493646

Betekhtin, Alexander; Jenkins, Glyn; Hasterok, Robert

2014-01-01

170

Episodic Evolution and Adaptation of Chloroplast Genomes in Ancestral Grasses  

PubMed Central

Background It has been suggested that the chloroplast genomes of the grass family, Poaceae, have undergone an elevated evolutionary rate compared to most other angiosperms, yet the details of this phenomenon have remained obscure. To know how the rate change occurred during evolution, estimation of the time-scale with reliable calibrations is needed. The recent finding of 65 Ma grass phytoliths in Cretaceous dinosaur coprolites places the diversification of the grasses to the Cretaceous period, and provides a reliable calibration in studying the tempo and mode of grass chloroplast evolution. Methodology/Principal Findings By using chloroplast genome data from angiosperms and by taking account of new paleontological evidence, we now show that episodic rate acceleration both in terms of non-synonymous and synonymous substitutions occurred in the common ancestral branch of the core Poaceae (a group formed by rice, wheat, maize, and their allies) accompanied by adaptive evolution in several chloroplast proteins, while the rate reverted to the slow rate typical of most monocot species in the terminal branches. Conclusions/Significance Our finding of episodic rate acceleration in the ancestral grasses accompanied by adaptive molecular evolution has a profound bearing on the evolution of grasses, which form a highly successful group of plants. The widely used model for estimating divergence times was based on the assumption of correlated rates between ancestral and descendant lineages. However, the assumption is proved to be inadequate in approximating the episodic rate acceleration in the ancestral grasses, and the assumption of independent rates is more appropriate. This finding has implications for studies of molecular evolutionary rates and time-scale of evolution in other groups of organisms. PMID:19390686

Zhong, Bojian; Yonezawa, Takahiro; Zhong, Yang; Hasegawa, Masami

2009-01-01

171

The Complete Chloroplast and Mitochondrial Genome Sequences of Boea hygrometrica: Insights into the Evolution of Plant Organellar Genomes  

PubMed Central

The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage. PMID:22291979

Wang, Xumin; Deng, Xin; Zhang, Xiaowei; Hu, Songnian; Yu, Jun

2012-01-01

172

Genome duplication and the evolution of conspecific pollen precedence  

PubMed Central

Conspecific pollen precedence can be a strong reproductive barrier between polyploid and diploid species, but the role of genome multiplication in the evolution of this barrier has not been investigated. Here, we examine the direct effect of genome duplication on the evolution of pollen siring success in tetraploid Chamerion angustifolium. To separate the effects of genome duplication from selection after duplication, we compared pollen siring success of synthesized tetraploids (neotetraploids) with that of naturally occurring tetraploids by applying 2x, 4x (neo or established) or 2x + 4x pollen to diploid and tetraploid flowers. Seed set increased in diploids and decreased in both types of tetraploids as the proportion of pollen from diploid plants increased. Based on offspring ploidy from mixed-ploidy pollinations, pollen of the maternal ploidy always sired the majority of offspring but was strongest in established tetraploids and weakest in neotetraploids. Pollen from established tetraploids had significantly higher siring rates than neotetraploids when deposited on diploid (4xest = 47.2%, 4xneo = 27.1%) and on tetraploid recipients (4xest = 91.9%, 4xneo = 56.0%). Siring success of established tetraploids exceeded that of neotetraploids despite having similar pollen production per anther and pollen diameter. Our results suggest that, while pollen precedence can arise in association with the duplication event, the strength of polyploid siring success evolves after the duplication event. PMID:21123263

Baldwin, Sarah J.; Husband, Brian C.

2011-01-01

173

Thermodynamic Basis for the Emergence of Genomes during Prebiotic Evolution  

PubMed Central

The RNA world hypothesis views modern organisms as descendants of RNA molecules. The earliest RNA molecules must have been random sequences, from which the first genomes that coded for polymerase ribozymes emerged. The quasispecies theory by Eigen predicts the existence of an error threshold limiting genomic stability during such transitions, but does not address the spontaneity of changes. Following a recent theoretical approach, we applied the quasispecies theory combined with kinetic/thermodynamic descriptions of RNA replication to analyze the collective behavior of RNA replicators based on known experimental kinetics data. We find that, with increasing fidelity (relative rate of base-extension for Watson-Crick versus mismatched base pairs), replications without enzymes, with ribozymes, and with protein-based polymerases are above, near, and below a critical point, respectively. The prebiotic evolution therefore must have crossed this critical region. Over large regions of the phase diagram, fitness increases with increasing fidelity, biasing random drifts in sequence space toward ‘crystallization.’ This region encloses the experimental nonenzymatic fidelity value, favoring evolutions toward polymerase sequences with ever higher fidelity, despite error rates above the error catastrophe threshold. Our work shows that experimentally characterized kinetics and thermodynamics of RNA replication allow us to determine the physicochemical conditions required for the spontaneous crystallization of biological information. Our findings also suggest that among many potential oligomers capable of templated replication, RNAs may have evolved to form prebiotic genomes due to the value of their nonenzymatic fidelity. PMID:22693440

Woo, Hyung-June; Vijaya Satya, Ravi; Reifman, Jaques

2012-01-01

174

Genome duplication and the evolution of conspecific pollen precedence.  

PubMed

Conspecific pollen precedence can be a strong reproductive barrier between polyploid and diploid species, but the role of genome multiplication in the evolution of this barrier has not been investigated. Here, we examine the direct effect of genome duplication on the evolution of pollen siring success in tetraploid Chamerion angustifolium. To separate the effects of genome duplication from selection after duplication, we compared pollen siring success of synthesized tetraploids (neotetraploids) with that of naturally occurring tetraploids by applying 2x, 4x (neo or established) or 2x + 4x pollen to diploid and tetraploid flowers. Seed set increased in diploids and decreased in both types of tetraploids as the proportion of pollen from diploid plants increased. Based on offspring ploidy from mixed-ploidy pollinations, pollen of the maternal ploidy always sired the majority of offspring but was strongest in established tetraploids and weakest in neotetraploids. Pollen from established tetraploids had significantly higher siring rates than neotetraploids when deposited on diploid (4x(est) = 47.2%, 4x(neo) = 27.1%) and on tetraploid recipients (4x(est) = 91.9%, 4x(neo) = 56.0%). Siring success of established tetraploids exceeded that of neotetraploids despite having similar pollen production per anther and pollen diameter. Our results suggest that, while pollen precedence can arise in association with the duplication event, the strength of polyploid siring success evolves after the duplication event. PMID:21123263

Baldwin, Sarah J; Husband, Brian C

2011-07-01

175

Phylostratigraphic bias creates spurious patterns of genome evolution.  

PubMed

Phylostratigraphy is a method for dating the evolutionary emergence of a gene or gene family by identifying its homologs across the tree of life, typically by using BLAST searches. Applying this method to all genes in a species, or genomic phylostratigraphy, allows investigation of genome-wide patterns in new gene origination at different evolutionary times and thus has been extensively used. However, gene age estimation depends on the challenging task of detecting distant homologs via sequence similarity, which is expected to have differential accuracies for different genes. Here, we evaluate the accuracy of phylostratigraphy by realistic computer simulation with parameters estimated from genomic data, and investigate the impact of its error on findings of genome evolution. We show that 1) phylostratigraphy substantially underestimates gene age for a considerable fraction of genes, 2) the error is especially serious when the protein evolves rapidly, is short, and/or its most conserved block of sites is small, and 3) these errors create spurious nonuniform distributions of various gene properties among age groups, many of which cannot be predicted a priori. Given the high likelihood that conclusions about gene age are faulty, we advocate the use of realistic simulation to determine if observations from phylostratigraphy are explainable, at least qualitatively, by a null model of biased measurement, and in all cases, critical evaluation of results. PMID:25312911

Moyers, Bryan A; Zhang, Jianzhi

2015-01-01

176

Genomic islands: tools of bacterial horizontal gene transfer and evolution  

PubMed Central

Bacterial genomes evolve through mutations, rearrangements or horizontal gene transfer. Besides the core genes encoding essential metabolic functions, bacterial genomes also harbour a number of accessory genes acquired by horizontal gene transfer that might be beneficial under certain environmental conditions. The horizontal gene transfer contributes to the diversification and adaptation of microorganisms, thus having an impact on the genome plasticity. A significant part of the horizontal gene transfer is or has been facilitated by genomic islands (GEIs). GEIs are discrete DNA segments, some of which are mobile and others which are not, or are no longer mobile, which differ among closely related strains. A number of GEIs are capable of integration into the chromosome of the host, excision, and transfer to a new host by transformation, conjugation or transduction. GEIs play a crucial role in the evolution of a broad spectrum of bacteria as they are involved in the dissemination of variable genes, including antibiotic resistance and virulence genes leading to generation of hospital ‘superbugs’, as well as catabolic genes leading to formation of new metabolic pathways. Depending on the composition of gene modules, the same type of GEIs can promote survival of pathogenic as well as environmental bacteria. PMID:19178566

Juhas, Mario; van der Meer, Jan Roelof; Gaillard, Muriel; Harding, Rosalind M; Hood, Derek W; Crook, Derrick W

2009-01-01

177

Camelid genomes reveal evolution and adaptation to desert environments.  

PubMed

Bactrian camel (Camelus bactrianus), dromedary (Camelus dromedarius) and alpaca (Vicugna pacos) are economically important livestock. Although the Bactrian camel and dromedary are large, typically arid-desert-adapted mammals, alpacas are adapted to plateaus. Here we present high-quality genome sequences of these three species. Our analysis reveals the demographic history of these species since the Tortonian Stage of the Miocene and uncovers a striking correlation between large fluctuations in population size and geological time boundaries. Comparative genomic analysis reveals complex features related to desert adaptations, including fat and water metabolism, stress responses to heat, aridity, intense ultraviolet radiation and choking dust. Transcriptomic analysis of Bactrian camels further reveals unique osmoregulation, osmoprotection and compensatory mechanisms for water reservation underpinned by high blood glucose levels. We hypothesize that these physiological mechanisms represent kidney evolutionary adaptations to the desert environment. This study advances our understanding of camelid evolution and the adaptation of camels to arid-desert environments. PMID:25333821

Wu, Huiguang; Guang, Xuanmin; Al-Fageeh, Mohamed B; Cao, Junwei; Pan, Shengkai; Zhou, Huanmin; Zhang, Li; Abutarboush, Mohammed H; Xing, Yanping; Xie, Zhiyuan; Alshanqeeti, Ali S; Zhang, Yanru; Yao, Qiulin; Al-Shomrani, Badr M; Zhang, Dong; Li, Jiang; Manee, Manee M; Yang, Zili; Yang, Linfeng; Liu, Yiyi; Zhang, Jilin; Altammami, Musaad A; Wang, Shenyuan; Yu, Lili; Zhang, Wenbin; Liu, Sanyang; Ba, La; Liu, Chunxia; Yang, Xukui; Meng, Fanhua; Wang, Shaowei; Li, Lu; Li, Erli; Li, Xueqiong; Wu, Kaifeng; Zhang, Shu; Wang, Junyi; Yin, Ye; Yang, Huanming; Al-Swailem, Abdulaziz M; Wang, Jun

2014-01-01

178

Rates of phenotypic and genomic evolution during the Cambrian explosion.  

PubMed

The near-simultaneous appearance of most modern animal body plans (phyla) ~530 million years ago during the Cambrian explosion is strong evidence for a brief interval of rapid phenotypic and genetic innovation, yet the exact speed and nature of this grand adaptive radiation remain debated. Crucially, rates of morphological evolution in the past (i.e., in ancestral lineages) can be inferred from phenotypic differences among living organisms-just as molecular evolutionary rates in ancestral lineages can be inferred from genetic divergences. We here employed Bayesian and maximum likelihood phylogenetic clock methods on an extensive anatomical and genomic data set for arthropods, the most diverse phylum in the Cambrian and today. Assuming an Ediacaran origin for arthropods, phenotypic evolution was ~4 times faster, and molecular evolution ~5.5 times faster, during the Cambrian explosion compared to all subsequent parts of the Phanerozoic. These rapid evolutionary rates are robust to assumptions about the precise age of arthropods. Surprisingly, these fast early rates do not change substantially even if the radiation of arthropods is compressed entirely into the Cambrian (~542 mega-annum [Ma]) or telescoped into the Cryogenian (~650 Ma). The fastest inferred rates are still consistent with evolution by natural selection and with data from living organisms, potentially resolving "Darwin's dilemma." However, evolution during the Cambrian explosion was unusual (compared to the subsequent Phanerozoic) in that fast rates were present across many lineages. PMID:24035543

Lee, Michael S Y; Soubrier, Julien; Edgecombe, Gregory D

2013-10-01

179

Genomic Fossils Calibrate the Long-Term Evolution of Hepadnaviruses  

PubMed Central

Because most extant viruses mutate rapidly and lack a true fossil record, their deep evolution and long-term substitution rates remain poorly understood. In addition to retroviruses, which rely on chromosomal integration for their replication, many other viruses replicate in the nucleus of their host's cells and are therefore prone to endogenization, a process that involves integration of viral DNA into the host's germline genome followed by long-term vertical inheritance. Such endogenous viruses are highly valuable as they provide a molecular fossil record of past viral invasions, which may be used to decipher the origins and long-term evolutionary characteristics of modern pathogenic viruses. Hepadnaviruses (Hepadnaviridae) are a family of small, partially double-stranded DNA viruses that include hepatitis B viruses. Here we report the discovery of endogenous hepadnaviruses in the genome of the zebra finch. We used a combination of cross-species analysis of orthologous insertions, molecular dating, and phylogenetic analyses to demonstrate that hepadnaviruses infiltrated repeatedly the germline genome of passerine birds. We provide evidence that some of the avian hepadnavirus integration events are at least 19 My old, which reveals a much deeper ancestry of Hepadnaviridae than could be inferred based on the coalescence times of modern hepadnaviruses. Furthermore, the remarkable sequence similarity between endogenous and extant avian hepadnaviruses (up to 75% identity) suggests that long-term substitution rates for these viruses are on the order of 10?8 substitutions per site per year, which is a 1,000-fold slower than short-term rates estimated based on the sequences of circulating hepadnaviruses. Together, these results imply a drastic shift in our understanding of the time scale of hepadnavirus evolution, and suggest that the rapid evolutionary dynamics characterizing modern avian hepadnaviruses do not reflect their mode of evolution on a deep time scale. PMID:20927357

Gilbert, Clément; Feschotte, Cédric

2010-01-01

180

Isolation of Rhinovirus Intertypes Related to Either Rhinoviruses 12 and 78 or 36 and 58  

PubMed Central

Many antigenic relationships have been demonstrated among the 90 rhinovirus serotypes. Among these are reciprocal cross-reactions between serotypes 12 and 78 and between serotypes 36 and 58. Neutralizing-antibody titers to homologous virus of the related pairs are generally 16- to 64-fold higher than to the heterologous member, and neutralization by heterologous antiserum in the pools is not seen with prototype viruses. However, a number of isolates were encountered which gave anomolous results when tested with the antiserum pools in fetal tonsil cells. When these strains were tested in fetal tonsil cells against the monospecific antisera composing the pools, it was shown that several isolates were apparently intertypes, neutralized equally by antisera to related types 12 and 78 or 36 and 58. Isolate 1104, an apparent intertype between serotypes 36 and 58, and isolate 9433, intermediate between serotypes 12 and 78, were selected to use as immunogens in rabbits. When tested in HeLa cells, antiserum prepared against isolate 1104 neutralized isolates 1104, 58, and 36 at titers of 1280, 640, and 40, respectively. The k values against isolates 1104, 58, and 36 were 356, 145, and 4, respectively, indicating a much closer relationship of isolate 1104 to type 58 than to type 36. Similar results were obtained with isolate 9433. The neutralizing-antibody titer of anti-9433 serum was 160 against both 9433 and type 78 and was 20 against type 12. The k values of anti-9433 serum against 9433, 78, and 12 were 161, 111, and 2, respectively, indicating that 9433 and 78 were nearly identical. However, the respective neutralizing-antibody titers of anti-78 serum to type 78 and isolate 9433 were 640 and 80, and the respective k values were 172 and 85, demonstrating some antigenic differences. The discovery of intertypes confirms the antigenic variation among rhinoviruses, and the intertypes may represent links in the evolution of types. These observations also demonstrate that isolates in first or second passage in diploid cells may display an antigenic profile different from that seen in HeLa cells at high HeLa cell passage level. PMID:6299958

Halfpap, Laurel M.; Cooney, Marion K.

1983-01-01

181

Equine Rhinovirus 1 is More Closely Related to Foot-And-Mouth Disease Virus than to Other Picornaviruses  

Microsoft Academic Search

Equine rhinovirus 1 (ERhV1) is a respiratory pathogen of horses which has an uncertain taxonomic status. We have determined the nucleotide sequence of the ERhV1 genome except for a small region at the 5' end. The predicted polyprotein was encoded by 6741 nucleotides and possessed a typical picornavirus proteolytic cleavage pattern, including a leader polypeptide. The genomic structure and predicted

Feng Li; Glenn F. Browning; Michael J. Studdert; Brendan S. Crabb

1996-01-01

182

Insights into the genome evolution of Yersinia pestis through whole genome comparison with Yersinia pseudotuberculosis  

SciTech Connect

Yersinia pestis, the causative agent of plague, is a highly uniform clone that diverged recently from the enteric pathogen Yersinia pseudotuberculosis. Despite their close genetic relationship, they differ radically in their pathogenicity and transmission. Here we report the complete genomic sequence of Y. pseudotuberculosis IP32953 and its use for detailed genome comparisons to available Y. pestis sequences. Analyses of identified differences across a panel of Yersinia isolates from around the world reveals 32 Y. pestis chromosomal genes that, together with the two Y. pestis-specific plasmids, represent the only new genetic material in Y. pestis acquired since the divergence from Y. pseudotuberculosis. In contrast, 149 new pseudogenes (doubling the previous estimate) and 317 genes absent from Y. pestis were detected, indicating that as many as 13% of Y. pseudotuberculosis genes no longer function in Y. pestis. Extensive IS-mediated genome rearrangements and reductive evolution through massive gene loss, resulting in elimination and modification of pre-existing gene expression pathways appear to be more important than acquisition of new genes in the evolution of Y. pestis. These results provide a sobering example of how a highly virulent epidemic clone can suddenly emerge from a less virulent, closely related progenitor.

Souza, B; Stoutland, P; Derbise, A; Georgescu, A; Elliott, J; Land, M; Marceau, M; Motin, V; Hinnebusch, J; Simonet, M; Medigue, C; Dacheux, D; Chenal-Francisque, V; Regala, W; Brubaker, R R; Carniel, E; Chain, P; Verguez, L; Fowler, J; Garcia, E; Lamerdin, J; Hauser, L; Larimer, F

2004-01-24

183

Comparative Genomics Provide Insights into Evolution of Trichoderma Nutrition Style  

PubMed Central

Saprotrophy on plant biomass is a recently developed nutrition strategy for Trichoderma. However, the physiology and evolution of this new nutrition strategy is still elusive. We report the deep sequencing and analysis of the genome of Trichoderma longibrachiatum, an efficient cellulase producer. The 31.7-Mb genome, smallest among the sequenced Trichoderma species, encodes fewer nutrition-related genes than saprotrophic T. reesei (Tr), including glycoside hydrolases and nonribosomal peptide synthetase–polyketide synthase. Homology and phylogenetic analyses suggest that a large number of nutrition-related genes, including GH18 chitinases, ?-1,3/1,6-glucanases, cellulolytic enzymes, and hemicellulolytic enzymes, were lost in the common ancestor of T. longibrachiatum (Tl) and Tr. dN/dS (?) calculation indicates that all the nutrition-related genes analyzed are under purifying selection. Cellulolytic enzymes, the key enzymes for saprotrophy on plant biomass, are under stronger purifying selection pressure in Tl and Tr than in mycoparasitic species, suggesting that development of the nutrition strategy of saprotrophy on plant biomass has increased the selection pressure. In addition, aspartic proteases, serine proteases, and metalloproteases are subject to stronger purifying selection pressure in Tl and Tr, suggesting that these enzymes may also play important roles in the nutrition. This study provides insights into the physiology and evolution of the nutrition strategy of Trichoderma. PMID:24482532

Xie, Bin-Bin; Qin, Qi-Long; Shi, Mei; Chen, Lei-Lei; Shu, Yan-Li; Luo, Yan; Wang, Xiao-Wei; Rong, Jin-Cheng; Gong, Zhi-Ting; Li, Dan; Sun, Cai-Yun; Liu, Gui-Ming; Dong, Xiao-Wei; Pang, Xiu-Hua; Huang, Feng; Liu, Weifeng; Chen, Xiu-Lan; Zhou, Bai-Cheng; Zhang, Yu-Zhong; Song, Xiao-Yan

2014-01-01

184

Comparative genomics provide insights into evolution of trichoderma nutrition style.  

PubMed

Saprotrophy on plant biomass is a recently developed nutrition strategy for Trichoderma. However, the physiology and evolution of this new nutrition strategy is still elusive. We report the deep sequencing and analysis of the genome of Trichoderma longibrachiatum, an efficient cellulase producer. The 31.7-Mb genome, smallest among the sequenced Trichoderma species, encodes fewer nutrition-related genes than saprotrophic T. reesei (Tr), including glycoside hydrolases and nonribosomal peptide synthetase-polyketide synthase. Homology and phylogenetic analyses suggest that a large number of nutrition-related genes, including GH18 chitinases, ?-1,3/1,6-glucanases, cellulolytic enzymes, and hemicellulolytic enzymes, were lost in the common ancestor of T. longibrachiatum (Tl) and Tr. dN/dS (?) calculation indicates that all the nutrition-related genes analyzed are under purifying selection. Cellulolytic enzymes, the key enzymes for saprotrophy on plant biomass, are under stronger purifying selection pressure in Tl and Tr than in mycoparasitic species, suggesting that development of the nutrition strategy of saprotrophy on plant biomass has increased the selection pressure. In addition, aspartic proteases, serine proteases, and metalloproteases are subject to stronger purifying selection pressure in Tl and Tr, suggesting that these enzymes may also play important roles in the nutrition. This study provides insights into the physiology and evolution of the nutrition strategy of Trichoderma. PMID:24482532

Xie, Bin-Bin; Qin, Qi-Long; Shi, Mei; Chen, Lei-Lei; Shu, Yan-Li; Luo, Yan; Wang, Xiao-Wei; Rong, Jin-Cheng; Gong, Zhi-Ting; Li, Dan; Sun, Cai-Yun; Liu, Gui-Ming; Dong, Xiao-Wei; Pang, Xiu-Hua; Huang, Feng; Liu, Weifeng; Chen, Xiu-Lan; Zhou, Bai-Cheng; Zhang, Yu-Zhong; Song, Xiao-Yan

2014-02-01

185

Tracing the Evolution of Streptophyte Algae and Their Mitochondrial Genome  

PubMed Central

Six monophyletic groups of charophycean green algae are recognized within the Streptophyta. Although incongruent with earlier studies based on genes from three cellular compartments, chloroplast and nuclear phylogenomic analyses have resolved identical relationships among these groups, placing the Zygnematales or the Zygnematales + Coleochaetales as sister to land plants. The present investigation aimed at determining whether this consensus view is supported by the mitochondrial genome and at gaining insight into mitochondrial DNA (mtDNA) evolution within and across streptophyte algal lineages and during the transition toward the first land plants. We present here the newly sequenced mtDNAs of representatives of the Klebsormidiales (Entransia fimbriata and Klebsormidium spec.) and Zygnematales (Closterium baillyanum and Roya obtusa) and compare them with their homologs in other charophycean lineages as well as in selected embryophyte and chlorophyte lineages. Our results indicate that important changes occurred at the levels of genome size, gene order, and intron content within the Zygnematales. Although the representatives of the Klebsormidiales display more similarity in genome size and intron content, gene order seems more fluid and gene losses more frequent than in other charophycean lineages. In contrast, the two members of the Charales display an extremely conservative pattern of mtDNA evolution. Collectively, our analyses of gene order and gene content and the phylogenies we inferred from 40 mtDNA-encoded proteins failed to resolve the relationships among the Zygnematales, Coleochaetales, and Charales; however, they are consistent with previous phylogenomic studies in favoring that the morphologically complex Charales are not sister to land plants. PMID:24022472

Turmel, Monique; Otis, Christian; Lemieux, Claude

2013-01-01

186

Tracing the evolution of streptophyte algae and their mitochondrial genome.  

PubMed

Six monophyletic groups of charophycean green algae are recognized within the Streptophyta. Although incongruent with earlier studies based on genes from three cellular compartments, chloroplast and nuclear phylogenomic analyses have resolved identical relationships among these groups, placing the Zygnematales or the Zygnematales + Coleochaetales as sister to land plants. The present investigation aimed at determining whether this consensus view is supported by the mitochondrial genome and at gaining insight into mitochondrial DNA (mtDNA) evolution within and across streptophyte algal lineages and during the transition toward the first land plants. We present here the newly sequenced mtDNAs of representatives of the Klebsormidiales (Entransia fimbriata and Klebsormidium spec.) and Zygnematales (Closterium baillyanum and Roya obtusa) and compare them with their homologs in other charophycean lineages as well as in selected embryophyte and chlorophyte lineages. Our results indicate that important changes occurred at the levels of genome size, gene order, and intron content within the Zygnematales. Although the representatives of the Klebsormidiales display more similarity in genome size and intron content, gene order seems more fluid and gene losses more frequent than in other charophycean lineages. In contrast, the two members of the Charales display an extremely conservative pattern of mtDNA evolution. Collectively, our analyses of gene order and gene content and the phylogenies we inferred from 40 mtDNA-encoded proteins failed to resolve the relationships among the Zygnematales, Coleochaetales, and Charales; however, they are consistent with previous phylogenomic studies in favoring that the morphologically complex Charales are not sister to land plants. PMID:24022472

Turmel, Monique; Otis, Christian; Lemieux, Claude

2013-01-01

187

Fugu Genome Analysis Provides Evidence for a Whole-Genome Duplication Early During the Evolution of Ray-Finned Fishes  

Microsoft Academic Search

With about 24,000 extant species, teleosts are the largest group of vertebrates. They constitute more than 99% of the ray- finned fishes (Actinopterygii) that diverged from the lobe-finned fish lineage (Sarcopterygii) about 450 MYA. Although the role of genome duplication in the evolution of vertebrates is now established, its role in structuring the teleost genomes has been controversial. At least

Alan Christoffels; Esther G. L. Koh; Jer-ming Chia; Sydney Brenner; Samuel Aparicio; Byrappa Venkatesh

2004-01-01

188

Identification of a Novel Human Rhinovirus C Type by Antibody Capture VIDISCA-454  

PubMed Central

Causative agents for more than 30 percent of respiratory infections remain unidentified, suggesting that unknown respiratory pathogens might be involved. In this study, antibody capture VIDISCA-454 (virus discovery cDNA-AFLP combined with Roche 454 high-throughput sequencing) resulted in the discovery of a novel type of rhinovirus C (RV-C). The virus has an RNA genome of at least 7054 nt and carries the characteristics of rhinovirus C species. The gene encoding viral protein 1, which is used for typing, has only 81% nucleotide sequence identity with the closest known RV-C type, and, therefore, the virus represents the first member of a novel type, named RV-C54. PMID:25606972

Jazaeri Farsani, Seyed Mohammad; Oude Munnink, Bas B.; Canuti, Marta; Deijs, Martin; Cotten, Matthew; Jebbink, Maarten F.; Verhoeven, Joost; Kellam, Paul; Loens, Katherine; Goossens, Herman; Ieven, Margareta; van der Hoek, Lia

2015-01-01

189

Identification of a Novel Human Rhinovirus C Type by Antibody Capture VIDISCA-454.  

PubMed

Causative agents for more than 30 percent of respiratory infections remain unidentified, suggesting that unknown respiratory pathogens might be involved. In this study, antibody capture VIDISCA-454 (virus discovery cDNA-AFLP combined with Roche 454 high-throughput sequencing) resulted in the discovery of a novel type of rhinovirus C (RV-C). The virus has an RNA genome of at least 7054 nt and carries the characteristics of rhinovirus C species. The gene encoding viral protein 1, which is used for typing, has only 81% nucleotide sequence identity with the closest known RV-C type, and, therefore, the virus represents the first member of a novel type, named RV-C54. PMID:25606972

Jazaeri Farsani, Seyed Mohammad; Oude Munnink, Bas B; Canuti, Marta; Deijs, Martin; Cotten, Matthew; Jebbink, Maarten F; Verhoeven, Joost; Kellam, Paul; Loens, Katherine; Goossens, Herman; Ieven, Margareta; van der Hoek, Lia

2015-01-01

190

Genome Growth and the Evolution of the Genotype-Phenotype Map  

E-print Network

Genome Growth and the Evolution of the Genotype-Phenotype Map Lee Altenberg Institute of Statistics and Decision Sciences, Duke University, Durham, NC 27708-0251 U.S.A The evolution of new genes differs fundamentally from evolution through allelic substitution, because it is through the evolution

Fernandez, Thomas

191

A scenario of mitochondrial genome evolution in maize based on rearrangement events  

Microsoft Academic Search

BACKGROUND: Despite their monophyletic origin, animal and plant mitochondrial genomes have been described as exhibiting different modes of evolution. Indeed, plant mitochondrial genomes feature a larger size, a lower mutation rate and more rearrangements than their animal counterparts. Gene order variation in animal mitochondrial genomes is often described as being due to translocation and inversion events, but tandem duplication followed

Aude Darracq; Jean-Stéphane Varré; Pascal Touzet

2010-01-01

192

The western painted turtle genome, a model for the evolution of extreme physiological  

E-print Network

The western painted turtle genome, a model for the evolution of extreme physiological adaptations://genomebiology.com/2013/14/3/R28 (28 March 2013) #12;RESEARCH Open Access The western painted turtle genome, a model and Richard K Wilson3 Abstract Background: We describe the genome of the western painted turtle, Chrysemys

Castoe, Todd A.

193

Evolution of Weediness and Invasiveness: Charting the Course for Weed Genomics  

E-print Network

, and mechanisms of control. In much the same way, genomic approaches promise to extend our insights againEvolution of Weediness and Invasiveness: Charting the Course for Weed Genomics C. Neal Stewart, Jr these important features of weed biology. However, the genomic tools and resources available for weed research

Rieseberg, Loren

194

Palaeogenomics of pterosaurs and the evolution of small genome size in flying vertebrates  

PubMed Central

The two living groups of flying vertebrates, birds and bats, both have constricted genome sizes compared with their close relatives. But nothing is known about the genomic characteristics of pterosaurs, which took to the air over 70?Myr before birds and were the first group of vertebrates to evolve powered flight. Here, we estimate genome size for four species of pterosaurs and seven species of basal archosauromorphs using a Bayesian comparative approach. Our results suggest that small genomes commonly associated with flight in bats and birds also evolved in pterosaurs, and that the rate of genome-size evolution is proportional to genome size within amniotes, with the fastest rates occurring in lineages with the largest genomes. We examine the role that drift may have played in the evolution of genome size within tetrapods by testing for correlated evolution between genome size and body size, but find no support for this hypothesis. By contrast, we find evidence suggesting that a combination of adaptation and phylogenetic inertia best explains the correlated evolution of flight and genome-size contraction. These results suggest that small genome/cell size evolved prior to or concurrently with flight in pterosaurs. We predict that, similar to the pattern seen in theropod dinosaurs, genome-size contraction preceded flight in pterosaurs and bats. PMID:18940771

Organ, Chris L.; Shedlock, Andrew M.

2008-01-01

195

The Mitochondrial Genome of Soybean Reveals Complex Genome Structures and Gene Evolution at Intercellular and Phylogenetic Levels  

PubMed Central

Determining mitochondrial genomes is important for elucidating vital activities of seed plants. Mitochondrial genomes are specific to each plant species because of their variable size, complex structures and patterns of gene losses and gains during evolution. This complexity has made research on the soybean mitochondrial genome difficult compared with its nuclear and chloroplast genomes. The present study helps to solve a 30-year mystery regarding the most complex mitochondrial genome structure, showing that pairwise rearrangements among the many large repeats may produce an enriched molecular pool of 760 circles in seed plants. The soybean mitochondrial genome harbors 58 genes of known function in addition to 52 predicted open reading frames of unknown function. The genome contains sequences of multiple identifiable origins, including 6.8 kb and 7.1 kb DNA fragments that have been transferred from the nuclear and chloroplast genomes, respectively, and some horizontal DNA transfers. The soybean mitochondrial genome has lost 16 genes, including nine protein-coding genes and seven tRNA genes; however, it has acquired five chloroplast-derived genes during evolution. Four tRNA genes, common among the three genomes, are derived from the chloroplast. Sizeable DNA transfers to the nucleus, with pericentromeric regions as hotspots, are observed, including DNA transfers of 125.0 kb and 151.6 kb identified unambiguously from the soybean mitochondrial and chloroplast genomes, respectively. The soybean nuclear genome has acquired five genes from its mitochondrial genome. These results provide biological insights into the mitochondrial genome of seed plants, and are especially helpful for deciphering vital activities in soybean. PMID:23431381

Chang, Shengxin; Wang, Yankun; Lu, Jiangjie; Gai, Junyi; Li, Jijie; Chu, Pu; Guan, Rongzhan; Zhao, Tuanjie

2013-01-01

196

The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage  

E-print Network

turtle genome, a model for the evolution of extreme physiological adaptationsturtles Freeze tolerance constitutes a second suite of physiological adaptationsturtle genome, a model for the evolution of extreme physiological adaptations

2013-01-01

197

Genomic diversity and evolution of papillomaviruses in rhesus monkeys.  

PubMed Central

We are studying the diversity of and relationships among papillomaviruses (PVs) to understand the modes and timescales of PV evolution and in the hope of finding animal PVs that may serve as model systems for disease caused by human PVs (HPVs). Toward this goal, we have examined 326 genital samples from rhesus monkeys and long-tailed macaques with a PCR protocol optimized for detecting genital HPV types. In 28 of the rhesus monkey samples, we found amplicons derived from 12 different and novel PV genomes, RhPV-a to RhPV-m, with the likely taxonomic status of "type." The frequency with which novel RhPVs were detected suggests that rhesus monkeys may play host to PVs with a diversity similar to that of humans. In phylogenetic trees, all 12 of the different RhPVs and the previously described type RhPV-1 were members of the genital HPV supergroup and formed three minor branches distinct from the 11 branches formed by genital HPVs. We also identified a novel PV amplicon, MfPV-a, from a long-tailed macaque, a species belonging to the same genus as rhesus monkeys. MfPV-a turned out to be a close relative of five RhPVs. It appears that the evolution of primate lineages leading to the genus Macaca and to humans created transmission barriers for PVs, resulting in viral evolution closely linked to the host. Additional support for the linked-evolution hypothesis comes from considering the phylogenetic association of two other ape and monkey PVs with the genital HPVs, the supergroup formed by at least seven ungulate PVs, and the isolated phylogenetic position of the only known bird PV. PMID:9188556

Chan, S Y; Bernard, H U; Ratterree, M; Birkebak, T A; Faras, A J; Ostrow, R S

1997-01-01

198

Reassortment and Concerted Evolution in Banana Bunchy Top Virus Genomes?  

PubMed Central

The nanovirus Banana bunchy top virus (BBTV) has six standard components in its genome and occasionally contains components encoding additional Rep (replication initiation protein) genes. Phylogenetic network analysis of coding sequences of DNA 1 and 3 confirmed the two major groups of BBTV, a Pacific and an Asian group, but show evidence of web-like phylogenies for some genes. Phylogenetic analysis of 102 major common regions (CR-Ms) from all six components showed a possible concerted evolution within the Pacific group, which is likely due to recombination in this region. The CR-M of additional Rep genes is close to that of DNA 1 and 2. Comparison of tree topologies constructed with DNA 1 and DNA 3 coding sequences of 14 BBTV isolates showed distinct phylogenetic histories based on Kishino-Hasegawa and Shimodaira-Hasegawa tests. The results of principal component analysis of amino acid and codon usages indicate that DNA 1 and 3 have a codon bias different from that of all other genes of nanoviruses, including all currently known additional Rep genes of BBTV, which suggests a possible ancient genome reassortment event between distinctive nanoviruses. PMID:17135318

Hu, Jer-Ming; Fu, Hui-Chuan; Lin, Chia-Hua; Su, Hong-Ji; Yeh, Hsin-Hung

2007-01-01

199

Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution  

Microsoft Academic Search

We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome-composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes-provides a new perspective on vertebrate genome evolution,

LaDeana W. Hillier; Webb Miller; Ewan Birney; Wesley Warren; Ross C. Hardison; Chris P. Ponting; Peer Bork; David W. Burt; Martien A. M. Groenen; Mary E. Delany; Jerry B. Dodgson; Genome assembly; Asif T. Chinwalla; Paul F. Cliften; Sandra W. Clifton; Kimberly D. Delehaunty; Catrina Fronick; Robert S. Fulton; Tina A. Graves; Colin Kremitzki; Dan Layman; Vincent Magrini; John D. McPherson; Tracie L. Miner; Patrick Minx; William E. Nash; Michael N. Nhan; Joanne O. Nelson; Lachlan G. Oddy; Craig S. Pohl; Jennifer Randall-Maher; Scott M. Smith; John W. Wallis; Shiaw-Pyng Yang; Michael N. Romanov; Catherine M. Rondelli; Bob Paton; Jacqueline Smith; David Morrice; Laura Daniels; Helen G. Tempest; Lindsay Robertson; Julio S. Masabanda; Darren K. Griffin; Alain Vignal; Valerie Fillon; Susanne Kerje; Leif Andersson; Richard P. M. Crooijmans; Jan Aerts; Jan J. van der Poel; Hans Ellegren; cDNA sequencing; Randolph B. Caldwell; Simon J. Hubbard; Darren V. Grafham; Andrzej M. Kierzek; Stuart R. McLaren; Ian M. Overton; Hiroshi Arakawa; Kevin J. Beattie; Yuri Bezzubov; Paul E. Boardman; James K. Bonfield; Michael D. R. Croning; Robert M. Davies; Matthew D. Francis; Sean J. Humphray; Carol E. Scott; Ruth G. Taylor; Cheryll Tickle; William R. A. Brown; Jane Rogers; Jean-Marie Buerstedde; Stuart A. Wilson; Ivan Ovcharenko; Laurie Gordon; Susan Lucas; Marcia M. Miller; Hidetoshi Inoko; Takashi Shiina; Jim Kaufman; Jan Salomonsen; Karsten Skjoedt; Gane Ka-Shu Wong; Jun Wang; Bin Liu; Jian Wang; Jun Yu; Huanming Yang; Mikhail Nefedov; Maxim Koriabine; Pieter J. deJong; Leo Goodstadt; Caleb Webber; Nicholas J. Dickens; Ivica Letunic; Mikita Suyama; David Torrents; Christian von Mering; Evgeny M. Zdobnov; Kateryna Makova; Laura Elnitski; Pallavi Eswara; David C. King; Shan Yang; Svitlana Tyekucheva; Anusha Radakrishnan; Robert S. Harris; Francesca Chiaromonte; James Taylor; Jianbin He; Monique Rijnkels; Sam Griffiths-Jones; Michael M. Hoffman; Jessica Severin; Stephen M. J. Searle; Andy S. Law; David Speed; Dave Waddington; Ze Cheng; Eray Tuzun; Zhirong Bao; Paul Flicek; David D. Shteynberg; Michael R. Brent; Jacqueline M. Bye; Elizabeth J. Huckle; Sourav Chatterji; Colin Dewey; Lior Pachter; Andrei Kouranov; Zissimos Mourelatos; Artemis G. Hatzigeorgiou; Andrew H. Paterson; Robert Ivarie; Mikael Brandstrom; Erik Axelsson; Niclas Backstrom; Matthew T. Webster; Olivier Pourquie; Alexandre Reymond; Catherine Ucla; Stylianos E. Antonarakis; Manyuan Long; J. J. Emerson; Esther Betrán; Isabelle Dupanloup; Henrik Kaessmann; Angie S. Hinrichs; Gill Bejerano; Terrence S. Furey; Rachel A. Harte; Brian Raney; Adam Siepel; W. James Kent; David Haussler; Eduardo Eyras; Robert Castelo; Josep F. Abril; Sergi Castellano; Francisco Camara; Genis Parra; Roderic Guigo; Guillaume Bourque; Glenn Tesler; Pavel A. Pevzner; Arian Smit; Lucinda A. Fulton; Elaine R. Mardis; Richard K. Wilson

2004-01-01

200

Insight into Evolution of Gene Regulation Networks from the Opossum Genome  

Microsoft Academic Search

\\u000a The Brazilian short-tailed grey opossum Monodelphis domestica was the first marsupial genome to be sequenced. The high quality draft genome sequence has provided significant new understanding\\u000a of mammal genome evolution, suggesting that innovation in protein coding genes occurs primarily by diversification of existing\\u000a gene families and that truly novel protein coding genes are rare. The opossum genome also highlights the

Matthew J. Wakefield; Anthony T. Papenfuss

201

The Large Genome Constraint Hypothesis: Evolution, Ecology and Phenotype CHARLES A. KNIGHT1,* , NICOLE A. MOLINARI1  

E-print Network

The Large Genome Constraint Hypothesis: Evolution, Ecology and Phenotype CHARLES A. KNIGHT1 Accepted: 18 March 2004 Background and Aims If large genomes are truly saturated with unnecessary `junk genome constraint'. We examine the large genome constraint at three scales: evolution, ecology

Petrov, Dmitri

202

The adaptive evolution of the mammalian mitochondrial genome  

PubMed Central

Background The mitochondria produce up to 95% of a eukaryotic cell's energy through oxidative phosphorylation. The proteins involved in this vital process are under high functional constraints. However, metabolic requirements vary across species, potentially modifying selective pressures. We evaluate the adaptive evolution of 12 protein-coding mitochondrial genes in 41 placental mammalian species by assessing amino acid sequence variation and exploring the functional implications of observed variation in secondary and tertiary protein structures. Results Wide variation in the properties of amino acids were observed at functionally important regions of cytochrome b in species with more-specialized metabolic requirements (such as adaptation to low energy diet or large body size, such as in elephant, dugong, sloth, and pangolin, and adaptation to unusual oxygen requirements, for example diving in cetaceans, flying in bats, and living at high altitudes in alpacas). Signatures of adaptive variation in the NADH dehydrogenase complex were restricted to the loop regions of the transmembrane units which likely function as protons pumps. Evidence of adaptive variation in the cytochrome c oxidase complex was observed mostly at the interface between the mitochondrial and nuclear-encoded subunits, perhaps evidence of co-evolution. The ATP8 subunit, which has an important role in the assembly of F0, exhibited the highest signal of adaptive variation. ATP6, which has an essential role in rotor performance, showed a high adaptive variation in predicted loop areas. Conclusion Our study provides insight into the adaptive evolution of the mtDNA genome in mammals and its implications for the molecular mechanism of oxidative phosphorylation. We present a framework for future experimental characterization of the impact of specific mutations in the function, physiology, and interactions of the mtDNA encoded proteins involved in oxidative phosphorylation. PMID:18318906

da Fonseca, Rute R; Johnson, Warren E; O'Brien, Stephen J; Ramos, Maria João; Antunes, Agostinho

2008-01-01

203

Modeling of the human rhinovirus C capsid suggests possible causes for antiviral drug resistance  

E-print Network

Modeling of the human rhinovirus C capsid suggests possible causes for antiviral drug resistance: Rhinovirus Capsid structure Model Rhinovirus C Pleconaril Antiviral therapy Drug-binding pocket Pore Drug resistance a b s t r a c t Human rhinoviruses of the RV-C species are recently discovered pathogens

204

GenomicusPlants: A Web Resource to Study Genome Evolution in Flowering Plants  

PubMed Central

Comparative genomics combined with phylogenetic reconstructions are powerful approaches to study the evolution of genes and genomes. However, the current rapid expansion of the volume of genomic information makes it increasingly difficult to interrogate, integrate and synthesize comparative genome data while taking into account the maximum breadth of information available. GenomicusPlants (http://www.genomicus.biologie.ens.fr/genomicus-plants) is an extension of the Genomicus webserver that addresses this issue by allowing users to explore flowering plant genomes in an intuitive way, across the broadest evolutionary scales. Extant genomes of 26 flowering plants can be analyzed, as well as 23 ancestral reconstructed genomes. Ancestral gene order provides a long-term chronological view of gene order evolution, greatly facilitating comparative genomics and evolutionary studies. Four main interfaces (‘views’) are available where: (i) PhyloView combines phylogenetic trees with comparisons of genomic loci across any number of genomes; (ii) AlignView projects loci of interest against all other genomes to visualize its topological conservation; (iii) MatrixView compares two genomes in a classical dotplot representation; and (iv) Karyoview visualizes chromosome karyotypes ‘painted’ with colours of another genome of interest. All four views are interconnected and benefit from many customizable features. PMID:25432975

Louis, Alexandra; Murat, Florent; Salse, Jérôme; Roest Crollius, Hugues

2015-01-01

205

GenomicusPlants : A Web Resource to Study Genome Evolution in Flowering Plants.  

PubMed

Comparative genomics combined with phylogenetic reconstructions are powerful approaches to study the evolution of genes and genomes. However the current rapid expansion of the volume of genomic information makes it increasingly difficult to interrogate, integrate and synthetize comparative genome data while taking into account the maximum breadth of information available. GenomicusPlants (http://www.genomicus.biologie.ens.fr/genomicus-plants) is an extension of the Genomicus webserver that addresses this issue by allowing users to explore flowering plant genomes in an intuitive way, across the broadest evolutionary scales. Extant genomes of 26 flowering plants can be analysed, as well as 23 ancestral reconstructed genomes. Ancestral gene order provides a long-term chronological view of gene order evolution, greatly facilitating comparative genomics and evolutionary studies. Four main interfaces ("views") are available where: (i) PhyloView combines phylogenetic trees with comparisons of genomic loci across any number of genomes (ii) AlignView projects loci of interest against all other genomes to visualise its topological conservation (iii) MatrixView compares two genomes in a classical dotplot representation (iv) Karyoview visualises chromosome karyotypes "painted" with colours of another genome of interest. All four views are interconnected and benefit from many customizable features. PMID:25432975

Louis, Alexandra; Murat, Florent; Salse, Jérôme; Crollius, Hugues Roest

2014-11-27

206

Multiple Lineages of Ancient CR1 Retroposons Shaped the Early Genome Evolution of Amniotes.  

PubMed

Chicken repeat 1 (CR1) retroposons are long interspersed elements (LINEs) that are ubiquitous within amniote genomes and constitute the most abundant family of transposed elements in birds, crocodilians, turtles, and snakes. They are also present in mammalian genomes, where they reside as numerous relics of ancient retroposition events. Yet, despite their relevance for understanding amniote genome evolution, the diversity and evolution of CR1 elements has never been studied on an amniote-wide level. We reconstruct the temporal and quantitative activity of CR1 subfamilies via presence/absence analyses across crocodilian phylogeny and comparative analyses of 12 crocodilian genomes, revealing relative genomic stasis of retroposition during genome evolution of extant Crocodylia. Our large-scale phylogenetic analysis of amniote CR1 subfamilies suggests the presence of at least seven ancient CR1 lineages in the amniote ancestor; and amniote-wide analyses of CR1 successions and quantities reveal differential retention (presence of ancient relics or recent activity) of these CR1 lineages across amniote genome evolution. Interestingly, birds and lepidosaurs retained the fewest ancient CR1 lineages among amniotes and also exhibit smaller genome sizes. Our study is the first to analyze CR1 evolution in a genome-wide and amniote-wide context and the data strongly suggest that the ancestral amniote genome contained myriad CR1 elements from multiple ancient lineages, and remnants of these are still detectable in the relatively stable genomes of crocodilians and turtles. Early mammalian genome evolution was thus characterized by a drastic shift from CR1 prevalence to dominance and hyperactivity of L2 LINEs in monotremes and L1 LINEs in therians. PMID:25503085

Suh, Alexander; Churakov, Gennady; Ramakodi, Meganathan P; Platt, Roy N; Jurka, Jerzy; Kojima, Kenji K; Caballero, Juan; Smit, Arian F; Vliet, Kent A; Hoffmann, Federico G; Brosius, Jürgen; Green, Richard E; Braun, Edward L; Ray, David A; Schmitz, Jürgen

2014-01-01

207

Multiple Lineages of Ancient CR1 Retroposons Shaped the Early Genome Evolution of Amniotes  

PubMed Central

Chicken repeat 1 (CR1) retroposons are long interspersed elements (LINEs) that are ubiquitous within amniote genomes and constitute the most abundant family of transposed elements in birds, crocodilians, turtles, and snakes. They are also present in mammalian genomes, where they reside as numerous relics of ancient retroposition events. Yet, despite their relevance for understanding amniote genome evolution, the diversity and evolution of CR1 elements has never been studied on an amniote-wide level. We reconstruct the temporal and quantitative activity of CR1 subfamilies via presence/absence analyses across crocodilian phylogeny and comparative analyses of 12 crocodilian genomes, revealing relative genomic stasis of retroposition during genome evolution of extant Crocodylia. Our large-scale phylogenetic analysis of amniote CR1 subfamilies suggests the presence of at least seven ancient CR1 lineages in the amniote ancestor; and amniote-wide analyses of CR1 successions and quantities reveal differential retention (presence of ancient relics or recent activity) of these CR1 lineages across amniote genome evolution. Interestingly, birds and lepidosaurs retained the fewest ancient CR1 lineages among amniotes and also exhibit smaller genome sizes. Our study is the first to analyze CR1 evolution in a genome-wide and amniote-wide context and the data strongly suggest that the ancestral amniote genome contained myriad CR1 elements from multiple ancient lineages, and remnants of these are still detectable in the relatively stable genomes of crocodilians and turtles. Early mammalian genome evolution was thus characterized by a drastic shift from CR1 prevalence to dominance and hyperactivity of L2 LINEs in monotremes and L1 LINEs in therians. PMID:25503085

Suh, Alexander; Churakov, Gennady; Ramakodi, Meganathan P.; Platt, Roy N.; Jurka, Jerzy; Kojima, Kenji K.; Caballero, Juan; Smit, Arian F.; Vliet, Kent A.; Hoffmann, Federico G.; Brosius, Jürgen; Green, Richard E.; Braun, Edward L.; Ray, David A.; Schmitz, Jürgen

2015-01-01

208

The Evolution of the Anopheles 16 Genomes Project  

PubMed Central

We report the imminent completion of a set of reference genome assemblies for 16 species of Anopheles mosquitoes. In addition to providing a generally useful resource for comparative genomic analyses, these genome sequences will greatly facilitate exploration of the capacity exhibited by some Anopheline mosquito species to serve as vectors for malaria parasites. A community analysis project will commence soon to perform a thorough comparative genomic investigation of these newly sequenced genomes. Completion of this project via the use of short next-generation sequence reads required innovation in both the bioinformatic and laboratory realms, and the resulting knowledge gained could prove useful for genome sequencing projects targeting other unconventional genomes. PMID:23708298

Neafsey, Daniel E.; Christophides, George K.; Collins, Frank H.; Emrich, Scott J.; Fontaine, Michael C.; Gelbart, William; Hahn, Matthew W.; Howell, Paul I.; Kafatos, Fotis C.; Lawson, Daniel; Muskavitch, Marc A. T.; Waterhouse, Robert M.; Williams, Louise J.; Besansky, Nora J.

2013-01-01

209

Genome Wide Analyses Reveal Little Evidence for Adaptive Evolution in Many Plant Species  

E-print Network

Genome Wide Analyses Reveal Little Evidence for Adaptive Evolution in Many Plant Species Toni I, and bacteria have undergone extensive adaptive evolution,hominids show littleor no evidence. To study the matter further, we have investigatedwhether plants show evidence of adaptive evolution using

Eyre-Walker, Adam

210

Genome evolution in cyanobacteria: The stable core and the variable shell  

E-print Network

Genome evolution in cyanobacteria: The stable core and the variable shell Tuo Shi* and Paul G) Cyanobacteria are the only known prokaryotes capable of oxy- genic photosynthesis, the evolution of which of cyanobacteria provides the first opportunity to reconstruct events in the evolution of oxygenic photosynthesis

211

Genome Growth and the Evolution of the Genotype-Phenotype Map  

E-print Network

Genome Growth and the Evolution of the Genotype-Phenotype Map Lee Altenberg Institute of Statistics and Decision Sciences, Duke University, Durham, NC 27708-0251 U.S.A The evolution of new genes is distinct from evolution through allelic sub- stitution in that new genes bring with them new degrees of freedom

Altenberg, Lee

212

Tracking marsupial evolution using archaic genomic retroposon insertions.  

PubMed

The Australasian and South American marsupial mammals, such as kangaroos and opossums, are the closest living relatives to placental mammals, having shared a common ancestor around 130 million years ago. The evolutionary relationships among the seven marsupial orders have, however, so far eluded resolution. In particular, the relationships between the four Australasian and three South American marsupial orders have been intensively debated since the South American order Microbiotheria was taxonomically moved into the group Australidelphia. Australidelphia is significantly supported by both molecular and morphological data and comprises the four Australasian marsupial orders and the South American order Microbiotheria, indicating a complex, ancient, biogeographic history of marsupials. However, the exact phylogenetic position of Microbiotheria within Australidelphia has yet to be resolved using either sequence or morphological data analysis. Here, we provide evidence from newly established and virtually homoplasy-free retroposon insertion markers for the basal relationships among marsupial orders. Fifty-three phylogenetically informative markers were retrieved after in silico and experimental screening of approximately 217,000 retroposon-containing loci from opossum and kangaroo. The four Australasian orders share a single origin with Microbiotheria as their closest sister group, supporting a clear divergence between South American and Australasian marsupials. In addition, the new data place the South American opossums (Didelphimorphia) as the first branch of the marsupial tree. The exhaustive computational and experimental evidence provides important insight into the evolution of retroposable elements in the marsupial genome. Placing the retroposon insertion pattern in a paleobiogeographic context indicates a single marsupial migration from South America to Australia. The now firmly established phylogeny can be used to determine the direction of genomic changes and morphological transitions within marsupials. PMID:20668664

Nilsson, Maria A; Churakov, Gennady; Sommer, Mirjam; Tran, Ngoc Van; Zemann, Anja; Brosius, Jürgen; Schmitz, Jürgen

2010-01-01

213

Tracking Marsupial Evolution Using Archaic Genomic Retroposon Insertions  

PubMed Central

The Australasian and South American marsupial mammals, such as kangaroos and opossums, are the closest living relatives to placental mammals, having shared a common ancestor around 130 million years ago. The evolutionary relationships among the seven marsupial orders have, however, so far eluded resolution. In particular, the relationships between the four Australasian and three South American marsupial orders have been intensively debated since the South American order Microbiotheria was taxonomically moved into the group Australidelphia. Australidelphia is significantly supported by both molecular and morphological data and comprises the four Australasian marsupial orders and the South American order Microbiotheria, indicating a complex, ancient, biogeographic history of marsupials. However, the exact phylogenetic position of Microbiotheria within Australidelphia has yet to be resolved using either sequence or morphological data analysis. Here, we provide evidence from newly established and virtually homoplasy-free retroposon insertion markers for the basal relationships among marsupial orders. Fifty-three phylogenetically informative markers were retrieved after in silico and experimental screening of ?217,000 retroposon-containing loci from opossum and kangaroo. The four Australasian orders share a single origin with Microbiotheria as their closest sister group, supporting a clear divergence between South American and Australasian marsupials. In addition, the new data place the South American opossums (Didelphimorphia) as the first branch of the marsupial tree. The exhaustive computational and experimental evidence provides important insight into the evolution of retroposable elements in the marsupial genome. Placing the retroposon insertion pattern in a paleobiogeographic context indicates a single marsupial migration from South America to Australia. The now firmly established phylogeny can be used to determine the direction of genomic changes and morphological transitions within marsupials. PMID:20668664

Nilsson, Maria A.; Churakov, Gennady; Sommer, Mirjam; Tran, Ngoc Van; Zemann, Anja; Brosius, Jürgen; Schmitz, Jürgen

2010-01-01

214

Evolution of Linear Mitochondrial Genomes in Medusozoan Cnidarians  

PubMed Central

In nearly all animals, mitochondrial DNA (mtDNA) consists of a single circular molecule that encodes several subunits of the protein complexes involved in oxidative phosphorylation as well as part of the machinery for their expression. By contrast, mtDNA in species belonging to Medusozoa (one of the two major lineages in the phylum Cnidaria) comprises one to several linear molecules. Many questions remain on the ubiquity of linear mtDNA in medusozoans and the mechanisms responsible for its evolution, replication, and transcription. To address some of these questions, we determined the sequences of nearly complete linear mtDNA from 24 species representing all four medusozoan classes: Cubozoa, Hydrozoa, Scyphozoa, and Staurozoa. All newly determined medusozoan mitochondrial genomes harbor the 17 genes typical for cnidarians and map as linear molecules with a high degree of gene order conservation relative to the anthozoans. In addition, two open reading frames (ORFs), polB and ORF314, are identified in cubozoan, schyphozoan, staurozoan, and trachyline hydrozoan mtDNA. polB belongs to the B-type DNA polymerase gene family, while the product of ORF314 may act as a terminal protein that binds telomeres. We posit that these two ORFs are remnants of a linear plasmid that invaded the mitochondrial genomes of the last common ancestor of Medusozoa and are responsible for its linearity. Hydroidolinan hydrozoans have lost the two ORFs and instead have duplicated cox1 at each end of their mitochondrial chromosome(s). Fragmentation of mtDNA occurred independently in Cubozoa and Hydridae (Hydrozoa, Hydroidolina). Our broad sampling allows us to reconstruct the evolutionary history of linear mtDNA in medusozoans. PMID:22113796

Kayal, Ehsan; Bentlage, Bastian; Collins, Allen G.; Pirro, Stacy; Lavrov, Dennis V.

2012-01-01

215

Evolution of linear mitochondrial genomes in medusozoan cnidarians.  

PubMed

In nearly all animals, mitochondrial DNA (mtDNA) consists of a single circular molecule that encodes several subunits of the protein complexes involved in oxidative phosphorylation as well as part of the machinery for their expression. By contrast, mtDNA in species belonging to Medusozoa (one of the two major lineages in the phylum Cnidaria) comprises one to several linear molecules. Many questions remain on the ubiquity of linear mtDNA in medusozoans and the mechanisms responsible for its evolution, replication, and transcription. To address some of these questions, we determined the sequences of nearly complete linear mtDNA from 24 species representing all four medusozoan classes: Cubozoa, Hydrozoa, Scyphozoa, and Staurozoa. All newly determined medusozoan mitochondrial genomes harbor the 17 genes typical for cnidarians and map as linear molecules with a high degree of gene order conservation relative to the anthozoans. In addition, two open reading frames (ORFs), polB and ORF314, are identified in cubozoan, schyphozoan, staurozoan, and trachyline hydrozoan mtDNA. polB belongs to the B-type DNA polymerase gene family, while the product of ORF314 may act as a terminal protein that binds telomeres. We posit that these two ORFs are remnants of a linear plasmid that invaded the mitochondrial genomes of the last common ancestor of Medusozoa and are responsible for its linearity. Hydroidolinan hydrozoans have lost the two ORFs and instead have duplicated cox1 at each end of their mitochondrial chromosome(s). Fragmentation of mtDNA occurred independently in Cubozoa and Hydridae (Hydrozoa, Hydroidolina). Our broad sampling allows us to reconstruct the evolutionary history of linear mtDNA in medusozoans. PMID:22113796

Kayal, Ehsan; Bentlage, Bastian; Collins, Allen G; Kayal, Mohsen; Pirro, Stacy; Lavrov, Dennis V

2012-01-01

216

The Genome of the Obligate Intracellular Parasite Trachipleistophora hominis: New Insights into Microsporidian Genome Dynamics and Reductive Evolution  

PubMed Central

The dynamics of reductive genome evolution for eukaryotes living inside other eukaryotic cells are poorly understood compared to well-studied model systems involving obligate intracellular bacteria. Here we present 8.5 Mb of sequence from the genome of the microsporidian Trachipleistophora hominis, isolated from an HIV/AIDS patient, which is an outgroup to the smaller compacted-genome species that primarily inform ideas of evolutionary mode for these enormously successful obligate intracellular parasites. Our data provide detailed information on the gene content, genome architecture and intergenic regions of a larger microsporidian genome, while comparative analyses allowed us to infer genomic features and metabolism of the common ancestor of the species investigated. Gene length reduction and massive loss of metabolic capacity in the common ancestor was accompanied by the evolution of novel microsporidian-specific protein families, whose conservation among microsporidians, against a background of reductive evolution, suggests they may have important functions in their parasitic lifestyle. The ancestor had already lost many metabolic pathways but retained glycolysis and the pentose phosphate pathway to provide cytosolic ATP and reduced coenzymes, and it had a minimal mitochondrion (mitosome) making Fe-S clusters but not ATP. It possessed bacterial-like nucleotide transport proteins as a key innovation for stealing host-generated ATP, the machinery for RNAi, key elements of the early secretory pathway, canonical eukaryotic as well as microsporidian-specific regulatory elements, a diversity of repetitive and transposable elements, and relatively low average gene density. Microsporidian genome evolution thus appears to have proceeded in at least two major steps: an ancestral remodelling of the proteome upon transition to intracellular parasitism that involved reduction but also selective expansion, followed by a secondary compaction of genome architecture in some, but not all, lineages. PMID:23133373

Heinz, Eva; Williams, Tom A.; Nakjang, Sirintra; Noël, Christophe J.; Swan, Daniel C.; Goldberg, Alina V.; Harris, Simon R.; Weinmaier, Thomas; Markert, Stephanie; Becher, Dörte; Bernhardt, Jörg; Dagan, Tal; Hacker, Christian; Lucocq, John M.; Schweder, Thomas; Rattei, Thomas; Hall, Neil; Hirt, Robert P.; Embley, T. Martin

2012-01-01

217

Experimental rhinovirus infection in human volunteers exposed to ozone  

SciTech Connect

We studied 24 young adult male volunteers experimentally inoculated with type 39 rhinovirus to determine whether the course of viral infection was modified by exposure to moderate levels of ozone (0.3 ppm for 6 h per day) over the 5 days after virus inoculation. No differences in rhinovirus titers in nasal secretions, recruitment of neutrophils into nasal secretions, levels of interferon in nasal lavage fluid, in vitro lymphocyte proliferative responses to rhinovirus antigen, or levels of convalescent serum neutralizing antibody to type 39 rhinovirus were demonstrated in relation to ozone exposure. The level and pattern of ozone exposure used in this experiment had no demonstrable adverse effects on the immune responses necessary to limit and terminate rhinovirus infection of the upper respiratory tract.

Henderson, F.W.; Dubovi, E.J.; Harder, S.; Seal, E. Jr.; Graham, D.

1988-05-01

218

Comparative genomics of the bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and limited gene loss  

PubMed Central

Background The bacterial genus Listeria contains pathogenic and non-pathogenic species, including the pathogens L. monocytogenes and L. ivanovii, both of which carry homologous virulence gene clusters such as the prfA cluster and clusters of internalin genes. Initial evidence for multiple deletions of the prfA cluster during the evolution of Listeria indicates that this genus provides an interesting model for studying the evolution of virulence and also presents practical challenges with regard to definition of pathogenic strains. Results To better understand genome evolution and evolution of virulence characteristics in Listeria, we used a next generation sequencing approach to generate draft genomes for seven strains representing Listeria species or clades for which genome sequences were not available. Comparative analyses of these draft genomes and six publicly available genomes, which together represent the main Listeria species, showed evidence for (i) a pangenome with 2,032 core and 2,918 accessory genes identified to date, (ii) a critical role of gene loss events in transition of Listeria species from facultative pathogen to saprotroph, even though a consistent pattern of gene loss seemed to be absent, and a number of isolates representing non-pathogenic species still carried some virulence associated genes, and (iii) divergence of modern pathogenic and non-pathogenic Listeria species and strains, most likely circa 47 million years ago, from a pathogenic common ancestor that contained key virulence genes. Conclusions Genome evolution in Listeria involved limited gene loss and acquisition as supported by (i) a relatively high coverage of the predicted pan-genome by the observed pan-genome, (ii) conserved genome size (between 2.8 and 3.2 Mb), and (iii) a highly syntenic genome. Limited gene loss in Listeria did include loss of virulence associated genes, likely associated with multiple transitions to a saprotrophic lifestyle. The genus Listeria thus provides an example of a group of bacteria that appears to evolve through a loss of virulence rather than acquisition of virulence characteristics. While Listeria includes a number of species-like clades, many of these putative species include clades or strains with atypical virulence associated characteristics. This information will allow for the development of genetic and genomic criteria for pathogenic strains, including development of assays that specifically detect pathogenic Listeria strains. PMID:21126366

2010-01-01

219

Genetic clustering of all 102 human rhinovirus prototype strains: serotype 87 is close to human enterovirus 70  

Microsoft Academic Search

Human rhinoviruses (HRV), common agents of respiratory infections, comprise 102 designated serotypes. The genetic relationships of HRV prototype strains and the possibility of using genetic identification of a given HRV field strain were studied. Genomic sequences in the VP4\\/VP2 region were obtained from all 102 prototype strains. Phylogenetic analysis included 61 recently isolated Finnish field strains. Seventy-six out of the

Carita Savolainen; Soile Blomqvist; Mick N. Muldersã; Tapani Hovi

2002-01-01

220

Reductive genome evolution at both ends of the bacterial population size spectrum.  

PubMed

Bacterial genomes show substantial variations in size. The smallest bacterial genomes are those of endocellular symbionts of eukaryotic hosts, which have undergone massive genome reduction and show patterns that are consistent with the degenerative processes that are predicted to occur in species with small effective population sizes. However, similar genome reduction is found in some free-living marine cyanobacteria that are characterized by extremely large populations. In this Opinion article, we discuss the different hypotheses that have been proposed to account for this reductive genome evolution at both ends of the bacterial population size spectrum. PMID:25220308

Batut, Bérénice; Knibbe, Carole; Marais, Gabriel; Daubin, Vincent

2014-12-01

221

Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution.  

PubMed

Testing models of macroevolution, and especially the sufficiency of microevolutionary processes, requires good collaboration between molecular biologists and paleontologists. We report such a test for events around the Late Cretaceous by describing the earliest penguin fossils, analyzing complete mitochondrial genomes from an albatross, a petrel, and a loon, and describe the gradual decline of pterosaurs at the same time modern birds radiate. The penguin fossils comprise four naturally associated skeletons from the New Zealand Waipara Greensand, a Paleocene (early Tertiary) formation just above a well-known Cretaceous/Tertiary boundary site. The fossils, in a new genus (Waimanu), provide a lower estimate of 61-62 Ma for the divergence between penguins and other birds and thus establish a reliable calibration point for avian evolution. Combining fossil calibration points, DNA sequences, maximum likelihood, and Bayesian analysis, the penguin calibrations imply a radiation of modern (crown group) birds in the Late Cretaceous. This includes a conservative estimate that modern sea and shorebird lineages diverged at least by the Late Cretaceous about 74 +/- 3 Ma (Campanian). It is clear that modern birds from at least the latest Cretaceous lived at the same time as archaic birds including Hesperornis, Ichthyornis, and the diverse Enantiornithiformes. Pterosaurs, which also coexisted with early crown birds, show notable changes through the Late Cretaceous. There was a decrease in taxonomic diversity, and small- to medium-sized species disappeared well before the end of the Cretaceous. A simple reading of the fossil record might suggest competitive interactions with birds, but much more needs to be understood about pterosaur life histories. Additional fossils and molecular data are still required to help understand the role of biotic interactions in the evolution of Late Cretaceous birds and thus to test that the mechanisms of microevolution are sufficient to explain macroevolution. PMID:16533822

Slack, Kerryn E; Jones, Craig M; Ando, Tatsuro; Harrison, G L Abby; Fordyce, R Ewan; Arnason, Ulfur; Penny, David

2006-06-01

222

Orthopoxvirus Genome Evolution: The Role of Gene Loss  

PubMed Central

Poxviruses are highly successful pathogens, known to infect a variety of hosts. The family Poxviridae includes Variola virus, the causative agent of smallpox, which has been eradicated as a public health threat but could potentially reemerge as a bioterrorist threat. The risk scenario includes other animal poxviruses and genetically engineered manipulations of poxviruses. Studies of orthologous gene sets have established the evolutionary relationships of members within the Poxviridae family. It is not clear, however, how variations between family members arose in the past, an important issue in understanding how these viruses may vary and possibly produce future threats. Using a newly developed poxvirus-specific tool, we predicted accurate gene sets for viruses with completely sequenced genomes in the genus Orthopoxvirus. Employing sensitive sequence comparison techniques together with comparison of syntenic gene maps, we established the relationships between all viral gene sets. These techniques allowed us to unambiguously identify the gene loss/gain events that have occurred over the course of orthopoxvirus evolution. It is clear that for all existing Orthopoxvirus species, no individual species has acquired protein-coding genes unique to that species. All existing species contain genes that are all present in members of the species Cowpox virus and that cowpox virus strains contain every gene present in any other orthopoxvirus strain. These results support a theory of reductive evolution in which the reduction in size of the core gene set of a putative ancestral virus played a critical role in speciation and confining any newly emerging virus species to a particular environmental (host or tissue) niche. PMID:21994715

Hendrickson, Robert Curtis; Wang, Chunlin; Hatcher, Eneida L.; Lefkowitz, Elliot J.

2010-01-01

223

Genome Evolution and Meiotic Maps by Massively Parallel DNA Sequencing: Spotted Gar, an Outgroup for the Teleost Genome Duplication  

PubMed Central

Genomic resources for hundreds of species of evolutionary, agricultural, economic, and medical importance are unavailable due to the expense of well-assembled genome sequences and difficulties with multigenerational studies. Teleost fish provide many models for human disease but possess anciently duplicated genomes that sometimes obfuscate connectivity. Genomic information representing a fish lineage that diverged before the teleost genome duplication (TGD) would provide an outgroup for exploring the mechanisms of evolution after whole-genome duplication. We exploited massively parallel DNA sequencing to develop meiotic maps with thrift and speed by genotyping F1 offspring of a single female and a single male spotted gar (Lepisosteus oculatus) collected directly from nature utilizing only polymorphisms existing in these two wild individuals. Using Stacks, software that automates the calling of genotypes from polymorphisms assayed by Illumina sequencing, we constructed a map containing 8406 markers. RNA-seq on two map-cross larvae provided a reference transcriptome that identified nearly 1000 mapped protein-coding markers and allowed genome-wide analysis of conserved synteny. Results showed that the gar lineage diverged from teleosts before the TGD and its genome is organized more similarly to that of humans than teleosts. Thus, spotted gar provides a critical link between medical models in teleost fish, to which gar is biologically similar, and humans, to which gar is genomically similar. Application of our F1 dense mapping strategy to species with no prior genome information promises to facilitate comparative genomics and provide a scaffold for ordering the numerous contigs arising from next generation genome sequencing. PMID:21828280

Amores, Angel; Catchen, Julian; Ferrara, Allyse; Fontenot, Quenton; Postlethwait, John H.

2011-01-01

224

The evolution of genome-scale models of cancer metabolism  

PubMed Central

The importance of metabolism in cancer is becoming increasingly apparent with the identification of metabolic enzyme mutations and the growing awareness of the influence of metabolism on signaling, epigenetic markers, and transcription. However, the complexity of these processes has challenged our ability to make sense of the metabolic changes in cancer. Fortunately, constraint-based modeling, a systems biology approach, now enables one to study the entirety of cancer metabolism and simulate basic phenotypes. With the newness of this field, there has been a rapid evolution of both the scope of these models and their applications. Here we review the various constraint-based models built for cancer metabolism and how their predictions are shedding new light on basic cancer phenotypes, elucidating pathway differences between tumors, and dicovering putative anti-cancer targets. As the field continues to evolve, the scope of these genome-scale cancer models must expand beyond central metabolism to address questions related to the diverse processes contributing to tumor development and metastasis. PMID:24027532

Lewis, Nathan E.; Abdel-Haleem, Alyaa M.

2013-01-01

225

Natural transformation and genome evolution in Streptococcus pneumoniae.  

PubMed

Streptococcus pneumoniae is a frequent colonizer of the human nasopharynx that has the potential to cause severe infections such as pneumonia, bacteremia and meningitis. Despite considerable efforts to reduce the burden of pneumococcal disease, it continues to be a major public health problem. After the Second World War, antimicrobial therapy was introduced to fight pneumococcal infections, followed by the first effective vaccines more than half a century later. These clinical interventions generated a selection pressure that drove the evolution of vaccine-escape mutants and strains that were highly resistant against antibiotics. The remarkable ability of S. pneumoniae to acquire drug resistance and evade vaccine pressure is due to its recombination-mediated genetic plasticity. S. pneumoniae is competent for natural genetic transformation, a property that enables the pneumococcus to acquire new traits by taking up naked DNA from the environment and incorporating it into its genome through homologous recombination. In the present paper, we review current knowledge on pneumococcal transformation, and discuss how the pneumococcus uses this mechanism to adapt and survive under adverse and fluctuating conditions. PMID:25445643

Straume, Daniel; Stamsås, Gro Anita; Håvarstein, Leiv Sigve

2014-11-01

226

Evolution of nucleosome positioning and gene regulation in yeasts : a genomic and computational approach  

E-print Network

Chromatin organization plays a major role in gene regulation and can affect the function and evolution of new transcriptional programs. Here, we present the first multi-species comparative genomic analysis of the relationship ...

Tsankov, Alex

2010-01-01

227

The Cambrian explosion triggered by critical turning point in genome size evolution.  

PubMed

The Cambrian explosion is a grand challenge to science today and involves multidisciplinary study. This event is generally believed as a result of genetic innovations, environmental factors and ecological interactions, even though there are many conflicts on nature and timing of metazoan origins. The crux of the matter is that an entire roadmap of the evolution is missing to discern the biological complexity transition and to evaluate the critical role of the Cambrian explosion in the overall evolutionary context. Here, we calculate the time of the Cambrian explosion by a "C-value clock"; our result quite fits the fossil records. We clarify that the intrinsic reason of genome evolution determined the Cambrian explosion. A general formula for evaluating genome size of different species has been found, by which the genome size evolution can be illustrated. The Cambrian explosion, as a major transition of biological complexity, essentially corresponds to a critical turning point in genome size evolution. PMID:20074549

Li, Dirson Jian; Zhang, Shengli

2010-02-01

228

Methods and analysis of genome-scale gene family evolution across multiple species  

E-print Network

The fields of genomics and evolution have continually benefited from one another in their common goal of understanding the biological world. This partnership has been accelerated by ever increasing sequencing and high-throughput ...

Rasmussen, Matthew D. (Matthew David)

2010-01-01

229

How evolution of genomes is reflected in exact DNA sequence match statistics.  

PubMed

Genome evolution is shaped by a multitude of mutational processes, including point mutations, insertions, and deletions of DNA sequences, as well as segmental duplications. These mutational processes can leave distinctive qualitative marks in the statistical features of genomic DNA sequences. One such feature is the match length distribution (MLD) of exactly matching sequence segments within an individual genome or between the genomes of related species. These have been observed to exhibit characteristic power law decays in many species. Here, we show that simple dynamical models consisting solely of duplication and mutation processes can already explain the characteristic features of MLDs observed in genomic sequences. Surprisingly, we find that these features are largely insensitive to details of the underlying mutational processes and do not necessarily rely on the action of natural selection. Our results demonstrate how analyzing statistical features of DNA sequences can help us reveal and quantify the different mutational processes that underlie genome evolution. PMID:25398628

Massip, Florian; Sheinman, Michael; Schbath, Sophie; Arndt, Peter F

2015-02-01

230

How Evolution of Genomes Is Reflected in Exact DNA Sequence Match Statistics  

PubMed Central

Genome evolution is shaped by a multitude of mutational processes, including point mutations, insertions, and deletions of DNA sequences, as well as segmental duplications. These mutational processes can leave distinctive qualitative marks in the statistical features of genomic DNA sequences. One such feature is the match length distribution (MLD) of exactly matching sequence segments within an individual genome or between the genomes of related species. These have been observed to exhibit characteristic power law decays in many species. Here, we show that simple dynamical models consisting solely of duplication and mutation processes can already explain the characteristic features of MLDs observed in genomic sequences. Surprisingly, we find that these features are largely insensitive to details of the underlying mutational processes and do not necessarily rely on the action of natural selection. Our results demonstrate how analyzing statistical features of DNA sequences can help us reveal and quantify the different mutational processes that underlie genome evolution. PMID:25398628

Massip, Florian; Sheinman, Michael; Schbath, Sophie; Arndt, Peter F.

2015-01-01

231

Evolution of genes and genomes on the Drosophila phylogeny  

Microsoft Academic Search

Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of

Andrew G. Clark; Michael B. Eisen; Douglas R. Smith; Brian Oliver; Therese A. Markow; Thomas C. Kaufman; Manolis Kellis; William Gelbart; Venky N. Iyer; Daniel A. Pollard; Timothy B. Sackton; Amanda M. Larracuente; Nadia D. Singh; Jose P. Abad; Dawn N. Abt; Boris Adryan; Montserrat Aguade; Hiroshi Akashi; Wyatt W. Anderson; Charles F. Aquadro; David H. Ardell; Roman Arguello; Carlo G. Artieri; Daniel A. Barbash; Daniel Barker; Paolo Barsanti; Phil Batterham; Serafim Batzoglou; Dave Begun; Arjun Bhutkar; Enrico Blanco; Stephanie A. Bosak; Robert K. Bradley; Adrianne D. Brand; Michael R. Brent; Angela N. Brooks; Randall H. Brown; Roger K. Butlin; Corrado Caggese; Brian R. Calvi; A. Bernardo de Carvalho; Anat Caspi; Sergio Castrezana; Susan E. Celniker; Jean L. Chang; Charles Chapple; Sourav Chatterji; Asif Chinwalla; Alberto Civetta; Sandra W. Clifton; Josep M. Comeron; James C. Costello; Jerry A. Coyne; Jennifer Daub; Robert G. David; Arthur L. Delcher; Kim Delehaunty; Chuong B. Do; Heather Ebling; Kevin Edwards; Thomas Eickbush; Jay D. Evans; Alan Filipski; Sven Findeiß; Eva Freyhult; Lucinda Fulton; Robert Fulton; Ana C. L. Garcia; Anastasia Gardiner; David A. Garfield; Barry E. Garvin; Greg Gibson; Don Gilbert; Sante Gnerre; Jennifer Godfrey; Robert Good; Valer Gotea; Brenton Gravely; Anthony J. Greenberg; Sam Griffiths-Jones; Samuel Gross; Roderic Guigo; Erik A. Gustafson; Wilfried Haerty; Matthew W. Hahn; Daniel L. Halligan; Aaron L. Halpern; Gillian M. Halter; Mira V. Han; Andreas Heger; Ladeana Hillier; Angie S. Hinrichs; Ian Holmes; Roger A. Hoskins; Melissa J. Hubisz; Dan Hultmark; Melanie A. Huntley; David B. Jaffe; Santosh Jagadeeshan; William R. Jeck; Justin Johnson; Corbin D. Jones; William C. Jordan; Gary H. Karpen; Eiko Kataoka; Peter D. Keightley; Pouya Kheradpour; Ewen F. Kirkness; Leonardo B. Koerich; Karsten Kristiansen; Dave Kudrna; Rob J. Kulathinal; Sudhir Kumar; Roberta Kwok; Eric Lander; Charles H. Langley; Richard Lapoint; Brian P. Lazzaro; So-Jeong Lee; Lisa Levesque; Ruiqiang Li; Chiao-Feng Lin; Michael F. Lin; Kerstin Lindblad-Toh; Ana Llopart; Manyuan Long; Lloyd Low; Elena Lozovsky; Jian Lu; Meizhong Luo; Carlos A. Machado; Wojciech Makalowski; Mar Marzo; Muneo Matsuda; Luciano Matzkin; Bryant McAllister; Carolyn S. McBride; Brendan McKernan; Kevin McKernan; Maria Mendez-Lago; Patrick Minx; Michael U. Mollenhauer; Kristi Montooth; Stephen M. Mount; Xu Mu; Eugene Myers; Barbara Negre; Stuart Newfeld; Rasmus Nielsen; Mohamed A. F. Noor; Patrick O'Grady; Lior Pachter; Montserrat Papaceit; Matthew J. Parisi; Michael Parisi; Leopold Parts; Jakob S. Pedersen; Graziano Pesole; Adam M. Phillippy; Chris P. Ponting; Mihai Pop; Damiano Porcelli; Jeffrey R. Powell; Sonja Prohaska; Kim Pruitt; Marta Puig; Hadi Quesneville; Kristipati Ravi Ram; David Rand; Matthew D. Rasmussen; Laura K. Reed; Robert Reenan; Amy Reily; Karin A. Remington; Tania T. Rieger; Michael G. Ritchie; Charles Robin; Yu-Hui Rogers; Claudia Rohde; Julio Rozas; Marc J. Rubenfield; Alfredo Ruiz; Susan Russo; Steven L. Salzberg; Alejandro Sanchez-Gracia; David J. Saranga; Hajime Sato; Stephen W. Schaeffer; Michael C. Schatz; Todd Schlenke; Russell Schwartz; Carmen Segarra; Rama S. Singh; Laura Sirot; Marina Sirota; Nicholas B. Sisneros; Chris D. Smith; Temple F. Smith; John Spieth; Deborah E. Stage; Alexander Stark; Wolfgang Stephan; Robert L. Strausberg; Sebastian Strempel; David Sturgill; Granger Sutton; Wei Tao; Sarah Teichmann; Yoshiko N. Tobari; Yoshihiko Tomimura; Jason M. Tsolas; Vera L. S. Valente; Eli Venter; J. Craig Venter; Saverio Vicario; Filipe G. Vieira; Albert J. Vilella; Alfredo Villasante; Brian Walenz; Jun Wang; Marvin Wasserman; Thomas Watts; Derek Wilson; Richard K. Wilson; Rod A. Wing; Mariana F. Wolfner; Alex Wong; Gane Ka-Shu Wong; Chung-I. Wu; Gabriel Wu; Daisuke Yamamoto; Hsiao-Pei Yang; Shiaw-Pyng Yang; James A. Yorke; Kiyohito Yoshida; Evgeny Zdobnov; Peili Zhang; Yu Zhang; Aleksey V. Zimin; Jennifer Baldwin; Amr Abdouelleil; Jamal Abdulkadir; Adal Abebe; Brikti Abera; Justin Abreu; St Christophe Acer; Lynne Aftuck; Allen Alexander; Peter An; Erica Anderson; Scott Anderson; Harindra Arachi; Marc Azer; Pasang Bachantsang; Andrew Barry; Tashi Bayul; Aaron Berlin; Daniel Bessette; Toby Bloom; Jason Blye; Leonid Boguslavskiy; Claude Bonnet; Boris Boukhgalter; Imane Bourzgui; Adam Brown; Patrick Cahill; Sheridon Channer; Yama Cheshatsang; Lisa Chuda; Mieke Citroen; Alville Collymore; Patrick Cooke; Maura Costello; Katie D'Aco; Riza Daza; Georgius de Haan; Stuart Degray; Christina Demaso; Norbu Dhargay; Kimberly Dooley; Erin Dooley; Missole Doricent; Passang Dorje

2007-01-01

232

LEGUME GENOME EVOLUTION VIEWED THROUGH THE MEDICAGO TRUNCATULA AND LOTUS JAPONICUS GENOMES  

Technology Transfer Automated Retrieval System (TEKTRAN)

Genome sequencing of two model legumes, Medicago truncatula and Lotus japonicus, provides one of the first opportunities for genome-scale and sequence-based comparisons of multiple genomes in the same family. Sequence comparisons show no evidence for recent large-scale genome duplications in either ...

233

Molecular genotyping of human rhinovirus by using PCR and Sanger sequencing.  

PubMed

Human rhinovirus (HRV) is the virus most often associated with acute upper respiratory tract infections. Advances in molecular detection have shown that HRV is also the major viral cause of asthma exacerbations. Genotypic assignment and identification of HRV types are of significant value in the investigation of type-associated differences in disease outcomes, transmission, and epidemiology. Here, we describe a genotyping process involving two separate RT-PCR assays, targeted to VP4/VP2 and 5' UTR regions of HRV genome, respectively. Together with the reference sequences of each HRV species, the generated sequences are used to construct phylogenetic tree for genotyping. PMID:25261305

Wang, Wei; He, Jing; Liu, Yi; Xu, Lei; Guan, Wencai; Hu, Yunwen

2015-01-01

234

Genome increase as a clock for the origin and evolution of life  

Microsoft Academic Search

BACKGROUND: The size of non-redundant functional genome can be an indicator of biological complexity of living organisms. Several positive feedback mechanisms including gene cooperation and duplication with subsequent specialization may result in the exponential growth of biological complexity in macro-evolution. RESULTS: I propose a hypothesis that biological complexity increased exponentially during evolution. Regression of the logarithm of functional non-redundant genome

Alexei A Sharov

2006-01-01

235

The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution  

Microsoft Academic Search

To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher

Christine G Elsik; Ross L Tellam; Richard A Gibbs; Kim C Worley; Donna M Muzny; George M Weinstock; David L Adelson; Evan E Eichler; Laura Elnitski; Roderic Guig'o; Debora L Hamernik; Harris A Lewin; Steve M Kappes; David J Lynn; Frank W Nicholas; Alexandre Reymond; Monique Rijnkels; Loren C Skow; Evgeny M Zdobnov; Lawrence Schook; James Womack; Tyler Alioto; Stylianos E Antonarakis; Alex Astashyn; Charles E Chapple; Hsiu-Chuan Chen; Jacqueline Chrast; Francisco Câmara; Olga Ermolaeva; Charlotte N Henrichsen; Wratko Hlavina; Yuri Kapustin; Boris Kiryutin; Paul Kitts; Felix Kokocinski; Melissa Landrum; Donna Maglott; Kim Pruitt; Victor Sapojnikov; Stephen M Searle; Victor Solovyev; Alexandre Souvorov; Catherine Ucla; Carine Wyss; Juan M Anzola; Daniel Gerlach; Eran Elhaik; Dan Graur; Justin T Reese; Robert C Edgar; John C McEwan; Gemma M Payne; Joy M Raison; Thomas Junier; Evgenia V Kriventseva; Eduardo Eyras; Mireya Plass; Ravikiran Donthu; Denis M Larkin; James Reecy; Mary Q Yang; Lin Chen; Ze Cheng; Carol G Chitko-mckown; George E Liu; Lakshmi K Matukumalli; Jiuzhou Song; Bin Zhu; Daniel G Bradley; Fiona S L Brinkman; Lilian P L Lau; Matthew D Whiteside; Angela Walker; Thomas T Wheeler; Theresa Casey; J Bruce German; Danielle G Lemay; Nauman J Maqbool; Adrian J Molenaar; Seongwon Seo; Paul Stothard; Cynthia L Baldwin; Rebecca Baxter; Candice L Brinkmeyer-Langford; Wendy C Brown; Christopher P Childers; Shirley A Ellis; Timothy Connelley; Krista Fritz; Elizabeth J Glass; Carolyn T A Herzig; Antti Iivanainen; Kevin K Lahmers; Anna K Bennett; C Michael Dickens; James G R Gilbert; Darren E Hagen; Hanni Salih; Alexandre R Caetano; Brian Dalrymple; Clare A Gill; Jose Fernando Garcia; Stefan G Hiendleder; Erdogan Memili; Diane Spurlock; John L Williams; Lee Alexander; Michael J Brownstein; Leluo Guan; Marco A Marra; Steven J M Jones; Richard Moore; Stephen S Moore; Andy Roberts; Masaaki Taniguchi; Richard C Waterman; Joseph Chacko; Mimi M Chandrabose; Andy Cree; Marvin Diep Dao; Huyen H Dinh; Ramatu Ayiesha Gabisi; Sandra Hines; Jennifer Hume; Shalini N Jhangiani; Vandita Joshi; Christie L Kovar; Lora R Lewis; Yih-Shin Liu; John Lopez; Margaret B Morgan; Ngoc Bich Nguyen; Geoffrey O Okwuonu; San Juana Ruiz; Rita A Wright; Jireh Santibanez; Christian Buhay; Yan Ding; Shannon Dugan-rocha; Judith Herdandez; Michael Holder; Aniko Sabo; Amy Egan; Jason Goodell; Katarzyna Wilczek-Boney; Gerald R Fowler; Matthew Edward Hitchens; Ryan J Lozado; Charles Moen; David Steffen; James T Warren; JingKun Zhang; Readman Chiu; Jacqueline E Schein; K James Durbin; Paul Havlak; Huaiyang Jiang; Yue Liu; Xiang Qin; Yanru Ren; Yufeng Shen; Henry Song; Stephanie Nicole Bell; Clay Davis; Angela Jolivet Johnson; Sandra Lee; Lynne V Nazareth; Bella Mayurkumar Patel; Ling-Ling Pu; Selina Vattathil; Rex Lee Williams; Stacey Curry; Cerissa Hamilton; Erica Sodergren; David A Wheeler; Wes Barris; Gary L Bennett; Andr'e Eggen; Ronnie D Green; Gregory P Harhay; Matthew Hobbs; Oliver Jann; John W Keele; Matthew P Kent; Sigbjo rn Lien; Stephanie D McKay; Sean Mcwilliam; Abhirami Ratnakumar; Robert D Schnabel; Timothy Smith; Warren M Snelling; Tad S Sonstegard; Roger T Stone; Yoshikazu Sugimoto; Akiko Takasuga; Jeremy F Taylor; Curtis P Van Tassell; Michael D Macneil; Colette A Abbey; Antonio R R Abatepaulo; Virpi Ahola; Iassudara G Almeida; Ariel F Amadio; Elen Anatriello; Suria M Bahadue; Fernando H Biase; Jeffery A Carroll; Clayton R Boldt; Wanessa A Carvalho; Eliane P Cervelatti; Elsa Chacko; Jennifer E Chapin; Ye Cheng; Jungwoo Choi; Adam J Colley; Tatiana A de Campos; Marcos De Donato; Isabel K F De Miranda Santos; Carlo J F de Oliveira; Heather Deobald; Eve Devinoy; Kaitlin E Donohue; Peter Dovc; Annett Eberlein; Carolyn J Fitzsimmons; Alessandra M Franzin; Gustavo R Garcia; Sem Genini; Cody J Gladney; Jason R Grant; Marion L Greaser; Jonathan A Green; Darryl L Hadsell; Hatam A Hakimov; Rob Halgren; Jennifer L Harrow; Elizabeth A Hart; Nicola Hastings; Marta Hern'andez; Zhi-Liang Hu; Aaron Ingham; Terhi Iso-Touru; Catherine Jamis; Kirsty Jensen; Dimos Kapetis; Tovah Kerr; Sari S Khalil; Hasan Khatib; Davood Kolbehdari; Charu G Kumar; Dinesh Kumar; Richard Leach; Justin C-M Lee; Changxi Li; Krystin M Logan; Roberto Malinverni; Elisa Marques; William F Martin; Natalia F Martins; Sandra R Maruyama; Raffaele Mazza; Kim L McLean; Juan F Medrano; Barbara T Moreno; Daniela D Mor'e; Carl T Muntean; Hari P Nandakumar; Marcelo F G Nogueira; Ingrid Olsaker; Sameer D Pant; Francesca Panzitta; Rosemeire C P Pastor; Mario A Poli; Nathan Poslusny; Satyanarayana Rachagani; Shoba Ranganathan; Andrej Razpet

2009-01-01

236

Cladogenetic correlates of genomic expansions in the recent evolution of actinopterygiian fishes  

E-print Network

in extreme cold-water fishes (Cheng & Chen 1999). Duplicated loci that evolve new structural, catalyticCladogenetic correlates of genomic expansions in the recent evolution of actinopterygiian fishes as catalysts for rapid cladogenetic speciation in some fish taxa, but any general relationships between genome

Avise, John

237

Evolution and Taxonomic Classification of Human Papillomavirus 16 (HPV16)-Related Variant Genomes  

E-print Network

Evolution and Taxonomic Classification of Human Papillomavirus 16 (HPV16)-Related Variant Genomes of Medicine, Bronx, New York, United States of America Abstract Background: Human papillomavirus 16 (HPV16 and Taxonomic Classification of Human Papillomavirus 16 (HPV16)-Related Variant Genomes: HPV31, HPV33, HPV35

DeSalle, Rob

238

Rapid Genome Change in Synthetic Polyploids of Brassica and Its Implications for Polyploid Evolution  

Microsoft Academic Search

Although the evolutionary success of polyploidy in higher plants has been widely recognized, there is virtually no information on how polyploid genomes have evolved after their formation. In this report, we used synthetic polyploids of Brassica as a model system to study genome evolution in the early generations after polyploidization. The initial polyploids we developed were completely homozygous, and thus,

Keming Song; Ping Lu; Keliang Tang; Thomas C. Osborn

1995-01-01

239

The Evolution of Biased Codon and Amino Acid Usage in Nematode Genomes Asher D. Cutter,1  

E-print Network

The Evolution of Biased Codon and Amino Acid Usage in Nematode Genomes Asher D. Cutter,1 James D, United Kingdom Despite the degeneracy of the genetic code, whereby different codons encode the same amino acid, alternative codons and amino acids are utilized nonrandomly within and between genomes

Cutter, Asher D.

240

LETTER doi:10.1038/nature12323 Recalibrating Equus evolution using the genome  

E-print Network

LETTER doi:10.1038/nature12323 Recalibrating Equus evolution using the genome sequence of an early of a Late Pleistocene horse (43kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski's horse (E. f. prze- walskii) and a donkey (E. asinus). Our analyses suggest

Cai, Long

241

A recurring syndrome of accelerated plastid genome evolution in the angiosperm tribe Sileneae (Caryophyllaceae).  

PubMed

In flowering plants, plastid genomes are generally conserved, exhibiting slower rates of sequence evolution than the nucleus and little or no change in structural organization. However, accelerated plastid genome evolution has occurred in scattered angiosperm lineages. For example, some species within the genus Silene have experienced a suite of recent changes to their plastid genomes, including inversions, shifts in inverted repeat boundaries, large indels, intron losses, and rapid rates of amino acid sequence evolution in a subset of protein genes, with the most extreme divergence occurring in the protease gene clpP. To investigate the relationship between the rates of sequence and structural evolution, we sequenced complete plastid genomes from three species (Silene conoidea, S. paradoxa, and Lychnis chalcedonica), representing independent lineages within the tribe Sileneae that were previously shown to have accelerated rates of clpP evolution. We found a high degree of parallel evolution. Elevated rates of amino acid substitution have occurred repeatedly in the same subset of plastid genes and have been accompanied by a recurring pattern of structural change, including cases of identical inversions and intron loss. This "syndrome" of changes was not observed in the closely related outgroup Agrostemma githago or in the more slowly evolving Silene species that were sequenced previously. Although no single mechanism has yet been identified to explain the correlated suite of changes in plastid genome sequence and structure that has occurred repeatedly in angiosperm evolution, we discuss a possible mixture of adaptive and non-adaptive forces that may be responsible. PMID:24373909

Sloan, Daniel B; Triant, Deborah A; Forrester, Nicole J; Bergner, Laura M; Wu, Martin; Taylor, Douglas R

2014-03-01

242

Genomic Evolution of 11 Type Strains within Family Planctomycetaceae  

PubMed Central

The species in family Planctomycetaceae are ideal groups for investigating the origin of eukaryotes. Their cells are divided by a lipidic intracytoplasmic membrane and they share a number of eukaryote-like molecular characteristics. However, their genomic structures, potential abilities, and evolutionary status are still unknown. In this study, we searched for common protein families and a core genome/pan genome based on 11 sequenced species in family Planctomycetaceae. Then, we constructed phylogenetic tree based on their 832 common protein families. We also annotated the 11 genomes using the Clusters of Orthologous Groups database. Moreover, we predicted and reconstructed their core/pan metabolic pathways using the KEGG (Kyoto Encyclopedia of Genes and Genomes) orthology system. Subsequently, we identified genomic islands (GIs) and structural variations (SVs) among the five complete genomes and we specifically investigated the integration of two Planctomycetaceae plasmids in all 11 genomes. The results indicate that Planctomycetaceae species share diverse genomic variations and unique genomic characteristics, as well as have huge potential for human applications. PMID:24489782

Zhou, Yizhuang; Yang, Linfeng; Liu, Tianxiang; Yang, Jinlong; Chen, Yanling; Su, Longxiang; Xu, Jin; Chen, Jing; Liu, Feng; Chen, Jiapeng; Dai, Wenkui; Ni, Peixiang; Fang, Chengxiang; Yang, Ruifu

2014-01-01

243

How rhinovirus infections cause exacerbations of asthma.  

PubMed

Rhinovirus (RV) infections are closely linked to exacerbations of asthma, and yet most RV infections of patients with asthma cause only upper respiratory symptoms. These findings suggest that RV and other viral infections contribute to the causation of acute exacerbations of asthma, but that additional cofactors are generally required. In fact, factors related to the host, virus, and environment have been identified that affect the severity of RV infections, and propensity to develop lower respiratory tract symptoms. This review will discuss these factors and how their effects may act alone or in combination to increase the probability of RV-induced exacerbations of asthma. PMID:25270551

Gern, J E

2015-01-01

244

Hidden Markov Models for Evolution and Comparative Genomics Analysis  

PubMed Central

The problem of reconstruction of ancestral states given a phylogeny and data from extant species arises in a wide range of biological studies. The continuous-time Markov model for the discrete states evolution is generally used for the reconstruction of ancestral states. We modify this model to account for a case when the states of the extant species are uncertain. This situation appears, for example, if the states for extant species are predicted by some program and thus are known only with some level of reliability; it is common for bioinformatics field. The main idea is formulation of the problem as a hidden Markov model on a tree (tree HMM, tHMM), where the basic continuous-time Markov model is expanded with the introduction of emission probabilities of observed data (e.g. prediction scores) for each underlying discrete state. Our tHMM decoding algorithm allows us to predict states at the ancestral nodes as well as to refine states at the leaves on the basis of quantitative comparative genomics. The test on the simulated data shows that the tHMM approach applied to the continuous variable reflecting the probabilities of the states (i.e. prediction score) appears to be more accurate then the reconstruction from the discrete states assignment defined by the best score threshold. We provide examples of applying our model to the evolutionary analysis of N-terminal signal peptides and transcription factor binding sites in bacteria. The program is freely available at http://bioinf.fbb.msu.ru/~nadya/tHMM and via web-service at http://bioinf.fbb.msu.ru/treehmmweb. PMID:23762278

Bykova, Nadezda A.; Favorov, Alexander V.; Mironov, Andrey A.

2013-01-01

245

Biology, genome organization, and evolution of parvoviruses in marine shrimp.  

PubMed

As shrimp aquaculture has evolved from a subsistent farming activity to an economically important global industry, viral diseases have also become a serious threat to the sustainable growth and productivity of this industry. Parvoviruses represent an economically important group of viruses that has greatly affected shrimp aquaculture. In the early 1980s, an outbreak of a shrimp parvovirus, infectious hypodermal and hematopoietic necrosis virus (IHHNV), led to the collapse of penaeid shrimp farming in the Americas. Since then, considerable progress has been made in characterizing the parvoviruses of shrimp and developing diagnostic methods aimed to preventing the spread of diseases caused by these viruses. To date, four parvoviruses are known that infect shrimp; these include IHHNV, hepatopancreatic parvovirus (HPV), spawner-isolated mortality virus (SMV), and lymphoid organ parvo-like virus. Due to the economic repercussions that IHHNV and HPV outbreaks have caused to shrimp farming over the years, studies have been focused mostly on these two pathogens, while information on SMV and LPV remains limited. IHHNV was the first shrimp virus to be sequenced and the first for which highly sensitive diagnostic methods were developed. IHHNV-resistant lines of shrimp were also developed to mitigate the losses caused by this virus. While the losses due to IHHNV have been largely contained in recent years, reports of HPV-induced mortalities in larval stages in hatchery and losses due to reduced growth have increased. This review presents a comprehensive account of the history and current knowledge on the biology, diagnostics methods, genomic features, mechanisms of evolution, and management strategies of shrimp parvoviruses. We also highlighted areas where research efforts should be focused in order to gain further insight on the mechanisms of parvoviral pathogenicity in shrimp that will help to prevent future losses caused by these viruses. PMID:24751195

Dhar, Arun K; Robles-Sikisaka, Refugio; Saksmerprome, Vanvimon; Lakshman, Dilip K

2014-01-01

246

Whole genome comparisons of Fragaria, Prunus and Malus reveal different modes of evolution between Rosaceous subfamilies  

PubMed Central

Background Rosaceae include numerous economically important and morphologically diverse species. Comparative mapping between the member species in Rosaceae have indicated some level of synteny. Recently the whole genome of three crop species, peach, apple and strawberry, which belong to different genera of the Rosaceae family, have been sequenced, allowing in-depth comparison of these genomes. Results Our analysis using the whole genome sequences of peach, apple and strawberry identified 1399 orthologous regions between the three genomes, with a mean length of around 100 kb. Each peach chromosome showed major orthology mostly to one strawberry chromosome, but to more than two apple chromosomes, suggesting that the apple genome went through more chromosomal fissions in addition to the whole genome duplication after the divergence of the three genera. However, the distribution of contiguous ancestral regions, identified using the multiple genome rearrangements and ancestors (MGRA) algorithm, suggested that the Fragaria genome went through a greater number of small scale rearrangements compared to the other genomes since they diverged from a common ancestor. Using the contiguous ancestral regions, we reconstructed a hypothetical ancestral genome for the Rosaceae 7 composed of nine chromosomes and propose the evolutionary steps from the ancestral genome to the extant Fragaria, Prunus and Malus genomes. Conclusion Our analysis shows that different modes of evolution may have played major roles in different subfamilies of Rosaceae. The hypothetical ancestral genome of Rosaceae and the evolutionary steps that lead to three different lineages of Rosaceae will facilitate our understanding of plant genome evolution as well as have a practical impact on knowledge transfer among member species of Rosaceae. PMID:22475018

2012-01-01

247

Rhinovirus Associated Severe Respiratory Failure in Immunocompetent Adult Patient  

PubMed Central

Rhinovirus infection is typically associated with the common cold and has rarely been reported as a cause of severe pneumonia in immunocompetent adults. A 55-year-old previous healthy woman, who consumed half a bottle of alcohol daily, presented with respiratory failure after one week of upper respiratory infection symptoms. Radiography revealed bilateral, diffuse ground glass opacity with patchy consolidation in the whole lung field; bronchoalveolar lavage fluid analysis indicated that rhinovirus was the causative organism. After five days of conservative support, the symptoms and radiographic findings began to improve. We report this rare case of rhinovirus pneumonia in an otherwise healthy host along with a review of references. PMID:25309608

Kim, Kiwook; Song, Yeon Han; Park, Joo-Hyun; Park, Hye Kyeong; Kim, Su Young; Jung, Hun; Lee, Sung-Soon

2014-01-01

248

Rhinovirus associated severe respiratory failure in immunocompetent adult patient.  

PubMed

Rhinovirus infection is typically associated with the common cold and has rarely been reported as a cause of severe pneumonia in immunocompetent adults. A 55-year-old previous healthy woman, who consumed half a bottle of alcohol daily, presented with respiratory failure after one week of upper respiratory infection symptoms. Radiography revealed bilateral, diffuse ground glass opacity with patchy consolidation in the whole lung field; bronchoalveolar lavage fluid analysis indicated that rhinovirus was the causative organism. After five days of conservative support, the symptoms and radiographic findings began to improve. We report this rare case of rhinovirus pneumonia in an otherwise healthy host along with a review of references. PMID:25309608

Kim, Kiwook; Song, Yeon Han; Park, Joo-Hyun; Park, Hye Kyeong; Kim, Su Young; Jung, Hun; Lee, Sung-Soon; Koo, Hyeon-Kyoung

2014-09-01

249

Structure of a human rhinovirus complexed with its receptor molecule.  

PubMed

Cryoelectron microscopy has been used to determine the structure of a virus when complexed with its glycoprotein cellular receptor. Human rhinovirus 16 complexed with the two amino-terminal, immunoglobulin-like domains of the intercellular adhesion molecule 1 shows that the intercellular adhesion molecule 1 binds into the 12-A deep "canyon" on the viral surface. This result confirms the prediction that the viral-receptor attachment site lies in a cavity inaccessible to the host's antibodies. The atomic structures of human rhinovirus 14 and CD4, homologous to human rhinovirus 16 and intercellular adhesion molecule 1, showed excellent correspondence with observed density, thus establishing the virus-receptor interactions. PMID:8093643

Olson, N H; Kolatkar, P R; Oliveira, M A; Cheng, R H; Greve, J M; McClelland, A; Baker, T S; Rossmann, M G

1993-01-15

250

Mouse models of rhinovirus infection and airways disease.  

PubMed

Mouse models are invaluable tools for gaining insight into host immunity during virus infection. Until recently, no practical mouse model for rhinovirus infection was available. Development of infection models was complicated by the existence of distinct groups of viruses that utilize different host cell surface proteins for binding and entry. Here, we describe mouse infection models, including virus purification and measurement of host immune responses, for representative viruses from two of these groups: (1) infection of unmodified Balb/c mice with minor group rhinovirus serotype 1B (RV-1B) and (2) infection of transgenic Balb/c mice with major group rhinovirus serotype 16 (RV-16). PMID:25261315

Bartlett, Nathan W; Singanayagam, Aran; Johnston, Sebastian L

2015-01-01

251

Insights from the Complete Chloroplast Genome into the Evolution of Sesamum indicum L  

PubMed Central

Sesame (Sesamum indicum L.) is one of the oldest oilseed crops. In order to investigate the evolutionary characters according to the Sesame Genome Project, apart from sequencing its nuclear genome, we sequenced the complete chloroplast genome of S. indicum cv. Yuzhi 11 (white seeded) using Illumina and 454 sequencing. Comparisons of chloroplast genomes between S. indicum and the 18 other higher plants were then analyzed. The chloroplast genome of cv. Yuzhi 11 contains 153,338 bp and a total of 114 unique genes (KC569603). The number of chloroplast genes in sesame is the same as that in Nicotiana tabacum, Vitis vinifera and Platanus occidentalis. The variation in the length of the large single-copy (LSC) regions and inverted repeats (IR) in sesame compared to 18 other higher plant species was the main contributor to size variation in the cp genome in these species. The 77 functional chloroplast genes, except for ycf1 and ycf2, were highly conserved. The deletion of the cp ycf1 gene sequence in cp genomes may be due either to its transfer to the nuclear genome, as has occurred in sesame, or direct deletion, as has occurred in Panax ginseng and Cucumis sativus. The sesame ycf2 gene is only 5,721 bp in length and has lost about 1,179 bp. Nucleotides 1–585 of ycf2 when queried in BLAST had hits in the sesame draft genome. Five repeats (R10, R12, R13, R14 and R17) were unique to the sesame chloroplast genome. We also found that IR contraction/expansion in the cp genome alters its rate of evolution. Chloroplast genes and repeats display the signature of convergent evolution in sesame and other species. These findings provide a foundation for further investigation of cp genome evolution in Sesamum and other higher plants. PMID:24303020

Zhang, Haiyang; Li, Chun; Miao, Hongmei; Xiong, Songjin

2013-01-01

252

Networks of lexical borrowing and lateral gene transfer in language and genome evolution  

PubMed Central

Like biological species, languages change over time. As noted by Darwin, there are many parallels between language evolution and biological evolution. Insights into these parallels have also undergone change in the past 150 years. Just like genes, words change over time, and language evolution can be likened to genome evolution accordingly, but what kind of evolution? There are fundamental differences between eukaryotic and prokaryotic evolution. In the former, natural variation entails the gradual accumulation of minor mutations in alleles. In the latter, lateral gene transfer is an integral mechanism of natural variation. The study of language evolution using biological methods has attracted much interest of late, most approaches focusing on language tree construction. These approaches may underestimate the important role that borrowing plays in language evolution. Network approaches that were originally designed to study lateral gene transfer may provide more realistic insights into the complexities of language evolution. PMID:24375688

List, Johann-Mattis; Nelson-Sathi, Shijulal; Geisler, Hans; Martin, William

2014-01-01

253

Genomics on a phylogeny: Evolution of genes and genomes in the genus Drosophila  

Technology Transfer Automated Retrieval System (TEKTRAN)

Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of inferences in evolutionary genomics. The genomes of 12 Drosophila species, nine of which are presented here for the first time (sechellia, yakuba, erecta, ananassae, persimili...

254

The Sex Chromosomes of Frogs: Variability and Tolerance Offer Clues to Genome Evolution and Function  

PubMed Central

Frog sex chromosomes offer an ideal system for advancing our understanding of genome evolution and function because of the variety of sex determination systems in the group, the diversity of sex chromosome maturation states, the ease of experimental manipulation during early development. After briefly reviewing sex chromosome biology generally, we focus on what is known about frog sex determination, sex chromosome evolution, and recent, genomics-facilitated advances in the field. In closing we highlight gaps in our current knowledge of frog sex chromosomes, and suggest priorities for future research that can advance broad knowledge of gene dose and sex chromosome evolution. PMID:25031658

Malcom, Jacob W.; Kudra, Randal S.; Malone, John H.

2014-01-01

255

Evolution of the Fungi and their Mitochondrial Genomes  

Microsoft Academic Search

Despite the importance of fungi as model eukaryotic organisms, fungal mitochondrial genomics has only recently received considerable attention. Over the past several years, the number of available, completely sequenced mitochondrial genomes from fungi has increased from just 3 to 22 sequences, including representatives of the four principle divisions of this kingdom: Ascomycota, Basidiomycota, Zygomycota and Chytridiomycota. This wealth of data

Charles E. Bullerwell; Jessica Leigh; Elias Seif; Joyce E. Longcore; B. Franz Lang

2003-01-01

256

Genome analysis of the platypus reveals unique signatures of evolution  

Microsoft Academic Search

We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these

Wesley C. Warren; Ladeana W. Hillier; Jennifer A. Marshall Graves; Ewan Birney; Chris P. Ponting; Frank Grützner; Katherine Belov; Webb Miller; Laura Clarke; Asif T. Chinwalla; Shiaw-Pyng Yang; Andreas Heger; Devin P. Locke; Pat Miethke; Paul D. Waters; Frédéric Veyrunes; Lucinda Fulton; Bob Fulton; Tina Graves; John Wallis; Xose S. Puente; Carlos López-Otín; Gonzalo R. Ordóñez; Evan E. Eichler; Lin Chen; Ze Cheng; Janine E. Deakin; Amber Alsop; Katherine Thompson; Patrick Kirby; Anthony T. Papenfuss; Matthew J. Wakefield; Tsviya Olender; Doron Lancet; Gavin A. Huttley; Arian F. A. Smit; Andrew Pask; Peter Temple-Smith; Mark A. Batzer; Jerilyn A. Walker; Miriam K. Konkel; Robert S. Harris; Camilla M. Whittington; Emily S. W. Wong; Neil J. Gemmell; Emmanuel Buschiazzo; Iris M. Vargas Jentzsch; Angelika Merkel; Juergen Schmitz; Anja Zemann; Gennady Churakov; Jan Ole Kriegs; Juergen Brosius; Elizabeth P. Murchison; Ravi Sachidanandam; Carly Smith; Gregory J. Hannon; Enkhjargal Tsend-Ayush; Daniel McMillan; Rosalind Attenborough; Willem Rens; Malcolm Ferguson-Smith; Christophe M. Lefèvre; Julie A. Sharp; Kevin R. Nicholas; David A. Ray; Michael Kube; Richard Reinhardt; Thomas H. Pringle; James Taylor; Russell C. Jones; Brett Nixon; Jean-Louis Dacheux; Hitoshi Niwa; Yoko Sekita; Xiaoqiu Huang; Alexander Stark; Pouya Kheradpour; Manolis Kellis; Paul Flicek; Yuan Chen; Caleb Webber; Ross Hardison; Joanne Nelson; Kym Hallsworth-Pepin; Kim Delehaunty; Chris Markovic; Pat Minx; Yucheng Feng; Colin Kremitzki; Makedonka Mitreva; Jarret Glasscock; Todd Wylie; Patricia Wohldmann; Prathapan Thiru; Michael N. Nhan; Craig S. Pohl; Scott M. Smith; Shunfeng Hou; Marilyn B. Renfree; Elaine R. Mardis; Richard K. Wilson

2008-01-01

257

Evolution of pathogenicity and sexual reproduction in eight Candida genomes  

Microsoft Academic Search

Candida species are the most common cause of opportunistic fungal infection worldwide. Here we report the genome sequences of six Candida species and compare these and related pathogens and non-pathogens. There are significant expansions of cell wall, secreted and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly

Geraldine Butler; Matthew D. Rasmussen; Michael F. Lin; Manuel A. S. Santos; Sharadha Sakthikumar; Carol A. Munro; Esther Rheinbay; Manfred Grabherr; Anja Forche; Jennifer L. Reedy; Ino Agrafioti; Martha B. Arnaud; Steven Bates; Alistair J. P. Brown; Sascha Brunke; Maria C. Costanzo; David A. Fitzpatrick; Piet W. J. de Groot; David Harris; Lois L. Hoyer; Bernhard Hube; Frans M. Klis; Chinnappa Kodira; Nicola Lennard; Mary E. Logue; Ronny Martin; Aaron M. Neiman; Elissavet Nikolaou; Michael A. Quail; Janet Quinn; Maria C. Santos; Florian F. Schmitzberger; Gavin Sherlock; Prachi Shah; Kevin A. T. Silverstein; Marek S. Skrzypek; David Soll; Rodney Staggs; Ian Stansfield; Michael P. H. Stumpf; Peter E. Sudbery; Thyagarajan Srikantha; Qiandong Zeng; Judith Berman; Matthew Berriman; Joseph Heitman; Neil A. R. Gow; Michael C. Lorenz; Bruce W. Birren; Manolis Kellis; Christina A. Cuomo

2009-01-01

258

The tomato genome sequence provides insight into fleshy fruit evolution  

Technology Transfer Automated Retrieval System (TEKTRAN)

The genome of the inbred tomato cultivar ‘Heinz 1706’ was sequenced and assembled using a combination of Sanger and “next generation” technologies. The predicted genome size is ~900 Mb, consistent with prior estimates, of which 760 Mb were assembled in 91 scaffolds aligned to the 12 tomato chromosom...

259

Sequencing the chimpanzee genome: insights into human evolution and disease  

Microsoft Academic Search

Large-scale sequencing of the chimpanzee genome is now imminent. Beyond the inherent fascination of comparing the sequence of the human genome with that of our closest living relative, this project is likely to yield tangible scientific benefits in two areas. First, the discovery of functionally important mutations that are specific to the human lineage offers a new path towards medical

Ajit Varki; Maynard V. Olson

2003-01-01

260

Project 1: Microbial Genomes: A Genomic Approach to Understanding the Evolution of Virulence. Project 2: From Genomes to Life: Drosophilia Development in Space and Time  

SciTech Connect

This project seeks to use the genomes of two close relatives, A. actinomycetemcomitans and H. aphrophilus, to understand the evolutionary changes that take place in a genome to make it more or less virulent. Our primary specific aim of this project was to sequence, annotate, and analyze the genomes of Actinobacillus actinomycetemcomitans (CU1000, serotype f) and Haemophilus aphrophilus. With these genome sequences we have then compared the whole genome sequences to each other and to the current Aa (HK1651 www.genome.ou.edu) genome project sequence along with other fully sequenced Pasteurellaceae to determine inter and intra species differences that may account for the differences and similarities in disease. We also propose to create and curate a comprehensive database where sequence information and analysis for the Pasteurellaceae (family that includes the genera Actinobacillus and Haemophilus) are readily accessible. And finally we have proposed to develop phylogenetic techniques that can be used to efficiently and accurately examine the evolution of genomes. Below we report on progress we have made on these major specific aims. Progress on the specific aims is reported below under two major headings--experimental approaches and bioinformatics and systematic biology approaches.

Robert DeSalle

2004-09-10

261

DNA Transposons and the Evolution of Eukaryotic Genomes  

PubMed Central

Transposable elements are mobile genetic units that exhibit broad diversity in their structure and transposition mechanisms. Transposable elements occupy a large fraction of many eukaryotic genomes and their movement and accumulation represent a major force shaping the genes and genomes of almost all organisms. This review focuses on DNA-mediated or class 2 transposons and emphasizes how this class of elements is distinguished from other types of mobile elements in terms of their structure, amplification dynamics, and genomic effect. We provide an up-to-date outlook on the diversity and taxonomic distribution of all major types of DNA transposons in eukaryotes, including Helitrons and Mavericks. We discuss some of the evolutionary forces that influence their maintenance and diversification in various genomic environments. Finally, we highlight how the distinctive biological features of DNA transposons have contributed to shape genome architecture and led to the emergence of genetic innovations in different eukaryotic lineages. PMID:18076328

Feschotte, Cédric; Pritham, Ellen J.

2007-01-01

262

The common marmoset genome provides insight into primate biology and evolution.  

PubMed

We report the whole-genome sequence of the common marmoset (Callithrix jacchus). The 2.26-Gb genome of a female marmoset was assembled using Sanger read data (6×) and a whole-genome shotgun strategy. A first analysis has permitted comparison with the genomes of apes and Old World monkeys and the identification of specific features that might contribute to the unique biology of this diminutive primate, including genetic changes that may influence body size, frequent twinning and chimerism. We observed positive selection in growth hormone/insulin-like growth factor genes (growth pathways), respiratory complex I genes (metabolic pathways), and genes encoding immunobiological factors and proteases (reproductive and immunity pathways). In addition, both protein-coding and microRNA genes related to reproduction exhibited evidence of rapid sequence evolution. This genome sequence for a New World monkey enables increased power for comparative analyses among available primate genomes and facilitates biomedical research application. PMID:25038751

2014-08-01

263

Distribution and evolution of short tandem repeats in closely related bacterial genomes.  

PubMed

Simultaneous identification and comparison of perfect and imperfect microsatellites within a genome is a valuable tool both to overcome the lack of a consensus definition of SSRs and to assess repeat history. Detailed analysis of the overall distribution of perfect and imperfect microsatellites in closely related bacterial taxa is expected to give new insight into the evolution of prokaryotic genomes. We have performed a genome-wide analysis of microsatellite distribution in four Escherichia coli and seven Chlamydial strains. Chlamydial strains generally have a higher density of SSRs and show greater intra-group differences of SSR distribution patterns than E. coli genomes. In most investigated genomes the distribution of the total lengths of matching perfect and imperfect trinucleotide repeats are highly similar, with the notable exception of C. muridarum. Closely related strains show more similar repeat distribution patterns than strains separated by a longer divergence time. The discrepancy between the preferred classes of perfect and imperfect repeats in C. muridarum implies accelerated evolution of SSRs in this particular strain. Our results suggest that microsatellites, although considerably less abundant than in eukaryotic genomes, may nevertheless play an important role in the evolution of prokaryotic genomes and several gene families. PMID:18191346

Kassai-Jáger, Edit; Ortutay, Csaba; Tóth, Gábor; Vellai, Tibor; Gáspári, Zoltán

2008-02-29

264

This Déjà Vu Feeling—Analysis of Multidomain Protein Evolution in Eukaryotic Genomes  

PubMed Central

Evolutionary innovation in eukaryotes and especially animals is at least partially driven by genome rearrangements and the resulting emergence of proteins with new domain combinations, and thus potentially novel functionality. Given the random nature of such rearrangements, one could expect that proteins with particularly useful multidomain combinations may have been rediscovered multiple times by parallel evolution. However, existing reports suggest a minimal role of this phenomenon in the overall evolution of eukaryotic proteomes. We assembled a collection of 172 complete eukaryotic genomes that is not only the largest, but also the most phylogenetically complete set of genomes analyzed so far. By employing a maximum parsimony approach to compare repertoires of Pfam domains and their combinations, we show that independent evolution of domain combinations is significantly more prevalent than previously thought. Our results indicate that about 25% of all currently observed domain combinations have evolved multiple times. Interestingly, this percentage is even higher for sets of domain combinations in individual species, with, for instance, 70% of the domain combinations found in the human genome having evolved independently at least once in other species. We also show that previous, much lower estimates of this rate are most likely due to the small number and biased phylogenetic distribution of the genomes analyzed. The process of independent emergence of identical domain combination is widespread, not limited to domains with specific functional categories. Besides data from large-scale analyses, we also present individual examples of independent domain combination evolution. The surprisingly large contribution of parallel evolution to the development of the domain combination repertoire in extant genomes has profound consequences for our understanding of the evolution of pathways and cellular processes in eukaryotes and for comparative functional genomics. PMID:23166479

Zmasek, Christian M.; Godzik, Adam

2012-01-01

265

This Déjà vu feeling--analysis of multidomain protein evolution in eukaryotic genomes.  

PubMed

Evolutionary innovation in eukaryotes and especially animals is at least partially driven by genome rearrangements and the resulting emergence of proteins with new domain combinations, and thus potentially novel functionality. Given the random nature of such rearrangements, one could expect that proteins with particularly useful multidomain combinations may have been rediscovered multiple times by parallel evolution. However, existing reports suggest a minimal role of this phenomenon in the overall evolution of eukaryotic proteomes. We assembled a collection of 172 complete eukaryotic genomes that is not only the largest, but also the most phylogenetically complete set of genomes analyzed so far. By employing a maximum parsimony approach to compare repertoires of Pfam domains and their combinations, we show that independent evolution of domain combinations is significantly more prevalent than previously thought. Our results indicate that about 25% of all currently observed domain combinations have evolved multiple times. Interestingly, this percentage is even higher for sets of domain combinations in individual species, with, for instance, 70% of the domain combinations found in the human genome having evolved independently at least once in other species. We also show that previous, much lower estimates of this rate are most likely due to the small number and biased phylogenetic distribution of the genomes analyzed. The process of independent emergence of identical domain combination is widespread, not limited to domains with specific functional categories. Besides data from large-scale analyses, we also present individual examples of independent domain combination evolution. The surprisingly large contribution of parallel evolution to the development of the domain combination repertoire in extant genomes has profound consequences for our understanding of the evolution of pathways and cellular processes in eukaryotes and for comparative functional genomics. PMID:23166479

Zmasek, Christian M; Godzik, Adam

2012-01-01

266

Small regulatory RNAs in mammals : genomics, function and evolution  

E-print Network

This thesis explores two aspects of small regulatory RNAs in mammals: (1) the genomic origin of mammalian piwi-interacting RNAs (piRNAs), (2) the evolutionary and functional implication of the seed-based target recognition ...

Kim, Jin-Kuk

2011-01-01

267

The Marsupial Mitochondrial Genome and the Evolution of Placental Mammals  

Microsoft Academic Search

The entire nucleotide sequence of the mitochondrial genome of the American opossum, Didelphis virginiana, was determined. Two major features distinguish this genome from those of other mammals. First, five tRNA genes around the origin of light strand replication are rearranged. Second, the anticodon of tRNA&P is posttranscriptionally changed by an RNA editing process such that its coding capacity is altered.

Axel Janke; Gertraud Feldmaier-Fuchs; W. Kelley Thomas; Arndt von Haeseler; Svante Piiibo

1994-01-01

268

When parasitic wasps hijacked viruses: genomic and functional evolution of polydnaviruses.  

PubMed

The Polydnaviridae (PDV), including the Bracovirus (BV) and Ichnovirus genera, originated from the integration of unrelated viruses in the genomes of two parasitoid wasp lineages, in a remarkable example of convergent evolution. Functionally active PDVs represent the most compelling evolutionary success among endogenous viral elements (EVEs). BV evolved from the domestication by braconid wasps of a nudivirus 100 Ma. The nudivirus genome has become an EVE involved in BV particle production but is not encapsidated. Instead, BV genomes have co-opted virulence genes, used by the wasps to control the immunity and development of their hosts. Gene transfers and duplications have shaped BV genomes, now encoding hundreds of genes. Phylogenomic studies suggest that BVs contribute largely to wasp diversification and adaptation to their hosts. A genome evolution model explains how multidirectional wasp adaptation to different host species could have fostered PDV genome extension. Integrative studies linking ecological data on the wasp to genomic analyses should provide new insights into the adaptive role of particular BV genes. Forthcoming genomic advances should also indicate if the associations between endoparasitoid wasps and symbiotic viruses evolved because of their particularly intimate interactions with their hosts, or if similar domesticated EVEs could be uncovered in other parasites. PMID:23938758

Herniou, Elisabeth A; Huguet, Elisabeth; Thézé, Julien; Bézier, Annie; Periquet, Georges; Drezen, Jean-Michel

2013-09-19

269

When parasitic wasps hijacked viruses: genomic and functional evolution of polydnaviruses  

PubMed Central

The Polydnaviridae (PDV), including the Bracovirus (BV) and Ichnovirus genera, originated from the integration of unrelated viruses in the genomes of two parasitoid wasp lineages, in a remarkable example of convergent evolution. Functionally active PDVs represent the most compelling evolutionary success among endogenous viral elements (EVEs). BV evolved from the domestication by braconid wasps of a nudivirus 100 Ma. The nudivirus genome has become an EVE involved in BV particle production but is not encapsidated. Instead, BV genomes have co-opted virulence genes, used by the wasps to control the immunity and development of their hosts. Gene transfers and duplications have shaped BV genomes, now encoding hundreds of genes. Phylogenomic studies suggest that BVs contribute largely to wasp diversification and adaptation to their hosts. A genome evolution model explains how multidirectional wasp adaptation to different host species could have fostered PDV genome extension. Integrative studies linking ecological data on the wasp to genomic analyses should provide new insights into the adaptive role of particular BV genes. Forthcoming genomic advances should also indicate if the associations between endoparasitoid wasps and symbiotic viruses evolved because of their particularly intimate interactions with their hosts, or if similar domesticated EVEs could be uncovered in other parasites. PMID:23938758

Herniou, Elisabeth A.; Huguet, Elisabeth; Thézé, Julien; Bézier, Annie; Periquet, Georges; Drezen, Jean-Michel

2013-01-01

270

The genome sequence of taurine cattle: a window to ruminant biology and evolution.  

PubMed

To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production. PMID:19390049

Elsik, Christine G; Tellam, Ross L; Worley, Kim C; Gibbs, Richard A; Muzny, Donna M; Weinstock, George M; Adelson, David L; Eichler, Evan E; Elnitski, Laura; Guigó, Roderic; Hamernik, Debora L; Kappes, Steve M; Lewin, Harris A; Lynn, David J; Nicholas, Frank W; Reymond, Alexandre; Rijnkels, Monique; Skow, Loren C; Zdobnov, Evgeny M; Schook, Lawrence; Womack, James; Alioto, Tyler; Antonarakis, Stylianos E; Astashyn, Alex; Chapple, Charles E; Chen, Hsiu-Chuan; Chrast, Jacqueline; Câmara, Francisco; Ermolaeva, Olga; Henrichsen, Charlotte N; Hlavina, Wratko; Kapustin, Yuri; Kiryutin, Boris; Kitts, Paul; Kokocinski, Felix; Landrum, Melissa; Maglott, Donna; Pruitt, Kim; Sapojnikov, Victor; Searle, Stephen M; Solovyev, Victor; Souvorov, Alexandre; Ucla, Catherine; Wyss, Carine; Anzola, Juan M; Gerlach, Daniel; Elhaik, Eran; Graur, Dan; Reese, Justin T; Edgar, Robert C; McEwan, John C; Payne, Gemma M; Raison, Joy M; Junier, Thomas; Kriventseva, Evgenia V; Eyras, Eduardo; Plass, Mireya; Donthu, Ravikiran; Larkin, Denis M; Reecy, James; Yang, Mary Q; Chen, Lin; Cheng, Ze; Chitko-McKown, Carol G; Liu, George E; Matukumalli, Lakshmi K; Song, Jiuzhou; Zhu, Bin; Bradley, Daniel G; Brinkman, Fiona S L; Lau, Lilian P L; Whiteside, Matthew D; Walker, Angela; Wheeler, Thomas T; Casey, Theresa; German, J Bruce; Lemay, Danielle G; Maqbool, Nauman J; Molenaar, Adrian J; Seo, Seongwon; Stothard, Paul; Baldwin, Cynthia L; Baxter, Rebecca; Brinkmeyer-Langford, Candice L; Brown, Wendy C; Childers, Christopher P; Connelley, Timothy; Ellis, Shirley A; Fritz, Krista; Glass, Elizabeth J; Herzig, Carolyn T A; Iivanainen, Antti; Lahmers, Kevin K; Bennett, Anna K; Dickens, C Michael; Gilbert, James G R; Hagen, Darren E; Salih, Hanni; Aerts, Jan; Caetano, Alexandre R; Dalrymple, Brian; Garcia, Jose Fernando; Gill, Clare A; Hiendleder, Stefan G; Memili, Erdogan; Spurlock, Diane; Williams, John L; Alexander, Lee; Brownstein, Michael J; Guan, Leluo; Holt, Robert A; Jones, Steven J M; Marra, Marco A; Moore, Richard; Moore, Stephen S; Roberts, Andy; Taniguchi, Masaaki; Waterman, Richard C; Chacko, Joseph; Chandrabose, Mimi M; Cree, Andy; Dao, Marvin Diep; Dinh, Huyen H; Gabisi, Ramatu Ayiesha; Hines, Sandra; Hume, Jennifer; Jhangiani, Shalini N; Joshi, Vandita; Kovar, Christie L; Lewis, Lora R; Liu, Yih-Shin; Lopez, John; Morgan, Margaret B; Nguyen, Ngoc Bich; Okwuonu, Geoffrey O; Ruiz, San Juana; Santibanez, Jireh; Wright, Rita A; Buhay, Christian; Ding, Yan; Dugan-Rocha, Shannon; Herdandez, Judith; Holder, Michael; Sabo, Aniko; Egan, Amy; Goodell, Jason; Wilczek-Boney, Katarzyna; Fowler, Gerald R; Hitchens, Matthew Edward; Lozado, Ryan J; Moen, Charles; Steffen, David; Warren, James T; Zhang, Jingkun; Chiu, Readman; Schein, Jacqueline E; Durbin, K James; Havlak, Paul; Jiang, Huaiyang; Liu, Yue; Qin, Xiang; Ren, Yanru; Shen, Yufeng; Song, Henry; Bell, Stephanie Nicole; Davis, Clay; Johnson, Angela Jolivet; Lee, Sandra; Nazareth, Lynne V; Patel, Bella Mayurkumar; Pu, Ling-Ling; Vattathil, Selina; Williams, Rex Lee; Curry, Stacey; Hamilton, Cerissa; Sodergren, Erica; Wheeler, David A; Barris, Wes; Bennett, Gary L; Eggen, André; Green, Ronnie D; Harhay, Gregory P; Hobbs, Matthew; Jann, Oliver; Keele, John W; Kent, Matthew P; Lien, Sigbjørn; McKay, Stephanie D; McWilliam, Sean; Ratnakumar, Abhirami; Schnabel, Robert D; Smith, Timothy; Snelling, Warren M; Sonstegard, Tad S; Stone, Roger T; Sugimoto, Yoshikazu; Takasuga, Akiko; Taylor, Jeremy F; Van Tassell, Curtis P; Macneil, Michael D; Abatepaulo, Antonio R R; Abbey, Colette A; Ahola, Virpi; Almeida, Iassudara G; Amadio, Ariel F; Anatriello, Elen; Bahadue, Suria M; Biase, Fernando H; Boldt, Clayton R; Carroll, Jeffery A; Carvalho, Wanessa A; Cervelatti, Eliane P; Chacko, Elsa; Chapin, Jennifer E; Cheng, Ye; Choi, Jungwoo; Colley, Adam J; de Campos, Tatiana A; De Donato, Marcos; Santos, Isabel K F de Miranda; de Oliveira, Carlo J F; Deobald, Heather; Devinoy, Eve; Donohue, Kaitlin E; Dovc, Peter; Eberlein, Annett; Fitzsimmons, Carolyn J; Franzin, Alessandra M; Garcia, Gustavo R; Genini, Sem; Gladney, Cody J; Grant, Jason R; Greaser, Marion L; Green, Jonathan A; Hadsell, Darryl L; Hakimov, Hatam A; Halgren, Rob; Harrow, Jennifer L; Hart, Elizabeth A; Hastings, Nicola; Hernandez, Marta; Hu, Zhi-Liang; Ingham, Aaron; Iso-Touru, Terhi; Jamis, Catherine; Jensen, Kirsty; Kapetis, Dimos; Kerr, Tovah; Khalil, Sari S; Khatib, Hasan; Kolbehdari, Davood; Kumar, Charu G; Kumar, Dinesh; Leach, Richard; Lee, Justin C-M; Li, Changxi; Logan, Krystin M; Malinverni, Roberto; Marques, Elisa; Martin, William F; Martins, Natalia F

2009-04-24

271

Distribution and Evolution of Repeated Sequences in Genomes of Triatominae (Hemiptera-Reduviidae) Inferred from Genomic In Situ Hybridization  

PubMed Central

The subfamily Triatominae, vectors of Chagas disease, comprises 140 species characterized by a highly homogeneous chromosome number. We analyzed the chromosomal distribution and evolution of repeated sequences in Triatominae genomes by Genomic in situ Hybridization using Triatoma delpontei and Triatoma infestans genomic DNAs as probes. Hybridizations were performed on their own chromosomes and on nine species included in six genera from the two main tribes: Triatomini and Rhodniini. Genomic probes clearly generate two different hybridization patterns, dispersed or accumulated in specific regions or chromosomes. The three used probes generate the same hybridization pattern in each species. However, these patterns are species-specific. In closely related species, the probes strongly hybridized in the autosomal heterochromatic regions, resembling C-banding and DAPI patterns. However, in more distant species these co-localizations are not observed. The heterochromatic Y chromosome is constituted by highly repeated sequences, which is conserved among 10 species of Triatomini tribe suggesting be an ancestral character for this group. However, the Y chromosome in Rhodniini tribe is markedly different, supporting the early evolutionary dichotomy between both tribes. In some species, sex chromosomes and autosomes shared repeated sequences, suggesting meiotic chromatin exchanges among these heterologous chromosomes. Our GISH analyses enabled us to acquire not only reliable information about autosomal repeated sequences distribution but also an insight into sex chromosome evolution in Triatominae. Furthermore, the differentiation obtained by GISH might be a valuable marker to establish phylogenetic relationships and to test the controversial origin of the Triatominae subfamily. PMID:25478792

Pita, Sebastian; Panzera, Francisco; Sánchez, Antonio; Panzera, Yanina; Palomeque, Teresa; Lorite, Pedro

2014-01-01

272

Host imprints on bacterial genomes--rapid, divergent evolution in individual patients.  

PubMed

Bacteria lose or gain genetic material and through selection, new variants become fixed in the population. Here we provide the first, genome-wide example of a single bacterial strain's evolution in different deliberately colonized patients and the surprising insight that hosts appear to personalize their microflora. By first obtaining the complete genome sequence of the prototype asymptomatic bacteriuria strain E. coli 83972 and then resequencing its descendants after therapeutic bladder colonization of different patients, we identified 34 mutations, which affected metabolic and virulence-related genes. Further transcriptome and proteome analysis proved that these genome changes altered bacterial gene expression resulting in unique adaptation patterns in each patient. Our results provide evidence that, in addition to stochastic events, adaptive bacterial evolution is driven by individual host environments. Ongoing loss of gene function supports the hypothesis that evolution towards commensalism rather than virulence is favored during asymptomatic bladder colonization. PMID:20865122

Zdziarski, Jaroslaw; Brzuszkiewicz, Elzbieta; Wullt, Björn; Liesegang, Heiko; Biran, Dvora; Voigt, Birgit; Grönberg-Hernandez, Jenny; Ragnarsdottir, Bryndis; Hecker, Michael; Ron, Eliora Z; Daniel, Rolf; Gottschalk, Gerhard; Hacker, Jörg; Svanborg, Catharina; Dobrindt, Ulrich

2010-01-01

273

Tools for simulating evolution of aligned genomic regions with integrated parameter estimation  

PubMed Central

Controlled simulations of genome evolution are useful for benchmarking tools. However, many simulators lack extensibility and cannot measure parameters directly from data. These issues are addressed by three new open-source programs: GSIMULATOR (for neutrally evolving DNA), SIMGRAM (for generic structured features) and SIMGENOME (for syntenic genome blocks). Each offers algorithms for parameter measurement and reconstruction of ancestral sequence. All three tools out-perform the leading neutral DNA simulator (DAWG) in benchmarks. The programs are available at . PMID:18840304

Varadarajan, Avinash; Bradley, Robert K; Holmes, Ian H

2008-01-01

274

Evolution and Diversity in Human Herpes Simplex Virus Genomes  

PubMed Central

Herpes simplex virus 1 (HSV-1) causes a chronic, lifelong infection in >60% of adults. Multiple recent vaccine trials have failed, with viral diversity likely contributing to these failures. To understand HSV-1 diversity better, we comprehensively compared 20 newly sequenced viral genomes from China, Japan, Kenya, and South Korea with six previously sequenced genomes from the United States, Europe, and Japan. In this diverse collection of passaged strains, we found that one-fifth of the newly sequenced members share a gene deletion and one-third exhibit homopolymeric frameshift mutations (HFMs). Individual strains exhibit genotypic and potential phenotypic variation via HFMs, deletions, short sequence repeats, and single-nucleotide polymorphisms, although the protein sequence identity between strains exceeds 90% on average. In the first genome-scale analysis of positive selection in HSV-1, we found signs of selection in specific proteins and residues, including the fusion protein glycoprotein H. We also confirmed previous results suggesting that recombination has occurred with high frequency throughout the HSV-1 genome. Despite this, the HSV-1 strains analyzed clustered by geographic origin during whole-genome distance analysis. These data shed light on likely routes of HSV-1 adaptation to changing environments and will aid in the selection of vaccine antigens that are invariant worldwide. PMID:24227835

Gatherer, Derek; Ochoa, Alejandro; Greenbaum, Benjamin; Dolan, Aidan; Bowden, Rory J.; Enquist, Lynn W.; Legendre, Matthieu; Davison, Andrew J.

2014-01-01

275

Developing a vaccine for human rhinoviruses  

PubMed Central

Rhinoviruses (RV’s) are common human pathogens of the respiratory tract being the most frequent cause of mild diseases of the upper respiratory tract (common cold) but more importantly they are a major initiator of acute exacerbations of chronic airway diseases. Infections can be life threatening in the latter context however RV -induced common colds have an associated economic cost from loss of productivity due to absence from work or school. There are no appropriate antiviral therapies available and vaccine strategies have failed because of the large number of viral serotypes and the lack of cross-serotype protection generated. Here, approaches past and present for development of a vaccine to these widespread human pathogens are highlighted. PMID:25593706

McLean, Gary R

2014-01-01

276

The ABCs of rhinoviruses, wheezing, and asthma.  

PubMed

Human rhinoviruses (HRVs) were discovered as common cold pathogens over 50 years ago. Recent advances in molecular viral diagnostics have led to an appreciation of their role in more-significant respiratory illnesses, including bronchiolitis in infancy, childhood pneumonia, and acute exacerbations of chronic respiratory diseases such as asthma, chronic obstructive lung disease, and cystic fibrosis. Until a few years ago, only two groups of HRVs (A and B) had been recognized. However, full and partial sequencing of HRVs led to the discovery of a third species of HRV (HRV-C) that has distinct structural and biologic features. Risk factors and pathogenic mechanisms for more-severe HRV infections are being defined, and yet fundamental questions persist about mechanisms relating this common pathogen to allergic diseases and asthma. The close relationship between HRV infections and asthma suggests that antiviral treatments could have a major impact on the morbidity associated with this chronic respiratory disease. PMID:20375160

Gern, James E

2010-08-01

277

Complete Genome Viral Phylogenies Suggests the Concerted Evolution of Regulatory Cores and Accessory Satellites  

PubMed Central

We consider the concerted evolution of viral genomes in four families of DNA viruses. Given the high rate of horizontal gene transfer among viruses and their hosts, it is an open question as to how representative particular genes are of the evolutionary history of the complete genome. To address the concerted evolution of viral genes, we compared genomic evolution across four distinct, extant viral families. For all four viral families we constructed DNA-dependent DNA polymerase-based (DdDp) phylogenies and in addition, whole genome sequence, as quantitative descriptions of inter-genome relationships. We found that the history of the polymerase gene was highly predictive of the history of the genome as a whole, which we explain in terms of repeated, co-divergence events of the core DdDp gene accompanied by a number of satellite, accessory genetic loci. We also found that the rate of gene gain in baculovirus and poxviruses proceeds significantly more quickly than the rate of gene loss and that there is convergent acquisition of satellite functions promoting contextual adaptation when distinct viral families infect related hosts. The congruence of the genome and polymerase trees suggests that a large set of viral genes, including polymerase, derive from a phylogenetically conserved core of genes of host origin, secondarily reinforced by gene acquisition from common hosts or co-infecting viruses within the host. A single viral genome can be thought of as a mutualistic network, with the core genes acting as an effective host and the satellite genes as effective symbionts. Larger virus genomes show a greater departure from linkage equilibrium between core and satellites functions. PMID:18941535

de Andrade Zanotto, Paolo Marinho; Krakauer, David C.

2008-01-01

278

Genomic composition and evolution of Aedes aegypti chromosomes revealed by the analysis of physically mapped supercontigs  

PubMed Central

Background An initial comparative genomic study of the malaria vector Anopheles gambiae and the yellow fever mosquito Aedes aegypti revealed striking differences in the genome assembly size and in the abundance of transposable elements between the two species. However, the chromosome arms homology between An. gambiae and Ae. aegypti, as well as the distribution of genes and repetitive elements in chromosomes of Ae. aegypti, remained largely unexplored because of the lack of a detailed physical genome map for the yellow fever mosquito. Results Using a molecular landmark-guided fluorescent in situ hybridization approach, we mapped 624 Mb of the Ae. aegypti genome to mitotic chromosomes. We used this map to analyze the distribution of genes, tandem repeats and transposable elements along the chromosomes and to explore the patterns of chromosome homology and rearrangements between Ae. aegypti and An. gambiae. The study demonstrated that the q arm of the sex-determining chromosome 1 had the lowest gene content and the highest density of minisatellites. A comparative genomic analysis with An. gambiae determined that the previously proposed whole-arm synteny is not fully preserved; a number of pericentric inversions have occurred between the two species. The sex-determining chromosome 1 had a higher rate of genome rearrangements than observed in autosomes 2 and 3 of Ae. aegypti. Conclusions The study developed a physical map of 45% of the Ae. aegypti genome and provided new insights into genomic composition and evolution of Ae. aegypti chromosomes. Our data suggest that minisatellites rather than transposable elements played a major role in rapid evolution of chromosome 1 in the Aedes lineage. The research tools and information generated by this study contribute to a more complete understanding of the genome organization and evolution in mosquitoes. PMID:24731704

2014-01-01

279

Simulation of Genome-Wide Evolution under Heterogeneous Substitution Models and Complex Multispecies Coalescent Histories  

PubMed Central

Genomic evolution can be highly heterogeneous. Here, we introduce a new framework to simulate genome-wide sequence evolution under a variety of substitution models that may change along the genome and the phylogeny, following complex multispecies coalescent histories that can include recombination, demographics, longitudinal sampling, population subdivision/species history, and migration. A key aspect of our simulation strategy is that the heterogeneity of the whole evolutionary process can be parameterized according to statistical prior distributions specified by the user. We used this framework to carry out a study of the impact of variable codon frequencies across genomic regions on the estimation of the genome-wide nonsynonymous/synonymous ratio. We found that both variable codon frequencies across genes and rate variation among sites and regions can lead to severe underestimation of the global dN/dS values. The program SGWE—Simulation of Genome-Wide Evolution—is freely available from http://code.google.com/p/sgwe-project/, including extensive documentation and detailed examples. PMID:24557445

Arenas, Miguel; Posada, David

2014-01-01

280

Genomic science in understanding cholera outbreaks and evolution of Vibrio cholerae as a human pathogen.  

PubMed

Modern genomic and bioinformatic approaches have been applied to interrogate the V. cholerae genome, the role of genomic elements in cholera disease, and the origin, relatedness, and dissemination of epidemic strains. A universal attribute of choleragenic strains includes a repertoire of pathogenicity islands and virulence genes, namely the CTX? prophage and Toxin Co-regulated Pilus (TCP) in addition to other virulent genetic elements including those referred to as Seventh Pandemic Islands. During the last decade, the advent of Next Generation Sequencing (NGS) has provided highly resolved and often complete genomic sequences of epidemic isolates in addition to both clinical and environmental strains isolated from geographically unconnected regions. Genomic comparisons of these strains, as was completed during and following the Haitian outbreak in 2010, reveals that most epidemic strains appear closely related, regardless of region of origin. Non-O1 clinical or environmental strains may also possess some virulence islands, but phylogenic analysis of the core genome suggests they are more diverse and distantly related than those isolated during epidemics. Like Haiti, genomic studies that examine both the Vibrio core and pan-genome in addition to Single Nucleotide Polymorphisms (SNPs) conclude that a number of epidemics are caused by strains that closely resemble those in Asia, and often appear to originate there and then spread globally. The accumulation of SNPs in the epidemic strains over time can then be applied to better understand the evolution of the V. cholerae genome as an etiological agent. PMID:24590676

Robins, William P; Mekalanos, John J

2014-01-01

281

Genomic Science in Understanding Cholera Outbreaks and Evolution of Vibrio cholerae as a Human Pathogen  

PubMed Central

Modern genomic and bioinformatic approaches have been applied to interrogate the V. cholerae genome, the role of genomic elements in cholera disease, and the origin, relatedness, and dissemination of epidemic strains. A universal attribute of choleragenic strains includes a repertoire of pathogenicity islands and virulence genes, namely the CTX–? prophage and Toxin Co-regulated Pilus (TCP) in addition to other virulent genetic elements including those referred to as Seventh Pandemic Islands. During the last decade, the advent of Next Generation Sequencing (NGS) has provided highly resolved and often complete genomic sequences of epidemic isolates in addition to both clinical and environmental strains isolated from geographically unconnected regions. Genomic comparisons of these strains, as was completed during and following the Haitian outbreak in 2010, reveals that most epidemic strains appear closely related, regardless of region of origin. Non-O1 clinical or environmental strains may also possess some virulence islands, but phylogenic analysis of the core genome suggests they are more diverse and distantly related than those isolated during epidemics. Like Haiti, genomic studies that examine both the Vibrio core- and pan-genome in addition to Single Nucleotide Polymorphisms (SNPs) conclude that a number of epidemics are caused by strains that closely resemble those in Asia, and often appear to originate there and then spread globally. The accumulation of SNPs in the epidemic strains over time can then be applied to better understand the evolution of the V. cholerae genome as an etiological agent. PMID:24590676

Mekalanos, John J.

2014-01-01

282

Genome analysis of the platypus reveals unique signatures of evolution  

PubMed Central

We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation. PMID:18464734

Warren, Wesley C.; Hillier, LaDeana W.; Marshall Graves, Jennifer A.; Birney, Ewan; Ponting, Chris P.; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T.; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P.; Miethke, Pat; Waters, Paul D.; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S.; López-Otín, Carlos; Ordóñez, Gonzalo R.; Eichler, Evan E.; Chen, Lin; Cheng, Ze; Deakin, Janine E.; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T.; Wakefield, Matthew J.; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A.; Smit, Arian F. A.; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A.; Walker, Jerilyn A.; Konkel, Miriam K.; Harris, Robert S.; Whittington, Camilla M.; Wong, Emily S. W.; Gemmell, Neil J.; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M.; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P.; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J.; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M.; Sharp, Julie A.; Nicholas, Kevin R.; Ray, David A.; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H.; Taylor, James; Jones, Russell C.; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N.; Pohl, Craig S.; Smith, Scott M.; Hou, Shunfeng; Renfree, Marilyn B.; Mardis, Elaine R.; Wilson, Richard K.

2009-01-01

283

Genome analysis of the platypus reveals unique signatures of evolution.  

PubMed

We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation. PMID:18464734

Warren, Wesley C; Hillier, LaDeana W; Marshall Graves, Jennifer A; Birney, Ewan; Ponting, Chris P; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P; Miethke, Pat; Waters, Paul D; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S; López-Otín, Carlos; Ordóñez, Gonzalo R; Eichler, Evan E; Chen, Lin; Cheng, Ze; Deakin, Janine E; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T; Wakefield, Matthew J; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A; Smit, Arian F A; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A; Walker, Jerilyn A; Konkel, Miriam K; Harris, Robert S; Whittington, Camilla M; Wong, Emily S W; Gemmell, Neil J; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M; Sharp, Julie A; Nicholas, Kevin R; Ray, David A; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H; Taylor, James; Jones, Russell C; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N; Pohl, Craig S; Smith, Scott M; Hou, Shunfeng; Nefedov, Mikhail; de Jong, Pieter J; Renfree, Marilyn B; Mardis, Elaine R; Wilson, Richard K

2008-05-01

284

The Global Genome Question: Microbes as the Key to Understanding Evolution and Ecology  

SciTech Connect

A colloquium was convened in Longboat Key, Florida, in October 2002, by the American Academy of Microbiology to discuss the role of genomic techniques in microbiology research. Research professionals from both academia and industry met to discuss the current state of knowledge in microbial genomics. Unanswered questions that should drive future studies, technical challenges for applying genomics in microbial systems, and infrastructure and educational needs were discussed. Particular attention was focused on the great potential of genomic approaches to advance our understanding of microbial communities and ecosystems. Recommendations for activities that might promote and accelerate microbial genome science were identified and discussed. Microbiology has always advanced in tandem with new technologies. Beginning with the first observations of microscopic organisms with early microscopes in the 17th century, the tools and methods for studying microbes have continually evolved. Slowly at first, and now with startling speed, scientists have developed increasingly complex and informative tools for analyzing the functions, interactions, and diversity of microorganisms. Today, genomic technologies are revolutionizing microbiology. Genomics employs all or part of the genome to answer questions about an organism and represents a generic tool that can be used to dissect any or all living cells. In this report, the term ''genomics'' includes structural genomic methods that focus on the determination of genomic sequence and higher order structural features, as well as functional genomic methods, which focus on the activities and products encoded by the genome. To date, microbial genomics has largely been applied to individual, isolated microbial strains, with the results extrapolated to the wider world of microbial diversity. We are now presented with an opportune moment to move beyond studies of single isolates and to apply genome sciences directly to the study of microbial communities. It is now possible to adapt genomic tools and approaches to more realistic models of genome evolution and ecology involving natural microbial communities. Microbial communities are formed by organized groups of microbial species, each having different, often complementary functions or activities. In aggregate, the microbial community has emergent properties greater than the sum of its individual members. Outside the laboratory, virtually all microorganisms exist in complex assemblages, in which they exchange genetic material, nutrients, and biochemical signals with one another. While analysis of individual strains has been a highly profitable enterprise, greater strides can now be made by focusing attention on microbial communities. These are the entities that encompass the bulk of microbial interactions, evolutionary processes, and biogeochemical activities, with resulting immense impacts on human health and the entire planetary biosphere. The natural microbial world can be viewed as a landscape of genes and genome ecology, in which organisms exchange genetic information and co-evolve with one another, shaping themselves and the biosphere over time.

Merry R. Buckley

2004-04-04

285

Large-scale trends in the evolution of gene structures within 11 animal genomes.  

PubMed

We have used the annotations of six animal genomes (Homo sapiens, Mus musculus, Ciona intestinalis, Drosophila melanogaster, Anopheles gambiae, and Caenorhabditis elegans) together with the sequences of five unannotated Drosophila genomes to survey changes in protein sequence and gene structure over a variety of timescales--from the less than 5 million years since the divergence of D. simulans and D. melanogaster to the more than 500 million years that have elapsed since the Cambrian explosion. To do so, we have developed a new open-source software library called CGL (for "Comparative Genomics Library"). Our results demonstrate that change in intron-exon structure is gradual, clock-like, and largely independent of coding-sequence evolution. This means that genome annotations can be used in new ways to inform, corroborate, and test conclusions drawn from comparative genomics analyses that are based upon protein and nucleotide sequence similarities. PMID:16518452

Yandell, Mark; Mungall, Chris J; Smith, Chris; Prochnik, Simon; Kaminker, Joshua; Hartzell, George; Lewis, Suzanna; Rubin, Gerald M

2006-03-01

286

Genome Evolution by Matrix Algorithms: Cellular Automata Approach to Population Genetics  

PubMed Central

Mammalian genomes are replete with millions of polymorphic sites, among which those genetic variants that are colocated on the same chromosome and exist close to one another form blocks of closely linked mutations known as haplotypes. The linkage within haplotypes is constantly disrupted due to meiotic recombination events. Whole ensembles of such numerous haplotypes are subjected to evolutionary pressure, where mutations influence each other and should be considered as a whole entity—a gigantic matrix, unique for each individual genome. This idea was implemented into a computational approach, named Genome Evolution by Matrix Algorithms (GEMA) to model genomic changes taking into account all mutations in a population. GEMA has been tested for modeling of entire human chromosomes. The program can precisely mimic real biological processes that have influence on genome evolution such as: 1) Authentic arrangements of genes and functional genomic elements, 2) frequencies of various types of mutations in different nucleotide contexts, and 3) nonrandom distribution of meiotic recombination events along chromosomes. Computer modeling with GEMA has demonstrated that the number of meiotic recombination events per gamete is among the most crucial factors influencing population fitness. In humans, these recombinations create a gamete genome consisting on an average of 48 pieces of corresponding parental chromosomes. Such highly mosaic gamete structure allows preserving fitness of population under the intense influx of novel mutations (40 per individual) even when the number of mutations with deleterious effects is up to ten times more abundant than those with beneficial effects. PMID:24723728

Qiu, Shuhao; McSweeny, Andrew; Choulet, Samuel; Saha-Mandal, Arnab; Fedorova, Larisa; Fedorov, Alexei

2014-01-01

287

Rapid Evolution of the Mitochondrial Genome in Chalcidoid Wasps (Hymenoptera: Chalcidoidea) Driven by Parasitic Lifestyles  

PubMed Central

Among the Chalcidoids, hymenopteran parasitic wasps that have diversified lifestyles, a partial mitochondrial genome has been reported only from Nasonia. This genome had many unusual features, especially a dramatic reorganization and a high rate of evolution. Comparisons based on more mitochondrial genomic data from the same superfamily were required to reveal weather these unusual features are peculiar to Nasonia or not. In the present study, we sequenced the nearly complete mitochondrial genomes from the species Philotrypesis. pilosa and Philotrypesis sp., both of which were associated with Ficus hispida. The acquired data included all of the protein-coding genes, rRNAs, and most of the tRNAs, and in P. pilosa the control region. High levels of nucleotide divergence separated the two species. A comparison of all available hymenopteran mitochondrial genomes (including a submitted partial genome from Ceratosolen solmsi) revealed that the Chalcidoids had dramatic mitochondrial gene rearrangments, involved not only the tRNAs, but also several protein-coding genes. The AT-rich control region was translocated and inverted in Philotrypesis. The mitochondrial genomes also exhibited rapid rates of evolution involving elevated nonsynonymous mutations. PMID:22073180

Murphy, Robert W.; Huang, Da-Wei

2011-01-01

288

Sequence analysis of a bovine rhinovirus type 1 strain RS3x  

Technology Transfer Automated Retrieval System (TEKTRAN)

Bovine rhinoviruses, known to cause clinical and subclinical upper respiratory infections in bovines worldwide, include three serotypes. Bovine rhinovirus (BRV) 1, 2 and 3 were originally classified as tentative members of the genus Rhinovirus (family Picornaviridae), however, in 2008 this genus was...

289

Drug Resistance in Acute Viral Infections: Rhinovirus as a Alun L. Lloyd and Dominik Wodarz  

E-print Network

Preprint Drug Resistance in Acute Viral Infections: Rhinovirus as a Case Study Alun L. Lloyd for acute infections. These findings are discussed in the setting of rhinovirus infections, which, rhinovirus infections-- responsible for roughly a half of `common cold' cases-- are one of the leading

Lloyd, Alun

290

Structural studies on the mechanisms of antibody-mediated neutralization of human rhinovirus  

E-print Network

Structural studies on the mechanisms of antibody-mediated neutralization of human rhinovirus Thomas details of antibody-mediated neutralization of human rhinovirus 14 (HRV14) using a combination bivalently across icosahedral two-fold axes. Key words: antibodies / neutralization / rhinovirus ©1995

Baker, Timothy S.

291

J. Mol. Biol. (1995) 253, 6173 Structural Studies on Human Rhinovirus 14  

E-print Network

J. Mol. Biol. (1995) 253, 61­73 Structural Studies on Human Rhinovirus 14 Drug Department of Biological Structures have been determined of three human rhinovirus 14 (HRV14) compensation human rhinoviruses of serotype 14 that have developed resistance to capsid binding compounds

Rossmann, Michael G.

292

Analysis of three structurally related antiviral compounds in complex with human rhinovirus 16  

E-print Network

Analysis of three structurally related antiviral compounds in complex with human rhinovirus 16 Contributed by Michael G. Rossmann, November 1, 1999 Rhinoviruses are a frequent cause of the common cold of such compounds, complexed with rhinovirus serotypes 14, 16, 1A, and 3, previously have been examined. Three

Rossmann, Michael G.

293

Evidence of Recombination and Genetic Diversity in Human Rhinoviruses in Children with Acute Respiratory  

E-print Network

Evidence of Recombination and Genetic Diversity in Human Rhinoviruses in Children with Acute Background: Human rhinoviruses (HRVs) are a highly prevalent cause of acute respiratory infection in children) Evidence of Recombination and Genetic Diversity in Human Rhinoviruses in Children with Acute Respiratory

Paris-Sud XI, Université de

294

Evolution Along the Mutation Gradient in the Dynamic Mitochondrial Genome of Salamanders  

PubMed Central

Mitochondria are intracellular organelles where oxidative phosphorylation is carried out to complete ATP synthesis. Mitochondria have their own genome; in metazoans, this is a small, circular molecule encoding 13 electron transport proteins, 22 tRNAs, and 2 rRNAs. In invertebrates, mitochondrial gene rearrangement is common, and it is correlated with increased substitution rates. In vertebrates, mitochondrial gene rearrangement is rare, and its relationship to substitution rate remains unexplored. Mitochondrial genes can also show spatial variation in substitution rates around the genome due to the mechanism of mtDNA replication, which produces a mutation gradient. To date, however, the strength of the mutation gradient and whether movement along the gradient in rearranged (or otherwise modified) genomes impacts genic substitution rates remain unexplored in the majority of vertebrates. Salamanders include both normal mitochondrial genomes and independently derived rearrangements and expansions, providing a rare opportunity to test the effects of large-scale changes to genome architecture on vertebrate mitochondrial gene sequence evolution. We show that: 1) rearranged/expanded genomes have higher substitution rates; 2) most genes in rearranged/expanded genomes maintain their position along the mutation gradient, substitution rates of the genes that do move are unaffected by their new position, and the gradient in salamanders is weak; and 3) genomic rearrangements/expansions occur independent of levels of selective constraint on genes. Together, our results demonstrate that large-scale changes to genome architecture impact mitochondrial gene evolution in predictable ways; however, despite these impacts, the same functional constraints act on mitochondrial protein-coding genes in both modified and normal genomes. PMID:23918809

Chong, Rebecca A.; Mueller, Rachel Lockridge

2013-01-01

295

Genome size evolution at the speciation level: The cryptic species complex Brachionus plicatilis (Rotifera)  

PubMed Central

Background Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer Brachionus plicatilis, a cryptic species complex consisting of at least 14 closely related species. Results We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg). Most of this variation (67%) could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32%) at lower taxonomic levels - within and among genealogical species - and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called B. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence. Conclusions Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex. PMID:21473744

2011-01-01

296

Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution.  

PubMed

The wild species of the genus Oryza contain a largely untapped reservoir of agronomically important genes for rice improvement. Here we report the 261-Mb de novo assembled genome sequence of Oryza brachyantha. Low activity of long-terminal repeat retrotransposons and massive internal deletions of ancient long-terminal repeat elements lead to the compact genome of Oryza brachyantha. We model 32,038 protein-coding genes in the Oryza brachyantha genome, of which only 70% are located in collinear positions in comparison with the rice genome. Analysing breakpoints of non-collinear genes suggests that double-strand break repair through non-homologous end joining has an important role in gene movement and erosion of collinearity in the Oryza genomes. Transition of euchromatin to heterochromatin in the rice genome is accompanied by segmental and tandem duplications, further expanded by transposable element insertions. The high-quality reference genome sequence of Oryza brachyantha provides an important resource for functional and evolutionary studies in the genus Oryza. PMID:23481403

Chen, Jinfeng; Huang, Quanfei; Gao, Dongying; Wang, Junyi; Lang, Yongshan; Liu, Tieyan; Li, Bo; Bai, Zetao; Luis Goicoechea, Jose; Liang, Chengzhi; Chen, Chengbin; Zhang, Wenli; Sun, Shouhong; Liao, Yi; Zhang, Xuemei; Yang, Lu; Song, Chengli; Wang, Meijiao; Shi, Jinfeng; Liu, Geng; Liu, Junjie; Zhou, Heling; Zhou, Weili; Yu, Qiulin; An, Na; Chen, Yan; Cai, Qingle; Wang, Bo; Liu, Binghang; Min, Jiumeng; Huang, Ying; Wu, Honglong; Li, Zhenyu; Zhang, Yong; Yin, Ye; Song, Wenqin; Jiang, Jiming; Jackson, Scott A; Wing, Rod A; Wang, Jun; Chen, Mingsheng

2013-01-01

297

Genome Reduction and Co-evolution between the Primary and Secondary Bacterial Symbionts of Psyllids  

PubMed Central

Genome reduction in obligately intracellular bacteria is one of the most well-established patterns in the field of molecular evolution. In the extreme, many sap-feeding insects harbor nutritional symbionts with genomes that are so reduced that it is not clear how they perform basic cellular functions. For example, the primary symbiont of psyllids (Carsonella) maintains one of the smallest and most AT-rich bacterial genomes ever identified and has surprisingly lost many genes that are thought to be essential for its role in provisioning its host with amino acids. However, our understanding of this extreme case of genome reduction is limited, as genomic data for Carsonella are available from only a single host species, and little is known about the functional role of “secondary” bacterial symbionts in psyllids. To address these limitations, we analyzed complete Carsonella genomes from pairs of congeneric hosts in three divergent genera within the Psyllidae (Ctenarytaina, Heteropsylla, and Pachypsylla) as well as complete secondary symbiont genomes from two of these host species (Ctenarytaina eucalypti and Heteropsylla cubana). Although the Carsonella genomes are generally conserved in size, structure, and GC content and exhibit genome-wide signatures of purifying selection, we found that gene loss has remained active since the divergence of the host species and had a particularly large impact on the amino acid biosynthesis pathways that define the symbiotic role of Carsonella. In some cases, the presence of additional bacterial symbionts may compensate for gene loss in Carsonella, as functional gene content indicates a high degree of metabolic complementarity between co-occurring symbionts. The genomes of the secondary symbionts also show signatures of long-term evolution as vertically transmitted, intracellular bacteria, including more extensive genome reduction than typically observed in facultative symbionts. Therefore, a history of co-evolution with secondary bacterial symbionts can partially explain the ongoing genome reduction in Carsonella. However, the absence of these secondary symbionts in other host lineages indicates that the relationships are dynamic and that other mechanisms, such as changes in host diet or functional coordination with the host genome, must also be at play. PMID:22821013

Sloan, Daniel B.; Moran, Nancy A.

2012-01-01

298

EXAMPLES OF GENOME EVOLUTION IN POLYPLIODS WHERE BIGGER IS BETTER  

Technology Transfer Automated Retrieval System (TEKTRAN)

Polyploids created by different methods exhibit a range of phenotypic changes and highlight the impact of genetic diversity on ornamental plant breeding. The effects of genome doubling are typically highly visible and include larger flowers, short internodes, stronger stems, thicker leaves, and larg...

299

Principles of Genome Evolution in the Drosophila melanogaster Species Group  

Microsoft Academic Search

That closely related species often differ by chromosomal inversions was discovered by Sturtevant and Plunkett in 1926. Our knowledge of how these inversions originate is still very limited, although a prevailing view is that they are facilitated by ectopic recombination events between inverted repetitive sequences. The availability of genome sequences of related species now allows us to study in detail

José M Ranz; Damien Maurin; Yuk S Chan; Marcin von Grotthuss; LaDeana W Hillier; John Roote; Michael Ashburner; Casey M Bergman

2007-01-01

300

What helminth genomes have taught us about parasite evolution.  

PubMed

SUMMARY The genomes of more than 20 helminths have now been sequenced. Here we perform a meta-analysis of all sequenced genomes of nematodes and Platyhelminthes, and attempt to address the question of what are the defining characteristics of helminth genomes. We find that parasitic worms lack systems for surface antigenic variation, instead maintaining infections using their surfaces as the first line of defence against the host immune system, with several expanded gene families of genes associated with the surface and tegument. Parasite excretory/secretory products evolve rapidly, and proteases even more so, with each parasite exhibiting unique modifications of its protease repertoire. Endoparasitic flatworms show striking losses of metabolic capabilities, not matched by nematodes. All helminths do however exhibit an overall reduction in auxiliary metabolism (biogenesis of co-factors and vitamins). Overall, the prevailing pattern is that there are few commonalities between the genomes of independently evolved parasitic worms, with each parasite having undergone specific adaptations for their particular niche. PMID:25482650

Zarowiecki, Magdalena; Berriman, Matt

2015-02-01

301

Elephant shark genome provides unique insights into gnathostome evolution  

PubMed Central

The emergence of jawed vertebrates (gnathostomes) from jawless vertebrates was accompanied by major morphological and physiological innovations, such as hinged jaws, paired fins and immunoglobulin-based adaptive immunity. Gnathostomes subsequently diverged into two groups, the cartilaginous fishes and the bony vertebrates. Here we report the whole-genome analysis of a cartilaginous fish, the elephant shark (Callorhinchus milii). We find that the C. milii genome is the slowest evolving of all known vertebrates, including the ‘living fossil’ coelacanth, and features extensive synteny conservation with tetrapod genomes, making it a good model for comparative analyses of gnathostome genomes. Our functional studies suggest that the lack of genes encoding secreted calcium-binding phosphoproteins in cartilaginous fishes explains the absence of bone in their endoskeleton. Furthermore, the adaptive immune system of cartilaginous fishes is unusual: it lacks the canonical CD4 co-receptor and most transcription factors, cytokines and cytokine receptors related to the CD4 lineage, despite the presence of polymorphic major histocompatibility complex class II molecules. It thus presents a new model for understanding the origin of adaptive immunity. PMID:24402279

Venkatesh, Byrappa; Lee, Alison P.; Ravi, Vydianathan; Maurya, Ashish K.; Lian, Michelle M.; Swann, Jeremy B.; Ohta, Yuko; Flajnik, Martin F.; Sutoh, Yoichi; Kasahara, Masanori; Hoon, Shawn; Gangu, Vamshidhar; Roy, Scott W.; Irimia, Manuel; Korzh, Vladimir; Kondrychyn, Igor; Lim, Zhi Wei; Tay, Boon-Hui; Tohari, Sumanty; Kong, Kiat Whye; Ho, Shufen; Lorente-Galdos, Belen; Quilez, Javier; Marques-Bonet, Tomas; Raney, Brian J.; Ingham, Philip W.; Tay, Alice; Hillier, LaDeana W.; Minx, Patrick; Boehm, Thomas; Wilson, Richard K.; Brenner, Sydney; Warren, Wesley C.

2014-01-01

302

submitted to Molecular Biology and Evolution Surveying genome-wide levels of sequence divergence between species using comparative  

E-print Network

submitted to Molecular Biology and Evolution 1 Surveying genome-wide levels of sequence divergence between species using comparative genomic hybridization: A proof-of-concept from Drosophila Suzy C.P. Renn for many closely related eukaryotes that serve as model systems for organismal evolution (but see Rokas

Renn, Susan C.P.

303

Identification and Characterization of Shared Duplications between Rice and Wheat Provide New Insight into Grass Genome Evolution  

Microsoft Academic Search

The grass family comprises the most important cereal crops and is a good system for studying, with comparative genomics, mechanisms of evolution, speciation, and domestication. Here, we identified and characterized the evolution of shared duplications in the rice (Oryza sativa) and wheat (Triticum aestivum) genomes by comparing 42,654 rice gene sequences with 6426 mapped wheat ESTs using improved sequence alignment

Jerome Salse; Stephanie Bolot; Michael Throude; Vincent Jouffe; Benoit Piegu; Umar Masood Quraishi; Thomas Calcagno; Richard Cooke; Michel Delseny; C. Feuillet

2008-01-01

304

On the Immortality of Television Sets: "Function" in the Human Genome According to the Evolution-Free Gospel  

E-print Network

at providing a "parts list" for the human genome (ENCODE Project Consortium 2004). The latest batch of ENCODEOn the Immortality of Television Sets: "Function" in the Human Genome According to the Evolution that more than 80% of the human genome is functional. This claim flies in the face of current

Durand, Dannie

305

Genomic Evolution of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Isolates Revealed by Deep Sequencing  

PubMed Central

Most studies on PRRSV evolution have been limited to a particular region of the viral genome. A thorough genome-wide understanding of the impact of different mechanisms on shaping PRRSV genetic diversity is still lacking. To this end, deep sequencing was used to obtain genomic sequences of a diverse set of 16 isolates from a region of Hong Kong with a complex PRRSV epidemiological record. Genome assemblies and phylogenetic typing indicated the co-circulation of strains of both genotypes (type 1and type 2) with varying Nsp2 deletion patterns and distinct evolutionary lineages (“High Fever”-like and local endemic type). Recombination analyses revealed genomic breakpoints in structural and non-structural regions of genomes of both genotypes with evidence of many recombination events originating from common ancestors. Additionally, the high fold of coverage per nucleotide allowed the characterization of minor variants arising from the quasispecies of each strain. Overall, 0.56–2.83% of sites were found to be polymorphic with respect to cognate consensus genomes. The distribution of minor variants across each genome was not uniform indicating the influence of selective forces. Proportion of variants capable of causing an amino acid change in their respective codons ranged between 25–67% with many predicted to be non-deleterious. Low frequency deletion variants were also detected providing one possible mechanism for their sudden emergence as cited in previous reports. PMID:24698958

Brar, Manreetpal Singh; Shi, Mang; Hui, Raymond Kin-Hi; Leung, Frederick Chi-Ching

2014-01-01

306

Modelling the evolution of genomes with integrated external and internal functions.  

PubMed

The genomes that organisms transmit between generations contain information about different kinds of functions. The genome with the "best" mix and number of genes for these functions is the one that natural selection favours. Here I introduce a new way to model simple organisms with genes for external and internal functions, and use it to study the evolution of genome size. The external functions are exemplified by resource use and the internal functions by mutation control (repair). It is shown that even with a suitable proportion of genes for mutation control, the genomes in the organisms do not forever incorporate genes that increase resource use. Instead they evolve towards an optimal genome of limited size. The optimal proportion of genes for mutation control is shown to have an upper limit given by the ease with which transmission accuracy is improved by adding extra genes for this purpose to the genome. The model illustrates how natural selection on genomes integrates systems for the transmission of genetic information with systems relating to the external adaptation of the organism. It also opens up for other, more detailed theoretical investigations of genome functions. PMID:15380391

Bengtsson, Bengt O

2004-11-21

307

Human Rhinovirus 87 and Enterovirus 68 Represent a Unique Serotype with Rhinovirus and Enterovirus Features  

PubMed Central

It has recently been reported that all but one of the 102 known serotypes of the genus Rhinovirus segregate into two genetic clusters (C. Savolainen, S. Blomqvist, M. N. Mulders, and T. Hovi, J. Gen. Virol. 83:333-340, 2002). The only exception is human rhinovirus 87 (HRV87). Here we demonstrate that HRV87 is genetically and antigenically highly similar to enterovirus 68 (EV68) and is related to EV70, the other member of human enterovirus group D. The partial nucleotide sequences of the 5? untranslated region, capsid regions VP4/VP2 and VP1, and the 3D RNA polymerase gene of the HRV87 prototype strain F02-3607 Corn showed 97.3, 97.8, 95.2, and 95.9% identity to the corresponding regions of EV68 prototype strain Fermon. The amino acid identities were 100 and 98.1% for the products of the two capsid regions and 97.9% for 3D RNA polymerase. Antigenic cross-reaction between HRV87 and EV68 was indicated by microneutralization with monotypic antisera. Phylogenetic analysis showed definite clustering of HRV87 and EV68 with EV70 for all sequences examined. Both HRV87 and EV68 were shown to be acid sensitive by two different assays, while EV70 was acid resistant, which is typical of enteroviruses. The cytopathic effect induced by HRV87 or EV68 was inhibited by monoclonal antibodies to the decay-accelerating factor known to be the receptor of EV70. We conclude that HRV87 and EV68 are strains of the same picornavirus serotype presenting features of both rhinoviruses and enteroviruses. PMID:12409401

Blomqvist, Soile; Savolainen, Carita; Råman, Laura; Roivainen, Merja; Hovi, Tapani

2002-01-01

308

Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution  

PubMed Central

We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each arm gene order has been extensively reshuffled, leading to a minimum of 921 syntenic blocks shared between the species. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 25–55 million years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences between the species—but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila. PMID:15632085

Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Hubisz, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Zhang, Peili; Liu, Jing; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catharine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenée; Verduzco, Daniel; Clerc-Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.

2005-01-01

309

Gibbon genome and the fast karyotype evolution of small apes.  

PubMed

Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ?5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat. PMID:25209798

Carbone, Lucia; Harris, R Alan; Gnerre, Sante; Veeramah, Krishna R; Lorente-Galdos, Belen; Huddleston, John; Meyer, Thomas J; Herrero, Javier; Roos, Christian; Aken, Bronwen; Anaclerio, Fabio; Archidiacono, Nicoletta; Baker, Carl; Barrell, Daniel; Batzer, Mark A; Beal, Kathryn; Blancher, Antoine; Bohrson, Craig L; Brameier, Markus; Campbell, Michael S; Capozzi, Oronzo; Casola, Claudio; Chiatante, Giorgia; Cree, Andrew; Damert, Annette; de Jong, Pieter J; Dumas, Laura; Fernandez-Callejo, Marcos; Flicek, Paul; Fuchs, Nina V; Gut, Ivo; Gut, Marta; Hahn, Matthew W; Hernandez-Rodriguez, Jessica; Hillier, LaDeana W; Hubley, Robert; Ianc, Bianca; Izsvák, Zsuzsanna; Jablonski, Nina G; Johnstone, Laurel M; Karimpour-Fard, Anis; Konkel, Miriam K; Kostka, Dennis; Lazar, Nathan H; Lee, Sandra L; Lewis, Lora R; Liu, Yue; Locke, Devin P; Mallick, Swapan; Mendez, Fernando L; Muffato, Matthieu; Nazareth, Lynne V; Nevonen, Kimberly A; O'Bleness, Majesta; Ochis, Cornelia; Odom, Duncan T; Pollard, Katherine S; Quilez, Javier; Reich, David; Rocchi, Mariano; Schumann, Gerald G; Searle, Stephen; Sikela, James M; Skollar, Gabriella; Smit, Arian; Sonmez, Kemal; ten Hallers, Boudewijn; Terhune, Elizabeth; Thomas, Gregg W C; Ullmer, Brygg; Ventura, Mario; Walker, Jerilyn A; Wall, Jeffrey D; Walter, Lutz; Ward, Michelle C; Wheelan, Sarah J; Whelan, Christopher W; White, Simon; Wilhelm, Larry J; Woerner, August E; Yandell, Mark; Zhu, Baoli; Hammer, Michael F; Marques-Bonet, Tomas; Eichler, Evan E; Fulton, Lucinda; Fronick, Catrina; Muzny, Donna M; Warren, Wesley C; Worley, Kim C; Rogers, Jeffrey; Wilson, Richard K; Gibbs, Richard A

2014-09-11

310

The evolution of genomic imprinting: theories, predictions and empirical tests  

PubMed Central

The epigenetic phenomenon of genomic imprinting has motivated the development of numerous theories for its evolutionary origins and genomic distribution. In this review, we examine the three theories that have best withstood theoretical and empirical scrutiny. These are: Haig and colleagues' kinship theory; Day and Bonduriansky's sexual antagonism theory; and Wolf and Hager's maternal–offspring coadaptation theory. These theories have fundamentally different perspectives on the adaptive significance of imprinting. The kinship theory views imprinting as a mechanism to change gene dosage, with imprinting evolving because of the differential effect that gene dosage has on the fitness of matrilineal and patrilineal relatives. The sexual antagonism and maternal–offspring coadaptation theories view genomic imprinting as a mechanism to modify the resemblance of an individual to its two parents, with imprinting evolving to increase the probability of expressing the fitter of the two alleles at a locus. In an effort to stimulate further empirical work on the topic, we carefully detail the logic and assumptions of all three theories, clarify the specific predictions of each and suggest tests to discriminate between these alternative theories for why particular genes are imprinted. PMID:24755983

Patten, M M; Ross, L; Curley, J P; Queller, D C; Bonduriansky, R; Wolf, J B

2014-01-01

311

Phycobilisomes linker family in cyanobacterial genomes: divergence and evolution  

PubMed Central

Cyanobacteria are the oldest life form making important contributions to global CO2 fixation on the Earth. Phycobilisomes (PBSs) are the major light harvesting systems of most cyanobacteria species. Recent availability of the whole genome database of cyanobacteria provides us a global and further view on the complex structural PBSs. A PBSs linker family is crucial in structure and function of major light-harvesting PBSs complexes. Linker polypeptides are considered to have the same ancestor with other phycobiliproteins (PBPs), and might have been diverged and evolved under particularly selective forces together. In this paper, a total of 192 putative linkers including 167 putative PBSs-associated linker genes and 25 Ferredoxin-NADP oxidoreductase (FNR) genes were detected through whole genome analysis of all 25 cyanobacterial genomes (20 finished and 5 in draft state). We compared the PBSs linker family of cyanobacteria in terms of gene structure, chromosome location, conservation domain, and polymorphic variants, and discussed the features and functions of the PBSs linker family. Most of PBSs-associated linkers in PBSs linker family are assembled into gene clusters with PBPs. A phylogenetic analysis based on protein data demonstrates a possibility of six classes of the linker family in cyanobacteria. Emergence, divergence, and disappearance of PBSs linkers among cyanobacterial species were due to speciation, gene duplication, gene transfer, or gene loss, and acclimation to various environmental selective pressures especially light. PMID:18026567

Guan, Xiangyu; Qin, Song; Zhao, Fangqing; Zhang, Xiaowen; Tang, Xuexi

2007-01-01

312

Complexity of genome evolution by segmental rearrangement in Brassica rapa revealed by sequence-level analysis  

Microsoft Academic Search

BACKGROUND: The Brassica species, related to Arabidopsis thaliana, include an important group of crops and represent an excellent system for studying the evolutionary consequences of polyploidy. Previous studies have led to a proposed structure for an ancestral karyotype and models for the evolution of the B. rapa genome by triplication and segmental rearrangement, but these have not been validated at

Martin Trick; Soo-Jin Kwon; Su Ryun Choi; Fiona Fraser; Eleni Soumpourou; Nizar Drou; Zhi Wang; Seo Yeon Lee; Tae-Jin Yang; Jeong-Hwan Mun; Andrew H Paterson; Christopher D Town; J Chris Pires; Yong Pyo Lim; Beom-Seok Park; Ian Bancroft

2009-01-01

313

Molecular evolution of the chalcone synthase multigene family in the morning glory genome  

Microsoft Academic Search

Plant genomes appear to exploit the process of gene duplication as a primary means of acquiring biochemical and developmental flexibility. Thus, for example, most of the enzymatic components of plant secondary metabolism are encoded by small families of genes that originated through duplication over evolutionary time. The dynamics of gene family evolution are well illustrated by the genes that encode

Mary L. Durbin; Bonnie McCaig; Michael T. Clegg

2000-01-01

314

Analysis of the Complete Human mtDNA Genome: Methodology and Inferences for Human Evolution  

Microsoft Academic Search

The analysis of mitochondrial DNA (mtDNA) sequences has been a potent tool in our understanding of human evolution. However, almost all studies of human evo- lution based on mtDNA sequencing have focused on the control region, which constitutes less than 7% of the mitochondrial genome. The rapid development of technology for automated DNA sequencing has made it possible to study

M. Ingman; U. Gyllensten

2001-01-01

315

LETTER The evolution of salinity tolerance in Daphnia: a functional genomics approach  

E-print Network

LETTER The evolution of salinity tolerance in Daphnia: a functional genomics approach Leigh C-tolerant geno- type of Daphnia is characterised by constitutively expressed genes, which does not incur a loss environmental axes. Keywords Daphnia, generalist, microarray, salinity, tolerance curve. Ecology Letters (2012

Weider, Lawrence J.

316

The Compositional Evolution of the Murid Genome Nick G.C. Smith,1  

E-print Network

The Compositional Evolution of the Murid Genome Nick G.C. Smith,1 Adam Eyre-Walker2 1 Department-Walker 1999; Smith and Eyre- Walker 2001). Given that the GC content of protein- coding genes is highly polymorphism data fromCorrespondence to: Nick Smith; email: nick.smith@ebc.uu.se J Mol Evol (2002) 55

Eyre-Walker, Adam

317

Retrotransposons within Syntenic Regions between Soybean and Medicago truncatula and Their Contribution to Local Genome Evolution  

Microsoft Academic Search

Comparative genome analyses have described the extent of macro and microsynteny among closely related legumes. The organization of the intergenic regions within syntenic blocks and the involvement of retrotransposons in the evolution of these regions have not been studied in detail. In this paper, retrotransposon rich (gene-poor) and retrotransposon poor (gene-rich) soybean (Glycine max (L.) Merr.) regions showing synteny with

Bindu Joseph; Jessica A. Schlueter; Jianchang Du; Michelle A. Graham; Jianxin Ma; Randy C. Shoemaker

2009-01-01

318

Genomic evolution in a virus under specific selection for host recognition  

Microsoft Academic Search

Genetic variation in viral structural proteins is often explained by evolutionary escape of strong host defenses through processes such as immune evasion, host switching, and tissue tropism. An understanding of the mechanisms driving evolutionary change in virus surface proteins is key to designing effective intervention strategies to disease emergence. This study investigated the predictability of virus genomic evolution in response

Kim M. Pepin; John Domsic; Robert McKenna

2008-01-01

319

The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system  

E-print Network

The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system Freek, and approved October 22, 2013 (received for review August 2, 2013) Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein

Dalang, Robert C.

320

Population Genomics Reveals Chromosome-Scale Heterogeneous Evolution in a Protoploid Yeast  

PubMed Central

Yeast species represent an ideal model system for population genomic studies but large-scale polymorphism surveys have only been reported for species of the Saccharomyces genus so far. Hence, little is known about intraspecific diversity and evolution in yeast. To obtain a new insight into the evolutionary forces shaping natural populations, we sequenced the genomes of an expansive worldwide collection of isolates from a species distantly related to Saccharomyces cerevisiae: Lachancea kluyveri (formerly S. kluyveri). We identified 6.5 million single nucleotide polymorphisms and showed that a large introgression event of 1 Mb of GC-rich sequence in the chromosomal arm probably occurred in the last common ancestor of all L. kluyveri strains. Our population genomic data clearly revealed that this 1-Mb region underwent a molecular evolution pattern very different from the rest of the genome. It is characterized by a higher recombination rate, with a dramatically elevated A:T ? G:C substitution rate, which is the signature of an increased GC-biased gene conversion. In addition, the predicted base composition at equilibrium demonstrates that the chromosome-scale compositional heterogeneity will persist after the genome has reached mutational equilibrium. Altogether, the data presented herein clearly show that distinct recombination and substitution regimes can coexist and lead to different evolutionary patterns within a single genome. PMID:25349286

Friedrich, Anne; Jung, Paul; Reisser, Cyrielle; Fischer, Gilles; Schacherer, Joseph

2015-01-01

321

Short-term genome evolution of Listeria monocytogenes in a non-controlled environment  

PubMed Central

Background While increasing data on bacterial evolution in controlled environments are available, our understanding of bacterial genome evolution in natural environments is limited. We thus performed full genome analyses on four Listeria monocytogenes, including human and food isolates from both a 1988 case of sporadic listeriosis and a 2000 listeriosis outbreak, which had been linked to contaminated food from a single processing facility. All four isolates had been shown to have identical subtypes, suggesting that a specific L. monocytogenes strain persisted in this processing plant over at least 12 years. While a genome sequence for the 1988 food isolate has been reported, we sequenced the genomes of the 1988 human isolate as well as a human and a food isolate from the 2000 outbreak to allow for comparative genome analyses. Results The two L. monocytogenes isolates from 1988 and the two isolates from 2000 had highly similar genome backbone sequences with very few single nucleotide (nt) polymorphisms (1 – 8 SNPs/isolate; confirmed by re-sequencing). While no genome rearrangements were identified in the backbone genome of the four isolates, a 42 kb prophage inserted in the chromosomal comK gene showed evidence for major genome rearrangements. The human-food isolate pair from each 1988 and 2000 had identical prophage sequence; however, there were significant differences in the prophage sequences between the 1988 and 2000 isolates. Diversification of this prophage appears to have been caused by multiple homologous recombination events or possibly prophage replacement. In addition, only the 2000 human isolate contained a plasmid, suggesting plasmid loss or acquisition events. Surprisingly, besides the polymorphisms found in the comK prophage, a single SNP in the tRNA Thr-4 prophage represents the only SNP that differentiates the 1988 isolates from the 2000 isolates. Conclusion Our data support the hypothesis that the 2000 human listeriosis outbreak was caused by a L. monocytogenes strain that persisted in a food processing facility over 12 years and show that genome sequencing is a valuable and feasible tool for retrospective epidemiological analyses. Short-term evolution of L. monocytogenes in non-controlled environments appears to involve limited diversification beyond plasmid gain or loss and prophage diversification, highlighting the importance of phages in bacterial evolution. PMID:19014550

Orsi, Renato H; Borowsky, Mark L; Lauer, Peter; Young, Sarah K; Nusbaum, Chad; Galagan, James E; Birren, Bruce W; Ivy, Reid A; Sun, Qi; Graves, Lewis M; Swaminathan, Bala; Wiedmann, Martin

2008-01-01

322

Genomic Organization and Evolution of Alternative Exons in a Drosophila Calcium Channel Gene  

PubMed Central

The genomic organization of a gene coding for an ?1 subunit of a voltage-gated calcium channel of Drosophila melanogaster (Dmca1A) was determined. Thirty-four exons, distributed over 45 kb of genomic sequence, have been identified and mapped, including exons in three regions involved in alternative splicing and new sites potentially involved in RNA editing. The comparison of the intron/exon boundaries of this channel with a mammalian counterpart shows that the genomic structure of these two genes has remained fairly similar during evolution, with more than half of the Drosophila intron positions being perfectly conserved compared to the human channel. Phylogenetic analysis of the mutually exclusive alternative exons revealed that they have diverged considerably. It is suggested that this divergence, rather than reflecting evolutionary age, is the likely result of accelerated rates of evolution following duplication. PMID:9093853

Peixoto, A. A.; Smith, L. A.; Hall, J. C.

1997-01-01

323

Spatial and temporal diversity in genomic instability processes defines lung cancer evolution.  

PubMed

Spatial and temporal dissection of the genomic changes occurring during the evolution of human non-small cell lung cancer (NSCLC) may help elucidate the basis for its dismal prognosis. We sequenced 25 spatially distinct regions from seven operable NSCLCs and found evidence of branched evolution, with driver mutations arising before and after subclonal diversification. There was pronounced intratumor heterogeneity in copy number alterations, translocations, and mutations associated with APOBEC cytidine deaminase activity. Despite maintained carcinogen exposure, tumors from smokers showed a relative decrease in smoking-related mutations over time, accompanied by an increase in APOBEC-associated mutations. In tumors from former smokers, genome-doubling occurred within a smoking-signature context before subclonal diversification, which suggested that a long period of tumor latency had preceded clinical detection. The regionally separated driver mutations, coupled with the relentless and heterogeneous nature of the genome instability processes, are likely to confound treatment success in NSCLC. PMID:25301630

de Bruin, Elza C; McGranahan, Nicholas; Mitter, Richard; Salm, Max; Wedge, David C; Yates, Lucy; Jamal-Hanjani, Mariam; Shafi, Seema; Murugaesu, Nirupa; Rowan, Andrew J; Grönroos, Eva; Muhammad, Madiha A; Horswell, Stuart; Gerlinger, Marco; Varela, Ignacio; Jones, David; Marshall, John; Voet, Thierry; Van Loo, Peter; Rassl, Doris M; Rintoul, Robert C; Janes, Sam M; Lee, Siow-Ming; Forster, Martin; Ahmad, Tanya; Lawrence, David; Falzon, Mary; Capitanio, Arrigo; Harkins, Timothy T; Lee, Clarence C; Tom, Warren; Teefe, Enock; Chen, Shann-Ching; Begum, Sharmin; Rabinowitz, Adam; Phillimore, Benjamin; Spencer-Dene, Bradley; Stamp, Gordon; Szallasi, Zoltan; Matthews, Nik; Stewart, Aengus; Campbell, Peter; Swanton, Charles

2014-10-10

324

Strain-specific genes of Helicobacter pylori: genome evolution driven by a novel type IV secretion system and genomic island transfer  

PubMed Central

The availability of multiple bacterial genome sequences has revealed a surprising extent of variability among strains of the same species. The human gastric pathogen Helicobacter pylori is known as one of the most genetically diverse species. We have compared the genome sequence of the duodenal ulcer strain P12 and six other H. pylori genomes to elucidate the genetic repertoire and genome evolution mechanisms of this species. In agreement with previous findings, we estimate that the core genome comprises about 1200 genes and that H. pylori possesses an open pan-genome. Strain-specific genes are preferentially located at potential genome rearrangement sites or in distinct plasticity zones, suggesting two different mechanisms of genome evolution. The P12 genome contains three plasticity zones, two of which encode type IV secretion systems and have typical features of genomic islands. We demonstrate for the first time that one of these islands is capable of self-excision and horizontal transfer by a conjugative process. We also show that excision is mediated by a protein of the XerD family of tyrosine recombinases. Thus, in addition to its natural transformation competence, conjugative transfer of genomic islands has to be considered as an important source of genetic diversity in H. pylori. PMID:20478826

Fischer, Wolfgang; Windhager, Lukas; Rohrer, Stefanie; Zeiller, Matthias; Karnholz, Arno; Hoffmann, Reinhard; Zimmer, Ralf; Haas, Rainer

2010-01-01

325

Analysis of Complete Nucleotide Sequences of 12 Gossypium Chloroplast Genomes: Origin and Evolution of Allotetraploids  

PubMed Central

Background Cotton (Gossypium spp.) is a model system for the analysis of polyploidization. Although ascertaining the donor species of allotetraploid cotton has been intensively studied, sequence comparison of Gossypium chloroplast genomes is still of interest to understand the mechanisms underlining the evolution of Gossypium allotetraploids, while it is generally accepted that the parents were A- and D-genome containing species. Here we performed a comparative analysis of 13 Gossypium chloroplast genomes, twelve of which are presented here for the first time. Methodology/Principal Findings The size of 12 chloroplast genomes under study varied from 159,959 bp to 160,433 bp. The chromosomes were highly similar having >98% sequence identity. They encoded the same set of 112 unique genes which occurred in a uniform order with only slightly different boundary junctions. Divergence due to indels as well as substitutions was examined separately for genome, coding and noncoding sequences. The genome divergence was estimated as 0.374% to 0.583% between allotetraploid species and A-genome, and 0.159% to 0.454% within allotetraploids. Forty protein-coding genes were completely identical at the protein level, and 20 intergenic sequences were completely conserved. The 9 allotetraploids shared 5 insertions and 9 deletions in whole genome, and 7-bp substitutions in protein-coding genes. The phylogenetic tree confirmed a close relationship between allotetraploids and the ancestor of A-genome, and the allotetraploids were divided into four separate groups. Progenitor allotetraploid cotton originated 0.43–0.68 million years ago (MYA). Conclusion Despite high degree of conservation between the Gossypium chloroplast genomes, sequence variations among species could still be detected. Gossypium chloroplast genomes preferred for 5-bp indels and 1–3-bp indels are mainly attributed to the SSR polymorphisms. This study supports that the common ancestor of diploid A-genome species in Gossypium is the maternal source of extant allotetraploid species and allotetraploids have a monophyletic origin. G. hirsutum AD1 lineages have experienced more sequence variations than other allotetraploids in intergenic regions. The available complete nucleotide sequences of 12 Gossypium chloroplast genomes should facilitate studies to uncover the molecular mechanisms of compartmental co-evolution and speciation of Gossypium allotetraploids. PMID:22876273

Xu, Qin; Xiong, Guanjun; Li, Pengbo; He, Fei; Huang, Yi; Wang, Kunbo; Li, Zhaohu; Hua, Jinping

2012-01-01

326

The Genome and Development-Dependent Transcriptomes of Pyronema confluens: A Window into Fungal Evolution  

PubMed Central

Fungi are a large group of eukaryotes found in nearly all ecosystems. More than 250 fungal genomes have already been sequenced, greatly improving our understanding of fungal evolution, physiology, and development. However, for the Pezizomycetes, an early-diverging lineage of filamentous ascomycetes, there is so far only one genome available, namely that of the black truffle, Tuber melanosporum, a mycorrhizal species with unusual subterranean fruiting bodies. To help close the sequence gap among basal filamentous ascomycetes, and to allow conclusions about the evolution of fungal development, we sequenced the genome and assayed transcriptomes during development of Pyronema confluens, a saprobic Pezizomycete with a typical apothecium as fruiting body. With a size of 50 Mb and ?13,400 protein-coding genes, the genome is more characteristic of higher filamentous ascomycetes than the large, repeat-rich truffle genome; however, some typical features are different in the P. confluens lineage, e.g. the genomic environment of the mating type genes that is conserved in higher filamentous ascomycetes, but only partly conserved in P. confluens. On the other hand, P. confluens has a full complement of fungal photoreceptors, and expression studies indicate that light perception might be similar to distantly related ascomycetes and, thus, represent a basic feature of filamentous ascomycetes. Analysis of spliced RNA-seq sequence reads allowed the detection of natural antisense transcripts for 281 genes. The P. confluens genome contains an unusually high number of predicted orphan genes, many of which are upregulated during sexual development, consistent with the idea of rapid evolution of sex-associated genes. Comparative transcriptomics identified the transcription factor gene pro44 that is upregulated during development in P. confluens and the Sordariomycete Sordaria macrospora. The P. confluens pro44 gene (PCON_06721) was used to complement the S. macrospora pro44 deletion mutant, showing functional conservation of this developmental regulator. PMID:24068976

Traeger, Stefanie; Altegoer, Florian; Freitag, Michael; Gabaldon, Toni; Kempken, Frank; Kumar, Abhishek; Marcet-Houben, Marina; Pöggeler, Stefanie; Stajich, Jason E.; Nowrousian, Minou

2013-01-01

327

A scenario of mitochondrial genome evolution in maize based on rearrangement events  

PubMed Central

Background Despite their monophyletic origin, animal and plant mitochondrial genomes have been described as exhibiting different modes of evolution. Indeed, plant mitochondrial genomes feature a larger size, a lower mutation rate and more rearrangements than their animal counterparts. Gene order variation in animal mitochondrial genomes is often described as being due to translocation and inversion events, but tandem duplication followed by loss has also been proposed as an alternative process. In plant mitochondrial genomes, at the species level, gene shuffling and duplicate occurrence are such that no clear phylogeny has ever been identified, when considering genome structure variation. Results In this study we analyzed the whole sequences of eight mitochondrial genomes from maize and teosintes in order to comprehend the events that led to their structural features, i.e. the order of genes, tRNAs, rRNAs, ORFs, pseudogenes and non-coding sequences shared by all mitogenomes and duplicate occurrences. We suggest a tandem duplication model similar to the one described in animals, except that some duplicates can remain. This model enabled us to develop a manual method to deal with duplicates, a recurrent problem in rearrangement analyses. The phylogenetic tree exclusively based on rearrangement and duplication events is congruent with the tree based on sequence polymorphism, validating our evolution model. Conclusions This study suggests more similarity than usually reported between plant and animal mitochondrial genomes in their mode of evolution. Further work will consist of developing new tools in order to automatically look for signatures of tandem duplication events in other plant mitogenomes and evaluate the occurrence of this process on a larger scale. PMID:20380689

2010-01-01

328

The genome and development-dependent transcriptomes of Pyronema confluens: a window into fungal evolution.  

PubMed

Fungi are a large group of eukaryotes found in nearly all ecosystems. More than 250 fungal genomes have already been sequenced, greatly improving our understanding of fungal evolution, physiology, and development. However, for the Pezizomycetes, an early-diverging lineage of filamentous ascomycetes, there is so far only one genome available, namely that of the black truffle, Tuber melanosporum, a mycorrhizal species with unusual subterranean fruiting bodies. To help close the sequence gap among basal filamentous ascomycetes, and to allow conclusions about the evolution of fungal development, we sequenced the genome and assayed transcriptomes during development of Pyronema confluens, a saprobic Pezizomycete with a typical apothecium as fruiting body. With a size of 50 Mb and ~13,400 protein-coding genes, the genome is more characteristic of higher filamentous ascomycetes than the large, repeat-rich truffle genome; however, some typical features are different in the P. confluens lineage, e.g. the genomic environment of the mating type genes that is conserved in higher filamentous ascomycetes, but only partly conserved in P. confluens. On the other hand, P. confluens has a full complement of fungal photoreceptors, and expression studies indicate that light perception might be similar to distantly related ascomycetes and, thus, represent a basic feature of filamentous ascomycetes. Analysis of spliced RNA-seq sequence reads allowed the detection of natural antisense transcripts for 281 genes. The P. confluens genome contains an unusually high number of predicted orphan genes, many of which are upregulated during sexual development, consistent with the idea of rapid evolution of sex-associated genes. Comparative transcriptomics identified the transcription factor gene pro44 that is upregulated during development in P. confluens and the Sordariomycete Sordaria macrospora. The P. confluens pro44 gene (PCON_06721) was used to complement the S. macrospora pro44 deletion mutant, showing functional conservation of this developmental regulator. PMID:24068976

Traeger, Stefanie; Altegoer, Florian; Freitag, Michael; Gabaldon, Toni; Kempken, Frank; Kumar, Abhishek; Marcet-Houben, Marina; Pöggeler, Stefanie; Stajich, Jason E; Nowrousian, Minou

2013-01-01

329

What can whole genome expression data tell us about the ecology and evolution of personality?  

PubMed Central

Consistent individual differences in behaviour, aka personality, pose several evolutionary questions. For example, it is difficult to explain within-individual consistency in behaviour because behavioural plasticity is often advantageous. In addition, selection erodes heritable behavioural variation that is related to fitness, therefore we wish to know the mechanisms that can maintain between-individual variation in behaviour. In this paper, we argue that whole genome expression data can reveal new insights into the proximate mechanisms underlying personality, as well as its evolutionary consequences. After introducing the basics of whole genome expression analysis, we show how whole genome expression data can be used to understand whether behaviours in different contexts are affected by the same molecular mechanisms. We suggest strategies for using the power of genomics to understand what maintains behavioural variation, to study the evolution of behavioural correlations and to compare personality traits across diverse organisms. PMID:21078652

Bell, Alison M.; Aubin-Horth, Nadia

2010-01-01

330

Spider genomes provide insight into composition and evolution of venom and silk.  

PubMed

Spiders are ecologically important predators with complex venom and extraordinarily tough silk that enables capture of large prey. Here we present the assembled genome of the social velvet spider and a draft assembly of the tarantula genome that represent two major taxonomic groups of spiders. The spider genomes are large with short exons and long introns, reminiscent of mammalian genomes. Phylogenetic analyses place spiders and ticks as sister groups supporting polyphyly of the Acari. Complex sets of venom and silk genes/proteins are identified. We find that venom genes evolved by sequential duplication, and that the toxic effect of venom is most likely activated by proteases present in the venom. The set of silk genes reveals a highly dynamic gene evolution, new types of silk genes and proteins, and a novel use of aciniform silk. These insights create new opportunities for pharmacological applications of venom and biomaterial applications of silk. PMID:24801114

Sanggaard, Kristian W; Bechsgaard, Jesper S; Fang, Xiaodong; Duan, Jinjie; Dyrlund, Thomas F; Gupta, Vikas; Jiang, Xuanting; Cheng, Ling; Fan, Dingding; Feng, Yue; Han, Lijuan; Huang, Zhiyong; Wu, Zongze; Liao, Li; Settepani, Virginia; Thøgersen, Ida B; Vanthournout, Bram; Wang, Tobias; Zhu, Yabing; Funch, Peter; Enghild, Jan J; Schauser, Leif; Andersen, Stig U; Villesen, Palle; Schierup, Mikkel H; Bilde, Trine; Wang, Jun

2014-01-01

331

Spider genomes provide insight into composition and evolution of venom and silk  

PubMed Central

Spiders are ecologically important predators with complex venom and extraordinarily tough silk that enables capture of large prey. Here we present the assembled genome of the social velvet spider and a draft assembly of the tarantula genome that represent two major taxonomic groups of spiders. The spider genomes are large with short exons and long introns, reminiscent of mammalian genomes. Phylogenetic analyses place spiders and ticks as sister groups supporting polyphyly of the Acari. Complex sets of venom and silk genes/proteins are identified. We find that venom genes evolved by sequential duplication, and that the toxic effect of venom is most likely activated by proteases present in the venom. The set of silk genes reveals a highly dynamic gene evolution, new types of silk genes and proteins, and a novel use of aciniform silk. These insights create new opportunities for pharmacological applications of venom and biomaterial applications of silk. PMID:24801114

Sanggaard, Kristian W.; Bechsgaard, Jesper S.; Fang, Xiaodong; Duan, Jinjie; Dyrlund, Thomas F.; Gupta, Vikas; Jiang, Xuanting; Cheng, Ling; Fan, Dingding; Feng, Yue; Han, Lijuan; Huang, Zhiyong; Wu, Zongze; Liao, Li; Settepani, Virginia; Thøgersen, Ida B.; Vanthournout, Bram; Wang, Tobias; Zhu, Yabing; Funch, Peter; Enghild, Jan J.; Schauser, Leif; Andersen, Stig U.; Villesen, Palle; Schierup, Mikkel H; Bilde, Trine; Wang, Jun

2014-01-01

332

The Common Marmoset Genome Provides Insight into Primate Biology and Evolution  

PubMed Central

A first analysis of the genome sequence of the common marmoset (Callithrix jacchus), assembled using traditional Sanger methods and Ensembl annotation, has permitted genomic comparison with apes and old world monkeys and the identification of specific molecular features that may contribute to the unique biology of this diminutive primate. The common marmoset has a rapid reproductive capacity partly due to prevalence of dizygotic twins. Remarkably, these twins share placental circulation and exchange hematopoietic stem cells in utero, resulting in adults that are hematopoietic chimeras. We observed positive selection or non-synonymous substitutions for genes encoding growth hormone/insulin-like growth factor (growth pathways), respiratory complex I (metabolic pathways), immunobiology, and proteases (reproductive and immunity pathways). In addition, both protein-coding and microRNA genes related to reproduction exhibit rapid sequence evolution. This New World monkey genome sequence enables significantly increased power for comparative analyses among available primate genomes and facilitates biomedical research application. PMID:25038751

2014-01-01

333

The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism  

PubMed Central

The hyperthermophile Nanoarchaeum equitans is an obligate symbiont growing in coculture with the crenarchaeon Ignicoccus. Ribosomal protein and rRNA-based phylogenies place its branching point early in the archaeal lineage, representing the new archaeal kingdom Nanoarchaeota. The N. equitans genome (490,885 base pairs) encodes the machinery for information processing and repair, but lacks genes for lipid, cofactor, amino acid, or nucleotide biosyntheses. It is the smallest microbial genome sequenced to date, and also one of the most compact, with 95% of the DNA predicted to encode proteins or stable RNAs. Its limited biosynthetic and catabolic capacity indicates that N. equitans' symbiotic relationship to Ignicoccus is parasitic, making it the only known archaeal parasite. Unlike the small genomes of bacterial parasites that are undergoing reductive evolution, N. equitans has few pseudogenes or extensive regions of noncoding DNA. This organism represents a basal archaeal lineage and has a highly reduced genome. PMID:14566062

Waters, Elizabeth; Hohn, Michael J.; Ahel, Ivan; Graham, David E.; Adams, Mark D.; Barnstead, Mary; Beeson, Karen Y.; Bibbs, Lisa; Bolanos, Randall; Keller, Martin; Kretz, Keith; Lin, Xiaoying; Mathur, Eric; Ni, Jingwei; Podar, Mircea; Richardson, Toby; Sutton, Granger G.; Simon, Melvin; Söll, Dieter; Stetter, Karl O.; Short, Jay M.; Noordewier, Michiel

2003-01-01

334

Optimality models in the age of experimental evolution and genomics  

PubMed Central

Optimality models have been used to predict evolution of many properties of organisms. They typically neglect genetic details, whether by necessity or design. This omission is a common source of criticism, and although this limitation of optimality is widely acknowledged, it has mostly been defended rather than evaluated for its impact. Experimental adaptation of model organisms provides a new arena for testing optimality models and for simultaneously integrating genetics. First, an experimental context with a well-researched organism allows dissection of the evolutionary process to identify causes of model failure – whether the model is wrong about genetics or selection. Second, optimality models provide a meaningful context for the process and mechanics of evolution, and thus may be used to elicit realistic genetic bases of adaptation – an especially useful augmentation to well-researched genetic systems. A few studies of microbes have begun to pioneer this new direction. Incompatibility between the assumed and actual genetics has been demonstrated to be the cause of model failure in some cases. More interestingly, evolution at the phenotypic level has sometimes matched prediction even though the adaptive mutations defy mechanisms established by decades of classic genetic studies. Integration of experimental evolutionary tests with genetics heralds a new wave for optimality models and their extensions that does not merely emphasize the forces driving evolution. PMID:20646132

Bull, J. J.; Wang, I.-N.

2010-01-01

335

Multiple Genomic Recombination Events in the Evolution of Saffold Cardiovirus  

PubMed Central

Background Saffold cardiovirus (SAFV) is a new human cardiovirus with 11 identified genotypes. Little is known about the natural history and pathogenicity of SAFVs. Methodology/Principal Findings We sequenced the genome of five SAFV-1 strains which were identified from fecal samples taken from children with viral diarrhea in Beijing, China between March 2006 and November 2007, and analyzed the phylogenetic and phylodynamic properties of SAFVs using the genome sequences of every known SAFV genotypes. We identified multiple recombination events in our SAFV-1 strains, specifically recombination between SAFV-2, -3, -4, -9, -10 and the prototype SAFV-1 strain in the VP4 region and recombination between SAFV-4, -6, -8, -10, -11 and prototype SAFV-1 in the VP1/2A region. Notably, recombination in the structural gene VP4 is a rare event in Cardiovirus. The ratio of nonsynonymous substitutions to synonymous substitutions indicates a purifying selection of the SAFV genome. Phylogenetic and molecular clock analysis indicates the existence of at least two subclades of SAFV-1 with different origins. Subclade 1 includes two strains isolated from Pakistan, whereas subclade 2 includes the prototype strain and strains isolated in China, Pakistan, and Afghanistan. The most recent common ancestor of all SAFV genotypes dates to the 1710s, and SAFV-1, -2, and -3 to the 1940s, 1950s, and 1960s, respectively. No obvious relationship between variation and pathogenicity exists in the critical domains of the CD and EF loops of viral capsid proteins or the multi-functional proteins L based on animo acid sequence identity comparison between SAFV genotypes. Conclusions/Significance Our findings suggest that intertypic recombination plays an important role in the diversity of SAFVs, highlighting the diversity of the five strains with the previously described SAFV-1 strains. PMID:24086404

Ren, Lili; Xiao, Yan; Li, Jianguo; Chen, Lan; Zhang, Jing; Vernet, Guy; Wang, Jianwei

2013-01-01

336

Shewanella spp. Genomic Evolution for a Cold Marine Lifestyle and In-Situ Explosive Biodegradation  

PubMed Central

Shewanella halifaxensis and Shewanella sediminis were among a few aquatic ?-proteobacteria that were psychrophiles and the first anaerobic bacteria that degraded hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Although many mesophilic or psychrophilic strains of Shewanella and ?-proteobacteria were sequenced for their genomes, the genomic evolution pathways for temperature adaptation were poorly understood. On the other hand, the genes responsible for anaerobic RDX mineralization pathways remain unknown. To determine the unique genomic properties of bacteria responsible for both cold-adaptation and RDX degradation, the genomes of S. halifaxensis and S. sediminis were sequenced and compared with 108 other ?-proteobacteria including Shewanella that differ in temperature and Na+ requirements, as well as RDX degradation capability. Results showed that for coping with marine environments their genomes had extensively exchanged with deep sea bacterial genomes. Many genes for Na+-dependent nutrient transporters were recruited to use the high Na+ content as an energy source. For coping with low temperatures, these two strains as well as other psychrophilic strains of Shewanella and ?-proteobacteria were found to decrease their genome G+C content and proteome alanine, proline and arginine content (p-value <0.01) to increase protein structural flexibility. Compared to poorer RDX-degrading strains, S. halifaxensis and S. sediminis have more number of genes for cytochromes and other enzymes related to RDX metabolic pathways. Experimentally, one cytochrome was found induced in S. halifaxensis by RDX when the chemical was the sole terminal electron acceptor. The isolated protein degraded RDX by mono-denitration and was identified as a multiheme 52 kDa cytochrome using a proteomic approach. The present analyses provided the first insight into divergent genomic evolution of bacterial strains for adaptation to the specific cold marine conditions and to the degradation of the pollutant RDX. The present study also provided the first evidence for the involvement of a specific c-type cytochrome in anaerobic RDX metabolism. PMID:20174598

Zhao, Jian-Shen; Deng, Yinghai; Manno, Dominic; Hawari, Jalal

2010-01-01

337

The origin and evolution of genomic imprinting and viviparity in mammals  

PubMed Central

Genomic imprinting is widespread in eutherian mammals. Marsupial mammals also have genomic imprinting, but in fewer loci. It has long been thought that genomic imprinting is somehow related to placentation and/or viviparity in mammals, although neither is restricted to mammals. Most imprinted genes are expressed in the placenta. There is no evidence for genomic imprinting in the egg-laying monotreme mammals, despite their short-lived placenta that transfers nutrients from mother to embryo. Post natal genomic imprinting also occurs, especially in the brain. However, little attention has been paid to the primary source of nutrition in the neonate in all mammals, the mammary gland. Differentially methylated regions (DMRs) play an important role as imprinting control centres in each imprinted region which usually comprises both paternally and maternally expressed genes (PEGs and MEGs). The DMR is established in the male or female germline (the gDMR). Comprehensive comparative genome studies demonstrated that two imprinted regions, PEG10 and IGF2-H19, are conserved in both marsupials and eutherians and that PEG10 and H19 DMRs emerged in the therian ancestor at least 160 Ma, indicating the ancestral origin of genomic imprinting during therian mammal evolution. Importantly, these regions are known to be deeply involved in placental and embryonic growth. It appears that most maternal gDMRs are always associated with imprinting in eutherian mammals, but emerged at differing times during mammalian evolution. Thus, genomic imprinting could evolve from a defence mechanism against transposable elements that depended on DNA methylation established in germ cells. PMID:23166401

Renfree, Marilyn B.; Suzuki, Shunsuke; Kaneko-Ishino, Tomoko

2013-01-01

338

[Human rhinovirus diseases--epidemiology, treatment and prevention].  

PubMed

Human rhinoviruses (HRV) are non-enveloped, single-stranded RNA viruses of the genus Rhinovirus in the family Picornaviridae. They are the most common causative agents of acute diseases of the upper respiratory tract (e. g., common cold), but they also cause acute lower respiratory tract illness, including bronchiolitis and pneumonia. In addition, human rhinoviruses are known to cause exacerbations of bronchial asthma and chronic obstructive pulmonary disease. The treatment of HRV-induced diseases is usually symptomatic and supportiv, a generally recommended antiviral therapy does not exist. For the treatment of the common cold, there are numerous preparations and applications. However, only a few of these agents and measures have been shown to be suitable to reduce the severity of symptoms or to shorten the duration of illness. The risk of acquiring an HRV infection can be reduced by strict adherence to suitable hygiene measures. An effective vaccine is not yet available. PMID:24624610

Stock, Ingo

2014-02-01

339

Rhinovirus-Induced Exacerbations of Asthma and COPD.  

PubMed

Over the past two decades, increasing evidence has shown that, in patients with chronic airways disease, viral infection is the most common cause of exacerbation. This review will examine the evidence for viral-induced exacerbations of asthma and chronic obstructive lung disease and the potential mechanisms by which viruses cause exacerbations. Attention will be focused on rhinovirus, the most common cause of respiratory exacerbations. Exacerbations due to rhinovirus, which infects relatively few cells in the airway and does not cause the cytotoxicity of other viruses such as influenza or respiratory syncytial virus, are particularly poorly understood. While the innate immune response likely plays a role in rhinovirus-induced exacerbations, its precise role, either adaptive or maladaptive, is debated. Because current treatment strategies are only partially effective, further research examining the cellular and molecular mechanisms underlying viral-induced exacerbations of chronic airways diseases is warranted. PMID:24278777

Hershenson, Marc B

2013-01-01

340

Structure of a human rhinovirus complexed with its receptor molecule.  

PubMed Central

Cryoelectron microscopy has been used to determine the structure of a virus when complexed with its glycoprotein cellular receptor. Human rhinovirus 16 complexed with the two amino-terminal, immunoglobulin-like domains of the intercellular adhesion molecule 1 shows that the intercellular adhesion molecule 1 binds into the 12-A deep "canyon" on the viral surface. This result confirms the prediction that the viral-receptor attachment site lies in a cavity inaccessible to the host's antibodies. The atomic structures of human rhinovirus 14 and CD4, homologous to human rhinovirus 16 and intercellular adhesion molecule 1, showed excellent correspondence with observed density, thus establishing the virus-receptor interactions. Images PMID:8093643

Olson, N H; Kolatkar, P R; Oliveira, M A; Cheng, R H; Greve, J M; McClelland, A; Baker, T S; Rossmann, M G

1993-01-01

341

Rhinovirus antibodies in an isolated Amazon Indian tribe.  

PubMed

In early 1985, the Parakana-Apiterewa, a small, primitive Indian tribe, was contacted in the southern Amazon Basin. The tribe was thought to have been totally isolated from civilization until recent development of their land. Blood specimens were collected in 1985, shortly after the discovery of the tribe, and analyzed for the presence of rhinovirus-neutralizing antibody to nine different immunotypes. Six to forty-seven percent of the serum samples tested contained antibody to at least one immunotype of rhinovirus. The prevalence of rhinovirus antibody in the Parakana-Apiterewa Indians was similar to that reported in United States populations, suggesting that there had been considerable direct or indirect contact in the past between tribe members and persons in the outside world. PMID:8392816

Thwing, C J; Arruda, E; Vieira Filho, J P; Castelo Filho, A; Gwaltney, J M

1993-06-01

342

Proteases of human rhinovirus: role in infection.  

PubMed

Human rhinoviruses (HRV) are the major etiological agents of the common cold and asthma exacerbations, with significant worldwide health and economic impact. Although large-scale population vaccination has proved successful in limiting or even eradicating many viruses, the more than 100 distinct serotypes mean that conventional vaccination is not a feasible strategy to combat HRV. An alternative strategy is to target conserved viral proteins such as the HRV proteases, 2A(pro) and 3C(pro), the focus of this review. Necessary for host cell shutoff, virus replication, and pathogenesis, 2A(pro) and 3C(pro) are clearly viable drug targets, and indeed, 3C(pro) has been successfully targeted for treating the common cold in experimental infection. 2A(pro) and 3C(pro) are crucial for virus replication due to their role in polyprotein processing as well as cleavage of key cellular proteins to inhibit cellular transcription and translation. Intriguingly, the action of the HRV proteases also disrupts nucleocytoplasmic trafficking, contributing to HRV cytopathic effects. Improved understanding of the protease-cell interactions should enable new therapeutic approaches to be identified for drug development. PMID:25261311

Jensen, Lora M; Walker, Erin J; Jans, David A; Ghildyal, Reena

2015-01-01

343

Hand contamination with human rhinovirus in Bangladesh.  

PubMed

As one step in developing a measure of hand contamination with respiratory viruses, this study assessed if human rhinovirus (HRV) was detectable on hands in a low income non-temperate community where respiratory disease is a leading cause of child death. Research assistants observed residents in a low income community in Dhaka, Bangladesh. When they observed a resident sneeze or pick their nose, they collected a hand rinse and anterior nare sample from the resident. Samples were first tested for HRV RNA by real-time RT-PCR (rRT-PCR). A subset of rRT-PCR positive samples were cultured into MRC-5 and HeLa Ohio cells. Among 177 hand samples tested for HRV by real-time RT-PCR, 52 (29%) were positive. Among 15 RT-PCR positive hand samples that were cultured, two grew HRV. HRV was detected in each of the sampling months (January, February, June, July, November, and December). This study demonstrates in the natural setting that, at least after sneezing or nasal cleaning, hands were contaminated commonly with potentially infectious HRV. Future research could explore if HRV RNA is present consistently and is associated sufficiently with the incidence of respiratory illness in communities that it may provide a proxy measure of respiratory viral hand contamination. PMID:24760731

Luby, Stephen P; Lu, Xiaoyan; Cromeans, Theresa; Sharker, M A Yushuf; Kadir, Mohammad Abdul; Erdman, Dean D

2014-12-01

344

Patterns of Evolutionary Conservation of Microsatellites (SSRs) Suggest a Faster Rate of Genome Evolution in Hymenoptera Than in Diptera  

PubMed Central

Microsatellites, or simple sequence repeats (SSRs), are common and widespread DNA elements in genomes of many organisms. However, their dynamics in genome evolution is unclear, whereby they are thought to evolve neutrally. More available genome sequences along with dated phylogenies allowed for studying the evolution of these repetitive DNA elements along evolutionary time scales. This could be used to compare rates of genome evolution. We show that SSRs in insects can be retained for several hundred million years. Different types of microsatellites seem to be retained longer than others. By comparing Dipteran with Hymenopteran species, we found very similar patterns of SSR loss during their evolution, but both taxa differ profoundly in the rate. Relative to divergence time, Diptera lost SSRs twice as fast as Hymenoptera. The loss of SSRs on the Drosophila melanogaster X-chromosome was higher than on the other chromosomes. However, accounting for generation time, the Diptera show an 8.5-fold slower rate of SSR loss than the Hymenoptera, which, in contrast to previous studies, suggests a faster genome evolution in the latter. This shows that generation time differences can have a profound effect. A faster genome evolution in these insects could be facilitated by several factors very different to Diptera, which is discussed in light of our results on the haplodiploid D. melanogaster X-chromosome. Furthermore, large numbers of SSRs can be found to be in synteny and thus could be exploited as a tool to investigate genome structure and evolution. PMID:23292136

Stolle, Eckart; Kidner, Jonathan H.; Moritz, Robin F.A.

2013-01-01

345

Complete HOX cluster characterization of the coelacanth provides further evidence for slow evolution of its genome  

PubMed Central

The living coelacanth is a lobe-finned fish that represents an early evolutionary departure from the lineage that led to land vertebrates, and is of extreme interest scientifically. It has changed very little in appearance from fossilized coelacanths of the Cretaceous (150 to 65 million years ago), and is often referred to as a “living fossil.” An important general question is whether long-term stasis in morphological evolution is associated with stasis in genome evolution. To this end we have used targeted genome sequencing for acquiring 1,612,752 bp of high quality finished sequence encompassing the four HOX clusters of the Indonesian coelacanth Latimeria menadoensis. Detailed analyses were carried out on genomic structure, gene and repeat contents, conserved noncoding regions, and relative rates of sequence evolution in both coding and noncoding tracts. Our results demonstrate conclusively that the coelacanth HOX clusters are evolving comparatively slowly and that this taxon should serve as a viable outgroup for interpretation of the genomes of tetrapod species. PMID:20139301

Amemiya, Chris T.; Powers, Thomas P.; Prohaska, Sonja J.; Grimwood, Jane; Schmutz, Jeremy; Dickson, Mark; Miyake, Tsutomu; Schoenborn, Michael A.; Myers, Richard M.; Ruddle, Francis H.; Stadler, Peter F.

2010-01-01

346

Genome Evolution and Phylogenomic Analysis of Candidatus Kinetoplastibacterium, the Betaproteobacterial Endosymbionts of Strigomonas and Angomonas  

PubMed Central

It has been long known that insect-infecting trypanosomatid flagellates from the genera Angomonas and Strigomonas harbor bacterial endosymbionts (Candidatus Kinetoplastibacterium or TPE [trypanosomatid proteobacterial endosymbiont]) that supplement the host metabolism. Based on previous analyses of other bacterial endosymbiont genomes from other lineages, a stereotypical path of genome evolution in such bacteria over the duration of their association with the eukaryotic host has been characterized. In this work, we sequence and analyze the genomes of five TPEs, perform their metabolic reconstruction, do an extensive phylogenomic analyses with all available Betaproteobacteria, and compare the TPEs with their nearest betaproteobacterial relatives. We also identify a number of housekeeping and central metabolism genes that seem to have undergone positive selection. Our genome structure analyses show total synteny among the five TPEs despite millions of years of divergence, and that this lineage follows the common path of genome evolution observed in other endosymbionts of diverse ancestries. As previously suggested by cell biology and biochemistry experiments, Ca. Kinetoplastibacterium spp. preferentially maintain those genes necessary for the biosynthesis of compounds needed by their hosts. We have also shown that metabolic and informational genes related to the cooperation with the host are overrepresented amongst genes shown to be under positive selection. Finally, our phylogenomic analysis shows that, while being in the Alcaligenaceae family of Betaproteobacteria, the closest relatives of these endosymbionts are not in the genus Bordetella as previously reported, but more likely in the Taylorella genus. PMID:23345457

Alves, João M.P.; Serrano, Myrna G.; Maia da Silva, Flávia; Voegtly, Logan J.; Matveyev, Andrey V.; Teixeira, Marta M.G.; Camargo, Erney P.; Buck, Gregory A.

2013-01-01

347

Evolution of a morphological novelty occurred before genome compaction in a lineage of extreme parasites.  

PubMed

Intracellular parasitism results in extreme adaptations, whose evolutionary history is difficult to understand, because the parasites and their known free-living relatives are so divergent from one another. Microsporidia are intracellular parasites of humans and other animals, which evolved highly specialized morphological structures, but also extreme physiologic and genomic simplification. They are suggested to be an early-diverging branch on the fungal tree, but comparisons to other species are difficult because their rates of molecular evolution are exceptionally high. Mitochondria in microsporidia have degenerated into organelles called mitosomes, which have lost a genome and the ability to produce ATP. Here we describe a gut parasite of the crustacean Daphnia that despite having remarkable morphological similarity to the microsporidia, has retained genomic features of its fungal ancestors. This parasite, which we name Mitosporidium daphniae gen. et sp. nov., possesses a mitochondrial genome including genes for oxidative phosphorylation, yet a spore stage with a highly specialized infection apparatus--the polar tube--uniquely known only from microsporidia. Phylogenomics places M. daphniae at the root of the microsporidia. A comparative genomic analysis suggests that the reduction in energy metabolism, a prominent feature of microsporidian evolution, was preceded by a reduction in the machinery controlling cell cycle, DNA recombination, repair, and gene expression. These data show that the morphological features unique to M. daphniae and other microsporidia were already present before the lineage evolved the extreme host metabolic dependence and loss of mitochondrial respiration for which microsporidia are well known. PMID:25313038

Haag, Karen L; James, Timothy Y; Pombert, Jean-François; Larsson, Ronny; Schaer, Tobias M M; Refardt, Dominik; Ebert, Dieter

2014-10-28

348

Insights on genome size evolution from a miniature inverted repeat transposon driving a satellite DNA.  

PubMed

The genome size in eukaryotes does not correlate well with the number of genes they contain. We can observe this so-called C-value paradox in amphibian species. By analyzing an amphibian genome we asked how repetitive DNA can impact genome size and architecture. We describe here our discovery of a Tc1/mariner miniature inverted-repeat transposon family present in Xenopus frogs. These transposons named miDNA4 are unique since they contain a satellite DNA motif. We found that miDNA4 measured 331bp, contained 25bp long inverted terminal repeat sequences and a sequence motif of 119bp present as a unique copy or as an array of 2-47 copies. We characterized the structure, dynamics, impact and evolution of the miDNA4 family and its satellite DNA in Xenopus frog genomes. This led us to propose a model for the evolution of these two repeated sequences and how they can synergize to increase genome size. PMID:25193611

Scalvenzi, Thibault; Pollet, Nicolas

2014-12-01

349

Comparative Analyses of DNA Methylation and Sequence Evolution Using Nasonia Genomes  

PubMed Central

The functional and evolutionary significance of DNA methylation in insect genomes remains to be resolved. Nasonia is well situated for comparative analyses of DNA methylation and genome evolution, since the genomes of a moderately distant outgroup species as well as closely related sibling species are available. Using direct sequencing of bisulfite-converted DNA, we uncovered a substantial level of DNA methylation in 17 of 18 Nasonia vitripennis genes and a strong correlation between methylation level and CpG depletion. Notably, in the sex-determining locus transformer, the exon that is alternatively spliced between the sexes is heavily methylated in both males and females, whereas other exons are only sparsely methylated. Orthologous genes of the honeybee and Nasonia show highly similar relative levels of CpG depletion, despite ?190 My divergence. Densely and sparsely methylated genes in these species also exhibit similar functional enrichments. We found that the degree of CpG depletion is negatively correlated with substitution rates between closely related Nasonia species for synonymous, nonsynonymous, and intron sites. This suggests that mutation rates increase with decreasing levels of germ line methylation. Thus, DNA methylation is prevalent in the Nasonia genome, may participate in regulatory processes such as sex determination and alternative splicing, and is correlated with several aspects of genome and sequence evolution. PMID:21693438

Park, Jungsun; Peng, Zuogang; Zeng, Jia; Elango, Navin; Park, Taesung; Wheeler, Dave; Werren, John H.; Yi, Soojin V.

2011-01-01

350

Massively convergent evolution for ribosomal protein gene content in plastid and mitochondrial genomes.  

PubMed

Plastid and mitochondrial genomes have undergone parallel evolution to encode the same functional set of genes. These encode conserved protein components of the electron transport chain in their respective bioenergetic membranes and genes for the ribosomes that express them. This highly convergent aspect of organelle genome evolution is partly explained by the redox regulation hypothesis, which predicts a separate plastid or mitochondrial location for genes encoding bioenergetic membrane proteins of either photosynthesis or respiration. Here we show that convergence in organelle genome evolution is far stronger than previously recognized, because the same set of genes for ribosomal proteins is independently retained by both plastid and mitochondrial genomes. A hitherto unrecognized selective pressure retains genes for the same ribosomal proteins in both organelles. On the Escherichia coli ribosome assembly map, the retained proteins are implicated in 30S and 50S ribosomal subunit assembly and initial rRNA binding. We suggest that ribosomal assembly imposes functional constraints that govern the retention of ribosomal protein coding genes in organelles. These constraints are subordinate to redox regulation for electron transport chain components, which anchor the ribosome to the organelle genome in the first place. As organelle genomes undergo reduction, the rRNAs also become smaller. Below size thresholds of approximately 1,300 nucleotides (16S rRNA) and 2,100 nucleotides (26S rRNA), all ribosomal protein coding genes are lost from organelles, while electron transport chain components remain organelle encoded as long as the organelles use redox chemistry to generate a proton motive force. PMID:24259312

Maier, Uwe-G; Zauner, Stefan; Woehle, Christian; Bolte, Kathrin; Hempel, Franziska; Allen, John F; Martin, William F

2013-01-01

351

Massively Convergent Evolution for Ribosomal Protein Gene Content in Plastid and Mitochondrial Genomes  

PubMed Central

Plastid and mitochondrial genomes have undergone parallel evolution to encode the same functional set of genes. These encode conserved protein components of the electron transport chain in their respective bioenergetic membranes and genes for the ribosomes that express them. This highly convergent aspect of organelle genome evolution is partly explained by the redox regulation hypothesis, which predicts a separate plastid or mitochondrial location for genes encoding bioenergetic membrane proteins of either photosynthesis or respiration. Here we show that convergence in organelle genome evolution is far stronger than previously recognized, because the same set of genes for ribosomal proteins is independently retained by both plastid and mitochondrial genomes. A hitherto unrecognized selective pressure retains genes for the same ribosomal proteins in both organelles. On the Escherichia coli ribosome assembly map, the retained proteins are implicated in 30S and 50S ribosomal subunit assembly and initial rRNA binding. We suggest that ribosomal assembly imposes functional constraints that govern the retention of ribosomal protein coding genes in organelles. These constraints are subordinate to redox regulation for electron transport chain components, which anchor the ribosome to the organelle genome in the first place. As organelle genomes undergo reduction, the rRNAs also become smaller. Below size thresholds of approximately 1,300 nucleotides (16S rRNA) and 2,100 nucleotides (26S rRNA), all ribosomal protein coding genes are lost from organelles, while electron transport chain components remain organelle encoded as long as the organelles use redox chemistry to generate a proton motive force. PMID:24259312

Maier, Uwe-G; Zauner, Stefan; Woehle, Christian; Bolte, Kathrin; Hempel, Franziska; Allen, John F.; Martin, William F.

2013-01-01

352

Insights into neural crest development and evolution from genomic analysis.  

PubMed

The neural crest is an excellent model system for the study of cell type diversification during embryonic development due to its multipotency, motility, and ability to form a broad array of derivatives ranging from neurons and glia, to cartilage, bone, and melanocytes. As a uniquely vertebrate cell population, it also offers important clues regarding vertebrate origins. In the past 30 yr, introduction of recombinant DNA technology has facilitated the dissection of the genetic program controlling neural crest development and has provided important insights into gene regulatory mechanisms underlying cell migration and differentiation. More recently, new genomic approaches have provided a platform and tools that are changing the depth and breadth of our understanding of neural crest development at a "systems" level. Such advances provide an insightful view of the regulatory landscape of neural crest cells and offer a new perspective on developmental as well as stem cell and cancer biology. PMID:23817048

Simões-Costa, Marcos; Bronner, Marianne E

2013-07-01

353

Polyploidy in fungi: evolution after whole-genome duplication  

PubMed Central

Polyploidy is a major evolutionary process in eukaryotes—particularly in plants and, to a less extent, in animals, wherein several past and recent whole-genome duplication events have been described. Surprisingly, the incidence of polyploidy in other eukaryote kingdoms, particularly within fungi, remained largely disregarded by the scientific community working on the evolutionary consequences of polyploidy. Recent studies have significantly increased our knowledge of the occurrence and evolutionary significance of fungal polyploidy. The ecological, structural and functional consequences of polyploidy in fungi are reviewed here and compared with the knowledge acquired with conventional plant and animal models. In particular, the genus Saccharomyces emerges as a relevant model for polyploid studies, in addition to plant and animal models. PMID:22492065

Albertin, Warren; Marullo, Philippe

2012-01-01

354

Correlated evolution of LTR retrotransposons and genome size in the genus eleocharis  

PubMed Central

Background Transposable elements (TEs) are considered to be an important source of genome size variation and genetic and phenotypic plasticity in eukaryotes. Most of our knowledge about TEs comes from large genomic projects and studies focused on model organisms. However, TE dynamics among related taxa from natural populations and the role of TEs at the species or supra-species level, where genome size and karyotype evolution are modulated in concert with polyploidy and chromosomal rearrangements, remain poorly understood. We focused on the holokinetic genus Eleocharis (Cyperaceae), which displays large variation in genome size and the occurrence of polyploidy and agmatoploidy/symploidy. We analyzed and quantified the long terminal repeat (LTR) retrotransposons Ty1-copia and Ty3-gypsy in relation to changes in both genome size and karyotype in Eleocharis. We also examined how this relationship is reflected in the phylogeny of Eleocharis. Results Using flow cytometry, we measured the genome sizes of members of the genus Eleocharis (Cyperaceae). We found positive correlation between the independent phylogenetic contrasts of genome size and chromosome number in Eleocharis. We analyzed PCR-amplified sequences of various reverse transcriptases of the LTR retrotransposons Ty1-copia and Ty3-gypsy (762 sequences in total). Using real-time PCR and dot blot approaches, we quantified the densities of Ty1-copia and Ty3-gypsy within the genomes of the analyzed species. We detected an increasing density of Ty1-copia elements in evolutionarily younger Eleocharis species and found a positive correlation between Ty1-copia densities and C/n-values (an alternative measure of monoploid genome size) in the genus phylogeny. In addition, our analysis of Ty1-copia sequences identified a novel retrotransposon family named Helos1, which is responsible for the increasing density of Ty1-copia. The transition:transversion ratio of Helos1 sequences suggests that Helos1 recently transposed in later-diverging Eleocharis species. Conclusions Using several different approaches, we were able to distinguish between the roles of LTR retrotransposons, polyploidy and agmatoploidy/symploidy in shaping Eleocharis genomes and karyotypes. Our results confirm the occurrence of both polyploidy and agmatoploidy/symploidy in Eleocharis. Additionally, we introduce a new player in the process of genome evolution in holokinetic plants: LTR retrotransposons. PMID:21118487

2010-01-01

355

Close Encounters of the Third Domain: The Emerging Genomic View of Archaeal Diversity and Evolution  

PubMed Central

The Archaea represent the so-called Third Domain of life, which has evolved in parallel with the Bacteria and which is implicated to have played a pivotal role in the emergence of the eukaryotic domain of life. Recent progress in genomic sequencing technologies and cultivation-independent methods has started to unearth a plethora of data of novel, uncultivated archaeal lineages. Here, we review how the availability of such genomic data has revealed several important insights into the diversity, ecological relevance, metabolic capacity, and the origin and evolution of the archaeal domain of life. PMID:24348093

Spang, Anja; Saw, Jimmy H.; Lind, Anders E.; Ettema, Thijs J. G.

2013-01-01

356

Genomes of the T4-related bacteriophages as windows on microbial genome evolution  

Microsoft Academic Search

The T4-related bacteriophages are a group of bacterial viruses that share morphological similarities and genetic homologies with the well-studied Escherichia coli phage T4, but that diverge from T4 and each other by a number of genetically determined characteristics including the bacterial hosts they infect, the sizes of their linear double-stranded (ds) DNA genomes and the predicted compositions of their proteomes.

Vasiliy M Petrov; Swarnamala Ratnayaka; James M Nolan; Eric S Miller; Jim D Karam

2010-01-01

357

Analysis of Adaptive Evolution in Lyssavirus Genomes Reveals Pervasive Diversifying Selection during Species Diversification  

PubMed Central

Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G), RNA-dependent RNA polymerase (L) and polymerase (P) genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups. PMID:25415197

Voloch, Carolina M.; Capellão, Renata T.; Mello, Beatriz; Schrago, Carlos G.

2014-01-01

358

Analysis of adaptive evolution in Lyssavirus genomes reveals pervasive diversifying selection during species diversification.  

PubMed

Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G), RNA-dependent RNA polymerase (L) and polymerase (P) genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups. PMID:25415197

Voloch, Carolina M; Capellão, Renata T; Mello, Beatriz; Schrago, Carlos G

2014-11-01

359

Evolution of a pathogen: a comparative genomics analysis identifies a genetic pathway to pathogenesis in Acinetobacter.  

PubMed

Acinetobacter baumannii is an emergent and global nosocomial pathogen. In addition to A. baumannii, other Acinetobacter species, especially those in the Acinetobacter calcoaceticus-baumannii (Acb) complex, have also been associated with serious human infection. Although mechanisms of attachment, persistence on abiotic surfaces, and pathogenesis in A. baumannii have been identified, the genetic mechanisms that explain the emergence of A. baumannii as the most widespread and virulent Acinetobacter species are not fully understood. Recent whole genome sequencing has provided insight into the phylogenetic structure of the genus Acinetobacter. However, a global comparison of genomic features between Acinetobacter spp. has not been described in the literature. In this study, 136 Acinetobacter genomes, including 67 sequenced in this study, were compared to identify the acquisition and loss of genes in the expansion of the Acinetobacter genus. A whole genome phylogeny confirmed that A. baumannii is a monophyletic clade and that the larger Acb complex is also a well-supported monophyletic group. The whole genome phylogeny provided the framework for a global genomic comparison based on a blast score ratio (BSR) analysis. The BSR analysis demonstrated that specific genes have been both lost and acquired in the evolution of A. baumannii. In addition, several genes associated with A. baumannii pathogenesis were found to be more conserved in the Acb complex, and especially in A. baumannii, than in other Acinetobacter genomes; until recently, a global analysis of the distribution and conservation of virulence factors across the genus was not possible. The results demonstrate that the acquisition of specific virulence factors has likely contributed to the widespread persistence and virulence of A. baumannii. The identification of novel features associated with transcriptional regulation and acquired by clades in the Acb complex presents targets for better understanding the evolution of pathogenesis and virulence in the expansion of the genus. PMID:23365658

Sahl, Jason W; Gillece, John D; Schupp, James M; Waddell, Victor G; Driebe, Elizabeth M; Engelthaler, David M; Keim, Paul

2013-01-01

360

The Medicago Genome Provides Insight into the Evolution of Rhizobial Symbioses  

PubMed Central

Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation 1. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Mya). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species 2. Medicago truncatula (Mt) is a long-established model for the study of legume biology. Here we describe the draft sequence of the Mt euchromatin based on a recently completed BAC-assembly supplemented with Illumina-shotgun sequence, together capturing ~94% of all Mt genes. A whole-genome duplication (WGD) approximately 58 Mya played a major role in shaping the Mt genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the Mt genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max (Gm) and Lotus japonicus (Lj). Mt is a close relative of alfalfa (M. sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the Mt genome sequence provides significant opportunities to expand alfalfa’s genomic toolbox. PMID:22089132

Young, Nevin D.; Debellé, Frédéric; Oldroyd, Giles E. D.; Geurts, Rene; Cannon, Steven B.; Udvardi, Michael K.; Benedito, Vagner A.; Mayer, Klaus F. X.; Gouzy, Jérôme; Schoof, Heiko; Van de Peer, Yves; Proost, Sebastian; Cook, Douglas R.; Meyers, Blake C.; Spannagl, Manuel; Cheung, Foo; De Mita, Stéphane; Krishnakumar, Vivek; Gundlach, Heidrun; Zhou, Shiguo; Mudge, Joann; Bharti, Arvind K.; Murray, Jeremy D.; Naoumkina, Marina A.; Rosen, Benjamin; Silverstein, Kevin A. T.; Tang, Haibao; Rombauts, Stephane; Zhao, Patrick X.; Zhou, Peng; Barbe, Valérie; Bardou, Philippe; Bechner, Michael; Bellec, Arnaud; Berger, Anne; Bergès, Hélène; Bidwell, Shelby; Bisseling, Ton; Choisne, Nathalie; Couloux, Arnaud; Denny, Roxanne; Deshpande, Shweta; Dai, Xinbin; Doyle, Jeff; Dudez, Anne-Marie; Farmer, Andrew D.; Fouteau, Stéphanie; Franken, Carolien; Gibelin, Chrystel; Gish, John; Goldstein, Steven; González, Alvaro J.; Green, Pamela J.; Hallab, Asis; Hartog, Marijke; Hua, Axin; Humphray, Sean; Jeong, Dong-Hoon; Jing, Yi; Jöcker, Anika; Kenton, Steve M.; Kim, Dong-Jin; Klee, Kathrin; Lai, Hongshing; Lang, Chunting; Lin, Shaoping; Macmil, Simone L; Magdelenat, Ghislaine; Matthews, Lucy; McCorrison, Jamison; Monaghan, Erin L.; Mun, Jeong-Hwan; Najar, Fares Z.; Nicholson, Christine; Noirot, Céline; O’Bleness, Majesta; Paule, Charles R.; Poulain, Julie; Prion, Florent; Qin, Baifang; Qu, Chunmei; Retzel, Ernest F.; Riddle, Claire; Sallet, Erika; Samain, Sylvie; Samson, Nicolas; Sanders, Iryna; Saurat, Olivier; Scarpelli, Claude; Schiex, Thomas; Segurens, Béatrice; Severin, Andrew J.; Sherrier, D. Janine; Shi, Ruihua; Sims, Sarah; Singer, Susan R.; Sinharoy, Senjuti; Sterck, Lieven; Viollet, Agnès; Wang, Bing-Bing; Wang, Keqin; Wang, Mingyi; Wang, Xiaohong; Warfsmann, Jens; Weissenbach, Jean; White, Doug D.; White, Jim D.; Wiley, Graham B.; Wincker, Patrick; Xing, Yanbo; Yang, Limei; Yao, Ziyun; Ying, Fu; Zhai, Jixian; Zhou, Liping; Zuber, Antoine; Dénarié, Jean; Dixon, Richard A.; May, Gregory D.; Schwartz, David C.; Rogers, Jane; Quétier, Francis; Town, Christopher D.; Roe, Bruce A.

2011-01-01

361

The sacred lotus genome provides insights into the evolution of flowering plants.  

PubMed

Sacred lotus (Nelumbo nucifera) is an ornamental plant that is also used for food and medicine. This basal eudicot species is especially important from an evolutionary perspective, as it occupies a critical phylogenetic position in flowering plants. Here we report the draft genome of a wild strain of sacred lotus. The assembled genome is 792 Mb, which is approximately 85-90% of genome size estimates. We annotated 392 Mb of repeat sequences and 36,385 protein-coding genes within the genome. Using these sequence data, we constructed a phylogenetic tree and confirmed the basal location of sacred lotus within eudicots. Importantly, we found evidence for a relatively recent whole-genome duplication event; any indication of the ancient paleo-hexaploid event was, however, absent. Genomic analysis revealed evidence of positive selection within 28 embryo-defective genes and one annexin gene that may be related to the long-term viability of sacred lotus seed. We also identified a significant expansion of starch synthase genes, which probably elevated starch levels within the rhizome of sacred lotus. Sequencing this strain of sacred lotus thus provided important insights into the evolution of flowering plant and revealed genetic mechanisms that influence seed dormancy and starch synthesis. PMID:23952714

Wang, Yun; Fan, Guangyi; Liu, Yiman; Sun, Fengming; Shi, Chengcheng; Liu, Xin; Peng, Jing; Chen, Wenbin; Huang, Xinfang; Cheng, Shifeng; Liu, Yuping; Liang, Xinming; Zhu, Honglian; Bian, Chao; Zhong, Lan; Lv, Tian; Dong, Hongxia; Liu, Weiqing; Zhong, Xiao; Chen, Jing; Quan, Zhiwu; Wang, Zhihong; Tan, Benzhong; Lin, Chufa; Mu, Feng; Xu, Xun; Ding, Yi; Guo, An-Yuan; Wang, Jun; Ke, Weidong

2013-11-01

362

Evolution of genomic diversity and sex at extreme environments: Fungal life under hypersaline Dead Sea stress  

PubMed Central

We have found that genomic diversity is generally positively correlated with abiotic and biotic stress levels (1–3). However, beyond a high-threshold level of stress, the diversity declines to a few adapted genotypes. The Dead Sea is the harshest planetary hypersaline environment (340 g·liter–1 total dissolved salts, ?10 times sea water). Hence, the Dead Sea is an excellent natural laboratory for testing the “rise and fall” pattern of genetic diversity with stress proposed in this article. Here, we examined genomic diversity of the ascomycete fungus Aspergillus versicolor from saline, nonsaline, and hypersaline Dead Sea environments. We screened the coding and noncoding genomes of A. versicolor isolates by using >600 AFLP (amplified fragment length polymorphism) markers (equal to loci). Genomic diversity was positively correlated with stress, culminating in the Dead Sea surface but dropped drastically in 50- to 280-m-deep seawater. The genomic diversity pattern paralleled the pattern of sexual reproduction of fungal species across the same southward gradient of increasing stress in Israel. This parallel may suggest that diversity and sex are intertwined intimately according to the rise and fall pattern and adaptively selected by natural selection in fungal genome evolution. Future large-scale verification in micromycetes will define further the trajectories of diversity and sex in the rise and fall pattern. PMID:14645702

Kis-Papo, Tamar; Kirzhner, Valery; Wasser, Solomon P.; Nevo, Eviatar

2003-01-01

363

Genome evolution and speciation: toward quantitative descriptions of pattern and process.  

PubMed

Studies of patterns of differentiation across genomes are accumulating, yet integrative work that combines approaches and fully capitalizes on new technologies to test explicit hypotheses is still rare. Thus, debates persist about the rate, magnitude, and causes of genomic change. This special section is devoted to helping resolve these debates. The eight studies contained within demonstrate how we can begin to move away from vague metaphors toward quantitative and more precise descriptors of patterns of genetic architecture and divergence. However, a particular genomic pattern can often arise via different combinations of various processes such as selection, gene flow, recombination, mutation, genetic drift, and demographic variability. Thus, substantial challenges remain in elucidating which evolutionary processes generated observed genomic patterns. Nonetheless, the studies in this section demonstrate ways forward toward bridging pattern and process, including experimental work, genetic mapping, increased knowledge of natural history and demography, and comparative studies spanning taxa at different points in the speciation continuum. Such collective work will lead to more powerful hypothesis testing. Future work can also help better integrate the contributions of ecology, genome structure (e.g., inversions and translocations), and genetic conflict to genome evolution. PMID:24033160

Nosil, Patrik; Feder, Jeffrey L

2013-09-01

364

Principles of Genome Evolution in the Drosophila melanogaster Species Group  

PubMed Central

That closely related species often differ by chromosomal inversions was discovered by Sturtevant and Plunkett in 1926. Our knowledge of how these inversions originate is still very limited, although a prevailing view is that they are facilitated by ectopic recombination events between inverted repetitive sequences. The availability of genome sequences of related species now allows us to study in detail the mechanisms that generate interspecific inversions. We have analyzed the breakpoint regions of the 29 inversions that differentiate the chromosomes of Drosophila melanogaster and two closely related species, D. simulans and D. yakuba, and reconstructed the molecular events that underlie their origin. Experimental and computational analysis revealed that the breakpoint regions of 59% of the inversions (17/29) are associated with inverted duplications of genes or other nonrepetitive sequences. In only two cases do we find evidence for inverted repetitive sequences in inversion breakpoints. We propose that the presence of inverted duplications associated with inversion breakpoint regions is the result of staggered breaks, either isochromatid or chromatid, and that this, rather than ectopic exchange between inverted repetitive sequences, is the prevalent mechanism for the generation of inversions in the melanogaster species group. Outgroup analysis also revealed evidence for widespread breakpoint recycling. Lastly, we have found that expression domains in D. melanogaster may be disrupted in D. yakuba, bringing into question their potential adaptive significance. PMID:17550304

Ranz, José M; Maurin, Damien; Chan, Yuk S; von Grotthuss, Marcin; Hillier, LaDeana W; Roote, John; Ashburner, Michael; Bergman, Casey M

2007-01-01

365

The Complete Chloroplast Genome of Banana (Musa acuminata, Zingiberales): Insight into Plastid Monocotyledon Evolution  

PubMed Central

Background Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. Methodology/Principal Findings The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp) and a Small Single Copy region (SSC, 10,768 bp) separated by Inverted Repeat regions (IRs, 35,433 bp). Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1) and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. Conclusion The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas. PMID:23840670

Martin, Guillaume; Baurens, Franc-Christophe; Cardi, Céline; Aury, Jean-Marc; D’Hont, Angélique

2013-01-01

366

Fast Evolution from Precast Bricks: Genomics of Young Freshwater Populations of Threespine Stickleback Gasterosteus aculeatus  

PubMed Central

Adaptation is driven by natural selection; however, many adaptations are caused by weak selection acting over large timescales, complicating its study. Therefore, it is rarely possible to study selection comprehensively in natural environments. The threespine stickleback (Gasterosteus aculeatus) is a well-studied model organism with a short generation time, small genome size, and many genetic and genomic tools available. Within this originally marine species, populations have recurrently adapted to freshwater all over its range. This evolution involved extensive parallelism: pre-existing alleles that adapt sticklebacks to freshwater habitats, but are also present at low frequencies in marine populations, have been recruited repeatedly. While a number of genomic regions responsible for this adaptation have been identified, the details of selection remain poorly understood. Using whole-genome resequencing, we compare pooled genomic samples from marine and freshwater populations of the White Sea basin, and identify 19 short genomic regions that are highly divergent between them, including three known inversions. 17 of these regions overlap protein-coding genes, including a number of genes with predicted functions that are relevant for adaptation to the freshwater environment. We then analyze four additional independently derived young freshwater populations of known ages, two natural and two artificially established, and use the observed shifts of allelic frequencies to estimate the strength of positive selection. Adaptation turns out to be quite rapid, indicating strong selection acting simultaneously at multiple regions of the genome, with selection coefficients of up to 0.27. High divergence between marine and freshwater genotypes, lack of reduction in polymorphism in regions responsible for adaptation, and high frequencies of freshwater alleles observed even in young freshwater populations are all consistent with rapid assembly of G. aculeatus freshwater genotypes from pre-existing genomic regions of adaptive variation, with strong selection that favors this assembly acting simultaneously at multiple loci. PMID:25299485

Terekhanova, Nadezhda V.; Logacheva, Maria D.; Penin, Aleksey A.; Neretina, Tatiana V.; Barmintseva, Anna E.; Bazykin, Georgii A.; Kondrashov, Alexey S.; Mugue, Nikolai S.

2014-01-01

367

The genomics of selection in dogs and the parallel evolution between dogs and humans.  

PubMed

The genetic bases of demographic changes and artificial selection underlying domestication are of great interest in evolutionary biology. Here we perform whole-genome sequencing of multiple grey wolves, Chinese indigenous dogs and dogs of diverse breeds. Demographic analysis show that the split between wolves and Chinese indigenous dogs occurred 32,000 years ago and that the subsequent bottlenecks were mild. Therefore, dogs may have been under human selection over a much longer time than previously concluded, based on molecular data, perhaps by initially scavenging with humans. Population genetic analysis identifies a list of genes under positive selection during domestication, which overlaps extensively with the corresponding list of positively selected genes in humans. Parallel evolution is most apparent in genes for digestion and metabolism, neurological process and cancer. Our study, for the first time, draws together humans and dogs in their recent genomic evolution. PMID:23673645

Wang, Guo-dong; Zhai, Weiwei; Yang, He-chuan; Fan, Ruo-xi; Cao, Xue; Zhong, Li; Wang, Lu; Liu, Fei; Wu, Hong; Cheng, Lu-guang; Poyarkov, Andrei D; Poyarkov, Nikolai A; Tang, Shu-sheng; Zhao, Wen-ming; Gao, Yun; Lv, Xue-mei; Irwin, David M; Savolainen, Peter; Wu, Chung-I; Zhang, Ya-ping

2013-01-01

368

Dynamics and Innovations within Oomycete Genomes: Insights into Biology, Pathology, and Evolution  

PubMed Central

The eukaryotic microbes known as oomycetes are common inhabitants of terrestrial and aquatic environments and include saprophytes and pathogens. Lifestyles of the pathogens extend from biotrophy to necrotrophy, obligate to facultative pathogenesis, and narrow to broad host ranges on plants or animals. Sequencing of several pathogens has revealed striking variation in genome size and content, a plastic set of genes related to pathogenesis, and adaptations associated with obligate biotrophy. Features of genome evolution include repeat-driven expansions, deletions, gene fusions, and horizontal gene transfer in a landscape organized into gene-dense and gene-sparse sectors and influenced by transposable elements. Gene expression profiles are also highly dynamic throughout oomycete life cycles, with transcriptional polymorphisms as well as differences in protein sequence contributing to variation. The genome projects have set the foundation for functional studies and should spur the sequencing of additional species, including more diverse pathogens and nonpathogens. PMID:22923046

2012-01-01

369

[Evolution of non-coding nucleotide sequences in Newcastle disease virus genomes ].  

PubMed

[OBJECTIVE] Although much is done in the coding genes of Newcastle disease virus (NDV) , limited papers can be found with non-coding sequences. In this paper, the evolution tendency of non-coding sequences was studied. [METHODS] NDV strain LC12 isolated from duck with egg drop syndrome in 2012, and others 35 strains genome cDNA of different NDV genotype were sought and obtained from GenBank. Analytical approaches including nucleotide homology, nucleotide alignment and phylogenetic tree were associated with the leading sequences, trailer sequences, intergenic sequences (IGS), and coding gene between 5 'and 3' UTR nucleotide, respectively. [RESULTS] The location and the length of the non-coding sequences highly conserve, and the variation trend of non-coding sequences is synchronous with the entire genomes and coding genes. [ CONCLUSION] The molecular variation of the coding gene was indistinguishable with the non-coding gene in view of the NDV genome. PMID:25522596

Xu, Huaiying; Qin, Zhuoming; Qi, Lihong; Zhang, Wei; Wang, Youling; Liu, Jinhua

2014-09-01

370

Nematode and arthropod genomes provide new insights into the evolution of class 2 B1 GPCRs.  

PubMed

Nematodes and arthropods are the most speciose animal groups and possess Class 2 B1 G-protein coupled receptors (GPCRs). Existing models of invertebrate Class 2 B1 GPCR evolution are mainly centered on Caenorhabditis elegans and Drosophila melanogaster and a few other nematode and arthropod representatives. The present study reevaluates the evolution of metazoan Class 2 B1 GPCRs and orthologues by exploring the receptors in several nematode and arthropod genomes and comparing them to the human receptors. Three novel receptor phylogenetic clusters were identified and designated cluster A, cluster B and PDF-R-related cluster. Clusters A and B were identified in several nematode and arthropod genomes but were absent from D. melanogaster and Culicidae genomes, whereas the majority of the members of the PDF-R-related cluster were from nematodes. Cluster A receptors were nematode and arthropod-specific but shared a conserved gene environment with human receptor loci. Cluster B members were orthologous to human GCGR, PTHR and Secretin members with which they probably shared a common origin. PDF-R and PDF-R related clusters were present in representatives of both nematodes and arthropods. The results of comparative analysis of GPCR evolution and diversity in protostomes confirm previous notions that C. elegans and D. melanogaster genomes are not good representatives of nematode and arthropod phyla. We hypothesize that at least four ancestral Class 2 B1 genes emerged early in the metazoan radiation, which after the protostome-deuterostome split underwent distinct selective pressures that resulted in duplication and deletion events that originated the current Class 2 B1 GPCRs in nematode and arthropod genomes. PMID:24651821

Cardoso, João C R; Félix, Rute C; Power, Deborah M

2014-01-01

371

Molecular Diagnosis of Human Rhinovirus Infections: Comparison with Virus Isolation  

Microsoft Academic Search

To compare the sensitivity and specificity of RT-PCR with that of virus isolation in the detection of human rhinoviruses, we tested nasopharyngeal aspirates from 200 patients on the 1st and 7th days after the onset of the common cold. An assay utilizing a short amplicon in the conserved 5* noncoding region was found highly sensitive. Of 192 positive samples altogether,

TIMO HYYPIA; TUOMO PUHAKKA; OLLI RUUSKANEN; MIKA MAKELA; ANITA AROLA; PERTTI ARSTILA

1998-01-01

372

Ineffectiveness of Echinacea for Prevention of Experimental Rhinovirus Colds  

Microsoft Academic Search

The purpose of this study was to assess the effectiveness of echinacea for the prevention of experimental rhinovirus colds. Infection occurred in 44 and 57% and illness occurred in 36 and 43% of the echinacea- and placebo-treated subjects, respectively. This preparation of echinacea had no significant effect on either the occurrence of infection or the severity of illness. Since the

RONALD B. TURNER; DONALD K. RIKER; J. DAVID GANGEMI

2000-01-01

373

Experimental rhinovirus infection in COPD: implications for antiviral therapies.  

PubMed

Chronic obstructive pulmonary disease (COPD) is a major public health problem and will be one of the leading global causes of mortality over the coming decades. Much of the morbidity, mortality and health care costs of COPD are attributable to acute exacerbations, the commonest causes of which are respiratory infections. Respiratory viruses are frequently detected in COPD exacerbations but direct proof of a causative relationship has been lacking. We have developed a model of COPD exacerbation using experimental rhinovirus infection in COPD patients and this has established a causative relationship between virus infection and exacerbations. In addition it has determined some of the molecular mechanisms linking virus infections to COPD exacerbations and identified potential new therapeutic targets. This new data should stimulate research into the role of antiviral agents as potential treatments for COPD exacerbations. Testing of antiviral agents has been hampered by the lack of a small animal model for rhinovirus infection and experimental rhinovirus infection in healthy volunteers has been used to test treatments for the common cold. Experimental rhinovirus infection in COPD subjects offers the prospect of a model that can be used to evaluate the effects of new treatments for virus-induced COPD exacerbations, and provide essential data that can be used in making decisions regarding large scale clinical trials. PMID:24370732

Gunawardana, Natasha; Finney, Lydia; Johnston, Sebastian L; Mallia, Patrick

2014-02-01

374

An Evaluation of Echinacea angustifolia in Experimental Rhinovirus Infections  

Microsoft Academic Search

Background Echinacea has been widely used as an herbal remedy for the common cold, but efficacy studies have produced conflicting results, and there are a variety of echinacea products on the market with different phytochemical compositions. We evaluated the effect of chemically defined extracts from Echinacea angustifolia roots on rhinovirus infection. Methods Three preparations of echinacea, with distinct phytochemical profiles,

Ronald B. Turner; Rudolf Bauer; Karin Woelkart; Thomas C. Hulsey; J. David Gangemi

2005-01-01

375

A defective type 1 response to rhinovirus in atopic asthma  

Microsoft Academic Search

Background: Rhinoviruses (RVs) are the most frequent precipitants of the common cold and asthma exacerbations, but little is known about the immune response to these viruses and its potential implications in the pathogenesis of asthma.Methods: Peripheral blood mononuclear cells (PBMC) from patients with atopic asthma and normal subjects were exposed to live or inactivated RV preparations. Levels of interferon (IFN)?

N G Papadopoulos; L A Stanciu; A Papi; S T Holgate; S L Johnston

2002-01-01

376

Rhinovirus Replication Causes RANTES Production in Primary Bronchial Epithelial Cells  

Microsoft Academic Search

The mechanisms by which rhinovirus (RV) infections produce lower airway symptoms in asthmatic indi- viduals are not fully established. To determine effects of RV infection on lung epithelial cells, primary hu- man bronchial epithelial (BE) cells were infected with either RV16 or RV49, and viral replication, cell vi- ability, and cell activation were measured. Both viral serotypes replicated in BE

Mary K. Schroth; Elizabeth Grimm; Paula Frindt; Dawn M. Galagan; Shin-Ichi Konno; Robert Love; James E. Gern

1999-01-01

377

Accelerated evolution of mitochondrial but not nuclear genomes of Hymenoptera: new evidence from crabronid wasps.  

PubMed

Mitochondrial genes in animals are especially useful as molecular markers for the reconstruction of phylogenies among closely related taxa, due to the generally high substitution rates. Several insect orders, notably Hymenoptera and Phthiraptera, show exceptionally high rates of mitochondrial molecular evolution, which has been attributed to the parasitic lifestyle of current or ancestral members of these taxa. Parasitism has been hypothesized to entail frequent population bottlenecks that increase rates of molecular evolution by reducing the efficiency of purifying selection. This effect should result in elevated substitution rates of both nuclear and mitochondrial genes, but to date no extensive comparative study has tested this hypothesis in insects. Here we report the mitochondrial genome of a crabronid wasp, the European beewolf (Philanthus triangulum, Hymenoptera, Crabronidae), and we use it to compare evolutionary rates among the four largest holometabolous insect orders (Coleoptera, Diptera, Hymenoptera, Lepidoptera) based on phylogenies reconstructed with whole mitochondrial genomes as well as four single-copy nuclear genes (18S rRNA, arginine kinase, wingless, phosphoenolpyruvate carboxykinase). The mt-genome of P. triangulum is 16,029 bp in size with a mean A+T content of 83.6%, and it encodes the 37 genes typically found in arthropod mt genomes (13 protein-coding, 22 tRNA, and two rRNA genes). Five translocations of tRNA genes were discovered relative to the putative ancestral genome arrangement in insects, and the unusual start codon TTG was predicted for cox2. Phylogenetic analyses revealed significantly longer branches leading to the apocritan Hymenoptera as well as the Orussoidea, to a lesser extent the Cephoidea, and, possibly, the Tenthredinoidea than any of the other holometabolous insect orders for all mitochondrial but none of the four nuclear genes tested. Thus, our results suggest that the ancestral parasitic lifestyle of Apocrita is unlikely to be the major cause for the elevated substitution rates observed in hymenopteran mitochondrial genomes. PMID:22412929

Kaltenpoth, Martin; Showers Corneli, Patrice; Dunn, Diane M; Weiss, Robert B; Strohm, Erhard; Seger, Jon

2012-01-01

378

Genome Duplication and Gene Loss Affect the Evolution of Heat Shock Transcription Factor Genes in Legumes  

PubMed Central

Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species. PMID:25047803

Jin, Jing; Jin, Xiaolei; Jiang, Haiyang; Yan, Hanwei; Cheng, Beijiu

2014-01-01

379

Comparative genome sequencing of drosophila pseudoobscura: Chromosomal, gene and cis-element evolution  

SciTech Connect

The genome sequence of a second fruit fly, D. pseudoobscura, presents an opportunity for comparative analysis of a primary model organism D. melanogaster. The vast majority of Drosophila genes have remained on the same arm, but within each arm gene order has been extensively reshuffled leading to the identification of approximately 1300 syntenic blocks. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 35 My since divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome wide average consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than control sequences between the species but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a picture of repeat mediated chromosomal rearrangement, and high co-adaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.

Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Todd, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catherine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenee; Verduzco, Daniel; Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.

2004-04-01

380

The Ectocarpus genome and the independent evolution of multicellularity in brown algae.  

PubMed

Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further. PMID:20520714

Cock, J Mark; Sterck, Lieven; Rouzé, Pierre; Scornet, Delphine; Allen, Andrew E; Amoutzias, Grigoris; Anthouard, Veronique; Artiguenave, François; Aury, Jean-Marc; Badger, Jonathan H; Beszteri, Bank; Billiau, Kenny; Bonnet, Eric; Bothwell, John H; Bowler, Chris; Boyen, Catherine; Brownlee, Colin; Carrano, Carl J; Charrier, Bénédicte; Cho, Ga Youn; Coelho, Susana M; Collén, Jonas; Corre, Erwan; Da Silva, Corinne; Delage, Ludovic; Delaroque, Nicolas; Dittami, Simon M; Doulbeau, Sylvie; Elias, Marek; Farnham, Garry; Gachon, Claire M M; Gschloessl, Bernhard; Heesch, Svenja; Jabbari, Kamel; Jubin, Claire; Kawai, Hiroshi; Kimura, Kei; Kloareg, Bernard; Küpper, Frithjof C; Lang, Daniel; Le Bail, Aude; Leblanc, Catherine; Lerouge, Patrice; Lohr, Martin; Lopez, Pascal J; Martens, Cindy; Maumus, Florian; Michel, Gurvan; Miranda-Saavedra, Diego; Morales, Julia; Moreau, Hervé; Motomura, Taizo; Nagasato, Chikako; Napoli, Carolyn A; Nelson, David R; Nyvall-Collén, Pi; Peters, Akira F; Pommier, Cyril; Potin, Philippe; Poulain, Julie; Quesneville, Hadi; Read, Betsy; Rensing, Stefan A; Ritter, Andrés; Rousvoal, Sylvie; Samanta, Manoj; Samson, Gaelle; Schroeder, Declan C; Ségurens, Béatrice; Strittmatter, Martina; Tonon, Thierry; Tregear, James W; Valentin, Klaus; von Dassow, Peter; Yamagishi, Takahiro; Van de Peer, Yves; Wincker, Patrick

2010-06-01

381

Genomic evidence for the emergence and evolution of pathogenicity and niche preferences in the genus Campylobacter.  

PubMed

The genus Campylobacter includes some of the most relevant pathogens for human and animal health; the continuous effort in their characterization has also revealed new species putatively involved in different kind of infections. Nowadays, the available genomic data for the genus comprise a wide variety of species with different pathogenic potential and niche preferences. In this work, we contribute to enlarge this available information presenting the first genome for the species Campylobacter sputorum bv. sputorum and use this and the already sequenced organisms to analyze the emergence and evolution of pathogenicity and niche preferences among Campylobacter species. We found that campylobacters can be unequivocally distinguished in established and putative pathogens depending on their repertory of virulence genes, which have been horizontally acquired from other bacteria because the nonpathogenic Campylobacter ancestor emerged, and posteriorly interchanged between some members of the genus. Additionally, we demonstrated the role of both horizontal gene transfers and diversifying evolution in niche preferences, being able to distinguish genetic features associated to the tropism for oral, genital, and gastrointestinal tissues. In particular, we highlight the role of nonsynonymous evolution of disulphide bond proteins, the invasion antigen B (CiaB), and other secreted proteins in the determination of niche preferences. Our results arise from assessing the previously unmet goal of considering the whole available Campylobacter diversity for genome comparisons, unveiling notorious genetic features that could explain particular phenotypes and set the basis for future research in Campylobacter biology. PMID:25193310

Iraola, Gregorio; Pérez, Ruben; Naya, Hugo; Paolicchi, Fernando; Pastor, Eugenia; Valenzuela, Sebastián; Calleros, Lucía; Velilla, Alejandra; Hernández, Martín; Morsella, Claudia

2014-09-01

382

The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system.  

PubMed

Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection. PMID:24297900

Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Heimberg, Alysha M; Jansen, Hans J; McCleary, Ryan J R; Kerkkamp, Harald M E; Vos, Rutger A; Guerreiro, Isabel; Calvete, Juan J; Wüster, Wolfgang; Woods, Anthony E; Logan, Jessica M; Harrison, Robert A; Castoe, Todd A; de Koning, A P Jason; Pollock, David D; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S; Ribeiro, José M C; Arntzen, Jan W; van den Thillart, Guido E E J M; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P; Spaink, Herman P; Duboule, Denis; McGlinn, Edwina; Kini, R Manjunatha; Richardson, Michael K

2013-12-17

383

The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system  

PubMed Central

Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection. PMID:24297900

Vonk, Freek J.; Casewell, Nicholas R.; Henkel, Christiaan V.; Heimberg, Alysha M.; Jansen, Hans J.; McCleary, Ryan J. R.; Kerkkamp, Harald M. E.; Vos, Rutger A.; Guerreiro, Isabel; Calvete, Juan J.; Wüster, Wolfgang; Woods, Anthony E.; Logan, Jessica M.; Harrison, Robert A.; Castoe, Todd A.; de Koning, A. P. Jason; Pollock, David D.; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B.; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S.; Ribeiro, José M. C.; Arntzen, Jan W.; van den Thillart, Guido E. E. J. M.; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P.; Spaink, Herman P.; Duboule, Denis; McGlinn, Edwina; Kini, R. Manjunatha; Richardson, Michael K.

2013-01-01

384

Evolution of tryptophan biosynthetic pathway in microbial genomes: a comparative genetic study.  

PubMed

Biosynthetic pathway evolution needs to consider the evolution of a group of genes that code for enzymes catalysing the multiple chemical reaction steps leading to the final end product. Tryptophan biosynthetic pathway has five chemical reaction steps that are highly conserved in diverse microbial genomes, though the genes of the pathway enzymes show considerable variations in arrangements, operon structure (gene fusion and splitting) and regulation. We use a combined bioinformatic and statistical analyses approach to address the question if the pathway genes from different microbial genomes, belonging to a wide range of groups, show similar evolutionary relationships within and between them. Our analyses involved detailed study of gene organization (fusion/splitting events), base composition, relative synonymous codon usage pattern of the genes, gene expressivity, amino acid usage, etc. to assess inter- and intra-genic variations, between and within the pathway genes, in diverse group of microorganisms. We describe these genetic and genomic variations in the tryptophan pathway genes in different microorganisms to show the similarities across organisms, and compare the same genes across different organisms to find the possible variability arising possibly due to horizontal gene transfers. Such studies form the basis for moving from single gene evolution to pathway evolutionary studies that are important steps towards understanding the systems biology of intracellular pathways. PMID:24592292

Priya, V K; Sarkar, Susmita; Sinha, Somdatta

2014-03-01

385

Strict Host-Symbiont Cospeciation and Reductive Genome Evolution in Insect Gut Bacteria  

PubMed Central

Host-symbiont cospeciation and reductive genome evolution have been identified in obligate endocellular insect symbionts, but no such example has been identified from extracellular ones. Here we first report such a case in stinkbugs of the family Plataspidae, wherein a specific gut bacterium is vertically transmitted via “symbiont capsule.” In all of the plataspid species, females produced symbiont capsules upon oviposition and their gut exhibited specialized traits for capsule production. Phylogenetic analysis showed that the plataspid symbionts constituted a distinct group in the ?-Proteobacteria, whose sister group was the aphid obligate endocellular symbionts Buchnera. Removal of the symbionts resulted in retarded growth, mortality, and sterility of the insects. The host phylogeny perfectly agreed with the symbiont phylogeny, indicating strict host-symbiont cospeciation despite the extracellular association. The symbionts exhibited AT-biased nucleotide composition, accelerated molecular evolution, and reduced genome size, as has been observed in obligate endocellular insect symbionts. These findings suggest that not the endocellular conditions themselves but the population genetic attributes of the vertically transmitted symbionts are probably responsible for the peculiar genetic traits of these insect symbionts. We proposed the designation “Candidatus Ishikawaella capsulata” for the plataspid symbionts. The plataspid stinkbugs, wherein the host-symbiont associations can be easily manipulated, provide a novel system that enables experimental approaches to previously untouched aspects of the insect-microbe mutualism. Furthermore, comparative analyses of the sister groups, the endocellular Buchnera and the extracellular Ishikawaella, would lead to insights into how the different symbiotic lifestyles have affected their genomic evolution. PMID:17032065

Hosokawa, Takahiro; Kikuchi, Yoshitomo; Nikoh, Naruo; Shimada, Masakazu; Fukatsu, Takema

2006-01-01

386

Evolution of ancient satellite DNAs in sturgeon genomes.  

PubMed

This study characterizes a repetitive DNA family of sequences in sturgeon, the PstI satellite DNA. We have found a high degree of preservation for these sequences, which are present in all 13 species analyzed, including within the genera Acipenser, Huso, and Scaphirhynchus of the family Acipenseridae. This is one of the most ancient satellite DNAs found to date, because it has been estimated to be more than 100 million years old. Alternatively, to the current view that most satellite DNAs are species-specific or preserved in a few closely related species, the PstI family and other previously characterized sturgeon satellite DNA, the HindIII, represent the most fascinating exceptions to the rapid sequence change usually undergone by satellite DNAs. Here, we compare the evolutionary pattern of these two satellite DNA families, PstI and HindIII, which differ markedly in length, sequence, and nucleotide composition. We have found that, in contrast to the situation in most other living beings, a high degree of preservation, a slow sequence change rate and slowed concerted evolution, appears to be a general rule for sturgeon satellite DNAs. The possible causes for all these features are discussed in the light of the evolutionary specifics found within these ancient organisms. PMID:15302414

Robles, Francisca; de la Herrán, Roberto; Ludwig, Arne; Ruiz Rejón, Carmelo; Ruiz Rejón, Manuel; Garrido-Ramos, Manuel A

2004-08-18

387

The evolution of chloroplast genes and genomes in ferns Paul G. Wolf Joshua P. Der Aaron M. Duffy  

E-print Network

The evolution of chloroplast genes and genomes in ferns Paul G. Wolf · Joshua P. Der · Aaron M little information from their sister group, the ferns. Here we describe several broad evolutionary patterns and processes in fern plastid genomes (plastomes), and we include some new plastome sequence data

388

Strong functional patterns in the evolution of eukaryotic genomes revealed by the reconstruction of ancestral protein domain repertoires  

Microsoft Academic Search

ABSTRACT: BACKGROUND: Genome size and complexity, as measured by the number of genes or protein domains, is remarkably similar in most extant eukaryotes and generally exhibits no correlation with their morphological complexity. Underlying trends in the evolution of the functional content and capabilities of different eukaryotic genomes might be hidden by simultaneous gains and losses of genes. RESULTS: We reconstructed

Christian M Zmasek; Adam Godzik

2011-01-01

389

Parasitic plants have increased rates of molecular evolution across all three genomes  

PubMed Central

Background Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. Results We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Conclusions Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic plants tend to be smaller than their non-parasitic relatives, which may result in more cell generations per year, thus a higher rate of mutations arising from DNA copy errors per unit time. Demonstration that adoption of a parasitic lifestyle influences the rate of genomic evolution is relevant to attempts to infer molecular phylogenies of parasitic plants and to estimate their evolutionary divergence times using sequence data. PMID:23782527

2013-01-01

390

Genome Analysis of Minibacterium massiliensis Highlights the Convergent Evolution of Water-Living Bacteria  

PubMed Central

Filtration usually eliminates water-living bacteria. Here, we report on the complete genome sequence of Minibacterium massiliensis, a ?-proteobacteria that was recovered from 0.22-?m filtered water used for patients in the hospital. The unexpectedly large 4,110,251-nucleotide genome sequence of M. massiliensis was determined using the traditional shotgun sequencing approach. Bioinformatic analyses shows that the M. massiliensis genome sequence illustrates characteristic features of water-living bacteria, including overrepresentation of genes encoding transporters and transcription regulators. Phylogenomic analysis based on the gene content of available bacterial genome sequences displays a congruent evolution of water-living bacteria from various taxonomic origins, principally for genes involved in energy production and conversion, cell division, chromosome partitioning, and lipid metabolism. This phylogenomic clustering partially results from lateral gene transfer, which appears to be more frequent in water than in other environments. The M. massiliensis genome analyses strongly suggest that water-living bacteria are a common source for genes involved in heavy-metal resistance, antibiotics resistance, and virulence factors. PMID:17722982

Audic, Stéphane; Robert, Catherine; Campagna, Bernard; Parinello, Hugues; Claverie,