Science.gov

Sample records for rhoa-gtp loading organization

  1. Noncanonical Myo9b-RhoGAP Accelerates RhoA GTP Hydrolysis by a Dual-Arginine-Finger Mechanism.

    PubMed

    Yi, Fengshuang; Kong, Ruirui; Ren, Jinqi; Zhu, Li; Lou, Jizhong; Wu, Jane Y; Feng, Wei

    2016-07-31

    The GTP hydrolysis activities of Rho GTPases are stimulated by GTPase-activating proteins (GAPs), which contain a RhoGAP domain equipped with a characteristic arginine finger and an auxiliary asparagine for catalysis. However, the auxiliary asparagine is missing in the RhoGAP domain of Myo9b (Myo9b-RhoGAP), a unique motorized RhoGAP that specifically targets RhoA for controlling cell motility. Here, we determined the structure of Myo9b-RhoGAP in complex with GDP-bound RhoA and magnesium fluoride. Unexpectedly, Myo9b-RhoGAP contains two arginine fingers at its catalytic site. The first arginine finger resembles the one within the canonical RhoGAP domains and inserts into the nucleotide-binding pocket of RhoA, whereas the second arginine finger anchors the Switch I loop of RhoA and interacts with the nucleotide, stabilizing the transition state of GTP hydrolysis and compensating for the lack of the asparagine. Mutating either of the two arginine fingers impaired the catalytic activity of Myo9b-RhoGAP and affected the Myo9b-mediated cell migration. Our data indicate that Myo9b-RhoGAP accelerates RhoA GTP hydrolysis by a previously unknown dual-arginine-finger mechanism, which may be shared by other noncanonical RhoGAP domains lacking the auxiliary asparagine. PMID:27363609

  2. Organic Matter Loading Affects Lodgepole Pine Seedling Growth

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M. J.; Armleder, H. M.

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  3. Survival strategies of polyphosphate accumulating organisms and glycogen accumulating organisms under conditions of low organic loading.

    PubMed

    Carvalheira, Mónica; Oehmen, Adrian; Carvalho, Gilda; Reis, Maria A M

    2014-11-01

    Enhanced biological phosphorus removal (EBPR) is usually limited by organic carbon availability in wastewater treatment plants (WWTPs). Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) were operated under extended periods with low organic carbon loading in order to examine its impact on their activity and survival. The decrease in organic carbon load affected PAOs and GAOs in different ways, where the biomass decay rate of GAOs was approximately 4times higher than PAOs. PAOs tended to conserve a relatively high residual concentration of polyhydroxyalkanoates (PHAs) under aerobic conditions, while GAOs tended to deplete their available PHA more rapidly. This slower oxidation rate of PHA by PAOs at residual concentration levels enabled them to maintain an energy source for aerobic maintenance processes for longer than GAOs. This may provide PAOs with an advantage over GAOs in surviving the low organic loading conditions commonly found in full-scale wastewater treatment plants. PMID:25270044

  4. ROTATING BIOLOGICAL CONTRACTORS - HYDRAULIC VERSUS ORGANIC LOADING

    EPA Science Inventory

    Conventional and alternative flow configurations of rotating biological contractors were compared for soluble organic carbon and ammonia-nitrogen removal. Each treatment train contained eight shafts with a cumulative surface area of 800,000 ft sq. The hydraulic bay used the conve...

  5. Metal-loaded organic scintillators for neutrino physics

    NASA Astrophysics Data System (ADS)

    Buck, Christian; Yeh, Minfang

    2016-09-01

    Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can be used under stable conditions for many years even in ton scale experiments. Applications of metal loaded scintillators in neutrino experiments are reviewed and the performance as well as the prospects of different scintillator types are compared.

  6. Sediment Bioaccumulation Test with Lumbriculus variegatus: Effects of Organism Loading

    EPA Science Inventory

    Sediment bioaccumulation tests with Lumbriculus variegatus were performed on seven sediments with a series of ratios of total organic carbon in sediment to L. variegatus (dry weight) (TOC/Lv) that spanned the recommendation of no less than 50:1. With increasing loading of organi...

  7. Sediment Bioaccumulation Test with Lumbriculus variegatus: Effects of Organism Loading.

    PubMed

    Burkhard, Lawrence P; Hubin-Barrows, Dylan; Billa, Nanditha; Highland, Terry L; Hockett, James R; Mount, David R; Norberg-King, Teresa J

    2016-07-01

    At contaminated sediment sites, the bioavailability of contaminants in sediments is assessed using sediment-bioaccumulation tests with Lumbriculus variegates (Lv). The testing protocols recommend that ratio of total organic carbon (TOC) in sediment to L. variegatus (dry weight) (TOC/Lv) should be no less than 50:1. Occasionally, this recommendation is not followed, especially with sediments having low TOC, e.g., <1 %. This study evaluated the impacts and resulting biases in the testing results when the recommendation of "no less than 50:1" is not followed. In the study, seven sediments were tested with a series of TOC/Lv ratios that spanned the recommendation. With increasing loading of organisms, growth of the organisms decreased in six of the seven sediments tested. Residues of polychlorinated biphenyls (PCBs) in the L. variegatus were measured in six of the seven sediments tested, and differences in PCB residues among loading ratios across all sediments were small, i.e., ±50 %, from those measured at the minimum recommended ratio of 50:1 TOC/Lv. In all sediment, PCB residues increased with increasing loading of the organisms for the mono-, di-, and tri-chloro-PCBs. For tetra-chloro and heavier PCBs, residues increased with increasing loading of organisms for only two of the six sediments. PCB residues were not significantly different between TOC/Lv loadings of 50:1 and mid-20:1 ratios indicating that equivalent results can be obtained with TOC/Lv ratios into the mid-20:1 ratios. Overall, the testing results suggest that when testing recommendation of 50:1 TOC/Lv is not followed, potential biases in the biota-sediment accumulations factors from the sediment-bioaccumulation test will be small. PMID:27165691

  8. System and method employing a self-organizing map load feature database to identify electric load types of different electric loads

    DOEpatents

    Lu, Bin; Harley, Ronald G.; Du, Liang; Yang, Yi; Sharma, Santosh K.; Zambare, Prachi; Madane, Mayura A.

    2014-06-17

    A method identifies electric load types of a plurality of different electric loads. The method includes providing a self-organizing map load feature database of a plurality of different electric load types and a plurality of neurons, each of the load types corresponding to a number of the neurons; employing a weight vector for each of the neurons; sensing a voltage signal and a current signal for each of the loads; determining a load feature vector including at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the loads; and identifying by a processor one of the load types by relating the load feature vector to the neurons of the database by identifying the weight vector of one of the neurons corresponding to the one of the load types that is a minimal distance to the load feature vector.

  9. Combined effects of organic aerosol loading and fog processing on organic aerosols oxidation and composition

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Tripathi, Sachchida; Gupta, Tarun

    2016-04-01

    Fog is a natural meteorological phenomenon that occurs throughout the world, it contains substantial quantity of liquid water and generally seen as a natural cleansing agent but it also has the potential to form highly oxidized secondary organic aerosols (SOA) via aqueous processing of ambient aerosols. On the other hand higher organic aerosols (OA) loading tend to decrease the overall oxidation level (O/C) of the particle phase organics, due to enhanced partitioning of less oxidized organics from gas to particle phase. However, combined impact of these two parameters; aqueous oxidation and OA loading, on the overall oxidation ratio (O/C) of ambient OA has never been studied. To assess this, real time ambient sampling using HR-ToF-AMS was carried out at Kanpur, India from 15 December 2014 - 10 February 2015. In first 3 weeks of this campaign, very high OA loading is (134 ± 42 μg/m3) observed (termed as high loading or HL period) while loading is substantially reduced from 2nd January, 2016 (56 ± 20 μg/m3, termed as low loading or LL period) . However, both the loading period was affected by several fog episodes (10 in HL and 7 in LL), thus providing the opportunity of studying the combined effects of fog and OA loading on OA oxidation. It is found that O/C ratio is very strongly anti-correlated with OA loading in both the loading period, however, slope of this ant-correlation is much steep during HL period than in LL period. Source apportionment of OA revealed that there is drastic change in the types of OA from HL to LL period, clearly indicating difference in OA composition from HL to LL period. During foggy night continuous oxidation of OA is observed from early evening to early morning with 15-20% enhancement in O/C ratio, while the same is absent during non-foggy period, clearly indicating the efficient fog processing of ambient OA. It is also found that night time fog aqueous oxidation can be as effective as daytime photo chemistry in oxidation of OA. Fog

  10. Superexchange Charge Transport in Loaded Metal Organic Frameworks.

    PubMed

    Neumann, Tobias; Liu, Jianxi; Wächter, Tobias; Friederich, Pascal; Symalla, Franz; Welle, Alexander; Mugnaini, Veronica; Meded, Velimir; Zharnikov, Michael; Wöll, Christof; Wenzel, Wolfgang

    2016-07-26

    In the past, nanoporous metal-organic frameworks (MOFs) have been mostly studied for their huge potential with regard to gas storage and separation. More recently, the discovery that the electrical conductivity of a widely studied, highly insulating MOF, HKUST-1, improves dramatically when loaded with guest molecules has triggered a huge interest in the charge carrier transport properties of MOFs. The observed high conductivity, however, is difficult to reconcile with conventional transport mechanisms: neither simple hopping nor band transport models are consistent with the available experimental data. Here, we combine theoretical results and new experimental data to demonstrate that the observed conductivity can be explained by an extended hopping transport model including virtual hops through localized MOF states or molecular superexchange. Predictions of this model agree well with precise conductivity measurements, where experimental artifacts and the influence of defects are largely avoided by using well-defined samples and the Hg-drop junction approach. PMID:27359160

  11. The effect of shock loading on the performance of a thermophilic anaerobic contact reactor at constant organic loading rate

    PubMed Central

    2014-01-01

    The influences of organic loading disturbances on the process performance of a thermophilic anaerobic contact reactor treating potato-processing wastewater were investigated. For this purpose, while the reactor was operated at steady state conditions with organic loading rate of 5.5 kg COD/m3 · day, an instant acetate concentration increase (1 g/L) was introduced to the reactor. During the shock loading test of acetate, it was observed that the overall process performance was adversely affected by all the shock loading, however, the system reached steady state conditions less than 24 hours of operation indicating that thermophilic anaerobic contact reactor is resistant to shock loading and be capable of returning its normal conditions within a short time period. PMID:24872886

  12. Exploratory study of reactivity in organic compounds subjected to shock loading. [Diphenylhexadiyne

    SciTech Connect

    Dodson, B.W.

    1981-01-01

    An exploratory study of chemical reactions occurring in organic compounds under shock loading has been carried out. Early results on shock reactivity of the organic compounds acrylamide, adamantane, hexamethylenetetramine, naphthalene, and 1,6-diphenyl-2,4-hexadiyne have established two points: (1) organic reactions occur under shock loading; and (2) chemical structure strongly influences shock reactivity.

  13. EFFECTS OF VENTILATION RATES AND PRODUCT LOADING ON ORGANIC EMISSION RATES FROM PARTICLEBOARD

    EPA Science Inventory

    The paper discusses the effects of ventilation rates and product loading on organic emission rates from particleboard. Recently, investigators have confirmed the presence of varied and significant amounts of organic compounds in indoor environment, including compounds known or su...

  14. TRICKLING FILTER/SOLIDS CONTACT PERFORMANCE WITH ROCK FILTERS AT HIGH ORGANIC LOADINGS

    EPA Science Inventory

    The performance of the trickling filter/solids contact (TF/SC) process at high organic loadings was studied at the Morro Bay-Cayucos treatment plant. The average secondary effluent TSS increased only slightly (from 13 mg/L to 15 mg/L) when the filter BOD5 loading was doubled from...

  15. The anthropogenic contribution to the organic load of the Lippe River (Germany). Part II: Quantification of specific organic contaminants.

    PubMed

    Dsikowitzky, Larissa; Schwarzbauer, Jan; Littke, Ralf

    2004-12-01

    The major goal of this study was to investigate the organic pollution of a river on a quantitative basis. To this end, 14 anthropogenic contaminants which were identified in Lippe River water samples as reported in part I (Dsikowitzky et al., submitted parallel to this manuscript) were surveyed. Dissolved organic loads of the specific compounds were calculated on the basis of their concentrations in water and river runoff on the day of sampling. The organic loads of each compound were compiled along the longitudinal section of the river in order to generate individual spatial pollution profiles. It was observed that distribution of organic loads along the river showed distinctive patterns, depending upon the input situation and physico-chemical properties of the compound. The compounds were classified into three types of which Type 1, due to their stability in the aqueous phase, are of special interest for potential application as anthropogenic markers. PMID:15519373

  16. Loading-Induced Heat-Shock Response in Bovine Intervertebral Disc Organ Culture.

    PubMed

    Chooi, Wai Hon; Chan, Samantha Chun Wai; Gantenbein, Benjamin; Chan, Barbara Pui

    2016-01-01

    Mechanical loading has been shown to affect cell viability and matrix maintenance in the intervertebral disc (IVD) but there is no investigation on how cells survive mechanical stress and whether the IVD cells perceive mechanical loading as stress and respond by expression of heat shock proteins. This study investigates the stress response in the IVD in response to compressive loading. Bovine caudal disc organ culture was used to study the effect of physiological range static loading and dynamic loading. Cell activity, gene expression and immunofluorescence staining were used to analyze the cell response. Cell activity and cytoskeleton of the cells did not change significantly after loading. In gene expression analysis, significant up-regulation of heat shock protein-70 (HSP70) was observed in nucleus pulposus after two hours of loading. However, the expression of the matrix remodeling genes did not change significantly after loading. Similarly, expressions of stress response and matrix remodeling genes changed with application and removal of the dynamic loading. The results suggest that stress response was induced by physiological range loading without significantly changing cell activity and upregulating matrix remodeling. This study provides direct evidence on loading induced stress response in IVD cells and contributes to our understanding in the mechanoregulation of intervertebral disc cells. PMID:27580124

  17. Increased Cloud Activation Potential of Secondary Organic Aerosol for Atmospheric Mass Loadings

    SciTech Connect

    King, Stephanie M.; Rosenoern, Thomas; Shilling, John E.; Chen, Qi; Martin, Scot T.

    2009-05-01

    The effect of organic particle mass loading from 1 to ≥100 μg m-3 on the cloud condensation nuclei (CCN) properties of mixed organic-sulfate particles was investigated in the Harvard Environmental Chamber. Mixed particles were produced by the condensation of organic molecules onto ammonium sulfate particles during the dark ozonolysis of α-pinene. A continuous-flow mode of the chamber provided stable conditions over long time periods, allowing for signal integration and hence increased measurement precision at low organic mass loadings representative of atmospheric conditions. CCN activity was measured at eight mass loadings for 80- and 100-nm particles grown on 50-nm sulfate seeds. A two-component (organic/sulfate) Köhler model, which included the particle heterogeneity arising from DMA size selection and from organic volume fraction for the selected 80- and 100-nm particles, was used to predict CCN activity. For organic mass loadings of 2.9 μg m-3 and greater, the observed activation curves were well predicted using a single set of physicochemical parameters for the organic component. For mass loadings of 1.74 μg m-3 and less, the observed CCN activity increased beyond predicted values using the same parameters, implying changed physicochemical properties of the organic component. Of possible changes in surface tension, effective molecular weight, and effective density, a sensitivity analysis implicated a decrease of up to 10% in surface tension at low mass loadings as the plausible dominant mechanism for the observed increase in CCN activity.

  18. Effect of organic loading rate and feedstock composition on foaming in manure-based biogas reactors.

    PubMed

    Kougias, P G; Boe, K; Angelidaki, I

    2013-09-01

    Foaming is one of the major problems that occasionally occur in biogas plants, affecting negatively the overall digestion process. In the present study, the effect of organic loading rate (OLR) and feedstock composition on foaming was elucidated in continuous reactor experiments. By stepwise increasing the OLR and the concentration of proteins or lipids in the substrate, foaming in biogas reactors was investigated. No foam formation was observed at the OLR of 3.5 g volatile solids/(L-reactor·day). Organic loading was the main factor affecting foam formation in manure digester, while the organic composition, such as content of proteins or lipids were factors that in combination with the organic loading were triggering foaming. More specifically, gelatine could initiate foam formation at a lower OLR than sodium oleate. Moreover, the volume of foam produced by gelatine was relatively stable and was not increased when further increasing either OLR or gelatine concentration in the feed. PMID:23850819

  19. Effects of +Gz Loads on Structural Organization of Central Autonomic Nuclei.

    PubMed

    Sukhoterin, A F; Pashchenko, P S

    2015-09-01

    Structural alterations in the central autonomic nuclei (dorsal vagal complex and intermediolateral nucleus) of the centrifuged random-bred male rats subjected to +Gz loads were examined. Acute exposure to gravitational loads predominantly produced the reactive changes in these nuclei, while persistently repeated regular loads resulted in cumulation of the destructive alterations. The structural perturbations in the central autonomic nuclei can disturb the autonomic regulation of physiological functions. The character of such disturbances is partially determined by the peculiarities in structural organization of these nuclei. PMID:26463057

  20. Higher organism load associated with failure of azithromycin to treat rectal chlamydia.

    PubMed

    Kong, F Y S; Tabrizi, S N; Fairley, C K; Phillips, S; Fehler, G; Law, M; Vodstrcil, L A; Chen, M; Bradshaw, C S; Hocking, J S

    2016-09-01

    Repeat rectal chlamydia infection is common in men who have sex with men (MSM) following treatment with 1 g azithromycin. This study describes the association between organism load and repeat rectal chlamydia infection, genovar distribution, and efficacy of azithromycin in asymptomatic MSM. Stored rectal chlamydia-positive samples from MSM were analysed for organism load and genotyped to assist differentiation between reinfection and treatment failure. Included men had follow-up tests within 100 days of index infection. Lymphogranuloma venereum and proctitis diagnosed symptomatically were excluded. Factors associated with repeat infection, treatment failure and reinfection were investigated. In total, 227 MSM were included - 64 with repeat infections [28·2%, 95% confidence interval (CI) 22·4-34·5]. Repeat positivity was associated with increased pre-treatment organism load [odds ratio (OR) 1·7, 95% CI 1·4-2·2]. Of 64 repeat infections, 29 (12·8%, 95% CI 8·7-17·8) were treatment failures and 35 (15·4%, 95% CI 11·0-20·8) were reinfections, 11 (17·2%, 95% CI 8·9-28·7) of which were definite reinfections. Treatment failure and reinfection were both associated with increased load (OR 2·0, 95% CI 1·4-2·7 and 1·6, 95% CI 1·2-2·2, respectively). The most prevalent genovars were G, D and J. Treatment efficacy for 1 g azithromycin was 83·6% (95% CI 77·2-88·8). Repeat positivity was associated with high pre-treatment organism load. Randomized controlled trials are urgently needed to evaluate azithromycin's efficacy and whether extended doses can overcome rectal infections with high organism load. PMID:27180823

  1. Annual loads of organic contaminants in Chesapeake Bay contributed through fluvial transport

    SciTech Connect

    Foster, G.D.; Lippa, K.A.

    1994-12-31

    Organic contaminants in fluvial transport, atmospheric deposition, urban runoff, and shoreline erosion are being quantified and compared in an effort to understand contaminant inputs and mass balances in Chesapeake Bay. Concentrations of nine organonitrogen and organophosphorus (organo-N/P) pesticides, eight organochlorine (OC) pesticides, polychlorinated biphenyls (PCBs), and four polynuclear aromatic hydrocarbons in fluvial transport were determined at the Susquehanna, Potomac, and James River fall lines for the period of March 1992 through February 1993. Together these rivers account for ca. 75% of the freshwater inflow to the bay from fluvial sources. Sampling was conducted monthly during base flow conditions and during all major storm events. Analysis of nanogram and picogram per liter concentrations of the organic contaminants was performed for both the dissolved and particulate phases of the surface water samples. Daily fluvial loads were calculated using an iterative-increment method from concentration and discharge data, and the resulting daily load estimates were summed to provide annual loads. Loads contributed by the three tributaries from March 1992 through February 1993 were 6.9 metric tons for the organo-N/P pesticides, 0.73 metric tons for the OC compounds and PCBs, and 1.2 metric tons for the PAH. Preliminary comparisons show that loads from fluvial transport are generally greater than other sources for most contaminants except PAH, where atmospheric deposition and urban runoff contribute greater loads of some compounds.

  2. METHODOLOGY FOR ESTIMATING ENVIRONMENTAL LOADINGS FROM MANUFACTURE OF SYNTHETIC ORGANIC CHEMICALS

    EPA Science Inventory

    This report presents a methodology for estimating multimedia environmental loadings of a 'new' organic chemical (Section 2), the output data of which can be used to determine population exposure (within and without the manufacturing process plant battery limits) and to isolate th...

  3. Fate of alkylphenolic compounds during activated sludge treatment: impact of loading and organic composition.

    PubMed

    McAdam, Ewan J; Bagnall, John P; Soares, Ana; Koh, Yoong K K; Chiu, Tze Y; Scrimshaw, Mark D; Lester, John N; Cartmell, Elise

    2011-01-01

    The impact of loading and organic composition on the fate of alkylphenolic compounds in the activated sludge plant (ASP) has been studied. Three ASP designs comprising carbonaceous, carbonaceous/nitrification, and carbonaceous/nitrification/denitrification treatment were examined to demonstrate the impact of increasing levels of process complexity and to incorporate a spectrum of loading conditions. Based on mass balance, overall biodegradation efficiencies for nonylphenol ethoxylates (NPEOs), short chain carboxylates (NP(1-3)EC) and nonylphenol (NP) were 37%, 59%, and 27% for the carbonaceous, carbonaceous/nitrification, and carbonaceous/nitrification/denitrification ASP, respectively. The presence of a rich community of ammonia oxidizing bacteria does not necessarily facilitate effective alkylphenolic compound degradation. However, a clear correlation between alkylphenolic compound loading and long chain ethoxylate compound biodegradation was determined at the three ASPs, indicating that at higher initial alkylphenolic compound concentrations (or load), greater ethoxylate biotransformation can occur. In addition, the impact of settled sewage organic composition on alkylphenolic compound removal was evaluated. A correlation between the ratio of chemical oxygen demand (COD) to alkylphenolic compound concentration and biomass activity was determined, demonstrating the inhibiting effect of bulk organic matter on alkylphenol polyethoxylate transformation activity. At all three ASPs the biodegradation pathway proposed involves the preferential biodegradation of the amphiphilic ethoxylated compounds, after which the preferential attack of the lipophilic akylphenol moiety occurs. The extent of ethoxylate biodegradation is driven by the initial alkylphenolic compound concentration and the proportion of COD constituted by the alkylphenol polyethoxylates (APEOs) and their metabolites relative to the bulk organic concentration of the sewage composed of proteins, acids, fats

  4. Load and distribution of organic matter and nutrients in a separated household wastewater stream.

    PubMed

    Todt, Daniel; Heistad, Arve; Jenssen, Petter D

    2015-01-01

    Wastewater from a source-separated sanitation system connected to 24 residential flats was analysed for the content of organic matter and nutrients and other key parameters for microbiological processes used in the treatment and reuse of wastewater. Black water (BW) was the major contributor to the total load of organic matter and nutrients in the wastewater, accounting for 69% of chemical oxygen demand (COD), 83% of total nitrogen (N) and 87% of phosphorus (P). With a low COD/N ratio and high content of free ammonia, treating BW alone is a challenge in traditional biological nitrogen removal approaches. However, its high nitrogen concentration (1.4-1.7 g L(-1)) open up for nutrient reuse as well as for novel, more energy efficient N-removal technologies. Grey water (GW) contained low amounts of nutrients relative to organic matter, and this may limit biological treatment processes under certain conditions. GW contains a higher proportion of soluble, readily degradable organic substances compared with BW, which facilitates simple, decentralized treatment approaches. The concentration of organic matter and nutrients varied considerably between our study and other studies, which could be related to different toilet flushing volumes and water use habits. The daily load per capita, on the other hand, was found to be in line with most of the reported studies. PMID:25495947

  5. Iron deficiency and bioavailability in anaerobic batch and submerged membrane bioreactors (SAMBR) during organic shock loads.

    PubMed

    Ketheesan, Balachandran; Thanh, Pham Minh; Stuckey, David C

    2016-07-01

    This study examined the effects of Fe(2+) and its bioavailability for controlling VFAs during organic shock loads in batch reactors and a submerged anaerobic membrane bioreactor (SAMBR). When seed grown under Fe-sufficient conditions (7.95±0.05mgFe/g-TSS), an organic shock resulted in leaching of Fe from the residual to organically bound and soluble forms. Under Fe-deficient seed conditions (0.1±0.002mgFe/gTSS), Fe(2+) supplementation (3.34mgFe(2+)/g-TSS) with acetate resulted in a 2.1-3.9 fold increase in the rate of methane production, while with propionate it increased by 1.2-1.5 fold compared to non-Fe(2+) supplemented reactors. Precipitation of Fe(2+) as sulphides and organically bound Fe were bioavailable to methanogens for acetate assimilation. The results confirmed that the transitory/long term limitations of Fe play a significant role in controlling the degradation of VFAs during organic shock loads due to their varying physical/chemical states, and bioavailability. PMID:27015020

  6. Anaerobic co-digestion of solid waste: Effect of increasing organic loading rates and characterization of the solubilised organic matter.

    PubMed

    Ganesh, Rangaraj; Torrijos, Michel; Sousbie, Philippe; Steyer, Jean Philippe; Lugardon, Aurelien; Delgenes, Jean Philippe

    2013-02-01

    The impact of stepwise increase in OLR (up to 7.5kgVS/m(3)d) on methane production, reactor performance and solubilised organic matter production in a high-loading reactor were investigated. A reference reactor operated at low OLR (<2.0kgVS/m(3)d) was used solely to observe the methane potential of the feed substrate. Specific methane yield was 0.33lCH(4)/gVS at the lowest OLR and dropped by about 20% at the maximum OLR, while volumetric methane production increased from 0.35 to 1.38m(3)CH(4)/m(3)d. At higher loadings, solids hydrolysis was affected, with consequent transfer of poorly-degraded organic material into the drain solids. Biodegradability and size-fractionation of the solubilised COD were characterized to evaluate the possibility of a second stage liquid reactor. Only 18% of the organics were truly soluble (<1kD). The rest were in colloidal and very fine particulate form which originated from grass and cow manure and were non-biodegradable. PMID:23334011

  7. Anaerobic slurry co-digestion of poultry manure and straw: effect of organic loading and temperature

    PubMed Central

    2013-01-01

    In order to obtain basic design criteria for anaerobic digestion of a mixture of poultry manure and wheat straw, the effects of different temperatures and organic loading rates on the biogas yield and methane contents were evaluated. Since poultry manure is a poor substrate, in term of the availability of the nutrients, external supplementation of carbon has to be regularly performed, in order to achieve a stable and efficient process. The complete-mix, pilot-scale digester with working volume of 70 L was used. The digestion operated at 25°C, 30°C and 35°C with organic loading rates of 1.0, 2.0, 2.5, 3.0, 3.5 and 4.0 kg Volatile solid/m3d and a HRT of 15 days. At a temperature of 35°C, the methane yield was increased by 43% compared to 25°C. Anaerobic co-digestion appeared feasible with a loading rate of 3.0 kg VS/m3d at 35°C. At this state, the specific methane yield was calculated about 0.12 m3/kg VS with a methane content of 53–70.2% in the biogas. The volatile solid (VS) removal was 72%. As a result of volatile fatty acid accumulation and decrease in pH, when the loading rate was less than 1 or greater than 4 kg VS/m3d, the process was inhibited or overloaded, respectively. Both the lower and higher loading rates resulted in a decline in the methane yield. PMID:24502409

  8. Effects of feeding and organism loading rate on PCB accumulation by Lumbriculus variegatus in sediment bioaccumulation testing

    EPA Science Inventory

    Sediment bioaccumulation test methods published by USEPA and ASTM in 2000 specify that the Lumbriculus variegatus, a freshwater oligochaete, should not be fed during the 28-day exposure and recommends an organism loading rate of total organic carbon in sediment to organism dry we...

  9. Sediment bioaccumulation test with Lumbriculus variegatus (EPA test method 100.3) effects of feeding and organism loading rate

    EPA Science Inventory

    Sediment bioaccumulation test methodology of USEPA and ASTM in 2000 specifies that the Lumbriculus variegatus should not be fed during the 28-day exposure and recommends an organism loading rate of total organic carbon in sediment to organism dry weight of no less than 50:1. It ...

  10. Nitrogen removal from high organic loading wastewater in modified Ludzack-Ettinger configuration MBBR system.

    PubMed

    Torkaman, Mojtaba; Borghei, Seyed Mehdi; Tahmasebian, Sepehr; Andalibi, Mohammad Reza

    2015-01-01

    A moving bed biofilm reactor with pre-denitrification configuration was fed with a synthetic wastewater containing high chemical oxygen demand (COD) and ammonia. By changing different variables including ammonium and COD loading, nitrification rate in the aerobic reactor and denitrification rate in the anoxic reactor were monitored. Changing the influent loading was achieved via adjusting the inlet COD (956-2,096 mg/L), inlet ammonium (183-438 mg/L), and hydraulic retention time of the aerobic reactor (8, 12, and 18 hours). The overall organic loading rate was in the range of 3.60-17.37 gCOD/m2·day, of which 18.5-91% was removed in the anoxic reactor depending on the operational conditions. Considering the complementary role of the aerobic reactor, the overall COD removal was in the range 87.3-98.8%. In addition, nitrification rate increased with influent ammonium loading, the maximum rate reaching 3.05 gNH4/m2·day. One of the most important factors affecting nitrification rate was influent C:N entering the aerobic reactor, by increasing which nitrification rate decreased asymptotically. Nitrate removal efficiency in the anoxic reactor was also controlled by the inlet nitrate level entering the anoxic reactor. Furthermore, by increasing the nitrate loading rate from 0.91 to 3.49 gNO/m3·day, denitrification rate increased from 0.496 to 2.47 gNO/m3·day. PMID:26465296

  11. Organic micropollutants in the Yangtze River: seasonal occurrence and annual loads.

    PubMed

    Qi, Weixiao; Müller, Beat; Pernet-Coudrier, Benoit; Singer, Heinz; Liu, Huijuan; Qu, Jiuhui; Berg, Michael

    2014-02-15

    Twenty percent of the water run-off from China's land surface drains into the Yangtze River and carries the sewage of approximately 400 million people out to sea. The lower stretch of the Yangtze therefore offers the opportunity to assess the pollutant discharge of a huge population. To establish a comprehensive assessment of micropollutants, river water samples were collected monthly from May 2009 to June 2010 along a cross-section at the lowermost hydrological station of the Yangtze River not influenced by the tide (Datong Station, Anhui province). Following a prescreening of 268 target compounds, we examined the occurrence, seasonal variation, and annual loads of 117 organic micropollutants, including 51 pesticides, 43 pharmaceuticals, 7 household and industrial chemicals, and 16 polycyclic aromatic hydrocarbons (PAHs). During the 14-month study, the maximum concentrations of particulate PAHs (1-5 μg/g), pesticides (11-284 ng/L), pharmaceuticals (5-224 ng/L), and household and industrial chemicals (4-430 ng/L) were generally lower than in other Chinese rivers due to the dilution caused of the Yangtze River's average water discharge of approximately 30,000 m(3)/s. The loads of most pesticides, anti-infectives, and PAHs were higher in the wet season compared to the dry season, which was attributed to the increased agricultural application of chemicals in the summer, an elevated water discharge through the sewer systems and wastewater treatment plants (WWTP) as a result of high hydraulic loads and the related lower treatment efficiency, and seasonally increased deposition from the atmosphere and runoff from the catchment. The estimated annual load of PAHs in the river accounted for some 4% of the total emission of PAHs in the whole Yangtze Basin. Furthermore, by using sucralose as a tracer for domestic wastewater, we estimate a daily disposal of approximately 47 million m(3) of sewage into the river, corresponding to 1.8% of its average hydraulic load. In summary

  12. High organic loading treatment for industrial molasses wastewater and microbial community shifts corresponding to system development.

    PubMed

    Kuroda, Kyohei; Chosei, Tomoaki; Nakahara, Nozomi; Hatamoto, Masashi; Wakabayashi, Takashi; Kawai, Toshikazu; Araki, Nobuo; Syutsubo, Kazuaki; Yamaguchi, Takashi

    2015-11-01

    Molasses wastewater contains high levels of organic compounds, cations, and anions, causing operational problems for anaerobic biological treatment. To establish a high organic loading treatment system for industrial molasses wastewater, this study designed a combined system comprising an acidification tank, a thermophilic multi-stage (MS)-upflow anaerobic sludge blanket (UASB) reactor, mesophilic UASB reactor, and down-flow hanging sponge reactor. The average total chemical oxygen demand (COD) and biochemical oxygen demand removal rates were 85%±3% and 95%±2%, respectively, at an organic loading rate of 42kgCODcrm(-3)d(-1) in the MS-UASB reactor. By installation of the acidification tank, the MS-UASB reactor achieved low H2-partial pressure. The abundance of syntrophs such as fatty acid-degrading bacteria increased in the MS-UASB and 2nd-UASB reactors. Thus, the acidification tank contributed to maintaining a favorable environment for syntrophic associations. This study provides new information regarding microbial community composition in a molasses wastewater treatment system. PMID:26241842

  13. Biological treatment of mining wastewaters by fixed-bed bioreactors at high organic loading.

    PubMed

    Bratkova, Svetlana; Koumanova, Bogdana; Beschkov, Venko

    2013-06-01

    Acid wastewaters contaminated with Fe - 1000 mg L(-1) and Cu - 100 mg L(-1) were remediated by microbial sulfate-reduction at high organic loading (theoretical TOC/SO4(2-) ratio 1.1) in a laboratory installation. The installation design includes a fixed-bed anaerobic bioreactor for sulfate-reduction, a chemical reactor, a settler and a three-sectional bioreactor for residual organic compounds and hydrogen sulfide removal. Sulfate-reducing bacteria are immobilized on saturated zeolite in the fixed-bed bioreactor. The source of carbon and energy for bacteria was concentrated solution, containing ethanol, glycerol, lactate and citrate. Heavy metals removal was achieved by produced H2S at sulfate loading rate 88 mg L(-1)h(-1). The effluent of the anaerobic bioreactor was characterized with high concentrations of acetate and ethanol. The design of the second bioreactor (presence of two aerobic and an anoxic zones) makes possible the occurrence of nitrification and denitrification as well as the efficiently removal of residual organic compounds and H2S. PMID:23611703

  14. Disinfection and reduction of organic load of sewage water by electron beam radiation

    NASA Astrophysics Data System (ADS)

    Maruthi, Y. Avasn; Das, N. Lakshmana; Hossain, Kaizar; Sarma, K. S. S.; Rawat, K. P.; Sabharwal, S.

    2011-09-01

    The efficacy of electron beam radiation for the disinfection and reduction of organic load of sewage water was assessed with ILU-6 Accelerator at Radiation Technology Development Division of the Bhabha Atomic Research Centre, Mumbai India. The current problem on environmental health in relation to water pollution insists for the safe disposal of sewage water. In general, sewage water comprises heterogeneous organic based chemicals as well as pathogens. EB treatment of the wastewater has found to be very effective in reducing the pathogens as well as organic load. EB dose of 1.5 kGy was sufficient for complete elimination of total coli forms. The experimental results elucidated the reduction of biological oxygen demand—BOD (35 and 51.7%) in both inlet and outlet sewage samples. Similarly reduction of chemical oxygen demand—COD was observed (37.54 and 52.32%) in both sewage samples with respect to increase in irradiation doses (0.45-6 kGy). The present study demonstrated the potential of ionizing radiation for disinfection of sewage and to increase the water quality of the wastewater by decreasing BOD and COD. So, the irradiation sewage water can find its application either in agriculture for irrigation, in industry for cooling purpose and some selected domestic purposes.

  15. Ammonium removal in constructed wetland microcosms as influenced by season and organic carbon load.

    PubMed

    Riley, Kate A; Stein, Otto R; Hook, Paul B

    2005-01-01

    We evaluated ammonium nitrogen removal and nitrogen transformations in three-year-old, batch-operated, subsurface wetland microcosms. Treatments included replicates of Typha latifolia, Carex rostrata, and unplanted controls when influent carbon was excluded, and C. rostrata with an influent containing organic carbon. A series of 10-day batch incubations were conducted over a simulated yearlong cycle of seasons. The presence of plants significantly enhanced ammonium removal during both summer (24 degrees C, active plant growth) and winter (4 degrees C, plant dormancy) conditions, but significant differences between plant species were evident only in summer when C. rostrata outperformed T. latifolia. The effect of organic carbon load was distinctly seasonal, enhancing C. rostrata ammonium removal in winter but having an inhibitory effect in summer. Season did not influence ammonium removal in T. latifolia or unplanted columns. Net production of organic carbon was evident year-round in units without an influent organic carbon source, but was enhanced in summer, especially for C. rostrata, which produced significantly more than T. latifolia and unplanted controls. No differences in production were evident between species in winter. COD values for C. rostrata microcosms with and without influent organic carbon converged within 24 hours in winter and 7 days in summer. Gravel sorption, microbial immobilization and sequential nitrification/denitrification appear to be the major nitrogen removal mechanisms. All evidence suggests differences between season and species are due to differences in seasonal variation of root-zone oxidation. PMID:15921269

  16. Concentrations, loads, and yields of organic carbon in streams of agricultural watersheds

    USGS Publications Warehouse

    Kronholm, Scott; Capel, Paul

    2012-01-01

    Carbon is cycled to and from large reservoirs in the atmosphere, on land, and in the ocean. Movement of organic carbon from the terrestrial reservoir to the ocean plays an important role in the global cycling of carbon. The transition from natural to agricultural vegetation can change the storage and movement of organic carbon in and from a watershed. Samples were collected from 13 streams located in hydrologically and agriculturally diverse watersheds, to better understand the variability in the concentrations and loads of dissolved organic carbon (DOC) and particulate organic carbon (POC) in the streams, and the variability in watershed yields. The overall annual median concentrations of DOC and POC were 4.9 (range: 2.1–6.8) and 1.1 (range: 0.4–3.8) mg C L−1, respectively. The mean DOC watershed yield (± SE) was 25 ± 6.8 kg C ha−1 yr−1. The yields of DOC from these agricultural watersheds were not substantially different than the DOC yield from naturally vegetated watersheds in equivalent biomes, but were at the low end of the range for most biomes. Total organic carbon (DOC + POC) annually exported from the agricultural watersheds was found to average 0.03% of the organic carbon that is contained in the labile plant matter and top 1 m of soil in the watershed. Since the total organic carbon exported from agricultural watersheds is a relatively small portion of the sequestered carbon within the watershed, there is the great potential to store additional carbon in plants and soils of the watershed, offsetting some anthropogenic CO2 emissions.

  17. Effect of organic loading rate during anaerobic digestion of municipal solid waste.

    PubMed

    Dhar, Hiya; Kumar, Pradeep; Kumar, Sunil; Mukherjee, Somnath; Vaidya, Atul N

    2016-10-01

    The effect of chemical oxygen demand (COD) and volatile solids (VS) on subsequent methane (CH4) production during anaerobic digestion (AD) of organic fraction of municipal solid waste (OFMSW) was studied in a laboratory-scale digester. The experiment was performed in 2L anaerobic digester under different experimental conditions using different input mass co-digested with inoculum and organic loading rate (OLR) for 27days at 38±2°C. Three digesters (digesters 1, 2 and 3) were operated at initial loading of 5.1, 10.4 and 15.2g/L CODS per batch which were reduced to 77.9% and 84.2%, respectively. Cumulative biogas productions were 9.3, 10.7 and 17.7L in which CH4 yields were 84.3, 101.0 and 168.4mL/gVS removal in digesters 1, 2, and 3, respectively. The observed COD removal was found to be influenced on variation in CH4 production. Co-efficient of determination (R(2)) was 0.67 and 0.74 in digesters 1 and 2, respectively. PMID:26733440

  18. Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries

    NASA Astrophysics Data System (ADS)

    Asmala, Eero; Stedmon, Colin A.; Thomas, David N.

    2012-10-01

    The quantity of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in three Finnish estuaries (Karjaanjoki, Kyrönjoki and Kiiminkijoki) was investigated, with respect to predicting DOC concentrations and loadings from spectral CDOM absorption measurements. Altogether 87 samples were collected from three estuarine transects which were studied in three seasons, covering a salinity range between 0 and 6.8, and DOC concentrations from 1572 μmol l-1 in freshwater to 222 μmol l-1 in coastal waters. CDOM absorption coefficient, aCDOM(375) values followed the trend in DOC concentrations across the salinity gradient and ranged from 1.67 to 33.4 m-1. The link between DOC and CDOM was studied using a range of wavelengths and algorithms. Wavelengths between 250 and 270 nm gave the best predictions with single linear regression. Total dissolved iron was found to influence the prediction in wavelengths above 520 nm. Despite significant seasonal and spatial differences in DOC-CDOM models, a universal relationship was tested with an independent data set and found to be robust. DOC and CDOM yields (loading/catchment area) from the catchments ranged from 1.98 to 5.44 g C m-2 yr-1, and 1.67 to 11.5 aCDOM(375) yr-1, respectively.

  19. Organic matter compositions and loadings in soils and sediments along the Fly River, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; Moore, Eric; Kurtz, Andrew; Portier, Evan; Alleau, Yvan; Merrell, David

    2014-09-01

    The compositions and loadings of organic matter in soils and sediments from a diverse range of environments along the Fly River system were determined to investigate carbon transport and sequestration in this region. Soil horizons from highland sites representative of upland sources have organic carbon contents (%OC) that range from 0.3 to 25 wt%, carbon:nitrogen ratios (OC/N) that range from 7 to 25 mol/mol, highly negative stable carbon isotopic compositions (δ13Corg < -26‰) and variable concentrations of lignin phenols (1 < LP < 5 mg/100 mg OC). These compositions reflect inputs from local vegetation, with contributions from bedrock carbon in the deeper mineral horizons. Soils developed on the levees of active floodplains receive inputs of allochthonous materials by overbank deposition as well as autochthonous inputs from local vegetation. In the forested upper floodplain reaches, %OC contents are lower than upland soils (0.8-1.5 wt%) as are OC/N ratios (9-15 mol/mol) while δ13Corg (-25 to -28‰) and LP (2-6 mg/100 mg OC) values are comparable to upland soils. These results indicate that organic matter present in these active floodplain soils reflect local (primarily C3) vegetation inputs mixed with allochthonous organic matter derived from eroded bedrock. In the lower reaches of the floodplain, which are dominated by swamp grass vegetation, isotopic compositions were less negative (δ13Corg > -25‰) and non-woody vegetation biomarkers (cinnamyl phenols and cutin acids) more abundant relative to upper floodplain sites. Soils developed on relict Pleistocene floodplain terraces, which are typically not flooded and receive little sediment from the river, were characterized by low %OC contents (<0.6 wt%), low OC/N ratios (<9 mol/mol), more positive δ13Corg signatures (>-21‰) and low LP concentrations (∼3 mg/100 mg OC). These relict floodplain soils contain modern carbon that reflects primarily local (C3 or C4) vegetation sources. Total suspended solids

  20. Land Cover and Nutrient Loads Explain Changes in Enzymatic Processing of Stream Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Hosen, J. D.; Febria, C.; McDonough, O.; Palmer, M.

    2012-12-01

    Anthropogenic land use has been shown to alter organic matter composition as well as its processing, export, and retention in headwater streams. Human activities also increase stream nutrient loading and in turn organic matter processing by heterotrophic microbial communities. Using microbial extracellular enzyme activity (EEA) assays combined with dissolved organic matter (DOM) fluorescence spectroscopy, we investigated the interaction between catchment land use, nutrient limitation, heterotrophic microbial communities, and carbon processing in five forested and three urbanized Coastal Plain headwater streams (Maryland, USA). EEA measures microbial production of heterotrophic extracellular enzymes, including aminopeptidase, which facilitates the breakdown of organic nitrogen and phosphatase which facilitates breakdown of organic phosphate. DOM fluorescence spectroscopy enables rapid quantification of different organic matter fluorophores (e.g., amino acid-, humic acid-, and fulvic acid-like). Excitation-emission matrices (EEMs) of DOM fluorescence can be coupled with parallel factor analysis (PARAFAC) for detailed quantitative analysis. Samples were collected quarterly from May 2011 to July 2012 and characterized using both EEA and EEM. We show that significant differences in stream EEA are explained by DOM fluorescence, land cover, and inorganic nutrient inputs. Specifically, urbanized sites were characterized by relatively low ortho-phosphate concentrations, high inorganic nitrogen concentrations, high phosphatase EEA, and greater amino acid-like DOM fluorescence. Aminopeptidase activity increased with increasing amino acid-like DOM fluorescence (i.e., a labile form of DOM for microbes) in forested streams. By contrast aminopeptidase activity did not respond to increasing amino acid-like fluorescence in urbanized streams. This points to a difference in limitation in inorganic nutrients between stream types. Thus, we hypothesize that stream microbial communities

  1. Effect of organic loading rate on anaerobic digestion of thermally pretreated Scenedesmus sp. biomass.

    PubMed

    González-Fernández, C; Sialve, B; Bernet, N; Steyer, J P

    2013-02-01

    Biogas production is one of the means to produce a biofuel from microalgae. Biomass consisting mainly of Scenedesmus sp. was thermally pretreated and optimum pretreatment length (1 h) and temperature (90 °C) was selected. Different chemical composition among batches stored at 4 °C for different lengths of time resulted in organic matter hydrolysis percentages ranging from 3% to 7%. The lower percentages were attributed to cell wall thickening observed during storage for 45 days. The different hydrolysis percentages did not cause differences in anaerobic digestion. Pretreatment of Scenedesmus sp. at 90 °C for 1h increased methane production 2.9 and 3.4-fold at organic loading rates (OLR) of 1 and 2.5 kg COD m(-3) day(-1), respectively. Regardless the OLR, inhibition caused by organic overloading or ammonia toxicity were not detected. Despite enhanced methane production, anaerobic biodegradability of this biomass remained low (32%). Therefore, this microalga is not a suitable feedstock for biogas production unless a more suitable pretreatment can be found. PMID:23247149

  2. Whey treatment by AnSBBR with circulation: effects of organic loading, shock loads, and alkalinity supplementation.

    PubMed

    Bezerra, Roberto A; Rodrigues, José A D; Ratusznei, Suzana M; Zaiat, Marcelo; Foresti, Eugenio

    2007-12-01

    The main objective of this work was to investigate the effect of volumetric loading rate (VLR), shock load, and alkalinity supplementation on the efficiency and stability of an Anaerobic Sequencing Batch Biofilm Reactor (AnSBBR) containing polyurethane foam cubes. Mixing in the reactor, which was kept at 30 +/- 1 degrees C, occurred by recirculating the liquid phase. The reactor treated 2.5 l cheese whey in 8-h cycles, at concentrations of 1, 2, and 4 g COD l-1, which corresponded to VLRs of 3, 6, and 12 g COD l-1 day-1, respectively. Application of single-cycle shock loads of 6, 12, and 24 g COD l-1 day-1 did not impair reactor performance. In addition, for VLRs of 3, 6, and 12 g COD l-1 day-1, alkalinity supplementation to the influent, at the end of each assay, could be reduced to 75, 50, and 50%, respectively, in relation to supplementation at the beginning of the assay. During reactor operation a viscous polymer-like material was formed between the polyurethane foam cubes, which increased at higher VLR. Finally, addition of salts to the influent improved reactor efficiency. PMID:18057453

  3. Rheological behavior of physicochemical sludges during methanogenesis suppression and hydrogen production at different organic loading rates.

    PubMed

    Méndez-Contreras, Juan Manuel; López-Escobar, Luis A; Martínez-Hernández, Sergio; Cantú-Lozano, Denis; Ortiz-Ceballos, Angel I

    2016-06-01

    This study investigated the rheological behavior of raw physicochemical sludges and sludges that were digested at different organic loading rates (OLRs) (1, 5, 10 and 15 gVS L(-1) d(-1)) during methanogenesis suppression to produce hydrogen anaerobically. The Herschel-Bulkley model was used to describe the rheology of these sludges with specific properties. The results indicate that the Herschel-Bulkley model adequately described the rheology ([Formula: see text] ≠ 0) of this type of fluids (R(2) > 0.98). In addition, the raw physicochemical sludges and those that were digested at different OLRs had dilatant behaviors (n > 1), which increased with increasing OLR. These results identified the apparent viscosity, yield stress, pH and OLR conditions that allow for the production and suppression of methane, as well as the conditions that guarantee the production of hydrogen. PMID:26943338

  4. Solid-base loaded WO3 photocatalyst for decomposition of harmful organics under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Kako, Tetsuya; Meng, Xianguang; Ye, Jinhua

    2015-10-01

    Composite of NaBiO3-loaded WO3 with a mixing ratio of 10:100 was prepared for photocatalytic harmful-organic-contaminant decomposition. The composite properties were measured using X-ray diffraction, ultraviolet-visible spectrophotometer (UV-Vis), and valence band-X-ray photoelectron spectroscope (VB-XPS). The results exhibited that the potentials for top of the valence band and bottom of conduction band for NaBiO3 can be estimated, respectively, as +2.5 V and -0.1 to 0 V. Furthermore, WO3, NaBiO3, and the composite showed IPA oxidation properties under visible-light irradiation. Results show that the composite exhibited much higher photocatalytic activity about 2-propanol (IPA) decomposition into CO2 than individual WO3 or NaBiO3 because of charge separation promotion and the base effect of NaBiO3.

  5. Organization of volcanic plumbing through magmatic lensing by magma chambers and volcanic loads

    NASA Astrophysics Data System (ADS)

    Karlstrom, Leif; Dufek, Josef; Manga, Michael

    2009-10-01

    The development of discrete volcanic centers reflects a focusing of magma ascending from the source region to the surface. We suggest that this organization occurs via mechanical interactions between magma chambers, volcanic edifices, and dikes and that the stresses generated by these features may localize crustal magma transport before the first eruption occurs. We develop a model for the focusing or "lensing" of rising dikes by magma chambers beneath a free surface, and we show that chambers strongly modulate dike focusing by volcanic edifices. We find that the combined mechanical effects of chambers, edifice loading, and dike propagation are strongly coupled. Chambers deeper than ˜20 km below the surface with magmatic overpressure in the range of 20-100 MPa should dominate dike focusing, while more shallow systems are affected by both edifice and chamber focusing.

  6. The determination of organomercurials in surface waters containing high organic loads

    SciTech Connect

    Chandrasekhar, T.M.; Arrecis, J.J.; Witt, M.L.

    1995-12-31

    A method to measure trace quantities of methyl mercuric chloride and other organomercurials in surface waters containing high organic loads has been developed. Since organomercurials are usually present at ultra trace levels (0.02 to 0.2 ng/L) in surface waters, sample pre concentration is often necessary. This paper outlines the use of solid phase extraction to achieve the desired pre concentration. The compounds are then separated using gas chromatography and detected using an atomic fluorescence detector. Unlike the conventional approach which employs ethylation, there is no need to derivative the organomercurials to their more volatile ethylated analogs, and direct injection of the SPE extract onto a column is possible. Moreover this technique lends itself to a limited amount of automation, and higher throughput. Results from the analysis of surface waters from the Florida Everglades will be presented.

  7. Organic-matter loading determines regime shifts and alternative states in an aquatic ecosystem

    PubMed Central

    Sirota, Jennie; Baiser, Benjamin; Gotelli, Nicholas J.; Ellison, Aaron M.

    2013-01-01

    Slow changes in underlying state variables can lead to “tipping points,” rapid transitions between alternative states (“regime shifts”) in a wide range of complex systems. Tipping points and regime shifts routinely are documented retrospectively in long time series of observational data. Experimental induction of tipping points and regime shifts is rare, but could lead to new methods for detecting impending tipping points and forestalling regime shifts. By using controlled additions of detrital organic matter (dried, ground arthropod prey), we experimentally induced a shift from aerobic to anaerobic states in a miniature aquatic ecosystem: the self-contained pools that form in leaves of the carnivorous northern pitcher plant, Sarracenia purpurea. In unfed controls, the concentration of dissolved oxygen ([O2]) in all replicates exhibited regular diurnal cycles associated with daytime photosynthesis and nocturnal plant respiration. In low prey-addition treatments, the regular diurnal cycles of [O2] were disrupted, but a regime shift was not detected. In high prey-addition treatments, the variance of the [O2] time series increased until the system tipped from an aerobic to an anaerobic state. In these treatments, replicate [O2] time series predictably crossed a tipping point at ∼45 h as [O2] was decoupled from diurnal cycles of photosynthesis and respiration. Increasing organic-matter loading led to predictable changes in [O2] dynamics, with high loading consistently driving the system past a well-defined tipping point. The Sarracenia microecosystem functions as a tractable experimental system in which to explore the forecasting and management of tipping points and alternative regimes. PMID:23613583

  8. Development of a new neutron monitor using a boron-loaded organic liquid scintillation detector

    NASA Astrophysics Data System (ADS)

    Rasolonjatovo, A. H. D.; Shiomi, T.; Kim, E.; Nakamura, T.; Nunomiya, T.; Endo, A.; Yamaguchi, Y.; Yoshizawa, M.

    2002-10-01

    A new type of neutron dose monitor was developed by using a 12.7 cm diameter×12.7 cm long boron-loaded organic liquid scintillation detector BC523A. This detector aims to have a response in the wide energy range of thermal energy to 100 MeV by using the H and C reactions to the fast neutrons of organic liquid and the 10B(n, α) reaction to thermalized neutrons in the liquid. The response functions of this detector were determined by the Monte Carlo simulation in the energy region from thermal energy to 100 MeV. Using these response functions, the spectrum-weighted dose function, G-function, to get the neutron dose from the light output spectrum of the detector was also determined by the unfolding technique. The calculated G-function was applied to determine the neutron dose in real neutron fields having energies ranging from thermal energy to several tens of MeV, where the light output spectra were measured with the BC523A detector. The thus-obtained ambient doses and effective doses show rather good agreement with the fluence-to-dose conversion factor given by ICRP 74. This detector will be useful as a wide-energy range neutron monitor.

  9. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.

    PubMed

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-10-01

    Graphitic carbon nitride supported on activated carbon (g-C3N4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C3N4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C3N4 to CO was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C3N4/AC catalyst within 20min with PMS, while g-C3N4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C3N4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO and SO4(-)) in AO7 oxidation was proposed in the system. The CO groups play a key role in the process; while the exposure of more N-(C)3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants. PMID:27214000

  10. Response of a continuous biomethanation process to transient organic shock loads under controlled and uncontrolled pH conditions.

    PubMed

    Kim, Jaai; Lee, Changsoo

    2015-04-15

    The organic loading rate (OLR) is a critical factor that controls the treatment efficiency and biogas production in anaerobic digestion (AD). Therefore, organic shock loads may cause significant process imbalances accompanied by a drop in pH and acid accumulation or even failure. This study investigated the response of a continuous mesophilic anaerobic bioreactor to a series of transient organic shock loads of the substrate whey permeate, a high-strength organic wastewater from cheese making. The reactor was subjected to organic shock loads of increasing magnitude (a one-day pulse of elevated feed organic concentration) under controlled (near 7) and uncontrolled pH conditions at a fixed HRT of 10 days. The reactor was resilient to up to a shock load of up to 8.0 g SCOD/L·d under controlled pH conditions but failed to recover from the serious imbalance caused by a 3.0-g SCOD/L·d shock load, thus indicating the critical effect of pH on system resilience. The acidified reactor was not restored by interrupted feeding under the acidic conditions that were formed (pH ≤ 4.5) but was successfully restored after pH adjustment to 7. The reactor subsequently reverted to continuous mode without pH control and showed a performance comparable to the stable performance at the design OLR of 1.0 g SCOD/L·d. The bacterial community structure shifted dynamically in association with disturbances in the reactor conditions, whereas the archaeal community structure remained simple and less variable during the shock loading experiments. The structural shifts of the bacterial community were well correlated with the process performance changes, and performance recovery was generally accompanied by recovery of the bacterial community structure. The overall results suggest that the reactor pH, rather than simply acting as an accumulation of organic acids, had a crucial effect on the resilience and robustness of the microbial community and thus on the reactor performance under organic

  11. Influence of temperature and organic load on chemical disinfection of Geobacillus steareothermophilus spores, a surrogate for Bacillus anthracis.

    PubMed

    Guan, Jiewen; Chan, Maria; Brooks, Brian W; Rohonczy, Liz

    2013-04-01

    This study evaluated the influence of temperature and organic load on the effectiveness of domestic bleach (DB), Surface Decontamination Foam (SDF), and Virkon in inactivating Geobacillus stearothermophilus spores, which are a surrogate for Bacillus anthracis spores. The spores were suspended in light or heavy organic preparations and the suspension was applied to stainless steel carrier disks. The dried spore inoculum was covered with the disinfectants and the disks were then incubated at various temperatures. At -20°C, the 3 disinfectants caused less than a 2.0 log10 reduction of spores in both organic preparations during a 24-h test period. At 4°C, the DB caused a 4.4 log10 reduction of spores in light organic preparations within 2 h, which was about 3 log10 higher than what was achieved with SDF or Virkon. In heavy organic preparations, after 24 h at 4°C the SDF had reduced the spore count by 4.5 log10, which was about 2 log10 higher than for DB or Virkon. In general, the disinfectants were most effective at 23°C but a 24-h contact time was required for SDF and Virkon to reduce spore counts in both organic preparations by at least 5.5 log10. Comparable disinfecting activity with DB only occurred with the light organic load. In summary, at temperatures as low as 4°C, DB was the most effective disinfectant, inactivating spores within 2 h on surfaces with a light organic load, whereas SDF produced the greatest reduction of spores within 24 h on surfaces with a heavy organic load. PMID:24082400

  12. Influence of temperature and organic load on chemical disinfection of Geobacillus steareothermophilus spores, a surrogate for Bacillus anthracis

    PubMed Central

    Guan, Jiewen; Chan, Maria; Brooks, Brian W.; Rohonczy, Liz

    2013-01-01

    This study evaluated the influence of temperature and organic load on the effectiveness of domestic bleach (DB), Surface Decontamination Foam (SDF), and Virkon in inactivating Geobacillus stearothermophilus spores, which are a surrogate for Bacillus anthracis spores. The spores were suspended in light or heavy organic preparations and the suspension was applied to stainless steel carrier disks. The dried spore inoculum was covered with the disinfectants and the disks were then incubated at various temperatures. At −20°C, the 3 disinfectants caused less than a 2.0 log10 reduction of spores in both organic preparations during a 24-h test period. At 4°C, the DB caused a 4.4 log10 reduction of spores in light organic preparations within 2 h, which was about 3 log10 higher than what was achieved with SDF or Virkon. In heavy organic preparations, after 24 h at 4°C the SDF had reduced the spore count by 4.5 log10, which was about 2 log10 higher than for DB or Virkon. In general, the disinfectants were most effective at 23°C but a 24-h contact time was required for SDF and Virkon to reduce spore counts in both organic preparations by at least 5.5 log10. Comparable disinfecting activity with DB only occurred with the light organic load. In summary, at temperatures as low as 4°C, DB was the most effective disinfectant, inactivating spores within 2 h on surfaces with a light organic load, whereas SDF produced the greatest reduction of spores within 24 h on surfaces with a heavy organic load. PMID:24082400

  13. Salmon contributions to dissolved organic matter and nutrient loads in a coastal stream in Southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Hood, E.; Fellman, J. B.; Edwards, R. T.

    2005-12-01

    In southeastern Alaska, spawning salmon can have a substantial effect on the water quality of coastal watersheds because salmon move large quantities of marine nutrients into terrestrial freshwater streams. We are measuring the effects of salmon on loads of inorganic nutrients (nitrogen and phosphorus) and dissolved organic matter (DOM) in Peterson Creek near Juneau, Alaska. Peterson Creek receives sizable runs of pink (Oncorhynchus gorbushca) and chum (Oncorhynchus keta) salmon during the late summer (mid-August through mid-September). To test the effects of salmon on water quality, samples were collected above and below a barrier waterfall on Peterson Creek. During salmon spawning, concentrations of ammonium (NH4+) were up to two orders of magnitude higher at the downstream salmon-influenced site, while soluble reactive phosphorus (SRP) increased by more than an order of magnitude at the downstream site. For the entire salmon spawning period, concentrations of NH4+, SRP, and dissolved organic carbon (DOC) were significantly higher at the downstream site compared to the upstream site, however nitrate (NO3-) concentrations were not significantly different between sites. Characterization of DOC samples using fluorescence spectroscopy showed that the DOC leached from salmon had a large protein component compared to DOC at the upstream site which was dominated by humic material. These results suggest that salmon provide a pulse of inorganic N and P as well as labile DOC to surface waters during the spawning period. Concurrent measurements of discharge will allow us to assess the importance of salmon-derived nutrients in the seasonal nutrient budget of Peterson Creek.

  14. Organic Carbon Trends, Loads, and Yields to the Sacramento-San Joaquin Delta, California, Water Years 1980 to 2000

    USGS Publications Warehouse

    Saleh, Dina K.; Domagalski, Joseph L.; Kratzer, Charles R.; Knifong, Donna L.

    2003-01-01

    Organic carbon, nutrient, and suspended sediment concentration data were analyzed for the Sacramento and San Joaquin River Basins for the period 1980-2000. The data were retrieved from three sources: the U.S. Geological Survey's National Water Information System, the U.S. Environmental Protection Agency's Storage and Retrieval System, and the California Interagency Ecological Program's relational database. Twenty sites were selected, all of which had complete records of daily streamflow data. These data met the minimal requirements of the statistical programs used to estimate trends, loads, and yields. The seasonal Kendall program was used to estimate trends in organic carbon, nutrient, and suspended sediment. At all 20 sites, analyses showed that in the 145 analyses for the seven constituents, 95 percent of the analyses had no significant trend. Dissolved organic carbon (DOC) concentrations were significant only for four sites: the American River at Sacramento, the Sacramento River sites near Freeport, Orestimba Creek at River Roads near Crows Landing, and the San Joaquin River near Vernalis. Loads were calculated using two programs, ESTIMATOR and LOADEST2. The 1998 water year was selected to describe loads in the Sacramento River Basin. Organic carbon, nutrient, and suspended sediment loads at the Sacramento River sites near Freeport included transported loads from two main upstream sites: the Sacramento River at Verona and the American River at Sacramento. Loads in the Sacramento River Basin were affected by the amount of water diverted to the Yolo Bypass (the amount varies annually, depending on the precipitation and streamflow). Loads at the Sacramento River sites near Freeport were analyzed for two hydrologic seasons: the irrigation season (April to September) and the nonirrigation season (October to March). DOC loads are lower during the irrigation season then they are during the nonirrigation season. During the irrigation season, water with low

  15. Optical performance of mesostructured composite silica film loaded with organic dye.

    PubMed

    Guli, Mina; Chen, Shijian; Zhang, Dingke; Li, Xiaotian; Yao, Jianxi; Chen, Lei; Xiao, Li

    2014-01-10

    A mesoporous composite silica film loaded with organic dye has been successfully synthesized by a solgel reaction process and a simple postgrafting method at room temperature. The composite film was characterized by x-ray diffraction, transmission electron microscopy, UV-Vis, photoluminescence (PL) spectra, and laser performance, and the results confirmed the existence of dyes in the channels of the silica film. A blue-shift and fluorescence property in the PL spectrum was observed from the composite film compared with that of dye molecules in C₂H₅OH solution. The spectrum narrowing phenomena has been observed when the composite film is pumped at λp=355  nm by a Nd:YAG pulsed laser. A narrower, higher peak was observed in emission spectra from the mesostructured composite silica film compared with the PL spectrum of dye in C₂H₅OH solution. There is a substantial reduction in the full width at half-maximum of the emitting light, which results in peaks with linewidths of 26 nm or more. This collapse of the emission spectrum is one of the signatures of the presence of amplified spontaneous emission. PMID:24514063

  16. Screening of 47 organic microcontaminants in agricultural irrigation waters and their soil loading.

    PubMed

    Calderón-Preciado, D; Jiménez-Cartagena, C; Matamoros, V; Bayona, J M

    2011-01-01

    Reclaimed water usage for crop irrigation is viewed both as an excellent sustainable water source and as a potential entrance for emerging organics into the food chain. This concern is backed by the already documented pollutant crop uptake potential. In the present study, irrigation waters used in agricultural fields (Torroella de Montgri, NE Spain) were screened for 47 analytes in a two year study (2007-2008). A total of 26 contaminants belonging to different chemical classes namely, pesticides, pharmaceuticals, personal care products, phenolic estrogens, antioxidants and disinfection by-products, were detected. Marked differences in concentration trends for the different chemical classes were evidenced from 2007 to 2008, and attributed to a persistent drought endured by the region in 2008. Also, loading mass rates of chemical classes were estimated based on crop irrigation regimes and they ranged from 0.8 to 121.3 g ha(-1) per crop cycle. These values were contrasted with those obtained for other water sources from countries where crop irrigation is commonly practiced. Finally, crops grown under these irrigation regimes, namely alfalfa and apple, were analyzed and 5 anthropogenic compounds were identified and quantitated, whose concentrations ranged from 13.9 to 532 ng g(-1) (fresh weight). PMID:20961595

  17. Ecological correlates of variable organ sizes and fat loads in the most northerly-wintering shorebirds

    USGS Publications Warehouse

    Ruthrauff, Daniel R.; Dekinga, Anne; Gill, R.E., Jr.; Summers, R.W.; Piersma, Theunis

    2013-01-01

    Shorebirds at northern latitudes during the nonbreeding season typically carry relatively large lipid stores and exhibit an up-regulation of lean tissues associated with digestion and thermogenesis. Intraspecific variation in these tissues across sites primarily reflects differences in environmental conditions. Rock (Calidris ptilocnemis (Coues, 1873)) and Purple (Calidris maritima (Brünnich, 1764)) sandpipers are closely related species having the most northerly nonbreeding distributions among shorebirds, living at latitudes up to 61°N in Cook Inlet, Alaska, and up to 71°N in northern Norway, respectively. Cook Inlet is the coldest known site used by nonbreeding shorebirds, and the region’s mudflats annually experience extensive coverage of foraging sites by sea and shore-fast ice. Accordingly, Rock Sandpipers increase their fat stores to nearly 20% of body mass during winter. In contrast, Purple Sandpipers exploit predictably ice-free rocky intertidal foraging sites and maintain low (<6.5%) fat stores. Rock Sandpipers increase the mass of lean tissues from fall to winter, including contour feathers, stomach, and liver components. They also have greater lean pectoralis and supracoracoideus muscle and liver and kidney tissues compared with Purple Sandpipers in winter. This demonstrates a combined emphasis on digestive processes and thermogenesis, whereas Purple Sandpipers primarily augment organs associated with digestive processes. The high winter fat loads and increased lean tissues of Rock Sandpipers in Cook Inlet reflect the region’s persistent cold and abundant but sporadically unavailable food resources.

  18. Cooperative loading and release behavior of a metal-organic receptor.

    PubMed

    Gan, Quan; Ronson, Tanya K; Vosburg, David A; Thoburn, John D; Nitschke, Jonathan R

    2015-02-11

    In order to design artificial chemical systems that are capable of achieving complex functions, it is useful to design synthetic receptors that mimic their biological counterparts. Biological functions are underpinned by properties that include specific binding with high affinity and selectivity, cooperativity, and release triggered by external stimuli. Here we show that a metal-organic receptor constructed through subcomponent self-assembly can selectively and cooperatively load and release oxocarbon anions. The flexible coordination spheres of its cadmium(II) centers allow the receptor to dynamically adjust its structure upon exchanging four triflate or triflimide counterions for two oxocarbon anions, resulting in strong cooperativity and very tight binding, with an apparent association constant for C5O5(2-) of 5 × 10(10) M(-1). Substituting the cadmium(II) ions for copper(I) by switching solvent prompted a structural reorganization and release of the oxocarbon anions. Its cooperative behavior allows the receptor to carry a greater payload than would be possible in a noncooperative analogue. PMID:25615799

  19. Nonenzymatic amperometric organic peroxide sensor based on nano-cobalt phthalocyanine loaded functionalized graphene film.

    PubMed

    Cui, Lin; Chen, Lijian; Xu, Minrong; Su, Haichao; Ai, Shiyun

    2012-01-27

    An enzyme-free amperometric method was established for the electrochemical reduction tert-butyl hydroperoxide (TBHP) on the utilization of nano-cobalt phthalocyanine (CoPc) loaded functionalized graphene (FGR) and to create a highly responsive organic peroxide sensor. FGR was synthesized with a simple and fast method of electrolysis with potassium hexafluorophosphate (KPF(6)) solution as electrolyte under the static current of 0.2A. In the present work, FGR was dispersed in the solution of CoPc to fabricate chemical modified electrode to detect TBHP. The electro-reduction of TBHP can be catalyzed by FGR-CoPc, which has an excellent electrocatalytical activity due to the synergistic effect of the FGR with CoPc. The sensor can be applied to the quantification of TBHP with a linear range covering from 0.0260 to 4.81 mM, a high sensitivity of 13.64 A M(-1), and a low detection limit of 5 μM. This proposed sensor was designed as a simple, robust, and cheap analytical device for the determination of TBHP in body lotion. PMID:22177066

  20. [Effect of Increasing Organic Loading Rate on the Formation and Stabilization Process of Aerobic Granular Sludge].

    PubMed

    Liu, Xiao-peng; Wang, Jan-fang; Qian, Fei-yue; Wang, Yan; Chen, Chong-jun; Shen, Yao-liang

    2015-09-01

    In order to evaluate the effect of organic loading rate ( OLR) on the formation of aerobic granular sludge (AGS), a lab-scale cylindrical SBR reactor (sodium acetate as carbon source) was constructed and inoculated with collected sewage sludge. The evolution of morphology, microbial activity and extracellular polymeric substances (EPS) characteristics of sludge samples in the reactor were recorded and analyzed. The results showed that AGS has the highest growth rate under the condition of 3. 20-4. 84 kg.(m3.d)-1 OLR, and a selective discharging strategy of the floccular sludge was suggested to maintain the predominance of AGS in reactor. The accumulated sludge concentration, SVI30, mean granule size, settling velocity and SOUR value of the AGS in steady-state operated SBR was 23. 9 g.L-1, 20 mL.g-1, 1. 4 mm, 102 m.h-1 and 50. 2 mg.(g.h)-1, respectively. The granulation process not only obviously changed the sludge appearance, but also significantly improved the microbial activity. Meanwhile, linear correlation was observed between the variation of protein/polysaccharide concentration and the granule size of AGS. Thus, variation of protein/ polysaccharide concentration of the EPS could be applied as an indicator for optimization of the cultivation method of AGS. PMID:26717698

  1. Tolerance to organic loading rate by aerobic granular sludge in a cyclic aerobic granular reactor.

    PubMed

    Long, Bei; Yang, Chang-zhu; Pu, Wen-hong; Yang, Jia-kuan; Liu, Fu-biao; Zhang, Li; Zhang, Jing; Cheng, Kai

    2015-04-01

    Sodium acetate as carbon source, tolerance to organic loading rate (OLR) by aerobic granular sludge in a cyclic aerobic granular reactor (CAGR) was investigated by gradually increasing the influent COD. AGS could maintain stability in the continuous flow reactor under OLR⩽15kg/m(3)d in the former 65 days, and SVI, granulation rate, average particle size and water content was 21 ml/g, 98%, 1.8mm and 97.2% on the 65th day. However, AGS gradually disintegrated after the 66 th day when OLR increased to 18 kg/m(3)d, and granules' properties deteriorated rapidly in a short time. High removal rates to pollutants were achieved by CAGR in the former 65 days, but the removal rates of pollutants dropped sharply from the 66 th day. With the increase of OLR and particle size, anaerobic cores inside the granules were formed by massive dead cells, while instability of anaerobic core eventually led to the collapse of the system. PMID:25710570

  2. Wet deposition loadings of organic contaminants to Lake Ontario: Assessing the influence of precipitation from urban and rural sites

    NASA Astrophysics Data System (ADS)

    Melymuk, Lisa; Robson, Matthew; Diamond, Miriam L.; Bradley, Lisa E.; Backus, Sean

    2011-09-01

    Wet deposition to Lake Ontario has been examined through a comparison of concentrations of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), and brominated flame retardants (BFRs) in precipitation at three sites on the north shore of Lake Ontario: one rural, one suburban, and one urban site. Concentrations of ΣPAHs, BFRs, ΣPCBs, Σchlordanes and γ-HCH in precipitation are highest at the urban site, while concentrations of other OCPs were similar across all three sites. Loadings via wet deposition range from 0.42 kg year -1 for Σchlordanes to 1900 kg year -1 for ΣPAHs. The distribution of concentrations reflects the use/emission pattern of the persistent organic pollutants (POPs), and indicates that concentrations in precipitation are predominantly the result of local sources rather than long-range transport from other regions. While elevated urban concentrations increase wet deposition in the urban region itself, this influence decreases rapidly downwind of the urban area. Chemical loads in precipitation from the highly urbanized regions bordering the Great Lakes are estimated to increase wet deposition loadings to lake areas adjacent to the urban areas. Estimates of annual wet deposition loadings of POPs to Lake Ontario indicate that when considering the influence of elevated loadings from Toronto, loadings via precipitation are 2.5%-42% higher depending on the compound, with the greatest relative increase in loadings resulting from PCBs and Σchlordanes.

  3. Scaffolding Writing Using Feedback in Students' Graphic Organizers--Novice Writers' Relevance of Ideas and Cognitive Loads

    ERIC Educational Resources Information Center

    Lee, Chien Ching; Tan, Seng Chee

    2010-01-01

    This paper aims to find out two outcomes of feedback in the novice writers' graphic organizers, which are the novice writers' ability to align their ideas to their writing goal, and their perceived germane, metacognitive, extraneous and intrinsic cognitive loads when generating and revising ideas based on the feedback. Data was gathered from the…

  4. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.

    PubMed

    Bucs, Sz S; Valladares Linares, R; van Loosdrecht, M C M; Kruithof, J C; Vrouwenvelder, J S

    2014-12-15

    The influence of organic nutrient load on biomass accumulation (biofouling) and pressure drop development in membrane filtration systems was investigated. Nutrient load is the product of nutrient concentration and linear flow velocity. Biofouling - excessive growth of microbial biomass in membrane systems - hampers membrane performance. The influence of biodegradable organic nutrient load on biofouling was investigated at varying (i) crossflow velocity, (ii) nutrient concentration, (iii) shear, and (iv) feed spacer thickness. Experimental studies were performed with membrane fouling simulators (MFSs) containing a reverse osmosis (RO) membrane and a 31 mil thick feed spacer, commonly applied in practice in RO and nanofiltration (NF) spiral-wound membrane modules. Numerical modeling studies were done with identical feed spacer geometry differing in thickness (28, 31 and 34 mil). Additionally, experiments were done applying a forward osmosis (FO) membrane with varying spacer thickness (28, 31 and 34 mil), addressing the permeate flux decline and biofilm development. Assessed were the development of feed channel pressure drop (MFS studies), permeate flux (FO studies) and accumulated biomass amount measured by adenosine triphosphate (ATP) and total organic carbon (TOC). Our studies showed that the organic nutrient load determined the accumulated amount of biomass. The same amount of accumulated biomass was found at constant nutrient load irrespective of linear flow velocity, shear, and/or feed spacer thickness. The impact of the same amount of accumulated biomass on feed channel pressure drop and permeate flux was influenced by membrane process design and operational conditions. Reducing the nutrient load by pretreatment slowed-down the biofilm formation. The impact of accumulated biomass on membrane performance was reduced by applying a lower crossflow velocity and/or a thicker and/or a modified geometry feed spacer. The results indicate that cleanings can be delayed

  5. Organic N and P in eutrophic fjord sediments - rates of mineralization and consequences for internal nutrient loading

    NASA Astrophysics Data System (ADS)

    Valdemarsen, T.; Quintana, C. O.; Flindt, M. R.; Kristensen, E.

    2015-03-01

    Nutrient release from the sediments in shallow eutrophic estuaries may counteract reductions of the external nutrient load and prevent or prolong ecosystem recovery. The magnitude and temporal dynamics of this potential source, termed internal nutrient loading, is poorly understood. We quantified the internal nutrient loading driven by microbial mineralization of accumulated organic N (ON) and P (OP) in sediments from a shallow eutrophic estuary (Odense Fjord, Denmark). Sediments were collected from eight stations within the system and nutrient production and effluxes were measured over a period of ~ 2 years. Dissolved inorganic nitrogen (DIN) effluxes were high initially but quickly faded to low and stable levels after 50-200 days, whereas PO43- effluxes were highly variable in the different sediments. Mineralization patterns suggested that internal N loading would quickly (< 200 days) fade to insignificant levels, whereas internal PO43- loading could be sustained for extended time (years). When results from all stations were combined, internal N loading and P loading from the fjord bottom was up to 121 × 103 kg N yr-1 (20 kg N ha-1 yr-1) and 22 × 103 kg P yr-1 (3.6 kg P ha-1 yr-1) corresponding to 6 (N) and 36% (P) of the external nutrient loading to the system. We conclude that the internal N loading resulting from degradation of accumulated ON is low in shallow eutrophic estuaries, whereas microbial mineralization of accumulated OP is a potential source of P. Overall it appears that, in N-limited eutrophic systems, internal nutrient resulting from mineralization of ON and OP in sediments is of minor importance.

  6. Pulse shape discrimination capability of metal-loaded organic liquid scintillators for a short-baseline reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    Kim, B. R.; Han, B. Y.; Jeon, E. J.; Joo, K. K.; Kang, Jeongsoo; Khan, N.; Kim, H. J.; Kim, Hyunsoo; Kim, J. Y.; Siyeon, Kim; Kim, S. C.; Kim, Yeongduk; Ko, Y. J.; Lee, Jaison; Lee, Jeong-Yeon; Lee, J. Y.; Ma, K. J.; Park, Hyeonseo; Park, H. K.; Park, K. S.; Seo, K. M.; Seon, Gwang-Min; Yeo, I. S.; Yeo, K. M.

    2015-05-01

    A new short-baseline (SBL) reactor neutrino experiment is proposed to investigate a reactor anti-neutrino anomaly. A liquid scintillator (LS) is used to detect anti-neutrinos emitted from a Hanaro reactor, and the pulse shape discrimination (PSD) ability of the metal-loaded organic LSs is evaluated on small-scale laboratory samples. PSD can be affected by selecting different base solvents, and several of the LSs used two different organic base solvents, such as linear alkyl benzene and di-isopropylnaphthalene. For the metallic content, gadolinium (Gd) or lithium (6Li) was loaded into a home-made organic LS and into a commercially available liquid scintillation cocktail. A feasibility study was performed for the PSD using several different liquid scintillation cocktails. In this work, the preparation and the PSD characteristics of a promising candidate, which will be used in an above-ground environment, are summarized and presented.

  7. The effect of organic loading rate on foam initiation during mesophilic anaerobic digestion of municipal wastewater sludge.

    PubMed

    Ganidi, Nafsika; Tyrrel, Sean; Cartmell, Elise

    2011-06-01

    The impact of increasing organic load on anaerobic digestion foaming was studied at both full and bench scale. Organic loadings of 1.25, 2.5 and 5 kg VS m(-3) were applied to bench-scale digesters. Foaming was monitored at a full scale digester operated in a comparable organic loading range over 15 months. The bench scale batch studies identified 2.5 kg VS m(-3) as a critical threshold for foam initiation while 5 kg VS m(-3) resulted in persistent foaming. Investigation of a full scale foaming event corroborated the laboratory observation that foaming may be initiated at a loading rate of ≥ 2.5 kg VS m(-3). Experimental findings on foam composition and differences in the quality characteristics between foaming and non-foaming sludges indicated that foam initiation derived from the combined effect of the liquid and gas phases inside a digester and that the solids/biomass ultimately stabilized foaming. PMID:21507623

  8. Organic loading rate: A promising microbial management tool in anaerobic digestion.

    PubMed

    Ferguson, Robert M W; Coulon, Frédéric; Villa, Raffaella

    2016-09-01

    This study investigated the effect of changes in organic loading rate (OLR) and feedstock on the volatile fatty acids (VFAs) production and their potential use as a bioengineering management tool to improve stability of anaerobic digesters. Digesters were exposed to one or two changes in OLR using the same or different co-substrates (Fat Oil and Grease waste (FOG) and/or glycerol). Although all the OLR fluctuations produced a decrease in biogas and methane production, the digesters exposed twice to glycerol showed faster recovery towards stable conditions after the second OLR change. This was correlated with the composition of the VFAs produced and their mode of production, from parallel to sequential, resulting in a more efficient recovery from inhibition of methanogenesis. The change in acids processing after the first OLR increase induced a shift in the microbial community responsible of the process optimisation when the digesters were exposed to a subsequent OLR increase with the same feedstock. When the digesters were exposed to an OLR change with a different feedstock (FOG), the recovery took 7d longer than with the same one (glycerol). However, the microbial community showed functional resilience and was able to perform similarly to pre-exposure conditions. Thus, changes in operational conditions can be used to influence microbial community structure for anaerobic digestion (AD) optimisation. Finally, shorter recovery times and increased resilience of digesters were linked to higher numbers of Clostridia incertae sedis XV, suggesting that this group may be a good candidate for AD bioaugmentation to speed up recovery after process instability or OLR increase. PMID:27214347

  9. Oceanic loading of wildfire-derived organic compounds from a small mountainous river

    USGS Publications Warehouse

    Hunsinger, G.B.; Mitra, Siddhartha; Warrick, J.A.; Alexander, C.R.

    2008-01-01

    Small mountainous rivers (SMRs) export substantial amounts of sediment into the world's oceans. The concomitant yield of organic carbon (OC) associated with this class of rivers has also been shown to be significant and compositionally unique. We report here excessively high loadings of polycyclic aromatic hydrocarbons (PAHs), lignin, and levoglucosan, discharged from the Santa Clara River into the Santa Barbara Channel. The abundance of PAHs, levoglucosan, and lignin in Santa Barbara Channel sediments ranged from 201.7 to 1232.3 ng gdw-1, 1.3 to 6.9 ??g gdw-1, and 0.3 to 2.2 mg per 100 mg of the sedimentary OC, respectively. Assuming a constant rate of sediment accumulation, the annual fluxes of PAHs, levoglucosan, and lignin, to the Santa Barbara Channel were respectively, 885.5 ?? 170.2 ng cm-2 a-1, 3.5 ?? 1.9 ??g cm-2 a-1 and 1.4 ?? 0.3 mg per 100 mg OC cm-2 a-1, over ???30 years. The close agreement between PAHs, levoglucosan, and lignin abundance suggests that the depositional flux of these compounds is largely biomass combustion-derived. To that end, use of the Santa Clara River as a model for SMRs suggests this class of rivers may be one of the largest contributors of pyrolyzed carbon to coastal systems and the open ocean. Wildfire associated carbon discharged from other high yield fluvial systems, when considered collectively, may be a significant source of lignin, pyrolytic PAHs, and other pyrogenic compounds to the ocean. Extrapolating these methods over geologic time may offer useful historical information about carbon sequestration and burial in coastal sediments and affect coastal carbon budgets. Copyright 2008 by the American Geophysical Union.

  10. A high-resolution conceptual model for diffuse organic micropollutant loads in streams

    NASA Astrophysics Data System (ADS)

    Stamm, Christian; Honti, Mark; Ghielmetti, Nico

    2013-04-01

    The ecological state of surface waters has become the dominant aspect in water quality assessments. Toxicity is a key determinant of the ecological state, but organic micropollutants (OMP) are seldom monitored with the same spatial and temporal frequency as for example nutrients, mainly due the demanding analytical methods and costs. However, diffuse transport pathways are at least equally complex for OMPs as for nutrients and there are still significant knowledge gaps. Moreover, concentrations of the different compounds would need to be known with fairly high temporal resolution because acute toxicity can be as important as the chronic one. Fully detailed mechanistic models of diffuse OMP loads require an immense set of site-specific knowledge and are rarely applicable for catchments lacking an exceptional monitoring coverage. Simple empirical methods are less demanding but usually work with more temporal aggregation and that's why they have limited possibilities to support the estimation of the ecological state. This study presents a simple conceptual model that aims to simulate the concentrations of selected organic micropollutants with daily resolution at 11 locations in the stream network of a small catchment (46 km2). The prerequisite is a known hydrological and meteorological background (daily discharge, precipitation and air temperature time series), a land use map and some historic measurements of the desired compounds. The model is conceptual in the sense that all important diffuse transport pathways are simulated separately, but each with a simple empirical process rate. Consequently, some site-specific observations are required to calibrate the model, but afterwards the model can be used for forecasting and scenario analysis as the calibrated process rates typically describe invariant properties of the catchment. We simulated 6 different OMPs from the categories of agricultural and urban pesticides and urban biocides. The application of agricultural

  11. Muscle receptor organs do not mediate load compensation during body roll and defense response extensions in the crayfish Cherax destructor.

    PubMed

    Patullo, B W; Faulkes, Z; Macmillan, D L

    2001-12-01

    It has been proposed that the abdominal muscle receptor organ (MRO) of decapod crustaceans acts in a sensory feedback loop to compensate for external load. There is not yet unequivocal evidence of MRO activity during slow abdominal extension in intact animals, however. This raises the possibility that MRO involvement in load compensation is context-dependent. We recorded from MRO tonic stretch receptors (SRs) in freely behaving crayfish (Cherax destructor) during abdominal extension occurring during two different behaviors: body roll and the defense response. Abdominal extensions are similar in many respects in both behaviors, although defense response extensions are more rapid. In both situations, SR activity typically ceased when the abdominal extension commenced, even if the joint of the SR being monitored was mechanically prevented from extending by a block. Since extensor motor neuron activity increased when the abdomen was prevented from extending, we concluded that the load compensation occurring in these behaviors was not mediated by the MROs. PMID:11748627

  12. Small organic compounds enhance antigen loading of class II major histocompatibility complex proteins by targeting the polymorphic P1 pocket.

    PubMed

    Höpner, Sabine; Dickhaut, Katharina; Hofstätter, Maria; Krämer, Heiko; Rückerl, Dominik; Söderhäll, J Arvid; Gupta, Shashank; Marin-Esteban, Viviana; Kühne, Ronald; Freund, Christian; Jung, Günther; Falk, Kirsten; Rötzschke, Olaf

    2006-12-15

    Major histocompatibility complex (MHC) molecules are a key element of the cellular immune response. Encoded by the MHC they are a family of highly polymorphic peptide receptors presenting peptide antigens for the surveillance by T cells. We have shown that certain organic compounds can amplify immune responses by catalyzing the peptide loading of human class II MHC molecules HLA-DR. Here we show now that they achieve this by interacting with a defined binding site of the HLA-DR peptide receptor. Screening of a compound library revealed a set of adamantane derivatives that strongly accelerated the peptide loading rate. The effect was evident only for an allelic subset and strictly correlated with the presence of glycine at the dimorphic position beta86 of the HLA-DR molecule. The residue forms the floor of the conserved pocket P1, located in the peptide binding site of MHC molecule. Apparently, transient occupation of this pocket by the organic compound stabilizes the peptide-receptive conformation permitting rapid antigen loading. This interaction appeared restricted to the larger Gly(beta86) pocket and allowed striking enhancements of T cell responses for antigens presented by these "adamantyl-susceptible" MHC molecules. As catalysts of antigen loading, compounds targeting P1 may be useful molecular tools to amplify the immune response. The observation, however, that the ligand repertoire can be affected through polymorphic sites form the outside may also imply that environmental factors could induce allergic or autoimmune reactions in an allele-selective manner. PMID:17005558

  13. Anaerobic digester foaming in full-scale cylindrical digesters--effects of organic loading rate, feed characteristics, and mixing.

    PubMed

    Subramanian, Bhargavi; Pagilla, Krishna R

    2014-05-01

    Cylindrical anaerobic digesters (AD) were investigated to determine the causes and contributors of AD foaming due to the following: organic loading rate (OLR) and mixing effects, waste activated sludge (WAS) storage effects and foam suppression mixing at the surface of AD, and the effects of primary sludge (PS) solids fraction in the feed sludge. No foaming was observed over the duration of the study, indicating absence of a primary foaming cause even though the suspected contributors to AD foaming were present. Total solids and temperature profiles showed that reducing mixing frequency did not significantly impact digester performance or the homogeneity of the digester contents. The results showed that high organic loading rates, reduced mixing, and feed sludge storage by themselves do not cause foaming in most ADs when the primary foaming cause is absent. Reduced mixing and surface sludge sprays are practical strategies to control AD foaming. PMID:24650532

  14. Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate.

    PubMed

    Liu, Yong-Qiang; Tay, Joo-Hwa

    2015-09-01

    The combined strong hydraulic selection pressure (HSP) with overstressed organic loading rate (OLR) as a fast granulation strategy was used to enhance aerobic granulation. To investigate the wide applicability of this strategy to different scenarios and its relevant mechanism, different settling times, different inoculums, different exchange ratios, different reactor configurations, and different shear force were used in this study. It was found that clear granules were formed within 24 h and steady state reached within three days when the fast granulation strategy was used in a lab-scale reactor seeded with well settled activated sludge (Reactor 2). However, granules appeared after 2-week operation and reached steady state after one month at the traditional step-wise decreased settling time from 20 to 2 min with OLR of 6 g COD/L·d (Reactor 1). With the fast granulation strategy, granules appeared within 24 h even with bulking sludge as seed to start up Reactor 3, but 6-day lag phase was observed compared with Reactor 2. Both Reactor 2 and Reactor 3 experienced sigmoidal growth curve in terms of biomass accumulation and granule size increase after granulation. In addition, the reproducible results in pilot-scale reactors (Reactor 5 and Reactor 6) with diameter of 20 cm and height/diameter ratio (H/D) of 4 further proved that reactor configuration and fluid flow pattern had no effect on the aerobic granulation when the fast granulation strategy was employed, but biomass accumulation experienced a short lag phase too in Reactor 5 and Reactor 6. Although overstressed OLR was favorable for fast granulation, it also led to the fluffy granules after around two-week operation. However, the stable 6-month operation of Reactor 3 demonstrated that the rapidly formed granules were able to maintain long-term stability by reducing OLR from 12 g COD/L·d to 6 g COD/L·d. A mechanism of fast granulation with the strategy of combined strong HSP and OLR was proposed to explain

  15. Reorganization of the bacterial and archaeal populations associated with organic loading conditions in a thermophilic anaerobic digester.

    PubMed

    Hori, Tomoyuki; Haruta, Shin; Sasaki, Daisuke; Hanajima, Dai; Ueno, Yoshiyuki; Ogata, Atsushi; Ishii, Masaharu; Igarashi, Yasuo

    2015-03-01

    Organic loading conditions are an important factor influencing reactor performances in methanogenic bioreactors. Yet the underlying microbiological basis of the process stability, deterioration, and recovery remains to be understood. Here, structural responses of the bacterial and archaeal populations to the change of organic loading conditions in a thermophilic anaerobic digester were investigated by process analyses and 16S rRNA gene-based molecular approaches. The biogas was produced stably without the accumulation of volatile fatty acids (VFAs) at low organic loading rates (OLRs) in the beginning of reactor operation. Increasing OLR in stages disrupted the stable reactor performance, and high OLR conditions continued the deteriorated performance with slight biogas production and high accumulation of VFAs. Thereafter, the gradual decrease of OLR resulted in the recovery from the deterioration, giving rise to the stable performance again. The stable performances before and after the high OLR conditions conducted were associated with compositionally similar but not identical methanogenic consortia. The bacterial and archaeal populations were synchronously changed at both the transient phases toward the deteriorated performance and in recovery process, during which the dynamic shift of aceticlastic and hydrogenotrophic methanogens including the recently identified Methanomassiliicoccus might contribute to the maintenance of the methanogenic activity. The distinctive bacterial population with a high predominance of Methanobacterium formicicum as archaeal member was found for the deteriorated performance. The results in this study indicate the coordinated reorganization of the bacterial and archaeal populations in response to functional states induced by the change of organic loading conditions in the anaerobic digester. PMID:25293692

  16. Influence of Organic Load on Biohydrogen Production in an AnSBBR Treating Glucose-Based Wastewater.

    PubMed

    Souza, L P; Lullio, T G; Ratusznei, S M; Rodrigues, J A D; Zaiat, M

    2015-06-01

    An anaerobic sequencing batch reactor with immobilized biomass (AnSBBR) was applied to the production of biohydrogen treating a glucose-based wastewater. The influence of the applied volumetric organic load was studied by varying the concentration of influent at 3600 and 5250 mg chemical oxygen demand (COD) L(-1) and cycle lengths of 4, 3, and 2 h resulting in volumetric organic loads of 10.5 to 31.1 g COD L(-1). The results revealed system stability in the production of biohydrogen and substrate consumption. The best performance was an organic removal (COD) of 24 % and carbohydrate removal (glucose) of 99 %. Volumetric and specific molar productivity were 60.9 mol H2 m(-3) day(-1) and 5.8 mol H2 kg SVT(-1) day(-1) (biogas containing 40 % H2 and no CH4) at 20.0 g COD L(-1) day(-1) (5250 mg COD L(-1) and 3 h). The yield between produced hydrogen and removed organic matter in terms of carbohydrates was 0.94 mol H2 Mol GLU(-1) (biogas containing 52 % H2 and no CH4) at 10.5 g COD L(-1) day(-1) (3600 mg COD L(-1) and 4 h), corresponding to 23 and 47 % of the theoretical values of the acetic and butyric acid metabolic routes, respectively. Metabolites present at significant amounts were ethanol, acetic acid, and butyric acid. The conditions with higher influent concentration and intermediate cycle length, and the condition with lower influent concentration and longer cycle showed the best results in terms of productivity and yield, respectively. This indicates that the best productivity tends to occur at higher organic loads, as this parameter involves the biogas production, and the best yield tends to occur at lower and/or intermediate organic loads, as this parameter also involves substrate consumption. PMID:25900436

  17. Effect of organic loading rate on the performance of two-stage anaerobic digestion of the organic fraction of municipal solid waste (OFMSW).

    PubMed

    Rodríguez-Pimentel, Reyna I; Rodríguez-Pérez, Suyen; Monroy-Hermosillo, Oscar; Ramírez-Vives, Florina

    2015-01-01

    Two-stage anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) was carried out: hydrolysis and acidogenesis in a continuous anaerobic hydrolytic leach bed (AHLB) reactor loaded at different rates (Bv = 3.8-7 gVSSL⁻¹d⁻¹) and methanogenesis of leachates, diluted with municipal wastewater in an upflow anaerobic sludge blanket (UASB) reactor at organic loading rates of 6.6-13 gCODLr⁻¹d⁻¹. In the AHLB reactor, 51-76% and 58-71% volatile solids and chemical oxygen demand (COD) removal efficiencies were obtained. During the hydrolysis and acidogenesis phases, the effluents were at pH 4.93, the leachate had a volatile fatty acids concentration of 35 g/L and the biogas was composed only of CO₂. The average methane production in the UASB in the load of 4.4 gVS L⁻¹ d⁻¹ in the AHLB was 3.32 LCH4Lr⁻¹d⁻¹ (yCH4 = 80%), with COD removal efficiency of 95% and methane yield 279 LCH4KgVS⁻¹OFMSW degraded. PMID:26204070

  18. The link between organic aerosol mass loading and degree of oxygenation: an α-pinene photooxidation study

    NASA Astrophysics Data System (ADS)

    Pfaffenberger, L.; Barmet, P.; Slowik, J. G.; Praplan, A. P.; Dommen, J.; Prévôt, A. S. H.; Baltensperger, U.

    2012-09-01

    A series of smog chamber (SC) experiments was conducted to identify driving factors responsible for the discrepancy between ambient and SC aerosol degree of oxygenation. An Aerodyne high resolution time-of-flight aerosol mass spectrometer is used to compare mass spectra from α-pinene photooxidation with ambient aerosol. Composition is compared in terms of the fraction of organic mass measured at m/z 44 (f44), a surrogate for carboxylic/organic acids as well as the atomic oxygen-to-carbon ratio (O : C), vs. f43, a surrogate for aldehydes, alcohols and ketones. Low (near-ambient) organic mass concentrations were found to be necessary to obtain oxygenation levels similar to those of low-volatility oxygenated organic aerosol (LV-OOA) commonly identified in ambient measurements. The effects of organic mass loading and OH (hydroxyl radical) exposure were decoupled by inter-experiment comparisons at the same integrated OH concentration. On average, an OH exposure of 2.9 ± 1.3 × 107 cm-3 h is needed to increase f44 by 1% during aerosol aging. For the first time, LV-OOA-like aerosol from the abundant biogenic precursor α-pinene was produced in a smog chamber by oxidation at typical atmospheric OH concentrations. Significant correlation between measured secondary organic aerosol (SOA) and reference LV-OOA mass spectra is shown by Pearson's R2 values larger than 0.90 for experiments with low organic mass concentrations between 1.5 and 15 μg m-3 at an OH exposure of 4 × 107 cm-3 h, corresponding to about two days oxidation time in the atmosphere, based on a global mean OH concentration of ∼1 × 106 cm-3. Not only is the α-pinene SOA more oxygenated at low organic mass loadings, but the functional dependence of oxygenation on mass loading is enhanced at atmospherically-relevant precursor concentrations. Since the degree of oxygenation influences the chemical, volatility and hygroscopic properties of ambient aerosol, smog chamber studies must be performed at near

  19. Method of loading organic materials with group III plus lanthanide and actinide elements

    DOEpatents

    Bell, Zane W.; Huei-Ho, Chuen; Brown, Gilbert M.; Hurlbut, Charles

    2003-04-08

    Disclosed is a composition of matter comprising a tributyl phosphate complex of a group 3, lanthanide, actinide, or group 13 salt in an organic carrier and a method of making the complex. These materials are suitable for use in solid or liquid organic scintillators, as in x-ray absorption standards, x-ray fluorescence standards, and neutron detector calibration standards.

  20. Reduced temperature hydrolysis at 134 °C before thermophilic anaerobic digestion of waste activated sludge at increasing organic load.

    PubMed

    Gianico, A; Braguglia, C M; Cesarini, R; Mininni, G

    2013-09-01

    The performance of thermophilic digestion of waste activated sludge, either untreated or thermal pretreated, was evaluated through semi-continuous tests carried out at organic loading rates in the range of 1-3.7 kg VS/m(3)d. Although the thermal pretreatment at T=134 °C proved to be effective in solubilizing organic matter, no significant gain in organics degradation was observed. However, the digestion of pretreated sludge showed significant soluble COD removal (more than 55%) whereas no removal occurred in control reactors. The lower the initial sludge biodegradability, the higher the efficiency of thermal pretreated digestion was observed, in particular as regards higher biogas and methane production rates with respect to the parallel untreated sludge digestion. Heat balance of the combined thermal hydrolysis/thermophilic digestion process, applied on full-scale scenarios, showed positive values for direct combustion of methane. In case of combined heat and power generation, attractive electric energy recoveries were obtained, with a positive heat balance at high load. PMID:23792658

  1. Influence of organic carbon and nitrate loading on partitioning between dissimilatory nitrate reduction to ammonium (DNRA) and N2 production

    NASA Astrophysics Data System (ADS)

    Hardison, Amber K.; Algar, Christopher K.; Giblin, Anne E.; Rich, Jeremy J.

    2015-09-01

    Biologically available nitrogen is removed from ecosystems through the microbial processes of anaerobic ammonium oxidation (anammox) or denitrification, while dissimilatory nitrate reduction to ammonium (DNRA) retains it. A mechanistic understanding of controls on partitioning among these pathways is currently lacking. The objective of this study was to conduct a manipulative experiment to determine the influence of organic C and NO3- loading on partitioning. Sediment was collected from a location on the southern New England shelf (78 m water depth) and sieved. Half of the sediment was mixed with freeze-dried phytoplankton and the other half was not. Sediment was then spread into 1.5 mm, "thin discs" closed at the bottom and placed in large aquarium tanks with filtered, N2/CO2 sparged seawater to maintain O2 limited conditions. Half of the discs received high NO3- loading, while the other half received low NO3- loading, resulting in a multifactorial design with four treatments: no C addition, low NO3- (-C-N); C addition, low NO3- (+C-N); no C addition, high NO3- (-C+N); and C addition, high NO3- (+C+N). Sediment discs were incubated in the tanks for 7 weeks, during which time inorganic N (NH4+, NO3-, and NO2-) was monitored, and sediment discs were periodically removed from the tanks to conduct 15N isotope labeling experiments in vials to measure potential rates of anammox, denitrification, and DNRA. Temporal dynamics of inorganic N concentrations in the tanks were indicative of anoxic N metabolism, with strong response of the build up or consumption of the intermediate NO2-, depending on treatments. Vial incubation experiments with added 15NO2- + 14NH4+ indicated significant denitrification and DNRA activity in sediment thin discs, but incubations with added 15NH4+ + 14NO2- indicated anammox was not at all significant. Inorganic N concentrations in the tanks were fit to a reactive transport model assuming different N transformations. Organic C decomposition rates

  2. Bioremediation of high organic load lagoon sediments: compost addition and priming effects.

    PubMed

    d'Errico, G; Giovannelli, D; Montano, C; Milanovic, V; Ciani, M; Manini, E

    2013-03-01

    Lagoons are often affected by eutrophication phenomena, due to their shallow nature, high productivity, weak hydrodynamism and anthropic exploitation. Bioremediation techniques have been widely used in the treatment of chemical pollution; however, no information is available on the use of bioremediation of organic-rich sediments. In the present study, we investigated the priming effects following compost addition to organic-rich lagoon sediments, and the effects of this compost addition on degradation and cycling of organic detritus, transfer of organic matter to higher trophic levels, and in situ prokaryotic community structure. There was a positive response to treatment, particularly during the first days after compost addition. The compost had a stimulating effect on degradation activity of the prokaryotic community. This occurred despite an increase in available organic matter, as the community was more efficient at removing it. These data are supported by the prokaryotic community structure analysis, which revealed no changes in the in situ community following compost addition. This priming effect enhancement through compost addition represents an efficient method to treat organic-rich sediments. PMID:23273326

  3. [Influence of organic loading rate on the start-up of a sequencing airlift aerobic granular reactor].

    PubMed

    Liu, Meng-Yuan; Zhou, Dan-Dan; Gao, Lin-Lin; Ma, De-Fang; Zhang, Yu-Meng; Li, Ke-Yu

    2012-10-01

    The cultivation and stability of aerobic granular sludge in a three sequencing airlift internal-loop aerobic granular fluidized beds (R1-R3) under different organic loading rates (OLR) were investigated, where the selective pressure was un-controlled. R1 and R2 were start-up at the COD loading of 7 kg x (m3 x d)(-1) and 3 kg x (m3 x d)(-1) respectively, and R3 was start-up at an increasing COD loading rates of 1.5-3 kg x (m3 x d)(-1). The results showed that the aerobic granules could be formed successfully in all the reactors, however, filamentous bulking happened as the reactor was start-up at an aimed OLR (R1 and R2). It seems the overgrowth of filamentous could be controlled effectively by means of increasing OLR gradually. The granular development characteristics, the physical characteristics and extracellular polymeric substances contents were analyzed especially during the aerobic granules cultivation. Compared with the granules in R1 and R2, aerobic granules formed in R3 presented clearer outer morphology and compact structure, advanced COD removal efficiency and a significant increase in polysaccharides, resulted an enhanced stability. PMID:23233984

  4. Organic acid dipping of catfish fillets: effect on color, microbial load, and Listeria monocytogenes.

    PubMed

    Bal'a, M F; Marshall, D L

    1998-11-01

    Microbiological and color changes of catfish fillets were determined following dip treatment in solutions at 4 degrees C of 2% acetic, citric, hydrochloric, lactic, malic, or tartaric acid. Fillets were inoculated with an eight-strain mixture of Listeria monocytogenes prior to dipping. L. monocytogenes, coliform, and aerobic plate counts and surface pH and Hunter color were measured at 0, 2, 5, and 8 days of storage at 4 degrees C. Acid dipping reduced surface pH and L. monocytogenes, coliform, and aerobic microbial loads. Little microbial proliferation was observed on acid-treated fillets, however, controls had a distinct foul odor and microbial loads in excess of 10(6) CFU/g by day 8. On untreated fillets, L. monocytogenes counts did not increase during storage, perhaps due to competitive inhibition by normal catfish microflora. Hunter color analysis revealed lighter and yellower acid-treated fillets than untreated controls, with malic acid producing the least bleaching. The shelf life of refrigerated fillets increased when fillets were acid dipped. It remains to be established if this enhanced microbial quality also parallels sensory acceptability. PMID:9829187

  5. Organic Matter Loading Modifies the Microbial Community Responsible for Nitrogen Loss in Estuarine Sediments.

    PubMed

    Babbin, Andrew R; Jayakumar, Amal; Ward, Bess B

    2016-04-01

    Coastal marine sediments, as locations of substantial fixed nitrogen loss, are very important to the nitrogen budget and to the primary productivity of the oceans. Coastal sediment systems are also highly dynamic and subject to periodic natural and anthropogenic organic substrate additions. The response to organic matter by the microbial community involved in nitrogen loss processes was evaluated using mesocosms of Chesapeake Bay sediments. Over the course of a 50-day incubation, rates of anammox and denitrification were measured weekly using (15)N tracer incubations, and samples were collected for genetic analysis. Rates of both nitrogen loss processes and gene abundances associated with them corresponded loosely, probably because heterogeneities in sediments obscured a clear relationship. The rates of denitrification were stimulated more, and the fraction of nitrogen loss attributed to anammox slightly reduced, by the higher organic matter addition. Furthermore, the large organic matter pulse drove a significant and rapid shift in the denitrifier community composition as determined using a nirS microarray, indicating that the diversity of these organisms plays an essential role in responding to anthropogenic inputs. We also suggest that the proportion of nitrogen loss due to anammox in these coastal estuarine sediments may be underestimated due to temporal dynamics as well as from methodological artifacts related to conventional sediment slurry incubation approaches. PMID:26520832

  6. The role of irrigation runoff and winter rainfall on dissolved organic carbon loads in an agricultural watershed

    USGS Publications Warehouse

    Oh, Neung-Hwan; Pellerin, Brian A.; Bachand, Philip A.M.; Hernes, Peter J.; Bachand, Sandra M.; Ohara, Noriaki; Kavvas, M. Levent; Bergamaschi, Brian A.; Horwath, William R.

    2013-01-01

    We investigated the role of land use/land cover and agriculture practices on stream dissolved organic carbon (DOC) dynamics in the Willow Slough watershed (WSW) from 2006 to 2008. The 415 km2watershed in the northern Central Valley, California is covered by 31% of native vegetation and the remaining 69% of agricultural fields (primarily alfalfa, tomatoes, and rice). Stream discharge and weekly DOC concentrations were measured at eight nested subwatersheds to estimate the DOC loads and yields (loads/area) using the USGS developed stream load estimation model, LOADEST. Stream DOC concentrations peaked at 18.9 mg L−1 during summer irrigation in the subwatershed with the highest percentage of agricultural land use, demonstrating the strong influence of agricultural activities on summer DOC dynamics. These high concentrations contributed to DOC yields increasing up to 1.29 g m−2 during the 6 month period of intensive agricultural activity. The high DOC yields from the most agricultural subwatershed during the summer irrigation period was similar throughout the study, suggesting that summer DOC loads from irrigation runoff would not change significantly in the absence of major changes in crops or irrigation practices. In contrast, annual DOC yields varied from 0.89 to 1.68 g m−2 yr−1 for the most agricultural watershed due to differences in winter precipitation. This suggests that variability in the annual DOC yields will be largely determined by the winter precipitation, which can vary significantly from year to year. Changes in precipitation patterns and intensities as well as agricultural practices have potential to considerably alter the DOC dynamics.

  7. Effect of organic loading on nitrification and denitrification in a marine sediment microcosm

    USGS Publications Warehouse

    Caffrey, J.M.; Sloth, N.P.; Kaspar, H.F.; Blackburn, T.H.

    1993-01-01

    The effects of organic additions on nitrification and denitrification were examined in sediment microcosms. The organic material, heat killed yeast, had a C/N ratio of 7.5 and was added to sieved, homogenized sediments. Four treatments were compared: no addition (control, 30 g dry weight (dw) m-2 mixed throughout the 10 cm sediment column (30 M), 100 g dw m-2 mixed throughout sediments (100M), and 100 g dw m-2 mixed into top 1 cm (100S). After the microcosms had been established for 7-11 days, depth of O2 penetration, sediment-water fluxes and nitrification rates were measured. Nitrification rates were measured using three different techniques: N-serve and acetylene inhibition in intact cores, and nitrification potentials in slurries. Increased organic additions decreased O2 penetration from 2.7 to 0.2 mm while increasing both O2 consumption, from 30 to 70 mmol O2 m-2 d-1, and NO3- flux into sediments. Nitrification rates in intact cores were similar for the two methods. Highest rates occurred in the 30 M treatment, while the lowest rate was measured in the 100S treatment. Total denitrification rates (estimated from nitrification and nitrate fluxes) increased with increased organic addition, because of the high concentrations of NO3- (40 ??M) in the overlying water. The ratio of nitrification: denitrification was used as an indication of the importance of nitrification as the NO3- supply for denitrification. This ratio decreased from 1.55 to 0.05 with increased organic addition.

  8. The link between organic aerosol mass loading and degree of oxygenation: an α-pinene photooxidation study

    NASA Astrophysics Data System (ADS)

    Pfaffenberger, L.; Barmet, P.; Slowik, J. G.; Praplan, A. P.; Dommen, J.; Prévôt, A. S. H.; Baltensperger, U.

    2013-07-01

    A series of smog chamber (SC) experiments was conducted to identify factors responsible for the discrepancy between ambient and SC aerosol degree of oxygenation. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer is used to compare mass spectra from α-pinene photooxidation with ambient aerosol. Composition is compared in terms of the fraction of particulate CO2+, a surrogate for carboxylic acids, vs. the fraction of C2H3O+, a surrogate for aldehydes, alcohols and ketones, as well as in the Van Krevelen space, where the evolution of the atomic hydrogen-to-carbon ratio (H : C) vs. the atomic oxygen-to-carbon ratio (O : C) is investigated. Low (near-ambient) organic mass concentrations were found to be necessary to obtain oxygenation levels similar to those of low-volatility oxygenated organic aerosol (LV-OOA) commonly identified in ambient measurements. The effects of organic mass loading and OH (hydroxyl radical) exposure were decoupled by inter-experiment comparisons at the same integrated OH concentration. An OH exposure between 3 and 25 × 107 cm-3 h is needed to increase O : C by 0.05 during aerosol aging. For the first time, LV-OOA-like aerosol from the abundant biogenic precursor α-pinene was produced in a smog chamber by oxidation at typical atmospheric OH concentrations. Significant correlation between measured secondary organic aerosol (SOA) and reference LV-OOA mass spectra is shown by Pearson's R2 values larger than 0.90 for experiments with low organic mass concentrations between 1.2 and 18 μg m-3 at an OH exposure of 4 × 107 cm-3 h, corresponding to about two days of oxidation time in the atmosphere, based on a global mean OH concentration of ~ 1 × 106 cm-3. α-Pinene SOA is more oxygenated at low organic mass loadings. Because the degree of oxygenation influences the chemical, volatility and hygroscopic properties of ambient aerosol, smog chamber studies must be performed at near-ambient concentrations to accurately simulate

  9. Organic loading rate impact on biohydrogen production and microbial communities at anaerobic fluidized thermophilic bed reactors treating sugarcane stillage.

    PubMed

    Santos, Samantha Christine; Rosa, Paula Rúbia Ferreira; Sakamoto, Isabel Kimiko; Varesche, Maria Bernadete Amâncio; Silva, Edson Luiz

    2014-05-01

    This study aimed to evaluate the effect of high organic loading rates (OLR) (60.0-480.00 kg COD m(-3)d(-1)) on biohydrogen production at 55°C, from sugarcane stillage for 15,000 and 20,000 mg CODL(-1), in two anaerobic fluidized bed reactors (AFBR1 and AFBR2). It was obtained, for H2 yield and content, a decreasing trend by increasing the OLR. The maximum H2 yield was observed in AFBR1 (2.23 mmol g COD added(-1)). The volumetric H2 production was proportionally related to the applied hydraulic retention time (HRT) of 6, 4, 2 and 1h and verified in AFBR1 the highest value (1.49 L H2 h(-1)L(-1)). Among the organic acids obtained, there was a predominance of lactic acid (7.5-22.5%) and butyric acid (9.4-23.8%). The microbial population was set with hydrogen-producing fermenters (Megasphaera sp.) and other organisms (Lactobacillus sp.). PMID:24632626

  10. Development and Validation of a Bioreactor System for Dynamic Loading and Mechanical Characterization of Whole Human Intervertebral Discs in Organ Culture

    PubMed Central

    Walter, BA; Illien-Junger, S; Nasser, P; Hecht, AC; Iatridis, JC

    2014-01-01

    Intervertebral disc (IVD) degeneration is a common cause of back pain, and attempts to develop therapies are frustrated by lack of model systems that mimic the human condition. Human IVD organ culture models can address this gap, yet current models are limited since vertebral endplates are removed to maintain cell viability, physiological loading is not applied, and mechanical behaviors are not measured. This study aimed to (i) establish a method for isolating human IVDs from autopsy with intact vertebral endplates, and (ii) develop and validate an organ culture loading system for human or bovine IVDs. Human IVDs with intact endplates were isolated from cadavers within 48 hours of death and cultured for up to 21 days. IVDs remained viable with ~80% cell viability in nucleus and annulus regions. A dynamic loading system was designed and built with the capacity to culture 9 bovine or 6 human IVDs simultaneously while applying simulated physiologic loads (maximum force: 4kN) and measuring IVD mechanical behaviors. The loading system accurately applied dynamic loading regimes (RMS error <2.5N and total harmonic distortion <2.45%), and precisely evaluated mechanical behavior of rubber and bovine IVDs. Bovine IVDs maintained their mechanical behavior and retained >85% viable cells throughout the 3 week culture period. This organ culture loading system can closely mimic physiological conditions and be used to investigate response of living human and bovine IVDs to mechanical and chemical challenges and to screen therapeutic repair techniques. PMID:24725441

  11. Investigation of Anion-Exchange and Immunoaffinity Particle-Loaded Membranes for the Isolation of Charged Organic Analytes from Water

    USGS Publications Warehouse

    Dombrowski, T.R.; Wilson, G.S.; Thurman, E.M.

    1998-01-01

    Anion-exchange and immunoaffinity particle loaded membranes (PLMs) were investigated as a mechanism for the isolation of charged organic analytes from water. Kinetic properties determined theoretically included dynamic capacity, pressure drop (??P), residence and diffusion times (Tr, Td), and total membrane porosity (???T). These properties were confirmed through experimental evaluation, and the PLM method showed significant improvement over conventional solid-phase extraction (SPE) and ion-exchange formats. Recoveries of more than 90% were observed for a variety of test compounds at flow rates up to 70 mL/min (equipment-limited maximum flow rate). A fast-flow immunoaffinity column was developed using antibodies (Abs) attached to the PLMs. Reproducible recoveries (88% ?? 4%) were observed at flow rates up to 70 mL/min for the antibody (Ab)-loaded PLMs. Findings indicate increased selectivity over anion-exchange PLMs and conventional SPE or ion-exchange methods and rapid Ab-antigen binding rates given the excellent mass-transfer characteristics of the PLMs.

  12. Effects of thermal pre-treatment on anaerobic co-digestion of municipal biowastes at high organic loading rate.

    PubMed

    Guo, Jianbin; Wang, Wei; Liu, Xiao; Lian, Songjian; Zheng, Lei

    2014-04-01

    Anaerobic co-digestion of thermal pre-treated municipal biowaste (MBW) is a field of research that has had limited contributions to date. In this study, laboratory-scale semi-continuously fed anaerobic digesters treating thermally treated and non-treated MBW were operated at high organic loading rates (OLR). The results show that the methanogenesis process was inhibited by the accumulated volatile fatty acids when 30% (w/w) of dewatered activated sludge (DAS) was co-digested with food waste (FW) and fruit/vegetable residue (FVR) at high OLR≥10 kg volatile solid m(-3) d(-1). Co-digestion with thermal hydrolysed DAS can significantly improve digester performance. In contrast to DAS, some adverse effects of thermal pretreatment on the biodegradability of FW and FVR were observed. Therefore, co-digestion of FW, FVR with thermally treated DAS is suggested as an alternative to promote high methane production and process stability. PMID:24374189

  13. The effect of trace element addition to mono-digestion of grass silage at high organic loading rates.

    PubMed

    Wall, David M; Allen, Eoin; Straccialini, Barbara; O'Kiely, Padraig; Murphy, Jerry D

    2014-11-01

    This study investigated the effect of trace element addition to mono-digestion of grass silage at high organic loading rates. Two continuous reactors were compared. The first mono-digested grass silage whilst the second operated in co-digestion, 80% grass silage with 20% dairy slurry (VS basis). The reactors were run for 65weeks with a further 5weeks taken for trace element supplementation for the mono-digestion of grass silage. The co-digestion reactor reported a higher biomethane efficiency (1.01) than mono-digestion (0.90) at an OLR of 4.0kgVSm(-3)d(-1) prior to addition of trace elements. Addition of cobalt, iron and nickel, led to an increase in the SMY in mono-digestion of grass silage by 12% to 404LCH4kg(-1)VS and attained a biomethane efficiency of 1.01. PMID:25280042

  14. Survival and persistence of Campylobacter and Salmonella species under various organic loads on food contact surfaces.

    PubMed

    De Cesare, Alessandra; Sheldon, Brian W; Smith, Katie S; Jaykus, Lee-Ann

    2003-09-01

    Although many cases of Campylobacter and Salmonella enteritis have been attributed to the undercooking of poultry and other foods, cross-contamination between raw and cooked foods via food contact surfaces and worker contact has also been identified as a significant risk factor. Cross-contamination may be particularly important in relation to the high prevalence of contamination in raw poultry products and other foods and the low infectious doses that have been reported for Campylobacter species. Lag phase and decimal reduction times (D-values at 27 degrees C [81 degrees F] and 60 to 62% relative humidity) were determined for Campylobacter jejuni and Salmonella species (five-strain pools) suspended in either a phosphate-buffered saline (PBS) solution or Trypticase soy broth (TSB) and then inoculated (0.1-ml drop per surface) on 5-cm2 samples of Formica laminate (F), glazed ceramic tile (CT), 304 polished stainless steel (SS), and 100% cotton dishcloth (D). Triplicate samples were collected from each contact surface periodically, and the populations of surviving organisms were enumerated on Campy Cefex and brain heart infusion agars for C. jejuni and Salmonella species, respectively. Lag time and rate of inactivation were influenced by organism type, contact surface, and suspending medium. Initial mean lag times ranging from 60 to 190 min were followed by log-linear (r2 > 0.94) decreases in cell populations that varied across contact surfaces. D-values of 12.5, 19.1, 24.1, and 29.7 min and of 23.7, 10.5, 12.7, and 13.9 min were calculated for C. jejuni suspended in PBS and TSB and then spotted on D, F, SS, and CT surfaces, respectively. The times required to produce a 3-log reduction in population with PBS and TSB ranged from 102 (D) to 247 (F) min and from 112 (CT) to 167 (F) min, respectively. C. jejuni cells suspended in the nutritionally enriched medium (TSB) and spotted on the hard surfaces were inactivated about 1.4 times as fast as cells suspended in PBS. For

  15. Concentrations and Loads of Organic Compounds and Trace Elements in Tributaries to Newark and Raritan Bays, New Jersey

    USGS Publications Warehouse

    Wilson, Timothy P.; Bonin, Jennifer L.

    2007-01-01

    throughout each event for trace-element analysis, and multiple samples were collected for suspended sediment (SS), particulate carbon (POC), and dissolved organic carbon (DOC) analysis. The suspended sediment and exchange resin were analyzed for 114 polychlorinated biphenyls (PCBs, by US EPA method 1668A, modified), seven 2,3,7,8-substituted chlorinated dibenzo-p-dioxins (CDD) and 10 dibenzo-p-difurans (CDF) (by US EPA method 1613), 24 PAHs (by low-resolution isotope dilution/mass-spectral methods), 27 organo-chlorine pesticides (OCPs) (by high resolution isotope dilution/mass-spectral methods), and the trace elements mercury (Hg), methyl-mercury (MeHg), lead (Pb), and cadmium (Cd). Isotope dilution methods using gas chromatography and high-and low-resolution mass spectral (GC/MS) detection were used to accurately identify and quantify organic compounds in the sediment and water phases. Trace elements were measured using inductively coupled plasma-mass spectrometry and cold-vapor atomic fluorescence spectrometry methods. The loads of sediment, carbon, and chemicals were calculated for each storm and low-flow event sampled. Because only a few storm events were sampled, yearly loads of sediment were calculated from rating curves developed using historical SS and POC data. The average annual loads of sediment and carbon were calculated for the period 1975-2000, along with the loads for the selected water years being modeled as part of the New York New Jersey Harbor Estuary Program CARP. Comparison of loads calculated using the rating curve method to loads measured during the sampled storm events indicated that the rating curve method likely underpredicts annual loads. Average annual loads of suspended sediment in the tributaries were estimated to be 395,000 kilograms per year (kg/yr) in the Hackensack River, 417,000 kg/yr in the Elizabeth River, 882,000 kg/yr in the Rahway River, 22,700,000 kg/yr in the Passaic River, and 93,100,000 kg/yr in the Raritan River. Averag

  16. Ciprofloxacin-Loaded Inorganic-Organic Composite Microparticles To Treat Bacterial Lung Infection.

    PubMed

    Tewes, Frederic; Brillault, Julien; Lamy, Barbara; O'Connell, Peter; Olivier, Jean-Christophe; Couet, William; Healy, Anne Marie

    2016-01-01

    Ciprofloxacin (CIP) is an antibiotic that has been clinically trialed for the treatment of lung infections by aerosolization. However, CIP is rapidly systemically absorbed after lung administration, increasing the risk for subtherapeutic pulmonary concentrations and resistant bacteria selection. In the presence of calcium, CIP forms complexes that reduce its oral absorption. Such complexation may slow down CIP absorption from the lung thereby maintaining high concentration in this tissue. Thus, we developed inhalable calcium-based inorganic-organic composite microparticles to sustain CIP within the lung. The aerodynamics and micromeritic properties of the microparticles were characterized. FTIR and XRD analysis suggest that the inorganic component of the particles comprised amorphous calcium carbonate and amorphous calcium formate, and that CIP and calcium interact in a 1:1 stoichiometry in the particles. CIP was completely released from the microparticles within 7 h, with profiles showing a slight dependence on pH (5 and 7.4) compared to the dissolution of pure CIP. Transport studies of CIP across Calu-3 cell monolayers, in the presence of various calcium concentrations, showed a decrease of up to 84% in CIP apparent permeability. The apparent minimum inhibitory concentration of CIP against Pseudomonas aeruginosa and Staphylococcus aureus was not changed in the presence of the same calcium concentration. These results indicate that the designed particles should provide sustained levels of CIP with therapeutic effect in the lung. With these microparticles, it should be possible to control CIP pharmacokinetics within the lung, based on controlled CIP release from the particles and reduced apparent permeability across the epithelial barrier due to the cation-CIP interaction. PMID:26641021

  17. Seagrasses are negatively affected by organic matter loading and Arenicola marina activity in a laboratory experiment.

    PubMed

    Govers, Laura L; Pieck, Timon; Bouma, Tjeerd J; Suykerbuyk, Wouter; Smolders, Alfons J P; van Katwijk, Marieke M

    2014-06-01

    When two ecosystem engineers share the same natural environment, the outcome of their interaction will be unclear if they have contrasting habitat-modifying effects (e.g., sediment stabilization vs. sediment destabilization). The outcome of the interaction may depend on local environmental conditions such as season or sediment type, which may affect the extent and type of habitat modification by the ecosystem engineers involved. We mechanistically studied the interaction between the sediment-stabilizing seagrass Zostera noltii and the bioturbating and sediment-destabilizing lugworm Arenicola marina, which sometimes co-occur for prolonged periods. We investigated (1) if the negative sediment destabilization effect of A. marina on Z. noltii might be counteracted by positive biogeochemical effects of bioirrigation (burrow flushing) by A. marina in sulfide-rich sediments, and (2) if previously observed nutrient release by A. marina bioirrigation could affect seagrasses. We tested the individual and combined effects of A. marina presence and high porewater sulfide concentrations (induced by organic matter addition) on seagrass biomass in a full factorial lab experiment. Contrary to our expectations, we did not find an effect of A. marina on porewater sulfide concentrations. A. marina activities affected the seagrass physically as well as by pumping nutrients, mainly ammonium and phosphate, from the porewater to the surface water, which promoted epiphyte growth on seagrass leaves in our experimental set-up. We conclude that A. marina bioirrigation did not alleviate sulfide stress to seagrasses. Instead, we found synergistic negative effects of the presence of A. marina and high sediment sulfide levels on seagrass biomass. PMID:24633960

  18. Region Specific Response of Intervertebral Disc Cells to Complex Dynamic Loading: An Organ Culture Study Using a Dynamic Torsion-Compression Bioreactor

    PubMed Central

    Chan, Samantha C. W.; Walser, Jochen; Käppeli, Patrick; Shamsollahi, Mohammad Javad; Ferguson, Stephen J.; Gantenbein-Ritter, Benjamin

    2013-01-01

    The spine is routinely subjected to repetitive complex loading consisting of axial compression, torsion, flexion and extension. Mechanical loading is one of the important causes of spinal diseases, including disc herniation and disc degeneration. It is known that static and dynamic compression can lead to progressive disc degeneration, but little is known about the mechanobiology of the disc subjected to combined dynamic compression and torsion. Therefore, the purpose of this study was to compare the mechanobiology of the intervertebral disc when subjected to combined dynamic compression and axial torsion or pure dynamic compression or axial torsion using organ culture. We applied four different loading modalities [1. control: no loading (NL), 2. cyclic compression (CC), 3. cyclic torsion (CT), and 4. combined cyclic compression and torsion (CCT)] on bovine caudal disc explants using our custom made dynamic loading bioreactor for disc organ culture. Loads were applied for 8 h/day and continued for 14 days, all at a physiological magnitude and frequency. Our results provided strong evidence that complex loading induced a stronger degree of disc degeneration compared to one degree of freedom loading. In the CCT group, less than 10% nucleus pulposus (NP) cells survived the 14 days of loading, while cell viabilities were maintained above 70% in the NP of all the other three groups and in the annulus fibrosus (AF) of all the groups. Gene expression analysis revealed a strong up-regulation in matrix genes and matrix remodeling genes in the AF of the CCT group. Cell apoptotic activity and glycosaminoglycan content were also quantified but there were no statistically significant differences found. Cell morphology in the NP of the CCT was changed, as shown by histological evaluation. Our results stress the importance of complex loading on the initiation and progression of disc degeneration. PMID:24013824

  19. The effect of organic loading rate on VFA/COD ratio for methane production from an EGSB reactor.

    PubMed

    Wei, Bo; Yuan, Linjiang; Liu, Wenhui

    2015-07-01

    The present study evaluated the effect of organic loading rate (OLR) on VFA/COD ratio for continuous production of methane using an expanded granular sludge bed(EGSB) reactor for 200 d. Reactor performances were studied in treating high OLRs ranging from 4.91 +/- 0.54 to 16.79 +/- 1.62 g-COD l(-1)d(-1) of glucose-based synthetic wastewater in a mesophilic condition. Results showed that performance of anaerobic fermentation system was distinctly influenced by OLR in terms of organic removal efficiency, VFA yield, methane production rate and system stability.Acetic and propionic acids accounted for 80-90% of total VFA, and presented highest VFA concentration and composition of VFA showed minor changes with OLR variation. Moreover, an increase in OLR increased VFA/COD ratio in the whole operation period and high VFA/COD ratio could inhibit methanogenesis at high OLR (16.79 +/- 1.62 g-COD l(-1) d(-1)). PMID:26364485

  20. Locating Gases in Porous Materials: Cryogenic Loading of Fuel-Related Gases Into a Sc-based Metal-Organic Framework under Extreme Pressures.

    PubMed

    Sotelo, Jorge; Woodall, Christopher H; Allan, Dave R; Gregoryanz, Eugene; Howie, Ross T; Kamenev, Konstantin V; Probert, Michael R; Wright, Paul A; Moggach, Stephen A

    2015-11-01

    An alternative approach to loading metal organic frameworks with gas molecules at high (kbar) pressures is reported. The technique, which uses liquefied gases as pressure transmitting media within a diamond anvil cell along with a single-crystal of a porous metal-organic framework, is demonstrated to have considerable advantages over other gas-loading methods when investigating host-guest interactions. Specifically, loading the metal-organic framework Sc2BDC3 with liquefied CO2 at 2 kbar reveals the presence of three adsorption sites, one previously unreported, and resolves previous inconsistencies between structural data and adsorption isotherms. A further study with supercritical CH4 at 3-25 kbar demonstrates hyperfilling of the Sc2 BDC3 and two high-pressure displacive and reversible phase transitions are induced as the filled MOF adapts to reduce the volume of the system. PMID:26358845

  1. Effects of Organic-Loading-Rate Reduction on Sludge Biomass and Microbial Community in a Deteriorated Pilot-Scale Membrane Bioreactor

    PubMed Central

    Sato, Yuya; Hori, Tomoyuki; Navarro, Ronald R.; Naganawa, Ryuichi; Habe, Hiroshi; Ogata, Atsushi

    2016-01-01

    The effects of a precipitous decrease in the inlet organic loading rate on sludge reductions and the microbial community in a membrane bioreactor were investigated. The sludge biomass was markedly reduced to 47.4% of the initial concentration (approximately 15,000 mg L−1) within 7 d after the organic loading rate was decreased by half (450 to 225 mg chemical oxygen demand L−1 d−1). An analysis of the microbial community structure using high-throughput sequencing revealed an increase in the abundance of facultative predatory bacteria-related operational taxonomic units as well as microorganisms tolerant to environmental stress belonging to the classes Deinococci and Betaproteobacteria. PMID:27431196

  2. Sediment redox tracers in Strait of Georgia sediments--can they inform us of the loadings of organic carbon from municipal wastewater?

    PubMed

    Macdonald, R W; Johannessen, S C; Gobeil, C; Wright, C; Burd, B; van Roodselaar, A; Pedersen, T F

    2008-12-01

    Organic carbon composition and redox element (Mn, Cd, U, Re, Mo, SigmaS, AVS) distributions are examined in seven 210Pb-dated box cores collected from the Strait of Georgia, British Columbia to evaluate the potential for redox elements to reveal impacts of anthropogenic loadings of labile organic carbon to sediments. In particular, the cores have been collected widely including regions far from local anthropogenic inputs and from locations within the zone of influence of two municipal outfalls where sediments are exposed to enhanced organic loadings from outfalls. We find a wide natural range in organic carbon forcing within the basin sediments generally reflected as Mn enrichments near the surface in cores exhibiting slow organic oxidation and sulphide, Cd, Mo, U and Re enrichments in cores exhibiting higher organic oxidation rates. Concentration profiles for redox elements or organic carbon are misleading by themselves, as they are influenced strongly by sediment porosity and sedimentation rate, and the organic matter remaining in sediment cores is predominantly recalcitrant. Fluxes of redox elements together with rates of organic metabolism estimated from sedimentation rates provide a better picture of the organic forcing. One core, GVRD-3, collected within the zone of influence of the Iona municipal outfall (0.5 km away), exhibits the highest organic carbon oxidation rates, enhanced Ag fluxes in the sediment surface mixed layer and altered delta15N composition, all of which implicate outfall particulates. Cd is also elevated in the GVRD-3 surface sediments, but evidence points to contamination and not redox forcing supporting this observation. Uranium also shows enrichment at sites near the outfalls, possibly in response to enhanced microbial metabolism. Predominantly these cores exhibit a wide natural range of organic carbon fluxes and organic carbon oxidation rates, supported by fluxes of marine and terrigenous organic carbon, within which it is difficult to

  3. Characterization of the bacterial community involved in the bioflocculation process of wastewater organic matter in high-loaded MBRs.

    PubMed

    Faust, L; Szendy, M; Plugge, C M; van den Brink, P F H; Temmink, H; Rijnaarts, H H M

    2015-06-01

    High-loaded membrane bioreactors (HL-MBRs), i.e., bioreactors equipped with a membrane for biomass retention and operated at extremely short sludge and hydraulic retention times, can concentrate sewage organic matter to facilitate subsequent energy and chemical recovery from these organics. Bioflocculation, accomplished by microorganisms that produce extracellular polymers, is a very important mechanism in these reactors. Bacterial diversity of the sludge and supernatant fraction of HL-MBRs operated at very short sludge retention times (0.125, 0.5, and 1 day) were determined using a PCR-denaturing gradient gel electrophoresis (DGGE) and clone library approach and compared to the diversity in sewage. Already at a sludge retention time (SRT) of 0.125 day, a distinct bacterial community developed compared to the community in sewage. Bioflocculation, however, was low and the majority of the bacteria, especially Arcobacter, were present in the supernatant fraction. Upon increasing SRT from 0.125 to 1 day, a much stronger bioflocculation was accompanied by an increased abundance of Bacteroidetes in the (solid) sludge fraction: 27.5 % at an SRT of 0.5 day and 46.4 % at an SRT of 1 day. Furthermore, cluster analysis of DGGE profiles revealed that the bacterial community structure in the sludge was different from that in the supernatant. To localize specific bacterial classes in the sludge flocs, fluorescence in situ hybridization (FISH) was carried out with three different bacterial probes. This showed that Betaproteobacteria formed clusters in the sludge flocs whereas Alphaproteobacteria and Gammaproteobacteria were mainly present as single cells. PMID:25634019

  4. Dry anaerobic digestion of high solids content dairy manure at high organic loading rates in psychrophilic sequence batch reactor.

    PubMed

    Massé, Daniel I; Saady, Noori M Cata

    2015-05-01

    Cow manure with bedding is renewable organic biomass available around the year on dairy farms. Developing efficient and cost-effective psychrophilic dry anaerobic digestion (PDAD) processes could contribute to solving farm-related environmental, energy, and manure management problems in cold-climate regions. This study was to increase the organic loading rate (OLR), fed to a novel psychrophilic (20 °C) dry anaerobic digestion of 27% total solid dairy manure (cow feces and wheat straw) in sequence batch reactor (PDAD-SBR), by 133 to 160%. The PDAD-SBR process operated at treatment cycle length of 21 days and OLR of 7.0 and 8.0 g total chemical oxygen demand (TCOD) kg(-1) inoculum day(-1) (5.2 ± 0.1 and 5.8 ± 0.0 g volatile solids (VS) kg(-1) inoculum day(-1)) for four successive cycles (84 days) produced average specific methane yields (SMYs) of 147.1 ± 17.2 and 143.2 ± 11.7 normalized liters (NL) CH4 kg(-1) VS fed, respectively. PDAD of cow feces and wheat straw is possible with VS-based inoculum-to-substrate ratio of 1.45 at OLR of 8.0 g TCOD kg(-1) inoculum day(-1). Hydrolysis was the limiting step reaction. The VS removal averaged around 57.4 ± 0.5 and 60.5 ± 5.7% at OLR 7.0 and 8.0 g TCOD kg(-1) inoculum day(-1), respectively. PMID:25773978

  5. Effects of the sea urchin Echinocardium cordatum on bacterial production and carbon flow in experimental benthic systems under increasing organic loading

    NASA Astrophysics Data System (ADS)

    Osinga, Ronald; Kop, Arjen J.; Malschaert, Johannes F. P.; Van Duyl, Fleur C.

    1997-05-01

    Effects of the sea urchin Echinocardium cordatum on benthic bacterial production were studied in marine sediment boxcosms, to which different amounts of organic matter (30, 60 and 90 g C m -2) were added. Bacterial production was estimated from incorporation rates of 3H-labelled leucine. The distribution of organic carbon in the boxcosm sediments was monitored. Measurements were done over a period of 27 days after the introduction of organic matter. Non-enriched boxcosms were used as controls. In macrobenthos-free boxcosms, the bacterial response to organic-matter additions mainly took place in the organic-matter layer on the sediment surface and in the upper 3 mm of the sediment. In the presence of E. cordatum, more organic matter was transported into the sediment, and the bacterial production rates in deeper sediment layers were higher. Increasing the organic loading did not further enhance these rates. It is concluded that E. cordatum stimulates bacterial production in deeper sediment layers by increasing the transport of organic matter into the sediment and perhaps also by promoting its degradation. At an increasing load with organic matter, the relative importance of the effects of E. cordatum decreases.

  6. Biogas-pH automation control strategy for optimizing organic loading rate of anaerobic membrane bioreactor treating high COD wastewater.

    PubMed

    Yu, Dawei; Liu, Jibao; Sui, Qianwen; Wei, Yuansong

    2016-03-01

    Control of organic loading rate (OLR) is essential for anaerobic digestion treating high COD wastewater, which would cause operation failure by overload or less efficiency by underload. A novel biogas-pH automation control strategy using the combined gas-liquor phase monitoring was developed for an anaerobic membrane bioreactor (AnMBR) treating high COD (27.53 g·L(-1)) starch wastewater. The biogas-pH strategy was proceeded with threshold between biogas production rate >98 Nml·h(-1) preventing overload and pH>7.4 preventing underload, which were determined by methane production kinetics and pH titration of methanogenesis slurry, respectively. The OLR and the effluent COD were doubled as 11.81 kgCOD·kgVSS(-1)·d(-1) and halved as 253.4 mg·L(-1), respectively, comparing with a constant OLR control strategy. Meanwhile COD removal rate, biogas yield and methane concentration were synchronously improved to 99.1%, 312 Nml·gCODin(-1) and 74%, respectively. Using the biogas-pH strategy, AnMBR formed a "pH self-regulation ternary buffer system" which seizes carbon dioxide and hence provides sufficient buffering capacity. PMID:26722804

  7. Biogas production from chicken manure at different organic loading rates in a mesophilic-thermopilic two stage anaerobic system.

    PubMed

    Dalkılıc, Kenan; Ugurlu, Aysenur

    2015-09-01

    This study investigates the biogas production from chicken manure at different organic loading rates (OLRs), in a mesophilic-thermophilic two stage anaerobic system. The system was operated on semi continuous mode under different OLRs [1.9 g volatile solids (VS)/L·d - 4.7 g VS/L·d] and total solid (TS) contents (3.0-8.25%). It was observed that the anaerobic bacteria acclimatized to high total ammonia nitrogen concentration (>3000 mg/L) originated as a result of the degradation of chicken manure. High volatile fatty acid concentrations were tolerated by the system due to high pH in the reactors. The maximum average biogas production rate was found as 554 mL/g VSfeed while feeding 2.2 g VS/L-d (2.3% VS - 3.8% TS) to the system. Average methane content of produced biogas was 74% during the study. PMID:26111600

  8. Effects of organic loading rate and effluent recirculation on the performance of two-stage anaerobic digestion of vegetable waste.

    PubMed

    Zuo, Zhuang; Wu, Shubiao; Zhang, Wanqin; Dong, Renjie

    2013-10-01

    The effects of organic loading rates (OLR) and effluent recirculation on dynamics of acidogenic and methanogenic processes in two-stage anaerobic digestion of vegetable waste were investigated. Two systems were performed at OLRs of 1.3, 1.7, 2.1 and 2.6 g VS/L/d. One system recirculated the effluent from the methanogenic reactor to acidogenic reactor. With increasing OLRs, total volatile fatty acid (VFA) concentration increased to approximately 8500 mg/L in acidogenic digester, where pH decreased from 6.4 to 5.2. Daily biogas production and methane content in methanogenic reactor increased from 1.2 to 4.4 L/d and from 27.4% to 60.5%, respectively. However, inhibition of hydrolysis in acidogenic reactor was demonstrated under the OLR of 2.6 g VS/L/d without recirculation, thus indicating system overloading. Effluent recirculation shown a considerable positive effect on alleviating VFA inhibition and improving biogas production in acidogenic reactor because of the effect of dilution and pH adjustment, particularly at high OLRs. PMID:23973975

  9. Effects of Extensive Beetle-Induced Forest Mortality on Aromatic Organic Carbon Loading and Disinfection Byproduct Formation Potential

    NASA Astrophysics Data System (ADS)

    Brouillard, B.; Mikkelson, K. M.; Dickenson, E.; Sharp, J.

    2015-12-01

    Recent drought and warmer temperatures associated with climate change have caused increased pest-induced forest mortality with impacts on biogeochemical and hydrologic processes. To better understand the seasonal impacts of bark beetle infestation on water quality, samples were collected regularly over two overlapping snow free seasons at surface water intakes of six water treatment facilities in the Rocky Mountain region of Colorado displaying varying levels of bark beetle infestation (high >40%, moderate 20-40%, and low <20%). Organic carbon concentrations were typically 3 to 6 times higher in waters sourced from high beetle-impacted watersheds compared to moderate and low impact watersheds, revealing elevated specific ultraviolet absorbance, fluorescence, and humic-like intensity indicative of elevated aromatic carbon signatures. Accordingly, an increase in disinfection byproduct (DBP) formation potential of 400 to 600% was quantified when contrasted with watersheds containing less tree mortality. Beetle impact exasperated seasonal increases in carbon loading and DBP formation potential following both runoff and precipitation events indicating windows when enhanced water treatment may be utilized by water providers in highly infested regions. Additionally, elevated carbon concentrations throughout the summer and fall along with peaks following precipitation events provide evidence of shifting hydrologic flow paths in areas experiencing high forest mortality from decreased tree water uptake and interception. Collectively, these results demonstrate the need for continued watershed protection and monitoring with a changing climate as the resultant perturbations can have adverse effects on biogeochemistry and water quality in heavily impacted areas.

  10. Anaerobic Mesophilic Codigestion of Rice Straw and Chicken Manure: Effects of Organic Loading Rate on Process Stability and Performance.

    PubMed

    Mei, Zili; Liu, Xiaofeng; Huang, Xianbo; Li, Dong; Yan, Zhiying; Yuan, Yuexiang; Huang, Yajun

    2016-07-01

    To investigate the effects of organic loading rate (OLR) on performance and stability of mesophilic co-digestion of rice straw (RS) and chicken manure (CM), benchtop experiments (40 L) were carried out at OLRs of 3.0, 3.6, 4.2, 4.8, 6.0, 8.0, and 12.0 kg volatile solid (VS)/(m(3)·day) with volatile solid (VS) ratio of 1:1 (RS/CM) which was based on batch tests. Anaerobic co-digestion was slightly and severely inhibited by the accumulation of ammonia when the digester was overloaded at an OLR of 6 and 12 kg VS/(m(3)·day), respectively. The recommended OLR for co-digestion is 4.8 kg VS/(m(3)·day), which corresponds to average specific biogas production (SBP) of 380 L/kg VS and volumetric biogas production rate (VBPR) of 1.8 m(3)/(m(3)·day). An OLR of 6-8 kg VS/(m(3)·d) with SBP of 360-440 L/kg VS and VBPR of 2.1-3.5 m(3)/(m(3)·day) could be considered, if an Anaerobic digestion (AD) system assisted by in situ removal of ammonia was adopted. PMID:26940572

  11. Sustainable organic loading rate and energy recovery potential of mesophilic anaerobic membrane bioreactor for municipal wastewater treatment.

    PubMed

    Wei, Chun-Hai; Harb, Moustapha; Amy, Gary; Hong, Pei-Ying; Leiknes, TorOve

    2014-08-01

    The overall performance of a mesophilic anaerobic membrane bioreactor (AnMBR) for synthetic municipal wastewater treatment was investigated under a range of organic loading rate (OLR). A very steady and high chemical oxygen demand (COD) removal (around 98%) was achieved over a broad range of volumetric OLR of 0.8-10 gCOD/L/d. The sustainable volumetric and sludge OLR satisfying a permeate COD below 50 mg/L for general reuse was 6 gCOD/L/d and 0.63 gCOD/gMLVSS (mixed liquor volatile suspended solids)/d, respectively. At a high sludge OLR of over 0.6 gCOD/gMLVSS/d, the AnMBR achieved high methane production of over 300 ml/gCOD (even approaching the theoretical value of 382 ml/gCOD). A low biomass production of 0.015-0.026 gMLVSS/gCOD and a sustainable flux of 6L/m(2)/h were observed. The integration of a heat pump and forward osmosis into the mesophilic AnMBR process would be a promising way for net energy recovery from typical municipal wastewater in a temperate area. PMID:24926606

  12. Solid-base loaded WO{sub 3} photocatalyst for decomposition of harmful organics under visible light irradiation

    SciTech Connect

    Kako, Tetsuya; Meng, Xianguang; Ye, Jinhua

    2015-10-01

    Composite of NaBiO{sub 3}-loaded WO{sub 3} with a mixing ratio of 10:100 was prepared for photocatalytic harmful-organic-contaminant decomposition. The composite properties were measured using X-ray diffraction, ultraviolet-visible spectrophotometer (UV-Vis), and valence band-X-ray photoelectron spectroscope (VB-XPS). The results exhibited that the potentials for top of the valence band and bottom of conduction band for NaBiO{sub 3} can be estimated, respectively, as +2.5 V and -0.1 to 0 V. Furthermore, WO{sub 3}, NaBiO{sub 3}, and the composite showed IPA oxidation properties under visible-light irradiation. Results show that the composite exhibited much higher photocatalytic activity about 2-propanol (IPA) decomposition into CO{sub 2} than individual WO{sub 3} or NaBiO{sub 3} because of charge separation promotion and the base effect of NaBiO{sub 3}.

  13. Effects of feedstock carbon to nitrogen ratio and organic loading on foaming potential in mesophilic food waste anaerobic digestion.

    PubMed

    Tanimu, Musa Idris; Mohd Ghazi, Tinia Idaty; Harun, Mohd Razif; Idris, Azni

    2015-05-01

    Foaming problem which occurred occasionally during food waste (FW) anaerobic digestion (AD) was investigated with the Malaysian FW by stepwise increase in organic loading (OL) from 0.5 to 7.5 g VS/L. The FW feedstock with carbon to nitrogen (C/N) ratio of 17 was upgraded to C/N ratio of 26 and 30 by mixing with other wastes. The digestion which was carried out at 37 °C in 1-L batch reactors showed that foam formation initiated at OL of 1.5 g VS/L and was further enhanced as OL of feedstock was increased. The digestion foaming reached its maximum at OL of 5.5 g VS/L and did not increase further even when OL was increased to 7.5 g VS/Ld. Increase in the C/N ratio of feedstock significantly enhanced the microbial degradation activity, leading to better removal of foam causing intermediates and reduced foaming in the reactor by up to 60%. PMID:25761621

  14. Encapsulation of curcumin in cyclodextrin-metal organic frameworks: Dissociation of loaded CD-MOFs enhances stability of curcumin.

    PubMed

    Moussa, Zeinab; Hmadeh, Mohamad; Abiad, Mohamad G; Dib, Omar H; Patra, Digambara

    2016-12-01

    Curcumin has been successfully encapsulated in cyclodextrin-metal organic frameworks (CD-MOFs) without altering their crystallinity. The interaction between curcumin and CD-MOFs is strong through hydrogen bond type interaction between the OH group of cyclodextrin of CD-MOFs and the phenolic hydroxyl group of the curcumin. Interestingly, dissolving the curcumin loaded CD-MOFs crystals in water results in formation of a unique complex between curcumin, γCD and potassium cations. In fact, the initial interaction between curcumin and CD-MOF is crucial for the formation of the latter. This new complex formed in alkaline media at pH 11.5 has maximum absorbance at 520nm and emittance at 600nm. Most importantly, the stability of curcumin in this complex was enhanced by at least 3 orders of magnitude compared to free curcumin and curcumin:γ-CD at pH 11.5. These results suggest a promising benign system of CD-MOFs, which can be used to store and stabilize curcumin for food applications. PMID:27374559

  15. Removal of volatile organic compounds at extreme shock-loading using a scaled-up pilot rotating drum biofilter.

    PubMed

    Sawvel, Russell A; Kim, Byung; Alvarez, Pedro J J

    2008-11-01

    A pilot-scale rotating drum biofilter (RDB), which is a novel biofilter design that offers flexible flow-through configurations, was used to treat complex and variable volatile organic compound (VOC) emissions, including shock loadings, emanating from paint drying operations at an Army ammunition plant. The RDB was seeded with municipal wastewater activated sludge. Removal efficiencies up to 86% and an elimination capacity of 5.3 g chemical oxygen demand (COD) m(-3) hr(-1) were achieved at a filter-medium contact time of 60 sec. Efficiency increased at higher temperatures that promote higher biological activity, and decreased at lower pH, which dropped down to pH 5.5 possibly as a result of carbon dioxide and volatile fatty acid production and ammonia consumption during VOC degradation. In comparison, other studies have shown that a bench-scale RDB could achieve a removal efficiency of 95% and elimination capacity of 331 g COD m(-3) hr(-1). Sustainable performance of the pilot-scale RDB was challenged by the intermittent nature of painting operations, which typically resulted in 3-day long shutdown periods when bacteria were not fed. This challenge was overcome by adding sucrose (2 g/L weekly) as an auxiliary substrate to sustain metabolic activity during shutdown periods. PMID:19044156

  16. Limitation of sludge biotic index application for control of a wastewater treatment plant working with shock organic and ammonium loadings.

    PubMed

    Drzewicki, Adam; Kulikowska, Dorota

    2011-11-01

    This study aimed to determine the relationship between activated sludge microfauna, the sludge biotic index (SBI) and the effluent quality of a full-scale municipal wastewater treatment plant (WWTP) working with shock organic and ammonium loadings caused by periodic wastewater delivery from septic tanks. Irrespective of high/low effluent quality in terms of COD, BOD5, ammonium and suspended solids, high SBI values (8-10), which correspond to the first quality class of sludge, were observed. High SBI values were connected with abundant taxonomic composition and the domination of crawling ciliates with shelled amoebae and attached ciliates. High SBI values, even at a low effluent quality, limit the usefulness of the index for monitoring the status of an activated sludge system and the effluent quality in municipal WWTP-treated wastewater from septic tanks. It was shown that a more sensitive indicator of effluent quality was a change in the abundance of attached ciliates with a narrow peristome (Vorticella infusionum and Opercularia coarctata), small flagellates and crawling ciliates (Acineria uncinata) feeding on flagellates. PMID:21802913

  17. Towards a quasi-complete reconstruction of past atmospheric aerosol load and composition (organic and inorganic) over Europe since 1920 inferred from Alpine ice cores

    NASA Astrophysics Data System (ADS)

    Preunkert, S.; Legrand, M.

    2013-07-01

    Seasonally resolved chemical ice core records available from the Col du Dôme glacier (4250 m elevation, French Alps), are here used to reconstruct past aerosol load and composition of the free European troposphere from before World War II to present. Available ice core records include inorganic (Na+, Ca2+, NH4+, Cl-, NO3-, and SO42-) and organic (carboxylates, HCHO, humic-like substances, dissolved organic carbon, water-insoluble organic carbon, and black carbon) compounds and fractions that permit reconstructing the key aerosol components and their changes over the past. It is shown that the atmospheric load of submicron aerosol has been increased by a factor of 3 from the 1921-1951 to 1971-1988 years, mainly as a result of a large increase of sulfate (a factor of 5), ammonium and water-soluble organic aerosol (a factor of 3). Thus, not only growing anthropogenic emissions of sulfur dioxide and ammonia have caused the enhancement of the atmospheric aerosol load but also biogenic emissions producing water-soluble organic aerosol. This unexpected change of biospheric source of organic aerosol after 1950 needs to be considered and further investigated in scenarios dealing with climate forcing by atmospheric aerosol.

  18. Towards a quasi-complete reconstruction of past atmospheric aerosol load and composition (organic and inorganic) over Europe since 1920 inferred from Alpine ice cores

    NASA Astrophysics Data System (ADS)

    Preunkert, S.; Legrand, M.

    2013-02-01

    Seasonally resolved chemical ice core records available from the Col du Dôme glacier (4250 m elevation, French Alps) are here revisited in view to reconstruct past aerosol load of the free European troposphere from prior World War II to present. The extended array of inorganic (Na+, Ca2+, NH4+, Cl-, NO3-, and SO42-) and organic (carboxylates, HCHO, HUmic LIke Substances, dissolved organic carbon, water insoluble organic carbon, and black carbon) compounds and fractions already investigated permit to examine the overall aerosol composition and its change over the past. It is shown that the atmospheric load of submicron aerosol has been increased by a factor of 3 from the 1921-1951 to 1971-1988 years, mainly as a result of a large increase of sulfate (a factor of 5), ammonium and water-soluble organic aerosol (a factor of 3). It is shown that not only growing anthropogenic emissions of sulfur dioxide and ammonia have caused the enhancement of the atmospheric aerosol load but also biogenic emissions producing water soluble organic aerosol. This unexpected change of biospheric source of organic aerosol after 1950 needs to be considered and further investigated in scenarii dealing with climate forcing by atmospheric aerosol.

  19. Synergetic effect of a novel wash aid, T-128, in improving chlorine efficacy against bacterial pathogens in wash solution containing high organic loads

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorine is widely used as a sanitizer in commercial fresh-cut wash water for produce processing of bagged leafy greens. However, free chlorine depletion occurs rapidly when high organic content loads are introduced directly into the wash solution as part of the washing operation process. This chl...

  20. The effects of free chlorine concentration, organic load, and exposure time on the inactivation of Salmonella, Escherichia coli O157:H7 and non-O157 STEC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the effects of free chlorine (FC) concentration, contact time, and organic load on the inactivation of Salmonella, E. coli O157:H7, and non-O157 STEC in suspension. Four strains each of Salmonella, E. coli O157:H7, or non-O157 STEC cells were inoculated separately or as a multi-...

  1. Fine-scale monitoring of shifts in microbial community composition after high organic loading in a pilot-scale membrane bioreactor.

    PubMed

    Sato, Yuya; Hori, Tomoyuki; Navarro, Ronald R; Habe, Hiroshi; Yanagishita, Hiroshi; Ogata, Atsushi

    2016-05-01

    In biological wastewater treatment, municipal wastewater sometimes undergoes unexpected changes in physicochemical parameters, such as organic carbon concentration. The aim of this study was to understand how microbial communities in activated sludge in a membrane bioreactor (MBR) adapt to high organic loading and maintain their degradation ability during reactor operation. A pilot-scale MBR was operated for 19 days. On day 8, the concentration of organic matter in the synthetic wastewater increased from 450 to 900 mg chemical oxygen demand (COD)/L. Even under conditions of high organic loading, COD removal rates were high, ranging from 85.3 to 91.4%. High-throughput sequencing of 16S rRNA genes revealed that microbial communities changed drastically with increased organic loading. After day 8, Aquabacterium- and Azospira-related operational taxonomic units (OTUs) belonging to the class β-proteobacteria became dominant; this potentially enhanced the degradation of organic substances and decreased activated sludge microbial diversity. Due to the use of dissolved oxygen (DO) for degradation of organic substances, DO levels in the reactor decreased. This led to an increase in a subset of OTUs related to not only aerobic but also anaerobic bacteria, e.g., those in the class Clostridia. During this period, anaerobic microorganisms may have contributed to the degradation of organic substances to maintain MBR performance. On the other hand, high-throughput sequencing also made it possible to identify yet-to-be cultured or minor microorganisms affiliated with the candidate phylogenetic division SR1 and ammonia-oxidizing archaea in activated sludge. PMID:26541428

  2. Effect of organic load on the performance and methane production of an AnSBBR treating effluent from biodiesel production.

    PubMed

    Bezerra, Roberto Antonio; Rodrigues, José Alberto Domingues; Ratusznei, Suzana Maria; Canto, Catarina Simone Andrade; Zaiat, Marcelo

    2011-09-01

    Currently, there is an increasing demand for the production of biodiesel and, consequently, there will be an increasing need to treat wastewaters resulting from the production process of this biofuel. The main objective of this work was, therefore, to investigate the effect of applied volumetric organic load (AVOL) on the efficiency, stability, and methane production of an anaerobic sequencing batch biofilm reactor applied to the treatment of effluent from biodiesel production. As inert support, polyurethane foam cubes were used in the reactor and mixing was accomplished by recirculating the liquid phase. Increase in AVOL resulted in a drop in organic matter removal efficiency and increase in total volatile acids in the effluent. AVOLs of 1.5, 3.0, 4.5 and 6.0 g COD L(-1) day(-1) resulted in removal efficiencies of 92%, 81%, 67%, and 50%, for effluent filtered samples, and 91%, 80%, 63%, and 47%, for non-filtered samples, respectively, whereas total volatile acids concentrations in the effluent amounted to 42, 145, 386 and 729 mg HAc L(-1), respectively. Moreover, on increasing AVOL from 1.5 to 4.5 g COD L(-1) day(-1) methane production increased from 29.5 to 55.5 N mL CH(4) g COD(-1). However, this production dropped to 36.0 N mL CH(4) g COD(-1) when AVOL was increased to 6.0 g COD L(-1) day(-1), likely due to the higher concentration of volatile acids in the reactor. Despite the higher concentration of volatile acids at the highest AVOL, alkalinity supplementation to the influent, in the form of sodium bicarbonate, at a ratio of 0.5-1.3 g NaHCO(3) g COD (fed) (-1) , was sufficient to maintain the pH near neutral and guarantee process stability during reactor operation. PMID:21494753

  3. Influence of high organic loads during the summer period on the performance of hybrid constructed wetlands (VSSF + HSSF) treating domestic wastewater in the Alps region.

    PubMed

    Foladori, P; Ortigara, A R C; Ruaben, J; Andreottola, G

    2012-01-01

    One of the limits for the application of constructed wetlands (CWs) in mountain regions (such as the Alps) is associated with the considerable land area requirements. In some mountain areas, the treatment of domestic wastewater at popular tourist destinations is particularly difficult during the summer, when the presence of visitors increases hydraulic and organic loads. This paper aims to evaluate whether a hybrid CW plant designed on the basis of the resident population only, can treat also the additional load produced by the floating population during the tourist period (summer, when temperatures are favourable for biological treatment), without a drastic decrease of efficiency and without clogging problems. The research was carried out by considering two operational periods: the first one was based on literature indications (3.2 m(2)/PE in the VSSF unit) and the second one assumed higher hydraulic and organic loads (1.3 m(2)/PE in the VSSF unit). The removal efficiency in the hybrid CW system decreased slightly from 94 to 88% for COD removal and from 78 to 75% for total N removal, even after applying a double hydraulic (from 55 to 123 L m(-2) d(-1)) and organic load (from 37 to 87 g COD m(-2) d(-1) and from 4.4 to 10.3 g TKN m(-2) d(-1)). The results showed that in the summer period the application of high loads did not affect the efficiency of the hybrid CW plant significantly, suggesting that it is possible to refer the CW design to the resident population only, with subsequent considerable savings in superficial area. PMID:22339024

  4. Time- and loading-dependence in the McKone model for dermal uptake of organic chemicals from a soil matrix

    SciTech Connect

    Burmaster, D.E.; Maxwell, N.I. )

    1991-09-01

    McKone has recently proposed an innovative two-layer model for dermal uptake of organic chemicals from a soil matrix that explicitly includes variables for properties of the chemical, the soil, the skin, and the exposure. In this note, the authors investigate the joint time- and loading-dependencies implicit in the model by using MATHEMATICA to find and plot a closed-form function for the uptake fraction for six aromatic hydrocarbons.

  5. Impact of organic load on Escherichia coli O157:H7 survival during pilot-scale processing of iceberg lettuce with acidified sodium hypochlorite.

    PubMed

    Davidson, Gordon R; Kaminski, Chelsea N; Ryser, Elliot T

    2014-10-01

    Chemical sanitizers are routinely used during commercial flume washing of fresh-cut leafy greens to minimize cross-contamination from the water. This study assessed the efficacy of three chlorine treatments against Escherichia coli O157:H7 on iceberg lettuce, in wash water, and on surfaces of a pilot-scale processing line using flume water containing various organic loads. Iceberg lettuce (5.4 kg) was inoculated to contain 10(6) CFU/g of a 4-strain cocktail of nontoxigenic, green fluorescent protein-labeled, ampicillin-resistant E. coli O157:H7 and held for 24 h at 4°C before processing. Lettuce was shredded using a Urschel TransSlicer, step conveyed to a flume tank, washed for 90 s using water alone or one of three different sanitizing treatments (50 ppm of total chlorine either alone or acidified to pH 6.5 with citric acid or T-128) in water containing organic loads of 0, 2.5, 5, or 10% (wt/vol) blended iceberg lettuce, and then dried using a shaker table and centrifugal dryer. Next, three 5.4-kg batches of uninoculated iceberg lettuce were processed identically. Various product (25 g), water (50 ml), and equipment surface swab (100 cm(2)) samples were homogenized in neutralizing buffer, diluted appropriately, and plated on tryptic soy agar containing 0.6% (wt/vol) yeast extract and 100 ppm of ampicillin without prior 0.45- m m membrane filtration to quantify E. coli O157:H7. Organic load negatively impacted the efficacy of all three chlorine treatments (P < 0.05) at the end of processing, with typical E. coli O157:H7 reductions of >5 and 0.9 to 3.7 log CFU/ml for organic loads of 0 and 10%, respectively. Organic load rarely had a significant impact (P < 0.05) on the efficacy of chlorine, chlorine plus citric acid, or chlorine plus T-128 against E. coli O157:H7 on iceberg lettuce. Reduced sanitizer efficacy generally corresponded to changes in total solids, chemical oxygen demand, turbidity, and maximum filterable volume, indicating that these tests may be

  6. High organic loading rate on thermophilic hydrogen production and metagenomic study at an anaerobic packed-bed reactor treating a residual liquid stream of a Brazilian biorefinery.

    PubMed

    Ferraz Júnior, Antônio Djalma Nunes; Etchebehere, Claudia; Zaiat, Marcelo

    2015-06-01

    This study evaluated the influence of a high organic loading rate (OLR) on thermophilic hydrogen production at an up-flow anaerobic packed-bed reactor (APBR) treating a residual liquid stream of a Brazilian biorefinery. The APBR, filled with low-density polyethylene, was operated at an OLR of 84.2 kg-COD m(-3) d(-1). This value was determined in a previous study. The maximum values of hydrogen production and yield were 5,252.6 mL-H2 d(-1) and 3.7 mol-H2 mol(-1)(total carbohydrates), respectively. However, whereas the OLR remained constant, the specific organic load rate (sOLR) decreased throughout operation from 1.38 to 0.72 g-Total carbohydratesg-VS(-1) h(-1), this decrease negatively affected hydrogen production. A sOLR of 0.98 g-Total carbohydratesg-VS(-1) h(-1) was optimal for hydrogen production. The microbial community was studied using 454-pyrosequencing analysis. Organisms belonging to the genera Caloramator, Clostridium, Megasphaera, Oxobacter, Thermoanaerobacterium, and Thermohydrogenium were detected in samples taken from the reactor at operation days 30 and 60, suggesting that these organisms contribute to hydrogen production. PMID:25812810

  7. Effects of porous media, macrophyte type and hydraulic retention time on the removal of organic load and micropollutants in constructed wetlands.

    PubMed

    Herrera-Cárdenas, Jorge; Navarro, Amado E; Torres, Eduardo

    2016-04-15

    The performance of horizontal subsurface flow constructed wetlands in the removal of micropollutants from a wastewater treatment plant effluent was evaluated at mesocosm level. Fifteen mesocosms were studied following a modified Latin Square experimental design with six additional points. Three variables at three levels were studied: porous media -PM- (river gravel, fine volcanic gravel and coarse volcanic gravel), macrophyte type -M- (Thypa latiffolia, Phragmites australis, and Cyperus papyrus) and hydraulic retention time -HRT- (1, 3 and 5 days). As response variables the removal percentages of the total organic load of the effluent (BOD5) and the loads of several micropollutants (caffeine, galaxolide, tonalide, alkylphenols and their monoethoxylates and diethoxylates, methyl dihydrojasmonate, sunscreen UV-15 and parsol) were used. The results showed that the systems remove between 70% and 75% of the organic load and that all the micropollutants were degraded at different extents, from 55% to 99%. The HRT was the variable that showed major effects on the treatment process, while M and PM showed no statistically significant differences in the used experimental conditions. PMID:26817393

  8. LOADED WAVEGUIDES

    DOEpatents

    Mullett, L.B.; Loach, B.G.; Adams, G.L.

    1958-06-24

    >Loaded waveguides are described for the propagation of electromagnetic waves with reduced phase velocities. A rectangular waveguide is dimensioned so as to cut-off the simple H/sub 01/ mode at the operating frequency. The waveguide is capacitance loaded, so as to reduce the phase velocity of the transmitted wave, by connecting an electrical conductor between directly opposite points in the major median plane on the narrower pair of waveguide walls. This conductor may take a corrugated shape or be an aperature member, the important factor being that the electrical length of the conductor is greater than one-half wavelength at the operating frequency. Prepared for the Second U.N. International ConferThe importance of nuclear standards is duscussed. A brief review of the international callaboration in this field is given. The proposal is made to let the International Organization for Standardization (ISO) coordinate the efforts from other groups. (W.D.M.)

  9. [Distance methods of cardiologic monitoring in diagnostics of high loading effects on organism of sportsman and cosmonaut].

    PubMed

    Kuznetsov, V I; Ryzhakov, N I; Tarakanov, S A; Nikitenko, A N; Rassadina, A A; Kozlenok, A V; Moroshkin, V S

    2012-01-01

    Increase of cardiovascular tension is a common thing for professional athletic training. Cardiovascular pathologies can be prevented by permanent physiological monitoring using, among others, the methods of cardiologic monitoring so far available in stationary diagnostic centers. On-line remote diagnostics during training is potent to enhance effectiveness and efficiency of sporting people's health management. In addition, RD will also enable extensive investigations of the bodily responses of individually determined training loads. The paper gives an overview of the current RM technologies. PMID:23457962

  10. Application of immobilized and granular dried anaerobic biomass for stabilizing and increasing anaerobic bio-systems tolerance for high organic loads and phenol shocks.

    PubMed

    Massalha, Nedal; Brenner, Asher; Sheindorf, Chaim; Sabbah, Isam

    2015-12-01

    This study focuses on the stability and tolerance of continuous-flow bioreactors inoculated with anaerobic methanogens in three different configurations: (R1) dried granular biomass immobilized in PAC-enriched hydrophilic polyurethane foam, (R2) dried granular biomass, and (R3) wet granular biomass. These systems were tested under two different organic loading rates (OLR) of 6.25 and 10.94 (gCOD/(Lreactor∗d)), using a glucose-based synthetic mixture. The effect of an instantaneous shock load of phenol (5g/L for three days), and of phenol inclusion in the feed (0.5g/L) were also tested. At the lower OLR, all reactors performed similarly, however, increasing the OLR lead to a significant biomass washout and failure of R3. Biomass in R1 was more tolerant to phenol shock load than R2, though activity was recovered in both systems after about one month. PAC provided protection and shortened the adaptation time for 0.5g/L phenol that continuously was fed. PMID:26318929

  11. Reduction of the hydraulic retention time at constant high organic loading rate to reach the microbial limits of anaerobic digestion in various reactor systems.

    PubMed

    Ziganshin, Ayrat M; Schmidt, Thomas; Lv, Zuopeng; Liebetrau, Jan; Richnow, Hans Hermann; Kleinsteuber, Sabine; Nikolausz, Marcell

    2016-10-01

    The effects of hydraulic retention time (HRT) reduction at constant high organic loading rate on the activity of hydrogen-producing bacteria and methanogens were investigated in reactors digesting thin stillage. Stable isotope fingerprinting was additionally applied to assess methanogenic pathways. Based on hydA gene transcripts, Clostridiales was the most active hydrogen-producing order in continuous stirred tank reactor (CSTR), fixed-bed reactor (FBR) and anaerobic sequencing batch reactor (ASBR), but shorter HRT stimulated the activity of Spirochaetales. Further decreasing HRT diminished Spirochaetales activity in systems with biomass retention. Based on mcrA gene transcripts, Methanoculleus and Methanosarcina were the predominantly active in CSTR and ASBR, whereas Methanosaeta and Methanospirillum activity was more significant in stably performing FBR. Isotope values indicated the predominance of aceticlastic pathway in FBR. Interestingly, an increased activity of Methanosaeta was observed during shortening HRT in CSTR and ASBR despite high organic acids concentrations, what was supported by stable isotope data. PMID:26853042

  12. Predicting total organic carbon load with El Nino southern oscillation phase using hybrid and fuzzy logic approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During drinking water treatment chlorine reacts with total organic carbon (TOC) to form disinfection byproducts (DBP), some of which can be carcinogenic. Additional treatment required to remove TOC before chlorination significantly increases treatment cost. There are two main sources of TOC in a wat...

  13. Dissolved and Particulate Organic Carbon Transport, Loads and Relationships from Catchments in the Dryland Agricultural Region of the Inland Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Boylan, R. D.; Brooks, E. S.

    2012-12-01

    It has long been understood that soil organic matter (SOM) plays important role in the chemistry of agricultural soils. Promoting both cation exchange capacity and water retention, SOM also has the ability to sequester atmospheric carbon adding to a soils organic carbon content. Increasing soil organic carbon in the dryland agricultural region of the Inland Pacific Northwest is not only good for soil health, but also has the potential to mitigate greenhouse gas emissions. Implementing strategies that minimizing the loss of soil carbon thus promoting carbon sequestration require a fundamental understanding of the dominant hydrologic flow paths and runoff generating processes in this landscape. Global fluxes of organic carbon from catchments range from 0.4-73,979 kg C km-2 year-1 for particulate organic carbon and 1.2-56,946 kg C km-2 year-1 for dissolved organic carbon (Alvarez-Cobelas, 2010). This small component of the global carbon cycle has been relatively well studied but there have yet to be any studies that focus on the dryland agricultural region of the Inland Pacific Northwest. In this study event based samples were taken at 5 sites across the Palouse Basin varying in land use and management type as well as catchment size, ranging from 1km2 to 7000 km2. Data collection includes streamflow, suspended sediment, dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), particulate organic carbon (POC), dissolved organic nitrogen (TN), and nitrate concentrations as well as soil organic carbon (SOC) from distributed source areas. It is predicted that management type and streamflow will be the main drivers for DOC and POC concentrations. Relationships generated and historic data will then be used in conjunction with the Water Erosion Prediction Project (WEPP) to simulate field scale variability in the soil moisture, temperature, surface saturation, and soil erosion. Model assessment will be based on both surface runoff and sediment load measured at the

  14. Short term effects of copper, sulfadiazine and difloxacin on the anaerobic digestion of pig manure at low organic loading rates.

    PubMed

    Guo, Jianbin; Ostermann, Anne; Siemens, Jan; Dong, Renjie; Clemens, Joachim

    2012-01-01

    Antibiotics of inorganic and organic origin in pig manure can inhibit the anaerobic process in biogas plants. The influence of three frequently used antibiotics, copper dosed as CuSO(4), sulfadiazine (SDZ), and difloxacin (DIF), on the anaerobic digestion process of pig manure was studied in semi-continuous experiments. Biogas production recovered after every Cu dosage up to a sum of 12.94g Cukg(-1) organic dry matter (ODM), probably due to Cu precipitation following the formation of sulphide from sulphate. Complete inhibition was found at the very high Cu concentration of 19.40g Cukg(-1) ODM. Inhibitory effect of SDZ and DIF was observed at concentrations as high as 2.70gkg(-1) ODM and 0.54gkg(-1) ODM, respectively. It seems very unlikely that the antibiotics tested would inhibit the anaerobic process in a full-scale biogas plant. PMID:21868210

  15. Impact of temperature, microwave radiation and organic loading rate on methanogenic community and biogas production during fermentation of dairy wastewater.

    PubMed

    Zielińska, Magdalena; Cydzik-Kwiatkowska, Agnieszka; Zieliński, Marcin; Dębowski, Marcin

    2013-02-01

    This study analyzed dairy wastewater fermentation in convection- and microwave-heated hybrid reactors at loadings of 1 and 2 kg COD/(m3 d) and temperatures of 35 and 55 °C. The biomass was investigated at a molecular level to determine the links between the operational parameters of anaerobic digestion and methanogenic Archaea structure. The highest production of biogas with methane content of ca. 67% was noted in the mesophilic microwave-heated reactors. The production of methane-rich biogas and the overall diversity of Archaea was determined by Methanosarcinaceae presence. The temperature and the application of microwaves were the main factors explaining the variations in the methanogen community. At 35 °C, the microwave heating stimulated the growth of highly diverse methanogen assemblages, promoting Methanosarcina barkeri presence and excluding Methanosarcina harudinacea from the biomass. A temperature increase to 55 °C lowered Methanosarcinaceae abundance and induced a replacement of Methanoculleus palmolei by Methanosarcina thermophila. PMID:23262005

  16. Modelling the cycling of persistent organic pollutants (POPs) in the North Sea system: Fluxes, loading, seasonality, trends

    NASA Astrophysics Data System (ADS)

    O'Driscoll, Kieran; Mayer, Bernhard; Ilyina, Tatiana; Pohlmann, Thomas

    2013-02-01

    The fate and cycling of two selected POPs is investigated for the North Sea system with an improved version of a fate and transport ocean model (FANTOM). The model uses atmospheric data from the EMEP MSC East POP model (Gusev et al., 2009), giving reasonable concentrations and seasonal distributions for the entire region, as opposed to the three observation stations that Ilyina et al. (2006) were limited to. Other model improvements include changes in the calculation of POP exchange between the water column and sediment. We chose to simulate the fate of two POPs with very different properties, γ-HCH and PCB 153. Since the fate and cycling of POPs are strongly affected by hydrodynamic processes, a high resolution version of the Hamburg Shelf Ocean Model (HAMSOM) was developed and utilised. Simulations were made for the period 1996-2005. Both models were validated by comparing results with available data, which showed that the simulations were of very satisfactory quality. Model results show that the North Sea is a net sink for γ-HCH and a net source to the atmosphere of PCB 153. Total masses of γ-HCH and PCB 153 in 2005 are reduced to 30% and 50%, respectively, of 1996 values. Storms resuspending bottom sediments into the water column mobilise POPs into the atmosphere and have the potential to deliver substantial loads of these POPs into Europe.

  17. The influence of reservoirs, climate, land use and hydrologic conditions on loads and chemical quality of dissolved organic carbon in the Colorado River

    NASA Astrophysics Data System (ADS)

    Miller, Matthew P.

    2012-09-01

    Longitudinal patterns in dissolved organic carbon (DOC) loads and chemical quality were identified in the Colorado River from the headwaters in the Rocky Mountains to the United States-Mexico border from 1994 to 2011. Watershed- and reach-scale climate, land use, river discharge and hydrologic modification conditions that contribute to patterns in DOC were also identified. Principal components analysis (PCA) identified site-specific precipitation and reach-scale discharge as being correlated with sites in the upper basin, where there were increases in DOC load from the upstream to downstream direction. In the lower basin, where DOC load decreased from upstream to downstream, sites were correlated with site-specific temperature and reach-scale population, urban land use and hydrologic modification. In the reaches containing Lakes Powell and Mead, the two largest reservoirs in the United States, DOC quantity decreased, terrestrially derived aromatic DOC was degraded and/or autochthonous less aromatic DOC was produced. Taken together, these results suggest that longitudinal patterns in the relatively unregulated upper basin are influenced by watershed inputs of water and DOC, whereas DOC patterns in the lower basin are reflective of a balance between watershed contribution of water and DOC to the river and loss of water and DOC due to hydrologic modification and/or biogeochemical processes. These findings suggest that alteration of constituent fluxes in rivers that are highly regulated may overshadow watershed processes that would control fluxes in comparable unregulated rivers. Further, these results provide a foundation for detailed assessments of factors controlling the transport and chemical quality of DOC in the Colorado River.

  18. Thermophilic co-digestion feasibility of distillers grains and swine manure: effect of C/N ratio and organic loading rate during high solid anaerobic digestion (HSAD).

    PubMed

    Sensai, P; Thangamani, A; Visvanathan, C

    2014-01-01

    Anaerobic co-digestion of high solids containing distillers grains and swine manure (total solids, 27 +/- 2% and 18 +/- 2%, respectively) was evaluated in this study to assess the effect of C/N ratio and organic loading rate (OLR). Feed mixture was balanced to achieve a C/N ratio of 30/1 by mixing distillers grains and swine manure. Pilot-scale co-digestion of distillers grains and swine manure was carried out under thermophilic conditions in the continuous mode for seven different OLRs from R1 to R7 (3.5, 5, 6, 8, 10, 12 and 14 kg VS/m3 day) under high solid anaerobic digestion. The methane yield and volatile solid (VS) removal were consistent; ranging from 0.33 to 0.34 m3CH4/kg VS day and 50-53%, respectively, until OLR 8 kg VS/m3 day. After which methane yield and VS removal significantly decreased to 0.26 m3 CH4/kg VS day and 42%, respectively, when OLR was increased to 14 kg VS/m3 day. However, during operation, at OLR of 10 kg VS/m3 day, the methane yield and VS removal increased after the 19th day to 0.33 m3 CH4/kg VS day and 46%, respectively, indicating that a longer acclimatization period is required by methanogens at a higher loading rate. PMID:25145212

  19. Oriented circular dichroism analysis of chiral surface-anchored metal-organic frameworks grown by liquid-phase epitaxy and upon loading with chiral guest compounds.

    PubMed

    Gu, Zhi-Gang; Bürck, Jochen; Bihlmeier, Angela; Liu, Jinxuan; Shekhah, Osama; Weidler, Peter G; Azucena, Carlos; Wang, Zhengbang; Heissler, Stefan; Gliemann, Hartmut; Klopper, Wim; Ulrich, Anne S; Wöll, Christof

    2014-08-01

    Oriented circular dichroism (OCD) is explored and successfully applied to investigate chiral surface-anchored metal-organic frameworks (SURMOFs) based on camphoric acid (D- and Lcam) with the composition [Cu2(Dcam)(2x)(Lcam)(2-2x)(dabco)]n (dabco = 1,4-diazabicyclo-[2.2.2]-octane). The three-dimensional chiral SURMOFs with high-quality orientation were grown on quartz glass plates by using a layer-by-layer liquid-phase epitaxy method. The growth orientation, as determined by X-ray diffraction (XRD), could be switched between the [001] and [110] direction by using either OH- or COOH-terminated substrates. These SURMOFs were characterized by using OCD, which confirmed the ratio as well as the orientation of the enantiomeric linker molecules. Theoretical computations demonstrate that the OCD band intensities of the enantiopure [Cu2(Dcam)2(dabco)]n grown in different orientations are a direct result of the anisotropic nature of the chiral SURMOFs. Finally, the enantiopure [Cu2(Dcam)2(dabco)]n and [Cu2(Lcam)2(dabco)]n SURMOFs were loaded with the two chiral forms of ethyl lactate [(+)-ethyl-D-lactate and (-)-ethyl-L-lactate)]. An enantioselective enrichment of >60 % was observed by OCD when the chiral host scaffold was loaded from the racemic mixture. PMID:24938623

  20. The effect of organic load and feed strategy on biohydrogen production in an AnSBBR treating glycerin-based wastewater.

    PubMed

    Lovato, G; Moncayo Bravo, I S; Ratusznei, S M; Rodrigues, J A D; Zaiat, M

    2015-05-01

    An anaerobic sequencing batch biofilm reactor (AnSBBR) with recirculation of the liquid phase (at 30 °C with 3.5 L of working volume and treating 1.5 L per cycle) treating pure glycerin-based wastewater was applied to biohydrogen production. The applied volumetric organic load (AVOL) ranged from 7.7 to 17.1 kgCOD m(-3) d(-1), combining different influent concentrations (3000, 4000 and 5000 mgCOD L(-1)) and cycle lengths (4 and 3 h). The feed strategy used was to maintain the feeding time equal to half of the cycle time. The increase in the influent concentration and the decrease in cycle length improved the molar yield and molar productivity of hydrogen. The highest productivity (100.8 molH2 m(-3) d(-1)) and highest yield of hydrogen per load removed (20.0 molH2 kgCOD(-1)) were reached when the reactor operated with an AVOL of 17.1 kgCOD m(-3) d(-1), with 68% of H2 and only 3% of CH4 in its biogas. It was also found that pretreatment of the sludge/inoculum does not influence the productivity/yield of the process and the use of crude industrial glycerin-based wastewater in relation to the pure glycerol-based wastewater substantially decreased the production and composition of the hydrogen produced. PMID:25721980

  1. Load cell

    DOEpatents

    Spletzer, Barry L.

    2001-01-01

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs which can be combined to determine any one of the six general load components.

  2. Load cell

    DOEpatents

    Spletzer, B.L.

    1998-12-15

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components. 16 figs.

  3. Load cell

    DOEpatents

    Spletzer, Barry L.

    1998-01-01

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components.

  4. Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples.

    PubMed

    Madrakian, Tayyebeh; Afkhami, Abbas; Ahmadi, Mazaher

    2012-12-01

    Adsorption of seven different organic dyes from aqueous solutions onto magnetite nanoparticles loaded tea waste (MNLTW) was studied. MNLTW was prepared via a simple method and was fully characterized. The properties of this magnetic adsorbent were characterized by scanning electron microscopy and X-ray diffraction. Adsorption characteristics of the MNLTW adsorbent was examined using Janus green, methylene blue, thionine, crystal violet, Congo red, neutral red and reactive blue 19 as adsorbates. Dyes adsorption process was thoroughly studied from both kinetic and equilibrium points of view for all adsorbents. The experimental isotherm data were analyzed using Langmuir, Freundlich, Sips, Redlich-Peterson, Brouers-Sotolongo and Temkin isotherms. The results from Langmuir isotherm indicated that the capacity of MNLTW for the adsorption of cationic dyes was higher than that for anionic dyes. The adsorption kinetics was tested for the pseudo-first order and pseudo-second order kinetic models at different experimental conditions. PMID:23058993

  5. Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples

    NASA Astrophysics Data System (ADS)

    Madrakian, Tayyebeh; Afkhami, Abbas; Ahmadi, Mazaher

    2012-12-01

    Adsorption of seven different organic dyes from aqueous solutions onto magnetite nanoparticles loaded tea waste (MNLTW) was studied. MNLTW was prepared via a simple method and was fully characterized. The properties of this magnetic adsorbent were characterized by scanning electron microscopy and X-ray diffraction. Adsorption characteristics of the MNLTW adsorbent was examined using Janus green, methylene blue, thionine, crystal violet, Congo red, neutral red and reactive blue 19 as adsorbates. Dyes adsorption process was thoroughly studied from both kinetic and equilibrium points of view for all adsorbents. The experimental isotherm data were analyzed using Langmuir, Freundlich, Sips, Redlich-Peterson, Brouers-Sotolongo and Temkin isotherms. The results from Langmuir isotherm indicated that the capacity of MNLTW for the adsorption of cationic dyes was higher than that for anionic dyes. The adsorption kinetics was tested for the pseudo-first order and pseudo-second order kinetic models at different experimental conditions.

  6. Performance, 5-aminolevulinic acid (ALA) yield and microbial population dynamics in a photobioreactor system treating soybean wastewater: Effect of hydraulic retention time (HRT) and organic loading rate (OLR).

    PubMed

    Liu, Shuli; Zhang, Guangming; Zhang, Jie; Li, Xiangkun; Li, Jianzheng

    2016-06-01

    Effects of hydraulic retention time (HRT) and influent organic loading rate (OLR) were investigated in a photobioreactor containing PNSB (Rhodobacter sphaeroides)-chemoheterotrophic bacteria to treat soybean wastewater. Pollutants removal, biomass production and ALA yield in different phases were investigated in together with functional microbial population dynamics. The results showed that proper HRT and OLR increased the photobioreactor performance including pollutants removal, biomass and ALA productions. 89.5% COD, 90.6% TN and 91.2% TP removals were achieved as well as the highest biomass production of 2655mg/L and ALA yield of 7.40mg/g-biomass under the optimal HRT of 60h and OLR of 2.48g/L/d. In addition, HRT and OLR have important impacts on PNSB and total bacteria dynamics. PMID:26818577

  7. Dye-sensitized MIL-101 metal organic frameworks loaded with Ni/NiO{sub x} nanoparticles for efficient visible-light-driven hydrogen generation

    SciTech Connect

    Liu, Xin-Ling; Wang, Rong; Yuan, Yu-Peng E-mail: cxue@ntu.edu.sg; Zhang, Ming-Yi; Xue, Can E-mail: cxue@ntu.edu.sg

    2015-10-01

    The Ni/NiO{sub x} particles were in situ photodeposited on MIL-101 metal organic frameworks as catalysts for boosting H{sub 2} generation from Erythrosin B dye sensitization under visible-light irradiation. The highest H{sub 2} production rate of 125 μmol h{sup −1} was achieved from the system containing 5 wt. % Ni-loaded MIL-101 (20 mg) and 30 mg Erythrosin B dye. Moreover, the Ni/NiO{sub x} catalysts show excellent stability for long-term photocatalytic reaction. The enhancement on H{sub 2} generation is attributed to the efficient charge transfer from photoexcited dye to the Ni catalyst via MIL-101. Our results demonstrate that the economical Ni/NiO{sub x} particles are durable and active catalysts for photocatalytic H{sub 2} generation.

  8. ORGANIC CONTAMINANTS

    EPA Science Inventory

    Organic pollutants may constitute the most widespread waste loadings into the waters of Lake Superior. There are essentially three categories of organic contaminants. The first grouping consists of those organic compounds that readily degrade biologically or chemically. The secon...

  9. Effect of electron beam irradiation on bacterial and Ascaris ova loads and volatile organic compounds in municipal sewage sludge

    NASA Astrophysics Data System (ADS)

    Engohang-Ndong, Jean; Uribe, R. M.; Gregory, Roger; Gangoda, Mahinda; Nickelsen, Mike G.; Loar, Philip

    2015-07-01

    Wastewater treatment plants produce large amounts of biosolids that can be utilized for land applications. However, prior to their use, these biosolids must be treated to eliminate risks of infections and to reduce upsetting odors. In this study, microbiological and chemical analyzes were performed before and after treatment of sewage sludge with 3 MeV of an electron beam accelerator in a pilot processing plant. Thus, we determined that dose 4.5 kGy was required to reduce fecal coliform counts to safe levels for land applications of sludge while, 14.5 kGy was necessary to decrease Ascaris ova counts to safe levels. Furthermore, at low doses, electron beam irradiation showed little effect on the concentrations of volatile organic compounds, while some increase were recorded at high doses. The concentration of dimethyl sulfide was reduced by 50-70% at irradiation doses of 25.7 kGy and 30.7 kGy respectively. By contrast, electron beam irradiation increased dimethyl disulfide concentrations. We also showed that electron beam treatment was less energy-consuming with shorter processing times than conventional techniques used to decontaminate sludge. Hence opening new avenues for large urban agglomerations to save money and time when treating biosolids for land application.

  10. Organizations.

    ERIC Educational Resources Information Center

    Aviation/Space, 1980

    1980-01-01

    This is a list of aerospace organizations and other groups that provides educators with assistance and information in specific areas. Both government and nongovernment organizations are included. (Author/SA)

  11. Improved Monitoring of Semi-Continuous Anaerobic Digestion of Sugarcane Waste: Effects of Increasing Organic Loading Rate on Methanogenic Community Dynamics

    PubMed Central

    Leite, Athaydes Francisco; Janke, Leandro; Lv, Zuopeng; Harms, Hauke; Richnow, Hans-Hermann; Nikolausz, Marcell

    2015-01-01

    The anaerobic digestion of filter cake and its co-digestion with bagasse, and the effect of gradual increase of the organic loading rate (OLR) from start-up to overload were investigated. Understanding the influence of environmental and technical parameters on the development of particular methanogenic pathway in the biogas process was an important aim for the prediction and prevention of process failure. The rapid accumulation of volatile organic acids at high OLR of 3.0 to 4.0 gvs·L−1·day−1 indicated strong process inhibition. Methanogenic community dynamics of the reactors was monitored by stable isotope composition of biogas and molecular biological analysis. A potential shift toward the aceticlastic methanogenesis was observed along with the OLR increase under stable reactor operating conditions. Reactor overloading and process failure were indicated by the tendency to return to a predominance of hydrogenotrophic methanogenesis with rising abundances of the orders Methanobacteriales and Methanomicrobiales and drop of the genus Methanosarcina abundance. PMID:26404240

  12. Improved Monitoring of Semi-Continuous Anaerobic Digestion of Sugarcane Waste: Effects of Increasing Organic Loading Rate on Methanogenic Community Dynamics.

    PubMed

    Leite, Athaydes Francisco; Janke, Leandro; Lv, Zuopeng; Harms, Hauke; Richnow, Hans-Hermann; Nikolausz, Marcell

    2015-01-01

    The anaerobic digestion of filter cake and its co-digestion with bagasse, and the effect of gradual increase of the organic loading rate (OLR) from start-up to overload were investigated. Understanding the influence of environmental and technical parameters on the development of particular methanogenic pathway in the biogas process was an important aim for the prediction and prevention of process failure. The rapid accumulation of volatile organic acids at high OLR of 3.0 to 4.0 gvs·L⁻¹·day⁻¹ indicated strong process inhibition. Methanogenic community dynamics of the reactors was monitored by stable isotope composition of biogas and molecular biological analysis. A potential shift toward the aceticlastic methanogenesis was observed along with the OLR increase under stable reactor operating conditions. Reactor overloading and process failure were indicated by the tendency to return to a predominance of hydrogenotrophic methanogenesis with rising abundances of the orders Methanobacteriales and Methanomicrobiales and drop of the genus Methanosarcina abundance. PMID:26404240

  13. Processing and Performance of MOF (Metal Organic Framework)-Loaded PAN Nanofibrous Membrane for CO2 Adsorption

    NASA Astrophysics Data System (ADS)

    Wahiduzzaman; Khan, Mujibur R.; Harp, Spencer; Neumann, Jeffrey; Sultana, Quazi Nahida

    2016-04-01

    The objective of this experimental study is to produce a nanofibrous membrane functionalized with adsorbent particles called metal organic framework (MOF) in order to adsorb CO2 from a gas source. Therefore, Polyacrylonitrile (PAN) was chosen as the precursor for nanofibers and HKUST-1, a Cu-based MOF, was chosen as adsorbent. The experimental process consists of electrospinning PAN solution blended with HKUST-1 to produce a nanofibrous mat as working substrates. The fibers were collected in a cylindrical canister model. SEM image of this mat showed nanofibers with the presence of small adsorbent particles, impregnated into the as-spun fibers discretely. To increase the amount of MOF particles for effectual gas adsorption, a secondary solvothermal process of producing MOF particles on the fibers was required. This process consists of multiple growth cycles of HKUST-1 particles by using a sol-gel precursor. SEM images showed uniform distribution of porous MOF particles of 2-4 µm in size on the fiber surface. Energy dispersive spectroscopy report of the fiber confirmed the presence of MOF particles through the identification of characteristic Copper elemental peaks of HKUST-1. To determine the thermal stability of the fibrous membrane, Thermogravimetric analysis of HKUST-1 consisting of PAN fiber was performed where a total weight loss of 40% between 210 and 360 °C was observed, hence proving the high-temperature durability of the synthesized membrane. BET surface area of the fiber membrane was measured as 540.73 m2/g. The fiber membrane was then placed into an experimental test bench containing a mixed gas inflow of CO2 and N2. Using non-dispersive infrared CO2 sensors connected to the inlet and outlet port of the bench, significant reduction of CO2 in concentration was measured. Comparative IR spectroscopic analysis between the gas-treated and gas untreated fiber samples showed the presence of characteristic peak in the vicinity of 2300 and 2400 cm-1 which

  14. Bio-oil production and removal of organic load by microalga Scenedesmus sp. using culture medium contaminated with different sugars, cheese whey and whey permeate.

    PubMed

    Borges, Wesley da Silva; Araújo, Breno Severiano Alves; Moura, Lucas Gomes; Coutinho Filho, Ubirajara; de Resende, Miriam Maria; Cardoso, Vicelma Luiz

    2016-05-15

    The objective of this study was to evaluate the bio-oil production and the organic load removal using the microalga Scenedesmus sp. The cultivation was carried out in reactors with a total volume of 3 L and 0.7 vvm aeration, with illumination in photoperiods of 12 h light/12 h dark for 12 days. The following sugar concentrations were tested: 2.5, 5.0 and 10 g/L of glucose, lactose, fructose and galactose with 10% inoculum volume. After experiments were performed with cheese whey in natura and cheese whey permeate with different lactose concentrations (1.5, 2.5, 3.5 and 5.0 g/L). In these experiments the inoculum concentrations were 10, 15, 20 and 30% (v/v). The results showed that this microalga was effective for the production of lipids when it was cultivated in medium with cheese whey in natura with 2.5 g/L of lactose and 20% inoculum (v/v). Using cheese whey in natura at the concentration of 3.5 g/L of lactose and 30% (v/v) of inoculum obtained 77.9% of TOC removal and 38.447 mg of TOC removed/mg oil produced. It was also observed that when there is increased production of bio-oil, there is less removal of organic matter. The addition of glucose, fructose or galactose in the medium did not enhance the production of bio-oil by Scenedesmus sp. when compared to lactose, but increased the organic matter removal. PMID:26948140

  15. Nighttime Systolic Blood-Pressure Load Is Correlated with Target-Organ Damage Independent of Ambulatory Blood-Pressure Level in Patients with Non-Diabetic Chronic Kidney Disease

    PubMed Central

    Deng, Wenjie; Gong, Wenyu; Liu, Xun; Ye, Zengchun; Peng, Hui; Lou, Tanqi

    2015-01-01

    Background The impacts of blood pressure (BP) load on target-organ damage in patients with chronic kidney disease (CKD) are largely unclear. We examined whether BP load is correlated with target-organ damage (TOD) in Chinese CKD patients independent of BP level. Methods We recruited 1219 CKD patients admitted to our hospital division in this cross-sectional study. The TOD were measured by estimated glomerular filtration rate (eGFR), proteinuria, left ventricular mass index (LVMI) and carotid intima-media thickness (cIMT) in this study. Univariate and multivariate linear analyses were used to evaluate the relationship between systolic blood pressure (SBP) load, diastolic blood pressure (DBP) load and these renal, cardiovascular parameters. Results In multivariable-adjusted models, BP load and ambulatory BP levels both independently correlated with LVMI, eGFR and proteinuria in all groups of CKD patients (p<0.05), 24-h SBP correlated with cIMT only in non-diabetic CKD patients without hypertension (p<0.05), while nighttime SBP load was associated with cIMT only in non-diabetic CKD patients (p<0.05). Furthermore, nighttime SBP load additionally increased coefficient of determination (R2) and correlated with LVMI, proteinuria in non-diabetic CKD patients without hypertension (R2 = 0.034, P<0.001 and R2 = 0.012, P = 0.006 respectively) and LVMI, cIMT, eGFR in non-diabetic CKD patients with hypertension (R2>0.008, P<0.05) in multivariable-adjusted model which already including the 24-h BP. BP load did not refine this correlation based on the 24-h BP level in diabetic CKD patients. Conclusion Night-time SBP load was correlated with TOD in patients with non-diabetic chronic kidney disease independent of BP level. PMID:26186336

  16. Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate

    SciTech Connect

    Liu Xiao; Wang Wei; Shi Yunchun; Zheng Lei; Gao Xingbao; Qiao Wei; Zhou Yingjun

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. Black-Right-Pointing-Pointer System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m{sup 3} d){sup -1} were analyzed. Black-Right-Pointing-Pointer A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and HRT of 15d. Black-Right-Pointing-Pointer With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. Black-Right-Pointing-Pointer The changing of biogas production rate can be a practical approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2-8.0 kg volatile solid (VS) (m{sup 3} d){sup -1}, with VS reduction rates of 61.7-69.9%, and volumetric biogas production of 0.89-5.28 m{sup 3} (m{sup 3} d){sup -1}. A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m{sup 3} d){sup -1}. This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.

  17. Organizers.

    ERIC Educational Resources Information Center

    Callison, Daniel

    2000-01-01

    Focuses on "organizers," tools or techniques that provide identification and classification along with possible relationships or connections among ideas, concepts, and issues. Discusses David Ausubel's research and ideas concerning advance organizers; the implications of Ausubel's theory to curriculum and teaching; "webbing," a specific…

  18. Organics.

    ERIC Educational Resources Information Center

    Chian, Edward S. K.; DeWalle, Foppe B.

    1978-01-01

    Presents water analysis literature for 1978. This review is concerned with organics, and it covers: (1) detergents and surfactants; (2) aliphatic and aromatic hydrocarbons; (3) pesticides and chlorinated hydrocarbons; and (4) naturally occurring organics. A list of 208 references is also presented. (HM)

  19. Prediction of diffuse organic micropollutant loads in streams under changing climatic, socio-economic and technical boundary conditions with an integrated transport model

    NASA Astrophysics Data System (ADS)

    Honti, Mark; Schuwirth, Nele; Rieckermann, Jörg; Ghielmetti, Nico; Stamm, Christian

    2014-05-01

    Catchments are complex systems where water quantity, quality and the ecological services provided are determined by interacting physical, chemical, biological, economical and social factors. The realization of these interactions led to the prevailing catchment management paradigm: Integrated Water Resources Management (IWRM). IWRM requires considering all these aspects during the design of sustainable resource utilization. Due to the complexity of this task, mathematical modeling plays a key role in IWRM, namely in the evaluation of the impacts of hypothetical scenarios and management measures. Toxicity is a key determinant of the ecological state and as such a focal point in IWRM, but we still have significant knowledge gaps about the diffuse loads of organic micropollutants (OMP) that leak from both urban and agricultural areas. Most European catchments possess mixed land use, containing rural (natural and agricultural) landscapes and settlements in varying proportions. Thus, a catchment model supporting IWRM must be able to cope with both classes. However, the majority of existing catchment models is dedicated to either rural or urban areas, while the minority capable of simulating both contain overly simplified descriptions for either land use category. We applied a conceptual model that describes all major land use classes for assessing the impacts of climate change, socio-economic development and management alternatives on diffuse OMP loads. We simulated the loads of 12 compounds (agricultural and urban pesticides and urban biocides) with daily resolution at 11 locations in the stream network of a small catchment (46 km2) in Switzerland. The model considers all important diffuse transport pathways separately, but each with a simple empirical process rate. Consequently, some site-specific observations were required to calibrate rate parameters. We assessed uncertainty during both calibration and prediction phases. Predictions indicated that future OMP loads

  20. Optimization of linear alkylbenzene sulfonate (LAS) degradation in UASB reactors by varying bioavailability of LAS, hydraulic retention time and specific organic load rate.

    PubMed

    Okada, Dagoberto Y; Delforno, Tiago P; Esteves, Andressa S; Sakamoto, Isabel K; Duarte, Iolanda C S; Varesche, Maria B A

    2013-01-01

    Degradation of linear alkylbenzene sulfonate (LAS) in UASB reactors was optimized by varying the bioavailability of LAS based on the concentration of biomass in the system (1.3-16 g TS/L), the hydraulic retention time (HRT), which was operated at 6, 35 or 80 h, and the concentration of co-substrates as specific organic loading rates (SOLR) ranging from 0.03-0.18 g COD/g TVS.d. The highest degradation rate of LAS (76%) was related to the lowest SOLR (0.03 g COD/g TVS.d). Variation of the HRT between 6 and 80 h resulted in degradation rates of LAS ranging from 18% to 55%. Variation in the bioavailability of LAS resulted in discrete changes in the degradation rates (ranging from 37-53%). According to the DGGE profiles, the archaeal communities exhibited greater changes than the bacterial communities, especially in biomass samples that were obtained from the phase separator. The parameters that exhibited more influence on LAS degradation were the SOLR followed by the HRT. PMID:23196232

  1. Influence of organic loading rate on the anaerobic treatment of sugarcane vinasse and biogás production in fluidized bed reactor.

    PubMed

    Siqueira, Laura M; Damiano, Elisabeth S G; Silva, Edson L

    2013-01-01

    This study evaluated an anaerobic fluidized bed reactor (AFBR) that contained polystyrene particles as a support material for the treatment of vinasse that resulted from the alcoholic fermentation of sugarcane molasses. The AFBR was inoculated with sludge from an upflow anaerobic sludge blanket reactor that treated poultry slaughterhouse wastewater. The AFBR was operated with a hydraulic retention time of 24 h at a temperature of 30°C with influent vinasse concentrations that ranged from 2273 to 20,073 mg COD L(-1). The reactor was subjected to increased organic loading rates (OLR) that ranged from 3.33 to 26.19 kg COD m(-3) d(-1), with COD removal efficiencies that ranged from 51% to 70% and maximum removal at an OLR of 13.93 ± 2.18 kg COD m(-3) d(-1). The maximum biogas productivity was 5.37 m(3) CH4 m(-3) d(-1) for an OLR of 25.32 kg COD m(-3) d(-1) (average removal of 51%).. PMID:23947710

  2. Comparison of glacial and non-glacial-fed streams to evaluate the loading of persistent organic pollutants through seasonal snow/ice melt.

    PubMed

    Bizzotto, E C; Villa, S; Vaj, C; Vighi, M

    2009-02-01

    The release of persistent organic pollutants (PCBs, HCB, HCHs and DDTs) accumulated in Alpine glaciers, was studied during spring-summer 2006 on the Frodolfo glacial-fed stream (Italian Alps). Samples were also taken on a non-glacial stream in the same valley, to compare POP contribution from different water sources (glacier ice, recent snow and spring). In late spring and early summer (May, June) recent snow melting is the most important process. POP contamination is more affected by local emissions and transport, and comparable levels have been measured in both streams for all studied compounds. In late summer and autumn (July-October), the contribution of ice melting strongly increases. In the glacial-fed stream the concentration of chlorinated pesticides (HCHs and DDTs) is about one order of magnitude higher than in the non-glacial-fed. A different behaviour was observed for PCBs, characterised by a peak in June showing, in both streams, concentrations three orders of magnitude higher than the background levels measured in May and in October. This result should be attributed to local emissions rather than long range atmospheric transport (LRAT). This hypothesis is supported by the PCB congener profile in June strictly comparable to the most commonly used Aroclor technical mixtures. The different seasonal behaviour observed for the different groups of chemicals indicates the POP loading in glacial streams is a combined role of long range atmospheric transport and local emission. PMID:19054540

  3. Effect of organic load and nutrient ratio on the operation stability of the moving bed bioreactor for kraft mill wastewater treatment and the incidence of polyhydroxyalkanoate biosynthesis.

    PubMed

    Pozo, G; Villamar, C A; Martínez, M; Vidal, G

    2012-01-01

    This paper studies the effect of organic load rate (OLR) and nutrient ratio on operation stability of the moving bed bioreactor (MBBR) for kraft mill wastewater treatment, analyzing the incidence of polyhydroxyalkanoate (PHA) production. The MBBR operating strategy was to increase OLR from 0.25 ± 0.05 to 2.41 ± 0.19 kg COD m(-3) d(-1) between phases I and IV. The BOD(5):N:P ratio (100:5:1 and 100:1:0.2) was evaluated as an operation strategy for phases IV to V. A stable MBBR operation was found when the OLR was increased during 225 days in five phases. The maximum absolute fluorescence against the proportion of cells accumulating PHA was obtained for an OLR of 2.41 ± 0.19 kg COD m(-3)d(-1) and a BOD(5):N:P relationship of 100:1:0.2. The increase of PHA biosynthesis is due to the increased OLR and is not attributable to the increased cell concentration, which is maintained constant in stationary status during bioreactor biosynthesis. PMID:22699342

  4. Optimisation of digester performance with increasing organic loading rate for mono- and co-digestion of grass silage and dairy slurry.

    PubMed

    Wall, David M; Allen, Eoin; Straccialini, Barbara; O'Kiely, Padraig; Murphy, Jerry D

    2014-12-01

    This study investigated the feasibility of mono-digesting grass silage, dairy slurry and the co-digestion of the two substrates at a range of concentrations with a specific focus on digester performance while increasing organic loading rate (OLR). The results show that the higher the proportion of grass silage in the substrate mix the higher the specific methane yield (SMY) achieved. Optimum conditions were assessed for 100% grass silage at an OLR of 3.5 kg VS m(-3) d(-1) generating a SMY of 398 L CH4 kg(-1) VS equating to a biomethane efficiency of 1.0. For co-digestion of grass silage with 20% dairy slurry the optimum condition was noted at an OLR of 4.0 kg VS m(-3) d(-1) generating a SMY of 349L CH4 kg(-1) VS and a biomethane efficiency of 1.01. Hydraulic retention times of less than 20 days proved to be a limiting factor in the operation of farm digesters. PMID:25444886

  5. The application of an innovative continuous multiple tube reactor as a strategy to control the specific organic loading rate for biohydrogen production by dark fermentation.

    PubMed

    Gomes, Simone D; Fuess, Lucas T; Penteado, Eduardo D; Lucas, Shaiane D M; Gotardo, Jackeline T; Zaiat, Marcelo

    2015-12-01

    Biohydrogen production in fixed-bed reactors often leads to unstable and decreasing patterns because the excessive accumulation of biomass in the bed negatively affects the specific organic loading rate (SOLR) applied to the reactor. In this context, an innovative reactor configuration, i.e., the continuous multiple tube reactor (CMTR), was assessed in an attempt to better control the SOLR for biohydrogen production. The CMTR provides a continuous discharge of biomass, preventing the accumulation of solids in the long-term. Sucrose was used as the carbon source and mesophilic temperature conditions (25°C) were applied in three continuous assays. The reactor showed better performance when support material was placed in the outlet chamber to enhance biomass retention within the reactor. Although the SOLR could not be effectively controlled, reaching values usually higher than 10gsucroseg(-1)VSSd(-1), the volumetric hydrogen production and molar hydrogen production rates peaked, respectively, at 1470mLH2L(-1)d(-1) and 45mmolH2d(-1), indicating that the CMTR was a suitable configuration for biohydrogen production. PMID:26340028

  6. Effect of the organic loading rate on the production of polyhydroxyalkanoates in a multi-stage process aimed at the valorization of olive oil mill wastewater.

    PubMed

    Campanari, Sabrina; e Silva, Francisca A; Bertin, Lorenzo; Villano, Marianna; Majone, Mauro

    2014-11-01

    Mixed microbial culture polyhydroxyalkanoates (PHA) production has been investigated by using olive oil mill wastewater (OMW) as no-cost feedstock in a multi-stage process, also involving phenols removal and recovery. The selection of PHA-storing microorganisms occurred in a sequencing batch reactor (SBR), fed with dephenolized and fermented OMW and operated at different organic loading rates (OLR), ranging from 2.40 to 8.40gCOD/Ld. The optimal operating condition was observed at an OLR of 4.70gCOD/Ld, which showed the highest values of storage rate and yield (339±48mgCOD/gCODh and 0.56±0.05 COD/COD, respectively). The OLR applied to the SBR largely affected the performance of the PHA-accumulating reactor, which was fed through multiple pulsed additions of pretreated OMW. From an overall mass balance, involving all the stages of the process, an abatement of about 85% of the OMW initial COD (chemical oxygen demand) was estimated whereas the conversion of the influent COD into PHA was about 10% (or 22% by taking into account only the COD contained in the pretreated OMW, which is directly fed to the PHA production stages). Overall, polymer volumetric productivity (calculated from the combination of both the SBR and the accumulation reactor) accounted for 1.50gPHA/Ld. PMID:24950311

  7. Suspended Load

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The suspended load of rivers and streams consists of the sediments that are kept in the water column by the upward components of the flow velocity. Suspended load may be divided into cohesive and non-cohesive loads which are primarily discriminated by sediment particle size. Non-cohesive sediment ...

  8. Influence of the organic loading rate on the performance and the granular sludge characteristics of an EGSB reactor used for treating traditional Chinese medicine wastewater.

    PubMed

    Li, Weiguang; Su, Chengyuan; Liu, Xingzhe; Zhang, Lei

    2014-01-01

    The effects of the organic loading rate (OLR) on the performance and the granular sludge characteristics of an expanded granular sludge bed (EGSB) reactor used for treating real traditional Chinese medicine (TCM) wastewater were investigated. Over 90% of the COD removal by the EGSB reactor was observed at the OLRs of 4 to 13 kg COD/(m(3) day). However, increasing the OLR to 20 kg COD/(m(3) day) by reducing the hydraulic retention time (HRT 6 h) reduced the COD removal efficiency to 78%. The volatile fatty acid (VFA) concentration was 512.22 mg/L, resulting in an accumulation of VFAs, and propionic acid was the main acidification product, accounting for 66.51% of the total VFAs. When the OLR increased from 10 to 20 kg COD/(m(3) day), the average size of the granule sludge decreased from 469 to 258 μm. There was an obvious reduction in the concentration of Ca(2+) and Mg(2+) in the granular sludge. The visible humic acid-like peak was identified in the three-dimensional excitation-emission matrix (EEM) fluorescence spectra of the soluble microbial products (SMPs). The fatty acid bond, amide II bond, amide III bond, and C-H bond bending were also observed in the Fourier transform infrared (FTIR) spectra of the SMPs. Methanobacterium formicicum, Methanococcus, and Bacteria populations exhibited significant shifts, and these changes were accompanied by an increase in VFA production. The results indicated that a short HRT and high OLR in the EGSB reactor caused the accumulation of polysaccharides, protein, and VFAs, thereby inhibiting the activity of methanogenic bacteria and causing granular sludge corruption. PMID:24677060

  9. The effect of iron loading and iron chelation on the innate immune response and subclinical organ injury during human endotoxemia: a randomized trial.

    PubMed

    van Eijk, Lucas T; Heemskerk, Suzanne; van der Pluijm, Rob W; van Wijk, Susanne M; Peters, Wilbert H M; van der Hoeven, Johannes G; Kox, Matthijs; Swinkels, Dorine W; Pickkers, Peter

    2014-03-01

    In this double-blind randomized placebo-controlled trial involving 30 healthy male volunteers we investigated the acute effects of iron loading (single dose of 1.25 mg/kg iron sucrose) and iron chelation therapy (single dose of 30 mg/kg deferasirox) on iron parameters, oxidative stress, the innate immune response, and subclinical organ injury during experimental human endotoxemia. The administration of iron sucrose induced a profound increase in plasma malondialdehyde 1 h after administration (433±37% of baseline; P<0.0001), but did not potentiate the endotoxemia-induced increase in malondialdehyde, as was seen 3 h after endotoxin administration in the placebo group (P=0.34) and the iron chelation group (P=0.008). Endotoxemia resulted in an initial increase in serum iron levels and transferrin saturation that was accompanied by an increase in labile plasma iron, especially when transferrin saturation reached levels above 90%. Thereafter, serum iron decreased to 51.6±9.7% of baseline at T=8 h in the placebo group versus 84±15% and 60.4±8.9% of baseline at 24 h in the groups treated with iron sucrose and deferasirox, respectively. No significant differences in the endotoxemia-induced cytokine response (TNF-α, IL-6, IL-10 and IL-1RA), subclinical vascular injury and kidney injury were observed between groups. However, vascular reactivity to noradrenalin was impaired in the 6 subjects in whom labile plasma iron was elevated during endotoxemia as opposed to those in whom no labile plasma iron was detected (P=0.029). In conclusion, a single dose of iron sucrose does not affect the innate immune response in a model of experimental human endotoxemia, but may impair vascular reactivity when labile plasma iron is formed. (Clinicaltrials.gov identifier:01349699). PMID:24241495

  10. Quantifying Water Flow within Aquatic Ecosystems Using Load Cell Sensors: A Profile of Currents Experienced by Coral Reef Organisms around Lizard Island, Great Barrier Reef, Australia

    PubMed Central

    Johansen, Jacob L.

    2014-01-01

    Current velocity in aquatic environments has major implications for the diversity, abundance and ecology of aquatic organisms, but quantifying these currents has proven difficult. This study utilises a simple and inexpensive instrument (<$150) to provide a detailed current velocity profile of the coral-reef system around Lizard Island (Great Barrier Reef, Australia) at a spatial and temporal scale relevant to the ecology of individual benthos and fish. The instrument uses load-cell sensors to provide a correlation between sensor output and ambient current velocity of 99%. Each instrument is able to continuously record current velocities to >500 cms−1 and wave frequency to >100 Hz over several weeks. Sensor data are registered and processed at 16 MHz and 10 bit resolution, with a measuring precision of 0.06±0.04%, and accuracy of 0.51±0.65% (mean ±S.D.). Each instrument is also pressure rated to 120 m and shear stresses ≤20 kNm−2 allowing deployment in harsh environments. The instrument was deployed across 27 coral reef sites covering the crest (3 m), mid-slope (6 m) and deep-slope (9 m depth) of habitats directly exposed, oblique or sheltered from prevailing winds. Measurements demonstrate that currents over the reef slope and crest varies immensely depending on depth and exposure: Currents differ up to 9-fold within habitats only separated by 3 m depth and 15-fold between exposed, oblique and sheltered habitats. Comparisons to ambient weather conditions reveal that currents around Lizard Island are largely wind driven. Zero to 22.5 knot winds correspond directly to currents of 0 to >82 cms−1, while tidal currents rarely exceed 5.5 cms−1. Rather, current velocity increases exponentially as a function of wave height (0 to 1.6 m) and frequency (0.54 to 0.20 Hz), emphasizing the enormous effect of wind and waves on organisms in these shallow coral reef habitats. PMID:24421878

  11. A two-year database of BC measurements at the biggest European crude oil pre-treatment plant: a comparison with organic gaseous compounds and PM10 loading

    NASA Astrophysics Data System (ADS)

    Calvello, Mariarosaria; Esposito, Francesco; Lorusso, Marina; Pavese, Giulia

    2015-10-01

    A two-year data-set of black carbon (BC) measurements collected in a site in South Italy close to the biggest European pre-treatment plant (COVA) of crude oil has been studied. The area named Val d'Agri, in Basilicata Region, is also crossed by the main road SS598. Data have been collected by using a 7 wavelength aethalometer allowing the measurement of equivalent black carbon (EBC) content, the estimation of Ångström absorption exponent (AAE), and the detection of organic fraction presence through UVPM (UV-absorbing particulate matter) quantity. Data have been analyzed to distinguish seasonal behaviors and characteristics of carbonaceous aerosols. No evident seasonal patterns have been observed for EBC concentrations with a mean value of 643 ± 415 ng/m3 and a large short-term variability, with frequent periods (few days or few weeks) of intense emissions associated to COVA activities. EBC averaged daily trends show two main peaks, one in the morning and one in the evening suggesting a contribution of traffic as a background source of BC on a long-term basis, due to the SS598 passing near the measurement site. On a four month period in 2013, a comparison with co-located PM10 concentrations data has been carried out showing a relevant contribution of EBC to the total particle loading at the site. Unlike EBC, AAE shows higher values (maximum value 1.3 ± 0.3) during cold periods and lower values (minimum value 0.9 ± 0.2) in the warmer seasons. Anti-correlation has been observed when comparing AAE with both solar radiation and temperature. In addition, enhanced values during night time for AAE average daily patterns have been observed despite the seasons, suggesting relevant additional sources of organic carbon other than traffic related to COVA emissions during the year. Moreover a good agreement, on a short-term basis, has been found among UVPM, benzene, toluene.

  12. Responses of stream nitrate and dissolved organic carbon loadings to hydrological forcing and climate change in an upland forest of the northeast USA

    USGS Publications Warehouse

    Sebestyen, Stephen D.; Boyer, Elizabeth W.; Shanley, James B.

    2009-01-01

    [1] In coming decades, higher annual temperatures, increased growing season length, and increased dormant season precipitation are expected across the northeastern United States in response to anthropogenic forcing of global climate. We synthesized long-term stream hydrochemical data from the Sleepers River Research Watershed in Vermont, United States, to explore the relationship of catchment wetness to stream nitrate and DOC loadings. We modeled changes in growing season length and precipitation patterns to simulate future climate scenarios and to assess how stream nutrient loadings respond to climate change. Model results for the 2070–2099 time period suggest that stream nutrient loadings during both the dormant and growing seasons will respond to climate change. During a warmer climate, growing season stream fluxes (runoff +20%, nitrate +57%, and DOC +58%) increase as more precipitation (+28%) and quick flow (+39%) occur during a longer growing season (+43 days). During the dormant season, stream water and nutrient loadings decrease. Net annual stream runoff (+8%) and DOC loading (+9%) increases are commensurate with the magnitude of the average increase of net annual precipitation (+7%). Net annual stream water and DOC loadings are primarily affected by increased dormant season precipitation. In contrast, decreased annual loading of stream nitrate (−2%) reflects a larger effect of growing season controls on stream nitrate and the effects of lengthened growing seasons in a warmer climate. Our findings suggest that leaching of nitrate and DOC from catchment soils will be affected by anthropogenic climate forcing, thereby affecting the timing and magnitude of annual stream loadings in the northeastern United States.

  13. Extremely fast increase in the organic loading rate during the co-digestion of rapeseed oil and sewage sludge in a CSTR--characterization of granules formed due to CaO addition to maintain process stability.

    PubMed

    Kasina, M; Kleyböcker, A; Michalik, M; Würdemann, H

    2015-01-01

    In a co-digestion system running with rapeseed oil and sewage sludge, an extremely fast increase in the organic loading rate was studied to develop a procedure to allow for flexible and demand-driven energy production. The over-acidification of the digestate was successfully prevented by calcium oxide dosage, which resulted in granule formation. Mineralogical analyses revealed that the granules were composed of insoluble salts of long chain fatty acids and calcium and had a porous structure. Long chain fatty acids and calcium formed the outer cover of granules and offered interfaces on the inside thereby enhancing the growth of biofilms. With granule size and age, the pore size increased and indicated degradation of granular interfaces. A stable biogas production up to the organic loading rate of 10.4 kg volatile solids m(-3) d(-1) was achieved although the hydrogen concentration was not favorable for propionic acid degradation. However, at higher organic loading rates, unbalanced granule formation and degradation were observed. Obviously, the adaption time for biofilm growth was too short to maintain the balance, thereby resulting in a low methane yield. PMID:26524448

  14. Nutrient, organic carbon, and chloride concentrations and loads in selected Long Island Sound tributaries—Four decades of change following the passage of the Federal Clean Water Act

    USGS Publications Warehouse

    Mullaney, John R.

    2016-01-01

    Loads of dissolved silica (DSi; flow-normalized and non-flow-normalized) increased slightly at most stations during the study period and were positively correlated to urbanized land in the basin and negatively correlated to area of open water. Concentrations and loads of chloride increased at 12 of the 14 sites during both periods. Increases likely are the result of an increase in the use of salt for deicing, as well as other factors related to urbanization and population growth, such as increases in wastewater discharge and discharge from septic systems.

  15. Cognitive Load and Learning Effects of Having Students Organize Pictures and Words in Multimedia Environments: The Role of Student Interactivity and Feedback

    ERIC Educational Resources Information Center

    Moreno, Roxana; Valdez, Alfred

    2005-01-01

    The cognitive load and learning effects of dual-code and interactivity--two multimedia methods intended to promote meaningful learning--were examined. In Experiment 1, college students learned about the causal chain of events leading to the process of lightning formation with a set of words and corresponding pictures (Group WP), pictures (Group…

  16. LOADING DEVICE

    DOEpatents

    Ohlinger, L.A.

    1958-10-01

    A device is presented for loading or charging bodies of fissionable material into a reactor. This device consists of a car, mounted on tracks, into which the fissionable materials may be placed at a remote area, transported to the reactor, and inserted without danger to the operating personnel. The car has mounted on it a heavily shielded magazine for holding a number of the radioactive bodies. The magazine is of a U-shaped configuration and is inclined to the horizontal plane, with a cap covering the elevated open end, and a remotely operated plunger at the lower, closed end. After the fissionable bodies are loaded in the magazine and transported to the reactor, the plunger inserts the body at the lower end of the magazine into the reactor, then is withdrawn, thereby allowing gravity to roll the remaining bodies into position for successive loading in a similar manner.

  17. Alaska Village Electric Load Calculator

    SciTech Connect

    Devine, M.; Baring-Gould, E. I.

    2004-10-01

    As part of designing a village electric power system, the present and future electric loads must be defined, including both seasonal and daily usage patterns. However, in many cases, detailed electric load information is not readily available. NREL developed the Alaska Village Electric Load Calculator to help estimate the electricity requirements in a village given basic information about the types of facilities located within the community. The purpose of this report is to explain how the load calculator was developed and to provide instructions on its use so that organizations can then use this model to calculate expected electrical energy usage.

  18. Carbohydrate Loading.

    ERIC Educational Resources Information Center

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  19. Air quality and organic compounds in aerosols from a coastal rural area in the Western Iberian Peninsula over a year long period: Characterisation, loads and seasonal trends

    NASA Astrophysics Data System (ADS)

    Oliveira, Tiago; Pio, Casimiro; Alves, Célia; Silvestre, Armando; Evtyugina, Margarita; Afonso, Joana; Caseiro, Alexandre; Legrand, Michel

    Ambient samples of fine organic aerosol collected from a rural area (Moitinhos) in the vicinity of the small coastal Portuguese city of Aveiro over a period of more than one year have been solvent-extracted and quantitatively characterised by gas chromatography-mass spectrometry. Particles were also analysed with a thermal-optical technique in order to determine their elemental and organic carbon content. In addition, meteorological sensors and real-time black carbon, ozone and carbon monoxide monitors were used. Particulate matter values were higher than background levels in continental Europe. A patent seasonal variation for organic and elemental carbon concentrations was observed, presumably related to stronger local primary emissions and to limited vertical dispersion. The higher levels were most likely a result of residential wood burning, since black carbon and carbon monoxide maximised during late evening hours in wintertime. Of the bulk of elutable organics, more than a half, on average, was present as acidic fraction. Alcohols, aliphatic and polyaromatic hydrocarbons represented together, more than 30% of the elutable mass, also showing a marked seasonal pattern with a minimum in summer and a maximum in winter. The winter increase was more evident for resinic acids, phytosterols, n-alkanoic acids and polycyclic aromatic hydrocarbons.

  20. Loading and conjugating cavity biostructures

    DOEpatents

    Hainfeld, J.F.

    1995-08-22

    Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure`s contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host`s species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes. 11 figs.

  1. Loading and conjugating cavity biostructures

    DOEpatents

    Hainfeld, James F.

    1997-11-25

    Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure's contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host's species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes.

  2. Loading and conjugating cavity biostructures

    DOEpatents

    Hainfeld, James F.

    1995-08-22

    Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure's contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host's species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes.

  3. Loading and conjugating cavity biostructures

    DOEpatents

    Hainfeld, J.F.

    1997-11-25

    Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure`s contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host`s species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes. 11 figs.

  4. Ultrasonic enhancement of the simultaneous removal of quaternary toxic organic dyes by CuO nanoparticles loaded on activated carbon: Central composite design, kinetic and isotherm study.

    PubMed

    Dashamiri, Somayeh; Ghaedi, Mehrorang; Dashtian, Kheibar; Rahimi, Mahmood Reza; Goudarzi, Alireza; Jannesar, Ramin

    2016-07-01

    Copper oxide nanoparticles loaded on activated carbon (CuO-NPs-AC) were prepared and fully analyzed and characterized with FE-SEM, XRD and FT-IR. Subsequently, this novel material was used for simultaneous ultrasound-assisted adsorption of brilliant green (BG), auramine O (AO), methylene blue (MB) and eosin yellow (EY) dyes. Problems regard to dyes spectra overlap in quaternary solution of this dyes were omitted by derivative spectrophotometric method. The best pH in quaternary system was studied by using one at a time method to achieved maximum dyes removal percentage. Subsequently, sonication time, adsorbent dosage and initial dyes concentrations influence on dyes removal was optimized by central composite design (CCD) combined with desirability function approach (DFA). Desirability score of 0.978 show optimum conditions set at sonication time (4.2 min), adsorbent mass (0.029 g), initial dyes concentration (4.5 mg L(-1)). Under this optimum condition the removal percentage for MB, AO, EY and BG dyes 97.58, 94.66, 96.22 and 94.93, respectively. The adsorption rate well fitted by pseudo second-order while adsorption capacity according to the Langmuir model as best equilibrium isotherm model for BG, MB, AO and EY was 20.48, 21.26, 22.34 and 21.29 mg g(-1), respectively. PMID:26964982

  5. Evaluation of soil sustainability along the Rio Grande in West Texas: changes in salt loading and organic nutrients due to farming practices

    NASA Astrophysics Data System (ADS)

    Cox, C. L.; Ganjegunte, G.; Borrok, D. M.; Lougheed, V.; Ma, L.; Jin, L.

    2011-12-01

    thus have higher salt loading, and that Cotton has a higher clay content. The EC values continuously increase from irrigation water to soil waters, suggesting that as water travels through the soil profile it increases in salinity. Consistent with this observation, cation concentrations in soil waters increased with depth. Therefore, the salts within the soils are mobilized during irrigation. 5TE sensors at all three depths in the field showed spikes in EC, and soil moisture during each period of flood irrigation. Data also suggests a lower bulk EC between irrigation periods which might result from a lower soil moisture content which doesn't solublize the salts. The carbonate- and gypsum- rich soils and surface water in the Rio Grande Basin change with intensity and amount of irrigation, addition of fertilizers, and other agricultural practices. Results from this project contribute to our understanding of salt loading and nutrient cycling in the vulnerable area of the Rio Grande Valley in West Texas.

  6. From greening to browning: Catchment vegetation development and reduced S-deposition promote organic carbon load on decadal time scales in Nordic lakes.

    PubMed

    Finstad, Anders G; Andersen, Tom; Larsen, Søren; Tominaga, Koji; Blumentrath, Stefan; de Wit, Heleen A; Tømmervik, Hans; Hessen, Dag Olav

    2016-01-01

    Increased concentrations of dissolved organic carbon (DOC), often labelled "browning", is a current trend in northern, particularly boreal, freshwaters. The browning has been attributed to the recent reduction in sulphate (S) deposition during the last 2 to 3 decades. Over the last century, climate and land use change have also caused an increasing trend in vegetation cover ("greening"), and this terrestrially fixed carbon represents another potential source for export of organic carbon to lakes and rivers. The impact of this greening on the observed browning of lakes and rivers on decadal time scales remains poorly investigated, however. Here, we explore time-series both on water chemistry and catchment vegetation cover (using NDVI as proxy) from 70 Norwegian lakes and catchments over a 30-year period. We show that the increase in terrestrial vegetation as well as temperature and runoff significantly adds to the reduced SO4-deposition as a driver of freshwater DOC concentration. Over extended periods (centuries), climate mediated changes in vegetation cover may cause major browning of northern surface waters, with severe impact on ecosystem productivity and functioning. PMID:27554453

  7. From greening to browning: Catchment vegetation development and reduced S-deposition promote organic carbon load on decadal time scales in Nordic lakes

    PubMed Central

    Finstad, Anders G.; Andersen, Tom; Larsen, Søren; Tominaga, Koji; Blumentrath, Stefan; de Wit, Heleen A.; Tømmervik, Hans; Hessen, Dag Olav

    2016-01-01

    Increased concentrations of dissolved organic carbon (DOC), often labelled “browning”, is a current trend in northern, particularly boreal, freshwaters. The browning has been attributed to the recent reduction in sulphate (S) deposition during the last 2 to 3 decades. Over the last century, climate and land use change have also caused an increasing trend in vegetation cover (“greening”), and this terrestrially fixed carbon represents another potential source for export of organic carbon to lakes and rivers. The impact of this greening on the observed browning of lakes and rivers on decadal time scales remains poorly investigated, however. Here, we explore time-series both on water chemistry and catchment vegetation cover (using NDVI as proxy) from 70 Norwegian lakes and catchments over a 30-year period. We show that the increase in terrestrial vegetation as well as temperature and runoff significantly adds to the reduced SO4-deposition as a driver of freshwater DOC concentration. Over extended periods (centuries), climate mediated changes in vegetation cover may cause major browning of northern surface waters, with severe impact on ecosystem productivity and functioning. PMID:27554453

  8. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: Regional significance and global relevance

    NASA Astrophysics Data System (ADS)

    Tao, Shuqin; Eglinton, Timothy I.; Montluçon, Daniel B.; McIntyre, Cameron; Zhao, Meixun

    2015-03-01

    Large rivers connect the continents and the oceans, and corresponding material fluxes have a global impact on marine biogeochemistry. The Yellow River transports vast quantities of suspended sediments to the ocean, yet the nature of the particulate organic carbon (POC) carried by this system is not well known. The focus of this study is to characterize the sources, composition and age of suspended POC collected near the terminus of this river system, focusing on the abundance and carbon isotopic composition (13C and 14C) of specific biomarkers. The concentrations of vascular plant wax lipids (long-chain (≥C24) n-alkanes, n-fatty acids) and POC co-varied with total suspended solid (TSS) concentrations, indicating that both were controlled by the overall terrestrial sediment flux. POC exhibited relatively uniform δ13C values (-23.8 to -24.2‰), and old radiocarbon ages (4000-4640 yr). However, different biomarkers exhibited a wide range of 14C ages. Short-chain (C16, C18) fatty acid 14C ages were variable but generally the youngest organic components (from 502 yr to modern), suggesting they reflect recently biosynthesized material. Lignin phenol 14C ages were also variable and relatively young (1070 yr to modern), suggesting rapid export of carbon from terrestrial primary production. In contrast, long-chain plant wax lipids display relatively uniform and significantly older 14C ages (1500-1800 yr), likely reflecting inputs of pre-aged, mineral-associated soil OC from the Yellow River drainage basin. Even-carbon-numbered n-alkanes yielded the oldest 14C ages (up to 26 000 yr), revealing the presence of fossil (petrogenic) OC. Two isotopic mass balance approaches were explored to quantitively apportion different OC sources in Yellow River suspended sediments. Results indicate that the dominant component of POC (53-57%) is substantially pre-aged (1510-1770 yr), and likely sourced from the extensive loess-paleosol deposits outcropping within the drainage basin. Of

  9. Kinetic and electrochemical studies of the oxidative addition of demanding organic halides to Pd(0): the efficiency of polyphosphane ligands in low palladium loading cross-couplings decrypted.

    PubMed

    Zinovyeva, Veronika A; Mom, Sophal; Fournier, Sophie; Devillers, Charles H; Cattey, Hélène; Doucet, Henri; Hierso, Jean-Cyrille; Lucas, Dominique

    2013-10-21

    Oxidative addition (OA) of organic halides to palladium(0) species is a fundamental reaction step which initiates the C-C bond formation catalytic processes typical of Pd(0)/Pd(II) chemistry. The use of structurally congested polyphosphane ligands in palladium-catalyzed C-C bond formation has generated very high turnover numbers (TONs) in topical reactions such as Heck, Suzuki, Sonogashira couplings, and direct sp(2)C-H functionalization. Herein, the OA of aryl bromides to Pd(0) complexes stabilized by ferrocenylpolyphosphane ligands L1 (tetraphosphane), L2 (triphosphane), and L3 (diphosphane) is considered. The investigation of kinetic constants for the addition of Ph-Br to Pd(0) intermediates (generated by electrochemical reduction of Pd(II) complexes coordinated by L1-L3) is reported. Thus, in the OA of halides to the Pd(0) complex coordinated by L1 the series of rate constants kapp is found (mol(-1) L s(-1)): kapp(Ph-Br) = 0.48 > kapp(ClCH2-Cl) = 0.25 ≫ kapp(p-MeC6H4-Br) = 0.08 ≈ kapp(o-MeC6H4-Br) = 0.07 ≫ kapp(Ph-Cl). Kinetic measurements clarify the influence that the presence of four, three, or two phosphorus atoms in the coordination sphere of Pd has on OA. The presence of supplementary phosphorus atoms in L1 and L2 unambiguously stabilizes Pd(0) species and thus slows down the OA of Ph-Br to Pd(0) of about 2 orders of magnitude compared to the diphosphane L3. The electrosynthesis of the complexes resulting from the OA of organic halides to [Pd(0)/L] is easily performed and show the concurrent OA to Pd(0) of the sp(3)C-Cl bond of dichloromethane solvent. The resulting unstable Pd/alkyl complex is characterized by NMR and single crystal X-ray structure. We additionally observed the perfect stereoselectivity of the OA reactions which is induced by the tetraphosphane ligand L1. Altogether, a clearer picture of the general effects of congested polydentate ligands on the OA of organic halides to Pd(0) is given. PMID:24107007

  10. Anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure in a single continuously stirred tank reactor process: Limits in co-substrate ratios and organic loading rate.

    PubMed

    Rico, Carlos; Muñoz, Noelia; Rico, José Luis

    2015-01-01

    Mesophilic anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure was investigated with the aim of determining the treatment limits in terms of the cheese whey fraction in feed and the organic loading rate. The results of a continuous stirred tank reactor that was operated with a hydraulic retention time of 15.6 days showed that the co-digestion process was possible with a cheese whey fraction as high as 85% in the feed. The efficiency of the process was similar within the range of the 15-85% cheese whey fraction. To study the effect of the increasing loading rate, the HRT was progressively shortened with the 65% cheese whey fraction in the feed. The reactor efficiency dropped as the HRT decreased but enabled a stable operation over 8.7 days of HRT. At these operating conditions, a volumetric methane production rate of 1.37 m(3) CH4 m(-3) d(-1) was achieved. PMID:25911592

  11. Preparation of Hollow N-Chloramine-Functionalized Hemispherical Silica Particles with Enhanced Efficacy against Bacteria in the Presence of Organic Load: Synthesis, Characterization, and Antibacterial Activity.

    PubMed

    Rahma, Hakim; Asghari, Sogol; Logsetty, Sarvesh; Gu, Xiaochen; Liu, Song

    2015-06-01

    The fabrication of highly effective antimicrobial materials is an important strategy for coping with the growing concern of bacterial resistance. In this study, N-chloramine-functionalized hollow hemispherical structures were designed and prepared to examine possible enhancement of antimicrobial performance. Antimicrobial testing was carried out on Gram-negative (Escherichia coli) and Gram-positive (Baccilus Cereus) bacteria in the presence and absence of biological medium. The efficacy of the hollow hemispherical particles functionalized with various N-chloramines in killing bacteria was compared among themselves with that of small organic molecules and spherical particles to investigate the effect of the surface charge, chemical structure, and shape of the particles. Results demonstrated that quaternary ammonium salt or amine functions in the chemical structure enhanced the antimicrobial activity of the particles and made the particles more effective than the small molecules in the presence of biological medium. The importance of particle shape in the killing tests was also confirmed. PMID:25941842

  12. Effect of organic loading on the microbiota in a temperature-phased anaerobic digestion (TPAD) system co-digesting dairy manure and waste whey.

    PubMed

    Li, Yueh-Fen; Abraham, Christopher; Nelson, Michael C; Chen, Po-Hsu; Graf, Joerg; Yu, Zhongtang

    2015-10-01

    Temperature-phased anaerobic digestion (TPAD) has gained increasing attention because it provides the flexibility to operate digesters under conditions that enhance overall digester performance. However, research on impact of organic overloading rate (OLR) to microbiota of TPAD systems was limited. In this study, we investigated the composition and successions of the microbiota in both the thermophilic and the mesophilic digesters of a laboratory-scale TPAD system co-digesting dairy manure and waste whey before and during organic overloading. The thermophilic and the mesophilic digesters were operated at 50 and 35 °C, respectively, with a hydraulic retention time (HRT) of 10 days for each digester. High OLR (dairy manure with 5 % total solid and waste whey of ≥60.4 g chemical oxygen demand (COD)/l/day) resulted in decrease in pH and in biogas production and accumulation of volatile fatty acids (VFAs) in the thermophilic digester, while the mesophilic digester remained unchanged except a transient increase in biogas production. Both denaturant gradient gel electrophoresis (DGGE) and Illumina sequencing of 16S ribosomal RNA (rRNA) gene amplicons showed dramatic change in microbiota composition and profound successions of both bacterial and methanogenic communities. During the overloading, Thermotogae was replaced by Proteobacteria, while Methanobrevibacter and archaeon classified as WCHD3-02 grew in predominance at the expense of Methanoculleus in the thermophilic digester, whereas Methanosarcina dominated the methanogenic community, while Methanobacterium and Methanobrevibacter became less predominant in the mesophilic digester. Canonical correspondence analysis (CCA) revealed that digester temperature and pH were the most influential environmental factors that explained much of the variations of the microbiota in this TPAD system when it was overloaded. PMID:26084892

  13. Influence of organic carbon loading, sediment associated metal oxide content and sediment grain size distributions upon Cryptosporidium parvum removal during riverbank filtration operations, Sonoma County, CA

    USGS Publications Warehouse

    Metge, D.W.; Harvey, R.W.; Aiken, G.R.; Anders, R.; Lincoln, G.; Jasperse, J.

    2010-01-01

    This study assessed the efficacy for removing Cryptosporidium parvum oocysts of poorly sorted, Fe- and Al-rich, subsurface sediments collected from 0.9 to 4.9 and 1.7-13.9??m below land surface at an operating riverbank filtration (RBF) site (Russian River, Sonoma County, CA). Both formaldehyde-killed oocysts and oocyst-sized (3????m) microspheres were employed in sediment-packed flow-through and static columns. The degree of surface coverage of metal oxides on sediment grain surfaces correlated strongly with the degrees of oocyst and microsphere removals. In contrast, average grain size (D50) was not a good indicator of either microsphere or oocyst removal, suggesting that the primary mechanism of immobilization within these sediments is sorptive filtration rather than physical straining. A low specific UV absorbance (SUVA) for organic matter isolated from the Russian River, suggested that the modest concentration of the SUVA component (0.8??mg??L-1) of the 2.2??mg??L-1 dissolved organic carbon (DOC) is relatively unreactive. Nevertheless, an amendment of 2.2??mg??L-1 of isolated river DOC to column sediments resulted in up to a 35.7% decrease in sorption of oocysts and (or) oocyst-sized microspheres. Amendments (3.2????M) of the anionic surfactant, sodium dodecyl benzene sulfonate (SDBS) also caused substantive decreases (up to 31.9 times) in colloid filtration. Although the grain-surface metal oxides were found to have a high colloid-removal capacity, our study suggested that any major changes within the watershed that would result in long-term alterations in either the quantity and (or) the character of the river's DOC could alter the effectiveness of pathogen removal during RBF operations.

  14. Comparison of cytomegalovirus viral load measure by real-time PCR with pp65 antigenemia for the diagnosis of cytomegalovirus disease in solid organ transplant patients.

    PubMed

    Hernando, S; Folgueira, L; Lumbreras, C; San Juan, R; Maldonado, S; Prieto, C; Babiano, M J; Delgado, J; Andres, A; Moreno, E; Aguado, J M; Otero, J R

    2005-11-01

    Cytomegalovirus (CMV) infection is the most frequent complication in solid organ transplant recipients. Currently, the antigenemia assay is widely used to detect this infection, although its success is being questioned to a great extent nowadays. The aim of our study is to compare a quantitative real time PCR to measure CMV DNA to the antigenemia assay, for the diagnosis to CMV disease. For our research, we prospectively processed 1198 samples (plasma and peripheral blood leukocytes [PBMC]), which belonged to 158 transplant recipients. In every sample the detection of the pp65 antigen in PBMC was carried out, as well as the quantification of CMV DNA by PCR (Light Cycler, LC-PCR). For this process, FRET probes, which detect a 254-bp fragment from the CMV gB gene, were used. The dynamic range of the LC-PCR was 500 to 5.10(7) copies/mL plasma and from 62 to 6.10(6) copies/10(6) PBMC. Twenty-three episodes of cytomegalovirus (CMV) disease occurred in 22 out of 158 patients and PCR displayed levels of sensitivity and specificity of 100% and 67%, respectively. The antigenemia assay obtained values of 91% and 57%. We established a cutoff value of 10(3) copies/mL plasma and 315 copies/10(6) cells. According to these cutoff values, PCR showed levels of sensitivity, specificity, VPN and VPP of 95.6%, 81.6%, 99%, and 53% respectively. Moreover, the LC-PCR assay anticipated the antigenemia assay in 10 patients out of 22 who developed CMV disease and the appearance of any clinical symptoms in 12 out of 22 patients. In conclusion, we believe that the quantification of CMV DNA by LC-PCR is a superior assay to pp65 antigenemia test regarding the early diagnosis of CMV disease in solid organ transplant recipients. PMID:16386635

  15. Biogas production performance of mesophilic and thermophilic anaerobic co-digestion with fat, oil, and grease in semi-continuous flow digesters: effects of temperature, hydraulic retention time, and organic loading rate.

    PubMed

    Li, C; Champagne, P; Anderson, B C

    2013-01-01

    Anaerobic co-digestions with fat, oil, and grease (FOG) were investigated in semi-continuous flow digesters under various operating conditions. The effects of hydraulic retention times (HRTs) of 12 and 24 days, organic loading rates (OLRs) between 1.19 and 8.97 gTVS/Ld, and digestion temperatures of 37 degrees C and 55 degrees C on biogas production were evaluated. It was proposed that, compared to anaerobic digestion with wastewater treatment plant sludge (primary raw sludge), semi-continuous flow anaerobic co-digestion with FOG could effectively enhance biogas and methane production. Thermophilic (55 degrees C) co-digestions exhibited higher biogas production and degradation of organics than mesophilic co-digestions. The best biogas production rate of 17.4 +/- 0.86 L/d and methane content 67.9 +/- 1.46% was obtained with a thermophilic co-digestion at HRT = 24 days and OLR = 2.43 +/- 0.15 g TVS/Ld. These were 32.8% and 7.10% higher than the respective values from the mesophilic co-digestion under similar operating conditions. PMID:24350466

  16. Expert system development for probabilistic load simulation

    NASA Technical Reports Server (NTRS)

    Ho, H.; Newell, J. F.

    1991-01-01

    A knowledge based system LDEXPT using the intelligent data base paradigm was developed for the Composite Load Spectra (CLS) project to simulate the probabilistic loads of a space propulsion system. The knowledge base approach provides a systematic framework of organizing the load information and facilitates the coupling of the numerical processing and symbolic (information) processing. It provides an incremental development environment for building generic probabilistic load models and book keeping the associated load information. A large volume of load data is stored in the data base and can be retrieved and updated by a built-in data base management system. The data base system standardizes the data storage and retrieval procedures. It helps maintain data integrity and avoid data redundancy. The intelligent data base paradigm provides ways to build expert system rules for shallow and deep reasoning and thus provides expert knowledge to help users to obtain the required probabilistic load spectra.

  17. Plutonium immobilization -- Can loading

    SciTech Connect

    Kriikku, E.

    2000-02-17

    The Savannah River Site (SRS) will immobilize excess plutonium in the proposed Plutonium Immobilization Project (PIP). The PIP adds the excess plutonium to ceramic pucks, loads the pucks into cans, and places the cans into DWPF canisters. This paper discusses the PIP process steps, the can loading conceptual design, can loading equipment design, and can loading work completed.

  18. High Power Disk Loaded Guide Load

    SciTech Connect

    Farkas, Z.D.; /SLAC

    2006-02-22

    A method to design a matching section from a smooth guide to a disk-loaded guide, using a variation of broadband matching, [1, 2] is described. Using this method, we show how to design high power loads. The load consists of a disk-loaded coaxial guide operating in the TE{sub 01}-mode. We use this mode because it has no electric field terminating on a conductor, has no axial currents, and has no current at the cylinder-disk interface. A high power load design that has -35 dB reflection and a 200 MHz, -20 dB bandwidth, is presented. It is expected that it will carry the 600 MW output peak power of the pulse compression network. We use coaxial geometry and stainless steel material to increase the attenuation per cell.

  19. 77 FR 27574 - Automatic Underfrequency Load Shedding and Load Shedding Plans Reliability Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ...Under section 215 of the Federal Power Act (FPA), the Federal Energy Regulatory Commission (Commission) approves Reliability Standards PRC-006-1 (Automatic Underfrequency Load Shedding) and EOP- 003-2 (Load Shedding Plans), developed and submitted to the Commission for approval by the North American Electric Reliability Corporation (NERC), the Electric Reliability Organization certified by the......

  20. Load sensing system

    DOEpatents

    Sohns, Carl W.; Nodine, Robert N.; Wallace, Steven Allen

    1999-01-01

    A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast

  1. Taking a Load Off.

    ERIC Educational Resources Information Center

    Kenny, John

    1995-01-01

    Discusses the snow -load capacity of school roofs and how understanding this data aids in planning preventive measures and easing fear of roof collapse. Describes how to determine snow-load capacity, and explains the load-bearing behavior of flat versus sloped roofs. Collapse prevention measures are highlighted. (GR)

  2. Load Model Data Tool

    Energy Science and Technology Software Center (ESTSC)

    2013-04-30

    The LMDT software automates the process of the load composite model data preparation in the format supported by the major power system software vendors (GE and Siemens). Proper representation of the load composite model in power system dynamic analysis is very important. Software tools for power system simulation like GE PSLF and Siemens PSSE already include algorithms for the load composite modeling. However, these tools require that the input information on composite load to bemore » provided in custom formats. Preparation of this data is time consuming and requires multiple manual operations. The LMDT software enables to automate this process. Software is designed to generate composite load model data. It uses the default load composition data, motor information, and bus information as an input. Software processes the input information and produces load composition model. Generated model can be stored in .dyd format supported by GE PSLF package or .dyr format supported by Siemens PSSE package.« less

  3. Load Model Data Tool

    SciTech Connect

    David Chassin, Pavel Etingov

    2013-04-30

    The LMDT software automates the process of the load composite model data preparation in the format supported by the major power system software vendors (GE and Siemens). Proper representation of the load composite model in power system dynamic analysis is very important. Software tools for power system simulation like GE PSLF and Siemens PSSE already include algorithms for the load composite modeling. However, these tools require that the input information on composite load to be provided in custom formats. Preparation of this data is time consuming and requires multiple manual operations. The LMDT software enables to automate this process. Software is designed to generate composite load model data. It uses the default load composition data, motor information, and bus information as an input. Software processes the input information and produces load composition model. Generated model can be stored in .dyd format supported by GE PSLF package or .dyr format supported by Siemens PSSE package.

  4. Phalange Tactile Load Cell

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor); Linn, Douglas Martin (Inventor); Platt, Robert (Inventor); Griffith, Bryan Kristian (Inventor)

    2010-01-01

    A tactile load cell that has particular application for measuring the load on a phalange in a dexterous robot system. The load cell includes a flexible strain element having first and second end portions that can be used to mount the load cell to the phalange and a center portion that can be used to mount a suitable contact surface to the load cell. The strain element also includes a first S-shaped member including at least three sections connected to the first end portion and the center portion and a second S-shaped member including at least three sections coupled to the second end portion and the center portion. The load cell also includes eight strain gauge pairs where each strain gauge pair is mounted to opposing surfaces of one of the sections of the S-shaped members where the strain gauge pairs provide strain measurements in six-degrees of freedom.

  5. Flight loads and control

    NASA Technical Reports Server (NTRS)

    Mowery, D. K.; Winder, S. W.

    1972-01-01

    The prediction of flight loads and their potential reduction, using various control logics for the space shuttle vehicles, is very complex. Some factors, not found on previous launch vehicles, that increase the complexity are large lifting surfaces, unsymmetrical structure, unsymmetrical aerodynamics, trajectory control system coupling, and large aeroelastic effects. Discussed are these load producing factors and load reducing techniques. Identification of potential technology areas is included.

  6. Load regulating expansion fixture

    DOEpatents

    Wagner, Lawrence M.; Strum, Michael J.

    1998-01-01

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.

  7. Load regulating expansion fixture

    DOEpatents

    Wagner, L.M.; Strum, M.J.

    1998-12-15

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.

  8. Load sensing system

    DOEpatents

    Sohns, C.W.; Nodine, R.N.; Wallace, S.A.

    1999-05-04

    A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast inventories of stored nuclear material can be continuously monitored and inventoried of minimal cost. 4 figs.

  9. Combined Load Test Fixture

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.

    2010-01-01

    A test fixture has been developed at NASA Langley Research Center that has the capability of applying compression load and shear load simultaneously to a test specimen. The test specimen size is 24-inches by 28-inches. This report describes the test specimen design, test specimen preparation, fixture assembly in the test machine, and a test operation plan.

  10. Strip and load data

    NASA Technical Reports Server (NTRS)

    Jones, R. H.

    1984-01-01

    The method of taking batch data files and loading these files into the ADABAS data base management system (DBMS) is examined. This strip and load process allows the user to quickly become productive. Techniques for data fields and files definition are also included.

  11. Electronic Load Bank

    NASA Technical Reports Server (NTRS)

    Huston, Steven W.

    1992-01-01

    Electronic load-bank circuit provides pulsed or continuous low-resistance load to imitate effect of short circuit on Ni/H2 or other electrochemical power cells. Includes safety/warning feature and taps for measurement of cell-output voltage and current.

  12. Microbial load monitor

    NASA Technical Reports Server (NTRS)

    Caplin, R. S.; Royer, E. R.

    1977-01-01

    Design analysis of a microbial load monitor system flight engineering model was presented. Checkout of the card taper and media pump system was fabricated as well as the final two incubating reading heads, the sample receiving and card loading device assembly, related sterility testing, and software. Progress in these areas was summarized.

  13. Water impact loads

    NASA Technical Reports Server (NTRS)

    Sanders, D. H.; Safronski, S. G.

    1972-01-01

    Computer program to generate time history of load factor and pressure on conical body of revolution during impact with water is discussed. Program calculates depth of penetration, velocity, force, load factor, maximum pressure at water line, and average pressure. Program is written in FORTRAN 4 Level H for IBM 360/85/195 Release 20.1 computer.

  14. CRITICAL LOADS METHODS

    EPA Science Inventory

    I summarize the results of an interagency project that 1) defines a generic approach to quantifying and reporting critical loads, and 2) exercises that generic approach by examining a data rich system -- the critical loads of sulfur deposition and it's effect on the chronic acidi...

  15. Lightening the Load

    PubMed Central

    Remington, Anna M.; Swettenham, John G.; Lavie, Nilli

    2012-01-01

    Autism spectrum disorder (ASD) research portrays a mixed picture of attentional abilities with demonstrations of enhancements (e.g., superior visual search) and deficits (e.g., higher distractibility). Here we test a potential resolution derived from the Load Theory of Attention (e.g., Lavie, 2005). In Load Theory, distractor processing depends on the perceptual load of the task and as such can only be eliminated under high load that engages full capacity. We hypothesize that ASD involves enhanced perceptual capacity, leading to the superior performance and increased distractor processing previously reported. Using a signal-detection paradigm, we test this directly and demonstrate that, under higher levels of load, perceptual sensitivity was reduced in typical adults but not in adults with ASD. These findings confirm our hypothesis and offer a promising solution to the previous discrepancies by suggesting that increased distractor processing in ASD results not from a filtering deficit but from enhanced perceptual capacity. PMID:22428792

  16. Cable load sensing device

    DOEpatents

    Beus, Michael J.; McCoy, William G.

    1998-01-01

    Apparatus for sensing the magnitude of a load on a cable as the cable is employed to support the load includes a beam structure clamped to the cable so that a length of the cable lies along the beam structure. A spacer associated with the beam structure forces a slight curvature in a portion of the length of cable under a cable "no-load" condition so that the portion of the length of cable is spaced from the beam structure to define a cable curved portion. A strain gauge circuit including strain gauges is secured to the beam structure by welding. As the cable is employed to support a load the load causes the cable curved portion to exert a force normal to the cable through the spacer and on the beam structure to deform the beam structure as the cable curved portion attempts to straighten under the load. As this deformation takes place, the resistance of the strain gauges is set to a value proportional to the magnitude of the normal strain on the beam structure during such deformation. The magnitude of the normal strain is manipulated in a control device to generate a value equal to the magnitude or weight of the load supported by the cable.

  17. Cable load sensing device

    SciTech Connect

    Beus, M.J.; McCoy, W.G.

    1996-12-31

    Apparatus for sensing the magnitude of a load on a cable as the cable is employed to support the load includes a beam structure clamped to the cable so that a length of the cable lies along the beam structure. A spacer associated with the beam structure forces a slight curvature in a portion of the length of cable under a cable no-load condition so that the portion of the length of cable is spaced from the beam structure to define a cable curved portion. A strain gauge circuit including strain gauges is secured to the beam structure by welding. As the cable is employed to support a load the load causes the cable curved portion to exert a force normal to the cable through the spacer and on the beam structure to deform the beam structure as the cable curved portion attempts to straighten under the load. As this deformation takes place, the resistance of the strain gauges is set to a value proportional to the magnitude of the normal strain on the beam structure during such deformation. The magnitude of the normal strain is manipulated in a control device to generate a value equal to the magnitude or weight of the load supported by the cable.

  18. Load Balancing Scientific Applications

    SciTech Connect

    Pearce, Olga Tkachyshyn

    2014-12-01

    The largest supercomputers have millions of independent processors, and concurrency levels are rapidly increasing. For ideal efficiency, developers of the simulations that run on these machines must ensure that computational work is evenly balanced among processors. Assigning work evenly is challenging because many large modern parallel codes simulate behavior of physical systems that evolve over time, and their workloads change over time. Furthermore, the cost of imbalanced load increases with scale because most large-scale scientific simulations today use a Single Program Multiple Data (SPMD) parallel programming model, and an increasing number of processors will wait for the slowest one at the synchronization points. To address load imbalance, many large-scale parallel applications use dynamic load balance algorithms to redistribute work evenly. The research objective of this dissertation is to develop methods to decide when and how to load balance the application, and to balance it effectively and affordably. We measure and evaluate the computational load of the application, and develop strategies to decide when and how to correct the imbalance. Depending on the simulation, a fast, local load balance algorithm may be suitable, or a more sophisticated and expensive algorithm may be required. We developed a model for comparison of load balance algorithms for a specific state of the simulation that enables the selection of a balancing algorithm that will minimize overall runtime.

  19. Dynamic load simulator

    NASA Technical Reports Server (NTRS)

    Joncas, K. P.

    1972-01-01

    Concepts and techniques for identifying and simulating both the steady state and dynamic characteristics of electrical loads for use during integrated system test and evaluation are discussed. The investigations showed that it is feasible to design and develop interrogation and simulation equipment to perform the desired functions. During the evaluation, actual spacecraft loads were interrogated by stimulating the loads with their normal input voltage and measuring the resultant voltage and current time histories. Elements of the circuits were optimized by an iterative process of selecting element values and comparing the time-domain response of the model with those obtained from the real equipment during interrogation.

  20. Load proportional safety brake

    NASA Technical Reports Server (NTRS)

    Cacciola, M. J.

    1979-01-01

    This brake is a self-energizing mechanical friction brake and is intended for use in a rotary drive system. It incorporates a torque sensor which cuts power to the power unit on any overload condition. The brake is capable of driving against an opposing load or driving, paying-out, an aiding load in either direction of rotation. The brake also acts as a no-back device when torque is applied to the output shaft. The advantages of using this type of device are: (1) low frictional drag when driving; (2) smooth paying-out of an aiding load with no runaway danger; (3) energy absorption proportional to load; (4) no-back activates within a few degrees of output shaft rotation and resets automatically; and (5) built-in overload protection.

  1. LOADING SIMULATION PROGRAM C

    EPA Science Inventory

    LSPC is the Loading Simulation Program in C++, a watershed modeling system that includes streamlined Hydrologic Simulation Program Fortran (HSPF) algorithms for simulating hydrology, sediment, and general water quality on land as well as a simplified stream transport model. LSPC ...

  2. Statistical load data processing

    NASA Technical Reports Server (NTRS)

    Vandijk, G. M.

    1972-01-01

    A recorder system has been installed on two operational fighter aircrafts. Signal values from a c.g.-acceleration transducer and a strain-gage installation at the wing root were sampled and recorded in digital format on the recorder system. To analyse such load-time histories for fatigue evaluation purposes, a number of counting methods are available in which level crossings, peaks, or ranges are counted. Ten different existing counting principles are defined. The load-time histories are analysed to evaluate these counting methods. For some of the described counting methods, the counting results might be affected by arbitrarily chosen parameters such as the magnitude of load ranges that will be neglected and other secondary counting restrictions. Such influences might invalidate the final counting results entirely. The evaluation shows that for the type of load-time histories associated with most counting methods, a sensible value of the parameters involved can be found.

  3. LOADING MACHINE FOR REACTORS

    DOEpatents

    Simon, S.L.

    1959-07-01

    An apparatus is described for loading or charging slugs of fissionable material into a nuclear reactor. The apparatus of the invention is a "muzzle loading" type comprising a delivery tube or muzzle designed to be brought into alignment with any one of a plurality of fuel channels. The delivery tube is located within the pressure shell and it is also disposed within shielding barriers while the fuel cantridges or slugs are forced through the delivery tube by an externally driven flexible ram.

  4. Rim loaded reflector antennas

    NASA Astrophysics Data System (ADS)

    Bucci, O. M.; Franceschetti, G.

    1980-05-01

    A general theory of reflector antennas loaded by surface impedances is presented. Spatial variation of primary illumination is taken into account using a generalized slope diffraction coefficient. The theory is experimentally checked on surface loaded square plate scatterers and then used for computing the radiation diagram of parabolic and hyperbolic dishes. Computer programs and computed diagrams refer to the case of focal illumination and negligible tapering of primary illumination.

  5. Load research manual. Volume 3. Load research for advanced technologies

    SciTech Connect

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.; Leo, J.; Asbury, J.; Brandon-Brown, F.; Derderian, H.; Mueller, R.; Swaroop, R.

    1980-11-01

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. In Volume 3, special load research procedures are presented for solar, wind, and cogeneration technologies.

  6. Composite Load Model Evaluation

    SciTech Connect

    Lu, Ning; Qiao, Hong

    2007-09-30

    The WECC load modeling task force has dedicated its effort in the past few years to develop a composite load model that can represent behaviors of different end-user components. The modeling structure of the composite load model is recommended by the WECC load modeling task force. GE Energy has implemented this composite load model with a new function CMPLDW in its power system simulation software package, PSLF. For the last several years, Bonneville Power Administration (BPA) has taken the lead and collaborated with GE Energy to develop the new composite load model. Pacific Northwest National Laboratory (PNNL) and BPA joint force and conducted the evaluation of the CMPLDW and test its parameter settings to make sure that: • the model initializes properly, • all the parameter settings are functioning, and • the simulation results are as expected. The PNNL effort focused on testing the CMPLDW in a 4-bus system. An exhaustive testing on each parameter setting has been performed to guarantee each setting works. This report is a summary of the PNNL testing results and conclusions.

  7. Managing Cognitive Load during Document-Based Learning

    ERIC Educational Resources Information Center

    Rouet, Jean-Francois

    2009-01-01

    Designers of interactive learning environments face the issue of managing the learner's cognitive load, reducing irrelevant sources while optimizing useful sources of load. I propose a conceptual framework aimed at organizing the contributions of the papers presented in this special issue. The framework identifies three main dimensions, namely…

  8. CONTROL OF HYDROCARBON EMISSIONS FROM GASOLINE LOADING BY REFRIGERATION SYSTEMS

    EPA Science Inventory

    The report gives results of a study of the capabilities of refrigeration systems, operated at three temperatures, to control volatile organic compound (VOC) emissions from truck loading at bulk gasoline terminals. Achievable VOC emission rates were calculated for refrigeration sy...

  9. Phloem Loading of Sucrose

    PubMed Central

    Giaquinta, Robert

    1977-01-01

    Autoradiographic, plasmolysis, and 14C-metabolite distribution studies indicate that the majority of exogenously supplied 14C-sucrose enters the phloem directly from the apoplast in source leaf discs of Beta vulgaris. Phloem loading of sucrose is pH-dependent, being markedly inhibited at an apoplast pH of 8 compared to pH 5. Kinetic analyses indicate that the apparent Km of the loading process increases at the alkaline pH while the maximum velocity, Vmax, is pH-independent. The pH dependence of sucrose loading into source leaf discs translates to phloem loading in and translocation of sucrose from intact source leaves. Studies using asymmetrically labeled sucrose 14C-fructosyl-sucrose, show that sucrose is accumulated intact from the apoplast and not hydrolyzed to its hexose moieties by invertase prior to uptake. The results are discussed in terms of sucrose loading being coupled to the co-transport of protons (and membrane potential) in a manner consistent with the chemiosmotic hypothesis of nonelectrolyte transport. Images PMID:16659931

  10. A load factor formula

    NASA Technical Reports Server (NTRS)

    Miller, Roy G

    1927-01-01

    The ultimate test of a load factor formula is experience. The chief advantages of a semi rational formula over arbitrary factors are that it fairs in between points of experience and it differentiates according to variables within a type. Structural failure of an airplane apparently safe according to the formula would call for a specific change in the formula. The best class of airplanes with which to check a load factor formula seems to be those which have experienced structural failure. Table I comprises a list of the airplanes which have experienced failure in flight traceable to the wing structure. The load factor by formula is observed to be greater than the designed strength in each case, without a single exception. Table II comprises the load factor by formula with the designed strength of a number of well-known service types. The formula indicates that by far the majority of these have ample structural strength. One case considered here in deriving a suitable formula is that of a heavy load carrier of large size and practically no reserve power.

  11. E-2C Loads Calibration in DFRC Flight Loads Lab

    NASA Technical Reports Server (NTRS)

    Schuster, Lawrence S.

    2008-01-01

    Objectives: a) Safely and efficiently perform structural load tests on NAVAIR E-2C aircraft to calibrate strain gage instrumentation installed by NAVAIR; b) Collect load test data and derive loads equations for use in NAVAIR flight tests; and c) Assist flight test team with use of loads equations measurements at PAX River.

  12. Shuttle car loading system

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr. (Inventor)

    1985-01-01

    A system is described for loading newly mined material such as coal, into a shuttle car, at a location near the mine face where there is only a limited height available for a loading system. The system includes a storage bin having several telescoping bin sections and a shuttle car having a bottom wall that can move under the bin. With the bin in an extended position and filled with coal the bin sections can be telescoped to allow the coal to drop out of the bin sections and into the shuttle car, to quickly load the car. The bin sections can then be extended, so they can be slowly filled with more while waiting another shuttle car.

  13. Elastomeric load sharing device

    NASA Technical Reports Server (NTRS)

    Isabelle, Charles J. (Inventor); Kish, Jules G. (Inventor); Stone, Robert A. (Inventor)

    1992-01-01

    An elastomeric load sharing device, interposed in combination between a driven gear and a central drive shaft to facilitate balanced torque distribution in split power transmission systems, includes a cylindrical elastomeric bearing and a plurality of elastomeric bearing pads. The elastomeric bearing and bearing pads comprise one or more layers, each layer including an elastomer having a metal backing strip secured thereto. The elastomeric bearing is configured to have a high radial stiffness and a low torsional stiffness and is operative to radially center the driven gear and to minimize torque transfer through the elastomeric bearing. The bearing pads are configured to have a low radial and torsional stiffness and a high axial stiffness and are operative to compressively transmit torque from the driven gear to the drive shaft. The elastomeric load sharing device has spring rates that compensate for mechanical deviations in the gear train assembly to provide balanced torque distribution between complementary load paths of split power transmission systems.

  14. Microbial load monitor

    NASA Technical Reports Server (NTRS)

    Caplin, R. S.; Royer, E. R.

    1978-01-01

    Attempts are made to provide a total design of a Microbial Load Monitor (MLM) system flight engineering model. Activities include assembly and testing of Sample Receiving and Card Loading Devices (SRCLDs), operator related software, and testing of biological samples in the MLM. Progress was made in assembling SRCLDs with minimal leaks and which operate reliably in the Sample Loading System. Seven operator commands are used to control various aspects of the MLM such as calibrating and reading the incubating reading head, setting the clock and reading time, and status of Card. Testing of the instrument, both in hardware and biologically, was performed. Hardware testing concentrated on SRCLDs. Biological testing covered 66 clinical and seeded samples. Tentative thresholds were set and media performance listed.

  15. Ocean Tide Loading Computation

    NASA Technical Reports Server (NTRS)

    Agnew, Duncan Carr

    2005-01-01

    September 15,2003 through May 15,2005 This grant funds the maintenance, updating, and distribution of programs for computing ocean tide loading, to enable the corrections for such loading to be more widely applied in space- geodetic and gravity measurements. These programs, developed under funding from the CDP and DOSE programs, incorporate the most recent global tidal models developed from Topex/Poscidon data, and also local tide models for regions around North America; the design of the algorithm and software makes it straightforward to combine local and global models.

  16. Estimating turbine limit load

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1993-01-01

    A method for estimating turbine limit-load pressure ratio from turbine map information is presented and demonstrated. It is based on a mean line analysis at the last-rotor exit. The required map information includes choke flow rate at all speeds as well as pressure ratio and efficiency at the onset of choke at design speed. One- and two-stage turbines are analyzed to compare the results with those from a more rigorous off-design flow analysis and to show the sensitivities of the computed limit-load pressure ratios to changes in the key assumptions.

  17. Dielectrically loaded horns

    NASA Astrophysics Data System (ADS)

    Tun, S. M.; Bustamante, R.; Williams, N.

    Dielectrically loaded horns have been proposed as alternatives to conical corrugated horns in high-performance primary feeds in virtue both of their lower cost and theoretical indications of superior operational bandwidth performance, while retaining circularly symmetric radiation, low sidelobes, and low cross-polarization. A prototype dielectric core-loaded horn, and a dual-band transmit/receive horn antenna incorporating a dielectric rod inside a small corrugated horn, have been developed and tested; the dielectric used for the rod is Rexolite. The high performance obtainable by this inexpensive technology has been experimentally demonstrated.

  18. Transfer Mechanisms for Heavy Loads

    NASA Technical Reports Server (NTRS)

    Cassisi, V.

    1986-01-01

    Soft hydraulic system gently maneuvers loads. Upper and lower load-transfer mechanisms attach through mounting holes in vertical beam adjustable or gross positioning. Fine positioning of load accomplished by hydraulic cylinders that move trunnion support and trunnion clamp through short distances. Useful in transferring large loads in railroads, agriculture, shipping, manufacturing, and even precision assembly of large items.

  19. Measuring Transient Memory Load

    ERIC Educational Resources Information Center

    Wanner, Eric; Shiner, Sandra

    1976-01-01

    Two experiments are reported in which subjects performed simple mental arithmetic problems which were presented visually in a sequential fashion. At some point in the presentation of each problem, the sequential display was interrupted and a memory task introduced. The purpose was to validate a measure of transient memory load. (Author/RM)

  20. LOADING AND UNLOADING DEVICE

    DOEpatents

    Treshow, M.

    1960-08-16

    A device for loading and unloading fuel rods into and from a reactor tank through an access hole includes parallel links carrying a gripper. These links enable the gripper to go through the access hole and then to be moved laterally from the axis of the access hole to the various locations of the fuel rods in the reactor tank.

  1. Multidimensional spectral load balancing

    DOEpatents

    Hendrickson, Bruce A.; Leland, Robert W.

    1996-12-24

    A method of and apparatus for graph partitioning involving the use of a plurality of eigenvectors of the Laplacian matrix of the graph of the problem for which load balancing is desired. The invention is particularly useful for optimizing parallel computer processing of a problem and for minimizing total pathway lengths of integrated circuits in the design stage.

  2. Load research manual. Volume 1. Load research procedures

    SciTech Connect

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.; Leo, J.; Asbury, J.; Brandon-Brown, F.; Derderian, H.; Mueller, R.; Swaroop, R.

    1980-11-01

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. In Volumes 1 and 2, procedures are suggested for determining data requirements for load research, establishing the size and customer composition of a load survey sample, selecting and using equipment to record customer electricity usage, processing data tapes from the recording equipment, and analyzing the data. Statistical techniques used in customer sampling are discussed in detail. The costs of load research also are estimated, and ongoing load research programs at three utilities are described. The manual includes guides to load research literature and glossaries of load research and statistical terms.

  3. Measuring alignment of loading fixture

    DOEpatents

    Scavone, Donald W.

    1989-01-01

    An apparatus and method for measuring the alignment of a clevis and pin type loading fixture for compact tension specimens include a pair of substantially identical flat loading ligaments. Each loading ligament has two apertures for the reception of a respective pin of the loading fixture and a thickness less than one-half of a width of the clevis opening. The pair of loading ligaments are mounted in the clevis openings at respective sides thereof. The loading ligaments are then loaded by the pins of the loading fixture and the strain in each loading ligament is measured. By comparing the relative strain of each loading ligament, the alignment of the loading fixture is determined. Preferably, a suitable strain gage device is located at each longitudinal edge of a respective loading ligament equidistant from the two apertures in order to determine the strain thereat and hence the strain of each ligament. The loading ligaments are made substantially identical by jig grinding the loading ligaments as a matched set. Each loading ligament can also be individually calibrated prior to the measurement.

  4. The composite load spectra project

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Ho, H.; Kurth, R. E.

    1990-01-01

    Probabilistic methods and generic load models capable of simulating the load spectra that are induced in space propulsion system components are being developed. Four engine component types (the transfer ducts, the turbine blades, the liquid oxygen posts and the turbopump oxidizer discharge duct) were selected as representative hardware examples. The composite load spectra that simulate the probabilistic loads for these components are typically used as the input loads for a probabilistic structural analysis. The knowledge-based system approach used for the composite load spectra project provides an ideal environment for incremental development. The intelligent database paradigm employed in developing the expert system provides a smooth coupling between the numerical processing and the symbolic (information) processing. Large volumes of engine load information and engineering data are stored in database format and managed by a database management system. Numerical procedures for probabilistic load simulation and database management functions are controlled by rule modules. Rules were hard-wired as decision trees into rule modules to perform process control tasks. There are modules to retrieve load information and models. There are modules to select loads and models to carry out quick load calculations or make an input file for full duty-cycle time dependent load simulation. The composite load spectra load expert system implemented today is capable of performing intelligent rocket engine load spectra simulation. Further development of the expert system will provide tutorial capability for users to learn from it.

  5. Fruit load governs transpiration of olive trees.

    PubMed

    Bustan, Amnon; Dag, Arnon; Yermiyahu, Uri; Erel, Ran; Presnov, Eugene; Agam, Nurit; Kool, Dilia; Iwema, Joost; Zipori, Isaac; Ben-Gal, Alon

    2016-03-01

    We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from trees at three separate stages of growth: early, mid and late in the season. Tree-scale transpiration, calculated from lysimeter water balance, was found to be a function of fruit load, canopy size and weather conditions. Fruit removal caused an immediate decline in water consumption, measured as whole-plant transpiration normalized to tree size, which persisted until the end of the season. The later the execution of fruit removal, the greater was the response. The amount of water transpired by a fruit-loaded tree was found to be roughly 30% greater than that of an equivalent low- or nonyielding tree. The tree-scale response to fruit was reflected in stem water potential but was not mirrored in leaf-scale physiological measurements of stomatal conductance or photosynthesis. Trees with low or no fruit load had higher vegetative growth rates. However, no significant difference was observed in the overall aboveground dry biomass among groups, when fruit was included. This case, where carbon sources and sinks were both not limiting, suggests that the role of fruit on water consumption involves signaling and alterations in hydraulic properties of vascular tissues and tree organs. PMID:26802540

  6. Plutonium Immobilization Canister Loading

    SciTech Connect

    Hamilton, E.L.

    1999-01-26

    This disposition of excess plutonium is determined by the Surplus Plutonium Disposition Environmental Impact Statement (SPD-EIS) being prepared by the Department of Energy. The disposition method (Known as ''can in canister'') combines cans of immobilized plutonium-ceramic disks (pucks) with vitrified high-level waste produced at the SRS Defense Waste Processing Facility (DWPF). This is intended to deter proliferation by making the plutonium unattractive for recovery or theft. The envisioned process remotely installs cans containing plutonium-ceramic pucks into storage magazines. Magazines are then remotely loaded into the DWPF canister through the canister neck with a robotic arm and locked into a storage rack inside the canister, which holds seven magazines. Finally, the canister is processed through DWPF and filled with high-level waste glass, thereby surrounding the product cans. This paper covers magazine and rack development and canister loading concepts.

  7. Load regulating latch

    NASA Technical Reports Server (NTRS)

    Appleberry, W. T. (Inventor)

    1977-01-01

    A load regulating mechanical latch is described that has a pivotally mounted latch element having a hook-shaped end with a strike roller-engaging laterally open hook for engaging a stationary strike roller. The latch element or hook is pivotally mounted in a clevis end of an elongated latch stem that is adapted for axial movement through an opening in a support plate or bracket mounted to a structural member. A coil spring is disposed over and around the extending latch stem and the lower end of the coil spring engages the support bracket. A thrust washer is removably attached to the other end of the latch stem and engages the other end of the coil spring and compresses the coil spring thereby preloading the spring and the latch element carried by the latch stem. The hook-shaped latch element has a limited degree of axial travel for loading caused by structural distortion which may change the relative positions of the latch element hook and the strike roller. Means are also provided to permit limited tilt of the latch element due to loading of the hook.

  8. Load responsive hydrodynamic bearing

    DOEpatents

    Kalsi, Manmohan S.; Somogyi, Dezso; Dietle, Lannie L.

    2002-01-01

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  9. Buffet Load Alleviation

    NASA Technical Reports Server (NTRS)

    Ryall, T. G.; Moses, R. W.; Hopkins, M. A.; Henderson, D.; Zimcik, D. G.; Nitzsche, F.

    2004-01-01

    High performance aircraft are, by their very nature, often required to undergo maneuvers involving high angles of attack. Under these conditions unsteady vortices emanating from the wing and the fuselage will impinge on the twin fins (required for directional stability) causing excessive buffet loads, in some circumstances, to be applied to the aircraft. These loads result in oscillatory stresses, which may cause significant amounts of fatigue damage. Active control is a possible solution to this important problem. A full-scale test was carried out on an F/A-18 fuselage and fins using piezoceramic actuators to control the vibrations. Buffet loads were simulated using very powerful electromagnetic shakers. The first phase of this test was concerned with the open loop system identification whereas the second stage involved implementing linear time invariant control laws. This paper looks at some of the problems encountered as well as the corresponding solutions and some results. It is expected that flight trials of a similar control system to alleviate buffet will occur as early as 2001.

  10. 32. VAL, DETAIL SHOWING LOADING PLATFORM, PROJECTILE LOADING CAR, LAUNCHER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. VAL, DETAIL SHOWING LOADING PLATFORM, PROJECTILE LOADING CAR, LAUNCHER SLAB AND UNDERSIDE OF LAUNCHER BRIDGE LOOKING SOUTHWEST. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA