Science.gov

Sample records for rhodium additions

  1. Rhodium and copper-catalyzed asymmetric conjugate addition of alkenyl nucleophiles.

    PubMed

    Müller, Daniel; Alexakis, Alexandre

    2012-12-25

    Since the initial reports in the mid-90s, metal catalyzed asymmetric conjugate addition (ACA) reactions evolved as an important tool for the synthetic chemist. Most of the research efforts have been done in the field of rhodium and copper catalyzed ACA reactions employing aryl and alkyl nucleophiles. Despite the great synthetic value of the double bond, the addition of alkenyl nucleophiles remains insufficiently explored. In this account, an overview of the developments in the field of rhodium and copper catalyzed ACA reactions with organometallic alkenyl reagents (B, Mg, Al, Si, Zr, Sn) will be provided. The account is intended to give a comprehensive overview of all the existing methods. However, in many cases only selected examples are displayed in order to facilitate comparison of different ligands and methodologies. PMID:23096501

  2. Rhodium-catalyzed anti-Markovnikov addition of secondary amines to arylacetylenes at room temperature.

    PubMed

    Sakai, Kazunori; Kochi, Takuya; Kakiuchi, Fumitoshi

    2011-08-01

    An efficient method for synthesis of E-enamines by the anti-Markovnikov addition of secondary amines to terminal alkynes is described. The reaction of a variety of aryl- and heteroarylacetylenes proceeded at room temperature using a combination of a 8-quinolinolato rhodium complex and P(p-MeOC(6)H(4))(3) as a catalyst. The products were obtained as enamines by simple bulb-to-bulb distillation. PMID:21699251

  3. Catalytic, Enantioselective Addition of Alkyl Radicals to Alkenes via Visible-Light-Activated Photoredox Catalysis with a Chiral Rhodium Complex.

    PubMed

    Huo, Haohua; Harms, Klaus; Meggers, Eric

    2016-06-01

    An efficient enantioselective addition of alkyl radicals, oxidatively generated from organotrifluoroborates, to acceptor-substituted alkenes is catalyzed by a bis-cyclometalated rhodium catalyst (4 mol %) under photoredox conditions. The practical method provides yields up to 97% with excellent enantioselectivities up to 99% ee and can be classified as a redox neutral, electron-transfer-catalyzed reaction. PMID:27218134

  4. Mixed N-Heterocyclic Carbene-Bis(oxazolinyl)borato Rhodium and Iridium Complexes in Photochemical and Thermal Oxidative Addition Reactions

    SciTech Connect

    Xu, Songchen; Manna, Kuntal; Ellern, Arkady; Sadow, Aaron D

    2014-12-08

    In order to facilitate oxidative addition chemistry of fac-coordinated rhodium(I) and iridium(I) compounds, carbene–bis(oxazolinyl)phenylborate proligands have been synthesized and reacted with organometallic precursors. Two proligands, PhB(OxMe2)2(ImtBuH) (H[1]; OxMe2 = 4,4-dimethyl-2-oxazoline; ImtBuH = 1-tert-butylimidazole) and PhB(OxMe2)2(ImMesH) (H[2]; ImMesH = 1-mesitylimidazole), are deprotonated with potassium benzyl to generate K[1] and K[2], and these potassium compounds serve as reagents for the synthesis of a series of rhodium and iridium complexes. Cyclooctadiene and dicarbonyl compounds {PhB(OxMe2)2ImtBu}Rh(η4-C8H12) (3), {PhB(OxMe2)2ImMes}Rh(η4-C8H12) (4), {PhB(OxMe2)2ImMes}Rh(CO)2 (5), {PhB(OxMe2)2ImMes}Ir(η4-C8H12) (6), and {PhB(OxMe2)2ImMes}Ir(CO)2 (7) are synthesized along with ToMM(η4-C8H12) (M = Rh (8); M = Ir (9); ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate). The spectroscopic and structural properties and reactivity of this series of compounds show electronic and steric effects of substituents on the imidazole (tert-butyl vs mesityl), effects of replacing an oxazoline in ToM with a carbene donor, and the influence of the donor ligand (CO vs C8H12). The reactions of K[2] and [M(μ-Cl)(η2-C8H14)2]2 (M = Rh, Ir) provide {κ4-PhB(OxMe2)2ImMes'CH2}Rh(μ-H)(μ-Cl)Rh(η2-C8H14)2 (10) and {PhB(OxMe2)2ImMes}IrH(η3-C8H13) (11). In the former compound, a spontaneous oxidative addition of a mesityl ortho-methyl to give a mixed-valent dirhodium species is observed, while the iridium compound forms a monometallic allyl hydride. Photochemical reactions of dicarbonyl compounds 5 and 7 result in C–H bond oxidative addition providing the compounds {κ4-PhB(OxMe2)2ImMes'CH2}RhH(CO) (12) and {PhB(OxMe2)2ImMes}IrH(Ph)CO (13). In 12, oxidative addition results in cyclometalation of the mesityl ortho-methyl similar to 10, whereas the iridium compound reacts with the benzene solvent to give a rare crystallographically characterized cis

  5. Effect of CO on the oxidative addition of arene C-H bonds by cationic rhodium complexes.

    PubMed

    Montag, Michael; Efremenko, Irena; Cohen, Revital; Shimon, Linda J W; Leitus, Gregory; Diskin-Posner, Yael; Ben-David, Yehoshoa; Salem, Hiyam; Martin, Jan M L; Milstein, David

    2010-01-01

    Sequential addition of CO molecules to cationic aryl-hydrido Rh(III) complexes of phosphine-based (PCP) pincer ligands was found to lead first to C-H reductive elimination and then to C-H oxidative addition, thereby demonstrating a dual role of CO. DFT calculations indicate that the oxidative addition reaction is directly promoted by CO, in contrast to the commonly accepted view that CO hinders such reactions. This intriguing effect was traced to repulsive pi interactions along the aryl-Rh-CO axis, which are augmented by the initially added CO ligand (due to antibonding interactions between occupied Rh d(pi) orbitals and occupied pi orbitals of both CO and the arene moiety), but counteracted by the second CO ligand (due to significant pi back-donation). These repulsive interactions were themselves linked to significant weakening of the pi-acceptor character of CO in the positively charged rhodium complexes, which is concurrent with an enhanced sigma-donating capability. Replacement of the phosphine ligands by an analogous phosphinite-based (POCOP) pincer ligand led to significant changes in reactivity, whereby addition of CO did not result in C-H reductive elimination, but yielded relatively stable mono- and dicarbonyl aryl-hydrido POCOP-Rh(III) complexes. DFT calculations showed that the stability of these complexes arises from the higher electrophilicity of the POCOP ligand, relative to PCP, which leads to partial reduction of the excessive pi-electron density along the aryl-Rh-CO axis. Finally, comparison between the effects of CO and acetonitrile on C-H oxidative addition revealed that they exhibit similar reactivity, despite their markedly different electronic properties. However, DFT calculations indicate that the two ligands operate by different mechanisms. PMID:19918810

  6. RHODIUM CATALYZED CONJUGATED ADDITION OF UNSATURATED CARBONYL COMPOUNDS BY TRIPHENYLBISMUTH IN AQUEOUS MEDIA AND UNDER AN AIR ATMOSPHERE. (R822668)

    EPA Science Inventory

    Abstract

    In the presence of a rhodium catalyst, small alpha, Greek,small beta, Greek-unsaturated est...

  7. Highly Enantioselective Rhodium-Catalyzed Addition of Arylboroxines to Simple Aryl Ketones: Efficient Synthesis of Escitalopram.

    PubMed

    Huang, Linwei; Zhu, Jinbin; Jiao, Guangjun; Wang, Zheng; Yu, Xingxin; Deng, Wei-Ping; Tang, Wenjun

    2016-03-24

    Highly enantioselective additions of arylboroxines to simple aryl ketones have been achieved for the first time with a Rh/(R,R,R,R)-WingPhos catalyst, thus providing a range of chiral diaryl alkyl carbinols with excellent ee values and yields. (R,R,R,R)-WingPhos has been proven to be crucial for the high reactivity and enantioselectivity. The method has enabled a new, concise, and enantioselective synthesis of the antidepressant drug escitalopram. PMID:26933831

  8. Highly enantioselective and efficient synthesis of flavanones including pinostrobin through the rhodium-catalyzed asymmetric 1,4-addition.

    PubMed

    Korenaga, Toshinobu; Hayashi, Keigo; Akaki, Yusuke; Maenishi, Ryota; Sakai, Takashi

    2011-04-15

    An efficient synthesis of bioactive chiral flavanones (1) was achieved through the Rh-catalyzed asymmetric 1,4-addition of arylboronic acid to chromone. The reaction in toluene proceeded smoothly at room temperature in the presence of 0.5% Rh catalyst with electron-poor chiral diphosphine MeO-F(12)-BIPHEP. In this reaction, the 1,2-addition to (S)-1 frequently occurred to yield (2S,4R)-2,4-diaryl-4-chromanol as a byproduct, which could be reduced by changing the reaction solvent to CH(2)Cl(2) to deactivate the Rh catalyst (3% required). PMID:21413690

  9. Synergistic Rhodium/Phosphoric Acid Catalysis for the Enantioselective Addition of Oxonium Ylides to ortho-Quinone Methides.

    PubMed

    Alamsetti, Santosh Kumar; Spanka, Matthias; Schneider, Christoph

    2016-02-12

    We report herein a powerful and highly stereoselective protocol for the domino-type reaction of diazoesters with ortho-quinone methides generated in situ to furnish densely functionalized chromans with three contiguous stereogenic centers. A transition-metal and a Brønsted acid catalyst were shown to act synergistically to produce a transient oxonium ylide and ortho-quinone methide, respectively, in two distinct cycles. These intermediates underwent subsequent coupling in a conjugate-addition-hemiacetalization event in generally good yield with excellent diastereo- and enantioselectivity. PMID:26762542

  10. Rhodium-Catalyzed Enantioselective Arylation of Aliphatic Imines.

    PubMed

    Kato, Naoya; Shirai, Tomohiko; Yamamoto, Yasunori

    2016-06-01

    Chiral rhodium(I)-catalyzed highly enantioselective arylation of aliphatic N-sulfonyl aldimines with arylboronic acids has been developed. This transformation is achieved by the use of a rhodium/bis(phosphoramidite) catalyst to give enantiomerically enriched α-branched amines (up to 99 % ee). In addition, this system enables efficient synthesis of (+)-NPS R-568 and Cinacalcet which are calcimimetic agents. PMID:27119262

  11. Methanol as a reaction medium and reagent in substrate reactions of rhodium porphyrins.

    PubMed

    Li, Shan; Sarkar, Sounak; Wayland, Bradford B

    2009-09-01

    Methanol solutions of rhodium(III) tetra(p-sulfonatophenyl) porphyrin [(TSPP)Rh(III)] have a hydrogen ion dependent equilibrium between bis-methanol, monomethoxy monomethanol, and bis-methoxy complexes. Reactions of dihydrogen (D(2)) with solutions of [(TSPP)Rh(III)] complexes in methanol produce equilibrium distributions of a rhodium hydride [(TSPP)Rh(III)-D(CD(3)OD)](-4) and rhodium(I) complex [(TSPP)Rh(I)(CD(3)OD)](-5). The rhodium hydride complex in methanol functions as a weak acid with an acid dissociation constant of 1.1(0.1) x 10(-9) at 298 K. Patterns of rhodium hydride substrate reactions in methanol are illustrated by addition with ethene, acetaldehyde, and carbon monoxide to form rhodium alkyl, alpha-hydroxyethyl, and formyl complexes, respectively. The free energy change for the addition reaction of [(TSPP)Rh(III)-D(CD(3)OD)](-4) with CO in methanol to produce a formyl complex (DeltaG(o)(298K) = -4.7(0.1) kcal mol(-1)) is remarkably close to DeltaG(o)(298K) values for analogous reactions in water and benzene. Addition reactions of the rhodium hydride ([(TSPP)Rh(III)-D(CD(3)OD)](-4)) with vinyl olefins invariably yield the anti-Markovnikov product which places the rhodium porphyrin on the less hindered terminal primary carbon center. Addition of the rhodium-methoxide unit in [(TSPP)Rh(III)-OCD(3)(CD(3)OD)](-4) with olefins to form beta-methoxyalkyl complexes places rhodium on the terminal carbon for alkene hydrocarbons and vinyl acetate, but vinyl olefins that have pi-electron withdrawing substituents have a thermodynamic preference for placing rhodium on the interior carbon where negative charge is better accommodated. Equilibrium thermodynamic values for addition of the Rh-OCD(3) unit to olefins in methanol are evaluated and compared with values for Rh-OH addition to olefins in water. PMID:19642648

  12. Diverting Hydrogenations with Wilkinson's Catalyst towards Highly Reactive Rhodium(I) Species.

    PubMed

    Perea-Buceta, Jesus E; Fernández, Israel; Heikkinen, Sami; Axenov, Kirill; King, Alistair W T; Niemi, Teemu; Nieger, Martin; Leskelä, Markku; Repo, Timo

    2015-11-23

    The addition of Barton's base has a dramatic effect on the classic rhodium(III)-mediated hydrogenations promoted by Wilkinson's catalyst. Following the initial oxidative addition, a barrierless reductive elimination of HCl from the traditional rhodium(III) intermediates instantly produces a rhodium(I) monohydride species, which is remarkably reactive in the hydrogenation of several internal alkynes and functionalized trisubstituted alkenes. The direct formation of this species is unprecedented upon addition of molecular hydrogen and its catalytic potential has been hitherto barely explored. PMID:26437764

  13. EVIDENCE FOR CO DISSOCIATION ON RHODIUM SURFACES

    SciTech Connect

    Castner, D.G.; Dubois, L.H.; Sexton, B.A.; Somorjai, G.A.

    1980-06-01

    Carbon monoxide adsorbs molecularly on rhodium surfaces at 300K, but if the rhodium samples are heated in the presence of carbon monoxide, there is evidence for carbon-oxygen bond breaking at step and/or defect sites. The effects of step and defect site density, subsurface oxygen concentration, and oxygen dissolution into the rhodium lattice on CO dissociation are discussed.

  14. Antitumor effect and toxicity of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles in mice bearing breast cancer

    PubMed Central

    2013-01-01

    Background Magnetic fluids containing superparamagnetic iron oxide nanoparticles represent an attractive platform as nanocarriers in chemotherapy. Recently, we developed a formulation of maghemite nanoparticles coated with rhodium (II) citrate, which resulted in in vitro cytotoxicity enhanced up to 4.6 times when compared to free rhodium (II) citrate formulation on breast carcinoma cells. In this work, we evaluate the antitumor activity and toxicity induced by these formulations in Balb/c mice bearing orthotopic 4T1 breast carcinoma. Methods Mice were evaluated with regard to the treatments’ toxicity through analyses of hemogram, serum levels of alanine aminotransferase, iron, and creatinine; DNA fragmentation and cell cycle of bone marrow cells; and liver, kidney and lung histology. In addition, the antitumor activity of rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate was verified by tumor volume reduction, histology and immunohistochemistry. Results Regarding the treatments’ toxicity, no experimental groups had alterations in levels of serum ALT or creatinine, and this suggestion was corroborated by the histopathologic examination of liver and kidney of mice. Moreover, DNA fragmentation frequency of bone marrow cells was lower than 15% in all experimental groups. On the other hand, the complexes rhodium (II) citrate-functionalized maghemite and free rhodium (II) citrate led to a marked growth inhibition of tumor and decrease in CD31 and Ki-67 staining. Conclusions In summary, we demonstrated that both rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate formulations exhibited antitumor effects against 4T1 metastatic breast cancer cell line following intratumoral administration. This antitumor effect was followed by inhibition of both cell proliferation and microvascularization and by tumor tissue injury characterized as necrosis and fibrosis. Remarkably, this is the first published report

  15. Asymmetric dual catalysis via fragmentation of a single rhodium precursor complex.

    PubMed

    Song, Liangliang; Gong, Lei; Meggers, Eric

    2016-06-01

    A strategy for dual transition metal catalysis and organocatalysis is reported via the in situ disintegration of a single rhodium complex. The hereby generated chiral Lewis acid and l-β-phenylalanine synergistically catalyze the Michael addition of α,α-disubstituted aldehydes to α,β-unsaturated 2-acyl imidazoles under the formation of vicinal quaternary/tertiary stereocenters. Conveniently, the chiral-at-metal rhodium catalyst can be synthesized in just two steps starting from rhodium trichloride without the need for any chromatography. PMID:27231188

  16. Degradation of nonmodified and rhodium modified aluminide coating deposited on CMSX 4 superalloy.

    PubMed

    Zagula-Yavorska, Maryana; Wierzbińska, Małgorzata; Gancarczyk, Kamil; Sieniawski, Jan

    2016-07-01

    The Ni-base superalloy CMSX 4 used in the turbine blades of aircraft engines was coated with rhodium layer (0.5-μm thick). Next coated CMSX 4 superalloy was aluminized by the CVD method. The rhodium modified aluminide coating and nonmodified aluminide coating were oxidized at 1100°C at the air atmosphere. The rhodium modified aluminide coating showed about twice better oxidation resistance than the nonmodified one. The spallation equal 62% of the total area was observed on the surface of the nonmodified coating whereas only 36% spallation area was observed on the surface of the rhodium modified aluminide coating after the oxidation test. The oxide layer formed on the surface of the nonmodified coating was composed of nonprotective (Ni,Cr)Al2 O4 and (Ni,Cr)O phases. Aluminium in the coating reacts with oxygen, forming a protective α-Al2 O3 oxide on the surface of the rhodium modified aluminide coating. When the oxide cracks and spalls due to oxidation, additional aluminium from the coating diffuses to the surface to form the oxide. The presence of protective Al2 O3 oxide on the surface of the rhodium modified aluminide coating slows coating degradation. Therefore, rhodium modified aluminide coating has better oxidation resistance than the nonmodified one. PMID:27018853

  17. Structure and transport behavior of In-filled cobalt rhodium antimonide skutterudites

    SciTech Connect

    Eilertsen, James; Berthelot, Romain; Sleight, Arthur W.; Subramanian, M.A.

    2012-06-15

    The effect of indium icosahedral void-site filling on the transport properties of cobalt and rhodium antimonide solid solutions is investigated. Co{sub 4-x}Rh{sub x}Sb{sub 12} and indium-filled In{sub 0.1}Co{sub 4-x}Rh{sub x}Sb{sub 12} solid solutions were synthesized. Partial rhodium substitution produces a distinct clustering-induced lattice strain that is partly relieved upon indium substitution into the skutterudite icosahedral void-sites. Indium lowers the thermal conductivity of all samples near room temperature. A distinct increase in thermal conductivity is observed in all indium-filled rhodium substituted samples at elevated temperatures and is attributed to bipolar thermal conductivity. In addition, the indium-filled samples were subjected to a 6-day heat treatment at 673 K. Void-site filled indium was found to be metastable at this temperature, and was found to partially precipitate during the 6-day heat treatment; thereby presenting concerns over the long-term stability of thermoelectric devices based on indium-filled skutterudites. - Graphical Abstract: Strain in the cobalt rhodium skutterudite solid solutions decreases upon indium filling. Highlights: Black-Right-Pointing-Pointer Unfilled and indium-filled cobalt and rhodium skutterudite solid solutions were synthesized. Black-Right-Pointing-Pointer Indium filling stabilizes the cobalt and rhodium skutterudite solid solutions. Black-Right-Pointing-Pointer The thermoelectric properties of all compositions are reported. Black-Right-Pointing-Pointer The thermal conductivity of rhodium-rich compositions is strongly affected by indium filling. Black-Right-Pointing-Pointer Void-site filled indium was found to be metastable.

  18. Rhodium(III)-catalyzed C-C coupling of 7-azaindoles with vinyl acetates and allyl acetates.

    PubMed

    Li, Shuai-Shuai; Wang, Cheng-Qi; Lin, Hui; Zhang, Xiao-Mei; Dong, Lin

    2016-01-01

    The behaviour of electron-rich alkenes with 7-azaindoles in rhodium(III)-catalyzed C-H activation is investigated. Various substituted vinyl acetates and allyl acetates as coupling partners reacted smoothly providing a wide variety of 7-azaindole derivatives, and the selectivity of the coupling reaction is alkene-dependent. In addition, the approaches of rhodium(III)-catalyzed dehydrogenative Heck-type reaction (DHR) and carbonylation reaction were quite novel and simple. PMID:26553424

  19. Microstructure and oxidation behaviour investigation of rhodium modified aluminide coating deposited on CMSX 4 superalloy.

    PubMed

    Zagula-Yavorska, Maryana; Morgiel, Jerzy; Romanowska, Jolanta; Sieniawski, Jan

    2016-03-01

    The CMSX 4 superalloy was coated with rhodium 0.5-μm thick layer and next aluminized by the CVD method. The coating consisted of two layers: the additive and the interdiffusion one. The outward diffusion of nickel from the substrate turned out to be a coating growth dominating factor. The additive layer consists of the β-NiAl phase, whereas the interdiffusion layer consists of the β-NiAl phase with precipitates of σ and μ phases. Rhodium has dissolved in the coating up to the same level in the matrix and in the precipitates. The oxidation test proved that the rhodium modified aluminide coating showed about twice better oxidation resistance than the nonmodified one. PMID:26892917

  20. X-ray photoelectron spectroscopy as a probe of rhodium-ligand interaction in ionic liquids

    NASA Astrophysics Data System (ADS)

    Men, Shuang; Lovelock, Kevin R. J.; Licence, Peter

    2016-02-01

    We use X-ray photoelectron spectroscopy (XPS) to identify the interaction between the rhodium atom and phosphine ligands in six 1-octyl-3-methylimidazolium-based ionic liquids ([C8C1Im][X]). The formation of a mono-phosphine rhodium complex based upon addition of triphenylphosphine (PPh3) is confirmed by XPS in all ionic liquids studied herein. Due to the electron donation effect of the ligand, the rhodium atom becomes more negatively charged and thus exhibits a lower measured binding energy. The influence of the anion basicity on the formation of different types of rhodium complexes is also investigated. By introducing a biphosphine ligand, a chelated diphosphine rhodium complex is formed in ionic liquids with more basic anions and verified by both XPS and Infrared Spectroscopy (IR). The measured Rh 3d binding energies are correlated to the reaction selectivity of a hydroformylation reaction which inspires a method to design a metal catalyst to control the chemical reaction towards desired products in the future.

  1. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  2. Rhodium Nanoparticles for Ultraviolet Plasmonics

    NASA Astrophysics Data System (ADS)

    Watson, Anne; Zhang, Xiao; Alcaraz de La Osa, Rodrigo; Sanz, Juan; Fernandez, Francisco; Moreno, Fernando; Finkelstein, Gleb; Liu, Jie; Everitt, Henry

    We introduce the non-oxidizing catalytic noble metal rhodium for ultraviolet (UV) plasmonics. 8 nm tripod-shaped planar Rh nanoparticles (NPs) were synthesized by a modified polyol reduction chemistry. They have a calculated local surface plasmon resonance (LSPR) near 330 nm. To illustrate the UV plasmonic performance of Rh, p-aminothiophenol (PATP) was attached to the Rh NPs and enhanced Raman and fluorescence were observed upon UV illumination. The PATP Raman spectra produced by UV and visible excitation were respectively in and out of resonance with the Rh NP LSPR. This clearly revealed resonant spectral enhancement in the UV and accelerated photo-damage produced by intense local fields concentrated near the plasmonic Rh NPs. Simultaneously, surface enhanced fluorescence increased during 13 minutes of resonant UV illumination, providing direct evidence of charge transfer from the Rh NPs. The combined local field enhancement and charge transfer demonstrate essential steps toward plasmonically-enhanced ultraviolet photocatalysis. Due to its high chemical stability and strong plasmonic effect, Rh nanoparticles could find wide applications in UV plasmonics.

  3. Mesoporous Silica Nanoparticle-Stabilized and Manganese-Modified Rhodium Nanoparticles as Catalysts for Highly Selective Synthesis of Ethanol and Acetaldehyde from Syngas

    SciTech Connect

    Huang, Yulin; Deng, Weihua; Guo, Enruo; Chung, Po-Wen; Chen, Senniang; Trewyn, Brian; Brown, Robert; Lin, Victor

    2012-03-30

    Well-defined and monodispersed rhodium nanoparticles as small as approximately 2 nm were encapsulated in situ and stabilized in a mesoporous silica nanoparticle (MSN) framework during the synthesis of the mesoporous material. Although both the activity and selectivity of MSN-encapsulated rhodium nanoparticles in CO hydrogenation could be improved by the addition of manganese oxide as expected, the carbon selectivity for C2 oxygenates (including ethanol and acetaldehyde) was unprecedentedly high at 74.5 % with a very small amount of methanol produced if rhodium nanoparticles were modified by manganese oxide with very close interaction.

  4. Rhodium(i), rhodium(iii) and iridium(iii) carbaporphyrins.

    PubMed

    Adiraju, Venkata A K; Ferrence, Gregory M; Lash, Timothy D

    2016-09-21

    Treatment of a benzocarbaporphyrin with [Rh(CO)2Cl]2 in refluxing dichloromethane gave a rhodium(i) dicarbonyl complex, and further reaction in refluxing pyridine afforded an organometallic rhodium(iii) derivative. The carbaporphyrin also reacted with [Ir(COD)Cl]2 and pyridine in refluxing p-xylene to generate a related iridium(iii) compound. These novel metalated porphyrinoids retained strongly diatropic characteristics and were fully characterized by XRD. PMID:27529466

  5. Oxygen Reduction Mechanism of Monometallic Rhodium Hydride Complexes.

    PubMed

    Halbach, Robert L; Teets, Thomas S; Nocera, Daniel G

    2015-08-01

    The reduction of O2 to H2O mediated by a series of electronically varied rhodium hydride complexes of the form cis,trans-Rh(III)Cl2H(CNAd)(P(4-X-C6H4)3)2 (2) (CNAd = 1-adamantylisocyanide; X = F (2a), Cl (2b), Me (2c), OMe (2d)) was examined through synthetic and kinetic studies. Rhodium(III) hydride 2 reacts with O2 to afford H2O with concomitant generation of trans-Rh(III)Cl3(CNAd)(P(4-X-C6H4)3)2 (3). Kinetic studies of the reaction of the hydride complex 2 with O2 in the presence of HCl revealed a two-term rate law consistent with an HX reductive elimination (HXRE) mechanism, where O2 binds to a rhodium(I) metal center and generates an η(2)-peroxo complex intermediate, trans-Rh(III)Cl(CNAd)(η(2)-O2)(P(4-X-C6H4)3)2 (4), and a hydrogen-atom abstraction (HAA) mechanism, which entails the direct reaction of O2 with the hydride. Experimental data reveal that the rate of reduction of O2 to H2O is enhanced by electron-withdrawing phosphine ligands. Complex 4 was independently prepared by the addition of O2 to trans-Rh(I)Cl(CNAd)(P(4-X-C6H4)3)2 (1). The reactivity of 4 toward HCl reveals that such peroxo complexes are plausible intermediates in the reduction of O2 to H2O. These results show that the given series of electronically varied rhodium(III) hydride complexes facilitate the reduction of O2 to H2O according to a two-term rate law comprising HXRE and HAA pathways and that the relative rates of these two pathways, which can occur simultaneously and competitively, can be systematically modulated by variation of the electronic properties of the ancillary ligand set. PMID:26168057

  6. Superconductivity in zirconium-rhodium alloys

    NASA Technical Reports Server (NTRS)

    Zegler, S. T.

    1969-01-01

    Metallographic studies and transition temperature measurements were made with isothermally annealed and water-quenched zirconium-rhodium alloys. The results clarify both the solid-state phase relations at the Zr-rich end of the Zr-Rh alloy system and the influence upon the superconducting transition temperature of structure and composition.

  7. Spectroscopic and electron microscopic investigation of iron oxides formed in a highly alkaline medium in the presence of rhodium ions

    NASA Astrophysics Data System (ADS)

    Krehula, Stjepko; Musić, Svetozar

    2010-07-01

    The effect of the presence of rhodium ions on the formation of iron oxides in a highly alkaline precipitation system was investigated using X-ray powder diffraction (XRD), 57Fe Mössbauer and FT-IR spectroscopies, field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS). Acicular α-FeOOH particles precipitated in a highly alkaline medium with the addition of tetramethylammonium hydroxide (TMAH) were used as reference material. Characterization of α-FeOOH samples formed in the presence of rhodium ions showed a somewhat smaller mean crystallite size, increased unit-cell dimensions, a reduced average hyperfine magnetic field and a slight shift in the position of IR absorption bands in comparison with the reference α-FeOOH sample. By additional heating of the precipitation system, α-FeOOH precipitated in the presence of rhodium ions transformed to α-Fe 2O 3 crystals in the form of hexagonal bipyramids via a dissolution-recrystallization process. Metallic rhodium nanoparticles were formed simultaneously by the reduction of Rh 3+ ions in the presence of the products of TMAH thermal decomposition (trimethylamine and methanol). These rhodium nanoparticles acted as a catalyst for the reductive dissolution of α-Fe 2O 3 particles and the formation of Fe 3O 4 crystals in the form of octahedrons.

  8. Determination of phenolic compounds using spectral and color transitions of rhodium nanoparticles.

    PubMed

    Gatselou, Vasiliki; Christodouleas, Dionysios C; Kouloumpis, Antonios; Gournis, Dimitrios; Giokas, Dimosthenis L

    2016-08-17

    This work reports a new approach for the determination of phenolic compounds based on their interaction with citrate-capped rhodium nanoparticles. Phenolic compounds (i.e., catechins, gallates, cinnamates, and dihydroxybenzoic acids) were found to cause changes in the size and localized surface plasmon resonance of rhodium nanoparticles, and therefore, give rise to analyte-specific spectral and color transitions in the rhodium nanoparticle suspensions. Upon reaction with phenolic compounds (mainly dithydroxybenzoate derivatives, and trihydroxybenzoate derivatives), new absorbance peaks at 350 nm and 450 nm were observed. Upon reaction with trihydroxybenzoate derivatives, however, an additional absorbance peak at 580 nm was observed facilitating the speciation of phenolic compounds in the sample. Both absorbance peaks at 450 nm and 580 nm increased with increasing concentration of phenolic compounds over a linear range of 0-500 μM. Detection limits at the mid-micromolar levels were achieved, depending on the phenolic compound involved, and with satisfactory reproducibility (<7.3%). On the basis of these findings, two rhodium nanoparticles-based assays for the determination of the total phenolic content and total catechin content were developed and applied in tea samples. The obtained results correlated favorably with commonly used methods (i.e., Folin-Ciocalteu and aluminum complexation assay). Not the least, the finding that rhodium nanoparticles can react with analytes and exhibit unique localized surface plasmon resonance bands in the visible region, can open new opportunities for developing new optical and sensing analytical applications. PMID:27286772

  9. 103Rh NMR spectroscopy and its application to rhodium chemistry.

    PubMed

    Ernsting, Jan Meine; Gaemers, Sander; Elsevier, Cornelis J

    2004-09-01

    Rhodium is used for a number of large processes that rely on homogeneous rhodium-catalyzed reactions, for instance rhodium-catalyzed hydroformylation of alkenes, carbonylation of methanol to acetic acid and hydrodesulfurization of thiophene derivatives (in crude oil). Many laboratory applications in organometallic chemistry and catalysis involve organorhodium chemistry and a wealth of rhodium coordination compounds is known. For these and other areas, 103Rh NMR spectroscopy appears to be a very useful analytical tool. In this review, most of the literature concerning 103Rh NMR spectroscopy published from 1989 up to and including 2003 has been covered. After an introduction to several experimental methods for the detection of the insensitive 103Rh nucleus, a discussion of factors affecting the transition metal chemical shift is given. Computational aspects and calculations of chemical shifts are also briefly addressed. Next, the application of 103Rh NMR in coordination and organometallic chemistry is elaborated in more detail by highlighting recent developments in measurement and interpretation of 103Rh NMR data, in relation to rhodium-assisted reactions and homogeneous catalysis. The dependence of the 103Rh chemical shift on the ligands at rhodium in the first coordination sphere, on the complex geometry, oxidation state, temperature, solvent and concentration is treated. Several classes of compounds and special cases such as chiral rhodium compounds are reviewed. Finally, a section on scalar coupling to rhodium is provided. PMID:15307053

  10. Cyclopentadiene-mediated hydride transfer from rhodium complexes.

    PubMed

    Pitman, C L; Finster, O N L; Miller, A J M

    2016-07-12

    Attempts to generate a proposed rhodium hydride catalytic intermediate instead resulted in isolation of (Cp*H)Rh(bpy)Cl (1), a pentamethylcyclopentadiene complex, formed by C-H bond-forming reductive elimination from the fleeting rhodium hydride. The hydride transfer ability of diene 1 was explored through thermochemistry and hydride transfer reactions, including the reduction of NAD(+). PMID:26949917

  11. Rhodium Oxide Cluster Ions Studied by Thermal Desorption Spectrometry.

    PubMed

    Mafuné, Fumitaka; Takenouchi, Masato; Miyajima, Ken; Kudoh, Satoshi

    2016-01-28

    Gas-phase rhodium oxide clusters, RhnOm(+), were investigated by measuring the rate constants of oxidation and thermal desorption spectrometry. RhnOm(+) was suggested to be categorized into different states as m/n ≤ 1, 1 < m/n ≤ 1.5, and 1.5 < m/n in terms of energy and kinetics. For m/n ≤ 1, the O atoms readily adsorbed on the cluster with a large binding energy until RhO was formed. Under the O2-rich environment, oxidation proceeded until Rh2O3 was formed with a moderate binding energy. In addition, O2 molecules attached weakly to the cluster, and Rh2O3 formed RhnOm(+) (1.5 < m/n). The energetics and geometries of Rh6Om(+) (m = 6-12) were obtained using density functional theory calculations and were found to be consistent with the experimental results. PMID:26730616

  12. Contrast and dose with molybdenum, molybdenum-rhodium, and rhodium-rhodium target-filter combinations in mammography

    SciTech Connect

    Gingold, E.L.; Wu, Xizeng; Barnes, G.T.

    1997-03-01

    Molybdenum target-molybdenum filter (Mo-Mo) source assemblies are commonly used for screen-film mammography and produce spectra rich in bremsstrahlung between 15 and 20 keV, and molybdenum characteristic x-rays (K{sub {alpha}} = 17.5 keV and K{sub {beta}} = 19.6 keV) that are, optimal for imaging a large segment of patients. With the normal variability of breast size and tissue composition that occurs in the population, Mo-Mo spectra are not always optimal, however. Particularly for thick, fibroglandular breast tissue, higher energy spectra are required, and are achieved to a limited degree by operating Mo-Mo tubes at higher tube potentials. At these higher tube potentials (28-31 kVp), the spectrum exiting the breast has a large contribution from bremsstrahlung of more than 23 keV. Most of the lower energy photons, including the molybdenum characteristic x-rays, are absorbed and result in a higher average tissue dose than is necessary. Incident spectra with x-ray energies in the 20-23 keV range are preferable. Such spectra have been realized with higher atomic number materials, such as rhodium (Rh), used for the anode or k-edge filter. The higher K-absorption edge of rhodium allows transmission of bremsstrahlung in the 20-23.2 keV range, and at a given kilovoltage the Rh-Rh combination results in a more penetrating beam than either Mo-Mo or Mo-Rh (molybdenum x-ray tube anode with rhodium K-edge filter) because of the difference in energy between the rhodium and molybdenum characteristic x-rays. The greater penetrating power of these spectra results in decreased entrance skin exposure and average glandular dose to the breast than with the conventional Mo-Mo spectra. However, associated with this can be a reduction in subject contrast in the mammogram. The objective of this study was to compare the contrast and dose produced with the three source assemblies as a function of x-ray tube potential, breast thickness, and breast parenchymal composition.

  13. Rhodium oxides in unusual oxidation states

    NASA Astrophysics Data System (ADS)

    Reisner, Barbara Alice

    Mixed valence RhIII/RhIV oxides have been proposed as a promising class of candidate compounds for superconductivity. Unfortunately, it is difficult to stabilize rhodates with a formal oxidation state approaching RhIV, as other techniques used for the synthesis of rhodium. oxides favor the most commonly observed formal oxidation state, RhIII. One technique which has been used to stabilize metal oxides in high formal oxidation states is crystallization from molten hydroxides. This thesis explores the use of molten hydroxides to enhance the reactivity of rhodium oxides in order to synthesize rhodates with high formal oxidation states. K0.5RhO2, Rb0.2RhO2, and CsxRhO2 were synthesized from pure alkali metal hydroxides. All crystallized with a previously unobserved polytype in the alkali metal rhodate system. Due to the low activity of dissolved oxygen species in LiOH and NaOH, LiRhO2 and NaRhO2 cannot be crystallized. The formal oxidation state of rhodium in AxRhO2 (A = K, Rb, Cs) is a function of the alkali metal hydroxide used to synthesize these oxides. These materials exhibit remarkable stability for layered metal oxides containing the heavier alkali metals, but all phases are susceptible to intercalation by water. The synthesis, structural characterization, magnetic susceptibility, and reactivity of these oxides are reported. Sr2RhO4 and a new rhodate were crystallized from a KOH-Sr(OH)2 flux. The synthesis and characterization of these materials is reported. Efforts to substitute platinum for rhodium in Sr 2RhO4 are also discussed. Mixed alkali metal-alkaline earth metal hydroxide fluxes were used to crystallize LiSr3RhO6, and NaSr3RhO 6. The synthesis of LiSr3RhO6 and NaSr3RhO 6 represents the first example of the stabilization of a rhodium oxide with a formal oxidation state approaching RhV. X-ray diffraction, electron beam microprobe analysis, thermogravimetric analysis, potentiometric titrations, X-ray photoelectron spectroscopy, and magnetic susceptibility

  14. Chemical Posttranslational Modification with Designed Rhodium(II) Catalysts.

    PubMed

    Martin, S C; Minus, M B; Ball, Z T

    2016-01-01

    Natural enzymes use molecular recognition to perform exquisitely selective transformations on nucleic acids, proteins, and natural products. Rhodium(II) catalysts mimic this selectivity, using molecular recognition to allow selective modification of proteins with a variety of functionalized diazo reagents. The rhodium catalysts and the diazo reactivity have been successfully applied to a variety of protein folds, the chemistry succeeds in complex environments such as cell lysate, and a simple protein blot method accurately assesses modification efficiency. The studies with rhodium catalysts provide a new tool to study and probe protein-binding events, as well as a new synthetic approach to protein conjugates for medical, biochemical, or materials applications. PMID:27586326

  15. Structural properties of small rhodium clusters

    SciTech Connect

    Soon, Yee Yeen; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    We report a systematic study of the structural properties of rhodium clusters at the atomistic level. A novel global-minimum search algorithm, known as parallel tempering multicanonical basin hopping plus genetic algorithm (PTMBHGA), is used to obtain the geometrical structures with lowest minima at the semi-empirical level where Gupta potential is used to describe the atomic interaction among the rhodium atoms. These structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA). The structures are optimized for different spin multiplicities. The ones with lowest energies will be taken as ground-state structures. In most cases, we observe only minor changes in the geometry and bond length of the clusters as a result of DFT-level re-optimization. Only in some limited cases, the initial geometries obtained from the PTMBHGA are modified by the re-optimization. The variation of structural properties, such as ground-state geometry, symmetry and binding energy, with respect to the cluster size is studied and agreed well with other results available in the literature.

  16. Examining Rhodium Catalyst complexes for Use with Conducting Polymers Designed for Fuel Cells in Preparing Biosensors

    SciTech Connect

    Carpio, M.M.; Kerr, J.B.

    2005-01-01

    Biosensing devices are important because they can detect, record, and transmit information regarding the presence of, or physiological changes in, different chemical or biological materials in the environment. The goal of this research is to prepare a biosensing device that is effective, quick, and low cost. This is done by examining which chemicals will work best when placed in a biosensor. The first study involved experimenting on a rhodium catalyst complexed with ligands such as bipyridine and imidazole. The rhodium catalyst is important because it is reduced from RhIII to RhI, forms a hydride by reaction with water and releases the hydride to react with nicotinamide adenine dinucleotide (NAD+) to selectively produce 1,4-NADH, the reduced form of NAD+. The second study looked at different types of ketones and enzymes for the enzyme-substrate reaction converting a ketone into an alcohol. Preliminary results showed that the rhodium complexed with bipyridine was able to carry out all the reactions, while the rhodium complexed with imidazole was not able to produce and release hydrides. In addition, the most effective ketone to use is benzylacetone with the enzyme alcohol dehydrogenase from baker’s yeast. Future work includes experimenting with bis-imidazole, which mimics the structure of bipyridine to see if it has the capability to reduce and if the reduction rate is comparable to the bipyridine complex. Once all testing is completed, the fastest catalysts will be combined with polymer membranes designed for fuel cells to prepare biosensing devices that can be used in a variety of applications including ones in the medical and environmental fields.

  17. Low gravity containerless processing of immiscible gold rhodium alloys

    NASA Technical Reports Server (NTRS)

    Andrews, J. Barry

    1986-01-01

    Under normal one-g conditions immiscible alloys segregate extensively during solidification due to sedementation of the more dense of the immiscible liquid phases. However, under low-g conditions it should be possible to form a dispersion of the two immiscible liquids and maintain this dispersed structure during solidification. Immiscible (hypermonotectic) gold-rhodium alloys were processed in the Marshall Space Flight Center 105 meter drop tube in order to investigate the influence of low gravity, containerless solidification on their microstructure. Hypermonotectic alloys composed of 65 atomic % rhodium exhibited a tendency for the gold rich liquid to wet the outer surface of the containerless processed samples. This tendency led to extensive segregation in several cases. However, well dispersed microstructures consisting of 2 to 3 micron diameter rhodium-rich spheres in a gold-rich matrix were produced in 23.4 atomic % rhodium alloys. This is one of the best dispersions obtained in research on immiscible alloy-systems to data.

  18. Aberration corrected STEM of iron rhodium nanoislands

    NASA Astrophysics Data System (ADS)

    McLaren, M. J.; Hage, F. S.; Loving, M.; Ramasse, Q. M.; Lewis, L. H.; Marrows, C. H.; Brydson, R. M. D.

    2014-06-01

    Iron-rhodium (FeRh) nanoislands of equiatomic composition have been analysed using scanning transmission electron microscopy (STEM) electron energy loss spec-troscopy(EELS) and high angle annular dark field (HAADF) techniques. Previous magne-tometry results have lead to a hypothesis that at room temperature the core of the islands are antiferromagnetic while the shell has a small ferromagnetic signal. The causes of this effect are most likely to be a difference in composition at the edges or a strain on the island that stretches the lattice and forces the ferromagnetic transition. The results find, at the film-substrate interface, an iron-rich layer ~ 5 Å thick that could play a key role in affecting the magnetostructural transition around the interfacial region and account for the room temperature ferromagnetism.

  19. General Route to Cyclobutadiene Rhodium Complexes.

    PubMed

    Perekalin, Dmitry S; Shvydkiy, Nikita V; Nelyubina, Yulia V; Kudinov, Alexander R

    2015-11-01

    Cyclobutadiene rhodium complexes bear high potential for applications in organometallic synthesis and catalysis. We have found that the cyclobutadiene complexes with substitutionally labile p-xylene ligands [(C4 R4 )Rh(p-xylene)](+) can be synthesized in one step from the commercially available bis(ethylene) complex [{(C2 H4 )2 RhCl}2 ], p-xylene, and internal alkynes. The replacement of p-xylene by various ligands provides a general access to other [(C4 R4 )Rh] compounds, such as [(C4 R4 )RhCl]x , [(C4 R4 )RhL3 ](+) , [(C4 R4 )Rh(C5 H5 )], and [(C4 R4 )Rh(arene)](+) . Complex [(C4 Et4 )Rh(p-xylene)](+) also catalyzes an unusual cycloisomerization of a 1,11-dien-6-yne into a bicyclic diene. PMID:26387565

  20. Branching Out: Rhodium-Catalyzed Allylation with Alkynes and Allenes.

    PubMed

    Koschker, Philipp; Breit, Bernhard

    2016-08-16

    We present a new and efficient strategy for the atom-economic transformation of both alkynes and allenes to allylic functionalized structures via a Rh-catalyzed isomerization/addition reaction which has been developed in our working group. Our methodology thus grants access to an important structural class valued in modern organic chemistry for both its versatility for further functionalization and the potential for asymmetric synthesis with the construction of a new stereogenic center. This new methodology, inspired by mechanistic investigations by Werner in the late 1980s and based on preliminary work by Yamamoto and Trost, offers an attractive alternative to other established methods for allylic functionalization such as allylic substitution or allylic oxidation. The main advantage of our methodology consists of the inherent atom economy in comparison to allylic oxidation or substitution, which both produce stoichiometric amounts of waste and, in case of the substitution reaction, require prefunctionalization of the starting material. Starting out with the discovery of a highly branched-selective coupling reaction of carboxylic acids with terminal alkynes using a Rh(I)/DPEphos complex as the catalyst system, over the past 5 years we were able to continuously expand upon this chemistry, introducing various (pro)nucleophiles for the selective C-O, C-S, C-N, and C-C functionalization of both alkynes and the double-bond isomeric allenes by choosing the appropriate rhodium/bidentate phosphine catalyst. Thus, valuable compounds such as branched allylic ethers, sulfones, amines, or γ,δ-unsaturated ketones were successfully synthesized in high yields and with a broad substrate scope. Beyond the branched selectivity inherent to rhodium, many of the presented methodologies display additional degrees of selectivity in regard to regio-, diastereo-, and enantioselective transformations, with one example even proceeding via a dynamic kinetic resolution. Many advances

  1. Light induced catalytic intramolecular hydrofunctionalization of allylphenols mediated by porphyrin rhodium(iii) complexes.

    PubMed

    Liu, Xu; Wang, Zikuan; Fu, Xuefeng

    2016-09-14

    Catalytic intramolecular hydrofunctionalization of allylphenols to heterocyclic compounds mediated by rhodium(iii) porphyrin complexes was described. The Wacker-type intermediate β-heterocyclic alkyl rhodium complex was independently synthesized and crystallized. PMID:27482840

  2. Enantioselective Access to Spirocyclic Sultams by Chiral Cp(x) -Rhodium(III)-Catalyzed Annulations.

    PubMed

    Pham, Manh V; Cramer, Nicolai

    2016-02-12

    Chiral spirocyclic sultams are a valuable compound class in organic and medicinal chemistry. A rapid entry to this structural motif involves a [3+2] annulation of an N-sulfonyl ketimine and an alkyne. Although the directing-group properties of the imino group for C-H activation have been exploited, the developments of related asymmetric variants have remained very challenging. The use of rhodium(III) complexes equipped with a suitable atropchiral cyclopentadienyl ligand, in conjunction with a carboxylic acid additive, enables an enantioselective and high yielding access to such spirocyclic sultams. PMID:26836575

  3. Rhodium(i)-catalysed skeletal reorganisation of benzofused spiro[3.3]heptanes via consecutive carbon-carbon bond cleavage.

    PubMed

    Matsuda, Takanori; Yuihara, Itaru; Kondo, Kazuki

    2016-08-01

    Skeletal reorganisation of benzofused spiro[3.3]heptanes has been achieved using rhodium(i) catalysts. The reaction of benzofused 2-(2-pyridylmethylene)spiro[3.3]heptanes proceeds via sequential C-C bond oxidative addition and β-carbon elimination. On the other hand, benzofused spiro[3.3]heptan-2-ols undergo two consecutive β-carbon elimination processes. In both cases, substituted naphthalenes are obtained. PMID:27357097

  4. Rhodium-catalyzed oxidative coupling of triarylmethanols with internal alkynes via successive C-H and C-C bond cleavages.

    PubMed

    Uto, Toshihiko; Shimizu, Masaki; Ueura, Kenji; Tsurugi, Hayato; Satoh, Tetsuya; Miura, Masahiro

    2008-01-01

    The rhodium-catalyzed oxidative coupling of triarylmethanols with internal alkynes effectively proceeds in a 1:2 manner via cleavage of C-H and C-C bonds to produce the corresponding naphthalene derivatives. Addition of tri- or tetraphenylcyclopentadiene as a ligand is crucial for the reaction to occur efficiently. PMID:18052297

  5. Size control of rhodium particles of silica-supported catalysts using water-in-oil microemulsion

    NASA Astrophysics Data System (ADS)

    Kishida, Masahiro; Hanaoka, Toshiaki; Kim, Won Young; Nagata, Hideo; Wakabayashi, Katsuhiko

    1997-11-01

    Effects of components of water-in-oil microemulsions on rhodium particle sizes of silica-supported rhodium catalysts were investigated in the catalyst preparation method using microemulsion. In the case of the microemulsion of polyoxyethylene(23)dodecyl ether/ n-alcohols/RhCl 3 aq., the rhodium particle size increased from 3.4 to 5.0 nm as the specific permittivity of the organic solvent increased. The chain length of hydrophilic group of polyoxyethylene- p-nonylphenyl ether ( n = 5 to 15) employed as surfactants had an effect on the rhodium particle size where the rhodium size ranged between 2.0 and 3.6 nm. The rhodium particle size was 1.5 nm in the case of sodium bis(2-ethylhexyl) sulfocuccinate and this value was found to be the smallest. These results could be interpreted in terms of the adsorption of the surfactant on rhodium-hydrazine particle surface.

  6. Superconductivity and magnetism of complex rhodium borides

    NASA Astrophysics Data System (ADS)

    Burkhanov, G. S.; Lachenkov, S. A.; Khlybov, E. P.; Dankin, D. G.; Kulikova, L. F.

    2013-05-01

    A number of complex rhodium borides with an LuRu4B4-type structure is synthesized; these are DyRh4B4 (samples HP) with T c ≈ 4.5 K, DyRh3.8Ru0.2B4 (samples AM) with T c ≈ 4.5 K, Dy0.8Er0.2Rh3.8Ru0.2B4 (samples AM) with T c ≈ 6.3 K, and HoRh3.8Ru0.2B4 (samples AM) with T c ≈ 6.0 K. The temperature dependence of upper critical field B c2( T) for all the samples under study exhibits an anomalous behavior. In all cases, the curve B c2( T) demonstrates a point of inflection, after which the curve deviates from the classical parabolic law abruptly upward for DyRh4B4 and DyRh3.8Ru0.2B4 (the 1st group of compounds) and downward for the Dy0.8Er0.2Rh3.8Ru0.2B4 and HoRh3.8Ru0.2B4 compounds (the 2nd group). These compounds are found to be characterized by of the following phase transitions: paramagnet → ferrimagnet → superconductor (retained ferrimagnetism) → antiferromagnet (retained superconductivity). The latter transition to the antiferromagnetic state occurs only in the compounds of the 1st group. It is found that, for the DyRh3.8Ru0.2B4 compound, no traditional Meissner effect is observed but the so-called Volleben effect (paramagnetic Meissner effect) takes place.

  7. In vitro permeation of platinum and rhodium through Caucasian skin.

    PubMed

    Franken, A; Eloff, F C; Du Plessis, J; Badenhorst, C J; Jordaan, A; Du Plessis, J L

    2014-12-01

    During platinum group metals (PGMs) refining the possibility exists for dermal exposure to PGM salts. The dermal route has been questioned as an alternative route of exposure that could contribute to employee sensitisation, even though literature has been focused on respiratory exposure. This study aimed to investigate the in vitro permeation of platinum and rhodium through intact Caucasian skin. A donor solution of 0.3mg/ml of metal, K2PtCl4 and RhCl3 respectively, was applied to the vertical Franz diffusion cells with full thickness abdominal skin. The receptor solution was removed at various intervals during the 24h experiment, and analysed with high resolution ICP-MS. Skin was digested and analysed by ICP-OES. Results indicated cumulative permeation with prolonged exposure, with a significantly higher mass of platinum permeating after 24h when compared to rhodium. The mass of platinum retained inside the skin and the flux of platinum across the skin was significantly higher than that of rhodium. Permeated and skin retained platinum and rhodium may therefore contribute to sensitisation and indicates a health risk associated with dermal exposure in the workplace. PMID:25084315

  8. Electronic and magnetic properties of small rhodium clusters

    SciTech Connect

    Soon, Yee Yeen; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    We report a theoretical study of the electronic and magnetic properties of rhodium-atomic clusters. The lowest energy structures at the semi-empirical level of rhodium clusters are first obtained from a novel global-minimum search algorithm, known as PTMBHGA, where Gupta potential is used to describe the atomic interaction among the rhodium atoms. The structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof generalized gradient approximation. For the purpose of calculating the magnetic moment of a given cluster, we calculate the optimized structure as a function of the spin multiplicity within the DFT framework. The resultant magnetic moments with the lowest energies so obtained allow us to work out the magnetic moment as a function of cluster size. Rhodium atomic clusters are found to display a unique variation in the magnetic moment as the cluster size varies. However, Rh{sub 4} and Rh{sub 6} are found to be nonmagnetic. Electronic structures of the magnetic ground-state structures are also investigated within the DFT framework. The results are compared against those based on different theoretical approaches available in the literature.

  9. Ring Expansion and Rearrangements of Rhodium(II) Azavinyl Carbenes

    PubMed Central

    Selander, Nicklas; Worrell, Brady T.

    2013-01-01

    An efficient, regioselective and convergent method for the ring expansion and rearrangement of 1-sulfonyl-1,2,3-triazoles under rhodium(II)-catalyzed conditions is described. These denitrogenative reactions form substituted enaminone and olefin-based products, which in the former case can be further functionalized to unique products rendering the sulfonyl triazole traceless. PMID:23161725

  10. Discovery of rubidium, strontium, molybdenum, and rhodium isotopes

    SciTech Connect

    Parker, A.M.; Thoennessen, M.

    2012-07-15

    Currently, 31 rubidium, 35 strontium, 35 molybdenum, and 38 rhodium isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  11. Internal stresses and structure of electrolytic films of ruthenium, rhodium, and palladium

    SciTech Connect

    Medyanik, V.N.

    1986-01-01

    Films of ruthenium, rhodium, and palladium are used as targets in nuclear physics experiments in the form of metal foils. The authors investigate how the current density and the concentration of metal in the electrolyte influence the internal stresses, the grain size, and the texture of electrolytic films of ruthenium, rhodium, and palladium. The grain size of rhodium and palladium films increases with the current density, but for ruthenium there is no exact relationship. The increase in grain size in films of rhodium and palladium leads to a reduction in the internal stresses.

  12. Optimization of Rhodium-Based Catalysts for Mixed Alcohol Synthesis -- 2011 Progress Report

    SciTech Connect

    Gerber, Mark A.; Gray, Michel J.; Albrecht, Karl O.; Rummel, Becky L.

    2011-10-01

    Pacific Northwest National Laboratory has been conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). In recent years, this research has primarily involved the further development of catalysts containing rhodium and manganese based on the results of earlier catalyst screening tests. Research during FY 2011 continued to examine the performance of RhMn catalysts on alternative supports including selected zeolite, silica, and carbon supports. Catalyst optimization continued using both the Davisil 645 and Merck Grade 7734 silica supports. Research also was initiated in FY 2011, using the both Davisil 645 silica and Hyperion CS-02C-063 carbon supports, to evaluate the potential for further improving catalyst performance, through the addition of one or two additional metals as promoters to the catalysts containing Rh, Mn, and Ir.

  13. Rhodium catalysed hydroformylation of alkenes using highly fluorophilic phosphines.

    PubMed

    Adams, Dave J; Bennett, James A; Cole-Hamilton, David J; Hope, Eric G; Hopewell, Jonathan; Kight, Jo; Pogorzelec, Peter; Stuart, Alison M

    2005-12-21

    Highly fluorophilic phosphines incorporating at least one aromatic ring containing two directly attached perfluoroalkyl groups have been synthesised, their partition coefficients (organic phase : fluorous phase) measured and their electronic properties probed using (1)J(PtP) data for their trans-[PtCl(2)L(2)] complexes. These phosphines have been used as modifying ligands for the rhodium catalysed hydroformylation of 1-octene in perfluorocarbon solvents. Catalyst activity, regioselectivity and the levels of rhodium leaching to the product phase vary with the substitution patterns of the modifying ligands that do not correlate with the electronic properties or partition coefficients of these ligands, but can be interpreted in terms of differences in the resting states of the catalysts. PMID:16311639

  14. Preparation and reactivity of macrocyclic rhodium(III) alkyl complexes

    SciTech Connect

    Carraher, Jack M.; Ellern, Arkady; Bakac, Andreja

    2013-09-21

    Macrocyclic rhodium(II) complexes LRh(H2O)(2+) (L = L-1 = cyclam and L-2 = meso-Me-6-cyclam) react with alkyl hydroperoxides RC(CH3)(2)OOH to generate the corresponding rhodium(III) alkyls L(H2O)RhR2+ (R = CH3, C2H5, PhCH2). Methyl and benzyl complexes can also be prepared by bimolecular group transfer from alkyl cobaloximes (dmgH)(2)(H2O) CoR and (dmgBF(2))(2)(H2O) CoR (R = CH3, PhCH2) to LRh(H2O)(2+). The new complexes were characterized by solution NMR and by crystal structure analysis. They exhibit great stability in aqueous solution at room temperature, but undergo efficient Rh-C bond cleavage upon photolysis. (C) 2013 Elsevier B.V. All rights reserved.

  15. Plasmonics in the UV range with Rhodium nanocubes

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Gutiérrez, Y.; Li, P.; Barreda, Á. I.; Watson, A. M.; Alcaraz de la Osa, R.; Finkelstein, G.; González, F.; Ortiz, D.; Saiz, J. M.; Sanz, J. M.; Everitt, H. O.; Liu, J.; Moreno, F.

    2016-04-01

    Plasmonics in the UV-range constitutes a new challenge due to the increasing demand to detect, identify and destroy biological toxins, enhance biological imaging, and characterize semiconductor devices at the nanometer scale. Silver and aluminum have an efficient plasmonic performance in the near UV region, but oxidation reduces its performance in this range. Recent studies point out rhodium as one of the most promising metals for this purpose: it has a good plasmonic response in the UV and, as gold in the visible, it presents a low tendency to oxidation. Moreover, its easy fabrication through chemical means and its potential for photocatalytic applications, makes this material very attractive for building plasmonic tools in the UV. In this work, we will show an overview of our recent collaborative research with rhodium nanocubes (NC) for Plasmonics in the UV.

  16. Hydrodesulfurization Properties of Rhodium Phosphide: Comparison with Rhodium Metal and Sulfide Catalysts

    SciTech Connect

    Hayes, John R.; Bowker, Richard H.; Gaudette, Amy F.; Smith, Mica C.; Moak, Cameron E.; Nam, Charles Y.; Pratum, Thomas K.; Bussell, Mark E.

    2010-12-15

    Silica-supported rhodium phosphide (Rh2P/SiO2) catalysts were prepared and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), 31P solid-state NMR spectroscopy, X-ray photoelectron spectroscopy (XPS), and chemisorption measurements. XRD and TEM analysis of a 5 wt.% Rh2P/SiO2 catalyst confirmed the presence of well-dispersed Rh2P crystallites on the silica support having an average crystallite size of 10 nm. NMR spectroscopy showed unsupported and silica-supported Rh2P to be metallic and XPS spectroscopy yielded a surface composition of Rh1.94P1.00 that is similar to that expected from the bulk stoichiometry. The 5 wt.% Rh2P/SiO2 catalyst exhibited a higher dibenzothiophene (DBT) hydrodesulfurization (HDS) activity than did Rh/SiO2 and sulfided Rh/SiO2 catalysts having a similar Rh loading and was also more active than a commercial NiAMo/Al2O3 catalyst. The Rh2P/SiO2 catalyst showed excellent stability over a 100 h DBT HDS activity measurement and was more S tolerant than the Rh/SiO2 catalyst. The Rh2P/SiO2 catalyst strongly favored the hydrogenation pathway for DBT HDS, while the Rh/SiO2 and sulfided Rh/SiO2 catalysts favored the direct desulfurization pathway.

  17. Arylation of rhodium(II) azavinyl carbenes with boronic acids.

    PubMed

    Selander, Nicklas; Worrell, Brady T; Chuprakov, Stepan; Velaparthi, Subash; Fokin, Valery V

    2012-09-12

    A highly efficient and stereoselective arylation of in situ-generated azavinyl carbenes affording 2,2-diaryl enamines at ambient temperatures has been developed. These transition-metal carbenes are directly produced from readily available and stable 1-sulfonyl-1,2,3-triazoles in the presence of a rhodium carboxylate catalyst. In several cases, the enamines generated in this reaction can be cyclized into substituted indoles employing copper catalysis. PMID:22913576

  18. Rhodium(II)-catalyzed enantioselective synthesis of troponoids.

    PubMed

    Murarka, Sandip; Jia, Zhi-Jun; Merten, Christian; Daniliuc, Constantin-G; Antonchick, Andrey P; Waldmann, Herbert

    2015-06-22

    We report a rhodium(II)-catalyzed highly enantioselective 1,3-dipolar cycloaddition reaction between the carbonyl moiety of tropone and carbonyl ylides to afford troponoids in good to high yields with excellent enantioselectivity. We demonstrate that α-diazoketone-derived carbonyl ylides, in contrast to carbonyl ylides derived from diazodiketoesters, undergo [6+3] cycloaddition reactions with tropone to yield the corresponding bridged heterocycles with excellent stereoselectivity. PMID:25959033

  19. Rhodium-Catalyzed Enantioselective Hydroamination of Alkynes with Indolines

    PubMed Central

    Chen, Qing-An; Chen, Zhiwei; Dong, Vy M.

    2016-01-01

    The hydroamination of internal alkynes via tandem rhodium-catalysis gives branched N-allylic indolines with high regio- and enantioselectivity. An acid-switch provides access to the linear isomer in preference to the branched isomer by an isomerization mechanism. Mechanistic studies suggest formation of an allene intermediate, which undergoes hydroamination to generate allylic amines instead of the enamine or imine products typically observed in alkyne hydroaminations. PMID:26107923

  20. Rhodium coated mirrors deposited by magnetron sputtering for fusion applications.

    PubMed

    Marot, L; De Temmerman, G; Oelhafen, P; Covarel, G; Litnovsky, A

    2007-10-01

    Metallic mirrors will be essential components of all optical spectroscopy and imaging systems for ITER plasma diagnostics. Any change in the mirror performance, in particular, its reflectivity, due to erosion of the surface by charge exchange neutrals or deposition of impurities will influence the quality and reliability of the detected signals. Due to its high reflectivity in the visible wavelength range and its low sputtering yield, rhodium appears as an attractive material for first mirrors in ITER. However, the very high price of the raw material calls for using it in the form of a film deposited onto metallic substrates. The development of a reliable technique for the preparation of high reflectivity rhodium films is therefore of the highest importance. Rhodium layers with thicknesses of up to 2 microm were produced on different substrates of interest (Mo, stainless steel, Cu) by magnetron sputtering. Produced films exhibit a low roughness and crystallite size of about 10 nm with a dense columnar structure. No impurities were detected on the surface after deposition. Scratch tests demonstrate that adhesion properties increase with substrate hardness. Detailed optical characterizations of Rh-coated mirrors as well as results of erosion tests performed both under laboratory conditions and in the TEXTOR tokamak are presented in this paper. PMID:17979419

  1. Rhodium coated mirrors deposited by magnetron sputtering for fusion applications

    SciTech Connect

    Marot, L.; De Temmerman, G.; Oelhafen, P.; Covarel, G.; Litnovsky, A.

    2007-10-15

    Metallic mirrors will be essential components of all optical spectroscopy and imaging systems for ITER plasma diagnostics. Any change in the mirror performance, in particular, its reflectivity, due to erosion of the surface by charge exchange neutrals or deposition of impurities will influence the quality and reliability of the detected signals. Due to its high reflectivity in the visible wavelength range and its low sputtering yield, rhodium appears as an attractive material for first mirrors in ITER. However, the very high price of the raw material calls for using it in the form of a film deposited onto metallic substrates. The development of a reliable technique for the preparation of high reflectivity rhodium films is therefore of the highest importance. Rhodium layers with thicknesses of up to 2 {mu}m were produced on different substrates of interest (Mo, stainless steel, Cu) by magnetron sputtering. Produced films exhibit a low roughness and crystallite size of about 10 nm with a dense columnar structure. No impurities were detected on the surface after deposition. Scratch tests demonstrate that adhesion properties increase with substrate hardness. Detailed optical characterizations of Rh-coated mirrors as well as results of erosion tests performed both under laboratory conditions and in the TEXTOR tokamak are presented in this paper.

  2. Asymmetric ligand-exchange reaction of biphenol derivatives and chiral bis(oxazolinyl)phenyl-rhodium complex.

    PubMed

    Inoue, Hiroko; Ito, Jun-ichi; Kikuchi, Makoto; Nishiyama, Hisao

    2008-09-01

    Chiral bis(oxazolinyl)phenyl-rhodium acetate complex can enantioselectively capture 1,1'-binaphthol derivatives by ligand-exchange reaction. The structure of the bis(oxazolinyl)phenyl-rhodium biphenol and binaphthol complexes were confirmed by X-ray analysis. PMID:18496824

  3. Optimization of Rhodium-Based Catalysts for Mixed Alcohol Synthesis – 2012 Progress Report

    SciTech Connect

    Gerber, Mark A.; Gray, Michel J.; Albrecht, Karl O.; Thompson, Becky L.

    2012-11-01

    Pacific Northwest National Laboratory has been conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). In recent years, this research has primarily involved the further development of catalysts containing rhodium and manganese based on the results of earlier catalyst screening tests. Testing continued in FY 2012 to further improve the Ir-promoted RhMn catalysts on both silica and carbon supports for producing mixed oxygenates from synthesis gas. This testing re-examined selected alternative silica and carbon supports to follow up on some uncertainties in the results with previous test results. Additional tests were conducted to further optimize the total and relative concentrations of Rh, Mn, and Ir, and to examine selected promoters and promoter combinations based on earlier results. To establish optimum operating conditions, the effects of the process pressure and the feed gas composition also were evaluated.

  4. Tunable Cascade Reactions of Alkynols with Alkynes under Combined Sc(OTf)3 and Rhodium Catalysis.

    PubMed

    Li, Deng Yuan; Chen, Hao Jie; Liu, Pei Nian

    2016-01-01

    Two tunable cascade reactions of alkynols and alkynes have been developed by combining Sc(OTf)3 and rhodium catalysis. In the absence of H2O, an endo-cycloisomerization/C-H activation cascade reaction provided 2,3-dihydronaphtho[1,2-b]furans in good to high yields. In the presence of H2O, the product of alkynol hydration underwent an addition/C-H activation cascade reaction with an alkyne, which led to the formation of 4,5-dihydro-3H-spiro[furan-2,1'-isochromene] derivatives in good yields under mild reaction conditions. Mechanistic studies of the cascade reactions indicated that the rate-determining step involves C-H bond cleavage and that the hydration of the alkynol plays a key role in switching between the two reaction pathways. PMID:26531133

  5. Optimization of Rhodium-Based Catalysts for Mixed Alcohol Synthesis -- 2009 Progress Report

    SciTech Connect

    Gerber, Mark A.; Gray, Michel J.; Stevens, Don J.; White, J. F.; Rummel, Becky L.

    2010-12-21

    Pacific Northwest National Laboratory (PNNL) has been conducting research for the United States Department of Energy, Energy Efficiency Renewable Energy, Biomass Program to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). This research has involved the screening of potential catalysts, and optimization of the more promising ones, using laboratory scale reactors. During 2009, the main goal of the testing program focused on optimizing selected supported catalysts containing rhodium (Rh) and manganese (Mn). Optimization involved examining different total concentrations and atomic ratios of Rh and Mn as well as that of the more promising promoters (Ir and Li) identified in the earlier screening studies. Evaluation of catalyst performance focused on attaining improvements with respect to the space-time-yield and converted carbon selectivity to C2+ oxygenates, with additional consideration given to the fraction of the oxygenates that were C2+ alcohols.

  6. Construction of Cyclic Sulfamidates Bearing Two gem-Diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol.

    PubMed

    Zhang, Yu-Fang; Chen, Diao; Chen, Wen-Wen; Xu, Ming-Hua

    2016-06-01

    A rhodium-catalyzed stepwise asymmetric 1,4- and 1,2-addition of arylboronic acids to α,β-unsaturated cyclic N-sulfonyl ketimines has been developed, providing a wide range of gem-diaryl-substituted chiral benzosulfamidates with high optical purities. C1-Symmetric chiral diene and branched chiral sulfur-olefin ligands were sequentially utilized in this double-arylation process for high stereocontrol. Further synthetic utility offers new opportunities for the facile construction of otherwise difficult to access polycyclic heterocycles. PMID:27184663

  7. Rhodium-Catalyzed Cyclization of 2-Ethynylanilines in the Presence of Isocyanates: Approach toward Indole-3-carboxamides.

    PubMed

    Mizukami, Akiho; Ise, Yumi; Kimachi, Tetsutaro; Inamoto, Kiyofumi

    2016-02-19

    Catalytic synthesis of indole-3-carboxamides from 2-ethynylanilines and isocyanates was achieved in the presence of a rhodium catalyst through a tandem-type, cyclization-addition sequence. This tandem-type process can be performed under mild reaction conditions, affording 2,3-disubstituted indoles in a one-pot manner generally in good to excellent yields. The broad substrate scope and good functional group compatibility make the method highly efficient and widely applicable, providing a facile and entirely novel route toward variously substituted indole-3-carboxamides. PMID:26840978

  8. Enantioselective Alkynylation of 2-Trifluoroacetyl Imidazoles Catalyzed by Bis-Cyclometalated Rhodium(III) Complexes Containing Pinene-Derived Ligands.

    PubMed

    Zheng, Yu; Harms, Klaus; Zhang, Lilu; Meggers, Eric

    2016-08-16

    Chiral rhodium(III) complexes containing two cyclometalating 2-phenyl-5,6-(S,S)-pinenopyridine ligands and two additional acetonitriles are introduced as excellent catalysts for the highly enantioselective alkynylation of 2-trifluoroacetyl imidazoles. Whereas the ligand-based chirality permits the straightforward synthesis of the complexes in a diastereomerically and enantiomerically pure fashion, the metal-centered chirality is responsible for the asymmetric induction over the course of the catalysis. For comparison, the analogous iridium congeners provide only low enantioselectivity, and previously reported benzoxazole- and benzothiazole-based catalysts do not show any catalytic activity for this reaction under standard reaction conditions. PMID:27312941

  9. A nine-atom rhodium-aluminum oxide cluster oxidizes five carbon monoxide molecules.

    PubMed

    Li, Xiao-Na; Zhang, Hua-Min; Yuan, Zhen; He, Sheng-Gui

    2016-01-01

    Noble metals can promote the direct participation of lattice oxygen of very stable oxide materials such as aluminum oxide, to oxidize reactant molecules, while the fundamental mechanism of noble metal catalysis is elusive. Here we report that a single atom of rhodium, a powerful noble metal catalyst, can promote the transfer of five oxygen atoms to oxidize carbon monoxide from a nine-atom rhodium-aluminum oxide cluster. This is a sharp improvement in the field of cluster science where the transfer of at most two oxygen atoms from a doped cluster is more commonly observed. Rhodium functions not only as the preferred trapping site to anchor and oxidize carbon monoxide by the oxygen atoms in direct connection with rhodium but also the primarily oxidative centre to accumulate the large amounts of electrons and the polarity of rhodium is ultimately transformed from positive to negative. PMID:27094921

  10. Complexation of heteroaromatic N-oxides with rhodium(II) tetracarboxylates in solution: DFT and NMR investigations

    NASA Astrophysics Data System (ADS)

    Głaszczka, Rafał; Jaźwiński, Jarosław

    2014-03-01

    Complexation of rhodium(II) tetraacetate and rhodium(II) tetrakistrifluoroacetate with a set of heteroaromatic N-oxides containing additional functional groups was investigated by means of density functional theory (DFT) calculations, and 1H, 13C and 15N nuclear magnetic resonance (NMR) spectroscopy in CDCl3 solutions. Chemical shifts for five N-oxides and their 1:1 adducts with rhodium tetraacetate were computed at the B3PW91/[6-311++G(2d,p), Stuttgart ECP)//B3LYP/[6-31G(2d), LANL2DZ] theory level applying IEF PCM (CHCl3) solvation model and taking into account various complexation modes and conformational variety. Calculated values were used for the estimation of complexation shifts Δδ (Δδ = δadduct - δligand). The largest negative complexation shift were estimated for heteroatoms bonded to Rh, from -37 to -70 ppm (N), from -100 to -160 ppm (O in NO group), from -13 to -23 ppm (O in OCH3 group), and from -12 to -22 ppm (Cl). For the remaining heteroatoms in adducts, the corresponding Δδ values ranged from -22 to +8.2 ppm (N), from +3 to +58 ppm (O) and from +6 to +51 ppm (Cl). The Δδ(1H) usually did not exceed 1 ppm, whereas Δδ(13C) varied from ca. -1 to +7 ppm. Some trends useful for the determination of the complexation site were extracted from calculated data sets. Theoretical findings were applied to analyse experimental NMR data.

  11. Molecular recognition in protein modification with rhodium metallopeptides

    PubMed Central

    Ball, Zachary T.

    2015-01-01

    Chemical manipulation of natural, unengineered proteins is a daunting challenge which tests the limits of reaction design. By combining transition-metal or other catalysts with molecular recognition ideas, it is possible to achieve site-selective protein reactivity without the need for engineered recognition sequences or reactive sites. Some recent examples in this area have used ruthenium photocatalysis, pyridine organocatalysis, and rhodium(II) metallocarbene catalysis, indicating that the fundamental ideas provide opportunities for using diverse reactivity on complex protein substrates and in complex cell-like environments. PMID:25588960

  12. Atomic-absorption determination of rhodium in chromite concentrates

    USGS Publications Warehouse

    Schnepfe, M.M.; Grimaldi, F.S.

    1969-01-01

    Rhodium is determined in chromite concentrates by atomic absorption after concentration either by co-precipitation with tellurium formed by the reduction of tellurite with tin(II) chloride or by fire assay into a gold bead. Interelement interferences in the atomic-absorption determination are removed by buffering the solutions with lanthanum sulphate (lanthanum concentration 1%). Substantial amounts of Ag, Al, Au, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ho, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Te, Ti, V, Y, Zn and platinum metals can be tolerated. A lower limit of approximately 0.07 ppm Rh can be determined in a 3-g sample. ?? 1969.

  13. The solubility of hydrogen in rhodium, ruthenium, iridium and nickel.

    NASA Technical Reports Server (NTRS)

    Mclellan, R. B.; Oates, W. A.

    1973-01-01

    The temperature variation of the solubility of hydrogen in rhodium, ruthenium, iridium, and nickel in equilibrium with H2 gas at 1 atm pressure has been measured by a technique involving saturating the solvent metal with hydrogen, quenching, and analyzing in resultant solid solutions. The solubilities determined are small (atom fraction of H is in the range from 0.0005 to 0.00001, and the results are consistent with the simple quasi-regular model for dilute interstitial solid solutions. The relative partial enthalpy and excess entropy of the dissolved hydrogen atoms have been calculated from the solubility data and compared with well-known correlations between these quantities.

  14. Rhodium Complex with Ethylene Ligands Supported on Highly Dehydroxylated MgO: Synthesis, Characterization, and Reactivity

    SciTech Connect

    Bhirud,V.; Ehresmann, J.; Kletnieks, P.; Haw, J.; Gates, B.

    2006-01-01

    Mononuclear rhodium complexes with reactive olefin ligands, supported on MgO powder, were synthesized by chemisorption of Rh(C2H4)2(C5H7O2) and characterized by infrared (IR), {sup 13}C MAS NMR, and extended X-ray absorption fine structure (EXAFS) spectroscopies. IR spectra show that the precursor adsorbed on MgO with dissociation of acetylacetonate ligand from rhodium, with the ethylene ligands remaining bound to the rhodium, as confirmed by the NMR spectra. EXAFS spectra give no evidence of Rh-Rh contributions, indicating that site-isolated mononuclear rhodium species formed on the support. The EXAFS data also show that the mononuclear complex was bonded to the support by two Rh-O bonds, at a distance of 2.18 Angstroms, which is typical of group 8 metals bonded to oxide supports. This is the first simple and nearly uniform supported mononuclear rhodium-olefin complex, and it appears to be a close analogue of molecular catalysts for olefin hydrogenation in solution. Correspondingly, the ethylene ligands bonded to rhodium in the supported complex were observed to react with H{sub 2} to form ethane, and the supported complex was catalytically active for the ethylene hydrogenation at 298 K. The ethylene ligands also underwent facile exchange with C{sub 2}D{sub 4}, and exposure of the sample to carbon monoxide led to the formation of rhodium gem dicarbonyls.

  15. Determination of rhodium: Since the origins until today Atomic absorption spectrometry.

    PubMed

    Bosch Ojeda, C; Sánchez Rojas, F

    2006-02-28

    Rhodium is present at about 0.001ppm in the earths crust. Rhodium metal is known for its stability in corrosive environments, physical beauty and unique physical and chemical properties. Recent interest in the medical and industrial significance of platinum and to a lesser extent palladium and rhodium has been accompanied by an increasing interest in their determination at low levels. Platinum group elements (PGEs: Pt, Pd, Rh, Ru, Ir and Os) play a decisive role in the performance of catalytic converters, world-wide applied in vehicles and in some household utensils, to reduce the emission of gaseous pollutants, such as carbon monoxide, nitrogen oxides and hydrocarbons. Since then, approximately 73% of the world production of rhodium is consumed in the production of autocatalyst. However, the hot exhaust gases flowing through the converter cause abrasion of these units, leading to the emission of these elements to the environment. The concentration level of rhodium (also platinum and palladium) is still very low in the nature; accordingly, their determination in environmental samples specially appears to be a challenging task for analytical chemists. In recent years, the development of analytical methods for the determination of rhodium has increased. The aim of the present review is to evaluate the utility of atomic absorption spectrometry, applied for the quantification of rhodium in different materials, such as environmental, biological, metallurgical and geological samples. PMID:18970480

  16. Preparation and reactivity of macrocyclic rhodium(III) alkyl complexes

    SciTech Connect

    Carraher, Jack M.; Ellern, Arkady; Bakac, Andreja

    2013-09-21

    We found that the macrocyclic rhodium(II) complexes LRh(H2O)2+ (L = L1 = cyclam and L2 = meso-Me-6-cyclam) react with alkyl hydroperoxides RC(CH3)2OOH to generate the corresponding rhodium(III) alkyls L(H2O)RhR2+ (R = CH3, C2H5, PhCH2). Methyl and benzyl complexes can also be prepared by bimolecular group transfer from alkyl cobaloximes (dmgH)2(H2O) CoR and (dmgBF2)2(H2O) CoR (R = CH3, PhCH2) to LRh(H2O)2+. Moreover, the new complexes were characterized by solution NMR and by crystal structure analysis. They exhibit great stability in aqueous solution at room temperature, but undergo efficient Rh-C bond cleavage upon photolysis.

  17. Rhodium, iridium and nickel complexes with a 1,3,5-triphenylbenzene tris-MIC ligand. Study of the electronic properties and catalytic activities

    PubMed Central

    Mejuto, Carmen; Royo, Beatriz

    2015-01-01

    Summary The coordination versatility of a 1,3,5-triphenylbenzene-tris-mesoionic carbene ligand is illustrated by the preparation of complexes with three different metals: rhodium, iridium and nickel. The rhodium and iridium complexes contained the [MCl(COD)] fragments, while the nickel compound contained [NiCpCl]. The preparation of the tris-MIC (MIC = mesoionic carbene) complex with three [IrCl(CO)2] fragments, allowed the estimation of the Tolman electronic parameter (TEP) for the ligand, which was compared with the TEP value for a related 1,3,5-triphenylbenzene-tris-NHC ligand. The electronic properties of the tris-MIC ligand were studied by cyclic voltammetry measurements. In all cases, the tris-MIC ligand showed a stronger electron-donating character than the corresponding NHC-based ligands. The catalytic activity of the tri-rhodium complex was tested in the addition reaction of arylboronic acids to α,β-unsaturated ketones. PMID:26734104

  18. The interaction of hydrazine with an Rh(1 1 1) surface as a model for adsorption to rhodium nanoparticles: A dispersion-corrected DFT study

    NASA Astrophysics Data System (ADS)

    He, Yan Bin; Jia, Jian Feng; Wu, Hai Shun

    2015-02-01

    In recent years, metal nanoparticles were found to be excellent catalysts for hydrogen generation from hydrazine for chemical hydrogen storage. In order to gain a better understanding of these catalytic systems, we have simulated the adsorption of hydrazine on rhodium nanoparticles surfaces by density functional theory (DFT) calculations with dispersion correction, DFT-D3 in the method of Grimme. The rhodium nanoparticles were modeled by the Rh(1 1 1) surface, in addition, the adsorptions at corners and edges sites of nanoparticles were considered by using rhodium adatoms on the surfaces. The calculations showed that hydrazine binds most strongly to the edge of nanoparticle with adsorption energy of -2.48 eV, where the hydrazine bridges adatoms of edge with the molecule twisted to avoid a cis structure; similar adsorption energy was found at the corner of nanoparticle, where the hydrazine bridges corner atom and surface atom with gauche configuration. However, we found that inclusion of the dispersion correction results in significant enhancement of molecule-substrate binding, thereby increasing the adsorption energy, especially the adsorption to the Rh(1 1 1) surface. The results demonstrate that the surface structure is a key factor to determine the thermodynamics of adsorption, with low coordinated atoms which providing sites of strong adsorption from the surface.

  19. Combination of supported bimetallic rhodium-molybdenum catalyst and cerium oxide for hydrogenation of amide

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yoshinao; Tamura, Riku; Tamura, Masazumi; Tomishige, Keiichi

    2015-02-01

    Hydrogenation of cyclohexanecarboxamide to aminomethylcyclohexane was conducted with silica-supported bimetallic catalysts composed of noble metal and group 6-7 elements. The combination of rhodium and molybdenum with molar ratio of 1:1 showed the highest activity. The effect of addition of various metal oxides was investigated on the catalysis of Rh-MoOx/SiO2, and the addition of CeO2 much increased the activity and selectivity. Higher hydrogen pressure and higher reaction temperature in the tested range of 2-8 MPa and 393-433 K, respectively, were favorable in view of both activity and selectivity. The highest yield of aminomethylcyclohexane obtained over Rh-MoOx/SiO2 + CeO2 was 63%. The effect of CeO2 addition was highest when CeO2 was not calcined, and CeO2 calcined at >773 K showed a smaller effect. The use of CeO2 as a support rather decreased the activity in comparison with Rh-MoOx/SiO2. The weakly-basic nature of CeO2 additive can affect the surface structure of Rh-MoOx/SiO2, i.e. reducing the ratio of Mo-OH/Mo-O- sites.

  20. Long-Term Testing of Rhodium-Based Catalysts for Mixed Alcohol Synthesis – 2013 Progress Report

    SciTech Connect

    Gerber, Mark A.; Gray, Michel J.; Thompson, Becky L.

    2013-09-23

    The U.S. Department of Energy’s Pacific Northwest National Laboratory has been conducting research since 2005 to develop a catalyst for the conversion of synthesis gas (carbon monoxide and hydrogen) into mixed alcohols for use in liquid transportation fuels. Initially, research involved screening possible catalysts based on a review of the literature, because at that time, there were no commercial catalysts available. The screening effort resulted in a decision to focus on catalysts containing rhodium and manganese. Subsequent research identified iridium as a key promoter for this catalyst system. Since then, research has continued to improve rhodium/manganese/iridium-based catalysts, optimizing the relative and total concentrations of the three metals, examining baseline catalysts on alternative supports, and examining effects of additional promoters. Testing was continued in FY 2013 to evaluate the performance and long-term stability of the best catalysts tested to date. Three tests were conducted. A long-term test of over 2300 hr duration at a single set of operating conditions was conducted with the best carbon-supported catalyst. A second test of about 650 hr duration at a single set of operating conditions was performed for comparison using the same catalyst formulation on an alternative carbon support. A third test of about 680 hr duration at a single set of operating conditions was performed using the best silica-supported catalyst tested to date.

  1. Cationic mono and dicarbonyl pincer complexes of rhodium and iridium to assess the donor properties of PCcarbeneP ligands.

    PubMed

    Smith, Joel D; Logan, Jessamyn R; Doyle, Lauren E; Burford, Richard J; Sugawara, Shun; Ohnita, Chiho; Yamamoto, Yohsuke; Piers, Warren E; Spasyuk, Denis M; Borau-Garcia, Javier

    2016-08-01

    The donor properties of five different PCcarbeneP ligands are assessed by evaluation of the CO stretching frequencies in iridium(i) and rhodium(i) carbonyl cations. The ligands feature dialkyl phosphine units (R = (i)Pr or (t)Bu) linked to the central benzylic carbon by either an ortho-phenylene bridge, or a 2,3-benzo[b]thiophene linker; in the former, substituent patterns on the phenyl linker are varied. The carbonyl complexes are synthesized from the (PCcarbeneP)M-Cl starting materials via abstraction of the chlorides in the presence of CO gas. In addition to the expected mono carbonyl cations, products with two carbonyl ligands are produced, and for the rhodium example, a novel product in which the second carbonyl ligand adds reversibly across the Rh[double bond, length as m-dash]C bond to give an η(2) ketene moiety was characterized. The IR data for the complexes shows the 2,3-benzo[b]thiophene linked system to be the poorest overall donor, while the phenyl bridged ligands incorporating electron donating dialkyl amino groups para to the anchoring carbene are very strongly donating pincer arrays. PMID:27465584

  2. A Rhodium Catalyst Superior to Iridium Congeners for Enantioselective Radical Amination Activated by Visible Light.

    PubMed

    Shen, Xiaodong; Harms, Klaus; Marsch, Michael; Meggers, Eric

    2016-06-27

    A bis-cyclometalated rhodium(III) complex catalyzes a visible-light-activated enantioselective α-amination of 2-acyl imidazoles with up to 99 % yield and 98 % ee. The rhodium catalyst is ascribed a dual function as a chiral Lewis acid and, simultaneously, as a light-activated smart initiator of a radical-chain process through intermediate aminyl radicals. Notably, related iridium-based photoredox catalysts reported before were unsuccessful in this enantioselective radical C-N bond formation. The surprising preference for rhodium over iridium is attributed to much faster ligand-exchange kinetics of the rhodium complexes involved in the catalytic cycle, which is crucial to keep pace with the highly reactive and thus short-lived nitrogen-centered radical intermediate. PMID:27145893

  3. Rhodium complex immobilized on graphene oxide as an efficient and recyclable catalyst for hydrogenation of cyclohexene.

    PubMed

    Zhao, Qingshan; Chen, Dafa; Li, Yang; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2013-02-01

    Rhodium complexes can be homogeneously immobilized on functionalized graphene oxide through coordination interaction. The obtained catalyst can be readily recycled and shows enhanced activity in the catalytic hydrogenation of cyclohexene. PMID:23238302

  4. Rhodium-Catalyzed Asymmetric [2 + 2 + 2] Cycloaddition of 1,6-Enynes with Cyclopropylideneacetamides.

    PubMed

    Yoshizaki, Soichi; Nakamura, Yu; Masutomi, Koji; Yoshida, Tomoka; Noguchi, Keiichi; Shibata, Yu; Tanaka, Ken

    2016-02-01

    It has been established that a cationic rhodium(I)/H8-BINAP complex catalyzes the asymmetric [2 + 2 + 2] cycloaddition of 1,6-enynes with cyclopropylideneacetamides to produce spirocyclohexenes in excellent enantioselectivity with retaining cyclopropane rings. PMID:26756430

  5. Rhodium-Catalyzed Alkene Difunctionalization with Nitrenes.

    PubMed

    Ciesielski, Jennifer; Dequirez, Geoffroy; Retailleau, Pascal; Gandon, Vincent; Dauban, Philippe

    2016-06-27

    The Rh(II) -catalyzed oxyamination and diamination of alkenes generate 1,2-amino alcohols and 1,2-diamines, respectively, in good to excellent yields and with complete regiocontrol. In the case of diamination, the intramolecular reaction provides an efficient method for the preparation of pyrrolidines, and the intermolecular reaction produces vicinal amines with orthogonal protecting groups. These alkene difunctionalizations proceed by aziridination followed by nucleophilic ring opening induced by an Rh-bound nitrene generated in situ, details of which were uncovered by both experimental and theoretical studies. In particular, DFT calculations show that the nitrogen atom of the putative [Rh]2 =NR metallanitrene intermediate is electrophilic and support an aziridine activation pathway by N⋅⋅⋅N=[Rh]2 bond formation, in addition to the N⋅⋅⋅[Rh]2 =NR coordination mode. PMID:27258005

  6. Chloride-Bridged Dinuclear Rhodium(III) Complexes Bearing Chiral Diphosphine Ligands: Catalyst Precursors for Asymmetric Hydrogenation of Simple Olefins.

    PubMed

    Kita, Yusuke; Hida, Shoji; Higashihara, Kenya; Jena, Himanshu Sekhar; Higashida, Kosuke; Mashima, Kazushi

    2016-07-11

    Efficient rhodium(III) catalysts were developed for asymmetric hydrogenation of simple olefins. A new series of chloride-bridged dinuclear rhodium(III) complexes 1 were synthesized from the rhodium(I) precursor [RhCl(cod)]2 , chiral diphosphine ligands, and hydrochloric acid. Complexes from the series acted as efficient catalysts for asymmetric hydrogenation of (E)-prop-1-ene-1,2-diyldibenzene and its derivatives without any directing groups, in sharp contrast to widely used rhodium(I) catalytic systems that require a directing group for high enantioselectivity. The catalytic system was applied to asymmetric hydrogenation of allylic alcohols, alkenylboranes, and unsaturated cyclic sulfones. Control experiments support the superiority of dinuclear rhodium(III) complexes 1 over typical rhodium(I) catalytic systems. PMID:27088539

  7. Diversity synthesis using the complimentary reactivity of rhodium(II)- and palladium(II)-catalyzed reactions.

    PubMed

    Ni, Aiwu; France, Jessica E; Davies, Huw M L

    2006-07-21

    Rhodium(II)-catalyzed reactions of aryldiazoacetates can be conducted in the presence of iodide, triflate, organoboron, and organostannane functionality, resulting in the formation of a variety of cyclopropanes or C-H insertion products with high stereoselectivity. The combination of the rhodium(II)-catalyzed reaction with a subsequent palladium(II)-catalyzed Suzuki coupling offers a novel strategy for diversity synthesis. PMID:16839138

  8. Rhodium-Catalyzed Regioselective C7-Functionalization of N-Pivaloylindoles.

    PubMed

    Xu, Lanting; Zhang, Chao; He, Yupeng; Tan, Lushi; Ma, Dawei

    2016-01-01

    An efficient rhodium-catalyzed method for direct C-H functionalization at the C7 position of a wide range of indoles has been developed. Good to excellent yields of alkenylation products were observed with acrylates, styrenes, and vinyl phenyl sulfones, whereas the saturated alkylation products were obtained in good yield with α,β-unsaturated ketones. Both the N-pivaloyl directing group and the rhodium catalyst proved to be crucial for high regioselectivity and conversion. PMID:26510833

  9. Rhodium(II)-Catalyzed Isomerization of Cyclopropenylmethyl Esters into (Acyloxymethylene)cyclopropanes.

    PubMed

    Archambeau, Alexis; Nguyen, Dinh-Vu; Meyer, Christophe; Cossy, Janine

    2016-04-18

    In the presence of a rhodium(II) catalyst, 3,3-disubstituted cyclopropenylmethyl esters that possess an electron-rich or neutral aromatic group undergo isomerization into (acyloxymethylene)cyclopropanes. This transformation, which proceeds with inversion of configuration at the stereogenic center, complements the previously disclosed rearrangement reactions of cyclopropenylmethyl esters. The products arising from this new rhodium-catalyzed rearrangement contain an enol ester group that can be subsequently functionalized to access stereodefined arylcyclopropanes. PMID:26990014

  10. Rhodium-Catalyzed Ketone Methylation Using Methanol Under Mild Conditions: Formation of α-Branched Products**

    PubMed Central

    Chan, Louis K M; Poole, Darren L; Shen, Di; Healy, Mark P; Donohoe, Timothy J

    2014-01-01

    The rhodium-catalyzed methylation of ketones has been accomplished using methanol as the methylating agent and the hydrogen-borrowing method. The sequence is notable for the relatively low temperatures that are required and for the ability of the reaction system to form α-branched products with ease. Doubly alkylated ketones can be prepared from methyl ketones and two different alcohols by using a sequential one-pot iridium- and rhodium-catalyzed process. PMID:24288297

  11. Calculated mammographic spectra confirmed with attenuation curves for molybdenum, rhodium, and tungsten targets.

    PubMed

    Blough, M M; Waggener, R G; Payne, W H; Terry, J A

    1998-09-01

    A model for calculating mammographic spectra independent of measured data and fitting parameters is presented. This model is based on first principles. Spectra were calculated using various target and filter combinations such as molybdenum/molybdenum, molybdenum/rhodium, rhodium/rhodium, and tungsten/aluminum. Once the spectra were calculated, attenuation curves were calculated and compared to measured attenuation curves. The attenuation curves were calculated and measured using aluminum alloy 1100 or high purity aluminum filtration. Percent differences were computed between the measured and calculated attenuation curves resulting in an average of 5.21% difference for tungsten/aluminum, 2.26% for molybdenum/molybdenum, 3.35% for rhodium/rhodium, and 3.18% for molybdenum/rhodium. Calculated spectra were also compared to measured spectra from the Food and Drug Administration [Fewell and Shuping, Handbook of Mammographic X-ray Spectra (U.S. Government Printing Office, Washington, D.C., 1979)] and a comparison will also be presented. PMID:9775364

  12. Search for multiple chiral doublets in rhodium isotopes

    SciTech Connect

    Peng, J.; Sagawa, H.; Zhang, S. Q.; Yao, J. M.; Zhang, Y.; Meng, J.

    2008-02-15

    The deformation in rhodium isotopes is investigated using adiabatic and configuration-fixed constrained triaxial relativistic mean field (RMF) approaches. The triaxial deformations are found in the ground states of {sup 102,104,106,108,110}Rh, which is consistent with triaxial Skyrme Hartree-Fock calculations. Several minima with triaxial deformation in {sup 104,106,108,110}Rh are obtained by the configuration-fixed constrained calculations. The corresponding configurations are characterized by the quantum numbers |nljm> obtained by transforming wave functions from a Cartesian basis to a spherical basis. The possible existence of multiple chiral doublets (M{chi}D) is demonstrated in {sup 104,106,108,110}Rh isotopes, based on different particle-hole configurations and triaxial deformations.

  13. Capsule-controlled selectivity of a rhodium hydroformylation catalyst

    NASA Astrophysics Data System (ADS)

    Bocokić, Vladica; Kalkan, Ayfer; Lutz, Martin; Spek, Anthony L.; Gryko, Daniel T.; Reek, Joost N. H.

    2013-10-01

    Chemical processes proceed much faster and more selectively in the presence of appropriate catalysts, and as such the field of catalysis is of key importance for the chemical industry, especially in light of sustainable chemistry. Enzymes, the natural catalysts, are generally orders of magnitude more selective than synthetic catalysts and a major difference is that they take advantage of well-defined cavities around the active site to steer the selectivity of a reaction via the second coordination sphere. Here we demonstrate that such a strategy also applies for a rhodium catalyst; when used in the hydroformylation of internal alkenes, the selectivity of the product formed is steered solely by changing the cavity surrounding the metal complex. Detailed studies reveal that the origin of the capsule-controlled selectivity is the capsule reorganization energy, that is, the high energy required to accommodate the hydride migration transition state, which leads to the minor product.

  14. Enantioselective Rhodium-Catalyzed Atom-Economical Macrolactonization.

    PubMed

    Ganss, Stephanie; Breit, Bernhard

    2016-08-01

    A highly attractive route toward macrolactones, which form the cyclic scaffold of a multitude of diverse natural compounds, is described. Although many chemical approaches to this structural motif have been explored, an asymmetric variant of the cyclization is unprecedented. Herein we present an enantioselective macrolactonization through an intramolecular atom-economical rhodium-catalyzed coupling of ω-allenyl-substituted carboxylic acids. The use of a modified diop ligand, chiral DTBM-diop, led to high enantioselectivity (up to 93 % ee). The reaction tolerated a large variety of functionalities, including α,β-unsaturated carboxylic acids and depsipeptides, and provided the desired macrocycles with very high enantio- and diastereoselectivity. PMID:27383766

  15. Catalytic Degradation of Sulfur Hexafluoride by Rhodium Complexes.

    PubMed

    Zámostná, Lada; Braun, Thomas

    2015-09-01

    The development of a safe and efficient method for the degradation of SF6 is of current environmental interest, because SF6 is one of the most potent greenhouse gases. SF6 is thermally and chemically extremely inert, and therefore, it has been used in various industrial applications. However, this inertness results in a major challenge for its depletion. We report on a process for a catalytic degradation of SF6 in the homogeneous phase by using rhodium complexes as precatalysts. The SF6 activation reactions feature mild reaction conditions, low catalyst loadings, and a high selectivity. The employment of phosphines and hydrosilanes for scavenging the sulfur and fluorine atoms of the SF6 molecule allows the selective transformation of SF6 into nongaseous and nontoxic compounds. PMID:26190201

  16. The regioselective hydroformylation of vinylsilanes. A remarkable difference in the selectivity and reactivity of cobalt, rhodium, and iridium catalysts

    SciTech Connect

    Crudden, C.M.; Alper, H.

    1994-06-03

    Rhodium, iridium, and cobalt complexes were evaluated as catalysts for hydroformylation of vinylsilanes. Regioselectivities, product structures, and reaction yields were widely variable for these catalysts.

  17. Reactivity Control of Rhodium Cluster Ions by Alloying with Tantalum Atoms.

    PubMed

    Mafuné, Fumitaka; Tawaraya, Yuki; Kudoh, Satoshi

    2016-02-18

    Gas phase, bielement rhodium and tantalum clusters, RhnTam(+) (n + m = 6), were prepared by the double laser ablation of Rh and Ta rods in He carrier gas. The clusters were introduced into a reaction gas cell filled with nitric oxide (NO) diluted with He and were subjected to collisions with NO and He at room temperature. The product species were observed by mass spectrometry, demonstrating that the NO molecules were sequentially adsorbed on the RhnTam(+) clusters to form RhnTam(+)NxOx (x = 1, 2, 3, ...) species. In addition, oxide clusters, RhnTam(+)O2, were also observed, suggesting that the NO molecules were dissociatively adsorbed on the cluster, the N atoms migrated on the surface to form N2, and the N2 molecules were released from RhnTam(+)N2O2. The reactivity, leading to oxide formation, was composition dependent: oxide clusters were dominantly formed for the bielement clusters containing both Rh and Ta atoms, whereas such clusters were hardly formed for the single-element Rhn(+) and Tam(+) clusters. DFT calculations indicated that the Ta atoms induce dissociation of NO on the clusters by lowering the dissociation energy, whereas the Rh atoms enable release of N2 by lowering the binding energy of the N atoms on the clusters. PMID:26799470

  18. Rhodium mediated bond activation: from synthesis to catalysis

    SciTech Connect

    Ho, Hung-An

    2012-01-01

    Recently, our lab has developed monoanionic tridentate ligand, ToR, showing the corresponding coordination chemistry and catalyst reactivity of magnesium, zirconium, zinc and iridium complexes. This thesis details synthetic chemistry, structural study and catalytic reactivity of the ToR-supported rhodium compounds. Tl[ToR] has been proved to be a superior ligand transfer agent for synthesizing rhodium complexes. The salt metathesis route of Tl[ToM] with [Rh(μ-Cl)(CO)]2 and [Rh(μ- Cl)(COE)]2 gives ToMRh(CO)2 (2.2) and ToMRhH(β3-C8H13) (3.1) respectively while Tl[ToM] with [Rh(μ-Cl)(CO)]2 affords ToPRh(CO)2 (2.3). 2.2 reacts with both strong and weak electrophiles, resulting in the oxazoline N-attacked and the metal center-attacked compounds correspondingly. Using one of the metal center-attacked electrophiles, 2.3 was demonstrated to give high diastereoselectivity. Parallel to COE allylic C-H activation complex 3.1, the propene and allylbenzene allylic C-H activation products have also been synthesized. The subsequent functionalization attempts have been examined by treating with Brønsted acids, Lewis acids, electrophiles, nucleophiles, 1,3-dipolar reagents and reagents containing multiple bonds able to be inserted. Various related complexes have been obtained under these conditions, in which one of the azide insertion compounds reductively eliminates to give an allylic functionalization product stoichiometrically. 3.1 reacts with various primary alcohols to give the decarbonylation dihydride complex ToMRh(H)2CO (4.1). 4.1 shows catalytic reactivity for primary alcohol decarbonylation under a photolytic condition. Meanwhile, 2.2 has been found to be more reactive than 4.1 for catalytic alcohol decarbonylation under the same condition. Various complexes and primary

  19. Rhodium-Catalyzed Acyloxy Migration of Propargylic Esters in Cycloadditions, Inspiration from Recent “Gold Rush”

    PubMed Central

    Shu, Xing-Zhong; Shu, Dongxu; Schienebeck, Casi M.

    2012-01-01

    Transition metal-catalyzed acyloxy migration of propargylic esters offers versatile entries to allene and vinyl carbene intermediates for various fascinating subsequent transformations. Most π-acidic metals (e.g. gold and platinum) are capable of facilitating these acyloxy migration events. However, very few of these processes involve redox chemistry, which are well-known for most other transition metals such as rhodium. The coupling of acyloxy migration of propargylic esters with oxidative addition, migratory insertion, and reductive elimination may lead to ample new opportunities for the design of new reactions. This tutorial review summarizes recent developments in Rh-catalyzed 1,3- and 1,2-acyloxy migration of propargylic esters in a number of cycloaddition reactions. Related Au- and Pt-catalyzed cycloadditions involving acyloxy migration are also discussed. PMID:22895533

  20. Stereodivergent and Protecting-Group-Free Synthesis of the Helicascolide Family: A Rhodium-Catalyzed Atom-Economical Lactonization Strategy.

    PubMed

    Haydl, Alexander M; Berthold, Dino; Spreider, Pierre A; Breit, Bernhard

    2016-05-01

    Natural products of polyketide origin, in particular small-sized lactones often possess a very broad range of impressive biological activities. An efficient way to demonstrate the concise access to six-membered lactones was emphasized as part of a stereodivergent and protecting-group-free synthesis of all three representatives of the helicascolide family. This strategy features an atom-economical and highly diastereoselective rhodium-catalyzed "head-to-tail" lactonization by an intramolecular addition of ω-allenyl-substituted carboxylic acids to terminal allenes, including the selective construction of a new stereocenter in the newly formed core structures. The excellent selectivities with which the helicascolide precursors were obtained are remarkable, thus resulting in an expeditious and highly efficient natural product synthesis. PMID:27043137

  1. Monodisperse Platinum and Rhodium Nanoparticles as Model Heterogeneous Catalysts

    SciTech Connect

    Grass, Michael Edward

    2008-09-01

    Model heterogeneous catalysts have been synthesized and studied to better understand how the surface structure of noble metal nanoparticles affects catalytic performance. In this project, monodisperse rhodium and platinum nanoparticles of controlled size and shape have been synthesized by solution phase polyol reduction, stabilized by polyvinylpyrrolidone (PVP). Model catalysts have been developed using these nanoparticles by two methods: synthesis of mesoporous silica (SBA-15) in the presence of nanoparticles (nanoparticle encapsulation, NE) to form a composite of metal nanoparticles supported on SBA-15 and by deposition of the particles onto a silicon wafer using Langmuir-Blodgett (LB) monolayer deposition. The particle shapes were analyzed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM) and the sizes were determined by TEM, X-ray diffraction (XRD), and in the case of NE samples, room temperature H2 and CO adsorption isotherms. Catalytic studies were carried out in homebuilt gas-phase reactors. For the nanoparticles supported on SBA-15, the catalysts are in powder form and were studied using the homebuilt systems as plug-flow reactors. In the case of nanoparticles deposited on silicon wafers, the same systems were operated as batch reactors. This dissertation has focused on the synthesis, characterization, and reaction studies of model noble metal heterogeneous catalysts. Careful control of particle size and shape has been accomplished though solution phase synthesis of Pt and Rh nanoparticles in order to elucidate further structure-reactivity relationships in noble metal catalysis.

  2. In situ dynamic study of hydrogen oxidation on rhodium.

    PubMed

    Visart de Bacarmé, T; Bär, T; Kruse, N

    2001-10-01

    The reaction of hydrogen/oxygen gas mixtures with rhodium single crystals was studied using video-FIM (Field Ion Microscopy) at temperatures between 350 and 550 K and up to 2 x 10(-2) Pa total pressure. Imaging at 500 K in a hydrogen rich gas mixture (H2:O2 = 9) revealed considerable morphological changes of the (0 0 1)-oriented field emitter tip, i.e. the growth of low-index at the expense of high-index planes and strong crystal coarsening. Decreasing the hydrogen partial pressure led to chemical and structural changes of the Rh sample. Starting on the [1 1 0] planes a surface oxide formed, which spread anisotropically across the surface until it finally covered the whole visible surface area. The transformation was reversible upon increasing the hydrogen pressure back to its initial value. However, a hysteresis behavior was observed, i.e. a larger hydrogen partial pressure was found to be necessary to re-establish the initial patterns of a reactive Oad/Had layer. By varying the temperature from 400 to 500 K a phase diagram was established for the Oad/Had system. Increasing the electric field proved to shift the phase diagram towards higher H2 pressures. At 550K self-sustained kinetic oscillations with a cycle time of approximately 40s could be observed. PMID:11770755

  3. Binuclear Rhodium(II) Complexes With Selective Antibacterial Activity.

    PubMed

    Bień, M; Lachowicz, T M; Rybka, A; Pruchnik, F P; Trynda, L

    1997-01-01

    Binuclear rhodium(II) complexes [Rh(2)Cl(2)(mu-OOCR)(2)(N-N)(2)] {R = H, Me; N-N = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen)} and [Rh(2)(mu-OOCR)(2)(N-N)(2)(H(2)O)(2)](RCOO)(2) (R = Me, Et;) have been synthesized and their structure and properties have been studied by electronic, IR and (1)H NMR spectroscopy. Antibacterial activity of these complexes against Escherichia coli and Staphylococcus aureus has been investigated. The most active antibacterial agents against E. coli were [Rh(2)Cl(2)(mu-OOCR)(2)(N-N)(2)] and [Rh(2)(mu-OOCR)(2)(N-N)(2)(H(2)O)(2)](RCOO)(2) {R = H and Me} which were considerably more active than the appropriate nitrogen ligands. The complexes show low activity against S. aureus. The activity of the complexes [Rh(2)(OOCR)(2)(N-N)(2)(H(2)O)(2)](OOCR)(2) against E. coli decreases in the series: R=H congruent withCH(3)>C(2)H(5)>C(3)H(7) congruent withC(4)H(9). The reverse order was found in the case of S. aureus. PMID:18475773

  4. Complexes of ruthenium and rhodium with aliphatic amines in the catalysis of hydrogenation of unsaturated hydrocarbons

    SciTech Connect

    Turisbekova, K.K.; Shuikina, L.P.; Parenago, O.P.; Frolov, V.F.

    1989-02-01

    The authors synthesized new catalysts highly active in the hydrogenations of unsaturated hydrocarbons, based on complexes of ruthenium and rhodium with higher aliphatic amines, which are soluble in aromatic solvents. The complexes acquired catalytic activity in hydrogenation as a result of their treatment with diisobutyl aluminum hydride. Olefins (1-hexene, cyclopentene, cyclohexene) or dienes (isoprene) were used as the unsaturated compounds. For the ruthenium based catalysts, the highest activity was observed during the hydrogenation of 1-hexene. For the rhodium-based catalysts, the activity in the hydrogenation of olefins and dienes was approximately the same. In the case of the rhodium complex catalysts, the hydrogenation of 1-hexene was accompanied by a side-reaction consisting in isomerization into olefins with inner double bonds.

  5. A solid-state NMR investigation of the structure of mesoporous silica nanoparticle supported rhodium catalysts

    SciTech Connect

    Rapp, Jennifer; Huang, Yulin; Natella, Michael; Cai, Yang; Lin, Victor S.-Y.; Pruski, Marek

    2009-01-04

    A detailed study of the chemical structure of mesoporous silica catalysts containing rhodium ligands and nanoparticles (RhP-MSN) was carried out by multi-dimensional solid-state NMR techniques. The degree of functionalization of the rhodium-phosphinosilyl complex to the surface of the RhP-MSN channels was determined by {sup 29}Si NMR experiments. The structural assignments of the rhodium-phosphinosilyl complex were unambiguously determined by employing the novel, indirectly detected heteronuclear correlation ({sup 13}C-{sup 1}H and {sup 31}P-{sup 1}H idHETCOR) techniques, which indicated that oxidation of the attached phosphinosilyl groups and detachment of Rh was enhanced upon syngas conversion.

  6. Rh2(CF3CONH)4: The First Biological Assays of a Rhodium (II) Amidate

    PubMed Central

    Zyngier, Szulim Ber; de Souza, Aparecido Ribeiro; Najjar, Renato

    1997-01-01

    The rhodium (II) complexes Rh2(tfa)4.2(tfac) and Rh2(tfacam)4 (tfacam = CF3CONH-,tfa = CF3COO-,tfac = CF3CONH2) were synthesized and characterized by microanalysis and electronic and vibrational spectroscopies. Rh2(tfacam)4 was tested both in vitro (U937 and K562 human leukemia cells and Ehrlich ascitic tumor cells) and in vivo for cytostatic activity and lethal dose determination, respectively. This is the first rhodium tetra-amidate to have its biological activity evaluated. The LD50 value for Rh2(tfacam)4 is of the same order as that of cisplatin, and it was verified that the rhodium complex usually needs lower doses than cisplatin to promote the same inhibitory effects. PMID:18475814

  7. Geometric effects on the mechanical strengths of strong nanocrystalline rhodium sub-micron structures

    NASA Astrophysics Data System (ADS)

    Tsui, Ting Y.; Jahed, Zeinab; Evans, R. D.; Burek, Michael J.

    2015-06-01

    Sub-micron scale nanocrystalline rhodium pillars were fabricated by electron beam lithography and electroplating techniques. The fabricated specimens included solid core pillars and columnar structure with more complex cross-sectional geometries, including x-shaped and annulus shaped. Among these specimens, two groups of sub-micron scale annulus structures with sidewall thicknesses of 250 and 205 nm were fabricated. All of the structures have outer diameters of ~1 μm and consist of average grain size smaller than 22 nm. Uniaxial compression results reveal these rhodium pillars are very strong with true flow stresses exceeding 5 GPa and are not sensitive to the sample cross-sectional geometries.

  8. Probing the structures of gas-phase rhodium cluster cations by far-infrared spectroscopy

    SciTech Connect

    Harding, D. J.; Gruene, P.; Haertelt, M.; Meijer, G.; Fielicke, A.; Hamilton, S. M.; Hopkins, W. S.; Mackenzie, S. R.; Neville, S. P.; Walsh, T. R.

    2010-12-07

    The geometric structures of small cationic rhodium clusters Rh{sub n}{sup +} (n = 6-12) are investigated by comparison of experimental far-infrared multiple photon dissociation spectra with spectra calculated using density functional theory. The clusters are found to favor structures based on octahedral and tetrahedral motifs for most of the sizes considered, in contrast to previous theoretical predictions that rhodium clusters should favor cubic motifs. Our findings highlight the need for further development of theoretical and computational methods to treat these high-spin transition metal clusters.

  9. Rhodium-catalyzed C-C coupling reactions via double C-H activation.

    PubMed

    Li, Shuai-Shuai; Qin, Liu; Dong, Lin

    2016-05-18

    Various rhodium-catalyzed double C-H activations are reviewed. These powerful strategies have been developed to construct C-C bonds, which might be widely embedded in complex aza-fused heterocycles, polycyclic skeletons and heterocyclic scaffolds. In particular, rhodium(iii) catalysis shows good selectivity and reactivity to functionalize the C-H bond, generating reactive organometallic intermediates in most of the coupling reactions. Generally, intermolecular, intramolecular and multi-component coupling reactions via double C-H activations with or without heteroatom-assisted chelation are discussed in this review. PMID:27099126

  10. Asymmetric Synthesis of Hydrocarbazoles Catalyzed by an Octahedral Chiral-at-Rhodium Lewis Acid.

    PubMed

    Huang, Yong; Song, Liangliang; Gong, Lei; Meggers, Eric

    2015-12-01

    A bis-cyclometalated chiral-at-metal rhodium complex catalyzes the Diels-Alder reaction between N-Boc-protected 3-vinylindoles (Boc = tert-butyloxycarbonyl) and β-carboxylic ester-substituted α,β-unsaturated 2-acyl imidazoles with good-to-excellent regioselectivity (up to 99:1) and excellent diastereoselectivity (>50:1 d.r.) as well as enantioselectivity (92-99% ee) under optimized conditions. The rhodium catalyst serves as a chiral Lewis acid to activate the 2-acyl imidazole dienophile by two-point binding and overrules the preferred regioselectivity of the uncatalyzed reaction. PMID:26344422

  11. Chiral Phosphate in Rhodium-Catalyzed Asymmetric [2+2+2] Cycloaddition: Ligand, Counterion, or Both?

    PubMed

    Barbazanges, Marion; Caytan, Elsa; Lesage, Denis; Aubert, Corinne; Fensterbank, Louis; Gandon, Vincent; Ollivier, Cyril

    2016-06-13

    Investigations based on NMR spectroscopy, mass spectrometry, and DFT calculations shed light on the metallic species generated in the rhodium-catalyzed asymmetric [2+2+2] cycloaddition reaction between diynes and isocyanates with the chiral phosphate TRIP. The catalytic mixture comprising [{Rh(cod)Cl}2 ], 1,4-diphenylphosphinobutane (dppb), and Ag(S)-TRIP actually gives rise to two species, both having an effect on the stereoselectivity. One is a rhodium(I) complex in which TRIP is a weakly coordinating counterion, whereas the other is a bimetallic Rh/Ag complex in which TRIP is a strongly coordinating X-type ligand. PMID:27167983

  12. Rhodium-Catalyzed Geminal Oxyfluorination and Oxytrifluoro-Methylation of Diazocarbonyl Compounds.

    PubMed

    Yuan, Weiming; Eriksson, Lars; Szabó, Kálmán J

    2016-07-11

    A new reaction for the rhodium-catalyzed geminal-difunctionalization-based fluorination is presented. The substrates are aromatic and aliphatic diazocarbonyl compounds. As the fluorine source a stable and easily accessible benziodoxole reagent was used. A variety of alcohol, phenol, and carboxylic acid reagents were employed to introduce the second functionality. The reaction was extended to trifluoromethylation using a benziodoxolon reagent. The fluorination and trifluoromethylation reactions probably proceed by a rhodium-containing onium ylide type intermediate, which is trapped by either the F or CF3 electrophiles. PMID:27219856

  13. Tandem rhodium catalysis:Exploiting sulfoxides for asymmetric transition-metal catalysis

    PubMed Central

    Kou, K. G. M.

    2015-01-01

    Sulfoxides are uncommon substrates for transition-metal catalysis due to their propensity to inhibit catalyst turnover. In a collaborative effort with Ken Houk, we developed the first dynamic kinetic resolution (DKR) of allylic sulfoxides using asymmetric rhodium-catalyzed hydrogenation. Detailed mechanistic analysis of this transformation using both experimental and theoretical methods revealed rhodium to be a tandem catalyst that promoted both hydrogenation of the alkene and racemization of the allylic sulfoxide. Using a combination of deuterium labelling and DFT studies, a novel mode of allylic sulfoxide racemization via a Rh(III)-π-allyl intermediate was identified. PMID:25940066

  14. Low Temperature Catalytic Ethanol Conversion Over Ceria-Supported Platinum, Rhodium, and Tin-Based Nanoparticle Systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Eugene Leo Draine

    Due to the feasibility of ethanol production in the United States, ethanol has become more attractive as a fuel source and a possible energy carrier within the hydrogen economy. Ethanol can be stored easily in liquid form, and can be internally pre-formed prior to usage in low temperature (200°C--400°C) solid acid and polymer electrolyte membrane fuel cells. However, complete electrochemical oxidation of ethanol remains a challenge. Prior research of ethanol reforming at high temperatures (> 400°C) has identified several metallic and oxide-based catalyst systems that improve ethanol conversion, hydrogen production, and catalyst stability. In this study, ceria-supported platinum, rhodium, and tin-based nanoparticle catalyst systems will be developed and analyzed in their performance as low-temperature ethanol reforming catalysts for fuel cell applications. Metallic nanoparticle alloys were synthesized with ceria supports to produce the catalyst systems studied. Gas phase byproducts of catalytic ethanol reforming were analyzed for temperature-dependent trends and chemical reaction kinetic parameters. Results of catalytic data indicate that catalyst composition plays a significant role in low-temperature ethanol conversion. Analysis of byproduct yields demonstrate how ethanol steam reforming over bimetallic catalyst systems (platinum-tin and rhodium-tin) results in higher hydrogen selectivity than was yielded over single-metal catalysts. Additionally, oxidative steam reforming results reveal a correlation between catalyst composition, byproduct yield, and ethanol conversion. By analyzing the role of temperature and reactant composition on byproduct yields from ethanol reforming, this study also proposes how these parameters may contribute to optimal catalytic ethanol reforming.

  15. Reductive Coupling of Diynes at Rhodium Gives Fluorescent Rhodacyclopentadienes or Phosphorescent Rhodium 2,2'-Biphenyl Complexes.

    PubMed

    Sieck, Carolin; Tay, Meng Guan; Thibault, Marie-Hélène; Edkins, Robert M; Costuas, Karine; Halet, Jean-François; Batsanov, Andrei S; Haehnel, Martin; Edkins, Katharina; Lorbach, Andreas; Steffen, Andreas; Marder, Todd B

    2016-07-18

    Reactions of [Rh(κ(2) -O,O-acac)(PMe3 )2 ] (acac=acetylacetonato) and α,ω-bis(arylbutadiynyl)alkanes afford two isomeric types of MC4 metallacycles with very different photophysical properties. As a result of a [2+2] reductive coupling at Rh, 2,5-bis(arylethynyl)rhodacyclopentadienes (A) are formed, which display intense fluorescence (Φ=0.07-0.54, τ=0.2-2.5 ns) despite the presence of the heavy metal atom. Rhodium biphenyl complexes (B), which show exceptionally long-lived (hundreds of μs) phosphorescence (Φ=0.01-0.33) at room temperature in solution, have been isolated as a second isomer originating from an unusual [4+2] cycloaddition reaction and a subsequent β-H-shift. We attribute the different photophysical properties of isomers A and B to a higher excited state density and a less stabilized T1 state in the biphenyl complexes B, allowing for more efficient intersystem crossing S1 →Tn and T1 →S0 . Control of the isomer distribution is achieved by modification of the bis- (diyne) linker length, providing a fundamentally new route to access photoactive metal biphenyl compounds. PMID:27355689

  16. Azido[1,1'-bis(diphenylphosphino)ferrocene](pentamethylcyclopentadienyl)rhodium(III) hexafluorophosphate.

    PubMed

    Han, Won Seok; Lee, Soon W

    2004-04-01

    In the title compound, azido-2kappaN-bis[micro-(1eta(5):2kappaP)-diphenylphosphinocyclopentadienyl][2(eta(5))-pentamethylcyclopentadienyl]iron(III)rhodium(III) hexafluorophosphate, [[Rh(C(10)H(15))(N(3))][Fe(micro-C(17)H(14)P)(2)

  17. Direct C-H alkylation and indole formation of anilines with diazo compounds under rhodium catalysis.

    PubMed

    Mishra, Neeraj Kumar; Choi, Miji; Jo, Hyeim; Oh, Yongguk; Sharma, Satyasheel; Han, Sang Hoon; Jeong, Taejoo; Han, Sangil; Lee, Seok-Yong; Kim, In Su

    2015-12-18

    The rhodium(III)-catalyzed direct functionalization of aniline C-H bonds with α-diazo compounds is described. These transformations provide a facile construction of ortho-alkylated anilines with diazo malonates or highly substituted indoles with diazo acetoacetates. PMID:26458276

  18. Trifluoromethylallylation of Heterocyclic C-H Bonds with Allylic Carbonates under Rhodium Catalysis.

    PubMed

    Choi, Miji; Park, Jihye; Sharma, Satyasheel; Jo, Hyeim; Han, Sangil; Jeon, Mijin; Mishra, Neeraj Kumar; Han, Sang Hoon; Lee, Jong Suk; Kim, In Su

    2016-06-01

    The rhodium(III)-catalyzed γ-trifluoromethylallylation of various heterocyclic C-H bonds with CF3-substituted allylic carbonates is described. These reactions provide direct access to linear CF3-containing allyl frameworks with complete trans-selectivity via C-H bond activation followed by a formal SN-type reaction pathway. PMID:27187625

  19. Rhodium dihydride (RhH[subscript 2]) with high volumetric hydrogen density

    SciTech Connect

    Li, Bing; Ding, Yang; Kim, Duck Young; Ahuja, Rajeev; Zou, Guangtian; Mao, Ho-Kwang

    2012-03-14

    Materials with very high hydrogen density have attracted considerable interest due to a range of motivations, including the search for chemically precompressed metallic hydrogen and hydrogen storage applications. Using high-pressure synchrotron X-ray diffraction technique and theoretical calculations, we have discovered a new rhodium dihydride (RhH{sub 2}) with high volumetric hydrogen density (163.7 g/L). Compressing rhodium in fluid hydrogen at ambient temperature, the fcc rhodium metal absorbs hydrogen and expands unit-cell volume by two discrete steps to form NaCl-typed fcc rhodium monohydride at 4 GPa and fluorite-typed fcc RhH{sub 2} at 8 GPa. RhH{sub 2} is the first dihydride discovered in the platinum group metals under high pressure. Our low-temperature experiments show that RhH{sub 2} is recoverable after releasing pressure cryogenically to 1 bar and is capable of retaining hydrogen up to 150 K for minutes and 77 K for an indefinite length of time.

  20. Rhodium-Catalyzed ipso-Borylation of Alkylthioarenes via C-S Bond Cleavage.

    PubMed

    Uetake, Yuta; Niwa, Takashi; Hosoya, Takamitsu

    2016-06-01

    Rhodium-catalyzed transformation of alkyl aryl sulfides into arylboronic acid pinacol esters via C-S bond cleavage is reported. In combination with transition-metal-catalyzed sulfanyl group-guided regioselective C-H borylation reactions of alkylthioarenes, this method allows the synthesis of a diverse range of multisubstituted arenes. PMID:27210907

  1. Rhodium(i)-catalysed intermolecular alkyne insertion into (2-pyridylmethylene)cyclobutenes.

    PubMed

    Matsuda, Takanori; Matsumoto, Takeshi

    2016-06-14

    Cyclobutenes with 2-pyridylmethylene groups at the 3 position underwent an intermolecular alkyne insertion reaction in the presence of a rhodium(i) catalyst at 170 °C to afford substituted benzenes. Among the different 2-pyridylmethylene groups examined, 3-methyl-2-pyridyl derivatives showed superior activity and readily coupled with various alkynes, including sterically demanding, heteroaromatic and terminal alkynes. PMID:27193826

  2. Cross-Coupling of Acrylamides and Maleimides under Rhodium Catalysis: Controlled Olefin Migration.

    PubMed

    Sharma, Satyasheel; Han, Sang Hoon; Oh, Yongguk; Mishra, Neeraj Kumar; Lee, Suk Hun; Oh, Joa Sub; Kim, In Su

    2016-06-01

    The rhodium(III)-catalyzed direct cross-coupling reaction of electron-deficient acrylamides with maleimides is described. This protocol displays broad functional group tolerance and high efficiency, which offers a new opportunity to access highly substituted succinimides. Dependent on the substituent positions of acrylamides and reaction conditions, olefin migrated products were obtained with high regio- and stereoselectivity. PMID:27182717

  3. Synthesis of 1H-Indazoles from Imidates and Nitrosobenzenes via Synergistic Rhodium/Copper Catalysis.

    PubMed

    Wang, Qiang; Li, Xingwei

    2016-05-01

    Nitrosobenzenes have been used as a convenient aminating reagent for the efficient synthesis of 1H-indazoles via rhodium and copper catalyzed C-H activation and C-N/N-N coupling. The reaction occurred under redox-neutral conditions with high efficiency and functional group tolerance. Moreover, a rhodacyclic imidate complex has been identified as a key intermediate. PMID:27082502

  4. Toward the Synthesis of Nuphar Sesquiterpene Thioalkaloids: Stereodivergent Rhodium-Catalyzed Synthesis of the Thiolane Subunit.

    PubMed

    Lu, Ping; Herrmann, Aaron T; Zakarian, Armen

    2015-08-01

    A stereodivergent approach to the central thiolane subunit of Nuphar sesquiterpene thioalkaloids has been developed. This approach features a rhodium-catalyzed Stevens-type rearrangement in conjunction with an enzyme resolution reaction. Further elaboration into a polycyclic ring system via alcohol oxidation and ring-closing metathesis is also described. PMID:26147579

  5. Chemo- and Regioselective Rhodium(I)-Catalyzed [2+2+2] Cycloaddition of Allenynes with Alkynes.

    PubMed

    Yasuda, Shigeo; Kawaguchi, Yasuaki; Okamoto, Yuta; Mukai, Chisato

    2016-08-16

    A highly chemo- and regioselective partially intramolecular rhodium(I)-catalyzed [2+2+2] cycloaddition of allenynes with alkynes is described. A range of diverse polysubstituted benzene derivatives could be synthesized in good to excellent yields, in which the allenynes served as synthetic equivalent to the diynes. A high regioselectivity could be observed when allenynes were treated with unsymmetrical alkynes. PMID:27436356

  6. Rhodium dihydride (RhH2) with high volumetric hydrogen density

    PubMed Central

    Li, Bing; Ding, Yang; Kim, Duck Young; Ahuja, Rajeev; Zou, Guangtian; Mao, Ho-Kwang

    2011-01-01

    Materials with very high hydrogen density have attracted considerable interest due to a range of motivations, including the search for chemically precompressed metallic hydrogen and hydrogen storage applications. Using high-pressure synchrotron X-ray diffraction technique and theoretical calculations, we have discovered a new rhodium dihydride (RhH2) with high volumetric hydrogen density (163.7 g/L). Compressing rhodium in fluid hydrogen at ambient temperature, the fcc rhodium metal absorbs hydrogen and expands unit-cell volume by two discrete steps to form NaCl-typed fcc rhodium monohydride at 4 GPa and fluorite-typed fcc RhH2 at 8 GPa. RhH2 is the first dihydride discovered in the platinum group metals under high pressure. Our low-temperature experiments show that RhH2 is recoverable after releasing pressure cryogenically to 1 bar and is capable of retaining hydrogen up to 150 K for minutes and 77 K for an indefinite length of time. PMID:22039219

  7. A Rhodium Nanoparticle-Lewis Acidic Ionic Liquid Catalyst for the Chemoselective Reduction of Heteroarenes.

    PubMed

    Karakulina, Alena; Gopakumar, Aswin; Akçok, İsmail; Roulier, Bastien L; LaGrange, Thomas; Katsyuba, Sergey A; Das, Shoubhik; Dyson, Paul J

    2016-01-01

    We describe a catalytic system composed of rhodium nanoparticles immobilized in a Lewis acidic ionic liquid. The combined system catalyzes the hydrogenation of quinolines, pyridines, benzofurans, and furan to access the corresponding heterocycles, important molecules present in fine chemicals, agrochemicals, and pharmaceuticals. The catalyst is highly selective, acting only on the heteroaromatic ring, and not interfering with other reducible functional groups. PMID:26577114

  8. Synthesis of C60H2 by rhodium-catalyzed hydrogenation of C60

    NASA Technical Reports Server (NTRS)

    Becker, L.; Evans, T. P.; Bada, J. L.; Miller, S. L. (Principal Investigator)

    1993-01-01

    Reduction of C60 with rhodium(0) on alumina and hydrogen in deuterated benzene (C6D6) at ambient temperature and pressure yields a mixture of hydrogenated compounds; C60H2 has been characterized as the major product in 14% yield based on 1H NMR.

  9. Synthesis of Chiral β-Amino Nitroalkanes via Rhodium-Catalyzed Asymmetric Hydrogenation.

    PubMed

    Li, Pan; Zhou, Ming; Zhao, Qingyang; Wu, Weilong; Hu, Xinquan; Dong, Xiu-Qin; Zhang, Xumu

    2016-01-01

    The asymmetric hydrogenation of β-amino nitroolefins has been successfully achieved by rhodium/bis(phosphine)-thiourea L1 with excellent enantioselectivities and yields (up to 96% ee, 96% yield, >99% conversion, TON up to 1000) under mild conditions. Chiral β-amino nitroalkane products and their derivatives are versatile intermediates in organic synthesis. PMID:26652759

  10. Mild and Site-Selective Allylation of Enol Carbamates with Allylic Carbonates under Rhodium Catalysis.

    PubMed

    Sharma, Satyasheel; Han, Sang Hoon; Oh, Yongguk; Mishra, Neeraj Kumar; Han, Sangil; Kwak, Jong Hwan; Lee, Seok-Yong; Jung, Young Hoon; Kim, In Su

    2016-03-18

    The rhodium(III)-catalyzed mild and site-selective C-H allylation of enol carbamates with 4-vinyl-1,3-dioxolan-2-one and allylic carbonates affords allylic alcohols and terminal allylated products, respectively. The assistance of the carbamoyl directing group provides a straightforward preparation of biologically and synthetically important allylated enol carbamates. PMID:26906724

  11. High-temperature, long-term drift of platinum-rhodium thermocouples

    NASA Technical Reports Server (NTRS)

    Szaniszlo, A. J.

    1970-01-01

    Contamination of thermocouples is minimized by use of pure alumina insulators and a controlled low-impurity-level high-vacuum environment. Average thermal electromotive force change for platinum-rhodium thermocouples was -2.8 deg K after 3700 hours exposure to a mean temperature of 1530 deg K.

  12. Rhodium Nanoparticle Shape Dependence in the Reduction of NO by CO

    SciTech Connect

    Renzas, J.R.; Zhang, Y.; Huang, W.; Somorjai, G.A.

    2009-07-13

    The shape dependence of the catalytic reduction of NO by CO on Rhodium nanopolyhedra and nanocubes was studied from 230-270 C. The nanocubes are found to exhibit higher turnover frequency and lower activation energy than the nanopolyhedra. These trends are compared to previous studies on Rh single crystals.

  13. Ligand Fluorination to Optimize Preferential Oxidation (PROX) of Carbon Monoxide by Water-Soluble Rhodium Porphyrins

    PubMed Central

    Biffinger, Justin C.; Uppaluri, ShriHarsha; Sun, Haoran

    2011-01-01

    Catalytic, low temperature preferential oxidation (PROX) of carbon monoxide by aqueous [5,10,15,20-tetrakis(4-sulfonatophenyl)-2,3,7,8,12,13,17,18-octafluoroporphyrinato]rhodium(III) tetrasodium salt, (1[Rh(III)]) and [5,10,15,20-tetrakis(3-sulfonato-2,6-difluorophenyl)-2,3,7,8,12,13,17,18-octafluoroporphyrinato]rhodium(III) tetrasodium salt, (2[Rh(III)]) is reported. The PROX reaction occurs at ambient temperature in buffered (4 ≤ pH ≤ 13) aqueous solutions. Fluorination on the porphyrin periphery is shown to increase the CO PROX reaction rate, shift the metal centered redox potentials, and acidify ligated water molecules. Most importantly, β-fluorination increases the acidity of the rhodium hydride complex (pKa = 2.2 ± 0.2 for 2[Rh-D]); the dramatically increased acidity of the Rh(III) hydride complex precludes proton reduction and hydrogen activation near neutral pH, thereby permitting oxidation of CO to be unaffected by the presence of H2. This new fluorinated water-soluble rhodium porphyrin-based homogenous catalyst system permits preferential oxidation of carbon monoxide in hydrogen gas streams at 308 °K using dioxygen or a sacrificial electron acceptor (indigo carmine) as the terminal oxidant. PMID:21949596

  14. Spectral evidence for hydrogen-induced reversible segregation of CO adsorbed on titania-supported rhodium.

    PubMed

    Panayotov, D; Mihaylov, M; Nihtianova, D; Spassov, T; Hadjiivanov, K

    2014-07-14

    The reduction of a 1.3% Rh/TiO2 sample with carbon monoxide leads to the formation of uniform Rh nanoparticles with a mean diameter of dp ≈ 2.2 nm. Adsorption of CO on the reduced Rh/TiO2 produces linear and bridged carbonyls bound to metallic Rh(0) sites and only a few geminal dicarbonyls of Rh(I). The ν(CO) of linear Rh(0)-CO complexes is strongly coverage dependent: it is observed at 2078 cm(-1) at full coverage and at ca. 2025 cm(-1) at approximated zero coverage. At low coverage, this shift is mainly caused by a dipole-dipole interaction between the adsorbed CO molecules while at high coverage, the chemical shift also becomes important. Hydrogen hardly affects the CO adlayer at high CO coverages. However, on a partially CO-covered surface (θCO ≈ 0.5), the adsorption of H2 at increasing pressure leads to a gradual shift in the band of linear Rh(0)-CO from 2041 to 2062 cm(-1). Subsequent evacuation almost restores the original spectrum, demonstrating the reversibility of the hydrogen effect. Through the use of (12)CO + (13)CO isotopic mixtures, it is established that the addition of hydrogen to the CO-Rh/TiO2 system leads to an increase in the dynamic interaction between the adsorbed CO molecules. This evidences an increase in the density of the adsorbed CO molecules and indicates segregation of the CO and hydrogen adlayers. When CO is adsorbed on a hydrogen-precovered surface, the carbonyl band maximum is practically coverage independent and is observed at 2175-2173 cm(-1). These results are explained by a model according to which CO successively occupies different rhodium nanoparticles. PMID:24866330

  15. Structural sensitivity studies of ethylene hydrogenation on platinum and rhodium surfaces

    SciTech Connect

    Quinlan, M.A. |

    1996-01-01

    The catalytic hydrogenation of ethylene and hydrogen on the well characterized surfaces of the noble metals platinum and rhodium has been studied for the purposes of determining the relative activity of these two substrates as well as the degree of structure sensitivity. The Pt(111) and the Rh(755) single crystal surfaces,as well as Pt and Rh foils, were employed as substrates to study the effect of surface step structure on reactivity. In addition, vibrational spectroscopy studies were performed for ethylene adsorption on the stepped Rh(755) surface. The catalytic reaction were obtained using a combined ultrahigh vacuum chamber coupled with an atmospheric pressure reaction chamber that functioned as a batch reactor. Samples could be prepared using standard surface science techniques and characterized for surface composition and geometry using Auger Electron Spectroscopy and Low Energy Electron Diffraction. A comparison of the reactivity of Rh(111) with the results from this study on Rh(755) allows a direct determination of the effect of step structure on ethylene hydrogenation activity. Structure sensitivity is expected to exhibit orders of magnitude differences in rate as surface orientation is varied. In this case, no significant differences were found, confirming the structure insensitivity of this reaction over this metal. The turnover frequency of the Rh(111) surface, 5 {times} 10{sup 1} s{sup {minus}1}, is in relatively good agreement with the turnover frequency of 9 {times} 10{sup 1} s{sup {minus}1} measured for the Rh(755) surface. Rate measurements made on the Pt(111) surface and the Pt foil are in excellent agreement, both measuring 3 {times} 10{sup 2} s{sup minus}1. Likewise, it is concluded that no strong structure sensitivity for the platinum surfaces exists. High Resolution Electron Energy Loss Spectroscopy studies of adsorbed ethylene on the Rh(755) surface compare favorably with the ethylidyne spectra obtained on the Rh(111) and Rh(100) surfaces.

  16. Rh-Catalyzed Domino Addition-Enolate Arylation: Generation of 3-Substituted Oxindoles via a Rh(lll) Intermediate.

    PubMed

    Jang, Young Jin; Yoon, Hyung; Lautens, Mark

    2015-08-01

    A Rh-catalyzed domino conjugate addition-arylation sequence via a Rh(III) intermediate is reported. This process involving a proposed intramolecular oxidative addition of a rhodium enolate was utilized to achieve the synthesis of 3-substituted oxindole derivatives in moderate to excellent yields. PMID:26158867

  17. Preparation, characterization and crystal structures of two amine-oxime rhodium complexes

    SciTech Connect

    Lynde-Kernell, T.; Schlemper, E.O.

    1988-01-01

    Two amine-oxime complexes of rhodium(III) have been synthesized and structurally characterized as model compounds for a study of potential radiopharmaceuticals. Dichlorobis (2-acetylpyridineoxime)-rhodium(III) crystallizes in space group Pnma with a = 13.462(4), b = 12.496(2), c = 9.661(2)A, Z = 4, D/sub x/ = 1.819(2)g/cm/sup 3/. The chloro ligands are trans (av Rh-Cl = 2.337(2)A) in the octahedral Rh(III) complex. The oxime oxygens are involved in a short intramolecular hydrogen bond (O---O = 2.446(4)A) with the hydrogen atom as well as the rhodium and two chlorine atoms on the mirror. Dichloro-(4,4'-(1,2-ethanediyldiimino)bis(4-methyl-2-pentanone-dioxime))rhodium (III) crystallizes in space group P2/sub 1/2/sub 1/2/sub 1/ with a = 14.435(3), b = 7.638(9), c = 16.596(3)A, Z = 4, D/sub x/ = 1.667(2)g/cm/sup 3/. The trans dichoro octahedral complex (av Rh downward arrow not identical to = 2.341(11)A) has cis amine nitrogens (av Rh-N = 2.079(3)A) and one cis oxime nitrogens (av Rh-N = 2.030(3)A). The oxime oxygen atoms are involved in a short intramolecular hydrogen bond (O---O = 2.423(3)A). Synthesis and proton magnetic resonance results are included, along with a comparison with other rhodium(III) amine-oxime complex structures.

  18. On the Reaction Mechanism of the Rhodium-Catalyzed Arylation of Fullerene (C60) with Organoboron Compounds in the Presence of Water.

    PubMed

    Martínez, Juan Pablo; Solà, Miquel; Poater, Albert

    2015-12-01

    Density functional theory (DFT) calculations were carried out to study the reaction mechanism of the Suzuki-Miyaura rhodium-catalyzed hydroarylation of fullerene (C60) by phenylboronic acid in the presence of water. As found experimentally, our results confirm that addition of the phenyl group and the hydrogen atom in C60 occurs at the [6,6] bond. The rate-determining step corresponds to the simultaneous transfer of a hydrogen atom from a water molecule to C60 and the recovery of the active species. The use of 2-phenyl-1,3,2-dioxaborinane and the 4,4,5,5-tetramethyl-2-phenyl-1,3,2,-dioxaborolane instead of phenylboronic acid as organoborate agents does not lead to great modifications of the energy profile. The possible higher steric hindrance of 4,4,5,5-tetramethyl-2-phenyl-1,3,2,-dioxaborolane should not inhibit its use in the hydroarylation of C60. Overall, we show how organoboron species arylate C60 in rhodium-based catalysis assisted by water as a source of protons. PMID:27308203

  19. Ammonia Borane Dehydrogenation Promoted by a Pincer-Square-Planar Rhodium(I) Monohydride: A Stepwise Hydrogen Transfer from the Substrate to the Catalyst.

    PubMed

    Esteruelas, Miguel A; Nolis, Pau; Oliván, Montserrat; Oñate, Enrique; Vallribera, Adelina; Vélez, Andrea

    2016-07-18

    The pincer d(8)-monohydride complex RhH{xant(P(i)Pr2)2} (xant(P(i)Pr2)2 = 9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene) promotes the release of 1 equiv of hydrogen from H3BNH3 and H3BNHMe2 with TOF50% values of 3150 and 1725 h(-1), to afford [BH2NH2]n and [BH2NMe2]2 and the tandem ammonia borane dehydrogenation-cyclohexene hydrogenation. DFT calculations on the ammonia borane dehydrogenation suggest that the process takes place by means of cis-κ(2)-PP-species, through four stages including: (i) Shimoi-type coordination of ammonia borane, (ii) homolytic addition of the coordinated H-B bond to afford a five-coordinate dihydride-boryl-rhodium(III) intermediate, (iii) reductive intramolecular proton transfer from the NH3 group to one of the hydride ligands, and (iv) release of H2 from the resulting square-planar hydride dihydrogen rhodium(I) intermediate. PMID:27367792

  20. Total synthesis of (+)-asteriscanolide: further exploration of the rhodium(I)-catalyzed [(5+2)+1] reaction of ene-vinylcyclopropanes and CO.

    PubMed

    Liang, Yong; Jiang, Xing; Fu, Xu-Fei; Ye, Siyu; Wang, Tao; Yuan, Jie; Wang, Yuanyuan; Yu, Zhi-Xiang

    2012-03-01

    The total synthesis of (+)-asteriscanolide is reported. The synthetic route features two key reactions: 1) the rhodium(I)-catalyzed [(5+2)+1] cycloaddition of a chiral ene-vinylcyclopropane (ene-VCP) substrate to construct the [6.3.0] carbocyclic core with excellent asymmetric induction, and 2) an alkoxycarbonyl-radical cyclization that builds the bridging butyrolactone ring with high efficiency. Other features of this synthetic route include the catalytic asymmetric alkynylation of an aldehyde to synthesize the chiral ene-VCP substrate, a highly regioselective conversion of the [(5+2)+1] cycloadduct into its enol triflate, and the inversion of the inside-outside tricycle to the outside-outside structure by an ester-reduction/elimination to enol-ether/hydrogenation procedure. In addition, density functional theory (DFT) rationalization of the chiral induction of the [(5+2)+1] reaction and the diastereoselectivity of the radical annulation has been presented. Equally important is that we have also developed other routes to synthesize asteriscanolide using the rhodium(I)-catalyzed [(5+2)+1] cycloaddition as the key step. Even though these routes failed to achieve the total synthesis, these experiments gave further useful information about the scope of the [(5+2)+1] reaction and paved the way for its future application in synthesis. PMID:22223465

  1. Burnup of rhodium SPND in VVER-1000: Method for determination of linear energy release by SPND readings

    SciTech Connect

    Kurchenkov, A. Yu.

    2011-12-15

    A method for determination of linear energy release of a VVER fuel assembly near a rhodium self-powered neutron detector (SPND) is described. The dependence of SPND burnup on the charge passing through it is specified.

  2. Promoting Effect of CeO2 in the Electrocatalytic Activity of Rhodium for Ethanol Electro-Oxidation

    SciTech Connect

    He, Q.; Mukerjee, S; Shyam, B; Ramaker, D; Parres-Esclapex, D; Illan-Gomez, M; Bueno-Lopez, A

    2009-01-01

    The promoting effect of ceria in the electrocatalytic activity of rhodium for ethanol electro-oxidation in alkali media has been studied. Rh/C, CeO2/C and RhCeO2/C catalysts were synthesized and characterized by TEM, XRD, XPS, TG-MS, H2-TPR and XAS. The electrocatalytic activity was studied by Cyclic Voltammetry (CV) and chronoamperometry. The onset potential of oxidation on RhCeO2/C was shifted negatively as compared to that on Rh/C, despite ceria itself does not show any electrocatalytic activity. The promoting effect of ceria has been attributed to the improved rhodium dispersion, and differences in the oxidation state of rhodium between Rh/C and RhCeO2/C were not found. The carbon support reduces rhodium species to Rh0, and also partially reduces ceria, during the samples preparation, and the surface of the carbon support is oxidised.

  3. Double hydrophosphination of alkynes promoted by rhodium: the key role of an N-heterocyclic carbene ligand.

    PubMed

    Di Giuseppe, Andrea; De Luca, Roberto; Castarlenas, Ricardo; Pérez-Torrente, Jesús J; Crucianelli, Marcello; Oro, Luis A

    2016-04-25

    The regioselective double hydrophosphination of alkynes mediated by rhodium catalysts is presented. The distinctive stereoelectronic properties of the NHC ligand prevent the catalyst deactivation by diphosphine coordination thereby allowing for the closing of a productive catalytic cycle. PMID:27022648

  4. Preparation of alumina-supported ceria. II. Measurement of ceria surface area after impregnation with platinum or rhodium

    SciTech Connect

    Rogemond, E.; Frety, R.; Perrichon, V.; Primet, M. |

    1997-07-01

    The surface area of cerium oxide was evaluated in an aluminium oxide supported catalyst. The catalyst were impregnated with rhodium chlorides and platinum chlorides. The adsorption of carbon dioxide is discussed.

  5. Rhodium- and iridium-catalyzed dehydrogenative cyclization through double C-H bond cleavages to produce fluorene derivatives.

    PubMed

    Itoh, Masaki; Hirano, Koji; Satoh, Tetsuya; Shibata, Yu; Tanaka, Ken; Miura, Masahiro

    2013-02-15

    The rhodium-catalyzed cyclization of a series of 2,2-diarylalkanoic acids in the presence of copper acetate as an oxidant smoothly proceeded through double C-H bond cleavages and subsequent decarboxylation to produce the corresponding fluorene derivatives. The direct cyclization of triarylmethanols also took place efficiently by using an iridium catalyst in place of the rhodium, while the hydroxy function was still intact. PMID:23360206

  6. Rhodium-catalyzed pyridannulation of indoles with diazoenals: a direct approach to pyrido[1,2-a]indoles.

    PubMed

    Dawande, Sudam Ganpat; Lad, Bapurao Sudam; Prajapati, Sunitkumar; Katukojvala, Sreenivas

    2016-06-28

    A novel rhodium catalyzed pyridannulation of 3-substituted indoles with diazoenals furnished privileged pyrido[1,2-a]indoles. The reaction is proposed to involve a [4 + 2]-annulation of the diacceptor rhodium enalcarbenoid via C-2 functionalization of the indole. The utility of the methodology was demonstrated with a short synthesis of the tetrahydropyrido[1,2-a]indole core, present in a large number of biologically important polycyclic indole alkaloids. PMID:26964882

  7. Ion exchange equilibria in simultaneous extraction of platinum(II, IV) and rhodium(III) from hydrochloric solutions

    NASA Astrophysics Data System (ADS)

    Mel'nikov, A. M.; Kononova, O. N.; Pavlenko, N. I.; Krylov, A. S.

    2012-06-01

    Regularities of sorption extraction of platinum(II, IV) and rhodium(III) by anion exchangers of various physical and chemical structure in the presence of hydrochloric media were studied. It is established that AM-2B, Purolite A 500, and Purolite S 985 ionites adsorb complex anions of platinum metals employing mixed mechanism. A high affinity of the studied anionites for the studied complex anions of platinum and rhodium is established.

  8. Enantioselective Synthesis of Spiroindenes by Enol-Directed Rhodium(III)-Catalyzed C–H Functionalization and Spiroannulation

    PubMed Central

    Reddy Chidipudi, Suresh; Burns, David J; Khan, Imtiaz; Lam, Hon Wai

    2015-01-01

    Chiral cyclopentadienyl rhodium complexes promote highly enantioselective enol-directed C(sp2)-H functionalization and oxidative annulation with alkynes to give spiroindenes containing all-carbon quaternary stereocenters. High selectivity between two possible directing groups, as well as control of the direction of rotation in the isomerization of an O-bound rhodium enolate into the C-bound isomer, appear to be critical for high enantiomeric excesses. PMID:26404643

  9. Enantioselective Synthesis of Spiroindenes by Enol-Directed Rhodium(III)-Catalyzed C-H Functionalization and Spiroannulation.

    PubMed

    Reddy Chidipudi, Suresh; Burns, David J; Khan, Imtiaz; Lam, Hon Wai

    2015-11-16

    Chiral cyclopentadienyl rhodium complexes promote highly enantioselective enol-directed C(sp(2))-H functionalization and oxidative annulation with alkynes to give spiroindenes containing all-carbon quaternary stereocenters. High selectivity between two possible directing groups, as well as control of the direction of rotation in the isomerization of an O-bound rhodium enolate into the C-bound isomer, appear to be critical for high enantiomeric excesses. PMID:26404643

  10. Selective catalytic reduction system and process for treating NOx emissions using a palladium and rhodium or ruthenium catalyst

    DOEpatents

    Sobolevskiy, Anatoly; Rossin, Joseph A.; Knapke, Michael J.

    2011-07-12

    A process for the catalytic reduction of nitrogen oxides (NOx) in a gas stream (29) in the presence of H.sub.2 is provided. The process comprises contacting the gas stream with a catalyst system (38) comprising zirconia-silica washcoat particles (41), a pre-sulfated zirconia binder (44), and a catalyst combination (40) comprising palladium and at least one of rhodium, ruthenium, or a mixture of ruthenium and rhodium.

  11. Time-Resolved Structural Characterization of Formation and Break-up of Rhodium Clusters Supported in Highly Dealuminated Y Zeolite

    SciTech Connect

    Liang, Ann J.; Gates, Bruce C.

    2009-06-12

    Mononuclear rhodium complexes incorporating two ethylene ligands and anchored to dealuminated zeolite Y by two Rh-O bonds were characterized by transient extended X-ray absorption fine structure (EXAFS) spectroscopy and infrared (IR) spectroscopy as they were converted in the presence of H{sub 2}. EXAFS spectra indicate reduction of the rhodium in the complex at 298 K to form rhodium clusters less than 3 {angstrom} in average diameter. Contacting of the resultant clusters with C{sub 2}H{sub 4} led to their oxidative fragmentation, and the process was reversible. When the H{sub 2} treatment was carried out at a higher temperature (373 K), larger clusters formed. The reduction and oxidation of the rhodium were confirmed by X-ray absorption near edge spectra. During the ethylene treatments, ethyl groups formed on the rhodium, as indicated by IR spectra; treatment in H{sub 2} led to hydrogenation of these groups to form ethane, and the ethyl groups are inferred to be intermediates in the catalytic hydrogenation of ethylene. Ethylene in the gas phase helps to stabilize rhodium in the form of mononuclear complexes on the zeolite during catalysis, hindering the cluster formation.

  12. Enantioselective rhodium/ruthenium photoredox catalysis en route to chiral 1,2-aminoalcohols.

    PubMed

    Ma, Jiajia; Harms, Klaus; Meggers, Eric

    2016-08-01

    A rhodium-based chiral Lewis acid catalyst combined with [Ru(bpy)3](PF6)2 as a photoredox sensitizer allows for the visible-light-activated redox coupling of α-silylamines with 2-acyl imidazoles to afford, after desilylation, 1,2-amino-alcohols in yields of 69-88% and with high enantioselectivity (54-99% ee). The reaction is proposed to proceed via an electron exchange between the α-silylamine (electron donor) and the rhodium-chelated 2-acyl imidazole (electron acceptor), followed by a stereocontrolled radical-radical reaction. Substrate scope and control experiments reveal that the trimethylsilyl group plays a crucial role in this reductive umpolung of the carbonyl group. PMID:27462824

  13. Asymmetric Hydroformylation of Heterocyclic Olefins Mediated by Supramolecularly Regulated Rhodium-Bisphosphite Complexes.

    PubMed

    Rovira, Laura; Vaquero, Mónica; Vidal-Ferran, Anton

    2015-10-16

    Rhodium complexes derived from conformationally transformable α,ω-bisphosphite ligands combined with a suitable alkali metal BArF salt as a regulation agent (RA) provide high regio- and enantioselectivities in the asymmetric hydroformylation (AHF) of three heterocyclic olefins. The outcome of the AHF could be exquisitely regulated by choosing the appropriate RA with an increase in the ee, the reversal of the regioselectivity, or the complete suppression of one byproduct. PMID:26355601

  14. Asymmetric Induction at Remote Quaternary Centers of Cyclohexadienones by Rhodium-Catalyzed Conjugate Hydrosilylation.

    PubMed

    Naganawa, Yuki; Kawagishi, Mayu; Ito, Jun-Ichi; Nishiyama, Hisao

    2016-06-01

    The enantioselective desymmetrizing conjugate hydrosilylation of prochiral differently γ,γ-disubstituted cyclohexadienone derivatives 2 to furnish the corresponding cyclohexenones 4 with a remote chiral all-carbon quaternary center at the γ position is described. Chiral rhodium-bis(oxazolinyl)phenyl complexes 1 were effective catalysts for this transformation. This catalytic system was extended to the asymmetric transformation of spirocarbocyclic cyclohexadienones 5 to give the corresponding products 6 with high enantiomeric ratios. PMID:27100774

  15. Rhodium-Catalyzed Cross-Cyclotrimerization and Dimerization of Allenes with Alkynes.

    PubMed

    Sakashita, Kazuki; Shibata, Yu; Tanaka, Ken

    2016-06-01

    It has been established that a cationic rhodium(I)/binap complex catalyzes the cross-cyclotrimerization of two molecules of a monosubstituted allene with one molecule of a functionalized alkyne to give 3,6-dialkylidenecyclohex-1-enes. In contrast, the reactions involving di- or trisubstituted allenes and/or unfunctionalized alkynes afforded cross-dimerization products, substituted dendralenes, through β-hydrogen elimination from the corresponding rhodacycles. PMID:27110668

  16. Cyclization of Alkyne-Azide with Isonitrile/CO via Self-Relay Rhodium Catalysis.

    PubMed

    Zhang, Zhen; Xiao, Fan; Huang, Baoliang; Hu, Jincheng; Fu, Bin; Zhang, Zhenhua

    2016-03-01

    A self-relay rhodium(I)-catalyzed cyclization of alkyne-azides with two σ-donor/π-acceptor ligands (isonitriles and CO) to form sequentially multiple-fused heterocycle systems via tandem nitrene transformation and aza-Pauson-Khand cyclization has been developed. In this approach, an intriguing chemoselective insertion process of isonitriles superior to CO was observed. This reaction provides an alternative strategy to synthesize functionalized pyrrolo[2,3-b]indole scaffolds. PMID:26907671

  17. Synergistic Rhodium/Copper Catalysis: Synthesis of 1,3-Enynes and N-Aryl Enaminones.

    PubMed

    Wang, Nan-Nan; Huang, Lei-Rong; Hao, Wen-Juan; Zhang, Tian-Shu; Li, Guigen; Tu, Shu-Jiang; Jiang, Bo

    2016-03-18

    Synergistic rhodium/copper catalysis enables new three-component coupling reactions of terminal alkynes and α-diazoketones and/or arylamines, allowing dediazotized carbene C-H insertion for the synthesis of functionalized 1,3-enynes and N-aryl enaminones with high stereoselectivity. The synthetic utility of these transformations results in subsequent C-C or/and C-N bond-forming reactions to effectively build up functional molecules with potential significance. PMID:26987884

  18. Pyridazine N-Oxides as Precursors of Metallocarbenes: Rhodium-Catalyzed Transannulation with Pyrroles.

    PubMed

    Kanchupalli, Vinaykumar; Joseph, Desna; Katukojvala, Sreenivas

    2015-12-01

    Pyridazine N-oxides are used for the first time as precursors of metallocarbenes. These nitrogen-rich heterocycles led to the discovery of a novel acceptor and donor-acceptor enalcarbenoids. The synthetic utility of these metallocarbenes was demonstrated in the rhodium-catalyzed denitrogenative transannulation of pyridazine N-oxides with pyrroles to the valuable alkyl, 7-aryl, and 7-styryl indoles. The transannulation strategy was applied to the synthesis of a potent anticancer agent. PMID:26588048

  19. Electronic states and potential energy surfaces of rhodium carbide (RhC)

    NASA Astrophysics Data System (ADS)

    Tan, Hang; Liao, Muzhen; Balasubramanian, K.

    1997-12-01

    Potential energy curves and spectroscopic constants of 23 electronic states of the rhodium carbide (RhC) have been studied using the complete-active-space multi-configuration self-consistent field (CASMCSCF) followed by first-order configuration interaction (FOCI) calculations. Multi-reference singles + doubles configuration interaction (MRSDCI) were used to determine the properties of low-lying electronic states. The nature of chemical bond formation in different states is discussed in terms of their wave function and Mulliken populations.

  20. Particle size, precursor, and support effects in the hydrogenolysis of alkanes over supported rhodium catalysts

    SciTech Connect

    Coq, B.; Dutartre, R.; Figueras, F.; Tazi, T. )

    1990-04-01

    A series of Rh catalysts of widely varying dispersion has been prepared using {gamma}-alumina as support and Rh acetylacetonate (Rh(acac){sub 3}) as precursor. The hydrogenolyses of n-hexane (nH), methylcyclopentane (MCP), and 2,2,3,3-tetramethylbutane (TeMB) were investigated as model reactions. Clear dependence of turnover frequency on Rh particle size is observed for nH and MCP hydrogenolysis, but only slight changes of selectivities occur with these alkanes. By contrast, large modifications of both specific activity and selectivity appear when TeMB is reacted. TeMB hydrogenolysis is thus a reliable tool for studying modifications of the surface structure of rhodium particles. This probe was used to investigate the effects of precursor and support on rhodium catalysts. The effect of chlorine is appreciable and shifts the selectivity of TeMB hydrogenolysis toward that of large particles. This is attributed to a different morphology of the rhodium particles. When the effect of dispersion of the metal is taken into account, no support effect is observed when SiO{sub 2} or ZrO{sub 2} is used as support. The different properties of rhodium on MgO can also be attributed to a different morphology of the particles. For Rh/TiO{sub 2} prepared from RhCl{sub 3} {center dot} 3H{sub 2}O, the catalytic properties are similar to those of Rh/Al{sub 2}O{sub 3} of moderate dispersion whatever temperature is used for reduction. Rh/TiO{sub 2} prepared from Rh(acac){sub 3} and reduced at 573 and 773 K simulates the catalytic properties of particles smaller than indeed observed. This effect can be interpreted by a partial coverage of the Rh surface by TiO{sub x} species (SMSI). This SMSI effect disappears upon reduction at 873 K.

  1. Recovery of rhodium with a novel soft donor ligand using solvent extraction techniques in chloride media.

    PubMed

    Bottorff, Shalina C; Powell, Ashton S; Barnes, Charles L; Wherland, Scot; Benny, Paul D

    2016-02-28

    Rhodium remains a high value platinum group metal that has key applications in electronics, catalysts, and batteries. To provide a useful tool for Rh isolation, a novel tridentate ligand utilizing soft N and S donors was designed to specifically extract Rh. The synthesis, complexation kinetics, and liquid-liquid extraction studies were performed to explore the overall process and recovery of Rh from chloride media. PMID:26837642

  2. Mild partial deoxygenation of esters catalyzed by an oxazolinylborate-coordinated rhodium silylene

    DOE PAGESBeta

    Xu, Songchen; Boschen, Jeffery S.; Biswas, Abhranil; Kobayashi, Takeshi; Pruski, Marek; Windus, Theresa L.; Sadow, Aaron D.

    2015-08-17

    An electrophilic, coordinatively unsaturated rhodium complex supported by borate-linked oxazoline, oxazoline-coordinated silylene, and N-heterocyclic carbene donors [{κ³-N,Si,C-PhB(OxMe²)(OxMe²SiHPh)ImMes}Rh(H)CO][HB(C₆F₅)₃] (2, OxMe² = 4,4-dimethyl-2-oxazoline; ImMes = 1-mesitylimidazole) is synthesized from the neutral rhodium silyl {PhB(OxMe²)₂ImMes}RhH(SiH2Ph)CO (1) and B(C6F5)3. The unusual oxazoline-coordinated silylene structure in 2 is proposed to form by rearrangement of an unobserved isomeric cationic rhodium silylene species [{PhB(OxMe²)₂ImMes}RhH(SiHPh)CO][HB(C₆F₅)₃] generated by H abstraction. Complex 2 catalyzes reductions of organic carbonyl compounds with silanes to give hydrosilylation products or deoxygenation products. The pathway to these reactions is primarily influenced by the degree of substitution of the organosilane. Reactions with primary silanes give deoxygenationmore » of esters to ethers, amides to amines, and ketones and aldehydes to hydrocarbons, whereas tertiary silanes react to give 1,2-hydrosilylation of the carbonyl functionality. In contrast, the strong Lewis acid B(C₆F₅)₃ catalyzes the complete deoxygenation of carbonyl compounds to hydrocarbons with PhSiH₃ as the reducing agent.« less

  3. Mild partial deoxygenation of esters catalyzed by an oxazolinylborate-coordinated rhodium silylene.

    PubMed

    Xu, Songchen; Boschen, Jeffery S; Biswas, Abhranil; Kobayashi, Takeshi; Pruski, Marek; Windus, Theresa L; Sadow, Aaron D

    2015-09-28

    An electrophilic, coordinatively unsaturated rhodium complex supported by borate-linked oxazoline, oxazoline-coordinated silylene, and N-heterocyclic carbene donors [{κ(3)-N,Si,C-PhB(Ox(Me2))(Ox(Me2)SiHPh)Im(Mes)}Rh(H)CO][HB(C6F5)3] (, Ox(Me2) = 4,4-dimethyl-2-oxazoline; Im(Mes) = 1-mesitylimidazole) is synthesized from the neutral rhodium silyl {PhB(Ox(Me2))2Im(Mes)}RhH(SiH2Ph)CO () and B(C6F5)3. The unusual oxazoline-coordinated silylene structure in is proposed to form by rearrangement of an unobserved isomeric cationic rhodium silylene species [{PhB(Ox(Me2))2Im(Mes)}RhH(SiHPh)CO][HB(C6F5)3] generated by H abstraction. Complex catalyzes reductions of organic carbonyl compounds with silanes to give hydrosilylation products or deoxygenation products. The pathway to these reactions is primarily influenced by the degree of substitution of the organosilane. Reactions with primary silanes give deoxygenation of esters to ethers, amides to amines, and ketones and aldehydes to hydrocarbons, whereas tertiary silanes react to give 1,2-hydrosilylation of the carbonyl functionality. In contrast, the strong Lewis acid B(C6F5)3 catalyzes the complete deoxygenation of carbonyl compounds to hydrocarbons with PhSiH3 as the reducing agent. PMID:26278517

  4. Stereoselective hydrogenation of olefins using rhodium-substituted carbonic anhydrase--a new reductase.

    PubMed

    Jing, Qing; Okrasa, Krzysztof; Kazlauskas, Romas J

    2009-01-01

    One useful synthetic reaction missing from nature's toolbox is the direct hydrogenation of substrates using hydrogen. Instead nature uses cofactors like NADH to reduce organic substrates, which adds complexity and cost to these reductions. To create an enzyme that can directly reduce organic substrates with hydrogen, researchers have combined metal hydrogenation catalysts with proteins. One approach is an indirect link where a ligand is linked to a protein and the metal binds to the ligand. Another approach is direct linking of the metal to protein, but nonspecific binding of the metal limits this approach. Herein, we report a direct hydrogenation of olefins catalyzed by rhodium(I) bound to carbonic anhydrase (CA-[Rh]). We minimized nonspecific binding of rhodium by replacing histidine residues on the protein surface using site-directed mutagenesis or by chemically modifying the histidine residues. Hydrogenation catalyzed by CA-[Rh] is slightly slower than for uncomplexed rhodium(I), but the protein environment induces stereoselectivity favoring cis- over trans-stilbene by about 20:1. This enzyme is the first cofactor-independent reductase that reduces organic molecules using hydrogen. This catalyst is a good starting point to create variants with tailored reactivity and selectivity. This strategy to insert transition metals in the active site of metalloenzymes opens opportunities to a wider range of enzyme-catalyzed reactions. PMID:19115310

  5. Activity of rhodium-catalyzed hydroformylation: added insight and predictions from theory.

    PubMed

    Sparta, Manuel; Børve, Knut J; Jensen, Vidar R

    2007-07-11

    We have performed a density functional theory investigation of hydroformylation of ethylene for monosubstituted rhodium-carbonyl catalysts, HRh(CO)3L, where the modifying ligand, L, is a phosphite (L = P(OMe)3, P(OPh)3, or P(OCH2CF3)3), a phosphine (L = PMe3, PEt3, PiPr3, or PPh3), or a N-heterocyclic carbene (NHC) based on the tetrahydropyrimidine, imidazol, or tetrazol ring, respectively. The study follows the Heck and Breslow mechanism. Excellent correspondence between our calculations and existing experimental information is found, and the present results constitute the first example of a realistic quantum chemical description of the catalytic cycle of hydroformylation using ligand-modified rhodium carbonyl catalysts. This description explains the mechanistic and kinetic basis of the contemporary understanding of this class of reaction and offers unprecedented insight into the electronic and steric factors governing catalytic activity. The insight has been turned into structure-activity relationships and used as guidelines when also subjecting to calculation phosphite and NHC complexes that have yet to be reported experimentally. The latter calculations illustrate that it is possible to increase the electron-withdrawing capacity of both phosphite and NHC ligands compared to contemporary ligands through directed substitution. Rhodium complexes of such very electron-withdrawing ligands are predicted to be more active than contemporary catalysts for hydroformylation. PMID:17555314

  6. Infrared-induced reactivity of N2O on small gas-phase rhodium clusters.

    PubMed

    Hamilton, Suzanne M; Hopkins, W Scott; Harding, Dan J; Walsh, Tiffany R; Haertelt, Marko; Kerpal, Christian; Gruene, Philipp; Meijer, Gerard; Fielicke, André; Mackenzie, Stuart R

    2011-03-31

    Far- and mid-infrared multiple photon dissociation spectroscopy has been employed to study both the structure and surface reactivity of isolated cationic rhodium clusters with surface-adsorbed nitrous oxide, Rh(n)N(2)O(+) (n = 4-8). Comparison of experimental spectra recorded using the argon atom tagging method with those calculated using density functional theory (DFT) reveals that the nitrous oxide is molecularly bound on the rhodium cluster via the terminal N-atom. Binding is thought to occur exclusively on atop sites with the rhodium clusters adopting close-packed structures. In related, but conceptually different experiments, infrared pumping of the vibrational modes corresponding with the normal modes of the adsorbed N(2)O has been observed to result in the decomposition of the N(2)O moiety and the production of oxide clusters. This cluster surface chemistry is observed for all cluster sizes studied except for n = 5. Plausible N(2)O decomposition mechanisms are given based on DFT calculations using exchange-correlation functionals. Similar experiments pumping the Rh-O stretch in Rh(n)ON(2)O(+) complexes, on which the same chemistry is observed, confirm the thermal nature of this reaction. PMID:21391545

  7. Structure sensitive selectivity of the NO-CO reaction over rhodium single crystal catalysts

    SciTech Connect

    Peden, C.H.F.; Belton, D.N.; Schmieg, S.J.

    1995-05-01

    The control of automotive emissions of nitrogen oxides (NO{sub x}) in passenger cars is accomplished by a heavy reliance on after-treatment of the engine exhaust using catalytic converters that contain a mixture of platinum (Pt), rhodium (Rh), and sometimes palladium (Pd). In this paper we examine the effect of surface structure on the NO-CO activity and selectivity by comparing the reactivity of Rh(110) and Rh(111) single crystal catalysts. Selectivity for the two possible nitrogen containing products from NO reduction, N{sub 2}O and N{sub 2}, is particularly interesting. Here we report that the selectivity of the NO-CO reaction is quite sensitive to the structure of the Rh catalyst metal surface. (A more complete description of these studies will be published elsewhere.) The more open Rh(110) surface tends to make significantly less N{sub 2}O than Rh(111) under virtually all conditions that we probed with these experiments. Furthermore, under the conditions used in this study, the NO-CO activity over Rh(110), as measured by the rate of NO loss, is somewhat faster than over Rh(111) with a lower apparent activation energy (Ea), 27.6 vs. 35.4 kcal/mol. We attribute these results to the greater tendency of the more open (110) surface to dissociate NO. Notably, more facile NO dissociation on Rh(110) would lead to greater steady-state concentrations of adsorbed N-atoms; thus, the (110) surface favors N-atom recombination over the surface reaction between adsorbed NO and N-atoms to make N{sub 2}O. In support of this, post-reaction surface analysis shows only NO on the Rh(111) surface while the Rh(110) surface contains predominantly N-atoms and much lower concentrations of adsorbed NO. NO dissociation on Rh(110) is more favorable than on Rh(111), in part, because it is less-severely poisoned by high surface concentrations of NO. In addition, the more-open (110) surface may be intrinsically more active for the elementary process of dissociating adsorbed NO.

  8. CATALYTIC INTERACTIONS OF RHODIUM, RUTHENIUM, AND MERCURY DURING SIMULATED DWPF CPC PROCESSING WITH HYDROGEN GENERATION

    SciTech Connect

    Koopman, D

    2008-10-09

    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell (CPC) vessels were performed as part of the ongoing investigation into catalytic hydrogen generation. Rhodium, ruthenium, and mercury have been identified as the principal elemental factors affecting the peak hydrogen generation rate in the DWPF Sludge Receipt and Adjustment Tank (SRAT) for a given acid addition. The primary goal of this study is to identify any significant interactions between the three factors. Noble metal concentrations were similar to recent sludge batches. Rh ranged from 0.0026-0.013% and Ru ranged from 0.010-0.050% in the dried sludge solids, while initial Hg ranged from 0.5-2.5 wt%. An experimental matrix was developed to ensure that the existence of statistically significant two-way interactions could be determined without confounding of the main effects with the two-way interaction effects. The nominal matrix design consisted of twelve SRAT cycles. Testing included: a three factor (Rh, Ru, and Hg) study at two levels per factor (eight runs), two duplicate midpoint runs, and two additional replicate runs to assess reproducibility away from the midpoint. Midpoint testing can identify potential quadratic effects from the three factors. A single sludge simulant was used for all tests. Acid addition was kept effectively constant except to compensate for variations in the starting mercury concentration. Six Slurry Mix Evaporator (SME) cycles were performed to supplement the SME hydrogen generation database. Some of the preliminary findings from this study include: (1) Rh was linked to the maximum SRAT hydrogen generation rate in the first two hours after acid addition in preliminary statistical modeling. (2) Ru was linked conclusively to the maximum SRAT hydrogen generation rate in the last four hours of reflux in preliminary statistical modeling. (3) Increasing the ratio of Hg/Rh shifted the noble metal controlling the maximum SRAT hydrogen generation rate from

  9. Ambiphilic diphosphine-borane ligands: metal-->borane interactions within isoelectronic complexes of rhodium, platinum and palladium.

    PubMed

    Bontemps, Sébastien; Sircoglou, Marie; Bouhadir, Ghenwa; Puschmann, Horst; Howard, Judith A K; Dyer, Philip W; Miqueu, Karinne; Bourissou, Didier

    2008-01-01

    Coordination of an ambiphilic diphosphine-borane (DPB) ligand to the RhCl(CO) fragment affords two isomeric complexes. According to X-ray diffraction analysis, each complex adopts a square-pyramidal geometry with trans coordination of the two phosphine buttresses and axial RhB contacts, but the two differ in the relative orientations around the rhodium and boron centres. DFT calculations on the actual complexes provide insight into the influence of the pi-accepting CO co-ligand, compared with previously reported complexes [Rh(mu-Cl)(dpb)]2 and [RhCl(dmap)(dpb)]. In addition, comparison of the nu(CO) frequency of [RhCl(CO)(dpb)] with that of the related borane-free complex [RhCl(CO)(iPr2PPh)2] substantiates the significant electron-withdrawing effect that the sigma-accepting borane moiety exerts on the metal. Valence isoelectronic [PtCl2(dpb)] and [PdCl2(dpb)] complexes have also been prepared and characterized spectroscopically and structurally. The pronounced influence of the transition metal on the magnitude of the M-->B interaction is highlighted by geometric considerations and NBO analyses. PMID:17948327

  10. Transfer hydrogenation with abnormal dicarbene rhodium(iii) complexes containing ancillary and modular poly-pyridine ligands.

    PubMed

    Farrell, Kevin; Melle, Philipp; Gossage, Robert A; Müller-Bunz, Helge; Albrecht, Martin

    2016-03-21

    Treatment of an abnormal dicarbene ligated rhodium(iii) dimer with 2,2'-bipyridine (bipy), 1,10-phenanthroline (phen) or 2,2':6',2''-terpyridine (terpy) results in coordination of the N-donor ligands and concomitant cleavage of the dimeric structure. Depending on the denticity of the pyridyl ligand, this situation retains one (L = terpy) or two (L = bipy, phen) flexible sites for substrate coordination. In the case of the bipy complexes, modification of the electron density at Rh, without directly affecting the steric environment about the metal centre, was achieved by the incorporation of electron-donating or electron-withdrawing substituents on the bipy backbone. The dicarbene pyridyl complexes were active in transfer hydrogenation catalysis of benzophenone at 0.15 mol% catalyst loading in a iPrOH/KOH mixture. The catalysts displayed a strong characteristic colour change (yellow to purple) after activation which allowed for visual monitoring of the status of the reaction. The colour probe and the robustness of the active catalysts proved useful for catalyst recycling. The catalytic activity sustained over five consecutive substrate batch additions and gave a maximum overall turnover number of 3100. PMID:26842739

  11. All-Carbon [3+3] Oxidative Annulations of 1,3-Enynes by Rhodium(III)-Catalyzed C-H Functionalization and 1,4-Migration.

    PubMed

    Burns, David J; Best, Daniel; Wieczysty, Martin D; Lam, Hon Wai

    2015-08-17

    1,3-Enynes containing allylic hydrogens cis to the alkyne function as three-carbon components in rhodium(III)-catalyzed, all-carbon [3+3] oxidative annulations to produce spirodialins. The proposed mechanism of these reactions involves the alkenyl-to-allyl 1,4-rhodium(III) migration. PMID:26224377

  12. All-Carbon [3+3] Oxidative Annulations of 1,3-Enynes by Rhodium(III)-Catalyzed C–H Functionalization and 1,4-Migration**

    PubMed Central

    Burns, David J; Best, Daniel; Wieczysty, Martin D; Lam, Hon Wai

    2015-01-01

    1,3-Enynes containing allylic hydrogens cis to the alkyne function as three-carbon components in rhodium(III)-catalyzed, all-carbon [3+3] oxidative annulations to produce spirodialins. The proposed mechanism of these reactions involves the alkenyl-to-allyl 1,4-rhodium(III) migration. PMID:26224377

  13. Z-Selective Hydrothiolation of Racemic 1,3-Disubstituted Allenes: An Atom-Economic Rhodium-Catalyzed Dynamic Kinetic Resolution.

    PubMed

    Pritzius, Adrian B; Breit, Bernhard

    2015-12-21

    A Z-selective rhodium-catalyzed hydrothiolation of 1,3-disubstituted allenes and subsequent oxidation towards the corresponding allylic sulfones is described. Using the bidentate 1,4-bis(diphenylphosphino)butane (dppb) ligand, Z/E-selectivities up to >99:1 were obtained. The highly atom-economic desymmetrization reaction tolerates functionalized aromatic and aliphatic thiols. Additionally, a variety of symmetric internal allenes, as well as unsymmetrically disubstituted substrates were well tolerated, thus resulting in high regioselectivities. Starting from chiral but racemic 1,3-disubstituted allenes a dynamic kinetic resolution (DKR) could be achieved by applying (S,S)-Me-DuPhos as the chiral ligand. The desired Z-allylic sulfones were obtained in high yields and enantioselectivities up to 96 % ee. PMID:26418035

  14. Influence of particle size and support on the catalytic properties of rhodium for hydrogenolysis of hexanes and methylcyclopentane

    SciTech Connect

    Del Angel, G.; Coq, B.; Dutartre, R.; Figueras, F.

    1984-05-01

    The catalytic properties of rhodium for the hydrogenolysis of C/sub 6/ hydrocarbons have been investigated. Rhodium preferentially cleaves bisecondary and primary-secondary carbon-carbon bonds. Primary-tertiary C-C bonds react much more slowly. Methylcyclopentane (MCP) is converted to methyl-2-pentane, methyl-3-pentane, and n-hexane at temperatures lower than 503 K. The selectivity to n-hexane is low (10%) but measurable on well-dispersed Rh/Al/sub 2/O/sub 3/ catalysts and decreases when the dispersion decreases. Rh/SiO/sub 2/ catalysts have a low selectivity for the formation of n-hexane whatever the dispersion. The specific activity for MCP conversion changes as a function of the dispersion of rhodium and of the support: small rhodium particles are more active than large particles when the support is silica, but the reverse is true on alumina. These changes of activity are consistent with the results reported for C/sub 2/H/sub 6/ hydrogenolysis on Rh/SiO/sub 2/ and for C/sub 5/H/sub 10/ conversion on Rh/Al/sub 2/O/sub 3/. The variations of the catalytic properties for hydrogenolysis may be interpreted as due to the modification of the structure of the small rhodium particles observed on silica.

  15. Determination of rhodium in metallic alloy and water samples using cloud point extraction coupled with spectrophotometric technique

    NASA Astrophysics Data System (ADS)

    Kassem, Mohammed A.; Amin, Alaa S.

    2015-02-01

    A new method to estimate rhodium in different samples at trace levels had been developed. Rhodium was complexed with 5-(4‧-nitro-2‧,6‧-dichlorophenylazo)-6-hydroxypyrimidine-2,4-dione (NDPHPD) as a complexing agent in an aqueous medium and concentrated by using Triton X-114 as a surfactant. The investigated rhodium complex was preconcentrated with cloud point extraction process using the nonionic surfactant Triton X-114 to extract rhodium complex from aqueous solutions at pH 4.75. After the phase separation at 50 °C, the surfactant-rich phase was heated again at 100 °C to remove water after decantation and the remaining phase was dissolved using 0.5 mL of acetonitrile. Under optimum conditions, the calibration curve was linear for the concentration range of 0.5-75 ng mL-1 and the detection limit was 0.15 ng mL-1 of the original solution. The enhancement factor of 500 was achieved for 250 mL samples containing the analyte and relative standard deviations were ⩽1.50%. The method was found to be highly selective, fairly sensitive, simple, rapid and economical and safely applied for rhodium determination in different complex materials such as synthetic mixture of alloys and environmental water samples.

  16. The structures of the crystalline phase and columnar mesophase of rhodium (II) heptanoate and of its binary mixture with copper (II) heptanoate probed by EXAFS

    NASA Astrophysics Data System (ADS)

    Inb-Elhaj, M.; Guillon, D.; Skoulios, A.; Maldivi, P.; Giroud-Godquin, A. M.; Marchon, J.-C.

    1992-12-01

    EXAFS was used to investigate the local structure of the polar spines of rhodium (II) soaps in the columnar liquid crystalline state. It was also used to ascertain the degree of blending of the cores in binary mixtures of rhodium (II) and copper (II) soaps. For the pure rhodium soaps, the columns are shown to result from the stacking of binuclear metal-metal bonded dirhodium tetracarboxylate units bonded to one another by apical ligation of the metal atom of each complex with one of the oxygen atoms of the adjacent molecule. Mixtures of rhodium (II) and copper (II) soaps give a hexagonal columnar mesophase in which pure rhodium and pure copper columns are randomly distributed.

  17. Octene hydroformylation by using rhodium complexes tethered onto selectively functionalized mesoporous silica and in-situ high pressure IR study

    SciTech Connect

    Song, Ki-Chang; Baek, Ji Yeon; Bae, Jung A.; Yim, Jin-Heong; Ko, Young Soo; Kim, Do Heui; Park, Young-Kwon; Jeon, Jong Ki

    2011-04-30

    SBA-15-based heterogeneous catalysts were applied to 1-octene hydroformylation. The turn over frequency over SBA-15/γ-aminopropylmethyldimethoxysilane(AEAPMDMS)/Rh catalyst with triphenylphosphine (TPP) ligand prepared by conventional post grafting method was higher than that of the homogeneous catalyst, (Rh(CH3COO)2)2 with TPP. The SBA-15/AEAPMDMS/Rh catalyst can be easily recycled without rhodium loss. The molar ratio of linear to branched nonyl aldehydes was remarkably enhanced over the heterogeneous catalysts. The selectively functionalized rhodium catalyst (SBA-15/Ph2Si(OEt)2/AEAPMDMS/Rh), in which rhodium was selectively tethered intra-pore of SBA-15, was beneficial for improving the selectivity to linear aldehyde. In situ high pressure FT-IR analysis suggested HRh(CO)2(PPh3)2 and HRh(CO)(PPh3)3 to be active species over the SBA-15/AEAPMDMS/Rh catalyst with TPP.

  18. A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials.

    PubMed

    Zhu, Lili; Lin, Haiping; Li, Youyong; Liao, Fan; Lifshitz, Yeshayahu; Sheng, Minqi; Lee, Shuit-Tong; Shao, Mingwang

    2016-01-01

    Currently, platinum-based electrocatalysts show the best performance for hydrogen evolution. All hydrogen evolution reaction catalysts should however obey Sabatier's principle, that is, the adsorption energy of hydrogen to the catalyst surface should be neither too high nor too low to balance between hydrogen adsorption and desorption. To overcome the limitation of this principle, here we choose a composite (rhodium/silicon nanowire) catalyst, in which hydrogen adsorption occurs on rhodium with a large adsorption energy while hydrogen evolution occurs on silicon with a small adsorption energy. We show that the composite is stable with better hydrogen evolution activity than rhodium nanoparticles and even exceeding those of commercial platinum/carbon at high overpotentials. The results reveal that silicon plays a key role in the electrocatalysis. This work may thus open the door for the design and fabrication of electrocatalysts for high-efficiency electric energy to hydrogen energy conversion. PMID:27447292

  19. A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials

    PubMed Central

    Zhu, Lili; Lin, Haiping; Li, Youyong; Liao, Fan; Lifshitz, Yeshayahu; Sheng, Minqi; Lee, Shuit-Tong; Shao, Mingwang

    2016-01-01

    Currently, platinum-based electrocatalysts show the best performance for hydrogen evolution. All hydrogen evolution reaction catalysts should however obey Sabatier's principle, that is, the adsorption energy of hydrogen to the catalyst surface should be neither too high nor too low to balance between hydrogen adsorption and desorption. To overcome the limitation of this principle, here we choose a composite (rhodium/silicon nanowire) catalyst, in which hydrogen adsorption occurs on rhodium with a large adsorption energy while hydrogen evolution occurs on silicon with a small adsorption energy. We show that the composite is stable with better hydrogen evolution activity than rhodium nanoparticles and even exceeding those of commercial platinum/carbon at high overpotentials. The results reveal that silicon plays a key role in the electrocatalysis. This work may thus open the door for the design and fabrication of electrocatalysts for high-efficiency electric energy to hydrogen energy conversion. PMID:27447292

  20. Base-Free Conditions for Rhodium-Catalyzed Asymmetric Arylation To Produce Stereochemically Labile α-Aryl Ketones.

    PubMed

    Dou, Xiaowei; Lu, Yixin; Hayashi, Tamio

    2016-06-01

    The asymmetric arylation of 2,2-dialkyl cyclopent-4-ene-1,3-diones with aryl boronic acids was found to be efficiently catalyzed by a chiral diene-rhodium μ-chloro dimer, [{RhCl((R)-diene*)}2 ], in the absence of bases in toluene/H2 O to give 2,2-dialkyl 4-aryl cyclopentane-1,3-diones in high yields with high enantioselectivity. Such compounds can not be obtained with high enantiomeric purity under the standard basic conditions used for rhodium-catalyzed asymmetric arylation because the α-aryl ketone products undergo racemization under the basic conditions. PMID:27100902

  1. Enantioselective Rhodium(I) Donor Carbenoid-Mediated Cascade Triggered by a Base-Free Decomposition of Arylsulfonyl Hydrazones.

    PubMed

    Torres, Òscar; Parella, Teodor; Solà, Miquel; Roglans, Anna; Pla-Quintana, Anna

    2015-11-01

    The reaction of diyne arylsulfonyl hydrazone substrates under rhodium(I)/BINAP catalysis gives access to sulfonated azacyclic frameworks in a highly enantioselective manner. This new cascade process considerably increases the molecular complexity by generating two C-C bonds, one C-S bond, and one C-H bond. Theoretical calculations, competitive experiments, and deuterium labeling have jointly been used to propose a mechanism that accounts for the reaction. The mechanism involves the formation of vinyl rhodium carbenoids, hydride migratory insertion, and intermolecular stereoselective nucleophilic attack. The last two steps are the key to the stereoselectivity of the process. PMID:26397988

  2. Mild partial deoxygenation of esters catalyzed by an oxazolinylborate-coordinated rhodium silylene

    SciTech Connect

    Xu, Songchen; Boschen, Jeffery S.; Biswas, Abhranil; Kobayashi, Takeshi; Pruski, Marek; Windus, Theresa L.; Sadow, Aaron D.

    2015-08-17

    An electrophilic, coordinatively unsaturated rhodium complex supported by borate-linked oxazoline, oxazoline-coordinated silylene, and N-heterocyclic carbene donors [{κ³-N,Si,C-PhB(OxMe²)(OxMe²SiHPh)ImMes}Rh(H)CO][HB(C₆F₅)₃] (2, OxMe² = 4,4-dimethyl-2-oxazoline; ImMes = 1-mesitylimidazole) is synthesized from the neutral rhodium silyl {PhB(OxMe²)₂ImMes}RhH(SiH2Ph)CO (1) and B(C6F5)3. The unusual oxazoline-coordinated silylene structure in 2 is proposed to form by rearrangement of an unobserved isomeric cationic rhodium silylene species [{PhB(OxMe²)₂ImMes}RhH(SiHPh)CO][HB(C₆F₅)₃] generated by H abstraction. Complex 2 catalyzes reductions of organic carbonyl compounds with silanes to give hydrosilylation products or deoxygenation products. The pathway to these reactions is primarily influenced by the degree of substitution of the organosilane. Reactions with primary silanes give deoxygenation of esters to ethers, amides to amines, and ketones and aldehydes to hydrocarbons, whereas tertiary silanes react to give 1,2-hydrosilylation of the carbonyl functionality. In contrast, the strong Lewis acid B(C₆F₅)₃ catalyzes the complete deoxygenation of carbonyl compounds to hydrocarbons with PhSiH₃ as the reducing agent.

  3. Intrinsic Selectivity and Structure Sensitivity of Rhodium Catalysts for C(2+) Oxygenate Production.

    PubMed

    Yang, Nuoya; Medford, Andrew J; Liu, Xinyan; Studt, Felix; Bligaard, Thomas; Bent, Stacey F; Nørskov, Jens K

    2016-03-23

    Synthesis gas (CO + H2) conversion is a promising route to converting coal, natural gas, or biomass into synthetic liquid fuels. Rhodium has long been studied as it is the only elemental catalyst that has demonstrated selectivity to ethanol and other C2+ oxygenates. However, the fundamentals of syngas conversion over rhodium are still debated. In this work a microkinetic model is developed for conversion of CO and H2 into methane, ethanol, and acetaldehyde on the Rh (211) and (111) surfaces, chosen to describe steps and close-packed facets on catalyst particles. The model is based on DFT calculations using the BEEF-vdW functional. The mean-field kinetic model includes lateral adsorbate-adsorbate interactions, and the BEEF-vdW error estimation ensemble is used to propagate error from the DFT calculations to the predicted rates. The model shows the Rh(211) surface to be ∼6 orders of magnitude more active than the Rh(111) surface, but highly selective toward methane, while the Rh(111) surface is intrinsically selective toward acetaldehyde. A variety of Rh/SiO2 catalysts are synthesized, tested for catalytic oxygenate production, and characterized using TEM. The experimental results indicate that the Rh(111) surface is intrinsically selective toward acetaldehyde, and a strong inverse correlation between catalytic activity and oxygenate selectivity is observed. Furthermore, iron impurities are shown to play a key role in modulating the selectivity of Rh/SiO2 catalysts toward ethanol. The experimental observations are consistent with the structure-sensitivity predicted from theory. This work provides an improved atomic-scale understanding and new insight into the mechanism, active site, and intrinsic selectivity of syngas conversion over rhodium catalysts and may also guide rational design of alloy catalysts made from more abundant elements. PMID:26958997

  4. Rhodium-Catalyzed C6-Selective C-H Borylation of 2-Pyridones.

    PubMed

    Miura, Wataru; Hirano, Koji; Miura, Masahiro

    2016-08-01

    A pyridine-directed, rhodium-catalyzed C6-selective C-H borylation of 2-pyridones with bis(pinacolato)diboron (pinB-Bpin) has been developed. The reaction proceeds smoothly under relatively mild conditions, and the corresponding C6-borylated 2-pyridones are obtained with perfect site selectivity. Subsequent palladium-catalyzed Suzuki-Miyaura cross-coupling is followed by the removal of the pyridine directing group to form the C6-arylated NH-pyridone in an acceptable overall yield. PMID:27420925

  5. Rhodium-Catalyzed Enantioselective Cycloisomerization to Cyclohexenes Bearing Quaternary Carbon Centers.

    PubMed

    Park, Jung-Woo; Chen, Zhiwei; Dong, Vy M

    2016-03-16

    We report a Rh-catalyzed enantioselective cycloisomerization of α,ω-heptadienes to afford cyclohexenes bearing quaternary carbon centers. Rhodium(I) and a new SDP ligand promote chemoselective formation of a cyclohex-3-enecarbaldehyde motif that is inaccessible by the Diels-Alder cycloaddition. Various α,α-bisallylaldehydes rearrange to generate six-membered rings by a mechanism triggered by aldehyde C-H bond activation. Mechanistic studies suggest a pathway involving regioselective carbometalation and endocyclic β-hydride elimination. PMID:26953640

  6. Ionic Liquids as Solvents for Rhodium and Platinum Catalysts Used in Hydrosilylation Reaction.

    PubMed

    Zielinski, Witold; Kukawka, Rafal; Maciejewski, Hieronim; Smiglak, Marcin

    2016-01-01

    A group of imidazolium and pyridinium based ionic liquids has been synthetized, and their ability to dissolve and activate the catalysts used in hydrosilylation reaction of 1-octane and 1,1,1,3,5,5,5-heptamethyltrisiloxane was investigated. An organometallic catalyst as well as inorganic complexes of platinum and rhodium dissolved in ionic liquids were used, forming liquid solutions not miscible with the substrates or with the products of the reaction. The results show that application of such a simple biphasic catalytic system enables reuse of ionic liquid phase with catalysts in multiple reaction cycles reducing the costs and decreasing the amount of catalyst needed per mole of product. PMID:27563869

  7. AMTEC cell testing, optimization of rhodium/tungsten electrodes, and tests of other components

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Ryan, Margaret A.; Jeffries-Nakamura, Barbara; Underwood, Mark L.; O'Connor, Dennis; Kikkert, Stan

    1991-01-01

    Electrodes, current collectors, ceramic to metal braze seals, and metallic components exposed to the high 'hot side' temperatures and sodium liquid and vapor environment have been tested and evaluated in laboratory cells running for hundreds of hours at 1100-1200 K. Rhodium/tungsten electrodes have been selected as the optimum electrodes based on performance parameters and durability. Current collectors have been evaluated under simulated and actual operating conditions. The microscopic effects of metal migration between electrode and current collector alloys as well as their thermal and electrical properties determined the suitability of current collector and lead materials. Braze seals suitable for long term application to AMTEC devices are being developed.

  8. Rhodium-Catalyzed Stitching Reaction: Convergent Synthesis of Quinoidal Fused Oligosiloles.

    PubMed

    Shintani, Ryo; Iino, Ryo; Nozaki, Kyoko

    2016-03-23

    Quinoidal fused oligosiloles, a new family of silicon-bridged π-conjugated compounds, have been synthesized for the first time based on a new synthetic strategy, a stitching reaction. Multiple carbon-carbon bonds can be formed consecutively between two oligo(silylene-ethynylene)s under rhodium catalysis in a stitching manner, and up to five siloles have been fused in a quinoidal form. Physical properties of these oligosiloles have also been investigated to find a unique trend in their LUMO levels, which become higher with longer π-conjugation. PMID:26961329

  9. Hydrolysis of Letrozole catalyzed by macrocyclic Rhodium (I) Schiff-base complexes

    NASA Astrophysics Data System (ADS)

    Reddy, P. Muralidhar; Shanker, K.; Srinivas, V.; Krishna, E. Ravi; Rohini, R.; Srikanth, G.; Hu, Anren; Ravinder, V.

    2015-03-01

    Ten mononuclear Rhodium (I) complexes were synthesized by macrocyclic ligands having N4 and N2O2 donor sites. Square planar geometry is assigned based on the analytical and spectral properties for all complexes. Rh(I) complexes were investigated as catalysts in hydrolysis of Nitrile group containing pharmaceutical drug Letrozole. A comparative study showed that all the complexes are efficient in the catalysis. The percent yields of all the catalytic reaction products viz. drug impurities were determined by spectrophotometric procedures and characterized by spectral studies.

  10. Stereoselective 1,3-Insertions of Rhodium(II) Azavinyl Carbenes

    PubMed Central

    Chuprakov, Stepan; Worrell, Brady T.; Selander, Nicklas; Sit, Rakesh K.; Fokin, Valery V.

    2014-01-01

    Rhodium(II) azavinyl carbenes, conveniently generated from 1-sulfonyl-1,2,3-triazoles, undergo a facile, mild and convergent formal 1,3-insertion into N–H and O–H bonds of primary and secondary amides, various alcohols, and carboxylic acids to afford a wide range of vicinally bis-functionalized Z-olefins with perfect regio- and stereoselectively. Utilizing the distinctive functionality installed through these reactions, a number of subsequent rearrangements and cyclizations expand the repertoire of valuable organic building blocks constructed by reactions of transition metal carbene complexes, including α-allenyl ketones and amino-substituted heterocycles. PMID:24295389

  11. Rhodium-Catalyzed Asymmetric Cycloisomerization and Parallel Kinetic Resolution of Racemic Oxabicycles.

    PubMed

    Loh, Charles C J; Schmid, Matthias; Webster, Robert; Yen, Andy; Yazdi, Shabnam K; Franke, Patrick T; Lautens, Mark

    2016-08-16

    While desymmetrizations by intermolecular asymmetric ring-opening reactions of oxabicyclic alkenes with various nucleophiles have been reported over the past two decades, the demonstration of an intramolecular variant is unknown. Reported herein is the first rhodium-catalyzed asymmetric cycloisomerization of meso-oxabicyclic alkenes tethered to bridgehead nucleophiles, thus providing access to tricyclic scaffolds through a myriad of enantioselective C-O, C-N, and C-C bond formations. Moreover, we also demonstrate a unique parallel kinetic resolution, whereby racemic oxabicycles bearing two different bridgehead nucleophiles can be resolved enantioselectively. PMID:27416818

  12. Synthesis of Sulfoximine Carbamates by Rhodium-Catalyzed Nitrene Transfer of Carbamates to Sulfoxides.

    PubMed

    Zenzola, Marina; Doran, Robert; Luisi, Renzo; Bull, James A

    2015-06-19

    Sulfoximines are of considerable interest for incorporation into medicinal compounds. A convenient synthesis of N-protected sulfoximines is achieved, under mild conditions, by rhodium-catalyzed transfer of carbamates to sulfoxides. The first examples of 4-membered thietane-oximines are prepared. Sulfoximines bearing Boc and Cbz groups are stable to further cross coupling reactions, and readily deprotected. This method may facilitate the preparation of NH-sulfoximines providing improved (global) deprotection strategies, which is illustrated in the synthesis of methionine sulfoxide (MSO). PMID:25989821

  13. Access to Cyclic Amino Boronates via Rhodium-Catalyzed Functionalization of Alkyl MIDA Boronates.

    PubMed

    St Denis, Jeffrey D; Lee, C Frank; Yudin, Andrei K

    2015-12-01

    Herein, we describe the rhodium-catalyzed C-H amination reaction of 1,2-boryl sulfamate esters derived from amphoteric α-boryl aldehydes. Depending on the substitution pattern of the boryl sulfamate ester, a diverse range of five- or six-membered ring heterocycles are accessible using this transformation. The highly chemoselective nature of the C-H functionalization reaction preserves the alkyl boronate functional group, which enables the synthesis of B-C-N and B-C-C-N motifs that are present in a number of hydrolase inhibitors. PMID:26588176

  14. Mechanistic Studies and Expansion of the Substrate Scope of Direct Enantioselective Alkynylation of α-Ketiminoesters Catalyzed by Adaptable (Phebox)Rhodium(III) Complexes.

    PubMed

    Morisaki, Kazuhiro; Sawa, Masanao; Yonesaki, Ryohei; Morimoto, Hiroyuki; Mashima, Kazushi; Ohshima, Takashi

    2016-05-18

    Mechanistic studies and expansion of the substrate scope of direct enantioselective alkynylation of α-ketiminoesters catalyzed by adaptable (phebox)rhodium(III) complexes are described. The mechanistic studies revealed that less acidic alkyne rather than more acidic acetic acid acted as a proton source in the catalytic cycle, and the generation of more active (acetato-κ(2)O,O')(alkynyl)(phebox)rhodium(III) complexes from the starting (diacetato)rhodium(III) complexes limited the overall reactivity of the reaction. These findings, as well as facile exchange of the alkynyl ligand on the (alkynyl)rhodium(III) complexes led us to use (acetato-κ(2)O,O')(trimethylsilylethynyl)(phebox)rhodium(III) complexes as a general precatalyst for various (alkynyl)rhodium(III) complexes. Use of the (trimethylsilylethynyl)rhodium(III) complexes as precatalysts enhanced the catalytic performance of the reactions with an α-ketiminoester derived from ethyl trifluoropyruvate at a catalyst loading as low as 0.5 mol % and expanded the substrate scope to unprecedented α-ketiminophosphonate and cyclic N-sulfonyl α-ketiminoesters. PMID:27092817

  15. Light-induced reduction of rhodium(III) and palladium(II) on titanium dioxide dispersions and the selective photochemical separation and recovery of gold(III), platinum(IV), and rhodium(III) in chloride media

    SciTech Connect

    Borgarello, E.; Serpone, N.; Emo, G.; Harris, R.; Pelizzetti, E.; Minero, C.

    1986-12-03

    Irradiation of aqueous TiO/sub 2/ dispersions containing palladium(II) or rhodium(III) chloride salts with AM1 simulated sunlight leads to the photoreduction of these metals, which are deposited on the semiconductor particle surface. Oxygen is detrimental to the photoreduction of rhodium(III) but not the photoreduction of palladium(II). However, in both cases the reduction process is most efficient if the solution contains CH/sub 3/OH, which acts to scavenge valence band holes of the illuminated TiO/sub 2/ semiconductor. The selective photoreduction and recovery of precious metals from a dilute solution (as might be found in industrial wastes) have been investigated for a mixture of gold(III), platinum(IV), and rhodium(III) chloride salts as a function of various parameters (pH, presence or absence of O/sub 2/, presence or absence of a hole scavenger, and the concentration of the semiconductor). At pH 0, gold is easily separated from platinum and rhodium. The rate of photoreduction of gold(III) on TiO/sub 2/ is nearly independent of the concentration of the semiconductor, under the experimental conditions employed; the limiting rate is 2.7 x 10/sup -7/ M s/sup -1/. The potential utility of this selective photochemical technique is discussed.

  16. A facile one-step synthesis of polymer supported rhodium nanoparticles in organic medium and their catalytic performance in the dehydrogenation of ammonia-borane.

    PubMed

    Karahan, Senem; Zahmakıran, Mehmet; Özkar, Saim

    2012-01-28

    A new type of supported rhodium nanoparticles were reproducibly prepared from N(2)H(4)BH(3) reduction of [Rh(μ-Cl)(1,5-cod)](2) without using any solid support and pre-treatment technique. Their characterization shows the formation of well dispersed rhodium(0) nanoparticles within the framework of a polyaminoborane based polymeric support. These new rhodium(0) nanoparticles were found to be the most active supported catalyst in the catalytic dehydrogenation of ammonia-borane in water at room temperature. PMID:22158916

  17. C-Propargylation Overrides O-Propargylation in Reactions of Propargyl Chloride with Primary Alcohols: Rhodium-Catalyzed Transfer Hydrogenation.

    PubMed

    Liang, Tao; Woo, Sang Kook; Krische, Michael J

    2016-08-01

    The canonical SN 2 behavior displayed by alcohols and activated alkyl halides in basic media (O-alkylation) is superseded by a pathway leading to carbinol C-alkylation under the conditions of rhodium-catalyzed transfer hydrogenation. Racemic and asymmetric propargylations are described. PMID:27321353

  18. Expanding the family of bis-cyclometalated chiral-at-metal rhodium(iii) catalysts with a benzothiazole derivative.

    PubMed

    Ma, Jiajia; Shen, Xiaodong; Harms, Klaus; Meggers, Eric

    2016-05-28

    Synthetic access to previously elusive single enantiomers of an octahedral chiral-at-metal rhodium(iii) complex containing two cyclometalated 2-phenylbenzothiazoles and two acetonitrile ligands is reported. The complex is a superior chiral Lewis acid catalyst compared to its benzoxazole congener which can be rationalized with a higher steric congestion around the coordination sites. PMID:27143346

  19. The role of macrocyclic compounds in the extraction and possible separation of platinum and rhodium from chloride solutions.

    PubMed

    Jyothi, Rajesh Kumar; Lee, Jin-Young

    2016-01-01

    Macrocyclic compounds (crown ethers), specifically 18-crown-6 (18-C-6), benzo-15-crown-5 (B-15-C-5), di-benzo-18-crown-6 (DB-18-C-6) and di-cyclohexano-18-crown-6 (DC-18C-6), are used as extractants as well as synergists with amine-group extractants. Platinum and rhodium belong to platinum-group metals (PGMs) and have very similar ionic radii and similar properties. The separation of PGMs is most useful for the preparation of functional materials. Macrocyclic compounds are tested for platinum and rhodium separation and are found to achieve marginal separation. Amines (used as extractants) are paired with macrocyclic compounds (used as synergists), and the separation factor between platinum and rhodium is increased with synergistic enhancement from a chloride solution. The present study discusses extraction chemistry, separation factors and the synergy between platinum and rhodium from chloride solutions. To ensure accurate data, the aqueous samples in this study are analyzed using an inductively coupled plasma optical emission spectrometer (ICP-OES). PMID:27283394

  20. Selective Synthesis of Isoquinolines by Rhodium(III)-Catalyzed C-H/N-H Functionalization with α-Substituted Ketones.

    PubMed

    Li, Jie; Zhang, Zhao; Tang, Mengyao; Zhang, Xiaolei; Jin, Jian

    2016-08-01

    A rhodium(III)-catalyzed C-H/N-H bond functionalization for the synthesis of 1-aminoisoquinolines from aryl amidines and α-MsO/TsO/Cl ketones was achieved under mild reaction conditions. Thus, this approach provides a practical method for the site-selective synthesis of various synthetically valuable isoquinolines with wide functional group tolerance. PMID:27441726

  1. Direct Synthesis of 5-Aryl Barbituric Acids by Rhodium(II)-Catalyzed Reactions of Arenes with Diazo Compounds**

    PubMed Central

    Best, Daniel; Burns, David J; Lam, Hon Wai

    2015-01-01

    A commercially available rhodium(II) complex catalyzes the direct arylation of 5-diazobarbituric acids with arenes, allowing straightforward access to 5-aryl barbituric acids. Free N—H groups are tolerated on the barbituric acid, with no complications arising from N—H insertion processes. This method was applied to the concise synthesis of a potent matrix metalloproteinase (MMP) inhibitor. PMID:25959544

  2. The role of macrocyclic compounds in the extraction and possible separation of platinum and rhodium from chloride solutions

    PubMed Central

    Jyothi, Rajesh Kumar; Lee, Jin-Young

    2016-01-01

    Macrocyclic compounds (crown ethers), specifically 18-crown-6 (18-C-6), benzo-15-crown-5 (B-15-C-5), di-benzo-18-crown-6 (DB-18-C-6) and di-cyclohexano-18-crown-6 (DC-18C-6), are used as extractants as well as synergists with amine-group extractants. Platinum and rhodium belong to platinum-group metals (PGMs) and have very similar ionic radii and similar properties. The separation of PGMs is most useful for the preparation of functional materials. Macrocyclic compounds are tested for platinum and rhodium separation and are found to achieve marginal separation. Amines (used as extractants) are paired with macrocyclic compounds (used as synergists), and the separation factor between platinum and rhodium is increased with synergistic enhancement from a chloride solution. The present study discusses extraction chemistry, separation factors and the synergy between platinum and rhodium from chloride solutions. To ensure accurate data, the aqueous samples in this study are analyzed using an inductively coupled plasma optical emission spectrometer (ICP-OES). PMID:27283394

  3. Gold vs Rhodium Catalysis: Tuning Reactivity through Catalyst Control in the C-H Alkynylation of Isoquinolones.

    PubMed

    Shaikh, Aslam C; Shinde, Dinesh R; Patil, Nitin T

    2016-03-01

    A site-selective C-4/C-8 alkynylation of isoquinolones catalyzed by gold and rhodium complexes is reported. A broad range of synthetically useful functional groups (-F, -Cl, -Br, -CF3, -OMe, alkyl, etc.) were tolerated, providing an efficient and robust protocol for the synthesis either C-4- or C-8-alkynylated isoquinolones. PMID:26886569

  4. Rhodium(III)-catalyzed C-H activation/annulation with vinyl esters as an acetylene equivalent.

    PubMed

    Webb, Nicola J; Marsden, Stephen P; Raw, Steven A

    2014-09-19

    The behavior of electron-rich alkenes in rhodium-catalyzed C-H activation/annulation reactions is investigated. Vinyl acetate emerges as a convenient acetylene equivalent, facilitating the synthesis of sixteen 3,4-unsubstituted isoquinolones, as well as select heteroaryl-fused pyridones. The complementary regiochemical preferences of enol ethers versus enol esters/enamides is discussed. PMID:25165993

  5. The role of macrocyclic compounds in the extraction and possible separation of platinum and rhodium from chloride solutions

    NASA Astrophysics Data System (ADS)

    Jyothi, Rajesh Kumar; Lee, Jin-Young

    2016-06-01

    Macrocyclic compounds (crown ethers), specifically 18-crown-6 (18-C-6), benzo-15-crown-5 (B-15-C-5), di-benzo-18-crown-6 (DB-18-C-6) and di-cyclohexano-18-crown-6 (DC-18C-6), are used as extractants as well as synergists with amine-group extractants. Platinum and rhodium belong to platinum-group metals (PGMs) and have very similar ionic radii and similar properties. The separation of PGMs is most useful for the preparation of functional materials. Macrocyclic compounds are tested for platinum and rhodium separation and are found to achieve marginal separation. Amines (used as extractants) are paired with macrocyclic compounds (used as synergists), and the separation factor between platinum and rhodium is increased with synergistic enhancement from a chloride solution. The present study discusses extraction chemistry, separation factors and the synergy between platinum and rhodium from chloride solutions. To ensure accurate data, the aqueous samples in this study are analyzed using an inductively coupled plasma optical emission spectrometer (ICP-OES).

  6. Methyl iodide oxidative addition to [Rh(acac)(CO)(PPh3)]: an experimental and theoretical study of the stereochemistry of the products and the reaction mechanism.

    PubMed

    Conradie, Marrigje M; Conradie, Jeanet

    2011-08-28

    Density functional theory was used to investigate the oxidative addition and subsequent carbonyl insertion and deinsertion steps of the reaction of methyl iodide to a rhodium(I) acetylacetonato complex of the formula [Rh(acac)(CO)(PPh(3))] (Hacac = acetylacetone). This process has been studied experimentally for many rhodium β-diketonato complexes, but, to the best of our knowledge, this is the first systematic computational study of the complete reaction sequence. Experimental (1)H techniques complement the theoretical results on the stereochemistry of the reaction intermediates and products. (1)H NMR also revealed the existence of a second rhodium(III)-acyl product, which has not been previously observed in this reaction. The calculated Gibbs free energy of activation of the oxidative addition reaction is 71 kJ mol(-1), which is in agreement with the experimental value of 82(1) kJ mol(-1). The DFT-calculated oxidative addition corresponds to an associative S(N)2 nucleophilic attack by the rhodium metal centre on the methyl iodide, which is in agreement with calculated and experimental (in brackets) activation parameters of the reaction, 27 (38.8) kJ mol(-1) for ΔH((≠)) and -147 (-146) J K(-1) mol(-1) for ΔS((≠)). PMID:21761056

  7. Tracking the shape-dependent sintering of platinum-rhodium model catalysts under operando conditions

    NASA Astrophysics Data System (ADS)

    Hejral, Uta; Müller, Patrick; Balmes, Olivier; Pontoni, Diego; Stierle, Andreas

    2016-03-01

    Nanoparticle sintering during catalytic reactions is a major cause for catalyst deactivation. Understanding its atomic-scale processes and finding strategies to reduce it is of paramount scientific and economic interest. Here, we report on the composition-dependent three-dimensional restructuring of epitaxial platinum-rhodium alloy nanoparticles on alumina during carbon monoxide oxidation at 550 K and near-atmospheric pressures employing in situ high-energy grazing incidence x-ray diffraction, online mass spectrometry and a combinatorial sample design. For platinum-rich particles our results disclose a dramatic reaction-induced height increase, accompanied by a corresponding reduction of the total particle surface coverage. We find this restructuring to be progressively reduced for particles with increasing rhodium composition. We explain our observations by a carbon monoxide oxidation promoted non-classical Ostwald ripening process during which smaller particles are destabilized by the heat of reaction. Its driving force lies in the initial particle shape which features for platinum-rich particles a kinetically stabilized, low aspect ratio.

  8. Reversibility of hydrogen chemisorption on a ceria-supported rhodium catalyst

    SciTech Connect

    Bernal, S.; Calvino, J.J.; Cifredo, G.A.; Izquierdo, J.M. Rodriguez ); Perrichon, V.; Laachir, A. )

    1992-09-01

    Cerium dioxide is an important component of the so-called three-way catalysts. This work reports on some new aspects of the chemistry of hydrogen-ceria systems. It is shown that, at room temperature, in the presence of highly dispersed rhodium, ceria chemisorbs large amounts of hydrogen. As deduced from magnetic measurements carried out in situ, this spillover process leads to the reduction of ceria to an extent of 21% of the total amount of cerium ions present in the sample, which is roughly equivalent to the complete surface reduction of the oxide. It is found that over a highly hydroxylated sample the reduction of ceria induced by the spillover process is partly reversible even at 295 K. If the sample is pumped off at 773 K, the initial oxidation state of ceria is almost completely recovered. Both the rate and extent of hydrogen chemisorption on ceria were found to be sensitive to the specific pretreatment applied to the catalyst. Over bare ceria, hydrogen chemisorption at 298 K was negligible, temperatures as high as 473 K being necessary to activate the process. In contrast to the rhodium-containing catalyst, over pure ceria the desorption of hydrogen leads to a much larger extent to water formation, thus revealing a deeper irreversible reduction of the oxide.

  9. Ion flotation of rhodium(III) and palladium(II) with anionic surfactants.

    PubMed

    He, X C

    1991-03-01

    The ion flotation of rhodium(III) and palladium(II) with some anionic surfactants has been investigated. Two flotation procedures are proposed for the separation of some platinum metals, based on differences in the kinetic properties of the chloro-complexes of rhodium(III), palladium(II) and platinum(IV). The first involves the selective flotation of Rh(H(2)O)(3+)(6) from PdCl(2-)(4) and PtCl(2-)(6) in dilute hydrochloric acid with sodium dodecylbenzenesulfonate (SDBS). After precipitation of the hydroxide and redissolution in dilute acid, the Rh(III) is converted into Rh(H(2)O)(3+)(6), Pd(II) and Pt(IV) remaining as PdCl(2-)(4) and PtCl(2-)(6) respectively, and separation is achieved by floating the Rh(H(2)O)(3+)(6) with SDBS. The second is for separation of Pd(II). Prior to flotation, the solution of PdCl(2-)(4) and PtCl(2-)(6) is heated with ammonium acetate to convert PdCl(2-)(4) into Pd(NH(3))(2+)(4). The chloro-complex of Pt(IV) is unaffected. The complex cation, Pd(NH(3))(2+)(4), is then selectively floated with SDBS. The procedures are fast, simple and do not require expensive reagents and apparatus. PMID:18965147

  10. Rhodium-catalysed syn-carboamination of alkenes via a transient directing group.

    PubMed

    Piou, Tiffany; Rovis, Tomislav

    2015-11-01

    Alkenes are the most ubiquitous prochiral functional groups--those that can be converted from achiral to chiral in a single step--that are accessible to synthetic chemists. For this reason, difunctionalization reactions of alkenes (whereby two functional groups are added to the same double bond) are particularly important, as they can be used to produce highly complex molecular architectures. Stereoselective oxidation reactions, including dihydroxylation, aminohydroxylation and halogenation, are well established methods for functionalizing alkenes. However, the intermolecular incorporation of both carbon- and nitrogen-based functionalities stereoselectively across an alkene has not been reported. Here we describe the rhodium-catalysed carboamination of alkenes at the same (syn) face of a double bond, initiated by a carbon-hydrogen activation event that uses enoxyphthalimides as the source of both the carbon and the nitrogen functionalities. The reaction methodology allows for the intermolecular, stereospecific formation of one carbon-carbon and one carbon-nitrogen bond across an alkene, which is, to our knowledge, unprecedented. The reaction design involves the in situ generation of a bidentate directing group and the use of a new cyclopentadienyl ligand to control the reactivity of rhodium. The results provide a new way of synthesizing functionalized alkenes, and should lead to the convergent and stereoselective assembly of amine-containing acyclic molecules. PMID:26503048

  11. Tracking the shape-dependent sintering of platinum-rhodium model catalysts under operando conditions.

    PubMed

    Hejral, Uta; Müller, Patrick; Balmes, Olivier; Pontoni, Diego; Stierle, Andreas

    2016-01-01

    Nanoparticle sintering during catalytic reactions is a major cause for catalyst deactivation. Understanding its atomic-scale processes and finding strategies to reduce it is of paramount scientific and economic interest. Here, we report on the composition-dependent three-dimensional restructuring of epitaxial platinum-rhodium alloy nanoparticles on alumina during carbon monoxide oxidation at 550 K and near-atmospheric pressures employing in situ high-energy grazing incidence x-ray diffraction, online mass spectrometry and a combinatorial sample design. For platinum-rich particles our results disclose a dramatic reaction-induced height increase, accompanied by a corresponding reduction of the total particle surface coverage. We find this restructuring to be progressively reduced for particles with increasing rhodium composition. We explain our observations by a carbon monoxide oxidation promoted non-classical Ostwald ripening process during which smaller particles are destabilized by the heat of reaction. Its driving force lies in the initial particle shape which features for platinum-rich particles a kinetically stabilized, low aspect ratio. PMID:26957204

  12. Tracking the shape-dependent sintering of platinum–rhodium model catalysts under operando conditions

    PubMed Central

    Hejral, Uta; Müller, Patrick; Balmes, Olivier; Pontoni, Diego; Stierle, Andreas

    2016-01-01

    Nanoparticle sintering during catalytic reactions is a major cause for catalyst deactivation. Understanding its atomic-scale processes and finding strategies to reduce it is of paramount scientific and economic interest. Here, we report on the composition-dependent three-dimensional restructuring of epitaxial platinum–rhodium alloy nanoparticles on alumina during carbon monoxide oxidation at 550 K and near-atmospheric pressures employing in situ high-energy grazing incidence x-ray diffraction, online mass spectrometry and a combinatorial sample design. For platinum-rich particles our results disclose a dramatic reaction-induced height increase, accompanied by a corresponding reduction of the total particle surface coverage. We find this restructuring to be progressively reduced for particles with increasing rhodium composition. We explain our observations by a carbon monoxide oxidation promoted non-classical Ostwald ripening process during which smaller particles are destabilized by the heat of reaction. Its driving force lies in the initial particle shape which features for platinum-rich particles a kinetically stabilized, low aspect ratio. PMID:26957204

  13. Characterization of acetylacetonato carbonyl diphenyl-2-pyridylphosphine rhodium(I): Comparison with other carbonyl complexes

    NASA Astrophysics Data System (ADS)

    Purcell, Walter; Conradie, Jeanet; Chiweshe, Trevor T.; Venter, Johan A.; Visser, Hendrik G.; Coetzee, Michael P.

    2013-04-01

    Different rhodium(I)/(III) diphenyl-2-pyridylphosphine complexes were isolated and successfully characterized. The [Rh(acac)(CO)(DPP)] (DPP = diphenyl-2-pyridylphosphine) complex crystallizes in the P1¯ space group with four molecules per unit cell. The results clearly show that the differences between the two independent molecules are mainly centered around the orientation of the pyridyl ring within the two square planer molecules. The results also indicate that the phosphine ligands act as monodentate ligands in both molecules, with Rh-P and Rh-CO bond distances of 2.243(1); 2.235(1) and 1.791(4); 1.776(4) Å respectively. A comparison of the ν(CO) stretching frequencies of a relatively large number of rhodium complexes indicated little overlap between the ν(CO) of different types of complexes (e.g. Rh(I) vs Rh(III)) and relatively small standard deviations within each type of complex. DFT calculations were used to determine the preferred pyridyl ring orientation. These calculations indicated that at least 12 areas of minimum energy, which exists as broad, low energy wells, are theoretically suitable for DPP group orientation within this kind of structure.

  14. Correlation between the Stereochemistry and Bioactivity in Octahedral Rhodium Prolinato Complexes.

    PubMed

    Rajaratnam, Rajathees; Martin, Elisabeth K; Dörr, Markus; Harms, Klaus; Casini, Angela; Meggers, Eric

    2015-08-17

    Controlling the relative and absolute configuration of octahedral metal complexes constitutes a key challenge that needs to be overcome in order to fully exploit the structural properties of octahedral metal complexes for applications in the fields of catalysis, materials sciences, and life sciences. Herein, we describe the application of a proline-based chiral tridentate ligand to decisively control the coordination mode of an octahedral rhodium(III) complex. We demonstrate the mirror-like relationship of synthesized enantiomers and differences between diastereomers. Further, we demonstrate, using the established pyridocarbazole pharmacophore ligand as part of the organometallic complexes, the importance of the relative and absolute stereochemistry at the metal toward chiral environments like protein kinases. Protein kinase profiling and inhibition data confirm that the proline-based enantiopure rhodium(III) complexes, despite having all of the same constitution, differ strongly in their selectivity properties despite their unmistakably mutual origin. Moreover, two exemplary compounds have been shown to induce different toxic effects in an ex vivo rat liver model. PMID:26251218

  15. Reactions of Highly Uniform Zeolite H-Supported Rhodium Complexes: Transient Characterization by Infrared and X-ray Absorption Spectroscopies

    SciTech Connect

    Ogino, I.; Gates, B

    2010-01-01

    A zeolite H-{beta}-supported mononuclear rhodium diethene complex (Rh(C{sub 2}H{sub 4}){sub 2}{l_brace}O{sub 2}Al{r_brace}, where the braces indicate a part of the zeolite) was formed by the reaction of Rh(acac)({eta}{sub 2}-C{sub 2}H{sub 4}){sub 2} (acac = acetylacetonate, C{sub 5}H{sub 7}O{sub 2}{sup -}) with the zeolite. Transient characterization of the sample by X-ray absorption near edge structure (XANES) and infrared (IR) spectroscopies (combined with mass spectrometry of the effluent gas) while the sample was in contact with flowing CO indicates a simple stoichiometric conversion of the supported metal complex into another species, identified by the spectra as the zeolite-supported rhodium gem-dicarbonyl (Rh(CO){sub 2}{l_brace}O{sub 2}Al{r_brace}). The sharpness of the v{sub CO} bands in the IR spectrum indicates a high degree of uniformity of the supported rhodium gem-dicarbonyl, and isosbestic points in the XANES spectra as the transformation was occurring imply that the rhodium diethene complex was also highly uniform. Spectra similarly show that treatment of the supported rhodium gem-dicarbonyl with flowing C{sub 2}H{sub 4} resulted in another stoichiometrically simple transformation, giving a species suggested to be Rh(C{sub 2}H{sub 4})(CO){sub 2}{l_brace}O{sub 2}Al{r_brace}. The intermediate was ultimately transformed when the sample was purged with helium into another highly uniform supported species, inferred on the basis of IR spectra to be Rh(C{sub 2}H{sub 4})(CO){l_brace}O{sub 2}Al{r_brace}. Extended X-ray absorption fine structure spectra characterizing the supported rhodium diethene complex and the species formed from it show how the Rh-O bond distance at the Rh-support interface varied in response to the changes in the ligands bonded to the rhodium.

  16. Rhodium as permanent modifier for atomization of lead from biological fluids using tungsten filament electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Parsons, Patrick J.; Aldous, Kenneth M.; Brockman, Paul; Slavin, Walter

    2002-04-01

    Rhodium (Rh) was investigated as a permanent modifier for the atomization of Pb from biological fluids in W-filament atomic absorption spectrometry (AAS). Heating the W-filament with a Rh solution provided a protective coating for subsequent determinations of Pb in blood and urine matrices. The W-filament AAS instrumentation used was based on a prototype design that utilized self-reversal background correction scheme and peak area measurements. We found that Rh not only stabilized Pb during the pyrolysis step, but also facilitated the removal of carbonaceous residues during the cleaning step, requiring much less power than with phosphate modifier. Thus, the filament lifetime was greatly extended to over 300 firings. Periodic reconditioning with Rh was necessary every 30 firings or so. Conditioning the filament with Rh also permitted direct calibration using simple aqueous Pb standards. The method detection limit for blood Pb was approximately 1.5 μg dl -1, similar to that reported previously. Potential interferences from concomitants such as Na, K, Ca and Mg were evaluated. Accuracy was verified using lead reference materials from the National Institute of Standards and Technology and the New York State Department of Health. Blood lead results below 40 μg dl -1 were within ±1 μg dl -1 of certified values, and within ±10% above 40 μg dl -1; within-run precision was ±10% or better. Additional validation was reported using proficiency test materials and human blood specimens. All blood lead results were within the acceptable limits established by regulatory authorities in the US. When measuring Pb in urine, sensitivity was reduced and matrix-matched calibration became necessary. The method of detection limit was 27 μg l -1 for urine Pb. Urine lead results were also validated using an acceptable range comparable to that established for blood lead by US regulatory agencies.

  17. Adsorptive separation of rhodium(III) using Fe(III)-templated oxine type of chemically modified chitosan

    SciTech Connect

    Alam, M.S.; Inoue, Katsutoshi; Yoshizuka, Kazuharu; Ishibashi, Hideaki

    1998-03-01

    The oxine type of chemically modified chitosan was prepared by the template crosslinking method using Fe(III) as a template ion. Batchwise adsorption of rhodium(III) on this chemically modified chitosan was examined from chloride media in the absence and presence of a large amount of tin(II). It was observed that the Fe(III)-templated oxine type of chemically modified chitosan shows better performance for rhodium adsorption than that of the original chitosan. When Sn(II) is absent from the solution, Rh(III) is hardly adsorbed on the modified chitosan and the order of selectivity of the adsorption of Rh(III), Pt(IV), and Cu(II) was found to be Pt(IV) > Cu(II) {approx} Rh(III). On the other hand, adsorption of rhodium is significantly increased in the presence of Sn(II) and the selectivity order of the adsorption was drastically changed to Rh(III) > Pt(IV) {much_gt} Cu(II), which ensures selective separation of Rh(III) from their mixture. Adsorption of Rh(III) increases with an increase in the concentration of Sn(II) in the aqueous solution, and maximum adsorption is achieved at a molar ratio, [Sn]/[Rh], of >6. The adsorption of Rh(III) decreases at a high concentration of hydrochloric acid. The maximum adsorption capacity was evaluated to be 0.92 mol/kg-dry adsorbent. Stripping tests of rhodium from the loaded chemically modified chitosan were carried out using different kinds of stripping agents containing some oxidizing agent. The maximum stripping of rhodium under these experimental conditions was found to be 72.5% by a single contact with 0.5 M HCl + 8 M HNO{sub 3}.

  18. Ruthenium, rhodium, osmium, and iridium complexes of osazones (osazones = bis-arylhydrazones of glyoxal): radical versus nonradical states.

    PubMed

    Patra, Sarat Chandra; Weyhermüller, Thomas; Ghosh, Prasanta

    2014-03-01

    Phenyl osazone (L(NHPh)H2), phenyl osazone anion radical (L(NHPh)H2(•-)), benzoyl osazone (L(NHCOPh)H2), benzoyl osazone anion radical (L(NHCOPh)H2(•-)), benzoyl osazone monoanion (L(NCOPh)HMe(-)), and anilido osazone (L(NHCONHPh)HMe) complexes of ruthenium, osmium, rhodium, and iridium of the types trans-[Os(L(NHPh)H2)(PPh3)2Br2] (3), trans-[Ir(L(NHPh)H2(•-))(PPh3)2Cl2] (4), trans-[Ru(L(NHCOPh)H2)(PPh3)2Cl2] (5), trans-[Os(L(NHCOPh)H2)(PPh3)2Br2] (6), trans- [Rh(L(NHCOPh)H2(•-))(PPh3)2Cl2] (7), trans-[Rh(L(NHCOPh)HMe(-))(PPh3)2Cl]PF6 ([8]PF6), and trans-[Ru(L(NHCONHPh)HMe)(PPh3)2Cl]Cl ([9]Cl) have been isolated and compared (osazones = bis-arylhydrazones of glyoxal). The complexes have been characterized by elemental analyses and IR, mass, and (1)H NMR spectra; in addition, single-crystal X-ray structure determinations of 5, 6, [8]PF6, and [9]Cl have been carried out. EPR spectra of 4 and 7 reveal that in the solid state they are osazone anion radical complexes (4, gav = 1.989; 7, 2.028 (Δg = 0.103)), while in solution the contribution of the M(II) ions is greater (4, gav = 2.052 (Δg = 0.189); 7, gav = 2.102 (Δg = 0.238)). Mulliken spin densities on L(NHPh)H2 and L(NHCOPh)H2 obtained from unrestricted density functional theory (DFT) calculations on trans-[Ir(L(NHPh)H2)(PMe3)2Cl2] (4(Me)) and trans-[Rh(L(NHCOPh)H2)(PMe3)2Cl2] (7(Me)) in the gas phase with doublet spin states authenticated the existence of L(NHPh)H2(•-) and L(NHCOPh)H2(•-) anion radicals in 4 and 7 coordinated to iridium(III) and rhodium(III) ions. DFT calculations on trans-[Os(L(NHPh)H2)(PMe3)2Br2] (3(Me)), trans-[Os(L(NHCOPh)H2)(PMe3)2Br2] (6(Me)), and trans-[Ru(L(NHCONHPh)HMe(-))(PMe3)2Cl] [9(Me)](+) with singlet spin states established that the closed-shell singlet state (CSS) solutions of 3, 5, 6, and [9]Cl are stable. The lower value of M(III)/M(II) reduction potentials and lower energy absorption bands corroborate the higher extent of mixing of d orbitals with the π* orbital

  19. MERCURY-NITRITE-RHODIUM-RUTHENIUM INTERACTIONS IN NOBLE METAL CATALYZED HYDROGEN GENERATION FROM FORMIC ACID DURING NUCLEAR WASTE PROCESSING AT THE SAVANNAH RIVER SITE - 136C

    SciTech Connect

    Koopman, D.; Pickenheim, B.; Lambert, D.; Newell, J; Stone, M.

    2009-09-02

    Chemical pre-treatment of radioactive waste at the Savannah River Site is performed to prepare the waste for vitrification into a stable waste glass form. During pre-treatment, compounds in the waste become catalytically active. Mercury, rhodium, and palladium become active for nitrite destruction by formic acid, while rhodium and ruthenium become active for catalytic conversion of formic acid into hydrogen and carbon dioxide. Nitrite ion is present during the maximum activity of rhodium, but is consumed prior to the activation of ruthenium. Catalytic hydrogen generation during pre-treatment can exceed radiolytic hydrogen generation by several orders of magnitude. Palladium and mercury impact the maximum catalytic hydrogen generation rates of rhodium and ruthenium by altering the kinetics of nitrite ion decomposition. New data are presented that illustrate the interactions of these various species.

  20. Oxidative coupling of rhodium phenyl imido/amido complexes

    SciTech Connect

    Ge, Y.W.; Ye, Y.; Sharp, P.R.

    1994-09-07

    In previous work, we found that tautomeric mixtures of the late transition metal imido and amido complexes Rh{sub 2}({mu}-NPh)(CO){sub 2} ({mu}-dppm){sub 2} (1) and Rh{sub 2}({mu}-NHPh)(CO){sub 2}({mu}-dppm)({mu}-dppm-H){sup 2} (2) (hereafter designated as 1/2) undergo electrophilic ring addition reactions at the NPh group. A single electron transfer mechanism was considered. Such a mechanism would require oxidation of the imido/amido complex to a radical cation. To establish this possibility, we investigated the oxidation chemistry of this system. We found a rich chemistry consistent with formation and coupling of an amido radical cation. This chemistry, described here, is closely related to the well-studied oxidation chemistry of aniline and its derivatives. 16 refs.

  1. Rhodium-Catalyzed Regiodivergent Hydrothiolation of Allyl Amines and Imines.

    PubMed

    Kennemur, Jennifer L; Kortman, Gregory D; Hull, Kami L

    2016-09-14

    The regiodivergent Rh-catalyzed hydrothiolation of allyl amines and imines is presented. Bidentate phosphine ligands with larger natural bite angles (βn ≥ 99°), for example, DPEphos, dpph, or L1, promote a Markovnikov-selective hydrothiolation in up to 88% yield and >20:1 regioselectivity. Conversely, when smaller bite angle ligands (βn ≤ 86°), for example, dppbz or dppp, are employed, the anti-Markovnikov product is formed in up to 74% yield and >20:1 regioselectivity. Initial mechanistic investigations are performed and are consistent with an oxidative addition/olefin insertion/reductive elimination mechanism for each regioisomeric pathway. We hypothesize that the change in regioselectivity is an effect of diverging coordination spheres to favor either Rh-S or Rh-H insertion to form the branched or linear isomer, respectively. PMID:27547858

  2. Material synthesis and hydrogen storage of palladium-rhodium alloy.

    SciTech Connect

    Lavernia, Enrique J.; Yang, Nancy Y. C.; Ong, Markus D.

    2011-08-01

    Pd and Pd alloys are candidate material systems for Tr or H storage. We have actively engaged in material synthesis and studied the material science of hydrogen storage for Pd-Rh alloys. In collaboration with UC Davis, we successfully developed/optimized a supersonic gas atomization system, including its processing parameters, for Pd-Rh-based alloy powders. This optimized system and processing enable us to produce {le} 50-{mu}m powders with suitable metallurgical properties for H-storage R&D. In addition, we studied hydrogen absorption-desorption pressure-composition-temperature (PCT) behavior using these gas-atomized Pd-Rh alloy powders. The study shows that the pressure-composition-temperature (PCT) behavior of Pd-Rh alloys is strongly influenced by its metallurgy. The plateau pressure, slope, and H/metal capacity are highly dependent on alloy composition and its chemical distribution. For the gas-atomized Pd-10 wt% Rh, the absorption plateau pressure is relatively high and consistent. However, the absorption-desorption PCT exhibits a significant hysteresis loop that is not seen from the 30-nm nanopowders produced by chemical precipitation. In addition, we observed that the presence of hydrogen introduces strong lattice strain, plastic deformation, and dislocation networking that lead to material hardening, lattice distortions, and volume expansion. The above observations suggest that the H-induced dislocation networking is responsible for the hysteresis loop seen in the current atomized Pd-10 wt% Rh powders. This conclusion is consistent with the hypothesis suggested by Flanagan and others (Ref 1) that plastic deformation or dislocations control the hysteresis loop.

  3. Chiral Bicyclic Bridgehead Phosphoramidite (Briphos) Ligands for Asymmetric Rhodium-Catalyzed 1,2- and 1,4-Addition.

    PubMed

    Lee, Ansoo; Kim, Hyunwoo

    2016-05-01

    A complementary solution for Rh-catalyzed enantioselective 1,2- and 1,4-arylation with two structurally related chiral ligands is reported. A chiral bicyclic bridgehead phosphoramidite (briphos) ligand derived from 1-aminoindane was efficient for the 1,2-arylation of N-sulfonyl imines, while that derived from 1,2,3,4-tetrahydro-1-naphthylamine was efficient for 1,4-arylation of α,β-unsaturated cyclic ketones. For α,β-unsaturated N-tosyl ketimines, the briphos derived from 1-aminoindane was found to selectively provide γ,γ-diaryl N-tosyl enamines with high yields and stereoselectivities. PMID:27075859

  4. Synthesis of α-amino ketones from terminal alkynes via rhodium-catalyzed denitrogenative hydration of N-sulfonyl-1,2,3-triazoles.

    PubMed

    Miura, Tomoya; Biyajima, Tsuneaki; Fujii, Tetsuji; Murakami, Masahiro

    2012-01-11

    N-Sulfonyl-1,2,3-triazoles react with water in the presence of a rhodium catalyst to produce α-amino ketones in high yield. An intermediary α-imino rhodium(II) carbenoid undergoes insertion into the O-H bond of water. This transformation formally achieves 1,2-aminohydroxylation of terminal alkynes in a regioselective fashion when combined with the copper(I)-catalyzed 1,3-dipolar cycloaddition with N-sulfonyl azides. PMID:22129424

  5. Theoretical study of the rhodium dimer interaction with the hydrogen molecule

    SciTech Connect

    Castillo, S.; Cruz, A.; Cuan, A.

    1995-12-31

    The C{sub 2v} potential energy surfaces for the end-on and side-on approaches of H{sub 2} to the rhodium dimer were studied through self-consistent-field (SCF) and multiconfigurational SCF calculations, followed by extensive variational plus second-order multireference Moller-Plesset perturbational configuration interaction (CIPSI) calculations. Relativistic effective core potentials were used to replace the core electrons of the rhodium atoms. Together with the Rh{sub 2}-H{sub 2} interaction, the spectroscopic constants for the {sup 5}{summation}{sub g}{sup +}, {sup 1}{summation}{sub g}{sup +}, {sup 3}II{sub {mu}}, and {sup 1}II{sub {mu}} states of Rh{sub 2} are reported. It was found that the potential energy curves of the parallel and the perpendicular Rh{sub 2}({sup 5}{summation}{sub g}) interaction with H{sub 2} show that the rhodium dimer has the ability to capture and break the H{sub 2} molecule. The parallel interaction presents a soft potential barrier of 7.8 kcal/mol, energy necessary to surmount before the capture and breaking of the H-H bond. In the perpendicular interaction, Rh{sub 2} captures and breaks spontaneously H{sub 2}. The potential energy curve of the parallel Rh{sub 2}({sup 1}{summation}{sub g}) + H{sub 2} interaction shows that Rh{sub 2} also captures and breaks spontaneously the H{sub 2}, with a very deep well of 92.7 kcal/mol, while in the perpendicular approach, Rh{sub 2} has to surmount again a soft barrier of 5.2 kcal/mol to capture and break the H{sub 2} molecule. Finally, the energy curves of the parallel Rh{sub 2}({sup 1,3}II{sub {mu}}) + H{sub 2} interactions present capture and breaking with very small barriers. The perpendicular interactions capture and scisse the hydrogen molecule spontaneously. 35 refs., 6 tabs.

  6. Highly enantioselective reductive cyclization of acetylenic aldehydes via rhodium catalyzed asymmetric hydrogenation.

    PubMed

    Rhee, Jong Uk; Krische, Michael J

    2006-08-23

    Catalytic hydrogenation of acetylenic aldehydes 1a-12a using chirally modified cationic rhodium catalysts enables highly enantioselective reductive cyclization to afford cyclic allylic alcohols 1b-12b. Using an achiral hydrogenation catalyst, the chiral racemic acetylenic aldehydes 13a-15a engage in highly syn-diastereoselective reductive cyclizations to afford cyclic allylic alcohols 13b-15b. Ozonolysis of cyclization products 7b and 9b allows access to optically enriched alpha-hydroxy ketones 7c and 9c. Reductive cyclization of enyne 7a under a deuterium atmosphere provides the monodeuterated product deuterio-7b, consistent with a catalytic mechanism involving alkyne-carbonyl oxidative coupling followed by hydrogenolytic cleavage of the resulting oxametallacycle. These hydrogen-mediated transformations represent the first examples of the enantioselective reductive cyclization of acetylenic aldehydes. PMID:16910650

  7. Catalytic partial oxidation of iso-octane over rhodium catalysts: An experimental, modeling, and simulation study

    SciTech Connect

    Hartmann, M.; Minh, H.D.; Maier, L.; Deutschmann, O.

    2010-09-15

    Catalytic partial oxidation of iso-octane over a rhodium/alumina coated honeycomb monolith is experimentally and numerically studied at short-contact times for varying fuel-to-oxygen ratios. A new experimental set-up with well-defined inlet and boundary conditions is presented. The conversion on the catalyst and in the gas-phase is modeled by detailed reaction mechanisms including 857 gas-phase and 17 adsorbed species. Elementary-step based heterogeneous and homogeneous reaction mechanisms are implemented into two-dimensional flow field description of a single monolith channel. Experiment and simulation provide new insights into the complex reaction network leading to varying product distribution as function of fuel-to-oxygen ratio. At fuel rich conditions, the formation of by-products that can serve as coke precursors is observed and interpreted. (author)

  8. Enantioselective Rhodium-Catalyzed Cycloisomerization of (E)-1,6-Enynes.

    PubMed

    Deng, Xu; Ni, Shao-Fei; Han, Zheng-Yu; Guan, Yu-Qing; Lv, Hui; Dang, Li; Zhang, Xu-Mu

    2016-05-17

    An enantioselective rhodium(I)-catalyzed cycloisomerization reaction of challenging (E)-1,6-enynes is reported. This novel process enables (E)-1,6-enynes with a wide range of functionalities, including nitrogen-, oxygen-, and carbon-tethered (E)-1,6-enynes, to undergo cycloisomerization with excellent enantioselectivity, in a high-yielding and operationally simple manner. Moreover, this Rh(I) -diphosphane catalytic system also exhibited superior reactivity and enantioselectivity for (Z)-1,6-enynes. A rationale for the striking reactivity difference between (E)- and (Z)-1,6-enynes using Rh(I) -BINAP and Rh(I) -TangPhos is outlined using DFT studies to provide the necessary insight for the design of new catalyst systems and the application to synthesis. PMID:27061132

  9. Screen-Printed Carbon Electrodes Modified by Rhodium Dioxide and Glucose Dehydrogenase

    PubMed Central

    Polan, Vojtěch; Soukup, Jan; Vytřas, Karel

    2010-01-01

    The described glucose biosensor is based on a screen-printed carbon electrode (SPCE) modified by rhodium dioxide, which functions as a mediator. The electrode is further modified by the enzyme glucose dehydrogenase, which is immobilized on the electrode's surface through electropolymerization with m-phenylenediamine. The enzyme biosensor was optimized and tested in model glucose samples. The biosensor showed a linear range of 500–5000 mg L−1 of glucose with a detection limit of 210 mg L−1 (established as 3σ) and response time of 39 s. When compared with similar glucose biosensors based on glucose oxidase, the main advantage is that neither ascorbic and uric acids nor paracetamol interfere measurements with this biosensor at selected potentials. PMID:21528113

  10. Rhodium Nanoparticle-mesoporous Silicon Nanowire Nanohybrids for Hydrogen Peroxide Detection with High Selectivity

    NASA Astrophysics Data System (ADS)

    Song, Zhiqian; Chang, Hucheng; Zhu, Weiqin; Xu, Chenlong; Feng, Xinjian

    2015-01-01

    Developing nanostructured electrocatalysts, with low overpotential, high selectivity and activity has fundamental and technical importance in many fields. We report here rhodium nanoparticle and mesoporous silicon nanowire (RhNP@mSiNW) hybrids for hydrogen peroxide (H2O2) detection with high electrocatalytic activity and selectivity. By employing electrodes that loaded with RhNP@mSiNW nanohybrids, interference caused from both many electroactive substances and dissolved oxygen were eliminated by electrochemical assaying at an optimal potential of +75 mV. Furthermore, the electrodes exhibited a high detection sensitivity of 0.53 μA/mM and fast response (< 5 s). This high-performance nanohybrid electrocatalyst has great potential for future practical application in various oxidase-base biosensors.

  11. Optimization of Rhodium-Based Catalysts for Mixed Alcohol Synthesis -- 2010 Progress Report

    SciTech Connect

    Gerber, Mark A.; Gray, Michel J.; Albrecht, Karl O.; White, J. F.; Rummel, Becky L.; Stevens, Don J.

    2010-10-01

    Pacific Northwest National Laboratory has been conducting research for the U.S. Department of Energy, Energy Efficiency Renewable Energy, Biomass Program to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas. In recent years this research has primarily involved the further development of a silica-supported catalyst containing rhodium and manganese that was selected from earlier catalyst screening tests. A major effort during 2010 was to examine alternative catalyst supports to determine whether other supports, besides the Davisil 645 silica, would improve performance. Optimization of the Davisil 645 silica-supported catalyst also was continued with respect to candidate promoters iridium, platinum, and gallium, and examination of selected catalyst preparation and activation alternatives for the baseline RhMn/SiO2 catalyst.

  12. Determination of palladium, platinum and rhodium in geologic materials by fire assay and emission spectrography

    USGS Publications Warehouse

    Hapfty, J.; Riley, L.B.

    1968-01-01

    A method is described for the determination of palladium down to 4ppb (parts per billion, 109), platinum down to 10 ppb and rhodium down to 5 ppb in 15 g of sample. Fire-assay techniques are used to preconcentrate the platinum metals into a gold bead, then the bead is dissolved in aqua regia and diluted to volume with 1M hydrochloric acid. The solution is analysed by optical emission spectrography of the residue from 200 ??l of it evaporated on a pair of flat-top graphite electrodes. This method requires much less sample handling than most published methods for these elements. Data are presented for G-1, W-1, and six new standard rocks of the U.S. Geological Survey. The values for palladium in W-1 are in reasonable agreement with previously published data. ?? 1968.

  13. Rhodium-catalyzed silylation of aromatic carbon-hydrogen bonds in 2-arylpyridines with disilane.

    PubMed

    Tobisu, Mamoru; Ano, Yusuke; Chatani, Naoto

    2008-09-01

    The rhodium(I)-catalyzed regioselective silylation of the ortho carbon-hydrogen bond in 2-arylpyridines with disilane is described. For example, the reaction of 2-(2-methylphenyl)pyridine with 2 equivalents of hexamethyldisilane in the presence of 5 mol % [RhCl(cod)](2) (cod=1,5-cyclooctadiene) in o-xylene at 130 degrees C for 15 h gave 2-[2-methyl-6-(trimethylsilyl)phenyl]pyridine in 86 % yield. In contrast to silylation with hydrosilanes, hydrogen acceptors are not required to achieve high conversion. A variety of substituents, including alkoxy, amine, ester, and fluorinated groups, are compatible with this catalysis. When substrates containing two ortho C-H bonds are used, monosilylated products are obtained selectively by utilizing the 3-methyl-2-pyridyl group as a directing group. PMID:18494014

  14. Screen-printed carbon electrodes modified by rhodium dioxide and glucose dehydrogenase.

    PubMed

    Polan, Vojtěch; Soukup, Jan; Vytřas, Karel

    2011-01-01

    The described glucose biosensor is based on a screen-printed carbon electrode (SPCE) modified by rhodium dioxide, which functions as a mediator. The electrode is further modified by the enzyme glucose dehydrogenase, which is immobilized on the electrode's surface through electropolymerization with m-phenylenediamine. The enzyme biosensor was optimized and tested in model glucose samples. The biosensor showed a linear range of 500-5000 mg L(-1) of glucose with a detection limit of 210 mg L(-1) (established as 3σ) and response time of 39 s. When compared with similar glucose biosensors based on glucose oxidase, the main advantage is that neither ascorbic and uric acids nor paracetamol interfere measurements with this biosensor at selected potentials. PMID:21528113

  15. Rhodium Nanoparticle-mesoporous Silicon Nanowire Nanohybrids for Hydrogen Peroxide Detection with High Selectivity

    PubMed Central

    Song, Zhiqian; Chang, Hucheng; Zhu, Weiqin; Xu, Chenlong; Feng, Xinjian

    2015-01-01

    Developing nanostructured electrocatalysts, with low overpotential, high selectivity and activity has fundamental and technical importance in many fields. We report here rhodium nanoparticle and mesoporous silicon nanowire (RhNP@mSiNW) hybrids for hydrogen peroxide (H2O2) detection with high electrocatalytic activity and selectivity. By employing electrodes that loaded with RhNP@mSiNW nanohybrids, interference caused from both many electroactive substances and dissolved oxygen were eliminated by electrochemical assaying at an optimal potential of +75 mV. Furthermore, the electrodes exhibited a high detection sensitivity of 0.53 μA/mM and fast response (< 5 s). This high-performance nanohybrid electrocatalyst has great potential for future practical application in various oxidase-base biosensors. PMID:25588953

  16. Hydrogenation of aniline on a low-percentage, supported rhodium catalyst

    SciTech Connect

    Ualikhanova, A.; Temirbulatova, A.E.

    1992-01-10

    The products of hydrogenation of aniline and their derivatives exhibit biological activity and are used in the pharmaceutical industry for preparation of analgesic, antipyretic, and sulfanilamide drugs. Up to 30% of the total consumption of aniline is for synthesis of drugs. Hydrogenation of aniline on platinum metals supported on carbon was studied by Rylander et al. The authors investigated the catalytic properties of rhodium supported on oxides in saturation of aniline with hydrogen in water. In most cases, the amount of noble metal in the supported catalyst was 5%. Decreasing the concentration of active phase in the catalyst is economically advantageous. The features of hydrogenation of aniline in the presence of 1% Rh/MgO in solutions with wide variation of the technological parameters of the process were investigated in the present study. 19 refs., 3 figs., 2 tabs.

  17. Highly Stereoselective Synthesis of Cyclopentanes bearing Four Stereocenters by a Rhodium Carbene–Initiated Domino Sequence

    PubMed Central

    Parr, Brendan T.; Davies, Huw M. L.

    2014-01-01

    Stereoselective synthesis of a cyclopentane nucleus by convergent annulations constitutes a significant challenge for synthetic chemists. Though a number of biologically relevant cyclopentane natural products are known, more often than not, the cyclopentane core is assembled in a stepwise fashion due to lack of efficient annulation strategies. Herein, we report the rhodium-catalyzed reactions of vinyldiazoacetates with (E)-1,3-disubstituted 2-butenols generate cyclopentanes, containing four new stereogenic centers with very high levels of stereoselectivity (99% ee, >97 : 3 dr). The reaction proceeds by a carbene–initiated domino sequence consisting of five distinct steps: rhodium–bound oxonium ylide formation, [2,3]-sigmatropic rearrangement, oxy-Cope rearrangement, enol–keto tautomerization, and finally an intramolecular carbonyl ene reaction. A systematic study is presented detailing how to control chirality transfer in each of the four stereo-defining steps of the cascade, consummating in the development of a highly stereoselective process. PMID:25082301

  18. Food additives

    MedlinePlus

    Food additives are substances that become part of a food product when they are added during the processing or making of that food. "Direct" food additives are often added during processing to: Add nutrients ...

  19. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  20. Rhodium(I)-catalyzed regiospecific dimerization of aromatic acids: two direct C-H bond activations in water.

    PubMed

    Gong, Hang; Zeng, Huiying; Zhou, Feng; Li, Chao-Jun

    2015-05-01

    2,2'-Diaryl acids are key building blocks for some of the most important and high-performance polymers such as polyesters and polyamides (imides), as well as structural motifs of MOFs (metal-organic frameworks) and biological compounds. In this study, a direct, regiospecific and practical dimerization of simple aromatic acids to generate 2,2'-diaryl acids has been discovered, which proceeds through two rhodium-catalyzed C-H activations in water. This reaction can be easily scaled up to gram level by using only 0.4-0.6 mol % of the rhodium catalyst. As a proof-of-concept, the natural product ellagic acid was synthesized in two steps by this method. PMID:25765625

  1. Rhodium(III)-Catalyzed Cascade Cyclization/Electrophilic Amidation for the Synthesis of 3-Amidoindoles and 3-Amidofurans.

    PubMed

    Hu, Zhiyong; Tong, Xiaofeng; Liu, Guixia

    2016-05-01

    A rhodium(III)-catalyzed cascade cyclization/electrophilic amidation using N-pivaloyloxylamides as the electrophilic nitrogen source has been developed. This protocol provides an efficient route for the synthesis of 3-amidoindoles and 3-amidofurans under mild conditions with good functional group tolerance. The synthetic utility of this reaction has been demonstrated through the derivatization of the 3-amidoindoles to several heterocycle-fused indoles. PMID:27151555

  2. Asymmetric Hydrogenation of α-Purine Nucleobase-Substituted Acrylates with Rhodium Diphosphine Complexes: Access to Tenofovir Analogues.

    PubMed

    Sun, Huan-Li; Chen, Fei; Xie, Ming-Sheng; Guo, Hai-Ming; Qu, Gui-Rong; He, Yan-Mei; Fan, Qing-Hua

    2016-05-01

    The first asymmetric hydrogenation of α-purine nucleobase-substituted α,β-unsaturated esters, catalyzed by a chiral rhodium (R)-Synphos catalyst, has been developed. A wide range of mono- and disubstituted acrylates were successfully hydrogenated under very mild conditions in high yields with good to excellent enantioselectivities (up to 99% ee). This method provides a convenient approach to the synthesis of a new kind of optically pure acyclic nucleoside and Tenofovir analogues. PMID:27112983

  3. Rhodium(III)-Catalyzed Mild Alkylation of (Hetero)Arenes with Cyclopropanols via C-H Activation and Ring Opening.

    PubMed

    Zhou, Xukai; Yu, Songjie; Qi, Zisong; Kong, Lingheng; Li, Xingwei

    2016-06-01

    The rhodium(III)-catalyzed regioselective alkylation of (hetero)arenes using cyclopropanols as a reactive and efficient coupling partner under oxidative conditions has been developed. This coupling occurred at room temperature via C-H activation of arenes and C-C cleavage of cyclopropanols. Various types of (hetero)arenes (indolines, carbazole, tetrahydrocarbazole, pyrrole, thiophene, etc.) were all successfully reacted under the present conditions. This protocol provides the facile and efficient construction of C7-alkylated indoline scaffolds. PMID:27166521

  4. Rhodium-Catalyzed Asymmetric [2 + 2 + 2] Cycloaddition of α,ω-Diynes with Unsymmetrical 1,2-Disubstituted Alkenes.

    PubMed

    Aida, Yukimasa; Sugiyama, Haruki; Uekusa, Hidehiro; Shibata, Yu; Tanaka, Ken

    2016-06-01

    It has been established that a cationic rhodium(I)/axially chiral biaryl bisphosphine complex catalyzes the asymmetric [2 + 2 + 2] cycloaddition of α,ω-diynes with electron-rich and unstrained unsymmetrical 1,2-disubstituted alkenes to give chiral multicyclic compounds with good yields and ee values. Interestingly, enantioselectivity highly depends on the structures of α,ω-diynes used presumably due to the presence of two distinct reaction pathways. PMID:27213217

  5. Experimental study of the excitation of rhodium isomer in a plasma produced by a picosecond laser pulse

    SciTech Connect

    Afonin, V. I.; Kakshin, A. G.; Mazunin, A. V.

    2010-03-15

    Estimates and first experimental results on the excitation of a long-lived isomer state (E{sub m} = 39.756 keV, J{sup p} = 9/2{sup -}, and T{sub 1/2} = 56.114 min) of Rh{sup 103} nuclei under the action of X radiation in a hot solid-state-density rhodium plasma produced by a picosecond laser pulse in the SOKOL-P laser facility are presented.

  6. Asymmetric Conjugate Alkynylation of Cyclic α,β-Unsaturated Carbonyl Compounds with a Chiral Diene Rhodium Catalyst.

    PubMed

    Dou, Xiaowei; Huang, Yinhua; Hayashi, Tamio

    2016-01-18

    Asymmetric conjugate alkynylation of cyclic α,β-unsaturated carbonyl compounds (ketones, esters, and amides) was realized by use of diphenyl[(triisopropylsilyl)ethynyl]methanol as an alkynylating reagent in the presence of a rhodium catalyst coordinated with a new chiral diene ligand (Fc-bod; bod=bicyclo[2.2.2]octa-2,5-diene, Fc=ferrocenyl) to give high yields of the corresponding β-alkynyl-substituted carbonyl compounds with 95-98% ee. PMID:26636764

  7. Rhodium-catalyzed Asymmetric Hydrogenation of α-Dehydroamino Ketones: A General Approach to Chiral α-amino Ketones.

    PubMed

    Gao, Wenchao; Wang, Qingli; Xie, Yun; Lv, Hui; Zhang, Xumu

    2016-01-01

    Rhodium/DuanPhos-catalyzed asymmetric hydrogenation of aliphatic α-dehydroamino ketones has been achieved and afforded chiral α-amino ketones in high yields and excellent enantioselectives (up to 99 % ee), which could be reduced further to chiral β-amino alcohols by LiAlH(tBuO)3 with good yields. This protocol provides a readily accessible route for the synthesis of chiral α-amino ketones and chiral β-amino alcohols. PMID:26425824

  8. Rhodium-catalyzed annulative coupling of 3-phenylthiophenes with alkynes involving double C-H bond cleavages.

    PubMed

    Iitsuka, Tomonori; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2014-01-01

    Double CH bond activation took place efficiently upon treatment of 3-phenylthiophenes with alkynes in the presence of a rhodium catalyst and a copper salt oxidant to form the corresponding naphthothiophene derivatives. Dehydrogenative coupling with alkenes was also found to occur on the phenyl moiety rather than the thiophene ring. These reactions provide straightforward synthetic methods for π-conjugated molecules involving a thiophene unit from readily available, simple building blocks. PMID:24288235

  9. Manipulating the concavity of rhodium nanocubes enclosed by high-index facets via site-selective etching.

    PubMed

    Chen, Yumin; Chen, Qing-Song; Peng, Si-Yan; Wang, Zhi-Qiao; Lu, Gang; Guo, Guo-Cong

    2014-02-18

    Manipulating the degrees of concavity or Miller indices of high-index facets is significant for metal nanocrystals to further tailor their properties; however, generating a concave surface with negative curvature is still in the early development stage and tuning the degree of concavity remains a challenge. Herein, we have developed a simple and effective site-selective etching strategy to manipulate the concavity of rhodium (Rh) nanocrystals with high-index facets. PMID:24336637

  10. Carboxylated polymers functionalized by cyclodextrins for the stabilization of highly efficient rhodium(0) nanoparticles in aqueous phase catalytic hydrogenation.

    PubMed

    Noël, Sébastien; Léger, Bastien; Herbois, Rudy; Ponchel, Anne; Tilloy, Sébastien; Wenz, Gerhard; Monflier, Eric

    2012-11-21

    Rhodium(0) nanoparticles stabilized by a polymer containing carboxylate and β-cyclodextrin moieties have high stability and catalytic activity for aqueous hydrogenation reactions of olefins and aromatic substrates. This catalytic system can be recycled and reused without loss of activity. These high catalytic performances can be attributed to conjugated electrostatic interactions (carboxylate groups) and steric interactions (polymer structure and β-cyclodextrin moiety). PMID:23007202

  11. Catalytic wet oxidation of ammonia solution: activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst.

    PubMed

    Hung, Chang-Mao

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes. PMID:18657902

  12. DNA binding and topoisomerase II inhibitory activity of water-soluble ruthenium(II) and rhodium(III) complexes.

    PubMed

    Singh, Sanjay Kumar; Joshi, Shweta; Singh, Alok Ranjan; Saxena, Jitendra Kumar; Pandey, Daya Shankar

    2007-12-10

    Water-soluble piano-stool arene ruthenium complexes based on 1-(4-cyanophenyl)imidazole (CPI) and 4-cyanopyridine (CNPy) with the formulas [(eta6-arene)RuCl2(L)] (L = CPI, eta6-arene = benzene (1), p-cymene (2), hexamethylbenzene (3); L = CNPy, eta6-arene = benzene (4), p-cymene (5), hexamethylbenzene (6)) have been prepared by our earlier methods. The molecular structure of [(eta6-C6Me6)RuCl2(CNPy)] (6) has been determined crystallographically. Analogous rhodium(III) complex [(eta5-C5Me5)RhCl2(CPI)] (7) has also been prepared and characterized. DNA interaction with the arene ruthenium complexes and the rhodium complex has been examined by spectroscopic and gel mobility shift assay; condensation of DNA and B-->Z transition have also been described. Arene ruthenium(II) and EPh3 (E = P, As)-containing arene ruthenium(II) complexes exhibited strong binding behavior, however, rhodium(III) complexes were found to be Topo II inhibitors with an inhibition percentage of 70% (7) and 30% (7a). Furthermore, arene ruthenium complexes containing polypyridyl ligands also act as mild Topo II inhibitors (10%, 3c and 40%, 3d) in contrast to their precursor complexes. Complexes 4-6 also show significant inhibition of beta-hematin/hemozoin formation activity. PMID:18001110

  13. Enhancement of ethanol oxidation at Pt and PtRu nanoparticles dispersed over hybrid zirconia-rhodium supports

    NASA Astrophysics Data System (ADS)

    Rutkowska, Iwona A.; Koster, Margaretta D.; Blanchard, Gary J.; Kulesza, Pawel J.

    2014-12-01

    A catalytic material for electrooxidation of ethanol that utilizes PtRu nanoparticles dispersed over thin films of rhodium-free and rhodium-containing zirconia (ZrO2) supports is described here. The enhancement of electrocatalytic activity (particularly in the potential range as low as 0.25-0.5 V vs. RHE), that has been achieved by dispersing PtRu nanoparticles (loading, 100 μg cm-2) over the hybrid Rh-ZrO2 support composed of nanostructured zirconia and metallic rhodium particles, is clearly evident from comparison of the respective voltammetric and chronoamperometric current densities recorded at room temperature (22 °C) in 0.5 mol dm-3 H2SO4 containing 0.5 mol dm-3 ethanol. Porous ZrO2 nanostructures, that provide a large population of hydroxyl groups in acidic medium in the vicinity of PtRu sites, are expected to facilitate the ruthenium-induced removal of passivating CO adsorbates from platinum, as is apparent from the diagnostic experiments with a small organic molecule such as methanol. Although Rh itself does not show directly any activity toward ethanol oxidation, the metal is expected to facilitate C-C bond splitting in C2H5OH. It has also been found during parallel voltammetric and chronoamperometric measurements that the hybrid Rh-ZrO2 support increases activity of the platinum component itself toward ethanol oxidation in the low potential range.

  14. Bistable multifunctionality and switchable strong ferromagnetic-to-antiferromagnetic coupling in a one-dimensional rhodium(I)-semiquinonato complex.

    PubMed

    Mitsumi, Minoru; Nishitani, Takashi; Yamasaki, Shota; Shimada, Nayuta; Komatsu, Yuuki; Toriumi, Koshiro; Kitagawa, Yasutaka; Okumura, Mitsutaka; Miyazaki, Yuji; Górska, Natalia; Inaba, Akira; Kanda, Akinori; Hanasaki, Noriaki

    2014-05-14

    We present a comprehensive study of the synthesis, heat capacity, crystal structures, UV-vis-NIR and mid-IR spectra, DFT calculations, and magnetic and electrical properties of a one-dimensional (1D) rhodium(I)-semiquinonato complex, [Rh(3,6-DBSQ-4,5-(MeO)2)(CO)2]∞ (3), where 3,6-DBSQ-4,5-(MeO)2(•-) represents 3,6-di-tert-butyl-4,5-dimethoxy-1,2-benzosemiquinonato radical anion. The compound 3 comprises neutral 1D chains of complex molecules stacked in a staggered arrangement with short Rh-Rh distances of 3.0796(4) and 3.1045(4) Å at 226 K and exhibits unprecedented bistable multifunctionality with respect to its magnetic and conductive properties in the temperature range of 228-207 K. The observed bistability results from the thermal hysteresis across a first-order phase transition, and the transition accompanies the exchange of the interchain C-H···O hydrogen-bond partners between the semiquinonato ligands. The strong overlaps of the complex molecules lead to unusually strong ferromagnetic interactions in the low-temperature (LT) phase. Furthermore, the magnetic interactions in the 1D chain drastically change from strongly ferromagnetic in the LT phase to antiferromagnetic in the room-temperature (RT) phase with hysteresis. In addition, the compound 3 exhibits long-range antiferromagnetic ordering between the ferromagnetic chains and spontaneous magnetization because of spin canting (canted antiferromagnetism) at a transition temperature T(N) of 14.2 K. The electrical conductivity of 3 at 300 K is 4.8 × 10(-4) S cm(-1), which is relatively high despite Rh not being in a mixed-valence state. The temperature dependence of electrical resistivity also exhibits a clear hysteresis across the first-order phase transition. Furthermore, the ferromagnetic LT phase can be easily stabilized up to RT by the application of a relatively weak applied pressure of 1.4 kbar, which reflects the bistable characteristics and demonstrates the simultaneous control of

  15. Merging rhodium-catalysed C-H activation and hydroamination in a highly selective [4+2] imine/alkyne annulation.

    PubMed

    Manan, Rajith S; Zhao, Pinjing

    2016-01-01

    Catalytic C-H activation and hydroamination represent two important strategies for eco-friendly chemical synthesis with high atom efficiency and reduced waste production. Combining both C-H activation and hydroamination in a cascade process, preferably with a single catalyst, would allow rapid access to valuable nitrogen-containing molecules from readily available building blocks. Here we report a single metal catalyst-based approach for N-heterocycle construction by tandem C-H functionalization and alkene hydroamination. A simple catalyst system of cationic rhodium(I) precursor and phosphine ligand promotes redox-neutral [4+2] annulation between N-H aromatic ketimines and internal alkynes to form multi-substituted 3,4-dihydroisoquinolines (DHIQs) in high chemoselectivity over competing annulation processes, exclusive cis-diastereoselectivity, and distinct regioselectivity for alkyne addition. This study demonstrates the potential of tandem C-H activation and alkene hydrofunctionalization as a general strategy for modular and atom-efficient assembly of six-membered heterocycles with multiple chirality centres. PMID:27321650

  16. Merging rhodium-catalysed C–H activation and hydroamination in a highly selective [4+2] imine/alkyne annulation

    PubMed Central

    Manan, Rajith S.; Zhao, Pinjing

    2016-01-01

    Catalytic C–H activation and hydroamination represent two important strategies for eco-friendly chemical synthesis with high atom efficiency and reduced waste production. Combining both C–H activation and hydroamination in a cascade process, preferably with a single catalyst, would allow rapid access to valuable nitrogen-containing molecules from readily available building blocks. Here we report a single metal catalyst-based approach for N-heterocycle construction by tandem C–H functionalization and alkene hydroamination. A simple catalyst system of cationic rhodium(I) precursor and phosphine ligand promotes redox-neutral [4+2] annulation between N–H aromatic ketimines and internal alkynes to form multi-substituted 3,4-dihydroisoquinolines (DHIQs) in high chemoselectivity over competing annulation processes, exclusive cis-diastereoselectivity, and distinct regioselectivity for alkyne addition. This study demonstrates the potential of tandem C–H activation and alkene hydrofunctionalization as a general strategy for modular and atom-efficient assembly of six-membered heterocycles with multiple chirality centres. PMID:27321650

  17. Food additives.

    PubMed

    Berglund, F

    1978-01-01

    The use of additives to food fulfils many purposes, as shown by the index issued by the Codex Committee on Food Additives: Acids, bases and salts; Preservatives, Antioxidants and antioxidant synergists; Anticaking agents; Colours; Emulfifiers; Thickening agents; Flour-treatment agents; Extraction solvents; Carrier solvents; Flavours (synthetic); Flavour enhancers; Non-nutritive sweeteners; Processing aids; Enzyme preparations. Many additives occur naturally in foods, but this does not exclude toxicity at higher levels. Some food additives are nutrients, or even essential nutritents, e.g. NaCl. Examples are known of food additives causing toxicity in man even when used according to regulations, e.g. cobalt in beer. In other instances, poisoning has been due to carry-over, e.g. by nitrate in cheese whey - when used for artificial feed for infants. Poisonings also occur as the result of the permitted substance being added at too high levels, by accident or carelessness, e.g. nitrite in fish. Finally, there are examples of hypersensitivity to food additives, e.g. to tartrazine and other food colours. The toxicological evaluation, based on animal feeding studies, may be complicated by impurities, e.g. orthotoluene-sulfonamide in saccharin; by transformation or disappearance of the additive in food processing in storage, e.g. bisulfite in raisins; by reaction products with food constituents, e.g. formation of ethylurethane from diethyl pyrocarbonate; by metabolic transformation products, e.g. formation in the gut of cyclohexylamine from cyclamate. Metabolic end products may differ in experimental animals and in man: guanylic acid and inosinic acid are metabolized to allantoin in the rat but to uric acid in man. The magnitude of the safety margin in man of the Acceptable Daily Intake (ADI) is not identical to the "safety factor" used when calculating the ADI. The symptoms of Chinese Restaurant Syndrome, although not hazardous, furthermore illustrate that the whole ADI

  18. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  19. Phosphazene additives

    SciTech Connect

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  20. Nanofiltration of rhodium tris(triphenylphosphine) catalyst in ethyl acetate solution

    NASA Astrophysics Data System (ADS)

    Shaharun, Maizatul S.; Mustafa, Ahmad K.; Taha, Mohd F.

    2012-09-01

    Solvent resistant nanofiltration (SRNF) using polymer membranes has recently received enhanced attention due to the search for cleaner and more energy-efficient technologies. The large size of the rhodium tris(triphenylphosphine) [HRh(CO)(PPh3)3] catalyst (>400 Da) - relative to other components of the hydroformylation reaction provides the opportunity for a membrane separation based on retention of the catalyst species while permeating the solvent. The compatibility of the solvent-polyimide membrane (DuraMem{trade mark, serif} 200 and DuraMem{trade mark, serif} 500) combinations was assessed in terms of the membrane stability in solvent plus non-zero solvent flux at 2.0 MPa. Good HRh(CO)(PPh3)3 rejection (>0.95) and solvent fluxes of 9.9 L/m2ṡh1 at 2.0 MPa were obtained in the catalyst-ethyl acetate-DuraMem 500 system. The effect of pressure and catalyst concentration on the solvent flux and catalyst rejection was conducted on the catalyst-ethyl acetate-membrane systems. Increasing pressure substantially improved both solvent flux and catalyst rejection, while increasing catalyst concentration was found to be beneficial in terms of substantial increases in catalyst rejection without significantly affecting solvent flux.

  1. Base-Catalyzed Insertion of Dioxygen into Rhodium-Hydrogen Bonds: Kinetics and Mechanism

    SciTech Connect

    Szajna-Fuller, Ewa; Bakac, Andreja

    2009-10-27

    The reaction between molecular oxygenm and rhodium hydrides L(OH)RhH{sup +} (L = (NH{sub 3}){sub 4}, trans-L{sup 1}, and cis-L{sup 1}, where L{sup 1} = cyclam) in basic aqueous solutions rapidly produces the corresponding hydroperoxo complexes. Over the pH range 8 < pH < 12, the kinetics exhibit a first order dependence on [OH{sup -}]. The dependence on [O{sub 2}] is less than first order and approaches saturation at the highest concentrations used. These data suggest an attack by OH{sup -} at the hydride with k = (1.45 {+-} 0.25) x 10{sup 3} M{sup -1} s{sup -1} for trans-L{sup 1}(OH)RhH{sup +} at 25 C, resulting in heterolytic cleavage of the Rh-H bond and formation of a reactive Rh(I) intermediate. A competition between O{sub 2} H{sub 2}O for Rh(I) is the source of the observed dependence on O{sub 2}.

  2. Versatile deprotonated NHC: C,N-bridged dinuclear iridium and rhodium complexes

    PubMed Central

    2016-01-01

    Summary Bearing the versatility of N-heterocyclic carbene (NHC) ligands, here density functional theory (DFT) calculations unravel the capacity of coordination of a deprotonated NHC ligand (pNHC) to generate a doubly C2,N3-bridged dinuclear complex. Here, in particular the discussion is based on the combination of the deprotonated 1-arylimidazol (aryl = mesityl (Mes)) with [M(cod)(μ-Cl)] (M = Ir, Rh) generated two geometrical isomers of complex [M(cod){µ-C3H2N2(Mes)-κC2,κN3}]2). The latter two isomers display conformations head-to-head (H-H) and head-to-tail (H-T) of C S and C 2 symmetry, respectively. The isomerization from the H-H to the H-T conformation is feasible, whereas next substitutions of the cod ligand by CO first, and PMe3 later confirm the H-T coordination as the thermodynamically preferred. It is envisaged the exchange of the metal, from iridium to rhodium, confirming here the innocence of the nature of the metal for such arrangements of the bridging ligands. PMID:26877814

  3. Properties of Binuclear Rhodium(II) Complexes and Their Antibacterial Activity.

    PubMed

    Pruchnik, F P; Bień, M; Lachowicz, T

    1996-01-01

    Binuclear rhodium(II) complexes [Rh(2)Cl(2)(mu-OOCR)(2)(N-N)(2)], [Rh(2)(mu-OOCR)(2)(N-N)(2)(H(2)O)(2)](RCOO)(2) and [Rh(2)Cl(2)(mu-OOCCH(3))(terpy)(2)](H(3)O)Cl(2).9H(2)O (R = H, Me, Bu(n), ph, PhCHOH; N-N = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), 2,9-dimethyl-1,10-phenanthroline (dmp) and 6,7-dimethyl-2,3- di(2-pyridyl)quinoxaline (dmpq); terpy 2,2':6',2''-terpyridine) have been synthesized and their structure and properties have been studied by electronic, IR and (1)H NMR spectroscopy. Antibacterial activity of these complexes against Staphylococcus aureus and Escherichia coli has been investigated. The most active antibacterial agents against S. aureus were [Rh(2)(OOCPh)(2)(phen)(2)(H(2)O)(2)](2+), [Rh(2)(OOCPh)(2)(dmpq)(2)(H(2)O)(2)](2+), [Rh(2)(OOCBu)(2)(phen)(2)(H(2)O)(2)](2+) and [Rh(2)-(OOCBu)(2)(bpy)(2)(H(2)O)(2)](2+) which were considerably more active than the appropriate nitrogen ligands. The complexes show rather low activity against E. coli. PMID:18475754

  4. Synthesis, Structure, and Conformational Dynamics of Rhodium and Iridium Complexes of Dimethylbis(2-pyridyl)borate†

    PubMed Central

    Pennington-Boggio, Megan K.; Conley, Brian L.; Richmond, Michael G.; Williams, Travis J.

    2014-01-01

    Rhodium(I) and Iridium(I) borate complexes of the structure [Me2B(2-py)2]ML2 (L2 = (tBuNC)2, (CO)2, (C2H4)2, cod, dppe) were prepared and structurally characterized (cod = 1,5-cyclooctadiene; dppe = 1,2-diphenylphosphinoethane). Each contains a boat-configured chelate ring that participates in a boat-to-boat ring flip. Computational evidence shows that the ring flip proceeds through a transition state that is near planarity about the chelate ring. We observe an empirical, quantitative correlation between the barrier of this ring flip and the π acceptor ability of the ancillary ligand groups on the metal. The ring flip barrier correlates weakly to the Tolman and Lever ligand parameterization schemes, apparently because these combine both σ and π effects while we propose that the ring flip barrier is dominated by π bonding. This observation is consistent with metal-ligand π interactions becoming temporarily available only in the near-planar transition state of the chelate ring flip and not the boat-configured ground state. Thus, this is a first-of-class observation of metal-ligand π bonding governing conformational dynamics. PMID:25435645

  5. Unravelling the mechanism of glycerol hydrogenolysis over rhodium catalyst through combined experimental-theoretical investigations.

    PubMed

    Auneau, Florian; Michel, Carine; Delbecq, Françoise; Pinel, Catherine; Sautet, Philippe

    2011-12-01

    We report herein a detailed and accurate study of the mechanism of rhodium-catalysed conversion of glycerol into 1,2-propanediol and lactic acid. The first step of the reaction is particularly debated, as it can be either dehydration or dehydrogenation. It is expected that these elementary reactions can be influenced by pH variations and by the nature of the gas phase. These parameters were consequently investigated experimentally. On the other hand, there was a lack of knowledge about the behaviour of glycerol at the surface of the metallic catalyst. A theoretical approach on a model Rh(111) surface was thus implemented in the framework of density functional theory (DFT) to describe the above-mentioned elementary reactions and to calculate the corresponding transition states. The combination of experiment and theory shows that the dehydrogenation into glyceraldehyde is the first step for the glycerol transformation on the Rh/C catalyst in basic media under He or H(2) atmosphere. PMID:22069214

  6. Catalytic hydrogenolysis of an aryl-aryl carbon-carbon bond with a rhodium complex

    SciTech Connect

    Perthuisot, C.; Jones, W.D. )

    1994-04-20

    Recent publications have brought renewed interest to the quest for homogeneous catalytic activation of carbon-carbon bonds. However, except for a few reports of biphenylene cleavage, the mechanism and scope of aryl-aryl C-C bond activation remains relatively uninvestigated. In the hope of overcoming the obstacle of weak M-C bonds, we used a rhodium system that should provide a thermodynamically favored C-C cleaved complex by making strong metal-aryl bonds. Reaction of (C[sub 5]Me[sub 5])Rh(PMe[sub 3])(Ph)(H) (1) with 1.5 equiv of biphenylene in cyclohexane-d[sub 12] at 65[degree]C resulted in the quantitative formation of (CC[sub 5]Me[sub 5])Rh(PMe[sub 3]) (biphenylenyl(H)) (2), along with a small amount of a red complex. The cleavage of the well-hidden carbon-carbon bond of biphenylene described relies both on a strained four-membered ring and on the formation of a stable pentametallacycle. The results show that C-H activation and [eta][sup 2] coordination are probably involved in the process leading to C-C bond cleavage, and valuable information can be obtained from studies of this system. 21 refs., 1 fig.

  7. Vapour phase hydrogenation of phenol over rhodium on SBA-15 and SBA-16.

    PubMed

    Giraldo, Liliana; Bastidas-Barranco, Marlon; Moreno-Piraján, Juan Carlos

    2014-01-01

    In the present work, mesoporous SBA-15 and SBA-16 were synthesised using classical methods, and their physicochemical properties were investigated by X-ray diffraction (XRD), FTIR, TEM and N2 adsorption-desorption. Rhodium (Rh, 1 wt %) was loaded on the mesoporous SBA-15 and SBA-16 by an impregnation method. The Rh surface coverage, dispersion and crystallite size were determined by room temperature H2 chemisorption on reduced samples. The catalytic activity of Rh supported on mesoporous SBA-15 and SBA-16 was evaluated for the first time in the hydrogenation of phenol in vapour phase in a temperature range between 130 and 270 °C at atmospheric pressure. The reaction over Rh/SBA-15 at 180 °C produced cyclohexanone as the major product (about 60%) along with lower amounts of cyclohexanol (about 35%) and cyclohexane (about 15%). The influences of temperature, H2/phenol ratio, contact time and the nature of the solvent on the catalytic performance were systematically investigated. The Rh/SBA-16 system offered lower phenol conversion compared to Rh/SBA-15, but both have a very high selectivity for cyclohexanone (above 60%). PMID:25514052

  8. Rhodium-catalyzed Intra- and Intermolecular [5+2] Cycloaddition of 3-Acyloxy-1,4-enyne and Alkyne with Concomitant 1,2-Acyloxy Migration

    PubMed Central

    Shu, Xing-Zhong; Li, Xiaoxun; Shu, Dongxu; Huang, Suyu; Schienebeck, Casi M.; Zhou, Xin; Robichaux, Patrick J.; Tang, Weiping

    2012-01-01

    A new type of rhodium-catalyzed [5+2] cycloaddition was developed for the synthesis of seven-membered rings with diverse functionalities. The ring formation was accompanied by a 1,2-acyloxy migration event. The 5- and 2-carbon components of the cycloaddition are 3-acyloxy-1,4-enynes (ACEs) and alkynes respectively. Cationic rhodium (I) catalysts worked most efficiently for the intramolecular cycloaddition, while only neutral rhodium (I) complexes could facilitate the intermolecular reaction. In both cases, electron-poor phosphite or phosphine ligands often improved the efficiency of the cycloadditions. The scope of ACEs and alkynes was investigated in both intra- and intermolecular reactions. The resulting seven-membered ring products have three double bonds that could be selectively functionalized. PMID:22364320

  9. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    SciTech Connect

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo

    2011-12-15

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and global

  10. Anthranil: An Aminating Reagent Leading to Bifunctionality for Both C(sp(3) )-H and C(sp(2) )-H under Rhodium(III) Catalysis.

    PubMed

    Yu, Songjie; Tang, Guodong; Li, Yingzi; Zhou, Xukai; Lan, Yu; Li, Xingwei

    2016-07-18

    Previous direct C-H nitrogenation suffered from simple amidation/amination with limited atom-economy and is mostly limited to C(sp(2) )-H substrates. In this work, anthranil was designed as a novel bifunctional aminating reagent for both C(sp(2) )-H and C(sp(3) )-H bonds under rhodium(III) catalysis, thus affording a nucleophilic aniline tethered to an electrophilic carbonyl. A tridendate rhodium(III) complex has been isolated as the resting state of the catalyst, and DFT studies established the intermediacy of a nitrene species. PMID:27121133

  11. One-pot synthesis of 2,5-dihydropyrroles from terminal alkynes, azides, and propargylic alcohols by relay actions of copper, rhodium, and gold.

    PubMed

    Miura, Tomoya; Tanaka, Takamasa; Matsumoto, Kohei; Murakami, Masahiro

    2014-12-01

    Relay actions of copper, rhodium, and gold formulate a one-pot multistep pathway, which directly gives 2,5-dihydropyrroles starting from terminal alkynes, sulfonyl azides, and propargylic alcohols. Initially, copper-catalyzed 1,3-dipolar cycloaddition of terminal alkynes with sulfonyl azides affords 1-sulfonyl-1,2,3-triazoles, which then react with propargylic alcohols under the catalysis of rhodium. The resulting alkenyl propargyl ethers subsequently undergo the thermal Claisen rearrangement to give α-allenyl-α-amino ketones. Finally, a gold catalyst prompts 5-endo cyclization to produce 2,5-dihydropyrroles. PMID:25345587

  12. H 2 production from CH 4 decomposition: Regeneration capability and performance of nickel and rhodium oxide catalysts

    NASA Astrophysics Data System (ADS)

    Rivas, M. E.; Hori, C. E.; Fierro, J. L. G.; Goldwasser, M. R.; Griboval-Constant, A.

    Nickel-lanthanum (LaNiO 3) and nickel-rhodium-lanthanum (LaNi 0.95Rh 0.05O 3) perovskite-type oxide precursors were synthesized by different methodologies (co-precipitation, sol-gel and impregnation). They were reduced in an H 2 atmosphere to produce nickel and rhodium nanoparticles on the La 2O 3 substrate. All samples were tested in the catalytic decomposition of CH 4. Methane decomposed into carbon and H 2 at reaction temperatures as low as 450 °C-no other reaction products were observed. Conversions were in the range of 14-28%, and LaNi 0.95Rh 0.05O 3 synthesized by co-precipitation was the most active catalyst. All catalysts maintained sustained activity even after massive carbon deposition indicating that these deposits are of the nanotube-type, as confirmed by transmission electron microscopy (TEM). The reaction seems to occur in a way that a nickel or rhodium crystal face is always clean enough to expose sufficient active sites to make the catalytic process continue. The samples were subjected to a reduction-oxidation-reduction cycle and in situ analyses confirmed the stability of the perovskite structure. All diffraction patterns showed a phase change around 400 °C, due to reduction of LaNiO 3 to an intermediate La 2Ni 2O 5 structure. When the reduction temperatures reach 600 °C, this structure collapses through the formation of Ni 0 crystallites deposited on the La 2O 3. Under oxidative conditions, the perovskite system is recomposed with nickel re-entering the LaNiO 3 framework structure accounting for the regenerative capability of these solids.

  13. Rhodium(III)-triphenylphosphine complex with NNS donor thioether containing Schiff base ligand: Synthesis, spectra, electrochemistry and catalytic activity

    NASA Astrophysics Data System (ADS)

    Biswas, Sujan; Sarkar, Deblina; Kundu, Subhankar; Roy, Puspendu; Mondal, Tapan Kumar

    2015-11-01

    New rhodium(III)-triphenylphosphine complex, [Rh(PPh3)(L)Cl2](PF6) (1) with thioether containing NNS donor ligand (L) (L = 2-(methylthio)-N-((pyridine-2-yl)methylene)benzenamine) has been synthesized and characterized. The pseudo octahedral geometry of the complex has been confirmed by single crystal X-ray analysis. The electronic structure, redox properties, absorption and emission properties of the complexes have been interpreted by DFT and TDDFT calculations. The complex effectively catalyzed the transfer hydrogenation reaction of ketones in 2-propanol and oxidation of alcohols in presence of NMO.

  14. Regioconvergent and Enantioselective Rhodium-Catalyzed Hydroamination of Internal and Terminal Alkynes: A Highly Flexible Access to Chiral Pyrazoles.

    PubMed

    Haydl, Alexander M; Hilpert, Lukas J; Breit, Bernhard

    2016-05-01

    The rhodium-catalyzed asymmetric N-selective coupling of pyrazole derivatives with internal and terminal alkynes features an utmost chemo-, regio-, and enantioselective access to enantiopure allylic pyrazoles, readily available for incorporation in small-molecule pharmaceuticals. This methodology is distinguished by a broad substrate scope, resulting in a remarkable compatability with a variety of different functional groups. It furthermore exhibits an intriguing case of regio-, position-, and enantioselectivity in just one step, underscoring the sole synthesis of just one out of up to six possible products in a highly flexible approach to allylated pyrazoles by emanating from various internal and terminal alkynes. PMID:26990445

  15. Rhodium-catalyzed annulation of arenes with alkynes through weak chelation-assisted C-H activation.

    PubMed

    Yang, Yudong; Li, Kaizhi; Cheng, Yangyang; Wan, Danyang; Li, Mingliang; You, Jingsong

    2016-02-18

    The purpose of this article is to give a brief review of weak chelation-assistance as a powerful means for the rhodium-catalyzed annulation of arenes with alkynes. The use of commonly occurring functional groups (e.g., ketones, aldehydes, carboxylic acids and alcohols) as the directing groups enriches the versatility of auxiliary ligands and extends the scope of products. This short article offers an overview on emerging procedures, highlights their advantages and limitations, and covers the latest progress in the rapid synthesis of organic functional materials and natural products. PMID:26757884

  16. Rhodium-catalyzed silylation and intramolecular arylation of nitriles via the silicon-assisted cleavage of carbon-cyano bonds.

    PubMed

    Tobisu, Mamoru; Kita, Yusuke; Ano, Yusuke; Chatani, Naoto

    2008-11-26

    A rhodium-catalyzed silylation reaction of carbon-cyano bonds using disilane has been developed. Under these catalytic conditions, carbon-cyano bonds in aryl, alkenyl, allyl, and benzyl cyanides bearing a variety of functional groups can be silylated. The observation of an enamine side product in the silylation of benzyl cyanides and related stoichiometric studies indicate that the carbon-cyano bond cleavage proceeds through the deinsertion of silyl isocyanide from eta(2)-iminoacyl complex B. Knowledge gained from these studies has led to the development of a new intramolecular biaryl coupling reaction in which aryl cyanides and aryl chlorides are cross-coupled. PMID:18975946

  17. Catalytic addition methods for the synthesis of functionalized diazoacetoacetates and application to the construction of highly substituted cyclobutanones.

    PubMed

    Doyle, Michael P; Kundu, Kousik; Russell, Albert E

    2005-11-10

    [reaction: see text] Methyl 3-(trialkylsilanyloxy)-2-diazo-3-butenoate undergoes Lewis acid-catalyzed Mukaiyama aldol addition with aromatic and aliphatic aldehydes in the presence of low catalytic amounts of Lewis acids in nearly quantitative yields. Scandium(III) triflate is the preferred catalyst and, notably, addition proceeds without decomposition of the diazo moiety. Diazoacetoacetate products from reactions with aromatic aldehydes undergo rhodium(II)-catalyzed ring closure to cyclobutanones with high diastereocontrol. Examples of complimentary Mannich-type addition reactions with imines are reported. PMID:16268530

  18. Phosphaalkene-oxazoline copolymers with styrene as chiral ligands for rhodium(I).

    PubMed

    Serin, Spencer C; Dake, Gregory R; Gates, Derek P

    2016-04-01

    The radical-initiated copolymerization of phosphaalkene-oxazoline, MesP[double bond, length as m-dash]C(Ph)CMe2Ox [1, Ox = CNOCH(iPr)CH2] with different loadings of styrene affords poly(methylenephosphine-co-styrene)s [2a (1 : S = 1 : 2): Mw = 7400 g mol(-1), PDI = 1.1; 2b (1 : S = 1 : 5): Mw = 18 000 g mol(-1), PDI = 1.2; 2c (1 : S = 1 : 10): Mw = 16 000 g mol(-1), PDI = 1.3]. Copolymers 2a-2c are demonstrated as viable macromolecular ligands for rhodium(i). By comparison with the crystallographically characterized model P,N-bidentate complex, [Mes(Me)P-CH(Ph)CMe2Ox·Rh(cod)]BF4, the polymer complexes [2·Rh(cod)]BF4 were prepared. The macromolecular metal complexes were characterized by GPC {for [2a·Rh(cod)]BF4: Mw = 14 000 g mol(-1), PDI = 1.2}, UV/Vis spectroscopy, (1)H, (13)C and (31)P NMR spectroscopy. Integration of the (31)P NMR spectra of mixtures of 2 and [Rh(cod)2]BF4 permitted the determination of the mol% of incorporation of monomer 1 in copolymer 2 (2a: 17%; 2b: 5%; 2c: 4%). These results compared favorably with those determined by elemental analysis (2a: 17%; 2b: 6%). PMID:26924506

  19. Iridium, platinum and rhodium baseline concentration in lichens from Tierra del Fuego (South Patagonia, Argentina).

    PubMed

    Pino, Anna; Alimonti, Alessandro; Conti, Marcelo Enrique; Bocca, Beatrice

    2010-10-01

    Lichen samples of Usnea barbata were used as possible biomonitors of the atmospheric background level of iridium (Ir), platinum (Pt) and rhodium (Rh) in the remote region of Tierra del Fuego (South Patagonia, Argentina). Lichens were collected in 2006 at 53 sites covering 7 different areas of the region (24 transplanted lichens of the northern region and 29 native lichen samples of the central-southern region). A microwave acidic digestion procedure was used to mineralize the samples and a sector field inductively coupled plasma mass spectrometry method was developed to quantify the elements. The study of the influence of interferences on analyte signals and a quality control procedure were carried out. The analytical protocol was further applied to evaluate Ir, Pt and Rh bioaccumulation in lichens. The detection limits obtained were 0.010 ng g⁻¹, 0.013 ng g⁻¹ and 0.030 ng g⁻¹ for Ir, Pt and Rh, respectively. Recoveries at different fortification levels were between 96.3% and 106% and precision was 3.3% on average. The metals concentration (as dry weight) spanned the following ranges: Ir, <0.010-1.011 ng g⁻¹; Pt, 0.016-2.734 ng g⁻¹; and Rh, 0.063-1.298 ng g⁻¹. Data on 7 areas were similar suggesting that no specific source, for example traffic or anthropogenic activity, influenced directly the metal concentrations in Tierra del Fuego. Values detected are more likely influenced by the long-range atmospheric transport of these pollutants and, in comparison with densely populated areas in the world, they can represent the baseline for low impacted areas. PMID:20830409

  20. REGIOSELECTIVE OXIDATIONS OF EQUILENIN DERIVATIVES CATALYZED BY A RHODIUM (III) PORPHYRIN COMPLEX-CONTRAST WITH THE MANGANESE (III) PORPHYRIN. (R826653)

    EPA Science Inventory

    Abstract

    Equilenin acetate and dihydroequilenin acetate were oxidized with iodosobenzene and a rhodium(III) porphyrin catalyst. The selectivity of the reactions differs from that with the corresponding Mn(III) catalyst, or from that of free radical chain oxidation.

  1. Rhodium(III)-Catalyzed Directed ortho-C-H Bond Functionalization of Aromatic Ketazines via C-S and C-C Coupling.

    PubMed

    Wen, Jing; Wu, An; Wang, Mingyang; Zhu, Jin

    2015-11-01

    Described herein is a convenient and efficient method for sulfuration and olefination of aromatic ketazines via rhodium-catalyzed oxidative C-H bond activation. A range of substituted substrates are supported, and a possible mechanism is proposed according to experimental results of kinetic isotopic effect, reversibility studies, and catalysis of rhodacycle intermediate c1. PMID:26417874

  2. Access to Structurally Diverse Quinoline-Fused Heterocycles via Rhodium(III)-Catalyzed C-C/C-N Coupling of Bifunctional Substrates.

    PubMed

    Yu, Songjie; Li, Yunyun; Zhou, Xukai; Wang, He; Kong, Lingheng; Li, Xingwei

    2016-06-17

    Rhodium(III)-catalyzed C-H activation of heteroarenes and functionalization with bifunctional substrates such as anthranils allows facile construction of quinoline-fused heterocycles under redox-neutral conditions. The couplings feature broad substrate scope and provide step-economical access to two classes of quinoline-fused condensed heterocycles. PMID:27267178

  3. Complexation of oxygen ligands with dimeric rhodium(II) tetrakistrifluoroacetate in chloroform: 1H, 13C NMR and DFT studies

    NASA Astrophysics Data System (ADS)

    Głaszczka, Rafał; Jaźwiński, Jarosław

    2013-03-01

    The complexation of dimeric rhodium(II) tetrakistrifluoroacetylate with 25 ligands containing oxygen atoms: alcohols, ethers, ketones, aldehydes, carboxylic acids and esters in chloroform solution have been investigated by 1H and 13C NMR spectroscopy and Density Functional Theory (DFT) methods. Investigated ligands form 1:1 adducts in our experimental conditions, with stability constants in the order of several hundred mol-1. The exchange of ligands in solution is fast on the NMR spectroscopic timescale. The decrease of longitudinal relaxation times T1 in ligands in the presence of rhodium salt has been tested as the means of determination of the complexation site in ligands. The influence of complexation on chemical shifts in ligands was evaluated by a parameter complexation shift Δδ (Δδ = δadd - δlig). These parameters were positive (>0 ppm) and did not exceed 1 ppm for 1H NMR; and varied from ca. -5 to +15 ppm in the case of 13C NMR. The calculation by DFT methods using the B3LYP functional (structure optimization, electronic energy) and B3PW91 functional (shielding), and combinations of the (6-31G(2d), 6-311G++(2d,p), and LANL2DZ basis sets, followed by scaling procedures reproduced satisfactorily 1H and 13C chemical shifts and, with some limitations, allowed to estimate Δδ parameters.

  4. An operando FTIR spectroscopic and kinetic study of carbon monoxide pressure influence on rhodium-catalyzed olefin hydroformylation.

    PubMed

    Kubis, Christoph; Sawall, Mathias; Block, Axel; Neymeyr, Klaus; Ludwig, Ralf; Börner, Armin; Selent, Detlef

    2014-09-01

    The influence of carbon monoxide concentration on the kinetics of the hydroformylation of 3,3-dimethyl-1-butene with a phosphite-modified rhodium catalyst has been studied for the pressure range p(CO)=0.20-3.83 MPa. Highly resolved time-dependent concentration profiles of the organometallic intermediates were derived from IR spectroscopic data collected in situ for the entire olefin-conversion range. The dynamics of the catalyst and organic components are described by enzyme-type kinetics with competitive and uncompetitive inhibition reactions involving carbon monoxide taken into account. Saturation of the alkyl-rhodium intermediates with carbon monoxide as a cosubstrate occurs between 1.5 and 2 MPa of carbon monoxide pressure, which brings about a convergence of aldehyde regioselectivity. Hydrogenolysis of the acyl intermediate is fast at 30 °C and low pressure of p(CO)=0.2 MPa, but is of minus first order with respect to the solution concentration of carbon monoxide. Resting 18-electron hydrido and acyl complexes that correspond to early and late rate-determining states, respectively, coexist as long as the conversion of the substrate is not complete. PMID:25081298

  5. Separation of platinum and rhodium from chloride solutions containing aluminum, magnesium and iron using solvent extraction and precipitation methods.

    PubMed

    Raju, B; Kumar, J Rajesh; Lee, Jin-Young; Kwonc, Hyuk-Sung; Kantam, M Lakshmi; Reddy, B Ramachandra

    2012-08-15

    The solvent extraction and precipitation methods have been used to develop a process to separate platinum and rhodium from a synthetic chloride solutions containing other associated metals such as (mg/L): Pt-364, Rh-62, Al-13880, Mg-6980, Fe-1308 at <1M HCl acidity. At pH 3.4, the quantitative precipitation of Al and Fe was achieved using 10 wt% Na(3)PO(4)·12H(2)O, with ~4% loss of Pt and Rh due to adsorption phenomenon. The selective separation of platinum was carried out with 0.01 M Aliquat 336 (a quaternary ammonium salt) at an aqueous to organic ratio (A/O) of 3.3 in two stages. Stripping of Pt from loaded organic (LO) at O/A ratio 6 with 0.5 M thiourea (tu) and HCl indicated that ~99.9% stripping efficiency. In stripping studies, needle like crystals of Pt were found and identified as tetrakis (thiourea) platinum (II) chloride ([Pt(tu)(4)]Cl(2)). The selective precipitation of rhodium was performed with (NH(4))(2)S from platinum free raffinate with a recovery of >99%. PMID:22664260

  6. Reversed reactivity of anilines with alkynes in the rhodium-catalysed C–H activation/carbonylation tandem

    PubMed Central

    Midya, Siba P.; Sahoo, Manoj K.; Landge, Vinod G.; Rajamohanan, P. R.; Balaraman, Ekambaram

    2015-01-01

    Development of multicatalytic approach consisting of two or more mechanistically distinct catalytic steps using a single-site catalyst for rapid and straightforward access of structurally complex molecules under eco-benign conditions has significance in contemporary science. We have developed herein a rhodium-catalysed C–H activation strategy which uses an unprotected anilines and an electron-deficient alkynes to C–C bonded products as a potential intermediate in contrast to the archetypical C–N bonded products with high levels of regioselectivity. This is followed by carbonylation of C–H bond activated intermediate and subsequent annulation into quinolines has been described. This rhodium-catalysed auto-tandem reaction operates under mild, environmentally benign conditions using water as the solvent and CO surrogates as the carbonyl source with the concomitant generation of hydrogen gas. The strategy may facilitate the development of new synthetic protocols for the efficient and sustainable production of chemicals in an atom-economic way from simple, abundant starting materials. PMID:26486182

  7. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    SciTech Connect

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has

  8. New SSMS Techniques for the Determination of Rhodium and Other Platinum- Group Elements in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Jochum, K. P.; Seufert, H. M.

    1995-09-01

    system (about 10 - 15 %). Both data sets agree within error limits. Rhodium correlates well with Pt and other PGE indicating no significant fractionation between the different types of carbonaceous chondrites (Tab. 1). References: [1] Jochum K. P. et al. (1994) Fresenius J. Anal. Chem., 350, 642-644. [2] Anders E. and Grevesse N. (1989) GCA, 53, 197-214.

  9. Platinum and rhodium concentrations in airborne particulate matter in Germany from 1988 to 1998.

    PubMed

    Zereini, F; Wiseman, C; Alt, F; Messerschmidt, J; Müller, J; Urban, H

    2001-05-15

    Increases in platinum group element (PGE) concentrations in ambient air and dust since the introduction of automotive catalytic converters in 1988 is a cause of concern. Until now, data derived from engine-test bench experiments have provided the basis for the assessment of human health risks associated with PGE exposure. Such experiments have provided valuable information regarding emission data that has been used to estimate ambient exposure concentrations. However, these data are not necessarily representative of typical environmental PGE exposure levels and conditions. Data on measured environmental concentrations is needed to provide a more adequate basis for the assessment of exposure and related risks. Twenty air and airborne-dust samples were provided by the Umweltbundesamt (Federal Environmental Agency, Germany) in the years 1988, 1989, 1992, 1997, and 1998. The samples were collected in Frankfurt/Main and the adjacent city of Offenbach. For this, 11 to 80 m3 of air were filtered over a 24-72 h period using a vacuum. Glass-fiber filters were used to collect samples. Sample platinum and rhodium concentrations were determined using adsorptive voltammetry. Although the number of samples collected in different years is limited, the results indicate a trend toward continuous increases in ambient concentrations of these metals between 1988 and 1998. Specifically, there were 46- and 27-fold increases in Pt and Rh concentrations, respectively. Despite these observed increases, the Pt concentrations measured (i.e., 147 pg/m3 on average, with a maximum of 246 pg/m3 in 1998) fell far below 15,000 pg/m3, which has been suggested as a guidance value (i.e., exposure at this level would be expected to be without appreciable health risk). The results of a particle-size distribution analysis of one sample (8-step impactor) that was collected 150 m away from a street show that approximately 75% of Pt and 95% of Rh occurs in association with large particulate matter of > 2

  10. 16 CFR 23.7 - Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.”

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... § 23.7 Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.” (a) It is unfair or deceptive to use the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium... marking or description misrepresents the product's true composition. The Platinum Group Metals (PGM)...

  11. 16 CFR 23.7 - Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.”

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... § 23.7 Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.” (a) It is unfair or deceptive to use the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium... marking or description misrepresents the product's true composition. The Platinum Group Metals (PGM)...

  12. 16 CFR 23.7 - Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.”

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... § 23.7 Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.” (a) It is unfair or deceptive to use the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium... marking or description misrepresents the product's true composition. The Platinum Group Metals (PGM)...

  13. 16 CFR 23.7 - Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.”

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... § 23.7 Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.” (a) It is unfair or deceptive to use the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium... marking or description misrepresents the product's true composition. The Platinum Group Metals (PGM)...

  14. 16 CFR 23.7 - Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.”

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... § 23.7 Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.” (a) It is unfair or deceptive to use the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium... marking or description misrepresents the product's true composition. The Platinum Group Metals (PGM)...

  15. Regioselective hydroformylation of cylic vinyl and allyl ethers with rhodium catalysts. Crucial influence of the size of the phosphorous cocatalyst

    SciTech Connect

    Polo, A.; Claver, C.; Castillon, S.

    1992-11-01

    The authors have explored the possibilities offered by the modification of thiolato bridges in dinuclear rhodium complexes on the selective hydroformylation of cylic vinyl and allyl ethers. The dinuclear complex [Rh{sub 2}({mu}-S(CH{sub 2}){sub 3}NMe{sub 2}){sub 2}(cod){sub 2}] (cod = 1,5-cyclooctadiene) has been prepared, and its reactivity with CO, phospines, and phosphites has been investigated. The complex crystallizes in the monoclinic space group C2/c with Z = 8, {alpha} = 22.543 (4) A, B = 12.040 (2) A, c = 21.547 (3) A, and {Beta} = 98.77 (1){degrees}. For the determination of the structure 4091 unique reflections were used, and the final refinement gave R = 4.1% and R{sub w} = 4.4%. The molecular structure reveals that the two rhodium atoms are bridged by the two thiolato ligands, and the cyclooctadiene completes the coordination of the metal atoms. The amine groups are not bonded to the rhodium. The dinuclear complex has been used in the hydroformylation of 2,3-di-hydrofuran, 2,5-dihydrofuran, 3,4-dihydro-2H-pyran or 3,6-dihydro-2H-pyran was tetrahydropyran-2-carbaldehyde. A systematic study of the influence of the reaction parameters on the selectivity of the hydroformylation of 2,3-dihydroformylation of 3,4-dihydro-2H-pyran or 3,6-dihydro-2H-pyran was tetrahydropyran-2-carbaldehyde. A systematic study of the influence of the reaction parameters on the selectivity of the hydroformylation of 2,3-dihydrofuran and 2,5-dihydrofuran was undertaken. The study allowed the rationalization of the observed selectivity and the optimization of the yields and regioselectivities. Thus, by modification of the reaction parameters, tetrahydrofuran-3-carbaldehyde was obtained in quantitative yields from 2,5-dihydrofuran and tetrahydrofuran-2-carbaldehyde can be prepared from either 2,3-dihydrofuran or 2,5-dihydrofuran in approximately 75% yield. 33 refs., 3 figs., 9 tabs.

  16. The role of fluctuations in bistability and oscillations during the H2 + O2 reaction on nanosized rhodium crystals

    NASA Astrophysics Data System (ADS)

    Grosfils, P.; Gaspard, P.; Visart de Bocarmé, T.

    2015-08-01

    A combined experimental and theoretical study is presented of fluctuations observed by field ion microscopy in the catalytic reaction of water production on a rhodium tip. A stochastic approach is developed to provide a comprehensive understanding of the different phenomena observed in the experiment, including burst noise manifesting itself in a bistability regime, noisy oscillations, and nanopatterns with a cross-like oxidized zone separating the surface into four quadrants centered on the {111} facets. The study is based on a stochastic model numerically simulating the processes of adsorption, desorption, reaction, and transport. The surface diffusion of hydrogen is described as a percolation process dominated by large clusters corresponding to the four quadrants. The model reproduces the observed phenomena in the ranges of temperature, pressures, and electric field of the experiment.

  17. Rhodium-Catalyzed Synthesis of Chiral Spiro-9-silabifluorenes by Dehydrogenative Silylation: Mechanistic Insights into the Construction of Tetraorganosilicon Stereocenters.

    PubMed

    Murai, Masahito; Takeuchi, Yutaro; Yamauchi, Kanae; Kuninobu, Yoichiro; Takai, Kazuhiko

    2016-04-18

    Mechanistic insight into the construction of quaternary silicon chiral centers by rhodium-catalyzed synthesis of spiro-9-silabifluorenes through dehydrogenative silylation is reported. The C2 -symmetric bisphosphine ligand, BINAP, was effective in controlling enantioselectivity, and axially chiral spiro-9-silabifluorenes were obtained in excellent yields with high enantiomeric excess. Monitoring of the reaction revealed the presence of a monohydrosilane intermediate as a mixture of two constitutional isomers. The reaction proceeded through two consecutive dehydrogenative silylations, and the absolute configuration was determined in the first silylative cyclization. Competitive reactions with electron-rich and electron-deficient dihydrosilanes indicated that the rate of silylative cyclization increased with decreasing electron density on the silicon atom of the starting dihydrosilane. Further investigation disclosed a rare interconversion between the two constitutional isomers of the monohydrosilane intermediate with retention of the absolute configuration. PMID:26970095

  18. Real-time sub-Ångstrom imaging of reversible and irreversible conformations in rhodium catalysts and graphene

    NASA Astrophysics Data System (ADS)

    Kisielowski, Christian; Wang, Lin-Wang; Specht, Petra; Calderon, Hector A.; Barton, Bastian; Jiang, Bin; Kang, Joo H.; Cieslinski, Robert

    2013-07-01

    The dynamic responses of a rhodium catalyst and a graphene sheet are investigated upon random excitation with 80 kV electrons. An extraordinary electron microscope stability and resolution allow studying temporary atom displacements from their equilibrium lattice sites into metastable sites across projected distances as short as 60 pm. In the rhodium catalyst, directed and reversible atom displacements emerge from excitations into metastable interstitial sites and surface states that can be explained by single atom trajectories. Calculated energy barriers of 0.13 eV and 1.05 eV allow capturing single atom trapping events at video rates that are stabilized by the Rh [110] surface corrugation. Molecular dynamics simulations reveal that randomly delivered electrons can also reversibly enhance the sp3 and the sp1 characters of the sp2-bonded carbon atoms in graphene. The underlying collective atom motion can dynamically stabilize characteristic atom displacements that are unpredictable by single atom trajectories. We detect three specific displacements and use two of them to propose a path for the irreversible phase transformation of a graphene nanoribbon into carbene. Collectively stabilized atom displacements greatly exceed the thermal vibration amplitudes described by Debye-Waller factors and their measured dose rate dependence is attributed to tunable phonon contributions to the internal energy of the systems. Our experiments suggest operating electron microscopes with beam currents as small as zepto-amperes/nm2 in a weak-excitation approach to improve on sample integrity and allow for time-resolved studies of conformational object changes that probe for functional behavior of catalytic surfaces or molecules.

  19. Synthesis and application of Amberlite xad-4 functionalized with alizarin red-s for preconcentration and adsorption of rhodium (III)

    PubMed Central

    2012-01-01

    A new chelating resin was prepared by coupling Amberlite XAD-4 with alizarin red-s through an azo spacer, characterized by infra-red spectroscopy and thermal analysis and studied for Rh(III) preconcentration using inductively coupled plasma atomic emission spectroscopy (ICP-AES) for rhodium monitoring in the environment. The optimum pH for sorption of the metal ion was 6.5. The sorption capacity was found 2.1 mg/g of resin for Rh(III). A recovery of 88% was obtained for the metal ion with 1.5 M HCl as eluting agent. Kinetic adsorption data were analyzed by adsorption and desorption times of Rh(III) on modified resin. Scat chard analysis revealed that the homogeneous binding sites were formed in the polymers. The linear regression equation was Q/C = –1.3169Q + 27.222 (R2 = 0.9239), for Rh were formed in the SPE sorbent,Kd and Qmax for the affinity binding sites were calculated to be 0.76 μmol/mL and 20.67 μmol/g, respectively. The equilibrium data and parameters of Rh(III) adsorption on modified resin were analyzed by Langmuir, Freundlich, Temkin and Redlich–Peterson models. The experimental adsorption isotherm was in good concordance with Langmuir and Freundlich models (R2 > 0.998) and based on the Langmuir isotherm the maximum amount of adsorption (qmax) was 4.842 mg/g. The method was applied for rhodium ions determination in environmental samples. with high recovery (>80%). PMID:23369526

  20. Oxygen assisted reconstructions of rhodium and platinum nanocrystals and their effects on local catalytic activity of hydrogenation reactions

    NASA Astrophysics Data System (ADS)

    Barroo, C.; Gilis, N.; Lambeets, S. V.; Devred, F.; Visart de Bocarmé, T.

    2014-06-01

    The reconstruction of rhodium and platinum crystals of some tens of nanometres diameter was investigated during the ongoing hydrogenation of oxygen atoms resulting from the dissociation of O2 and NO2 species. Field ion and field emission electron microscopies (FIM and FEM) were used to characterise the apex of tip samples before, during and after the catalytic reactions. On rhodium samples, the exposure of less than 10 Langmuir of O2 is sufficient to induce significant morphological changes. At higher exposures, the presence of subsurface oxygen causes surface reconstructions illustrated with atomic resolution by FIM at 50 K. The same pattern is also visible at 505 K in the presence of H2 and O2 during water production. Upon the decrease of H2 pressure, surface oxidation shows a strong sensitivity to the local surface initiated along the <0 0 1> zone lines. On platinum, the kinetic instabilities of the NO2-H2 reaction are followed by FEM at 390 K starting from a hemispherical tip sample. The instabilities are expressed as surface explosions occurring randomly in time, but synchronised over {0 1 1} facets. These instabilities expand along the <0 0 1> lines over the (0 0 1) pole and exhibit self-sustained kinetic oscillations. The analysis of the tips by FIM after the reaction shows dark regions over the {1 1 3} facets, suggesting the extension of those to the detriment of vicinal ones. A well-controlled field evaporation procedure reveals that these regions appear dark due to the presence of surface oxygen. Structural reconstructions are observed but do not lead to the drastic morphological changes suggested by the FIM and FEM patterns. Nanoparticle dynamics must be accounted in models describing the non-linear features of catalytic reactions and more generally included in the description of catalytic properties of nanosized particles.

  1. Synthesis, biochemical evaluation and molecular modeling studies of novel rhodium complexes with nanomolar activity against Platelet Activating Factor.

    PubMed

    Tsoupras, Alexandros B; Papakyriakou, Athanasios; Demopoulos, Constantinos A; Philippopoulos, Athanassios I

    2013-03-01

    Two square planar Rh(I) organometallic complexes namely [Rh(L(1))(cod)]Cl (cod = cycloocta-1,5-diene, L(1)=2,2'-pyridylquinoxaline (1-Cl), [Rh(L1)(cod)](NO3) (1-NO(3)) and a series of novel octahedral rhodium(III) complexes of the general formulae mer-[Rh(L(1))Cl(3)(MeOH)] (2) and cis-[Rh(L(2))(2)Cl(2)]Cl (L(2)=4 carboxy 2 (2' pyridyl)quinoline (3), L(3)=2,2' bipyridine 4,4' dicarboxylic acid (4) were synthesized and characterized spectroscopically. All the synthesized compounds including the previously prepared cis-[Rh(L(1))(2)Cl(2)]Cl complex (5) were biologically evaluated as potential inhibitors of the Platelet Activation Factor (PAF) and thrombin induced aggregation. In particular compounds 1-Cl and 1-NO(3) were found to be strong inhibitors of PAF with IC(50) values in the range of 16 nM and 15 nM rendering them good candidates for further investigation. Their potency is comparable to that of the widely used PAF receptor antagonists WEB2170, BN52021, and Rupatadine (IC(50) of 20, 30 and 260 nM respectively). Molecular docking calculations suggest that 1-Cl, 1-NO3 and 2 can be accommodated within the ligand-binding site of PAF receptor and block the activity of PAF. On the other hand, the octahedral rhodium(III) complexes 3-5 that cannot fit the ligand-binding domain, could potentially exhibit their activity at the extracellular domain of the receptor. PMID:23318288

  2. Zeolite-supported metal complexes of rhodium and of ruthenium: a general synthesis method influenced by molecular sieving effects.

    PubMed

    Ogino, Isao; Chen, Cong-Yan; Gates, Bruce C

    2010-09-28

    A general method for synthesis of supported metal complexes having a high degree of uniformity is presented, whereby organometallic precursors incorporating acetylacetonate (C(5)H(7)O(2)(-), acac) ligands react with zeolites incorporating OH groups near Al sites. The method is illustrated by the reactions of Rh(acac)(CO)(2) and of cis-Ru(acac)(2)(eta(2)-C(2)H(4))(2) with zeolites slurried in n-pentane at room temperature. The zeolites were H-Beta, H-SSZ-42, H-Mordenite, and HZSM-5. Infrared (IR) and extended X-ray absorption fine structure spectra of the zeolites incorporating rhodium complexes indicate the formation of Rh(CO)(2)(+) bonded near Al sites; similar results have been reported for the formation of zeolite-supported Rh(eta(2)-C(2)H(4))(2)(+) from Rh(acac)(eta(2)-C(2)H(4))(2). IR spectra of the supported rhodium gem-dicarbonyls include sharp, well-resolved nu(CO) bands, demonstrating that the sites surrounding each metal complex are nearly equivalent. The frequencies of the nu(CO) bands show how the composition of the zeolite influences the bonding of the supported species, demonstrating subtle differences in the roles of the zeolite as ligands. When the zeolite has pore openings larger than the critical diameter of the precursor organometallic compound, the latter undergoes facile transport into the interior of the zeolite, so that a uniform distribution of the supported species results, but when the precursors barely fit through the zeolite apertures, the mass transport resistance is significant and the supported metal complexes are concentrated near the pore mouths. PMID:20454735

  3. CONTROL ROD ALLOY CONTAINING NOBLE METAL ADDITIONS

    DOEpatents

    Anderson, W.K.; Ray, W.E.

    1960-05-01

    Silver-base alloys suitable for use in the fabrication of control rods for neutronic reactors are given. The alloy consists of from 0.5 wt.% to about 1.5 wt.% of a noble metal of platinum, ruthenium, rhodium, osmium, or palladium, up to 10 wt.% of cadmium, from 2 to 20 wt.% indium, the balance being silver.

  4. Bottom-Up Construction of a CO2-Based Cycle for the Photocarbonylation of Benzene, Promoted by a Rhodium(I) Pincer Complex.

    PubMed

    Anaby, Aviel; Feller, Moran; Ben-David, Yehoshoa; Leitus, Gregory; Diskin-Posner, Yael; Shimon, Linda J W; Milstein, David

    2016-08-10

    The use of carbon dioxide for synthetic applications presents a major goal in modern homogeneous catalysis. Rhodium-hydride PNP pincer complex 1 is shown to add CO2 in two disparate pathways: one is the expected insertion of CO2 into the metal-hydride bond, and the other leads to reductive cleavage of CO2, involving metal-ligand cooperation. The resultant rhodium-carbonyl complex was found to be photoactive, enabling the activation of benzene and formation of a new benzoyl complex. Organometallic intermediate species were observed and characterized by NMR spectroscopy and X-ray crystallography. Based on the series of individual transformations, a sequence for the photocarbonylation of benzene using CO2 as the feedstock was constructed and demonstrated for the production of benzaldehyde from benzene. PMID:27400288

  5. The First Crystal Structure of a Reactive Dirhodium Carbene Complex and a Versatile Method for the Preparation of Gold Carbenes by Rhodium-to-Gold Transmetalation.

    PubMed

    Werlé, Christophe; Goddard, Richard; Fürstner, Alois

    2015-12-14

    The dirhodium carbene derived from bis(4-methoxyphenyl)diazomethane and [Rh(tpa)4 ]⋅CH2 Cl2 (tpa=triphenylacetate) was characterized by UV, IR, and NMR spectroscopy, HRMS, as well as by X-ray diffraction. The isolated complex exhibits prototypical rhodium carbene reactivity in that it cyclopropanates 4-methoxystyrene at low temperature. Experimental structural information on this important type of reactive intermediate is extremely scarce and thus serves as a reference point for mechanistic discussions of rhodium catalysis in general. Moreover, dirhodium carbenes are shown to undergo remarkably facile carbene transfer on treatment with [LAuNTf2 ] (L=phosphine). This formal transmetalation opens a valuable new entry into gold carbene complexes that cannot easily be made otherwise; three fully characterized representatives illustrate this aspect. PMID:26534892

  6. Monodisperse colloidal metal particle from nonaqueous solutions: catalytic behavior in hydrogenation of but-1-ene of platinum, palladium, and rhodium particles supported on pumice

    SciTech Connect

    Boutonnet, M.; Kizling, J.; Mintsa-Eya, V.; Choplin, A.; Touroude, R.; Maire, G.; Stenius, P.

    1987-01-01

    Metal catalysts have been prepared by depositing monodisperse particles of platinum (2-3 nm), rhodium (2-3 nm), or palladium (5 nm) prepared in reversed micellar solutions on pumice. The particles are well dispersed on the support whereas particles deposited from aqueous or alcoholic solution give large aggregates. The catalytic properties of these different catalysts in the deuteration, isomerization, and hydrogen-deuterium exchange of but-1-ene have been compared. The activities calculated per metal surface atom are similar. However, platinum prepared from microemulsions show unusually high selectivity in the isomerization reaction, and for such particles dehydrogenated species are active in the exchange reaction. The specificity of rhodium and palladium catalysts is independent of the mode of preparation. The reaction mechanisms are discussed.

  7. Partitioning of rhodium and ruthenium between Pd-Rh-Ru and (Ru,Rh)O2 solid solutions in high-level radioactive waste glass

    NASA Astrophysics Data System (ADS)

    Sugawara, Toru; Ohira, Toshiaki; Komamine, Satoshi; Ochi, Eiji

    2015-10-01

    The partitioning of rhodium and ruthenium between Pd-Rh-Ru alloy with a face-centered cubic (FCC) structure and (Ru,Rh)O2 solid solution has been investigated between 1273 and 1573 K at atmospheric oxygen fugacity. The rhodium and ruthenium contents in FCC increase, while the RhO2 content in (Ru,Rh)O2 decreases with increasing temperature due to progressive reduction of the system. Based on the experimental results and previously reported thermodynamic data, the thermodynamic mixing properties of FCC phase and (Ru,Rh)O2 have been calibrated in an internally consistent manner. Phase equilibrium of platinum grope metals in an HLW glass was calculated by using the obtained thermodynamic parameters.

  8. Synthesis of Conjugated Polycyclic Quinoliniums by Rhodium(III)-Catalyzed Multiple C-H Activation and Annulation of Arylpyridiniums with Alkynes.

    PubMed

    Ge, Qingmei; Hu, Yang; Li, Bin; Wang, Baiquan

    2016-05-20

    A simple method for the efficient synthesis of highly substituted pyrido[1,2-a]quinolinium- and quinolizino[3,4,5,6-ija]quinolinium-based polyheteroaromatic compounds via rhodium(III)-catalyzed multiple C-H activation annulation reactions has been developed. Moreover, some of the quinolizino[3,4,5,6-ija]quinolinium salts exhibit intense fluorescence and have potential application in optoelectronic materials. PMID:27137134

  9. Rhodium-Catalyzed C-S and C-N Functionalization of Arenes: Combination of C-H Activation and Hypervalent Iodine Chemistry.

    PubMed

    Wang, Fen; Yu, Xinzhang; Qi, Zisong; Li, Xingwei

    2016-01-11

    Rhodium-catalyzed sulfonylation, thioetherification, thiocyanation, and other heterofunctionalizations of arenes bearing a heterocyclic directing group have been realized. The reaction proceeds by initial Rh(III) -catalyzed C-H hyperiodination of arene at room temperature followed by uncatalyzed nucleophilic functionalization. A diaryliodonium salt is isolated as an intermediate, which represents umpolung of the arene substrate, in contrast to previous studies that suggested umpolung of the coupling partner. PMID:26538162

  10. Rhodium(II)-Catalyzed Cycloaddition Reactions of Non-classical 1,5-Dipoles for the Formation of Eight-Membered Heterocycles.

    PubMed

    Lee, Dong Jin; Ko, Donguk; Yoo, Eun Jeong

    2015-11-01

    A new type of intermolecular rhodium(II)-catalyzed [5+3] cycloaddition has been developed. This higher-order cycloaddition between pyridinium zwitterion 1,5-dipole equivalents and enol diazoacetates enables the formation of eight-membered heterocyclic skeletons, which are otherwise difficult to construct. The optimized cycloaddition occurs efficiently under mild conditions with a wide range of pyridinium zwitterions and with high functional-group tolerance. PMID:26376924

  11. Efficient construction of the oxatricyclo[6.3.1.0(0,0)]dodecane core of komaroviquinone using a cyclization/cycloaddition cascade of a rhodium carbenoid intermediate.

    PubMed

    Padwa, Albert; Boonsombat, Jutatip; Rashatasakhon, Paitoon; Willis, Jerremey

    2005-08-18

    The rhodium(II)-catalyzed cyclization/cycloaddition cascade of a o-carbomethoxyaryl diazo dione is described as a potential route to the oxatricyclo[6.3.1.0(0,0)]dodecane substructure of the icetexane diterpene komaroviquinone. The initially formed carbonyl ylide dipole prefers to cyclize to an epoxide at 25 degrees C but can be induced to undergo cycloaddition across the tethered pi-bond at higher temperatures. [reaction: see text] PMID:16092860

  12. Oligomeric complexes of some heteroaromatic ligands and aromatic diamines with rhodium and molybdenum tetracarboxylates: 13C and 15N CPMAS NMR and density functional theory studies.

    PubMed

    Leniak, Arkadiusz; Kamieński, Bohdan; Jaźwiński, Jarosław

    2015-05-01

    Seven new oligomeric complexes of 4,4'-bipyridine; 3,3'-bipyridine; benzene-1,4-diamine; benzene-1,3-diamine; benzene-1,2-diamine; and benzidine with rhodium tetraacetate, as well as 4,4'-bipyridine with molybdenum tetraacetate, have been obtained and investigated by elemental analysis and solid-state nuclear magnetic resonance spectroscopy, (13)C and (15)N CPMAS NMR. The known complexes of pyrazine with rhodium tetrabenzoate, benzoquinone with rhodium tetrapivalate, 4,4'-bipyridine with molybdenum tetrakistrifluoroacetate and the 1 : 1 complex of 2,2'-bipyridine with rhodium tetraacetate exhibiting axial-equatorial ligation mode have been obtained as well for comparison purposes. Elemental analysis revealed 1 : 1 complex stoichiometry of all complexes. The (15)N CPMAS NMR spectra of all new complexes consist of one narrow signal, indicating regular uniform structures. Benzidine forms a heterogeneous material, probably containing linear oligomers and products of further reactions. The complexes were characterized by the parameter complexation shift Δδ (Δδ = δcomplex  - δligand). This parameter ranged from around -40 to -90 ppm in the case of heteroaromatic ligands, from around -12 to -22 ppm for diamines and from -16 to -31 ppm for the complexes of molybdenum tetracarboxylates with 4,4'-bipyridine. The experimental results have been supported by a density functional theory computation of (15)N NMR chemical shifts and complexation shifts at the non-relativistic Becke, three-parameter, Perdew-Wang 91/[6-311++G(2d,p), Stuttgart] and GGA-PBE/QZ4P levels of theory and at the relativistic scalar and spin-orbit zeroth order regular approximation/GGA-PBE/QZ4P level of theory. Nucleus-independent chemical shifts have been calculated for the selected compounds. PMID:25614975

  13. Time-Resolved, In Situ DRIFTS/EDE/MS Studies on Alumina-Supported Rhodium Catalysts: Effects of Ceriation and Zirconiation on Rhodium–CO Interactions**

    PubMed Central

    Kroner, Anna B; Newton, Mark A; Tromp, Moniek; Roscioni, Otello M; Russell, Andrea E; Dent, Andrew J; Prestipino, Carmelo; Evans, John

    2014-01-01

    The effects of ceria and zirconia on the structure–function properties of supported rhodium catalysts (1.6 and 4 wt % Rh/γ-Al2O3) during CO exposure are described. Ceria and zirconia are introduced through two preparation methods: 1) ceria is deposited on γ-Al2O3 from [Ce(acac)3] and rhodium metal is subsequently added, and 2) through the controlled surface modification (CSM) technique, which involves the decomposition of [M(acac)x] (M=Ce, x=3; M=Zr, x=4) on Rh/γ-Al2O3. The structure–function correlations of ceria and/or zirconia-doped rhodium catalysts are investigated by diffuse reflectance infrared Fourier-transform spectroscopy/energy-dispersive extended X-ray absorption spectroscopy/mass spectrometry (DRIFTS/EDE/MS) under time-resolved, in situ conditions. CeOx and ZrO2 facilitate the protection of Rh particles against extensive oxidation in air and CO. Larger Rh core particles of ceriated and zirconiated Rh catalysts prepared by CSM are observed and compared with Rh/γ-Al2O3 samples, whereas supported Rh particles are easily disrupted by CO forming mononuclear Rh geminal dicarbonyl species. DRIFTS results indicate that, through the interaction of CO with ceriated Rh particles, a significantly larger amount of linear CO species form; this suggests the predominance of a metallic Rh phase. PMID:25044889

  14. Hydrogen generation from water/methanol under visible light using aerogel prepared strontium titanate (SrTiO3) nanomaterials doped with ruthenium and rhodium metals

    NASA Astrophysics Data System (ADS)

    Kuo, Yenting; Klabunde, Kenneth J.

    2012-07-01

    Nanostructured strontium titanate visible-light-driven photocatalysts containing rhodium and ruthenium were synthesized by a modified aerogel synthesis using ruthenium chloride and rhodium nitrate as dopant precursors, and titanium isopropoxide and strontium metal as the metal sources. The well-defined crystalline SrTiO3 structure was confirmed by means of x-ray diffraction. After calcination at 500 °C, diffuse reflectance spectroscopy shows an increase in light absorption at 370 nm due to the presence of Rh3 + ; however an increase of the calcination temperature to 600 °C led to a decrease in intensity, probably due to a loss of surface area. An increase in the rhodium doping level also led to an increase in absorption at 370 nm however, the higher amounts of dopant lowered the photocatalytic activity. The modified aerogel synthesis allows greatly enhanced H2 production performance from an aqueous methanol solution under visible light irradiation compared with lower surface area conventional materials. We believe that this enhanced activity is due to the higher surface areas while high quality nanocrystalline materials are still obtained. Furthermore, the surface properties of these nanocrystalline aerogel materials are different, as exhibited by the higher activities in alkaline solutions, while conventional materials (obtained via high temperature solid-state synthesis methods) only exhibit reasonable hydrogen production in acidic solutions. Moreover, an aerogel synthesis approach gives the possibility of thin-film formation and ease of incorporation into practical solar devices.

  15. Structures of Reactive Donor/Acceptor and Donor/Donor Rhodium Carbenes in the Solid State and Their Implications for Catalysis.

    PubMed

    Werlé, Christophe; Goddard, Richard; Philipps, Petra; Farès, Christophe; Fürstner, Alois

    2016-03-23

    Owing to its tremendous preparative importance, rhodium carbene chemistry has been studied extensively during past decades. The invoked intermediates have, however, so far proved too reactive for direct inspection, and reliable experimental information has been extremely limited. A series of X-ray structures of pertinent intermediates of this type, together with supporting spectroscopic data, now closes this gap and provides a detailed picture of the constitution and conformation of such species. All complexes were prepared by decomposition of a diazoalkane precursor with an appropriate rhodium source; they belong to either the dirhodium(II) tetracarboxylate carbene series that enjoys widespread preparative use, or to the class of mononuclear half-sandwich carbenes of Rh(III), which show considerable potential. The experimental data correct or refine previous computational studies but corroborate the currently favored model for the prediction of the stereochemical course of rhodium catalyzed cyclopropanations, which is likely also applicable to other reactions. Emphasis is put on stereoelectronic rather than steric arguments, with the dipole of the acceptor substituent flanking the carbene center being the major selectivity determining factor. Moreover, the very subtle influence exerted by the anionic ligands on a Rh(III) center on the chemical character of the resulting carbenes species is documented by the structures of a homologous series of halide complexes. Finally, the isolation of a N-bonded Rh(II) diazoalkane complex showcases that steric hindrance represents an inherent limitation of the chosen methodology. PMID:26910883

  16. Mechanistic Insights into Carbonyl-Directed Rhodium-Catalyzed Hydroboration: ab Initio Study of a Cyclic γ,δ-Unsaturated Amide.

    PubMed

    Yang, Zhao-Di; Pal, Rhitankar; Hoang, Gia L; Zeng, Xiao Cheng; Takacs, James M

    2014-03-01

    A two-point binding mechanism for the cationic rhodium(I)-catalyzed carbonyl-directed catalytic asymmetric hydroboration of a cyclic γ,δ-unsaturated amide is investigated using density functional theory. Geometry optimizations and harmonic frequency calculations for the model reaction are carried out using the basis set 6-31+G** for C, O, P, B, N, and H and LANL2DZ for Rh atoms. The Gibbs free energy of each species in THF solvent is obtained based on the single-point energy computed using the PCM model at the ECP28MWB/6-311+G(d,p) level plus the thermal correction to Gibbs free energy by deducting translational entropy contribution. The Rh-catalyzed reaction cycle involves the following sequence of events: (1) chelation of the cyclic γ,δ-unsaturated amide via alkene and carbonyl complexation in a model active catalytic species, [Rh(L2)2S2](+), (2) oxidative addition of pinacol borane (pinBH), (3) migratory insertion of the alkene double bond into Rh-H (preferred pathway) or Rh-B bond, (4) isomerization of the resulting intermediate, and finally, (5) reductive elimination to form the B-C or H-C bond with regeneration of the catalyst. Free energy profiles for potential pathways leading to the major γ-borylated product are computed and discussed in detail. The potential pathways considered include (1) pathways proceeding via migratory insertion into the Rh-H bond (pathways I, I-1, and I-2), (2) a potential pathway proceeding via migratory insertion into the Rh-B bond (pathway II), and two potential competing routes to a β-borylated byproduct (pathway III). The results find that the Rh-H migratory insertion pathway I-2, followed in sequence by an unanticipated isomerization via amide rotation and reductive elimination, is the most favorable reaction pathway. A secondary consequence of amide rotation is access to a competing β-hydride elimination pathway. The pathways computed in this study are supported by and help explain related experimental results. PMID

  17. Surface-mediated synthesis of dimeric rhodium catalysts on MgO: tracking changes in the nuclearity and ligand environment of the catalytically active sites by X-ray absorption and infrared spectroscopies.

    PubMed

    Yardimci, Dicle; Serna, Pedro; Gates, Bruce C

    2013-01-21

    The preparation of dinuclear rhodium clusters and their use as catalysts is challenging because these clusters are unstable, evolving readily into species with higher nuclearities. We now present a novel synthetic route to generate rhodium dimers on the surface of MgO by a stoichiometrically simple surface-mediated reaction involving [Rh(C(2)H(4))(2)] species and H(2). X-ray absorption and IR spectra were used to characterize the changes in the nuclearity of the essentially molecular surface species as they formed, including the ligands on the rhodium and the metal-support interactions. The support plays a key role in stabilizing the dinuclear rhodium species, allowing the incorporation of small ligands (ethyl, hydride, and/or CO) and enabling a characterization of the catalytic performance of the supported species for the hydrogenation of ethylene as a function of the metal nuclearity and ligand environment. A change in the nuclearity from one to two Rh atoms leads to a 58-fold increase in the catalytic activity for ethylene hydrogenation, a reaction involving unsaturated, but stable, dimeric rhodium species. PMID:23208893

  18. Molecular models of site-isolated cobalt, rhodium, and iridium catalysts supported on zeolites: Ligand bond dissociation energies

    DOE PAGESBeta

    Chen, Mingyang; Serna, Pedro; Lu, Jing; Gates, Bruce C.; Dixon, David A.

    2015-09-28

    The chemistry of zeolite-supported site-isolated cobalt, rhodium, and iridium complexes that are essentially molecular was investigated with density functional theory (DFT) and the results compared with experimentally determined spectra characterizing rhodium and iridium species formed by the reactions of Rh(C2H4)2(acac) and Ir(C2H4)2(acac) (acac = acetylacetonate) with acidic zeolites such as dealuminated HY zeolite. The experimental results characterize ligand exchange reactions and catalytic reactions of adsorbed ligands, including olefin hydrogenation and dimerization. Two molecular models were used to characterize various binding sites of the metal complexes in the zeolites, and the agreement between experimental and calculated infrared frequencies and metal-ligand distancesmore » determined by extended X-ray absorption fine structure spectroscopy was generally very good. The calculated structures and energies indicate a metal-support-oxygen (M(I)-O) coordination number of two for most of the supported complexes and a value of three when the ligands include the radicals C2H5 or H. The results characterizing various isomers of the supported metal complexes incorporating hydrocarbon ligands indicate that some carbene and carbyne ligands could form. Ligand bond dissociation energies (LDEs) are reported to explain the observed reactivity trends. The experimental observations of a stronger M-CO bond than M-(C2H4) bond for both Ir and Rh match the calculated LDEs, which show that the single-ligand LDEs of the mono and dual-ligand complexes for CO are similar to 12 and similar to 15 kcal/mol higher in energy (when the metal is Rh) and similar to 17 and similar to 20 kcal/mol higher (when the metal is Ir) than the single-ligand LDEs of the mono and dual ligand complexes for C2H4, respectively. The results provide a foundation for the prediction of the catalytic properties of numerous supported metal complexes, as summarized in detail here.« less

  19. Synthesis, x-ray, and low-temperature neutron diffraction study of a rhodium (V) complex: dihydridobis(triethylsilyl)-pentamethylcyclopentadienylrhodium

    SciTech Connect

    Fernandez, M.J.; Bailey, P.M.; Bentz, P.O.; Ricci, J.S.; Koetzle, T.F.; Maitlis, P.M.

    1984-09-19

    Reaction of (C/sub 5/ qentamethyl Rh)/sub 2/Cl/sub 4/) (1) with triethylsilane leads to the novel rhodium(V) complex (eta/sup 5/-C/sub 5/Me/sub 5/Rh(H)/sub 2/(SiE-triethyl/sub 3/)/sub 2/) (2) characterized by NMR spectra (/sup 1/H, /sup 13/C, /sup 29/Si, and /sup 103/Rh), X-ray diffraction, and neutron diffraction at 20 K. The complex shows a four-legged piano stool geometry with the pentamethylcyclopentadienyl eta/sub 5/-bonded to the rhodium (average Rh-C, 2.283 (9) A) on top and the two triethylsilyl ligands trans in the basal plane (Rh-Si, 2.379 (2) A). The neutron diffraction analysis located the two hydrides, which are trans to each other and cis to the triethylsilyls in the basal plane. The mean Rh-H distance is 1.581 (3) A, and the H-Rh-H angle is 94.8 (2)/sup 0/. Complex 2 is rather stable, but it reacts under forcing conditions with neutral ligands (triphenylphosphine, CO, or maleic anhydride) to give (C/sub 5/Me/sub 5/Rh(PPh/sub 3/)H(SiEt/sub 3/)), (C/sub 5/Me/sub 5/Rh(CO)/sub 2/), or (C/sub 5/M3/5Rh(maleic anhydride)/sup 2/). It reacts more easily with electrophiles such as HBF/sub 4/ to give (C/sub 5/Me/sub 5/Rh)/sub 4/H/sub 4/)/sup 2 +/, with HCl to give 1, with AgBF/sub 4/ in MeCN to give (C/sub 5/Me/sub 5/Rh(MeCN)/sub 3/)/sup 2 +/, and with I/sub 2/ to give ((C/sub 5/Me/sub 5/Rh)/sub 2/I/sub 4/). The predominant mode of reaction involves reductive elimination of Et/sub 3/Si-H, which can be strongly promoted by an electrophile. 43 references, 3 figures, 3 tables.

  20. Molecular models of site-isolated cobalt, rhodium, and iridium catalysts supported on zeolites: Ligand bond dissociation energies

    SciTech Connect

    Chen, Mingyang; Serna, Pedro; Lu, Jing; Gates, Bruce C.; Dixon, David A.

    2015-09-28

    The chemistry of zeolite-supported site-isolated cobalt, rhodium, and iridium complexes that are essentially molecular was investigated with density functional theory (DFT) and the results compared with experimentally determined spectra characterizing rhodium and iridium species formed by the reactions of Rh(C2H4)2(acac) and Ir(C2H4)2(acac) (acac = acetylacetonate) with acidic zeolites such as dealuminated HY zeolite. The experimental results characterize ligand exchange reactions and catalytic reactions of adsorbed ligands, including olefin hydrogenation and dimerization. Two molecular models were used to characterize various binding sites of the metal complexes in the zeolites, and the agreement between experimental and calculated infrared frequencies and metal-ligand distances determined by extended X-ray absorption fine structure spectroscopy was generally very good. The calculated structures and energies indicate a metal-support-oxygen (M(I)-O) coordination number of two for most of the supported complexes and a value of three when the ligands include the radicals C2H5 or H. The results characterizing various isomers of the supported metal complexes incorporating hydrocarbon ligands indicate that some carbene and carbyne ligands could form. Ligand bond dissociation energies (LDEs) are reported to explain the observed reactivity trends. The experimental observations of a stronger M-CO bond than M-(C2H4) bond for both Ir and Rh match the calculated LDEs, which show that the single-ligand LDEs of the mono and dual-ligand complexes for CO are similar to 12 and similar to 15 kcal/mol higher in energy (when the metal is Rh) and similar to 17 and similar to 20 kcal/mol higher (when the metal is Ir) than the single-ligand LDEs of the mono and dual ligand complexes for C2H4, respectively. The results provide a foundation for the prediction

  1. Organometallic rhodium(III) and iridium(III) cyclopentadienyl complexes with curcumin and bisdemethoxycurcumin co-ligands.

    PubMed

    Pettinari, Riccardo; Marchetti, Fabio; Pettinari, Claudio; Condello, Francesca; Petrini, Agnese; Scopelliti, Rosario; Riedel, Tina; Dyson, Paul J

    2015-12-21

    A series of half-sandwich cyclopentadienyl rhodium(III) and iridium(III) complexes of the type [Cp*M(curc/bdcurc)Cl] and [Cp*M(curc/bdcurc)(PTA)][SO3CF3], in which Cp* = pentamethylcyclopentadienyl, curcH = curcumin and bdcurcH = bisdemethoxycurcumin as O^O-chelating ligands, and PTA = 1,3,5-triaza-7-phosphaadamantane, is described. The X-ray crystal structures of three of the complexes, i.e. [Cp*Rh(curc)(PTA)][SO3CF3] (5), [Cp*Rh(bdcurc)(PTA)][SO3CF3] (6) and [Cp*Ir(bdcurc)(PTA)][SO3CF3] (8), confirm the expected "piano-stool" geometry. With the exception of 5, the complexes are stable under pseudo-physiological conditions and are moderately cytotoxic to human ovarian carcinoma (A2780 and A2780cisR) cells and also to non-tumorigenic human embryonic kidney (HEK293) cells, but lack the cancer cell selectivity observed for related arene ruthenium(II) complexes. PMID:26548708

  2. Spectroscopic Investigation of the Species Involved in the Rhodium-Catalyzed Oxidative Carbonylation of Toluene to Toluic Acid

    SciTech Connect

    Zakzeski, Joseph; Burton, Sarah D.; Behn, Andrew; Head-Gordon, Martin P.; Bell, Alexis T.

    2009-11-14

    A spectroscopic investigation of complexes used to catalyze the oxidative carbonylation of toluene to para-toluic acid was conducted. Rhodium complexes were analyzed by 103Rh and 13C NMR, UV-visible spectroscopy, and infrared spectroscopy. In the presence of vanadium and oxygen, the resting state of the Rh catalyst was found to exist as a Rh(III) complex with carbonyl and trifluoroacetate ligands, consistent with the structure Rh(CO)2(TFA)3. The complex exhibited a carbonyl peak with an unusual degree of shielding, which resulted in the appearance of the carbonyl peak at an unprecedented upfield position in the 13C NMR spectrum. This shielding was caused by interaction of the carbonyl group with the trifluoroacetate ligand. In the absence of oxygen, the Rh(III) complex reduced to Rh(I), and the reduced form exhibited properties resembling the catalyst precursor. Structures and spectroscopic properties calculated using Density Functional Theory were in good agreement with experimental results. The vanadium co-catalyst was similarly characterized by 51V NMR and UV-visible spectroscopy. The oxidized species corresponded to [(VO2)(TFA)]2, whereas the reduced species corresponded (VO)(TFA)2. The spectroscopic results obtained in this study confirm the identity of the species that have been proposed to be involved in the Rh-catalyzed oxidative carbonylation of toluene to toluic acid.

  3. A preliminary study of factors affecting the calibration stability of the iridium versus iridium-40 percent rhodium thermocouple

    NASA Technical Reports Server (NTRS)

    Ahmed, Shaffiq; Germain, Edward F.; Daryabeigi, Kamran; Alderfer, David W.; Wright, Robert E.

    1987-01-01

    An iridium versus iridium-40% rhodium thermocouple was studied. Problems associated with the use of this thermocouple for high temperature applications (up to 2000 C) were investigated. The metallurgical studies included X-ray, macroscopic, resistance, and metallographic studies. The thermocouples in the as-received condition from the manufacturer revealed large amounts of internal stress caused by cold working during manufacturing. The thermocouples also contained a large amount of inhomogeneities and segregations. No phase transformations were observed in the alloy up to 1100 C. It was found that annealing the thermocouple at 1800 C for two hours, and then at 1400 C for 2 to 3 hours yielded a fine grain structure, relieving some of the strains, and making the wire more ductile. It was also found that the above annealing procedure stabilized the thermal emf behavior of the thermocouple for application below 1800 C (an improvement from + or - 1% to + or - 0.02% within the range of the test parameters used).

  4. Well-defined coinage metal transfer agents for the synthesis of NHC-based nickel, rhodium and palladium macrocycles.

    PubMed

    Andrew, Rhiann E; Storey, Caroline M; Chaplin, Adrian B

    2016-06-01

    With a view to use as carbene transfer agents, well-defined silver(i) and copper(i) complexes of a macrocyclic NHC-based pincer ligand, bearing a central lutidine donor and a dodecamethylene spacer [CNC-(CH2)12, 1], have been prepared. Although the silver adduct is characterised by X-ray diffraction as a dinuclear species anti-[Ag(μ-1)]2(2+), variable temperature measurements indicate dynamic structural interchange in solution involving fragmentation into mononuclear [Ag(1)](+) on the NMR time scale. In contrast, a mononuclear structure is evident in both solution and the solid-state for the analogous copper adduct partnered with the weakly coordinating [BAr(F)4](-) counter anion. A related copper derivative, bearing instead the more coordinating cuprous bromide dianion [Cu2Br4](2-), is notable for the adoption of an interesting tetranuclear assembly in the solid-state, featuring two cuprophilic interactions and two bridging NHC donors, but is not retained on dissolution. Coinage metal precursors [M(1)]n[BAr(F)4]n (M = Ag, n = 2; M = Cu, n = 1) both act as carbene transfer agents to afford palladium, rhodium and nickel complexes of 1 and the effectiveness of these precursors has been evaluated under equivalent reaction conditions. PMID:27157720

  5. Ligand steric effects on the photophysics of bis- and tris(2,2'-bipyridine) complexes of rhodium(III)

    SciTech Connect

    Nishizawa, M.; Suzuki, T.M.; Sprouse, S.; Watts, R.J.; Ford, P.C.

    1984-06-20

    The effects of 3,3'-dimethyl steric interactions on the luminescence of 2,2'-bipyridine complexes of rhodium(III) have been investigated. The tris complex, Rh(dmbpy)/sub 3//sup 3 +/, is found is display both metal-centered and ligand-centered emissions. The metal-centered emission is the dominant luminescence feature at 77 K, but the ligand-centered emission is enhanced relative to the metal-centered luminescence in fluid solutions. The bis complex, Rh(dmbpy)/sub 2/Cl/sub 2//sup +/, displays a dominant ligand field emission under all conditions that were studied. Reinvestigation of the luminescence of the tris(1,10-phenanthroline) and tris(2,2'-bipyridine) complexes of Rh(III) in fluid solutions indicates that these species emit only from ligand-centered excited states. Comparison of the 3,3'-dimethyl-2,2'-bipyridine and unsubstituted 2,2'-bipyridine complexes of Rh(III) indicates that both ligand-centered and metal-centered excited states have lower energies for the methyl-substituted complexes but the effect if larger for the metal-centered states. 21 references, 7 figures, 1 table.

  6. Visible-light driven H₂ production utilizing iridium and rhodium complexes intercalated into a zirconium phosphate layered matrix.

    PubMed

    Mori, Kohsuke; Aoyama, Junya; Kawashima, Masayoshi; Yamashita, Hiromi

    2014-07-21

    Intercalation of photosensitizer cyclometalated iridium(III) ([Ir(ppy)2(bpy)]BF6) and proton reduction catalyst tris-2,2'-bipyridyl rhodium(III) ([Rh(bpy)3](BF6)3) complexes into a layered zirconium phosphate (ZrP) with an interlayer distance of 10.3 Å has been attained with the aim of developing a visible-light responsible photocatalyst for H2 production in aqueous media. Ir L(III)-edge and Rh K-edge X-ray absorption fine structure (XAFS) measurement indicates that both Ir and Rh complexes are intercalated into the layered interspace without structural change around metal environments. The photoluminescence emission of the exchanged Ir complex due to a triplet ligand-to-ligand charge transfer ((3)LLCT) and a metal-to-ligand charge-transfer ((3)MLCT) transition near 560 nm decreases with increasing the amount of adjacent Rh complexes, suggesting the occurrence of electron transfer from Ir complex to Rh complex. The Ir-Rh/ZrP catalyst exhibits both visible-light sensitization and H2 production from aqueous solution in the absence of an electron mediator. The photocatalytic activities are strongly dependent on the ratio of the components, and the maximum activity can be attained with a molar ratio of Ir : Rh = 10 : 1. PMID:24695787

  7. Adsorption of Ruthenium, Rhodium and Palladium from Simulated High-Level Liquid Waste by Highly Functional Xerogel - 13286

    SciTech Connect

    Onishi, Takashi; Koyama, Shin-ichi; Mimura, Hitoshi

    2013-07-01

    Fission products are generated by fission reactions in nuclear fuel. Platinum group (Pt-G) elements, such as palladium (Pd), rhodium (Rh) and ruthenium (Ru), are also produced. Generally, Pt-G elements play important roles in chemical and electrical industries. Highly functional xerogels have been developed for recovery of these useful Pt-G elements from high - level radioactive liquid waste (HLLW). An adsorption experiment from simulated HLLW was done by the column method to study the selective adsorption of Pt-G elements, and it was found that not only Pd, Rh and Ru, but also nickel, zirconium and tellurium were adsorbed. All other elements were not adsorbed. Adsorbed Pd was recovered by washing the xerogel-packed column with thiourea solution and thiourea - nitric acid mixed solution in an elution experiment. Thiourea can be a poison for automotive exhaust emission system catalysts, so it is necessary to consider its removal. Thermal decomposition and an acid digestion treatment were conducted to remove sulfur in the recovered Pd fraction. The relative content of sulfur to Pd was decreased from 858 to 0.02 after the treatment. These results will contribute to design of the Pt-G element separation system. (authors)

  8. Rhodium-catalyzed denitrogenative thioacetalization of N-sulfonyl-1,2,3-triazoles with disulfides: an entry to diverse transformation of terminal alkynes.

    PubMed

    Zhang, Hao; Wang, Hui; Yang, Haijun; Fu, Hua

    2015-06-14

    An efficient and useful rhodium-catalyzed denitrogenative thioacetalization of N-sulfonyl-1,2,3-triazoles has been developed for the first time. The protocol uses readily available N-sulfonyl-1,2,3-triazoles and diaryl disulfides as the starting materials. The corresponding hydrolytic and reductive products with thioacetals were obtained in good to excellent yields, and the reactions were carried out easily under mild conditions with tolerance of some functional groups. Furthermore, the generated thioacetals could be transformed into some useful compounds. Therefore, the present method provides a novel and valuable strategy for the diverse transformation of alkynes. PMID:25927418

  9. Hydrodefluorination of fluorobenzene and 1,2-difluorobenzene under mild conditions over rhodium pyridylphosphine and bipyridyl complexes tethered on a silica-supported palladium catalyst

    SciTech Connect

    Yang, H.; Gao, H.; Angelici, R.J.

    1999-06-07

    The C-F bond, which is the strongest bond that carbon can form, is extremely reluctant to coordinate to metal centers and is resistant to chemical attack. Although this lack of fluorocarbon reactivity has frequently been exploited in technological and medical applications, this chemical inertness also translates into environmental persistence since these compounds are quite difficult to degrade. Fluorobenzene and 1,2-difluorobenzene are defluorinated under very mild conditions by H{sub 2}(4 atm) at 70 C in the presence of NaOAc. The heterogeneous catalysts for these reactions contain the rhodium pyridylphosphine and bipyridyl complexes tethered to heterogeneous Pd-SiO{sub 2}.

  10. Heteroarene-Directed Oxidative sp(2) C-H Bond Allylation with Aliphatic Alkenes Catalyzed by an (Electron-Deficient η(5)-Cyclopentadienyl)rhodium(III) Complex.

    PubMed

    Takahama, Yuji; Shibata, Yu; Tanaka, Ken

    2016-06-17

    It has been established that the oxidative sp(2) C-H bond allylation with aliphatic alkenes proceeds under mild conditions by using heteroarenes as directing groups and an (electron-deficient η(5)-cyclopentadienyl)rhodium(III) complex, [Cp(E)RhCl2]2, as a precatalyst. In sharp contrast, the use of [Cp*RhCl2]2 instead of [Cp(E)RhCl2]2 led to a complex mixture of products under the same reaction conditions. PMID:27227320

  11. Rhodium-Catalyzed Atroposelective [2 + 2 + 2] Cycloaddition of Ortho-Substituted Phenyl Diynes with Nitriles: Effect of Ortho Substituents on Regio- and Enantioselectivity.

    PubMed

    Kashima, Kenichi; Teraoka, Kota; Uekusa, Hidehiro; Shibata, Yu; Tanaka, Ken

    2016-05-01

    Axially chiral 3-(2-halophenyl)pyridines were successfully synthesized in high yields with excellent enantioselectivity by the cationic rhodium(I)/(S)-H8-BINAP complex-catalyzed atroposelective [2 + 2 + 2] cycloaddition of (o-halophenyl)diynes with nitriles. Interestingly, regio- and enantioselectivity highly depend on ortho substituents on the phenyl group of diynes. When the ortho substituents were methoxy and methoxycarbonyl groups, axially chiral 3-arylpyridines were obtained as a major product, while enantioselectivity was lowered significantly. On the other hand, when the ortho substituents were alkyl groups, regioselectivity was switched to give achiral 6-arylpyridines in high yields. PMID:27074498

  12. Some Effects of Exposure to Exhaust-gas Streams on Emittance and Thermoelectric Power of Bare-wire Platinum Rhodium - Platinum Thermocouples

    NASA Technical Reports Server (NTRS)

    Glawe, George E; Shepard, Charles E

    1954-01-01

    Thermocouples were exposed to exhaust gases from the combustion of propane, 72-octane gasoline, and JP-4 fuel. Exposure increased the emissivity of the thermocouple wire, which increased its radiation error. Two methods are presented for determining the emittance of the wires. The emissivity of a clean platinum rhodium-platinum thermocouple was approximately 0.2 in the temperature range investigated, while the emittance of an exposed thermocouple coated with exhaust residue was about 0.5. The exposure caused negligible change in the thermoelectric power of the thermocouples.

  13. Structural and electronic study of neutral, positive, and negative small rhodium clusters [Rh(n), Rh(n)(+), Rh(n)(-) ; n = 10-13].

    PubMed

    Mora, M A; Mora-Ramirez, M A

    2014-07-01

    We have carried out a systematic study for the determination of the structure and the fundamental state of neutral and ionic small rhodium clusters [Rhn, Rhn(+), Rhn(-); n = 10-13] using ab initio Hartree-Fock methods with a LANL2DZ basis set. A range of spin multiplicities is investigated for each cluster. We present the bond lengths, angles, and geometric configuration adopted by the clusters in its minimum energy conformation showing the differences when the clusters have different number of unpaired electrons. Also we report the vertical ionization potential and the adiabatic one calculated by the Koopmans' theorem. PMID:24944092

  14. Steric course of the rhodium-catalyzed decarbonylation of chiral 4-methyl-[1-3H,2-2H1]pentanal.

    PubMed

    Otsuka, H; Floss, H G

    1987-04-01

    (R)- and (S)-4-methyl-[1-3H,2-2H1]pentanal were prepared from L- and D-leucine via leucic acid and (S)- and (R)-4-methyl-[2-2H1]pentanoic acid. Decarbonylation of these samples with tris-(triphenylphosphine)rhodium chloride followed by Kuhn-Roth oxidation of the resulting 2-methylbutane gave chiral acetic acid of 35% e.e. S and 31% e.e. R configuration, respectively. The decarbonylation reaction thus proceeds with net retention of configuration, possibly accompanied by some racemization. PMID:2955591

  15. Rhodium(II) Proximity-Labeling Identifies a Novel Target Site on STAT3 for Inhibitors with Potent Anti-Leukemia Activity.

    PubMed

    Minus, Matthew B; Liu, Wei; Vohidov, Farrukh; Kasembeli, Moses M; Long, Xin; Krueger, Michael J; Stevens, Alexandra; Kolosov, Mikhail I; Tweardy, David J; Sison, Edward Allan R; Redell, Michele S; Ball, Zachary T

    2015-10-26

    Nearly 40 % of children with acute myeloid leukemia (AML) suffer relapse arising from chemoresistance, often involving upregulation of the oncoprotein STAT3 (signal transducer and activator of transcription 3). Herein, rhodium(II)-catalyzed, proximity-driven modification identifies the STAT3 coiled-coil domain (CCD) as a novel ligand-binding site, and we describe a new naphthalene sulfonamide inhibitor that targets the CCD, blocks STAT3 function, and halts its disease-promoting effects in vitro, in tumor growth models, and in a leukemia mouse model, validating this new therapeutic target for resistant AML. PMID:26480340

  16. Kinetics and Mechanism of Hydrogen-Atom Abstraction from Rhodium Hydrides by Alkyl Radicals in Aqueous Solutions

    SciTech Connect

    Pestovsky, Oleg; Veysey, Stephen W.; Bakac, Andrej

    2011-03-22

    The kinetics of the reaction of benzyl radicals with [L{sup 1}(H{sub 2}O)RhH{l_brace}D{r_brace}]{sup 2+} (L{sup 1}=1,4,8,11-tetraazacyclotetradecane) were studied directly by laser-flash photolysis. The rate constants for the two isotopologues, k=(9.3 {+-} 0.6) x 10{sup 7} M{sup -1} s{sup -1} (H) and (6.2 {+-} 0.3) x 10{sup 7} M{sup -1} s{sup -1} (D), lead to a kinetic isotope effect k{sub H}/k{sub D}=1.5 {+-} 0.1. The same value was obtained from the relative yields of PhCH{sub 3} and PhCH{sub 2}D in a reaction of benzyl radicals with a mixture of rhodium hydride and deuteride. Similarly, the reaction of methyl radicals with {l_brace}[L{sup 1}(H{sub 2}O)RhH]{sup 2+} + [L{sup 1}(H{sub 2}O)RhD]{sup 2+}{r_brace} produced a mixture of CH{sub 4} and CH{sub 3}D that yielded k{sub H}/k{sub D}=1.42 {+-} 0.07. The observed small normal isotope effects in both reactions are consistent with reduced sensitivity to isotopic substitution in very fast hydrogen-atom abstraction reactions. These data disprove a literature report claiming much slower kinetics and an inverse kinetic isotope effect for the reaction of methyl radicals with hydrides of L{sup 1}Rh.

  17. Bioaccumulation of palladium, platinum and rhodium from urban particulates and sediments by the freshwater isopod Asellus aquaticus.

    PubMed

    Moldovan, M; Rauch, S; Gómez, M; Palacios, M A; Morrison, G M

    2001-12-01

    The three-way catalytic converters introduced to oxidize and reduce gaseous automobile emissions represent a source of platinum group elements (PGEs), in particular platinum, palladium and rhodium, to the urban environment. Abrasion of automobile exhausts leads to an increase of the concentration of PGEs in environmental matrices such as vegetation, soil and water bodies. The bioaccumulation of Pd, Pt and Rh by the freshwater isopod Asellus aquaticus was studied in natural ecosystems and under laboratory conditions. Owing to the low concentration level (ng g(-1)) of PGEs in the animals studied. analyses were performed with a quadrupole inductively coupled plasma mass spectrometry (ICP-MS) and hafnium, copper, yttrium, rubidium, strontium and lead were monitored for spectral interference correction. Asellus aquaticus collected in an urban river showed a content (mean +/- s) of 155.4 +/- 73.4, 38.0 +/- 34.6, and 17.9 +/- 12.2 ng g(-1) (dry weight) for Pd, Pt and Rh, respectively. The exposure of Asellus aquaticus to PGE standard solutions for a period of 24h give bioaccumulation factors of Bf: 150, 85, and 7 for Pd, Pt and Rh, respectively. Exposure of Asellus aquaticus to environmental samples for different exposure periods demonstrated that PGE bioaccumulation is time dependent. and shows a higher accumulation for the materials with a higher PGE content. While all three elements have the same uptake rate for exposure to catalyst materials, for exposure to environmental materials they havc a different uptake rate which can be attributed to transformations of the PGE species in the environment. PMID:11791847

  18. Enantioselective rhodium-catalyzed [2 + 2 + 2] cycloadditions of terminal alkynes and alkenyl isocyanates: mechanistic insights lead to a unified model that rationalizes product selectivity.

    PubMed

    Dalton, Derek M; Oberg, Kevin M; Yu, Robert T; Lee, Ernest E; Perreault, Stéphane; Oinen, Mark Emil; Pease, Melissa L; Malik, Guillaume; Rovis, Tomislav

    2009-11-01

    This manuscript describes the development and scope of the asymmetric rhodium-catalyzed [2 + 2 + 2] cycloaddition of terminal alkynes and alkenyl isocyanates leading to the formation of indolizidine and quinolizidine scaffolds. The use of phosphoramidite ligands proved crucial for avoiding competitive terminal alkyne dimerization. Both aliphatic and aromatic terminal alkynes participate well, with product selectivity a function of both the steric and electronic character of the alkyne. Manipulation of the phosphoramidite ligand leads to tuning of enantio- and product selectivity, with a complete turnover in product selectivity seen with aliphatic alkynes when moving from Taddol-based to biphenol-based phosphoramidites. Terminal and 1,1-disubstituted olefins are tolerated with nearly equal efficacy. Examination of a series of competition experiments in combination with analysis of reaction outcome shed considerable light on the operative catalytic cycle. Through a detailed study of a series of X-ray structures of rhodium(cod)chloride/phosphoramidite complexes, we have formulated a mechanistic hypothesis that rationalizes the observed product selectivity. PMID:19817441

  19. Enantioselective Rhodium-Catalyzed [2+2+2] Cycloadditions of Terminal Alkynes and Alkenyl Isocyanates: Mechanistic Insights Lead to a Unified Model that Rationalizes Product Selectivity

    PubMed Central

    Dalton, Derek M.; Oberg, Kevin M.; Yu, Robert T.; Lee, Ernest E.; Perreault, Stéphane; Oinen, Mark Emil; Pease, Melissa L.; Malik, Guillaume; Rovis, Tomislav

    2009-01-01

    This manuscript describes the development and scope of the asymmetric rhodium-catalyzed [2+2+2] cycloaddition of terminal alkynes and alkenyl isocyanates leading to the formation of indolizidine and quinolizidine scaffolds. The use of phosphoramidite ligands proved crucial for avoiding competitive terminal alkyne dimerization. Both aliphatic and aromatic terminal alkynes participate well, with product selectivity a function of both the steric and electronic character of the alkyne. Manipulation of the phosphoramidite ligand leads to tuning of enantio- and product selectivity, with a complete turnover in product selectivity seen with aliphatic alkynes when moving from Taddol-based to biphenol-based phosphoramidites. Terminal and 1,1-disubstituted olefins are tolerated with nearly equal efficacy. Examination of a series of competition experiments in combination with analysis of reaction outcome shed considerable light on the operative catalytic cycle. Through a detailed study of a series of X-ray structures of rhodium(cod)chloride/phosphoramidite complexes, we have formulated a mechanistic hypothesis that rationalizes the observed product selectivity. PMID:19817441

  20. Diminished electron density in the Vaska-type rhodium(I) complex trans-[Rh(NCBH3)(CO)(PPh3)2].

    PubMed

    Galding, M R; Virovets, A V; Kazakov, I V; Scheer, M; Smirnov, S N; Timoshkin, A Y

    2016-07-01

    Vaska-type complexes, i.e. trans-[RhX(CO)(PPh3)2] (X is a halogen or pseudohalogen), undergo a range of reactions and exhibit considerable catalytic activity. The electron density on the Rh(I) atom in these complexes plays an important role in their reactivity. Many cyanotrihydridoborate (BH3CN(-)) complexes of Group 6-8 transition metals have been synthesized and structurally characterized, an exception being the rhodium(I) complex. Carbonyl(cyanotrihydridoborato-κN)bis(triphenylphosphine-κP)rhodium(I), [Rh(NCBH3)(CO)(C18H15P)2], was prepared by the metathesis reaction of sodium cyanotrihydridoborate with trans-[RhCl(CO)(PPh3)2], and was characterized by single-crystal X-ray diffraction analysis and IR, (1)H, (13)C and (11)B NMR spectroscopy. The X-ray diffraction data indicate that the cyanotrihydridoborate ligand coordinates to the Rh(I) atom through the N atom in a trans position with respect to the carbonyl ligand; this was also confirmed by the IR and NMR data. The carbonyl stretching frequency ν(CO) and the carbonyl carbon (1)JC-Rh and (1)JC-P coupling constants of the Cipso atoms of the triphenylphosphine groups reflect the diminished electron density on the central Rh(I) atom compared to the parent trans-[RhCl(CO)(PPh3)2] complex. PMID:27377270

  1. Improved antiparasitic activity by incorporation of organosilane entities into half-sandwich ruthenium(II) and rhodium(III) thiosemicarbazone complexes.

    PubMed

    Adams, Muneebah; de Kock, Carmen; Smith, Peter J; Land, Kirkwood M; Liu, Nicole; Hopper, Melissa; Hsiao, Allyson; Burgoyne, Andrew R; Stringer, Tameryn; Meyer, Mervin; Wiesner, Lubbe; Chibale, Kelly; Smith, Gregory S

    2015-02-01

    A series of ferrocenyl- and aryl-functionalised organosilane thiosemicarbazone compounds was obtained via a nucleophilic substitution reaction with an amine-terminated organosilane. The thiosemicarbazone (TSC) ligands were further reacted with either a ruthenium dimer [(η(6-i)PrC6H4Me)Ru(μ-Cl)Cl]2 or a rhodium dimer [(Cp*)Rh(μ-Cl)Cl]2 to yield a series of cationic mono- and binuclear complexes. The thiosemicarbazone ligands, as well as their metal complexes, were characterised using NMR and IR spectroscopy, and mass spectrometry. The molecular structure of the binuclear ruthenium(ii) complex was determined by single-crystal X-ray diffraction analysis. The thiosemicarbazones and their complexes were evaluated for their in vitro antiplasmodial activities against the chloroquine-sensitive (NF54) and chloroquine-resistant (Dd2) Plasmodium falciparum strains, displaying activities in the low micromolar range. Selected compounds were screened for potential β-haematin inhibition activity, and it was found that two Rh(iii) complexes exhibited moderate to good inhibition. Furthermore, the compounds were screened for their antitrichomonal activities against the G3 Trichomonas vaginalis strain, revealing a higher percentage of growth inhibition for the ruthenium and rhodium complexes over their corresponding ligand. PMID:25559246

  2. Cellular selectivity and biological impact of cytotoxic rhodium(III) and iridium(III) complexes containing methyl-substituted phenanthroline ligands.

    PubMed

    Geldmacher, Yvonne; Kitanovic, Igor; Alborzinia, Hamed; Bergerhoff, Katharina; Rubbiani, Riccardo; Wefelmeier, Pascal; Prokop, Aram; Gust, Ronald; Ott, Ingo; Wölfl, Stefan; Sheldrick, William S

    2011-03-01

    The antiproliferative properties and biological impact of octahedral iridium(III) complexes of the type fac-[IrCl3 (DMSO)(pp)] containing pp=phenanthroline (1) and its 4- and 5-methyl (2, 3) and 4,7- and 5,6-dimethyl derivatives (4, 5) were investigated for both adherent and non-adherent cells. A series of similar rhodium(III) complexes were studied for comparison purposes. The antiproliferative activity toward MCF-7 cancer cells increases eightfold from IC50=4.6 for 1 to IC50=0.60 μM for 5, and an even more pronounced 18-fold improvement was established for the analogous rhodium complexes 6 and 8, the respective IC50 values for which are 1.1 and 0.06 μM. Annexin V/propidium iodide assays demonstrated that the 5,6-dimethylphenanthroline complexes 5 and 8 both cause significant inhibition of Jurkat leukemia cell proliferation and invoke extensive apoptosis but negligible necrosis. The percentages of Jurkat cells exhibiting high levels of reactive oxygen species correlate with the percentages of cells undergoing apoptosis. The antiproliferative activity of 5 and 8 is strongly selective toward MCF-7 and HT-29 cancer cells over normal HFF-1 and immortalized HEK-293 cells. Complex 5 also exhibits high selectivity toward BJAB lymphoma cells relative to healthy leukocytes. Both 5 and 8 invoke permanent decreases in the adhesion and respiration of MCF-7 cells. PMID:21337523

  3. Essentially Molecular Metal Complexes Anchored to Zeolite: Synthesis and Characterization of Rhodium Complexes and Ruthenium Complexes Prepared from Rh(acac)(2-C2H4)2 and cis-Ru(acac)2( -C2H4)2

    SciTech Connect

    Ogino, I.; Gates, B

    2010-01-01

    Mononuclear complexes of rhodium and of ruthenium, Rh(acac)({eta}{sup 2}-C{sub 2}H{sub 4}){sub 2} and cis-Ru(acac)2({eta}{sup 2}-C{sub 2}H{sub 4}){sub 2} (acac = C{sub 5}H{sub 7}O{sub 2}{sup -}), were used as precursors to synthesize metal complexes bonded to zeolite {beta}. Infrared (IR) and extended X-ray absorption fine structure (EXAFS) spectra show that the species formed from Rh(acac)({eta}{sup 2}-C{sub 2}H{sub 4}){sub 2} was Rh({eta}{sup 2}-C{sub 2}H{sub 4}){sub 2}{sup +}, which was bonded to the zeolite at aluminum sites via two Rh-O bonds. Reaction of this supported rhodium complex with CO gave the supported rhodium gem-dicarbonyl Rh(CO){sub 2}{sup +}, which was characterized by two {nu}{sub CO} bands in the IR spectrum, at 2048 and 2115 cm{sup -1}, that were sharp (fwhm of 2115-cm{sup -1} band = 5 cm{sup -1}), indicating a high degree of uniformity of the supported species. Nearly the same result was observed (Liang, A. et al. J. Am. Chem. Soc. 2009, 131, 8460) for the isostructural rhodium complex supported on dealuminated HY zeolite, which was characterized by frequencies of the {nu}{sub CO} bands that were 4 and 2 cm{sup -1}, respectively, greater than those characterizing the zeolite {beta}-supported complex. This comparison indicates that the Rh atoms in Rh({eta}{sup 2}-C{sub 2}H{sub 4}){sub 2}{sup +} anchored on zeolite {beta} were slightly more electron-rich than those on zeolite Y. This inference is supported by EXAFS results showing shorter Rh-C bonds in the zeolite {beta}-supported rhodium ethene complex than in the zeolite Y-supported rhodium ethene complex. In contrast to these supported rhodium complexes, the zeolite {beta}-supported ruthenium samples were shown by IR and EXAFS spectroscopies to consist of mixtures of mononuclear ruthenium complexes with various numbers of acac ligands; when CO reacted with the supported ruthenium complexes, the resultant ruthenium carbonyls were characterized by {nu}{sub CO} spectra characteristic of both

  4. Magnetic phase transition in iron-rhodium thin films probed by ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Mancini, E.; Pressacco, F.; Haertinger, M.; Fullerton, E. E.; Suzuki, T.; Woltersdorf, G.; Back, C. H.

    2013-06-01

    We report the results of ferromagnetic (FMR) resonance measurements on epitaxial FeRh/MgO(0 0 1) samples across the phase transition from the antiferromagnetic (AF) state of FeRh to its ferromagnetic (F) state. From temperature-dependent measurements of position, width and amplitude of the FMR line the phase transition is studied in detail. Our measurements indicate that the AF to F phase transition of FeRh is first order in nature. In addition, the angular and frequency-dependent FMR measurements are used to determine the anisotropy constants and the Gilbert damping parameter of the epitaxial FeRh films.

  5. Stripping voltammetric determination of palladium, platinum and rhodium in freshwater and sediment samples from South African water resources.

    PubMed

    van der Horst, C; Silwana, B; Iwuoha, E; Somerset, V

    2012-01-01

    Stripping voltammetry as technique has proved to be very useful in the analysis of heavy and other metal ions due to its excellent detection limits and its sensitivity in the presence of different metal species or interfering ions. Recent assessments of aquatic samples have shown increased levels of platinum group metals (PGMs) in aquatic ecosystems, caused by automobile exhaust emissions and mining activities. The development of an analytical sensor for the detection and characterisation of PGMs were investigated, since there is an ongoing need to find new sensing materials with suitable recognition elements that can respond selectively and reversibly to specific metal ions in environmental samples. The work reported shows the successful application of another mercury-free sensor electrode for the determination of platinum group metals in environmental samples. The work reported in this study entails the use of a glassy carbon electrode modified with a bismuth film for the determination of platinum (Pt(2+)), palladium (Pd(2+)) or rhodium (Rh(2+)) by means of adsorptive cathodic stripping voltammetry. Optimised experimental conditions included composition of the supporting electrolyte, complexing agent concentration, deposition potential, deposition time and instrumental voltammetry parameters for Pt(2+), Pd(2+) and Rh(2+) determination. Adsorptive differential pulse stripping voltammetric measurements for PGMs were performed in the presence of dimethylglyoxime (DMG) as complexing agent. The glassy carbon bismuth film electrode (GC/BiFE) employed in this study exhibit good and reproducible sensor characteristics. Application of GC/BiFE sensor exhibited well-defined peaks and highly linear behaviour for the stripping analysis of the PGMs in the concentration range between 0 and 3.5 μg/L. The detection limit of Pd, Pt and Rh was found to be 0.12 μg/L, 0.04 μg/L and 0.23 μg/L, respectively for the deposition times of 90 s (Pd) and 150 s (for both Pt and Rh). Good

  6. Relationship between electrochemical potentials and substitution reaction rates of ferrocene-containing β-diketonato rhodium(I) complexes; cytotoxicity of [Rh(FcCOCHCOPh)(cod)].

    PubMed

    Conradie, Jeanet; Swarts, Jannie C

    2011-06-14

    A series of ferrocene-containing rhodium complexes of the type [Rh(FcCOCHCOR)(cod)] (cod = 1,5-cyclooctadiene) with R = CF(3), 1, (E(pa)(Rh) = 269; E(o)'(Fc) = 329 mV vs. Fc/Fc(+)), CCl(3), 2, (E(pa) = 256; E(o)' = 312 mV), CH(3), 3, (E(pa) = 177; E(o)' = 232 mV), Ph = C(6)H(5), 4, (E(pa) = 184; E(o)' = 237 mV), and Fc = ferrocenyl = (C(5)H(5))Fe(C(5)H(4)), 5, (E(pa) = 135; E(o)'(Fc1) = 203; E(o)'(Fc2) = 312 mV), have been studied electrochemically in CH(3)CN. Results indicated that the rhodium(I) centre is irreversibly oxidised to Rh(III) in a two-electron transfer process before the ferrocenyl fragment is reversibly oxidized in a one-electron transfer process. The peak anodic (oxidation) potential, E(pa), (in V vs. Fc/Fc(+)) of the rhodium core in 1-5 relates to k(2), the second-order rate constant for the substitution of (FcCOCHCOR)(-) with 1,10-phenanthroline in [Rh(FcCOCHCOR)(cod)] to form [Rh(phen)(cod)](+) in methanol at 25 °C with the equation lnk(2) = 39.5 E(pa)(Rh) - 3.69, while the formal oxidation potential of the ferrocenyl groups in 1-5 relates to k(2) by lnk(2) = 40.8 E(o)'(Fc)-6.34. Complex 4 (IC(50) = 28.2 μmol dm(-3)) was twice as cytotoxic as the free FcCOCH(2)COPh ligand having IC(50) = 54.2 μmol dm(-3), but approximately one order of magnitude less toxic to human HeLa neoplastic cells than cisplatin (IC(50) = 2.3 μmol dm(-3)). PMID:21423964

  7. Crystal structures of di-chlorido-palladium(II), -platinum(II) and -rhodium(III) complexes containing 8-(di-phenyl-phosphan-yl)quinoline.

    PubMed

    Suzuki, Takayoshi; Yamaguchi, Hiroshi; Fujiki, Masayuki; Hashimoto, Akira; Takagi, Hideo D

    2015-05-01

    The crystal structures of di-chlorido-palladium(II), -platinum(II) and -rhodium(III) complexes containing 8-(di-phenyl-phosphan-yl)quinoline, (SP-4)-[PdCl2(C21H16NP)], (1) [systematic name: di-chlor-ido-(8-di-phenyl-phosphanyl-quinoline)-palladium(II)], (SP-4)-[PtCl2(C21H16NP)]·CH2Cl2, (2) [systematic name: di-chlorido-(8-di-phenyl-phos-phanyl-quinoline)-platinum(II) dichlorometh-ane monosolvate], and (OC-6-32)-[RhCl2(C21H16NP)2]PF6·0.5CH2Cl2·0.5CH3OH, (3) [systematic name: cis-di-chlor-ido-bis-(8-di-phenyl-phosphanyl-quinoline)-rhodium(III) hexa-fluorido-phos-phate di-chloro-methane/-methanol hemisolvate] are reported. In these complexes, the phosphanyl-quinoline acts as a bidentate ligand, forming a planar asymmetrical five-membered chelate ring. The palladium(II) and platinum(II) complex mol-ecules in (1) and (2), respectively, show a typical square-planar coordination geometry and form a dimeric structure through an inter-molecular π-π stacking inter-action between the quinolyl rings. The centroid-centroid distances between the stacked six-membered rings in (1) and (2) are 3.633 (2) and 3.644 (2) Å, respectively. The cationic rhodium(III) complex in (3) has a cis(Cl),cis(P),cis(N) (OC-6-32) configuration of the ligands, in which two kinds of intra-molecular π-π stacking inter-actions are observed: between the quinolyl and phenyl rings and between two phenyl rings, the centroid-centroid distances being 3.458 (2) and 3.717 (2) Å, respectively. The PF6 (-) anion in (3) is rotationally disordered, the site occupancies of each F atom being 0.613 (14) and 0.387 (14). The CH2Cl2 and CH3OH solvent mol-ecules are also disordered and equal site occupancies of 0.5 are assumed. PMID:25995852

  8. Nanostructured Palladium-Rhodium for Hydrogen Absorption: Processing, Structure, and Properties

    NASA Astrophysics Data System (ADS)

    Yee, Joshua Keng

    Impetus to identify and implement alternatives to fossil fuels has driven research on several different energy sources. Use of hydrogen as a fuel has been of particular interest, due to its relative abundance and cleanliness as a fuel, amongst other desirable characteristics. However, one of the current challenges to using hydrogen is finding an effective and safe method to store it for later use. Metal hydrides have been proposed as possibilities for safe solid state storage of hydrogen. In the present thesis, cryomilled Pd-10%Rh was investigated as potential solid state storage material of hydrogen. Pd-10%Rh was first atomized, and then subsequently cryomilled. The cryomilled Pd-10%Rh was then examined using microstructural characterization techniques including optical microscopy, electron microscopy, and X-ray diffraction. Pd-10%Rh particles were significantly flattened, increasing the apparent surface area. Microstructural refinement was observed in the cryomilled Pd-10%Rh, generating grains at the nanometric scale through dislocation based activity. Hydrogen sorption properties were also characterized, generating both capacity as well as kinetics measurements. It was found that the microstructural refinement due to cryomilling did not play a significant role on hydrogen sorption properties until the smallest grain size (on the order of ~25 nm) was achieved. Additionally, the increased surface area and other changes in particle morphology were associated with cryomilling changed the kinetics of hydrogen absorption.

  9. Photochemical Reactions of Fluorinated Pyridines at Half-Sandwich Rhodium Complexes: Competing Pathways of Reaction

    PubMed Central

    2013-01-01

    Irradiation of CpRh(PMe3)(C2H4) (1; Cp = η5-C5H5) in the presence of pentafluoropyridine in hexane solution at low temperature yields an isolable η2-C,C-coordinated pentafluoropyridine complex, CpRh(PMe3)(η2-C,C-C5NF4) (2). The molecular structure of 2 was determined by single-crystal X-ray diffraction, showing coordination by C3–C4, unlike previous structures of pentafluoropyridine complexes that show N-coordination. Corresponding experiments with 2,3,5,6-tetrafluoropyridine yield the C–H oxidative addition product CpRh(PMe3)(C5NF4)H (3). In contrast, UV irradiation of 1 in hexane, in the presence of 4-substituted tetrafluoropyridines C5NF4X, where X = NMe2, OMe, results in elimination of C2H4 and HF to form the metallacycles CpRh(PMe3)(κ2-C,C-CH2N(CH3)C5NF3) (4) and CpRh(PMe3)(κ2-C,C-CH2OC5NF3) (5), respectively. The X-ray structure of 4 shows a planar RhCCNC-five-membered ring. Complexes 2–5 may also be formed by thermal reaction of CpRh(PMe3)(Ph)H with the respective pyridines at 50 °C. PMID:24563575

  10. [Food additives and healthiness].

    PubMed

    Heinonen, Marina

    2014-01-01

    Additives are used for improving food structure or preventing its spoilage, for example. Many substances used as additives are also naturally present in food. The safety of additives is evaluated according to commonly agreed principles. If high concentrations of an additive cause adverse health effects for humans, a limit of acceptable daily intake (ADI) is set for it. An additive is a risk only when ADI is exceeded. The healthiness of food is measured on the basis of nutrient density and scientifically proven effects. PMID:24772784

  11. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. R.; St. Clair, T. L.; Burks, H. D.; Stoakley, D. M.

    1987-01-01

    A method has been found for enhancing the melt flow of thermoplastic polyimides during processing. A high molecular weight 422 copoly(amic acid) or copolyimide was fused with approximately 0.05 to 5 pct by weight of a low molecular weight amic acid or imide additive, and this melt was studied by capillary rheometry. Excellent flow and improved composite properties on graphite resulted from the addition of a PMDA-aniline additive to LARC-TPI. Solution viscosity studies imply that amic acid additives temporarily lower molecular weight and, hence, enlarge the processing window. Thus, compositions containing the additive have a lower melt viscosity for a longer time than those unmodified.

  12. Effect of support on iron promoted rhodium nanocatalysts for ethanol synthesis from CO hydrogenation

    NASA Astrophysics Data System (ADS)

    Carrillo Sanchez, Pamela Carolina

    Depleting fossil fuel sources coupled with the deleterious effects of petroleum-based fuel combustion have led to the development of sustainable ways for energy production. One alternative is the production of biofuels like ethanol. Ethanol's biggest advantages are its high energy density, biodegradability and carbon neutrality. A potential scalable process is the conversion of synthetic gas (syngas: CO, CO2, H 2) produced from gasification of biomass with the use of Rh-based catalysts. The work presented in this thesis aimed to study the effect of the introduction of 1, 5, and 10 wt % CeO2 into a TiO2 support on Fe promoted-Rh catalysts for ethanol production from CO hydrogenation. The mixed-oxide CeO2-TiO2 support was synthesized by a sol-gel method where Rh and Fe nanoparticles were deposited by wet incipient impregnation. Reactivity studies were carried under CO hydrogenation conditions with the use of gas chromatography. Characterization of the bare support and the catalyst that showed the best ethanol selectivity were performed by in-situ X-ray diffraction synchrotron experiments. Ethanol selectivity increases with ceria content with a shift on product distribution and CO conversion rates compared to Rh supported on single TiO2 and CeO2. This could be explained by a synergetic effect between CeO2 and TiO2 and to the to the formation of amorphous and mobile species of CeOx that can act as dispersing agents for the Rh particles increasing catalytic sites for CO insertion and for the stabilization of HCOx species. XRD characterization analysis of 10%CeO2-90%TiO2 identified three crystallographic phases: anatase, TiO2(B), and cerianite. The unpromoted 2%Rh/10%CeO2-90%TiO2 in-situ XRD analysis showed an absence of Rh0 under CO hydrogenation conditions. Conversely, the addition of Fe to the different mixed-oxide compositions showed comparable ethanol selectivity at the expense of methane formation. Therefore, the introduction of ceria into the titania support on

  13. Additive usage levels.

    PubMed

    Langlais, R

    1996-01-01

    With the adoption of the European Parliament and Council Directives on sweeteners, colours and miscellaneous additives the Commission is now embarking on the project of coordinating the activities of the European Union Member States in the collection of the data that are to make up the report on food additive intake requested by the European Parliament. This presentation looks at the inventory of available sources on additive use levels and concludes that for the time being national legislation is still the best source of information considering that the directives have yet to be transposed into national legislation. Furthermore, this presentation covers the correlation of the food categories as found in the additives directives with those used by national consumption surveys and finds that in a number of instances this correlation still leaves a lot to be desired. The intake of additives via food ingestion and the intake of substances which are chemically identical to additives but which occur naturally in fruits and vegetables is found in a number of cases to be higher than the intake of additives added during the manufacture of foodstuffs. While the difficulties are recognized in contributing to the compilation of food additive intake data, industry as a whole, i.e. the food manufacturing and food additive manufacturing industries, are confident that in a concerted effort, use data on food additives by industry can be made available. Lastly, the paper points out that with the transportation of the additives directives into national legislation and the time by which the food industry will be able to make use of the new food legislative environment several years will still go by; food additives use data by the food industry will thus have to be reviewed at the beginning of the next century. PMID:8792135

  14. An additional middle cuneiform?

    PubMed Central

    Brookes-Fazakerley, S.D.; Jackson, G.E.; Platt, S.R.

    2015-01-01

    Additional cuneiform bones of the foot have been described in reference to the medial bipartite cuneiform or as small accessory ossicles. An additional middle cuneiform has not been previously documented. We present the case of a patient with an additional ossicle that has the appearance and location of an additional middle cuneiform. Recognizing such an anatomical anomaly is essential for ruling out second metatarsal base or middle cuneiform fractures and for the preoperative planning of arthrodesis or open reduction and internal fixation procedures in this anatomical location. PMID:26224890

  15. Synthesis and crystal structure of the rhodium(I) cyclooctadiene complex with bis(3- tert-butylimidazol-2-ylidene)borate ligand

    NASA Astrophysics Data System (ADS)

    Chen, F.; Shao, K.-J.; Xiao, Y.-C.; Pu, X.-J.; Zhu, B.; Jiang, M.-J.

    2015-12-01

    The rhodium(I) cyclooctadiene complex with the bis(3- tert-butylimidazol-2-ylidene)borate ligand [H2B( Im t Bu)2]Rh(COD) C22H36BN4Rh, has been prepared, and its crystal structure is determined by X-ray diffraction. Complex exhibits slightly distorted square planar configurations around the metal center, which is coordinated by the bidentate H2B( Im t Bu)2 and one cyclooctadiene group. The Rh-Ccarbene bond lengths are 2.043(4) and 2.074(4) Å, and the bond angle C-Rh1-C is 82.59°. The dihedral angle between two imidazol-2-ylidene rings is 67.30°.

  16. Three-dimensional distribution analysis of platinum, palladium and rhodium in auto catalytic converters using imaging-mode laser-induced breakdown spectrometry

    NASA Astrophysics Data System (ADS)

    Lucena, Patricia; Laserna, J. Javier

    2001-02-01

    Laser-induced breakdown spectrometry (LIBS) is reported here as an effective technique to describe the volume distribution of platinum, rhodium and palladium in catalytic converters installed in motor vehicles. Using the second harmonic output of a Nd:YAG laser and a CCD-based atomic emission spectrometer, LIBS is used in multielemental, imaging-mode to permit the simultaneous analysis of the several elements present in the converter, including the internal standard. The data are reported with a lateral resolution of 1.75 mm over a fresh catalytic structure which is 128 mm long. The concentrational variability of the platinum group metals (PGMs) varies in the range ˜3-23% relative standard deviation depending on the element, the substrate and the direction investigated. The causes of the dispersion observed are discussed.

  17. X-ray magnetic circular dichroism photoemission electron microscopy of focused ion beam-induced magnetic patterns on iron-rhodium surfaces

    NASA Astrophysics Data System (ADS)

    Tohki, Atsushi; Aikoh, Kazuma; Shinoda, Ryoichi; Ohkochi, Takuo; Kotsugi, Masato; Nakamura, Tetsuya; Kinoshita, Toyohiko; Iwase, Akihiro; Matsui, Toshiyuki

    2013-05-01

    Iron-rhodium (FeRh) thin films were irradiated with a 30 keV Ga ion beam using a focused ion beam system to produce micrometer scale ferromagnetic square dot arrays. Two-dimensional magnetic square dot arrays with dimensions of 30 × 30, 10 × 10, and 5 × 5 μm were successfully produced on the FeRh surface, which was confirmed by magnetic force microscopy. The results of photoemission electron microscopy combined with X-ray magnetic circular dichroism revealed that the magnetization of the magnetic square dots could be controlled by changing the amount of irradiation. The magnetic domain structure of the magnetic square dots with sides of 5-30 μm was found to be a single domain structure, which was possibly influenced by the interaction between ferromagnetic and antiferromagnetic interfaces.

  18. Atomic force microscopy on phase-control pulsed force mode in water: Imaging and force analysis on a rhodium-octaethylporphyrin layer on highly oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Maeda, Yasushi; Yamazaki, Shin-ichi; Kohyama, Masanori

    2014-06-01

    We developed phase-control pulsed force mode (p-PFM) as the operation mode for atomic force microscopy (AFM). The p-PFM allowed us to observe soft or weakly adsorbed materials in a liquid environment using a conventional AFM apparatus, and allowed for force curve mapping (FCM) after offline data processing. We applied the p-PFM to a rhodium-octaethylporphyrin (RhOEP) layer on highly oriented pyrolytic graphite (HOPG), which is applicable to anode catalysts of fuel cells. The RhOEP/HOPG system was stably observed in water by this mode. In the p-PFM image, we found both large and small protrusions, which were not observed in the dynamic force mode, in air. The detailed force analysis suggested that these protrusions are nanobubbles located on the HOPG substrate exposed in holes or pits of the RhOEP layer.

  19. Synthesis and crystal structure of the rhodium(I) cyclooctadiene complex with bis(3-tert-butylimidazol-2-ylidene)borate ligand

    SciTech Connect

    Chen, F.; Shao, K.-J.; Xiao, Y.-C.; Pu, X.-J.; Zhu, B.; Jiang, M.-J.

    2015-12-15

    The rhodium(I) cyclooctadiene complex with the bis(3-tert-butylimidazol-2-ylidene)borate ligand [H{sub 2}B(Im{sup t}Bu){sup 2}]Rh(COD) C{sup 22}H{sup 36}BN{sup 4}Rh, has been prepared, and its crystal structure is determined by X-ray diffraction. Complex exhibits slightly distorted square planar configurations around the metal center, which is coordinated by the bidentate H{sup 2}B(Im{sup t}Bu){sub 2} and one cyclooctadiene group. The Rh–C{sub carbene} bond lengths are 2.043(4) and 2.074(4) Å, and the bond angle C–Rh1–C is 82.59°. The dihedral angle between two imidazol-2-ylidene rings is 67.30°.

  20. The role of fluctuations in bistability and oscillations during the H{sub 2} + O{sub 2} reaction on nanosized rhodium crystals

    SciTech Connect

    Grosfils, P.; Gaspard, P.; Visart de Bocarmé, T.

    2015-08-14

    A combined experimental and theoretical study is presented of fluctuations observed by field ion microscopy in the catalytic reaction of water production on a rhodium tip. A stochastic approach is developed to provide a comprehensive understanding of the different phenomena observed in the experiment, including burst noise manifesting itself in a bistability regime, noisy oscillations, and nanopatterns with a cross-like oxidized zone separating the surface into four quadrants centered on the (111) facets. The study is based on a stochastic model numerically simulating the processes of adsorption, desorption, reaction, and transport. The surface diffusion of hydrogen is described as a percolation process dominated by large clusters corresponding to the four quadrants. The model reproduces the observed phenomena in the ranges of temperature, pressures, and electric field of the experiment.

  1. Water-soluble hydroxyalkylated phosphines: examples of their differing behaviour toward ruthenium and rhodium.

    PubMed

    Higham, Lee J; Whittlesey, Michael K; Wood, Paul T

    2004-12-21

    The reaction of P(CH2OH)3 (I) and P(C6H5)(CH2OH)2 (II) with RuCl3 in methanol eliminates two equivalents of formaldehyde to yield the mixed tertiary and secondary phosphine complexes all-trans-[RuCl2(P(CH2OH)3)2(P(CH2OH)2H)2] (1) and [RuCl2(P(C6H5)(CH2OH)2)2(P(C6H5)(CH2OH)H)2] (2), respectively. There is a high degree of hydrogen-bonding interactions between the hydroxymethyl groups in 1 and 2, although the phenyl groups of the latter reduce the extent of the network compared to 1. The generation of these mixed secondary and tertiary phosphine complexes is unprecedented. Under the same reaction conditions, the tris(hydroxypropyl)phosphine III formed no ruthenium complex. The reaction of P(CH2OH)3, P(C6H5)(CH2OH)2 and P{(CH2)3OH}3 with [RhCl(1,5-cod)]2 in an aqueous/dichloromethane biphasic medium yielded [RhH2(P(CH2OH)3)4]+ (3), [RhH2(P(C6H5)(CH2OH)2)4]+ (4) and [Rh(P(C6H5)(CH2OH)2)4]+ (5) and [Rh(P{(CH2)3OH}3)4]+ (6), respectively. Treating 5 with dihydrogen rapidly gave 4. The hydroxypropyl compound 6 formed the corresponding dihydride much more slowly in aqueous solution, although [RhH2(P{(CH2)3OH}3)4]+ (7) was readily formed by reaction with dihydrogen. Two separate reaction pathways are therefore involved; for P(CH2OH)3 and to a lesser extent P(C6H5)(CH2OH)2, the hydride source in the product is likely to be the aqueous solvent or the hydroxyl protons, whilst for P{(CH2)3OH}3 an oxidative addition of H2 is favoured. The protic nature of and was illustrated by the H-D exchange observed in d2-water. Dihydrides 3 and 4 reacted with carbon monoxide to yield the dicarbonyl cations [Rh(CO)2(P(CH2OH)3)3]+ (8) and [Rh(CO)2(P(C6H5)(CH2OH)2)3]+ (9). The analogous experiment with [RhH2(P{(CH2)3OH}3)4]+ resulted in phosphine exchange, although our experimental evidence points to the possibility of more than one fluxional process in solution. PMID:15573173

  2. Hydrogenation of arenes under mild conditions using rhodium pyridylphosphine and bipyridyl complexes tethered to a silica-supported palladium heterogeneous catalyst

    SciTech Connect

    Yang, H.; Gao, H.; Angelici, R.J.

    2000-02-21

    The rhodium complexes [Rh(COD)(1)]BF{sub 4} (RH(N-P)) and [Rh(COD)(2)]BF{sub 4} (Rh(N-N)), containing the new pyridylphosphine and bipyridyl ligands (1 and 2) with alkoxysilane groups, were tethered on the silica-supported palladium heterogeneous catalyst Pd-SiO{sub 2} to give the TCSM (tethered complex on supported metal) catalysts Rh(N-P)/Pd-SiO{sub 2} and Rh(N-N)/Pd-SiO{sub 2}. Under the mild conditions of 70 C and 4 atm of H{sub 2}, the two TCSM catalysts are very active for the hydrogenation of arenes (PhCO{sub 2}Me, PhOH, toluene, PhOCH{sub 3}, PhCO{sub 2}Et, 4-CH{sub 3}C{sub 6}H{sub 4}CO{sub 2}Et, dimethyl terephthalate) to cyclohexanes; the activities are higher than those of the separate homogeneous Rh(N-P) and Rh(N-N) complex catalysts, the silica-supported palladium catalyst Pd-SiO{sub 2}, or the rhodium complex catalysts tethered on just SiO{sub 2}. The catalysts are easily separated from the reaction mixtures and can be recycled several times without losing activity. Of the two TCSM catalysts, the higher activity for the hydrogenation of anisole to methyl cyclohexyl ether was observed for Rh(N-N)/Pd-SiO{sub 2}, which gives a TOF value of 3060 mol of substrate converted/((mol of Rh)h) and a TO value of 14500 mol of substrate converted/(mol of Rh) in 6 h. Reactions of acetophenone lead to hydrogenation of the arene ring, the carbonyl group, or both, depending on the catalyst (Rh(N-P)/Pd-SiO{sub 2} or Rh(N-N)/Pd-SiO{sub 2}) and the solvent (heptane or ethanol).

  3. Carbamate deposit control additives

    SciTech Connect

    Honnen, L.R.; Lewis, R.A.

    1980-11-25

    Deposit control additives for internal combustion engines are provided which maintain cleanliness of intake systems without contributing to combustion chamber deposits. The additives are poly(oxyalkylene) carbamates comprising a hydrocarbyloxyterminated poly(Oxyalkylene) chain of 2-5 carbon oxyalkylene units bonded through an oxycarbonyl group to a nitrogen atom of ethylenediamine.

  4. Ruthenium, osmium and rhodium complexes of 1,4-diaryl 1,4-diazabutadiene: radical versus non-radical states.

    PubMed

    Chandra Patra, Sarat; Saha Roy, Amit; Manivannan, Vadivelu; Weyhermüller, Thomas; Ghosh, Prasanta

    2014-09-28

    Ruthenium, osmium and rhodium complexes of 1,4-di(3-nitrophenyl)-1,4-diazabutadiene (LDAB) of types trans-[RuII(LDAB)(PPh3)2Cl2] (1), trans-[OsII(LDAB)(PPh3)2Br2] (2) and trans-[Rh(LDAB)(PPh3)2Cl2] (3) are isolated and characterized by elemental analyses, IR, mass and 1H NMR spectra including the single crystal X-ray structure determination of 1·2toluene. The α-diimine fragment of the LDAB ligand in 1·2toluene is deformed, showing a relatively longer -C=N- bond, 1.320 Å, and a shorter =CH–CH= bond, 1.395 Å. Density functional theory (DFT) calculations on trans-[Ru(LDAB)(PMe3)2Cl2] (1Me) and trans-[Os(LDAB)(PMe3)2Br2] (2Me) with singlet spin states authenticated that the closed shell singlet state (CSS) solutions of 1 and 2 are stable and no perturbation occurs because of the diradical open shell singlet (OSS) state. The EPR spectra of 3 and the Mulliken spin density distribution obtained from the DFT calculation on trans-[Rh(LDAB)(PMe3)2Cl2] (3Me) imply that the ground electronic state of 3 can be defined by the [RhIII(LDAB˙−)(PPh3)2Cl2] (3RhL˙) ↔ [RhII(LDAB)(PPh3)2Cl2] (3Rh˙L) resonating states. In solid, the contribution of 3RhL˙ is higher and the gav is 2.018 with Δg = 0.10, whereas in frozen glasses the contribution of 3Rh˙L is higher and the gav is 2.026 with Δg (frozen glasses) = 0.13. The g parameters of the electrogenerated [1]+ (g1 = 2.456, g2 = 2.128 and g3 = 1.624, Δg = 0.824), [2]+ (g1 = 2.599, g2 = 2.041 and g3 = 1.965, Δg = 0.634), [1]− (g1 = 2.138, g2 = 2.109, g3 = 1.978 and Δg = 0.160) and [2]− (g1 = 2.168, g2 = 2.097, g3 = 1.987 and Δg = 0.181) ions and the spin density distributions obtained from the DFT calculations on [1Me]+, [2Me]+, [1Me]− and [2Me]− reveal that the reversible anodic peaks of 1 and 2 at 0.11 and 0.34 V, referenced versus Fc+/Fc couple, are due to the M(III)/M(II) redox couple, while the reversible cathodic waves at −1.27 V and −0.82 V of 1 and 2 are caused by the LDAB/LDAB˙− redox couple

  5. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Fletcher, James C. (Inventor); Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1992-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  6. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1993-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of the additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  7. Smog control fuel additives

    SciTech Connect

    Lundby, W.

    1993-06-29

    A method is described of controlling, reducing or eliminating, ozone and related smog resulting from photochemical reactions between ozone and automotive or industrial gases comprising the addition of iodine or compounds of iodine to hydrocarbon-base fuels prior to or during combustion in an amount of about 1 part iodine per 240 to 10,000,000 parts fuel, by weight, to be accomplished by: (a) the addition of these inhibitors during or after the refining or manufacturing process of liquid fuels; (b) the production of these inhibitors for addition into fuel tanks, such as automotive or industrial tanks; or (c) the addition of these inhibitors into combustion chambers of equipment utilizing solid fuels for the purpose of reducing ozone.

  8. Food Additives and Hyperkinesis

    ERIC Educational Resources Information Center

    Wender, Ester H.

    1977-01-01

    The hypothesis that food additives are causally associated with hyperkinesis and learning disabilities in children is reviewed, and available data are summarized. Available from: American Medical Association 535 North Dearborn Street Chicago, Illinois 60610. (JG)

  9. Additional Types of Neuropathy

    MedlinePlus

    ... A A Listen En Español Additional Types of Neuropathy Charcot's Joint Charcot's Joint, also called neuropathic arthropathy, ... can stop bone destruction and aid healing. Cranial Neuropathy Cranial neuropathy affects the 12 pairs of nerves ...

  10. Rhodium(II)-Catalyzed Annulation of Azavinyl Carbenes Through Ring-Expansion of 1,3,5-Trioxane: Rapid Access to Nine-Membered 1,3,5,7-Trioxazonines.

    PubMed

    Pospech, Jola; Ferraccioli, Raffaella; Neumann, Helfried; Beller, Matthias

    2015-12-01

    The rhodium(II)-catalyzed denitrogenative coupling of N-alkylsulfonyl 1,2,3-triazoles with 1,3,5-trioxane led to nine-membered-ringed trioxazonines in moderate-to-good yields. 1,3,5-Trioxane, acting as an oxygen nucleophile, reacted with the α-aza-vinylcarbene intermediate, giving rise to ylide formation, which was probably the key step in the reaction. Triazoles that contained aryl substituents with various electronic and steric features on the C4 carbon atom were well-tolerated. The synthesis of trioxazonine derivatives was achieved through a one-pot, two-step procedure from 1-mesylazide and a terminal alkyne by combining Cu(I)-catalyzed 1,3-dipolar cycloaddition and rhodium-catalyzed transformations. PMID:26247492

  11. Computational Exploration of Rh(III)/Rh(V) and Rh(III)/Rh(I) Catalysis in Rhodium(III)-Catalyzed C-H Activation Reactions of N-Phenoxyacetamides with Alkynes.

    PubMed

    Yang, Yun-Fang; Houk, K N; Wu, Yun-Dong

    2016-06-01

    The selective rhodium-catalyzed functionalization of arenes is greatly facilitated by oxidizing directing groups that act both as directing groups and internal oxidants. We report density functional theory (B3LYP and M06) investigations on the mechanism of rhodium(III)-catalyzed redox coupling reaction of N-phenoxyacetamides with alkynes. The results elucidated the role of the internal oxidizing directing group, and the role of Rh(III)/Rh(I) and Rh(III)/Rh(V) catalysis of C-H functionalizations. A novel Rh(III)-Rh(V)-Rh(III) cycle successfully rationalizes recent experimental observations by Liu and Lu et al. ( Liu , G. Angew. Chem. Int. Ed. 2013 , 52 , 6033 ) on the reactions of N-phenoxyacetamides with alkynes in different solvents. Natural Bond Orbital (NBO) analysis confirms the identity of Rh(V) intermediate in the catalytic cycle. PMID:27177448

  12. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  13. Mechanistic aspects of the rhodium-catalyzed enantioselective transfer hydrogenation of [alpha],[beta]-unsaturated carboxylic acids using formic acid/triethylamine (5:2) as the hydrogen source

    SciTech Connect

    Leitner, W. Universitaet Regensburg ); Brown, J.M. ); Brunner, H. )

    1993-01-13

    The mechanism of the rhodium-catalyzed enantioselective transfer hydrogenation of methylenebutanedioic acid (itaconic acid) (1) and related [alpha],[beta]-unsaturated carboxylic acids using formic acid/triethylamine (5:2) as the hydrogen source is investigated. Kinetic studies using [sup 1]H NMR spectroscopy are presented. Formic acid decomposition is shown to be the rate-limiting step with 1 as the substrate, while hydrogen transfer turns out to be rate determining in the case of (E)-(phenylmethylene)butanedioic acid ((E)-phenylitaconic acid) (3). Furthermore, extensive use is made of deuterium labeling and the analysis of part-deuterated products by [sup 1]H and [sup 13]C[l brace][sup 1]H,[sup 2]H[r brace] NMR spectroscopy. Taken together, these results indicate that the mechanism of rhodium-catalyzed transfer hydrogenation with formic acid/triethylamine as the hydrogen source most likely involves decarboxylation of a transient formate species to form hydridic complexes of rhodium, in which the Rh-H entity has a long lifetime relative to hydrogen transfer to the substrate. 40 refs., 5 figs., 1 tab.

  14. Phenylethynyl Containing Reactive Additives

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2002-01-01

    Phenylethynyl containing reactive additives were prepared from aromatic diamine, containing phenylethvnvl groups and various ratios of phthalic anhydride and 4-phenylethynviphthalic anhydride in glacial acetic acid to form the imide in one step or in N-methyl-2-pvrrolidinone to form the amide acid intermediate. The reactive additives were mixed in various amounts (10% to 90%) with oligomers containing either terminal or pendent phenylethynyl groups (or both) to reduce the melt viscosity and thereby enhance processability. Upon thermal cure, the additives react and become chemically incorporated into the matrix and effect an increase in crosslink density relative to that of the host resin. This resultant increase in crosslink density has advantageous consequences on the cured resin properties such as higher glass transition temperature and higher modulus as compared to that of the host resin.

  15. Additives in plastics.

    PubMed Central

    Deanin, R D

    1975-01-01

    The polymers used in plastics are generally harmless. However, they are rarely used in pure form. In almost all commercial plastics, they are "compounded" with monomeric ingredients to improve their processing and end-use performance. In order of total volume used, these monomeric additives may be classified as follows: reinforcing fibers, fillers, and coupling agents; plasticizers; colorants; stabilizers (halogen stabilizers, antioxidants, ultraviolet absorbers, and biological preservatives); processing aids (lubricants, others, and flow controls); flame retardants, peroxides; and antistats. Some information is already available, and much more is needed, on potential toxicity and safe handling of these additives during processing and manufacture of plastics products. PMID:1175566

  16. Biobased lubricant additives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fully biobased lubricants are those formulated using all biobased ingredients, i.e. biobased base oils and biobased additives. Such formulations provide the maximum environmental, safety, and economic benefits expected from a biobased product. Currently, there are a number of biobased base oils that...

  17. Multifunctional fuel additives

    SciTech Connect

    Baillargeon, D.J.; Cardis, A.B.; Heck, D.B.

    1991-03-26

    This paper discusses a composition comprising a major amount of a liquid hydrocarbyl fuel and a minor low-temperature flow properties improving amount of an additive product of the reaction of a suitable diol and product of a benzophenone tetracarboxylic dianhydride and a long-chain hydrocarbyl aminoalcohol.

  18. Boron addition to alloys

    SciTech Connect

    Coad, B. C.

    1985-08-20

    A process for addition of boron to an alloy which involves forming a melt of the alloy and a reactive metal, selected from the group consisting of aluminum, titanium, zirconium and mixtures thereof to the melt, maintaining the resulting reactive mixture in the molten state and reacting the boric oxide with the reactive metal to convert at least a portion of the boric oxide to boron which dissolves in the resulting melt, and to convert at least portion of the reactive metal to the reactive metal oxide, which oxide remains with the resulting melt, and pouring the resulting melt into a gas stream to form a first atomized powder which is subsequently remelted with further addition of boric oxide, re-atomized, and thus reprocessed to convert essentially all the reactive metal to metal oxide to produce a powdered alloy containing specified amounts of boron.

  19. Tackifier for addition polyimides

    NASA Technical Reports Server (NTRS)

    Butler, J. M.; St.clair, T. L.

    1980-01-01

    A modification to the addition polyimide, LaRC-160, was prepared to improve tack and drape and increase prepeg out-time. The essentially solventless, high viscosity laminating resin is synthesized from low cost liquid monomers. The modified version takes advantage of a reactive, liquid plasticizer which is used in place of solvent and helps solve a major problem of maintaining good prepeg tack and drape, or the ability of the prepeg to adhere to adjacent plies and conform to a desired shape during the lay up process. This alternate solventless approach allows both longer life of the polymer prepeg and the processing of low void laminates. This approach appears to be applicable to all addition polyimide systems.

  20. Vinyl capped addition polyimides

    NASA Technical Reports Server (NTRS)

    Vannucci, Raymond D. (Inventor); Malarik, Diane C. (Inventor); Delvigs, Peter (Inventor)

    1991-01-01

    Polyimide resins (PMR) are generally useful where high strength and temperature capabilities are required (at temperatures up to about 700 F). Polyimide resins are particularly useful in applications such as jet engine compressor components, for example, blades, vanes, air seals, air splitters, and engine casing parts. Aromatic vinyl capped addition polyimides are obtained by reacting a diamine, an ester of tetracarboxylic acid, and an aromatic vinyl compound. Low void materials with improved oxidative stability when exposed to 700 F air may be fabricated as fiber reinforced high molecular weight capped polyimide composites. The aromatic vinyl capped polyimides are provided with a more aromatic nature and are more thermally stable than highly aliphatic, norbornenyl-type end-capped polyimides employed in PMR resins. The substitution of aromatic vinyl end-caps for norbornenyl end-caps in addition polyimides results in polymers with improved oxidative stability.

  1. [Biologically active food additives].

    PubMed

    Velichko, M A; Shevchenko, V P

    1998-07-01

    More than half out of 40 projects for the medical science development by the year of 2000 have been connected with the bio-active edible additives that are called "the food of XXI century", non-pharmacological means for many diseases. Most of these additives--nutricevtics and parapharmacevtics--are intended for the enrichment of food rations for the sick or healthy people. The ecologicaly safest and most effective are combined domestic adaptogens with immuno-modulating and antioxidating action that give anabolic and stimulating effect,--"leveton", "phytoton" and "adapton". The MKTs-229 tablets are residue discharge means. For atherosclerosis and general adiposis they recommend "tsar tablets" and "aiconol (ikhtien)"--on the base of cod-liver oil or "splat" made out of seaweed (algae). All these preparations have been clinically tested and received hygiene certificates from the Institute of Dietology of the Russian Academy of Medical Science. PMID:9752776

  2. Electrophilic addition of astatine

    SciTech Connect

    Norseev, Yu.V.; Vasaros, L.; Nhan, D.D.; Huan, N.K.

    1988-03-01

    It has been shown for the first time that astatine is capable of undergoing addition reactions to unsaturated hydrocarbons. A new compound of astatine, viz., ethylene astatohydrin, has been obtained, and its retention numbers of squalane, Apiezon, and tricresyl phosphate have been found. The influence of various factors on the formation of ethylene astatohydrin has been studied. It has been concluded on the basis of the results obtained that the univalent cations of astatine in an acidic medium is protonated hypoastatous acid.

  3. Hydrocarbon fuel additive

    SciTech Connect

    Ambrogio, S.

    1989-02-28

    This patent describes the method of fuel storage or combustion, wherein the fuel supply contains small amounts of water, the step of adding to the fuel supply an additive comprising a blend of a hydrophilic agent chosen from the group of ethylene glycol, n-butyl alcohol, and cellosolve in the range of 22-37% by weight; ethoxylated nonylphenol in the range of 26-35% by weight; nonylphenol polyethylene glycol ether in the range of 32-43% by weight.

  4. Functional Generalized Additive Models.

    PubMed

    McLean, Mathew W; Hooker, Giles; Staicu, Ana-Maria; Scheipl, Fabian; Ruppert, David

    2014-01-01

    We introduce the functional generalized additive model (FGAM), a novel regression model for association studies between a scalar response and a functional predictor. We model the link-transformed mean response as the integral with respect to t of F{X(t), t} where F(·,·) is an unknown regression function and X(t) is a functional covariate. Rather than having an additive model in a finite number of principal components as in Müller and Yao (2008), our model incorporates the functional predictor directly and thus our model can be viewed as the natural functional extension of generalized additive models. We estimate F(·,·) using tensor-product B-splines with roughness penalties. A pointwise quantile transformation of the functional predictor is also considered to ensure each tensor-product B-spline has observed data on its support. The methods are evaluated using simulated data and their predictive performance is compared with other competing scalar-on-function regression alternatives. We illustrate the usefulness of our approach through an application to brain tractography, where X(t) is a signal from diffusion tensor imaging at position, t, along a tract in the brain. In one example, the response is disease-status (case or control) and in a second example, it is the score on a cognitive test. R code for performing the simulations and fitting the FGAM can be found in supplemental materials available online. PMID:24729671

  5. 9,10-phenanthrenesemiquinone radical complexes of ruthenium(III), osmium(III) and rhodium(III) and redox series.

    PubMed

    Biswas, Manas Kumar; Patra, Sarat Chandra; Maity, Amarendra Nath; Ke, Shyue-Chu; Weyhermüller, Thomas; Ghosh, Prasanta

    2013-05-14

    Reactions of 9,10-phenanthrenequinone (PQ) in toluene with [M(II)(PPh3)3X2] at 298 K afford green complexes, trans-[M(PQ)(PPh3)2X2] (M = Ru, X = Cl, 1; M = Os, X = Br, 2) in moderate yields. Reaction of anhydrous RhCl3 with PQ and PPh3 in boiling ethanol affords the dark brown paramagnetic complex, cis-[Rh(PQ)(PPh3)2Cl2] (3) in good yields. Diffusion of iodine solution in n-hexane to the trans-[Os(PQ) (PPh3)2(CO)(Br)] solution in CH2Cl2 generates the crystals of trans-[Os(PQ)(PPh3)2(CO)(Br)](+)I3(-), (4(+))I3(-)), in lower yields. Single crystal X-ray structure determinations of 1·2toluene, 2·CH2Cl2 and 4(+)I3(-), UV-vis/NIR absorption spectra, EPR spectra of 3, electrochemical activities and DFT calculations on 1, 2, trans-[Ru(PQ)(PMe3)2Cl2] (1Me), trans-[Os(PQ)(PMe3)2Br2] (2Me), cis-[Rh(PQ)(PMe3)2Cl2] (3Me) and their oxidized and reduced analogues including trans-[Os(PQ)(PMe3)2(CO)(Br)](+) (4Me(+)) substantiated that 1-3 are the 9,10-phenanthrenesemiquinone radical (PQ(˙-)) complexes of ruthenium(III), osmium(III) and rhodium(III) and are defined as trans/cis-[M(III)(PQ(˙-))(PPh3)2X2] with a minor contribution of the resonance form trans/cis-[M(II)(PQ)(PPh3)2X2]. Two comparatively longer C-O (1.286(4) Å) and the shorter C-C lengths (1.415(7) Å) of the OO-chelate of 1·2toluene and 2·CH2Cl2 and the isotropic fluid solution EPR signal at g = 1.999 of 3 are consistent with the existence of the reduced PQ(˙-) ligand in 1-3 complexes. Anisotropic EPR spectra of the frozen glasses (g11 = g22 = 2.0046 and g33 = 1.9874) and solids (g11 = g22 = 2.005 and g33 = 1.987) instigate the contribution of the resonance form, cis-[Rh(II)(PQ)(PPh3)2Cl2] in 3. DFT calculations established that the closed shell singlet (CSS) solutions of 1Me and 2Me are unstable due to open shell singlet (OSS) perturbation. However, the broken symmetry (BS) (1,1) Ms = 0 solutions of 1Me and 2Me are respectively 22.6 and 24.2 kJ mole(-1) lower in energy and reproduced the experimental bond

  6. Selective synthesis and characterization of single-site HY zeolite-supported rhodium complexes and their use as catalysts for ethylene hydrogenation and dimerization

    NASA Astrophysics Data System (ADS)

    Khivantsev, Konstantin

    Single-site Rh(CO)2, Rh(C2H4)2 and Rh(NO)2 complexes anchored on various dealuminated HY zeolites can be used as precursors for the selective surface mediated synthesis of well-defined site-isolated Rh(CO)(H)x complexes. DFT calculations and D 2 isotope exchange experiments provide strong evidence for the formation of a family of site isolated mononuclear rhodium carbonyl hydride complexes (including the first examples of RhH complexes with undissociated H2 ligands): Rh(CO)(H2), Rh(CO)(H)2, and Rh(CO)(H). The fraction of each individual complex formed varies significantly with the Si/Al ratio of the zeolite and the nature of the precursor used. HY zeolite-supported mononuclear Rh(CO)2 complexes are very active in ethylene hydrogenation and ethylene dimerization under ambient conditions. There is strong evidence for the cooperation mechanism between mononuclear rhodium complexes and Bronsted acid sites of the zeolite support in C-C bond formation process, as well as ethane formation. Finally, it is shown that the dimerization pathway selectivity can be progressively tuned (and completely switched off) by modifying the number of Bronsted acid sites on the zeolite surface. HY zeolite-supported mononuclear Rh(NO)2 complexes can be selectively formed upon exposure of Rh(CO)2/HY to the gas phase NO/He. They are structurally similar to Rh(CO)2/HY with Rh(I) retaining square planar geometry and nitrosyl ligands adopting a linear configuration. Rh(NO)2/HY30 is active in ethylene hydrogenation and ethylene dimerization under ambient conditions. This is the first unprecedented example of a supported transition-metal nitrosyl complex capable of performing a catalytic reaction. Moreover, this is the first example of a site-isolated Rh complex with ligands other than ethylene or carbonyl, which can catalyze both ethylene hydrogenation and dimerization. Unlike its dicarbonyl counterpart, dinitrosyl rhodium complex has a uniquely different reactivity towards ethylene and hydrogen

  7. Siloxane containing addition polyimides

    NASA Technical Reports Server (NTRS)

    Maudgal, S.; St. Clair, T. L.

    1984-01-01

    Addition polyimide oligomers have been synthesized from bis(gamma-aminopropyl) tetramethyldisiloxane and 3, 3', 4, 4'-benzophenonetetracarboxylic dianhydride using a variety of latent crosslinking groups as endcappers. The prepolymers were isolated and characterized for solubility (in amide, chlorinated and ether solvents), melt flow and cure properties. The most promising systems, maleimide and acetylene terminated prepolymers, were selected for detailed study. Graphite cloth reinforced composites were prepared and properties compared with those of graphite/Kerimid 601, a commercially available bismaleimide. Mixtures of the maleimide terminated system with Kerimid 601, in varying proportions, were also studied.

  8. Oil additive process

    SciTech Connect

    Bishop, H.

    1988-10-18

    This patent describes a method of making an additive comprising: (a) adding 2 parts by volume of 3% sodium hypochlorite to 45 parts by volume of diesel oil fuel to form a sulphur free fuel, (b) removing all water and foreign matter formed by the sodium hypochlorite, (c) blending 30 parts by volume of 24% lead naphthanate with 15 parts by volume of the sulphur free fuel, 15 parts by volume of light-weight material oil to form a blended mixture, and (d) heating the blended mixture slowly and uniformly to 152F.

  9. Performance Boosting Additive

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Mainstream Engineering Corporation was awarded Phase I and Phase II contracts from Goddard Space Flight Center's Small Business Innovation Research (SBIR) program in early 1990. With support from the SBIR program, Mainstream Engineering Corporation has developed a unique low cost additive, QwikBoost (TM), that increases the performance of air conditioners, heat pumps, refrigerators, and freezers. Because of the energy and environmental benefits of QwikBoost, Mainstream received the Tibbetts Award at a White House Ceremony on October 16, 1997. QwikBoost was introduced at the 1998 International Air Conditioning, Heating, and Refrigeration Exposition. QwikBoost is packaged in a handy 3-ounce can (pressurized with R-134a) and will be available for automotive air conditioning systems in summer 1998.

  10. Sewage sludge additive

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Mueller, W. A.; Ingham, J. D. (Inventor)

    1980-01-01

    The additive is for a raw sewage treatment process of the type where settling tanks are used for the purpose of permitting the suspended matter in the raw sewage to be settled as well as to permit adsorption of the dissolved contaminants in the water of the sewage. The sludge, which settles down to the bottom of the settling tank is extracted, pyrolyzed and activated to form activated carbon and ash which is mixed with the sewage prior to its introduction into the settling tank. The sludge does not provide all of the activated carbon and ash required for adequate treatment of the raw sewage. It is necessary to add carbon to the process and instead of expensive commercial carbon, coal is used to provide the carbon supplement.

  11. Perspectives on Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Bourell, David L.

    2016-07-01

    Additive manufacturing (AM) has skyrocketed in visibility commercially and in the public sector. This article describes the development of this field from early layered manufacturing approaches of photosculpture, topography, and material deposition. Certain precursors to modern AM processes are also briefly described. The growth of the field over the last 30 years is presented. Included is the standard delineation of AM technologies into seven broad categories. The economics of AM part generation is considered, and the impacts of the economics on application sectors are described. On the basis of current trends, the future outlook will include a convergence of AM fabricators, mass-produced AM fabricators, enabling of topology optimization designs, and specialization in the AM legal arena. Long-term developments with huge impact are organ printing and volume-based printing.

  12. New addition curing polyimides

    NASA Technical Reports Server (NTRS)

    Frimer, Aryeh A.; Cavano, Paul

    1991-01-01

    In an attempt to improve the thermal-oxidative stability (TOS) of PMR-type polymers, the use of 1,4-phenylenebis (phenylmaleic anhydride) PPMA, was evaluated. Two series of nadic end-capped addition curing polyimides were prepared by imidizing PPMA with either 4,4'-methylene dianiline or p-phenylenediamine. The first resulted in improved solubility and increased resin flow while the latter yielded a compression molded neat resin sample with a T(sub g) of 408 C, close to 70 C higher than PME-15. The performance of these materials in long term weight loss studies was below that of PMR-15, independent of post-cure conditions. These results can be rationalized in terms of the thermal lability of the pendant phenyl groups and the incomplete imidization of the sterically congested PPMA. The preparation of model compounds as well as future research directions are discussed.

  13. Toward new organometallic architectures: synthesis of carbene-centered rhodium and palladium bisphosphine complexes. stability and reactivity of [PC(BIm)PRh(L)][PF6] pincers.

    PubMed

    Plikhta, Andriy; Pöthig, Alexander; Herdtweck, Eberhardt; Rieger, Bernhard

    2015-10-01

    In this article, we report the synthesis of a tridentate carbene-centered bisphosphine ligand precursor and its complexes. The developed four-step synthetic strategy of a new PC(BIm)P pincer ligand represents the derivatization of benzimidazole in the first and third positions by (diphenylphosphoryl)methylene synthone, followed by phosphine deprotection and subsequent insertion of a noncoordinating anion. The obtained ligand precursor undergoes complexation, with PdCl2 and [μ-OCH3Rh(COD)]2 smoothly forming the target organometallics [PC(BIm)PPdCl][PF6] and [PC(BIm)PRh(L)][PF6] under mild hydrogenation conditions. A more detailed study of the rhodium complexes [PC(BIm)PRh(L)][PF6] reveals significant thermal stability of the PC(BIm)PRh moiety in the solid state as well as in solution. The chemical behavior of 1,3-bis(diphenylphosphinomethylene)benzimidazol-2-ylrhodium acetonitrile hexafluorophosphate has been screened under decarbonylation, hydrogenation, and hydroboration reaction conditions. Thus, the PC(BIm)PRh(I) complex is a sufficiently stable compound, with the potential to be applied in catalysis. PMID:26390389

  14. Mechanism of the rhodium(iii)-catalyzed alkenylation reaction of N-phenoxyacetamide with styrene or N-tosylhydrazone: a computational study.

    PubMed

    Qiu, Zhiping; Deng, Jiaojiao; Zhang, Zhongchao; Wu, Caihong; Li, Juan; Liao, Xiaojian

    2016-05-10

    A systematic density functional theory study has been conducted to examine the mechanisms involved in the rhodium(iii)-catalyzed alkenylation of N-phenoxyacetamide with two different substrates (i.e., styrene and N-tosylhydrazone). The density functional theory calculations indicated that the reaction of the N-tosylhydrazone substrate resulted in the formation of a Rh(v)-nitrene intermediate via the cleavage of the O-N bond of N-phenoxyacetamide, whereas the styrene substrate resulted in an Rh(i) species through consecutive β-H elimination and H migration steps to the internal oxidant. The differences observed between the N-tosylhydrazone and styrene systems were attributed to differences in the reactivity of their Rh(v)-nitrene intermediates. For example, the N-tosylhydrazone formed a five-membered Rh(v)-nitrene intermediate, which was readily reduced to a Rh(iii) species by tautomerization, whereas this pathway was energetically unfavorable for the styrene substrate. PMID:27086501

  15. Hollow-shell-structured nanospheres: a recoverable heterogeneous catalyst for rhodium-catalyzed tandem reduction/lactonization of ethyl 2-acylarylcarboxylates to chiral phthalides.

    PubMed

    Liu, Rui; Jin, Ronghua; An, Juzeng; Zhao, Qiankun; Cheng, Tanyu; Liu, Guohua

    2014-05-01

    Chiral organorhodium-functionalized hollow-shell-structured nanospheres were prepared by immobilization of a chiral N-sulfonylated diamine-based organorhodium complex within an ethylene-bridged organosilicate shell. Structural analysis and characterization reveal its well-defined single-site rhodium active center, and transmission electron microscopy images reveal a uniform dispersion of hollow-shell-structured nanospheres. As a heterogenous catalyst, it exhibits excellent catalytic activity and enantioselectivity in synthesis of chiral phthalides by a tandem reduction/lactonization of ethyl 2-acylarylcarboxylates in aqueous medium. The high catalytic performance is attributed to the synergistic effect of the high hydrophobicity and the confined chiral organorhodium catalytic nature. The organorhodium-functionalized nanospheres could be conveniently recovered and reused at least 10 times without loss of catalytic activity. This feature makes it an attractive catalyst in environmentally friendly organic reactions. The results of this study offer a new approach to immobilize chiral organometal functionalities within the hollow-shell-structured nanospheres to prepare materials with high activity in heterogeneous asymmetric catalysis. PMID:24623451

  16. Labile behavior of carbonyl ligands in butadienecarbonyl and ethylenecarbonyl complexes of rhodium(I) under the action of 1,5-cyclooctadiene

    SciTech Connect

    Varshavskii, Yu.S.; Cherkasov, T.G.; Bresler, L.S.

    1987-04-01

    The processes resulting in the redistribution of the carbonyl groups between the rhodium(I) complexes in a solution of (Rh(C2H4)COCl)2 (I) in chloroform under the action 1,5-cyclooctadiene (cod) have been studied by the methods of IR, TC NMR, and H NMR spectroscopy. It has been shown that in reaction mixtures containing I + x mole cod/Rh the asymmetric complex (cod)RhCl2Rh(CO)2 (II) with nu(CO) = 2092 and 2022 cm , delta( TC) = 178.7 ppm, and J(CRh) = 75.2 Hz forms when x less than or equal to 0.5. When x > 0.5, the pentacoordinate monocarbonyl complex (cod) CORhCl2RhCO(cod)(III) with nu(CO) = 2050 cm , which is stable in the presence of cod, forms. When x greater than or equal to 3, III is the main product present in the reaction mixtures. In the spectra of such mixtures the TC signal is a singlet with delta( TC) = 178.4 ppm. The butadienecarbonyl complex ((RhCOCl)2C4H6)/sub n/ behaves similarly to I. The reaction involving the replacement of CO ligands by cod in (Rh(CO)2)Cl)2 in a chloroform medium with cod;Rh = 1 passes through a step involving the formation of III; when the reaction is conducted in heptane, the formation of III is not detected.

  17. NH3 Synthesis in the N2/H2 Reaction System using Cooperative Molecular Tungsten/Rhodium Catalysis in Ionic Hydrogenation: A DFT Study.

    PubMed

    Moha, Verena; Leitner, Walter; Hölscher, Markus

    2016-02-18

    The ionic hydrogenation of N2 with H2 to give NH3 is investigated by means of density functional theory (DFT) computations using a cooperatively acting catalyst system. In this system, N2 binds to a neutral tungsten pincer complex of the type [(PNP)W(N2)3] (PNP=pincer ligand) and is reduced to NH3. The protons and hydride centers necessary for the reduction are delivered by heterolytic cleavage of H2 between the N2-tungsten complex and the cationic rhodium complex [Cp*Rh{2-(2-pyridyl)phenyl}(CH3 CN)](+). Successive transfer of protons and hydrides to the bound N2, as well as all Nx Hy units that occur during the reaction, enable the computation of closed catalytic cycles in the gas and in the solvent phase. By optimizing the pincer ligands of the tungsten complex, energy spans as low as 39.3 kcal mol(-1) could be obtained, which is unprecedented in molecular catalysis for the N2/H2 reaction system. PMID:26711865

  18. Enantioselective Arylation of N-Tosylimines by Phenylboronic Acid Catalysed by a Rhodium/Diene Complex: Reaction Mechanism from Density Functional Theory.

    PubMed

    Sieffert, Nicolas; Boisson, Julien; Py, Sandrine

    2015-06-26

    A DFT study of the reaction mechanism of the rhodium-catalysed enantioselective arylation of (E)-N-propylidene-4-methyl-benzenesulfonamide by phenylboronic acid [Lin et al J. Am. Chem. Soc. 2011, 133, 12394] is reported. The catalyst ([{Rh(OH)(diene)}2]) includes a chiral diene ligand and the reaction is conducted in 1,4-dioxane in the presence of drying agents (4 Å molecular sieves). Because phenylboronic acid is in equilibrium with phenylboroxin and water under the reaction conditions, three catalytic cycles are proposed that differ in the way the transmetallation and the release of the product are brought about, depending on the availability of phenylboronic acid, water and boroxin in the reaction medium. Based on computations, a new mechanism for the title reaction is proposed, in which phenylboronic acid plays the double role of "aryl source" and proton donor. This path does not require the presence of adventitious water molecules, in keeping with a reaction conducted in a dry medium. Comparisons with the generally accepted mechanism for arylation of enones proposed by Hayashi and co-workers (J. Am. Chem. Soc. 2002, 124, 5052) show that the latter mechanism is less favourable and is not expected to operate in the case of the N-tosylimine substrate considered herein. Finally, the possibility that phenylboroxin is the aryl source has also been investigated, but is not found to be competitive. PMID:26032123

  19. Rhodium-Coordinated Poly(arylene-ethynylene)-alt-Poly(arylene-vinylene) Copolymer Acting as Photocatalyst for Visible-Light-Powered NAD+/NADH Reduction

    PubMed Central

    2014-01-01

    A 2,2′-bipyridyl-containing poly(arylene-ethynylene)-alt-poly(arylene-vinylene) polymer, acting as a light-harvesting ligand system, was synthesized and coupled to an organometallic rhodium complex designed for photocatalytic NAD+/NADH reduction. The material, which absorbs over a wide spectral range, was characterized by using various analytical techniques, confirming its chemical structure and properties. The dielectric function of the material was determined from spectroscopic ellipsometry measurements. Photocatalytic reduction of nucleotide redox cofactors under visible light irradiation (390–650 nm) was performed and is discussed in detail. The new metal-containing polymer can be used to cover large surface areas (e.g. glass beads) and, due to this immobilization step, can be easily separated from the reaction solution after photolysis. Because of its high stability, the polymer-based catalyst system can be repeatedly used under different reaction conditions for (photo)chemical reduction of NAD+. With this concept, enzymatic, photo-biocatalytic systems for solar energy conversion can be facilitated, and the precious metal catalyst can be recycled. PMID:25130570

  20. Rhodium-coordinated poly(arylene-ethynylene)-alt-poly(arylene-vinylene) copolymer acting as photocatalyst for visible-light-powered NAD⁺/NADH reduction.

    PubMed

    Oppelt, Kerstin T; Gasiorowski, Jacek; Egbe, Daniel Ayuk Mbi; Kollender, Jan Philipp; Himmelsbach, Markus; Hassel, Achim Walter; Sariciftci, Niyazi Serdar; Knör, Günther

    2014-09-10

    A 2,2'-bipyridyl-containing poly(arylene-ethynylene)-alt-poly(arylene-vinylene) polymer, acting as a light-harvesting ligand system, was synthesized and coupled to an organometallic rhodium complex designed for photocatalytic NAD(+)/NADH reduction. The material, which absorbs over a wide spectral range, was characterized by using various analytical techniques, confirming its chemical structure and properties. The dielectric function of the material was determined from spectroscopic ellipsometry measurements. Photocatalytic reduction of nucleotide redox cofactors under visible light irradiation (390-650 nm) was performed and is discussed in detail. The new metal-containing polymer can be used to cover large surface areas (e.g. glass beads) and, due to this immobilization step, can be easily separated from the reaction solution after photolysis. Because of its high stability, the polymer-based catalyst system can be repeatedly used under different reaction conditions for (photo)chemical reduction of NAD(+). With this concept, enzymatic, photo-biocatalytic systems for solar energy conversion can be facilitated, and the precious metal catalyst can be recycled. PMID:25130570

  1. Crystal structures of bis­[2-(pyridin-2-yl)phenyl-κ2 N,C 1]rhodium(III) complexes containing an aceto­nitrile or monodentate thyminate(1−) ligand

    PubMed Central

    Sakate, Mika; Hosoda, Haruka; Suzuki, Takayoshi

    2016-01-01

    The crystal structures of bis­[2-(pyridin-2-yl)phen­yl]rhodium(III) complexes with the metal in an octahedral coordination containing chloride and aceto­nitrile ligands, namely (OC-6-42)-aceto­nitrile­chlorido­bis­[2-(pyridin-2-yl)phenyl-κ2 N,C 1]rhodium(III), [RhCl(C11H8N)2(CH3CN)] (1), thyminate(1−) and methanol, namely (OC-6-42)-methanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydro­pyrimidin-1-ido-κN 1)bis­[2-(pyridin-2-yl)phenyl-κ2 N,C 1]rhodium(III), [Rh(C11H8N)2(C5H5N2O2)(CH3OH)]·CH3OH·0.5H2O (2), and thy­min­ate(1−) and ethanol, namely (OC-6-42)-ethanol(5-methyl-2,4-dioxo-1,2,3,4-tetra­hydro­pyrimidin-1-ido-κN 1)bis[2-(pyridin-2-yl)phenyl-κ2 N,C 1]rhodium(III), [Rh(C11H8N)2(C5H5N2O2)(C2H5OH)]·C2H5OH (3), are reported. The aceto­nitrile complex, 1, is isostructural with the IrIII analog. In complexes 2 and 3, the monodeprotonated thyminate (Hthym−) ligand coordinates to the RhIII atom through the N atom, and the resulting Rh—N(Hthym) bond lengths are relatively long [2.261 (2) and 2.252 (2) Å for 2 and 3, respectively] as compared to the Rh—N bonds in the related thyminate complexes. In each of the crystals of 2 and 3, the complexes are linked via a pair of inter­molecular N—H⋯O hydrogen bonds between neighbouring Hthym− ligands, forming an inversion dimer. A strong intra­molecular O—H⋯O hydrogen bond between the thyminate(1−) and alcohol ligands in mutually cis positions to each other is also observed. PMID:27375885

  2. Rhodium(III)-Catalyzed Tandem [2+2+2] Annulation-Lactamization of Anilides with Two Alkynoates via Cleavage of Two Adjacent C-H or C-H/C-O bonds.

    PubMed

    Fukui, Miho; Shibata, Yu; Hoshino, Yuki; Sugiyama, Haruki; Teraoka, Kota; Uekusa, Hidehiro; Noguchi, Keiichi; Tanaka, Ken

    2016-08-19

    An electron-deficient Cp(E) rhodium(III) complex bearing a cyclopentadienyl ligand with two ethyl ester substituents catalyzes the tandem [2+2+2] annulation-lactamization of acetanilides with two alkynoates via cleavage of adjacent two C-H bonds to give densely substituted benzo[cd]indolones. The reactions of meta-methoxy-substituted acetanilides with two alkynoates also provided benzo[cd]indolones via cleavage of adjacent C-H/C-O bonds. Furthermore, 3,5-dimethoxyacetanilides reacted with two alkynoates to give dearomatized spiro compounds. PMID:27412046

  3. Rhodium-catalyzed [5 + 2 + 1] cycloaddition of ene-vinylcyclopropanes and CO: reaction design, development, application in natural product synthesis, and inspiration for developing new reactions for synthesis of eight-membered carbocycles.

    PubMed

    Wang, Yi; Yu, Zhi-Xiang

    2015-08-18

    Practical syntheses of natural products and their analogues with eight-membered carbocyclic skeletons are important for medicinal and biological investigations. However, methods and strategies to construct the eight-membered carbocycles are limited. Therefore, developing new methods to synthesize the eight-membered carbocycles is highly desired. In this Account, we describe our development of three rhodium-catalyzed cycloadditions for the construction of the eight-membered carbocycles, which have great potential in addressing the challenges in the synthesis of medium-sized ring systems. The first reaction described in this Account is our computationally designed rhodium-catalyzed two-component [5 + 2 + 1] cycloaddition of ene-vinylcyclopropanes (ene-VCPs) and CO for the diastereoselective construction of bi- and tricyclic cyclooctenones. The design of this reaction is based on the hypothesis that the C(sp(3))-C(sp(3)) reductive elimination of the eight-membered rhodacycle intermediate generated from the rhodium-catalyzed cyclopropane cleavage and alkene insertion, giving Wender's [5 + 2] cycloadduct, is not easy. Under CO atmosphere, CO insertion may occur rapidly, converting the eight-membered rhodacycle into a nine-membered rhodacycle, which then undergoes an easy C(sp(2))-C(sp(3)) reductive elimination process and furnishes the [5 + 2 + 1] product. This hypothesis was supported by our preliminary DFT studies and also served as inspiration for the development of two [7 + 1] cycloadditions: the [7 + 1] cycloaddition of buta-1,3-dienylcyclopropanes (BDCPs) and CO for the construction of cyclooctadienones, and the benzo/[7 + 1] cycloaddition of cyclopropyl-benzocyclobutenes (CP-BCBs) and CO to synthesize the benzocyclooctenones. The efficiency of these rhodium-catalyzed cycloadditions can be revealed by the application in natural product synthesis. Two eight-membered ring-containing natural products, (±)-asterisca-3(15),6-diene and (+)-asteriscanolide, have been

  4. DFT calculations of 15N NMR shielding constants, chemical shifts and complexation shifts in complexes of rhodium(II) tetraformate with some nitrogenous organic ligands

    NASA Astrophysics Data System (ADS)

    Leniak, Arkadiusz; Jaźwiński, Jarosław

    2015-03-01

    Benchmark calculations of 15N NMR shielding constants for a set of model complexes of rhodium(II) tetraformate with nine organic ligands using the Density Functional Theory (DFT) methods have been carried out. The calculations were performed by means of several methods: the non-relativistic, relativistic scalar ZORA, and spin-orbit ZORA approaches at the CGA-PBE/QZ4P theory level, and the GIAO NMR method using the B3PW91 functional with the 6-311++G(2d,p) basis set for C, H, N, O atoms and the Stuttgart basis set for the Rh atom. The geometry of compounds was optimised either by the same basis set as for the NMR calculations or applying the B3LYP functional with the 6-31G(2d) basis set for C, H, N, O atoms and LANL2DZ for the Rh atom. Computed 15N NMR shielding constants σ were compatible with experimental 15N chemical shifts δ of complexes exhibiting similar structure and fulfil the linear equation δ = aσ + b. The a and b parameters for all data sets have been estimated by means of linear regression analysis. In contrast to the correlation method giving "scaled" chemical shifts, the conversion of shielding constants to chemical shifts with respect to the reference shielding of CH3NO2 provided very inaccurate "raw" δ values. The application of the former to the calculation of complexation shifts Δδ (Δδ = δcompl - δlig) reproduced experimental values qualitatively or semi-quantitatively. The non-relativistic B3PW91/[6-311++G(2d,p), Stuttgart] theory level reproduced the NMR parameters as good as the more expensive relativistic CGA-PBE//QZ4P ZORA approaches.

  5. Electrocatalytic oxidation of glucose by rhodium porphyrin-functionalized MWCNT electrodes: application to a fully molecular catalyst-based glucose/O2 fuel cell.

    PubMed

    Elouarzaki, Kamal; Le Goff, Alan; Holzinger, Michael; Thery, Jessica; Cosnier, Serge

    2012-08-29

    This paper details the electrochemical investigation of a deuteroporphyrin dimethylester (DPDE) rhodium(III) ((DPDE)Rh(III)) complex, immobilized within a MWCNT/Nafion electrode, and its integration into a molecular catalysis-based glucose fuel cell. The domains of present (DPDE)Rh(I), (DPDE)Rh-H, (DPDE)Rh(II), and (DPDE)Rh(III) were characterized by surface electrochemistry performed at a broad pH range. The Pourbaix diagrams (plots of E(1/2) vs pH) support the stability of (DPDE)Rh(II) at intermediate pH and the predominance of the two-electron redox system (DPDE)Rh(I)/(DPDE)Rh(III) at both low and high pH. This two-electron system is especially involved in the electrocatalytic oxidation of alcohols and was applied to the glucose oxidation. The catalytic oxidation mechanism exhibits an oxidative deactivation coupled with a reductive reactivation mechanism, which has previously been observed for redox enzymes but not yet for a metal-based molecular catalyst. The MWCNT/(DPDE)Rh(III) electrode was finally integrated in a novel design of an alkaline glucose/O(2) fuel cell with a MWCNT/phthalocyanin cobalt(II) (CoPc) electrode for the oxygen reduction reaction. This nonenzymatic molecular catalysis-based glucose fuel cell exhibits a power density of P(max) = 0.182 mW cm(-2) at 0.22 V and an open circuit voltage (OCV) of 0.64 V. PMID:22816654

  6. Biological availability of traffic-related platinum-group elements (palladium, platinum, and rhodium) and other metals to the zebra mussel (Dreissena polymorpha) in water containing road dust.

    PubMed

    Zimmermann, Sonja; Alt, Friedrich; Messerschmidt, Jürgen; von Bohlen, Alex; Taraschewski, Horst; Sures, Bernd

    2002-12-01

    The uptake and bioaccumulation of 15 road dust metals by the zebra mussel (Dreissena polymorpha) were investigated in laboratory exposure studies with emphasis on the traffic-related platinum-group elements (PGEs) palladium (Pd), platinum (Pt), and rhodium (Rh). The biological availability of the metals may depend on water characteristics, so the mussels were maintained in two types of water: nonchlorinated tap water and humic water of a bog lake, both of which contained dust of a moderately frequented road. After an exposure period of 26 weeks, soft tissues of the mussels were freeze-dried and analyzed for the metals. The metal concentrations in the mussel soft tissue ranged from several hundred micrograms per gram (e.g., for iron [Fe]) to less than 10 ng/g (for PGEs). Metal uptake from the road dust by the mussels was found for the PGEs and silver (Ag), bismuth (Bi), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), Fe, lead (Pb), and antimony (Sb). After maintenance of mussels in road dust-contaminated tap water, bioaccumulation factors (BAF = (C(exposed mussels) - C(control mussels))/C(total metal, water), where c is concentration) decreased in the following order: Cu > Cd > Ag > Pd > Sb > Pb > Fe > Pt > Rh. The biological availability of most metals was enhanced by humic water as compared to tap water. Our results show a hitherto unrecognized high availability of Pd for the mussels. Thus, this metal should be monitored more intensively in the environment to assess its distribution in the biosphere. PMID:12463569

  7. Synthesis of rhodium(III) complexes with tris/tetrakis-benzimidazoles and benzothiazoles--quick identification of cyclometallation by nuclear magnetic resonance spectroscopy.

    PubMed

    Chandrashekhar, N; Gayathri, V; Nanje Gowda, N M

    2009-08-01

    Reactions of rhodium(III) halides with multidentate N,S-heterocycles, (LH3) 1,3,5-tris(benzimidazolyl)benzene (L1H3; 1), 1,3,5-tris(N-methylbenzimidazolyl) benzene (L2H3; 2) and 1,3,5-tris(benzothiazolyl)benzene (L3H3; 3), in the molar ratio 1:1 in methanol-chloroform produced mononuclear cyclometallated products of the composition [RhX2(LH2)(H2O)] (X = Cl, Br, I; LH2 = L1H2, L2H2, L3H2). When the metal to ligand (1-3 or 1,2,4,5-tetrakis(benzothiazolyl)benzene [L4H2; 4]) molar ratio was 2:1, the reactions yielded binuclear complexes of the compositions [Rh2Cl5(LH2)(H2O)3] (LH2 = L1H2, L2H2, L3H2) and [Rh2X4(L4)(H2O)2] (X = Cl, Br, I). Elemental analysis, IR and 1H nuclear magnetic resonance (NMR) chemical shifts supported the binuclear nature of the complexes. Cyclometallation was detected by conventional 13C NMR spectra that showed a doublet around approximately 190 ppm. Cyclometallation was also detected by gradient-enhanced heteronuclear multiple bond correlation (g-HMBC) experiment that showed cross-peaks between the cyclometallated carbon and the central benzene ring protons of 1-3. Cyclometallation was substantiated by two-dimensional 1H-1H correlated experiments (gradient-correlation spectroscopy and rotating frame Overhauser effect spectroscopy) and 1H-13C single bond correlated two-dimensional NMR experiments (gradient-enhanced heteronuclear single quantum coherence). The 1H-15N g-HMBC experiment suggested the coordination of the heterocycles to the metal ion via tertiary nitrogen. PMID:19444858

  8. Rhodium-Catalyzed Enantioselective Intermolecular Hydroalkoxylation of Allenes and Alkynes with Alcohols: Synthesis of Branched Allylic Ethers.

    PubMed

    Liu, Zi; Breit, Bernhard

    2016-07-11

    Regio- and enantioselective additions of alcohols to either terminal allenes or internal alkynes provides access to allylic ethers by using a Rh(I) /diphenyl phosphate catalytic system. This method provides an atom-economic way to obtain chiral aliphatic and aryl allylic ethers in moderate to good yield with good to excellent enantioselectivities. PMID:27244349

  9. Incorporation of additives into polymers

    DOEpatents

    McCleskey, T. Mark; Yates, Matthew Z.

    2003-07-29

    There has been invented a method for incorporating additives into polymers comprising: (a) forming an aqueous or alcohol-based colloidal system of the polymer; (b) emulsifying the colloidal system with a compressed fluid; and (c) contacting the colloidal polymer with the additive in the presence of the compressed fluid. The colloidal polymer can be contacted with the additive by having the additive in the compressed fluid used for emulsification or by adding the additive to the colloidal system before or after emulsification with the compressed fluid. The invention process can be carried out either as a batch process or as a continuous on-line process.

  10. Evaluation of alternative chemical additives for high-level waste vitrification feed preparation processing

    SciTech Connect

    Seymour, R.G.

    1995-06-07

    During the development of the feed processing flowsheet for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), research had shown that use of formic acid (HCOOH) could accomplish several processing objectives with one chemical addition. These objectives included the decomposition of tetraphenylborate, chemical reduction of mercury, production of acceptable rheological properties in the feed slurry, and controlling the oxidation state of the glass melt pool. However, the DEPF research had not shown that some vitrification slurry feeds had a tendency to evolve hydrogen (H{sub 2}) and ammonia (NH{sub 3}) as the result of catalytic decomposition of CHOOH with noble metals (rhodium, ruthenium, palladium) in the feed. Testing conducted at Pacific Northwest Laboratory and later at the Savannah River Technical Center showed that the H{sub 2} and NH{sub 3} could evolve at appreciable rates and quantities. The explosive nature of H{sub 2} and NH{sub 3} (as ammonium nitrate) warranted significant mitigation control and redesign of both facilities. At the time the explosive gas evolution was discovered, the DWPF was already under construction and an immediate hardware fix in tandem with flowsheet changes was necessary. However, the Hanford Waste Vitrification Plant (HWVP) was in the design phase and could afford to take time to investigate flowsheet manipulations that could solve the problem, rather than a hardware fix. Thus, the HWVP began to investigate alternatives to using HCOOH in the vitrification process. This document describes the selection, evaluation criteria, and strategy used to evaluate the performance of the alternative chemical additives to CHOOH. The status of the evaluation is also discussed.

  11. Synthesis, structure, and reductive elimination in the series Tp'Rh(PR3)(Ar(F))H; determination of rhodium-carbon bond energies of fluoroaryl substituents.

    PubMed

    Tanabe, Taro; Brennessel, William W; Clot, Eric; Eisenstein, Odile; Jones, William D

    2010-11-21

    A series of complexes of the type Tp'Rh(PR(3))(Ar(F))H, where PR(3) = PMe(3) (3) and PMe(2)Ph (9), Ar(F) = C(6)F(5) (a), 2,3,4,5-C(6)F(4)H (b), 2,3,5,6-C(6)F(4)H (c), 2,4,6-C(6)F(3)H(2) (d), 2,3-C(6)F(2)H(3) (e), 2,5-C(6)F(2)H(3) (g), and 2-C(6)FH(4) (h) and Tp' = tris(3,5-dimethylpyrazolyl)borate, has been synthesized as stable crystalline compounds by the reactions of the [Tp'Rh(PR(3))] fragment with the corresponding fluorinated aromatic hydrocarbons, and their structures were characterized by NMR spectroscopy and elemental analysis together with X-ray crystallography. The kinetics of the reductive eliminations of fluoroarenes from complexes 3a-h in benzene-d(6) solutions at 140 °C were investigated, but were complicated by the formation of the rhodium(I) bisphosphine complex, Tp'Rh(PMe(3))(2) (4). On the other hand, thermal reactions of (9) in THF-d(8) solutions at 120 °C resulted in the formation of an intramolecular C-H bond activated complex of the phenyl group on the phosphorus atom, Tp'Rh(κ(2)-C(6)H(4)-2-PMe(2))H (7), which prevents the formation of the corresponding bisphosphine complex. The experimentally determined rates of the reductive eliminations of fluoroarenes from the complexes 9a-h and their kinetic selectivities for formation in competition with the metallacycle have been used to determine relative Rh-CAr(F) bond energies. The Rh-CAr(F) bond energy is found to be dependent on the number of ortho fluorines. A plot of Rh-CAr(F) vs. C-H bond strengths resulted in a line with a slope R(M-C/C-H) of 2.15 that closely matches the DFT calculated value (slope = 2.05). PMID:20924525

  12. Comparative solution equilibrium studies on pentamethylcyclopentadienyl rhodium complexes of 2,2'-bipyridine and ethylenediamine and their interaction with human serum albumin.

    PubMed

    Enyedy, Éva A; Mészáros, János P; Dömötör, Orsolya; Hackl, Carmen M; Roller, Alexander; Keppler, Bernhard K; Kandioller, Wolfgang

    2015-11-01

    Complex formation equilibrium processes of the (N,N) donor containing 2,2'-bipyridine (bpy) and ethylenediamine (en) with (η(5)-pentamethylcyclopentadienyl)rhodium(III) were investigated in aqueous solution via pH-potentiometry, (1)H NMR spectroscopy, and UV-vis spectrophotometry in the absence and presence of chloride ions. The structure of [RhCp*(en)Cl]ClO4 (Cp*, pentamethylcyclopentadienyl) was also studied by single-crystal X-ray diffraction. pKa values of 8.56 and 9.58 were determined for [RhCp*(bpy)(H2O)](2+) and [RhCp*(en)(H2O)](2+), respectively resulting in the formation of negligible amount of mixed hydroxido complexes at pH 7.4. Stability and the H2O/Cl(-) co-ligand exchange constants of bpy and en complexes considerably exceed those of the bidentate O-donor deferiprone. The strong affinity of the bpy and en complexes to chloride ions most probably contributes to their low antiproliferative effect. Interactions between human serum albumin (HSA) and [RhCp*(H2O)3](2+), its complexes formed with deferiprone, bpy and en were also monitored by (1)H NMR spectroscopy, ultrafiltration/UV-vis and spectrofluorometry. Numerous binding sites (≥ 8) are available for [RhCp*(H2O)3](2+); and the interaction takes place most probably via covalent bonds through the imidazole nitrogen of His. According to the various fluorescence studies [RhCp*(H2O)3](2+) binds on sites I and II, and coordination of surface side chain donor atoms of the protein is also feasible. The binding of the bpy and en complex is weaker and slower compared to that of [RhCp*(H2O)3](2+), and formation of ternary HSA-RhCp*-ligand adducts was proved. In the case of the deferiprone complex, the RhCp* fragment is cleaved off when HSA is loaded with low equivalents of the compound. PMID:26364131

  13. Deciphering the roles of multiple additives in organocatalyzed Michael additions.

    PubMed

    Günler, Z Inci; Companyó, Xavier; Alfonso, Ignacio; Burés, Jordi; Jimeno, Ciril; Pericàs, Miquel A

    2016-05-21

    The synergistic effects of multiple additives (water and acetic acid) on the asymmetric Michael addition of acetone to nitrostyrene catalyzed by primary amine-thioureas (PAT) were precisely determined. Acetic acid facilitates hydrolysis of the imine intermediates, thus leading to catalytic behavior, and minimizes the formation of the double addition side product. In contrast, water slows down the reaction but minimizes catalyst deactivation, eventually leading to higher final yields. PMID:27128165

  14. A Rhodium-Pentane Sigma-Alkane Complex: Characterization in the Solid State by Experimental and Computational Techniques.

    PubMed

    Chadwick, F Mark; Rees, Nicholas H; Weller, Andrew S; Krämer, Tobias; Iannuzzi, Marcella; Macgregor, Stuart A

    2016-03-01

    The pentane σ-complex [Rh{Cy2 P(CH2 CH2 )PCy2 }(η(2) :η(2) -C5 H12 )][BAr(F) 4 ] is synthesized by a solid/gas single-crystal to single-crystal transformation by addition of H2 to a precursor 1,3-pentadiene complex. Characterization by low temperature single-crystal X-ray diffraction (150 K) and SSNMR spectroscopy (158 K) reveals coordination through two Rh⋅⋅⋅H-C interactions in the 2,4-positions of the linear alkane. Periodic DFT calculations and molecular dynamics on the structure in the solid state provide insight into the experimentally observed Rh⋅⋅⋅H-C interaction, the extended environment in the crystal lattice and a temperature-dependent pentane rearrangement implicated by the SSNMR data. PMID:26880330

  15. Enantioselective Michael Addition of Water

    PubMed Central

    Chen, Bi-Shuang; Resch, Verena; Otten, Linda G; Hanefeld, Ulf

    2015-01-01

    The enantioselective Michael addition using water as both nucleophile and solvent has to date proved beyond the ability of synthetic chemists. Herein, the direct, enantioselective Michael addition of water in water to prepare important β-hydroxy carbonyl compounds using whole cells of Rhodococcus strains is described. Good yields and excellent enantioselectivities were achieved with this method. Deuterium labeling studies demonstrate that a Michael hydratase catalyzes the water addition exclusively with anti-stereochemistry. PMID:25529526

  16. Gasoline additives, emissions, and performance

    SciTech Connect

    1995-12-31

    The papers included in this publication deal with the influence of fuel, additive, and hardware changes on a variety of vehicle performance characteristics. Advanced techniques for measuring these performance parameters are also described. Contents include: Fleet test evaluation of gasoline additives for intake valve and combustion chamber deposit clean up; A technique for evaluating octane requirement additives in modern engines on dynamometer test stands; A fleet test of two additive technologies comparing their effects on tailpipe emissions; Investigation into the vehicle exhaust emissions of high percentage ethanol blends; Variability in hydrocarbon speciation measurements at low emission (ULEV) levels; and more.

  17. Permeation of iridium(IV) and metal impurity chlorocomplexes through a supported liquid membrane designed for rhodium separation

    SciTech Connect

    Ashrafizadeh, S.N.; Demopoulos, G.P.; Rovira, M.; Sastre, A.M.

    1998-06-01

    A supported liquid membrane (SLM) system previously designed for Rh separation has been examined for its capability to reject the metal impurities which are commonly encountered in industrial Rh chloride solutions. Special attention was paid to Ir(IV) chlorocomplexes and their extraction/transport behavior against both conventional solvent extraction and supported liquid membrane systems of Kelex 100. A lab-scale SLM cell with an effective membrane area of 44 cm{sup 2} was used to conduct the SLM permeation tests. The SLM was composed of a Gore-Tex polymer substrate impregnated with an organic solution of Kelex 100, tridecanol, and kerosene. The impurities tested [in addition to Ir(IV)] were AG(I), As(V), Bi(III), Cd(II), Co(II), Cu(II), Fe(III), Ni(II), Pb(II), Pd(II), Pt(IV), Se(IV), Te(IV), and Zn(II). These impurities, based on their response against the SLM, were classified into three groups, i.e., those permeated through [Zn(II), Pb(II), Cd(II), Bi(III), Te(IV), and Ir(IV)], those nonpermeated at all [Ni(II), Co(II), As(V), Se(IV), Cu(II), and Fe(III)], and those blocking the membrane [Pt(IV), Pd(II), Ag(I), Pb(II), and Bi(III)]. The SLM was not capable of discriminating between Rh(III) and Ir(IV) transport at the optimum operating conditions. Complementary upstream and downstream processes are required to separate the impurities from the feed and the product solutions, respectively. Overall, this work revealed the great limitations of SLMs as effective and potentially useful separation media for the extraction of metals from industrial-like multicomponent aqueous feed solutions.

  18. Improved catalytic activity of rhodium monolayer modified nickel (110) surface for the methane dehydrogenation reaction: a first-principles study

    NASA Astrophysics Data System (ADS)

    Bothra, Pallavi; Pati, Swapan K.

    2014-05-01

    The catalytic activity of pure Ni (110) and single Rh layer deposited Ni (110) surface for the complete dehydrogenation of methane is theoretically investigated by means of gradient-corrected periodic density functional theory. A detailed kinetic study, based on the analysis of the optimal reaction pathway for the transformation of CH4 to C and H through four elementary steps (CH4 --> CH3 + H; CH3 --> CH2 + H; CH2 --> CH + H; CH -->C + H) is presented for pure Ni (110) and Rh/Ni (110) surfaces and compared with pure Rh (110) surface. Through systematic examination of adsorbed geometries and transition states, we show that single layer deposition of Rh on Ni (110) surface has a striking influence on lowering the activation energy barrier of the dehydrogenation reaction. Moreover, it is found that a pure Ni (110) surface has a tendency for carbon deposition on the catalytic surface during the methane dissociation reaction which decreases the stability of the catalyst. However, the deposition of carbon is largely suppressed by the addition of a Rh overlayer on the pure Ni (110) surface. The physical origin of stronger chemisorption of carbon on Ni (110) relative to Rh/Ni (110) has been elucidated by getting insight into the electronic structures and d-band model of the catalytic surfaces. Considering the balance in both the catalytic activity as well as the catalyst stability, we propose that the Rh/Ni (110) surface possesses much improved catalytic property compared to pure Ni (110) and pure Rh (110) surfaces.

  19. Color Addition and Subtraction Apps

    ERIC Educational Resources Information Center

    Ruiz, Frances; Ruiz, Michael J.

    2015-01-01

    Color addition and subtraction apps in HTML5 have been developed for students as an online hands-on experience so that they can more easily master principles introduced through traditional classroom demonstrations. The evolution of the additive RGB color model is traced through the early IBM color adapters so that students can proceed step by step…

  20. 75 FR 27313 - Proposed Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED PROCUREMENT LIST Proposed Additions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed additions to the... or Severely Disabled, Jefferson Plaza 2, Suite 10800, 1421 Jefferson Davis Highway,...

  1. A rapid and practical strategy for the determination of platinum, palladium, ruthenium, rhodium, iridium and gold in large amounts of ultrabasic rock by inductively coupled plasma optical emission spectrometry combined with ultrasound extraction

    NASA Astrophysics Data System (ADS)

    Zhang, Gai; Tian, Min

    2015-04-01

    This proposed method regulated the determination of platinum, palladium, ruthenium, rhodium, iridium and gold in platinum-group ores by nickel sulfide fire assay—inductively coupled plasma optical emission spectrometry (ICP-OES) combined with ultrasound extraction for the first time. The quantitative limits were 0.013-0.023μg/g. The samples were fused to separate the platinum-group elements from matrix. The nickel sulfide button was then dissolved with hydrochloric acid and the insoluble platinum-group sulfide residue was dissolved with aqua regia by ultrasound bath and finally determined by ICP-OES. The proposed method has been applied into the determination of platinum-group element and gold in large amounts of ultrabasic rocks from the Great Dyke of Zimbabwe.

  2. Rhodium-catalyzed cascade oxidative annulation leading to substituted naphtho[1,8-bc]pyrans by sequential cleavage of C(sp2)-H/C(sp3)-H and C(sp2)-H/O-H bonds.

    PubMed

    Tan, Xing; Liu, Bingxian; Li, Xiangyu; Li, Bin; Xu, Shansheng; Song, Haibin; Wang, Baiquan

    2012-10-01

    The cascade oxidative annulation reactions of benzoylacetonitrile with internal alkynes proceed efficiently in the presence of a rhodium catalyst and a copper oxidant to give substituted naphtho[1,8-bc]pyrans by sequential cleavage of C(sp(2))-H/C(sp(3))-H and C(sp(2))-H/O-H bonds. These cascade reactions are highly regioselective with unsymmetrical alkynes. Experiments reveal that the first-step reaction proceeds by sequential cleavage of C(sp(2))-H/C(sp(3))-H bonds and annulation with alkynes, leading to 1-naphthols as the intermediate products. Subsequently, 1-naphthols react with alkynes by cleavage of C(sp(2))-H/O-H bonds, affording the 1:2 coupling products. Moreover, some of the naphtho[1,8-bc]pyran products exhibit intense fluorescence in the solid state. PMID:22989331

  3. Water-soluble organometallic compounds. 2. Catalytic hydrogenation of aldehydes and olefins by new water-soluble 1,3,5-Triaza-7-phosphaadamantane complexes of ruthenium and rhodium

    SciTech Connect

    Darensbourg, D.J.

    1992-06-01

    The authors describe the chemical preparation of water-soluble phosphine complexes of ruthenium (II) and rhodium (I). The complex RuCl{sub 2}(PTA){sub 4} (2a) and its protonated analog RuCl{sub 2}(PTA){sub 4}{center_dot} 2HCl (2b) and the cis-bis-(phosphine) complex RhCl(PTA){sub 2}{center_dot} 2HCl, derived form the protonation of RhCl(PTA){sub 3} by HCl were characterized by X-ray crystallography. 2a is catalytically active for the conversion of unsaturated aldehydes to unsaturated alcohols and RhCl(PTA){sub 3} catalyzes olefin hydrogenation. 14 refs., 2 figs., 1 tab.

  4. 2-(Methylamido)pyridine-Borane: A Tripod κ(3)-N,H,H Ligand in Trigonal Bipyramidal Rhodium(I) and Iridium(I) Complexes with an Asymmetric Coordination of Its BH3 Group.

    PubMed

    Brugos, Javier; Cabeza, Javier A; García-Álvarez, Pablo; Kennedy, Alan R; Pérez-Carreño, Enrique; Van der Maelen, Juan F

    2016-09-01

    The complexes [M(κ(3)-N,H,H-mapyBH3)(cod)] (M = Rh, Ir; HmapyBH3 = 2-(methylamino)pyridine-borane; cod = 1,5-cyclooctadiene), which contain a novel anionic tripod ligand coordinated to the metal atom through the amido N atom and through two H atoms of the BH3 group, were prepared by treating the corresponding [M2(μ-Cl)2(cod)2] (M = Rh, Ir) precursor with K[mapyBH3]. X-ray diffraction studies and a theoretical Quantum Theory of Atoms in Molecules analysis of their electron density confirmed that the metal atoms of both complexes are in a very distorted trigonal bipyramidal coordination environment, in which two equatorial sites are asymmetrically spanned by the H-B-H fragment. While both 3c-2e BH-M interactions are more κ(1)-H (terminal σ coordination of the B-H bond) than κ(2)-H,B (agostic-type coordination of the B-H bond), one BH-M interaction is more agostic than the other, and this difference is more marked in the iridium complex than in the rhodium one. This asymmetry is not evident in solution, where the cod ligand and the BH3 group of these molecules participate in two concurrent dynamic processes of low activation energies (variable-temperature NMR and density functional theory studies), namely, a rotation of the cod ligand that interchanges its two alkene fragments (through a square pyramidal transition state) and a rotation of the BH3 group about the B-N bond that equilibrates the three B-H bonds (through a square planar transition state). While the cod rotation has similar activation energy in 2 and 3, the barrier to the BH3 group rotation is higher in the iridium complex than in the rhodium one. PMID:27518763

  5. Color Addition and Subtraction Apps

    NASA Astrophysics Data System (ADS)

    Ruiz, Frances; Ruiz, Michael J.

    2015-10-01

    Color addition and subtraction apps in HTML5 have been developed for students as an online hands-on experience so that they can more easily master principles introduced through traditional classroom demonstrations. The evolution of the additive RGB color model is traced through the early IBM color adapters so that students can proceed step by step in understanding mathematical representations of RGB color. Finally, color addition and subtraction are presented for the X11 colors from web design to illustrate yet another real-life application of color mixing.

  6. Calculators and Computers: Graphical Addition.

    ERIC Educational Resources Information Center

    Spero, Samuel W.

    1978-01-01

    A computer program is presented that generates problem sets involving sketching graphs of trigonometric functions using graphical addition. The students use calculators to sketch the graphs and a computer solution is used to check it. (MP)

  7. Polyolefins as additives in plastics

    SciTech Connect

    Deanin, R.D.

    1993-12-31

    Polyolefins are not only major commodity plastics - they are also very useful as additives, both in other polyolefins and also in other types of plastics. This review covers ethylene, propylene, butylene and isobutylene polymers, in blends with each other, and as additives to natural rubber, styrene/butadiene rubber, polystyrene, polyvinyl chloride, polymethyl methacrylate, polyphenylene oxide, polycarbonate, thermoplastic polyesters, polyurethanes, polyamides, and mixed automotive plastics recycling.

  8. ADDITIVITY ASSESSMENT OF TRIHALOMETHANE MIXTURES BY PROPORTIONAL RESPONSE ADDITION

    EPA Science Inventory

    If additivity is known or assumed, the toxicity of a chemical mixture may be predicted from the dose response curves of the individual chemicals comprising the mixture. As single chemical data are abundant and mixture data sparse, mixture risk methods that utilize single chemical...

  9. [INVITED] Lasers in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Pinkerton, Andrew J.

    2016-04-01

    Additive manufacturing is a topic of considerable ongoing interest, with forecasts predicting it to have major impact on industry in the future. This paper focusses on the current status and potential future development of the technology, with particular reference to the role of lasers within it. It begins by making clear the types and roles of lasers in the different categories of additive manufacturing. This is followed by concise reviews of the economic benefits and disadvantages of the technology, current state of the market and use of additive manufacturing in different industries. Details of these fields are referenced rather than expanded in detail. The paper continues, focusing on current indicators to the future of additive manufacturing. Barriers to its development, trends and opportunities in major industrial sectors, and wider opportunities for its development are covered. Evidence indicates that additive manufacturing may not become the dominant manufacturing technology in all industries, but represents an excellent opportunity for lasers to increase their influence in manufacturing as a whole.

  10. Evaluation of certain food additives.

    PubMed

    2015-01-01

    This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives, including flavouring agents, and to prepare specifications for identity and purity. The first part of the report contains a general discussion of the principles governing the toxicological evaluation of and assessment of dietary exposure to food additives, including flavouring agents. A summary follows of the Committee's evaluations of technical, toxicological and dietary exposure data for eight food additives (Benzoe tonkinensis; carrageenan; citric and fatty acid esters of glycerol; gardenia yellow; lutein esters from Tagetes erecta; octenyl succinic acid-modified gum arabic; octenyl succinic acid-modified starch; paprika extract; and pectin) and eight groups of flavouring agents (aliphatic and alicyclic hydrocarbons; aliphatic and aromatic ethers; ionones and structurally related substances; miscellaneous nitrogen-containing substances; monocyclic and bicyclic secondary alcohols, ketones and related esters; phenol and phenol derivatives; phenyl-substituted aliphatic alcohols and related aldehydes and esters; and sulfur-containing heterocyclic compounds). Specifications for the following food additives were revised: citric acid; gellan gum; polyoxyethylene (20) sorbitan monostearate; potassium aluminium silicate; and Quillaia extract (Type 2). Annexed to the report are tables summarizing the Committee's recommendations for dietary exposures to and toxicological evaluations of all of the food additives and flavouring agents considered at this meeting. PMID:26118220

  11. Manipulating crystallization with molecular additives.

    PubMed

    Shtukenberg, Alexander G; Lee, Stephanie S; Kahr, Bart; Ward, Michael D

    2014-01-01

    Given the importance of organic crystals in a wide range of industrial applications, the chemistry, biology, materials science, and chemical engineering communities have focused considerable attention on developing methods to control crystal structure, size, shape, and orientation. Tailored additives have been used to control crystallization to great effect, presumably by selectively binding to particular crystallographic surfaces and sites. However, substantial knowledge gaps still exist in the fundamental mechanisms that govern the formation and growth of organic crystals in both the absence and presence of additives. In this review, we highlight research discoveries that reveal the role of additives, either introduced by design or present adventitiously, on various stages of formation and growth of organic crystals, including nucleation, dislocation spiral growth mechanisms, growth inhibition, and nonclassical crystal morphologies. The insights from these investigations and others of their kind are likely to guide the development of innovative methods to manipulate crystallization for a wide range of materials and applications. PMID:24579880

  12. Additive Manufacturing of Hybrid Circuits

    NASA Astrophysics Data System (ADS)

    Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David; Hirschfeld, Deidre; Hall, Aaron C.; Bell, Nelson S.

    2016-07-01

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects. Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. Finally, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.

  13. Tougher Addition Polyimides Containing Siloxane

    NASA Technical Reports Server (NTRS)

    St. Clair, T. L.; Maudgal, S.

    1986-01-01

    Laminates show increased impact resistances and other desirable mechanical properties. Bismaleamic acid extended by reaction of diaminosiloxane with maleic anhydride in 1:1 molar ratio, followed by reaction with half this molar ratio of aromatic dianhydride. Bismaleamic acid also extended by reaction of diaminosiloxane with maleic anhydride in 1:2 molar ratio, followed by reaction with half this molar ratio of aromatic diamine (Michael-addition reaction). Impact resistances improved over those of unmodified bismaleimide, showing significant increase in toughness. Aromatic addition polyimides developed as both matrix and adhesive resins for applications on future aircraft and spacecraft.

  14. Promoting Additive Acculturation in Schools.

    ERIC Educational Resources Information Center

    Gibson, Margaret A.

    1995-01-01

    A study focusing on 113 ninth graders of Mexican descent indicates that most students and their parents adhere to a strategy of additive acculturation (incorporating skills of the new culture and language), but that the school curriculum and general school climate devalue Mexican culture. (SLD)

  15. Individualized Additional Instruction for Calculus

    ERIC Educational Resources Information Center

    Takata, Ken

    2010-01-01

    College students enrolling in the calculus sequence have a wide variance in their preparation and abilities, yet they are usually taught from the same lecture. We describe another pedagogical model of Individualized Additional Instruction (IAI) that assesses each student frequently and prescribes further instruction and homework based on the…

  16. Out of bounds additive manufacturing

    SciTech Connect

    Holshouser, Chris; Newell, Clint; Palas, Sid; Love, Lonnie J.; Kunc, Vlastimil; Lind, Randall F.; Lloyd, Peter D.; Rowe, John C.; Blue, Craig A.; Duty, Chad E.; Peter, William H.; Dehoff, Ryan R.

    2013-03-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  17. The Additive Property of Energy.

    ERIC Educational Resources Information Center

    Tsaoussis, Dimitris S.

    1995-01-01

    Presents exercises that analyze the additive property of energy. Concludes that if a body has more than one component of energy depending on the same physical quantity, the body's total energy will be the algebraic sum of the components if a linear relationship exists between the energy components and that physical quantity. (JRH)

  18. Tinkertoy Color-Addition Device.

    ERIC Educational Resources Information Center

    Ferguson, Joe L.

    1995-01-01

    Describes construction and use of a simple home-built device, using an overhead projector, for use in demonstrations of the addition of various combinations of red, green, and blue light. Useful in connection with discussions of color, color vision, or color television. (JRH)

  19. Silage Additives and Management Issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inoculants are the most common silage additives in the United States. These products contain lactic acid bacteria to supplement the lactic acid bacteria naturally on the crop and help insure a consistent fermentation in the silo. There are three types of inoculants: homofermentative lactic acid bact...

  20. Tetrasulfide extreme pressure lubricant additives

    SciTech Connect

    Gast, L.E.; Kenney, H.E.; Schwab, A.W.

    1980-08-19

    A novel class of compounds has been prepared comprising the tetrasulfides of /sup 18/C hydrocarbons, /sup 18/C fatty acids, and /sup 18/C fatty and alkyl and triglyceride esters. These tetrasulfides are useful as extreme pressure lubricant additives and show potential as replacements for sulfurized sperm whale oil.

  1. Evaluation of certain food additives.

    PubMed

    2012-01-01

    This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives, including flavouring agents, with a view to concluding as to safety concerns and to preparing specifications for identity and purity. The first part of the report contains a general discussion of the principles governing the toxicological evaluation of and assessment of dietary exposure to food additives, including flavouring agents. A summary follows of the Committee's evaluations of technical, toxicological and dietary exposure data for five food additives (magnesium dihydrogen diphosphate; mineral oil (medium and low viscosity) classes II and III; 3-phytase from Aspergillus niger expressed in Aspergillus niger; serine protease (chymotrypsin) from Nocardiopsis prasina expressed in Bacillus licheniformis; and serine protease (trypsin) from Fusarium oxysporum expressed in Fusarium venenatum) and 16 groups of flavouring agents (aliphatic and aromatic amines and amides; aliphatic and aromatic ethers; aliphatic hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids and related esters, sulfides, disulfides and ethers containing furan substitution; aliphatic linear alpha,beta-unsaturated aldehydes, acids and related alcohols, acetals and esters; amino acids and related substances; epoxides; furfuryl alcohol and related substances; linear and branched-chain aliphatic, unsaturated, unconjugated alcohols, aldehydes, acids and related esters; miscellaneous nitrogen-containing substances; phenol and phenol derivatives; pyrazine derivatives; pyridine, pyrrole and quinoline derivatives; saturated aliphatic acyclic branched-chain primary alcohols, aldehydes and acids; simple aliphatic and aromatic sulfides and thiols; sulfur-containing heterocyclic compounds; and sulfur-substituted furan derivatives). Specifications for the following food additives were revised: ethyl cellulose, mineral oil (medium viscosity), modified starches and titanium

  2. Decontamination formulation with sorbent additive

    DOEpatents

    Tucker; Mark D. , Comstock; Robert H.

    2007-10-16

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  3. Robust stability under additive perturbations

    NASA Technical Reports Server (NTRS)

    Bhaya, A.; Desoer, C. A.

    1985-01-01

    A MIMO linear time-invariant feedback system 1S(P,C) is considered which is assumed to be U-stable. The plant P is subjected to an additive perturbation Delta P which is proper but not necessarily stable. It is proved that the perturbed system is U-stable if and only if Delta P(I + Q x Delta P) exp -1 is U-stable.

  4. Additive manufacturing of hybrid circuits

    DOE PAGESBeta

    Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David M.; Hirschfeld, Deidre; Hall, Aaron Christopher

    2016-03-26

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less

  5. Evaluation of certain food additives.

    PubMed

    2009-01-01

    This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives, including flavouring agents, with a view to recommending acceptable daily intakes (ADIs) and to preparing specifications for identity and purity. The first part of the report contains a general discussion of the principles governing the toxicological evaluation and assessment of intake of food additives (in particular, flavouring agents). A summary follows of the Committee's evaluations of technical, toxicological and intake data for certain food additives (asparaginase from Aspergillus niger expressed in A. niger, calcium lignosulfonate (40-65), ethyl lauroyl arginate, paprika extract, phospholipase C expressed in Pichia pastoris, phytosterols, phytostanols and their esters, polydimethylsiloxane, steviol glycosides and sulfites [assessment of dietary exposure]) and 10 groups of related flavouring agents (aliphatic branched-chain saturated and unsaturated alcohols, aldehydes, acids and related esters; aliphatic linear alpha,beta-unsaturated aldehydes, acids and related alcohols, acetals and esters; aliphatic secondary alcohols, ketones and related esters; alkoxy-substituted allylbenzenes present in foods and essential oils and used as flavouring agents; esters of aliphatic acyclic primary alcohols with aliphatic linear saturated carboxylic acids; furan-substituted aliphatic hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids and related esters, sulfides, disulfides and ethers; miscellaneous nitrogen-containing substances; monocyclic and bicyclic secondary alcohols, ketones and related esters; hydroxy- and alkoxy-substituted benzyl derivatives; and substances structurally related to menthol). Specifications for the following food additives were revised: canthaxanthin; carob bean gum and carob bean gum (clarified); chlorophyllin copper complexes, sodium and potassium salts; Fast Green FCF; guar gum and guar gum (clarified

  6. Fire-Retardant Polymeric Additives

    NASA Technical Reports Server (NTRS)

    Williams, Martha K.; Smith, Trent M.

    2011-01-01

    Polyhydroxyamide (PHA) and polymethoxyamide (PMeOA) are fire-retardant (FR) thermoplastic polymers and have been found to be useful as an additive for imparting fire retardant properties to other compatible, thermoplastic polymers (including some elastomers). Examples of compatible flammable polymers include nylons, polyesters, and acrylics. Unlike most prior additives, PHA and PMeOA do not appreciably degrade the mechanical properties of the matrix polymer; indeed, in some cases, mechanical properties are enhanced. Also, unlike some prior additives, PHA and PMeOA do not decompose into large amounts of corrosive or toxic compounds during combustion and can be processed at elevated temperatures. PMeOA derivative formulations were synthesized and used as an FR additive in the fabrication of polyamide (PA) and polystyrene (PS) composites with notable reduction (>30 percent for PS) in peak heat release rates compared to the neat polymer as measured by a Cone Calorimeter (ASTM E1354). Synergistic effects were noted with nanosilica composites. These nanosilica composites had more than 50-percent reduction in peak heat release rates. In a typical application, a flammable thermoplastic, thermoplastic blend, or elastomer that one seeks to render flame-retardant is first dry-mixed with PHA or PMeOA or derivative thereof. The proportion of PHA or PMeOA or derivative in the mixture is typically chosen to lie between 1 and 20 weight percent. The dry blend can then be melt-extruded. The extruded polymer blend can further be extruded and/or molded into fibers, pipes, or any other of a variety of objects that may be required to be fire-retardant. The physical and chemical mechanisms which impart flame retardancy of the additive include inhibiting free-radical oxidation in the vapor phase, preventing vaporization of fuel (the polymer), and cooling through the formation of chemical bonds in either the vapor or the condensed phase. Under thermal stress, the cyclic hydroxyl/ methoxy

  7. Additional evidence of Mercurian volcanism

    USGS Publications Warehouse

    Trask, N.J.; Strom, R.G.

    1976-01-01

    Evidence concerned with (1) the character and distribution of terrain surrounding fresh basins, (2) albedo, color and temporal differences between a basin rim and smooth plains on its floor, and (3) the stratigraphic relations and local distribution of smooth plains in the hilly and lineated terrain are cited as additional evidence for an internal origin of much of the Mercurian smooth plains. Altough the question of Mercurian volcanism should be kept open, this evidence together with that presented in an earlier paper suggests that volcanism occurred on Mercury early in its history. ?? 1976.

  8. Individualized additional instruction for calculus

    NASA Astrophysics Data System (ADS)

    Takata, Ken

    2010-10-01

    College students enrolling in the calculus sequence have a wide variance in their preparation and abilities, yet they are usually taught from the same lecture. We describe another pedagogical model of Individualized Additional Instruction (IAI) that assesses each student frequently and prescribes further instruction and homework based on the student's performance. Our study compares two calculus classes, one taught with mandatory remedial IAI and the other without. The class with mandatory remedial IAI did significantly better on comprehensive multiple-choice exams, participated more frequently in classroom discussion and showed greater interest in theorem-proving and other advanced topics.

  9. Water based drilling mud additive

    SciTech Connect

    McCrary, J.L.

    1983-12-13

    A water based fluid additive useful in drilling mud used during drilling of an oil or gas well is disclosed, produced by reacting water at temperatures between 210/sup 0/-280/sup 0/ F. with a mixture comprising in percent by weight: gilsonite 25-30%, tannin 7-15%, lignite 25-35%, sulfonating compound 15-25%, water soluble base compound 5-15%, methylene-yielding compound 1-5%, and then removing substantially all of the remaining water to produce a dried product.

  10. Metal Additive Manufacturing: A Review

    NASA Astrophysics Data System (ADS)

    Frazier, William E.

    2014-06-01

    This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, or 3D printing, etc. A broad contextual overview of metallic AM is provided. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts-on-demand while offering the potential to reduce cost, energy consumption, and carbon footprint. This paper explores the material science, processes, and business consideration associated with achieving these performance gains. It is concluded that a paradigm shift is required in order to fully exploit AM potential.

  11. Additive manufacturing of RF absorbers

    NASA Astrophysics Data System (ADS)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  12. High Flow Addition Curing Polyimides

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Vannucci, Raymond D.; Ansari, Irfan; Cerny, Lawrence L.; Scheiman, Daniel A.

    1994-01-01

    A new series of high flow PMR-type addition curing polyimides was developed, which employed the substitution of 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl (BTDB) for p-phenylenediamine (p -PDA) in a PMR-IL formulation. These thermoset polyimides, designated as 12F resins, were prepared from BTDB and the dimethyl ester of 4,4'- (hexafluo- roisopropylidene) -diphthalic acid (HFDE) with either nadic ester (NE) or p-aminostyrene (PAS) as the endcaps for addition curing. The 12F prepolymers displayed lower melting temperatures in DSC analysis, and higher melt flow in rheological studies than the cor- responding PMR-11 polyimides. Long-term isothermal aging studies showed that BTDB- based 12F resins exhibited comparable thermo-oxidative stability to P-PDA based PMR-11 polyimides. The noncoplanar 2- and 2'-disubstituted biphenyldiamine (BTDB) not only lowered the melt viscosities of 12F prepolymers, but also retained reasonable thermal sta- bility of the cured resins. The 12F polyimide resin with p-aminostyrene endcaps showed the best promise for long-term, high-temperature application at 343 C (650 F).

  13. Neutron Characterization for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Watkins, Thomas; Bilheux, Hassina; An, Ke; Payzant, Andrew; DeHoff, Ryan; Duty, Chad; Peter, William; Blue, Craig; Brice, Craig A.

    2013-01-01

    Oak Ridge National Laboratory (ORNL) is leveraging decades of experience in neutron characterization of advanced materials together with resources such as the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) shown in Fig. 1 to solve challenging problems in additive manufacturing (AM). Additive manufacturing, or three-dimensional (3-D) printing, is a rapidly maturing technology wherein components are built by selectively adding feedstock material at locations specified by a computer model. The majority of these technologies use thermally driven phase change mechanisms to convert the feedstock into functioning material. As the molten material cools and solidifies, the component is subjected to significant thermal gradients, generating significant internal stresses throughout the part (Fig. 2). As layers are added, inherent residual stresses cause warping and distortions that lead to geometrical differences between the final part and the original computer generated design. This effect also limits geometries that can be fabricated using AM, such as thin-walled, high-aspect- ratio, and overhanging structures. Distortion may be minimized by intelligent toolpath planning or strategic placement of support structures, but these approaches are not well understood and often "Edisonian" in nature. Residual stresses can also impact component performance during operation. For example, in a thermally cycled environment such as a high-pressure turbine engine, residual stresses can cause components to distort unpredictably. Different thermal treatments on as-fabricated AM components have been used to minimize residual stress, but components still retain a nonhomogeneous stress state and/or demonstrate a relaxation-derived geometric distortion. Industry, federal laboratory, and university collaboration is needed to address these challenges and enable the U.S. to compete in the global market. Work is currently being conducted on AM technologies at the ORNL

  14. Additives in fibers and fabrics.

    PubMed

    Barker, R H

    1975-06-01

    The additives and contaminants which occur in textile fibers vary widely, depending on the type of fiber and the pretreatment which it has received. Synthetic fibers such as nylon and polyester contain trace amounts of contaminants such as catalysts and catalyst deactivators which remain after the synthesis of the basic polymers. In addition, there are frequently a number of materials which are added to perform specific functions in almost all man-made fibers. Examples of these would include traces of metals or metal salts used as tracers for identification of specific lots of fiber, TiO2 or similar materials added as delustrants, and a host of organic species added for such special purposes as antistatic agents or flame retardants. There may also be considerable quantities of residual monomer or small oligomers dissolved in the polymer matrix. The situation becomes even more complex after the fibers are converted into fabric form. Numerous materials are applied at various stages of fabric preparation to act as lubricants, sizing agents, antistats, bleaches, and wetting agents to facilitate the processing, but these are normally removed before the fabric reaches the cutters of the ultimate consumers and therefore usually do not constitute potential hazards. However, there are many other chemical agents which are frequently added during the later stages of fabric preparation and which are not designed to be removed. Aside from dyes and printing pigments, the most common additive for apparel fabrics is a durable press treatment. This generally involves the use of materials capable of crosslinking cellulosics by reacting through such functions as N-methylolated amides or related compounds such as ureas and carbamates. These materials pose some potential hazards due to both the nitrogenous bases and the formaldehyde which they usually release. There is usually also some residual catalyst in fabrics which have received such treatments. Other types of chemical treatments

  15. Additives in fibers and fabrics.

    PubMed Central

    Barker, R H

    1975-01-01

    The additives and contaminants which occur in textile fibers vary widely, depending on the type of fiber and the pretreatment which it has received. Synthetic fibers such as nylon and polyester contain trace amounts of contaminants such as catalysts and catalyst deactivators which remain after the synthesis of the basic polymers. In addition, there are frequently a number of materials which are added to perform specific functions in almost all man-made fibers. Examples of these would include traces of metals or metal salts used as tracers for identification of specific lots of fiber, TiO2 or similar materials added as delustrants, and a host of organic species added for such special purposes as antistatic agents or flame retardants. There may also be considerable quantities of residual monomer or small oligomers dissolved in the polymer matrix. The situation becomes even more complex after the fibers are converted into fabric form. Numerous materials are applied at various stages of fabric preparation to act as lubricants, sizing agents, antistats, bleaches, and wetting agents to facilitate the processing, but these are normally removed before the fabric reaches the cutters of the ultimate consumers and therefore usually do not constitute potential hazards. However, there are many other chemical agents which are frequently added during the later stages of fabric preparation and which are not designed to be removed. Aside from dyes and printing pigments, the most common additive for apparel fabrics is a durable press treatment. This generally involves the use of materials capable of crosslinking cellulosics by reacting through such functions as N-methylolated amides or related compounds such as ureas and carbamates. These materials pose some potential hazards due to both the nitrogenous bases and the formaldehyde which they usually release. There is usually also some residual catalyst in fabrics which have received such treatments. Other types of chemical treatments

  16. A novel addition polyimide adhesive

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Progar, D. J.

    1981-01-01

    An addition polyimide adhesive, LARC 13, was developed which shows promise for bonding both titanium and composites for applications which require service temperatures in excess of 533 K. The LARC 13 is based on an oligomeric bis nadimide containing a meta linked aromatic diamine. The adhesive melts prior to polymerization due to its oligomeric nature, thereby allowing it to be processed at 344 kPa or less. Therefore, LARC 13 is ideal for the bonding of honeycomb sandwich structures. After melting, the resin thermosets during the cure of the nadic endcaps to a highly crosslinked system. Few volatiles are evolved, thus allowing large enclosed structures to be bonded. Preparation of the adhesive as well as bonding, aging, and testing of lap shear and honeycomb samples are discussed.

  17. Optics of progressive addition lenses.

    PubMed

    Sheedy, J E; Buri, M; Bailey, I L; Azus, J; Borish, I M

    1987-02-01

    The optical characteristics of the major progressive addition lenses were measured using an automated lensometer with a specially designed lens holder to simulate eye rotation. Measurements were made every 3 degrees (about 1.5 mm) and graphs of isospherical equivalent lines and isocylinder lines were developed. Generally the near zone of these lenses is narrower and lower than in bifocal or trifocal lenses. Distinct differences exist between the various progressive lenses. The width of the near zone, rate of power progression, amount of unwanted cylinder (level with the distance center), and clarity of the distance zone are compared for the various lenses. The optical measurements demonstrate an apparent trade-off between the size of the cylinder-free area of the lens and the amount of the cylinder. PMID:3826294

  18. Addition polyimide end cap study

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.

    1980-01-01

    The characterization of addition polyimides with various end caps for adhesive applications at 120-250 C environments is discussed. Oligometric polyimides were prepared from 3,3',4,4'-benzophenone tetracarboxylic dianhydride and 3,3'-methylenedianiline which were end-capped with functionally reactive moities which cause crosslinking when the oligomers are heated to 200-400 C. The syntheses of the oligomers are outlined. The thermolysis of the oligomers was studied by differential scanning calorimetry and the resulting polymers were characterized by differential thermal analysis and adhesive performance. The adhesive data include lap shear strengths on titanium 6-4 adherends both before and after aging for 1000 hours at 121 C and/or 232 C.

  19. An Additive Manufacturing Test Artifact

    PubMed Central

    Moylan, Shawn; Slotwinski, John; Cooke, April; Jurrens, Kevin; Donmez, M Alkan

    2014-01-01

    A test artifact, intended for standardization, is proposed for the purpose of evaluating the performance of additive manufacturing (AM) systems. A thorough analysis of previously proposed AM test artifacts as well as experience with machining test artifacts have inspired the design of the proposed test artifact. This new artifact is designed to provide a characterization of the capabilities and limitations of an AM system, as well as to allow system improvement by linking specific errors measured in the test artifact to specific sources in the AM system. The proposed test artifact has been built in multiple materials using multiple AM technologies. The results of several of the builds are discussed, demonstrating how the measurement results can be used to characterize and improve a specific AM system. PMID:26601039

  20. An Additive Manufacturing Test Artifact.

    PubMed

    Moylan, Shawn; Slotwinski, John; Cooke, April; Jurrens, Kevin; Donmez, M Alkan

    2014-01-01

    A test artifact, intended for standardization, is proposed for the purpose of evaluating the performance of additive manufacturing (AM) systems. A thorough analysis of previously proposed AM test artifacts as well as experience with machining test artifacts have inspired the design of the proposed test artifact. This new artifact is designed to provide a characterization of the capabilities and limitations of an AM system, as well as to allow system improvement by linking specific errors measured in the test artifact to specific sources in the AM system. The proposed test artifact has been built in multiple materials using multiple AM technologies. The results of several of the builds are discussed, demonstrating how the measurement results can be used to characterize and improve a specific AM system. PMID:26601039

  1. SIPSEY WILDERNESS AND ADDITIONS, ALABAMA.

    USGS Publications Warehouse

    Schweinfurth, Stanley P.; Mory, Peter C.

    1984-01-01

    On the basis of geologic, geochemical, and mineral surveys the Sipsey Wilderness and additions are deemed to have little promise for the occurrence of metallic mineral resources. Although limestone, shale, and sandstone resources that occur in the area are physically suitable for a variety of uses, similar materials are available outside the area closer to transportation routes and potential markets. A small amount of coal has been identified in the area, occurring as nonpersistent beds less than 28 in. thick. Oil and (or) natural gas resources may be present if suitable structural traps exist in the subsurface. Therefore, the area has a probable oil and gas potential. Small amounts of asphaltic sandstone and limestone, commonly referred to as tar sands, may also occur in the subsurface. 5 refs.

  2. Adverse reactions to food additives.

    PubMed

    Simon, R A

    1986-01-01

    There are thousands of agents that are intentionally added to the food that we consume. These include preservatives, stabilizers, conditioners, thickeners, colorings, flavorings, sweeteners, antioxidants, etc. etc. Yet only a surprisingly small number have been associated with hypersensitivity reactions. Amongst all the additives, FD&C dyes have been most frequently associated with adverse reactions. Tartrazine is the most notorious of them all; however, critical review of the medical literature and current Scripps Clinic studies would indicate that tartrazine has been confirmed to be at best only occasionally associated with flares of urticaria or asthma. There is no convincing evidence in the literature of reactivity to the other azo or nonazo dyes. This can also be said of BHA/BHT, nitrites/nitrates and sorbates. Parabens have been shown to elicit IgE mediated hypersensitivity reactions when used as pharmaceutical preservatives; however, as with the other additives noted above, ingested parabens have only occasionally been associated with adverse reactions. MSG, the cause of the 'Chinese restaurant syndrome' has only been linked to asthma in one report. Sulfiting agents used primarily as food fresheners and to control microbial growth in fermented beverages have been established as the cause of any where from mild to severe and even fatal reactions in at least 5% of the asthmatic population. Other reactions reported to follow sulfite ingestion include anaphylaxis, gastro intestinal complaints and dermatological eruptions. The prevalence of these non asthmatic reactions is unknown. The mechanism of sulfite sensitive asthma is also unknown but most likely involves hyperreactivity to inhale SO2 in the great majority of cases; however, there are reports of IgE mediated reactions and other sulfite sensitive asthmatics have been found with low levels of sulfite oxidase; necessary to oxidize endogenous sulfite to sulfate. PMID:3302664

  3. Additively manufactured porous tantalum implants.

    PubMed

    Wauthle, Ruben; van der Stok, Johan; Amin Yavari, Saber; Van Humbeeck, Jan; Kruth, Jean-Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan

    2015-03-01

    The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of its good biocompatibility. In this study selective laser melting technology was used for the first time to manufacture highly porous pure tantalum implants with fully interconnected open pores. The architecture of the porous structure in combination with the material properties of tantalum result in mechanical properties close to those of human bone and allow for bone ingrowth. The bone regeneration performance of the porous tantalum was evaluated in vivo using an orthotopic load-bearing bone defect model in the rat femur. After 12 weeks, substantial bone ingrowth, good quality of the regenerated bone and a strong, functional implant-bone interface connection were observed. Compared to identical porous Ti-6Al-4V structures, laser-melted tantalum shows excellent osteoconductive properties, has a higher normalized fatigue strength and allows for more plastic deformation due to its high ductility. It is therefore concluded that this is a first step towards a new generation of open porous tantalum implants manufactured using selective laser melting. PMID:25500631

  4. Sustainability Characterization for Additive Manufacturing

    PubMed Central

    Mani, Mahesh; Lyons, Kevin W; Gupta, SK

    2014-01-01

    Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and material selection to ensure the consistency and quality. Inability to compare AM performance against traditional manufacturing methods can be a barrier for implementing AM processes. AM process sustainability has become a driver due to growing environmental concerns for manufacturing. This has reinforced the importance to understand and characterize AM processes for sustainability. Process characterization for sustainability will help close the gaps for comparing AM performance to traditional manufacturing methods. Based on a literature review, this paper first examines the potential environmental impacts of AM. A methodology for sustainability characterization of AM is then proposed to serve as a resource for the community to benchmark AM processes for sustainability. Next, research perspectives are discussed along with relevant standardization efforts. PMID:26601038

  5. Additive Transforms Paint into Insulation

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Tech Traders Inc. sought assistance developing low-cost, highly effective coatings and paints that created useful thermal reflectance and were safe and non-toxic. In cooperation with a group of engineers at Kennedy Space Center., Tech Traders created Insuladd, a powder additive made up of microscopic, inert gas-filled, ceramic microspheres that can be mixed into ordinary interior or exterior paint, allowing the paint to act like a layer of insulation. When the paint dries, this forms a radiant heat barrier, turning the ordinary house paint into heat-reflecting thermal paint. According to Tech Traders, the product works with all types of paints and coatings and will not change the coverage rate, application, or adhesion of the paint. Other useful applications include feed storage silos to help prevent feed spoilage, poultry hatcheries to reduce the summer heat and winter cold effects, and on military vehicles and ships. Tech Traders has continued its connection to the aerospace community by recently providing Lockheed Martin Corporation with one of its thermal products for use on the F-22 Raptor.

  6. Sustainability Characterization for Additive Manufacturing.

    PubMed

    Mani, Mahesh; Lyons, Kevin W; Gupta, S K

    2014-01-01

    Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and material selection to ensure the consistency and quality. Inability to compare AM performance against traditional manufacturing methods can be a barrier for implementing AM processes. AM process sustainability has become a driver due to growing environmental concerns for manufacturing. This has reinforced the importance to understand and characterize AM processes for sustainability. Process characterization for sustainability will help close the gaps for comparing AM performance to traditional manufacturing methods. Based on a literature review, this paper first examines the potential environmental impacts of AM. A methodology for sustainability characterization of AM is then proposed to serve as a resource for the community to benchmark AM processes for sustainability. Next, research perspectives are discussed along with relevant standardization efforts. PMID:26601038

  7. Additive attacks on speaker recognition

    NASA Astrophysics Data System (ADS)

    Farrokh Baroughi, Alireza; Craver, Scott

    2014-02-01

    Speaker recognition is used to identify a speaker's voice from among a group of known speakers. A common method of speaker recognition is a classification based on cepstral coefficients of the speaker's voice, using a Gaussian mixture model (GMM) to model each speaker. In this paper we try to fool a speaker recognition system using additive noise such that an intruder is recognized as a target user. Our attack uses a mixture selected from a target user's GMM model, inverting the cepstral transformation to produce noise samples. In our 5 speaker data base, we achieve an attack success rate of 50% with a noise signal at 10dB SNR, and 95% by increasing noise power to 0dB SNR. The importance of this attack is its simplicity and flexibility: it can be employed in real time with no processing of an attacker's voice, and little computation is needed at the moment of detection, allowing the attack to be performed by a small portable device. For any target user, knowing that user's model or voice sample is sufficient to compute the attack signal, and it is enough that the intruder plays it while he/she is uttering to be classiffed as the victim.

  8. 16 CFR 1102.16 - Additional information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... PUBLICLY AVAILABLE CONSUMER PRODUCT SAFETY INFORMATION DATABASE Content Requirements § 1102.16 Additional... in the Database any additional information it determines to be in the public interest,...

  9. 16 CFR 1102.16 - Additional information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... PUBLICLY AVAILABLE CONSUMER PRODUCT SAFETY INFORMATION DATABASE Content Requirements § 1102.16 Additional... in the Database any additional information it determines to be in the public interest,...

  10. 16 CFR 1102.16 - Additional information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PUBLICLY AVAILABLE CONSUMER PRODUCT SAFETY INFORMATION DATABASE Content Requirements § 1102.16 Additional... in the Database any additional information it determines to be in the public interest,...

  11. Rhodium-catalyzed hydroformylation of ketal-masked β-isophorone: computational explanation for the unexpected reaction evolution of the tertiary Rh-alkyl via an exocyclic β-elimination derivative.

    PubMed

    Alagona, Giuliano; Ghio, Caterina

    2015-05-28

    Ketal-masked β-isophorone (7,9,9-trimethyl-1,4-dioxaspiro[4.5]dec-7-ene) is an interesting case study of Rh-catalyzed hydroformylations not only for the competition between secondary and tertiary rhodium alkyls but also for the unexpected isomerization of the tertiary Rh-alkyl to the exocyclic olefin which undergoes hydroformylation, yielding the acetaldehyde derivative (2) of 7,9,9-trimethyl-1,4-dioxaspiro[4.5]decane. Although experimental results at 100 °C pointed to reaction reversibility, the reason for this kind of behavior was however obscure. A thorough density functional theory (DFT) computational investigation of the various transition states (TS) and intermediates along the reaction pathways making use of B3P86 hybrid functionals and the 6-31G* basis set, coupled to effective core potentials for Rh in the LanL2DZ valence basis set, has been carried out to shed some light on the reaction mechanism. The TS barrier heights, based on alkyl-Rh TS free energies, computed under the hypothesis of nonreversibility were in favor of a normal hydroformylation reaction (III:II = 70:30). While the endocyclic olefins produced skew or twisted arrangements of the six-membered ring similarly to the CO insertion TS that can be even higher than the alkyl-Rh ones, grid-point calculations during the potential energy surface (PES) scan produced the much more stable chair conformation for the exocyclic olefin complex. The relevant TS were found to be very favorable as well, thus explaining the preference for the exocyclic arrangement of the tertiary intermediate, for which the reaction is therefore entirely reversible and invariably proceeds to the acetaldehyde derivative (2). Conversely for the secondary isomers, the reaction is only partially reversible, thus enriching the tertiary fraction and producing the secondary aldehyde (3) in a very limited amount. PMID:25416149

  12. 40 CFR 79.31 - Additives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.31 Additives. (a) All additives produced or sold for use in motor vehicle gasoline and/or motor vehicle diesel fuel are hereby designated... persons or property on a street or highway. For purposes of this registration, however,...

  13. 40 CFR 79.31 - Additives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.31 Additives. (a) All additives produced or sold for use in motor vehicle gasoline and/or motor vehicle diesel fuel are hereby designated... persons or property on a street or highway. For purposes of this registration, however,...

  14. 40 CFR 79.31 - Additives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.31 Additives. (a) All additives produced or sold for use in motor vehicle gasoline and/or motor vehicle diesel fuel are hereby designated... persons or property on a street or highway. For purposes of this registration, however,...

  15. 40 CFR 79.31 - Additives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.31 Additives. (a) All additives produced or sold for use in motor vehicle gasoline and/or motor vehicle diesel fuel are hereby designated... persons or property on a street or highway. For purposes of this registration, however,...

  16. 40 CFR 79.31 - Additives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.31 Additives. (a) All additives produced or sold for use in motor vehicle gasoline and/or motor vehicle diesel fuel are hereby designated... persons or property on a street or highway. For purposes of this registration, however,...

  17. Additive Manufacturing of Aerospace Propulsion Components

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  18. 47 CFR 25.111 - Additional information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Additional information. 25.111 Section 25.111... Applications and Licenses General Application Filing Requirements § 25.111 Additional information. (a) The Commission may request from any party at any time additional information concerning any application, or...

  19. 20 CFR 901.72 - Additional rules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Additional rules. 901.72 Section 901.72... Additional rules. The Joint Board may, in notice or other guidance of general applicability, provide additional rules regarding the enrollment of actuaries. Effective Date Note: At 76 FR 17776, Mar. 31,...

  20. 17 CFR 48.10 - Additional contracts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Additional contracts. 48.10... FOREIGN BOARDS OF TRADE § 48.10 Additional contracts. (a) Generally. A registered foreign board of trade that wishes to make an additional futures, option or swap contract available for trading by...

  1. 17 CFR 48.10 - Additional contracts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 2 2014-04-01 2014-04-01 false Additional contracts. 48.10...) REGISTRATION OF FOREIGN BOARDS OF TRADE § 48.10 Additional contracts. (a) Generally. A registered foreign board of trade that wishes to make an additional futures, option or swap contract available for trading...

  2. 46 CFR 355.5 - Additional material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Additional material. 355.5 Section 355.5 Shipping... STATES CITIZENSHIP § 355.5 Additional material. If additional material is determined to be essential to clarify or support the evidence of U.S. citizenship, such material shall be furnished by...

  3. 20 CFR 802.215 - Additional briefs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Additional briefs. 802.215 Section 802.215 Employees' Benefits BENEFITS REVIEW BOARD, DEPARTMENT OF LABOR RULES OF PRACTICE AND PROCEDURE Prereview Procedures Initial Processing § 802.215 Additional briefs. Additional briefs may be filed or ordered in...

  4. 77 FR 49783 - Procurement List; Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... INFORMATION: Additions On 6/15/2012 (77 FR 35942-35944) and 6/22/2012 (77 FR 37659-37660), the Committee for... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Additions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Additions to the Procurement List. SUMMARY:...

  5. 7 CFR 1944.545 - Additional grants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 13 2011-01-01 2009-01-01 true Additional grants. 1944.545 Section 1944.545...) PROGRAM REGULATIONS (CONTINUED) HOUSING Technical and Supervisory Assistance Grants § 1944.545 Additional grants. An additional grant may be made to an applicant that has previously received a TSA grant and...

  6. 20 CFR 802.215 - Additional briefs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Additional briefs. 802.215 Section 802.215 Employees' Benefits BENEFITS REVIEW BOARD, DEPARTMENT OF LABOR RULES OF PRACTICE AND PROCEDURE Prereview Procedures Initial Processing § 802.215 Additional briefs. Additional briefs may be filed or ordered in...

  7. 14 CFR 27.927 - Additional tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.927 Additional tests. (a) Any additional dynamic, endurance, and operational tests, and vibratory investigations necessary to determine... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Additional tests. 27.927 Section...

  8. 78 FR 9386 - Procurement List; Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-08

    ... INFORMATION: Addition On 11/30/2012 (77 FR 71400-71401), the Committee for Purchase From People Who Are Blind... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Addition AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Addition to the Procurement List. SUMMARY: This...

  9. 78 FR 45183 - Procurement List Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... INFORMATION: Additions On 5/31/2013 (78 FR 32631-32632); 6/7/2013 (78 FR 34350-34351); and 6/14/2013 (78 FR... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Additions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Additions to the Procurement List. SUMMARY:...

  10. 34 CFR 75.231 - Additional information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 1 2012-07-01 2012-07-01 false Additional information. 75.231 Section 75.231 Education... Make A Grant § 75.231 Additional information. After selecting an application for funding, the Secretary may require the applicant to submit additional information. (Authority: 20 U.S.C. 1221e-3 and 3474)...

  11. 10 CFR 810.14 - Additional information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Additional information. 810.14 Section 810.14 Energy DEPARTMENT OF ENERGY ASSISTANCE TO FOREIGN ATOMIC ENERGY ACTIVITIES § 810.14 Additional information. The... activity to submit additional information....

  12. 10 CFR 725.13 - Additional information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Additional information. 725.13 Section 725.13 Energy DEPARTMENT OF ENERGY PERMITS FOR ACCESS TO RESTRICTED DATA Applications § 725.13 Additional information. The... and before the termination of the permit, require additional information in order to enable the...

  13. 10 CFR 725.13 - Additional information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Additional information. 725.13 Section 725.13 Energy DEPARTMENT OF ENERGY PERMITS FOR ACCESS TO RESTRICTED DATA Applications § 725.13 Additional information. The... and before the termination of the permit, require additional information in order to enable the...

  14. 46 CFR 355.5 - Additional material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Additional material. 355.5 Section 355.5 Shipping... STATES CITIZENSHIP § 355.5 Additional material. If additional material is determined to be essential to clarify or support the evidence of U.S. citizenship, such material shall be furnished by...

  15. 46 CFR 355.5 - Additional material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Additional material. 355.5 Section 355.5 Shipping... STATES CITIZENSHIP § 355.5 Additional material. If additional material is determined to be essential to clarify or support the evidence of U.S. citizenship, such material shall be furnished by...

  16. 12 CFR 1249.19 - Additional provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Additional provisions. 1249.19 Section 1249.19 Banks and Banking FEDERAL HOUSING FINANCE AGENCY ENTERPRISES BOOK-ENTRY PROCEDURES § 1249.19 Additional provisions. (a) Additional requirements. In any case or any class of cases arising under this part, an Enterprise may require such...

  17. 75 FR 33269 - Procurement List; Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... . SUPPLEMENTARY INFORMATION: Additions On 4/9/2010 (75 FR 18164-18165), the Committee for Purchase From People Who... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Additions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Additions to the Procurement List. SUMMARY:...

  18. Polymeric Additives For Graphite/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Nir, Z.

    1990-01-01

    Report describes experimental studies of properties of several graphite/epoxy composites containing polymeric additives as flexibilizing or toughening agents. Emphasizes effects of brominated polymeric additives (BPA's) with or without carboxy-terminated butadiene acrylonitrile rubber. Reviews effects of individual and combined additives on fracture toughnesses, environmental stabilities, hot/wet strengths, thermomechanical behaviors, and other mechanical properties of composites.

  19. 14 CFR 27.927 - Additional tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Additional tests. 27.927 Section 27.927... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.927 Additional tests. (a) Any additional dynamic, endurance, and operational tests, and vibratory investigations necessary to...

  20. 14 CFR 29.927 - Additional tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Additional tests. 29.927 Section 29.927... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.927 Additional tests. (a) Any additional dynamic, endurance, and operational tests, and vibratory investigations necessary to...