Science.gov

Sample records for rhizosphere bdellovibrio spp

  1. Irrigation differentially impacts populations of indigenous antibiotic-producing Pseudomonas spp. in the rhizosphere of wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work determined the impact of irrigation on the seasonal dynamics of populations of Pseudomonas spp. producing the antibiotics phenazine-1-carboxylic acid (Phz+) and 2,4-diacetylphloroglucinol (Phl+) in the rhizosphere of wheat grown in the low precipitation zone (150 to 300 mm annually) of the...

  2. IMPACT OF IRRIGATION ON POPULATIONS OF ANTIBIOTIC-PRODUCING PSEUDOMONAS SPP. IN RHIZOSPHERE OF WHEAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work studied the impact of irrigation on seasonal dynamics of populations of phenazine (Phz+) and 2,4-diacetylphloroglucinol (Phl+) Pseudomonas spp. in the rhizosphere of wheat grown in the low-precipitation zone (<400 mm) of the Columbia Plateau of the Inland Pacific Northwest, WA. Population...

  3. Use of bioluminescence markers to detect Pseudomonas spp. in the Rhizosphere

    SciTech Connect

    De Weger, L.A.; Lugtenberg, B.J.J. ); Dunbar, P.; Sayler, G.S. ); Mahafee, W.F. )

    1991-12-01

    The use of bioluminescence as a sensitive marker for detection of Pseudomonas spp. in the rhizosphere was investigated. Continuous expression of the luxCDABE genes, required for bioluminescence, was not detectable in the rhizosphere. However, when either a naphthalene-inducible luxCDABE construct or a constitutive luxAB construct (coding only for the luciferase) was introduced into the Pseudomonas cells, light emission could be initiated just prior to measurement by the addition of naphthalene or the substrate for luciferase, n-decyl aldehyde, respectively. These Pseudomonas cells could successfully be detected in rhizosphere by using autophotography or optical fiber light measurement techniques. Detection required the presence of 10{sup 3} to 10{sup 4} CFU/cm of root, showing that the bioluminescence technique is at least 1,000-fold more sensitive than {beta}-galactosidase-based systems.

  4. The multiple personalities of Streptomyces spp. from the rhizosphere of apple cultivated in brassica seed meal ameded soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassicaceae seed meal soil amendments proved control of Rhizoctonia root rot, in part, through the proliferation of indigenous rhizosphere colonizing Streptomyces spp. Studies were conducted to assess the relative role of antibiosis and nitric oxide (NO) production in the capacity of Streptomyces ...

  5. Identification of actinomycetes from plant rhizospheric soils with inhibitory activity against Colletotrichum spp., the causative agent of anthracnose disease

    PubMed Central

    2011-01-01

    Background Colletotrichum is one of the most widespread and important genus of plant pathogenic fungi worldwide. Various species of Colletotrichum are the causative agents of anthracnose disease in plants, which is a severe problem to agricultural crops particularly in Thailand. These phytopathogens are usually controlled using chemicals; however, the use of these agents can lead to environmental pollution. Potential non-chemical control strategies for anthracnose disease include the use of bacteria capable of producing anti-fungal compounds such as actinomycetes spp., that comprise a large group of filamentous, Gram positive bacteria from soil. The aim of this study was to isolate actinomycetes capable of inhibiting the growth of Colletotrichum spp, and to analyze the diversity of actinomycetes from plant rhizospheric soil. Results A total of 304 actinomycetes were isolated and tested for their inhibitory activity against Colletotrichum gloeosporioides strains DoA d0762 and DoA c1060 and Colletotrichum capsici strain DoA c1511 which cause anthracnose disease as well as the non-pathogenic Saccharomyces cerevisiae strain IFO 10217. Most isolates (222 out of 304, 73.0%) were active against at least one indicator fungus or yeast. Fifty four (17.8%) were active against three anthracnose fungi and 17 (5.6%) could inhibit the growth of all three fungi and S. cerevisiae used in the test. Detailed analysis on 30 selected isolates from an orchard at Chanthaburi using the comparison of 16S rRNA gene sequences revealed that most of the isolates (87%) belong to the genus Streptomyces sp., while one each belongs to Saccharopolyspora (strain SB-2) and Nocardiopsis (strain CM-2) and two to Nocardia (strains BP-3 and LK-1). Strains LC-1, LC-4, JF-1, SC-1 and MG-1 exerted high inhibitory activity against all three anthracnose fungi and yeast. In addition, the organic solvent extracts prepared from these five strains inhibited conidial growth of the three indicator fungi

  6. Verticillium dahliae alters Pseudomonas spp. populations and HCN gene expression in the rhizosphere of strawberry.

    PubMed

    DeCoste, Nadine J; Gadkar, Vijay J; Filion, Martin

    2010-11-01

    The production of hydrogen cyanide (HCN) by beneficial root-associated bacteria is an important mechanism for the biological control of plant pathogens. However, little is known about the biotic factors affecting HCN gene expression in the rhizosphere of plants. In this study, real-time reverse transcription PCR (qRT-PCR) assays were developed to investigate the effect of the plant pathogen Verticillium dahliae on hcnC (encoding for HCN biosynthesis) gene expression in Pseudomonas sp. LBUM300. Strawberry plants were inoculated with Pseudomonas sp. LBUM300 and (or) V. dahliae and grown in pots filled with nonsterilized field soil. RNA was extracted from rhizosphere soil sampled at 0, 15, 30, and 45 days following inoculation with V. dahliae and used for qRT-PCR analyses. Populations of V. dahliae and Pseudomonas sp. LBUM300 were also monitored using a culture-independent qPCR approach. hcnC expression was detected at all sampling dates. The presence of V. dahliae had a significant stimulation effect on hcnC gene expression and also increased the population of Pseudomonas sp. LBUM300. However, the V. dahliae population was not altered by the presence of Pseudomonas sp. LBUM300. To our knowledge, this study is the first to evaluate the effect of a plant pathogen on HCN gene expression in the rhizosphere soil. PMID:21076481

  7. A Rhizosphere-Associated Symbiont, Photobacterium spp. Strain MELD1, and Its Targeted Synergistic Activity for Phytoprotection against Mercury

    PubMed Central

    Mathew, Dony Chacko; Ho, Ying-Ning; Gicana, Ronnie Gicaraya; Mathew, Gincy Marina; Chien, Mei-Chieh; Huang, Chieh-Chen

    2015-01-01

    Though heavy metal such as mercury is toxic to plants and microorganisms, the synergistic activity between them may offer benefit for surviving. In this study, a mercury-reducing bacterium, Photobacterium spp. strain MELD1, with an MIC of 33 mg . kg-1 mercury was isolated from a severely mercury and dioxin contaminated rhizosphere soil of reed (Phragmites australis). While the whole genome sequencing of MELD1 confirmed the presence of a mer operon, the mercury reductase MerA gene showed 99% sequence identity to Vibrio shilloni AK1 and implicates its route resulted from the event of horizontal gene transfer. The efficiency of MELD1 to vaporize mercury (25 mg . kg-1, 24 h) and its tolerance to toxic metals and xenobiotics such as lead, cadmium, pentachlorophenol, pentachloroethylene, 3-chlorobenzoic acid, 2,3,7,8-tetrachlorodibenzo-p-dioxin and 1,2,3,7,8,9-hexachlorodibenzo-p-dioxin is promising. Combination of a long yard bean (Vigna unguiculata ssp. Sesquipedalis) and strain MELD1 proved beneficial in the phytoprotection of mercury in vivo. The effect of mercury (Hg) on growth, distribution and tolerance was examined in root, shoot, leaves and pod of yard long bean with and without the inoculation of strain MELD1. The model plant inoculated with MELD1 had significant increases in biomass, root length, seed number, and increased mercury uptake limited to roots. Biolog plate assay were used to assess the sole-carbon source utilization pattern of the isolate and Indole-3-acetic acid (IAA) productivity was analyzed to examine if the strain could contribute to plant growth. The results of this study suggest that, as a rhizosphere-associated symbiont, the synergistic activity between the plant and MELD1 can improve the efficiency for phytoprotection, phytostabilization and phytoremediation of mercury. PMID:25816328

  8. A rhizosphere-associated symbiont, Photobacterium spp. strain MELD1, and its targeted synergistic activity for phytoprotection against mercury.

    PubMed

    Mathew, Dony Chacko; Ho, Ying-Ning; Gicana, Ronnie Gicaraya; Mathew, Gincy Marina; Chien, Mei-Chieh; Huang, Chieh-Chen

    2015-01-01

    Though heavy metal such as mercury is toxic to plants and microorganisms, the synergistic activity between them may offer benefit for surviving. In this study, a mercury-reducing bacterium, Photobacterium spp. strain MELD1, with an MIC of 33 mg x kg(-1) mercury was isolated from a severely mercury and dioxin contaminated rhizosphere soil of reed (Phragmites australis). While the whole genome sequencing of MELD1 confirmed the presence of a mer operon, the mercury reductase MerA gene showed 99% sequence identity to Vibrio shilloni AK1 and implicates its route resulted from the event of horizontal gene transfer. The efficiency of MELD1 to vaporize mercury (25 mg x kg(-1), 24 h) and its tolerance to toxic metals and xenobiotics such as lead, cadmium, pentachlorophenol, pentachloroethylene, 3-chlorobenzoic acid, 2,3,7,8-tetrachlorodibenzo-p-dioxin and 1,2,3,7,8,9-hexachlorodibenzo-p-dioxin is promising. Combination of a long yard bean (Vigna unguiculata ssp. Sesquipedalis) and strain MELD1 proved beneficial in the phytoprotection of mercury in vivo. The effect of mercury (Hg) on growth, distribution and tolerance was examined in root, shoot, leaves and pod of yard long bean with and without the inoculation of strain MELD1. The model plant inoculated with MELD1 had significant increases in biomass, root length, seed number, and increased mercury uptake limited to roots. Biolog plate assay were used to assess the sole-carbon source utilization pattern of the isolate and Indole-3-acetic acid (IAA) productivity was analyzed to examine if the strain could contribute to plant growth. The results of this study suggest that, as a rhizosphere-associated symbiont, the synergistic activity between the plant and MELD1 can improve the efficiency for phytoprotection, phytostabilization and phytoremediation of mercury. PMID:25816328

  9. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants.

    PubMed

    Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; del-Val, Ek; Larsen, John

    2016-04-01

    Trichodermaspp. are common soil and root inhabitants that have been widely studied due to their capacity to produce antibiotics, parasitize other fungi and compete with deleterious plant microorganisms. These fungi produce a number of secondary metabolites such as non-ribosomal peptides, terpenoids, pyrones and indolic-derived compounds. In the rhizosphere, the exchange and recognition of signaling molecules byTrichodermaand plants may alter physiological and biochemical aspects in both. For example, severalTrichodermastrains induce root branching and increase shoot biomass as a consequence of cell division, expansion and differentiation by the presence of fungal auxin-like compounds. Furthermore,Trichoderma, in association with plant roots, can trigger systemic resistance and improve plant nutrient uptake. The present review describes the most recent advances in understanding the ecological functions ofTrichodermaspp. in the rhizosphere at biochemical and molecular levels with special emphasis on their associations with plants. Finally, through a synthesis of the current body of work, we present potential future research directions on studies related toTrichodermaspp. and their secondary metabolites in agroecosystems. PMID:26906097

  10. Penetration of Bdellovibrio bacteriovorus into Host Cells

    PubMed Central

    Abram, Dinah; e Melo, J. Castro; Chou, D.

    1974-01-01

    Electron microscopy reveals that, in Bdellovibrio infection, after the formation of a passage pore in the host cell wall, the differentiated parasite penetration pole is associated with the host protoplast. This firm contact persists throughout the parasite penetration and after this process is completed. In penetrated hosts this contact is also apparent by phase microscopy. The association between the walls of the parasite and the host at the passage pore, on the other hand, is transient. Bdellovibrio do not penetrate hosts whose protoplast and cell walls are separated by plasmolysis, or in which the membrane-wall relationship is affected by low turgor pressure. It is concluded, therefore, that for penetration to occur it is essential that the host protoplast be within reach of the parasite, so that a firm contact can be established between them. A penetration mechanism is proposed that is effected by forces generated by fluxes of water and solutes due to structural changes in the infected host envelope. These forces cause a differential expansion of the host protoplast and cell wall and their separation from each other around the entry site, while the parasite remains firmly anchored to the host protoplast. Consequently, the parasite ends up enclosed in the expanded host periplasm. The actual entry, therefore, is a passive act of the parasite. Images PMID:4208138

  11. The Lifestyle Switch Protein Bd0108 of Bdellovibrio bacteriovorus Is an Intrinsically Disordered Protein

    PubMed Central

    Prehna, Gerd; Ramirez, Benjamin E.; Lovering, Andrew L.

    2014-01-01

    Bdellovibrio bacteriovorus is a δ-proteobacterium that preys upon Salmonella spp., E. coli, and other Gram-negative bacteria. Bdellovibrio can grow axenically (host-independent, HI, rare and mutation-driven) or subsist via a predatory lifecycle (host-dependent, HD, the usual case). Upon contact with prey, B. bacteriovorus enters the host periplasm from where it slowly drains the host cytosol of nutrients for its own replication. At the core of this mechanism is a retractile pilus, whose architecture is regulated by the protein Bd0108 and its interaction with the neighboring gene product Bd0109. Deletion of bd0108 results in negligible pilus formation, whereas an internal deletion (the one that instigates host-independence) causes mis-regulation of pilus length. These mutations, along with a suite of naturally occurring bd0108 mutant strains, act to control the entry to HI growth. To further study the molecular mechanism of predatory regulation, we focused on the apparent lifecycle switch protein Bd0108. Here we characterize the solution structure and dynamics of Bd0108 using nuclear magnetic resonance (NMR) spectroscopy complemented with additional biophysical methods. We then explore the interaction between Bd0108 and Bd0109 in detail utilizing isothermal titration calorimetry (ITC) and NMR spectroscopy. Together our results demonstrate that Bd0108 is an intrinsically disordered protein (IDP) and that the interaction with Bd0109 is of low affinity. Furthermore, we observe that Bd0108 retains an IDP nature while binding Bd0109. From our data we conclude that Bdellovibrio bacteriovorus utilizes an intrinsically disordered protein to regulate its pilus and control predation signaling. PMID:25514156

  12. Response of Bdellovibrio and like organisms (BALOs) to the migration of naturally occurring bacteria to chemoattractants.

    PubMed

    Chauhan, Ashvini; Williams, Henry N

    2006-12-01

    A dual culture-based and non-culture-based approach was applied to characterize predator bacterial groups in surface water samples collected from Apalachicola Bay, Florida. Chemotaxis drop assays were performed on concentrated samples in an effort to isolate predator bacteria by their chemotactic ability. Yeast extract (YE) and casamino acids (CA) proved to be strong chemoattractants and resulted in three visibly distinct bands; however, dextrose, succinate, pyruvate, and concentrated cells of Vibrio parahaemolyticus P5 as prey did not elicit any response. The three distinct bands from YE and CA were separately collected to identify the chemotactic microbial assemblages. Plaque-forming unit assays from different chemotaxis bands with P5 as prey indicated 5- (CA) to 10-fold (YE) higher numbers of predator bacteria in the outermost chemotactic bands. Polymerase chain reaction-restriction fragment length polymorphism and 16S rDNA sequencing of clones from different chemotaxis bands resulted in identification of Pseudoalteromonas spp., Marinomonas spp., and Vibrio spp., with their numbers inversely proportional to the numbers of predators-i.e., Bdellovibrio spp. and Bacteriovorax spp-in the chemotaxis bands. This study indicates that predatorial bacteria potentially respond to high densities of microbial biomass in aquatic ecosystems and that chemotaxis drop assay may be an alternate culture-independent method to characterize predatorial bacterial guilds from the environment. PMID:17115104

  13. Stenotrophomonas maltophilia biofilm reduction by Bdellovibrio exovorus.

    PubMed

    Chanyi, Ryan M; Koval, Susan F; Brooke, Joanna S

    2016-06-01

    Stenotrophomonas maltophilia, a bacterium ubiquitous in the environment, is also an opportunistic, multidrug-resistant human pathogen that colonizes tissues and medical devices via biofilm formation. We investigated the ability of an isolate from sewage of the bacterial predator Bdellovibrio exovorus to disrupt preformed biofilms of 18 strains of S. maltophilia isolated from patients, hospital sink drains and water fountain drains. B. exovorus FFRS-5 preyed on all S. maltophilia strains in liquid co-cultures and was able to significantly disrupt the biofilms of 15 of the S. maltophilia strains tested, decreasing as much as 76.7% of the biofilm mass. The addition of ciprofloxacin and kanamycin in general reduced S. maltophilia biofilms but less than that of B. exovorus alone. Furthermore, when antibiotics and B. exovorus were used together, B. exovorus was still effective in the presence of ciprofloxacin whereas the addition of kanamycin reduced the effectiveness of B. exovorus. Overall, B. exovorus was able to decrease the mass of preformed biofilms of S. maltophilia in the presence of clinically relevant antibiotics demonstrating that the predator may prove to be a beneficial tool to reduce S. maltophilia environmental or clinically associated biofilms. PMID:26929093

  14. RHIZOSPHERE ECOLOGY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rhizosphere is defined as the region of soil surrounding plant roots that is under the influence of the root. This region is centered around the root, and is best defined by the biotic response to the influence of the root. Thus, the spatial limits of the rhizosphere are determined by the soil...

  15. The Rhizosphere

    ERIC Educational Resources Information Center

    Feiro, Arthur D.

    1978-01-01

    The rhizosphere is the area directly surrounding the roots of a plant and an area of tremendous microbial growth. This article described techniques for studying this soil biome. Illustrations are included. (MA)

  16. Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth.

    PubMed

    Jog, Rahul; Pandya, Maharshi; Nareshkumar, G; Rajkumar, Shalini

    2014-04-01

    The application of plant-growth-promoting rhizobacteria (PGPR) at field scale has been hindered by an inadequate understanding of the mechanisms that enhance plant growth, rhizosphere incompetence and the inability of bacterial strains to thrive in different soil types and environmental conditions. Actinobacteria with their sporulation, nutrient cycling, root colonization, bio-control and other plant-growth-promoting activities could be potential field bio-inoculants. We report the isolation of five rhizospheric and two root endophytic actinobacteria from Triticum aestivum (wheat) plants. The cultures exhibited plant-growth-promoting activities, namely phosphate solubilization (1916 mg l(-1)), phytase (0.68 U ml(-1)), chitinase (6.2 U ml(-1)), indole-3-acetic acid (136.5 mg l(-1)) and siderophore (47.4 mg l(-1)) production, as well as utilizing all the rhizospheric sugars under test. Malate (50-55 mmol l(-1)) was estimated in the culture supernatant of the highest phosphate solublizer, Streptomyces mhcr0816. The mechanism of malate overproduction was studied by gene expression and assays of key glyoxalate cycle enzymes - isocitrate dehydrogenase (IDH), isocitrate lyase (ICL) and malate synthase (MS). The significant increase in gene expression (ICL fourfold, MS sixfold) and enzyme activity (ICL fourfold, MS tenfold) of ICL and MS during stationary phase resulted in malate production as indicated by lowered pH (2.9) and HPLC analysis (retention time 13.1 min). Similarly, the secondary metabolites for chitinase-independent biocontrol activity of Streptomyces mhcr0817, as identified by GC-MS and (1)H-NMR spectra, were isoforms of pyrrole derivatives. The inoculation of actinobacterial isolate mhce0811 in T. aestivum (wheat) significantly improved plant growth, biomass (33%) and mineral (Fe, Mn, P) content in non-axenic conditions. Thus the actinobacterial isolates reported here were efficient PGPR possessing significant antifungal activity and may have potential field

  17. Indole acetic acid production by fluorescent Pseudomonas spp. from the rhizosphere of Plectranthus amboinicus (Lour.) Spreng. and their variation in extragenic repetitive DNA sequences.

    PubMed

    Sethia, Bedhya; Mustafa, Mariam; Manohar, Sneha; Patil, Savita V; Jayamohan, Nellickal Subramanian; Kumudini, Belur Satyan

    2015-06-01

    Fluorescent Pseudomonas (FP) is a heterogenous group of growth promoting rhizobacteria that regulate plant growth by releasing secondary metabolic compounds viz., indole acetic acid (IAA), siderophores, ammonia and hydrogen cyanide. In the present study, IAA producing FPs from the rhizosphere of Plectranthus amboinicus were characterized morphologically, biochemically and at the molecular level. Molecular identification of the isolates were carried out using Pseudomonas specific primers. The effect of varying time (24, 48, 72 and 96 h), Trp concentrations (100, 200, 300, 400 and 500 μg x ml(-1)), temperature (10, 26, 37 and 50 ± 2 degrees C) and pH (6, 7 and 8) on IAA production by 10 best isolates were studied. Results showed higher IAA production at 72 h incubation, at 300 μg x ml(-1) Trp concentration, temperature 26 ± 2 degrees C and pH 7. TLC with acidified ethyl acetate extract showed that the IAA produced has a similar Rf value to that of the standard IAA. Results of TLC were confirmed by HPLC analysis. Genetic diversity of the isolates was also studied using 40 RAPD and 4 Rep primers. Genetic diversity parameters such as dominance, Shannon index and Simpson index were calculated. Out of 40 RAPD primers tested, 9 (2 OP-D series and 7 OP-E series) were shortlisted for further analysis. Studies using RAPD, ERIC, BOX, REP and GTG5 primers revealed that isolates exhibit significant diversity in repetitive DNA sequences irrespective of the rhizosphere. PMID:26155673

  18. Examining the safety of respiratory and intravenous inoculation of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus in a mouse model

    PubMed Central

    Shatzkes, Kenneth; Chae, Richard; Tang, Chi; Ramirez, Gregory C.; Mukherjee, Somdatta; Tsenova, Liana; Connell, Nancy D.; Kadouri, Daniel E.

    2015-01-01

    Bdellovibrio spp. and Micavibrio spp. are Gram-negative predators that feed on other Gram-negative bacteria, making predatory bacteria potential alternatives to antibiotics for treating multi-drug resistant infections. While the ability of predatory bacteria to control bacterial infections in vitro is well documented, the in vivo effect of predators on a living host has yet to be extensively examined. In this study, respiratory and intravenous inoculations were used to determine the effects of predatory bacteria in mice. We found no reduction in mouse viability after intranasal or intravenous inoculation of B. bacteriovorus 109J, HD100 or M. aeruginosavorus. Introducing predators into the respiratory tract of mice provoked a modest inflammatory response at 1 hour post-exposure, but was not sustained at 24 hours, as measured by RT-qPCR and ELISA. Intravenous injection caused an increase of IL-6 in the kidney and spleen, TNF in the liver and CXCL-1/KC in the blood at 3 hours post-exposure, returning to baseline levels by 18 hours. Histological analysis of tissues showed no pathological changes due to predatory bacteria. Furthermore, qPCR detected predators were cleared from the host quickly and efficiently. This work addresses some of the safety concerns regarding the potential use of predatory bacteria as a live antibiotic. PMID:26250699

  19. Examining the safety of respiratory and intravenous inoculation of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus in a mouse model.

    PubMed

    Shatzkes, Kenneth; Chae, Richard; Tang, Chi; Ramirez, Gregory C; Mukherjee, Somdatta; Tsenova, Liana; Connell, Nancy D; Kadouri, Daniel E

    2015-01-01

    Bdellovibrio spp. and Micavibrio spp. are Gram-negative predators that feed on other Gram-negative bacteria, making predatory bacteria potential alternatives to antibiotics for treating multi-drug resistant infections. While the ability of predatory bacteria to control bacterial infections in vitro is well documented, the in vivo effect of predators on a living host has yet to be extensively examined. In this study, respiratory and intravenous inoculations were used to determine the effects of predatory bacteria in mice. We found no reduction in mouse viability after intranasal or intravenous inoculation of B. bacteriovorus 109J, HD100 or M. aeruginosavorus. Introducing predators into the respiratory tract of mice provoked a modest inflammatory response at 1 hour post-exposure, but was not sustained at 24 hours, as measured by RT-qPCR and ELISA. Intravenous injection caused an increase of IL-6 in the kidney and spleen, TNF in the liver and CXCL-1/KC in the blood at 3 hours post-exposure, returning to baseline levels by 18 hours. Histological analysis of tissues showed no pathological changes due to predatory bacteria. Furthermore, qPCR detected predators were cleared from the host quickly and efficiently. This work addresses some of the safety concerns regarding the potential use of predatory bacteria as a live antibiotic. PMID:26250699

  20. Effects of Orally Administered Bdellovibrio bacteriovorus on the Well-Being and Salmonella Colonization of Young Chicks ▿ †

    PubMed Central

    Atterbury, Robert J.; Hobley, Laura; Till, Robert; Lambert, Carey; Capeness, Michael J.; Lerner, Thomas R.; Fenton, Andrew K.; Barrow, Paul; Sockett, R. Elizabeth

    2011-01-01

    Bdellovibrio bacteriovorus is a bacterium which preys upon and kills Gram-negative bacteria, including the zoonotic pathogens Escherichia coli and Salmonella. Bdellovibrio has potential as a biocontrol agent, but no reports of it being tested in living animals have been published, and no data on whether Bdellovibrio might spread between animals are available. In this study, we tried to fill this knowledge gap, using B. bacteriovorus HD100 doses in poultry with a normal gut microbiota or predosed with a colonizing Salmonella strain. In both cases, Bdellovibrio was dosed orally along with antacids. After dosing non-Salmonella-infected birds with Bdellovibrio, we measured the health and well-being of the birds and any changes in their gut pathology and culturable microbiota, finding that although a Bdellovibrio dose at 2 days of age altered the overall diversity of the natural gut microbiota in 28-day-old birds, there were no adverse effects on their growth and well-being. Drinking water and fecal matter from the pens in which the birds were housed as groups showed no contamination by Bdellovibrio after dosing. Predatory Bdellovibrio orally administered to birds that had been predosed with a gut-colonizing Salmonella enterica serovar Enteritidis phage type 4 strain (an important zoonotic pathogen) significantly reduced Salmonella numbers in bird gut cecal contents and reduced abnormal cecal morphology, indicating reduced cecal inflammation, compared to the ceca of the untreated controls or a nonpredatory ΔpilA strain, suggesting that these effects were due to predatory action. This work is a first step to applying Bdellovibrio therapeutically for other animal, and possibly human, infections. PMID:21705523

  1. A new alpha-proteobacterial clade of Bdellovibrio-like predators: implications for the mitochondrial endosymbiotic theory.

    PubMed

    Davidov, Yaacov; Huchon, Dorothee; Koval, Susan F; Jurkevitch, Edouard

    2006-12-01

    Bdellovibrio-and-like organisms (BALOs) are peculiar, ubiquitous, small-sized, highly motile Gram-negative bacteria that are obligatory predators of other bacteria. Typically, these predators invade the periplasm of their prey where they grow and replicate. To date, BALOs constitute two highly diverse families affiliated with the delta-proteobacteria class. In this study, Micavibrio spp., a BALO lineage of epibiotic predators, were isolated from soil. These bacteria attach to digest and grow at the expense of other prokaryotes, much like other BALOs. Multiple phylogenetic analyses based on six genes revealed that they formed a deep branch within the alpha-proteobacteria, not affiliated with any of the alpha-proteobacterial orders. The presence of BALOs deep among the alpha-proteobacteria suggests that their peculiar mode of parasitism maybe an ancestral character in this proteobacterial class. The origin of the mitochondrion from an alpha-proteobacterium endosymbiont is strongly supported by molecular phylogenies. Accumulating data suggest that the endosymbiont's host was also a prokaryote. As prokaryotes are unable to phagocytose, the means by which the endosymbiont gained access into its host remains mysterious. We here propose a scenario based on the BALO feeding-mode to hypothesize a mechanism at play at the origin of the mitochondrial endosymbiosis. PMID:17107559

  2. Role of Type IV Pili in Predation by Bdellovibrio bacteriovorus

    PubMed Central

    Chanyi, Ryan M.; Koval, Susan F.

    2014-01-01

    Bdellovibrio bacteriovorus, as an obligate predator of Gram-negative bacteria, requires contact with the surface of a prey cell in order to initiate the life cycle. After attachment, the predator penetrates the prey cell outer membrane and enters the periplasmic space. Attack phase cells of B. bacteriovorus have polar Type IV pili that are required for predation. In other bacteria, these pili have the ability to extend and retract via the PilT protein. B. bacteriovorus has two pilT genes, pilT1 and pilT2, that have been implicated in the invasion process. Markerless in-frame deletion mutants were constructed in a prey-independent mutant to assess the role of PilT1 and PilT2 in the life cycle. When predation was assessed using liquid cocultures, all mutants produced bdelloplasts of Escherichia coli. These results demonstrated that PilT1 and PilT2 are not required for invasion of prey cells. Predation of the mutants on biofilms of E. coli was also assessed. Wild type B. bacteriovorus 109JA and the pilT1 mutant decreased the mass of the biofilm to 35.4% and 27.9% respectively. The pilT1pilT2 mutant was able to prey on the biofilm, albeit less efficiently with 50.2% of the biofilm remaining. The pilT2 mutant was unable to disrupt the biofilm, leaving 92.5% of the original biofilm after predation. The lack of PilT2 function may impede the ability of B. bacteriovorus to move in the extracellular polymeric matrix and find a prey cell. The role of Type IV pili in the life cycle of B. bacteriovorus is thus for initial recognition of and attachment to a prey cell in liquid cocultures, and possibly for movement within the matrix of a biofilm. PMID:25409535

  3. Shadowing the actions of a predator: backlit fluorescent microscopy reveals synchronous nonbinary septation of predatory Bdellovibrio inside prey and exit through discrete bdelloplast pores.

    PubMed

    Fenton, A K; Kanna, M; Woods, R D; Aizawa, S-I; Sockett, R E

    2010-12-01

    The Bdellovibrio are miniature "living antibiotic" predatory bacteria which invade, reseal, and digest other larger Gram-negative bacteria, including pathogens. Nutrients for the replication of Bdellovibrio bacteria come entirely from the digestion of the single invaded bacterium, now called a bdelloplast, which is bound by the original prey outer membrane. Bdellovibrio bacteria are efficient digesters of prey cells, yielding on average 4 to 6 progeny from digestion of a single prey cell of a genome size similar to that of the Bdellovibrio cell itself. The developmental intrabacterial cycle of Bdellovibrio is largely unknown and has never been visualized "live." Using the latest motorized xy stage with a very defined z-axis control and engineered periplasmically fluorescent prey allows, for the first time, accurate return and visualization without prey bleaching of developing Bdellovibrio cells using solely the inner resources of a prey cell over several hours. We show that Bdellovibrio bacteria do not follow the familiar pattern of bacterial cell division by binary fission. Instead, they septate synchronously to produce both odd and even numbers of progeny, even when two separate Bdellovibrio cells have invaded and develop within a single prey bacterium, producing two different amounts of progeny. Evolution of this novel septation pattern, allowing odd progeny yields, allows optimal use of the finite prey cell resources to produce maximal replicated, predatory bacteria. When replication is complete, Bdellovibrio cells exit the exhausted prey and are seen leaving via discrete pores rather than by breakdown of the entire outer membrane of the prey. PMID:20935099

  4. 454 Pyrosequencing reveals diversity of Bdellovibrio and like organisms in fresh and salt water.

    PubMed

    Li, Nan; Williams, Henry N

    2015-01-01

    Bdellovibrio-and-like organisms (BALOs) are Gram-negative, predatory bacteria that inhabit terrestrial, freshwater and saltwater environments. They have been detected primarily by culture-dependent methods which have limitations. In this study, diversity and community structure of BALOs in freshwater and saltwater samples were characterized by 16S rRNA gene pyrosequencing with specific BALO group primers. Novel Bacteriovorax 16S rDNA sequences were found both in saltwater enrichment cultures and in situ environmental samples, but no new operational taxonomic units were detected in the freshwater samples. The results revealed unexpected diversity of BALOs and advance understanding of the similarities and differences between Bdellovibrio and Bacteriovorax diversity and distribution in the environment. PMID:25380719

  5. 454 Pyrosequencing reveals diversity of Bdellovibrio and like organisms in fresh and salt water

    PubMed Central

    Williams, Henry N.

    2015-01-01

    Bdellovibrio-and-like organisms (BALOs) are Gram-negative, predatory bacteria that inhabit terrestrial, freshwater and saltwater environments. They have been detected primarily by culture-dependent methods which have limitations. In this study, diversity and community structure of BALOs in freshwater and saltwater samples were characterized by 16S rRNA gene pyrosequencing with specific BALO group primers. Novel Bacteriovorax 16S rDNA sequences were found both in saltwater enrichment cultures and in situ environmental samples, but no new operational taxonomic units were detected in the freshwater samples. The results revealed unexpected diversity of BALOs and advance understanding of the similarities and differences between Bdellovibrio and Bacteriovorax diversity and distribution in the environment. PMID:25380719

  6. Genome-wide comparative analysis of ABC systems in the Bdellovibrio-and-like organisms.

    PubMed

    Li, Nan; Chen, Huan; Williams, Henry N

    2015-05-10

    Bdellovibrio-and-like organisms (BALOs) are gram-negative, predatory bacteria with wide variations in genome sizes and GC content and ecological habitats. The ATP-binding cassette (ABC) systems have been identified in several prokaryotes, fungi and plants and have a role in transport of materials in and out of cells and in cellular processes. However, knowledge of the ABC systems of BALOs remains obscure. A total of 269 putative ABC proteins were identified in BALOs. The genes encoding these ABC systems occupy nearly 1.3% of the gene content in freshwater Bdellovibrio strains and about 0.7% in their saltwater counterparts. The proteins found belong to 25 ABC system families based on their structural characteristics and functions. Among these, 16 families function as importers, 6 as exporters and 3 are involved in various cellular processes. Eight of these 25 ABC system families were deduced to be the core set of ABC systems conserved in all BALOs. All Bacteriovorax strains have 28 or less ABC systems. On the contrary, the freshwater Bdellovibrio strains have more ABC systems, typically around 51. In the genome of Bdellovibrio exovorus JSS (CP003537.1), 53 putative ABC systems were detected, representing the highest number among all the BALO genomes examined in this study. Unexpected high numbers of ABC systems involved in cellular processes were found in all BALOs. Phylogenetic analysis suggests that the majority of ABC proteins can be assigned into many separate families with high bootstrap supports (>50%). In this study, a general framework of sequence-structure-function connections for the ABC systems in BALOs was revealed providing novel insights for future investigations. PMID:25707746

  7. Genome-wide comparative analysis of ABC systems in the Bdellovibrio-and-like organisms

    PubMed Central

    Li, Nan; Chen, Huan; Williams, Henry N.

    2015-01-01

    Bdellovibrio -and-like organisms (BALOs) are gram-negative, predatory bacteria with wide variations in genome sizes and GC content and ecological habitats. The ATP-binding cassette (ABC) systems have been identified in several prokaryotes, fungi and plants and have a role in transport of materials in and out of cells and in cellular processes. However, knowledge of the ABC systems of BALOs remains obscure. A total of 269 putative ABC proteins were identified in BALOs. The genes encoding these ABC systems occupy nearly 1.3% of the gene content in freshwater Bdellovibrio strains and about 0.7% in their saltwater counterparts. The proteins found belong to 25 ABC system families based on their structural characteristics and functions. Among these, 16 families function as importers, 6 as exporters and 3 are involved in various cellular processes. Eight of these 25 ABC system families were deduced to be the core set of ABC systems conserved in all BALOs. All Bacteriovorax strains have 28 or less ABC systems. On the contrary, the freshwater Bdellovibrio strains have more ABC systems, typically around 51. In the genome of Bdellovibrio exovorus JSS (CP003537.1), 53 putative ABC systems were detected, representing the highest number among all the BALO genomes examined in this study. Unexpected high numbers of ABC systems involved in cellular processes were found in all BALOs. Phylogenetic analysis suggests that the majority of ABC proteins can be assigned into many separate families with high bootstrap supports (>50%). In this study, a general framework of sequence–structure–function connections for the ABC systems in BALOs was revealed providing novel insights for future investigations. PMID:25707746

  8. Ankyrin-mediated self-protection during cell invasion by the bacterial predator Bdellovibrio bacteriovorus

    PubMed Central

    Lambert, Carey; Cadby, Ian T.; Till, Rob; Bui, Nhat Khai; Lerner, Thomas R.; Hughes, William S.; Lee, David J.; Alderwick, Luke J.; Vollmer, Waldemar; Sockett, Elizabeth R.; Lovering, Andrew L.

    2015-01-01

    Predatory Bdellovibrio bacteriovorus are natural antimicrobial organisms, killing other bacteria by whole-cell invasion. Self-protection against prey-metabolizing enzymes is important for the evolution of predation. Initial prey entry involves the predator's peptidoglycan DD-endopeptidases, which decrosslink cell walls and prevent wasteful entry by a second predator. Here we identify and characterize a self-protection protein from B. bacteriovorus, Bd3460, which displays an ankyrin-based fold common to intracellular pathogens of eukaryotes. Co-crystal structures reveal Bd3460 complexation of dual targets, binding a conserved epitope of each of the Bd3459 and Bd0816 endopeptidases. Complexation inhibits endopeptidase activity and cell wall decrosslinking in vitro. Self-protection is vital — ΔBd3460 Bdellovibrio deleteriously decrosslink self-peptidoglycan upon invasion, adopt a round morphology, and lose predatory capacity and cellular integrity. Our analysis provides the first mechanistic examination of self-protection in Bdellovibrio, documents protection-multiplicity for products of two different genomic loci, and reveals an important evolutionary adaptation to an invasive predatory bacterial lifestyle. PMID:26626559

  9. Identification and differential production of ubiquinone-8 in the bacterial predator Bdellovibrio bacteriovorus.

    PubMed

    Spain, Eileen M; Núñez, Megan E; Kim, Hyeong-Jin; Taylor, Ryan J; Thomas, Nicholas; Wengen, Michael B; Dalleska, Nathan F; Bromley, Joseph P; Schermerhorn, Kimberly H; Ferguson, Megan A

    2016-06-01

    Bdellovibrio bacteriovorus 109J, a predatory bacterium with potential as a bacterial control agent, can exist in several lifestyles that differ both in predatory capacity and color. We determined that levels of ubiquinone-8 contribute to the distinctive but variable yellow color of different types of Bdellovibrio cells. Steady-state ubiquinone-8 concentrations did not differ markedly between conventional predatory and host-independent B. bacteriovorus despite upregulation of a suite of ubiquinone-8 synthesis genes in host-independent cells. In contrast, in spatially organized B. bacteriovorus films, the yellow inner regions contain significantly higher ubiquinone-8 concentrations than the off-white outer regions. Correspondingly, RT-PCR analysis reveals that the inner region, previously shown to consist primarily of active predators, clearly expresses two ubiquinone biosynthesis genes, while the outer region, composed mainly of quiescent or stalled bdelloplasts, expresses those genes weakly or not at all. Moreover, B. bacteriovorus cells in the inner region of week-old interfacial films, which are phenotypically attack-phase, have much higher UQ8 levels than regular attack-phase bdellovibrios, most likely because their "trapped" state prevents a high expenditure of energy to power flagellar motion. PMID:27106259

  10. Ankyrin-mediated self-protection during cell invasion by the bacterial predator Bdellovibrio bacteriovorus.

    PubMed

    Lambert, Carey; Cadby, Ian T; Till, Rob; Bui, Nhat Khai; Lerner, Thomas R; Hughes, William S; Lee, David J; Alderwick, Luke J; Vollmer, Waldemar; Sockett, R Elizabeth; Sockett, Elizabeth R; Lovering, Andrew L

    2015-01-01

    Predatory Bdellovibrio bacteriovorus are natural antimicrobial organisms, killing other bacteria by whole-cell invasion. Self-protection against prey-metabolizing enzymes is important for the evolution of predation. Initial prey entry involves the predator's peptidoglycan DD-endopeptidases, which decrosslink cell walls and prevent wasteful entry by a second predator. Here we identify and characterize a self-protection protein from B. bacteriovorus, Bd3460, which displays an ankyrin-based fold common to intracellular pathogens of eukaryotes. Co-crystal structures reveal Bd3460 complexation of dual targets, binding a conserved epitope of each of the Bd3459 and Bd0816 endopeptidases. Complexation inhibits endopeptidase activity and cell wall decrosslinking in vitro. Self-protection is vital - ΔBd3460 Bdellovibrio deleteriously decrosslink self-peptidoglycan upon invasion, adopt a round morphology, and lose predatory capacity and cellular integrity. Our analysis provides the first mechanistic examination of self-protection in Bdellovibrio, documents protection-multiplicity for products of two different genomic loci, and reveals an important evolutionary adaptation to an invasive predatory bacterial lifestyle. PMID:26626559

  11. Waveform analysis and structure of flagella and basal complexes from Bdellovibrio bacteriovorus 109J.

    PubMed Central

    Thomashow, L S; Rittenberg, S C

    1985-01-01

    The structure of sheathed flagella from Bdellovibrio bacteriovorus was investigated. The first three periods of these flagella were characterized by progressively smaller wavelengths and amplitudes in periods more distal to the cell. The damped appearance was due to a single nonrandom transition between two helical structures within each filament. The intersection of the two helices, one of which was a threefold-reduced miniature of the other, occurred at a fixed distance along the filament and resulted in a shift in the flagellar axis. Flagella increased in length as the cells aged and assumed a constant miniature waveform at their distal ends. The core filament was the principal determinant of flagellar morphology. It was composed of 28,000- and 29,500-dalton polypeptides. The 28,000-dalton subunits were located in the cell-proximal segment of the filament, and the 29,500-dalton subunits were located in the more distal region. The heteromorphous appearance of bdellovibrio flagella arose from the sequential assembly of these subunits. The basal complex associated with core filaments was examined because of its potential involvement in sheath formation. Bdellovibrio basal organelles were generally similar to those of other gram-negative species, but appeared to lack a disk analogous to the outer membrane-associated L ring which is a normal component of gram-negative basal complexes. Images PMID:4030690

  12. Effects of Gypsophila saponins on bacterial growth kinetics and on selection of subterranean clover rhizosphere bacteria.

    PubMed

    Fons, F; Amellal, N; Leyval, C; Saint-Martin, N; Henry, M

    2003-06-01

    Plant secondary metabolites, such as saponins, have a considerable impact in agriculture because of their allelopathic effects. They also affect the growth of soil microorganisms, especially fungi. We investigated the influence of saponins on rhizosphere bacteria in vitro and in soil conditions. The effects of gypsophila saponins on the growth kinetics of rhizosphere bacteria were studied by monitoring the absorbance of the cultures in microtiter plates. Gypsophila saponins (1%) increased the lag phase of bacterial growth. The impact of gypsophila saponins on subterranean clover rhizosphere was also investigated in a pot experiment. The addition of gypsophila saponins did not modify clover biomass but significantly increased (twofold with 1% saponins) the weight of adhering soil. The number of culturable heterotrophic bacteria of the clover rhizosphere was not affected by the addition of gypsophila saponins. Nevertheless, the phenotypical characterization of the dominant Gram-negative strains of the clover rhizosphere, using the Biolog system, showed qualitative and quantitative differences induced by 1% saponins. With the addition of saponins, the populations of Chryseomonas spp. and Acinetobacter spp., the two dominant culturable genera of control clover, were no longer detectable or were significantly decreased, while that of Aquaspirillum dispar increased and Aquaspirillum spp. became the major genus. Aquaspirillum dispar and Aquaspirillum spp. were also the dominant rhizosphere bacteria of Gypsophila paniculata, which greatly accumulates these saponins in its roots. These results suggest that saponins may control rhizosphere bacteria in soil through rhizodeposition mechanisms. PMID:14569290

  13. Colonization of lettuce rhizosphere and roots by tagged Streptomyces.

    PubMed

    Bonaldi, Maria; Chen, Xiaoyulong; Kunova, Andrea; Pizzatti, Cristina; Saracchi, Marco; Cortesi, Paolo

    2015-01-01

    Beneficial microorganisms are increasingly used in agriculture, but their efficacy often fails due to limited knowledge of their interactions with plants and other microorganisms present in rhizosphere. We studied spatio-temporal colonization dynamics of lettuce roots and rhizosphere by genetically modified Streptomyces spp. Five Streptomyces strains, strongly inhibiting in vitro the major soil-borne pathogen of horticultural crops, Sclerotinia sclerotiorum, were transformed with pIJ8641 plasmid harboring an enhanced green fluorescent protein marker and resistance to apramycin. The fitness of transformants was compared to the wild-type strains and all of them grew and sporulated at similar rates and retained the production of enzymes and selected secondary metabolites as well as in vitro inhibition of S. sclerotiorum. The tagged ZEA17I strain was selected to study the dynamics of lettuce roots and rhizosphere colonization in non-sterile growth substrate. The transformed strain was able to colonize soil, developing roots, and rhizosphere. When the strain was inoculated directly on the growth substrate, significantly more t-ZEA17I was re-isolated both from the rhizosphere and the roots when compared to the amount obtained after seed coating. The re-isolation from the rhizosphere and the inner tissues of surface-sterilized lettuce roots demonstrated that t-ZEA17I is both rhizospheric and endophytic. PMID:25705206

  14. Colonization of lettuce rhizosphere and roots by tagged Streptomyces

    PubMed Central

    Bonaldi, Maria; Chen, Xiaoyulong; Kunova, Andrea; Pizzatti, Cristina; Saracchi, Marco; Cortesi, Paolo

    2015-01-01

    Beneficial microorganisms are increasingly used in agriculture, but their efficacy often fails due to limited knowledge of their interactions with plants and other microorganisms present in rhizosphere. We studied spatio-temporal colonization dynamics of lettuce roots and rhizosphere by genetically modified Streptomyces spp. Five Streptomyces strains, strongly inhibiting in vitro the major soil-borne pathogen of horticultural crops, Sclerotinia sclerotiorum, were transformed with pIJ8641 plasmid harboring an enhanced green fluorescent protein marker and resistance to apramycin. The fitness of transformants was compared to the wild-type strains and all of them grew and sporulated at similar rates and retained the production of enzymes and selected secondary metabolites as well as in vitro inhibition of S. sclerotiorum. The tagged ZEA17I strain was selected to study the dynamics of lettuce roots and rhizosphere colonization in non-sterile growth substrate. The transformed strain was able to colonize soil, developing roots, and rhizosphere. When the strain was inoculated directly on the growth substrate, significantly more t-ZEA17I was re-isolated both from the rhizosphere and the roots when compared to the amount obtained after seed coating. The re-isolation from the rhizosphere and the inner tissues of surface-sterilized lettuce roots demonstrated that t-ZEA17I is both rhizospheric and endophytic. PMID:25705206

  15. Manipulating Each MreB of Bdellovibrio bacteriovorus Gives Diverse Morphological and Predatory Phenotypes▿

    PubMed Central

    Fenton, Andrew Karl; Lambert, Carey; Wagstaff, Peter Charles; Sockett, Renee Elizabeth

    2010-01-01

    We studied the two mreB genes, encoding actinlike cytoskeletal elements, in the predatory bacterium Bdellovibrio bacteriovorus. This bacterium enters and replicates within other Gram-negative bacteria by attack-phase Bdellovibrio squeezing through prey outer membrane, residing and growing filamentously in the prey periplasm forming an infective “bdelloplast,” and septating after 4 h, once the prey contents are consumed. This lifestyle brings challenges to the Bdellovibrio cytoskeleton. Both mreB genes were essential for viable predatory growth, but C-terminal green fluorescent protein tagging each separately with monomeric teal-fluorescent protein (mTFP) gave two strains with phenotypic changes at different stages in predatory growth and development. MreB1-mTFP cells arrested growth early in bdelloplast formation, despite successful degradation of prey nucleoid. A large population of stalled bdelloplasts formed in predatory cultures and predation proceeded very slowly. A small proportion of bdelloplasts lysed after several days, liberating MreB1-mTFP attack-phase cells of wild-type morphology; this process was aided by subinhibitory concentrations of an MreB-specific inhibitor, A22. MreB2-mTFP, in contrast, was predatory at an almost wild-type rate but yielded attack-phase cells with diverse morphologies, including spherical, elongated, and branched, the first time such phenotypes have been described. Wild-type predatory rates were seen for all but spherical morphotypes, and septation of elongated morphotypes was achieved by the addition of A22. PMID:20023029

  16. Molecular parasitism in the Escherichia coli-Bdellovibrio bacteriovorus system: translocation of the matrix protein from the host to the parasite outer membrane.

    PubMed Central

    Guerrini, F; Romano, V; Valenzi, M; Di Giulio, M; Mupo, M R; Sacco, M

    1982-01-01

    During the intracellular maturation in Escherichia coli of the parasite Bdellovibrio bacteriovorus the outer membrane, major protein I of E. coli (i.e., the matrix protein) becomes associated with the outer membrane of the emerging parasite cells. The binding properties of this protein with the outer membrane of the host and of the parasite are identical. An analogous phenomenon also occurs during Bdellovibrio parasitism on Klebsiella pneumoniae and on Salmonella typhimurium. Possible roles for this scavenging action of Bdellovibrio, and similar phenomena in other parasitic systems, are discussed. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:6765198

  17. Biostimulation of estuarine microbiota on substrate coated agar slides: a novel approach to study diversity of autochthonous Bdellovibrio- and like organisms.

    PubMed

    Chauhan, Ashvini; Williams, Henry N

    2008-05-01

    Characterization of Bdellovibrio- and like organisms (BALOs) from environmental samples involves growing them in the presence of Gram-negative prey bacteria and isolation of BALO plaques. This labor-intensive enrichment and isolation procedure may impede the detection and phylogenetic characterization of uncultivable BALOs. In this article, we describe a simple slide biofilm assay to improve detection and characterization of BALO microbiota. Agar spiked with biostimulants such as yeast extract (YE), casamino acids (CA), or concentrated cells of Vibrio parahaemolyticus P5 (most widely used prey bacteria for isolation of halophilic BALOs) was plated onto buffed glass slides and exposed to water samples collected from Apalachicola Bay, Florida. After incubating for a week, diversity of the biofilm bacterial community was studied by culture-dependent and culture-independent molecular methods. The results revealed that most probable numbers (MPNs) of BALOs and total culturable bacteria recovered from YE agar slide were significantly higher than the numbers on CA- or P5-spiked agar slides. Polymerase chain reaction-restriction fragment length polymorphism followed by 16S rDNA sequencing of clones from different biostimulants resulted in identification of a plethora of Gram-negative bacteria predominantly from the alpha, gamma, delta-proteobacteria, and the Cytophaga-Flavobacterium-Bacteroides group. Corresponding to the higher biomass on the YE agar slide, the BALO clone library from YE was most diverse, consisting of Bacteriovorax spp. and a novel clade representing Peredibacter spp. Microbiota from all three biostimulated biofilms were exclusively Gram-negative, and each bacterial guild represented potential prey for BALOs. We propose the use of this simple yet novel slide biofilm assay to study oligotrophic aquatic bacterial diversity which could also potentially be utilized to isolate marine bacteria with novel traits. PMID:17968612

  18. Rhizosphere priming: a nutrient perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizosphere priming is the change in decomposition of soil organic matter (SOM) caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C) dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizospher...

  19. Structural and Enzymatic Characterization of a Nucleoside Diphosphate Sugar Hydrolase from Bdellovibrio bacteriovorus

    PubMed Central

    Duong-ly, Krisna C.; Schoeffield, Andrew J.; Pizarro-Dupuy, Mario A.; Zarr, Melissa; Pineiro, Silvia A.; Amzel, L. Mario; Gabelli, Sandra B.

    2015-01-01

    Given the broad range of substrates hydrolyzed by Nudix (nucleoside diphosphate linked to X) enzymes, identification of sequence and structural elements that correctly predict a Nudix substrate or characterize a family is key to correctly annotate the myriad of Nudix enzymes. Here, we present the structure determination and characterization of Bd3179 –- a Nudix hydrolase from Bdellovibrio bacteriovorus–that we show localized in the periplasmic space of this obligate Gram-negative predator. We demonstrate that the enzyme is a nucleoside diphosphate sugar hydrolase (NDPSase) and has a high degree of sequence and structural similarity to a canonical ADP-ribose hydrolase and to a nucleoside diphosphate sugar hydrolase (1.4 and 1.3 Å Cα RMSD respectively). Examination of the structural elements conserved in both types of enzymes confirms that an aspartate-X-lysine motif on the C-terminal helix of the α-β-α NDPSase fold differentiates NDPSases from ADPRases. PMID:26524597

  20. Visualizing Bdellovibrio bacteriovorus by Using the tdTomato Fluorescent Protein.

    PubMed

    Mukherjee, Somdatta; Brothers, Kimberly M; Shanks, Robert M Q; Kadouri, Daniel E

    2016-03-01

    Bdellovibrio bacteriovorus is a Gram-negative bacterium that belongs to the delta subgroup of proteobacteria and is characterized by a predatory life cycle. In recent years, work has highlighted the potential use of this predator to control bacteria and biofilms. Traditionally, the reduction in prey cells was used to monitor predation dynamics. In this study, we introduced pMQ414, a plasmid that expresses the tdTomato fluorescent reporter protein, into a host-independent strain and a host-dependent strain of B. bacteriovorus 109J. The new construct was used to conveniently monitor predator proliferation in real time, in different growth conditions, in the presence of lytic enzymes, and on several prey bacteria, replicating previous studies that used plaque analysis to quantify B. bacteriovorus. The new fluorescent plasmid also enabled us to visualize the predator in liquid cultures, in the context of a biofilm, and in association with human epithelial cells. PMID:26712556

  1. Utilization of Trehalose, Benzoate, Valerate, and Seed and Root Exudates as Sole Carbon Sources is Not Correlated With Superior Rhizosphere Colonization by 2,4-Diacetylphloroglucinol Producing Pseudomonas spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluorescent Pseudomonas spp. producing the antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) are effective biological control agents against several soilborne pathogens. A previous study showed that the superior (“premier”) root colonizer P. fluorescens Q8r1-96 differed from two average colonizers in...

  2. Interrupting peptidoglycan deacetylation during Bdellovibrio predator-prey interaction prevents ultimate destruction of prey wall, liberating bacterial-ghosts.

    PubMed

    Lambert, Carey; Lerner, Thomas R; Bui, Nhat Khai; Somers, Hannah; Aizawa, Shin-Ichi; Liddell, Susan; Clark, Ana; Vollmer, Waldemar; Lovering, Andrew L; Sockett, R Elizabeth

    2016-01-01

    The peptidoglycan wall, located in the periplasm between the inner and outer membranes of the cell envelope in Gram-negative bacteria, maintains cell shape and endows osmotic robustness. Predatory Bdellovibrio bacteria invade the periplasm of other bacterial prey cells, usually crossing the peptidoglycan layer, forming transient structures called bdelloplasts within which the predators replicate. Prey peptidoglycan remains intact for several hours, but is modified and then degraded by escaping predators. Here we show predation is altered by deleting two Bdellovibrio N-acetylglucosamine (GlcNAc) deacetylases, one of which we show to have a unique two domain structure with a novel regulatory"plug". Deleting the deacetylases limits peptidoglycan degradation and rounded prey cell "ghosts" persist after mutant-predator exit. Mutant predators can replicate unusually in the periplasmic region between the peptidoglycan wall and the outer membrane rather than between wall and inner-membrane, yet still obtain nutrients from the prey cytoplasm. Deleting two further genes encoding DacB/PBP4 family proteins, known to decrosslink and round prey peptidoglycan, results in a quadruple mutant Bdellovibrio which leaves prey-shaped ghosts upon predation. The resultant bacterial ghosts contain cytoplasmic membrane within bacteria-shaped peptidoglycan surrounded by outer membrane material which could have promise as "bacterial skeletons" for housing artificial chromosomes. PMID:27211869

  3. Interrupting peptidoglycan deacetylation during Bdellovibrio predator-prey interaction prevents ultimate destruction of prey wall, liberating bacterial-ghosts

    PubMed Central

    Lambert, Carey; Lerner, Thomas R.; Bui, Nhat Khai; Somers, Hannah; Aizawa, Shin-Ichi; Liddell, Susan; Clark, Ana; Vollmer, Waldemar; Lovering, Andrew L.; Sockett, R. Elizabeth

    2016-01-01

    The peptidoglycan wall, located in the periplasm between the inner and outer membranes of the cell envelope in Gram-negative bacteria, maintains cell shape and endows osmotic robustness. Predatory Bdellovibrio bacteria invade the periplasm of other bacterial prey cells, usually crossing the peptidoglycan layer, forming transient structures called bdelloplasts within which the predators replicate. Prey peptidoglycan remains intact for several hours, but is modified and then degraded by escaping predators. Here we show predation is altered by deleting two Bdellovibrio N-acetylglucosamine (GlcNAc) deacetylases, one of which we show to have a unique two domain structure with a novel regulatory”plug”. Deleting the deacetylases limits peptidoglycan degradation and rounded prey cell “ghosts” persist after mutant-predator exit. Mutant predators can replicate unusually in the periplasmic region between the peptidoglycan wall and the outer membrane rather than between wall and inner-membrane, yet still obtain nutrients from the prey cytoplasm. Deleting two further genes encoding DacB/PBP4 family proteins, known to decrosslink and round prey peptidoglycan, results in a quadruple mutant Bdellovibrio which leaves prey-shaped ghosts upon predation. The resultant bacterial ghosts contain cytoplasmic membrane within bacteria-shaped peptidoglycan surrounded by outer membrane material which could have promise as “bacterial skeletons” for housing artificial chromosomes. PMID:27211869

  4. Draft genome sequence of Flavobacterium sp. strain F52, isolated from the rhizosphere of bell pepper (Capsicum annuum L. cv. Maccabi).

    PubMed

    Kolton, Max; Green, Stefan J; Harel, Yael Meller; Sela, Noa; Elad, Yigal; Cytryn, Eddie

    2012-10-01

    Here we report the draft genome sequence of Flavobacterium sp. strain F52, isolated from the rhizosphere of bell pepper (Capsicum annuum L. cv. Maccabi). Flavobacterium spp. are ubiquitous in the rhizospheres of agricultural crops; however, little is known about their physiology. To our knowledge, this is the first published genome of a root-associated Flavobacterium strain. PMID:22965088

  5. SEAGRASS RHIZOSPHERE MICROBIAL COMMUNITIES

    EPA Science Inventory

    Devereux, Richard. 2005. Seagrass Rhizosphere Microbial Communities. In: Interactions Between Macro- and Microorganisms in Marine Sediments. E. Kristense, J.E. Kostka and R.H. Haese, Editors. American Geophysical Union, Washington, DC. p199-216. (ERL,GB 1213).

    Seagrasses ...

  6. Bdellovibrio bacteriovorus Inhibits Staphylococcus aureus Biofilm Formation and Invasion into Human Epithelial Cells

    PubMed Central

    Monnappa, Ajay K.; Dwidar, Mohammed; Seo, Jeong Kon; Hur, Jin-Hoe; Mitchell, Robert J.

    2014-01-01

    Bdellovibrio bacteriovorus HD100 is a predatory bacterium that attacks many Gram-negative human pathogens. A serious drawback of this strain, however, is its ineffectiveness against Gram-positive strains, such as the human pathogen Staphylococcus aureus. Here we demonstrate that the extracellular proteases produced by a host-independent B. bacteriovorus (HIB) effectively degrade/inhibit the formation of S. aureus biofilms and reduce its virulence. A 10% addition of HIB supernatant caused a 75% or greater reduction in S. aureus biofilm formation as well as 75% dispersal of pre-formed biofilms. LC-MS-MS analyses identified various B. bacteriovorus proteases within the supernatant, including the serine proteases Bd2269 and Bd2321. Tests with AEBSF confirmed that serine proteases were active in the supernatant and that they impacted S. aureus biofilm formation. The supernatant also possessed a slight DNAse activity. Furthermore, treatment of planktonic S. aureus with the supernatant diminished its ability to invade MCF-10a epithelial cells by 5-fold but did not affect the MCF-10a viability. In conclusion, this study illustrates the hitherto unknown ability of B. bacteriovorus to disperse Gram-positive pathogenic biofilms and mitigate their virulence. PMID:24448451

  7. Structure and Biological Function of the RNA Pyrophosphohydrolase BdRppH from Bdellovibrio bacteriovorus

    SciTech Connect

    Messing, S.; Gabelli, S; Liu, Q; Celesnik, H; Belasco, J; Pineiro, S; Amzel, L

    2009-01-01

    Until recently, the mechanism of mRNA decay in bacteria was thought to be different from that of eukaryotes. This paradigm changed with the discovery that RppH (ORF176/NudH/YgdP), an Escherichia coli enzyme that belongs to the Nudix superfamily, is an RNA pyrophosphohydrolase that initiates mRNA decay by cleaving pyrophosphate from the 5?-triphosphate. Here we report the 1.9 A resolution structure of the Nudix hydrolase BdRppH from Bdellovibrio bacteriovorus, a bacterium that feeds on other Gram-negative bacteria. Based on the structure of the enzyme alone and in complex with GTP-Mg2+, we propose a mode of RNA binding similar to that of the nuclear decapping enzyme from Xenopus laevis, X29. In additional experiments, we show that BdRppH can indeed function in vitro and in vivo as an RNA pyrophosphohydrolase. These findings set the basis for the identification of possible decapping enzymes in other bacteria.

  8. Bdellovibrio bacteriovorus Inhibits Staphylococcus aureus Biofilm Formation and Invasion into Human Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Monnappa, Ajay K.; Dwidar, Mohammed; Seo, Jeong Kon; Hur, Jin-Hoe; Mitchell, Robert J.

    2014-01-01

    Bdellovibrio bacteriovorus HD100 is a predatory bacterium that attacks many Gram-negative human pathogens. A serious drawback of this strain, however, is its ineffectiveness against Gram-positive strains, such as the human pathogen Staphylococcus aureus. Here we demonstrate that the extracellular proteases produced by a host-independent B. bacteriovorus (HIB) effectively degrade/inhibit the formation of S. aureus biofilms and reduce its virulence. A 10% addition of HIB supernatant caused a 75% or greater reduction in S. aureus biofilm formation as well as 75% dispersal of pre-formed biofilms. LC-MS-MS analyses identified various B. bacteriovorus proteases within the supernatant, including the serine proteases Bd2269 and Bd2321. Tests with AEBSF confirmed that serine proteases were active in the supernatant and that they impacted S. aureus biofilm formation. The supernatant also possessed a slight DNAse activity. Furthermore, treatment of planktonic S. aureus with the supernatant diminished its ability to invade MCF-10a epithelial cells by 5-fold but did not affect the MCF-10a viability. In conclusion, this study illustrates the hitherto unknown ability of B. bacteriovorus to disperse Gram-positive pathogenic biofilms and mitigate their virulence.

  9. Comprehensive Analysis of Transport Proteins Encoded Within the Genome of Bdellovibrio bacteriovorus

    PubMed Central

    Barabote, Ravi D.; Rendulic, Snjezana; Schuster, Stephan C.; Saier, Milton H.

    2012-01-01

    Bdellovibrio bacteriovorus is a bacterial parasite with an unusual lifestyle. It grows and reproduces in the periplasm of a host prey bacterium. The complete genome sequence of B. bacteriovorus has recently been reported. We have reanalyzed the transport proteins encoded within the B. bacteriovorus genome according to the current content of the transporter classification database (TCDB). A comprehensive analysis is given on the types and numbers of transport systems that B. bacteriovorus has. In this regard, the potential protein secretory capabilities of at least 4 types of inner membrane secretion systems and 5 types for outer membrane secretion are described. Surprisingly, B. bacteriovorus has a disproportionate percentage of cytoplasmic membrane channels and outer membrane porins. It has far more TonB/ExbBD-type systems and MotAB-type systems for energizing outer membrane transport and motility than does E. coli. Analysis of probable substrate specificities of its transporters provides clues to its metabolic preferences. Interesting examples of gene fusions and of potentially overlapping genes were also noted. Our analyses provide a comprehensive, detailed appreciation of the transport capabilities of B. bacteriovorus. They should serve as a guide for functional experimental analyses. PMID:17706914

  10. Bdellovibrio bacteriovorus directly attacks Pseudomonas aeruginosa and Staphylococcus aureus Cystic fibrosis isolates

    PubMed Central

    Iebba, Valerio; Totino, Valentina; Santangelo, Floriana; Gagliardi, Antonella; Ciotoli, Luana; Virga, Alessandra; Ambrosi, Cecilia; Pompili, Monica; De Biase, Riccardo V.; Selan, Laura; Artini, Marco; Pantanella, Fabrizio; Mura, Francesco; Passariello, Claudio; Nicoletti, Mauro; Nencioni, Lucia; Trancassini, Maria; Quattrucci, Serena; Schippa, Serena

    2014-01-01

    Bdellovibrio bacteriovorus is a predator bacterial species found in the environment and within the human gut, able to attack Gram-negative prey. Cystic fibrosis (CF) is a genetic disease which usually presents lung colonization by Pseudomonas aeruginosa or Staphylococcus aureus biofilms. Here, we investigated the predatory behavior of B. bacteriovorus against these two pathogenic species with: (1) broth culture; (2) “static” biofilms; (3) field emission scanning electron microscope (FESEM); (4) “flow” biofilms; (5) zymographic technique. We had the first evidence of B. bacteriovorus survival with a Gram-positive prey, revealing a direct cell-to-cell contact with S. aureus and a new “epibiotic” foraging strategy imaged with FESEM. Mean attaching time of HD100 to S. aureus cells was 185 s, while “static” and “flow” S. aureus biofilms were reduced by 74 (at 24 h) and 46% (at 20 h), respectively. Furthermore, zymograms showed a differential bacteriolytic activity exerted by the B. bacteriovorus lysates on P. aeruginosa and S. aureus. The dual foraging system against Gram-negative (periplasmic) and Gram-positive (epibiotic) prey could suggest the use of B. bacteriovorus as a “living antibiotic” in CF, even if further studies are required to simulate its in vivo predatory behavior. PMID:24926292

  11. The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages.

    PubMed

    Shi, Shengjing; Nuccio, Erin E; Shi, Zhou J; He, Zhili; Zhou, Jizhong; Firestone, Mary K

    2016-08-01

    While interactions between roots and microorganisms have been intensively studied, we know little about interactions among root-associated microbes. We used random matrix theory-based network analysis of 16S rRNA genes to identify bacterial networks associated with wild oat (Avena fatua) over two seasons in greenhouse microcosms. Rhizosphere networks were substantially more complex than those in surrounding soils, indicating the rhizosphere has a greater potential for interactions and niche-sharing. Network complexity increased as plants grew, even as diversity decreased, highlighting that community organisation is not captured by univariate diversity. Covariations were predominantly positive (> 80%), suggesting that extensive mutualistic interactions may occur among rhizosphere bacteria; we identified quorum-based signalling as one potential strategy. Putative keystone taxa often had low relative abundances, suggesting low-abundance taxa may significantly contribute to rhizosphere function. Network complexity, a previously undescribed property of the rhizosphere microbiome, appears to be a defining characteristic of this habitat. PMID:27264635

  12. Rhizosphere priming: a nutrient perspective

    PubMed Central

    Dijkstra, Feike A.; Carrillo, Yolima; Pendall, Elise; Morgan, Jack A.

    2013-01-01

    Rhizosphere priming is the change in decomposition of soil organic matter (SOM) caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C) dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizosphere priming itself can also affect nutrient supply to plants. These interactive effects may be of particular relevance in understanding the sustained increase in plant growth and nutrient supply in response to a rise in atmospheric CO2 concentration. We examined how these interactions were affected by elevated CO2 in two similar semiarid grassland field studies. We found that an increase in rhizosphere priming enhanced the release of nitrogen (N) through decomposition of a larger fraction of SOM in one study, but not in the other. We postulate that rhizosphere priming may enhance N supply to plants in systems that are N limited, but that rhizosphere priming may not occur in systems that are phosphorus (P) limited. Under P limitation, rhizodeposition may be used for mobilization of P, rather than for decomposition of SOM. Therefore, with increasing atmospheric CO2 concentrations, rhizosphere priming may play a larger role in affecting C sequestration in N poor than in P poor soils. PMID:23908649

  13. Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass.

    PubMed

    Nuccio, Erin E; Anderson-Furgeson, James; Estera, Katerina Y; Pett-Ridge, Jennifer; De Valpine, Perry; Brodie, Eoin L; Firestone, Mary K

    2016-05-01

    The interface between roots and soil, known as the rhizosphere, is a dynamic habitat in the soil ecosystem. Unraveling the factors that control rhizosphere community assembly is a key starting point for understanding the diversity of plant-microbial interactions that occur in soil. The goals of this study were to determine how environmental factors shape rhizosphere microbial communities, such as local soil characteristics and the regional climate, and to determine the relative influence of the rhizosphere on microbial community assembly compared to the pressures imposed by the local and regional environment. We identified the bacteria present in the soil immediately adjacent to the roots of wild oat (A vena spp.) in three California grasslands using deep Illumina 16S sequencing. Rhizosphere communities were more similar to each other than to the surrounding soil communities from which they were derived, despite the fact that the grasslands studied were separated by hundreds of kilometers. The rhizosphere was the dominant factor structuring bacterial community composition (38% variance explained), and was comparable in magnitude to the combined local and regional effects (22% and 21%, respectively). Rhizosphere communities were most influenced by factors related to the regional climate (soil moisture and temperature), while background soil communities were more influenced by soil characteristics (pH, CEC, exchangeable cations, clay content). The Avena core microbiome was strongly phylogenetically clustered according to the metrics NRI and NTI, which indicates that selective processes likely shaped these communities. Furthermore, 17% of these taxa were not detectable in the background soil, even with a robust sequencing depth of approximately 70,000 sequences per sample. These results support the hypothesis that roots select less abundant or possibly rare populations in the soil microbial community, which appear to be lineages of bacteria that have made a

  14. A Growth Initiation Factor for Host-Independent Derivatives of Bdellovibrio bacteriovorus

    PubMed Central

    Ishiguro, Edward E.

    1973-01-01

    Host-independent (H-I) derivatives of Bdellovibrio bacteriovorus 109 Davis could not be isolated when concentrated suspensions of host-dependent (H-D) cultures, washed free of spent medium, were plated on host-free media. However, H-I colonies did appear when spent broth was incorporated into the isolation medium, indicating the presence of a factor in the spent medium essential for the growth of H-I cells. This growth factor (GIF) was also present in cell-free extracts of Escherichia coli and a variety of other microorganisms including H-D and H-I derivatives of strain 109 Davis. GIF was heat stable, non-dialyzable, and present in both soluble and particulate fractions of extracts. Heating of extracts at 70 C for 10 min resulted in 10- to 40-fold stimulation in GIF activity, and evidence for a heat-labile inhibitor was obtained. Colonies appearing on host-free medium in these experiments were shown to be those of typical H-I derivatives by isolation and subsequent host-independent cultivation of these organisms. GIF was a conditional requirement dependent on age and size of inoculum for all H-I derivatives characterized. Although GIF stimulated the growth of washed exponential phase cells transferred to fresh medium, it was not essential for growth. However, it was essential for the initiation of growth of washed stationary phase cells from small inocula transferred to fresh medium. It is proposed that GIF is required to initiate growth of metabolically quiescent cells. Images PMID:4197902

  15. Identification of genes essential for prey-independent growth of Bdellovibrio bacteriovorus HD100.

    PubMed

    Roschanski, Nicole; Klages, Sven; Reinhardt, Richard; Linscheid, Michael; Strauch, Eckhard

    2011-04-01

    Bdellovibrio bacteriovorus HD100 is an obligate predatory bacterium that attacks and invades Gram-negative bacteria. The predator requires living bacteria to survive as growth and replication take place inside the bacterial prey. It is possible to isolate mutants that grow and replicate outside prey bacteria. Such mutants are designated host or prey independent, and their nutritional requirements vary. Some mutants are saprophytic and require prey extracts for extracellular growth, whereas other mutants grow axenically, which denotes the formation of colonies on complete medium in the absence of any prey components. The initial events leading to prey-independent growth are still under debate, and several genes may be involved. We selected new mutants by three different methods: spontaneous mutation, transposon mutagenesis, and targeted gene knockout. By all approaches we isolated mutants of the hit (host interaction) locus. As the relevance of this locus for the development of prey independence has been questioned, we performed whole-genome sequencing of five prey-independent mutants. Three mutants were saprophytic, and two mutants could grow axenically. Whole-genome analysis revealed that the mutation of a small open reading frame of the hit locus is sufficient for the conversion from predatory to saprophytic growth. Complementation experiments were performed by introduction of a plasmid carrying the wild-type hit gene into saprophytic mutants, and predatory growth could be restored. Whole-genome sequencing of two axenic mutants demonstrated that in addition to the hit mutation the colony formation on complete medium was shown to be influenced by the mutations of two genes involved in RNA processing. Complementation experiments with a wild-type gene encoding an RNA helicase, RhlB, abolished the ability to form colonies on complete medium, indicating that stability of RNA influences axenic growth. PMID:21278289

  16. Metarhizium robertsii Produces an Extracellular Invertase (MrINV) That Plays a Pivotal Role in Rhizospheric Interactions and Root Colonization

    PubMed Central

    Liao, Xinggang; Fang, Weiguo; Lin, Liangcai; Lu, Hsiao-Ling; Leger, Raymond J. St.

    2013-01-01

    As well as killing pest insects, the rhizosphere competent insect-pathogenic fungus Metarhizium robertsii also boosts plant growth by providing nitrogenous nutrients and increasing resistance to plant pathogens. Plant roots secrete abundant nutrients but little is known about their utilization by Metarhizium spp. and the mechanistic basis of Metarhizium-plant associations. We report here that M. robertsii produces an extracellular invertase (MrInv) on plant roots. Deletion of MrInv (⊿MrInv) reduced M. robertsii growth on sucrose and rhizospheric exudates but increased colonization of Panicum virgatum and Arabidopsis thaliana roots. This could be accounted for by a reduction in carbon catabolite repression in ⊿MrInv increasing production of plant cell wall-degrading depolymerases. A non-rhizosphere competent scarab beetle specialist Metarhizium majus lacks invertase which suggests that rhizospheric competence may be related to the sugar metabolism of different Metarhizium species. PMID:24205119

  17. APPLICATION OF REAL-TIME PCR QUANTIFICATION OF 2,4-DIACETYLPHLOROGLUCINAL-PRODUCING PSEUDOMONAS FLUORESCENS IN THE PLANT RHIZOSPHERE.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A quantitative real-time PCR SYBR Green assay was developed to quantify populations of DAPG-producing (phlD+) Pseudomonas spp. in the plant rhizosphere. Primers targeting the phlD gene were designed to specifically amplify four different BOX-PCR genotypes (A, B, D, and I) and PCR conditions were opt...

  18. The rhizosphere revisited: root microbiomics

    PubMed Central

    Bakker, Peter A. H. M.; Berendsen, Roeland L.; Doornbos, Rogier F.; Wintermans, Paul C. A.; Pieterse, Corné M. J.

    2013-01-01

    The rhizosphere was defined over 100 years ago as the zone around the root where microorganisms and processes important for plant growth and health are located. Recent studies show that the diversity of microorganisms associated with the root system is enormous. This rhizosphere microbiome extends the functional repertoire of the plant beyond imagination. The rhizosphere microbiome of Arabidopsis thaliana is currently being studied for the obvious reason that it allows the use of the extensive toolbox that comes with this model plant. Deciphering plant traits that drive selection and activities of the microbiome is now a major challenge in which Arabidopsis will undoubtedly be a major research object. Here we review recent microbiome studies and discuss future research directions and applicability of the generated knowledge. PMID:23755059

  19. An Extended Cyclic Di-GMP Network in the Predatory Bacterium Bdellovibrio bacteriovorus

    PubMed Central

    Rotem, Or; Nesper, Jutta; Borovok, Ilya; Gorovits, Rena; Kolot, Mikhail; Pasternak, Zohar; Shin, Irina; Glatter, Timo; Pietrokovski, Shmuel; Jenal, Urs

    2015-01-01

    ABSTRACT Over the course of the last 3 decades the role of the second messenger cyclic di-GMP (c-di-GMP) as a master regulator of bacterial physiology was determined. Although the control over c-di-GMP levels via synthesis and breakdown and the allosteric regulation of c-di-GMP over receptor proteins (effectors) and riboswitches have been extensively studied, relatively few effectors have been identified and most are of unknown functions. The obligate predatory bacterium Bdellovibrio bacteriovorus has a peculiar dimorphic life cycle, in which a phenotypic transition from a free-living attack phase (AP) to a sessile, intracellular predatory growth phase (GP) is tightly regulated by specific c-di-GMP diguanylate cyclases. B. bacteriovorus also bears one of the largest complement of defined effectors, almost none of known functions, suggesting that additional proteins may be involved in c-di-GMP signaling. In order to uncover novel c-di-GMP effectors, a c-di-GMP capture-compound mass-spectroscopy experiment was performed on wild-type AP and host-independent (HI) mutant cultures, the latter serving as a proxy for wild-type GP cells. Eighty-four proteins were identified as candidate c-di-GMP binders. Of these proteins, 65 did not include any recognized c-di-GMP binding site, and 3 carried known unorthodox binding sites. Putative functions could be assigned to 59 proteins. These proteins are included in metabolic pathways, regulatory circuits, cell transport, and motility, thereby creating a potentially large c-di-GMP network. False candidate effectors may include members of protein complexes, as well as proteins binding nucleotides or other cofactors that were, respectively, carried over or unspecifically interacted with the capture compound during the pulldown. Of the 84 candidates, 62 were found to specifically bind the c-di-GMP capture compound in AP or in HI cultures, suggesting c-di-GMP control over the whole-cell cycle of the bacterium. High affinity and

  20. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology

    PubMed Central

    Bisht, Sandeep; Pandey, Piyush; Bhargava, Bhavya; Sharma, Shivesh; Kumar, Vivek; Sharma, Krishan D.

    2015-01-01

    The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e. polyaromatic hydrocarbons (PAHs) due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa , Pseudomons fluoresens , Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective. PMID:26221084

  1. Influence of plant genotype on the cultivable fungi associated to tomato rhizosphere and roots in different soils.

    PubMed

    Poli, Anna; Lazzari, Alexandra; Prigione, Valeria; Voyron, Samuele; Spadaro, Davide; Varese, Giovanna Cristina

    2016-01-01

    Rhizosphere and root-associated microbiota are crucial in determining plant health and in increasing productivity of agricultural crops. To date, research has mainly focused on the bacterial dimension of the microbiota. However, interest in the mycobiota is increasing, since fungi play a key role in soil ecosystems. We examined the effect of plant genotype, soil, and of Fusarium oxysporum f. sp. lycopersici (Fol) on the cultivable component of rhizosphere and root-associated mycobiota of tomato. Resistant and susceptible varieties were cultivated on two different soils (A and B), under glasshouse conditions. Isolated fungi were identified by morphological and molecular approaches. Differences were found between the rhizosphere and the roots, which in general displayed a lower number of species. The structure of the mycobiota was significantly affected by the soil type in the rhizosphere as well as by the plant genotype within the roots (NPERMANOVA, p < 0.05). The addition of Fol changed the community structure, particularly in soil A, where Penicillium spp. and Fusarium spp. were the dominant responding fungi. Overall, the results indicated that i) soil type and plant genotype affect the fungal communities; ii) plant roots select few species from the rhizosphere; and iii) the fungal community structure is influenced by Fol. PMID:27268246

  2. Metabolic potential and community structure of endophytic and rhizosphere bacteria associated with the roots of the halophyte Aster tripolium L.

    PubMed

    Szymańska, Sonia; Płociniczak, Tomasz; Piotrowska-Seget, Zofia; Złoch, Michał; Ruppel, Silke; Hrynkiewicz, Katarzyna

    2016-01-01

    The submitted work assumes that the abundance and diversity of endophytic and rhizosphere microorganisms co-existing with the halophytic plant Aster tripolium L. growing in a salty meadow in the vicinity of a soda factory (central Poland) represent unique populations of cultivable bacterial strains. Endophytic and rhizosphere bacteria were (i) isolated and identified based on 16S rDNA sequences; (ii) screened for nifH and acdS genes; and (iii) analyzed based on selected metabolic properties. Moreover, total microbial biomass and community structures of the roots (endophytes), rhizosphere and soil were evaluated using a cultivation-independent technique (PLFA) to characterize plant-microbial interactions under natural salt conditions. The identification of the isolated strains showed domination by Gram-positive bacteria (mostly Bacillus spp.) both in the rhizosphere (90.9%) and roots (72.7%) of A. tripolium. Rhizosphere bacterial strains exhibited broader metabolic capacities, while endophytes exhibited higher specificities for metabolic activity. The PLFA analysis showed that the total bacterial biomass decreased in the following order (rhizosphere

  3. Vibrio cholerae pathogen from the freshwater-cultured whiteleg shrimp Penaeus vannamei and control with Bdellovibrio bacteriovorus.

    PubMed

    Cao, Haipeng; An, Jian; Zheng, Weidong; He, Shan

    2015-09-01

    Vibriosis has become a major global economic problem in freshwater-farmed whiteleg shrimp (Penaeus vannamei). The prevention and control of vibriosis are now priority research topics. In this study, a pathogenic strain (QH) was isolated from vibriosis-infected freshwater-farmed P. vannamei that resulted in leg yellowing and was identified as a Vibrio cholerae isolate through phylogenetic analysis and the API 32GN system. A phylogenetic tree that was constructed using the neighbor-joining method further confirmed the QH isolate as a V. cholerae strain. A virulent outer membrane protein (ompU) gene was found to be present in the QH isolate, which further confirmed its pathogenicity. In addition, Bdellovibrio bacteriovorus conferred significant protection against V. cholerae: B. bacteriovorus exhibited significant bacteriolytic effects on the V. cholerae pathogen, possessed a wide prey range that included Vibrio pathogens, and displayed a positive protective efficacy against experimental V. cholerae infection in P. vannamei. To the best of our knowledge, this is the first report of the control of shrimp pathogen V. cholerae with B. bacteriovorus. PMID:26146226

  4. Accumulation of the Antibiotic Phenazine-1-Carboxylic Acid in the Rhizosphere of Dryland Cereals

    PubMed Central

    Mavrodi, Dmitri V.; Mavrodi, Olga V.; Parejko, James A.; Bonsall, Robert F.; Kwak, Youn-Sig; Paulitz, Timothy C.; Weller, David M.

    2012-01-01

    Natural antibiotics are thought to function in the defense, fitness, competitiveness, biocontrol activity, communication, and gene regulation of microorganisms. However, the scale and quantitative aspects of antibiotic production in natural settings are poorly understood. We addressed these fundamental questions by assessing the geographic distribution of indigenous phenazine-producing (Phz+) Pseudomonas spp. and the accumulation of the broad-spectrum antibiotic phenazine-1-carboxylic acid (PCA) in the rhizosphere of wheat grown in the low-precipitation zone (<350 mm) of the Columbia Plateau and in adjacent, higher-precipitation areas. Plants were collected from 61 commercial wheat fields located within an area of about 22,000 km2. Phz+ Pseudomonas spp. were detected in all sampled fields, with mean population sizes ranging from log 3.2 to log 7.1 g−1 (fresh weight) of roots. Linear regression analysis demonstrated a significant inverse relationship between annual precipitation and the proportion of plants colonized by Phz+ Pseudomonas spp. (r2 = 0.36, P = 0.0001). PCA was detected at up to nanomolar concentrations in the rhizosphere of plants from 26 of 29 fields that were selected for antibiotic quantitation. There was a direct relationship between the amount of PCA extracted from the rhizosphere and the population density of Phz+ pseudomonads (r2 = 0.46, P = 0.0006). This is the first demonstration of accumulation of significant quantities of a natural antibiotic across a terrestrial ecosystem. Our results strongly suggest that natural antibiotics can transiently accumulate in the plant rhizosphere in amounts sufficient not only for inter- and intraspecies signaling but also for the direct inhibition of sensitive organisms. PMID:22138981

  5. Cultivation-independent analysis of Pseudomonas species in soil and in the rhizosphere of field-grown Verticillium dahliae host plants.

    PubMed

    Costa, Rodrigo; Salles, Joana Falcão; Berg, Gabriele; Smalla, Kornelia

    2006-12-01

    Despite their importance for rhizosphere functioning, rhizobacterial Pseudomonas spp. have been mainly studied in a cultivation-based manner. In this study a cultivation-independent method was used to determine to what extent the factors plant species, sampling site and year-to-year variation influence Pseudomonas community structure in bulk soil and in the rhizosphere of two Verticillium dahliae host plants, oilseed rape and strawberry. Community DNA was extracted from bulk and rhizosphere soil samples of flowering plants collected at three different sites in Germany in two consecutive years. Pseudomonas community structure and diversity were assessed using a polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) system to fingerprint Pseudomonas-specific 16S rRNA gene fragments amplified from community DNA. Dominant and differentiating DGGE bands were excised from the gels, cloned and sequenced. The factors sampling site, plant species and year-to-year variation were shown to significantly influence the community structure of Pseudomonas in rhizosphere soils. The composition of Pseudomonas 16S rRNA gene fragments in the rhizosphere differed from that in the adjacent bulk soil and the rhizosphere effect tended to be plant-specific. The clone sequences of most dominant bands analysed belonged to the Pseudomonas fluorescens lineage and showed closest similarity to culturable Pseudomonas known for displaying antifungal properties. This report provides a better understanding of how different factors drive Pseudomonas community structure and diversity in bulk and rhizosphere soils. PMID:17107555

  6. Fungal invasion of the rhizosphere microbiome.

    PubMed

    Chapelle, Emilie; Mendes, Rodrigo; Bakker, Peter A H M; Raaijmakers, Jos M

    2016-01-01

    The rhizosphere is the infection court where soil-borne pathogens establish a parasitic relationship with the plant. To infect root tissue, pathogens have to compete with members of the rhizosphere microbiome for available nutrients and microsites. In disease-suppressive soils, pathogens are strongly restricted in growth by the activities of specific rhizosphere microorganisms. Here, we sequenced metagenomic DNA and RNA of the rhizosphere microbiome of sugar beet seedlings grown in a soil suppressive to the fungal pathogen Rhizoctonia solani. rRNA-based analyses showed that Oxalobacteraceae, Burkholderiaceae, Sphingobacteriaceae and Sphingomonadaceae were significantly more abundant in the rhizosphere upon fungal invasion. Metatranscriptomics revealed that stress-related genes (ppGpp metabolism and oxidative stress) were upregulated in these bacterial families. We postulate that the invading pathogenic fungus induces, directly or via the plant, stress responses in the rhizobacterial community that lead to shifts in microbiome composition and to activation of antagonistic traits that restrict pathogen infection. PMID:26023875

  7. Cronobacter spp.

    PubMed

    Blackwood, Brian P; Hunter, Catherine J

    2016-04-01

    The Cronobacter group of pathogens, associated with severe and potentially life-threatening diseases, until recently were classified as a single species, Enterobacter sakazakii. The group was reclassified in 2007 into the genus Cronobacter as a member of the Enterobacteriaceae. This chapter outlines the history behind the epidemiology, analyzes how our understanding of these bacteria has evolved, and highlights the clinical significance the Cronobacter spp. have for neonatal and elderly patient populations and treatment of the associated infections. PMID:27227295

  8. Survival of native Pseudomonas in soil and wheat rhizosphere and antagonist activity against plant pathogenic fungi.

    PubMed

    Fischer, Sonia E; Jofré, Edgardo C; Cordero, Paula V; Gutiérrez Mañero, Francisco J; Mori, Gladys B

    2010-03-01

    Survival of Pseudomonas sp. SF4c and Pseudomonas sp. SF10b (two plant-growth-promoting bacteria isolated from wheat rhizosphere) was investigated in microcosms. Spontaneous rifampicin-resistant mutants derived from these strains (showing both growth rate and viability comparable to the wild-strains) were used to monitor the strains in bulk soil and wheat rhizosphere. Studies were carried out for 60 days in pots containing non-sterile fertilized or non-fertilized soil. The number of viable cells of both mutant strains declined during the first days but then became established in the wheat rhizosphere at an appropriate cell density in both kinds of soil. Survival of the strains was better in the rhizosphere than in the bulk soil. Finally, the antagonism of Pseudomonas spp. against phytopatogenic fungi was evaluated in vitro. Both strains inhibited the mycelial growth (or the resistance structures) of some of the phytopathogenic fungi tested, though variation in this antagonism was observed in different media. This inhibition could be due to the production of extracellular enzymes, hydrogen cyanide or siderophores, signifying that these microorganisms might be applied in agriculture to minimize the utilization of chemical pesticides and fertilizers. PMID:20020326

  9. Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture

    NASA Astrophysics Data System (ADS)

    Wu, Linkun; Wang, Juanying; Huang, Weimin; Wu, Hongmiao; Chen, Jun; Yang, Yanqiu; Zhang, Zhongyi; Lin, Wenxiong

    2015-10-01

    Under consecutive monoculture, the biomass and quality of Rehmannia glutinosa declines significantly. Consecutive monoculture of R. glutinosa in a four-year field trial led to significant growth inhibition. Most phenolic acids in root exudates had cumulative effects over time under sterile conditions, but these effects were not observed in the rhizosphere under monoculture conditions. It suggested soil microbes might be involved in the degradation and conversion of phenolic acids from the monocultured plants. T-RFLP and qPCR analysis demonstrated differences in both soil bacterial and fungal communities during monoculture. Prolonged monoculture significantly increased levels of Fusarium oxysporum, but decreased levels of Pseudomonas spp. Abundance of beneficial Pseudomonas spp. with antagonistic activity against F. oxysporum was lower in extended monoculture soils. Phenolic acid mixture at a ratio similar to that found in the rhizosphere could promote mycelial growth, sporulation, and toxin (3-Acetyldeoxynivalenol, 15-O-Acetyl-4-deoxynivalenol) production of pathogenic F. oxysporum while inhibiting growth of the beneficial Pseudomonas sp. W12. This study demonstrates that extended monoculture can alter the microbial community of the rhizosphere, leading to relatively fewer beneficial microorganisms and relatively more pathogenic and toxin-producing microorganisms, which is mediated by the root exudates.

  10. Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture

    PubMed Central

    Wu, Linkun; Wang, Juanying; Huang, Weimin; Wu, Hongmiao; Chen, Jun; Yang, Yanqiu; Zhang, Zhongyi; Lin, Wenxiong

    2015-01-01

    Under consecutive monoculture, the biomass and quality of Rehmannia glutinosa declines significantly. Consecutive monoculture of R. glutinosa in a four-year field trial led to significant growth inhibition. Most phenolic acids in root exudates had cumulative effects over time under sterile conditions, but these effects were not observed in the rhizosphere under monoculture conditions. It suggested soil microbes might be involved in the degradation and conversion of phenolic acids from the monocultured plants. T-RFLP and qPCR analysis demonstrated differences in both soil bacterial and fungal communities during monoculture. Prolonged monoculture significantly increased levels of Fusarium oxysporum, but decreased levels of Pseudomonas spp. Abundance of beneficial Pseudomonas spp. with antagonistic activity against F. oxysporum was lower in extended monoculture soils. Phenolic acid mixture at a ratio similar to that found in the rhizosphere could promote mycelial growth, sporulation, and toxin (3-Acetyldeoxynivalenol, 15-O-Acetyl-4-deoxynivalenol) production of pathogenic F. oxysporum while inhibiting growth of the beneficial Pseudomonas sp. W12. This study demonstrates that extended monoculture can alter the microbial community of the rhizosphere, leading to relatively fewer beneficial microorganisms and relatively more pathogenic and toxin-producing microorganisms, which is mediated by the root exudates. PMID:26515244

  11. Identification and biochemical evidence of a medium-chain-length polyhydroxyalkanoate depolymerase in the Bdellovibrio bacteriovorus predatory hydrolytic arsenal.

    PubMed

    Martínez, Virginia; de la Peña, Fernando; García-Hidalgo, Javier; de la Mata, Isabel; García, José Luis; Prieto, María Auxiliadora

    2012-09-01

    The obligate predator Bdellovibrio bacteriovorus HD100 shows a large set of proteases and other hydrolases as part of its hydrolytic arsenal needed for its predatory life cycle. We present genetic and biochemical evidence that open reading frame (ORF) Bd3709 of B. bacteriovorus HD100 encodes a novel medium-chain-length polyhydroxyalkanoate (mcl-PHA) depolymerase (PhaZ(Bd)). The primary structure of PhaZ(Bd) suggests that this enzyme belongs to the α/β-hydrolase fold family and has a typical serine hydrolase catalytic triad (serine-histidine-aspartic acid) in agreement with other PHA depolymerases and lipases. PhaZ(Bd) has been extracellularly produced using different hypersecretor Tol-pal mutants of Escherichia coli and Pseudomonas putida as recombinant hosts. The recombinant PhaZ(Bd) has been characterized, and its biochemical properties have been compared to those of other PHA depolymerases. The enzyme behaves as a serine hydrolase that is inhibited by phenylmethylsulfonyl fluoride. It is also affected by the reducing agent dithiothreitol and nonionic detergents like Tween 80. PhaZ(Bd) is an endoexohydrolase that cleaves both large and small PHA molecules, producing mainly dimers but also monomers and trimers. The enzyme specifically degrades mcl-PHA and is inactive toward short-chain-length polyhydroxyalkanoates (scl-PHA) like polyhydroxybutyrate (PHB). These studies shed light on the potentiality of these predators as sources of new biocatalysts, such as an mcl-PHA depolymerase, for the production of enantiopure hydroxyalkanoic acids and oligomers as building blocks for the synthesis of biobased polymers. PMID:22706067

  12. Bdellovibrio and Like Organisms Enhanced Growth and Survival of Penaeus monodon and Altered Bacterial Community Structures in Its Rearing Water

    PubMed Central

    Li, Huanhuan; Chen, Cheng; Sun, Qiuping; Liu, Renliang

    2014-01-01

    In this study, a 96-h laboratory reduction test was conducted with strain BDHSH06 (GenBank accession no. EF011103) as the test strain for Bdellovibrio and like organisms (BALOs) and 20 susceptible marine bacterial strains forming microcosms as the targets. The results showed that BDHSH06 reduced the levels of approximately 50% of prey bacterial strains within 96 h in the seawater microcosms. An 85-day black tiger shrimp (Penaeus monodon) rearing experiment was performed. The shrimp survival rate, body length, and weight in the test tanks were 48.1% ± 1.2%, 99.8 ± 10.0 mm, and 6.36 ± 1.50 g, respectively, which were values significantly (P < 0.05) higher than those for the control, viz., 31.0% ± 2.1%, 86.0 ± 11.1 mm, and 4.21 ± 1.56 g, respectively. With the addition of BDHSH06, total bacterial and Vibrio numbers were significantly reduced (P < 0.05) by 1.3 to 4.5 log CFU · ml−1 and CFU · g−1 in both water and shrimp intestines, respectively, compared to those in the control. The effect of BDHSH06 on bacterial community structures in the rearing water was also examined using PCR amplification of the 16S rRNA gene and denaturing gradient gel electrophoresis (DGGE). The DGGE profiles of rearing water samples from the control and test tanks revealed that the amounts of 44% of the bacterial species were reduced when BDHSH06 was added to the rearing water over the 85-day rearing period, and among these, approximately 57.1% were nonculturable. The results of this study demonstrated that BDHSH06 can be used as a biocontrol/probiotic agent in P. monodon culture. PMID:25107962

  13. Efficacy of Bdellovibrio bacteriovorus 109J for the treatment of dairy calves with experimentally induced infectious bovine keratoconjunctivitis.

    PubMed

    Boileau, Mélanie J; Mani, Rinosh; Breshears, Melanie A; Gilmour, Margi; Taylor, Jared D; Clinkenbeard, Kenneth D

    2016-09-01

    OBJECTIVE To determine the efficacy of Bdellovibrio bacteriovorus 109J for the treatment of calves with experimentally induced infectious bovine keratoconjunctivitis (IBK). ANIMALS 12 healthy dairy calves. PROCEDURES For each calf, a grid keratotomy was performed on both eyes immediately before inoculation with Moraxella bovis hemolytic strain Epp63-300 (n = 11 calves) or nonhemolytic strain 12040577 (1 calf). For each calf inoculated with M bovis Epp63-300, the eyes were randomly assigned to receive an artificial tear solution with (treatment group) or without (control group) lyophilized B bacteriovorus 109J. Six doses of the assigned treatment (0.2 mL/eye, topically, q 48 h) were administered to each eye. On nontreatment days, eyes were assessed and corneal swab specimens and tear samples were collected for bacterial culture. Calves were euthanized 12 days after M bovis inoculation. The eyes were harvested for gross and histologic evaluation and bacterial culture. RESULTS The calf inoculated with M bovis 12040577 did not develop corneal ulcers. Of the 22 eyes inoculated with M bovis Epp63-300, 18 developed corneal ulcers consistent with IBK within 48 hours after inoculation; 4 of those eyes developed secondary corneal ulcers that were not consistent with IBK. Corneal ulcer size and severity and the time required for ulcer healing did not differ between the treatment and control groups. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that B bacteriovorus 109J was not effective for the treatment of IBK; however, the experimental model used produced lesions that did not completely mimic naturally occurring IBK. PMID:27580114

  14. [Dynamics of soil enzyme activity and nutrient content in intercropped cotton rhizosphere and non-rhizosphere].

    PubMed

    Meng, Yali; Wang, Liguo; Zhou, Zhiguo; Wang, Ying; Zhang, Lizhen; Bian, Haiyun; Zhang, Siping; Chen, Binglin

    2005-11-01

    The study with high yield cotton-wheat double cropping system showed that soil urease, invertase, protease and catalase activities in intercropped cotton field had the same changing trends with those in mono-cultured cotton field, but were significantly higher in intercropped than in mono-cultured cotton rhizosphere and non-rhizosphere at all development stages of cotton. During the intergrowth period of wheat and cotton, soil nutrient contents in intercropped cotton rhizosphere and non-rhizosphere were lower than or had little difference with those in mono-cultured cotton rhizosphere and non-rhizosphere, but became significantly higher after wheat harvested. The changing trends of soil nutrient contents in intercropped cotton field had little difference from those in mono-cultured cotton field, but the nutrient absorption peak appeared late. The soil enzyme activities and nutrient contents were generally higher in rhizosphere than in non-rhizosphere of both intercropped and mono-cultured cotton. Soil nutrient contents had significant (P < 0.05, n = 32) or very significant (P < 0.01, n = 32) correlation with the activities of soil urease, invertase and protease, but had little correlation with soil catalase activity. PMID:16471342

  15. Aggregation of the rhizospheric bacterium Azospirillum brasilense in response to oxygen

    NASA Astrophysics Data System (ADS)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2016-04-01

    Azospirillum brasilense spp. have ecological, scientific and agricultural importance. As model plant growth promoting rhizobacteria they interact with a large variety of plants, including important food and cash crops. Azospirillum strains are known for their production of plant growth hormones that enhance root systems and for their ability to fix nitrogen. Azospirillum cells transform in response to environmental cues. The production of exopolysaccharides and cell aggregation during cellular transformation are important steps in the attachment of Azospirillum to roots. We investigate signals that induce cellular transformation and aggregation in the Azospirillum and report on the importance of oxygen to the process of aggregation in this rhizospheric bacterium.

  16. Rhizosphere Competence of Wild-Type and Genetically Engineered Pseudomonas brassicacearum Is Affected by the Crop Species.

    PubMed

    Bankhead, Stacey Blouin; Thomashow, Linda S; Weller, David M

    2016-06-01

    2,4-Diacetylphloroglucinol (2,4-DAPG)-producing Pseudomonas brassicacearum Q8r1-96 is a highly effective biocontrol agent of take-all disease of wheat. Strain Z30-97, a recombinant derivative of Q8r1-96 containing the phzABCDEFG operon from P. synxantha (formerly P. fluorescens) 2-79 inserted into its chromosome, also produces phenazine-1-carboxylic acid. Rhizosphere population sizes of Q8r1-96, Z30-97, and 2-79, introduced into the soil, were assayed during successive growth cycles of barley, navy bean, or pea under controlled conditions as a measure of the impact of crop species on rhizosphere colonization of each strain. In the barley rhizosphere, Z30-96 colonized less that Q8r1-96 when they were introduced separately, and Q8r1-96 out-competed Z30-96 when the strains were introduced together. In the navy bean rhizosphere, Q8r1-96 colonized better than Z30-97 when the strains were introduced separately. However, both strains had similar population densities when introduced together. Strain Q8r1-96 and Z30-97 colonized the pea rhizosphere equally well when each strain was introduced separately, but Z30-97 out-competed Q8r1-96 when they were introduced together. To our knowledge, this is the first report of a recombinant biocontrol strain of Pseudomonas spp. gaining rhizosphere competitiveness on a crop species. When assessing the potential fate of and risk posed by a recombinant Pseudomonas sp. in soil, both the identity of the introduced genes and the crop species colonized by the recombinant strain need to be considered. PMID:26926486

  17. Comparative genomic analysis reveals new aspects of the biology and secondary metabolism of biological control strains of Pseudomonas spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To explore the genomic diversity of biocontrol strains of Pseudomonas spp., we derived high quality draft sequences of seven strains that suppress plant disease. The strains were isolated from the phyllosphere of pear (P. fluorescens A506), the rhizosphere of wheat (three strains of P. fluorescens ...

  18. Application of rhizosphere interaction of hyperaccumulator Noccaea caerulescens to remediate cadmium-contaminated agricultural soil.

    PubMed

    Yang, Yong; Jiang, Rong-Feng; Wang, Wei; Li, Hua-Fen

    2011-10-01

    There is an urgent requirement for selecting appropriate technologies to solve food safety problems due to soil contamination. In this study, the hyperaccumulator Noccaea caerulescens and a high Cd accumulator pakchoi cultivar (Brassica rapa L. spp. Chinenesis cv.) were grown in a moderately Cd-contaminated soil with three planting systems (monocrop, inter-crop, and crop-rotation) and three growing durations (25, 50, and 75 days) to study the role of rhizosphere interaction of both species on the uptake of Cd. The Cd accumulations in the shoot of pakchoi were significantly reduced in the inter-crop treatment, also the decreased percentage increased with rhizosphere interaction between the two species. In the inter-crop systems of 75 days, the Cd concentration and amount in the shoot of pakchoi represented 54% and 83% reduction, respectively, while the total depletion of Cd decreased by approximate 19%. Although the Cd concentration and amount in the shoot of pakchoi were significantly reduced by 52% and 44%, respectively, in the crop-rotation treatment, the decreased percentage were markedly lower than in the inter-crop treatment. Therefore, the rhizosphere interaction of hyperaccumulator with non-hyperaccumulator may reduce the risk of vegetable contamination during making full use of or remediating the contaminated soil. PMID:21972514

  19. Germination stimulants of Phelipanche ramosa in the rhizosphere of Brassica napus are derived from the glucosinolate pathway.

    PubMed

    Auger, Bathilde; Pouvreau, Jean-Bernard; Pouponneau, Karinne; Yoneyama, Kaori; Montiel, Grégory; Le Bizec, Bruno; Yoneyama, Koichi; Delavault, Philippe; Delourme, Régine; Simier, Philippe

    2012-07-01

    Phelipanche ramosa is a major parasitic weed of Brassica napus. The first step in a host-parasitic plant interaction is stimulation of parasite seed germination by compounds released from host roots. However, germination stimulants produced by B. napus have not been identified yet. In this study, we characterized the germination stimulants that accumulate in B. napus roots and are released into the rhizosphere. Eight glucosinolate-breakdown products were identified and quantified in B. napus roots by gas chromatography-mass spectrometry. Two (3-phenylpropanenitrile and 2-phenylethyl isothiocyanate [2-PEITC]) were identified in the B. napus rhizosphere. Among glucosinolate-breakdown products, P. ramosa germination was strongly and specifically triggered by isothiocyanates, indicating that 2-PEITC, in particular, plays a key role in the B. napus-P. ramosa interaction. Known strigolactones were not detected by ultraperformance liquid chromatography-tandem mass spectrometry, and seed of Phelipanche and Orobanche spp. that respond to strigolactones but not to isothiocyanates did not germinate in the rhizosphere of B. napus. Furthermore, both wild-type and strigolactone biosynthesis mutants of Arabidopsis thaliana Atccd7 and Atccd8 induced similar levels of P. ramosa seed germination, suggesting that compounds other than strigolactone function as germination stimulants for P. ramosa in other Brassicaceae spp. Our results open perspectives on the high adaptation potential of root-parasitic plants under host-driven selection pressures. PMID:22414435

  20. Rice Bran Amendment Suppresses Potato Common Scab by Increasing Antagonistic Bacterial Community Levels in the Rhizosphere.

    PubMed

    Tomihama, Tsuyoshi; Nishi, Yatsuka; Mori, Kiyofumi; Shirao, Tsukasa; Iida, Toshiya; Uzuhashi, Shihomi; Ohkuma, Moriya; Ikeda, Seishi

    2016-07-01

    Potato common scab (PCS), caused by pathogenic Streptomyces spp., is a serious disease in potato production worldwide. Cultural practices, such as optimizing the soil pH and irrigation, are recommended but it is often difficult to establish stable disease reductions using these methods. Traditionally, local farmers in southwest Japan have amended soils with rice bran (RB) to suppress PCS. However, the scientific mechanism underlying disease suppression by RB has not been elucidated. The present study showed that RB amendment reduced PCS by repressing the pathogenic Streptomyces population in young tubers. Amplicon sequencing analyses of 16S ribosomal RNA genes from the rhizosphere microbiome revealed that RB amendment dramatically changed bacterial composition and led to an increase in the relative abundance of gram-positive bacteria such as Streptomyces spp., and this was negatively correlated with PCS disease severity. Most actinomycete isolates derived from the RB-amended soil showed antagonistic activity against pathogenic Streptomyces scabiei and S. turgidiscabies on R2A medium. Some of the Streptomyces isolates suppressed PCS when they were inoculated onto potato plants in a field experiment. These results suggest that RB amendment increases the levels of antagonistic bacteria against PCS pathogens in the potato rhizosphere. PMID:27050572

  1. Does a rhizospheric microorganism enhance K⁺ availability in agricultural soils?

    PubMed

    Meena, Vijay Singh; Maurya, B R; Verma, Jay Prakash

    2014-01-01

    The potassium solubilizing microorganisms (KSMs) are a rhizospheric microorganism which solubilizes the insoluble potassium (K) to soluble forms of K for plant growth and yield. K-solubilization is carried out by a large number of saprophytic bacteria (Bacillus mucilaginosus, Bacillus edaphicus, Bacillus circulans, Acidothiobacillus ferrooxidans, Paenibacillus spp.) and fungal strains (Aspergillus spp. and Aspergillus terreus). Major amounts of K containing minerals (muscovite, orthoclase, biotite, feldspar, illite, mica) are present in the soil as a fixed form which is not directly taken up by the plant. Nowadays most of the farmers use injudicious application of chemical fertilizers for achieving maximum productivity. However, the KSMs are most important microorganisms for solubilizing of fixed form of K in soil system. The KSMs are an indigenous rhizospheric microorganism which shows effective interaction between soil and plant systems. The main mechanism of KSMs is acidolysis, chelation, exchange reactions, complexolysis and production of organic acid. According to literature, currently negligible use of potassium fertilizer as a chemical form has been recorded in agriculture for enhancing crop yield. Most of the farmers use only nitrogen and phosphorus and not use the K fertilizer due to unawareness so that the problem of K deficiency occurs in rhizospheric soils. The K fertilizer is also costly as compared to other chemical fertilizers. Therefore, the efficient KSMs should be applied for solubilization of a fixed form of K to an available form of K in the soils. This available K can be easily taken up by the plant for growth and development. Our aim of this review is to elaborate on the studies of indigenous K-solubilizing microbes to develop efficient microbial consortia for solubilization of K in soil which enhances the plant growth and yield of crops. This review highlights the future need for research on potassium (K) in agriculture. PMID:24315210

  2. Pyrosequencing assessment of rhizosphere fungal communities from a soybean field.

    PubMed

    Sugiyama, Akifumi; Ueda, Yoshikatsu; Takase, Hisabumi; Yazaki, Kazufumi

    2014-10-01

    Soil fungal communities play essential roles in soil ecosystems, affecting plant growth and health. Rhizosphere bacterial communities have been shown to undergo dynamic changes during plant growth. This study utilized 454 pyrosequencing to analyze rhizosphere fungal communities during soybean growth. Members of the Ascomycota and Basiodiomycota dominated in all soils. There were no statistically significant changes at the phylum level among growth stages or between bulk and rhizosphere soils. In contrast, the relative abundance of small numbers of operational taxonomic units, 4 during growth and 28 between bulk and rhizosphere soils, differed significantly. Clustering analysis revealed that rhizosphere fungal communities were different from bulk fungal communities during growth stages of soybeans. Taken together, these results suggest that in contrast to rhizosphere bacterial communities, most constituents of rhizosphere fungal communities remained stable during soybean growth. PMID:25264806

  3. Bacterial communities associated with the rhizosphere of pioneer plants (Bahia xylopoda and Viguiera linearis) growing on heavy metals-contaminated soils.

    PubMed

    Navarro-Noya, Yendi E; Jan-Roblero, Janet; González-Chávez, Maria del Carmen; Hernández-Gama, Regina; Hernández-Rodríguez, César

    2010-05-01

    In this study, the bacterial communities associated with the rhizospheres of pioneer plants Bahia xylopoda and Viguiera linearis were explored. These plants grow on silver mine tailings with high concentration of heavy metals in Zacatecas, Mexico. Metagenomic DNAs from rhizosphere and bulk soil were extracted to perform a denaturing gradient gel electrophoresis analysis (DGGE) and to construct 16S rRNA gene libraries. A moderate bacterial diversity and twelve major phylogenetic groups including Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes, Chloroflexi, Firmicutes, Verrucomicrobia, Nitrospirae and Actinobacteria phyla, and divisions TM7, OP10 and OD1 were recognized in the rhizospheres. Only 25.5% from the phylotypes were common in the rhizosphere libraries and the most abundant groups were members of the phyla Acidobacteria and Betaproteobacteria (Thiobacillus spp., Nitrosomonadaceae). The most abundant groups in bulk soil library were Acidobacteria and Actinobacteria, and no common phylotypes were shared with the rhizosphere libraries. Many of the clones detected were related with chemolithotrophic and sulfur-oxidizing bacteria, characteristic of an environment with a high concentration of heavy metal-sulfur complexes, and lacking carbon and organic energy sources. PMID:20084459

  4. Peudomonas fluorescens diversity and abundance in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Amina, Melinai; Ahmed, Bensoltane; Khaladi, Mederbel

    2010-05-01

    It is now over 30 years since that a several plant associated strains of fluorescent Pseudomonas spp. are known to produce antimicrobial metabolites, playing a significant role in the biological control of a lot of plant diseases. For that, the interest in the use of these bacteria for biocontrol of plant pathogenic agents has increased. However, few comprehensive studies have described the abundance of this soil borne bacteria in the region of Mascara (Northern-Algerian West). In the connection of this problem, this work was done by monitoring the number of indigenous Pseudomonas fluorescens organisms in three stations characterizing different ecosystems, to document their abundance, diversity and investigate the relationship between P. fluorescens abundance and soil properties. Our quantitative plate counting results hence the conception of their ecology in the rhizosphere. Thus, quantitative results has confirmed that P. fluorescens are successful root colonizers with strong predominance and competed for many ecological niche, where their distribution were correlated significantly (P<0.05) with the majority of soil properties. Keywords: P. Fluorescens, Ecosystems, Abundance, Diversity, Correlated, Soil Properties.

  5. Rhizosphere biophysics and root water uptake

    NASA Astrophysics Data System (ADS)

    Carminati, Andrea; Zarebanadkouki, Mohsen; Ahmed, Mutez A.; Passioura, John

    2016-04-01

    The flow of water into the roots and the (putative) presence of a large resistance at the root-soil interface have attracted the attention of plant and soil scientists for decades. Such resistance has been attributed to a partial contact between roots and soil, large gradients in soil matric potential around the roots, or accumulation of solutes at the root surface creating a negative osmotic potential. Our hypothesis is that roots are capable of altering the biophysical properties of the soil around the roots, the rhizosphere, facilitating root water uptake in dry soils. In particular, we expect that root hairs and mucilage optimally connect the roots to the soil maintaining the hydraulic continuity across the rhizosphere. Using a pressure chamber apparatus we measured the relation between transpiration rate and the water potential difference between soil and leaf xylem during drying cycles in barley mutants with and without root hairs. The samples were grown in well structured soils. At low soil moistures and high transpiration rates, large drops in water potential developed around the roots. These drops in water potential recovered very slowly, even after transpiration was severely decreased. The drops in water potential were much bigger in barley mutants without root hairs. These mutants failed to sustain high transpiration rates in dry conditions. To explain the nature of such drops in water potential across the rhizosphere we performed high resolution neutron tomography of the rhizosphere of the barleys with and without root hairs growing in the same soil described above. The tomograms suggested that the hydraulic contact between the soil structures was the highest resistance for the water flow in dry conditions. The tomograms also indicate that root hairs and mucilage improved the hydraulic contact between roots and soil structures. At high transpiration rates and low water contents, roots extracted water from the rhizosphere, while the bulk soil, due its

  6. The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots.

    PubMed

    York, Larry M; Carminati, Andrea; Mooney, Sacha J; Ritz, Karl; Bennett, Malcolm J

    2016-06-01

    Despite often being conceptualized as a thin layer of soil around roots, the rhizosphere is actually a dynamic system of interacting processes. Hiltner originally defined the rhizosphere as the soil influenced by plant roots. However, soil physicists, chemists, microbiologists, and plant physiologists have studied the rhizosphere independently, and therefore conceptualized the rhizosphere in different ways and using contrasting terminology. Rather than research-specific conceptions of the rhizosphere, the authors propose a holistic rhizosphere encapsulating the following components: microbial community gradients, macroorganisms, mucigel, volumes of soil structure modification, and depletion or accumulation zones of nutrients, water, root exudates, volatiles, and gases. These rhizosphere components are the result of dynamic processes and understanding the integration of these processes will be necessary for future contributions to rhizosphere science based upon interdisciplinary collaborations. In this review, current knowledge of the rhizosphere is synthesized using this holistic perspective with a focus on integrating traditionally separated rhizosphere studies. The temporal dynamics of rhizosphere activities will also be considered, from annual fine root turnover to diurnal fluctuations of water and nutrient uptake. The latest empirical and computational methods are discussed in the context of rhizosphere integration. Clarification of rhizosphere semantics, a holistic model of the rhizosphere, examples of integration of rhizosphere studies across disciplines, and review of the latest rhizosphere methods will empower rhizosphere scientists from different disciplines to engage in the interdisciplinary collaborations needed to break new ground in truly understanding the rhizosphere and to apply this knowledge for practical guidance. PMID:26980751

  7. Taxonomical and functional microbial community selection in soybean rhizosphere.

    PubMed

    Mendes, Lucas W; Kuramae, Eiko E; Navarrete, Acácio A; van Veen, Johannes A; Tsai, Siu M

    2014-08-01

    This study addressed the selection of the rhizospheric microbial community from the bulk soil reservoir under agricultural management of soybean in Amazon forest soils. We used a shotgun metagenomics approach to investigate the taxonomic and functional diversities of microbial communities in the bulk soil and in the rhizosphere of soybean plants and tested the validity of neutral and niche theories to explain the rhizosphere community assembly processes. Our results showed a clear selection at both taxonomic and functional levels operating in the assembly of the soybean rhizosphere community. The taxonomic analysis revealed that the rhizosphere community is a subset of the bulk soil community. Species abundance in rhizosphere fits the log-normal distribution model, which is an indicator of the occurrence of niche-based processes. In addition, the data indicate that the rhizosphere community is selected based on functional cores related to the metabolisms of nitrogen, iron, phosphorus and potassium, which are related to benefits to the plant, such as growth promotion and nutrition. The network analysis including bacterial groups and functions was less complex in rhizosphere, suggesting the specialization of some specific metabolic pathways. We conclude that the assembly of the microbial community in the rhizosphere is based on niche-based processes as a result of the selection power of the plant and other environmental factors. PMID:24553468

  8. Taxonomical and functional microbial community selection in soybean rhizosphere

    PubMed Central

    Mendes, Lucas W; Kuramae, Eiko E; Navarrete, Acácio A; van Veen, Johannes A; Tsai, Siu M

    2014-01-01

    This study addressed the selection of the rhizospheric microbial community from the bulk soil reservoir under agricultural management of soybean in Amazon forest soils. We used a shotgun metagenomics approach to investigate the taxonomic and functional diversities of microbial communities in the bulk soil and in the rhizosphere of soybean plants and tested the validity of neutral and niche theories to explain the rhizosphere community assembly processes. Our results showed a clear selection at both taxonomic and functional levels operating in the assembly of the soybean rhizosphere community. The taxonomic analysis revealed that the rhizosphere community is a subset of the bulk soil community. Species abundance in rhizosphere fits the log-normal distribution model, which is an indicator of the occurrence of niche-based processes. In addition, the data indicate that the rhizosphere community is selected based on functional cores related to the metabolisms of nitrogen, iron, phosphorus and potassium, which are related to benefits to the plant, such as growth promotion and nutrition. The network analysis including bacterial groups and functions was less complex in rhizosphere, suggesting the specialization of some specific metabolic pathways. We conclude that the assembly of the microbial community in the rhizosphere is based on niche-based processes as a result of the selection power of the plant and other environmental factors. PMID:24553468

  9. New Methods To Unravel Rhizosphere Processes.

    PubMed

    Oburger, Eva; Schmidt, Hannes

    2016-03-01

    Root-triggered processes (growth, uptake and release of solutes) vary in space and time, and interact with heterogeneous soil microenvironments that provide habitats for (micro)biota on various scales. Despite tremendous progress in method development in the past decades, finding a suitable experimental set-up to investigate processes occurring at the dynamic conjunction of biosphere, hydrosphere, and pedosphere in the close vicinity of active plant roots still represents a major challenge. We discuss recent methodological developments in rhizosphere research with a focus on imaging techniques. We further review established concepts that have been updated with novel techniques, highlighting the need for combinatorial approaches to disentangle rhizosphere processes on relevant scales. PMID:26776474

  10. Early rhizosphere microbiome composition is related to the growth and Zn uptake of willows introduced to a former landfill.

    PubMed

    Bell, Terrence H; Cloutier-Hurteau, Benoît; Al-Otaibi, Fahad; Turmel, Marie-Claude; Yergeau, Etienne; Courchesne, François; St-Arnaud, Marc

    2015-08-01

    Although plants introduced for site restoration are pre-selected for specific traits (e.g. trace element bioaccumulation, rapid growth in poor soils), the in situ success of these plants likely depends on the recruitment of appropriate rhizosphere microorganisms from their new environment. We introduced three willow (Salix spp.) cultivars to a contaminated landfill, and performed soil chemical analyses, plant measurements, and Ion Torrent sequencing of rhizospheric fungal and bacterial communities at 4 and 16 months post-planting. The abundance of certain dominant fungi was linked to willow accumulation of Zn, the most abundant trace element at the site. Interestingly, total Zn accumulation was better explained by fungal community structure 4 months post-planting than 16 months post-planting, suggesting that initial microbial recruitment may be critical. In addition, when the putative ectomycorrhizal fungi Sphaerosporella brunnea and Inocybe sp. dominated the rhizosphere 4 months post-planting, Zn accumulation efficiency was negatively correlated with fungal diversity. Although field studies such as this rely on correlation, these results suggest that the soil microbiome may have the greatest impact on plant function during the early stages of growth, and that plant-fungus specificity may be essential. PMID:25970820

  11. Geochemical control of microbial Fe(III) reduction potential in wetlands: Comparison of the rhizosphere to non-rhizosphere soil

    USGS Publications Warehouse

    Weiss, J.V.; Emerson, D.; Megonigal, J.P.

    2004-01-01

    We compared the reactivity and microbial reduction potential of Fe(III) minerals in the rhizosphere and non-rhizosphere soil to test the hypothesis that rapid Fe(III) reduction rates in wetland soils are explained by rhizosphere processes. The rhizosphere was defined as the area immediately adjacent to a root encrusted with Fe(III)-oxides or Fe plaque, and non-rhizosphere soil was 0.5 cm from the root surface. The rhizosphere had a significantly higher percentage of poorly crystalline Fe (66??7%) than non-rhizosphere soil (23??7%); conversely, non-rhizosphere soil had a significantly higher proportion of crystalline Fe (50??7%) than the rhizosphere (18??7%, P<0.05 in all cases). The percentage of poorly crystalline Fe(III) was significantly correlated with the percentage of FeRB (r=0.76), reflecting the fact that poorly crystalline Fe(III) minerals are labile with respect to microbial reduction. Abiotic reductive dissolution consumed about 75% of the rhizosphere Fe(III)-oxide pool in 4 h compared to 23% of the soil Fe(III)-oxide pool. Similarly, microbial reduction consumed 75-80% of the rhizosphere pool in 10 days compared to 30-40% of the non-rhizosphere soil pool. Differences between the two pools persisted when samples were amended with an electron-shuttling compound (AQDS), an Fe(III)-reducing bacterium (Geobacter metallireducens), and organic carbon. Thus, Fe(III)-oxide mineralogy contributed strongly to differences in the Fe(III) reduction potential of the two pools. Higher amounts of poorly crystalline Fe(III) and possibly humic substances, and a higher Fe(III) reduction potential in the rhizosphere compared to the non-rhizosphere soil, suggested the rhizosphere is a site of unusually active microbial Fe cycling. The results were consistent with previous speculation that rapid Fe cycling in wetlands is due to the activity of wetland plant roots. ?? 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

  12. Characterization of rhizosphere bacteria for control of phytopathogenic fungi of tomato.

    PubMed

    Pastor, Nicolás; Carlier, Evelin; Andrés, Javier; Rosas, Susana B; Rovera, Marisa

    2012-03-01

    Fluorescent Pseudomonas spp., isolated from rhizosphere soil of tomato and pepper plants, were evaluated in vitro as potential antagonists of fungal pathogens. Strains were characterized using the API 20NE biochemical system, and tested against the causal agents of stem canker and leaf blight (Alternaria alternata f. sp. lycopersici), southern blight (Sclerotium rolfsii Sacc.), and root rot (Fusarium solani). To this end, dual culture antagonism assays were carried out on 25% Tryptic Soy Agar, King B medium, and Potato Dextrose Agar to determine the effect of the strains on mycelial growth of the pathogens. The effect of two concentrations of FeCl(3) on antagonism against Alternaria alternata f. sp. lycopersici was also tested. In addition, strains were screened for ability to produce exoenzymes and siderophores. Finally, the selected Pseudomonas strain, PCI2, was evaluated for effect on tomato seedling development and as a potential candidate for controlling tomato damping-off caused by Sclerotium rolfsii Sacc., under growth chamber conditions. All strains significantly inhibited Alternaria alternata f. sp. lycopersici, particularly in 25% TSA medium. Antagonistic effect on Sclerotium rolfsii Sacc. and Fusarium solani was greater on King B medium. Protease was produced by 30% of the strains, but no strains produced cellulase or chitinase. Growth chamber studies resulted in significant increases in plant stand as well as in root dry weight. PCI2 was able to establish and survive in tomato plants rhizosphere after 40 days following planting of bacterized seeds. PMID:21507555

  13. Microbial Community Structure in the Rhizosphere of Rice Plants

    PubMed Central

    Breidenbach, Björn; Pump, Judith; Dumont, Marc G.

    2016-01-01

    The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa) was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e., rhizosphere versus bulk soil) had a greater effect on the community structure than did time (e.g., plant growth stage). Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g., Geobacter, Anaeromyxobacter) and fermenters (e.g., Clostridiaceae, Opitutaceae) were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth. PMID:26793175

  14. STRESS ETHYLENE: A BIOASSAY FOR RHIZOSPHERE-APPLIED PHYTOTOXICANTS

    EPA Science Inventory

    A bioassay for rhizosphere-applied phytotoxicants was developed and evaluated with a broad range of chemicals. Test substances were applied to the rhizosphere of whole, intact bush bean plants (Phaseolus vulgaris L. cv. Bush Blue Lake 290) grown in a solid support medium and the ...

  15. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil

    SciTech Connect

    DeAngelis, K.M.; Lindow, S.E.; Firestone, M.K.

    2008-10-01

    Plant photosynthate fuels carbon-limited microbial growth and activity, resulting in increased rhizosphere nitrogen (N)-mineralization. Most soil organic N is macromolecular (chitin, protein, nucleotides); enzymatic depolymerization is likely rate-limiting for plant N accumulation. Analyzing Avena (wild oat) planted in microcosms containing sieved field soil, we observed increased rhizosphere chitinase and protease specific activities, bacterial cell densities, and dissolved organic nitrogen (DON) compared to bulk soil. Low-molecular weight DON (<3000 Da) was undetectable in bulk soil but comprised 15% of rhizosphere DON. Extracellular enzyme production in many bacteria requires quorum sensing (QS), cell-density dependent group behavior. Because proteobacteria are considered major rhizosphere colonizers, we assayed the proteobacterial QS signals acyl-homoserine lactones (AHLs), which were significantly increased in the rhizosphere. To investigate the linkage between soil signaling and N cycling, we characterized 533 bacterial isolates from Avena rhizosphere: 24% had chitinase or protease activity and AHL production; disruption of QS in 7 of 8 eight isolates disrupted enzyme activity. Many {alpha}-Proteobacteria were newly found with QS-controlled extracellular enzyme activity. Enhanced specific activities of N-cycling enzymes accompanied by bacterial density-dependent behaviors in rhizosphere soil gives rise to the hypothesis that QS could be a control point in the complex process of rhizosphere N-mineralization.

  16. Bacterial Abilities and Adaptation Toward the Rhizosphere Colonization.

    PubMed

    Lopes, Lucas D; Pereira E Silva, Michele de Cássia; Andreote, Fernando D

    2016-01-01

    The rhizosphere harbors one of the most complex, diverse, and active plant-associated microbial communities. This community can be recruited by the plant host to either supply it with nutrients or to help in the survival under stressful conditions. Although selection for the rhizosphere community is evident, the specific bacterial traits that make them able to colonize this environment are still poorly understood. Thus, here we used a combination of community level physiological profile (CLPP) analysis and 16S rRNA gene quantification and sequencing (coupled with in silico analysis and metagenome prediction), to get insights on bacterial features and processes involved in rhizosphere colonization of sugarcane. CLPP revealed a higher metabolic activity in the rhizosphere compared to bulk soil, and suggested that D-galacturonic acid plays a role in bacterial selection by the plant roots (supported by results of metagenome prediction). Quantification of the 16S rRNA gene confirmed the higher abundance of bacteria in the rhizosphere. Sequence analysis showed that of the 252 classified families sampled, 24 were significantly more abundant in the bulk soil and 29 were more abundant in the rhizosphere. Furthermore, metagenomes predicted from the 16S rRNA gene sequences revealed a significant higher abundance of predicted genes associated with biofilm formation and with horizontal gene transfer (HGT) processes. In sum, this study identified major bacterial groups and their potential abilities to occupy the sugarcane rhizosphere, and indicated that polygalacturonase activity and HGT events may be important features for rhizosphere colonization. PMID:27610108

  17. Bacterial Abilities and Adaptation Toward the Rhizosphere Colonization

    PubMed Central

    Lopes, Lucas D.; Pereira e Silva, Michele de Cássia; Andreote, Fernando D.

    2016-01-01

    The rhizosphere harbors one of the most complex, diverse, and active plant-associated microbial communities. This community can be recruited by the plant host to either supply it with nutrients or to help in the survival under stressful conditions. Although selection for the rhizosphere community is evident, the specific bacterial traits that make them able to colonize this environment are still poorly understood. Thus, here we used a combination of community level physiological profile (CLPP) analysis and 16S rRNA gene quantification and sequencing (coupled with in silico analysis and metagenome prediction), to get insights on bacterial features and processes involved in rhizosphere colonization of sugarcane. CLPP revealed a higher metabolic activity in the rhizosphere compared to bulk soil, and suggested that D-galacturonic acid plays a role in bacterial selection by the plant roots (supported by results of metagenome prediction). Quantification of the 16S rRNA gene confirmed the higher abundance of bacteria in the rhizosphere. Sequence analysis showed that of the 252 classified families sampled, 24 were significantly more abundant in the bulk soil and 29 were more abundant in the rhizosphere. Furthermore, metagenomes predicted from the 16S rRNA gene sequences revealed a significant higher abundance of predicted genes associated with biofilm formation and with horizontal gene transfer (HGT) processes. In sum, this study identified major bacterial groups and their potential abilities to occupy the sugarcane rhizosphere, and indicated that polygalacturonase activity and HGT events may be important features for rhizosphere colonization. PMID:27610108

  18. Biological control of potato black scurf by rhizosphere associated bacteria

    PubMed Central

    Tariq, Mohsin; Yasmin, Sumera; Hafeez, Fauzia Y.

    2010-01-01

    The present work was carried out to study the potential of plant rhizosphere associated bacteria for the biocontrol of potato black scurf disease caused by Rhizoctonia solani Khun AG-3. A total of twenty-eight bacteria isolated from diseased and healthy potato plants grown in the soil of Naran and Faisalabad, Pakistan were evaluated for their antagonistic potential. Nine bacterial strains were found to be antagonistic in vitro, reduced the fungal growth and caused the lysis of sclerotia of R. solani in dual culture assay as well as in extracellular metabolite efficacy test. The selected antagonistic strains were further tested for the production and efficacy of volatile and diffusible antibiotics, lytic enzymes and siderophores against R. solani. Selected antagonistic bacteria were also characterized for growth promoting attributes i.e., phosphate solubilization, nitrogen fixation and indole acetic acid production. Biocontrol efficacy and percent yield increase by these antagonists was estimated in greenhouse experiment. Statistical analysis showed that two Pseudomonas spp. StT2 and StS3 were the most effective with 65.1 and 73.9 percent biocontrol efficacy, as well as 87.3 and 98.3 percent yield increase, respectively. Potential antagonistic bacterial strain StS3 showed maximum homology to Pseudomonas sp. as determined by 16S rRNA gene sequencing. These results suggest that bacterial isolates StS3 and StT2 have excellent potential to be used as effective biocontrol agents promoting plant growth with reduced disease incidence. PMID:24031515

  19. Rhizosphere chemical dialogues: plant-microbe interactions

    SciTech Connect

    Badri, D.V.; van der Lelie, D.; Weir, T. L.; Vivanco, J. M.

    2009-12-01

    Every organism on earth relies on associations with its neighbors to sustain life. For example, plants form associations with neighboring plants, microflora, and microfauna, while humans maintain symbiotic associations with intestinal microbial flora, which is indispensable for nutrient assimilation and development of the innate immune system. Most of these associations are facilitated by chemical cues exchanged between the host and the symbionts. In the rhizosphere, which includes plant roots and the surrounding area of soil influenced by the roots, plants exude chemicals to effectively communicate with their neighboring soil organisms. Here we review the current literature pertaining to the chemical communication that exists between plants and microorganisms and the biological processes they sustain.

  20. Successional trajectories of rhizosphere bacterial communities over consecutive seasons

    SciTech Connect

    Shi, Shengjing; Nuccio, Erin; Herman, Donald J.; Rijkers, Ruud; Estera, Katerina; Li, Jiabao; da Rocha, Ulisses Nunes; He, Zhili; Pett-Ridge, Jennifer; Brodie, Eoin L.; Zhou, Jizhong; Firestone, Mary

    2015-08-04

    It is well known that rhizosphere microbiomes differ from those of surrounding soil, and yet we know little about how these root-associated microbial communities change through the growing season and between seasons. We analyzed the response of soil bacteria to roots of the common annual grass Avena fatua over two growing seasons using high-throughput sequencing of 16S rRNA genes. Over the two periods of growth, the rhizosphere bacterial communities followed consistent successional patterns as plants grew, although the starting communities were distinct. Succession in the rhizosphere was characterized by a significant decrease in both taxonomic and phylogenetic diversity relative to background soil communities, driven by reductions in both richness and evenness of the bacterial communities. Plant roots selectively stimulated the relative abundance of Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes but reduced the abundance of Acidobacteria, Actinobacteria, and Firmicutes. Taxa that increased in relative abundance in the rhizosphere soil displayed phylogenetic clustering, suggesting some conservation and an evolutionary basis for the response of complex soil bacterial communities to the presence of plant roots. The reproducibility of rhizosphere succession and the apparent phylogenetic conservation of rhizosphere competence traits suggest adaptation of the indigenous bacterial community to this common grass over the many decades of its presence. We document the successional patterns of rhizosphere bacterial communities associated with a “wild” annual grass, Avena fatua, which is commonly a dominant plant in Mediterranean-type annual grasslands around the world; the plant was grown in its grassland soil. Most studies documenting rhizosphere microbiomes address “domesticated” plants growing in soils to which they are introduced. Rhizosphere bacterial communities exhibited a pattern of temporal

  1. Successional trajectories of rhizosphere bacterial communities over consecutive seasons

    DOE PAGESBeta

    Shi, Shengjing; Nuccio, Erin; Herman, Donald J.; Rijkers, Ruud; Estera, Katerina; Li, Jiabao; da Rocha, Ulisses Nunes; He, Zhili; Pett-Ridge, Jennifer; Brodie, Eoin L.; et al

    2015-08-04

    It is well known that rhizosphere microbiomes differ from those of surrounding soil, and yet we know little about how these root-associated microbial communities change through the growing season and between seasons. We analyzed the response of soil bacteria to roots of the common annual grass Avena fatua over two growing seasons using high-throughput sequencing of 16S rRNA genes. Over the two periods of growth, the rhizosphere bacterial communities followed consistent successional patterns as plants grew, although the starting communities were distinct. Succession in the rhizosphere was characterized by a significant decrease in both taxonomic and phylogenetic diversity relative tomore » background soil communities, driven by reductions in both richness and evenness of the bacterial communities. Plant roots selectively stimulated the relative abundance of Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes but reduced the abundance of Acidobacteria, Actinobacteria, and Firmicutes. Taxa that increased in relative abundance in the rhizosphere soil displayed phylogenetic clustering, suggesting some conservation and an evolutionary basis for the response of complex soil bacterial communities to the presence of plant roots. The reproducibility of rhizosphere succession and the apparent phylogenetic conservation of rhizosphere competence traits suggest adaptation of the indigenous bacterial community to this common grass over the many decades of its presence. We document the successional patterns of rhizosphere bacterial communities associated with a “wild” annual grass, Avena fatua, which is commonly a dominant plant in Mediterranean-type annual grasslands around the world; the plant was grown in its grassland soil. Most studies documenting rhizosphere microbiomes address “domesticated” plants growing in soils to which they are introduced. Rhizosphere bacterial communities exhibited a pattern of temporal succession that was consistent and repeatable

  2. Biphenyl-Metabolizing Bacteria in the Rhizosphere of Horseradish and Bulk Soil Contaminated by Polychlorinated Biphenyls as Revealed by Stable Isotope Probing▿ †

    PubMed Central

    Uhlik, Ondrej; Jecna, Katerina; Mackova, Martina; Vlcek, Cestmir; Hroudova, Miluse; Demnerova, Katerina; Paces, Vaclav; Macek, Tomas

    2009-01-01

    DNA-based stable isotope probing in combination with terminal restriction fragment length polymorphism was used in order to identify members of the microbial community that metabolize biphenyl in the rhizosphere of horseradish (Armoracia rusticana) cultivated in soil contaminated with polychlorinated biphenyls (PCBs) compared to members of the microbial community in initial, uncultivated bulk soil. On the basis of early and recurrent detection of their 16S rRNA genes in clone libraries constructed from [13C]DNA, Hydrogenophaga spp. appeared to dominate biphenyl catabolism in the horseradish rhizosphere soil, whereas Paenibacillus spp. were the predominant biphenyl-utilizing bacteria in the initial bulk soil. Other bacteria found to derive carbon from biphenyl in this nutrient-amended microcosm-based study belonged mostly to the class Betaproteobacteria and were identified as Achromobacter spp., Variovorax spp., Methylovorus spp., or Methylophilus spp. Some bacteria that were unclassified at the genus level were also detected, and these bacteria may be members of undescribed genera. The deduced amino acid sequences of the biphenyl dioxygenase α subunits (BphA) from bacteria that incorporated [13C]into DNA in 3-day incubations of the soils with [13C]biphenyl are almost identical to that of Pseudomonas alcaligenes B-357. This suggests that the spectrum of the PCB congeners that can be degraded by these enzymes may be similar to that of strain B-357. These results demonstrate that altering the soil environment can result in the participation of different bacteria in the metabolism of biphenyl. PMID:19700551

  3. Relevance of extracellular DNA in rhizosphere

    NASA Astrophysics Data System (ADS)

    Pietramellara, Giacomo; Ascher, Judith; Baraniya, Divyashri; Arfaioli, Paola; Ceccherini, Maria Teresa; Hawes, Martha

    2013-04-01

    One of the most promising areas for future development is the manipulation of the rhizosphere to produce sustainable and efficient agriculture production systems. Using Omics approaches, to define the distinctive features of eDNA systems and structures, will facilitate progress in rhizo-enforcement and biocontrol studies. The relevance of these studies results clear when we consider the plethora of ecological functions in which eDNA is involved. This fraction can be actively extruded by living cells or discharged during cellular lysis and may exert a key role in the stability and variability of the soil bacterial genome, resulting also a source of nitrogen and phosphorus for plants due to the root's capacity to directly uptake short DNA fragments. The adhesive properties of the DNA molecule confer to eDNA the capacity to inhibit or kill pathogenic bacteria by cation limitation induction, and to facilitate formation of biofilm and extracellular traps (ETs), that may protect microorganisms inhabiting biofilm and plant roots against pathogens and allelopathic substances. The ETs are actively extruded by root border cells when they are dispersed in the rhizosphere, conferring to plants the capacity to extend an endogenous pathogen defence system outside the organism. Moreover, eDNA could be involved in rhizoremediation in heavy metal polluted soil acting as a bioflotation reagent.

  4. Visualizing Rhizosphere Soil Structure Around Living Roots

    NASA Astrophysics Data System (ADS)

    Menon, M.; Berli, M.; Ghezzehei, T. A.; Nico, P.; Young, M. H.; Tyler, S. W.

    2008-12-01

    The rhizosphere, a thin layer of soil (0 to 2 mm) surrounding a living root, is an important interface between bulk soil and plant root and plays a critical role in root water and nutrient uptake. In this study, we used X-ray Computerized Microtomography (microCT) to visualize soil structure around living roots non-destructively and with high spatial resolution. Four different plant species (Helianthus annuus, Lupinus hartwegii, Vigna radiata and Phaseolus lunatus), grown in four different porous materials (glass beads, medium and coarse sand, loam aggregates), were scanned with 10 ìm spatial resolution, using the microtomography beamline 8.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA. Sample cross section images clearly show contacts between roots and soil particles, connecting water films, air-water interfaces as well as some cellular features of the plants taproots. We found with a simulation experiment, inflating a cylindrical micro-balloon in a pack of air-dry loam aggregates, that soil fracturing rather than compaction might occur around a taproot growing in dry soil. Form these preliminary experiments, we concluded that microCT has potential as a tool for a more process-based understanding of the role of rhizosphere soil structure on soil fertility, plant growth and the water balance at the earth-atmosphere interface.

  5. Emerging pathogens: Aeromonas spp.

    PubMed

    Merino, S; Rubires, X; Knochel, S; Tomas, J M

    1995-12-01

    Aeromonas spp. are Gram-negative rods of the family Vibrionaceae. They are normal water inhabitants and are part of the regular flora of poiquilotherm and homeotherm animals. They can be isolated from many foodstuffs (green vegetables, raw milk, ice cream, meat and seafood). Mesophilic Aeromonas spp. have been classified following the AeroKey II system (Altwegg et al., 1990; Carnahan et al., 1991). The major human diseases caused by Aeromonas spp. can be classified in two major groups: septicemia (mainly by strains of A. veronii subsp. sobria and A. hydrophila), and gastroenteritis (any mesophilic Aeromonas spp. but principally A. hydrophila and A. veronii). Most epidemiological studies have shown Aeromonas spp. in stools to be more often associated with diarrhea than with the carrier state; an association with the consumption of untreated water was also conspicuous. Acute self-limited diarrhea is more frequent in young children, in older patients chronic enterocolitis may also be observed. Fever, vomiting, and fecal leukocytes or erythrocytes (colitis) may be present (Janda, 1991). The main putative virulence factors are: exotoxins, endotoxin (LPS), presence of S-layers, fimbriae or adhesins and the capacity to form capsules. PMID:8750664

  6. Actinomycetes in the rhizosphere of semidesert soils of Mongolia

    NASA Astrophysics Data System (ADS)

    Norovsuren, Zh.; Zenova, G. M.; Mosina, L. V.

    2007-04-01

    The population density of actinomycetes in the desert-steppe soil, rhizosphere, and the above-ground parts of plants varies from tens to hundreds of thousands of colony-forming units (CFU) per gram of substrate. The actinomycetal complexes of the brown desert-steppe soil without plant roots are more diverse in their taxonomic composition than the actinomycetal complexes in the rhizosphere and the aboveground parts of plants. Additionally to representatives of the Streptomyces and Micromonospora genera, actinomycetes from the Nocardia, Saccharopolyspora, Thermomonospora, and Actinomadura genera were identified in the soil. The population density of actinomycetes in the rhizosphere and in the soil reached hundreds of thousand CFU/g; it considerably exceeded the population density of actinomycetes in the aboveground parts of plants. The maximum population density of actinomycetes was determined in the rhizosphere of Asparagus gobicus, Salsola pestifera, and Cleistogenes songorica.

  7. Quantifying rhizosphere respiration for two cool-season perennial forages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the regulation of ecosystem carbon dioxide flux from forage production systems requires knowledge of component fluxes, including photosynthetic uptake and respiratory loss. Experimental separation of soil respiration into its heterotrophic (free-living soil organisms) and rhizosphere c...

  8. Plant growth promoting bacteria from Crocus sativus rhizosphere.

    PubMed

    Ambardar, Sheetal; Vakhlu, Jyoti

    2013-12-01

    Present study deals with the isolation of rhizobacteria and selection of plant growth promoting bacteria from Crocus sativus (Saffron) rhizosphere during its flowering period (October-November). Bacterial load was compared between rhizosphere and bulk soil by counting CFU/gm of roots and soil respectively, and was found to be ~40 times more in rhizosphere. In total 100 bacterial isolates were selected randomly from rhizosphere and bulk soil (50 each) and screened for in-vitro and in vivo plant growth promoting properties. The randomly isolated bacteria were identified by microscopy, biochemical tests and sequence homology of V1-V3 region of 16S rRNA gene. Polyphasic identification categorized Saffron rhizobacteria and bulk soil bacteria into sixteen different bacterial species with Bacillus aryabhattai (WRF5-rhizosphere; WBF3, WBF4A and WBF4B-bulk soil) common to both rhizosphere as well as bulk soil. Pseudomonas sp. in rhizosphere and Bacillus and Brevibacterium sp. in the bulk soil were the predominant genera respectively. The isolated rhizobacteria were screened for plant growth promotion activity like phosphate solubilization, siderophore and indole acetic acid production. 50 % produced siderophore and 33 % were able to solubilize phosphate whereas all the rhizobacterial isolates produced indole acetic acid. The six potential PGPR showing in vitro activities were used in pot trial to check their efficacy in vivo. These bacteria consortia demonstrated in vivo PGP activity and can be used as PGPR in Saffron as biofertilizers.This is the first report on the isolation of rhizobacteria from the Saffron rhizosphere, screening for plant growth promoting bacteria and their effect on the growth of Saffron plant. PMID:23749248

  9. Soil bacterial communities associated with natural and commercial Cyclopia spp.

    PubMed

    Postma, Anneke; Slabbert, Etienne; Postma, Ferdinand; Jacobs, Karin

    2016-03-01

    The commercially important plants in the genus Cyclopia spp. are indigenous to the Cape Floristic Region of South Africa and are used to manufacture an herbal tea known as honeybush tea. Growing in the low nutrient fynbos soils, these plants are highly dependent on symbiotic interactions with soil microorganisms for nutrient acquisition. The aim of this study was to investigate the soil bacterial communities associated with two commercially important Cyclopia species, namely C. subternata and C. longifolia. Specific interest was the differences between rhizosphere and bulk soil collected from natural sites and commercially grown plants. Samples were collected on two occasions to include a dry summer and wet winter season. Results showed that the dominant bacterial taxa associated with these plants included Acidobacteria, Actinobacteria, Bacteroidetes and Proteobacteria. Commercial and natural as well as rhizosphere and bulk soil samples were highly similar in bacterial diversity and species richness. Significant differences were detected in bacterial community structures and co-occurrence patterns between the wet and dry seasons. The results of this study improved our knowledge on what effect commercial Cyclopia plantations and seasonal changes can have on soil bacterial communities within the endemic fynbos biome. PMID:26850159

  10. Indigenous populations of three closely related Lysobacter spp. in agricultural soils using real-time PCR.

    PubMed

    Postma, Joeke; Schilder, Mirjam T; van Hoof, Richard A

    2011-11-01

    Previous research had shown that three closely related species of Lysobacter, i.e., Lysobacter antibioticus, Lysobacter capsici, and Lysobacter gummosus, were present in different Rhizoctonia-suppressive soils. However, the population dynamics of these three Lysobacter spp. in different habitats remains unknown. Therefore, a specific primer-probe combination was designed for the combined quantification of these three Lysobacter spp. using TaqMan. Strains of the three target species were efficiently detected with TaqMan, whereas related non-target strains of Lysobacter enzymogenes and Xanthomonas campestris were not or only weakly amplified. Indigenous Lysobacter populations were analyzed in soils of 10 organic farms in the Netherlands during three subsequent years with TaqMan. These soils differed in soil characteristics and crop rotation. Additionally, Lysobacter populations in rhizosphere and bulk soil of different crops on one of these farms were studied. In acid sandy soils low Lysobacter populations were present, whereas pH neutral clay soils contained high populations (respectively, <4.0-5.87 and 6.22-6.95 log gene copy numbers g(-1) soil). Clay content, pH and C/N ratio, but not organic matter content in soil, correlated with higher Lysobacter populations. Unexpectedly, different crops did not significantly influence population size of the three Lysobacter spp. and their populations were barely higher in rhizosphere than in bulk soil. PMID:21448673

  11. Rhizosphere priming effects in two contrasting soils

    NASA Astrophysics Data System (ADS)

    Lloyd, Davidson; Kirk, Guy; Ritz, Karl

    2015-04-01

    Inputs of fresh plant-derived carbon may stimulate the turnover of existing soil organic matter by so-called priming effects. Priming may occur directly, as a result of nutrient 'mining' by existing microbial communities, or indirectly via population adjustments. However the mechanisms are poorly understood. We planted C4 Kikuyu grass (Pennisetum clandestinum) in pots with two contrasting C3 soils (clayey, fertile TB and sandy, acid SH), and followed the soil CO2 efflux and its δ13C. The extent of C deposition in the rhizosphere was altered by intermittently clipping the grass in half the pots; there were also unplanted controls. At intervals, pots were destructively sampled for root and shoot biomass. Total soil CO2 efflux was measured using a gas-tight PVC chamber fitted over bare soil, and connected to an infra-red gas analyser; the δ13C of efflux was measured in air sub-samples withdrawn by syringe. The extent of priming was inferred from the δ13C of efflux and the δ13C of the plant and soil end-members. In unclipped treatments, in both soils, increased total soil respiration and rhizosphere priming effects (RPE) were apparent compared to the unplanted controls. The TB soil had greater RPE overall. The total respiration in clipped TB soil was significantly greater than in the unplanted controls, but in the clipped SH soil it was not significantly different from the controls. Clipping affected plant C partitioning with greater allocation to shoot regrowth from about 4 weeks after planting. Total plant biomass decreased in the order TB unclipped > SH unclipped >TB clipped > SH clipped. The results are consistent with priming driven by microbial activation stimulated by rhizodeposits and by nitrogen demand from the growing plants under N limited conditions. Our data suggest that photosynthesis drives RPE and soil differences may alter the rate and intensity of RPE but not the direction.

  12. Glyphosate effects on soil rhizosphere-associated bacterial communities.

    PubMed

    Newman, Molli M; Hoilett, Nigel; Lorenz, Nicola; Dick, Richard P; Liles, Mark R; Ramsier, Cliff; Kloepper, Joseph W

    2016-02-01

    Glyphosate is one of the most widely used herbicides in agriculture with predictions that 1.35 million metric tons will be used annually by 2017. With the advent of glyphosate tolerant (GT) cropping more than 10 years ago, there is now concern for non-target effects on soil microbial communities that has potential to negatively affect soil functions, plant health, and crop productivity. Although extensive research has been done on short-term response to glyphosate, relatively little information is available on long-term effects. Therefore, the overall objective was to investigate shifts in the rhizosphere bacterial community following long-term glyphosate application on GT corn and soybean in the greenhouse. In this study, rhizosphere soil was sampled from rhizoboxes following 4 growth periods, and bacterial community composition was compared between glyphosate treated and untreated rhizospheres using next-generation barcoded sequencing. In the presence or absence of glyphosate, corn and soybean rhizospheres were dominated by members of the phyla Proteobacteria, Acidobacteria, and Actinobacteria. Proteobacteria (particularly gammaproteobacteria) increased in relative abundance for both crops following glyphosate exposure, and the relative abundance of Acidobacteria decreased in response to glyphosate exposure. Given that some members of the Acidobacteria are involved in biogeochemical processes, a decrease in their abundance could lead to significant changes in nutrient status of the rhizosphere. Our results also highlight the need for applying culture-independent approaches in studying the effects of pesticides on the soil and rhizosphere microbial community. PMID:26580738

  13. Successional Trajectories of Rhizosphere Bacterial Communities over Consecutive Seasons

    PubMed Central

    Shi, Shengjing; Nuccio, Erin; Herman, Donald J.; Rijkers, Ruud; Estera, Katerina; Li, Jiabao; da Rocha, Ulisses Nunes; He, Zhili; Pett-Ridge, Jennifer; Brodie, Eoin L.; Zhou, Jizhong

    2015-01-01

    ABSTRACT It is well known that rhizosphere microbiomes differ from those of surrounding soil, and yet we know little about how these root-associated microbial communities change through the growing season and between seasons. We analyzed the response of soil bacteria to roots of the common annual grass Avena fatua over two growing seasons using high-throughput sequencing of 16S rRNA genes. Over the two periods of growth, the rhizosphere bacterial communities followed consistent successional patterns as plants grew, although the starting communities were distinct. Succession in the rhizosphere was characterized by a significant decrease in both taxonomic and phylogenetic diversity relative to background soil communities, driven by reductions in both richness and evenness of the bacterial communities. Plant roots selectively stimulated the relative abundance of Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes but reduced the abundance of Acidobacteria, Actinobacteria, and Firmicutes. Taxa that increased in relative abundance in the rhizosphere soil displayed phylogenetic clustering, suggesting some conservation and an evolutionary basis for the response of complex soil bacterial communities to the presence of plant roots. The reproducibility of rhizosphere succession and the apparent phylogenetic conservation of rhizosphere competence traits suggest adaptation of the indigenous bacterial community to this common grass over the many decades of its presence. PMID:26242625

  14. [Transformation and mobility of arsenic in the rhizosphere and non-rhizosphere soils at different growth stages of rice].

    PubMed

    Yang, Wen-Tao; Wang, Ying-Jie; Zhou, Hang; Yi, Kai-Xin; Zeng, Min; Peng, Pei-Qin; Liao, Bo-Han

    2015-02-01

    Speciation and bioavailability of arsenic in the rhizosphere and non-rhizosphere soils at different growth stages (tillering stage, jointing stage, booting stage, filling stage and maturing stage) of rice (Oryza sativa L.) were studied using toxicity characteristic leaching procedure (TCLP) and arsenic speciation analysis. Pot experiments were conducted and the soil samples were taken from a certain paddy soil in Hunan Province contaminated by mining industry. The results showed that: (1) With the extension of rice growth period, pH values and TCLP extractable arsenic levels in the rhizosphere and non-rhizosphere soils increased gradually. Soil pH and TCLP extractable arsenic levels in non-rhizosphere soils were higher than those in the rhizosphere soils at the same growth stage. (2) At the different growth stages of rice, contents of exchangeable arsenic (AE-As) in rhizosphere and non-rhizosphere soils were lower than those before the rice planting, and increased gradually with the extension of the rice growing period. Contents of Al-bound arsenic (Al-As), Fe-bound arsenic (Fe-As) and Ca-bound arsenic (Ca-As) increased gradually after rice planting, but not significantly. Residual arsenic (O-As) and total arsenic (T-As) decreased gradually after rice planting, by 37.30% and 14.69% in the rhizosphere soils and by 31.38% and 8.67% in the non-rhizosphere soils, respectively. (3) At the different growth stages of rice, contents of various forms of arsenic in the soils were in the following order: residual arsenic (O-As) > Fe-bound arsenic ( Fe-As) > Al-bound arsenic (Al-As) > Ca-bound arsenic (Ca-As) > exchangeable arsenic (AE-As). In the pH range of 5.0- 5.8, significant positive linear correlations were found between most forms of arsenic or TCLP extractable arsenic levels and pH values, while the Ca-bound arsenic was poorly correlated with pH values in the rhizosphere soils. PMID:26031100

  15. Bartonella spp. in Bats, Guatemala

    PubMed Central

    Kosoy, Michael; Recuenco, Sergio; Alvarez, Danilo; Moran, David; Turmelle, Amy; Ellison, James; Garcia, Daniel L.; Estevez, Alejandra; Lindblade, Kim; Rupprecht, Charles

    2011-01-01

    To better understand the role of bats as reservoirs of Bartonella spp., we estimated Bartonella spp. prevalence and genetic diversity in bats in Guatemala during 2009. We found prevalence of 33% and identified 21 genetic variants of 13 phylogroups. Vampire bat–associated Bartonella spp. may cause undiagnosed illnesses in humans. PMID:21762584

  16. Bartonella spp. in Bats, Guatemala.

    PubMed

    Bai, Ying; Kosoy, Michael; Recuenco, Sergio; Alvarez, Danilo; Moran, David; Turmelle, Amy; Ellison, James; Garcia, Daniel L; Estevez, Alejandra; Lindblade, Kim; Rupprecht, Charles

    2011-07-01

    To better understand the role of bats as reservoirs of Bartonella spp., we estimated Bartonella spp. prevalence and genetic diversity in bats in Guatemala during 2009. We found prevalence of 33% and identified 21 genetic variants of 13 phylogroups. Vampire bat-associated Bartonella spp. may cause undiagnosed illnesses in humans. PMID:21762584

  17. Changes in rhizosphere bacterial gene expression following glyphosate treatment.

    PubMed

    Newman, Molli M; Lorenz, Nicola; Hoilett, Nigel; Lee, Nathan R; Dick, Richard P; Liles, Mark R; Ramsier, Cliff; Kloepper, Joseph W

    2016-05-15

    In commercial agriculture, populations and interactions of rhizosphere microflora are potentially affected by the use of specific agrichemicals, possibly by affecting gene expression in these organisms. To investigate this, we examined changes in bacterial gene expression within the rhizosphere of glyphosate-tolerant corn (Zea mays) and soybean (Glycine max) in response to long-term glyphosate (PowerMAX™, Monsanto Company, MO, USA) treatment. A long-term glyphosate application study was carried out using rhizoboxes under greenhouse conditions with soil previously having no history of glyphosate exposure. Rhizosphere soil was collected from the rhizoboxes after four growing periods. Soil microbial community composition was analyzed using microbial phospholipid fatty acid (PLFA) analysis. Total RNA was extracted from rhizosphere soil, and samples were analyzed using RNA-Seq analysis. A total of 20-28 million bacterial sequences were obtained for each sample. Transcript abundance was compared between control and glyphosate-treated samples using edgeR. Overall rhizosphere bacterial metatranscriptomes were dominated by transcripts related to RNA and carbohydrate metabolism. We identified 67 differentially expressed bacterial transcripts from the rhizosphere. Transcripts downregulated following glyphosate treatment involved carbohydrate and amino acid metabolism, and upregulated transcripts involved protein metabolism and respiration. Additionally, bacterial transcripts involving nutrients, including iron, nitrogen, phosphorus, and potassium, were also affected by long-term glyphosate application. Overall, most bacterial and all fungal PLFA biomarkers decreased after glyphosate treatment compared to the control. These results demonstrate that long-term glyphosate use can affect rhizosphere bacterial activities and potentially shift bacterial community composition favoring more glyphosate-tolerant bacteria. PMID:26901800

  18. Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere

    PubMed Central

    Nie, San'an; Li, Hu; Yang, Xiaoru; Zhang, Zhaoji; Weng, Bosen; Huang, Fuyi; Zhu, Gui-Bing; Zhu, Yong-Guan

    2015-01-01

    Anaerobic oxidation of ammonium (anammox) is recognized as an important process for nitrogen (N) cycling, yet its role in agricultural ecosystems, which are intensively fertilized, remains unclear. In this study, we investigated the presence, activity, functional gene abundance and role of anammox bacteria in rhizosphere and non-rhizosphere paddy soils using catalyzed reporter deposition–fluorescence in situ hybridization, isotope-tracing technique, quantitative PCR assay and 16S rRNA gene clone libraries. Results showed that rhizosphere anammox contributed to 31–41% N2 production with activities of 0.33–0.64 nmol N2 g−1 soil h−1, whereas the non-rhizosphere anammox bacteria contributed to only 2–3% N2 production with lower activities of 0.08–0.26 nmol N2 g−1 soil h−1. Higher anammox bacterial cells were observed (0.75–1.4 × 107 copies g−1 soil) in the rhizosphere, which were twofold higher compared with the non-rhizosphere soil (3.7–5.9 × 106 copies g−1 soil). Phylogenetic analysis of the anammox bacterial 16S rRNA genes indicated that two genera of ‘Candidatus Kuenenia' and ‘Candidatus Brocadia' and the family of Planctomycetaceae were identified. We suggest the rhizosphere provides a favorable niche for anammox bacteria, which are important to N cycling, but were previously largely overlooked. PMID:25689022

  19. Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny

    PubMed Central

    Bell, Terrence H; El-Din Hassan, Saad; Lauron-Moreau, Aurélien; Al-Otaibi, Fahad; Hijri, Mohamed; Yergeau, Etienne; St-Arnaud, Marc

    2014-01-01

    Phytoremediation is an attractive alternative to excavating and chemically treating contaminated soils. Certain plants can directly bioremediate by sequestering and/or transforming pollutants, but plants may also enhance bioremediation by promoting contaminant-degrading microorganisms in soils. In this study, we used high-throughput sequencing of bacterial 16S rRNA genes and the fungal internal transcribed spacer (ITS) region to compare the community composition of 66 soil samples from the rhizosphere of planted willows (Salix spp.) and six unplanted control samples at the site of a former petrochemical plant. The Bray–Curtis distance between bacterial communities across willow cultivars was significantly correlated with the distance between fungal communities in uncontaminated and moderately contaminated soils but not in highly contaminated (HC) soils (>2000 mg kg−1 hydrocarbons). The mean dissimilarity between fungal, but not bacterial, communities from the rhizosphere of different cultivars increased substantially in the HC blocks. This divergence was partly related to high fungal sensitivity to hydrocarbon contaminants, as demonstrated by reduced Shannon diversity, but also to a stronger influence of willows on fungal communities. Abundance of the fungal class Pezizomycetes in HC soils was directly related to willow phylogeny, with Pezizomycetes dominating the rhizosphere of a monophyletic cluster of cultivars, while remaining in low relative abundance in other soils. This has implications for plant selection in phytoremediation, as fungal associations may affect the health of introduced plants and the success of co-inoculated microbial strains. An integrated understanding of the relationships between fungi, bacteria and plants will enable the design of treatments that specifically promote effective bioremediating communities. PMID:23985744

  20. Brassica seed meal soil amendments transform the rhizosphere microbiome and improve apple production through resistance to pathogen reinfestation.

    PubMed

    Mazzola, Mark; Hewavitharana, Shashika S; Strauss, Sarah L

    2015-04-01

    Brassicaceae seed meal (SM) formulations were compared with preplant 1,3-dichloropropene/chloropicrin (Telone-C17) soil fumigation for the ability to control apple replant disease and to suppress pathogen or parasite reinfestation of organic orchard soils at two sites in Washington State. Preplant soil fumigation and an SM formulation consisting of either Brassica juncea-Sinapis alba or B. juncea-B. napus each provided similar levels of disease control during the initial growing season. Although tree growth was similar in fumigated and SM-amended soil during the initial growing season, tree performance in terms of growth and yield was commonly superior in B. juncea-S. alba SM-amended soil relative to that in fumigated soil at the end of four growing seasons. SM-amended soils were resistant to reinfestation by Pratylenchus penetrans and Pythium spp. relative to fumigated soils and corresponded with enhanced tree performance. Phytotoxic symptoms were observed in response to SM amendment at one of two orchard sites, were dependent upon season of application, and occurred in an SM formulation-specific manner. After 2 years, the rhizosphere microbiome in fumigated soils had reverted to one that was indistinguishable from the no-treatment control. In contrast, rhizosphere soils from the SM treatment possessed unique bacterial and fungal profiles, including specific microbial elements previously associated with suppression of plant-pathogenic fungi, oomycetes, and nematodes. Overall diversity of the microbiome was reduced in the SM treatment rhizosphere, suggesting that enhanced "biodiversity" was not instrumental in achieving system resistance or pathogen suppression. PMID:25412009

  1. Structural and functional diversity of rhizobacteria associated with Rauwolfia spp. across the Western Ghat regions of Karnataka, India.

    PubMed

    Prasanna Kumar, S P; Hariprasad, P; Brijesh Singh, S; Gowtham, H G; Niranjana, S R

    2014-01-01

    The present study carried out with denaturing gradient gel electrophoresis of DNA extracted from rhizosphere soils of Rauwolfia spp. collected from Western Ghat (WG) regions of Karnataka indicated that Pseudomonas sp. was prevalently found followed by Methylobacterium sp., Bacillus sp. and uncultured bacteria. A total of 200 rhizobacteria were isolated from 58 rhizosphere soil samples comprising of 15 different bacterial genera. The Shannon Weaver diversity index (H') and Simpson's diversity index (D) were found to be 2.57 and 0.91 for cultivable bacteria, respectively. The total species richness of cultivable rhizobacteria was high in Coorg district comprising 15 bacterial genera while in Mysore district, four bacterial genera were recorded. Rarefaction curve analysis also indicated the presence of higher species richness in samples of Shimoga and Coorg. All the rhizobacteria were screened for their multiple plant growth promotion and disease suppression traits. The results revealed that 70% of the isolates colonized tomato roots, 42% produced indole acetic acid, 55% solubilized phosphorus, while 43, 22, 27, 19, 40, 15 and 44% produced siderophore, salicylic acid, hydrogen cyanide, chitinase, phytase, cellulase and protease, respectively. Rhizobacterial isolates showing antagonistic activity against Fusarium oxysporum and Aspergillus flavus were 53 and 33%, respectively. Plant growth promotion studies revealed that most of the isolates increased percent germination with significantly higher vigour index as compared to untreated control. Most predominant rhizobacteria found in the rhizospheres of Rauwolfia spp. of WG regions are potential PGPR which can serve as biofertilizers and biopesticides. PMID:23864441

  2. Visualization of the Dynamic Rhizosphere Environment: Microbial and Biogeochemical Perspectives

    NASA Astrophysics Data System (ADS)

    Cardon, Z. G.; Forbes, E. S.; Thomas, F.; Herron, P. M.; Gage, D. J.; Thomas, S.; Larsen, M.; Arango Pinedo, C.; Sievert, S. M.; Giblin, A. E.

    2014-12-01

    The rhizosphere is a hotbed of nutrient cycling fueled by carbon from plants and controlled by microbes. Plants also strongly affect the rhizosphere by driving water flow into and out of roots, and by oxygenating saturated soil and sediment. Location and dynamics of plant-spurred microbial growth and activities are impossible to discern with destructive soil assays mixing microbe-scale soil microenvironments in a single"snap-shot" sample. Yet data are needed to inform (and validate) models describing microbial activity and biogeochemistry in the ebb and flow of the dynamic rhizosphere. Dynamics and localization of rapid microbial growth in the rhizosphere can be assessed over time using living soil microbiosensors. We used the bacterium Pseudomonas putida KT2440 as host to plasmid pZKH2 containing a fusion between the strong constituitive promoter nptII and luxCDABE(genes coding for light production). High light production by KT2440/pZKH2 correlated with rapid microbial growth supported by high carbon availability. Biosensors were used in clear-sided microcosms filled with non-sterile soil in which corn, black poplar or tomato were growing. KT2440/pZKH2 revealed that root tips are not necessarily the only, or even the dominant, hotspots for rhizosphere microbial growth, and carbon availability is highly variable in space and time around roots. Roots can also be sources of oxygen (O2) to the rhizosphere in saturated soil. We quantified spatial distributions of O2 using planar optodes placed against the face of sediment blocks cut from vegetated salt marsh at Plum Island Ecosystems LTER. Integrated over time, Spartina alterniflora roots were O2 sources to the rhizosphere. However, "sun-up" (light on) did not uniformly enhance rhizosphere O2 concentrations (as stomata opened and O2 production commenced). In some regions, the balance of O2 supply (from roots) and O2 demand (root and microbial) tipped toward demand at sun-up (repeatedly, over days). We speculate that in

  3. Diversity and heritability of the maize rhizosphere microbiome under field conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rhizosphere is a critical interface supporting the exchange of resources between plants and their associated soil environment. Rhizosphere microbial diversity is influenced by the physical and chemical properties of the rhizosphere, some of which are determined by the genetics of the host plant....

  4. Significance of rhizosphere microorganisms in reclaiming water in a CELSS

    NASA Astrophysics Data System (ADS)

    Greene, C.; Bubenheim, D. L.; Wignarajah, K.

    1997-01-01

    Plant-microbe interactions, such as those of the rhizosphere, may be ideally suited for recycling water in a Controlled Ecological Life Support System (CELSS). The primary contaminant of waste hygiene water will be surfactants or soaps. We identified changes in the microbial ecology in the rhizosphere of hydroponically grown lettuce during exposure to surfactant. Six week old lettuce plants were transferred into a chamber with a recirculating hydroponic system. Microbial density and population composition were determined for the nutrient solution prior to introduction of plants and then again with plants prior to surfactant addition. The surfactant Igepon was added to the recirculating nutrient solution to a final concentration of 1.0 g L^-1. Bacteria density and species diversity of the solution were monitored over a 72-h period following introduction of Igepon. Nine distinct bacterial types were identified in the rhisosphere; three species accounted for 87% of the normal rhizosphere population. Microbial cell number increased in the presence of Igepon, however species diversity declined. At the point when Igepon was degraded from solution, diversity was reduced to only two species. Igepon was found to be degraded directly by only one species found in the rhizosphere. Since surfactants are degraded from the waste hygiene water within 24 h, the potential for using rhizosphere bacteria as a waste processor in a CELSS is promising.

  5. Significance of rhizosphere microorganisms in reclaiming water in a CELSS

    NASA Astrophysics Data System (ADS)

    1997-01-01

    Plant-microbe interactions, such as those of the rhizosphere, may be ideally suited for recycling water in a Controlled Ecological Life Support System (CELSS). The primary contaminant of waste hygiene water will be surfactants or soaps. We identified changes in the microbial ecology in the rhizosphere of hydroponically grown lettuce during exposure to surfactant. Six week old lettuce plants were transferred into a chamber with a recirculating hydroponic system. Microbial density and population composition were determined for the nutrient solution prior to introduction of plants and then again with plants prior to surfactant addition. The surfactant Igepon was added to the recirculating nutrient solution to a final concentration of 1.0 g L-1. Bacteria density and species diversity of the solution were monitored over a 72-h period following introduction of Igepon. Nine distinct bacterial types were identified in the rhisosphere; three species accounted for 87% of the normal rhizosphere population. Microbial cell number increased in the presence of Igepon, however species diversity declined. At the point when Igepon was degraded from solution, diversity was reduced to only two species. Igepon was found to be degraded directly by only one species found in the rhizosphere. Since surfactants are degraded from the waste hygiene water within 24 h, the potential for using rhizosphere bacteria as a waste processor in a CELSS is promising.

  6. [Chemical properties and enzyme activities of rhizosphere and non-rhizosphere soils under six Chinese herbal medicines on Mt. Taibai of Qinling Mountains, Northwest China].

    PubMed

    Meng, Ling-Jun; Geng, Zeng-Chao; Yin, Jin-Yan; Wang, Hai-Tao; Ji, Peng-Fei

    2012-10-01

    This paper studied the chemical properties and enzyme activities of rhizosphere and non-rhizosphere soils in different habitats of six Chinese herbal medicines, including Pyrola decorata, Cephalotaxus fortunei, Polygonatum odoratum, Potentilla glabra, Polygonum viviparum, and Potentilla fruticosa, on the Mt. Taibai of Qinling Mountains. In the rhizosphere soils of the herbs, the contents of soil organic matter, total nitrogen, available nitrogen, and available phosphorus and the soil cation exchange capacity (CEC) were higher, presenting an obvious rhizosphere aggregation, and the soil enzyme activities also showed an overall stronger characteristics, compared with those in non-rhizosphere soils. The soil organic matter, total nitrogen, and total phosphorus contents in the rhizosphere soils had significant positive correlations with soil neutral phosphatase activity, and the soil CEC had significant positive correlations with the activities of soil neutral phosphatase and acid phosphatase. In the non-rhizosphere soils, the soil organic matter and total nitrogen contents had significant positive correlations with the activities of soil urease, catalase and neutral phosphatase, and the soil CEC showed a significant positive correlation with the activities of soil urease, catalase, neutral phosphatase and acid phosphatase. The comprehensive fertility level of the rhizosphere soils was higher than that of the non-rhizosphere soils, and the rhizosphere and non-rhizosphere soils of P. fruticosa, P. viviparum, and P. glabra had higher comprehensive fertility level than those of P. decorata, P. odoratum and C. fortunei. In the evaluation of the fertility levels of rhizosphere and non-rhizosphere soils under the six Chinese herbal medicines, soil organic matter content and CEC played important roles, and soil neutral phosphatase could be the preferred soil enzyme indicator. PMID:23359927

  7. Isolation and characterization of rhizosphere bacteria for the biocontrol of the damping-off disease of tomatoes in Tunisia.

    PubMed

    Hammami, Inés; Ben Hsouna, Anis; Hamdi, Naceur; Gdoura, Radhouane; Triki, Mohamed Ali

    2013-01-01

    Fluorescent Pseudomonas spp., isolated from tomato and pepper plants rhizosphere soil, was evaluated in vitro as a potential antagonist of fungal pathogens. Pseudomonas strains were tested against the causal agents of tomatoes damping-off (Sclerotinia sclerotiorum), root rot (Fusarium solani), and causal agents of stem canker and leaf blight (Alternaria alternata). For this purpose, dual culture antagonism assays were carried out on 25% tryptic soy agar, King B medium and potato dextrose agar to determine the effect of the strains on mycelial growth of the pathogens. In addition, strains were screened for their ability to produce exoenzymes and siderophores. All the strains significantly inhibited Alternaria alternata, particularly in 25% TSA medium. Antagonistic effect on Sclerotinia sclerotiorum and Fusarium solani was greater on King B medium. Protease was produced by 30% of the strains, but no strain produced cellulase or chitinase. Finally, the selected Pseudomonas strain, Psf5, was evaluated on tomato seedling development and as a potential candidate for controlling tomato damping-off caused by Sclerotinia sclerotiorum, under growth chamber conditions. In vivo studies resulted in significant increases in plant stand as well as in root dry weight. Psf5 was able to establish and survive in tomato plants rhizosphere after 40days following the planting of bacterized seeds. PMID:24296079

  8. Biological Control of Lettuce Drop and Host Plant Colonization by Rhizospheric and Endophytic Streptomycetes.

    PubMed

    Chen, Xiaoyulong; Pizzatti, Cristina; Bonaldi, Maria; Saracchi, Marco; Erlacher, Armin; Kunova, Andrea; Berg, Gabriele; Cortesi, Paolo

    2016-01-01

    Lettuce drop, caused by the soil borne pathogen Sclerotinia sclerotiorum, is one of the most common and serious diseases of lettuce worldwide. Increased concerns about the side effects of chemical pesticides have resulted in greater interest in developing biocontrol strategies against S. sclerotiorum. However, relatively little is known about the mechanisms of Streptomyces spp. as biological control agents against S. sclerotiorum on lettuce. Two Streptomyces isolates, S. exfoliatus FT05W and S. cyaneus ZEA17I, inhibit mycelial growth of Sclerotinia sclerotiorum by more than 75% in vitro. We evaluated their biocontrol activity against S. sclerotiorum in vivo, and compared them to Streptomyces lydicus WYEC 108, isolated from Actinovate®. When Streptomyces spp. (10(6) CFU/mL) were applied to S. sclerotiorum inoculated substrate in a growth chamber 1 week prior lettuce sowing, they significantly reduced the risk of lettuce drop disease, compared to the inoculated control. Interestingly, under field conditions, S. exfoliatus FT05W and S. cyaneus ZEA17I protected lettuce from drop by 40 and 10% respectively, whereas S. lydicus WYEC 108 did not show any protection. We further labeled S. exfoliatus FT05W and S. cyaneus ZEA17I with the enhanced GFP (EGFP) marker to investigate their rhizosphere competence and ability to colonize lettuce roots using confocal laser scanning microscopy (CLSM). The abundant colonization of young lettuce seedlings by both strains demonstrated Streptomyces' capability to interact with the host from early stages of seed germination and root development. Moreover, the two strains were detected also on 2-week-old roots, indicating their potential of long-term interactions with lettuce. Additionally, scanning electron microscopy (SEM) observations showed EGFP-S. exfoliatus FT05W endophytic colonization of lettuce root cortex tissues. Finally, we determined its viability and persistence in the rhizosphere and endorhiza up to 3 weeks by quantifying

  9. Biological Control of Lettuce Drop and Host Plant Colonization by Rhizospheric and Endophytic Streptomycetes

    PubMed Central

    Chen, Xiaoyulong; Pizzatti, Cristina; Bonaldi, Maria; Saracchi, Marco; Erlacher, Armin; Kunova, Andrea; Berg, Gabriele; Cortesi, Paolo

    2016-01-01

    Lettuce drop, caused by the soil borne pathogen Sclerotinia sclerotiorum, is one of the most common and serious diseases of lettuce worldwide. Increased concerns about the side effects of chemical pesticides have resulted in greater interest in developing biocontrol strategies against S. sclerotiorum. However, relatively little is known about the mechanisms of Streptomyces spp. as biological control agents against S. sclerotiorum on lettuce. Two Streptomyces isolates, S. exfoliatus FT05W and S. cyaneus ZEA17I, inhibit mycelial growth of Sclerotinia sclerotiorum by more than 75% in vitro. We evaluated their biocontrol activity against S. sclerotiorum in vivo, and compared them to Streptomyces lydicus WYEC 108, isolated from Actinovate®. When Streptomyces spp. (106 CFU/mL) were applied to S. sclerotiorum inoculated substrate in a growth chamber 1 week prior lettuce sowing, they significantly reduced the risk of lettuce drop disease, compared to the inoculated control. Interestingly, under field conditions, S. exfoliatus FT05W and S. cyaneus ZEA17I protected lettuce from drop by 40 and 10% respectively, whereas S. lydicus WYEC 108 did not show any protection. We further labeled S. exfoliatus FT05W and S. cyaneus ZEA17I with the enhanced GFP (EGFP) marker to investigate their rhizosphere competence and ability to colonize lettuce roots using confocal laser scanning microscopy (CLSM). The abundant colonization of young lettuce seedlings by both strains demonstrated Streptomyces' capability to interact with the host from early stages of seed germination and root development. Moreover, the two strains were detected also on 2-week-old roots, indicating their potential of long-term interactions with lettuce. Additionally, scanning electron microscopy (SEM) observations showed EGFP-S. exfoliatus FT05W endophytic colonization of lettuce root cortex tissues. Finally, we determined its viability and persistence in the rhizosphere and endorhiza up to 3 weeks by quantifying its

  10. Adhesins of Bartonella spp.

    PubMed

    O'Rourke, Fiona; Schmidgen, Thomas; Kaiser, Patrick O; Linke, Dirk; Kempf, Volkhard A J

    2011-01-01

    Adhesion to host cells represents the first step in the infection process and one of the decisive features in the pathogenicity of Bartonella spp. B. henselae and B. quintana are considered to be the most important human pathogenic species, responsible for cat scratch disease, bacillary angiomatosis, trench fever and other diseases. The ability to cause vasculoproliferative disorders and intraerythrocytic bacteraemia are unique features of the genus Bartonella. Consequently, the interaction with endothelial cells and erythrocytes is a focus in Bartonella research. The genus harbours a variety of trimeric autotransporter adhesins (TAAs) such as the Bartonella adhesin A (BadA) of B. henselae and the variably expressed outer-membrane proteins (Vomps) of B. quintana, which display remarkable variations in length and modular construction. These adhesins mediate many of the biologically-important properties of Bartonella spp. such as adherence to endothelial cells and extracellular matrix proteins and induction of angiogenic gene programming. There is also significant evidence that the laterally acquired Trw-conjugation systems of Bartonella spp. mediate host-specific adherence to erythrocytes. Other potential adhesins are the filamentous haemagglutinins and several outer membrane proteins. The exact molecular functions of these adhesins and their interplay with other pathogenicity factors (e.g., the VirB/D4 type 4 secretion system) need to be analysed in detail to understand how these pathogens adapt to their mammalian hosts. PMID:21557057

  11. Metabolomics in the Rhizosphere: Tapping into Belowground Chemical Communication.

    PubMed

    van Dam, Nicole M; Bouwmeester, Harro J

    2016-03-01

    The rhizosphere is densely populated with a variety of organisms. Interactions between roots and rhizosphere community members are mostly achieved via chemical communication. Root exudates contain an array of primary and secondary plant metabolites that can attract, deter, or kill belowground insect herbivores, nematodes, and microbes, and inhibit competing plants. Metabolomics of root exudates can potentially help us to better understand this chemical dialogue. The main limitations are the proper sampling of the exudate, the sensitivity of the metabolomics platforms, and the multivariate data analysis to identify causal relations. Novel technologies may help to generate a spatially explicit metabolome of the root and its exudates at a scale that is relevant for the rhizosphere community. PMID:26832948

  12. Dechlorination of PCBs in the rhizosphere of Switchgrass and Poplar

    PubMed Central

    Meggo, Richard E.; Schnoor, Jerald L.; Hu, Dingfei

    2014-01-01

    Polychlorinated biphenyl (PCB) congeners (PCB 52, 77, and 153) singly and in mixture were spiked and aged in soil microcosms and subsequently planted with switchgrass (Panicum virgatum) or poplar (Populus deltoids x nigra DN34). The planted reactors showed significantly greater reductions in PCB parent compounds when compared to unplanted systems after 32 weeks. There was evidence of reductive dechlorination in both planted and unplanted systems, but the planted microcosms with fully developed roots and rhizospheres showed greater biotransformation than the unplanted reactors. These dechlorination products accounted for approximately all of the molar mass of parent compound lost. Based on the transformation products, reductive dechlorination pathways are proposed for rhizospheric biotransformation of PCB 52, 77, and 153. This is the first report of rhizosphere biotransformation pathways for reductive dechlorination in marginally aerobic, intermittently flooded soil as evidenced by a mass balance on transformation products. PMID:23603468

  13. Water repellency in the rhizosphere of maize: measurements and modelling

    NASA Astrophysics Data System (ADS)

    Ahmed, Mutez; Kroener, Eva; Carminati, Andrea

    2016-04-01

    Although maize roots have been extensively studied, there is limited information on the effect of root exudates on the hydraulic properties of maize rhizosphere. Recent experiments suggested that the mucilaginous fraction of root exudates may cause water repellency of the rhizosphere. Our objectives were: 1) to investigate whether maize rhizosphere turns hydrophobic after drying and subsequent rewetting; 2) to develop a new method to collect root mucilage and test whether maize mucilage is hydrophobic; and 3) to find a quantitative relation between rhizosphere rewetting, particle size, soil matric potential and mucilage concentration. Maize plants were grown in aluminum containers filled with a sandy soil. When the plants were three-weeks-old, the soil was let dry and then it was irrigated. The soil water content during irrigation was imaged using neutron radiography. In a parallel experiment, ten maize plants were grown in sandy soil for five weeks. Mucilage was collected from young brace roots using a new developed method. Mucilage was placed on glass slides and let dry. The contact angle was measured with the sessile drop method for varying mucilage concentration. Additionally, we used neutron radiography to perform capillary rise experiments in soils of varying particle size mixed with maize mucilage. We then used a pore-network model in which mucilage was randomly distributed in a cubic lattice. The general idea was that rewetting of a pore is impeded when the concentration of mucilage on the pore surface (g cm-2) is higher than a given threshold value. The threshold value depended on soil matric potential, pore radius and contact angle. Then, we randomly distributed mucilage in the pore network and we calculated the percolation of water across a cubic lattice for varying soil particle size, mucilage concentration and matric potential. Our results showed that: 1) the rhizosphere of maize stayed temporarily dry after irrigation; 2) mucilage became water

  14. Linking roots and rhizospheres to hydrological processes

    NASA Astrophysics Data System (ADS)

    Dawson, T. E.

    2007-12-01

    There is ample evidence that shows how plants can exert very significant and often dominant -controls" over the manner and magnitude by which water and other soil-borne resources cycle through diverse ecosystems on Earth. The use and redistribution of soil water resources by root systems has been a particularly important addition to our understanding of how the movement of soil water resources can impact hydrological processes at a range of scales. When soil and plant water relations data are coupled with land-use and climatic change data and predictive models for seasonally-dry ecosystems they have revealed new insights into how the water cycle is also changing and the role that plant root functions plays in shaping fundamental aspects of the hydrological cycle. I will highlight the ways my research group as well as the work of others have used a range of methods to explore the links between roots and rhizospheres and hydrological processes. The detailed analyses of the stable isotope composition of plant and soil water and precipitation and the temporal and spatial patterns of water use by diverse trees in temperate and tropical biomes when coupled with ongoing modeling research has revealed new insights into how belowground and aboveground plant water use behaviors can impact the manned and magnitude of water cycling on local and regional scales. Further, new results clearly show the impacts that plant water uptake and use have on ecosystem carbon fixation and both temperature and precipitation patterns over vast regions like the Amazon as well as other parts of the globe covered by trees and deeply rooted woody vegetation. The combination of empirical and theoretical research results shows that plants can help sustain water recycling, can significantly impact carbon and nutrient cycles, and impact regional climate, drought and its seasonality thereby establishing a direct link between plant functioning, resource movement and the climate system across the globe.

  15. Interaction of Rhizosphere Bacteria, Fertilizer, and Vesicular-Arbuscular Mycorrhizal Fungi with Sea Oats †

    PubMed Central

    Will, M. E.; Sylvia, D. M.

    1990-01-01

    Plants must be established quickly on replenished beaches in order to stabilize the sand and begin the dune-building process. The objective of this research was to determine whether inoculation of sea oats (Uniola paniculata L.) with bacteria (indigenous rhizosphere bacteria and N2 fixers) alone or in combination with vesicular-arbuscular mycorrhizal fungi would enhance plant growth in beach sand. At two fertilizer-N levels, Klebsiella pneumoniae and two Azospirillum spp. did not provide the plants with fixed atmospheric N; however, K. pneumoniae increased root and shoot growth. When a sparingly soluble P source (CaHPO4) was added to two sands, K. pneumoniae increased plant growth in sand with a high P content. The phosphorus content of shoots was not affected by bacterial inoculation, indicating that a mechanism other than bacterially enhanced P availability to plants was responsible for the growth increases. When sea oats were inoculated with either K. pneumoniae or Acaligenes denitrificans and a mixed Glomus inoculum, there was no consistent evidence of a synergistic effect on plant growth. Nonetheless, bacterial inoculation increased root colonization by vesicular-arbuscular mycorrhizal fungi when the fungal inoculum consisted of colonized roots but had no effect on colonization when the inoculum consisted of spores alone. K. pneumoniae was found to increase spore germination and hyphal growth of Glomus deserticola compared with the control. The use of bacterial inoculants to enhance establishment of pioneer dune plants warrants further study. PMID:16348236

  16. First isolation of Mycobacterium spp. in Mullus spp. in Turkey

    PubMed Central

    Sevim, P; Ozer, S; Rad, F

    2015-01-01

    Ichthyozoonotic Mycobacterium spp. poses health risks both to fish and humans. In this study, the presence of ichthyozoonotic Mycobacterium spp. was investigated in red mullet (Mullus barbatus barbatus) and surmullet (Mullus surmuletus), widely caught species in the Mediterranean and the Aegean Sea. A total of 208 fish samples, provided from fishermen of Mersin province (Turkey) were studied. Using conventional methods, Mycobacterium spp. was isolated and identified at the genus level by PCR and at the species level by PCR-RFLP. Thirteen Mycobacterium spp. were detected in 13 (6.25%) fish samples. Four mycobacteria were identified as M. genavense, three as M. fortuitum, three as M. scrofulaceum, one as M. marinum, one as M. vaccae and one as M. aurum. No signs of mycobacteriosis were observed in fish samples. Findings of this study can contribute to future studies of onichthyozoonotic Mycobacterium spp. in seafood. PMID:27175166

  17. Rhizosphere microbiome assemblage is affected by plant development

    PubMed Central

    Chaparro, Jacqueline M; Badri, Dayakar V; Vivanco, Jorge M

    2014-01-01

    There is a concerted understanding of the ability of root exudates to influence the structure of rhizosphere microbial communities. However, our knowledge of the connection between plant development, root exudation and microbiome assemblage is limited. Here, we analyzed the structure of the rhizospheric bacterial community associated with Arabidopsis at four time points corresponding to distinct stages of plant development: seedling, vegetative, bolting and flowering. Overall, there were no significant differences in bacterial community structure, but we observed that the microbial community at the seedling stage was distinct from the other developmental time points. At a closer level, phylum such as Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria and specific genera within those phyla followed distinct patterns associated with plant development and root exudation. These results suggested that the plant can select a subset of microbes at different stages of development, presumably for specific functions. Accordingly, metatranscriptomics analysis of the rhizosphere microbiome revealed that 81 unique transcripts were significantly (P<0.05) expressed at different stages of plant development. For instance, genes involved in streptomycin synthesis were significantly induced at bolting and flowering stages, presumably for disease suppression. We surmise that plants secrete blends of compounds and specific phytochemicals in the root exudates that are differentially produced at distinct stages of development to help orchestrate rhizosphere microbiome assemblage. PMID:24196324

  18. Impact of plant domestication on rhizosphere microbiome assembly and functions.

    PubMed

    Pérez-Jaramillo, Juan E; Mendes, Rodrigo; Raaijmakers, Jos M

    2016-04-01

    The rhizosphere microbiome is pivotal for plant health and growth, providing defence against pests and diseases, facilitating nutrient acquisition and helping plants to withstand abiotic stresses. Plants can actively recruit members of the soil microbial community for positive feedbacks, but the underlying mechanisms and plant traits that drive microbiome assembly and functions are largely unknown. Domestication of plant species has substantially contributed to human civilization, but also caused a strong decrease in the genetic diversity of modern crop cultivars that may have affected the ability of plants to establish beneficial associations with rhizosphere microbes. Here, we review how plants shape the rhizosphere microbiome and how domestication may have impacted rhizosphere microbiome assembly and functions via habitat expansion and via changes in crop management practices, root exudation, root architecture, and plant litter quality. We also propose a "back to the roots" framework that comprises the exploration of the microbiome of indigenous plants and their native habitats for the identification of plant and microbial traits with the ultimate goal to reinstate beneficial associations that may have been undermined during plant domestication. PMID:26085172

  19. IMPACT OF SOIL MANAGEMENT ON COTTON RHIZOSPHERE BACTERIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil dwelling bacteria and fungi are responsible for a number of ecosystem services critical to agriculture. In particular, bacteria living in the rhizosphere (portion of soil directly influenced by plant roots) and arbuscular mycorrhizal fungi have been shown to improve nutrient and water uptake an...

  20. PSEUDOMONAS GENE EXPRESSION DURING GROWTH IN THE RHIZOSPHERE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant rhizosphere is a nutrient rich oasis for soil dwelling microbes, both benevolent and pathogenic. Perhaps one of the best-studied groups of bacteria that live in this niche are the fluorescent pseudomonads. This due to the variety of traits they display, such as secondary metabolite produ...

  1. Clovers (Trifolium spp.).

    PubMed

    Rahimi-Ashtiani, Samira; Sahab, Sareena; Panter, Stephen; Mason, John; Spangenberg, German

    2015-01-01

    Clovers (Trifolium spp.) constitute one of the major forage legumes widely grown for its rich protein content and its major role in maintaining environmental sustainability by improving the soil fertility. Gene technology can assist plant improvement efforts in clovers (Trifolium spp.), aiming to improve forage quality, yield, and adaptation to biotic and abiotic stresses. An efficient and reproducible protocol for Agrobacterium-mediated transformation of a range of Trifolium species, using cotyledonary explants and different selectable marker genes, is described. The protocol is robust and allows for genotype and Agrobacterium strain-independent transformation of clovers. Stable meiotic transmission of transgenes has been demonstrated for selected transgenic clovers carrying single T-DNA inserts recovered from Agrobacterium-mediated transformation. This methodology can also be successfully used for "isogenic transformation" in clovers: the generation of otherwise identical plants with and without the transgene from the two cotyledons of a single seed. Stable transgenes may be used in further functional genomics, develop new traits and profile gene expression using reporters, and facilitate purification of tissue or single cells. PMID:25300844

  2. Does the rhizosphere hydrophobicity limit root water uptake?

    NASA Astrophysics Data System (ADS)

    Zare, Mohsen; Ahmed, Mutez; Kroener, Eva; Carminati, Andrea

    2015-04-01

    The ability of plants to extract water from the soil is influenced by the hydraulic conductivity of roots and their rhizosphere. Recent experiments showed that the rhizosphere turned hydrophobic after drying and it remained dry after rewetting [1]. Our objective was to investigate whether rhizosphere hydrophobicity is a limit to root water uptake after drying. To quantify the effect of rhizosphere hydrophobicity on root water uptake, we used neutron radiography to trace the transport of deuterated water (D2O) in the roots of lupines experiencing a severe, local soil drying. The plants were grown in aluminum containers (30×30×1 cm) filled with sandy soil. The soil was partitioned into nine compartments using three horizontal and three vertical layers of coarse sand (thickness of 1cm) as capillary barrier. When the plants were 28 days old, we let one of the upper lateral compartments dry to a water content of 2-4%, while keeping the other compartments to a water content of 20%. Then we injected 10 ml of D2O in the dry compartment and 10 ml in the symmetric location. The radiographs showed that root water uptake in the soil region that was let dry and then irrigated was 4-8 times smaller than in the wet soil region[2]. In a parallel experiment, we used neutron radiography to monitor the rehydration of lupine roots that were irrigated after a severe drying experiment. Based on root swelling and additional data on the xylem pressure, we calculated the hydraulic conductivity of the root-rhizosphere continuum. We found that the hydraulic conductivity of the root-rhizosphere continuum was initially 5.75×10-14 m s-1and it increased to 4.26×10-12 m s-1after four hours. Both experiments show that rhizosphere hydrophobicity after drying is associated with a reduction in root water uptake and a big decrease in hydraulic conductivity of the soil-root system. [1] Carminati et al (2010) Plant and Soil. Vol. 332: 163-176. [2] Zarebanadkouki and Carmianti (2013) Journal of Plant

  3. Soil Type Dependent Rhizosphere Competence and Biocontrol of Two Bacterial Inoculant Strains and Their Effects on the Rhizosphere Microbial Community of Field-Grown Lettuce

    PubMed Central

    Schreiter, Susanne; Sandmann, Martin; Smalla, Kornelia; Grosch, Rita

    2014-01-01

    Rhizosphere competence of bacterial inoculants is assumed to be important for successful biocontrol. Knowledge of factors influencing rhizosphere competence under field conditions is largely lacking. The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica 3Re4-18 in field-grown lettuce in soils inoculated with Rhizoctonia solani AG1-IB or not. Two independent experiments were carried out in 2011 on an experimental plot system with three soil types sharing the same cropping history and weather conditions for more than 10 years. Rifampicin resistant mutants of the inoculants were used to evaluate their colonization in the rhizosphere of lettuce. The rhizosphere bacterial community structure was analyzed by denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from total community DNA to get insights into the effects of the inoculants and R. solani on the indigenous rhizosphere bacterial communities. Both inoculants showed a good colonization ability of the rhizosphere of lettuce with more than 106 colony forming units per g root dry mass two weeks after planting. An effect of the soil type on rhizosphere competence was observed for 3Re4-18 but not for RU47. In both experiments a comparable rhizosphere competence was observed and in the presence of the inoculants disease symptoms were either significantly reduced, or at least a non-significant trend was shown. Disease severity was highest in diluvial sand followed by alluvial loam and loess loam suggesting that the soil types differed in their conduciveness for bottom rot disease. Compared to effect of the soil type of the rhizosphere bacterial communities, the effects of the pathogen and the inoculants were less pronounced. The soil types had a surprisingly low influence on rhizosphere competence and biocontrol activity while they significantly affected

  4. Microbial expression profiles in the rhizosphere of willows depend on soil contamination

    PubMed Central

    Yergeau, Etienne; Sanschagrin, Sylvie; Maynard, Christine; St-Arnaud, Marc; Greer, Charles W

    2014-01-01

    The goal of phytoremediation is to use plants to immobilize, extract or degrade organic and inorganic pollutants. In the case of organic contaminants, plants essentially act indirectly through the stimulation of rhizosphere microorganisms. A detailed understanding of the effect plants have on the activities of rhizosphere microorganisms could help optimize phytoremediation systems and enhance their use. In this study, willows were planted in contaminated and non-contaminated soils in a greenhouse, and the active microbial communities and the expression of functional genes in the rhizosphere and bulk soil were compared. Ion Torrent sequencing of 16S rRNA and Illumina sequencing of mRNA were performed. Genes related to carbon and amino-acid uptake and utilization were upregulated in the willow rhizosphere, providing indirect evidence of the compositional content of the root exudates. Related to this increased nutrient input, several microbial taxa showed a significant increase in activity in the rhizosphere. The extent of the rhizosphere stimulation varied markedly with soil contamination levels. The combined selective pressure of contaminants and rhizosphere resulted in higher expression of genes related to competition (antibiotic resistance and biofilm formation) in the contaminated rhizosphere. Genes related to hydrocarbon degradation were generally more expressed in contaminated soils, but the exact complement of genes induced was different for bulk and rhizosphere soils. Together, these results provide an unprecedented view of microbial gene expression in the plant rhizosphere during phytoremediation. PMID:24067257

  5. Population Dynamics of Soil Pseudomonads in the Rhizosphere of Potato (Solanum tuberosum L.).

    PubMed

    Loper, J E; Haack, C; Schroth, M N

    1985-02-01

    Rhizosphere population dynamics of seven Pseudomonas fluorescens and Pseudomonas putida strains isolated from rhizospheres of various agricultural plants were studied on potato (Solanum tuberosum L.) in field soil under controlled environmental conditions. Rhizosphere populations of two strains (B10 and B4) were quantitatively related to initial seed piece inoculum levels when plants were grown at -0.3 bar matric potential. At a given inoculum level, rhizosphere populations of strain B4 were consistently greater than those of strain B10. In vivo growth curves on 4-cm root tip-proximal segments indicated that both strains grew at similar rates in the potato rhizosphere, but large populations of strain B10 were not maintained at 24 degrees C after 7 h, whereas those of strain B4 were maintained for at least 40 h. Although both strains grew more rapidly in the rhizosphere at 24 degrees C than at 12 degrees C, their rhizosphere populations after seed piece inoculation were generally greater at 12 or 18 degrees C, indicating that in vivo growth did not solely determine rhizosphere populations in these studies. In vitro osmotolerance of seven Pseudomonas strains (including strains B4 and B10) was correlated with their abilities to establish stable populations in the rhizosphere of potato. Stability of rhizosphere populations of the Pseudomonas strains studied here was maximized at low (i.e., 12 degrees C) soil temperatures. These results indicate that Pseudomonas strains differ in their capacity to maintain stable rhizosphere populations in association with potato. This capacity, distinct from the ability to grow in the rhizosphere, may limit the establishment of rhizosphere populations under some environmental conditions. PMID:16346729

  6. Understanding Aquatic Rhizosphere Processes Through Metabolomics and Metagenomics Approach

    NASA Astrophysics Data System (ADS)

    Lee, Yong Jian; Mynampati, Kalyan; Drautz, Daniela; Arumugam, Krithika; Williams, Rohan; Schuster, Stephan; Kjelleberg, Staffan; Swarup, Sanjay

    2013-04-01

    The aquatic rhizosphere is a region around the roots of aquatic plants. Many studies focusing on terrestrial rhizosphere have led to a good understanding of the interactions between the roots, its exudates and its associated rhizobacteria. The rhizosphere of free-floating roots, however, is a different habitat that poses several additional challenges, including rapid diffusion rates of signals and nutrient molecules, which are further influenced by the hydrodynamic forces. These can lead to rapid diffusion and complicates the studying of diffusible factors from both plant and/or rhizobacterial origins. These plant systems are being increasingly used for self purification of water bodies to provide sustainable solution. A better understanding of these processes will help in improving their performance for ecological engineering of freshwater systems. The same principles can also be used to improve the yield of hydroponic cultures. Novel toolsets and approaches are needed to investigate the processes occurring in the aquatic rhizosphere. We are interested in understanding the interaction between root exudates and the complex microbial communities that are associated with the roots, using a systems biology approach involving metabolomics and metagenomics. With this aim, we have developed a RhizoFlowCell (RFC) system that provides a controlled study of aquatic plants, observed the root biofilms, collect root exudates and subject the rhizosphere system to changes in various chemical or physical perturbations. As proof of concept, we have used RFC to test the response of root exudation patterns of Pandanus amaryllifolius after exposure to the pollutant naphthalene. Complexity of root exudates in the aquatic rhizosphere was captured using this device and analysed using LC-qTOF-MS. The highly complex metabolomic profile allowed us to study the dynamics of the response of roots to varying levels of naphthalene. The metabolic profile changed within 5mins after spiking with

  7. Rhizosphere mycoflora of healthy and yellow vein mosaic virus infected okra (Abelmoschus esculentus) plants.

    PubMed

    Singh, S J; Tewari, R P

    1979-01-01

    Investigations on the rhizosphere mycoflora of healthy and virus (YVMV) infected okra plants showed a higher fungal population in the rhizosphere of healthy plants at preflowering and post-flowering stages than in that of diseased ones. Maximum population was observed during flowering both in healthy and diseased plant rhizosphere as well as in non-rhizosphere soil. However, virus infected plants showed a higher population at the flowering stage than healthy ones. The quantitative differences in the rhizosphere of healthy and diseased plants during flowering seem to be due to a change in C/N ratio and amino acids. The drastic reduction in diseased plant rhizospheres during the post-flowering stage may be due to either change in C/N ratio unfavourable to mycoflora or production of some toxic substances inhibiting multiplication of the mycoflora. PMID:94749

  8. The "Biased Rhizosphere" Concept: Bacterial Competitiveness and Persistence in the Rhizosphere

    NASA Astrophysics Data System (ADS)

    de Bruijn, Frans J.

    2013-04-01

    The association of plant surfaces with microorganisms has been the subject of intense investigations. Numerous processes have been shown to be important in plant-associative bacteria including attachment, motility, chemotaxis, nutrition, and production of signaling molecules and secondary metabolites. One strategy to favor the competitiveness and persistence of bacteria in the plant environment relies upon manipulation of nutritional compounds secreted into the phytosphere, which comprises the rhizosphere (root surface/zone influenced by secretions) and the phyllosphere (leaf surface/zone influenced by secretions). The pattern of plant host exudate can be bred or engineered to establish "biased phytospheres" with bacteria that can naturally, or by engineering, use metabolic resources produced by the host plant. Over the last two decades, natural biases, generated by opine-like molecules of Agrobacterium-plant interactions and by rhizopine-like molecules of the Rhizobium-legume interactions, have provided tactics based on unique metabolites produced by plants to favor the competitiveness and persistence of bacteria that can catabolize the host-produced novel nutrients. An overview of this field or research will be presented.

  9. The Impact of Rhizosphere Processes on Water Flow and Root Water Uptake

    NASA Astrophysics Data System (ADS)

    Schwartz, Nimrod; Kroener, Eva; Carminati, Andrea; Javaux, Mathieu

    2015-04-01

    For many years, the rhizosphere, which is the zone of soil in the vicinity of the roots and which is influenced by the roots, is known as a unique soil environment with different physical, biological and chemical properties than those of the bulk soil. Indeed, in recent studies it has been shown that root exudate and especially mucilage alter the hydraulic properties of the soil, and that drying and wetting cycles of mucilage result in non-equilibrium water dynamics in the rhizosphere. While there are experimental evidences and simplified 1D model for those concepts, an integrated model that considers rhizosphere processes with a detailed model for water and roots flow is absent. Therefore, the objective of this work is to develop a 3D physical model of water flow in the soil-plant continuum that take in consideration root architecture and rhizosphere specific properties. Ultimately, this model will enhance our understanding on the impact of processes occurring in the rhizosphere on water flow and root water uptake. To achieve this objective, we coupled R-SWMS, a detailed 3D model for water flow in soil and root system (Javaux et al 2008), with the rhizosphere model developed by Kroener et al (2014). In the new Rhizo-RSWMS model the rhizosphere hydraulic properties differ from those of the bulk soil, and non-equilibrium dynamics between the rhizosphere water content and pressure head is also considered. We simulated a wetting scenario. The soil was initially dry and it was wetted from the top at a constant flow rate. The model predicts that, after infiltration the water content in the rhizosphere remained lower than in the bulk soil (non-equilibrium), but over time water infiltrated into the rhizosphere and eventually the water content in the rhizosphere became higher than in the bulk soil. These results are in qualitative agreement with the available experimental data on water dynamics in the rhizosphere. Additionally, the results show that rhizosphere processes

  10. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms.

    PubMed

    Mendes, Rodrigo; Garbeva, Paolina; Raaijmakers, Jos M

    2013-09-01

    Microbial communities play a pivotal role in the functioning of plants by influencing their physiology and development. While many members of the rhizosphere microbiome are beneficial to plant growth, also plant pathogenic microorganisms colonize the rhizosphere striving to break through the protective microbial shield and to overcome the innate plant defense mechanisms in order to cause disease. A third group of microorganisms that can be found in the rhizosphere are the true and opportunistic human pathogenic bacteria, which can be carried on or in plant tissue and may cause disease when introduced into debilitated humans. Although the importance of the rhizosphere microbiome for plant growth has been widely recognized, for the vast majority of rhizosphere microorganisms no knowledge exists. To enhance plant growth and health, it is essential to know which microorganism is present in the rhizosphere microbiome and what they are doing. Here, we review the main functions of rhizosphere microorganisms and how they impact on health and disease. We discuss the mechanisms involved in the multitrophic interactions and chemical dialogues that occur in the rhizosphere. Finally, we highlight several strategies to redirect or reshape the rhizosphere microbiome in favor of microorganisms that are beneficial to plant growth and health. PMID:23790204

  11. PLANT RHIZOSPHERE EFFECTS ON METAL MOBILIZATION AND TRANSPORT

    SciTech Connect

    Fan, Teresa W.-M; Higashi, Richard M.; Crowley, David E.

    2000-12-31

    The myriad of human activities including strategic and energy development at various DOE installations have resulted in the contamination of soils and waterways that can seriously threaten human and ecosystem health. Development of efficacious and economical remediation technologies is needed to ameliorate these immensely costly problems. Bioremediation (both plant and microbe-based) has promising potential to meet this demand but still requires advances in fundamental knowledge. For bioremediation of heavy metals, the three-way interaction of plant root, microbial community, and soil organic matter (SOM) in the rhizosphere is critically important for long-term sustainability but often underconsidered. Particularly urgent is the need to understand processes that lead to metal ion stabilization in soils, which is crucial to all of the goals of bioremediation: removal, stabilization, and transformation. We have developed the tools for probing the chemistry of plant rhizosphere and generated information regarding the role of root exudation and metabolism for metal mobilization and sequestration.

  12. Tracing the flow of plant carbohydrates into the rhizosphere

    NASA Astrophysics Data System (ADS)

    Gleixner, Gerd

    2016-04-01

    We investigated the flow of 13C labeled CO2 from plant sugars in leaves, stems and roots into rhizospheric organisms, respired CO2 and soil organic matter in order to better understand the role of the plant-microorganism-soil-continuum for ecosystem carbon cycling. We compared trees and grassland species that had different sugar transport strategies, storage compartments, community compositions and environmental stresses. We used short but highly enriched 13C pulses at controlled CO2 concentrations and temperatures that avoided non-physiological plant responses. We used compound specific 13C measurements of sugars and phospholipids (PLFA) to calculate the carbon turnover of plant sugars and rhizospheric microorganisms. Our results unexpectedly identified transport limitations in the root-shoot carbohydrate transfer, diurnal variations in label respiration and community effects in the carbon transfer to microbial groups. Our results highlight that sophisticated experimental setups and analytical techniques are necessary to gain new knowledge on ecosystem carbon cycling under climate change.

  13. The Dynamics of Sediment Oxygenation in Marsh Rhizospheres

    NASA Astrophysics Data System (ADS)

    Koop-Jakobsen, K.

    2014-12-01

    Many marsh grasses are capable of internal oxygen transport from aboveground sources to belowground roots and rhizomes, where oxygen may leak across the rhizodermis and oxygenate the surrounding sediment. In the field, the extent of sediment oxygenation in marshes was assessed in the rhizosphere of the marsh grass; Spartina anglica, inserting 70 optical fiber oxygen sensors into the rhizosphere. Two locations with S. anglica growing in different sediment types were investigated. No oxygen was detected in the rhizospheres indicating that belowground sediment oxygenation in S. anglica has a limited effect on the bulk anoxic sediment and is restricted to sediment in the immediate vicinity of the roots. In the laboratory, the presence of 1.5mm wide and 16mm long oxic root zones was demonstrated around root tips of S. anglica growing in permeable sandy sediment using planar optodes recording 2D-images of the oxygen distribution. Oxic root zones in S. anglica growing in tidal flat deposits were significantly smaller. The size of oxic roots zones was highly dynamic and affected by tidal inundations as well as light availability. Atmospheric air was the primary oxygen source for belowground sediment oxygenation, whereas photosynthetic oxygen production only played a minor role for the size of the oxic root zones during air-exposure of the aboveground biomass. During tidal inundations (1.5 h) completely submerging the aboveground biomass cutting off access to atmospheric oxygen, the size of oxic root zones were reduced significantly in the light and oxic root zones were completely eliminated in darkness. Sediment oxygenation in the rhizospheres of marsh grasses is of significant importance for marshes ability to retain inorganic nitrogen before it reaches the coastal waters. The presence of oxic roots zones promotes coupled nitrification-denitrification at depth in the sediment, which can account for more than 80% of the total denitrification in marshes.

  14. Spatial distribution of enzyme activities in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    The rhizosphere, the tiny zone of soil surrounding roots, certainly represents one of the most dynamic habitat and interfaces on Earth. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. That is why there is an urgent need in spatially explicit methods for the determination of the rhizosphere extension and enzyme distribution. Recently, zymography as a new technique based on diffusion of enzymes through the 1 mm gel plate for analysis has been introduced (Spohn & Kuzyakov, 2013). We developed the zymography technique to visualize the enzyme activities with a higher spatial resolution. For the first time, we aimed at quantitative imaging of enzyme activities as a function of distance from the root tip and the root surface in the soil. We visualized the two dimensional distribution of the activity of three enzymes: β-glucosidase, phosphatase and leucine amino peptidase in the rhizosphere of maize using fluorogenically labelled substrates. Spatial-resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography visualized heterogeneity of enzyme activities along the roots. The activity of all enzymes was the highest at the apical parts of individual roots. Across the roots, the enzyme activities were higher at immediate vicinity of the roots (1.5 mm) and gradually decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere hotspots. References Spohn, M., Kuzyakov, Y., 2013. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology & Biochemistry 61: 69-75

  15. Pyrosequencing Reveals Fungal Communities in the Rhizosphere of Xinjiang Jujube

    PubMed Central

    Wang, Xiao-Hui; Li, Jian-Gui; Qin, Wei; Xiao, Cheng-Ze; Zhao, Xu; Jiang, Hong-Xia; Sui, Jun-Kang; Sa, Rong-Bo; Wang, Wei-Yan; Liu, Xun-Li

    2015-01-01

    Fungi are important soil components as both decomposers and plant symbionts and play a major role in ecological and biogeochemical processes. However, little is known about the richness and structure of fungal communities. DNA sequencing technologies allow for the direct estimation of microbial community diversity, avoiding culture-based biases. We therefore used 454 pyrosequencing to investigate the fungal communities in the rhizosphere of Xinjiang jujube. We obtained no less than 40,488 internal transcribed spacer (ITS) rDNA reads, the number of each sample was 6943, 6647, 6584, 6550, 6860, and 6904, and we used bioinformatics and multivariate statistics to analyze the results. The index of diversity showed greater richness in the rhizosphere fungal community of a 3-year-old jujube than in that of an 8-year-old jujube. Most operational taxonomic units belonged to Ascomycota, and taxonomic analyses identified Hypocreales as the dominant fungal order. Our results demonstrated that the fungal orders are present in different proportions in different sampling areas. Redundancy analysis (RDA) revealed a significant correlation between soil properties and the abundance of fungal phyla. Our results indicated lower fungal diversity in the rhizosphere of Xinjiang jujube than that reported in other studies, and we hope our findings provide a reference for future research. PMID:25685820

  16. Biodegradation of polycyclic aromatic hydrocarbons in rhizosphere soil

    SciTech Connect

    Schwab, A.P.; Banks, M.K.; Arunachalam, M.

    1995-12-31

    Increased contaminant biodegradation in soil in the presence of plants has been demonstrated for several classes of organic compounds. Although enhanced dissipation of polycyclic aromatic hydrocarbons (PAHs) was observed previously in the rhizosphere of several plant species, the mechanism of this effect has not been assessed. A laboratory experiment was conducted to test the importance of cometabolism and the presence of common rhizosphere organic acids on the loss of PAHs (pyrene and phenanthrene) from soil. The role of cometabolism in the mineralization of pyrene was tested by observing the impact of adding phenanthrene to soil containing {sup 14}C-pyrene and observing the effects on {sup 14}CO{sub 2} generation. Adding phenanthrene apparently induced cometabolism of pyrene, particularly in the presence of organic acids. In a subsequent experiment, mineralization of pyrene to {sup 14}CO{sub 2} was significantly greater in soil from the rhizospheres of warm-season grasses, sorghum (Sorghum bicolor L.) and bermuda grass (Cynodon dactylon L.), compared to soil from alfalfa (Medicago sativa L.), which did not differ from sterilized control soil. A highly branched, fine root system appears to be more effective in enhancing biodegradation than taproots, and the presence of organic acids increases rates of PAH mineralization.

  17. The influence of nitrogen fertilization on the magnitude of rhizosphere effects

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Panke-Buisse, K.; Kao-Kniffin, J.

    2012-12-01

    The labile carbon released from roots to the rhizosphere enhances soil microbial activity and nutrient availability, but factors that regulate such "rhizosphere effects" are poorly understood. Nitrogen fertilization may suppress rhizosphere effects by reducing plant carbon allocation belowground. Here we investigated the impact of nitrogen fertilization (+100 mg NH4NO3-N kg soil-1) on the magnitude of rhizosphere effects of two grass species (Bermuda grass Cynodon dactylon and smooth crabgrass Digitaria ischaemum) grown in a nutrient-poor soil for 80-100 days inside a growth chamber. Rhizosphere effects were estimated by the percentage difference between the planted soil (rhizosphere soil) and the unplanted soil (bulk soil) for several assays. We found that the rhizosphere soil of both plants had higher pH (+ 0.5~0.7 units), similar microbial biomass carbon, but lower microbial biomass nitrogen (- 27~37%) compared to the bulk soil. The rate of net N mineralization and the activity of three soil enzymes that degrade chitin (NAG), protein (LAP) and lignin (peroxidase) and produce mineral nitrogen were generally enhanced by the rhizosphere effects (up to 80%). Although nitrogen fertilization significantly increased plant biomass, it generally affected microbial biomass, activity and net N mineralization rate to a similar extent between rhizosphere soil and bulk soil, and thus did not significantly impact the magnitude of rhizosphere effects. Moreover, the community structure of soil bacteria (indicated by T-RFLP) showed remarkable divergence between the planted and unplanted soils, but not between the control and fertilized soils. Collectively, these results suggest that grass roots affects soil microbial activity and community structure, but short-term nitrogen fertilization may not significantly influence these rhizosphere effects.

  18. Comparative genomics of Fructobacillus spp. and Leuconostoc spp. reveals niche-specific evolution of Fructobacillus spp.

    DOE PAGESBeta

    Endo, Akihito; Tanizawa, Yasuhiro; Tanaka, Naoto; Maeno, Shintaro; Kumar, Himanshu; Shiwa, Yuh; Okada, Sanae; Yoshikawa, Hirofumi; Dicks, Leon; Nakagawa, Junichi; et al

    2015-12-29

    In this study, Fructobacillus spp. in fructose-rich niches belong to the family Leuconostocaceae. They were originally classified as Leuconostoc spp., but were later grouped into a novel genus, Fructobacillus , based on their phylogenetic position, morphology and specific biochemical characteristics. The unique characters, so called fructophilic characteristics, had not been reported in the group of lactic acid bacteria, suggesting unique evolution at the genome level. Here we studied four draft genome sequences of Fructobacillus spp. and compared their metabolic properties against those of Leuconostoc spp. As a result, Fructobacillus species possess significantly less protein coding sequences in their small genomes.more » The number of genes was significantly smaller in carbohydrate transport and metabolism. Several other metabolic pathways, including TCA cycle, ubiquinone and other terpenoid-quinone biosynthesis and phosphotransferase systems, were characterized as discriminative pathways between the two genera. The adhE gene for bifunctional acetaldehyde/alcohol dehydrogenase, and genes for subunits of the pyruvate dehydrogenase complex were absent in Fructobacillus spp. The two genera also show different levels of GC contents, which are mainly due to the different GC contents at the third codon position. In conclusion, the present genome characteristics in Fructobacillus spp. suggest reductive evolution that took place to adapt to specific niches.« less

  19. Parasitic polymorphism of Coccidioides spp

    PubMed Central

    2014-01-01

    Background Coccidioides spp. is the ethiological agent of coccidioidomycosis, an infection that can be fatal. Its diagnosis is complicated, due to that it shares clinical and histopathological characteristics with other pulmonary mycoses. Coccidioides spp. is a dimorphic fungus and, in its saprobic phase, grows as a mycelium, forming a large amount of arthroconidia. In susceptible persons, arthroconidia induce dimorphic changes into spherules/endospores, a typical parasitic form of Coccidioides spp. In addition, the diversity of mycelial parasitic forms has been observed in clinical specimens; they are scarcely known and produce errors in diagnosis. Methods We presented a retrospective study of images from specimens of smears with 15% potassium hydroxide, cytology, and tissue biopsies of a histopathologic collection from patients with coccidioidomycosis seen at a tertiary-care hospital in Mexico City. Results The parasitic polymorphism of Coccidioides spp. observed in the clinical specimens was as follows: i) spherules/endospores in different maturation stages; ii) pleomorphic cells (septate hyphae, hyphae composed of ovoid and spherical cells, and arthroconidia), and iii) fungal ball formation (mycelia with septate hyphae and arthroconidia). Conclusions The parasitic polymorphism of Coccidioides spp. includes the following: spherules/endospores, arthroconidia, and different forms of mycelia. This knowledge is important for the accurate diagnosis of coccidioidomycosis. In earlier studies, we proposed the integration of this diversity of forms in the Coccidioides spp. parasitic cycle. The microhabitat surrounding the fungus into the host would favor the parasitic polymorphism of this fungus, and this environment may assist in the evolution toward parasitism of Coccidioides spp. PMID:24750998

  20. Cyclic Lipopeptide Surfactant Production by Pseudomonas fluorescens SS101 Is Not Required for Suppression of Complex Pythium spp. Populations.

    PubMed

    Mazzola, M; Zhao, X; Cohen, M F; Raaijmakers, J M

    2007-10-01

    ABSTRACT Previously, the zoosporicidal activity and control of Pythium root rot of flower bulbs by Pseudomonas fluorescens SS101 was attributed, in part, to the production of the cyclic lipopeptide surfactant massetolide A. The capacity of strain SS101 and its surfactant-deficient massA mutant 10.24 to suppress populations and root infection by complex Pythium spp. communities resident in orchard soils was assessed on apple and wheat seedlings and on apple rootstocks. Both strains initially became established in soil and persisted in the rhizosphere at similar population densities; however, massA mutant 10.24 typically was detected at higher populations in the wheat rhizosphere and soil at the end of each experiment. Both strains effectively suppressed resident Pythium populations to an equivalent level in the presence or absence of plant roots, and ultimately suppressed Pythium root infection to the same degree on all host plants. When split-root plant assays were employed, neither strain suppressed Pythium spp. infection of the component of the root system physically separated from the bacterium, suggesting that induced systemic resistance did not play a role in Pythium control. Strain SS101 only marginally suppressed in vitro growth of Pythium spp. and growth was not inhibited in the presence of mutant 10.24. When incorporated into the growth medium, the cyclic lipopeptide massetolide A significantly slowed the rate of hyphal expansion for all Pythium spp. examined. Differences in sensitivity were observed among species, with Pythium heterothallicum, P. rostratum, and P. ultimum var. ultimum exhibiting significantly greater tolerance. Pythium spp. populations indigenous to the two soils employed were composed primarily of P. irregulare, P. sylvaticum, and P. ultimum var. ultimum. These Pythium spp. either do not or rarely produce zoospores, which could account for the observation that both SS101 and mutant 10.24 were equally effective in disease control

  1. Deciphering Community Structure of Methanotrophs Dwelling in Rice Rhizospheres of an Indian Rice Field Using Cultivation and Cultivation-Independent Approaches.

    PubMed

    Pandit, Pranitha S; Rahalkar, Monali C; Dhakephalkar, Prashant K; Ranade, Dilip R; Pore, Soham; Arora, Preeti; Kapse, Neelam

    2016-04-01

    Methanotrophs play a crucial role in filtering out methane from habitats, such as flooded rice fields. India has the largest area under rice cultivation in the world; however, to the best of our knowledge, methanotrophs have not been isolated and characterized from Indian rice fields. A cultivation strategy composing of a modified medium, longer incubation time, and serial dilutions in microtiter plates was used to cultivate methanotrophs from a rice rhizosphere sample from a flooded rice field in Western India. We compared the cultured members with the uncultured community as revealed by three culture-independent methods. A novel type Ia methanotroph (Sn10-6), at the rank of a genus, and a putative novel species of a type II methanotroph (Sn-Cys) were cultivated from the terminal positive dilution (10(-6)). From lower dilution (10(-4)), a strain of Methylomonas spp. was cultivated. All the three culture-independent analyses, i.e., pmoA clone library, terminal restriction fragment length polymorphism (T-RFLP), and metagenomics approach, revealed the dominance of type I methanotrophs. Only metagenomic analysis showed significant presence of type II methanotrophs, albeit in lower proportion (37 %). All the three isolates showed relevance to the methanotrophic community as depicted by uncultured methods; however, the cultivated members might not be the most dominant ones. In conclusion, a combined cultivation and cultivation-independent strategy yielded us a broader picture of the methanotrophic community from rice rhizospheres of a flooded rice field in India. PMID:26547567

  2. Phosphorus Depletion From Rhizosphere Solution by Maize Grown in Compost-amended Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of rhizosphere processes is essential for characterizing soil nutrient availability. Our objective in this controlled-climate study was to evaluate phosphorus (P) dynamics in the rhizosphere of juvenile maize (Zea mays L.) grown in soil amended with compost. Maize seedlings were transplant...

  3. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The composition and function of microbial communities present in the rhizosphere of crops has been linked to edaphic factors and root exudate composition. In this paper, we examined the effect of N fertilizer rate on maize root exudation, the associated rhizosphere community, and nitrogen-use-effici...

  4. Book Review: "The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface, Second Edition"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complexity of the biological, chemical, and physical interactions occurring in the volume of soil surrounding the root of a growing plant dictates that a multidisciplinary approach must be taken to improve our understanding of this rhizosphere. Hence, "The Rhizosphere: Biochemistry and Organic S...

  5. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rhizosphere is a hot spot of microbial interactions as exudates released by plant roots are a main food source for microorganisms and a driving force of their population density and activities. The rhizosphere harbors many organisms that have a neutral effect on the plant, but also attracts orga...

  6. Cucumber rhizosphere microbial community response to biocontrol agent Bacillus subtilis B068150

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gram-positive bacteria Bacillus subtilis B068150 has been used as a biocontrol agent against the pathogen Fusarium oxysporum f. sp. Cucumerinum. However, their survival ability in cucumber rhizosphere and non-rhizosphere as well as their influence on native microbial communities has not been fully i...

  7. Rice rhizosphere soil and root surface bacterial community response to water management changes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different water management practices could affect microbial populations in the rice rhizosphere. A field-scale study was conducted to evaluate microbial populations in the root plaque and rhizosphere of rice in response to continuous and intermittent flooding conditions. Microbial populations in rhi...

  8. Cultural conditions on the production of extracellular enzymes by Trichoderma isolates from tobacco rhizosphere.

    PubMed

    Mallikharjuna Rao, K L N; Siva Raju, K; Ravisankar, H

    2016-01-01

    Twelve isolates of Trichoderma spp. isolated from tobacco rhizosphere were evaluated for their ability to produce chitinase and β-1,3-glucanase extracellular hydrolytic enzymes. Isolates ThJt1 and TvHt2, out of 12 isolates, produced maximum activities of chitinase and β-1,3-glucanase, respectively. In vitro production of chitinase and β-1,3-glucanase by isolates ThJt1 and TvHt2 was tested under different cultural conditions. The enzyme activities were significantly influenced by acidic pH and the optimum temperature was 30°C. The chitin and cell walls of Sclerotium rolfsii, as carbon sources, supported the maximum and significantly higher chitinase activity by both isolates. The chitinase activity of isolate ThJt1 was suppressed significantly by fructose (80.28%), followed by glucose (77.42%), whereas the β-1,3-glucanase activity of ThJt1 and both enzymes of isolate TvHt2 were significantly suppressed by fructose, followed by sucrose. Ammonium nitrate as nitrogen source supported the maximum activity of chitinase in both isolates, whereas urea was a poor nitrogen source. Production of both enzymes by the isolates was significantly influenced by the cultural conditions. Thus, the isolates ThJt1 and TvHt2 showed higher levels of chitinase and β-1,3-glucanase activities and were capable of hydrolyzing the mycelium of S. rolfsii infecting tobacco. These organisms can be used therefore for assessment of their synergism in biomass production and biocontrol efficacy and for their field biocontrol ability against S. rolfsii and Pythium aphanidermatum infecting tobacco. PMID:26887223

  9. Cultural conditions on the production of extracellular enzymes by Trichoderma isolates from tobacco rhizosphere

    PubMed Central

    Mallikharjuna Rao, K.L.N.; Siva Raju, K.; Ravisankar, H.

    2016-01-01

    Twelve isolates of Trichoderma spp. isolated from tobacco rhizosphere were evaluated for their ability to produce chitinase and β-1,3-glucanase extracellular hydrolytic enzymes. Isolates ThJt1 and TvHt2, out of 12 isolates, produced maximum activities of chitinase and β-1,3-glucanase, respectively. In vitro production of chitinase and β-1,3-glucanase by isolates ThJt1 and TvHt2 was tested under different cultural conditions. The enzyme activities were significantly influenced by acidic pH and the optimum temperature was 30 °C. The chitin and cell walls of Sclerotium rolfsii, as carbon sources, supported the maximum and significantly higher chitinase activity by both isolates. The chitinase activity of isolate ThJt1 was suppressed significantly by fructose (80.28%), followed by glucose (77.42%), whereas the β-1,3-glucanase activity of ThJt1 and both enzymes of isolate TvHt2 were significantly suppressed by fructose, followed by sucrose. Ammonium nitrate as nitrogen source supported the maximum activity of chitinase in both isolates, whereas urea was a poor nitrogen source. Production of both enzymes by the isolates was significantly influenced by the cultural conditions. Thus, the isolates ThJt1 and TvHt2 showed higher levels of chitinase and β-1,3-glucanase activities and were capable of hydrolyzing the mycelium of S. rolfsii infecting tobacco. These organisms can be used therefore for assessment of their synergism in biomass production and biocontrol efficacy and for their field biocontrol ability against S. rolfsii and Pythium aphanidermatum infecting tobacco. PMID:26887223

  10. Infections Caused by Scedosporium spp.

    PubMed Central

    Cortez, Karoll J.; Roilides, Emmanuel; Quiroz-Telles, Flavio; Meletiadis, Joseph; Antachopoulos, Charalampos; Knudsen, Tena; Buchanan, Wendy; Milanovich, Jeffrey; Sutton, Deanna A.; Fothergill, Annette; Rinaldi, Michael G.; Shea, Yvonne R.; Zaoutis, Theoklis; Kottilil, Shyam; Walsh, Thomas J.

    2008-01-01

    Scedosporium spp. are increasingly recognized as causes of resistant life-threatening infections in immunocompromised patients. Scedosporium spp. also cause a wide spectrum of conditions, including mycetoma, saprobic involvement and colonization of the airways, sinopulmonary infections, extrapulmonary localized infections, and disseminated infections. Invasive scedosporium infections are also associated with central nervous infection following near-drowning accidents. The most common sites of infection are the lungs, sinuses, bones, joints, eyes, and brain. Scedosporium apiospermum and Scedosporium prolificans are the two principal medically important species of this genus. Pseudallescheria boydii, the teleomorph of S. apiospermum, is recognized by the presence of cleistothecia. Recent advances in molecular taxonomy have advanced the understanding of the genus Scedosporium and have demonstrated a wider range of species than heretofore recognized. Studies of the pathogenesis of and immune response to Scedosporium spp. underscore the importance of innate host defenses in protection against these organisms. Microbiological diagnosis of Scedosporium spp. currently depends upon culture and morphological characterization. Molecular tools for clinical microbiological detection of Scedosporium spp. are currently investigational. Infections caused by S. apiospermum and P. boydii in patients and animals may respond to antifungal triazoles. By comparison, infections caused by S. prolificans seldom respond to medical therapy alone. Surgery and reversal of immunosuppression may be the only effective therapeutic options for infections caused by S. prolificans. PMID:18202441

  11. Biotic Interactions in the Rhizosphere: A Diverse Cooperative Enterprise for Plant Productivity1[C

    PubMed Central

    De-la-Peña, Clelia; Loyola-Vargas, Víctor M.

    2014-01-01

    Microbes and plants have evolved biochemical mechanisms to communicate with each other. The molecules responsible for such communication are secreted during beneficial or harmful interactions. Hundreds of these molecules secreted into the rhizosphere have been identified, and their functions are being studied in order to understand the mechanisms of interaction and communication among the different members of the rhizosphere community. The importance of root and microbe secretion to the underground habitat in improving crop productivity is increasingly recognized, with the discovery and characterization of new secreting compounds found in the rhizosphere. Different omic approaches, such as genomics, transcriptomics, proteomics, and metabolomics, have expanded our understanding of the first signals between microbes and plants. In this review, we highlight the more recent discoveries related to molecules secreted into the rhizosphere and how they affect plant productivity, either negatively or positively. In addition, we include a survey of novel approaches to studying the rhizosphere and emerging opportunities to direct future studies. PMID:25118253

  12. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth

    PubMed Central

    Singh, Mangal; Awasthi, Ashutosh; Soni, Sumit K.; Singh, Rakshapal; Verma, Rajesh K.; Kalra, Alok

    2015-01-01

    An assessment of roles of rhizospheric microbial diversity in plant growth is helpful in understanding plant-microbe interactions. Using random combinations of rhizospheric bacterial species at different richness levels, we analysed the contribution of species richness, compositions, interactions and identity on soil microbial respiration and plant biomass. We showed that bacterial inoculation in plant rhizosphere enhanced microbial respiration and plant biomass with complementary relationships among bacterial species. Plant growth was found to increase linearly with inoculation of rhizospheric bacterial communities with increasing levels of species or plant growth promoting trait diversity. However, inoculation of diverse bacterial communities having single plant growth promoting trait, i.e., nitrogen fixation could not enhance plant growth over inoculation of single bacteria. Our results indicate that bacterial diversity in rhizosphere affect ecosystem functioning through complementary relationship among plant growth promoting traits and may play significant roles in delivering microbial services to plants. PMID:26503744

  13. Nicotiana Roots Recruit Rare Rhizosphere Taxa as Major Root-Inhabiting Microbes.

    PubMed

    Saleem, Muhammad; Law, Audrey D; Moe, Luke A

    2016-02-01

    Root-associated microbes have a profound impact on plant health, yet little is known about the distribution of root-associated microbes among different root morphologies or between rhizosphere and root environments. We explore these issues here with two commercial varieties of burley tobacco (Nicotiana tabacum) using 16S rRNA gene amplicon sequencing from rhizosphere soil, as well as from primary, secondary, and fine roots. While rhizosphere soils exhibited a fairly rich and even distribution, root samples were dominated by Proteobacteria. A comparison of abundant operational taxonomic units (OTUs) between rhizosphere and root samples indicated that Nicotiana roots select for rare taxa (predominantly Proteobacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, and Acidobacteria) from their corresponding rhizosphere environments. The majority of root-inhabiting OTUs (~80 %) exhibited habitat generalism across the different root morphological habitats, although habitat specialists were noted. These results suggest a specific process whereby roots select rare taxa from a larger community. PMID:26391804

  14. Investigation into the Efficacy of Bdellovibrio bacteriovorus as a Novel Preharvest Intervention To Control Escherichia coli O157:H7 and Salmonella in Cattle Using an In Vitro Model.

    PubMed

    Page, Jennifer A; Lubbers, Brian; Maher, Joshua; Ritsch, Linda; Gragg, Sara E

    2015-09-01

    Cattle are an important reservoir for the foodborne pathogens Salmonella and Escherichia coli O157:H7; they frequently harbor these microorganisms in their digestive tracts and shed them in their feces. Thus, there is potential for contamination of cattle hides and, subsequently, carcasses. Interventions aimed at reducing or eliminating pathogen shedding preharvest will also reduce the likelihood of beef product contamination by these pathogens. Therefore, this study used an in vitro model to evaluate Bdellovibrio bacteriovorus, a gram-negative microorganism that preys upon other gram-negative microorganisms, as a preharvest intervention to control Salmonella and E. coli O157:H7. Rumen fluid and feces were inoculated with pansusceptible or antimicrobial-resistant strains of one pathogen. Control samples were treated with HEPES buffer, whereas experimental samples were exposed to HEPES buffer plus B. bacteriovorus. Salmonella and E. coli O157:H7 populations were quantified at 0, 24, 48, and 72 h. The most-probable-number (MPN) technique, followed by streaking onto xylose lysine Tergitol 4 agar, was used to determine Salmonella populations, whereas spread plating onto sorbitol MacConkey agar supplemented with cefixime and tellurite was employed to enumerate E. coli O157:H7. B. bacteriovorus reduced pansusceptible Salmonella in cattle feces by 2.02 Log MPN/g (P = 0.0005) and antimicrobial-resistant Salmonella by 3.79 (P < 0.0001) and 2.24 (P = 0.0013) Log MPN/g after 24 and 48 h, respectively, in comparison to control samples. Significant reductions were not observed for E. coli O157:H7 in rumen or feces. These data suggest that further investigation into B. bacteriovorus efficacy as a preharvest intervention to control Salmonella in cattle is warranted. PMID:26319730

  15. Bartonella spp. in bats, Kenya.

    PubMed

    Kosoy, Michael; Bai, Ying; Lynch, Tarah; Kuzmin, Ivan V; Niezgoda, Michael; Franka, Richard; Agwanda, Bernard; Breiman, Robert F; Rupprecht, Charles E

    2010-12-01

    We report the presence and diversity of Bartonella spp. in bats of 13 insectivorous and frugivorous species collected from various locations across Kenya. Bartonella isolates were obtained from 23 Eidolon helvum, 22 Rousettus aegyptiacus, 4 Coleura afra, 7 Triaenops persicus, 1 Hipposideros commersoni, and 49 Miniopterus spp. bats. Sequence analysis of the citrate synthase gene from the obtained isolates showed a wide assortment of Bartonella strains. Phylogenetically, isolates clustered in specific host bat species. All isolates from R. aegyptiacus, C. afra, and T. persicus bats clustered in separate monophyletic groups. In contrast, E. helvum and Miniopterus spp. bats harbored strains that clustered in several groups. Further investigation is needed to determine whether these agents are responsible for human illnesses in the region. PMID:21122216

  16. Rates of Root and Organism Growth, Soil Conditions, and Temporal and Spatial Development of the Rhizosphere

    PubMed Central

    WATT, MICHELLE; SILK, WENDY K.; PASSIOURA, JOHN B.

    2006-01-01

    • Background Roots growing in soil encounter physical, chemical and biological environments that influence their rhizospheres and affect plant growth. Exudates from roots can stimulate or inhibit soil organisms that may release nutrients, infect the root, or modify plant growth via signals. These rhizosphere processes are poorly understood in field conditions. • Scope and Aims We characterize roots and their rhizospheres and rates of growth in units of distance and time so that interactions with soil organisms can be better understood in field conditions. We review: (1) distances between components of the soil, including dead roots remnant from previous plants, and the distances between new roots, their rhizospheres and soil components; (2) characteristic times (distance2/diffusivity) for solutes to travel distances between roots and responsive soil organisms; (3) rates of movement and growth of soil organisms; (4) rates of extension of roots, and how these relate to the rates of anatomical and biochemical ageing of root tissues and the development of the rhizosphere within the soil profile; and (5) numbers of micro-organisms in the rhizosphere and the dependence on the site of attachment to the growing tip. We consider temporal and spatial variation within the rhizosphere to understand the distribution of bacteria and fungi on roots in hard, unploughed soil, and the activities of organisms in the overlapping rhizospheres of living and dead roots clustered in gaps in most field soils. • Conclusions Rhizosphere distances, characteristic times for solute diffusion, and rates of root and organism growth must be considered to understand rhizosphere development. Many values used in our analysis were estimates. The paucity of reliable data underlines the rudimentary state of our knowledge of root–organism interactions in the field. PMID:16551700

  17. Autecology in Rhizospheres and Nodulating Behavior of Indigenous Rhizobium trifolii†

    PubMed Central

    Demezas, David H.; Bottomley, Peter J.

    1986-01-01

    Indigenous serotype 1-01 of Rhizobium trifolii occupied significantly fewer nodules (6%) on plants of soil-grown noninoculated subterranean clover (Trifolium subterraneum L.) cv. Woogenellup than on cv. Mt. Barker (36%) sampled at the flowering stage of growth. Occupancy by indigenous serotype 2-01, was not significantly different on the two cultivars (16 and 26%). Serotype-specific, fluorescent-antibody conjugates were synthesized and used to enumerate the indigenous serotypes in host (clovers) and nonhost (annual rye-grass, Lolium multiflorum L.) rhizospheres and in nonplanted soil. The form and concentration of Ca2+ in the flocculating mixture and the presence of phosphate anions in the extracting solution were both critical for enumerating R. trifolii in Whobrey soil. The two serotypes were present in similar numbers in nonplanted soil (ca. 106 per g of soil) and each represented ca. 10% of the total R. trifolii population. Although host rhizospheres did not preferentially stimulate either serotype, the mean population densities of serotype 2-01 were significantly greater (P = 0.05) than those of serotype 1-01 in clover rhizospheres on 8 of 14 samplings made between the time of seeding and the appearance of nodules (day 12). In this experiment, and in contrast to our earlier findings, serotype 1-01 occupied significantly fewer (P ≤ 0.05) of the nodules (7 to 16%) on both cultivars than serotype 2-01 (51%) when sampled at 4 weeks. Differences between cultivars became apparent as the plants matured. There was a threefold increase (7 to 21%) in nodules occupied by serotype 1-01 on cv. Mt. Barker between 4 and 16 weeks. This was accompanied by increases in nodules coinhabited by both nonidentifiable occupants and either serotype 1-01 (0 to 20%) or 2-01 (11 to 51%). No increases in either of these parameters were observed on cv. Woogenellup. PMID:16347198

  18. Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings?

    PubMed Central

    Huang, Longbin; Baumgartl, Thomas; Mulligan, David

    2012-01-01

    Background Revegetation of mine tailings (fine-grained waste material) starts with the reconstruction of root zones, consisting of a rhizosphere horizon (mostly topsoil and/or amended tailings) and the support horizon beneath (i.e. equivalent to subsoil – mostly tailings), which must be physically and hydro-geochemically stable. This review aims to discuss key processes involved in the development of functional root zones within the context of direct revegetation of tailings and introduces a conceptual process of rehabilitating structure and function in the root zones based on a state transition model. Scope Field studies on the revegetation of tailings (from processing base metal ore and bauxite residues) are reviewed. Particular focus is given to tailings' properties that limit remediation effectiveness. Aspects of root zone reconstruction and vegetation responses are also discussed. Conclusions When reconstructing a root zone system, it is critical to restore physical structure and hydraulic functions across the whole root zone system. Only effective and holistically restored systems can control hydro-geochemical mobility of acutely and chronically toxic factors from the underlying horizon and maintain hydro-geochemical stability in the rhizosphere. Thereafter, soil biological capacity and ecological linkages (i.e. carbon and nutrient cycling) may be rehabilitated to integrate the root zones with revegetated plant communities into sustainable plant ecosystems. A conceptual framework of system transitions between the critical states of root zone development has been proposed. This will illustrate the rehabilitation process in root zone reconstruction and development for direct revegetation with sustainable plant communities. Sustainable phytostabilization of tailings requires the systematic consideration of hydro-geochemical interactions between the rhizosphere and the underlying supporting horizon. It further requires effective remediation strategies to

  19. Plasticity of rhizosphere hydraulic properties as a key for efficient utilization of scarce resources

    PubMed Central

    Carminati, Andrea; Vetterlein, Doris

    2013-01-01

    Background It is known that the soil near roots, the so-called rhizosphere, has physical and chemical properties different from those of the bulk soil. Rhizosphere properties are the result of several processes: root and soil shrinking/swelling during drying/wetting cycles, soil compaction by root growth, mucilage exuded by root caps, interaction of mucilage with soil particles, mucilage shrinking/swelling and mucilage biodegradation. These processes may lead to variable rhizosphere properties, i.e. the presence of air-filled gaps between soil and roots; water repellence in the rhizosphere caused by drying of mucilage around the soil particles; or water accumulation in the rhizosphere due to the high water-holding capacity of mucilage. The resulting properties are not constant in time but they change as a function of soil condition, root growth rate and mucilage age. Scope We consider such a variability as an expression of rhizosphere plasticity, which may be a strategy for plants to control which part of the root system will have a facilitated access to water and which roots will be disconnected from the soil, for instance by air-filled gaps or by rhizosphere hydrophobicity. To describe such a dualism, we suggest classifying rhizosphere into two categories: class A refers to a rhizosphere covered with hydrated mucilage that optimally connects roots to soil and facilitates water uptake from dry soils. Class B refers to the case of air-filled gaps and/or hydrophobic rhizosphere, which isolate roots from the soil and may limit water uptake from the soil as well water loss to the soil. The main function of roots covered by class B will be long-distance transport of water. Outlook This concept has implications for soil and plant water relations at the plant scale. Root water uptake in dry conditions is expected to shift to regions covered with rhizosphere class A. On the other hand, hydraulic lift may be limited in regions covered with rhizosphere class B. New

  20. Impact of a Recombinant Biocontrol Bacterium, Pseudomonas fluorescens pc78, on Microbial Community in Tomato Rhizosphere

    PubMed Central

    Kong, Hyun Gi; Kim, Nam Hee; Lee, Seung Yeup; Lee, Seon-Woo

    2016-01-01

    Pseudomonas fluorescens pc78 is an effective biocontrol agent for soil-borne fungal diseases. We previously constructed a P43-gfp tagged biocontrol bacteria P. fluorescens pc78-48 to investigate bacterial traits in natural ecosystem and the environmental risk of genetically modified biocontrol bacteria in tomato rhizosphere. Fluctuation of culturable bacteria profile, microbial community structure, and potential horizontal gene transfer was investigated over time after the bacteria treatment to the tomato rhizosphere. Tagged gene transfer to other organisms such as tomato plants and bacteria cultured on various media was examined by polymerase chain reaction, using gene specific primers. Transfer of chromosomally integrated P43-gfp from pc78 to other organisms was not apparent. Population and colony types of culturable bacteria were not significantly affected by the introduction of P. fluorescens pc78 or pc78-48 into tomato rhizosphere. Additionally, terminal restriction fragment length polymorphism profiles were investigated to estimate the influence on the microbial community structure in tomato rhizosphere between non-treated and pc78-48-treated samples. Interestingly, rhizosphere soil treated with strain pc78-48 exhibited a significantly different bacterial community structure compared to that of non-treated rhizosphere soil. Our results suggest that biocontrol bacteria treatment influences microbial community in tomato rhizosphere, while the chromosomally modified biocontrol bacteria may not pose any specific environmental risk in terms of gene transfer. PMID:27147933

  1. Impact of a Recombinant Biocontrol Bacterium, Pseudomonas fluorescens pc78, on Microbial Community in Tomato Rhizosphere.

    PubMed

    Kong, Hyun Gi; Kim, Nam Hee; Lee, Seung Yeup; Lee, Seon-Woo

    2016-04-01

    Pseudomonas fluorescens pc78 is an effective biocontrol agent for soil-borne fungal diseases. We previously constructed a P43-gfp tagged biocontrol bacteria P. fluorescens pc78-48 to investigate bacterial traits in natural ecosystem and the environmental risk of genetically modified biocontrol bacteria in tomato rhizosphere. Fluctuation of culturable bacteria profile, microbial community structure, and potential horizontal gene transfer was investigated over time after the bacteria treatment to the tomato rhizosphere. Tagged gene transfer to other organisms such as tomato plants and bacteria cultured on various media was examined by polymerase chain reaction, using gene specific primers. Transfer of chromosomally integrated P43-gfp from pc78 to other organisms was not apparent. Population and colony types of culturable bacteria were not significantly affected by the introduction of P. fluorescens pc78 or pc78-48 into tomato rhizosphere. Additionally, terminal restriction fragment length polymorphism profiles were investigated to estimate the influence on the microbial community structure in tomato rhizosphere between non-treated and pc78-48-treated samples. Interestingly, rhizosphere soil treated with strain pc78-48 exhibited a significantly different bacterial community structure compared to that of non-treated rhizosphere soil. Our results suggest that biocontrol bacteria treatment influences microbial community in tomato rhizosphere, while the chromosomally modified biocontrol bacteria may not pose any specific environmental risk in terms of gene transfer. PMID:27147933

  2. Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance.

    PubMed

    Thion, Cécile E; Poirel, Jessica D; Cornulier, Thomas; De Vries, Franciska T; Bardgett, Richard D; Prosser, James I

    2016-07-01

    The influence of plants on archaeal (AOA) and bacterial (AOB) ammonia oxidisers (AO) is poorly understood. Higher microbial activity in the rhizosphere, including organic nitrogen (N) mineralisation, may stimulate both groups, while ammonia uptake by plants may favour AOA, considered to prefer lower ammonia concentration. We therefore hypothesised (i) higher AOA and AOB abundances in the rhizosphere than bulk soil and (ii) that AOA are favoured over AOB in the rhizosphere of plants with an exploitative strategy and high N demand, especially (iii) during early growth, when plant N uptake is higher. These hypotheses were tested by growing 20 grassland plants, covering a spectrum of resource-use strategies, and determining AOA and AOB amoA gene abundances, rhizosphere and bulk soil characteristics and plant functional traits. Joint Bayesian mixed models indicated no increase in AO in the rhizosphere, but revealed that AOA were more abundant in the rhizosphere of exploitative plants, mostly grasses, and less abundant under conservative plants. In contrast, AOB abundance in the rhizosphere and bulk soil depended on pH, rather than plant traits. These findings provide a mechanistic basis for plant-ammonia oxidiser interactions and for links between plant functional traits and ammonia oxidiser ecology. PMID:27130939

  3. Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria.

    PubMed

    Andreazza, Robson; Okeke, Benedict C; Lambais, Márcio Rodrigues; Bortolon, Leandro; de Melo, George Wellington Bastos; Camargo, Flávio Anastácio de Oliveira

    2010-11-01

    Copper contaminated areas pose environmental health risk to living organisms. Remediation processes are thus required for both crop production and industrial activities. This study employed bioaugmentation with copper resistant bacteria to improve phytoremediation of vineyard soils and copper mining waste contaminated with high copper concentrations. Oatmeal plant (Avena sativa L.) was used for copper phytoextraction. Three copper resistant bacterial isolates from oatmeal rhizosphere (Pseudomonas putida A1; Stenotrophomonas maltophilia A2 and Acinetobacter calcoaceticus A6) were used for the stimulation of copper phytoextraction. Two long-term copper contaminated vineyard soils (Mollisol and Inceptisol) and copper mining waste from Southern Brazil were evaluated. Oatmeal plants substantially extracted copper from vineyard soils and copper mining waste. As much as 1549 mg of Cu kg⁻¹ dry mass was extracted from plants grown in Inceptisol soil. The vineyard Mollisol copper uptake (55 mg Cu kg⁻¹ of dry mass) in the shoots was significantly improved upon inoculation of oatmeal plants with isolate A2 (128 mg of Cu kg⁻¹ of shoot dry mass). Overall oatmeal plant biomass displayed higher potential of copper phytoextraction with inoculation of rhizosphere bacteria in vineyard soil to the extent that 404 and 327 g ha⁻¹ of copper removal were respectively observed in vineyard Mollisol bioaugmented with isolate A2 (S. maltophilia) and isolate A6 (A. calcoaceticus). Results suggest potential application of bacterial stimulation of phytoaccumulation of copper for biological removal of copper from contaminated areas. PMID:20937516

  4. Arsenic biotransformation by Streptomyces sp. isolated from rice rhizosphere.

    PubMed

    Kuramata, Masato; Sakakibara, Futa; Kataoka, Ryota; Abe, Tadashi; Asano, Maki; Baba, Koji; Takagi, Kazuhiro; Ishikawa, Satoru

    2015-06-01

    Isolation and functional analysis of microbes mediating the methylation of arsenic (As) in paddy soils is important for understanding the origin of dimethylarsinic acid (DMA) in rice grains. Here, we isolated from the rice rhizosphere a unique bacterium responsible for As methylation. Strain GSRB54, which was isolated from the roots of rice plants grown in As-contaminated paddy soil under anaerobic conditions, was classified into the genus Streptomyces by 16S ribosomal RNA sequencing. Sequence analysis of the arsenite S-adenosylmethionine methyltransferase (arsM) gene revealed that GSRB54 arsM was phylogenetically different from known arsM genes in other bacteria. This strain produced DMA and monomethylarsonic acid when cultured in liquid medium containing arsenite [As(III)]. Heterologous expression of GSRB54 arsM in Escherichia coli promoted methylation of As(III) by converting it into DMA and trimethylarsine oxide. These results demonstrate that strain GSRB54 has a strong ability to methylate As. In addition, DMA was detected in the shoots of rice grown in liquid medium inoculated with GSRB54 and containing As(III). Since Streptomyces are generally aerobic bacteria, we speculate that strain GSRB54 inhabits the oxidative zone around roots of paddy rice and is associated with DMA accumulation in rice grains through As methylation in the rice rhizosphere. PMID:25039305

  5. Microbial arsenic methylation in soil and rice rhizosphere.

    PubMed

    Jia, Yan; Huang, Hai; Zhong, Min; Wang, Feng-Hua; Zhang, Li-Mei; Zhu, Yong-Guan

    2013-04-01

    Methylated arsenic (As) species are a common constituent of rice grains accounting for 10-90% of the total As. Recent studies have shown that higher plants are unlikely to methylate As in vivo suggesting that As methylation is a microbial mediated process that occurs in soils prior to plant uptake. In this study, we designed primers according to the conserved essential amino acids and structural motifs of arsenite S-adenosylmethionine methyltransferase (ArsM). We report for the first time the successful amplification of the prokaryotic arsM gene in 14 tested soils with wide ranging As concentrations. The abundance and diversity of the arsM gene in the rice rhizosphere soil and roots were analyzed using the designed primers. Results showed that microbes containing arsM genes were phylogenetically diverse, as revealed by the clone library and terminal restriction fragment length polymorphism (T-RFLP) analysis, and were branched into various phyla. Concentration of methylated As species in the soil solution was elevated in the rhizosphere soil and also by the addition of rice straw into the paddy soil, corresponding to the elevated abundance of the arsM gene in the soil. These results, together with evidence of horizontal gene transfer (HGT) of the arsM gene, suggest the genes encoding ArsM in soils are widespread. These findings demonstrate why most rice, when compared with other cereals, contains unusually high concentrations of methylated As species. PMID:23469919

  6. Implications of non-specific strigolactone signaling in the rhizosphere.

    PubMed

    Koltai, Hinanit

    2014-08-01

    Strigolactones produced by various plant species are involved in the development of different plant parts. They are also exuded by plant roots to the rhizosphere, where they are involved in the induction of seed germination of the parasitic plants Striga and Orobanche, hyphal branching of the symbiotic arbuscular mycorrhizal fungi (AMF), and the symbiotic interaction with Rhizobium. In the present discussion paper, the essentialness of strigolactones as communication signals in these plant interactions is discussed in view of the existence of other plant-derived substances that are able to promote these plant interactions. In addition, the importance of strigolactones for determination of interaction specificity is discussed based on current knowledge on strigolactone composition, perception and delivery. The different activities of strigolactones in plant development and in the rhizosphere suggest their possible use in agriculture. However, despite efforts made in this direction, there is no current, practical implementation. Possible reasons for the encountered difficulties and suggested solutions to promote strigolactone use in agriculture are discussed. PMID:25017154

  7. Allelochemicals from the Rhizosphere Soil of Cultivated Astragalus hoantchy.

    PubMed

    Guo, Kai; He, Xiaofeng; Yan, Zhiqiang; Li, Xiuzhuang; Ren, Xia; Pan, Le; Qin, Bo

    2016-05-01

    Astragalus hoantchy, a widely cultivated medicinal plant species in traditional Chinese and Mongolian medicine, has been often hampered by replant failure during cultivation, like many other herbs of the genus Astragalus. Root aqueous extracts of Astragalus herbs were reported to exhibit allelopathic activity against other plants and autotoxic activity on their own seedlings, but the allelochemicals released by Astragalus plants have not been specified so far. Ten compounds were isolated from the rhizosphere soil extract of cultivated A. hoantchy and elucidated by spectroscopic analysis. Compounds 1-6 observably showed allelopathic activity against Lactuca sativa seedlings and autotoxic activity against A. hoantchy seedlings. The isolated compounds were further confirmed and quantified by high-performance liquid chromatography (HPLC) in the rhizosphere soil, with a total concentration of 9.78 μg/g (dry weight). These results specify and verify the allelochemicals released by cultivated A. hoantchy into the soil environment, which may provide new insights into the allelopathic mechanisms of this medicinal plant and probably assist in clarifying the replant problems of Astragalus plants. PMID:27074954

  8. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce

    PubMed Central

    Schreiter, Susanne; Ding, Guo-Chun; Heuer, Holger; Neumann, Günter; Sandmann, Martin; Grosch, Rita; Kropf, Siegfried; Smalla, Kornelia

    2014-01-01

    The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for 10 years under the same agricultural management to reveal differences directly linked to the soil type and not influenced by other factors such as climate or cropping history. Bulk soil and rhizosphere samples were collected 3 and 7 weeks after planting. The analysis of 16S rRNA gene fragments amplified from total community DNA by denaturing gradient gel electrophoresis and pyrosequencing revealed soil type dependent differences in the bacterial community structure of the bulk soils and the corresponding rhizospheres. The rhizosphere effect differed depending on the soil type and the plant growth developmental stage. Despite the soil type dependent differences in the bacterial community composition several genera such as Sphingomonas, Rhizobium, Pseudomonas, and Variovorax were significantly increased in the rhizosphere of lettuce grown in all three soils. The number of rhizosphere responders was highest 3 weeks after planting. Interestingly, in the soil with the highest numbers of responders the highest shoot dry weights were observed. Heatmap analysis revealed that many dominant operational taxonomic units were shared among rhizosphere samples of lettuce grown in diluvial sand, alluvial loam, and loess loam and that only a subset was increased in relative abundance in the rhizosphere compared to the corresponding bulk soil. The findings of the study provide insights into the effect of soil types on the rhizosphere microbiome of lettuce. PMID:24782839

  9. Distinct Microbial Communities within the Endosphere and Rhizosphere of Populus deltoides Roots across Contrasting Soil Types.

    SciTech Connect

    Gottel, Neil R; Castro Gonzalez, Hector F; Kerley, Marilyn K; Yang, Zamin; Pelletier, Dale A; Podar, Mircea; Karpinets, Tatiana V; Uberbacher, Edward C; Tuskan, Gerald A; Vilgalys, Rytas; Doktycz, Mitchel John; Schadt, Christopher Warren

    2011-01-01

    The root-rhizosphere interface of Populus is the nexus of a variety of associations between bacteria, fungi, and the host plant and an ideal model for studying interactions between plants and microorganisms. However, such studies have generally been confined to greenhouse and plantation systems. Here we analyze microbial communities from the root endophytic and rhizospheric habitats of Populus deltoides in mature natural trees from both upland and bottomland sites in central Tennessee. Community profiling utilized 454 pyrosequencing with separate primers targeting the V4 region for bacterial 16S rRNA and the D1/D2 region for fungal 28S rRNA genes. Rhizosphere bacteria were dominated by Acidobacteria (31%) and Alphaproteobacteria (30%), whereas most endophytes were from the Gammaproteobacteria (54%) as well as Alphaproteobacteria (23%). A single Pseudomonas-like operational taxonomic unit (OTU) accounted for 34% of endophytic bacterial sequences. Endophytic bacterial richness was also highly variable and 10-fold lower than in rhizosphere samples originating from the same roots. Fungal rhizosphere and endophyte samples had approximately equal amounts of the Pezizomycotina (40%), while the Agaricomycotina were more abundant in the rhizosphere (34%) than endosphere (17%). Both fungal and bacterial rhizosphere samples were highly clustered compared to the more variable endophyte samples in a UniFrac principal coordinates analysis, regardless of upland or bottomland site origin. Hierarchical clustering of OTU relative abundance patterns also showed that the most abundant bacterial and fungal OTUs tended to be dominant in either the endophyte or rhizosphere samples but not both. Together, these findings demonstrate that root endophytic communities are distinct assemblages rather than opportunistic subsets of the rhizosphere.

  10. Increased acidification in the rhizosphere of cactus seedlings induced by Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Carrillo, Angel; Li, Ching; Bashan, Yoav

    2002-08-01

    Acidification of the rhizosphere of cactus seedlings (giant cardon, Pachycereus pringlei) after inoculation with the plant growth-promoting bacterium Azospirillum brasilense Cd, in the presence or absence of ammonium and nitrate, was studied to understand how to increase growth of cardon seedlings in poor desert soils. While ammonium enhanced rhizosphere and liquid culture acidification, inoculation with the bacteria enhanced it further. On the other hand, nitrate increased pH of the rhizosphere, but combined with the bacterial inoculation, increase in pH was significantly smaller. Bacterial inoculation with ammonium enhanced plant growth.

  11. Microbial degradation of trichloroethylene in the rhizosphere: potential application to biological remediation of waste sites.

    PubMed Central

    Walton, B T; Anderson, T A

    1990-01-01

    The possibility that vegetation may be used to actively promote microbial restoration of chemically contaminated soils was tested by using rhizosphere and nonvegetated soils collected from a trichloroethylene (TCE)-contaminated field site. Biomass determinations, disappearance of TCE from the headspace of spiked soil slurries, and mineralization of [14C]TCE to 14CO2 all showed that microbial activity is greater in rhizosphere soils and that TCE degradation occurs faster in the rhizosphere than in the edaphosphere. Thus, vegetation may be an important variable in the biological restoration of surface and near-surface soils. PMID:2339867

  12. [Characteristics of soil microelements contents in the rhizospheres of different vegetation in hilly-gully region of Loess Plateau].

    PubMed

    Zhang, Chao; Liu, Guo-Bin; Xue, Sha; Zhang, Chang-Sheng

    2012-03-01

    To explore the rhizosphere effect of the microelements in the soils under different vegetation types in Loess Plateau, this paper analyzed the organic C, total N, Mn, Cu, Fe, and Zn contents in the rhizosphere soil and bulk soil of six vegetation types in hilly-gully region of Loess Plateau. Among the six vegetation types, Caragana korshinskii, Heteropappus altaicus, and Artemisia capillaries had higher organic C and total N contents in rhizosphere soil than in bulk soil. With the exception of C. korshinskii and H. rhamnoides, all the six vegetation types had a significantly lower pH in rhizosphere soil than in bulk soil. The six vegetation types had a lower available Mn content in rhizosphere soil than in bulk soil, and the C. korshinskii, Astragalus adsurgen, and Panicum virgatum had a significantly higher available Cu content in rhizosphere soil than in bulk soil. The six vegetation types except A. adsurgens had a slightly higher available Fe content in rhizosphere soil than in bulk soil, and A. adsurgens, P. virgatum, H. altaicus, and A. capillaries had a significant accumulation of available Zn in rhizosphere soil. There existed significant positive correlations between the rhizosphere soil and bulk soil of the six vegetation types in the relationships between the organic C and total N contents and the available Mn and Zn contents and between the contents of available Mn and Zn. In rhizosphere soil, available Mn and Zn contents were significantly negative- ly correlated with pH value. Due to the differences in root growth characteristics, rhizosphere pH value, and microbial structure composition, the microelements contents in the rhizosphere soil of the six vegetation types differed, with the contents of Mn, Cu, Fe, and Zn being higher in the rhizosphere soil of H. altaicus than in that of the other vegetation types. PMID:22720606

  13. Absence of antibodies to Rickettsia spp., Bartonella spp., Ehrlichia spp. and Coxiella burnetii in Tahiti, French Polynesia

    PubMed Central

    2014-01-01

    Abtract Background In the Pacific islands countries and territories, very little is known about the incidence of infectious diseases due to zoonotic pathogens. To our knowledge, human infections due to Rickettsia spp., Coxiella burnetii, Ehrlichia spp. and Bartonella spp. have never been reported in French Polynesia; and infections due to C. burnetti have been reported worldwide except in New Zealand. To evaluate the prevalence of this disease, we conducted a serosurvey among French Polynesian blood donors. Methods The presence of immunoglobulin G antibodies against R. felis, R. typhi, R. conorii, C. burnetii, B. henselae, B. quintana, and E. chaffeensis was evaluated by indirect immunofluorescence assay in sera from 472 French Polynesian blood donors collected from 2011 to 2013. In addition, 178 ticks and 36 cat fleas collected in French Polynesia were also collected and tested by polymerase chain reaction to detect Rickettsia spp., B. henselae and Ehrlichia spp. Results None of the blood donors had antibodies at a significant level against Rickettsia spp., Coxiella burnetii, Ehrlichia spp. and Bartonella spp. All tested ticks and cat fleas were PCR-negative for Rickettsia spp., B. henselae, and Ehrlichia spp. Conclusion We cannot conclude that these pathogens are absent in French Polynesia but, if present, their prevalence is probably very low. C. burnetii has been reported worldwide except in New Zealand. It may also be absent from French Polynesia. PMID:24885466

  14. Genetic engineering of Geobacillus spp.

    PubMed

    Kananavičiūtė, Rūta; Čitavičius, Donaldas

    2015-04-01

    Members of the genus Geobacillus are thermophiles that are of great biotechnological importance, since they are sources of many thermostable enzymes. Because of their metabolic versatility, geobacilli can be used as whole-cell catalysts in processes such as bioconversion and bioremediation. The effective employment of Geobacillus spp. requires the development of reliable methods for genetic engineering of these bacteria. Currently, genetic manipulation tools and protocols are under rapid development. However, there are several convenient cloning vectors, some of which replicate autonomously, while others are suitable for the genetic modification of chromosomal genes. Gene expression systems are also intensively studied. Combining these tools together with proper techniques for DNA transfer, some Geobacillus strains were shown to be valuable producers of recombinant proteins and industrially important biochemicals, such as ethanol or isobutanol. This review encompasses the progress made in the genetic engineering of Geobacillus spp. and surveys the vectors and transformation methods that are available for this genus. PMID:25659824

  15. Rhizosphere activity and methane oxidation in a temperate forest soil

    NASA Astrophysics Data System (ADS)

    Moody, Catherine S.; Subke, Jens-Arne; Voke, Naomi R.; Holden, Robert D.; Ineson, Phil; Arn Teh, Yit

    2010-05-01

    Methane (CH4) concentrations in the Earth's atmosphere have increased dramatically over recent decades. An abundance of studies indicate that the magnitude of natural methane efflux from wetlands is likely to increase due to climate change. However, the role of vegetation and soils in upland methane oxidation are less well understood. Well-aerated soils are known to be sites of methane oxidation, and amongst a range of abiotic environmental parameters, soil moisture has been identified as critical regulator of the methane oxidation rates. However, the role of microbial activity within the soil, particularly C turnover in the plant rhizosphere, has not been investigated as a means for regulating methanotrophy. We combined a continuous soil CO2 efflux system (Li-Cor Biosciences, LI-8100) with a Cavity-Ringdown-Spectroscopy Fast Greenhouse Gas Analyser (Los Gatos Research Inc.) to measure soil CH4 oxidation in a pine forest in NE England. The soil has a shallow organic layer overlaying a well-draining sandy gley soil. Fluxes were measured from three different collar treatments: (1) excluding both root and ectomycorrhizal (EM) hyphae by trenching using deep collars, (2) excluding roots but allowing access by EM hyphae, and (3) unmodified forest soil (i.e. including both roots and EM hyphae). All collars were protected from natural throughfall, and received weekly-averaged amounts of throughfall based on collections in the stand. Data from two months in early summer 2009 indicate that CH4 oxidation in collars with an intact rhizosphere is more than twice that of either of the exclusion treatments (averaging approx. 90 g ha-1 d-1 in that period). We observed higher fluxes when soils were dryer (i.e. with increasing time since watering), indicating a significant influence of moisture. Despite the confounding effects of soil moisture associated with root water uptake in the unmodified soil collars, we argue that rhizosphere activity is an overlooked component in

  16. The biology of Giardia spp.

    PubMed Central

    Adam, R D

    1991-01-01

    Gardia spp. are flagellated protozoans that parasitize the small intestines of mammals, birds, reptiles, and amphibians. The infectious cysts begin excysting in the acidic environment of the stomach and become trophozoites (the vegetative form). The trophozoites attach to the intestinal mucosa through the suction generated by a ventral disk and cause diarrhea and malabsorption by mechanisms that are not well understood. Giardia spp. have a number of unique features, including a predominantly anaerobic metabolism, complete dependence on salvage of exogenous nucleotides, a limited ability to synthesize and degrade carbohydrates and lipids, and two nuclei that are equal by all criteria that have been tested. The small size and unique sequence of G. lamblia rRNA molecules have led to the proposal that Giardia is the most primitive eukaryotic organism. Three Giardia spp. have been identified by light lamblia, G. muris, and G. agilis, but electron microscopy has allowed further species to be described within the G. lamblia group, some of which have been substantiated by differences in the rDNA. Animal models and human infections have led to the conclusion that intestinal infection is controlled primarily through the humoral immune system (T-cell dependent in the mouse model). A major immunogenic cysteine-rich surface antigen is able to vary in vitro and in vivo in the course of an infection and may provide a means of evading the host immune response or perhaps a means of adapting to different intestinal environments. Images PMID:1779932

  17. MOLECULAR PHYLOGENETIC AND BIOGEOCHEMICAL STUDIES OF SULFATE-REDUCING BACTERIA IN THE RHIZOSPHERE OF SPARTINA ALTERNIFLORA

    EPA Science Inventory

    The population composition and biogeochemistry of sulfate-reducing bacteria (SRB) in the rhizosphere of the marsh grass Spartina alterniflora was investigated over two growing seasons using molecular probing, enumerations of culturable SRB, and measurements of SO42- reduction rat...

  18. PRODUCTION OF PLANT GROWTH PROMOTING SUBSTANCES IN BACTERIAL ISOLATES FROM THE SEAGRASS RHIZOSPHERE

    EPA Science Inventory

    Plants and rhizosphere bacteria have evolved chemical signals that enable their mutual growth. These relationships have been well investigated with agriculturally important plants, but not in seagrasses, which are important to the stability of estuaries. Seagrasses are rooted in ...

  19. [Status and changes of soil nutrients in rhizosphere of Abelmoschus manihot different planting age].

    PubMed

    Tang, Li-Xia; Tan, Xian-He; Zhang, Yu; Liu, Xiao-Ning

    2013-11-01

    Using soil chemical analysis method and combining with ICP-AES determination of mineral nutrition element content in rhizosphere soil of different planting age Abelmoschus Corolla Results show that along with the increase of planting age, the nitrogen (total N), available P and organic matter in rhizosphere soil of Abelmoschus Corolla content declined year by year and the soil got acidification. Heavy metal element content in agricultural land does not exceed national standards, but the content of element mercury (Hg) in rhizosphere soil of different planting age Abelmoschus Corolla declined. Request of microelement such as manganese (Mn) and zinc (Zn) had a increase tendency, but the content of magnesium (Mg) and sodium (Na) increased, and other nutrient elements had no changed rules or unchanged apparently. Consequently, exploring the change rules of different planting age Abelmoschus Corolla soil in rhizosphere as theoretical guidance of rational fertilization and subducting continuous cropping obstscles. PMID:24558867

  20. Molecular responses in root-associative rhizospheric bacteria to variations in plant exudates

    NASA Astrophysics Data System (ADS)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2015-04-01

    Plant exudates are a major factor in the interface of plant-soil-microbe interactions and it is well documented that the microbial community structure in the rhizosphere is largely influenced by the particular exudates excreted by various plants. Azospirillum brasilense is a plant growth promoting rhizobacterium that is known to interact with a large number of plants, including important food crops. The regulatory gene flcA has an important role in this interaction as it controls morphological differentiation of the bacterium that is essential for attachment to root surfaces. Being a response regulatory gene, flcA mediates the response of the bacterial cell to signals from the surrounding rhizosphere. This makes this regulatory gene a good candidate for analysis of the response of bacteria to rhizospheric alterations, in this case, variations in root exudates. We will report on our studies on the response of Azospirillum, an ecologically, scientifically and agriculturally important bacterial genus, to variations in the rhizosphere.

  1. Specific Microbial Communities Associate with the Rhizosphere of Welwitschia mirabilis, a Living Fossil

    PubMed Central

    De Maayer, Pieter; Oberholster, Tanzelle; Henschel, Joh; Louw, Michele K.; Cowan, Don

    2016-01-01

    Welwitschia mirabilis is an ancient and rare plant distributed along the western coast of Namibia and Angola. Several aspects of Welwitschia biology and ecology have been investigated, but very little is known about the microbial communities associated with this plant. This study reports on the bacterial and fungal communities inhabiting the rhizosphere of W. mirabilis and the surrounding bulk soil. Rhizosphere communities were dominated by sequences of Alphaproteobacteria and Euromycetes, while Actinobacteria, Alphaproteobacteria, and fungi of the class Dothideomycetes jointly dominated bulk soil communities. Although microbial communities within the rhizosphere and soil samples were highly variable, very few “species” (OTUs defined at a 97% identity cut-off) were shared between these two environments. There was a small ‘core’ rhizosphere bacterial community (formed by Nitratireductor, Steroidobacter, Pseudonocardia and three Phylobacteriaceae) that together with Rhizophagus, an arbuscular mycorrhizal fungus, and other putative plant growth-promoting microbes may interact synergistically to promote Welwitschia growth. PMID:27064484

  2. PREDICTIVE MODEL OF CONJUGATIVE PLASMID TRANSFER IN THE RHIZOSPHERE AND PHYLLOSPHERE

    EPA Science Inventory

    A computer simulation model was used to predict the dynamics of survival and conjugation of Pseudomonas cepacia (carrying the transmissible recombinant plasmid R388:Tn1721) with a nonrecombinant recipient strain in simple rhizosphere and phyllosphere microcosms. lasmid transfer r...

  3. Mineralization Capacity of Bacteria and Fungi from the Rhizosphere-Rhizoplane of a Semiarid Grassland

    PubMed Central

    Nakas, J. P.; Klein, D. A.

    1980-01-01

    A radiotracer glucose mineralization assay was used with streptomycin and actidione to monitor the relative seasonal contributions of bacteria and fungi to mineralization processes in soils derived from the rhizosphere-rhizoplane zone of plants from a shortgrass prairie ecosystem. Bacteria played a major role in glucose mineralization in both the rhizosphere and rhizoplane. These results indicate that the bacteria may play a greater role in glucose mineralization processes in the rhizosphere and rhizoplane zones of a semiarid grassland than would be assumed, based on available biomass estimates. This technique appears to be valuable for determining bacterial versus fungal contributions to glucose mineralization in the rhizosphere and rhizoplane and may be useful for measuring the decomposition of other more complex substances in this zone of intense microbial activity. PMID:16345485

  4. Antifungal Rhizosphere Bacteria Can increase as Response to the Presence of Saprotrophic Fungi

    PubMed Central

    de Boer, Wietse; Hundscheid, Maria P. J.; Klein Gunnewiek, Paulien J. A.; de Ridder-Duine, Annelies S.; Thion, Cecile; van Veen, Johannes A.; van der Wal, Annemieke

    2015-01-01

    Knowledge on the factors that determine the composition of bacterial communities in the vicinity of roots (rhizosphere) is essential to understand plant-soil interactions. Plant species identity, plant growth stage and soil properties have been indicated as major determinants of rhizosphere bacterial community composition. Here we show that the presence of saprotrophic fungi can be an additional factor steering rhizosphere bacterial community composition and functioning. We studied the impact of presence of two common fungal rhizosphere inhabitants (Mucor hiemalis and Trichoderma harzianum) on the composition of cultivable bacterial communities developing in the rhizosphere of Carex arenaria (sand sedge) in sand microcosms. Identification and phenotypic characterization of bacterial isolates revealed clear shifts in the rhizosphere bacterial community composition by the presence of two fungal strains (M. hiemalis BHB1 and T. harzianum PvdG2), whereas another M. hiemalis strain did not show this effect. Presence of both M. hiemalis BHB1 and T. harzianum PvdG2 resulted in a significant increase of chitinolytic and (in vitro) antifungal bacteria. The latter was most pronounced for M. hiemalis BHB1, an isolate from Carex roots, which stimulated the development of the bacterial genera Achromobacter and Stenotrophomonas. In vitro tests showed that these genera were strongly antagonistic against M. hiemalis but also against the plant-pathogenic fungus Rhizoctonia solani. The most likely explanation for fungal-induced shifts in the composition of rhizosphere bacteria is that bacteria are being selected which are successful in competing with fungi for root exudates. Based on the results we propose that measures increasing saprotrophic fungi in agricultural soils should be explored as an alternative approach to enhance natural biocontrol against soil-borne plant-pathogenic fungi, namely by stimulating indigenous antifungal rhizosphere bacteria. PMID:26393509

  5. Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere.

    PubMed

    Trivedi, Pankaj; He, Zhili; Van Nostrand, Joy D; Albrigo, Gene; Zhou, Jizhong; Wang, Nian

    2012-02-01

    The diversity and stability of bacterial communities present in the rhizosphere heavily influence soil and plant quality and ecosystem sustainability. The goal of this study is to understand how 'Candidatus Liberibacter asiaticus' (known to cause Huanglongbing, HLB) influences the structure and functional potential of microbial communities associated with the citrus rhizosphere. Clone library sequencing and taxon/group-specific quantitative real-time PCR results showed that 'Ca. L. asiaticus' infection restructured the native microbial community associated with citrus rhizosphere. Within the bacterial community, phylum Proteobacteria with various genera typically known as successful rhizosphere colonizers were significantly greater in clone libraries from healthy samples, whereas phylum Acidobacteria, Actinobacteria and Firmicutes, typically more dominant in the bulk soil were higher in 'Ca. L. asiaticus'-infected samples. A comprehensive functional microarray GeoChip 3.0 was used to determine the effects of 'Ca. L. asiaticus' infection on the functional diversity of rhizosphere microbial communities. GeoChip analysis showed that HLB disease has significant effects on various functional guilds of bacteria. Many genes involved in key ecological processes such as nitrogen cycling, carbon fixation, phosphorus utilization, metal homeostasis and resistance were significantly greater in healthy than in the 'Ca. L. asiaticus'-infected citrus rhizosphere. Our results showed that the microbial community of the 'Ca. L. asiaticus'-infected citrus rhizosphere has shifted away from using more easily degraded sources of carbon to the more recalcitrant forms. Overall, our study provides evidence that the change in plant physiology mediated by 'Ca. L. asiaticus' infection could elicit shifts in the composition and functional potential of rhizosphere microbial communities. In the long term, these fluctuations might have important implications for the productivity and sustainability

  6. Bacterial communities in the rhizosphere of Vitis vinifera L. cultivated under distinct agricultural practices in Argentina.

    PubMed

    Vega-Avila, A D; Gumiere, T; Andrade, P A M; Lima-Perim, J E; Durrer, A; Baigori, M; Vazquez, F; Andreote, F D

    2015-02-01

    Plants interact with a myriad of microbial cells in the rhizosphere, an environment that is considered to be important for plant development. However, the differential structuring of rhizosphere microbial communities due to plant cultivation under differential agricultural practices remains to be described for most plant species. Here we describe the rhizosphere microbiome of grapevine cultivated under conventional and organic practices, using a combination of cultivation-independent approaches. The quantification of bacterial 16S rRNA and nifH genes, by quantitative PCR (qPCR), revealed similar amounts of these genes in the rhizosphere in both vineyards. PCR-DGGE was used to detect differences in the structure of bacterial communities, including both the complete whole communities and specific fractions, such as Alphaproteobacteria, Betaproteobacteria, Actinobacteria, and those harboring the nitrogen-fixing related gene nifH. When analyzed by a multivariate approach (redundancy analysis), the shifts observed in the bacterial communities were poorly explained by variations in the physical and chemical characteristics of the rhizosphere. These approaches were complemented by high-throughput sequencing (67,830 sequences) based on the V6 region of the 16S rRNA gene, identifying the major bacterial groups present in the rhizosphere of grapevines: Proteobacteria, Actinobacteria, Firmicutes, Bacteriodetes, Acidobacteria, Cloroflexi, Verrucomicrobia and Planctomycetes, which occur in distinct proportions in the rhizosphere from each vineyard. The differences might be related to the selection of plant metabolism upon distinct reservoirs of microbial cells found in each vineyard. The results fill a gap in the knowledge of the rhizosphere of grapevines and also show distinctions in these bacterial communities due to agricultural practices. PMID:25527391

  7. Comparison of rhizosphere bacterial communities in Arabidopsis thaliana mutants for systemic acquired resistance.

    PubMed

    Hein, John W; Wolfe, Gordon V; Blee, Kristopher A

    2008-02-01

    Systemic acquired resistance (SAR) is an inducible systemic plant defense against a broad spectrum of plant pathogens, with the potential to secrete antimicrobial compounds into the soil. However, its impact on rhizosphere bacteria is not known. In this study, we examined fingerprints of bacterial communities in the rhizosphere of the model plant Arabidopsis thaliana to determine the effect of SAR on bacterial community structure and diversity. We compared Arabidopsis mutants that are constitutive and non-inducible for SAR and verified SAR activation by measuring pathogenesis-related protein activity via a beta-glucoronidase (GUS) reporter construct driven by the beta-1-3 glucanase promoter. We used terminal restriction fragment length polymorphism (T-RFLP) analysis of MspI- and HaeIII-digested 16S rDNA to estimate bacterial rhizosphere community diversity, with Lactobacillus sp. added as internal controls. T-RFLP analysis showed a clear rhizosphere effect on community structure, and diversity analysis of both rhizosphere and bulk soil operational taxonomic units (as defined by terminal restriction fragments) using richness, Shannon-Weiner, and Simpson's diversity indices and evenness confirmed that the presence of Arabidopsis roots significantly altered bacterial communities. This effect of altered soil microbial community structure by plants was also seen upon multivariate cluster analysis of the terminal restriction fragments. We also found visible differences in the rhizosphere community fingerprints of different Arabidopsis SAR mutants; however, there was no clear decrease of rhizosphere diversity because of constitutive SAR expression. Our study suggests that SAR can alter rhizosphere bacterial communities, opening the door to further understanding and application of inducible plant defense as a driving force in structuring soil bacterial assemblages. PMID:17619212

  8. Plant Rhizosphere Effects on Metal Mobilization and Transport

    SciTech Connect

    Fan, Teresa W.-M; Crowley, David; Higashi, Richard M.

    1999-06-01

    A mechanistic understanding of mobilization or immobilization of nutrient and pollutant metal ions by plants is largely lacking. It begins with a lack of knowledge on the chemical nature of rhizosphere components that are reactive with metal ions. This fundamental knowledge is critical to the design and implementation of phytoremediation for metal-contaminated DOE sites. Therefore, the objectives of this project include (1) To obtain a comprehensive composition of major organic components in plant root exudates as a function of different metal ions and plant species; (2) To examine plant metabolic response(s) to these metal ion treatments, with emphasis on production of metal reactive compounds; (3) To investigate the effect(s) of soil microbial (e.g. mycorrhizae) association on (1) and (2).

  9. Deciphering the rhizosphere microbiome for disease-suppressive bacteria.

    PubMed

    Mendes, Rodrigo; Kruijt, Marco; de Bruijn, Irene; Dekkers, Ester; van der Voort, Menno; Schneider, Johannes H M; Piceno, Yvette M; DeSantis, Todd Z; Andersen, Gary L; Bakker, Peter A H M; Raaijmakers, Jos M

    2011-05-27

    Disease-suppressive soils are exceptional ecosystems in which crop plants suffer less from specific soil-borne pathogens than expected owing to the activities of other soil microorganisms. For most disease-suppressive soils, the microbes and mechanisms involved in pathogen control are unknown. By coupling PhyloChip-based metagenomics of the rhizosphere microbiome with culture-dependent functional analyses, we identified key bacterial taxa and genes involved in suppression of a fungal root pathogen. More than 33,000 bacterial and archaeal species were detected, with Proteobacteria, Firmicutes, and Actinobacteria consistently associated with disease suppression. Members of the γ-Proteobacteria were shown to have disease-suppressive activity governed by nonribosomal peptide synthetases. Our data indicate that upon attack by a fungal root pathogen, plants can exploit microbial consortia from soil for protection against infections. PMID:21551032

  10. Microbial Community Dynamics Associated with Rhizosphere Carbon Flow

    PubMed Central

    Butler, Jessica L.; Williams, Mark A.; Bottomley, Peter J.; Myrold, David D.

    2003-01-01

    Root-deposited photosynthate (rhizodeposition) is an important source of readily available carbon (C) for microbes in the vicinity of growing roots. Plant nutrient availability is controlled, to a large extent, by the cycling of this and other organic materials through the soil microbial community. Currently, our understanding of microbial community dynamics associated with rhizodeposition is limited. We used a 13C pulse-chase labeling procedure to examine the incorporation of rhizodeposition into individual phospholipid fatty acids (PLFAs) in the bulk and rhizosphere soils of greenhouse-grown annual ryegrass (Lolium multiflorum Lam. var. Gulf). Labeling took place during a growth stage in transition between active root growth and rapid shoot growth on one set of plants (labeling period 1) and 9 days later during the rapid shoot growth stage on another set of plants (labeling period 2). Temporal differences in microbial community composition were more apparent than spatial differences, with a greater relative abundance of PLFAs from gram-positive organisms (i15:0 and a15:0) in the second labeling period. Although more abundant, gram-positive organisms appeared to be less actively utilizing rhizodeposited C in labeling period 2 than in labeling period 1. Gram-negative bacteria associated with the 16:1ω5 PLFA were more active in utilizing 13C-labeled rhizodeposits in the second labeling period than in the first labeling period. In both labeling periods, however, the fungal PLFA 18:2ω6,9 was the most highly labeled. These results demonstrate the effectiveness of using 13C labeling and PLFA analysis to examine the microbial dynamics associated with rhizosphere C cycling by focusing on the members actively involved. PMID:14602642

  11. Phosphate Solubilization Potentials of Rhizosphere Isolates from Central Anatolia (Turkey)

    NASA Astrophysics Data System (ADS)

    Ogut, M.; Er, F.

    2009-04-01

    Plant available-phosphorus (P) is usually low in Anatolian soils due mainly to the precipitation as calcium (Ca) and magnesium (Mg) phosphates in alkaline conditions. Phosphate solubilizing microorganisms (PSM) can enhance plant P-availability by dissolving the hardly soluble-P within the rhizosphere, which is the zone that surrounds the plant roots. PSM's can be used as seed- or soil-inocula to increase plant P-uptake and the overall growth. A total of 162 PSM's were isolated from the rhizosphere of wheat plants excavated from different fields located along a 75 km part of a highway in Turkey. The mean, the standart deviation, and the median for solubilized-P (ppm) in a 24 h culture in a tricalcium phosphate broth were 681, 427, and 400 for glucose; 358, 266, and 236 for sucrose; and 102, 117, and 50 for starch, respectively. There was not a linear relationship between the phosphate solubilized in the liquid cultures and the solubilization index obtained in the Pikovskaya's agar. Nine isolates representing both weak and strong solubilizers [Bacillus megaterium (5), Bacillus pumilis (1), Pseudomonas syringae pv. phaseolica (1), Pseudomonas fluorescens (1), Arthrobacter aurescens (1) as determined by the 16S rRNA gene sequence analysis] were further studied in a five day incubation. Pseudomonas syringae pv. phaseolica solubilized statistically (P<0.05) higher phosphate (409 ppm) than all the other strains did. There was not a statistically significant (P<0.05) difference in solubilized-P among the Bacillus strains. The pH of the medium fell to the levels between 4 and 5 from the initial neutrality. The phosphate solubilizing strains variably produced gluconic, 2-keto-D-gluconic, glycolic, acetic and butyric acids. The organic acids produced by these microorganisms seem to be the major source of phosphate solubilization in vitro.

  12. Effect of Surface-Active Pseudomonas spp. on Leaf Wettability

    PubMed Central

    Bunster, Lillian; Fokkema, Nyckle J.; Schippers, Bob

    1989-01-01

    Different strains of Pseudomonas putida and P. fluorescens isolated from the rhizosphere and phyllosphere were tested for surface activity in droplet cultures on polystyrene. Droplets of 6 of the 12 wild types tested spread over the surface during incubation, and these strains were considered surface active; strains not showing this reaction were considered non-surface active. Similar reactions were observed on pieces of wheat leaves. Supernatants from centrifuged broth cultures behaved like droplets of suspensions in broth; exposure to 100°C destroyed the activity. Average contact angles of the supernatants of surface-active and non-surface-active strains on polystyrene were 24° and 72°, respectively. The minimal surface tension of supernatants of the surface-active strains was about 46 mN/m, whereas that of the non-surface-active strains was 64 mN/m (estimations from Zisman plots). After 6 days of incubation, wheat flag leaves sprayed with a dilute suspension of a surface-active strain of P. putida (WCS 358RR) showed a significant increase in leaf wettability, which was determined by contact angle measurements. Increasing the initial concentration of bacteria and the amount of nutrients in the inoculum sprayed on leaves reduced the contact angles from 138° on leaves treated with antibiotics (control) to 43° on leaves treated with surface-active bacteria. A closely related strain with no surface activity on polystyrene did not affect leaf wettability, although it was present in densities similar to those of the surface-active strain. Nutrients alone could occasionally also increase leaf wettability, apparently by stimulating naturally occurring surface-active bacteria. When estimating densities of Pseudomonas spp. underneath droplets with low contact angles, it appeared that populations on leaves treated with a surface-active strain could vary from about 104 to 106 CFU cm−2, suggesting that the surface effect may be prolonged after a decline of the

  13. Chemical speciation and bioavailability of selenium in the rhizosphere of Symphyotrichum eatonii from reclaimed mine soils.

    PubMed

    Oram, Libbie L; Strawn, Daniel G; Möller, Gregory

    2011-02-01

    Knowledge of rhizosphere influences on Se speciation and bioavailability is required to predict Se bioavailability to plants. In the present study, plant-availability of Se to aster (Symphyotrichum eatonii (A. Gray) G.L. Nesom) was compared in rhizosphere soils and nonrhizosphere (bulk) soils collected from a reclaimed mine site in southeastern Idaho, U.S. X-ray spectroscopy was used to characterize the oxidation state and elemental distribution of Se in aster roots, rhizosphere soils, and bulk soils. Percent extractable Se in aster rhizosphere soil was greater than extractable Se in corresponding bulk soils in all samples (n = 4, p = 0.042, 0.051, and 0.052 for three extractions). Selenium oxidation state mapping of 28 regions within the samples and X-ray absorption near edge structure (XANES) spectra from 26 points within the samples indicated that the rhizosphere and bulk soil Se species was predominantly reduced Se(-II,0), while in the aster roots, high concentrations of Se(VI) were present. Results show that within the rhizosphere, enhanced Se bioavailability is occurring via oxidation of reduced soil Se to more soluble Se(VI) species. PMID:21166454

  14. Microbial Growth and Carbon Use Efficiency in the Rhizosphere and Root-Free Soil

    PubMed Central

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Anderson, Traute-Heidi; Kuzyakov, Yakov

    2014-01-01

    Plant-microbial interactions alter C and N balance in the rhizosphere and affect the microbial carbon use efficiency (CUE)–the fundamental characteristic of microbial metabolism. Estimation of CUE in microbial hotspots with high dynamics of activity and changes of microbial physiological state from dormancy to activity is a challenge in soil microbiology. We analyzed respiratory activity, microbial DNA content and CUE by manipulation the C and nutrients availability in the soil under Beta vulgaris. All measurements were done in root-free and rhizosphere soil under steady-state conditions and during microbial growth induced by addition of glucose. Microorganisms in the rhizosphere and root-free soil differed in their CUE dynamics due to varying time delays between respiration burst and DNA increase. Constant CUE in an exponentially-growing microbial community in rhizosphere demonstrated the balanced growth. In contrast, the CUE in the root-free soil increased more than three times at the end of exponential growth and was 1.5 times higher than in the rhizosphere. Plants alter the dynamics of microbial CUE by balancing the catabolic and anabolic processes, which were decoupled in the root-free soil. The effects of N and C availability on CUE in rhizosphere and root-free soil are discussed. PMID:24722409

  15. Diversity and heritability of the maize rhizosphere microbiome under field conditions

    PubMed Central

    Peiffer, Jason A.; Spor, Aymé; Koren, Omry; Jin, Zhao; Tringe, Susannah Green; Dangl, Jeffery L.; Buckler, Edward S.; Ley, Ruth E.

    2013-01-01

    The rhizosphere is a critical interface supporting the exchange of resources between plants and their associated soil environment. Rhizosphere microbial diversity is influenced by the physical and chemical properties of the rhizosphere, some of which are determined by the genetics of the host plant. However, within a plant species, the impact of genetic variation on the composition of the microbiota is poorly understood. Here, we characterized the rhizosphere bacterial diversity of 27 modern maize inbreds possessing exceptional genetic diversity grown under field conditions. Randomized and replicated plots of the inbreds were planted in five field environments in three states, each with unique soils and management conditions. Using pyrosequencing of bacterial 16S rRNA genes, we observed substantial variation in bacterial richness, diversity, and relative abundances of taxa between bulk soil and the maize rhizosphere, as well as between fields. The rhizospheres from maize inbreds exhibited both a small but significant proportion of heritable variation in total bacterial diversity across fields, and substantially more heritable variation between replicates of the inbreds within each field. The results of this study should facilitate expanded studies to identify robust heritable plant–microbe interactions at the level of individual polymorphisms by genome wide association, so that plant-microbiome interactions can ultimately be incorporated into plant breeding. PMID:23576752

  16. Plant-microbe Cross-talk in the Rhizosphere: Insight and Biotechnological Potential

    PubMed Central

    Haldar, Shyamalina; Sengupta, Sanghamitra

    2015-01-01

    Rhizosphere, the interface between soil and plant roots, is a chemically complex environment which supports the development and growth of diverse microbial communities. The composition of the rhizosphere microbiome is dynamic and controlled by multiple biotic and abiotic factors that include environmental parameters, physiochemical properties of the soil, biological activities of the plants and chemical signals from the plants and bacteria which inhabit the soil adherent to root-system. Recent advancement in molecular and microbiological techniques has unravelled the interactions among rhizosphere residents at different levels. In this review, we elaborate on various factors that determine plant-microbe and microbe-microbe interactions in the rhizosphere, with an emphasis on the impact of host genotype and developmental stages which together play pivotal role in shaping the nature and diversity of root exudations. We also discuss about the coherent functional groups of microorganisms that colonize rhizosphere and enhance plant growth and development by several direct and indirect mechanisms. Insights into the underlying structural principles of indigenous microbial population and the key determinants governing rhizosphere ecology will provide directions for developing techniques for profitable applicability of beneficial microorganisms in sustainable agriculture and nature restoration. PMID:25926899

  17. Unique Organic Matter and Microbial Properties in the Rhizosphere of a Wetland Soil.

    PubMed

    Kaplan, Daniel I; Xu, Chen; Huang, Shan; Lin, Youmin; Tolić, Nikola; Roscioli-Johnson, Kristyn M; Santschi, Peter H; Jaffé, Peter R

    2016-04-19

    Wetlands attenuate the migration of many contaminants through a wide range of biogeochemical reactions. Recent research has shown that the rhizosphere, the zone near plant roots, in wetlands is especially effective at promoting contaminant attenuation. The objective of this study was to compare the soil organic matter (OM) composition and microbial communities of a rhizosphere soil (primarily an oxidized environment) to that of the bulk wetland soil (primarily a reduced environment). The rhizosphere had elevated C, N, Mn, and Fe concentrations and total bacteria, including Anaeromyxobacter, counts (as identified by qPCR). Furthermore, the rhizosphere contained several organic molecules that were not identified in the nonrhizosphere soil (54% of the >2200 ESI-FTICR-MS identified compounds). The rhizosphere OM molecules generally had (1) greater overall molecular weights, (2) less aromaticity, (3) more carboxylate and N-containing COO functional groups, and (4) a greater hydrophilic character. These latter two OM properties typically promote metal binding. This study showed for the first time that not only the amount but also the molecular characteristics of OM in the rhizosphere may in part be responsible for the enhanced immobilization of contaminants in wetlands. These finding have implications on the stewardship and long-term management of contaminated wetlands. PMID:27091553

  18. Impact of Plant Species and Site on Rhizosphere-Associated Fungi Antagonistic to Verticillium dahliae Kleb.

    PubMed Central

    Berg, Gabriele; Zachow, Christin; Lottmann, Jana; Götz, Monika; Costa, Rodrigo; Smalla, Kornelia

    2005-01-01

    Fungi with antagonistic activity toward plant pathogens play an essential role in plant growth and health. To analyze the effects of the plant species and the site on the abundance and composition of fungi with antagonistic activity toward Verticillium dahliae, fungi were isolated from oilseed rape and strawberry rhizosphere and bulk soil from three different locations in Germany over two growing seasons. A total of 4,320 microfungi screened for in vitro antagonism toward Verticillium resulted in 911 active isolates. This high proportion of fungi antagonistic toward the pathogen V. dahliae was found for bulk and rhizosphere soil at all sites. A plant- and site-dependent specificity of the composition of antagonistic morphotypes and their genotypic diversity was found. The strawberry rhizosphere was characterized by preferential occurrence of Penicillium and Paecilomyces isolates and low numbers of morphotypes (n = 31) and species (n = 13), while Monographella isolates were most frequently obtained from the rhizosphere of oilseed rape, for which higher numbers of morphotypes (n = 41) and species (n = 17) were found. Trichoderma strains displayed high diversity in all soils, but a high degree of plant specificity was shown by BOX-PCR fingerprints. The diversity of rhizosphere-associated antagonists was lower than that of antagonists in bulk soil, suggesting that some fungi were specifically enriched in each rhizosphere. A broad spectrum of new Verticillium antagonists was identified, and the implications of the data for biocontrol applications are discussed. PMID:16085804

  19. Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae kleb.

    PubMed

    Berg, Gabriele; Zachow, Christin; Lottmann, Jana; Götz, Monika; Costa, Rodrigo; Smalla, Kornelia

    2005-08-01

    Fungi with antagonistic activity toward plant pathogens play an essential role in plant growth and health. To analyze the effects of the plant species and the site on the abundance and composition of fungi with antagonistic activity toward Verticillium dahliae, fungi were isolated from oilseed rape and strawberry rhizosphere and bulk soil from three different locations in Germany over two growing seasons. A total of 4,320 microfungi screened for in vitro antagonism toward Verticillium resulted in 911 active isolates. This high proportion of fungi antagonistic toward the pathogen V. dahliae was found for bulk and rhizosphere soil at all sites. A plant- and site-dependent specificity of the composition of antagonistic morphotypes and their genotypic diversity was found. The strawberry rhizosphere was characterized by preferential occurrence of Penicillium and Paecilomyces isolates and low numbers of morphotypes (n = 31) and species (n = 13), while Monographella isolates were most frequently obtained from the rhizosphere of oilseed rape, for which higher numbers of morphotypes (n = 41) and species (n = 17) were found. Trichoderma strains displayed high diversity in all soils, but a high degree of plant specificity was shown by BOX-PCR fingerprints. The diversity of rhizosphere-associated antagonists was lower than that of antagonists in bulk soil, suggesting that some fungi were specifically enriched in each rhizosphere. A broad spectrum of new Verticillium antagonists was identified, and the implications of the data for biocontrol applications are discussed. PMID:16085804

  20. Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the Red Sea.

    PubMed

    Alzubaidy, Hanin; Essack, Magbubah; Malas, Tareq B; Bokhari, Ameerah; Motwalli, Olaa; Kamanu, Frederick Kinyua; Jamhor, Suhaiza Ahmad; Mokhtar, Noor Azlin; Antunes, André; Simões, Marta Filipa; Alam, Intikhab; Bougouffa, Salim; Lafi, Feras F; Bajic, Vladimir B; Archer, John A C

    2016-02-01

    Mangroves are unique, and endangered, coastal ecosystems that play a vital role in the tropical and subtropical environments. A comprehensive description of the microbial communities in these ecosystems is currently lacking, and additional studies are required to have a complete understanding of the functioning and resilience of mangroves worldwide. In this work, we carried out a metagenomic study by comparing the microbial community of mangrove sediment with the rhizosphere microbiome of Avicennia marina, in northern Red Sea mangroves, along the coast of Saudi Arabia. Our results revealed that rhizosphere samples presented similar profiles at the taxonomic and functional levels and differentiated from the microbiome of bulk soil controls. Overall, samples showed predominance by Proteobacteria, Bacteroidetes and Firmicutes, with high abundance of sulfate reducers and methanogens, although specific groups were selectively enriched in the rhizosphere. Functional analysis showed significant enrichment in 'metabolism of aromatic compounds', 'mobile genetic elements', 'potassium metabolism' and 'pathways that utilize osmolytes' in the rhizosphere microbiomes. To our knowledge, this is the first metagenomic study on the microbiome of mangroves in the Red Sea, and the first application of unbiased 454-pyrosequencing to study the rhizosphere microbiome associated with A. marina. Our results provide the first insights into the range of functions and microbial diversity in the rhizosphere and soil sediments of gray mangrove (A. marina) in the Red Sea. PMID:26475934

  1. Osteosarcoma in Baboons (Papio spp)

    PubMed Central

    Mezzles, Marguerite J; Dick, Edward J; Owston, Michael A; Bauer, Cassondra

    2015-01-01

    Bone neoplasms in baboons (Papio spp) are rare, with only one confirmed case of osteosarcoma previously described in the literature. Over a 12-y period, 6 baboons at a national primate research center presented with naturally occurring osteosarcoma; 3 lesions affected the appendicular skeleton, and the remaining 3 were in the head (skull and mandible). The 6 cases presented were identified in members of a large outdoor-housed breeding colony. The subjects were not genetically related or exposed to the same research conditions. Diagnoses were made based on the presentation and radiographic findings, with histologic confirmation. PMID:25926401

  2. Impact of biocontrol Pseudomonas fluorescens CHA0 and a genetically modified derivative on the diversity of culturable fungi in the cucumber rhizosphere.

    PubMed

    Girlanda, M; Perotto, S; Moenne-Loccoz, Y; Bergero, R; Lazzari, A; Defago, G; Bonfante, P; Luppi, A M

    2001-04-01

    Little is known about the effects of Pseudomonas biocontrol inoculants on nontarget rhizosphere fungi. This issue was addressed using the biocontrol agent Pseudomonas fluorescens CHA0-Rif, which produces the antimicrobial polyketides 2,4-diacetylphloroglucinol (Phl) and pyoluteorin (Plt) and protects cucumber from several fungal pathogens, including Pythium spp., as well as the genetically modified derivative CHA0-Rif(pME3424). Strain CHA0-Rif(pME3424) overproduces Phl and Plt and displays improved biocontrol efficacy compared with CHA0-Rif. Cucumber was grown repeatedly in the same soil, which was left uninoculated, was inoculated with CHA0-Rif or CHA0-Rif(pME3424), or was treated with the fungicide metalaxyl (Ridomil). Treatments were applied to soil at the start of each 32-day-long cucumber growth cycle, and their effects on the diversity of the rhizosphere populations of culturable fungi were assessed at the end of the first and fifth cycles. Over 11,000 colonies were studied and assigned to 105 fungal species (plus several sterile morphotypes). The most frequently isolated fungal species (mainly belonging to the genera Paecilomyces, Phialocephala, Fusarium, Gliocladium, Penicillium, Mortierella, Verticillium, Trichoderma, Staphylotrichum, Coniothyrium, Cylindrocarpon, Myrothecium, and Monocillium) were common in the four treatments, and no fungal species was totally suppressed or found exclusively following one particular treatment. However, in each of the two growth cycles studied, significant differences were found between treatments (e.g., between the control and the other treatments and/or between the two inoculation treatments) using discriminant analysis. Despite these differences in the composition and/or relative abundance of species in the fungal community, treatments had no effect on species diversity indices, and species abundance distributions fit the truncated lognormal function in most cases. In addition, the impact of treatments at the 32-day

  3. Impact of Biocontrol Pseudomonas fluorescens CHA0 and a Genetically Modified Derivative on the Diversity of Culturable Fungi in the Cucumber Rhizosphere

    PubMed Central

    Girlanda, M.; Perotto, S.; Moenne-Loccoz, Y.; Bergero, R.; Lazzari, A.; Defago, G.; Bonfante, P.; Luppi, A. M.

    2001-01-01

    Little is known about the effects of Pseudomonas biocontrol inoculants on nontarget rhizosphere fungi. This issue was addressed using the biocontrol agent Pseudomonas fluorescens CHA0-Rif, which produces the antimicrobial polyketides 2,4-diacetylphloroglucinol (Phl) and pyoluteorin (Plt) and protects cucumber from several fungal pathogens, including Pythium spp., as well as the genetically modified derivative CHA0-Rif(pME3424). Strain CHA0-Rif(pME3424) overproduces Phl and Plt and displays improved biocontrol efficacy compared with CHA0-Rif. Cucumber was grown repeatedly in the same soil, which was left uninoculated, was inoculated with CHA0-Rif or CHA0-Rif(pME3424), or was treated with the fungicide metalaxyl (Ridomil). Treatments were applied to soil at the start of each 32-day-long cucumber growth cycle, and their effects on the diversity of the rhizosphere populations of culturable fungi were assessed at the end of the first and fifth cycles. Over 11,000 colonies were studied and assigned to 105 fungal species (plus several sterile morphotypes). The most frequently isolated fungal species (mainly belonging to the genera Paecilomyces, Phialocephala, Fusarium, Gliocladium, Penicillium, Mortierella, Verticillium, Trichoderma, Staphylotrichum, Coniothyrium, Cylindrocarpon, Myrothecium, and Monocillium) were common in the four treatments, and no fungal species was totally suppressed or found exclusively following one particular treatment. However, in each of the two growth cycles studied, significant differences were found between treatments (e.g., between the control and the other treatments and/or between the two inoculation treatments) using discriminant analysis. Despite these differences in the composition and/or relative abundance of species in the fungal community, treatments had no effect on species diversity indices, and species abundance distributions fit the truncated lognormal function in most cases. In addition, the impact of treatments at the 32-day

  4. Arsenic dynamics in the rhizosphere and its sequestration on rice roots as affected by root oxidation.

    PubMed

    Pan, Weisong; Wu, Chuan; Xue, Shengguo; Hartley, William

    2014-04-01

    A pot experiment was conducted to investigate the effects of root oxidation on arsenic (As) dynamics in the rhizosphere and As sequestration on rice roots. There were significant differences (P < 0.05) in pH values between rhizosphere and non-rhizosphere soils, with pH 5.68-6.16 in the rhizosphere and 6.30-6.37 in non-rhizosphere soils as well as differences in redox potentials (P < 0.05). Percentage arsenite was lower (4%-16%) in rhizosphere soil solutions from rice genotypes with higher radial oxygen loss (ROL) compared with genotypes with lower ROL (P < 0.05). Arsenic concentrations in iron plaque and rice straw were significantly negatively correlated (R = -0.60, P < 0.05). Genotypes with higher ROL (TD71 and Yinjingruanzhan) had significantly (P < 0.001) lower total As in rice grains (1.35 and 0.96 mg/kg, respectively) compared with genotypes with lower ROL (IAPAR9, 1.68 mg/kg; Nanyangzhan 2.24 mg/kg) in the As treatment, as well as lower inorganic As (P < 0.05). The present study showed that genotypes with higher ROL could oxidize more arsenite in rhizosphere soils, and induce more Fe plaque formation, which subsequently sequestered more As. This reduced As uptake in aboveground plant tissues and also reduced inorganic As accumulation in rice grains. The study has contributed to further understanding the mechanisms whereby ROL influences As uptake and accumulation in rice. PMID:25079420

  5. Rhizosphere pH responses to simulated acid rain as measured with glass microelectrodes

    SciTech Connect

    Conkling, B.L.

    1988-01-01

    The objectives of this study were to develop a useful experimental system for studying the rhizosphere of growing roots, and to investigate the effects of bulk soil pH and foliar acid rain application on the rhizosphere pH of alfalfa, corn and soybeans. First, a study was done to compare soil pH measurements made with a standard glass pH electrode with those made using an antimony (Sb) microelectrode. Because of uncertainty with the Sb microelectrodes' response, glass pH-sensitive microelectrodes were made and tested for rhizosphere pH measurements. The influence of soil water pressure gradients in the range of {minus}10 to {minus}1500 kPa in the proximity of the pH and reference electrodes on pH measurements made with microelectrodes was studied. The effect of foliar acid rain application on the rhizosphere pH of alfalfa, corn, and soybean as a function of soil pH were studied. Alfalfa, corn, and soybean were grown into minirhizotrons containing reformed samples of both Seymour A and Bt soil horizons, and the rhizosphere pH measured. The measured in situ bulk soil pH ranged from 4.9 to 6.2 in the A horizon and from 4.0 to 5.7 in the Bt horizon. Plants received acid or non-acid foliar rain applications. Rhizosphere pH was measured using a glass pH-sensitive microelectrode. Acid rain applications caused foliar damage, but had little effect on the rhizosphere pH. The general trend was for the lateral root pH values to be slightly higher than the main root values.

  6. Spatio-Temporal Patterns in Rhizosphere Oxygen Profiles in the Emergent Plant Species Acorus calamus

    PubMed Central

    Wenlin, Wang; Ruiming, Han; Yinjing, Wan; Bo, Liu; Xiaoyan, Tang; Bin, Liang; Guoxiang, Wang

    2014-01-01

    Rhizosphere oxygen profiles are the key to understanding the role of wetland plants in ecological remediation. Though in situ determination of the rhizosphere oxygen profiles has been performed occasionally at certain growing stages within days, comprehensive study on individual roots during weeks is still missing. Seedlings of Acorus calamus, a wetland monocot, were cultivated in silty sediment and the rhizosphere oxygen profiles were characterized at regular intervals, using micro-optodes to examine the same root at four positions along the root axis. The rhizosphere oxygen saturation culminated at 42.9% around the middle part of the root and was at its lowest level, 3.3%, at the basal part of the root near the aboveground portion. As the plant grew, the oxygen saturation at the four positions remained nearly constant until shoot height reached 15 cm. When shoot height reached 60 cm, oxygen saturation was greatest at the point halfway along the root, followed by the point three-quarters of the way down the root, the tip of the root, and the point one-quarter of the way down. Both the internal and rhizosphere oxygen saturation steadily increased, as did the thickness of stably oxidized microzones, which ranged from 20 µm in younger seedlings to a maximum of 320 µm in older seedlings. The spatial patterns of rhizosphere oxygen profiles in sediment contrast with those from previous studies on radial oxygen loss in A. calamus that used conventional approaches. Rhizosphere oxygen saturation peaked around the middle part of roots and the thickness of stably oxidized zones increased as the roots grew. PMID:24866504

  7. Plant-Microbial Interactions Define Potential Mechanisms of Organic Matter Priming in the Rhizosphere

    NASA Astrophysics Data System (ADS)

    Zhalnina, K.; Cho, H. J.; Hao, Z.; Mansoori, N.; Karaoz, U.; Jenkins, S.; White, R. A., III; Lipton, M. S.; Deng, K.; Zhou, J.; Pett-Ridge, J.; Northen, T.; Firestone, M. K.; Brodie, E.

    2015-12-01

    In the rhizosphere, metabolic processes of plants and microorganisms are closely coupled, and together with soil minerals, their interactions regulate the turnover of soil organic C (SOC). Plants provide readily assimilable metabolites for microorganisms through exudation, and it has been hypothesized that increasing concentrations of exudate C may either stimulate or suppress rates of SOC mineralization (rhizosphere priming). Both positive and negative rhizosphere priming has been widely observed, however the underlying mechanisms remain poorly understood. To begin to identify the molecular mechanisms underlying rhizosphere priming, we isolated a broad range of soil bacteria from a Mediterranean grassland dominated by annual grass. Thirty-nine heterotrophic bacteria were selected for genome sequencing and both rRNA gene analysis and metagenome coverage suggest that these isolates represent naturally abundant strain variants. We analyzed their genomes for potential metabolic traits related to life in the rhizosphere and the decomposition of polymeric SOC. While the two dominant groups, Alphaproteobacteria and Actinobacteria, were enriched in polymer degrading enzymes, Alphaproteobacterial isolates contained greater gene copies of transporters related to amino acid, organic acid and auxin uptake or export, suggesting an enhanced metabolic potential for life in the root zone. To verify this metabolic potential, we determined the enzymatic activities of these isolates and revealed preferences of strains to degrade certain polymers (xylan, cellulose or lignin). Fourier Transform Infrared spectroscopy is being used to determine which polymeric components of plant roots are targeted by specific strains and how exudates may impact their degradation. To verify the potential of isolates to assimilate root exudates and export key metabolites we are using LC-MS/MS based exometabolomic profiling. The traits hypothesized and verified here (transporters, enzymes, exudate uptake

  8. Distributions and compositions of old and emerging flame retardants in the rhizosphere and non-rhizosphere soil in an e-waste contaminated area of South China.

    PubMed

    Wang, Shaorui; Wang, Yan; Song, Mengke; Luo, Chunling; Li, Jun; Zhang, Gan

    2016-01-01

    We investigated rhizosphere effects on the distributions and compositions of polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), and dechlorane plus (DPs) in rhizosphere soils (RS) and non-rhizosphere soils (NRS) in an e-waste recycling area in South China. The concentrations of PBDEs, NBFRs, and DPs ranged from 13.9 to 351, 11.6 to 70.8, and 0.64 to 8.74 ng g(-1) in RS and 7.56 to 127, 8.98 to 144, and 0.38 to 8.45 ng g(-1) in NRS, respectively. BDE-209 and DBDPE were the dominant congeners of PBDEs and NBFRs, respectively. PBDEs, NBFRs, and DPs were more enriched in RS than NRS in most vegetables species. Further analysis suggested that the differentiation of the rhizosphere effect on halogenated flame retardants (HFRs) was not solely controlled by the octanol-water coefficients. This difference was also reflected by the correlations between total organic carbon (TOC) and PBDEs, NBFRs, or DPs, which indicated that organic carbon was a more pivotal controlling factor for PBDEs and DPs than for NBFRs in soil. We also found significant positive correlations between PBDEs and their replacement products, which indicated a similar emission pattern and environmental behaviour. PMID:26552538

  9. Rhizosphere wettability decreases with root age: a problem or a strategy to increase water uptake of young roots?

    PubMed

    Carminati, Andrea

    2013-01-01

    As plant roots take up water and the soil dries, water depletion is expected to occur in the vicinity of roots, the so called rhizosphere. However, recent experiments showed that the rhizosphere of lupines was wetter than the bulk soil during the drying period. Surprisingly, the rhizosphere remained temporarily dry after irrigation. Such water dynamics in the rhizosphere can be explained by the drying/wetting dynamics of mucilage exuded by roots. The capacity of mucilage to hold large volumes of water at negative water potential may favor root water uptake. However, mucilage hydrophobicity after drying may temporarily limit the local water uptake after irrigation. The effects of such rhizosphere dynamics are not yet understood. In particular, it is not known how the rhizosphere dynamics vary along roots and as a function of soil water content. My hypothesis was that the rewetting rate of the rhizosphere is primarily function of root age. Neutron radiography was used to monitor how the rhizosphere water dynamics vary along the root systems of lupines during drying/wetting cycles of different duration. The radiographs showed a fast and almost immediate rewetting of the rhizosphere of the distal root segments, in contrast to a slow rewetting of the rhizosphere of the proximal segments. The rewetting rate of the rhizosphere was not function of the water content before irrigation, but it was function of time. It is concluded that rhizosphere hydrophobicity is not uniform along roots, but it covers only the older and proximal root segments, while the young root segments are hydraulically well-connected to the soil. I included these rhizosphere dynamics in a microscopic model of root water uptake. In the model, the relation between water content and water potential in the rhizosphere is not unique and it varies over time, and the rewetting rate of the rhizosphere decreases with time. The rhisosphere variability seems an optimal adaptation strategy to increase the water

  10. Microbial carbon turnover in the plant-rhizosphere-soil continuum

    NASA Astrophysics Data System (ADS)

    Malik, Ashish; Dannert, Helena; Griffiths, Robert; Thomson, Bruce; Gleixner, Gerd

    2014-05-01

    Soil microbial biomass contributes significantly to maintenance of soil organic matter (SOM). It is well known that biochemical fractions of soil microorganisms have varying turnover and therefore contribute differentially to soil C storage. Here we compare the turnover rates of different microbial biochemical fractions using a pulse chase 13CO2 plant labelling experiment. The isotope signal was temporally traced into rhizosphere soil microorganisms using the following biomarkers: DNA, RNA, fatty acids and chloroform fumigation extraction derived microbial biomass size classes. C flow into soil microbial functional groups was assessed through phospholipid and neutral lipid fatty acid (PLFA/NLFA) analyses. Highest 13C enrichment was seen in the low molecular weight (LMW) size class of microbial biomass (Δδ13C =151) and in nucleic acids (DNA: 38o RNA: 66) immediately after the pulse followed by a sharp drop. The amount of 13C in the high molecular weight (HMW) microbial biomass (17-81) and total fatty acids (32-54) was lower initially and stayed relatively steady over the 4 weeks experimental period. We found significant differences in turnover rates of different microbial biochemical and size fractions. We infer that LMW cytosolic soluble compounds are rapidly metabolized and linked to respiratory C fluxes, whereas mid-sized products of microbial degradation and HMW polymeric compounds have lower renewal rate in that order. The turnover of cell wall fatty acids was also very slow. DNA and RNA showed faster turnover rate; and as expected RNA renewal was the fastest due to its rapid production by active microorganisms independent of cell replication. 13C incorporation into different functional groups confirmed that mutualistic arbuscular mycorrhizal fungi rely on root C and are important in the initial plant C flux. We substantiated through measurements of isotope incorporation into bacterial RNA that rhizosphere bacteria are also important in the initial C conduit

  11. Preliminary investigations of the rhizosphere nature of hydroponically grown lettuces

    NASA Astrophysics Data System (ADS)

    Antunes, Inês; Paille, Christel; Lasseur, Christophe

    Due to capabilities of current launchers, future manned exploration beyond the Earth orbit will imply long journeys and extended stays on planet surfaces. For this reason, it is of a great importance to develop a Regenerative Life Support System that enables the crew to be, to a very large extent, metabolic consumables self-sufficient. In this context, the European Space Agency, associated with a scientific and engineering con-sortium, initiated in 1989 the Micro-Ecological Life Support System Alternative (MELiSSA) project. This concept, inspired on a terrestrial ecosystem (i.e. a lake), comprises five intercon-nected compartments inhabited by micro-organisms and higher-plants aiming to produce food, fresh water, and oxygen from organic waste, carbon dioxide, and minerals. Given the important role of the higher-plant compartment for the consumption of carbon dioxide and the production of oxygen, potable water, and food, it was decided to study the microbial communities present in the root zone of the plants (i.e. the rhizosphere), and their synergistic and antagonistic influences in the plant growth. This understanding is important for later investigations concerning the technology involved in the higher plant compartment, since the final goal is to integrate this compartment inside the MELiSSA loop and to guarantee a healthy and controlled environment for the plants to grow under reduced-gravity conditions. To perform a preliminary assessment of the microbial populations of the root zone, lettuces were grown in a hydroponic system and their growth was characterized in terms of nutrient uptake, plant diameter, and plant wet and dry weights. In parallel, the microbial population, bacteria and fungi, present in the hydroponic medium and also inside and outside the roots were analyzed in terms of quantity and nature. The goal of this presentation is to give a preliminary review in the plant root zone of the micro-organisms communities and as well their proportions

  12. Prevalence of Microsporidia, Cryptosporidium spp., and Giardia spp. in beavers (Castor canadensis) in Massachusetts

    USGS Publications Warehouse

    Fayer, R.; Santin, M.; Trout, J.M.; DeStefano, S.; Koenen, K.; Kaur, T.

    2006-01-01

    Feces from 62 beavers (Castor canadensis) in Massachusetts were examined by fluorescence microscopy (IFA) and polymerase chain reaction (PCR) for Microsporidia species, Cryptosporidium spp., and Giardia spp. between January 2002 and December 2004. PCR-positive specimens were further examined by gene sequencing. Protist parasites were detected in 6.4% of the beavers. All were subadults and kits. Microsporidia species were not detected. Giardia spp. was detected by IFA from four beavers; Cryptosporidium spp. was also detected by IFA from two of these beavers. However, gene sequence data for the ssrRNA gene from these two Cryptosporidium spp.-positive beavers were inconclusive in identifying the species. Nucleotide sequences of the TPI, ssrRNA, and ??-giardin genes for Giardia spp. (deposited in GenBank) indicated that the four beavers were excreting Giardia duodenalis Assemblage B, the zoonotic genotype representing a potential source of waterborne Giardia spp. cysts. Copyright 2006 by American Association of Zoo Veterinarians.

  13. Plant rhizosphere species-specific stoichiometry and regulation of extracellular enzyme and microbial community structure

    NASA Astrophysics Data System (ADS)

    Bell, C. W.; Calderon, F.; Pendall, E.; Wallenstein, M. D.

    2012-12-01

    Plant communities affect the activity and composition of soil microbial communities through alteration of the soil environment during root growth; substrate availability through root exudation; nutrient availability through plant uptake; and moisture regimes through transpiration. As a result, positive feedbacks in soil properties can result from alterations in microbial community composition and function in the rhizosphere zone. At the ecosystem-scale, many properties of soil microbial communities can vary between forest stands dominated by different species, including community composition and stoichiometry. However, the influence of smaller individual plants on grassland soils and microbial communities is less well documented. There is evidence to suggest that some plants can modify their soil environment in a manner that favors their persistence. For example, when Bromus tectorum plants invade, soil microbial communities tend to have higher N mineralization rates (in the rhizosphere zone) relative to native plants. If tight linkages between individual plant species and microbial communities inhabiting the rhizosphere exist, we hypothesized that any differences among plant species specific rhizosphere zones could be observed by shifts in: 1) soil -rhizosphere microbial community structure, 2) enzymatic C:N:P acquisition activities, 3) alterations in the soil C chemistry composition in the rhizosphere, and 4) plant - soil - microbial C:N:P elemental stoichiometry. We selected and grew 4 different C3 grasses species including three species native to the Shortgrass Steppe region (Pascopyrum smithii, Koeleria macrantha, and Vulpia octoflora) and one exotic invasive plant species (B. tectorum) in root-boxes that are designed to allow for easy access to the rhizosphere. The field soil was homogenized using a 4mm sieve and mixed 1:1 with sterile sand and seeded as monocultures (24 replicate root - boxes for each species). Plant and soil samples (along with no - plant

  14. Response of N2O emissions to elevated water depth regulation: comparison of rhizosphere versus non-rhizosphere of Phragmites australis in a field-scale study.

    PubMed

    Gu, Xiao-Zhi; Chen, Kai-Ning; Wang, Zhao-de

    2016-03-01

    Emissions of nitrous oxide (N2O) from wetland ecosystems are globally significant and have recently received increased attention. However, relatively few direct studies of these emissions in response to water depth-related changes in sediment ecosystems have been conducted, despite the likely role they play as hotspots of N2O production. We investigated depth-related differential responses of the dissolved inorganic nitrogen distribution in Phragmites australis (Cav.) Trin. ex Steud. rhizosphere versus non-rhizosphere sediments to determine if they accelerated N2O emissions and the release of inorganic nitrogen. Changes in static water depth and P. australis growth both had the potential to disrupt the distribution of porewater dissolved NH4 (+), NO3 (-), and NO2 (-) in profiles, and NO3 (-) had strong surface aggregation tendency and decreased significantly with depth. Conversely, the highest NO2 (-) contents were observed in deep water and the lowest in shallow water in the P. australis rhizosphere. When compared with NO3 (-), NH4 (+), and NO2 (-), fluxes from the rhizosphere were more sensitive to the effects of water depth, and both fluxes increased significantly at a depth of more than 1 m. Similarly, N2O emissions were obviously accelerated with increasing depth, although those from the rhizosphere were more readily controlled by P. australis. Pearson's correlation analysis showed that water depth was significantly related to N2O emission and NO2 (-) fluxes, and N2O emissions were also strongly dependent on NO2 (-) fluxes (r = 0.491, p < 0.05). The results presented herein provide new insights into inorganic nitrogen biogeochemical cycles in freshwater sediment ecosystems. PMID:26561329

  15. Rhizosphere: a leverage for tolerance to water deficits of soil microflora ?

    NASA Astrophysics Data System (ADS)

    Bérard, Annette; Ruy, Stéphane; Coronel, Anaïs; Toussaint, Bruce; Czarnes, Sonia; Legendre, Laurent; Doussan, Claude

    2015-04-01

    Microbial soil communities play a fundamental role in soil organic matter mineralization, which is a key process for plant nutrition, growth and production in agro-ecosystems. A number of these microbial processes take place in the rhizosphere: the soil zone influenced by plant roots activity, which is a "hotspot " of biological and physico-chemical activity, transfers and biomass production. The knowledge of rhizosphere processes is however still scanty, especially regarding the interactions between physico-chemical processes occurring there and soil microorganisms. The rhizosphere is a place where soil aggregates are more stable, and where bulk density, porosity, water and nutrients transfer are modified with respect to the bulk soil (e.g. because of production of mucilage, of which exo-polysaccharides (EPS) produced by roots and microorganisms. During a maize field experiment, rhizospheric soil (i.e. soil strongly adhering to maize roots) and bulk soil were sampled twice in spring and summer. These soil samples were characterized for physicochemical parameters (water retention curves and analysis of exopolysaccarides) and microflora (microbial biomass, catabolic capacities of the microbial communities assessed with the MicroRespTM technique, stability of soil microbial respiration faced to a heat-drought disturbance). We observed differences between rhizospheric and bulk soils for all parameters studied: Rhizospheric soils showed higher microbial biomasses, higher quantities of exopolysaccarides and a higher water retention capacity compared to bulk soil measurements. Moreover, microbial soil respiration showed a higher stability confronted to heat-drought stress in the rhizospheric soils compared to bulk soils. Results were more pronounced during summer compared to spring. Globally these data obtained from field suggest that in a changing climate conditions, the specific physico-biological conditions in the rhizosphere partially linked to exopolysaccarides

  16. [Effects of different organic fertilizers on the microbes in rhizospheric soil of flue-cured tobacco].

    PubMed

    Zhang, Yun-Wei; Xu, Zhi; Tang, Li; Li, Yan-Hong; Song, Jian-Qun; Xu, Jian-Qin

    2013-09-01

    A field experiment was conducted to study the effects of applying different organic fertilizers (refined organic fertilizer and bio-organic fertilizer) and their combination with 20% reduced chemical fertilizers on the microbes in rhizospheric soil of flue-cured tobacco, the resistance of the tobacco against bacterial wilt, and the tobacco yield and quality. As compared with conventional chemical fertilization (CK), applying refined organic fertilizer (ROF) or bio-organic fertilizer (BIO) in combining with 20% reduced chemical fertilization increased the bacterial number and the total microbial number in the rhizospheric soil significantly. Applying BIO in combining with 20% reduced chemical fertilization also increased the actinomyces number in the rhizospheric soil significantly, with an increment of 44.3% as compared with that under the application of ROF in combining with 20% reduced chemical fertilization, but decreased the fungal number. As compared with CK, the ROF and BIO increased the carbon use capacity of rhizospheric microbes significantly, and the BIO also increased the capacity of rhizospheric microbes in using phenols significantly. Under the application of ROF and BIO, the disease incidence and the disease index of bacterial wilt were decreased by 4% and 8%, and 23% and 15.9%, and the proportions of high grade tobacco leaves increased significantly by 10.5% and 9.7%, respectively, as compared with those in CK. BIO increased the tobacco yield and its output value by 17.1% and 18.9% , respectively, as compared with ROF. PMID:24417114

  17. Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon.

    PubMed

    Hernández, Marcela; Dumont, Marc G; Yuan, Quan; Conrad, Ralf

    2015-03-01

    Microorganisms associated with the roots of plants have an important function in plant growth and in soil carbon sequestration. Rice cultivation is the second largest anthropogenic source of atmospheric CH4, which is a significant greenhouse gas. Up to 60% of fixed carbon formed by photosynthesis in plants is transported below ground, much of it as root exudates that are consumed by microorganisms. A stable isotope probing (SIP) approach was used to identify microorganisms using plant carbon in association with the roots and rhizosphere of rice plants. Rice plants grown in Italian paddy soil were labeled with (13)CO2 for 10 days. RNA was extracted from root material and rhizosphere soil and subjected to cesium gradient centrifugation followed by 16S rRNA amplicon pyrosequencing to identify microorganisms enriched with (13)C. Thirty operational taxonomic units (OTUs) were labeled and mostly corresponded to Proteobacteria (13 OTUs) and Verrucomicrobia (8 OTUs). These OTUs were affiliated with the Alphaproteobacteria, Betaproteobacteria, and Deltaproteobacteria classes of Proteobacteria and the "Spartobacteria" and Opitutae classes of Verrucomicrobia. In general, different bacterial groups were labeled in the root and rhizosphere, reflecting different physicochemical characteristics of these locations. The labeled OTUs in the root compartment corresponded to a greater proportion of the 16S rRNA sequences (∼20%) than did those in the rhizosphere (∼4%), indicating that a proportion of the active microbial community on the roots greater than that in the rhizosphere incorporated plant-derived carbon within the time frame of the experiment. PMID:25616793

  18. Water dynamics in the rhizosphere - a new model of coupled water uptake and mucilage exudation

    NASA Astrophysics Data System (ADS)

    Kroener, E.

    2015-12-01

    The flow of water from soil to plant roots is affected by the narrow region of soil close to the roots, the so called rhizosphere. The rhizosphere is influenced by mucilage, a polymeric gel exuded by roots that alters the hydraulic properties of the rhizosphere. Here we present a model that accounts for: (a) an increase in equilibrium water retention curve caused by the water holding capacity of mucilage, (b) a reduction of hydraulic conductivity at same water content due to the higher viscosity of mucilage and (c) the swelling and shrinking dynamics by decoupling water content and water potential and introducing a non-equilibrium water retention curve. The model has been tested for mixtures of soil and mucilage and we applied it to simulate observations of previous experiments with real plants growing in soil that show evidences of altered hydraulic dynamics in the rhizosphere. Furthermore we presen results about how the parameters of the model depend on soil texture and root age. Finally we couple our hydraulic model to a diffusion model of mucilage into the soil. Opposed to classical solute transport experiments the water flow in the rhizosphere is affected by the concentration distribution of mucilage.

  19. Effects of preconditioning the rhizosphere of different plant species on biotic methane oxidation kinetics.

    PubMed

    Ndanga, Éliane M; Lopera, Carolina B; Bradley, Robert L; Cabral, Alexandre R

    2016-09-01

    The rhizosphere is known as the most active biogeochemical layer of the soil. Therefore, it could be a beneficial environment for biotic methane oxidation. The aim of this study was to document - by means of batch incubation tests - the kinetics of CH4 oxidation in rhizosphere soils that were previously exposed to methane. Soils from three pre-exposure to CH4 zones were sampled: the never-before pre-exposed (NEX), the moderately pre-exposed (MEX) and the very pre-exposed (VEX). For each pre-exposure zone, the rhizosphere of several plant species was collected, pre-incubated, placed in glass vials and submitted to CH4 concentrations varying from 0.5% to 10%. The time to the beginning of CH4 consumption and the CH4 oxidation rate were recorded. The results showed that the fastest CH4 consumption occurred for the very pre-exposed rhizosphere. Specifically, a statistically significant difference in CH4 oxidation half-life was found between the rhizosphere of the VEX vegetated with a mixture of different plants and the NEX vegetated with ryegrass. This difference was attributed to the combined effect of the preconditioning level and plant species as well as to the organic matter content. Regardless of the preconditioning level, the oxidation rate values obtained in this study were comparable to those reported in the reviewed literature for mature compost. PMID:27177464

  20. A Greenhouse Assay on the Effect of Applied Urea Amount on the Rhizospheric Soil Bacterial Communities.

    PubMed

    Shang, Shuanghua; Yi, Yanli

    2015-12-01

    The rhizospheric bacteria play key role in plant nutrition and growth promotion. The effects of increased nitrogen inputs on plant rhizospheric soils also have impacted on whole soil microbial communities. In this study, we analyzed the effects of applied nitrogen (urea) on rhizospheric bacterial composition and diversity in a greenhouse assay using the high-throughput sequencing technique. To explore the environmental factors driving the abundance, diversity and composition of soil bacterial communities, the relationship between soil variables and the bacterial communities were also analyzed using the mantel test as well as the redundancy analysis. The results revealed significant bacterial diversity changes at different amounts of applied urea, especially between the control treatment and the N fertilized treatments. Mantel tests showed that the bacterial communities were significantly correlated with the soil nitrate nitrogen, available nitrogen, soil pH, ammonium nitrogen and total organic carbon. The present study deepened the understanding about the rhizospheric soil microbial communities under different amounts of applied urea in greenhouse conditions, and our work revealed the environmental factors affecting the abundance, diversity and composition of rhizospheric bacterial communities. PMID:26543266

  1. Genetic and functional diversities of bacterial communities in the rhizosphere of Arachis hypogaea.

    PubMed

    Haldar, Shyamalina; Choudhury, Susanta Roy; Sengupta, Sanghamitra

    2011-06-01

    Bioinoculants are environmentally friendly, energy efficient and economically viable resources in sustainable agriculture. Knowledge of the structure and activities of microbial population in the rhizosphere of a plant is essential to formulate an effective bioinoculant. In this study, the bacterial community present in the rhizosphere of an important oilseed legume, Arachis hypogaea (L.) was described with respect to adjoining bulk soil as a baseline control using a 16S rDNA based metagenomic approach. Significantly higher abundance of Gamma-proteobacteria, a prevalence of Bacillus and the Cytophaga-Flavobacteria group of Bacteroidetes and absence of the Rhizobiaceae family of Alpha-proteobacteria were the major features observed in the matured Arachis-rhizosphere. The functional characterization of the rhizosphere-competent bacteria was performed using culture-dependent determination of phenotypes. Most bacterial isolates from the groundnut-rhizosphere exhibited multiple biochemical activities associated with plant growth and disease control. Validation of the beneficial traits in candidate bioinoculants in pot-cultures and field trials is necessary before their targeted application in the groundnut production system. PMID:21380504

  2. Different Bacterial Populations Associated with the Roots and Rhizosphere of Rice Incorporate Plant-Derived Carbon

    PubMed Central

    Hernández, Marcela; Yuan, Quan; Conrad, Ralf

    2015-01-01

    Microorganisms associated with the roots of plants have an important function in plant growth and in soil carbon sequestration. Rice cultivation is the second largest anthropogenic source of atmospheric CH4, which is a significant greenhouse gas. Up to 60% of fixed carbon formed by photosynthesis in plants is transported below ground, much of it as root exudates that are consumed by microorganisms. A stable isotope probing (SIP) approach was used to identify microorganisms using plant carbon in association with the roots and rhizosphere of rice plants. Rice plants grown in Italian paddy soil were labeled with 13CO2 for 10 days. RNA was extracted from root material and rhizosphere soil and subjected to cesium gradient centrifugation followed by 16S rRNA amplicon pyrosequencing to identify microorganisms enriched with 13C. Thirty operational taxonomic units (OTUs) were labeled and mostly corresponded to Proteobacteria (13 OTUs) and Verrucomicrobia (8 OTUs). These OTUs were affiliated with the Alphaproteobacteria, Betaproteobacteria, and Deltaproteobacteria classes of Proteobacteria and the “Spartobacteria” and Opitutae classes of Verrucomicrobia. In general, different bacterial groups were labeled in the root and rhizosphere, reflecting different physicochemical characteristics of these locations. The labeled OTUs in the root compartment corresponded to a greater proportion of the 16S rRNA sequences (∼20%) than did those in the rhizosphere (∼4%), indicating that a proportion of the active microbial community on the roots greater than that in the rhizosphere incorporated plant-derived carbon within the time frame of the experiment. PMID:25616793

  3. Water dynamics in the rhizosphere - a new model of coupled water uptake and mucilage exudation

    NASA Astrophysics Data System (ADS)

    Kroener, Eva; Holz, Maire; Ahmed, Mutez; Zarebanadkouki, Mohsen; Bittelli, Marco; Carminati, Andrea

    2016-04-01

    The flow of water from soil to plant roots is affected by the narrow region of soil close to the roots, the so-called rhizosphere. The rhizosphere is influenced by mucilage, a polymeric gel exuded by roots that alters the hydraulic properties of the rhizosphere. Here we present a model that accounts for: (a) an increase in equilibrium water retention curve caused by the water holding capacity of mucilage, (b) a reduction of hydraulic conductivity at a given water content due to the higher viscosity of mucilage and (c) the swelling and shrinking dynamics by decoupling water content and water potential and introducing a non-equilibrium water retention curve. The model has been tested for mixtures of soil and mucilage and we applied it to simulate observations of previous experiments with real plants growing in soil that show evidences of altered hydraulic dynamics in the rhizosphere. Furthermore we present results about how the parameters of the model depend on soil texture and root age. Finally we couple our hydraulic model to a diffusion model of mucilage into the soil. Opposed to classical solute transport models here the water flow in the rhizosphere is affected by the concentration distribution of mucilage.

  4. Molecular Analysis of Diazotroph Diversity in the Rhizosphere of the Smooth Cordgrass, Spartina alterniflora

    PubMed Central

    Lovell, Charles R.; Piceno, Yvette M.; Quattro, Joseph M.; Bagwell, Christopher E.

    2000-01-01

    N2 fixation by diazotrophic bacteria associated with the roots of the smooth cordgrass, Spartina alterniflora, is an important source of new nitrogen in many salt marsh ecosystems. However, the diversity and phylogenetic affiliations of these rhizosphere diazotrophs are unknown. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified nifH sequence segments was used in previous studies to examine the stability and dynamics of the Spartina rhizosphere diazotroph assemblages in the North Inlet salt marsh, near Georgetown, S.C. In this study, plugs were taken from gel bands from representative DGGE gels, the nifH amplimers were recovered and cloned, and their sequences were determined. A total of 59 sequences were recovered, and the amino acid sequences predicted from them were aligned with sequences from known and unknown diazotrophs in order to determine the types of organisms present in the Spartina rhizosphere. We recovered numerous sequences from diazotrophs in the γ subdivision of the division Proteobacteria (γ-Proteobacteria) and from various anaerobic diazotrophs. Diazotrophs in the α-Proteobacteria were poorly represented. None of the Spartina rhizosphere DGGE band sequences were identical to any known or previously recovered environmental nifH sequences. The Spartina rhizosphere diazotroph assemblage is very diverse and apparently consists mainly of unknown organisms. PMID:10966395

  5. Root signals that mediate mutualistic interactions in the rhizosphere.

    PubMed

    Rasmann, Sergio; Turlings, Ted Cj

    2016-08-01

    A recent boom in research on belowground ecology is rapidly revealing a multitude of fascinating interactions, in particular in the rhizosphere. Many of these interactions are mediated by photo-assimilates that are excreted by plant roots. Root exudates are not mere waste products, but serve numerous functions to control abiotic and biotic processes. These functions range from changing the chemical and physical properties of the soil, inhibiting the growth of competing plants, combatting herbivores, and regulating the microbial community. Particularly intriguing are root-released compounds that have evolved to serve mutualistic interactions with soil-dwelling organisms. These mutually beneficial plant-mediated signals are not only of fundamental ecological interest, but also exceedingly important from an agronomical perspective. Here, we attempt to provide an overview of the plant-produced compounds that have so far been implicated in mutualistic interactions. We propose that these mutualistic signals may have evolved from chemical defenses and we point out that they can be (mis)used by specialized pathogens and herbivores. We speculate that many more signals and interactions remain to be uncovered and that a good understanding of the mechanisms and ecological implications can be the basis for exploitation and manipulation of the signals for crop improvement and protection. PMID:27393937

  6. Different Ancestries of R Tailocins in Rhizospheric Pseudomonas Isolates

    PubMed Central

    Ghequire, Maarten G.K.; Dillen, Yörg; Lambrichts, Ivo; Proost, Paul; Wattiez, Ruddy; De Mot, René

    2015-01-01

    Bacterial genomes accommodate a variety of mobile genetic elements, including bacteriophage-related clusters that encode phage tail-like protein complexes playing a role in interactions with eukaryotic or prokaryotic cells. Such tailocins are unable to replicate inside target cells due to the lack of a phage head with associated DNA. A subset of tailocins mediate antagonistic activities with bacteriocin-like specificity. Functional characterization of bactericidal tailocins of two Pseudomonas putida rhizosphere isolates revealed not only extensive similarity with the tail assembly module of the Pseudomonas aeruginosa R-type pyocins but also differences in genomic integration site, regulatory genes, and lytic release modules. Conversely, these three features are quite similar between strains of the P. putida and Pseudomonas fluorescens clades, although phylogenetic analysis of tail genes suggests them to have evolved separately. Unlike P. aeruginosa R pyocin elements, the tailocin gene clusters of other pseudomonads frequently carry cargo genes, including bacteriocins. Compared with P. aeruginosa, the tailocin tail fiber sequences that act as specificity determinants have diverged much more extensively among the other pseudomonad species, mostly isolates from soil and plant environments. Activity of the P. putida antibacterial particles requires a functional lipopolysaccharide layer on target cells, but contrary to R pyocins from P. aeruginosa, strain susceptibilities surpass species boundaries. PMID:26412856

  7. Paenibacillus rhizoryzae sp. nov., isolated from rice rhizosphere.

    PubMed

    Zhang, Lei; Gao, Ju-Sheng; Zhang, Shuang; Ali Sheirdil, Rizwan; Wang, Xiu-Cheng; Zhang, Xiao-Xia

    2015-09-01

    A Gram-stain-positive, endospore-forming, rod-shaped bacterium, designated 1ZS3-5(T), was isolated from rice rhizosphere in Hunan Province, PR China. The isolate was identified as a member of the genus Paenibacillus on the basis of phenotypic characteristics and phylogenetic inference analysis. The 16S rRNA and rpoB gene (β-subunit of bacterial RNA polymerase) sequences were closely related to those of Paenibacillus taihuensis CGMCC 1.10966(T) with similarities of 97.2% and 89.7%, respectively. The DNA-DNA hybridization value between 1ZS3-5(T) and P. taihuensis CGMCC 1.10966(T) was 33.4%. The DNA G+C content of 1ZS3-5(T) was 47.5 mol%. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, unidentified aminophospholipid and unknown phospholipid. The predominant respiratory quinone was MK-7. The diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid. The major cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0 and iso-C16 : 0. Based on these results, 1ZS3-5(T) is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus rhizoryzae sp. nov. is proposed. The type strain is 1ZS3-5(T) ( = ACCC 19782(T) = DSM 29322(T)). PMID:26065736

  8. Microbial Biomass in the Rhizosphere: Model Development and Column Experiments

    NASA Astrophysics Data System (ADS)

    Sung, K.; Corapcioglu, M.; Kim, J.

    2001-12-01

    Microorganisms are important factor in the major contribution to degradation of organic contaminants in bioremediation as well as in phytoremediation. Enhanced biodegradation takes place in soils if there are increased numbers of microorganisms stimulated by additional substrates such as root exudates, exogenous substrate addition, and indigenous substrate conversion. Roots can thus greatly affect the concentration and distribution of microbial biomass in soils. A mathematical model is presented that can be applied to various bioremediation methods, especially phytoremediation, for simulating microbial biomass changes in soils. Experiments were conducted in field lysimeters containing freshly contaminated soil and sown with Johnsongrass. The microbial biomass concentrations from rhizosphere soil, bulk soil, and unplanted soil were estimated for one year using an incubation-fumigation method. The mathematical model was applied to the field data on microbial biomass. To investigate the model behavior, numerical experiments were conducted before applying the model to actual field data. The results show good correlation between simulated and experimental data. Microbial effects on contaminant degradation in phytoremediation can be smaller than that resulting from additional substrates due to indigenous conversion or exogenous supply. However, the addition of exogenous substrates in phytoremediation can increase remediation efficiency in the early period when the roots may not produce exudates rapidly. Cultivation before planting may also increase microbial activity to accelerate degradation of contaminants in soil.

  9. Water Limitation and Plant Inter-specific Competition Reduce Rhizosphere-Induced C Decomposition and Plant N Uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1. Plants can affect soil organic matter decomposition and mineralization through litter inputs, but also more directly through root-microbial interactions (rhizosphere effects). Depending on resource availability and plant species identity, these rhizosphere effects can be positive or negative. To...

  10. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion.

    PubMed

    Majeed, Afshan; Abbasi, M Kaleem; Hameed, Sohail; Imran, Asma; Rahim, Nasir

    2015-01-01

    The present study was conducted to characterize the native plant growth promoting (PGP) bacteria from wheat rhizosphere and root-endosphere in the Himalayan region of Rawalakot, Azad Jammu and Kashmir (AJK), Pakistan. Nine bacterial isolates were purified, screened in vitro for PGP characteristics and evaluated for their beneficial effects on the early growth of wheat (Triticum aestivum L.). Among nine bacterial isolates, seven were able to produce indole-3- acetic acid in tryptophan-supplemented medium; seven were nitrogen fixer, and four were able to solubilize inorganic phosphate in vitro. Four different morphotypes were genotypically identified based on IGS-RFLP fingerprinting and representative of each morphotype was identified by 16S rRNA gene sequencing analysis except Gram-positive putative Bacillus sp. Based on 16S rRNA gene sequence analysis, bacterial isolates AJK-3 and AJK-9 showing multiple PGP-traits were identified as Stenotrophomonas spp. while AJK-7 showed equal homologies to Acetobacter pasteurianus and Stenotrophomonas specie. Plant inoculation studies indicated that these Plant growth-promoting rhizobacteria (PGPR) strains provided a significant increase in shoot and root length, and shoot and root biomass. A significant increase in shoot N contents (up to 76%) and root N contents (up to 32%) was observed over the un-inoculated control. The study indicates the potential of these PGPR for inoculums production or biofertilizers for enhancing growth and nutrient content of wheat and other crops under field conditions. The study is the first report of wheat associated bacterial diversity in the Himalayan region of Rawalakot, AJK. PMID:25852661

  11. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion

    PubMed Central

    Majeed, Afshan; Hameed, Sohail; Imran, Asma; Rahim, Nasir

    2015-01-01

    The present study was conducted to characterize the native plant growth promoting (PGP) bacteria from wheat rhizosphere and root-endosphere in the Himalayan region of Rawalakot, Azad Jammu and Kashmir (AJK), Pakistan. Nine bacterial isolates were purified, screened in vitro for PGP characteristics and evaluated for their beneficial effects on the early growth of wheat (Triticum aestivum L.). Among nine bacterial isolates, seven were able to produce indole-3- acetic acid in tryptophan-supplemented medium; seven were nitrogen fixer, and four were able to solubilize inorganic phosphate in vitro. Four different morphotypes were genotypically identified based on IGS-RFLP fingerprinting and representative of each morphotype was identified by 16S rRNA gene sequencing analysis except Gram-positive putative Bacillus sp. Based on 16S rRNA gene sequence analysis, bacterial isolates AJK-3 and AJK-9 showing multiple PGP-traits were identified as Stenotrophomonas spp. while AJK-7 showed equal homologies to Acetobacter pasteurianus and Stenotrophomonas specie. Plant inoculation studies indicated that these Plant growth-promoting rhizobacteria (PGPR) strains provided a significant increase in shoot and root length, and shoot and root biomass. A significant increase in shoot N contents (up to 76%) and root N contents (up to 32%) was observed over the un-inoculated control. The study indicates the potential of these PGPR for inoculums production or biofertilizers for enhancing growth and nutrient content of wheat and other crops under field conditions. The study is the first report of wheat associated bacterial diversity in the Himalayan region of Rawalakot, AJK. PMID:25852661

  12. Biological changes in the rhizosphere of wheat after foliar application of chlorocholinechloride, urea and 4-chloro-2-methylphenoxyacetic acid.

    PubMed

    Vraný, J

    1975-01-01

    In field experiments wheat in the phase of shooting was sprayed with solutions of chlorocholinechloride (CCC) and urea, CCC and ammonium salt MCPA (Aminex) or CCC, urea and Aminex. The effect of the treatment on dry weight of overground parts of wheat, number of bacteria, production of carbon dioxide, urease activity and content of ammonium in the rhizosphere soil was investigated. In all cases evolution of carbon dioxide in the rhizosphere soil was higher than that in the control soil. Highest numbers of bacteria were found in the rhizosphere soil of plants treated with urea, the herbicide and their mixtures. Content of ammonium was higher in the control soil than in the rhizosphere soils, the urease activity was highest in the rhizosphere soil of plants treated with the solution of the herbicide and with the combination of the herbicide with urea. PMID:1193493

  13. RhizoFlowCell system reveals early effects of micropollutants on aquatic plant rhizosphere.

    PubMed

    Mynampati, Kalyan Chakravarthy; Lee, Yong Jian; Wijdeveld, Arjan; Reuben, Sheela; Samavedham, Lakshminarayanan; Kjelleberg, Staffan; Swarup, Sanjay

    2015-12-01

    In aquatic systems, one of the non-destructive ways to quantify toxicity of contaminants to plants is to monitor changes in root exudation patterns. In aquatic conditions, monitoring and quantifying such changes are currently challenging because of dilution of root exudates in water phase and lack of suitable instrumentation to measure them. Exposure to pollutants would not only change the plant exudation, but also affect the microbial communities that surround the root zone, thereby changing the metabolic profiles of the rhizosphere. This study aims at developing a device, the RhizoFlowCell, which can quantify metabolic response of plants, as well as changes in the microbial communities, to give an estimate of the stress to which the rhizosphere is exposed. The usefulness of RhizoFlowCell is demonstrated using naphthalene as a test pollutant. Results show that RhizoFlowCell system is useful in quantifying the dynamic metabolic response of aquatic rhizosphere to determine ecosystem health. PMID:26386206

  14. The seasonal dynamics of yeast communities in the rhizosphere of soddy-podzolic soils

    NASA Astrophysics Data System (ADS)

    Golubtsova, Yu. V.; Glushakova, A. M.; Chernov, I. Yu.

    2007-08-01

    The annual dynamics of the number and taxonomic composition of yeast was studied in the rhizosphere of two plant species (Ajuga reptans L. and Taraxacum officinale Wigg.) in a forb-birch forest on soddy-podzolic soil. Eurybiont phyllobasidial cryptococci and red-pigmented phytobionts Rhodotorula glutinis were found to predominate in the phyllosphere of these plants, whereas the typical pedobionts Cryptococcus terricola and Cr. podzolicus occurred on the surface of roots and in the rhizosphere. The seasonal changes in the number and species composition of the yeast communities in the rhizosphere were more smooth as compared to those in the phyllosphere. In the period of active vegetation of the plants, the phytobiont yeasts develop over their whole surface, including the rhizoplane. Their number on the aboveground parts of the plants was significantly lower than that of the pedobiont forms. Thus, the above-and underground parts of the plants significantly differed in the composition of the dominant species of epiphytic yeasts.

  15. Olpidium bornovanus-mediated germination of ascospores of Monosporascus cannonballus: a host-specific rhizosphere interaction.

    PubMed

    Stanghellini, Michael E; Misaghi, Iraj J

    2011-07-01

    Monosporascus cannonballus, a host-specific root-infecting ascomycete, is the causal agent of a destructive disease of melon (Cucumis melo L.) known as vine decline. Ascospores germinate only in the rhizosphere of melon plants growing in field soil. However, no germination occurs in the rhizosphere of melon plants if the field soil is heated to temperatures >50°C prior to infestation with ascospores. This observation suggested that germination is mediated by one or more heat-sensitive members of the soil microflora. Although bacteria or actinomycetes were heretofore suspected as the germination-inducing microbes, our data demonstrate that Olpidium bornovanus, an obligate, host-specific, root-infecting zoosporic fungus, is responsible. In four experiments conducted in autoclaved field soil amended with various population densities of culturally produced ascospores, significant ascospore germination was recorded only in the rhizosphere of cantaloupe seedlings colonized by O. bornovanus. PMID:21675923

  16. Purple phototrophic bacterium enhances stevioside yield by Stevia rebaudiana Bertoni via foliar spray and rhizosphere irrigation.

    PubMed

    Wu, Jing; Wang, Yiming; Lin, Xiangui

    2013-01-01

    This study was conducted to compare the effects of foliar spray and rhizosphere irrigation with purple phototrophic bacteria (PPB) on growth and stevioside (ST) yield of Stevia. rebaudiana. The S. rebaudiana plants were treated by foliar spray, rhizosphere irrigation, and spray plus irrigation with PPB for 10 days, respectively. All treatments enhanced growth of S. rebaudiana, and the foliar method was more efficient than irrigation. Spraying combined with irrigation increased the ST yield plant (-1) by 69.2% as compared to the control. The soil dehydrogenase activity, S. rebaudiana shoot biomass, chlorophyll content in new leaves, and soluble sugar in old leaves were affected significantly by S+I treatment, too. The PPB probably works in the rhizosphere by activating the metabolic activity of soil bacteria, and on leaves by excreting phytohormones or enhancing the activity of phyllosphere microorganisms. PMID:23825677

  17. Diversity and distribution of Burkholderia cepacia complex in the rhizosphere of rice and maize.

    PubMed

    Zhang, Lixin; Xie, Guanlin

    2007-01-01

    A survey of Burkholderia cepacia complex (Bcc) species was conducted in agricultural fields within Hangzhou, China. Out of the 251 bacterial isolates recovered on the selective media from the rhizosphere of rice and maize, 112 of them were assigned to Bcc by PCR assays. The species composition of the Bcc isolates was analyzed by a combination of recA-restriction fragment length polymorphism assays, species-specific PCR tests and recA gene sequencing. The results revealed that the majority belong to B. cepacia, Burkholderia cenocepacia recA lineage IIIB, Burkholderia vietnamiensis and Burkholderia pyrrocinia. Burkholderia cenocepacia and B. vietnamiensis dominated the rhizosphere of maize and rice, respectively, indicating that species composition and abundance of Bcc may vary dramatically in different crop rhizospheres. In addition, one isolate (R456) formed a single discrete cluster within the phylogenetic analysis of the Bcc recA gene, and it may belong to a new genomovar. PMID:17233735

  18. Genotypic diversity among rhizospheric bacteria of three legumes assessed by cultivation-dependent and cultivation-independent techniques.

    PubMed

    Pongsilp, Neelawan; Nimnoi, Pongrawee; Lumyong, Saisamorn

    2012-02-01

    The genotypic diversity of rhizospheric bacteria of 3 legumes including Vigna radiata, Arachis hypogaea and Acacia mangium was compared by using cultivation-dependent and cultivation-independent methods. For cultivation-dependent method, Random amplified polymorphic DNA (RAPD) profiles revealed that the bacterial genetic diversity of V. radiata and A. mangium rhizospheres was higher than that of A. hypogaea rhizosphere. For cultivation-independent method, Denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified 16S rRNA genes revealed the difference in bacterial community and diversity of rhizospheres collected from 3 legumes. The ribotype richness which indicates species diversity, was highest in V. radiata rhizosphere, followed by A. hypogaea and A. mangium rhizospheres, respectively. Three kinds of media were used to cultivate different target groups of bacteria. The result indicates that the communities of cultivable bacteria in 3 rhizospheres recovered from nutrient agar (NA) medium were mostly different from each other, while Bradyrhizobium selective medium (BJSM) and nitrogen-free medium shaped the communities of cultivable bacteria. Nine isolates grown on BJSM were identified by 16S rRNA gene sequence analysis. These isolates were very closely related (with 96% to 99% identities) to either one of the three groups including Cupriavidus-Ralstonia group, Bacillus group and Bradyrhizobium-Bosea-Afipia group. The rhizospheres were also examined for their enzymatic patterns. Of 19 enzymes tested, 3 rhizospheres were distinguishable by the presence or the absence of leucine acrylamidase and acid phosphatase. The selected cultivable bacteria recovered from NA varied in their abilities to produce indole-acetic acid and ammnonia. The resistance to 10 antibiotics was indistinguishable among bacteria isolated from different rhizospheres. PMID:22806857

  19. Community composition and activity of anaerobic ammonium oxidation bacteria in the rhizosphere of salt-marsh grass Spartina alterniflora.

    PubMed

    Zheng, Yanling; Hou, Lijun; Liu, Min; Yin, Guoyu; Gao, Juan; Jiang, Xiaofen; Lin, Xianbiao; Li, Xiaofei; Yu, Chendi; Wang, Rong

    2016-09-01

    Anaerobic ammonium oxidation (anammox) as an important nitrogen removal pathway has been investigated in intertidal marshes. However, the rhizosphere-driven anammox process in these ecosystems is largely overlooked so far. In this study, the community dynamics and activities of anammox bacteria in the rhizosphere and non-rhizosphere sediments of salt-marsh grass Spartina alterniflora (a widely distributed plant in estuaries and intertidal ecosystems) were investigated using clone library analysis, quantitative PCR assay, and isotope-tracing technique. Phylogenetic analysis showed that anammox bacterial diversity was higher in the non-rhizosphere sediments (Scalindua and Kuenenia) compared with the rhizosphere zone (only Scalindua genus). Higher abundance of anammox bacteria was detected in the rhizosphere (6.46 × 10(6)-1.56 × 10(7) copies g(-1)), which was about 1.5-fold higher in comparison with that in the non-rhizosphere zone (4.22 × 10(6)-1.12 × 10(7) copies g(-1)). Nitrogen isotope-tracing experiments indicated that the anammox process in the rhizosphere contributed to 12-14 % N2 generation with rates of 0.43-1.58 nmol N g(-1) h(-1), while anammox activity in the non-rhizosphere zone contributed to only 4-7 % N2 production with significantly lower activities (0.28-0.83 nmol N g(-1) h(-1)). Overall, we propose that the rhizosphere microenvironment in intertidal marshes might provide a favorable niche for anammox bacteria and thus plays an important role in nitrogen cycling. PMID:27225476

  20. [Effects of tobacco garlic crop rotation and intercropping on tobacco yield and rhizosphere soil phosphorus fractions].

    PubMed

    Tang, Biao; Zhang, Xi-zhou; Yang, Xian-bin

    2015-07-01

    A field plot experiment was conducted to investigate the tobacco yield and different forms of soil phosphorus under tobacco garlic crop rotation and intercropping patterns. The results showed that compared with tobacco monoculture, the tobacco yield and proportion of middle/high class of tobacco leaves to total leaves were significantly increased in tobacco garlic crop rotation and intercropping, and the rhizosphere soil available phosphorus contents were 1.3 and 1.7 times as high as that of tobacco monoculture at mature stage of lower leaf. For the inorganic phosphorus in rhizosphere and non-rhizosphere soil in different treatments, the contents of O-P and Fe-P were the highest, followed by Ca2-P and Al-P, and Ca8-P and Ca10-P were the lowest. Compared with tobacco monoculture and tobacco garlic crop intercropping, the Ca2-P concentration in rhizosphere soil under tobacco garlic crop rotation at mature stage of upper leaf, the Ca8-P concentration at mature stage of lower leaf, and the Ca10-P concentration at mature stage of middle leaf were lowest. The Al-P concentrations under tobacco garlic crop rotation and intercropping were 1.6 and 1.9 times, and 1.2 and 1.9 times as much as that under tobacco monoculture in rhizosphere soil at mature stages of lower leaf and middle leaf, respectively. The O-P concentrations in rhizosphere soil under tobacco garlic crop rotation and intercropping were significantly lower than that under tobacco monoculture. Compared with tobacco garlic crop intercropping, the tobacco garlic crop rotation could better improve tobacco yield and the proportion of high and middle class leaf by activating O-P, Ca10-P and resistant organic phosphorus in soil. PMID:26710622

  1. Rhizosphere impacts on peat decomposition and nutrient cycling across a natural water table gradient

    NASA Astrophysics Data System (ADS)

    Gill, A. L.; Finzi, A.

    2014-12-01

    High latitude forest and peatland soils represent a major terrestrial carbon store sensitive to climate change. Warming temperatures and increased growing-season evapotranspiration are projected to reduce water table (WT) height in continental peatlands. WT reduction increases peat aerobicity and facilitates vascular plant and root growth. Root-associated microbial communities are exposed to a different physical and chemical environment than microbial communities in non-root associated "bulk" peat, and therefore have distinct composition and function within the soil system. As the size of the peatland rhizosphere impacts resources available to the microbial communities, transitions from a root-free high water table peatland to a root-dominated low WT peatland may alter seasonal patterns of microbial community dynamics, enzyme production, and carbon storage within the system. We used a natural water table gradient in Caribou Bog near Orono, ME to explore the influence of species composition, root biomass, and rhizosphere size on seasonal patterns in microbial community structure, enzyme production, and carbon mineralization. We quantified root biomass across the water table gradient and measured microbial biomass carbon and nitrogen, C mineralization, N mineralization, and exoenzyme activity in root-associated and bulk peat samples throughout the 2013 growing season. Microbial biomass was consistently higher in rhizosphere-associated soils and peaked in the spring. Microbial biomass CN and enzyme activity was higher in rhizosphere-associated soil, likely due to increased mycorrhizal abundance. Exoenzyme activity peaked in the fall, with a larger relative increase in enzyme activity in rhizosphere peat, while carbon mineralization rates did not demonstrate a strong seasonal pattern. The results suggest that rhizosphere-associated peat sustains higher and more variable rates of enzyme activity throughout the growing season, which results in higher rates of carbon

  2. Exploiting Genotypic Diversity of 2,4-Diacetylphloroglucinol-Producing Pseudomonas spp.: Characterization of Superior Root-Colonizing P. fluorescens Strain Q8r1-96

    PubMed Central

    Raaijmakers, Jos M.; Weller, David M.

    2001-01-01

    The genotypic diversity that occurs in natural populations of antagonistic microorganisms provides an enormous resource for improving biological control of plant diseases. In this study, we determined the diversity of indigenous 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas spp. occurring on roots of wheat grown in a soil naturally suppressive to take-all disease of wheat. Among 101 isolates, 16 different groups were identified by random amplified polymorphic DNA (RAPD) analysis. One RAPD group made up 50% of the total population of DAPG-producing Pseudomonas spp. Both short- and long-term studies indicated that this dominant genotype, exemplified by P. fluorescens Q8r1-96, is highly adapted to the wheat rhizosphere. Q8r1-96 requires a much lower dose (only 10 to 100 CFU seed−1 or soil−1) to establish high rhizosphere population densities (107 CFU g of root−1) than Q2-87 and 1M1-96, two genotypically different, DAPG-producing P. fluorescens strains. Q8r1-96 maintained a rhizosphere population density of approximately 105 CFU g of root−1 after eight successive growth cycles of wheat in three different, raw virgin soils, whereas populations of Q2-87 and 1M1-96 dropped relatively quickly after five cycles and were not detectable after seven cycles. In short-term studies, strains Q8r1-96, Q2-87, and 1M1-96 did not differ in their ability to suppress take-all. After eight successive growth cycles, however, Q8r1-96 still provided control of take-all to the same level as obtained in the take-all suppressive soil, whereas Q2-87 and 1M1-96 gave no control anymore. Biochemical analyses indicated that the superior rhizosphere competence of Q8r1-96 is not related to in situ DAPG production levels. We postulate that certain rhizobacterial genotypes have evolved a preference for colonization of specific crops. By exploiting diversity of antagonistic rhizobacteria that share a common trait, biological control can be improved significantly. PMID:11375162

  3. Legumes increase rhizosphere carbon and nitrogen relative to cereals in California agricultural plots

    NASA Astrophysics Data System (ADS)

    Bergman, R.; Maltais-landry, G.

    2013-12-01

    Nitrogen (N) is an essential nutrient to plant growth, therefore a sufficient supply is needed for high yields. By using N-fixing plants like legumes in crop rotation, we can increase soil N and yields of following crops. Furthermore, legumes also affect soil carbon (C) and C:N ratios, which impacts nutrient cycling in soils. We assessed the effects of two legumes (vetch, fava bean) and a cereal mixture (oats and wheat) on soil N and C by comparing both rhizosphere and bulk soils. We studied the impacts of these plants with different management types (organic, low-input conventional, unfertilized) to see if plant effects on soil C and N changed across management. We used plots from the Long-Term Research on Agricultural Systems (LTRAS) experiment (Davis, CA) to conduct this experiment, where three plots were under each management type. Within each of these plots, we sampled three micro-plots, where we collected rhizosphere soil from fava bean, vetch, and cereals as well as bulk soil, i.e. non-rhizosphere soil. We collected 108 samples, each of which were dried and ball-milled into a fine, uniform powder. Tin capsules with 15-30mg of soil were then analyzed with a Carlo Erba Elemental analyzer to measure how much N and C was present in each of the samples. The different management types didn't affect the relationship among plants, but soil C and N were highest in organic and lowest in unfertilized plots. We found that N was significantly higher in legume rhizosphere than cereal rhizosphere and bulk soils. Soil C was also higher in legumes vs. cereals and bulk soils, but the only significant difference was with the bulk soils. This ultimately resulted in lower C:N ratios in the rhizosphere of legumes, only vetch, however, had significantly lower soil C:N than cereals. Vetch had higher N, and lower C and C:N than fava bean, but the difference between the two legumes was never significant. Similarly, cereals had higher C and N and lower C:N than bulk soils, although

  4. [Effect of reed rhizosphere on nitrogen and COD removal efficiency in subsurface flow constructed wetlands].

    PubMed

    Dai, Yuan-yuan; Yang, Xin-ping; Zhou, Li-xiang

    2008-12-01

    Nitrogen removal efficiency was investigated in three subsurface flow constructed wetlands (CWs) with and without reed. Root bag made of nylon sieve with 300 mesh was used to enwrap the reed root in one of reed CWs to distinguish reed rhizosphere from non-rhizosphere. The CWs with root bag enwrapped reed root (hereinafter called as mesh CWs) and other CWs were fed with artificial ammonium-rich wastewater. The results indicated that the COD and N removal occurred mainly in the front of CWs, and C and nitrogen removal occurred concurrently along the stream way. When C/N ratio of influent was 5, the removal efficiencies of NH4+ -N in control CWs, reed CWs and mesh CWs were 66.2%, 94.2% and 82.2%, respectively. TN removal efficiencies were 67.2%, 90.7% and 76.1% respectively. Simultaneous nitrification and denitrification phenomenon in this study was also observed. The removal efficiency of organic carbon was different from nitrogen removal efficiency, mesh CWs showed the highest COD removal efficiency with 80.9%, while control CWs and reed CWs were 72.2% and 56.2%, respectively. C/N ratio of wastewater throughout the bed was more than 5 in three CWs, which indicated carbon source supply was enough for denitrification. The oxidation-reduction position (ORP) and concentration of total organic carbon in rhizosphere and non-rhizosphere were detected. The ORP in the front of mesh CWs's rhizosphere was much higher than that in control CWs and non-rhizosphere in mesh CWs, which were 11-311 mV and 62-261 mV, respectively. Root exudates also showed the difference between rhizosphere and non-rhizosphere in mesh CWs, the TOC of them were 21.3-54.6 mg x L(-1) and 6.65-12.0 mg x L(-1). Due to the higher ORP and concentration of TOC, the nitrogen removal efficiency in plant CWs was much higher than that in control CWs. PMID:19256373

  5. Selective medium for isolation of Xanthomonas maltophilia from soil and rhizosphere environments.

    PubMed

    Juhnke, M E; des Jardin, E

    1989-03-01

    A selective medium (XMSM) was developed for isolation of Xanthomonas maltophilia from bulk soil and plant rhizosphere environments. The XMSM basal medium contained maltose, tryptone, bromthymol blue, and agar. Antibiotics added to select for X. maltophilia were cycloheximide, nystatin, cephalexin, bacitracin, penicillin G, novobiocin, neomycin sulfate, and tobramycin. A comparison was made between XMSM and 1/10-strength tryptic soy broth agar for recovery of X. maltophilia from sterile and nonsterile soil infested with known X. maltophilia isolates. A recovery rate of 97% or greater for XMSM was demonstrated. XMSM was used to isolate X. maltophilia from a variety of soil and rhizosphere environments. PMID:2930173

  6. Rewetting Rate of Dry Rhizosphere Limited by Mucilage Viscosity and Mucilage Hydrophobicity

    NASA Astrophysics Data System (ADS)

    Reeder, Stacey; Zarebanadkouki, Mohsen; Kroener, Eva; Ahmed, Mutez Ali; Carminati, Andrea; Kostka, Stanley

    2015-04-01

    During root water uptake from dry soils, the highly nonlinear relation between hydraulic conductivity and water content as well as the radial root geometry result in steep water potential gradients close to the root surface. The hydraulic properties of the rhizosphere - the interface between root and soil - are one of the most important and least understood components in controlling root water uptake. Previous research using young lupine plants revealed that after irrigation it took 1-2 days for the water content of the dry rhizosphere to increase. How can this delay be explained? Our hypotheses are that: a) mucilage - a polymeric plant exudate - alters rhizosphere hydraulic properties, b) its hydrophobic moieties make the rhizosphere water repellent when dry, c) mucilage is a highly viscous, gelatinous material, the dryer it gets the more viscous it becomes, d) mucilage viscosity reduces rhizosphere hydraulic conductivity. To test our hypotheses we used mucilage extracted from chia seed as an analogue for root mucilage. We measured: 1) the contact angle between water and pure dry and wet mucilage, dry soil treated with various concentrations of mucilage, 2) mucilage viscosity as function of concentration and shear rate, 3) saturated hydraulic conductivity as function of mucilage concentration, 4) swelling of dry mucilage in water. Finally, to mimic flow of water across the rhizosphere, we measured the capillary rise in soils treated with different mucilage concentrations. The results showed that: 1) dry mucilage has a contact angle > 90° while it loses its water repellency when it gets wet, 2) viscosity and saturated hydraulic conductivity can change several orders of magnitude with a small change in mucilage concentration, 3) 1g of dry mucilage absorbs 300g water in its fully swollen state, 4) the swelling rate of mucilage showed an exponential behavior with half time of 5 hours. Capillary rise became slower in soils with higher mucilage concentration, while the

  7. Rewetting Rate of Dry Rhizosphere Limited by Mucilage Viscosity and Mucilage Hydrophobicity

    NASA Astrophysics Data System (ADS)

    Reeder, S.; Zarebanadkouki, M.; Kroener, E.; Ahmed, M. A.; Carminati, A.; Kostka, S.

    2014-12-01

    During root water uptake from dry soils, the highly nonlinear relation between hydraulic conductivity and water content as well as the radial root geometry result in steep water potential gradients close to the root surface. The hydraulic properties of the rhizosphere - the interface between root and soil - are one of the most important and least understood components in controlling root water uptake. Previous research using young lupine plants revealed that after irrigation it took 1-2 days for the water content of the dry rhizosphere to increase. How can this delay be explained? Our hypotheses: a) mucilage - a polymeric plant exudate - alters rhizosphere hydraulic properties, b) its hydrophobic moieties make the rhizosphere water repellent when dry, c) mucilage is a highly viscous, gelatinous material, the dryer it gets the more viscous it becomes, d) mucilage viscosity reduces rhizosphere hydraulic conductivity. To test our hypotheses we used mucilage extracted from chia seed as an analogue for root mucilage. We measured: 1) the contact angle between water and pure dry and wet mucilage, dry soil treated with various concentrations of mucilage, 2) mucilage viscosity as function of concentration and shear rate, 3) saturated hydraulic conductivity as function of mucilage concentration, 4) swelling of dry mucilage in water. Finally, to mimic flow of water across the rhizosphere, we measured the capillary rise in soils treated with different mucilage concentrations. The results showed that: 1) dry mucilage has a contact angle >90° while it loses its water repellency when it gets wet, 2) viscosity and saturated hydraulic conductivity can change several orders of magnitude with a small change in mucilage concentration, 3) 1g of dry mucilage absorbs 300g water in its fully swollen state, 4) the swelling rate of mucilage showed an exponential behavior with half time of 5 hours. Capillary rise became slower in soils with higher mucilage concentration, while the final

  8. Absence of serological evidence of Rickettsia spp., Bartonella spp., Ehrlichia spp. and Coxiella burnetii infections in American Samoa.

    PubMed

    Lau, Colleen; Musso, Didier; Fournier, Pierre-Edouard; Parola, Philippe; Raoult, Didier; Weinstein, Philip

    2016-07-01

    Little is known about the epidemiology of zoonotic diseases in American Samoa (Pacific). A review of literature did not identify any published information on human Rickettsia spp., Bartonella spp., Ehrlichia spp. or Coxiella burnetii infections in this country. To determine the presence of these diseases, we conducted a serosurvey of American Samoans. The presence of immunoglobulin G antibodies against Rickettsia felis, Rickettsia typhi, Rickettsia conorii, C. burnetii, Bartonella henselae, Bartonella quintana, and Ehrlichia chaffeensis was evaluated by indirect immunofluorescence assay in sera from 197 American Samoan adults. None of the samples had antibodies at a significant level against Rickettsia spp., Bartonella spp., Ehrlichia spp. or C. burnetii (seroprevalence 0%; one-tailed 95% CI 0-1.86%). We cannot conclude that these pathogens are absent in American Samoa but, if present, their prevalence is probably very low. Q fever has been reported worldwide except in New Zealand and French Polynesia; these new data suggest that the prevalence of Q fever is likely to be very low in the Pacific Islands. PMID:26965788

  9. Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere

    PubMed Central

    Tian, Fang; Ding, Yanqin; Zhu, Hui; Yao, Liangtong; Du, Binghai

    2009-01-01

    The genetic diversity of siderophore-producing bacteria of tobacco rhizosphere was studied by amplified ribosomal DNA restriction analysis (ARDRA), 16S rRNA sequence homology and phylogenetics analysis methods. Studies demonstrated that 85% of the total 354 isolates produced siderophores in iron limited liquid medium. A total of 28 ARDRA patterns were identified among the 299 siderophore-producing bacterial isolates. The 28 ARDRA patterns represented bacteria of 14 different genera belonging to six bacterial divisions, namely β-, γ-, α-Proteobacteria, Sphingobacteria, Bacilli, and Actinobacteria. Especially, γ-Proteobacteria consisting of Pseudomonas, Enterobacter, Serratia, Pantoea, Erwinia and Stenotrophomonas genus encountered 18 different ARDRA groups. Results also showed a greater siderophore-producing bacterial diversity than previous researches. For example, Sphingobacterium (isolates G-2-21-1 and G-2-27-2), Pseudomonas poae (isolate G-2-1-1), Enterobacter endosymbiont (isolates G-2-10-2 and N-5-10), Delftia acidovorans (isolate G-1-15), and Achromobacter xylosoxidans (isolates N-46-11HH and N-5-20) were reported to be able to produce siderophores under low-iron conditions for the first time. Gram-negative isolates were more frequently encountered, with more than 95% total frequency. For Gram-positive bacteria, the Bacillus and Rhodococcus were the only two genera, with 1.7% total frequency. Furthermore, the Pseudomonas and Enterobacter were dominant in this environment, with 44.5% and 24.7% total frequency, respectively. It was also found that 75 percent of the isolates that had the high percentages of siderophore units (% between 40 and 60) belonged to Pseudomonas. Pseudomonas sp. G-229-21 screened out in this study may have potential to apply to low-iron soil to prevent plant soil-borne fungal pathogen diseases. PMID:24031358

  10. Proposal of Novosphingobium rhizosphaerae sp. nov., isolated from the rhizosphere.

    PubMed

    Kämpfer, Peter; Martin, Karin; McInroy, John A; Glaeser, Stefanie P

    2015-01-01

    A yellow, Gram-stain-negative, rod-shaped, non-spore-forming bacterium (strain JM-1(T)) was isolated from the rhizosphere of a field-grown Zea mays plant in Auburn, AL, USA. 16S rRNA gene sequence analysis of strain JM-1(T) showed high sequence similarity to the type strains of Novosphingobium capsulatum (98.9%), Novosphingobium aromaticivorans (97.4%), Novosphingobium subterraneum (97.3%) and Novosphingobium taihuense (97.1%); sequence similarities to all other type strains of species of the genus Novosphingobium were below 97.0%. DNA-DNA hybridizations of strain JM-1(T) and N. capsulatum DSM 30196(T), N. aromaticivorans SMCC F199(T) and N. subterraneum SMCC B0478(T) showed low similarity values of 33% (reciprocal: 21%), 14% (reciprocal 16%) and 36% (reciprocal 38%), respectively. Ubiquinone Q-10 was detected as the major respiratory quinone. The predominant fatty acid was C18:1ω7c (71.0%) and the typical 2-hydroxy fatty acid C14:0 2-OH (11.7%) was detected. The polar lipid profile contained the diagnostic lipids diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid and phosphatidylcholine. Characterization by 16S rRNA gene sequence analysis, physiological parameters, pigment analysis, and ubiquinone, polar lipid and fatty acid composition revealed that strain JM-1(T) represents a novel species of the genus Novosphingobium. For this species we propose the name Novosphingobium rhizosphaerae sp. nov. with the type strain JM-1(T) ( = LMG 28479(T) =CCM 8547(T)). PMID:25320143

  11. Actinokineospora bangkokensis sp. nov., isolated from rhizospheric soil.

    PubMed

    Intra, Bungonsiri; Matsumoto, Atsuko; Inahashi, Yuki; Omura, Satoshi; Takahashi, Yoko; Panbangred, Watanalai

    2013-07-01

    A novel actinomycete, strain 44EHW(T), was isolated from rhizospheric soil under an Elephant ear plant (Colocasia esculenta) in Bangkok, Thailand. Strain 44EHW(T) produced long branching hyphae and abundant aerial mycelia with chains of rod-shaped spores. Whole-cell hydrolysates contained galactose, glucose, arabinose, ribose, mannose and rhamnose as diagnostic sugars. meso-Diaminopimelic acid was the diamino acid and glycine, alanine and glutamic acid were present in the cell-wall peptidoglycan with the acyl type of the peptidoglycan being acetyl. Phospholipids consisted of phosphatidylethanolamine, phosphatidylethanolamine with hydroxy fatty acids and diphosphatidylglycerol, as well as other unknown phospholipids; however, no mycolic acids were detected. The predominant menaquinone observed was MK-9(H4) and major fatty acids were iso-C16 : 0 and 2-OH iso-C16 : 0. The G+C content of genomic DNA was 74 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that this isolate was most similar to Actinokineospora enzanensis NBRC 16517(T). However, DNA-DNA hybridization revealed a low relatedness between this isolate and A. enzanensis NBRC 16517(T), indicating that this isolate represented a novel species in the genus Actinokineospora. On the basis of 16S rRNA gene sequence analysis, phenotypic characteristics and DNA-DNA hybridization data, we propose that strain 44EHW(T) represents a novel species in the genus Actinokineospora, Actinokineospora bangkokensis. The type strain is 44EHW(T) ( = BCC 53155(T) = NBRC 108932(T)). PMID:23291892

  12. Rhizobium helianthi sp. nov., isolated from the rhizosphere of sunflower.

    PubMed

    Wei, Xuexin; Yan, Shouwei; Li, Dai; Pang, Huancheng; Li, Yuyi; Zhang, Jianli

    2015-12-01

    A Gram-stain-negative, non-spore-forming, rod-shaped and aerobic bacterium, designated Xi19T, was isolated from a soil sample collected from the rhizosphere of sunflower (Helianthus annuus) in Wuyuan county of Inner Mongolia, China and was characterized taxonomically by using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel isolate was related to species of the genus Rhizobium, sharing the greatest 16S rRNA gene sequence similarity with Rhizobium rhizoryzae J3-AN59T (98.4 %), followed by Rhizobium pseudoryzae J3-A127T (97.4 %). There were low similarities ( < 91 %) between the atpD, recA and glnII gene sequences of the novel strain and those of members of the genus Rhizobium. DNA-DNA hybridization values between strain Xi19T and the most related strain Rhizobium rhizoryzae J3-AN59T were low. The major cellular fatty acids of strain Xi19T were C16 : 0, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C19 : 0 cyclo ω8c. Q-10 was identified as the predominant ubiquinone and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. The DNA G+C content of strain Xi19T was 60.2 mol%. On the basis of physiological and biochemical characteristics, coupled with genotypic data obtained in this work, strain Xi19T represents a novel species of the genus Rhizobium, for which the name Rhizobium helianthi is proposed. The type strain is Xi19T ( = CGMCC 1.12192T = KCTC 23879T). PMID:26364048

  13. Roseomonas oryzae sp. nov., isolated from paddy rhizosphere soil.

    PubMed

    Ramaprasad, E V V; Sasikala, Ch; Ramana, Ch V

    2015-10-01

    A non-motile, coccus-shaped, pale-pink-pigmented bacterium, designated strain JC288T, was isolated from a paddy rhizosphere soil collected from Western Ghats, Kankumbi, Karnataka, India. Cells were found to be Gram-stain-negative, and catalase- and oxidase-positive; the major fatty acids were C16 : 0, C16 : 1ω7c/C16 : 1ω6c, C18 : 1ω7c/C18 : 1ω6c and C18 : 1 2-OH. The predominant respiratory quinone was Q-10 and the genomic DNA G+C content was 67.5 mol%. Strain JC288T contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, four unidentified aminolipids, three unidentified phospholipids, two unidentified lipids, an aminophospholipid and a glycolipid. Hydroxyspirilloxanthin was the major carotenoid of strain JC288T. 16S rRNA gene sequence comparisons indicated that strain JC288T represents a member of the genus Roseomonas within the family Acetobacteraceae of the phylum Proteobacteria. Strain JC288T shared the highest 16S rRNA gene sequence similarity with Roseomonas rhizosphaerae YW11T (97.3 %), Roseomonas aestuarii JC17T (97.1 %), Roseomonas cervicalis CIP 104027T (95.9 %) and other members of the genus Roseomonas ( < 95.5 %). The distinct genomic difference and morphological, physiological and chemotaxonomic differences from the previously described taxa support the classification of strain JC288T as a representative of a novel species of the genus Roseomonas, for which the name Roseomonas oryzae sp. nov. is proposed. The type strain is JC288T ( = KCTC 42542T = LMG 28711T). PMID:26297330

  14. Effect of soil water content on spatial distribution of root exudates and mucilage in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Holz, Maire; Zarebanadkouki, Mohsen; Kuzyakov, Yakov; Carminati, Andrea

    2016-04-01

    Water and nutrients are expected to become the major factors limiting food production. Plant roots employ various mechanisms to increase the access to these limited soil resources. Low molecular root exudates released into the rhizosphere increase nutrient availability, while mucilage improves water availability under low moisture conditions. However, studies on the spatial distribution and quantification of exudates in soil are scarce. Our aim was therefore to quantify and visualize root exudates and mucilage distribution around growing roots using neutron radiography and 14C imaging at different levels of water stress. Maize plants were grown in rhizotrons filled with a silty soil and were exposed to varying soil conditions, from optimal to dry. Mucilage distribution around the roots was estimated from the profiles of water content in the rhizosphere - note that mucilage increases the soil water content. The profiles of water content around different root types and root ages were measured with neutron radiography. Rhizosphere extension was approx. 0.7 mm and did not differ between wet and dry treatments. However, water content (i.e. mucilage concentration) in the rhizosphere of plants grown in dry soils was higher than for plants grown under optimal conditions. This effect was particularly pronounced near the tips of lateral roots. The higher water contents near the root are explained as the water retained by mucilage. 14C imaging of root after 14CO2 labeling of shoots (Pausch and Kuzyakov 2011) was used to estimate the distribution of all rhizodeposits. Two days after labelling, 14C distribution was measured using phosphor-imaging. To quantify 14C in the rhizosphere a calibration was carried out by adding given amounts of 14C-glucose to soil. Plants grown in wet soil transported a higher percentage of 14C to the roots (14Croot/14Cshoot), compared to plants grown under dry conditions (46 vs. 36 %). However, the percentage of 14C allocated from roots to

  15. Rhizosphere bacterial communities of dominant steppe plants shift in response to a gradient of simulated nitrogen deposition

    PubMed Central

    Yang, An; Liu, Nana; Tian, Qiuying; Bai, Wenming; Williams, Mark; Wang, Qibing; Li, Linghao; Zhang, Wen-Hao

    2015-01-01

    We evaluated effects of 9-year simulated nitrogen (N) deposition on microbial composition and diversity in the rhizosphere of two dominant temperate grassland species: grass Stipa krylovii and forb Artemisia frigida. Microbiomes in S. krylovii and A. frigida rhizosphere differed, but changed consistently along the N gradient. These changes were correlated to N-induced shifts to plant community. Hence, as plant biomass changed, so did bacterial rhizosphere communities, a result consistent with the role that N fertilizer has been shown to play in altering plant-microbial mutualisms. A total of 23 bacterial phyla were detected in the two rhizospheric soils by pyrosequencing, with Proteobacteria, Acidobacteria, and Bacteroidetes dominating the sequences of all samples. Bacterioidetes and Proteobacteria tended to increase, while Acidobacteria declined with increase in N addition rates. TM7 increased >5-fold in the high N addition rates, especially in S. krylovii rhizosphere. Nitrogen addition also decreased diversity of OTUs (operational taxonomic units), Shannon and Chao1 indices of rhizospheric microbes regardless of plant species. These results suggest that there were both similar but also specific changes in microbial communities of temperate steppes due to N deposition. These findings would contribute to our mechanistic understanding of impacts of N deposition on grassland ecosystem by linking changes in plant traits to their rhizospheric microbes-mediated processes. PMID:26322024

  16. Unearthing microbial diversity of Taxus rhizosphere via MiSeq high-throughput amplicon sequencing and isolate characterization

    NASA Astrophysics Data System (ADS)

    Hao, Da Cheng; Song, Si Meng; Mu, Jun; Hu, Wen Li; Xiao, Pei Gen

    2016-04-01

    The species variability and potential environmental functions of Taxus rhizosphere microbial community were studied by comparative analyses of 15 16S rRNA and 15 ITS MiSeq sequencing libraries from Taxus rhizospheres in subtropical and temperate regions of China, as well as by isolating laccase-producing strains and polycyclic aromatic hydrocarbon (PAH)-degrading strains. Total reads could be assigned to 2,141 Operational Taxonomic Units (OTUs) belonging to 31 bacteria phyla and 2,904 OTUs of at least seven fungi phyla. The abundance of Planctomycetes, Actinobacteria, and Chloroflexi was higher in T. cuspidata var. nana and T. × media rhizospheres than in T. mairei rhizosphere (NF), while Acidobacteria, Proteobacteria, Nitrospirae, and unclassified bacteria were more abundant in the latter. Ascomycota and Zygomycota were predominant in NF, while two temperate Taxus rhizospheres had more unclassified fungi, Basidiomycota, and Chytridiomycota. The bacterial/fungal community richness and diversity were lower in NF than in other two. Three dye decolorizing fungal isolates were shown to be highly efficient in removing three classes of reactive dye, while two PAH-degrading fungi were able to degrade recalcitrant benzo[a]pyrene. The present studies extend the knowledge pedigree of the microbial diversity populating rhizospheres, and exemplify the method shift in research and development of resource plant rhizosphere.

  17. Characterization of rhizosphere and endophytic fungal communities from roots of Stipa purpurea in alpine steppe around Qinghai Lake.

    PubMed

    Lu, Dengxue; Jin, Hui; Yang, Xiaoyan; Zhang, Denghong; Yan, Zhiqiang; Li, Xiuzhuang; Zhao, Yuhui; Han, Rongbing; Qin, Bo

    2016-08-01

    Stipa purpurea is among constructive endemic species in the alpine steppe on the Qinghai-Xizang Plateau. To reveal the fungal community structure and diversity in the rhizosphere and roots of this important grass and to analyze the potential influence of different habitats on the structure of fungal communities, we explored the root endophyte and the directly associated rhizosphere communities of S. purpurea by using internal transcribed spacer rRNA cloning and sequencing methods. We found that the roots of S. purpurea are associated with a diverse consortium of Basidiomycota (59.8%) and Ascomycota (38.5%). Most fungi obtained from rhizosphere soil in S. purpurea have been identified as Ascomycetes, while the high proportion detected in roots were basidiomycetous endophytes. The species richness, diversity, and evenness of fungal assemblages were higher in roots than in the rhizosphere soil. Fungi inhabiting the rhizosphere and roots of S. purpurea are significantly different, and the rhizosphere and endophyte communities are largely independent with little overlap in the dominant phyla or operational taxonomic units. Taken together, these results suggested that a wide variety of fungal communities are associated with the roots and rhizosphere soil of S. purpurea and that the fungal assemblages are strongly influenced by different habitats. PMID:27348421

  18. Unearthing microbial diversity of Taxus rhizosphere via MiSeq high-throughput amplicon sequencing and isolate characterization.

    PubMed

    Hao, Da Cheng; Song, Si Meng; Mu, Jun; Hu, Wen Li; Xiao, Pei Gen

    2016-01-01

    The species variability and potential environmental functions of Taxus rhizosphere microbial community were studied by comparative analyses of 15 16S rRNA and 15 ITS MiSeq sequencing libraries from Taxus rhizospheres in subtropical and temperate regions of China, as well as by isolating laccase-producing strains and polycyclic aromatic hydrocarbon (PAH)-degrading strains. Total reads could be assigned to 2,141 Operational Taxonomic Units (OTUs) belonging to 31 bacteria phyla and 2,904 OTUs of at least seven fungi phyla. The abundance of Planctomycetes, Actinobacteria, and Chloroflexi was higher in T. cuspidata var. nana and T. × media rhizospheres than in T. mairei rhizosphere (NF), while Acidobacteria, Proteobacteria, Nitrospirae, and unclassified bacteria were more abundant in the latter. Ascomycota and Zygomycota were predominant in NF, while two temperate Taxus rhizospheres had more unclassified fungi, Basidiomycota, and Chytridiomycota. The bacterial/fungal community richness and diversity were lower in NF than in other two. Three dye decolorizing fungal isolates were shown to be highly efficient in removing three classes of reactive dye, while two PAH-degrading fungi were able to degrade recalcitrant benzo[a]pyrene. The present studies extend the knowledge pedigree of the microbial diversity populating rhizospheres, and exemplify the method shift in research and development of resource plant rhizosphere. PMID:27080869

  19. Unearthing microbial diversity of Taxus rhizosphere via MiSeq high-throughput amplicon sequencing and isolate characterization

    PubMed Central

    Hao, Da Cheng; Song, Si Meng; Mu, Jun; Hu, Wen Li; Xiao, Pei Gen

    2016-01-01

    The species variability and potential environmental functions of Taxus rhizosphere microbial community were studied by comparative analyses of 15 16S rRNA and 15 ITS MiSeq sequencing libraries from Taxus rhizospheres in subtropical and temperate regions of China, as well as by isolating laccase-producing strains and polycyclic aromatic hydrocarbon (PAH)-degrading strains. Total reads could be assigned to 2,141 Operational Taxonomic Units (OTUs) belonging to 31 bacteria phyla and 2,904 OTUs of at least seven fungi phyla. The abundance of Planctomycetes, Actinobacteria, and Chloroflexi was higher in T. cuspidata var. nana and T. × media rhizospheres than in T. mairei rhizosphere (NF), while Acidobacteria, Proteobacteria, Nitrospirae, and unclassified bacteria were more abundant in the latter. Ascomycota and Zygomycota were predominant in NF, while two temperate Taxus rhizospheres had more unclassified fungi, Basidiomycota, and Chytridiomycota. The bacterial/fungal community richness and diversity were lower in NF than in other two. Three dye decolorizing fungal isolates were shown to be highly efficient in removing three classes of reactive dye, while two PAH-degrading fungi were able to degrade recalcitrant benzo[a]pyrene. The present studies extend the knowledge pedigree of the microbial diversity populating rhizospheres, and exemplify the method shift in research and development of resource plant rhizosphere. PMID:27080869

  20. Zinc, cadmium and lead accumulation and characteristics of rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance under natural conditions.

    PubMed

    Long, Xin-Xian; Zhang, Yu-Gang; Jun, Dai; Zhou, Qixing

    2009-04-01

    A field survey was conducted to study the characteristics of zinc, cadmium, and lead accumulation and rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance growing natively on an old lead/zinc mining site. We found significant hyperaccumulation of zinc and cadmium in field samples of S. alfredii, with maximal shoot concentrations of 9.10-19.61 g kg(-1) zinc and 0.12-1.23 g kg(-1) cadmium, shoot/root ratios ranging from 1.75 to 3.19 (average 2.54) for zinc, 3.36 to 4.43 (average 3.85) for cadmium, shoot bioaccumulation factors of zinc and cadmium being 1.46-4.84 and 7.35-17.41, respectively. While most of lead was retained in roots, thus indicating exclusion as a tolerance strategy for lead. Compared to the non-rhizosphere soil, organic matter and total nitrogen and phosphorus content, CEC and water extractable zinc, cadmium, and lead concentration were significantly higher, but pH was smaller in rhizosphere soil. The rhizosphere soil of S. alfredii harbored a wide variety of microorganism. In general, significantly higher numbers of culturable bacteria, actinomycetes, and fungi were found in the rhizosphere compared to bulk soil, confirming the stimulatory effect of the S. alfredii rhizosphere on microbial growth and proliferation. Analyses of BIOLOG data also showed that the growth of S. alfredii resulted in observable changes in BIOLOG metabolic profiles, utilization ability of different carbon substrates of microbial communities in the rhizosphere soil were also higher than the non-rhizosphere, confirming a functional effect of the rhizosphere of S. alfredii on bacterial population. PMID:19183820

  1. Distinct Microbial Communities within the Endosphere and Rhizosphere of Populus deltoides Roots across Contrasting Soil Types ▿†

    PubMed Central

    Gottel, Neil R.; Castro, Hector F.; Kerley, Marilyn; Yang, Zamin; Pelletier, Dale A.; Podar, Mircea; Karpinets, Tatiana; Uberbacher, Ed; Tuskan, Gerald A.; Vilgalys, Rytas; Doktycz, Mitchel J.; Schadt, Christopher W.

    2011-01-01

    The root-rhizosphere interface of Populus is the nexus of a variety of associations between bacteria, fungi, and the host plant and an ideal model for studying interactions between plants and microorganisms. However, such studies have generally been confined to greenhouse and plantation systems. Here we analyze microbial communities from the root endophytic and rhizospheric habitats of Populus deltoides in mature natural trees from both upland and bottomland sites in central Tennessee. Community profiling utilized 454 pyrosequencing with separate primers targeting the V4 region for bacterial 16S rRNA and the D1/D2 region for fungal 28S rRNA genes. Rhizosphere bacteria were dominated by Acidobacteria (31%) and Alphaproteobacteria (30%), whereas most endophytes were from the Gammaproteobacteria (54%) as well as Alphaproteobacteria (23%). A single Pseudomonas-like operational taxonomic unit (OTU) accounted for 34% of endophytic bacterial sequences. Endophytic bacterial richness was also highly variable and 10-fold lower than in rhizosphere samples originating from the same roots. Fungal rhizosphere and endophyte samples had approximately equal amounts of the Pezizomycotina (40%), while the Agaricomycotina were more abundant in the rhizosphere (34%) than endosphere (17%). Both fungal and bacterial rhizosphere samples were highly clustered compared to the more variable endophyte samples in a UniFrac principal coordinates analysis, regardless of upland or bottomland site origin. Hierarchical clustering of OTU relative abundance patterns also showed that the most abundant bacterial and fungal OTUs tended to be dominant in either the endophyte or rhizosphere samples but not both. Together, these findings demonstrate that root endophytic communities are distinct assemblages rather than opportunistic subsets of the rhizosphere. PMID:21764952

  2. Uranium immobilization in an iron-rich rhizosphere of a native wetland plant from the Savannah River Site under reducing conditions.

    PubMed

    Chang, Hyun-shik; Buettner, Shea W; Seaman, John C; Jaffé, Peter R; van Groos, Paul G Koster; Li, Dien; Peacock, Aaron D; Scheckel, Kirk G; Kaplan, Daniel I

    2014-08-19

    The hypothesis of this study was that iron plaques formed on the roots of wetland plants and their rhizospheres create environmental conditions favorable for iron reducing bacteria that promote the in situ immobilization of uranium. Greenhouse microcosm studies were conducted using native plants (Sparganium americanum) from a wetland located on the Savannah River Site, Aiken, SC. After iron plaques were established during a 73-day period by using an anoxic Fe(II)-rich nutrient solution, a U(VI) amended nutrient solution was added to the system for an additional two months. Compared to plant-free control microcosms, microcosms containing iron plaques successfully stimulated the growth of targeted iron reducing bacteria, Geobacter spp. Their population continuously increased after the introduction of the U(VI) nutrient solution. The reduction of some of the U(VI) to U(IV) by iron reducing bacteria was deduced based on the observations that the aqueous Fe(II) concentrations increased while the U(VI) concentrations decreased. The Fe(II) produced by the iron reducing bacteria was assumed to be reoxidized by the oxygen released from the roots. Advanced spectroscopic analyses revealed that a significant fraction of the U(VI) had been reduced to U(IV) and they were commonly deposited in association with phosphorus on the iron plaque. PMID:25051143

  3. Characterizing and handling different kinds of AM fungal spores in the rhizosphere.

    PubMed

    Sun, Xueguang; Hu, Wentao; Tang, Ming; Chen, Hui

    2016-06-01

    Spores are important propagules as well as the most reliable species-distinguishing traits of arbuscular mycorrhizal (AM) fungi. During surveys of AM fungal communities, spore enumeration and spore identification are frequently conducted, but generally little attention is given to the age and viability of the spores. In this study, AM fungal spores in the rhizosphere were characterized as live or dead by vital staining and by performing a germination assay. A considerable proportion of the spores in the rhizosphere were dead despite their intact appearance. Furthermore, morphological and molecular analyses of spores to determine species identity revealed that both viable spores and dead spores with contents were identified. The accurate identification of spores at different developmental stages on the basis of morphology requires considerable experience. Our findings suggest that surveys of AM fungal communities based on spore enumeration and morphological and molecular identification are likely to be inaccurate, primarily because of the large proportion of dead spores in the rhizosphere. A viability check is recommended prior to spore molecular identification, and the use of trap cultures would give more reliable morphological identification results. We show that the abundance and activity of AM fungi in the rhizosphere can be determined by calculating the density of viable spores and the density of spores that could germinate. The adoption of these methods should provide a more reliable basis for further AM fungal community analysis. PMID:27116963

  4. Development of Culture Medium for the Isolation of Flavobacterium and Chryseobacterium from Rhizosphere Soil.

    PubMed

    Nishioka, Tomoki; Elsharkawy, Mohsen Mohamed; Suga, Haruhisa; Kageyama, Koji; Hyakumachi, Mitsuro; Shimizu, Masafumi

    2016-06-25

    An effective medium designated phosphate separately autoclaved Reasoner's 2A supplemented with cycloheximide and tobramycin (PSR2A-C/T) has been developed for the isolation of Flavobacterium and Chryseobacterium strains from the plant rhizosphere. It consists of Reasoner's 2A agar (R2A) prepared by autoclaving phosphate and agar separately and supplementing with 50 mg L(-1) cycloheximide and 1 mg L(-1) tobramycin. A comparison was made among the following nine media: PSR2A-C/T, PSR2A-C/T supplemented with NaCl, R2A agar, R2A agar supplemented with cycloheximide and tobramycin, 1/4-strength tryptic soy agar (TSA), 1/10-strength TSA, soil-extract agar, Schaedler anaerobe agar (SAA), and SAA supplemented with gramicidin, for the recovery of Flavobacterium and Chryseobacterium strains from the Welsh onion rhizosphere. Flavobacterium strains were only isolated on PSR2A-C/T, and the recovery rate of Chryseobacterium strains was higher from PSR2A-C/T than from the eight other media. In order to confirm the effectiveness of PSR2A-C/T, bacteria were isolated from onion rhizosphere soil with this medium. Flavobacterium and Chryseobacterium strains were successfully isolated from this sample at a similar rate to that from the Welsh onion rhizosphere. PMID:27098502

  5. Is plant evolutionary history impacting recruitment of diazotrophs and nifH expression in the rhizosphere?

    PubMed Central

    Bouffaud, Marie-Lara; Renoud, Sébastien; Moënne-Loccoz, Yvan; Muller, Daniel

    2016-01-01

    Plant evolutionary history influences the taxonomic composition of the root-associated bacterial community, but whether it can also modulate its functioning is unknown. Here, we tested the hypothesis that crop diversification is a significant factor determining the ecology of the functional group of nitrogen-fixing bacteria the rhizosphere of Poaceae. A greenhouse experiment was carried out using a range of Poaceae, i.e. four Zea mays varieties (from two genetic groups) and teosinte (representing maize’s ancestor), sorghum (from the same Panicoideae subfamily), and wheat (from neighboring Pooideae subfamily), as well as the dicot tomato as external reference. Diazotroph rhizosphere community was characterized at 21 days in terms of size (quantitative PCR of nifH genes), composition (T-RFLP and partial sequencing of nifH alleles) and functioning (quantitative RT-PCR, T-RFLP and partial sequencing of nifH transcripts). Plant species and varieties had a significant effect on diazotroph community size and the number of nifH transcripts per root system. Contrarily to expectations, however, there was no relation between Poaceae evolutionary history and the size, diversity or expression of the rhizosphere diazotroph community. These results suggest a constant selection of this functional group through evolution for optimization of nitrogen fixation in the rhizosphere. PMID:26902960

  6. Development of Culture Medium for the Isolation of Flavobacterium and Chryseobacterium from Rhizosphere Soil

    PubMed Central

    Nishioka, Tomoki; Elsharkawy, Mohsen Mohamed; Suga, Haruhisa; Kageyama, Koji; Hyakumachi, Mitsuro; Shimizu, Masafumi

    2016-01-01

    An effective medium designated phosphate separately autoclaved Reasoner’s 2A supplemented with cycloheximide and tobramycin (PSR2A-C/T) has been developed for the isolation of Flavobacterium and Chryseobacterium strains from the plant rhizosphere. It consists of Reasoner’s 2A agar (R2A) prepared by autoclaving phosphate and agar separately and supplementing with 50 mg L−1 cycloheximide and 1 mg L−1 tobramycin. A comparison was made among the following nine media: PSR2A-C/T, PSR2A-C/T supplemented with NaCl, R2A agar, R2A agar supplemented with cycloheximide and tobramycin, 1/4-strength tryptic soy agar (TSA), 1/10-strength TSA, soil-extract agar, Schaedler anaerobe agar (SAA), and SAA supplemented with gramicidin, for the recovery of Flavobacterium and Chryseobacterium strains from the Welsh onion rhizosphere. Flavobacterium strains were only isolated on PSR2A-C/T, and the recovery rate of Chryseobacterium strains was higher from PSR2A-C/T than from the eight other media. In order to confirm the effectiveness of PSR2A-C/T, bacteria were isolated from onion rhizosphere soil with this medium. Flavobacterium and Chryseobacterium strains were successfully isolated from this sample at a similar rate to that from the Welsh onion rhizosphere. PMID:27098502

  7. RESTRICTION FRAGMENT LENGTH POLYMORPHISM ANALYSIS OF PCR-AMPLIFIED NIFH SEQUENCES FROM WETLAND PLANT RHIZOSPHERE COMMUNITIES

    EPA Science Inventory

    We describe a method to assess the community structure of N2-fixing bacteria in the rhizosphere. Total DNA was extracted from Spartina alterniflora and Sesbania macrocarpa root zones by bead-beating and purified by CsCl-EtBr gradient centrifugation. The average DNA yield was 5.5 ...

  8. Influence of Cacao Genotypes on Soil Rhizosphere Biological Parameters Under Agro Forestry System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interactions of management systems and cacao genotypes have profound influence on the diversity of soil micro-fauna in the rhizosphere; and such changes may provide benefits to plant growth and development. Field experiment was established at Tarapoto, Peru during 2004 with 60 cacao genotypes in an ...

  9. EFFECTS OF GLYPHOSATE AND FOLIAR AMENDMENTS ON ACTIVITY OF MICROORGANISMS IN THE SOYBEAN RHIZOSPHERE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field study was conducted to determine the effects of glyphosate on microbial activity in the rhizosphere of glyphosate-resistant (GR) soybean and to evaluate interactions with foliar amendments. Glyphosate at 0.84 kg ae ha-1 was applied to GR soybean at the V4 - V5 development stages. Check tre...

  10. Method for RNA extraction and cDNA library construction from microbes in crop rhizosphere soil.

    PubMed

    Fang, Changxun; Xu, Tiecheng; Ye, Changliang; Huang, Likun; Wang, Qingshui; Lin, Wenxiong

    2014-02-01

    Techniques to analyze the transcriptome of the soil rhizosphere are essential to reveal the interactions and communications between plants and microorganisms in the soil ecosystem. In this study, different volumes of Al₂(SO₄)₃ were added to rhizosphere soil samples to precipitate humic substances, which interfere with most procedures of RNA and DNA analyses. After humic substances were precipitated, cells of soil microorganisms were broken by vortexing with glass beads, and then DNA and RNA were recovered using Tris-HCl buffer with LiCl, SDS, and EDTA. The crude extract was precipitated and dissolved in RNAse-free water, and then separated by agarose gel electrophoresis. We determined the optimum volume of Al₂(SO₄)₃ for treating rhizosphere soil of rice, tobacco, sugarcane, Rehmannia glutinosa, and Pseudostellaria heterophylla. The crude nucleic acids extract from rice soil was treated with DNase I and then RNA was purified using a gel filtration column. The purified RNA was reverse-transcribed into single-strand cDNA and then ligated with an adaptor at each end before amplifying ds cDNA. The ds cDNA was sub-cloned for subsequent gene sequence analysis. We conducted qPCR to amplify 16S ribosomal DNA and observed highly efficient amplification. These results show that the extraction method can be optimized to isolate and obtain high-quality nucleic acids from microbes in different rhizosphere soils, suitable for genomic and post-genomic analyses. PMID:24078111

  11. Diversity of rhizospheric halotolerant bacteria associated with chenopod plants Atriplex and Suaeda.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants growing in saline soils are exposed to various levels of moisture and salinity stress during their life cycle. Plant associated microbes may help mediate such stress. We analyzed rhizospheric, soil and leaf litter microbial communities associated with two saline-adapted chenopod plants, Suae...

  12. Predicting ecological roles in the rhizosphere using metabolome and transportome modeling

    SciTech Connect

    Larsen, Peter E.; Collart, Frank R.; Dai, Yang; Blanchard, Jeffrey L.

    2015-09-02

    The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. New algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad’s ecological role in the rhizosphere: a biofilm, biocontrol agent, promoter of plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism’s transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data.

  13. Survival of Potentially Pathogenic Human-Associated Bacteria in the Rhizosphere of Hydroponically Grown Wheat

    NASA Technical Reports Server (NTRS)

    Morales, Anabelle; Garland, Jay L.; Lim, Daniel V.

    1996-01-01

    Plants may serve as reservoirs for human-associated bacteria (H-AB) in long-term space missions containing bioregenerative life support systems. The current study examined the abilities of five human-associated potential pathogens, Pseudomonas aeruginosa, Pseudomonas cepacia, Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli, to colonize and grow in the rhizosphere of hydroponically grown wheat, a candidate crop for life support. All of these bacteria have been recovered from past NASA missions and present potential problems for future missions. The abilities of these organisms to adhere to the roots of axenic five-day-old wheat (Triticum aestivum L. cv. Yecora rojo) were evaluated by enumeration of the attached organisms after a one hour incubation of roots in a suspension (approximately 10(exp 8 cu/ml)) of the H-AB. Results showed that a greater percentage of P. aeruginosa cells adhered to the wheat roots than the other four H-AB. Similarly incubated seedlings were also grown under attempted axenic conditions for seven days to examine the potential of each organism to proliferate in the rhizosphere (root colonization capacity). P. cepacia and P. aeruginosa showed considerable growth. E. coli and S. aureus showed no significant growth, and S. pyogenes died off in the wheat rhizosphere. Studies examining the effects of competition on the survival of these microorganisms indicated that P. aeruginosa was the only organism that survived in the rhizosphere of hydroponically grown wheat in the presence of different levels of microbial competition.

  14. Bacterial Distribution in the Rhizosphere of Wild Barley under Contrasting Microclimates

    PubMed Central

    Timmusk, Salme; Paalme, Viiu; Pavlicek, Tomas; Bergquist, Jonas; Vangala, Ameraswar; Danilas, Triin; Nevo, Eviatar

    2011-01-01

    Background All plants in nature harbor a diverse community of rhizosphere bacteria which can affect the plant growth. Our samples are isolated from the rhizosphere of wild barley Hordeum spontaneum at the Evolution Canyon (‘EC’), Israel. The bacteria which have been living in close relationship with the plant root under the stressful conditions over millennia are likely to have developed strategies to alleviate plant stress. Methodology/Principal Findings We studied distribution of culturable bacteria in the rhizosphere of H. spontaneum and characterized the bacterial 1-aminocyclopropane-1-carboxylate deaminase (ACCd) production, biofilm production, phosphorus solubilization and halophilic behavior. We have shown that the H. spontaneum rhizosphere at the stressful South Facing Slope (SFS) harbors significantly higher population of ACCd producing biofilm forming phosphorus solubilizing osmotic stress tolerant bacteria. Conclusions/Significance The long-lived natural laboratory ‘EC’ facilitates the generation of theoretical testable and predictable models of biodiversity and genome evolution on the area of plant microbe interactions. It is likely that the bacteria isolated at the stressful SFS offer new opportunities for the biotechnological applications in our agro-ecological systems. PMID:21448272

  15. Plant growth and phenolic compounds in the rhizosphere soil of wild oat (Avena fatua L.)

    PubMed Central

    Iannucci, Anna; Fragasso, Mariagiovanna; Platani, Cristiano; Papa, Roberto

    2013-01-01

    The objectives of this study were to determine the pattern of dry matter (DM) accumulation and the evolution of phenolic compounds in the rhizosphere soil from tillering to the ripe seed stages of wild oat (Avena fatua L.), a widespread annual grassy weed. Plants were grown under controlled conditions and harvested 13 times during the growing season. At each harvest, shoot and root DM and phenolic compounds in the rhizosphere soil were determined. The maximum DM production (12.6 g/plant) was recorded at 122 days after sowing (DAS; kernel hard stage). The increase in total aerial DM with age coincided with reductions in the leaf/stem and source/sink ratios, and an increase in the shoot/root ratio. HPLC analysis shows production of seven phenolic compounds in the rhizosphere soil of wild oat, in order of their decreasing levels: syringic acid, vanillin, 4-hydroxybenzoic acid, syringaldehyde, ferulic acid, p-cumaric acid and vanillic acid. The seasonal distribution for the total phenolic compounds showed two peaks of maximum concentrations, at the stem elongation stage (0.71 μg/kg; 82 DAS) and at the heading stage (0.70 μg/kg; 98 DAS). Thus, wild oat roots exude allelopathic compounds, and the levels of these phenolics in the rhizosphere soil vary according to plant maturity. PMID:24381576

  16. Isolation of maize soil and rhizosphere bacteria with antagonistic activity against Aspergillus flavus and Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial isolates from Mississippi maize field soil and maize rhizosphere samples were evaluated for their potential as biological control agents against Aspergillus flavus and Fusarium verticillioides. Isolated strains were screened for antagonistic activities in liquid co-culture against A. flav...

  17. MICROCOSM FOR MEASURING SURVIVAL AND CONJUGATION OF GENETICALLY ENGINEERED BACTERIA IN RHIZOSPHERE ENVIRONMENTS

    EPA Science Inventory

    A microcosm is described to evaluate and measure bacterial conjugation in the rhizosphere of barley and radish with strains of Pseudomonas cepacia. he purpose was to describe a standard method useful for evaluating the propensity of genetically engineered microorganisms (GEMs) to...

  18. Growth rates of rhizosphere microorganisms depend on competitive abilities of plants for nitrogen

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Littschwager, Johanna; Lauerer, Marianna; Kuzyakov, Yakov

    2010-05-01

    Rhizosphere - one of the most important ‘hot spots' in soil - is characterized not only by accelerated turnover of microbial biomass and nutrients but also by strong intra- and inter-specific competition. Intra-specific competition occurs between individual plants of the same species, while inter-specific competition can occur both at population level (plant species-specific, microbial species-specific interactions) and at community level (plant - microbial interactions). Such plant - microbial interactions are mainly governed by competition for available N sources, since N is one of the main growth limiting nutrients in natural ecosystems. Functional structure and activity of microbial community in rhizosphere is not uniform and is dependent on quantity and quality of root exudates which are plant specific. It is still unclear how microbial growth and turnover in the rhizosphere are dependent on the features and competitive abilities of plants for N. Depending on C and N availability, acceleration and even retardation of microbial activity and carbon mineralization can be expected in the rhizosphere of plants with high competitive abilities for N. We hypothesized slower microbial growth rates in the rhizosphere of plants with smaller roots, as they usually produce less exudates compared to plants with small shoot-to-root ratio. As the first hypothesis is based solely on C availability, we also expected the greater effect of N availability on microbial growth in rhizosphere of plants with smaller root mass. These hypothesis were tested for two plant species of strawberry: Fragaria vesca L. (native species), and Duchesnea indica (Andrews) Focke (an invasive plant in central Europe) growing in intraspecific and interspecific competition. Microbial biomass and the kinetic parameters of microbial growth in the rhizosphere were estimated by dynamics of CO2 emission from the soil amended with glucose and nutrients. Specific growth rate (µ) of soil microorganisms was

  19. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles.

    PubMed

    Finzi, Adrien C; Abramoff, Rose Z; Spiller, Kimberly S; Brzostek, Edward R; Darby, Bridget A; Kramer, Mark A; Phillips, Richard P

    2015-05-01

    While there is an emerging view that roots and their associated microbes actively alter resource availability and soil organic matter (SOM) decomposition, the ecosystem consequences of such rhizosphere effects have rarely been quantified. Using a meta-analysis, we show that multiple indices of microbially mediated C and nitrogen (N) cycling, including SOM decomposition, are significantly enhanced in the rhizospheres of diverse vegetation types. Then, using a numerical model that combines rhizosphere effect sizes with fine root morphology and depth distributions, we show that root-accelerated mineralization and priming can account for up to one-third of the total C and N mineralized in temperate forest soils. Finally, using a stoichiometrically constrained microbial decomposition model, we show that these effects can be induced by relatively modest fluxes of root-derived C, on the order of 4% and 6% of gross and net primary production, respectively. Collectively, our results indicate that rhizosphere processes are a widespread, quantitatively important driver of SOM decomposition and nutrient release at the ecosystem scale, with potential consequences for global C stocks and vegetation feedbacks to climate. PMID:25421798

  20. Soil Microbial Communities associated to Plant Rhizospheres in an Organic Farming System in Alabama

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The microbial communities under different organic crop rhizospheres (0-10 and 10-20 cm) were characterized using fatty acid methyl ester (FAME) and pyrosequencing techniques. The soil was a silt loam (12.8% clay, 71.8% silt and15.4% sand). Soils at this site are characterized as having pH of ~6.53,...

  1. Bacterial diversity in peanut rhizosphere in a semi-arid climate: impacts of nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizobacteria can play important roles in agronomic ecosystems impacting nutrient availability, nutrient uptake, and drought responses of plants in many cropping systems. The ability of rhizosphere bacteria to impact plant growth can be negatively impacted through the application of nitrogen fertil...

  2. Persistence of Escherichia coli 0157:H7 on the Rhizosphere and Phyllosphere of lettuce.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The major objective of this study was to determine the effects of low levels of E. coli O157:H7 contamination on plant by monitoring the survival of the pathogen on the rhizosphere and leaf surfaces of lettuce during the growth process. Real-time PCR and plate counts were used to quantify the surviv...

  3. Draft genome sequences of four Streptomyces isolates from the Populus trichocarpa root endosphere and rhizosphere

    DOE PAGESBeta

    Klingeman, Dawn M.; Utturkar, Sagar; Lu, Tse -Yuan S.; Schadt, Christopher W.; Pelletier, Dale A.; Brown, Steve D.

    2015-11-12

    Draft genome sequences for four Actinobacteria from the genus Streptomyces are presented. Streptomyces is a metabolically diverse genus that is abundant in soils and has been reported in association with plants. The strains described in this study were isolated from the Populus trichocarpa endosphere and rhizosphere.

  4. Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: It has frequently been shown that plants interact with soils to shape rhizosphere microbiomes. However, previous work has not distinguished between effects of soil properties per se, and effects attributable to the resident microbial communities of those soils; different soils also represent d...

  5. Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells.

    PubMed

    Kouzuma, Atsushi; Kaku, Nobuo; Watanabe, Kazuya

    2014-12-01

    Microbial fuel cells (MFCs) are devices that use living microbes for the conversion of organic matter into electricity. MFC systems can be applied to the generation of electricity at water/sediment interfaces in the environment, such as bay areas, wetlands, and rice paddy fields. Using these systems, electricity generation in paddy fields as high as ∼80 mW m(-2) (based on the projected anode area) has been demonstrated, and evidence suggests that rhizosphere microbes preferentially utilize organic exudates from rice roots for generating electricity. Phylogenetic and metagenomic analyses have been conducted to identify the microbial species and catabolic pathways that are involved in the conversion of root exudates into electricity, suggesting the importance of syntrophic interactions. In parallel, pot cultures of rice and other aquatic plants have been used for rhizosphere MFC experiments under controlled laboratory conditions. The findings from these studies have demonstrated the potential of electricity generation for mitigating methane emission from the rhizosphere. Notably, however, the presence of large amounts of organics in the rhizosphere drastically reduces the effect of electricity generation on methane production. Further studies are necessary to evaluate the potential of these systems for mitigating methane emission from rice paddy fields. We suggest that paddy-field MFCs represent a promising approach for harvesting latent energy of the natural world. PMID:25394406

  6. Metagenomic analysis of the rhizosphere soil microbiome with respect to phytic acid utilization.

    PubMed

    Unno, Yusuke; Shinano, Takuro

    2013-01-01

    While phytic acid is a major form of organic phosphate in many soils, plant utilization of phytic acid is normally limited; however, culture trials of Lotus japonicus using experimental field soil that had been managed without phosphate fertilizer for over 90 years showed significant usage of phytic acid applied to soil for growth and flowering and differences in the degree of growth, even in the same culture pot. To understand the key metabolic processes involved in soil phytic acid utilization, we analyzed rhizosphere soil microbial communities using molecular ecological approaches. Although molecular fingerprint analysis revealed changes in the rhizosphere soil microbial communities from bulk soil microbial community, no clear relationship between the microbiome composition and flowering status that might be related to phytic acid utilization of L. japonicus could be determined. However, metagenomic analysis revealed changes in the relative abundance of the classes Bacteroidetes, Betaproteobacteria, Chlorobi, Dehalococcoidetes and Methanobacteria, which include strains that potentially promote plant growth and phytic acid utilization, and some gene clusters relating to phytic acid utilization, such as alkaline phosphatase and citrate synthase, with the phytic acid utilization status of the plant. This study highlights phylogenetic and metabolic features of the microbial community of the L. japonicus rhizosphere and provides a basic understanding of how rhizosphere microbial communities affect the phytic acid status in soil. PMID:23257911

  7. Is plant evolutionary history impacting recruitment of diazotrophs and nifH expression in the rhizosphere?

    PubMed

    Bouffaud, Marie-Lara; Renoud, Sébastien; Moënne-Loccoz, Yvan; Muller, Daniel

    2016-01-01

    Plant evolutionary history influences the taxonomic composition of the root-associated bacterial community, but whether it can also modulate its functioning is unknown. Here, we tested the hypothesis that crop diversification is a significant factor determining the ecology of the functional group of nitrogen-fixing bacteria the rhizosphere of Poaceae. A greenhouse experiment was carried out using a range of Poaceae, i.e. four Zea mays varieties (from two genetic groups) and teosinte (representing maize's ancestor), sorghum (from the same Panicoideae subfamily), and wheat (from neighboring Pooideae subfamily), as well as the dicot tomato as external reference. Diazotroph rhizosphere community was characterized at 21 days in terms of size (quantitative PCR of nifH genes), composition (T-RFLP and partial sequencing of nifH alleles) and functioning (quantitative RT-PCR, T-RFLP and partial sequencing of nifH transcripts). Plant species and varieties had a significant effect on diazotroph community size and the number of nifH transcripts per root system. Contrarily to expectations, however, there was no relation between Poaceae evolutionary history and the size, diversity or expression of the rhizosphere diazotroph community. These results suggest a constant selection of this functional group through evolution for optimization of nitrogen fixation in the rhizosphere. PMID:26902960

  8. Changes in rhizosphere microbiome associated with orchard soil resilience in response to Brassicaceae seed meal amendment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrosequencing analysis of the apple rhizosphere microbiome was conducted two years post-planting at an orchard replant trial which included a no treatment control, 1,3-dichloropropene-C17 pre-plant fumigation, and pre-plant soil incorporation of a Brassicaceae seed meal (SM) formulation. SM treate...

  9. Diversity analysis of type I ketosynthase in rhizosphere soil of cucumber.

    PubMed

    Zhao, Baixia; Gao, Zenggui; Shao, Yang; Yan, Jianfang; Hu, Yingchang; Yu, Jicheng; Liu, Qiu; Chen, Fei

    2012-04-01

    Fusarium wilt [Fusarium oxysporum (Sch1.) f.sp. cucumerinum Owen.] is a major soil-borne disease of cucumber worldwide, and can cause huge yield losses. Biological control of Fusarium wilt of cucumber has received considerable attention. Many bacteria, particularly actinomycetes, are known to produce secondary metabolites synthesized by Polyketide synthases (PKSs) with a diverse range of biological activities. Ketosynthase (KS) gene diversity was analyzed in samples which were collected from rhizosphere soil of both diseased cucumber and healthy cucumber in Dalian, China. The phylogenetic analysis amino acid (AA) sequences indicated that the KS genes in the rhizosphere soil samples were clustered into diverse seven clades, including Sorangium cellulosum, Anabaena variabilis, Nostoc punctiforme, Xanthobacter autotrophicus, Streptomyces, myxobacteria and uncultured bacteria. Among seven major clades in the phylogenetic tree, two clades were peculiar to rhizosphere soil of diseased cucumber and one was peculiar to healthy cucumber. Among the 182 cloned KS genes, 147 KS genes were clustered with the uncultured bacteria group. Most of the KS genes showed about 80% similarity at the AA level to sequences known in GenBank. These results revealed the great diversity and novelty of KS genes in rhizosphere soil of cucumber. PMID:21780139

  10. Changes in the structure of the rhizosphere complex of actinomycetes in the ontogenesis of winter rye

    NASA Astrophysics Data System (ADS)

    Shirokikh, I. G.; Merzaeva, O. V.; Zenova, G. M.

    2006-06-01

    Changes in the taxonomic structure of actinomycetes in the rhizosphere of winter rye ( Secale cereale L.) growing on acid soddy-podzolic soil were studied. During the first stages of ontogenesis of winter rye, the rhizosphere complex of mycelial prokaryotes was characterized by a relatively level generic structure (with respect to the indices of abundance and frequency of particular genera), low values of the species diversity, and low domination frequency of the species from the Streptomyces genus. The numbers and species diversity of the streptomycetes increased during the further growth of the winter rye, so that streptomycetes became a dominant group in the complex of the rhizosphere actinomycetes. According to the two-way ANOVA, the population density of the Micromonospora and the Streptosporangium genera in the rhizosphere was mainly dictated by the winter rye variety, whereas the population density of the streptomycetes depended on the particular stage of the winter rye development. The differences between the actinomycetal complexes characteristic of different varieties of winter rye at the early stages of its development was leveled by the end of the winter rye growth.

  11. Salt tolerant SUV3 overexpressing transgenic rice plants conserve physicochemical properties and microbial communities of rhizosphere.

    PubMed

    Sahoo, Ranjan K; Ansari, Mohammad W; Tuteja, Renu; Tuteja, Narendra

    2015-01-01

    Key concerns in the ecological evaluation of GM crops are undesirably spread, gene flow, other environmental impacts, and consequences on soil microorganism's biodiversity. Numerous reports have highlighted the effects of transgenic plants on the physiology of non-targeted rhizospheric microbes and the food chain via causing adverse effects. Therefore, there is an urgent need to develop transgenics with insignificant toxic on environmental health. In the present study, SUV3 overexpressing salt tolerant transgenic rice evaluated in New Delhi and Cuttack soil conditions for their effects on physicochemical and biological properties of rhizosphere. Its cultivation does not affect soil properties viz., pH, Eh, organic C, P, K, N, Ca, Mg, S, Na and Fe(2+). Additionally, SUV3 rice plants do not cause any change in the phenotype, species characteristics and antibiotic sensitivity of rhizospheric bacteria. The population and/or number of soil organisms such as bacteria, fungi and nematodes were unchanged in the soil. Also, the activity of bacterial enzymes viz., dehydrogenase, invertase, phenol oxidases, acid phosphatases, ureases and proteases was not significantly affected. Further, plant growth promotion (PGP) functions of bacteria such as siderophore, HCN, salicylic acid, IAA, GA, zeatin, ABA, NH3, phosphorus metabolism, ACC deaminase and iron tolerance were, considerably, not influenced. The present findings suggest ecologically pertinent of salt tolerant SUV3 rice to sustain the health and usual functions of the rhizospheric organisms. PMID:25303666

  12. Survival of potentially pathogenic human-associated bacteria in the rhizosphere of hydroponically grown wheat.

    PubMed

    Morales, A; Garland, J L; Lim, D V

    1996-07-01

    Plants may serve as reservoirs for human-associated bacteria (H-AB) in long-term space missions containing bioregenerative life support systems. The current study examined the abilities of five human-associated potential pathogens, Pseudomonas aeruginosa, Pseudomonas cepacia, Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli, to colonize and grow in the rhizosphere of hydroponically grown wheat, a candidate crop for life support. All of these bacteria have been recovered from past NASA missions and present potential problems for future missions. The abilities of these organisms to adhere to the roots of axenic five-day-old wheat (Triticum aestivum L. cv. Yecora rojo) were evaluated by enumeration of the attached organisms after a one hour incubation of roots in a suspension (approximately 10(8) cfu ml-1) of the H-AB. Results showed that a greater percentage of P. aeruginosa cells adhered to the wheat roots than the other four H-AB. Similarly incubated seedlings were also grown under attempted axenic conditions for seven days to examine the potential of each organism to proliferate in the rhizosphere (root colonization capacity). P. cepacia and P. aerogiunosa showed considerable growth, E. coli and S. aureus showed no significant growth, and S. pyogenes died off in the wheat rhizosphere. Studies examining the effects of competition on the survival of these microorganisms indicated that P. aeruginosa was the only organism that survived in the rhizosphere of hydroponically grown wheat in the presence of different levels of microbial competition. PMID:11539850

  13. Predicting Ecological Roles in the Rhizosphere Using Metabolome and Transportome Modeling

    PubMed Central

    Larsen, Peter E.; Collart, Frank R.; Dai, Yang

    2015-01-01

    The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. However, new algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad’s ecological role in the rhizosphere: a biofilm, biocontrol agent, promoter of plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism’s transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data. PMID:26332409

  14. Draft Genome Sequences of Four Streptomyces Isolates from the Populus trichocarpa Root Endosphere and Rhizosphere

    PubMed Central

    Klingeman, Dawn M.; Utturkar, Sagar; Lu, Tse-Yuan S.; Schadt, Christopher W.; Pelletier, Dale A.

    2015-01-01

    Draft genome sequences for four Actinobacteria from the genus Streptomyces are presented. Streptomyces is a metabolically diverse genus that is abundant in soils and has been reported in association with plants. The strains described in this study were isolated from the Populus trichocarpa endosphere and rhizosphere. PMID:26564053

  15. Nonequilibrium water dynamics in the rhizosphere: How mucilage affects water flow in soils

    NASA Astrophysics Data System (ADS)

    Kroener, Eva; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2014-08-01

    The flow of water from soil to plant roots is controlled by the properties of the narrow region of soil close to the roots, the rhizosphere. In particular, the hydraulic properties of the rhizosphere are altered by mucilage, a polymeric gel exuded by the roots. In this paper we present experimental results and a conceptual model of water flow in unsaturated soils mixed with mucilage. A central hypothesis of the model is that the different drying/wetting rate of mucilage compared to the bulk soil results in nonequilibrium relations between water content and water potential in the rhizosphere. We coupled this nonequilibrium relation with the Richards equation and obtained a constitutive equation for water flow in soil and mucilage. To test the model assumptions, we measured the water retention curve and the saturated hydraulic conductivity of sandy soil mixed with mucilage from chia seeds. Additionally, we used neutron radiography to image water content in a layer of soil mixed with mucilage during drying and wetting cycles. The radiographs demonstrated the occurrence of nonequilibrium water dynamics in the soil-mucilage mixture. The experiments were simulated by numerically solving the nonequilibrium model. Our study provides conceptual and experimental evidences that mucilage has a strong impact on soil water dynamics. During drying, mucilage maintains a greater soil water content for an extended time, while during irrigation it delays the soil rewetting. We postulate that mucilage exudation by roots attenuates plant water stress by modulating water content dynamics in the rhizosphere.

  16. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition.

    PubMed

    Tkacz, Andrzej; Cheema, Jitender; Chandra, Govind; Grant, Alastair; Poole, Philip S

    2015-11-01

    We examined succession of the rhizosphere microbiota of three model plants (Arabidopsis, Medicago and Brachypodium) in compost and sand and three crops (Brassica, Pisum and Triticum) in compost alone. We used serial inoculation of 24 independent replicate microcosms over three plant generations for each plant/soil combination. Stochastic variation between replicates was surprisingly weak and by the third generation, replicate microcosms for each plant had communities that were very similar to each other but different to those of other plants or unplanted soil. Microbiota diversity remained high in compost, but declined drastically in sand, with bacterial opportunists and putative autotrophs becoming dominant. These dramatic differences indicate that many microbes cannot thrive on plant exudates alone and presumably also require carbon sources and/or nutrients from soil. Arabidopsis had the weakest influence on its microbiota and in compost replicate microcosms converged on three alternative community compositions rather than a single distinctive community. Organisms selected in rhizospheres can have positive or negative effects. Two abundant bacteria are shown to promote plant growth, but in Brassica the pathogen Olpidium brassicae came to dominate the fungal community. So plants exert strong selection on the rhizosphere microbiota but soil composition is critical to its stability. microbial succession/ plant-microbe interactions/rhizosphere microbiota/selection. PMID:25909975

  17. Teaching Plant-Soil Relationships with Color Images of Rhizosphere pH.

    ERIC Educational Resources Information Center

    Heckman, J. R.; Strick, J. E.

    1996-01-01

    Presents a laboratory exercise that uses a simple imaging technique to illustrate the profound effects that living roots exert on the pH of the surrounding soil environment. Achieves visually stimulating results that can be used to reinforce lectures on rhizosphere pH, nutrient availability, plant tolerance of soil acidity, microbial activity, and…

  18. Variable effects of maize mucilage on rhizosphere rewetting - a new method to collect mucilage

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.

    2015-12-01

    Recent experiments suggested that the mucilaginous fraction of root exudates may cause water repellency of the rhizosphere. Our objectives were to: 1) investigate whether maize rhizosphere turns hydrophobic; 2) measure the contact angle of mucilage collected from plants growing in wet and dry soils; and 3) find a quantitative relation between rhizosphere rewetting, particle size, soil matric potential and mucilage concentration. Maize plants were grown in sandy soil for five weeks. The soil was then allowed to dry and it was irrigated. The soil water content during irrigation was imaged using neutron radiography. In a parallel experiment, mucilage was collected from brace roots. The contact angle was measured for varying mucilage concentration. Additionally, capillary rise experiments were performed in soils of different particle size and mucilage concentration. We then used a pore-network model in which mucilage was randomly distributed in a cubic lattice. The general idea was that the rewetting of a pore is impeded when the concentration of mucilage on the pore surface [g cm-2] is higher than a given threshold value. The threshold value depended on soil matric potential, pore radius and contact angle. Then, we randomly distributed mucilage in the pore network and we calculated the percolation of water across a cubic lattice for varying soil particle size, mucilage concentration and matric potential. Our results showed that: 1) the rhizosphere stayed temporarily dry after irrigation; 2) in both plants growing in wet and dry soils, mucilage became hydrophobic after drying. Mucilage contact angle increased with mucilage concentration. Interestingly, the contact angle of mucilage from plants growing in dry soil was higher than the one from plants growing in wet soils; 3) water could easily cross the rhizosphere when the mucilage concentration was below a given threshold. In contrast, above a critical mucilage concentration water could not flow through the rhizosphere

  19. Mycological composition in the rhizosphere of winter wheat in different crop production systems

    NASA Astrophysics Data System (ADS)

    Frac, Magdalena; Lipiec, Jerzy; Usowicz, Boguslaw

    2010-05-01

    Fungi play an important role in the soil ecosystem as decomposers of plant residues, releasing nutrients that sustain and stimulate processes of plant growth. Some fungi possess antagonistic properties towards plant pathogens. The structure of plant and soil communities is influenced by the interactions among its component species and also by anthropogenic pressure. In the study of soil fungi, particular attention is given to the rhizosphere. Knowledge of the structure and diversity of the fungal community in the rhizosphere lead to the better understanding of pathogen-antagonist interactions. The aim of this study was to evaluate the mycological composition of the winter wheat rhizosphere in two different crop production systems. The study was based on a field experiment established in 1994 year at the Experimental Station in South-East Poland. The experiment was conducted on grey-brown podzolic soil. In this experiment winter wheat were grown in two crop production systems: ecological and conventional - monoculture. The research of fungi composition was conducted in 15th year of experiment. Rhizosphere was collected two times during growing season, in different development stage: shooting phase and full ripeness phase. Martin medium and the dilutions 10-3 and 10-4 were used to calculate the total number cfu (colony forming units) of fungi occurring in the rhizosphere of winter wheat. The fungi were identified using Czapeka-Doxa medium for Penicillium, potato dextrose agar for all fungi and agar Nirenberga (SNA) for Fusarium. High number of antagonistic fungi (Penicillium sp., Trichoderma sp.) was recorded in the rhizosphere of wheat in ecological system. The presence of these fungi can testify to considerable biological activity, which contributes to the improvement of the phytosanitary condition of the soil. However, the decrease of the antagonistic microorganism number in the crop wheat in monoculture can be responsible for appearance higher number of the

  20. Occurrence of Babesia spp., Rickettsia spp. and Bartonella spp. in Ixodes ricinus in Bavarian public parks, Germany

    PubMed Central

    2011-01-01

    Background Only limited information is available about the occurrence of ticks and tick-borne pathogens in public parks, which are areas strongly influenced by human beings. For this reason, Ixodes ricinus were collected in public parks of different Bavarian cities in a 2-year survey (2009 and 2010) and screened for DNA of Babesia spp., Rickettsia spp. and Bartonella spp. by PCR. Species identification was performed by sequence analysis and alignment with existing sequences in GenBank. Additionally, coinfections with Anaplasma phagocytophilum were investigated. Results The following prevalences were detected: Babesia spp.: 0.4% (n = 17, including one pool of two larvae) in 2009 and 0.5 to 0.7% (n = 11, including one pool of five larvae) in 2010; Rickettsia spp.: 6.4 to 7.7% (n = 285, including 16 pools of 76 larvae) in 2009. DNA of Bartonella spp. in I. ricinus in Bavarian public parks could not be identified. Sequence analysis revealed the following species: Babesia sp. EU1 (n = 25), B. divergens (n = 1), B. divergens/capreoli (n = 1), B. gibsoni-like (n = 1), R. helvetica (n = 272), R. monacensis IrR/Munich (n = 12) and unspecified R. monacensis (n = 1). The majority of coinfections were R. helvetica with A. phagocytophilum (n = 27), but coinfections between Babesia spp. and A. phagocytophilum, or Babesia spp. and R. helvetica were also detected. Conclusions I. ricinus ticks in urban areas of Germany harbor several tick-borne pathogens and coinfections were also observed. Public parks are of particularly great interest regarding the epidemiology of tick-borne pathogens, because of differences in both the prevalence of pathogens in ticks as well as a varying species arrangement when compared to woodland areas. The record of DNA of a Babesia gibsoni-like pathogen detected in I. ricinus suggests that I. ricinus may harbor and transmit more Babesia spp. than previously known. Because of their high recreational value for human beings, urban green areas are likely to

  1. Bacteriocins from the rhizosphere microbiome - from an agriculture perspective.

    PubMed

    Subramanian, Sowmyalakshmi; Smith, Donald L

    2015-01-01

    most effective at 100 mM NaCl. The 48 h post germination proteome suggested efficient and speedier partitioning of storage proteins, activation of carbon, nitrogen and energy metabolisms in Th17 treated seeds both under optimal and 100 mM NaCl. This review focuses on the bacteriocins produced by plant-rhizosphere colonizers and plant-pathogenic bacteria, that might have uses in agriculture, veterinary, and human medicine. PMID:26579159

  2. Flavobacterium panacis sp. nov., isolated from rhizosphere of Panax ginseng.

    PubMed

    Kim, Dong Hyun; Singh, Priyanka; Farh, Mohamed El-Agamy; Kim, Yeon-Ju; Nguyen, Ngoc-Lan; Lee, Hyun A; Yang, Deok-Chun

    2016-09-01

    A novel bacterial strain, designated DCY106(T), was isolated from soil collected from the rhizosphere of ginseng (Panax ginseng), in Gochang, Republic of Korea. Strain DCY106(T) is Gram-negative, yellow-pigmented, non-flagellate, motile, non-spore-forming, rod-shaped, and strictly aerobic. The strain grows optimally at 25-30 °C and pH 6.5-7.5. Phylogenetically, strain DCY106(T) is closely related to Flavobacterium arsenitoxidans KCTC 22507(T) (98.41 %), followed by Flavobacterium cutihirudini LMG 26922(T) (97.67 %), Flavobacterium nitrogenifigens LMG 28694(T) (97.59 %), Flexibacter auranticus LMG 3987(T) (97.38 %), Flavobacterium defluvi KCTC 12612(T) (97.21 %) and Flavobacterium chilense LMG 26360(T) (97.05 %). The 16S rRNA gene sequence similarities to all other Flavobacterium species were below 97 %. The DNA G+C content of strain DCY106(T) is 34.2 mol% and the DNA-DNA relatedness between strain DCY106(T) and F. cutihirudini LMG 26922(T), F. auranticus LMG 3987(T), F. defluvi KCTC 12612(T) and F. chilense LMG 26360(T) were below 40.0 %. The menaquinone of the type MK-6 was found to be the predominant respiratory quinone. The major polar lipids were identified as phosphatidylethanolamine, phosphatidylserine, two unidentified aminolipids (APL1, APL6) and one unidentified lipid L2. C15:0, iso-C15:0 and summed feature 3 (iso-C15:0 2OH/C16:1 ω7c) were identified as the major fatty acids present in DCY106(T). The results of physiological and biochemical tests allowed strain DCY106(T) to be differentiated phenotypically from other recognized species belonging to the genus Flavobacterium. Therefore, it is suggested that the newly isolated organism represents a novel species, for which the name Flavobacterium panacis sp. nov. is proposed with the type strain designated as DCY106(T) (= JCM 31468(T)= KCTC 42747(T)). PMID:27357576

  3. The Ups and Downs of Rhizosphere Resource Exchange

    NASA Astrophysics Data System (ADS)

    Cardon, Z. G.; Fu, C.; Wang, G.; Stark, J.

    2014-12-01

    Hydraulic redistribution (HR) of soil water by plants occurs in seasonally dry ecosystems worldwide. During HR, soil water flows from wet soil into roots, through the root system, and out of roots into dry rhizosphere soil. Hydraulic redistribution affects plant physiology and landscape hydrology, and it has long been hypothesized that upward HR of deep water to dry, nutrient-rich surface soil may also stimulate soil nutrient cycling and thus enhance nutrient availability to plants in the field. We report results from a sagebrush-steppe field experiment in northern Utah, USA, showing that stimulation of sagebrush-mediated HL increased rates of nitrogen cycling in the surface soil layer around shrubs at summer's end, and more than quadrupled uptake of nitrogen into developing sagebrush inflorescences. We have built on these empirical data by folding Ryel et al.'s (2002) HR formulation into CLM4.5 and examining how well the combined model can simultaneously simulate measured evapotranspiration, the vertical profile of soil moisture, and the amplitude of HR-associated diel changes in water content, at multiple seasonally-dry Ameriflux sites: Wind River Crane (US-Wrc), Southern California Climate Gradient (US-SCs,g,f,w,d,&c), and Santa Rita Mesquite Savanna (US-SRM). The simulated hydraulic lift during the dry periods has an average value in the range from 0.09 (at US-SCc) to 0.64 (at US-SCf) mm H2O d-1. In many cases, the combined model reproduced seasonal and daily (diel) observations with reasonable accuracy. Among the many model parameters tested, the Clapp and Hornberger parameter "B" in CLM4.5 was critical for a realistic simulation of soil moisture. Modeled HR was also sensitive to the maximum radial soil-root conductance and the soil water potential where that conductance is reduced by 50%. Our next step is to explore how modeled carbon and nutrient cycling in soil layers are affected by redistributed water in the soil column caused by inclusion of HR in CLM4.5.

  4. Bacteriocins from the rhizosphere microbiome – from an agriculture perspective

    PubMed Central

    Subramanian, Sowmyalakshmi; Smith, Donald L.

    2015-01-01

    most effective at 100 mM NaCl. The 48 h post germination proteome suggested efficient and speedier partitioning of storage proteins, activation of carbon, nitrogen and energy metabolisms in Th17 treated seeds both under optimal and 100 mM NaCl. This review focuses on the bacteriocins produced by plant-rhizosphere colonizers and plant-pathogenic bacteria, that might have uses in agriculture, veterinary, and human medicine. PMID:26579159

  5. Transferability of SSR and RGA markers developed in Cynodon spp. to Zoysia spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bermudagrass (Cynodon spp.) and zoysiagrass (Zoysia spp.), which are both used as warm-season turfgrasses in the United States, are members of subfamily Chloridoideae and are reported to be at least 55% genetically similar. To assess if molecular tools between the two species can be interchanged, 93...

  6. Mobilization of cadmium by dissolved organic matter in the rhizosphere of hyperaccumulator Sedum alfredii.

    PubMed

    Li, Tingqiang; Liang, Chengfeng; Han, Xuan; Yang, Xiaoe

    2013-05-01

    Pot experiments were conducted to investigate the role of dissolved organic matter (DOM) in the Cd speciation in the rhizosphere of hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of Sedum alfredii and its effects on Cd mobility. After growing HE S. alfredii, the rhizosphere soil solution pH of heavily polluted soil (HPS) and slightly polluted soil (SPS) was reduced by 0.49 and 0.40 units, respectively, due to enhanced DOC derived from root exudation. The total Cd concentration in soil solution decreased significantly but the decrease accounted for less than 1% of the total Cd uptake in the shoots of HE S. alfredii. Visual MINTEQ speciation predicted that Cd-DOM complexes were the dominant Cd species in soil solutions after the growth of S. alfredii for both soils, followed by the free metal Cd(2+) species. However, Cd-DOM complexes fraction in the rhizosphere soil solution of HE S. alfredii (89.1% and 74.6% for HPS and SPS, respectively) were much greater than NHE S. alfredii (82.8% and 64.7% for HPS and SPS, respectively). Resin equilibration experiment results indicated that DOM from the rhizosphere (R-DOM) of both ecotypes of S. alfredii had the ability to form complexes with Cd, whereas the degree of complexation was significantly higher for HE-R-DOM (79-89%) than NHE-R-DOM (63-74%) in the undiluted sample. The addition of HE-R-DOM significantly (P<0.05) increased the solubility of four Cd minerals while NHE-R-DOM was not as effective at the same concentration. It was concluded that DOM in the rhizosphere of hyperaccumulating ecotype of S. alfredii could significantly increase Cd mobility through the formation of soluble DOM-metal complexes. PMID:23466273

  7. Image-based modelling of nutrient movement in and around the rhizosphere

    PubMed Central

    Daly, Keith R.; Keyes, Samuel D.; Masum, Shakil; Roose, Tiina

    2016-01-01

    In this study, we developed a spatially explicit model for nutrient uptake by root hairs based on X-ray computed tomography images of the rhizosphere soil structure. This work extends our previous work to larger domains and hence is valid for longer times. Unlike the model used previously, which considered only a small region of soil about the root, we considered an effectively infinite volume of bulk soil about the rhizosphere. We asked the question: At what distance away from root surfaces do the specific structural features of root-hair and soil aggregate morphology not matter because average properties start dominating the nutrient transport? The resulting model was used to capture bulk and rhizosphere soil properties by considering representative volumes of soil far from the root and adjacent to the root, respectively. By increasing the size of the volumes that we considered, the diffusive impedance of the bulk soil and root uptake were seen to converge. We did this for two different values of water content. We found that the size of region for which the nutrient uptake properties converged to a fixed value was dependent on the water saturation. In the fully saturated case, the region of soil we needed to consider was only of radius 1.1mm for poorly soil-mobile species such as phosphate. However, in the case of a partially saturated medium (relative saturation 0.3), we found that a radius of 1.4mm was necessary. This suggests that, in addition to the geometrical properties of the rhizosphere, there is an additional effect of soil moisture properties, which extends further from the root and may relate to other chemical changes in the rhizosphere. The latter were not explicitly included in our model. PMID:26739861

  8. Rhizosphere priming effects on soil N availability in forests exposed to elevated atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Phillips, R. P.; Bernhardt, E. S.

    2008-12-01

    The progressive nitrogen (N) limitation hypothesis suggests that the uptake of N due to rapid tree growth under elevated CO2 depletes pools of available N resulting in short-term increases in productivity under elevated CO2. To date however, a down-regulation of forest productivity under elevated CO2 has not been observed among the four forest FACE experiments suggesting that our understanding of the mechanisms by which trees influence soil N cycling needs further refinement. We sought to test the hypothesis that trees exposed to elevated CO2 increase soil N availability by 'priming' rhizosphere microbes via the release of root exudates. At the Duke Forest FACTS-1 site, NC, we collected exudates bi-monthly from intact fine roots of 25 year-old loblolly pine Pinus taeda trees exposed to elevated CO2 and N fertilization. In addition, we collected rhizosphere and bulk soil from the same plots in order to develop a time-integrated estimate of the plant- microbial response to the CO2 and N treatments. In general, there were strong interactive effects between CO2 and N fertilization on exudation and rhizosphere microbial activity. In non-fertilized plots, mass-specific exudation rates were 15% greater with CO2 enrichment. In fertilized soils the opposite patterns were detected, as CO2 decreased mass specific rates by 40% (relative to the ambient rates). In the soil, treatment effects on rhizosphere microbial activity were similar: elevated CO2 increased microbial activity in non-fertilized plots (29%) but decreased it in fertilized plots (15%). However, we found no differences in net N mineralization rates in the rhizosphere in response to either CO2 or N fertilization. Collectively, these results suggest that although changes in exudation and microbial activity are likely mediated by soil N availability, the degree to which such processes are responsible for increased soil N cycling in forests exposed to elevated CO2 remains unclear.

  9. A mechanistic model of microbial competition in the rhizosphere of wetland plants

    NASA Astrophysics Data System (ADS)

    Aslkhodapasand, F.; Mayer, K. U.; Neumann, R. B.

    2014-12-01

    Wetlands are the largest natural source of methane to the atmosphere. Although they cover only 4-6% of earth's surface, wetlands contribute 20-39% of global methane emissions. Hollow aerenchyma tissues inside the roots, stems and leaves of plants represent one of the most important methane emission pathways for wetlands. Up to 90% of the emitted methane can diffuse through these hollow tissues that directly connect the atmosphere to the anoxic soils where methane is generated. Thus, concentrations of methane surrounding plant roots directly impact the amount of methane emitted by wetlands. Methane concentrations are controlled by a variety of microbial processes occurring in the soil around the roots of plants (aka the rhizosphere). The rhizosphere is a microbial hotspot sustained by plant inputs of organic carbon and oxygen; plant roots exude excess organic carbon generated in photosynthesis into the rhizosphere and atmospheric oxygen diffuses down to the rhizosphere through the hollow aerenchyma tissues. This environment supports a variety of microbial communities that compete with each other for available carbon and oxygen, including methanogens, methanotrophs, and heterotrophs. Methanogens ferment organic carbon into methane, a reaction that is inhibited by oxygen; methanotrophs use oxygen to oxidize methane into carbon dioxide; and heterotrophs use oxygen to oxidize organic carbon into carbon dioxide. We are interested in understanding how competition between these communities alters methane concentrations and responds to variations in plant inputs. To this end, we have developed a mechanistic root-scale model that describes microbial competition for organic carbon and oxygen in the rhizosphere of wetland plants. Our results focus on variations in rates of methane production, methane oxidation, heterotrophic respiration, and diffusion of methane into plant roots as a result of changes in carbon and oxygen inputs. The study provides insight into how plant

  10. Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens

    PubMed Central

    Miao, Cui-Ping; Mi, Qi-Li; Qiao, Xin-Guo; Zheng, You-Kun; Chen, You-Wei; Xu, Li-Hua; Guan, Hui-Lin; Zhao, Li-Xing

    2015-01-01

    Background Rhizospheric fungi play an essential role in the plant–soil ecosystem, affecting plant growth and health. In this study, we evaluated the fungal diversity in the rhizosphere soil of 2-yr-old healthy Panax notoginseng cultivated in Wenshan, China. Methods Culture-independent Illumina MiSeq and culture-dependent techniques, combining molecular and morphological characteristics, were used to analyze the rhizospheric fungal diversity. A diffusion test was used to challenge the phytopathogens of P. notoginseng. Results A total of 16,130 paired-end reads of the nuclear ribosomal internal transcribed spacer 2 were generated and clustered into 860 operational taxonomic units at 97% sequence similarity. All the operational taxonomic units were assigned to five phyla and 79 genera. Zygomycota (46.2%) and Ascomycota (37.8%) were the dominant taxa; Mortierella and unclassified Mortierellales accounted for a large proportion (44.9%) at genus level. The relative abundance of Fusarium and Phoma sequences was high, accounting for 12.9% and 5.5%, respectively. In total, 113 fungal isolates were isolated from rhizosphere soil. They were assigned to five classes, eight orders (except for an Incertae sedis), 26 genera, and 43 species based on morphological characteristics and phylogenetic analysis of the internal transcribed spacer. Fusarium was the most isolated genus with six species (24 isolates, 21.2%). The abundance of Phoma was also relatively high (8.0%). Thirteen isolates displayed antimicrobial activity against at least one test fungus. Conclusion Our results suggest that diverse fungi including potential pathogenic ones exist in the rhizosphere soil of 2-yr-old P. notoginseng and that antagonistic isolates may be useful for biological control of pathogens. PMID:27158233

  11. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome.

    PubMed

    Pii, Youry; Borruso, Luigimaria; Brusetti, Lorenzo; Crecchio, Carmine; Cesco, Stefano; Mimmo, Tanja

    2016-02-01

    Plant-associated microorganisms can stimulate plants growth and influence both crops yield and quality by nutrient mobilization and transport. Therefore, rhizosphere microbiome appears to be one of the key determinants of plant health and productivity. The roots of plants have the ability to influence its surrounding microbiology, the rhizosphere microbiome, through the creation of specific chemical niches in the soil mediated by the release of phytochemicals (i.e. root exudates) that depends on several factors, such as plants genotype, soil properties, plant nutritional status, climatic conditions. In the present research, two different crop species, namely barley and tomato, characterized by different strategies for Fe acquisition, have been grown in the RHIZOtest system using either complete or Fe-free nutrient solution to induce Fe starvation. Afterward, plants were cultivated for 6 days on two different calcareous soils. Total DNA was extracted from rhizosphere and bulk soil and 454 pyrosequencing technology was applied to V1-V3 16S rRNA gene region. Approximately 5000 sequences were obtained for each sample. The analysis of the bacterial population confirmed that the two bulk soils showed a different microbial community. The presence of the two plant species, as well as the nutritional status (Fe-deficiency and Fe-sufficiency), could promote a differentiation of the rhizosphere microbiome, as highlighted by non-metric multidimensional scaling (NMDS) analysis. Alphaproteobacteria, Actinobacteria, Chloracidobacteria, Thermoleophilia, Betaproteobacteria, Saprospirae, Gemmatimonadetes, Gammaproteobacteria, Acidobacteria were the most represented classes in all the samples analyzed even though their relative abundance changed as a function of the soil, plant species and nutritional status. To our knowledge, this research demonstrate for the first time that different plants species with a diverse nutritional status can promote the development of a peculiar

  12. Importance of rare taxa for bacterial diversity in the rhizosphere of Bt- and conventional maize varieties

    PubMed Central

    Dohrmann, Anja B; Küting, Meike; Jünemann, Sebastian; Jaenicke, Sebastian; Schlüter, Andreas; Tebbe, Christoph C

    2013-01-01

    Ribosomal 16S rRNA gene pyrosequencing was used to explore whether the genetically modified (GM) Bt-maize hybrid MON 89034 × MON 88017, expressing three insecticidal recombinant Cry proteins of Bacillus thuringiensis, would alter the rhizosphere bacterial community. Fine roots of field cultivated Bt-maize and three conventional maize varieties were analyzed together with coarse roots of the Bt-maize. A total of 547 000 sequences were obtained. Library coverage was 100% at the phylum and 99.8% at the genus rank. Although cluster analyses based on relative abundances indicated no differences at higher taxonomic ranks, genera abundances pointed to variety specific differences. Genera-based clustering depended solely on the 49 most dominant genera while the remaining 461 rare genera followed a different selection. A total of 91 genera responded significantly to the different root environments. As a benefit of pyrosequencing, 79 responsive genera were identified that might have been overlooked with conventional cloning sequencing approaches owing to their rareness. There was no indication of bacterial alterations in the rhizosphere of the Bt-maize beyond differences found between conventional varieties. B. thuringiensis-like phylotypes were present at low abundance (0.1% of Bacteria) suggesting possible occurrence of natural Cry proteins in the rhizospheres. Although some genera indicated potential phytopathogenic bacteria in the rhizosphere, their abundances were not significantly different between conventional varieties and Bt-maize. With an unprecedented sensitivity this study indicates that the rhizosphere bacterial community of a GM maize did not respond abnormally to the presence of three insecticidal proteins in the root tissue. PMID:22791236

  13. Image-based modelling of nutrient movement in and around the rhizosphere.

    PubMed

    Daly, Keith R; Keyes, Samuel D; Masum, Shakil; Roose, Tiina

    2016-02-01

    In this study, we developed a spatially explicit model for nutrient uptake by root hairs based on X-ray computed tomography images of the rhizosphere soil structure. This work extends our previous work to larger domains and hence is valid for longer times. Unlike the model used previously, which considered only a small region of soil about the root, we considered an effectively infinite volume of bulk soil about the rhizosphere. We asked the question: At what distance away from root surfaces do the specific structural features of root-hair and soil aggregate morphology not matter because average properties start dominating the nutrient transport? The resulting model was used to capture bulk and rhizosphere soil properties by considering representative volumes of soil far from the root and adjacent to the root, respectively. By increasing the size of the volumes that we considered, the diffusive impedance of the bulk soil and root uptake were seen to converge. We did this for two different values of water content. We found that the size of region for which the nutrient uptake properties converged to a fixed value was dependent on the water saturation. In the fully saturated case, the region of soil we needed to consider was only of radius 1.1mm for poorly soil-mobile species such as phosphate. However, in the case of a partially saturated medium (relative saturation 0.3), we found that a radius of 1.4mm was necessary. This suggests that, in addition to the geometrical properties of the rhizosphere, there is an additional effect of soil moisture properties, which extends further from the root and may relate to other chemical changes in the rhizosphere. The latter were not explicitly included in our model. PMID:26739861

  14. Dynamics of rhizosphere properties and antioxidative responses in wheat (Triticum aestivum L.) under cadmium stress.

    PubMed

    Li, Yonghua; Wang, Li; Yang, Linsheng; Li, Hairong

    2014-04-01

    In this study, we performed a rhizobox experiment to examine the dynamic changes in the rhizosphere properties and antioxidant enzyme responses of Triticum aestivum L. under three levels of cadmium stress. A set of micro-techniques (i.e., Rhizobox and Rhizon SMS) were applied for the dynamically non-destructive collection of the rhizosphere soil solution to enable the observation at a high temporal resolution. The dynamics of soluble cadmium and dissolved organic carbon (DOC) in the rhizosphere soil solutions of the Triticum aestivum L. were characterised by the sequence week 0 after sowing (WAS0)<3 weeks after sowing (WAS3)<10 weeks after sowing (WAS10), whereas the soil solution pH was found to follow an opposite distribution pattern. Systematically, both superoxide dismutase (SOD) and catalase (CAT) activities in the leaves of the Triticum aestivum L. increased concomitantly with increasing cadmium levels (p>0.05) and growth duration (p<0.05), whilst ascorbate peroxidase (APX) activity was induced to an elevated level at moderate cadmium stress with a decrease at high cadmium stress (p>0.05). These results suggested the enhancement of DOC production and the greater antioxidant enzyme activities were two important protective mechanisms of Triticum aestivum L. under cadmium stress, whereas rhizosphere acidification might be an important mechanism for the mobilisation of soil cadmium. The results also revealed that plant-soil interactions strongly influence the soil solution chemistry in the rhizosphere of Triticum aestivum L., that, in turn, can stimulate chemical and biochemical responses in the plants. In most cases, these responses to cadmium stress were sensitive and might allow us to develop strategies for reducing the risks of the cadmium contamination to crop production. PMID:24580822

  15. Activation of bovine neutrophils by Brucella spp.

    PubMed

    Keleher, Lauren L; Skyberg, Jerod A

    2016-09-01

    Brucellosis is a globally important zoonotic infectious disease caused by gram negative bacteria of the genus Brucella. While many species of Brucella exist, Brucella melitensis, Brucella abortus, and Brucella suis are the most common pathogens of humans and livestock. The virulence of Brucella is largely influenced by its ability to evade host factors, including phagocytic killing mechanisms, which are critical for the host response to infection. The aim of this study was to characterize the bovine neutrophil response to virulent Brucella spp. Here, we found that virulent strains of smooth B. abortus, B. melitensis, B. suis, and virulent, rough, strains of Brucella canis possess similar abilities to resist killing by resting, or IFN-γ-activated, bovine neutrophils. Bovine neutrophils responded to infection with a time-dependent oxidative burst that varied little between Brucella spp. Inhibition of TAK1, or SYK kinase blunted the oxidative burst of neutrophils in response to Brucella infection. Interestingly, Brucella spp. did not induce robust death of bovine neutrophils. These results indicate that bovine neutrophils respond similarly to virulent Brucella spp. In addition, virulent Brucella spp., including naturally rough strains of B. canis, have a conserved ability to resist killing by bovine neutrophils. PMID:27436438

  16. Campylobacter spp., Giardia spp., Cryptosporidium spp., noroviruses, and indicator organisms in surface water in southwestern Finland, 2000-2001.

    PubMed

    Hörman, Ari; Rimhanen-Finne, Ruska; Maunula, Leena; von Bonsdorff, Carl-Henrik; Torvela, Niina; Heikinheimo, Annamari; Hänninen, Marja-Liisa

    2004-01-01

    A total of 139 surface water samples from seven lakes and 15 rivers in southwestern Finland were analyzed during five consecutive seasons from autumn 2000 to autumn 2001 for the presence of various enteropathogens (Campylobacter spp., Giardia spp., Cryptosporidium spp., and noroviruses) and fecal indicators (thermotolerant coliforms, Escherichia coli, Clostridium perfringens, and F-RNA bacteriophages) and for physicochemical parameters (turbidity and temperature); this was the first such systematic study. Altogether, 41.0% (57 of 139) of the samples were positive for at least one of the pathogens; 17.3% were positive for Campylobacter spp. (45.8% of the positive samples contained Campylobacter jejuni, 25.0% contained Campylobacter lari, 4.2% contained Campylobacter coli, and 25.0% contained Campylobacter isolates that were not identified), 13.7% were positive for Giardia spp., 10.1% were positive for Cryptosporidium spp., and 9.4% were positive for noroviruses (23.0% of the positive samples contained genogroup I and 77.0% contained genogroup II). The samples were positive for enteropathogens significantly (P < 0.05) less frequently during the winter season than during the other sampling seasons. No significant differences in the prevalence of enteropathogens were found when rivers and lakes were compared. The presence of thermotolerant coliforms, E. coli, and C. perfringens had significant bivariate nonparametric Spearman's rank order correlation coefficients (P < 0.001) with samples that were positive for one or more of the pathogens analyzed. The absence of these indicators in a logistic regression model was found to have significant predictive value (odds ratios, 1.15 x 10(8), 7.57, and 2.74, respectively; P < 0.05) for a sample that was negative for the pathogens analyzed. There were no significant correlations between counts or count levels for thermotolerant coliforms or E. coli or the presence of F-RNA phages and pathogens in the samples analyzed. PMID

  17. Root isolations of Metarhizium spp. from crops reflect diversity in the soil and indicate no plant specificity.

    PubMed

    Steinwender, Bernhardt M; Enkerli, Jürg; Widmer, Franco; Eilenberg, Jørgen; Kristensen, Hanne L; Bidochka, Michael J; Meyling, Nicolai V

    2015-11-01

    Metarhizium spp. have recently been shown to be associated with the roots of different plants. Here we evaluated which Metarhizium species were associated with roots of oat (Avena sativa), rye (Secale cereale) and cabbage (Brassica oleracea), common crop plants in Denmark. Thirty-six root samples from each of the three crops were collected within an area of approximately 3ha. The roots were rinsed with sterile water, homogenized and the homogenate plated onto selective media. A subset of 126 Metarhizium isolates were identified to species by sequencing of the 5' end of the gene translation elongation factor 1-alpha and characterized by simple sequence repeat (SSR) analysis of 14 different loci. Metarhizium brunneum was the most common species isolated from plant roots (84.1% of all isolates), while M. robertsii (11.1%) and M. majus (4.8%) comprised the remainder. The SSR analysis revealed that six multilocus genotypes (MLGs) were present among the M. brunneum and M. robertsii isolates, respectively. A single MLG of M. brunneum represented 66.7%, 79.1% and 79.2% of the total isolates obtained from oat, rye and cabbage, respectively. The isolation of Metarhizium spp. and their MLGs from roots revealed a comparable community composition as previously reported from the same agroecosystem when insect baiting of soil samples was used as isolating technique. No specific MLG association with a certain crop was found. This study highlights the diversity of Metarhizium spp. found in the rhizosphere of different crops within a single agroecosystem and suggests that plants either recruit fungal associates from the surrounding soil environment or even govern the composition of Metarhizium populations. PMID:26407950

  18. [In situ dynamics of phosphorus in the rhizosphere solution and organic acids exudation of two aquatic plants].

    PubMed

    Wang, Zhen-yu; Wen, Sheng-fang; Luo, Xian-xiang; Li, Ai-feng; Xing, Bao-shan; Li, Feng-min

    2009-08-15

    A mini-rhizotron experiment with Alternanthera philoxeroides and Typha latifolia was conducted to measure the spatial and temporal dynamics of phosphorus in the rhizosphere solution. The organic acids in the in situ rhizosphere soil solution were analyzed. A decreasing phosphorus concentration gradient in soil solution toward the root was observed for both A. philoxeroides and T. latifolia. The phosphorus concentration in the rhizosphere soil solution of A. philoxeroides (2.53 mg x L(-1)) was lower than that of T. latifolia (5.43 mg x L(-1)) in the forth sampling day. Compared to T. latifolia, A. philoxeroides released more malic acid (27.33 umol x L(-1)) which was more efficient in phosphorus mobilization. A. philoxeroides was more effective in phosphorus uptake in the rhizosphere than T. latifolia. PMID:19799282

  19. Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soils

    NASA Astrophysics Data System (ADS)

    Brzostek, E. R.; Phillips, R.; Dragoni, D.; Drake, J. E.; Finzi, A. C.

    2011-12-01

    The mobilization of nitrogen (N) from soil organic matter in temperate forest soils is controlled by the microbial production and activity of extracellular enzymes. The exudation of carbon (C) by tree roots into the rhizosphere may subsidize the microbial production of extracellular enzymes in the rhizosphere and increase the access of roots to N. The objective of this research was to investigate whether rates of root exudation and the resulting stimulation of extracellular enzyme activity in the rhizosphere (i.e., rhizosphere effect) differs between tree species that form associations with ectomycorrhizal (ECM) or arbuscular mycorrhizal (AM) fungi. This research was conducted at two temperate forest sites, the Harvard Forest (HF) in Central MA and the Morgan Monroe State Forest (MMSF) in Southern IN. At the HF, we measured rates of root exudation and the rhizosphere effects on enzyme activity, N cycling, and C mineralization in AM and ECM soils. At the MMSF, we recently girdled AM and ECM dominated plots to examine the impact of severing belowground C allocation on rhizosphere processes. At both sites, the rhizosphere effect on proteolytic, chitinolytic and ligninolytic enzyme activities was greater in ECM soils than in AM soils. In particular, higher rates of proteolytic enzyme activity increased the availability of amino acid-N in ECM rhizospheres relative to the bulk soils. Further, this stimulation of enzyme activity was directly correlated with higher rates of C mineralization in the rhizosphere than in the bulk soil. Although not significantly different between species, root exudation of C comprised 3-10% of annual gross primary production at the HF. At the MMSF, experimental girdling led to a larger decline in soil respiration and enzyme activity in ECM plots than in AM plots. In both ECM and AM soils, however, girdling resulted in equivalent rates of enzyme activity in rhizosphere and corresponding bulk soils. The results of this study contribute to the

  20. Prevalence of Brucella spp in humans1

    PubMed Central

    Soares, Catharina de Paula Oliveira Cavalcanti; Teles, José Andreey Almeida; dos Santos, Aldenir Feitosa; Silva, Stemberg Oliveira Firmino; Cruz, Maria Vilma Rocha Andrade; da Silva-Júnior, Francisco Feliciano

    2015-01-01

    Objective: to determine the seroprevalence of Brucella spp in humans. Method: this is an observational study, developed with 455 individuals between 18 and 64 years old, who use the Estratégia de Saúde da Família (Brazil's family health strategy). The serum samples of volunteers underwent buffered acid antigen tests, such as screening, agar gel immunodiffusion and slow seroagglutination test in tubes and 2-Mercaptoethanol. Results: among the samples, 1.98% has responded to buffered-acid antigen, 2.85% to agar gel immunodiffusion test and 1.54% to the slow seroagglutination tests on tubes/2-Mercaptoethanol. The prevalence of Brucella spp was 4.4%, represented by the last two tests. Conclusion: the results of this research suggest that the studied population is exposed to Brucella spp infection. PMID:26487143

  1. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed.

    PubMed

    Smalla, K; Wieland, G; Buchner, A; Zock, A; Parzy, J; Kaiser, S; Roskot, N; Heuer, H; Berg, G

    2001-10-01

    The bacterial rhizosphere communities of three host plants of the pathogenic fungus Verticillium dahliae, field-grown strawberry (Fragaria ananassa Duch.), oilseed rape (Brassica napus L.), and potato (Solanum tuberosum L.), were analyzed. We aimed to determine the degree to which the rhizosphere effect is plant dependent and whether this effect would be increased by growing the same crops in two consecutive years. Rhizosphere or soil samples were taken five times over the vegetation periods. To allow a cultivation-independent analysis, total community DNA was extracted from the microbial pellet recovered from root or soil samples. 16S rDNA fragments amplified by PCR from soil or rhizosphere bacterium DNA were analyzed by denaturing gradient gel electrophoresis (DGGE). The DGGE fingerprints showed plant-dependent shifts in the relative abundance of bacterial populations in the rhizosphere which became more pronounced in the second year. DGGE patterns of oilseed rape and potato rhizosphere communities were more similar to each other than to the strawberry patterns. In both years seasonal shifts in the abundance and composition of the bacterial rhizosphere populations were observed. Independent of the plant species, the patterns of the first sampling times for both years were characterized by the absence of some of the bands which became dominant at the following sampling times. Bacillus megaterium and Arthrobacter sp. were found as predominant populations in bulk soils. Sequencing of dominant bands excised from the rhizosphere patterns revealed that 6 out of 10 bands resembled gram-positive bacteria. Nocardia populations were identified as strawberry-specific bands. PMID:11571180

  2. Bulk and Rhizosphere Soil Bacterial Communities Studied by Denaturing Gradient Gel Electrophoresis: Plant-Dependent Enrichment and Seasonal Shifts Revealed

    PubMed Central

    Smalla, K.; Wieland, G.; Buchner, A.; Zock, A.; Parzy, J.; Kaiser, S.; Roskot, N.; Heuer, H.; Berg, G.

    2001-01-01

    The bacterial rhizosphere communities of three host plants of the pathogenic fungus Verticillium dahliae, field-grown strawberry (Fragaria ananassa Duch.), oilseed rape (Brassica napus L.), and potato (Solanum tuberosum L.), were analyzed. We aimed to determine the degree to which the rhizosphere effect is plant dependent and whether this effect would be increased by growing the same crops in two consecutive years. Rhizosphere or soil samples were taken five times over the vegetation periods. To allow a cultivation-independent analysis, total community DNA was extracted from the microbial pellet recovered from root or soil samples. 16S rDNA fragments amplified by PCR from soil or rhizosphere bacterium DNA were analyzed by denaturing gradient gel electrophoresis (DGGE). The DGGE fingerprints showed plant-dependent shifts in the relative abundance of bacterial populations in the rhizosphere which became more pronounced in the second year. DGGE patterns of oilseed rape and potato rhizosphere communities were more similar to each other than to the strawberry patterns. In both years seasonal shifts in the abundance and composition of the bacterial rhizosphere populations were observed. Independent of the plant species, the patterns of the first sampling times for both years were characterized by the absence of some of the bands which became dominant at the following sampling times. Bacillus megaterium and Arthrobacter sp. were found as predominant populations in bulk soils. Sequencing of dominant bands excised from the rhizosphere patterns revealed that 6 out of 10 bands resembled gram-positive bacteria. Nocardia populations were identified as strawberry-specific bands. PMID:11571180

  3. Incidence of motile Aeromonas spp. in foods.

    PubMed

    Pin, C; Marín, M L; García, M L; Tormo, J; Selgas, M D; Casas, C

    1994-09-01

    A total of 80 food samples were purchased from local retail consumer shops and examined for the presence of motile Aeromonas spp. Of the food categories tested, poultry had the highest incidence, with 100% positive. This was followed by lamb samples, with 60% positive. Raw milk and cheese samples had very low incidence (20%). No motile Aeromonas spp. were found in pre-prepared salads. Shellfish, fish, pork and beef samples had incidences of 40%. Most of the strains isolated were Aeromonas hydrophila, and for most of the food categories, no Aeromonas caviae isolates were obtained. PMID:7873101

  4. Draft genome sequences for the obligate bacterial predators Bacteriovorax spp. of four phylogenetic clusters

    PubMed Central

    2015-01-01

    Bacteriovorax is the halophilic genus of the obligate bacterial predators, Bdellovibrio and like organisms. The predators are known for their unique biphasic life style in which they search for and attack their prey in the free living phase; penetrate, grow, multiply and lyse the prey in the intraperiplasmic phase. Bacteriovorax isolates representing four phylogenetic clusters were selected for genomic sequencing. Only one type strain genome has been published so far from the genus Bacteriovorax. We report the genomes from non-type strains isolated from aquatic environments. Here we describe and compare the genomic features of the four strains, together with the classification and annotation. PMID:26203326

  5. Nontarget effects of chemical pesticides and biological pesticide on rhizospheric microbial community structure and function in Vigna radiata.

    PubMed

    Singh, Sunil; Gupta, Rashi; Kumari, Madhu; Sharma, Shilpi

    2015-08-01

    Intensive agriculture has resulted in an indiscriminate use of pesticides, which demands in-depth analysis of their impact on indigenous rhizospheric microbial community structure and function. Hence, the objective of the present work was to study the impact of two chemical pesticides (chlorpyrifos and cypermethrin) and one biological pesticide (azadirachtin) at two dosages on the microbial community structure using cultivation-dependent approach and on rhizospheric bacterial communities involved in nitrogen cycle in Vigna radiata rhizosphere through cultivation-independent technique of real-time PCR. Cultivation-dependent study highlighted the adverse effects of both chemical pesticide and biopesticide on rhizospheric bacterial and fungal communities at different plant growth stages. Also, an adverse effect on number of genes and transcripts of nifH (nitrogen fixation); amoA (nitrification); and narG, nirK, and nirS (denitrification) was observed. The results from the present study highlighted two points, firstly that nontarget effects of pesticides are significantly detrimental to soil microflora, and despite being of biological origin, azadirachtin exerted negative impact on rhizospheric microbial community of V. radiata behaving similar to chemical pesticides. Hence, such nontarget effects of chemical pesticide and biopesticide in plants' rhizosphere, which bring out the larger picture in terms of their ecotoxicological effect, demand a proper risk assessment before application of pesticides as agricultural amendments. PMID:25801369

  6. Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling.

    PubMed

    Daly, Keith R; Mooney, Sacha J; Bennett, Malcolm J; Crout, Neil M J; Roose, Tiina; Tracy, Saoirse R

    2015-04-01

    Understanding the dynamics of water distribution in soil is crucial for enhancing our knowledge of managing soil and water resources. The application of X-ray computed tomography (CT) to the plant and soil sciences is now well established. However, few studies have utilized the technique for visualizing water in soil pore spaces. Here this method is utilized to visualize the water in soil in situ and in three-dimensions at successive reductive matric potentials in bulk and rhizosphere soil. The measurements are combined with numerical modelling to determine the unsaturated hydraulic conductivity, providing a complete picture of the hydraulic properties of the soil. The technique was performed on soil cores that were sampled adjacent to established roots (rhizosphere soil) and from soil that had not been influenced by roots (bulk soil). A water release curve was obtained for the different soil types using measurements of their pore geometries derived from CT imaging and verified using conventional methods, such as pressure plates. The water, soil, and air phases from the images were segmented and quantified using image analysis. The water release characteristics obtained for the contrasting soils showed clear differences in hydraulic properties between rhizosphere and bulk soil, especially in clay soil. The data suggest that soils influenced by roots (rhizosphere soil) are less porous due to increased aggregation when compared with bulk soil. The information and insights obtained on the hydraulic properties of rhizosphere and bulk soil will enhance our understanding of rhizosphere biophysics and improve current water uptake models. PMID:25740922

  7. Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus.

    PubMed

    Houben, David; Sonnet, Philippe

    2015-11-01

    Rhizosphere interactions are deemed to play a key role in the success of phytoremediation technologies. Here, the effects of biochar and root-induced changes in the rhizosphere of Agrostis capillaris L. and Lupinus albus L. on metal (Cd, Pb and Zn) dynamics were investigated using a biotest on a 2mm soil layer and a sequential extraction procedure (Tessier's scheme). In the bulk soil, the application of 5% biochar significantly reduced the exchangeable pool of metals primarily due to a liming effect which subsequently promoted the metal shift into the carbonate-bound pool. However, metals were re-mobilized in the rhizosphere of both A. capillaris and L. albus due to root-induced acidification which counteracted the liming effect of biochar. As a result, the concentrations of metals in roots and shoots of both plants were not significantly reduced by the application of biochar. Although the study should be considered a worst-case scenario because experimental conditions induced the intensification of rhizosphere processes, the results highlight that changes in rhizosphere pH can impact the effectiveness of biochar to immobilize metals in soil. Biochar has thus a potential as amendment for reducing metal uptake by plants, provided the acidification of the rhizosphere is minimized. PMID:25559173

  8. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation.

    PubMed

    Wang, Xiaojuan; Tang, Caixian; Severi, Julia; Butterly, Clayton R; Baldock, Jeff A

    2016-08-01

    Effects of rhizosphere properties on the rhizosphere priming effect (RPE) are unknown. This study aimed to link species variation in RPE with plant traits and rhizosphere properties. Four C3 species (chickpea, Cicer arietinum; field pea, Pisum sativum; wheat, Triticum aestivum; and white lupin, Lupinus albus) differing in soil acidification and root exudation, were grown in a C4 soil. The CO2 released from soil was trapped using a newly developed NaOH-trapping system. White lupin and wheat showed greater positive RPEs, in contrast to the negative RPE produced by chickpea. The greatest RPE of white lupin was in line with its capacity to release root exudates, whereas the negative RPE of chickpea was attributed to its great ability to acidify rhizosphere soil. The enhanced RPE of field pea at maturity might result from high nitrogen deposition and release of structural root carbon components following root senescence. Root biomass and length played a minor role in the species variation in RPE. Rhizosphere acidification was shown to be an important factor affecting the magnitude and direction of RPE. Future studies on RPE modelling and mechanistic understanding of the processes that regulate RPE should consider the effect of rhizosphere pH. PMID:27101777

  9. [Microbial diversity in rhizosphere soil of transgenic Bt rice based on the characterization of phospholipids fatty acids].

    PubMed

    Liu, Wei; Wang, Shu-tao; Chen, Ying-xu; Wu, Wei-xiang; Wang, Jing

    2011-03-01

    Taking non-transgenic parental rice as the control, and by using 13C pulse-chase labeling method coupled with phospholipid fatty acid (PLFA) analysis, this paper studied the effects of transgenic Bt rice on the microbial diversity in rhizosphere soil. The results showed that in the rhizosphere soils of transgenic Bt rice and its non-transgenic parent, saturated PLFAs and branched PLFAs were the main, followed by monounsaturated PLFAs, and polyunsaturated PLFAs. A significantly lower amount of Gram-positive bacterial PLFAs and a higher amount of Gram-negative bacterial PLFAs were observed in the rhizosphere soil of transgenic Bt rice at its seedling, booting, and heading stages, as compared with the control. In the whole growth period of rice, transgenic Bt gene had no significant effects on the fungal and actinomycete PLFAs in rhizosphere soil, and no significant difference was observed in the rhizosphere soil 13C-PLFA content between transgenic Bt rice and its non-transgenic parent. These findings indicated that the insertion of exogenous cry1Ab gene into rice only had temporary effects on the microbial community composition in the rhizosphere soil of rice. PMID:21657031

  10. Mapping the Centimeter-Scale Spatial Variability of PAHs and Microbial Populations in the Rhizosphere of Two Plants.

    PubMed

    Bourceret, Amélia; Leyval, Corinne; de Fouquet, Chantal; Cébron, Aurélie

    2015-01-01

    Rhizoremediation uses root development and exudation to favor microbial activity. Thus it can enhance polycyclic aromatic hydrocarbon (PAH) biodegradation in contaminated soils. Spatial heterogeneity of rhizosphere processes, mainly linked to the root development stage and to the plant species, could explain the contrasted rhizoremediation efficiency levels reported in the literature. Aim of the present study was to test if spatial variability in the whole plant rhizosphere, explored at the centimetre-scale, would influence the abundance of microorganisms (bacteria and fungi), and the abundance and activity of PAH-degrading bacteria, leading to spatial variability in PAH concentrations. Two contrasted rhizospheres were compared after 37 days of alfalfa or ryegrass growth in independent rhizotron devices. Almost all spiked PAHs were degraded, and the density of the PAH-degrading bacterial populations increased in both rhizospheres during the incubation period. Mapping of multiparametric data through geostatistical estimation (kriging) revealed that although root biomass was spatially structured, PAH distribution was not. However a greater variability of the PAH content was observed in the rhizosphere of alfalfa. Yet, in the ryegrass-planted rhizotron, the Gram-positive PAH-degraders followed a reverse depth gradient to root biomass, but were positively correlated to the soil pH and carbohydrate concentrations. The two rhizospheres structured the microbial community differently: a fungus-to-bacterium depth gradient similar to the root biomass gradient only formed in the alfalfa rhizotron. PMID:26599438

  11. Mapping the Centimeter-Scale Spatial Variability of PAHs and Microbial Populations in the Rhizosphere of Two Plants

    PubMed Central

    Bourceret, Amélia; Leyval, Corinne; de Fouquet, Chantal; Cébron, Aurélie

    2015-01-01

    Rhizoremediation uses root development and exudation to favor microbial activity. Thus it can enhance polycyclic aromatic hydrocarbon (PAH) biodegradation in contaminated soils. Spatial heterogeneity of rhizosphere processes, mainly linked to the root development stage and to the plant species, could explain the contrasted rhizoremediation efficiency levels reported in the literature. Aim of the present study was to test if spatial variability in the whole plant rhizosphere, explored at the centimetre-scale, would influence the abundance of microorganisms (bacteria and fungi), and the abundance and activity of PAH-degrading bacteria, leading to spatial variability in PAH concentrations. Two contrasted rhizospheres were compared after 37 days of alfalfa or ryegrass growth in independent rhizotron devices. Almost all spiked PAHs were degraded, and the density of the PAH-degrading bacterial populations increased in both rhizospheres during the incubation period. Mapping of multiparametric data through geostatistical estimation (kriging) revealed that although root biomass was spatially structured, PAH distribution was not. However a greater variability of the PAH content was observed in the rhizosphere of alfalfa. Yet, in the ryegrass-planted rhizotron, the Gram-positive PAH-degraders followed a reverse depth gradient to root biomass, but were positively correlated to the soil pH and carbohydrate concentrations. The two rhizospheres structured the microbial community differently: a fungus-to-bacterium depth gradient similar to the root biomass gradient only formed in the alfalfa rhizotron. PMID:26599438

  12. In vivo and in situ rhizosphere respiration in Acer saccharum and Betula alleghaniensis seedlings grown in contrasting light regimes.

    PubMed

    Delagrange, Sylvain; Huc, Frédéric; Messier, Christian; Dizengremel, Pierre; Dreyer, Erwin

    2006-07-01

    A perfusive method combined with an open-system carbon dioxide measurement system was used to assess rhizosphere respiration of Acer saccharum Marsh. (sugar maple) and Betula alleghaniensis Britton (yellow birch) seedlings grown in 8-l pots filled with coarse sand. We compared in vivo and in situ rhizosphere respiration between species, among light regimes (40, 17 and 6% of full daylight) and at different times during the day. To compute specific rhizosphere respiration, temperature corrections were made with either species-specific coefficients (Q10) based on the observed change in respiration rate between 15 and 21 degrees C or an arbitrarily assigned Q10 of 2. Estimated, species-specific Q10 values were 3.0 and 3.4 for A. saccharum and B. alleghaniensis, respectively, and did not vary with light regime. Using either method of temperature correction, specific rhizosphere respiration did not differ either between A. saccharum and B. alleghaniensis, or among light regimes except in A. saccharum at 6% of full daylight. At this irradiance, seedlings were smaller than in the other light treatments, with a larger fine root fraction of total root dry mass, resulting in higher respiration rates. Specific rhizosphere respiration was significantly higher during the afternoon than at other times of day when temperature-corrected on the basis of an arbitrary Q10 of 2, suggesting the possibility of diurnal variation in a temperature-independent component of rhizosphere respiration. PMID:16585038

  13. Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling

    PubMed Central

    Daly, Keith R.; Mooney, Sacha J.; Bennett, Malcolm J.; Crout, Neil M. J.; Roose, Tiina; Tracy, Saoirse R.

    2015-01-01

    Understanding the dynamics of water distribution in soil is crucial for enhancing our knowledge of managing soil and water resources. The application of X-ray computed tomography (CT) to the plant and soil sciences is now well established. However, few studies have utilized the technique for visualizing water in soil pore spaces. Here this method is utilized to visualize the water in soil in situ and in three-dimensions at successive reductive matric potentials in bulk and rhizosphere soil. The measurements are combined with numerical modelling to determine the unsaturated hydraulic conductivity, providing a complete picture of the hydraulic properties of the soil. The technique was performed on soil cores that were sampled adjacent to established roots (rhizosphere soil) and from soil that had not been influenced by roots (bulk soil). A water release curve was obtained for the different soil types using measurements of their pore geometries derived from CT imaging and verified using conventional methods, such as pressure plates. The water, soil, and air phases from the images were segmented and quantified using image analysis. The water release characteristics obtained for the contrasting soils showed clear differences in hydraulic properties between rhizosphere and bulk soil, especially in clay soil. The data suggest that soils influenced by roots (rhizosphere soil) are less porous due to increased aggregation when compared with bulk soil. The information and insights obtained on the hydraulic properties of rhizosphere and bulk soil will enhance our understanding of rhizosphere biophysics and improve current water uptake models. PMID:25740922

  14. Rhizosphere effect on phosphorus availability in forest soils at different altitudes.

    NASA Astrophysics Data System (ADS)

    De Feudis, Mauro; Cardelli, Valeria; Massaccesi, Luisa; Bol, Roland; Willbold, Sabine; Cocco, Stefania; Corti, Giuseppe; Agnelli, Alberto

    2016-04-01

    Phosphorus (P) is an essential nutrient for plants but it is one of the least available mineral nutrients, and can substantially limit plant growth. Although plants are able to respond to the P shortage, the global warming might modify the soil-plant-microorganisms system and reduce P availability. We evaluated the rhizosphere effect of beech (Fagus sylvatica L.) in forest soils of the Apennines mountains (central Italy) at two altitudes (800 and 1000 m) and along 1° of latitudinal gradient, using latitude and altitude as proxies for temperature change. Specifically, we tested if 1) soil organic C, total N, and organic and available P decrease with increasing latitude and altitude, and 2) the rhizosphere effect on P availability becomes more pronounced when potential nutrient limitations are more severe, as it happens with increasing latitude and altitude. The results suggested that the small latitudinal gradient has no effect on soil properties. Conversely, significant changes occurred between 800 and 1000 m a.s.l., as the soils at higher altitude showed greater TOC, organic and available P contents, and alkaline mono-phosphatases activity than the soils at 800 m a.s.l. Compared to the soils at lower altitude, a marked rhizosphere effect was found at 1000 m a.s.l., and it was mainly attributed to the release of labile organics through rhizodeposition processes. These labile organic compounds were considered able to induce a "priming effect" that fostered the mineralization of the soil organic matter. The enhanced organic carbon cycling, in turn, likely promoted the mineralization of the organic P forms. This was supported by the smaller proportion of orthophosphate monoesters found in the P pool of the rhizosphere than in that of the soil far from the roots, with a consequent increase of the amount of available P. Hence, we speculate that at high altitude the energy supplied by the plants through rhizodeposition to the rhizosphere heterotrophic microbial

  15. Bacterial Communities in the Rhizosphere of Amilaceous Maize (Zea mays L.) as Assessed by Pyrosequencing.

    PubMed

    Correa-Galeote, David; Bedmar, Eulogio J; Fernández-González, Antonio J; Fernández-López, Manuel; Arone, Gregorio J

    2016-01-01

    Maize (Zea mays L.) is the staple diet of the native peasants in the Quechua region of the Peruvian Andes who continue growing it in small plots called chacras following ancestral traditions. The abundance and structure of bacterial communities associated with the roots of amilaceous maize has not been studied in Andean chacras. Accordingly, the main objective of this study was to describe the rhizospheric bacterial diversity of amilaceous maize grown either in the presence or the absence of bur clover cultivated in soils from the Quechua maize belt. Three 16S rRNA gene libraries, one corresponding to sequences of bacteria from bulk soil of a chacra maintained under fallow conditions, the second from the rhizosphere of maize-cultivated soils, and the third prepared from rhizospheric soil of maize cultivated in intercropping with bur clover were examined using pyrosequencing tags spanning the V4 and V5 hypervariable regions of the gene. A total of 26031 sequences were found that grouped into 5955 distinct operational taxonomic units which distributed in 309 genera. The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from bulk soil. One hundred ninety seven genera were found in the bulk soil library and 234 and 203 were in those from the maize and maize/bur clover-cultivated soils. Sixteen out of the 309 genera had a relative abundance higher than 0.5% and the were (in decreasing order of abundance) Gp4, Gp6, Flavobacterium, Subdivision3 genera incertae sedis of the Verrucomicrobia phylum, Gemmatimonas, Dechloromonas, Ohtaekwangia, Rhodoferax, Gaiella, Opitutus, Gp7, Spartobacteria genera incertae sedis, Terrimonas, Gp5, Steroidobacter and Parcubacteria genera incertae sedis. Genera Gp4 and Gp6 of the Acidobacteria, Gemmatimonas and Rhodoferax were the most abundant in bulk soil, whereas Flavobacterium, Dechloromonas and Ohtaekwangia were the main genera in the rhizosphere of maize

  16. Bacterial Communities in the Rhizosphere of Amilaceous Maize (Zea mays L.) as Assessed by Pyrosequencing

    PubMed Central

    Correa-Galeote, David; Bedmar, Eulogio J.; Fernández-González, Antonio J.; Fernández-López, Manuel; Arone, Gregorio J.

    2016-01-01

    Maize (Zea mays L.) is the staple diet of the native peasants in the Quechua region of the Peruvian Andes who continue growing it in small plots called chacras following ancestral traditions. The abundance and structure of bacterial communities associated with the roots of amilaceous maize has not been studied in Andean chacras. Accordingly, the main objective of this study was to describe the rhizospheric bacterial diversity of amilaceous maize grown either in the presence or the absence of bur clover cultivated in soils from the Quechua maize belt. Three 16S rRNA gene libraries, one corresponding to sequences of bacteria from bulk soil of a chacra maintained under fallow conditions, the second from the rhizosphere of maize-cultivated soils, and the third prepared from rhizospheric soil of maize cultivated in intercropping with bur clover were examined using pyrosequencing tags spanning the V4 and V5 hypervariable regions of the gene. A total of 26031 sequences were found that grouped into 5955 distinct operational taxonomic units which distributed in 309 genera. The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from bulk soil. One hundred ninety seven genera were found in the bulk soil library and 234 and 203 were in those from the maize and maize/bur clover-cultivated soils. Sixteen out of the 309 genera had a relative abundance higher than 0.5% and the were (in decreasing order of abundance) Gp4, Gp6, Flavobacterium, Subdivision3 genera incertae sedis of the Verrucomicrobia phylum, Gemmatimonas, Dechloromonas, Ohtaekwangia, Rhodoferax, Gaiella, Opitutus, Gp7, Spartobacteria genera incertae sedis, Terrimonas, Gp5, Steroidobacter and Parcubacteria genera incertae sedis. Genera Gp4 and Gp6 of the Acidobacteria, Gemmatimonas and Rhodoferax were the most abundant in bulk soil, whereas Flavobacterium, Dechloromonas and Ohtaekwangia were the main genera in the rhizosphere of maize

  17. Influence of humic substances on plant-microbes interactions in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Puglisi, Edoardo; Pascazio, Silvia; Spaccini, Riccardo; Crecchio, Carmine; Trevisan, Marco; Piccolo, Alessandro

    2013-04-01

    Humic substances are known to play a wide range of effects on the physiology of plant and microbes. This is of particular relevance in the rhizosphere of terrestrial environments, where the reciprocal interactions between plants roots, soil constituents and microorganisms strongly influence the plants acquisition of nutrients. Chemical advances are constantly improving our knowledge on humic substances: their supra-molecular architecture, as well as the moltitude of their chemical constituents, many of which are biologically active. An approach for linking the structure of humic substances with their biological activity in the rhizosphere is the use of rhizoboxes, which allow applying a treatment (e.g., an amendment with humic substances) in an upper soil-plant compartment and take measurements in a lower isolated rhizosphere compartment that can be sampled at desired distances from the rhizoplane. This approach can be adopted to assess the effects of several humic substances, as well as composted materials, on maize plants rhizodeposition of carbon, and in turn on the structure and activity of rhizosphere microbial communities. In order to gain a complete understanding of processes occurring in the complex soil-plant-microorganisms tripartite system, rhizobox experiments can be coupled with bacterial biosensors for the detection and quantification of bioavailable nutrients, chemical analyses of main rhizodeposits constituents, advanced chemical characterizations of humic substances, DNA-fingerprinting of microbial communities, and multivariate statistical approaches to manage the dataset produced and to infer general conclusions. By such an approach it was found that humic substances are significantly affecting the amount of carbon deposited by plant roots. This induction effect is more evident for substances with more hydrophobic and complex structure, thus supporting the scientific hypothesis of the "microbial loop model", which assumes that plants feed

  18. Root Exudation by Aphid Leaf Infestation Recruits Root-Associated Paenibacillus spp. to Lead Plant Insect Susceptibility.

    PubMed

    Kim, Bora; Song, Geun Cheol; Ryu, Choong-Min

    2016-03-01

    Aphids are a large group of hemipteran pests that affect the physiology, growth, and development of plants by using piercing mouthparts to consume fluids from the host. Based an recent data, aphids modulate the microbiomes of plants and thereby affect the overall outcome of the biological interaction. However, in a few reports, aboveground aphids manipulate the metabolism of the host and facilitate infestations by rhizosphere bacteria (rhizobacteria). In this study, we evaluated whether aphids alter the plant resistance that is mediated by the bacterial community of the root system. The rhizobacteria were affected by aphid infestation of pepper, and a large population of gram-positive bacteria was detected. Notably, Paenibacillus spp. were the unique gram-positive bacteria to respond to changes induced by the aphids. Paenibacillus polymyxa E681 was used as a rhizobacterium model to assess the recruitment of bacteria to the rhizosphere by the phloem-sucking of aphids and to test the effect of P. polymyxa on the susceptibility of plants to aphids. The root exudates secreted from peppers infested with aphids increased the growth rate of P. polymyxa E681. The application of P. polymyxa E681 to pepper roots promoted the colonization of aphids within 2 days of inoculation. Collectively, our results suggest that aphid infestation modulated the root exudation, which led to the recruitment of rhizobacteria that manipulated the resistance of peppers to aphids. In this study, new information is provided on how the infestation of insects is facilitated through insect-derived modulation of plant resistance with the attraction of gram-positive rhizobacteria. PMID:26699743

  19. Strigolactone deficiency confers resistance in tomato line SL-ORT1 to the parasitic weeds Phelipanche and Orobanche spp.

    PubMed

    Dor, Evgenia; Yoneyama, Koichi; Wininger, Smadar; Kapulnik, Yoram; Yoneyama, Kaori; Koltai, Hinanit; Xie, Xiaonan; Hershenhorn, Joseph

    2011-02-01

    The parasitic flowering plants of the genera Orobanche and Phelipanche (broomrape species) are obligatory chlorophyll-lacking root-parasitic weeds that infect dicotyledonous plants and cause heavy economic losses in a wide variety of plant species in warm-temperate and subtropical regions. One of the most effective strategies for broomrape control is crop breeding for broomrape resistance. Previous efforts to find natural broomrape-resistant tomato (Solanum lycopersicon) genotypes were unsuccessful, and no broomrape resistance was found in any wild tomato species. Recently, however, the fast-neutron-mutagenized tomato mutant SL-ORT1 was found to be highly resistant to various Phelipanche and Orobanche spp. Nevertheless, SL-ORT1 plants were parasitized by Phelipanche aegyptiaca if grown in pots together with the susceptible tomato cv. M-82. In the present study, no toxic activity or inhibition of Phelipanche seed germination could be detected in the SL-ORT1 root extracts. SL-ORT1 roots did not induce Phelipanche seed germination in pots but they were parasitized, at the same level as M-82, after application of the synthetic germination stimulant GR24 to the rhizosphere. Whereas liquid chromatography coupled to tandem mass spectrometry analysis of root exudates of M-82 revealed the presence of the strigolactones orobanchol, solanacol, and didehydro-orobanchol isomer, these compounds were not found in the exudates of SL-ORT1. It can be concluded that SL-ORT1 resistance results from its inability to produce and secrete natural germination stimulants to the rhizosphere. PMID:20942651

  20. Symbiotic relationship of thiothrix spp. with An echinoderm

    PubMed

    Brigmon; De Ridder C

    1998-09-01

    Immunoassay procedures were used to investigate the symbiotic relationship of Thiothrix spp. in the intestinal cecum of the spatangoid species Echinocardium cordatum. Thiothrix spp. were identified in nodule samples from E. cordatum digestive tubes based on microscopic examination, enzyme-linked immunosorbent assay, and indirect immunofluorescence. Thiothrix spp. protein made up as much as 84% of the total protein content of the nodules. This is the first identification of Thiothrix spp. internally symbiotic with marine invertebrates. PMID:9726902

  1. Symbiotic Relationship of Thiothrix spp. with an Echinoderm†

    PubMed Central

    Brigmon, Robin L.; De Ridder, Chantal

    1998-01-01

    Immunoassay procedures were used to investigate the symbiotic relationship of Thiothrix spp. in the intestinal cecum of the spatangoid species Echinocardium cordatum. Thiothrix spp. were identified in nodule samples from E. cordatum digestive tubes based on microscopic examination, enzyme-linked immunosorbent assay, and indirect immunofluorescence. Thiothrix spp. protein made up as much as 84% of the total protein content of the nodules. This is the first identification of Thiothrix spp. internally symbiotic with marine invertebrates. PMID:9726902

  2. Acyl-Homoserine Lactone Production Is More Common among Plant-Associated Pseudomonas spp. than among Soilborne Pseudomonas spp.†

    PubMed Central

    Elasri, Miena; Delorme, Sandrine; Lemanceau, Philippe; Stewart, Gordon; Laue, Bridget; Glickmann, Eric; Oger, Phil M.; Dessaux, Yves

    2001-01-01

    A total of 137 soilborne and plant-associated bacterial strains belonging to different Pseudomonas species were tested for their ability to synthesize N-acyl-homoserine lactones (NAHL). Fifty-four strains synthesized NAHL. Interestingly, NAHL production appears to be more common among plant-associated than among soilborne Pseudomonas spp. Indeed, 40% of the analyzed Pseudomonas syringae strains produced NAHL which were identified most often as the short-chain NAHL, N-hexanoyl-l-homoserine lactone, N-(3-oxo-hexanoyl)-homoserine lactone, and N-(3-oxo-octanoyl)-l-homoserine lactone (no absolute correlation between genomospecies of P. syringae and their ability to produce NAHL could be found). Six strains of fluorescent pseudomonads, belonging to the species P. chlororaphis, P. fluorescens, and P. putida, isolated from the plant rhizosphere produced different types of NAHL. In contrast, none of the strains isolated from soil samples were shown to produce NAHL. The gene encoding the NAHL synthase in P. syringae pv. maculicola was isolated by complementation of an NAHL-deficient Chromobacterium mutant. Sequence analysis revealed the existence of a luxI homologue that we named psmI. This gene is sufficient to confer NAHL synthesis upon its bacterial host and has strong homology to psyI and ahlI, two genes involved in NAHL production in P. syringae pv. tabaci and P. syringae pv. syringae, respectively. We identified another open reading frame that we termed psmR, transcribed convergently in relation to psmI and partly overlapping psmI; this gene encodes a putative LuxR regulatory protein. This gene organization, with luxI and luxR homologues facing each other and overlapping, has been found so far only in the enteric bacteria Erwinia and Pantoea and in the related species P. syringae pv. tabaci. PMID:11229911

  3. The case of Artemia spp. in nanoecotoxicology.

    PubMed

    Libralato, Giovanni

    2014-10-01

    Artemia spp. is one of the most widespread saltwater organism suitable for ecotoxicity testing, but no internationally standardised methods exist. Several endpoints can be considered with Artemia spp. including short-term (24-48 h) and long-term (14 days) mortality, cysts and nauplii hatchability, biomass productivity, biomarkers' expression/inhibition and bioaccumulation on larvae as well as organisms' reproductive ability. Recently, Artemia spp. started to be used as a reference biological model in nanoecotoxicology with both inorganic and organic engineered nanomaterials (ENMs) also in combination with traditional environmental stressors looking for potential interactive effects. Criticisms were detected about the use of Artemia spp. in relation to the hatching phase, the toxicity test design, the occasional use only of reference toxicants and the way testing solution/suspensions were prepared thus potentially compromising the reliability of nanoecotoxicological results. A full list of compulsory information that must accompany Artemia nanoecotoxicity data is provided with positive feedbacks also for other toxicity bioassays. PMID:25195085

  4. Characterization of Milkweed (Asclepias spp.) Seed Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Milkweed (Asclepias spp.) is a crop grown mainly for the production of floss used as hypoallergenic fillers in comforters and pillows. The seeds end up as by-products. Milkweed seed contains 21% oil and 30% crude protein (dry basis). The oil is similar in quality to soybean oil, but there is no i...

  5. Variability of Colletotrichum spp in common bean.

    PubMed

    Mota, S F; Barcelos, Q L; Dias, M A; Souza, E A

    2016-01-01

    The Colletotrichum genus presents large genetic variability, as demonstrated by the occurrence of several pathogenic races and phenotypic traits. The objective of this study was to characterize 22 strains of C. lindemuthianum and Colletotrichum spp recovered from anthracnose lesions and bean scab, and to verify the relationship between species of the Colletotrichum genus, which inhabit anthracnose and scab lesions. Colony morphology, conidium size, the presence of septa, germination, sporulation, and mycelium growth rates, were analyzed in addition to the presence of mating-type genes, IRAP markers, and pathogenicity. Strains of Colletotrichum spp presented wide variation for all evaluated traits, indicating the presence of different species. Pathogenicity tests verified that the severity of the disease caused by strains of Colletotrichum spp must be evaluated 17 days after inoculation. Molecular analysis showed that only the C. lindemuthianum strains were grouped by the IRAP markers. For the physiological traits, we observed that C. lindemuthianum mycelium growth is slower than that of Colletotrichum spp strains. The information generated in this study confirms variability in the evaluated species of Colletotrichum and may direct future basic and applied studies aiming to control these diseases in common bean. PMID:27173211

  6. Evaluating SPP/APR Improvement Activities

    ERIC Educational Resources Information Center

    National Early Childhood Technical Assistance Center (NECTAC), 2009

    2009-01-01

    This document is intended to assist State Education Agency (SEA) and Lead Agency (LA) staff and technical assistance providers in designing a meaningful evaluation for the State Performance Plan (SPP)/Annual Performance Report (APR) improvement activities. It provides: (1) information about the relevance of evaluation in the context of improvement…

  7. Genomics of Secondary Metabolism in Pseudomonas spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas is a heterogeneous genus of bacteria known for its ubiquity in natural habitats and its prolific production of secondary metabolites. The structurally diverse chemical structures produced by Pseudomonas spp. result from biosynthetic processes with unusual features that have revealed no...

  8. Russian Thistle (Salsola spp.) Biology and Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the major broadleaf weed species infesting the arid and semi-arid regions of the world is Russian thistle (Salsola spp.). It is found in more than 40 countries in the world, infests an estimated 41 million ha in the western United States, and 1.8 million ha of land in the winter wheat-summer ...

  9. Bacterial-Plant-Interactions: Approaches to Unravel the Biological Function of Bacterial Volatiles in the Rhizosphere

    PubMed Central

    Kai, Marco; Effmert, Uta; Piechulla, Birgit

    2016-01-01

    Rhizobacteria produce an enormous amount of volatile compounds, however, the function of these metabolites is scarcely understood. Investigations evaluating influences on plants performed in various laboratories using individually developed experimental setups revealed different and often contradictory results, e.g., ranging from a significant plant growth promotion to a dramatic suppression of plant development. In addition to these discrepancies, these test systems neglected properties and complexity of the rhizosphere. Therefore, to pursue further investigations of the role of bacterial volatiles in this underground habitat, the applied methods have to simulate its natural characteristics as much as possible. In this review, we will describe and discuss pros and cons of currently used bioassays, give insights into rhizosphere characteristics, and suggest improvements for test systems that would consider in natura conditions and would allow gaining further knowledge of the potential function and significance of rhizobacterial volatiles in plant life. PMID:26903987

  10. Abiotic/biotic coupling in the rhizosphere: a reactive transport modeling analysis

    USGS Publications Warehouse

    Lawrence, Corey R.; Steefel, Carl; Maher, Kate

    2014-01-01

    A new generation of models is needed to adequately simulate patterns of soil biogeochemical cycling in response changing global environmental drivers. For example, predicting the influence of climate change on soil organic matter storage and stability requires models capable of addressing complex biotic/abiotic interactions of rhizosphere and weathering processes. Reactive transport modeling provides a powerful framework simulating these interactions and the resulting influence on soil physical and chemical characteristics. Incorporation of organic reactions in an existing reactive transport model framework has yielded novel insights into soil weathering and development but much more work is required to adequately capture root and microbial dynamics in the rhizosphere. This endeavor provides many advantages over traditional soil biogeochemical models but also many challenges.

  11. Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity.

    PubMed

    Brunetto, Gustavo; Bastos de Melo, George Wellington; Terzano, Roberto; Del Buono, Daniele; Astolfi, Stefania; Tomasi, Nicola; Pii, Youry; Mimmo, Tanja; Cesco, Stefano

    2016-11-01

    Viticulture represents an important agricultural practice in many countries worldwide. Yet, the continuous use of fungicides has caused copper (Cu) accumulation in soils, which represent a major environmental and toxicological concern. Despite being an important micronutrient, Cu can be a potential toxicant at high concentrations since it may cause morphological, anatomical and physiological changes in plants, decreasing both food productivity and quality. Rhizosphere processes can, however, actively control the uptake and translocation of Cu in plants. In particular, root exudates affecting the chemical, physical and biological characteristics of the rhizosphere, might reduce the availability of Cu in the soil and hence its absorption. In addition, this review will aim at discussing the advantages and disadvantages of agronomic practices, such as liming, the use of pesticides, the application of organic matter, biochar and coal fly ashes, the inoculation with bacteria and/or mycorrhizal fungi and the intercropping, in alleviating Cu toxicity symptoms. PMID:27513550

  12. [Effects of rotation and intercropping on bacterial communities in rhizosphere soil of cucumber].

    PubMed

    Wu, Feng-zhi; Wang, Shu; Yang, Yang

    2008-12-01

    By the method of PCR-DGGE, this paper studied the effects of rotation with wheat, soybean, villose vetch, clover, and alfalfa and intercropping with onion and garlic on the bacterial communities in rhizosphere soil of cucumber. The results showed that rotation and intercropping with test plants increased the diversity and evenness indices of bacterial communities in cucumber rhizosphere soil, and also, cucumber yield. The sequencing of DGGE bands indicated that most of the bands had high homology with uncultured bacterial species, and were of Sphingobacterium and Proteobacteria. High bacterium G+C was only detected when cucumber was intercropped with onion. The diversity of soil bacterial communities varied with the growth stages of cucumber, being the highest at vigorous fruiting stage. It was suggested that intercropping with onion and rotation with wheat were the best cultivation modes of cucumber. PMID:19288729

  13. Brevibacillus sp. KUMAs2, a bacterial isolate for possible bioremediation of arsenic in rhizosphere.

    PubMed

    Mallick, Ivy; Hossain, Sk Tofajjen; Sinha, Sangram; Mukherjee, Samir Kumar

    2014-09-01

    Arsenic (As) contamination of soil and water has been considered as a major global environmental issue during last few decades. Among the various methods so far reported for reclamation of As contaminated rhizosphere soil, bioremediation using bacteria has been found to be most promising. An As resistant bacterial isolate Brevibacillus sp. KUMAs2 was obtained from As contaminated soil of Nadia, West Bengal, India, which could resist As(V) and As(III) a maximum of 265mM and 17mM, respectively. The strain could remove ~40 percent As under aerobic culture conditions. As resistant property in KUMAs2 was found to be plasmid-borne, which carried both As oxidizing and reducing genes. The strain could promote chilli plant growth under As contaminated soil environment by decreasing As accumulation in plant upon successful colonization in the rhizosphere, which suggests the possibility of using this isolate for successful bioremediation of As in the crop field. PMID:25011120

  14. Effect of some sulphur compounds on soil microflora of spruce rhizosphere.

    PubMed

    Lettl, A

    1981-01-01

    The effect of a long-term application of sulphite, thiosulphate and sodium sulphate on the soil microflora and spruce seedlings was investigated in a pot experiment. Sulphur compounds decreased the concentration of bacteria, including thiobacilli, increased the concentration of microscopic fungi and sulphate-reducing bacteria; they inhibited respiration, nitrification and oxidation of thiosulphate, stimulated ammonification and oxidation of elemental sulphur. In certain cases the spruce rhizosphere exhibited just the opposite effect. In the rhizosphere the sulphate-reducing bacteria was suppressed together with thiobacilli, whose unit oxidative activity increased substantially. Growth of seedlings was inhibited by sulphite and stimulated by thiosulphate and sulphate. Sulphite, the effects of which were similar to those of sulphur dioxide immissions, was the most effective compound. In regions influenced by immissions the soil is apparently intoxicated by the absorbed sulphite. PMID:7274844

  15. Use of Rhizosphere Metabolomics to Investigate Exudation of Phenolics by Arabidopsis Roots

    NASA Astrophysics Data System (ADS)

    Lee, Yong Jian; Rai, Amit; Reuben, Sheela; Nesati, Victor; Almeida, Reinaldo; Swarup, Sanjay

    2013-04-01

    The rhizosphere is a specialised micro-niche for bacteria that have an active exchange of signals and nutrients with the host plant. Nearly 20% of photosynthates are released as root exudates, which consist of primary metabolites and products of secondary metabolism which are largely phenolic in nature. Previously, using rhizosphere metabolomics, we showed that nearly 50% of organic carbon in the exudates is in the form of phenolic compounds, of which the largest fraction is from the phenylpropanoid synthesis pathway. Using Arabidopsis as a model, we have demonstrated that a biased rhizosphere can be created using plants with varying levels of phenylpropanoids due to mutations in the biosynthetic or regulatory genes. These phenylpropanoids levels are reflected in the exudates, and exudates from lines with regulatory gene mutations, tt8 and ttg, have higher levels of phenylpropanoids, whereas biosynthetic mutant line, tt4, has very low and undetectable levels of phenylpropanoids. The biased rhizosphere of tt8 and ttg lines provides a nutritional advantage to rhizobacteria that can utilize these phenylpropanoids such as quercetin. With such a strategy to increase the competitiveness of plant growth-promoting rhizobacteria (PGPR) such as Pseudomonas putida, this system can be applied to improve plant performance. In order to better understand the metabolic basis of the nutritional advantage behind the competitiveness of the favoured P. putida, we elucidated its quercetin utilization pathway. We have recently cloned the gene for quercetin oxidoreductase (QuoA) and expressed it in transgenic Arabidopsis lines to alter the plant phenylpropanoid metabolism, using a gain of function approach. Since phenylpropanoid biosynthesis in plants involve formation of quercetin from naringenin, we envisaged that QuoA expression in plants will provide us with a genetic tool to "reverse" this biosynthetic step. This perturbation led to a decrease in flavonoids and an increase in lignin

  16. Biological control of saltcedar (Tamarix spp.) by saltcedar leaf beetles (Diorhabda spp.): effects on small mammals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spread of introduced saltcedar (Tamarix spp.) throughout many riparian systems across the western United States motivated the introduction of biological control agents that are specific to saltcedar, saltcedar leaf beetles (Diorhabda carinulata, D. elongata; Chrysomelidae). I monitored small mam...

  17. Suppressive effects of metabolites from Photorhabdus spp. and Xenorhabdus spp. on phytopathogens of peach and pecan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objective was to determine the suppressive abilities of bacterial metabolites derived from Photorhabdus and Xenorhabdus spp. on Glomerella cingulata, Phomopsis sp., Phytophthora cactorum, and Fusicladosporium effusum, which are fungal or oomycete pathogens of pecan, and Monilinia fructicola, a f...

  18. Enrichment of bacteria possessing catechol dioxygenase genes in the rhizosphere of Spirodela polyrrhiza: a mechanism of accelerated biodegradation of phenol.

    PubMed

    Toyama, Tadashi; Sei, Kazunari; Yu, Ning; Kumada, Hirohide; Inoue, Daisuke; Hoang, Hai; Soda, Satoshi; Chang, Young-Cheol; Kikuchi, Shintaro; Fujita, Masanori; Ike, Michihiko

    2009-08-01

    The bacterial community structure in bulk water and in rhizosphere fractions of giant duckweed, Spirodela polyrrhiza, was quantitatively and qualitatively investigated by PCR-based methods using 6 environmental water samples to elucidate the mechanisms underlying selective accumulation of aromatic compound-degrading bacteria in the rhizosphere of S. polyrrhiza. S. polyrrhiza selectively accumulated a diverse range of aromatic compound-degrading bacteria in its rhizosphere, regardless of the origin of water samples, despite no exposure to phenol. The relative abundances of the catechol 1,2-dioxygenase (C12O) gene (C12O DNA) and catechol 2,3-dioxygenase (C23O) gene (C23O DNA) were calculated as the ratios of the copy numbers of these genes to the copy number of 16S rDNA and are referred to as the rhizosphere effect (RE) value. The RE values for C12O DNA and C23O DNA were 1.0 x 10(1)-9.3 x 10(3) and 1.7 x 10(2)-1.5 x 10(4) times as high, respectively, in rhizosphere fractions as in bulk water fractions, and these higher values were associated with a notably higher sequence diversity of C12O DNA and C23O DNA. The RE values during phenol degradation were 3.6 x 10(0)-4.3 x 10(2) and 2.2 x 10(0)-1.7 x 10(2), respectively, indicating the ability of S. polyrrhiza to selectively accumulate aromatic compound-degrading bacteria in its rhizosphere during phenol degradation. The bacterial communities in the rhizosphere fractions differed from those in the bulk water fractions, and those in the bulk water fractions were notably affected by the rhizosphere bacterial communities. S. polyrrhiza released more than 100 types of phenolic compound into its rhizosphere as root exudates at the considerably high specific release rate of 1520mg TOC and 214mg phenolic compounds/d/g root (wet weight). This ability of S. polyrrhiza might result in the selective recruitment and accumulation of a diverse range of bacteria harboring genes encoding C12O and C23O, and the subsequent accelerated

  19. Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments

    PubMed Central

    Thomas, François; Giblin, Anne E.; Cardon, Zoe G.; Sievert, Stefan M.

    2014-01-01

    Salt marshes are highly productive ecosystems hosting an intense sulfur (S) cycle, yet little is known about S-oxidizing microorganisms in these ecosystems. Here, we studied the diversity and transcriptional activity of S-oxidizers in salt marsh sediments colonized by the plant Spartina alterniflora, and assessed variations with sediment depth and small-scale compartments within the rhizosphere. We combined next-generation amplicon sequencing of 16S rDNA and rRNA libraries with phylogenetic analyses of marker genes for two S-oxidation pathways (soxB and rdsrAB). Gene and transcript numbers of soxB and rdsrAB phylotypes were quantified simultaneously, using newly designed (RT)-qPCR assays. We identified a diverse assemblage of S-oxidizers, with Chromatiales and Thiotrichales being dominant. The detection of transcripts from S-oxidizers was mostly confined to the upper 5 cm sediments, following the expected distribution of root biomass. A common pool of species dominated by Gammaproteobacteria transcribed S-oxidation genes across roots, rhizosphere, and surrounding sediment compartments, with rdsrAB transcripts prevailing over soxB. However, the root environment fine-tuned the abundance and transcriptional activity of the S-oxidizing community. In particular, the global transcription of soxB was higher on the roots compared to mix and rhizosphere samples. Furthermore, the contribution of Epsilonproteobacteria-related S-oxidizers tended to increase on Spartina roots compared to surrounding sediments. These data shed light on the under-studied oxidative part of the sulfur cycle in salt marsh sediments and indicate small-scale heterogeneities are important factors shaping abundance and potential activity of S-oxidizers in the rhizosphere. PMID:25009538

  20. Comparative Metaproteomic Analysis on Consecutively Rehmannia glutinosa-Monocultured Rhizosphere Soil

    PubMed Central

    Wu, Linkun; Lin, Rui; Zhang, Zhongyi; Lin, Wenxiong

    2011-01-01

    Background The consecutive monoculture for most of medicinal plants, such as Rehmannia glutinosa, results in a significant reduction in the yield and quality. There is an urgent need to study for the sustainable development of Chinese herbaceous medicine. Methodology/Principal Findings Comparative metaproteomics of rhizosphere soil was developed and used to analyze the underlying mechanism of the consecutive monoculture problems of R. glutinosa. The 2D-gel patterns of protein spots for the soil samples showed a strong matrix dependency. Among the spots, 103 spots with high resolution and repeatability were randomly selected and successfully identified by MALDI TOF-TOF MS for a rhizosphere soil metaproteomic profile analysis. These proteins originating from plants and microorganisms play important roles in nutrient cycles and energy flow in rhizospheric soil ecosystem. They function in protein, nucleotide and secondary metabolisms, signal transduction and resistance. Comparative metaproteomics analysis revealed 33 differentially expressed protein spots in rhizosphere soil in response to increasing years of monoculture. Among them, plant proteins related to carbon and nitrogen metabolism and stress response, were mostly up-regulated except a down-regulated protein (glutathione S-transferase) involving detoxification. The phenylalanine ammonia-lyase was believed to participate in the phenylpropanoid metabolism as shown with a considerable increase in total phenolic acid content with increasing years of monoculture. Microbial proteins related to protein metabolism and cell wall biosynthesis, were up-regulated except a down-regulated protein (geranylgeranyl pyrophosphate synthase) functioning in diterpenoid synthesis. The results suggest that the consecutive monoculture of R. glutinosa changes the soil microbial ecology due to the exudates accumulation, as a result, the nutrient cycles are affected, leading to the retardation of plant growth and development. Conclusions

  1. Predicting ecological roles in the rhizosphere using metabolome and transportome modeling

    DOE PAGESBeta

    Larsen, Peter E.; Collart, Frank R.; Dai, Yang; Blanchard, Jeffrey L.

    2015-09-02

    The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. New algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad’s ecological role in the rhizosphere: a biofilm, biocontrol agent, promoter ofmore » plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism’s transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data.« less

  2. RHIZOSPHERE MICROBIOLOGY OF CHLORINATED ETHENE CONTAMINATED SOILS: EFFECTS ON PHOSPHOLIPID FATTY ACID CONTENT

    SciTech Connect

    Brigmon, R. L.; Stanhopc, A.; Franck, M. M.; McKinsey, P. C.; Berry, C. J.

    2005-05-26

    Microbial degradation of chlorinated ethenes (CE) in rhizosphere soils was investigated at seepline areas impacted by CE plumes. Successful bioremediation of CE in rhizosphere soils is dependent on microbial activity, soil types, plant species, and groundwater CE concentrations. Seepline soils were exposed to trichloroethylene (TCE) and perchloroethylene (PCE) in the 10-50 ppb range. Greenhouse soils were exposed to 2-10 ppm TCE. Plants at the seepline were poplar and pine while the greenhouse contained sweet gum, willow, pine, and poplar. Phospholipid fatty acid (PLFA) analyses were performed to assess the microbial activity in rhizosphere soils. Biomass content was lowest in the nonvegetated control soil and highest in the Sweet Gum soil. Bacterial rhizhosphere densities, as measured by PLFA, were similar in different vegetated soils while fungi biomass was highly variable. The PLFA soil profiles showed diverse microbial communities primarily composed of Gram-negative bacteria. Adaptation of the microbial community to CE was determined by the ratio of {omega}7t/{omega}7c fatty acids. Ratios (16:1{omega}7v16:1{omega}7c and 18:l{omega}7t/18:1{omega}7c) greater than 0.1 were demonstrated in soils exposed to higher CE concentrations (10-50 ppm), indicating an adaptation to CE resulting in decreased membrane permeability. Ratios of cyclopropyl fatty acids showed that the vegetated control soil sample contained the fastest microbial turnover rate and least amount of environmental stress. PLFA results provide evidence that sulfate reducing bacteria (SRB) are active in these soils. Microcosm studies with these soils showed CE dechlorinating activity was occurring. This study demonstrates microbial adaptation to environmental contamination and supports the application of natural soil rhizosphere activity as a remedial strategy.

  3. Metabolic Status of Bacteria and Fungi in the Rhizosphere of Ponderosa Pine Seedlings

    PubMed Central

    Norton, Jeanette M.; Firestone, Mary K.

    1991-01-01

    We determined the quantity and metabolic status of bacteria and fungi in rhizosphere and nonrhizosphere soil from microcosms containing ponderosa pine seedlings. Rhizosphere soil was sampled adjacent to coarse, fine, or young roots. The biovolume and metabolic status of bacterial and fungal cells was determined microscopically and converted to total and active biomass values. Cells were considered active if they possessed the ability to reduce the artificial electron acceptor 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride (INT) to visible intracellular deposits of INT formazan. A colorimetric assay of INT formazan production was also used to assess dehydrogenase activity. INT-active microorganisms made up 44 to 55% of the microbial biomass in the soils studied. The proportion of fungal biomass that exhibited INT-reducing activity (40 to 50%) was higher than previous estimates of the active proportion of soil fungi determined by using fluorescein diacetate. Comparison between soils from different root zones revealed that the highest total and INT-active fungal biomass was adjacent to fine mycorrhizal roots, whereas the highest total and active bacterial biomass was adjacent to the young growing root tips. These observations suggest that fungi are enhanced adjacent to the fine roots compared with the nonrhizosphere soil, whereas bacteria are more responsive than fungi to labile carbon inputs in the young root zone. Colorimetric dehydrogenase assays detected gross differences between bulk and rhizosphere soil activity but were unable to detect more subtle differences due to root types. Determination of total and INT-active biomass has increased our understanding of the role of spatial compartmentalization of bacteria and fungi in rhizosphere carbon flow. PMID:16348461

  4. Effects of elevated CO₂ on rhizosphere characteristics of Cd/Zn hyperaccumulator Sedum alfredii.

    PubMed

    Li, Tingqiang; Tao, Qi; Han, Xuan; Yang, Xiaoe

    2013-06-01

    The effects of elevated CO2 on the metal bioavailability and the rhizosphere characteristics of hyperaccumulator are not well understood. In this study, soil pot experiment was carried out to contrast the effects of elevated CO2 on rhizosphere characteristics between a hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of Sedum alfredii grown under ambient (350 μL L(-1)) or elevated (800 μL L(-1)) CO2. Elevated CO2 facilitated the growth of both ecotypes of S. alfredii, but the promotion in the HE was much greater than in the NHE. No significant (P<0.05) changes in soil pH, dissolved organic matter (DOM) and microbial biomass (Cmic) were observed in the rhizosphere of NHE under both CO2 level. For HE, however, elevated CO2 reduced soil pH by 0.3 units, increased DOM (especially for hydrophilic acid (HiA) fractions) by 19.2% and Cmic by 19%, as compared to ambient CO2. Mobile Cd and Zn (extractable with 1M NH4NO3) in the rhizosphere of HE decreased considerably, but the decreases were greater under ambient CO2 than under elevated CO2. Phytoextraction efficiency of Cd and Zn by HE was increased significantly by elevated CO2 (P<0.05). The results suggest that elevated CO2 can change soil microenvironment, increase bioavailability of Cd and Zn and thus facilitate metal uptake by the HE. This work highlights that elevated CO2 may be a useful way to improve phytoremediation efficiency of Cd/Zn-contaminated soil by hyperaccumulating ecotype S. alfredii. PMID:23567171

  5. Rhizosphere water dynamics: role of exudates in mediating water retention and flow characteristics

    NASA Astrophysics Data System (ADS)

    Albalasmeh, Ammar; Ghezzehei, Teamrat

    2013-04-01

    In recent years, significant amount of literature showed that rhizosphere's physical and chemical properties markedly differ from those of the bulk soil. Plants invest large portion of their photosynthetic carbon in developing root architecture that optimally exploits water and nutrient distributions in the soil. There is indirect evidence suggesting that these exudates play a major role in altering the of the soil water retention properties. In this study, we investigated the role of root exudates on rhizosphere water dynamics using analog system. Glass beads were used to represent loose soil and dilute solutions of polygalacutronic acid (PGA) to mimic exudates (0, 1, 5, 15 and 29 g/L). The samples were subjected to periods of drying and subsequent equilibration. At each stage, the water potential was measured using WP4C Dewpoint PotentiaMeter. On the other hand, sand samples were saturated with PGA at the same concentration used to study the effect of exudates on water evaporation rate. The effect of root exudates on soil water retention can be attributed to at least two factors. The most widely speculated effect is through enhanced of soil aggregation. This effect is primarily due to capillary adhesion in fine pores within aggregates and is consistent with visual observation of pronounced aggregation in many rhizosphere soils. The second factor is related to osmotic effect of the exudate solution. Our observations show that the capillary effect is mostly limited to higher water potential regime (> -1 bar suction). Whereas the osmotic effect dominates in <- 1 bar suction. At the same time, the osmotic potential results from these organic exudates play an important role in reducing the evaporation rate. These results will provide direct quantitative evidence of how rhizosphere organic matter helps plant-soil relations.

  6. Biofilm formation and indole-3-acetic acid production by two rhizospheric unicellular cyanobacteria.

    PubMed

    Ahmed, Mehboob; Stal, Lucas J; Hasnain, Shahida

    2014-08-01

    Microorganisms that live in the rhizosphere play a pivotal role in the functioning and maintenance of soil ecosystems. The study of rhizospheric cyanobacteria has been hampered by the difficulty to culture and maintain them in the laboratory. The present work investigated the production of the plant hormone indole-3-acetic acid (IAA) and the potential of biofilm formation on the rhizoplane of pea plants by two cyanobacterial strains, isolated from rice rhizosphere. The unicellular cyanobacteria Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 that were isolated from a rice rhizosphere, were investigated. Production of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 was measured under experimental conditions (pH and light). The bioactivity of the cyanobacterial auxin was demonstrated through the alteration of the rooting pattern of Pisum sativum seedlings. The increase in the concentration of L-tryptophan and the time that this amino acid was present in the medium resulted in a significant enhancement of the synthesis of IAA (r > 0.900 at p = 0.01). There was also a significant correlation between the concentration of IAA in the supernatant of the cyanobacteria cultures and the root length and number of the pea seedlings. Observations made by confocal laser scanning microscopy revealed the presence of cyanobacteria on the surface of the roots and also provided evidence for the penetration of the cyanobacteria in the endorhizosphere. We show that the synthesis of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 occurs under different environmental conditions and that the auxin is important for the development of the seedling roots and for establishing an intimate symbiosis between cyanobacteria and host plants. PMID:24705871

  7. Draft Genome Sequence of Pseudomonas fluorescens Strain ET76, Isolated from Rice Rhizosphere in Northwestern Morocco.

    PubMed

    Aarab, Saida; Arakrak, Abdelhay; Ollero, Francisco Javier; Megías, Manuel; Gomes, Douglas Fabiano; Ribeiro, Renan Augusto; Hungria, Mariangela

    2016-01-01

    Pseudomonas fluorescens ET76 was isolated from rice rhizosphere in northwestern Morocco. Its draft genome was estimated to be 6,681,652 bp with 5,789 coding sequences (CDSs). Genes encoding for type I to VI secretion systems, PvdQ, proteases, siderophores, hydrogen cyanide synthase, ACC-deaminase, among others, highlight its potential use in biological control of plant pathogens. PMID:27198014

  8. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum

    PubMed Central

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-01-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. PMID:24311557

  9. Thallium contamination of soils as affected by sphalerite weathering: A model rhizospheric experiment

    NASA Astrophysics Data System (ADS)

    Vaněk, Aleš; Grösslová, Zuzana; Mihaljevič, Martin

    2015-04-01

    The environmental stability of Tl-rich sphalerite in two contrasting soils was studied. Rhizospheric conditions were simulated to assess the risk associated with sulfide microparticles entering agricultural (top)soils. The data presented here clearly demonstrate a significant effect of 500 μM citric acid, a model rhizospheric solution, on ZnS alteration followed by enhanced Tl and Zn release. The relative ZnS mass loss after 28 days of citrate incubation reached 0.05 and 0.03 wt.% in Cambisol and Leptosol samples respectively, and was up to 4 times higher, compared to H2O treatments. Incongruent (i.e., substantially increased) mobilization of Tl from ZnS was observed during the incubation time. Generally higher (long-term) stability of ZnS with lower Tl release is predicted for soils enriched in carbonates. Furthermore, the important role of illite in the stabilization of mobilized Tl, linked with structural (inter)layer Tl-K exchange, is suggested. Thallium was highly bioavailable, as indicated by its uptake by white mustard; maximum Tl amounts were detected in biomass grown on the acidic Cambisol. Despite the fact that sulfides are thought as relatively stable phases in soil environments, enhanced sulfide dissolution and Tl/trace metal release (and bioaccumulation) can be assumed in rhizosphere systems.

  10. Metabolic status of bacteria and fungi in the rhizosphere of ponderosa pine seedlings

    SciTech Connect

    Norton, J.M.; Firestone, M.K. )

    1991-04-01

    The authors determined the quantity and metabolic status of bacteria and fungi in rhizosphere and nonrhizosphere soil from microcosms containing ponderosa pine seedlings. Rhizosphere soil was sampled adjacent to coarse, fine, or young roots. The biovolume and metabolic status of bacterial and fungal cells was determined microscopically and converted to total and active biomass values. Cells were considered active if they possessed the ability to reduce the artificial electron acceptor 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride (INT) to visible intracellular deposits of INT formazan. A colorimetric assay of INT formazan production was also used to assess dehydrogenase activity. INT-active microorganisms made up 44 to 55% of the microbial biomass in the soils studied. The proportion of fungal biomass that exhibited INT-reducing activity (40 to 50%) was higher than previous estimates of the active proportion of soil fungi determined by using fluorescein diacetate. Comparison between soils from different root zones revealed that the highest total and INT-active fungal biomass was adjacent to fine mycorrhizal roots, whereas the highest total and active bacterial biomass was adjacent to the young growing root tips. These observations suggest that fungi are enhanced adjacent to the fine roots compared with the nonrhizosphere soil, whereas bacteria are more responsive than fungi to labile carbon inputs in the young root zone. Colorimetric dehydrogenase assays detected gross differences between bulk and rhizosphere soil activity but were unable to detect more subtle differences due to root types.

  11. Correlative Imaging and Analyses of Soil Organic Matter Stabilization in the Rhizosphere

    NASA Astrophysics Data System (ADS)

    Dohnalkova, Alice; Tfaily, Malak; Chu, Rosalie; Crump, Alex; Brislawn, Colin; Varga, Tamas; Chrisler, William

    2016-04-01

    Correlative Imaging and Analyses of Soil Organic Matter Stabilization in the Rhizosphere Understanding the dynamics of carbon (C) pools in soil systems is a critical area for mitigating atmospheric carbon dioxide levels and maintaining healthy soils. Although microbial contributions to stable soil carbon pools have often been regarded as low to negligible, we present evidence that microbes may play a far greater role in the stabilization of soil organic matter (SOM), thus in contributing to soil organic matter pools with longer residence time. The rhizosphere, a zone immediately surrounding the plant roots, represents a geochemical hotspot with high microbial activity and profuse SOM production. Particularly, microbially secreted extracellular polymeric substances (EPS) present a remarkable dynamic entity that plays a critical role in numerous soil processes including mineral weathering. We approach the interface of soil minerals and microbes with a focus on the organic C stabilization mechanisms. We use a suite of high-resolution imaging and analytical methods (confocal, scanning and transmission electron microscopy, Fourier transform ion cyclotron resonance mass spectrometry, DNA sequencing and X-ray diffraction), to study the living and non-living rhizosphere components. Our goal is to elucidate a pathway for the formation, storage, transformation and protection of persistent microbially-produced carbon in soils. Based on our multimodal analytical approach, we propose that persistent microbial necromass in soils accounts for considerably higher soil carbon than previously estimated.

  12. Effects of Elevated Atmospheric CO2 on Rhizosphere Soil Microbial Communities in a Mojave Desert Ecosystem

    PubMed Central

    Nguyen, L.M.; Buttner, M.P.; Cruz, P.; Smith, S.D.; Robleto, E.A.

    2011-01-01

    The effects of elevated atmospheric carbon dioxide [CO2] on microbial communities in arid rhizosphere soils beneath Larrea tridentata were examined. Roots of Larrea were harvested from plots fumigated with elevated or ambient levels of [CO2] using Free-Air CO2 Enrichment (FACE) technology. Twelve bacterial and fungal rRNA gene libraries were constructed, sequenced and categorized into operational taxonomical units (OTUs). There was a significant decrease in OTUs within the Firmicutes (bacteria) in elevated [CO2], and increase in Basiomycota (fungi) in rhizosphere soils of plots exposed to ambient [CO2]. Phylogenetic analyses indicated that OTUs belonged to a wide range of bacterial and fungal taxa. To further study changes in bacterial communities, Quantitative Polymerase Chain Reaction (QPCR) was used to quantify populations of bacteria in rhizosphere soil. The concentration of total bacteria 16S rDNA was similar in conditions of enriched and ambient [CO2]. However, QPCR of Gram-positive microorganisms showed a 43% decrease in the population in elevated [CO2]. The decrease in representation of Gram positives and the similar values for total bacterial DNA suggest that the representation of other bacterial taxa was promoted by elevated [CO2]. These results indicate that elevated [CO2] changes structure and representation of microorganisms associated with roots of desert plants. PMID:21779135

  13. Genetic diversity of culturable bacteria in oil-contaminated rhizosphere of Galega orientalis.

    PubMed

    Jussila, Minna M; Jurgens, German; Lindström, Kristina; Suominen, Leena

    2006-01-01

    A collection of 50 indigenous meta-toluate tolerating bacteria isolated from oil-contaminated rhizosphere of Galega orientalis on selective medium was characterized and identified by classical and molecular methods. 16S rDNA partial sequencing showed the presence of five major lineages of the Bacteria domain. Gram-positive Rhodococcus, Bacillus and Arthrobacter and gram-negative Pseudomonas were the most abundant genera. Only one-fifth of the strains that tolerated m-toluate also degraded m-toluate. The inoculum Pseudomonas putida PaW85 was not found in the rhizosphere samples. The ability to degrade m-toluate by the TOL plasmid was detected only in species of the genus Pseudomonas. However, a few Rhodococcus erythropolis strains were found which were able to degrade m-toluate. A new finding was that Pseudomonas migulae strains and a few P. oryzihabitans strains were able to grow on m-toluate and most likely contained the TOL plasmid. Because strain specific differences in degradation abilities were found for P. oryzihabitans, separation at the strain level was important. For strain specific separation (GTG)5 fingerprinting was the best method. A combination of the single locus ribotyping and the whole genomic fingerprinting techniques with the selective partial sequencing formed a practical molecular toolbox for studying genetic diversity of culturable bacteria in oil-contaminated rhizosphere. PMID:16055251

  14. Disentangling who is who during rhizosphere acidification in root interactions: combining fluorescence with optode techniques.

    PubMed

    Faget, Marc; Blossfeld, Stephan; von Gillhaussen, Philipp; Schurr, Ulrich; Temperton, Vicky M

    2013-01-01

    Plant-soil interactions can strongly influence root growth in plants. There is now increasing evidence that root-root interactions can also influence root growth, affecting architecture and root traits such as lateral root formation. Both when species grow alone or in interaction with others, root systems are in turn affected by as well as affect rhizosphere pH. Changes in soil pH have knock-on effects on nutrient availability. A limitation until recently has been the inability to assign species identity to different roots in soil. Combining the planar optode technique with fluorescent plants enables us to distinguish between plant species grown in natural soil and in parallel study pH dynamics in a non-invasive way at the same region of interest (ROI). We measured pH in the rhizosphere of maize and bean in rhizotrons in a climate chamber, with ROIs on roots in proximity to the roots of the other species as well as not-close to the other species. We found clear dynamic changes of pH over time and differences between the two species in rhizosphere acidification. Interestingly, when roots of the two species were interacting, the degree of acidification or alkalization compared to bulk soil was less strong then when roots were not growing in the vicinity of the other species. This cutting-edge approach can help provide a better understanding of plant-plant and plant-soil interactions. PMID:24137168

  15. Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment

    SciTech Connect

    Timm, Collin M.; Campbell, Alicia G.; Utturkar, Sagar M.; Jun, Se Ran; Parales, Rebecca E.; Tan, Mesa; Robeson, Michael S.; Lu, Tse-Yuan S.; Jawdy, Sara; Schadt, Christopher Warren; Doktycz, Mitchel John; Weston, David; Pelletier, Dale A.

    2015-10-14

    The bacterial microbiota of plants is diverse, with ~1000s of operational taxonomic units (OTUs) associated with any individual plant. In this work we investigate how 19 sequenced Pseudomonas fluorescens strains representing a single OTU isolated from Populus deltoides rhizosphere and endosphere differ using phenotypic analysis, comparative genomics, and metabolic models. While no traits were exclusive to either endosphere or rhizosphere P. fluorescens isolates, multiple pathways relevant for bacterial-plant interactions are enriched in endosphere isolate genomes and growth phenotypes such as phosphate solubilization, protease activity, denitrification and root growth promotion are biased towards endosphere isolates. Endosphere isolates have more metabolic pathways for plant signaling compounds and an increased metabolic range that includes utilization of energy rich nucleotides and sugars, consistent with endosphere colonization. Rhizosphere P. fluorescens have fewer pathways important for bacterial-plant interactions but show metabolic bias towards chemical substrates often found in root exudates. This work reveals the diverse functions that may contribute to colonization of the endosphere by bacteria that are enriched in event he most closely related isolates.

  16. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere.

    PubMed

    Yang, Bo; Wang, Xiao-Mi; Ma, Hai-Yan; Yang, Teng; Jia, Yong; Zhou, Jun; Dai, Chuan-Chao

    2015-01-01

    The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N), but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics, the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea). Ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage). A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates, affected the abundance and community structure of AOA, AOB, and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids in root exudates. Plant-soil feedback mechanisms may be mediated by the rice-endophyte interaction, especially in nutrient-limited soil. PMID:26441912

  17. Iron mineralogy and uranium-binding environment in the rhizosphere of a wetland soil.

    PubMed

    Kaplan, Daniel I; Kukkadapu, Ravi; Seaman, John C; Arey, Bruce W; Dohnalkova, Alice C; Buettner, Shea; Li, Dien; Varga, Tamas; Scheckel, Kirk G; Jaffé, Peter R

    2016-11-01

    Wetlands mitigate the migration of groundwater contaminants through a series of biogeochemical gradients that enhance multiple contaminant-binding processes. The hypothesis of this study was that wetland plant roots contribute organic carbon and release O2 within the rhizosphere (plant-impact soil zone) that promote the formation of Fe(III)-(oxyhydr)oxides. In turn, these Fe(III)-(oxyhydr)oxides stabilize organic matter that together contribute to contaminant immobilization. Mineralogy and U binding environments of the rhizosphere were evaluated in samples collected from contaminated and non-contaminated areas of a wetland on the Savannah River Site in South Carolina. Based on Mössbauer spectroscopy, rhizosphere soil was greatly enriched with nanogoethite, ferrihydrite-like nanoparticulates, and hematite, with negligible Fe(II) present. X-ray computed tomography and various microscopy techniques showed that root plaques were tens-of-microns thick and consisted of highly oriented Fe-nanoparticles, suggesting that the roots were involved in creating the biogeochemical conditions conducive to the nanoparticle formation. XAS showed that a majority of the U in the bulk wetland soil was in the +6 oxidation state and was not well correlated spatially to Fe concentrations. SEM/EDS confirm that U was enriched on root plaques, where it was always found in association with P. Together these findings support our hypothesis and suggest that plants can alter mineralogical conditions that may be conducive to contaminant immobilization in wetlands. PMID:27328400

  18. Amazonian dark Earth and plant species from the Amazon region contribute to shape rhizosphere bacterial communities.

    PubMed

    Barbosa Lima, Amanda; Cannavan, Fabiana Souza; Navarrete, Acacio Aparecido; Teixeira, Wenceslau Geraldes; Kuramae, Eiko Eurya; Tsai, Siu Mui

    2015-05-01

    Amazonian Dark Earths (ADE) or Terra Preta de Índio formed in the past by pre-Columbian populations are highly sustained fertile soils supported by microbial communities that differ from those extant in adjacent soils. These soils are found in the Amazon region and are considered as a model soil when compared to the surrounding and background soils. The aim of this study was to assess the effects of ADE and its surrounding soil on the rhizosphere bacterial communities of two leguminous plant species that frequently occur in the Amazon region in forest sites (Mimosa debilis) and open areas (Senna alata). Bacterial community structure was evaluated using terminal restriction fragment length polymorphism (T-RFLP) and bacterial community composition by V4 16S rRNA gene region pyrosequencing. T-RFLP analysis showed effect of soil types and plant species on rhizosphere bacterial community structure. Differential abundance of bacterial phyla, such as Acidobacteria, Actinobacteria, Verrucomicrobia, and Firmicutes, revealed that soil type contributes to shape the bacterial communities. Furthermore, bacterial phyla such as Firmicutes and Nitrospira were mostly influenced by plant species. Plant roots influenced several soil chemical properties, especially when plants were grown in ADE. These results showed that differences observed in rhizosphere bacterial community structure and composition can be influenced by plant species and soil fertility due to variation in soil attributes. PMID:25103911

  19. A radioisotope based methodology for plant-fungal interactions in the rhizosphere

    SciTech Connect

    Weisenberger, A. G.; Bonito, G.; Lee, S.; McKisson, J. E.; Gryganskyi, A.; Reid, C. D.; Smith, M. F.; Vaidyanathan, G.; Welch, B.

    2013-10-01

    In plant ecophysiology research there is interest in studying the biology of the rhizosphere because of its importance in plant nutrient-interactions. The rhizosphere is the zone of soil surrounding a plant's root system where microbes (such as fungi) are influenced by the root and the roots by the microbes. We are investigating a methodology for imaging the distribution of molecular compounds of interest in the rhizosphere without disturbing the root or soil habitat. Our intention is to develop a single photon emission computed tomography (SPECT) system (PhytoSPECT) to image the bio-distribution of fungi in association with a host plant's roots. The technique we are exploring makes use of radioactive isotopes as tracers to label molecules that bind to fungal-specific compounds of interest and to image the fungi distribution in the plant and/or soil. We report on initial experiments designed to test the ability of fungal-specific compounds labeled with an iodine radioisotope that binds to chitin monomers (N-acetylglucosamine). Chitin is a compound not found in roots but in fungal cell walls. We will test the ability to label the compound with radioactive isotopes of iodine ({sup 125}I, and {sup 123}I).

  20. ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants.

    PubMed

    Bal, Himadri Bhusan; Das, Subhasis; Dangar, Tushar K; Adhya, Tapan K

    2013-12-01

    Beneficial plant-associated bacteria play a key role in supporting and/or promoting plant growth and health. Plant growth promoting bacteria present in the rhizosphere of crop plants can directly affect plant metabolism or modulate phytohormone production or degradation. We isolated 355 bacteria from the rhizosphere of rice plants grown in the farmers' fields in the coastal rice field soil from five different locations of the Ganjam district of Odisha, India. Six bacteria producing both ACC deaminase (ranging from 603.94 to 1350.02 nmol α-ketobutyrate mg(-1)  h(-1) ) and indole acetic acid (IAA; ranging from 10.54 to 37.65 μM ml(-1) ) in pure cultures were further identified using polyphasic taxonomy including BIOLOG((R)) , FAME analysis and the 16S rRNA gene sequencing. Phylogenetic analyses of the isolates resulted into five major clusters to include members of the genera Bacillus, Microbacterium, Methylophaga, Agromyces, and Paenibacillus. Seed inoculation of rice (cv. Naveen) by the six individual PGPR isolates had a considerable impact on different growth parameters including root elongation that was positively correlated with ACC deaminase activity and IAA production. The cultures also had other plant growth attributes including ammonia production and at least two isolates produced siderophores. Study indicates that presence of diverse rhizobacteria with effective growth-promoting traits, in the rice rhizosphere, may be exploited for a sustainable crop management under field conditions. PMID:23681643

  1. Effect of rhizosphere on soil microbial community and in-situ pyrene biodegradation

    USGS Publications Warehouse

    Su, Y.; Yang, X.; Chiou, C.T.

    2008-01-01

    To access the influence of a vegetation on soil microorganisms toward organic pollutant biogegration, this study examined the rhizospheric effects of four plant species (sudan grass, white clover, alfalfa, and fescue) on the soil microbial community and in-situ pyrene (PYR) biodegradation. The results indicated that the spiked PYR levels in soils decreased substantially compared to the control soil without planting. With equal planted densities, the efficiencies of PYR degradation in rhizosphere with sudan grass, white clover, alfalfa and fescue were 34.0%, 28.4%, 27.7%, and 9.9%, respectively. However, on the basis of equal root biomass the efficiencies were in order of white clover >> alfalfa > sudan > fescue. The increased PYR biodegradation was attributed to the enhanced bacterial population and activity induced by plant roots in the rhizosphere. Soil microbial species and biomasses were elucidated in terms of microbial phospholipid ester-linked fatty acid (PLFA) biomarkers. The principal component analysis (PCA) revealed significant changes in PLFA pattern in planted and non-planted soils spiked with PYR. Total PLFAs in planted soils were all higher than those in non-planted soils. PLFA assemblages indicated that bacteria were the primary PYR degrading microorganisms, and that Gram-positive bacteria exhibited higher tolerance to PYR than Gram-negative bacteria did. ?? 2008 Higher Education Press and Springer-Verlag GmbH.

  2. Rhizospheric mobilization and plant uptake of radiocesium from weathered micas: II. Influence of mineral alterability.

    PubMed

    Thiry, Yves; Gommers, Annick; Iserentant, Anne; Delvaux, Bruno

    2005-01-01

    Acute K depletion in the rhizosphere can lead to increased root uptake of radiocesium. Two processes can govern this increase: the very low uptake of potassium and the weathering of Cs-fixing clay minerals. Their respective importance is, however, unknown. We investigated the effects of these processes on radiocesium mobilization by roots of willow (Salix viminalis L.) from three micas: muscovite, biotite, and phlogopite. Willows were grown in a mixed quartz-mica substrate with the three respective (134)Cs-contaminated micas as sole sources of potassium and radiocesium. After 7 wk of plant growth, the micas were partially weathered. The degree of mica weathering and the prevalent potassium concentration in the solution increased in the order muscovite (5-11 microM K) < biotite (25-32 microM K) < phlogopite (25-35 microM K). The mobilization and root uptake of radiocesium were negligible with muscovite but increased in the same order. These results show that mica weathering directly and chiefly governs the mobility of radiocesium in K-depleted rhizosphere soil. The low mobility of trace Cs in the muscovite rhizosphere is linked with the dioctahedral character of this mica, and hence to its very low alterability. PMID:16275718

  3. Bacterial diversity in the rhizosphere of maize and the surrounding carbonate-rich bulk soil

    PubMed Central

    García-Salamanca, Adela; Molina-Henares, M Antonia; van Dillewijn, Pieter; Solano, Jennifer; Pizarro-Tobías, Paloma; Roca, Amalia; Duque, Estrella; Ramos, Juan L

    2013-01-01

    Maize represents one of the main cultivar for food and energy and crop yields are influenced by soil physicochemical and climatic conditions. To study how maize plants influence soil microbes we have examined microbial communities that colonize maize plants grown in carbonate-rich soil (pH 8.5) using culture-independent, PCR-based methods. We observed a low proportion of unclassified bacteria in this soil whether it was planted or unplanted. Our results indicate that a higher complexity of the bacterial community is present in bulk soil with microbes from nine phyla, while in the rhizosphere microbes from only six phyla were found. The predominant microbes in bulk soil were bacteria of the phyla Acidobacteria, Bacteroidetes and Proteobacteria, while Gammaproteobacteria of the genera Pseudomonas and Lysobacter were the predominant in the rhizosphere. As Gammaproteobacteria respond chemotactically to exudates and are efficient in the utilization of plants exudate products, microbial communities associated to the rhizosphere seem to be plant-driven. It should be noted that Gammaproteobacteria made available inorganic nutrients to the plants favouring plant growth and then the benefit of the interaction is common. PMID:22883414

  4. Microbial community biogeographic patterns in the rhizosphere of two Brazilian semi-arid leguminous trees.

    PubMed

    Lançoni, Milena Duarte; Taketani, Rodrigo Gouvêa; Kavamura, Vanessa Nessner; de Melo, Itamar Soares

    2013-07-01

    Arid environments are regular and well distributed over all continents and display drought characteristics whether full-time or seasonal. This study aims to characterize how the microbial communities of the rhizosphere of two leguminous trees from the Brazilian semi-arid biome the Caatinga are geographically and seasonally shaped, as well as the factors driving this variation. With that purpose, the soil rhizosphere from two leguminous trees (Mimosa tenuiflora and Piptadenia stipulacea (Benth.) Ducke) were sampled in two different seasons: rainy and drought at five different sites. Assessment of bacterial and archaeal communities occurred by T-RFLP analysis of 16S rRNA and archaeal amoA genes. By these means, it was observed that the seasons (wet and dry periods) are the factors that most influence the composition of the microbial community from both analyzed plants, except for the results obtained from the CCA applied to Archaeas. Furthermore, soil physical-chemical factors also had a significant influence on the community and indicated a geographical pattern of the bacterial community. It was not possible to observe significant modifications in the composition in relation to the plant species. We have seen that soil characteristics and rainfall were the factors that most influenced the microbial composition. Also, the bacterial community had a significant correlation with soil characteristics that indicates that these rhizosphere communities might be selected by environmental characteristics. Furthermore, the data suggest that climate plays a key role in structuring the microbial community of this biome. PMID:23435935

  5. Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment

    DOE PAGESBeta

    Timm, Collin M.; Campbell, Alicia G.; Utturkar, Sagar M.; Jun, Se Ran; Parales, Rebecca E.; Tan, Mesa; Robeson, Michael S.; Lu, Tse-Yuan S.; Jawdy, Sara; Schadt, Christopher Warren; et al

    2015-10-14

    The bacterial microbiota of plants is diverse, with ~1000s of operational taxonomic units (OTUs) associated with any individual plant. In this work we investigate how 19 sequenced Pseudomonas fluorescens strains representing a single OTU isolated from Populus deltoides rhizosphere and endosphere differ using phenotypic analysis, comparative genomics, and metabolic models. While no traits were exclusive to either endosphere or rhizosphere P. fluorescens isolates, multiple pathways relevant for bacterial-plant interactions are enriched in endosphere isolate genomes and growth phenotypes such as phosphate solubilization, protease activity, denitrification and root growth promotion are biased towards endosphere isolates. Endosphere isolates have more metabolic pathwaysmore » for plant signaling compounds and an increased metabolic range that includes utilization of energy rich nucleotides and sugars, consistent with endosphere colonization. Rhizosphere P. fluorescens have fewer pathways important for bacterial-plant interactions but show metabolic bias towards chemical substrates often found in root exudates. This work reveals the diverse functions that may contribute to colonization of the endosphere by bacteria that are enriched in event he most closely related isolates.« less

  6. Effects of Elevated Atmospheric CO(2) on Rhizosphere Soil Microbial Communities in a Mojave Desert Ecosystem.

    PubMed

    Nguyen, L M; Buttner, M P; Cruz, P; Smith, S D; Robleto, E A

    2011-10-01

    The effects of elevated atmospheric carbon dioxide [CO(2)] on microbial communities in arid rhizosphere soils beneath Larrea tridentata were examined. Roots of Larrea were harvested from plots fumigated with elevated or ambient levels of [CO(2)] using Free-Air CO(2) Enrichment (FACE) technology. Twelve bacterial and fungal rRNA gene libraries were constructed, sequenced and categorized into operational taxonomical units (OTUs). There was a significant decrease in OTUs within the Firmicutes (bacteria) in elevated [CO(2)], and increase in Basiomycota (fungi) in rhizosphere soils of plots exposed to ambient [CO(2)]. Phylogenetic analyses indicated that OTUs belonged to a wide range of bacterial and fungal taxa. To further study changes in bacterial communities, Quantitative Polymerase Chain Reaction (QPCR) was used to quantify populations of bacteria in rhizosphere soil. The concentration of total bacteria 16S rDNA was similar in conditions of enriched and ambient [CO(2)]. However, QPCR of Gram-positive microorganisms showed a 43% decrease in the population in elevated [CO(2)]. The decrease in representation of Gram positives and the similar values for total bacterial DNA suggest that the representation of other bacterial taxa was promoted by elevated [CO(2)]. These results indicate that elevated [CO(2)] changes structure and representation of microorganisms associated with roots of desert plants. PMID:21779135

  7. Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage.

    PubMed

    Mirete, Salvador; de Figueras, Carolina G; González-Pastor, Jose E

    2007-10-01

    Metal resistance determinants have traditionally been found in cultivated bacteria. To search for genes involved in nickel resistance, we analyzed the bacterial community of the rhizosphere of Erica andevalensis, an endemic heather which grows at the banks of the Tinto River, a naturally metal-enriched and extremely acidic environment in southwestern Spain. 16S rRNA gene sequence analysis of rhizosphere DNA revealed the presence of members of five phylogenetic groups of Bacteria and the two main groups of Archaea mostly associated with sites impacted by acid mine drainage (AMD). The diversity observed and the presence of heavy metals in the rhizosphere led us to construct and screen five different metagenomic libraries hosted in Escherichia coli for searching novel nickel resistance determinants. A total of 13 positive clones were detected and analyzed. Insights about their possible mechanisms of resistance were obtained from cellular nickel content and sequence similarities. Two clones encoded putative ABC transporter components, and a novel mechanism of metal efflux is suggested. In addition, a nickel hyperaccumulation mechanism is proposed for a clone encoding a serine O-acetyltransferase. Five clones encoded proteins similar to well-characterized proteins but not previously reported to be related to nickel resistance, and the remaining six clones encoded hypothetical or conserved hypothetical proteins of uncertain functions. This is the first report documenting nickel resistance genes recovered from the metagenome of an AMD environment. PMID:17675438

  8. Simulating root-induced rhizosphere deformation and its effect on water flow

    NASA Astrophysics Data System (ADS)

    Aravena, J. E.; Ruiz, S.; Mandava, A.; Regentova, E. E.; Ghezzehei, T.; Berli, M.; Tyler, S. W.

    2011-12-01

    Soil structure in the rhizosphere is influenced by root activities, such as mucilage production, microbial activity and root growth. Root growth alters soil structure by moving and deforming soil aggregates, affecting water and nutrient flow from the bulk soil to the root surface. In this study, we utilized synchrotron X-ray micro-tomography (XMT) and finite element analysis to quantify the effect of root-induced compaction on water flow through the rhizosphere to the root surface. In a first step, finite element meshes of structured soil around the root were created by processing rhizosphere XMT images. Then, soil deformation by root expansion was simulated using COMSOL Multiphysics° (Version 4.2) considering the soil an elasto-plastic porous material. Finally, fluid flow simulations were carried out on the deformed mesh to quantify the effect of root-induced compaction on water flow to the root surface. We found a 31% increase in water flow from the bulk soil to the root due to a 56% increase in root diameter. Simulations also show that the increase of root-soil contact area was the dominating factor with respect to the calculated increase in water flow. Increase of inter-aggregate contacts in size and number were observed within a couple of root diameters away from the root surface. But their influence on water flow was, in this case, rather limited compared to the immediate soil-root contact.

  9. Microbiote shift in the Medicago sativa rhizosphere in response to cyanotoxins extract exposure.

    PubMed

    El Khalloufi, Fatima; Oufdou, Khalid; Bertrand, Marie; Lahrouni, Majida; Oudra, Brahim; Ortet, Philippe; Barakat, Mohamed; Heulin, Thierry; Achouak, Wafa

    2016-01-01

    The bloom-containing water bodies may have an impact due to cyanotoxins production on other microorganisms and aquatic plants. Where such water is being used for crops irrigation, the presence of cyanotoxins may also have a toxic impact on terrestrial plants and their rhizosphere microbiota. For that purpose, PCR-based 454 pyrosequencing was applied to phylogenetically characterize the bacterial community of Medicago sativa rhizosphere in response to cyanotoxins extract. This analysis revealed a wide diversity at species level, which decreased from unplanted soil to root tissues indicating that only some populations were able to compete for nutrients and niches in this selective habitat. Gemmatimonas, Actinobacteria, Deltaproteobacteria and Opitutae mainly inhabited the bulk soil, whereas, the root-adhering soil and the root tissues were inhabited by Gammaproteobacteria and Alphaproteobacteria. The proportion of these populations fluctuated in response to cyanotoxins extract exposure. Betaproteobacteria proportion increased in the three studied compartments, whereas Gammaproteobacteria proportion decreased except in the bulk soil. This study revealed the potential toxicity of cyanotoxins extract towards Actinobacteria, Gemmatimonas, Deltaproteobacteria, and Gammaproteobacteria, however Clostridia, Opitutae and bacteria related with Betaproteobacteria, were stimulated denoting their tolerance. Altogether, these data indicate that crop irrigation using cyanotoxins containing water might alter the rhizosphere functioning. PMID:26356186

  10. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere

    PubMed Central

    Yang, Bo; Wang, Xiao-Mi; Ma, Hai-Yan; Yang, Teng; Jia, Yong; Zhou, Jun; Dai, Chuan-Chao

    2015-01-01

    The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N), but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics, the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea). Ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage). A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates, affected the abundance and community structure of AOA, AOB, and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids in root exudates. Plant-soil feedback mechanisms may be mediated by the rice-endophyte interaction, especially in nutrient-limited soil. PMID:26441912

  11. Pseudomonas aeruginosa PAO1 virulence factors and poplar tree response in the rhizosphere

    PubMed Central

    Attila, Can; Ueda, Akihiro; Cirillo, Suat L. G.; Cirillo, Jeffrey D.; Chen, Wilfred; Wood, Thomas K.

    2008-01-01

    Summary Whole‐transcriptome analysis was used here for the first time in the rhizosphere to discern the genes involved in the pathogenic response of Pseudomonas aeruginosa PAO1 as well as to discern the response of the poplar tree. Differential gene expression shows that 185 genes of the bacterium and 753 genes of the poplar tree were induced in the rhizosphere. Using the P. aeruginosatranscriptome analysis, isogenic knockout mutants, and two novel plant assays (poplar and barley), seven novel PAO1 virulence genes were identified (PA1385, PA2146, PA2462, PA2463, PA2663, PA4150 and PA4295). The uncharacterized putative haemolysin repressor, PA2463, upon inactivation, resulted in greater poplar virulence and elevated haemolysis while this mutant remained competitive in the rhizosphere. In addition, disruption of the haemolysin gene itself (PA2462) reduced the haemolytic activity of P. aeruginosa, caused less cytotoxicity and reduced barley virulence, as expected. Inactivating PA1385, a putative glycosyl transferase, reduced both poplar and barley virulence. Furthermore, disrupting PA2663, a putative membrane protein, reduced biofilm formation by 20‐fold. Inactivation of PA3476 (rhlI) increased virulence with barley as well as haemolytic activity and cytotoxicity, so quorum sensing is important in plant pathogenesis. Hence, this strategy is capable of elucidating virulence genes for an important pathogen. PMID:21261818

  12. Anthropogenic impact on diazotrophic diversity in the mangrove rhizosphere revealed by nifH pyrosequencing

    PubMed Central

    Jing, Hongmei; Xia, Xiaomin; Liu, Hongbin; Zhou, Zhi; Wu, Chen; Nagarajan, Sanjay

    2015-01-01

    Diazotrophs in the mangrove rhizosphere play a major role in providing new nitrogen to the mangrove ecosystem and their composition and activity are strongly influenced by anthropogenic activity and ecological conditions. In this study, the diversity of the diazotroph communities in the rhizosphere sediment of five tropical mangrove sites with different levels of pollution along the north and south coastline of Singapore were studied by pyrosequencing of the nifH gene. Bioinformatics analysis revealed that in all the studied locations, the diazotroph communities comprised mainly of members of the diazotrophic cluster I and cluster III. The detected cluster III diazotrophs, which were composed entirely of sulfate-reducing bacteria, were more abundant in the less polluted locations. The metabolic capacities of these diazotrophs indicate the potential for bioremediation and resiliency of the ecosystem to anthropogenic impact. In heavily polluted locations, the diazotrophic community structures were markedly different and the diversity of species was significantly reduced when compared with those in a pristine location. This, together with the increased abundance of Marinobacterium, which is a bioindicator of pollution, suggests that anthropogenic activity has a negative impact on the genetic diversity of diazotrophs in the mangrove rhizosphere. PMID:26539189

  13. Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment

    PubMed Central

    Timm, Collin M.; Campbell, Alisha G.; Utturkar, Sagar M.; Jun, Se-Ran; Parales, Rebecca E.; Tan, Watumesa A.; Robeson, Michael S.; Lu, Tse-Yuan S.; Jawdy, Sara; Brown, Steven D.; Ussery, David W.; Schadt, Christopher W.; Tuskan, Gerald A.; Doktycz, Mitchel J.; Weston, David J.; Pelletier, Dale A.

    2015-01-01

    The bacterial microbiota of plants is diverse, with 1000s of operational taxonomic units (OTUs) associated with any individual plant. In this work, we used phenotypic analysis, comparative genomics, and metabolic models to investigate the differences between 19 sequenced Pseudomonas fluorescens strains. These isolates represent a single OTU and were collected from the rhizosphere and endosphere of Populus deltoides. While no traits were exclusive to either endosphere or rhizosphere P. fluorescens isolates, multiple pathways relevant for plant-bacterial interactions are enriched in endosphere isolate genomes. Further, growth phenotypes such as phosphate solubilization, protease activity, denitrification and root growth promotion are biased toward endosphere isolates. Endosphere isolates have significantly more metabolic pathways for plant signaling compounds and an increased metabolic range that includes utilization of energy rich nucleotides and sugars, consistent with endosphere colonization. Rhizosphere P. fluorescens have fewer pathways representative of plant-bacterial interactions but show metabolic bias toward chemical substrates often found in root exudates. This work reveals the diverse functions that may contribute to colonization of the endosphere by bacteria and are enriched among closely related isolates. PMID:26528266

  14. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation.

    PubMed

    Martínez-Alcalá, I; Walker, D J; Bernal, M P

    2010-05-01

    To understand better the suitability of white lupin (Lupinus albus L.) for phytoremediation of heavy metal-contaminated soils, the effect of its roots on chemical and biological properties of the rhizosphere affecting soil metal fractionation was studied. Plants were cultivated in two similar soils, with high levels of Zn, Cd, Cu and Pb but differing pH values (4.2 and 6.8). In the rhizosphere of both soils, its roots induced increases in water-soluble carbon, which influenced the fractionation of heavy metals and ultimately their uptake by plant roots. In the rhizosphere of the acid soil, the concentrations of 0.1M CaCl(2)-extractable Mn, Zn and Cu were lower than in the bulk soil, possibly due to their increased retention on Fe (III) hydroxides/oxyhydroxides, while in the neutral soil only the Zn concentration was lower. Higher concentrations of heavy metals were found in plants growing on the acid soil, reflecting their greater availability in this soil. The restricted transfer of heavy metals to the shoot confirms the potential role of this species in the initial phytoimmobilisation of heavy metals, particularly in neutral-alkaline soils. PMID:20060590

  15. Thallium contamination of soils/vegetation as affected by sphalerite weathering: a model rhizospheric experiment.

    PubMed

    Vaněk, Aleš; Grösslová, Zuzana; Mihaljevič, Martin; Ettler, Vojtěch; Chrastný, Vladislav; Komárek, Michael; Tejnecký, Václav; Drábek, Ondřej; Penížek, Vít; Galušková, Ivana; Vaněčková, Barbora; Pavlů, Lenka; Ash, Christopher

    2015-01-01

    The environmental stability of Tl-rich sphalerite in two contrasting soils was studied. Rhizospheric conditions were simulated to assess the risk associated with sulfide microparticles entering agricultural (top)soils. The data presented here clearly demonstrate a significant effect of 500 μM citric acid, a model rhizospheric solution, on ZnS alteration followed by enhanced Tl and Zn release. The relative ZnS mass loss after 28 days of citrate incubation reached 0.05 and 0.03 wt.% in Cambisol and Leptosol samples respectively, and was up to 4 times higher, compared to H2O treatments. Incongruent (i.e., substantially increased) mobilization of Tl from ZnS was observed during the incubation time. Generally higher (long-term) stability of ZnS with lower Tl release is predicted for soils enriched in carbonates. Furthermore, the important role of silicates (mainly illite) in the stabilization of mobilized Tl, linked with structural (inter)layer Tl-K exchange, is suggested. Thallium was highly bioavailable, as indicated by its uptake by white mustard; maximum Tl amounts were detected in biomass grown on the acidic Cambisol. Despite the fact that sulfides are thought as relatively stable phases in soil environments, enhanced sulfide dissolution and Tl/trace element release (and bioaccumulation) can be assumed in rhizosphere systems. PMID:25265594

  16. Assessing variation in bacterial composition between the rhizospheres of two mangrove tree species

    NASA Astrophysics Data System (ADS)

    Gomes, Newton C. M.; Cleary, Daniel F. R.; Pires, Ana C. C.; Almeida, Adelaide; Cunha, Angela; Mendonça-Hagler, Leda C. S.; Smalla, Kornelia

    2014-02-01

    This study aimed to determine to what extent roots from the common mangrove tree species Avicennia schaueriana and Laguncularia racemosa are able to impose a selective force on the composition of sediment bacterial communities in mangrove intertidal sediments using barcoded pyrosequencing analysis of 16S rRNA gene fragments (V4 hyper-variable region). The novel results showed that root systems of A. schaueriana and L. racemosa are associated with increased bacterial dominance, lower richness and compositional shifts of sediment bacterial communities. The proportion of OTUs (operational taxonomc units) belonging to the orders Rhizobiales and Vibrionales were enriched in rhizosphere samples from both plant species and sulphur-reducing bacteria (SRB) belonging to the order Desulfobacterales and Desulfuromonadales were enriched in the rhizosphere of A. schaueriana. In addition, Clostridium and Vibrio populations were more abundant in different mangrove rhizospheres. A. schaueriana and L. racemosa roots appear to be able to impose a selective force on the composition of mangrove sediment bacterial communities and this phenomenon appears to be plant species specific. Our findings provide new insights into the potential ecological roles of bacterial guilds in plant-microbe interactions and may aid rhizoengineering approaches for replanting impacted mangrove areas.

  17. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum.

    PubMed

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-12-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. PMID:24311557

  18. Growth responses of indigenous Frankia populations to edaphic factors in actinorhizal rhizospheres.

    PubMed

    Samant, Suvidha S; Dawson, Jeffrey O; Hahn, Dittmar

    2015-10-01

    Quantitative PCR (qPCR) was used to follow population dynamics of indigenous Frankia populations in bulk soil, in leaf-litter-amended soil and in the rhizosphere of Alnus glutinosa or Casuarina equisetifolia at 2 matric potentials representing dry and wet conditions in soil microcosms. Analyses revealed between 10- and 100-fold increases of Frankia populations within the incubation period of 12 weeks independent of treatment. Numbers were generally higher under dry conditions and in the rhizosphere, with that of C. equisetifolia supporting highest abundance. Frankiae detected at any time and treatment belonged to either subgroup I of the Alnus host infection group or the Elaeagnus host infection group, with those of the Elaeagnus host infection group largely representing the genus in all samples under wet conditions, and in bulk and leaf litter amended soil under dry conditions. Subgroup I of the Alnus host infection group was most prominent in the rhizosphere of both plant species where it represented up to 95% of the genus with higher percentages in that of C. equisetifolia. PMID:26283319

  19. [Nutrient Characteristics and Nitrogen Forms of Rhizosphere Soils Under Four Typical Plants in the Littoral Zone of TGR].

    PubMed

    Wang, Xiao-feng; Yuan, Xing-zhong; Liu, Hong; Zhang, Lei; Yu, Jian-jun; Yue, Jun-sheng

    2015-10-01

    The Three Gorges Reservoir (TGR), which is the largest water conservancy project ever built in tne world, produced a drawdown area of about 348.93 km2 because of water level control. The biological geochemical cycle of the soil in the drawdown zone has been changed as the result of long-term winter flooding and summer drought and vegetation covering. The loss of soil nitrogen in the drawdown zone poses a threat to the water environmental in TGR. Pengxi river, is an important anabranch, which has the largest drawdown area has been selected in the present study. The four typical vegetation, contained Cynodon dactylon, Cyperus rotundus, Anthium sibiricum and Zea mays L. as the control, were studied to measure nutrient characteristics and nitrogen forms of rhizosphere and non-rhizosphere soils in three distribution areas with different soil types (paddy soil, purple soil and fluvo-aquic soils). The variables measured included organic matter (OM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), hydrolysis N, available P and available K, pH, ion-exchangeable N (IEE-N), weak acid extractable N (CF-N) , iron-manganese oxides N (IMOF-N), organic matter sulfide N (OSF-N), added up four N forms for total transferable N (TF-N) and TN minus TF-N for non-transferable N (NTF-N). The results showed: (1) pH of rhizosphere soil was generally lower than that of non-rhizosphere soil under different vegetation in different type soils because the possible organic acid and H+ released form plant roots and cation absorption differences, and the OM, TP, TN and hydrolysis N of rhizosphere soil were generally higher than those of non-rhizosphere soil, and that the enrichment ratio (ER) of all the four nutrient indicators showed Cyperus rotundus > Cynodon dactylon > Zea mays L. > Anthium sibiricum. Available P showed enrichment in the rhizosphere of three natural vegetations but lose under corn, and available K, TK showed different ER in different conditions. (2) IEF-N CF

  20. Molecular characterization of microbial communities in the rhizosphere soils and roots of diseased and healthy Panax notoginseng.

    PubMed

    Wu, Zhaoxiang; Hao, Zhipeng; Zeng, Yan; Guo, Lanping; Huang, Luqi; Chen, Baodong

    2015-11-01

    Rhizosphere and root-associated microbial communities are known to be related to soil-borne disease and plant health. In the present study, the microbial communities in rhizosphere soils and roots of both healthy and diseased Panax notoginseng were analyzed by high-throughput sequencing of 16S rRNA for bacteria and 18S rRNA internal transcribed spacer for fungi, to reveal the relationship of microbial community structure with plant health status. In total, 5593 bacterial operational taxonomic units (OTUs) and 963 fungal OTUs were identified in rhizosphere soils, while 1794 bacterial and 314 fungal OTUs were identified from root samples respectively. Principal coordinate analysis separated the microbial communities both in the rhizosphere soils and roots of diseased P. notoginseng from healthy plants. Compared to those of healthy P. notoginseng, microbial communities in rhizosphere soils and roots of diseased plants showed a decrease in alpha diversity. By contrast, bacterial community dissimilarity increased and fungal community dissimilarity decreased in rhizosphere soils of diseased plants, while both bacterial and fungal community dissimilarity in roots showed no significant difference between healthy and diseased plants. Redundancy analysis at the phylum level showed that mycorrhizal colonization and soil texture significantly affected microbial community composition in rhizosphere soils, whereas shoot nutrition status had a significant effect on microbial community composition in root samples. Our study provided strong evidence for the hypothesis that microbial diversity could potentially serve as an indicator for disease outbreak of medicinal plants, and supported the ecological significance of microbial communities in maintaining plant healthy and soil fertility. PMID:26296378

  1. Enhanced Mineralization of [U-14C]2,4-Dichlorophenoxyacetic Acid in Soil from the Rhizosphere of Trifolium pratense

    PubMed Central

    Shaw, Liz J.; Burns, Richard G.

    2004-01-01

    Enhanced biodegradation in the rhizosphere has been reported for many organic xenobiotic compounds, although the mechanisms are not fully understood. The purpose of this study was to discover whether rhizosphere-enhanced biodegradation is due to selective enrichment of degraders through growth on compounds produced by rhizodeposition. We monitored the mineralization of [U-14C]2,4-dichlorophenoxyacetic acid (2,4-D) in rhizosphere soil with no history of herbicide application collected over a period of 0 to 116 days after sowing of Lolium perenne and Trifolium pratense. The relationships between the mineralization kinetics, the number of 2,4-D degraders, and the diversity of genes encoding 2,4-D/α-ketoglutarate dioxygenase (tfdA) were investigated. The rhizosphere effect on [14C]2,4-D mineralization (50 μg g−1) was shown to be plant species and plant age specific. In comparison with nonplanted soil, there were significant (P < 0.05) reductions in the lag phase and enhancements of the maximum mineralization rate for 25- and 60-day T. pratense soil but not for 116-day T. pratense rhizosphere soil or for L. perenne rhizosphere soil of any age. Numbers of 2,4-D degraders in planted and nonplanted soil were low (most probable number, <100 g−1) and were not related to plant species or age. Single-strand conformational polymorphism analysis showed that plant species had no impact on the diversity of α-Proteobacteria tfdA-like genes, although an impact of 2,4-D application was recorded. Our results indicate that enhanced mineralization in T. pratense rhizosphere soil is not due to enrichment of 2,4-D-degrading microorganisms by rhizodeposits. We suggest an alternative mechanism in which one or more components of the rhizodeposits induce the 2,4-D pathway. PMID:15294813

  2. Species-specific effects of polyploidisation and plant traits of Centaurea maculosa and Senecio inaequidens on rhizosphere microorganisms.

    PubMed

    Thébault, Aurélie; Frey, Beat; Mitchell, Edward A D; Buttler, Alexandre

    2010-08-01

    Invasive plant species represent a threat to terrestrial ecosystems, but their effects on the soil biota and the mechanisms involved are not yet well understood. Many invasive species have undergone polyploidisation, leading to the coexistence of various cytotypes in the native range, whereas, in most cases, only one cytotype is present in the introduced range. Since genetic variation within a species can modify soil rhizosphere communities, we studied the effects of different cytotypes and ranges (native diploid, native tetraploid and introduced tetraploid) of Centaurea maculosa and Senecio inaequidens on microbial biomass carbon, rhizosphere total DNA content and bacterial communities of a standard soil in relation to plant functional traits. There was no overall significant difference in microbial biomass between cytotypes. The variation of rhizosphere total DNA content and bacterial community structure according to cytotype was species specific. The rhizosphere DNA content of S. inaequidens decreased with polyploidisation in the native range but did not vary for C. maculosa. In contrast, the bacterial community structure of C. maculosa was affected by polyploidisation and its diversity increased, whereas there was no significant change for S. inaequidens. Traits of S. inaequidens were correlated to the rhizosphere biota. Bacterial diversity and total DNA content were positively correlated with resource allocation to belowground growth and late flowering, whereas microbial biomass carbon was negatively correlated to investment in reproduction. There were no correlations between traits of the cytotypes of C. maculosa and corresponding rhizosphere soil biota. This study shows that polyploidisation may affect rhizosphere bacterial community composition, but that effects vary among plant species. Such changes may contribute to the success of invasive polyploid genotypes in the introduced range. PMID:20229242

  3. Influence of rhizosphere microbial ecophysiological parameters from different plant species on butachlor degradation in a riparian soil.

    PubMed

    Yang, Changming; Wang, Mengmeng; Li, Jianhua

    2012-01-01

    Biogeochemical processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. However, little research has been reported on the microbial process and degradation potential of herbicide in a riparian soil. Field sampling and incubation experiments were conducted to investigate differences in microbial parameters and butachlor degradation in the riparian soil from four plant communities in Chongming Island, China. The results suggested that the rhizosphere soil had significantly higher total organic C and water-soluble organic C relative to the nonrhizosphere soil. Differences in rhizosphere microbial community size and physiological parameters among vegetation types were significant. The rhizosphere soil from the mixed community of Phragmites australis and Acorus calamus had the highest microbial biomass and biochemical activity, followed by A. calamus, P. australis and Zizania aquatica. Microbial ATP, dehydrogenase activity (DHA), and basal soil respiration (BSR) in the rhizosphere of the mixed community of P. australis and A. calamus were 58, 72, and 62% higher, respectively, than in the pure P. australis community. Compared with the rhizosphere soil of the pure plant communities, the mixed community of P. australis and A. calamus displayed a significantly greater degradation rate of butachlor in the rhizosphere soil. Residual butachlor concentrations in rhizosphere soil of the mixed community of P. australis and A. calamus and were 48, 63, and 68% lower than three pure plant communities, respectively. Butachlor degradation rates were positively correlated to microbial ATP, DHA, and BSR, indicating that these microbial parameters may be useful in assessing butachlor degradation potential in the riparian soil. PMID:22565253

  4. Influence of indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: a rhizobox study.

    PubMed

    Kim, Kwon-Rae; Owens, Gary; Kwon, Soon-lk

    2010-01-01

    This study investigated the influence of Indian mustard (Brassica juncea) root exudation on soil solution properties (pH, dissolved organic carbon (DOC), metal solubility) in the rhizosphere using a rhizobox. Measurement was conducted following the cultivation of Indian mustard in the rhizobox filled four different types of heavy metal contaminated soils (two alkaline soils and two acidic soils). The growth of Indian mustard resulted in a significant increase (by 0.6 pH units) in rhizosphere soil solution pH of acidic soils and only a slight increase (< 0.1 pH units) in alkaline soils. Furthermore, the DOC concentration increased by 17-156 mg/L in the rhizosphere regardless of soil type and the extent of contamination, demonstrating the exudation of DOC from root. Ion chromatographic determination showed a marked increase in the total dissolved organic acids (OAs) in rhizosphere. While root exudates were observed in all soils, the amount of DOC and OAs in soil solution varied considerably amongst different soils, resulting in significant changes to soil solution metals in the rhizosphere. For example, the soil solution Cd, Cu, Pb, and Zn concentrations increased in the rhizosphere of alkaline soils compared to bulk soil following plant cultivation. In contrast, the soluble concentrations of Cd, Pb, and Zn in acidic soils decreased in rhizosphere soil when compared to bulk soils. Besides the influence of pH and DOC on metal solubility, the increase of heavy metal concentration having high stability constant such as Cu and Pb resulted in a release of Cd and Zn from solid phase to liquid phase. PMID:20397393

  5. Survival of Azospirillum brasilense in the Bulk Soil and Rhizosphere of 23 Soil Types

    PubMed Central

    Bashan, Y.; Puente, M. E.; Rodriguez-Mendoza, M. N.; Toledo, G.; Holguin, G.; Ferrera-Cerrato, R.; Pedrin, S.

    1995-01-01

    The survival of Azospirillum brasilense Cd and Sp-245 in the rhizosphere of wheat and tomato plants and in 23 types of plant-free sterilized soils obtained from a wide range of environments in Israel and Mexico was evaluated. Large numbers of A. brasilense cells were detected in all the rhizospheres tested, regardless of soil type, bacterial strain, the origin of the soil, or the amount of rainfall each soil type received prior to sampling. Survival of A. brasilense in soils without plants differed from that in the rhizosphere and was mainly related to the geographical origin of the soil. In Israeli soils from arid, semiarid, or mountain regions, viability of A. brasilense rapidly declined or populations completely disappeared below detectable levels within 35 days after inoculation. In contrast, populations in the arid soils of Baja California Sur, Mexico, remained stable or even increased during the 45-day period after inoculation. In soils from Central Mexico, viability slowly decreased with time. In all soils, percentages of clay, nitrogen, organic matter, and water-holding capacity were positively correlated with bacterial viability. High percentages of CaCO(inf3) and fine or rough sand had a highly negative effect on viability. The percentage of silt, pH, the percentage of phosphorus or potassium, electrical conductivity, and C/N ratio had no apparent effect on bacterial viability in the soil. Fifteen days after removal of inoculated plants, the remaining bacterial population in the three soil types tested began to decline sharply, reaching undetectable levels 90 days after inoculation. After plant removal, percolating the soils with water almost eliminated the A. brasilense population. Viability of A. brasilense in two artificial soils containing the same major soil components as the natural soils from Israel did was almost identical to that in the natural soils. We conclude that A. brasilense is a rhizosphere colonizer which survives poorly in most soils

  6. Impact of a Bacterial Volatile 2,3-Butanediol on Bacillus subtilis Rhizosphere Robustness.

    PubMed

    Yi, Hwe-Su; Ahn, Yeo-Rim; Song, Geun C; Ghim, Sa-Youl; Lee, Soohyun; Lee, Gahyung; Ryu, Choong-Min

    2016-01-01

    Volatile compounds, such as short chain alcohols, acetoin, and 2,3-butanediol, produced by certain strains of root-associated bacteria (rhizobacteria) elicit induced systemic resistance in plants. The effects of bacterial volatile compounds (BVCs) on plant and fungal growth have been extensively studied; however, the impact of bacterial BVCs on bacterial growth remains poorly understood. In this study the effects of a well-characterized bacterial volatile, 2,3-butanediol, produced by the rhizobacterium Bacillus subtilis, were examined in the rhizosphere. The nature of 2,3-butanediol on bacterial cells was assessed, and the effect of the molecule on root colonization was also determined. Pepper roots were inoculated with three B. subtilis strains: the wild type, a 2,3-butanediol overexpressor, and a 2,3-butanediol null mutant. The B. subtilis null strain was the first to be eliminated in the rhizosphere, followed by the wild-type strain. The overexpressor mutant was maintained at roots for the duration of the experiment. Rhizosphere colonization by a saprophytic fungus declined from 14 days post-inoculation in roots treated with the B. subtilis overexpressor strain. Next, exudates from roots exposed to 2,3-butanediol were assessed for their impact on fungal and bacterial growth in vitro. Exudates from plant roots pre-treated with the 2,3-butanediol overexpressor were used to challenge various microorganisms. Growth was inhibited in a saprophytic fungus (Trichoderma sp.), the 2,3-butanediol null B. subtilis strain, and a soil-borne pathogen, Ralstonia solanacearum. Direct application of 2,3-butanediol to pepper roots, followed by exposure to R. solanacearum, induced expression of Pathogenesis-Related (PR) genes such as CaPR2, CaSAR8.2, and CaPAL. These results indicate that 2,3-butanediol triggers the secretion of root exudates that modulate soil fungi and rhizosphere bacteria. These data broaden our knowledge regarding bacterial volatiles in the rhizosphere and

  7. Development of micro push-pull tests to investigate rhizosphere processes

    NASA Astrophysics Data System (ADS)

    Knecht, K.; Nowack, B.; Schroth, M. H.; Schulin, R.

    2009-04-01

    The rhizosphere differs from the bulk soil due to the influence of the roots and the associated microbial and fungal activity. Most mechanistic rhizosphere research is undertaken in microcosms, often in the absence of soil. This has resulted in a fragmented understanding of many rhizospheric processes. The use of micro-techniques for the collection of soil solution enables non-destructive in situ observation of soil solution chemistry and aspects of soil solution biology. In conjunction with rhizoboxes that allow observing the development of root systems through a transparent front plate, micro-suction cups have been used successfully to collect soil solution adjacent to roots. This permits the determination of solute concentrations in the rhizosphere at high spatial and temporal resolution. Our goal now is to combine micro-suction cups with the technique of push-pull tests to create a miniaturized system that will be applicable to study reactions and exudation rates in the rhizosphere under conditions as undisturbed as possible. Push-pull tests have been used extensively on a larger scale for the investigation of chemical, physical and biological pollutant transport and degradation processes in aquifers. In a push-pull test, a solution containing reactive and non-reactive tracers is injected into an aquifer. After a defined time the test-solution/groundwater mixture is then extracted from the same location. As a first step we developed and tested a micro push-pull test procedure in sand-filled boxes under water-saturated conditions. We slowly injected about 250 μl solution and extracted 800 μl solution in increments of about 70 μl. As conservative tracers we used Acid Red 1 and bromide. The data were successfully modeled taking account of advection, dispersion and molecular diffusion. To study microbial degradation of exudates (e.g. citrate), push-pull tests were carried out in sand-filled boxes inoculated with denitrifying bacteria in the absence and presence

  8. Impact of a Bacterial Volatile 2,3-Butanediol on Bacillus subtilis Rhizosphere Robustness

    PubMed Central

    Yi, Hwe-Su; Ahn, Yeo-Rim; Song, Geun C.; Ghim, Sa-Youl; Lee, Soohyun; Lee, Gahyung; Ryu, Choong-Min

    2016-01-01

    Volatile compounds, such as short chain alcohols, acetoin, and 2,3-butanediol, produced by certain strains of root-associated bacteria (rhizobacteria) elicit induced systemic resistance in plants. The effects of bacterial volatile compounds (BVCs) on plant and fungal growth have been extensively studied; however, the impact of bacterial BVCs on bacterial growth remains poorly understood. In this study the effects of a well-characterized bacterial volatile, 2,3-butanediol, produced by the rhizobacterium Bacillus subtilis, were examined in the rhizosphere. The nature of 2,3-butanediol on bacterial cells was assessed, and the effect of the molecule on root colonization was also determined. Pepper roots were inoculated with three B. subtilis strains: the wild type, a 2,3-butanediol overexpressor, and a 2,3-butanediol null mutant. The B. subtilis null strain was the first to be eliminated in the rhizosphere, followed by the wild-type strain. The overexpressor mutant was maintained at roots for the duration of the experiment. Rhizosphere colonization by a saprophytic fungus declined from 14 days post-inoculation in roots treated with the B. subtilis overexpressor strain. Next, exudates from roots exposed to 2,3-butanediol were assessed for their impact on fungal and bacterial growth in vitro. Exudates from plant roots pre-treated with the 2,3-butanediol overexpressor were used to challenge various microorganisms. Growth was inhibited in a saprophytic fungus (Trichoderma sp.), the 2,3-butanediol null B. subtilis strain, and a soil-borne pathogen, Ralstonia solanacearum. Direct application of 2,3-butanediol to pepper roots, followed by exposure to R. solanacearum, induced expression of Pathogenesis-Related (PR) genes such as CaPR2, CaSAR8.2, and CaPAL. These results indicate that 2,3-butanediol triggers the secretion of root exudates that modulate soil fungi and rhizosphere bacteria. These data broaden our knowledge regarding bacterial volatiles in the rhizosphere and

  9. The Role of Malassezia spp. in Atopic Dermatitis

    PubMed Central

    Glatz, Martin; Bosshard, Philipp P.; Hoetzenecker, Wolfram; Schmid-Grendelmeier, Peter

    2015-01-01

    Malassezia spp. is a genus of lipophilic yeasts and comprises the most common fungi on healthy human skin. Despite its role as a commensal on healthy human skin, Malassezia spp. is attributed a pathogenic role in atopic dermatitis. The mechanisms by which Malassezia spp. may contribute to the pathogenesis of atopic dermatitis are not fully understood. Here, we review the latest findings on the pathogenetic role of Malassezia spp. in atopic dermatitis (AD). For example, Malassezia spp. produces a variety of immunogenic proteins that elicit the production of specific IgE antibodies and may induce the release of pro-inflammatory cytokines. In addition, Malassezia spp. induces auto-reactive T cells that cross-react between fungal proteins and their human counterparts. These mechanisms contribute to skin inflammation in atopic dermatitis and therefore influence the course of this disorder. Finally, we discuss the possible benefit of an anti-Malassezia spp. treatment in patients with atopic dermatitis. PMID:26239555

  10. Selection rhizosphere-competent microbes for development of microbial products as biocontrol agents

    NASA Astrophysics Data System (ADS)

    Mashinistova, A. V.; Elchin, A. A.; Gorbunova, N. V.; Muratov, V. S.; Kydralieva, K. A.; Khudaibergenova, B. M.; Shabaev, V. P.; Jorobekova, Sh. J.

    2009-04-01

    Rhizosphere-borne microorganisms reintroduced to the soil-root interface can establish without inducing permanent disturbance in the microbial balance and effectively colonise the rhizosphere due to carbon sources of plant root exudates. A challenge for future development of microbial products for use in agriculture will be selection of rhizosphere-competent microbes that both protect the plant from pathogens and improve crop establishment and persistence. In this study screening, collection, identification and expression of stable and technological microbial strains living in soils and in the rhizosphere of abundant weed - couch-grass Elytrigia repens L. Nevski were conducted. A total of 98 bacteria isolated from the rhizosphere were assessed for biocontrol activity in vitro against phytopathogenic fungi including Fusarium culmorum, Fusarium heterosporum, Fusarium oxysporum, Drechslera teres, Bipolaris sorokiniana, Piricularia oryzae, Botrytis cinerea, Colletothrichum atramentarium and Cladosporium sp., Stagonospora nodorum. Biocontrol activity were performed by the following methods: radial and parallel streaks, "host - pathogen" on the cuts of wheat leaves. A culture collection comprising 64 potential biocontrol agents (BCA) against wheat and barley root diseases has been established. Of these, the most effective were 8 isolates inhibitory to at least 4 out of 5 phytopathogenic fungi tested. The remaining isolates inhibited at least 1 of 5 fungi tested. Growth stimulating activity of proposed rhizobacteria-based preparations was estimated using seedling and vegetative pot techniques. Seeds-inoculation and the tests in laboratory and field conditions were conducted for different agricultural crops - wheat and barley. Intact cells, liquid culture filtrates and crude extracts of the four beneficial bacterial strains isolated from the rhizosphere of weed were studied to stimulate plant growth. As a result, four bacterial strains selected from rhizosphere of weed

  11. Bartonella spp. in Small Mammals, Benin.

    PubMed

    Martin-Alonso, Aarón; Houemenou, Gualbert; Abreu-Yanes, Estefanía; Valladares, Basilio; Feliu, Carlos; Foronda, Pilar

    2016-04-01

    This study aimed to investigate the prevalence and genetic diversity of Bartonella organisms in small mammals in Cotonou, Benin. We captured 163 rodents and 12 insectivores and successfully detected Bartonella DNA from 13 of the 175 small mammal individuals. Bartonella spp., identical or closely related to Bartonella elizabethae, Bartonella tribocorum, and Bartonella rochalimae, was detected. A potential new Bartonella species, proposed as Candidatus Bartonella mastomydis, was found in three Mastomys individuals and genetically characterized by targeting two housekeeping genes (rpoB and gltA) and the intergenic species region. However, 20.8% of gray rats were found to be infected with Bartonella spp., and none of the black rats analyzed was positive. This work may be important from a public health point of view due to the zoonotic nature of the Bartonella species detected and warrants further investigation on the unknown zoonotic potential of this newly proposed Bartonella species. PMID:26910412

  12. Effect of salinity tolerant PDH45 transgenic rice on physicochemical properties, enzymatic activities and microbial communities of rhizosphere soils

    PubMed Central

    Sahoo, Ranjan Kumar; Tuteja, Narendra

    2013-01-01

    The effect of genetically modified (GM) plants on environment is now major concern worldwide. The plant roots of rhizosphere soil interact with variety of bacteria which could be influenced by the transgene in GM plants. The antibiotic resistance genes in GM plants may be transferred to soil microbes. In this study we have examined the effect of overexpression of salinity tolerant pea DNA helicase 45 (PDH45) gene on microbes and enzymatic activities in the rhizosphere soil of transgenic rice IR64 in presence and absence of salt stress in two different rhizospheric soils (New Delhi and Odisha, India). The diversity of the microbial community and soil enzymes viz., dehydrogenase, alkaline phosphatase, urease and nitrate reductase was assessed. The results revealed that there was no significant effect of transgene expression on rhizosphere soil of the rice plants. The isolated bacteria were phenotyped both in absence and presence of salt and no significant changes were found in their phenotypic characters as well as in their population. Overall, the overexpression of PDH45 in rice did not cause detectable changes in the microbial population, soil enzymatic activities and functional diversity of the rhizosphere soil microbial community. PMID:23733066

  13. Effect of Compost on Rhizosphere Microflora of the Tomato and on the Incidence of Plant Growth-Promoting Rhizobacteria

    PubMed Central

    de Brito, Alvarez M. A.; Gagne, S.; Antoun, H.

    1995-01-01

    Four commercial composts were added to soil to study their effect on plant growth, total rhizosphere microflora, and incidence of plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of tomato plants. Three of the compost treatments significantly improved plant growth, while one compost treatment significantly depressed it. Compost amendments caused only small variations in the total numbers of bacteria, actinomycetes, and fungi in the rhizosphere of tomato plants. A total of 709 bacteria were isolated from the four compost treatments and the soil control to determine the percentage of PGPR in each treatment. The PGPR tests measured antagonism to soilborne root pathogens, production of indoleacetic acid, cyanide, and siderophores, phosphate solubilization, and intrinsic resistance to antibiotics. Our results show that the addition of some composts to soil increased the incidence in the tomato rhizosphere of bacteria exhibiting antagonism towards Fusarium oxysporum f. sp. radicis-lycopersici, Pyrenochaeta lycopersici, Pythium ultimum, and Rhizoctonia solani. The antagonistic effects observed were associated with marked increases in the percentage of siderophore producers. No significant differences were observed in the percentage of cyanogens, whereas the percentages of phosphate solubilizers and indoleacetic acid producers were affected, respectively, by one and two compost treatments. Intrinsic resistance to antibiotics was only marginally different among the rhizobacterial populations. Our results suggest that compost may stimulate the proliferation of antagonists in the rhizosphere and confirm previous reports indicating that the use of composts in container media has the potential to protect plants from soilborne root pathogens. PMID:16534902

  14. Comparison of survival of Campylobacter jejuni in the phyllosphere with that in the rhizosphere of spinach and radish plants.

    PubMed

    Brandl, Maria T; Haxo, Aileen F; Bates, Anna H; Mandrell, Robert E

    2004-02-01

    Campylobacter jejuni has been isolated previously from market produce and has caused gastroenteritis outbreaks linked to produce. We have tested the ability of this human pathogen to utilize organic compounds that are present in leaf and root exudates and to survive in the plant environment under various conditions. Carbon utilization profiles revealed that C. jejuni can utilize many organic acids and amino acids available on leaves and roots. Despite the presence of suitable substrates in the phyllosphere and the rhizosphere, C. jejuni was unable to grow on lettuce and spinach leaves and on spinach and radish roots of plants incubated at 33 degrees C, a temperature that is conducive to its growth in vitro. However, C. jejuni was cultured from radish roots and from the spinach rhizosphere for at least 23 and 28 days, respectively, at 10 degrees C. This enteric pathogen also persisted in the rhizosphere of spinach for prolonged periods of time at 16 degrees C, a temperature at which many cool-season crops are grown. The decline rate constants of C. jejuni populations in the spinach and radish rhizosphere were 10- and 6-fold lower, respectively, than on healthy spinach leaves at 10 degrees C. The enhanced survival of C. jejuni in soil and in the rhizosphere may be a significant factor in its contamination cycle in the environment and may be associated with the sporadic C. jejuni incidence and campylobacteriosis outbreaks linked to produce. PMID:14766604

  15. The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO₂.

    PubMed

    Meier, Ina C; Pritchard, Seth G; Brzostek, Edward R; McCormack, M Luke; Phillips, Richard P

    2015-02-01

    While multiple experiments have demonstrated that trees exposed to elevated CO₂ can stimulate microbes to release nutrients from soil organic matter, the importance of root- versus mycorrhizal-induced changes in soil processes are presently unknown. We analyzed the contribution of roots and mycorrhizal activities to carbon (C) and nitrogen (N) turnover in a loblolly pine (Pinus taeda) forest exposed to elevated CO₂ by measuring extracellular enzyme activities at soil microsites accessed via root windows. Specifically, we quantified enzyme activity from soil adjacent to root tips (rhizosphere), soil adjacent to hyphal tips (hyphosphere), and bulk soil. During the peak growing season, CO₂ enrichment induced a greater increase of N-releasing enzymes in the rhizosphere (215% increase) than in the hyphosphere (36% increase), but a greater increase of recalcitrant C-degrading enzymes in the hyphosphere (118%) than in the rhizosphere (19%). Nitrogen fertilization influenced the magnitude of CO₂ effects on enzyme activities in the rhizosphere only. At the ecosystem scale, the rhizosphere accounted for c. 50% and 40% of the total activity of N- and C-releasing enzymes, respectively. Collectively, our results suggest that root exudates may contribute more to accelerated N cycling under elevated CO₂ at this site, while mycorrhizal fungi may contribute more to soil C degradation. PMID:25348688

  16. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    PubMed Central

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira, Maria J.; Fusi, Marco; Bariselli, Paola; Reddy, Muppala; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes. PMID:27597846

  17. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth.

    PubMed

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira, Maria J; Fusi, Marco; Bariselli, Paola; Reddy, Muppala; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes. PMID:27597846

  18. Enrichment of Acinetobacter spp. from food samples.

    PubMed

    Carvalheira, Ana; Ferreira, Vânia; Silva, Joana; Teixeira, Paula

    2016-05-01

    Relatively little is known about the role of foods in the chain of transmission of acinetobacters and the occurrence of different Acinetobacter spp. in foods. Currently, there is no standard procedure to recover acinetobacters from food in order to gain insight into the food-related ecology and epidemiology of acinetobacters. This study aimed to assess whether enrichment in Dijkshoorn enrichment medium followed by plating in CHROMagar™ Acinetobacter medium is a useful method for the isolation of Acinetobacter spp. from foods. Recovery of six Acinetobacter species from food spiked with these organisms was compared for two selective enrichment media (Baumann's enrichment and Dijkshoorn's enrichment). Significantly (p < 0.01) higher cell counts were obtained in Dijkshoorn's enrichment. Next, the Dijkshoorn's enrichment followed by direct plating on CHROMagar™ Acinetobacter was applied to detect Acinetobacter spp. in different foods. Fourteen different presumptive acinetobacters were recovered and assumed to represent nine different strains on the basis of REP-PCR typing. Eight of these strains were identified by rpoB gene analysis as belonging to the species Acinetobacter johnsonii, Acinetobacter calcoaceticus, Acinetobacter guillouiae and Acinetobacter gandensis. It was not possible to identify the species level of one strain which may suggests that it represents a distinct species. PMID:26742623

  19. A new species of Eurytoma (Hymenoptera: Eurytomidae) attacking, Quadrastichus spp. (Hymenoptera: Eulophidae) galling Erythrina spp. (Fabaceae) with a summary of African Eurytoma spp. biology and species checklist

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eurytoma erythrinae Gates and Delvare, new species, is described and illustrated. This species was reared from field-collected galls induced on Erythrina spp. by Quadrastichus spp. (Hymenoptera: Eulophidae), in Tanzania, Ghana, and South Africa. It is compared to a closely related African species. W...

  20. A serological survey of Brucella spp., Salmonella spp., Toxoplasma gondii and Trichinella spp. in Iberian fattening pigs reared in free-range systems.

    PubMed

    Hernández, M; Gómez-Laguna, J; Tarradas, C; Luque, I; García-Valverde, R; Reguillo, L; Astorga, R J

    2014-10-01

    Zoonotic agents such as Brucella spp., Salmonella spp., Toxoplasma gondii and Trichinella spp., all considered high-risk zoonotic pathogens by the European Food Safety Agency (EFSA), may cause no symptoms of infection in free-range pigs yet still have a significant public health impact. A serological survey was therefore performed to determine the history of occurrence of these pathogens in such pigs in southern Spain. A total of 709 serum samples were collected at abattoir from pigs from 79 farms and analysed for specific antibodies against the above pathogens using commercially available ELISA kits. Encysted Trichinella spp. larvae were also sought following the artificial digestion method of diaphragm pillar muscle. The results showed Salmonella spp. to be widely distributed among the sampled herds [73.42%, 95% confidence interval (CI95 ) 65.6-81.78] and Toxoplasma gondii to be present in over half (58.23%, CI95 47.33-69.07). The seroprevalence of Brucella spp. was very low (3.8%, CI95 0.18-7.42), and antibodies against Trichinella spp. were not detected. No encysted Trichinella spp. larvae were microscopically detected. PMID:23294558

  1. Fractal Feature of Particle-Size Distribution in the Rhizospheres and Bulk Soils during Natural Recovery on the Loess Plateau, China

    PubMed Central

    Song, Zilin; Zhang, Chao; Liu, Guobin; Qu, Dong; Xue, Sha

    2015-01-01

    The application of fractal geometry to describe soil structure is an increasingly useful tool for better understanding the performance of soil systems. Only a few studies, however, have focused on the structure of rhizospheric zones, where energy flow and nutrient recycling most frequently occur. We used fractal dimensions to investigate the characteristics of particle-size distribution (PSD) in the rhizospheres and bulk soils of six croplands abandoned for 1, 5, 10, 15, 20, and 30 years on the Loess Plateau of China and evaluated the changes over successional time. The PSDs of the rhizospheres and the fractal dimensions between rhizosphere soil and bulk soils during the natural succession differed significantly due to the influence of plant roots. The rhizospheres had higher sand (0.05–1.00 mm) contents, lower silt (<0.002 mm) contents, and lower fractal dimensions than the bulk soils during the early and intermediate successional stages (1–15 years). The fractal dimensions of the rhizosphere soil and bulk soil ranged from 2.102 to 2.441 and from 2.214 to 2.459, respectively, during the 30-year restoration. Rhizospheric clay and silt contents and fractal dimension tended to be higher and sand content tended to be lower as abandonment age increased, but the bulk soils had the opposite trend. Linear regression analysis indicated that the fractal dimensions of both the rhizospheres and bulk soils were significantly linearly correlated with clay, sand, organic-carbon, and total-nitrogen contents, with R2 ranging from 0.526 to 0.752 (P<0.001). In conclusion, PSD differed significantly between the rhizosphere soil and bulk soil. The fractal dimension was a sensitive and useful index for quantifying changes in the properties of the different soil zones. This study will greatly aid the application of the fractal method for describing soil structure and nutrient status and the understanding of the performance of rhizospheric zones during ecological restoration. PMID

  2. Nontarget effects of foliar fungicide application on the rhizosphere: diversity of nifH gene and nodulation in chickpea field

    PubMed Central

    Yang, C; Hamel, C; Vujanovic, V; Gan, Y

    2012-01-01

    Aims This study explores nontarget effects of fungicide application on field-grown chickpea. Methods and Results Molecular methods were used to test the effects of foliar application of fungicide on the diversity and distribution of nifH genes associated with two chickpea cultivars and their nodulation. Treatments were replicated four times in a split-plot design in the field, in 2008 and 2009. Chemical disease control did not change the richness of the nifH genes associated with chickpea, but selected different dominant nifH gene sequences in 2008, as revealed by correspondence analysis. Disease control strategies had no significant effect on disease severity or nifH gene distribution in 2009. Dry weather conditions rather than disease restricted plant growth that year, suggesting that reduced infection rather than the fungicide is the factor modifying the distribution of nifH gene in chickpea rhizosphere. Reduced nodule size and enhanced N2-fixation in protected plants indicate that disease control affects plant physiology, which may in turn influence rhizosphere bacteria. The genotypes of chickpea also affected the diversity of the nifH gene in the rhizosphere, illustrating the importance of plant selective effects on bacterial communities. Conclusions We conclude that the chemical disease control affects nodulation and the diversity of nifH gene in chickpea rhizosphere, by modifying host plant physiology. A direct effect of fungicide on the bacteria cannot be ruled out, however, as residual amounts of fungicide were found to accumulate in the rhizosphere soil of protected plants. Significance and Impact of the Study Systemic nontarget effect of phytoprotection on nifH gene diversity in chickpea rhizosphere is reported for the first time. This result suggests the possibility of manipulating associative biological nitrogen fixation in the field. PMID:22335393

  3. [Difference of rhizosphere microbe quantity and functional diversity among three flue-cured tobacco cultivars with different resistance].

    PubMed

    Cai, Qiu-hua; Zuo, Jin-xiang; Li, Zhong-huan; Zhang, Ya-ping; Zhao, Yong-gang; Deng, Qiao; Ouyang, Jin; Huang, Jun-jie; Yu, Lu; Zou, Jian; Zhao, Zheng-xiong

    2015-12-01

    Field experiments were conducted in Shilin and Xundian respectively to study the diffe- rence of rhizosphere microbe quantity and functional diversity with plate culture method and Biolog technique among Hongda (high susceptibility, S), Yun87 (middle resistance, MR) and K326 (high resistance, R) , three flue-cured tobacco cultivars with different resistance to bacterial wilt and black shank. The results indicated that the amounts of bacteria, actinomycetes and the total number of microbes in tobacco plants' rhizosphere were positively correlated with the cultivar' s re- sistance, while it was opposite for the fungi. The consistent tendency was obtained not only at 35 d, 55 d and 75 d after transplanting, but also at two experimental sites. Cultivar and experimental con- ditions greatly affected the utilization of six types of carbon source by rhizospheric microbes, as well as the AWCD value. In Xundian site, rhizospheric microbes' utilization of carbohydrates, amino acids, carboxylic acids, polymers,. amines and the AWCD value were all higher at 55 d and 75 d after transplanting for the resistant cultivar than the susceptible one, but it was opposite at 75 d after transplanting for the phenolic acids. In Shilin, significant differences existed among the three culti- vars at 35 d, 55 d and 75 d after transplanting for the indices mentioned above, although they were not consistent with cultivars' resistance. Principal component (PC) analysis even showed that utili- zation of carbon sources by rhizosphere microorganisms differed significantly among the three culti- vars at the two sites, and it was better reflected by PC1 and PC2 at 55 d and 75 d after transplan- ting, respectively. In conclusion, rhizosphere microbial community structure and functional diversity were greatly affected not only by the cultivars' difference in resistance, but also by experimental conditions. PMID:27112017

  4. Variation of Bacterial Community Diversity in Rhizosphere Soil of Sole-Cropped versus Intercropped Wheat Field after Harvest.

    PubMed

    Yang, Zhenping; Yang, Wenping; Li, Shengcai; Hao, Jiaomin; Su, Zhifeng; Sun, Min; Gao, Zhiqiang; Zhang, Chunlai

    2016-01-01

    As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE) and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping crops with peanut

  5. Elevated atmospheric CO2 affected photosynthetic products in wheat seedlings and biological activity in rhizosphere soil under cadmium stress.

    PubMed

    Jia, Xia; Liu, Tuo; Zhao, Yonghua; He, Yunhua; Yang, Mingyan

    2016-01-01

    The objective of this study was to investigate the effects of elevated CO2 (700 ± 23 μmol mol(-1)) on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated CO2 was associated with decreased quantities of reducing sugars, starch, and soluble amino acids, and with increased quantities of soluble sugars, total sugars, and soluble proteins in wheat seedlings under Cd stress. The contents of total soluble sugars, total free amino acids, total soluble phenolic acids, and total organic acids in the rhizosphere soil under Cd stress were improved by elevated CO2. Compared to Cd stress alone, the activity of amylase, phenol oxidase, urease, L-asparaginase, β-glucosidase, neutral phosphatase, and fluorescein diacetate increased under elevated CO2 in combination with Cd stress; only cellulase activity decreased. Bacterial abundance in rhizosphere soil was stimulated by elevated CO2 at low Cd concentrations (1.31-5.31 mg Cd kg(-1) dry soil). Actinomycetes, total microbial abundance, and fungi decreased under the combined conditions at 5.31-10.31 mg Cd kg(-1) dry soil. In conclusion, increased production of soluble sugars, total sugars, and proteins in wheat seedlings under elevated CO2 + Cd stress led to greater quantities of organic compounds in the rhizosphere soil relative to seedlings grown under Cd stress only. Elevated CO2 concentrations could moderate the effects of heavy metal pollution on enzyme activity and microorganism abundance in rhizosphere soils, thus improving soil fertility and the microecological rhizosphere environment of wheat under Cd stress. PMID:26315595

  6. Variation of Bacterial Community Diversity in Rhizosphere Soil of Sole-Cropped versus Intercropped Wheat Field after Harvest

    PubMed Central

    Yang, Zhenping; Yang, Wenping; Li, Shengcai; Hao, Jiaomin; Su, Zhifeng; Sun, Min; Gao, Zhiqiang; Zhang, Chunlai

    2016-01-01

    As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE) and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping crops with peanut

  7. Effects of elevated O₃ on microbes in the rhizosphere of mycorrhizal snap bean with different O₃ sensitivity.

    PubMed

    Wang, Shuguang; Wang, Fei; Diao, Xiaojun; He, Liansheng

    2014-02-01

    Elevated ozone (O₃) generally affects microbial biomass and community structure in rhizosphere, but these effects are unclear in mycorrhizal plants because arbuscular mycorrhizal (AM) fungi often benefit microbial growth in the rhizosphere. Here, we investigate the effects of elevated O₃ on microbial biomass and community structure in the rhizosphere of mycorrhizal snap bean (Phaseolus vulgaris L.) with different O₃ sensitivity (R123: O₃-tolerant plant; S156: O₃-sensitive plant) based on the phospholipid fatty acids (PLFAs) method. Compared with ambient O₃, elevated O₃ significantly decreased mycorrhizal colonization rates in the 2 genotypes, especially in S156 plants. The wet masses of shoot and root were decreased by elevated O₃ in the 2 genotypes independent of AM inoculation, but they were higher in the mycorrhizal plant than in the nonmycorrhizal plant independent of O₃ concentration. Elevated O₃ significantly decreased the relative proportion of specific fungal PLFAs in the nonmycorrhizal plant, but this effect disappeared in the mycorrhizal plant. The relative proportions of specific PLFAs of other microbial groups (Gram-positive, Gram-negative, and actinomycete) in the rhizosphere and all specific PLFAs in the hyphosphere were not affected by elevated O₃ independent of AM inoculation. In the rhizosphere of the 2 genotypes, microbial community structure was changed by AM inoculation and elevated O₃ as well as by their interaction; in the hyphosphere, however, microbial community structure was changed by elevated O₃ only in R123 plants. It is concluded that AM inoculation can offset negative effect of elevated O₃ on fungal biomass but seems to enhance shift of microbial community structure in rhizosphere under elevated O₃. PMID:24498986

  8. Multitrophic Interaction in the Rhizosphere of Maize: Root Feeding of Western Corn Rootworm Larvae Alters the Microbial Community Composition

    PubMed Central

    Dematheis, Flavia; Zimmerling, Ute; Flocco, Cecilia; Kurtz, Benedikt; Vidal, Stefan; Kropf, Siegfried; Smalla, Kornelia

    2012-01-01

    Background Larvae of the Western Corn Rootworm (WCR) feeding on maize roots cause heavy economical losses in the US and in Europe. New or adapted pest management strategies urgently require a better understanding of the multitrophic interaction in the rhizosphere. This study aimed to investigate the effect of WCR root feeding on the microbial communities colonizing the maize rhizosphere. Methodology/Principal Findings In a greenhouse experiment, maize lines KWS13, KWS14, KWS15 and MON88017 were grown in three different soil types in presence and in absence of WCR larvae. Bacterial and fungal community structures were analyzed by denaturing gradient gel electrophoresis (DGGE) of the16S rRNA gene and ITS fragments, PCR amplified from the total rhizosphere community DNA. DGGE bands with increased intensity were excised from the gel, cloned and sequenced in order to identify specific bacteria responding to WCR larval feeding. DGGE fingerprints showed that the soil type and the maize line influenced the fungal and bacterial communities inhabiting the maize rhizosphere. WCR larval feeding affected the rhiyosphere microbial populations in a soil type and maize line dependent manner. DGGE band sequencing revealed an increased abundance of Acinetobacter calcoaceticus in the rhizosphere of several maize lines in all soil types upon WCR larval feeding. Conclusion/Significance The effects of both rhizosphere and WCR larval feeding seemed to be stronger on bacterial communities than on fungi. Bacterial and fungal community shifts in response to larval feeding were most likely due to changes of root exudation patterns. The increased abundance of A. calcoaceticus suggested that phenolic compounds were released upon WCR wounding. PMID:22629377

  9. Microbial respiration and kinetics of extracellular enzymes activities through rhizosphere and detritusphere at agricultural site

    NASA Astrophysics Data System (ADS)

    Löppmann, Sebastian; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2014-05-01

    Rhizosphere and detritusphere are soil microsites with very high resource availability for microorganisms affecting their biomass, composition and functions. In the rhizosphere low molecular compounds occur with root exudates and low available polymeric compounds, as belowground plant senescence. In detritusphere the substrate for decomposition is mainly a polymeric material of low availability. We hypothesized that microorganisms adapted to contrasting quality and availability of substrates in the rhizosphere and detritusphere are strongly different in affinity of hydrolytic enzymes responsible for decomposition of organic compounds. According to common ecological principles easily available substrates are quickly consumed by microorganisms with enzymes of low substrate affinity (i.e. r-strategists). The slow-growing K-strategists with enzymes of high substrate affinity are better adapted for growth on substrates of low availability. Estimation of affinity of enzyme systems to the substrate is based on Michaelis-Menten kinetics, reflecting the dependency of decomposition rates on substrate amount. As enzymes-mediated reactions are substrate-dependent, we further hypothesized that the largest differences in hydrolytic activity between the rhizosphere and detritusphere occur at substrate saturation and that these differences are smoothed with increasing limitation of substrate. Affected by substrate limitation, microbial species follow a certain adaptation strategy. To achieve different depth gradients of substrate availability 12 plots on an agricultural field were established in the north-west of Göttingen, Germany: 1) 4 plots planted with maize, reflecting lower substrate availability with depth; 2) 4 unplanted plots with maize litter input (0.8 kg m-2 dry maize residues), corresponding to detritusphere; 3) 4 bare fallow plots as control. Maize litter was grubbed homogenously into the soil at the first 5 cm to ensure comparable conditions for the herbivore and

  10. Carbon and nitrogen dynamics in the rhizosphere of Pinus ponderosa seedlings

    SciTech Connect

    Norton, J.M.

    1991-01-01

    The rhizosphere is a dynamic soil region characterized by dense microbial populations and enhanced rates of microbial processes. The rhizosphere may be especially important in determinign the spatial distribution of carbon and nitrogen cycling in forest soils. The author has investigated the flow of carbon from roots to the soil, the quantity and metabolic status of bacteria and fungi, and the production and consumption of inorganic nitrogen in the rhizosphere of Pinus ponderosa seedlings. The role of plant/microbial competition for inorganic nitrogen in determining the availability of nitrogen to plant assimilation was assessed. The author examined the flow of recently fixed photosynthate from roots to the soil using a [sup 14]C pulse-labelling technique. The highest concentration of recently fixed photosynthate carbon in the soil was adjacent to the young root tip region. Fine mycorrhizal roots had the highest rate of carbon loss to the soil per unit carbon assimilated by the root. Mycorrhizal hyphae played an important role in the redistribution of recently fixed photosynthate throughout the soil. The input of plant carbon to the soil by rhizodeposition was an important energy source for the microbial community even in soil not directly adjacent to the root. In short-term [sup 15]N experiments, the author observed that rates of mineralization and NH[sub 4][sup +] immobilization were higher in soils harvested from adjacent to roots than in soils harvested from greater than 5 mm from any root. Results from intact microcosms suggest that NH[sub 4][sup +] supply and competition between roots, heterotrophs and nitrifiers for NH[sub 4][sup +] were the direct controls on NH[sub 4][sup +] immobilization rates rather than the supply of, recently fixed carbon by rhizodeposition. Plants were more successful competitors for NH[sub 3][sup [minus

  11. Rhizosphere Inhibition of Cucumber Fusarium Wilt by Different Surfactin- excreting Strains of Bacillus subtilis

    PubMed Central

    Jia, Ke; Gao, Yu-Han; Huang, Xiao-Qin; Guo, Rong-Jun; Li, Shi-Dong

    2015-01-01

    Bacillus subtilis B006 strain effectively suppresses the cucumber fusarium wilt caused by Fusarium oxysporum f. sp. cucumerinum (Foc). The population dynamics of Foc, strain B006 and its surfactin over-producing mutant B841 and surfactin-deficient mutant B1020, in the rhizosphere were determined under greenhouse conditions to elucidate the importance of the lipopeptides excreted by these strains in suppressing Foc. Results showed that B. subtilis strain B006 effectively suppressed the disease in natural soil by 42.9%, five weeks after transplanting, whereas B841 and B1020 suppressed the disease by only 22.6% and 7.1%, respectively. Quantitative PCR assays showed that effective colonization of strain B006 in the rhizosphere suppressed Foc propagation by more than 10 times both in nursery substrate and in field-infected soil. Reduction of Foc population at the cucumber stems in a range of 0.96 log10 ng/g to 2.39 log10 ng/g was attained at the third and the fifth weeks of B006 treatment in nursery substrate. In field-infected soil, all three treatments with B. subtilis suppressed Foc infection, indicated by the reduction of Foc population at a range of 2.91 log10 ng/g to 3.36 log10 ng/g at the stem base, one week after transplanting. This study reveals that the suppression of fusarium wilt disease is affected by the effective colonization of the surfactin-producing B. subtilis strain in the rhizosphere. These results improved our understanding of the biocontrol mechanism of the B. subtilis strain B006 in the natural soil and facilitate its application as biocontrol agent in the field. PMID:26060433

  12. Prokaryotic Diversity in the Rhizosphere of Organic, Intensive, and Transitional Coffee Farms in Brazil.

    PubMed

    Caldwell, Adam Collins; Silva, Lívia Carneiro Fidéles; da Silva, Cynthia Canêdo; Ouverney, Cleber Costa

    2015-01-01

    Despite a continuous rise in consumption of coffee over the past 60 years and recent studies showing positive benefits linked to human health, intensive coffee farming practices have been associated with environmental damage, risks to human health, and reductions in biodiversity. In contrast, organic farming has become an increasingly popular alternative, with both environmental and health benefits. This study aimed to characterize and determine the differences in the prokaryotic soil microbiology of three Brazilian coffee farms: one practicing intensive farming, one practicing organic farming, and one undergoing a transition from intensive to organic practices. Soil samples were collected from 20 coffee plant rhizospheres (soil directly influenced by the plant root exudates) and 10 control sites (soil 5 m away from the coffee plantation) at each of the three farms for a total of 90 samples. Profiling of 16S rRNA gene V4 regions revealed high levels of prokaryotic diversity in all three farms, with thousands of species level operational taxonomic units identified in each farm. Additionally, a statistically significant difference was found between each farm's coffee rhizosphere microbiome, as well as between coffee rhizosphere soils and control soils. Two groups of prokaryotes associated with the nitrogen cycle, the archaeal genus Candidatus Nitrososphaera and the bacterial order Rhizobiales were found to be abundant and statistically different in composition between the three farms and in inverse relationship to each other. Many of the nitrogen-fixing genera known to enhance plant growth were found in low numbers (e.g. Rhizobium, Agrobacter, Acetobacter, Rhodospirillum, Azospirillum), but the families in which they belong had some of the highest relative abundance in the dataset, suggesting many new groups may exist in these samples that can be further studied as potential plant growth-promoting bacteria to improve coffee production while diminishing negative

  13. Speciation of arsenic in bulk and rhizosphere soils from artisanal cooperative mines in Bolivia.

    PubMed

    Acosta, Jose A; Arocena, Joselito M; Faz, Angel

    2015-11-01

    Soils near artisanal and small-scale gold mines (ASGM) have high arsenic (As) contents due to the presence of arsenopyrite in gold ores and accelerated accumulations due to mine wastes disposal practices and other mining activities. We determined the content and speciation to understand the fate and environmental risks of As accumulations in 24 bulk and 12 rhizosphere soil samples collected in the Virgen Del Rosario and the Rayo Rojo cooperative mines in the highlands of Bolivia. Mean total As contents in bulk and rhizosphere soils ranged from 13 to 64 mg kg(-1) and exceeded the soil environmental quality guidelines of Canada. Rhizosphere soils always contained at least twice the As contents in the bulk soil. Elemental mapping using 4×5 μm synchrotron-generated X-ray micro-beam revealed As accumulations in areas enriched with Fe. Results of As-X-ray Absorption Near Edge Spectroscopy (As-XANES) showed that only As(V) species was detectable in all samples regardless of As contents, size fractions and types of vegetation. Although the toxicity of As(V) is less than As(III), we suggest that As uptake of commonly-grazed vegetation by alpaca and llama must be determined to fully understand the environmental risks of high As in soils near ASGM in Bolivia. In addition, knowledge on the speciation of the As bio-accessible fraction will provide another useful information to better understand the fate and transfer of As from soils into the food chain in environments associated with the ASGM in Bolivia and other parts of the world. PMID:25577694

  14. Enhanced Nitrogen Availability in Karst Ecosystems by Oxalic Acid Release in the Rhizosphere.

    PubMed

    Pan, Fujing; Liang, Yueming; Zhang, Wei; Zhao, Jie; Wang, Kelin

    2016-01-01

    In karst ecosystems, a high level of CaCO3 enhances the stabilization of soil organic matter (SOM) and causes nitrogen (N) and/or phosphorus (P) limitation in plants. Oxalic acid has been suggested to be involved in the nutrient-acquisition strategy of plants because its addition can temporarily relieve nutrient limitation. Therefore, understanding how oxalic acid drives N availability may help support successful vegetation restoration in the karst ecosystems of southwest China. We tested a model suggested by Clarholm et al. (2015) where oxalate reacts with Ca bridges in SOM, thus exposing previously protected areas to enzymatic attacks in a way that releases N for local uptake. We studied the effects of oxalic acid, microbial biomass carbon (MBC), and β-1,4-N-acetylglucosaminidase (NAG) on potential N mineralization rates in rhizosphere soils of four plant species (two shrubs and two trees) in karst areas. The results showed that rhizosphere soils of shrubs grown on formerly deforested land had significantly lower oxalic acid concentrations and NAG activity than that of trees in a 200-year-old forest. The levels of MBC in rhizosphere soils of shrubs were significantly lower than those of trees in the growing season, but the measure of shrubs and trees were similar in the non-growing season; the potential N mineralization rates showed a reverse pattern. Positive relationships were found among oxalic acid, MBC, NAG activity, and potential N mineralization rates for both shrubs and trees. This indicated that oxalic acid, microbes, and NAG may enhance N availability for acquisition by plants. Path analysis showed that oxalic acid enhanced potential N mineralization rates indirectly through inducing microbes and NAG activities. We found that the exudation of oxalic acid clearly provides an important mechanism that allows plants to enhance nutrient acquisition in karst ecosystems. PMID:27252713

  15. Enhanced Nitrogen Availability in Karst Ecosystems by Oxalic Acid Release in the Rhizosphere

    PubMed Central

    Pan, Fujing; Liang, Yueming; Zhang, Wei; Zhao, Jie; Wang, Kelin

    2016-01-01

    In karst ecosystems, a high level of CaCO3 enhances the stabilization of soil organic matter (SOM) and causes nitrogen (N) and/or phosphorus (P) limitation in plants. Oxalic acid has been suggested to be involved in the nutrient-acquisition strategy of plants because its addition can temporarily relieve nutrient limitation. Therefore, understanding how oxalic acid drives N availability may help support successful vegetation restoration in the karst ecosystems of southwest China. We tested a model suggested by Clarholm et al. (2015) where oxalate reacts with Ca bridges in SOM, thus exposing previously protected areas to enzymatic attacks in a way that releases N for local uptake. We studied the effects of oxalic acid, microbial biomass carbon (MBC), and β-1,4-N-acetylglucosaminidase (NAG) on potential N mineralization rates in rhizosphere soils of four plant species (two shrubs and two trees) in karst areas. The results showed that rhizosphere soils of shrubs grown on formerly deforested land had significantly lower oxalic acid concentrations and NAG activity than that of trees in a 200-year-old forest. The levels of MBC in rhizosphere soils of shrubs were significantly lower than those of trees in the growing season, but the measure of shrubs and trees were similar in the non-growing season; the potential N mineralization rates showed a reverse pattern. Positive relationships were found among oxalic acid, MBC, NAG activity, and potential N mineralization rates for both shrubs and trees. This indicated that oxalic acid, microbes, and NAG may enhance N availability for acquisition by plants. Path analysis showed that oxalic acid enhanced potential N mineralization rates indirectly through inducing microbes and NAG activities. We found that the exudation of oxalic acid clearly provides an important mechanism that allows plants to enhance nutrient acquisition in karst ecosystems. PMID:27252713

  16. Prokaryotic Diversity in the Rhizosphere of Organic, Intensive, and Transitional Coffee Farms in Brazil

    PubMed Central

    Caldwell, Adam Collins; Silva, Lívia Carneiro Fidéles; da Silva, Cynthia Canêdo; Ouverney, Cleber Costa

    2015-01-01

    Despite a continuous rise in consumption of coffee over the past 60 years and recent studies showing positive benefits linked to human health, intensive coffee farming practices have been associated with environmental damage, risks to human health, and reductions in biodiversity. In contrast, organic farming has become an increasingly popular alternative, with both environmental and health benefits. This study aimed to characterize and determine the differences in the prokaryotic soil microbiology of three Brazilian coffee farms: one practicing intensive farming, one practicing organic farming, and one undergoing a transition from intensive to organic practices. Soil samples were collected from 20 coffee plant rhizospheres (soil directly influenced by the plant root exudates) and 10 control sites (soil 5 m away from the coffee plantation) at each of the three farms for a total of 90 samples. Profiling of 16S rRNA gene V4 regions revealed high levels of prokaryotic diversity in all three farms, with thousands of species level operational taxonomic units identified in each farm. Additionally, a statistically significant difference was found between each farm’s coffee rhizosphere microbiome, as well as between coffee rhizosphere soils and control soils. Two groups of prokaryotes associated with the nitrogen cycle, the archaeal genus Candidatus Nitrososphaera and the bacterial order Rhizobiales were found to be abundant and statistically different in composition between the three farms and in inverse relationship to each other. Many of the nitrogen-fixing genera known to enhance plant growth were found in low numbers (e.g. Rhizobium, Agrobacter, Acetobacter, Rhodospirillum, Azospirillum), but the families in which they belong had some of the highest relative abundance in the dataset, suggesting many new groups may exist in these samples that can be further studied as potential plant growth-promoting bacteria to improve coffee production while diminishing negative

  17. Lettuce Cultivar Mediates Both Phyllosphere and Rhizosphere Activity of Escherichia coli O157:H7

    PubMed Central

    Quilliam, Richard S.; Williams, A. Prysor; Jones, Davey L.

    2012-01-01

    Plant roots and leaves can be colonized by human pathogenic bacteria, and accordingly some of the largest outbreaks of foodborne illness have been associated with salad leaves contaminated by E. coli O157. Integrated disease management strategies often exploit cultivar resistance to provide a level of protection from economically important plant pathogens; however, there is limited evidence of whether the genotype of the plant can also influence the extent of E. coli O157 colonization. To determine cultivar-specific effects on colonization by E. coli O157, we used 12 different cultivars of lettuce inoculated with a chromosomally lux-marked strain of E. coli O157:H7. Lettuce seedlings grown gnotobiotically in vitro did exhibit a differential cultivar-specific response to E. coli O157 colonization, although importantly there was no relationship between metabolic activity (measured as bioluminescence) and cell numbers. Metabolic activity was highest and lowest on the cultivars Vaila-winter gem and Dazzle respectively, and much higher in endophytic and tightly bound cells than in epiphytic and loosely bound cells. The cultivar effect was also evident in the rhizosphere of plants grown in compost, which suggests that cultivar-specific root exudate influences E. coli O157 activity. However, the influence of cultivar in the rhizosphere was the opposite to that in the phyllosphere, and the higher number and activity of E. coli O157 cells in the rhizosphere may be a consequence of them not being able to gain entry to the plant as effectively. If metabolic activity in the phyllosphere corresponds to a more prepared state of infectivity during human consumption, leaf internalization of E. coli O157 may pose more of a public health risk than leaf surface contamination alone. PMID:22439006

  18. Rhizosphere Inhibition of Cucumber Fusarium Wilt by Different Surfactin- excreting Strains of Bacillus subtilis.

    PubMed

    Jia, Ke; Gao, Yu-Han; Huang, Xiao-Qin; Guo, Rong-Jun; Li, Shi-Dong

    2015-06-01

    Bacillus subtilis B006 strain effectively suppresses the cucumber fusarium wilt caused by Fusarium oxysporum f. sp. cucumerinum (Foc). The population dynamics of Foc, strain B006 and its surfactin over-producing mutant B841 and surfactin-deficient mutant B1020, in the rhizosphere were determined under greenhouse conditions to elucidate the importance of the lipopeptides excreted by these strains in suppressing Foc. Results showed that B. subtilis strain B006 effectively suppressed the disease in natural soil by 42.9%, five weeks after transplanting, whereas B841 and B1020 suppressed the disease by only 22.6% and 7.1%, respectively. Quantitative PCR assays showed that effective colonization of strain B006 in the rhizosphere suppressed Foc propagation by more than 10 times both in nursery substrate and in field-infected soil. Reduction of Foc population at the cucumber stems in a range of 0.96 log10 ng/g to 2.39 log10 ng/g was attained at the third and the fifth weeks of B006 treatment in nursery substrate. In field-infected soil, all three treatments with B. subtilis suppressed Foc infection, indicated by the reduction of Foc population at a range of 2.91 log10 ng/g to 3.36 log10 ng/g at the stem base, one week after transplanting. This study reveals that the suppression of fusarium wilt disease is affected by the effective colonization of the surfactin-producing B. subtilis strain in the rhizosphere. These results improved our understanding of the biocontrol mechanism of the B. subtilis strain B006 in the natural soil and facilitate its application as biocontrol agent in the field. PMID:26060433

  19. Effect of immobilized rhizobacteria and organic amendment in bulk and rhizospheric soil of Cistus albidus L.

    NASA Astrophysics Data System (ADS)

    Mengual, Carmen Maria; del Mar Alguacil, Maria; Roldan, Antonio; Schoebitz, Mauricio

    2013-04-01

    A field experiment was carried out to assess the effectiveness of the immobilized microbial inoculant and the addition of organic olive residue. The microbial inoculant contained two rhizobacterial species identified as Azospirillum brasilense and Pantoea dispersa immobilized in a natural inert support. Bacterial population densities were 3.5×109 and 4.1×109 CFU g-1 of A. brasilense M3 and P. dispersa C3, respectively. The amendment used was the organic fraction extracted with KOH from composted "alperujo". The raw material was collected from an olive-mill and mixed with fresh cow bedding as bulking agent for composting. The inoculation of rhizobacteria and the addition of organic residue were employed for plant growth promotion of Cistus albidus L. and enhancement of soil physicochemical, biochemical and biological properties in a degraded semiarid Mediterranean area. One year after planting, the available phosphorus and potassium content in the amended soils was about 100 and 70% respectively higher than in the non-amended soil. Microbial inoculant and their interaction with organic residue increased the aggregate stability of the rhizosphere soil of C. albidus (by 12% with respect to control soil) while the organic residue alone not increased the aggregate stability of the rhizosphere of C. albidus. Microbial biomass C content and enzyme activities (dehydrogenase, urease, protease-BAA and alkaline phosphatase) of the rhizosphere of C. albidus were increased by microbial inoculant and organic residue interaction but not by microbial inoculation alone. The microbial inoculant and organic residue interaction were the most effective treatment for stimulating the roots dry weight of C. albidus (by 133% with respect to control plants) and microbial inoculant was the most effective treatment for increase the shoot dry weigh of plants (by 106% with respect to control plants). The combined treatment, involving microbial inoculant and addition of the organic residue

  20. Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species.

    PubMed

    Caballero-Mellado, Jesús; Martínez-Aguilar, Lourdes; Paredes-Valdez, Guadalupe; Santos, Paulina Estrada-De los

    2004-07-01

    It was shown recently that the genus Burkholderia is rich in N2-fixing bacteria that are associated with plants. A group of these diazotrophic isolates with identical or very similar 16S rDNA restriction patterns [designated amplified rDNA restriction analysis (ARDRA) genotypes 13, 14 and 15] was selected and a polyphasic taxonomic study was performed, which included new isolates that were recovered from rhizospheres, rhizoplanes or internal tissues of maize, sugarcane and coffee plants. Morphological, physiological and biochemical features, as well as multi-locus enzyme electrophoresis profiles and whole-cell protein patterns, of 20 strains were analysed. In addition, analysis of cellular fatty acid profiles, 16S rDNA sequence analysis and DNA-DNA reassociation experiments were performed with representative strains. The taxonomic data indicated that the strains analysed belong to a novel diazotrophic Burkholderia species, for which the name Burkholderia unamae sp. nov. is proposed. Strain MTl-641T (=ATCC BAA-744T=CIP 107921T), isolated from the rhizosphere of maize, was designated as the type strain. B. unamae was found as an endophyte of plants grown in regions with climates ranging from semi-hot subhumid to hot humid, but not from plants grown in regions with semi-hot or hot dry climates. Moreover, B. unamae was isolated from rhizospheres and plants growing in soils with pH values in the range 4.5-7.1, but not from soils with pH values higher than 7.5. PMID:15280286

  1. Effects of Intercropping with Potato Onion on the Growth of Tomato and Rhizosphere Alkaline Phosphatase Genes Diversity

    PubMed Central

    Wu, Xia; Wu, Fengzhi; Zhou, Xingang; Fu, Xuepeng; Tao, Yue; Xu, Weihui; Pan, Kai; Liu, Shouwei

    2016-01-01

    Background and Aims: In China, excessive fertilization has resulted in phosphorus (P) accumulation in most greenhouse soils. Intercropping can improve the efficiency of nutrient utilization in crop production. In this study, pot experiments were performed to investigate the effects of intercropping with potato onion (Allium cepa L. var. aggregatum G. Don) on tomato (Solanum lycopersicum L.) seedlings growth and P uptake, the diversity of rhizosphere phosphobacteria and alkaline phosphatase (ALP) genes in phosphorus-rich soil. Methods: The experiment included three treatments, namely tomato monoculture (TM), potato onion monoculture (OM), and tomato/potato onion intercropping (TI-tomato intercropping and OI-potato onion intercropping). The growth and P uptake of tomato and potato onion seedlings were evaluated. The dilution plating method was used to determine the population of phosphate-solubilizing bacteria (PSB) and phosphate-mineralizing bacteria (PMB). The genomic DNAs of PSB and PMB in the rhizosphere of tomato and potato onions were extracted and purified, and then, with the primer set of 338f /518r, the PCR amplification of partial bacterial 16S rDNA sequence was performed and sequenced to determine the diversities of PSB and PMB. After extracting the total genomic DNAs from the rhizosphere, the copy numbers and diversities of ALP genes were investigated using real-time PCR and PCR-DGGE, respectively. Results: Intercropping with potato onion promoted the growth and P uptake of tomato seedlings, but inhibited those of potato onion. After 37 days of transplanting, compared to the rhizosphere of TM, the soil pH increased, while the electrolytic conductivity and Olsen P content decreased (p < 0.05) in the rhizosphere of TI. The populations and diversities of PSB, PMB, and ALP genes increased significantly in the rhizosphere of TI, compared to the rhizosphere of TM. Conclusion: The results indicated that intercropping with potato onion promoted the growth and P

  2. Evidence that elevated CO2 levels can indirectly increase rhizosphere denitrifier activity

    NASA Technical Reports Server (NTRS)

    Smart, D. R.; Ritchie, K.; Stark, J. M.; Bugbee, B.

    1997-01-01

    We examined the influence of elevated CO2 concentration on denitrifier enzyme activity in wheat rhizoplanes by using controlled environments and solution culture techniques. Potential denitrification activity was from 3 to 24 times higher on roots that were grown under an elevated CO2 concentration of 1,000 micromoles of CO2 mol-1 than on roots grown under ambient levels of CO2. Nitrogen loss, as determined by a nitrogen mass balance, increased with elevated CO2 levels in the shoot environment and with a high NO3- concentration in the rooting zone. These results indicated that aerial CO2 concentration can play a role in rhizosphere denitrifier activity.

  3. Plants-rhizospheric organisms interaction in a manmade system with and without biogenous element limitation

    NASA Astrophysics Data System (ADS)

    Somova, L. A.; Pechurkin, N. S.; Polonsky, V. I.; Pisman, T. I.; Sarangova, A. B.; Andre, M.; Sadovskaya, G. M.

    1997-01-01

    The effect has been studied of inoculation of seeds of wheat with two species of rhizospheric microorganisms, - Pseudomonas fluorescens and Pseudomonas putida - on young plant growth with complete and with nitrogen deficit mineral nutrition. With complete mineral medium, plants grown from seeds inoculated with bacteria of Pseudomonas genus (experiment plants) have been found to have better growth over plants not inoculated with these bacteria (control plants). The experiment plants had increased transpiration and their biomass had higher organic nitrogen content. With nitrogen deficit medium, the plants inoculated with bacteria and those without them, have not revealed changes in growth. Neither case demonstrated competition of microorganisms with plants for nitrogen sources.

  4. Evidence that elevated CO2 levels can indirectly increase rhizosphere denitrifier activity.

    PubMed Central

    Smart, D R; Ritchie, K; Stark, J M; Bugbee, B

    1997-01-01

    We examined the influence of elevated CO2 concentration on denitrifier enzyme activity in wheat rhizoplanes by using controlled environments and solution culture techniques. Potential denitrification activity was from 3 to 24 times higher on roots that were grown under an elevated CO2 concentration of 1,000 micromoles of CO2 mol-1 than on roots grown under ambient levels of CO2. Nitrogen loss, as determined by a nitrogen mass balance, increased with elevated CO2 levels in the shoot environment and with a high NO3- concentration in the rooting zone. These results indicated that aerial CO2 concentration can play a role in rhizosphere denitrifier activity. PMID:11536820

  5. Chemical Components and Cardiovascular Activities of Valeriana spp.

    PubMed Central

    Chen, Heng-Wen; Wei, Ben-Jun; He, Xuan-Hui; Liu, Yan; Wang, Jie

    2015-01-01

    Valeriana spp. is a flowering plant that is well known for its essential oils, iridoid compounds such as monoterpenes and sesquiterpenes, flavonoids, alkaloids, amino acids, and lignanoids. Valeriana spp. exhibits a wide range of biological activities such as lowering blood pressure and heart rate, antimyocardial ischemia reperfusion injury, antiarrhythmia, and regulation of blood lipid levels. This review focuses on the chemical constituents and cardiovascular activities of Valeriana spp. PMID:26788113

  6. Medicinal leech therapy and Aeromonas spp. infection.

    PubMed

    Verriere, B; Sabatier, B; Carbonnelle, E; Mainardi, J L; Prognon, P; Whitaker, I; Lantieri, L; Hivelin, M

    2016-06-01

    While the use of medicinal leech therapy (MLT) in reconstructive and orthopaedic surgery is widely described, post-operative complications related to leeches remain a major concern. Aeromonas spp. strains are involved in the majority of reported cases. As surgical success rate is directly impacted, an adapted antibiotic prophylaxis should be instituted in order to minimize these complications. We assessed pharmaceutical process, microbiological control and related infections in order to provide data and choose the appropriate antibiotherapy for patients requiring MLT. We report a clinical and microbiological study over a 24-month period. Clinical data were collected from patients' database, and microbiological analysis both on leeches' tank water and crushed leeches were performed to characterize isolated strains and their susceptibility to antibiotics. A total of 595 leeches were used to treat 28 patients (12 in plastic surgery and 16 in orthopaedic surgery), and three documented cases of post-operative infections were reported. Aeromonas spp. isolates yielded from 62 % of analyzed batches (75 % of Aeromonas veronii). Eighteen Aeromonas spp. isolates yielded from 23 water samples and three crushed leeches. Isolates were similar in tank and crushed leeches. Strains were susceptible to fluoroquinolones, sulfamethoxazole/trimethoprim, aminosides, and third-generation cephalosporins but resistant to amoxicillin/clavulanic acid and second-generation cephalosporins. According to collected data, routine tank water microbiological analyses are mandatory in order to identify leeches' batches containing resistant strains and to discard them. In this context, the surgeon is able to select an appropriated antibiotic prophylaxis in order to avoid MLT associated serious post-operative complications. PMID:27039338

  7. Endemic Viruses of Squirrel Monkeys (Saimiri spp.)

    PubMed Central

    Rogers, Donna L; McClure, Gloria B; Ruiz, Julio C; Abee, Christian R; Vanchiere, John A

    2015-01-01

    Nonhuman primates are the experimental animals of choice for the study of many human diseases. As such, it is important to understand that endemic viruses of primates can potentially affect the design, methods, and results of biomedical studies designed to model human disease. Here we review the viruses known to be endemic in squirrel monkeys (Saimiri