Science.gov

Sample records for rhodococcus rhodochrous s-2

  1. Metabolism of 2-Mercaptobenzothiazole by Rhodococcus rhodochrous

    PubMed Central

    Haroune, Nicolas; Combourieu, Bruno; Besse, Pascale; Sancelme, Martine; Kloepfer, Achim; Reemtsma, Thorsten; De Wever, Heleen; Delort, Anne-Marie

    2004-01-01

    2-Mercaptobenzothiazole, which is mainly used in the rubber industry as a vulcanization accelerator, is very toxic and is considered to be recalcitrant. We show here for the first time that it can be biotransformed and partially mineralized by a pure-culture bacterial strain of Rhodococcus rhodochrous. Three metabolites, among four detected, were identified. PMID:15466583

  2. Draft genome sequence of Rhodococcus rhodochrous strain ATCC 17895

    PubMed Central

    Chen, Bi-Shuang; Otten, Linda G.; Resch, Verena; Muyzer, Gerard; Hanefeld, Ulf

    2013-01-01

    Rhodococcus rhodochrous ATCC 17895 possesses an array of mono- and dioxygenases, as well as hydratases, which makes it an interesting organism for biocatalysis. R. rhodochrous is a Gram-positive aerobic bacterium with a rod-like morphology. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 6,869,887 bp long genome contains 6,609 protein-coding genes and 53 RNA genes. Based on small subunit rRNA analysis, the strain is more likely to be a strain of Rhodococcus erythropolis rather than Rhodococcus rhodochrous. PMID:24501654

  3. Draft Genome Sequence of Rhodococcus rhodochrous Strain ATCC 21198

    SciTech Connect

    Shields-Menard, Sara A.; Brown, Steven D; Klingeman, Dawn Marie; Indest, Karl; Hancock, Dawn; Wewalwela, Jayani; French, Todd; Donaldson, Janet

    2014-01-01

    Rhodococcus rhodochrous is a Gram-positive red-pigmented bacterium commonly found in the soil. The draft genome sequence for R. rhodochrous strain ATCC 21198 is presented here to provide genetic data for a better understanding of its lipid-accumulating capabilities.

  4. Molecular biological enhancement of coal biodesulfurization. [Rhodococcus rhodochrous

    SciTech Connect

    Kilbane, J.J.; Bielaga, B.A.

    1990-07-01

    The overall objective of this project is to sue molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. The work planned for the current quarter (May 1990 to July 1990) includes the following activities: (1) Construct a cloning vector that can be used in Rhodococcus rhodochrous IGTS8 from the small cryptic plasmid found in Rhodococcus rhodochrous ATCC 190607; (2) Develop techniques for the genetic analysis of IGTS8; (3) Continue biochemical experiments, particularly those that may allow the identification of desulfurization-related enzymes; (4) Continue experiments with coal to determine the kinetics of organic sulfur removal.

  5. Draft Genome of Rhodococcus rhodochrous TRN7, Isolated from the Coast of Trindade Island, Brazil

    PubMed Central

    Rodrigues, Edmo M.; Pylro, Victor S.; Dobbler, Priscila T.; Victoria, Filipe

    2016-01-01

    Here, we present a draft genome and annotation of Rhodococcus rhodochrous TRN7, isolated from Trindade Island, Brazil, which will provide genetic data to benefit the understanding of its metabolism. PMID:26941155

  6. Draft Genome of Rhodococcus rhodochrous TRN7, Isolated from the Coast of Trindade Island, Brazil.

    PubMed

    Rodrigues, Edmo M; Pylro, Victor S; Dobbler, Priscila T; Victoria, Filipe; Roesch, Luiz F W; Tótola, Marcos R

    2016-01-01

    Here, we present a draft genome and annotation of Rhodococcus rhodochrous TRN7, isolated from Trindade Island, Brazil, which will provide genetic data to benefit the understanding of its metabolism. PMID:26941155

  7. Isopropanol and acetone induces vinyl chloride degradation in Rhodococcus rhodochrous.

    PubMed

    Kuntz, Robin L; Brown, Lewis R; Zappi, Mark E; French, W Todd

    2003-11-01

    In situ bioremediation of vinyl chloride (VC)-contaminated waste sites requires a microorganism capable of degrading VC. While propane will induce an oxygenase to accomplish this goal, its use as a primary substrate in bioremediation is complicated by its flammability and low water solubility. This study demonstrates that two degradation products of propane, isoproponal and acetone, can induce the enzymes in Rhodococcus rhodochrous that degrade VC. Additionally, a reasonable number of cells for bioremediation can be grown on conventional solid bacteriological media (nutrient agar, tryptic soy agar, plate count agar) in an average microbiological laboratory and then induced to produce the necessary enzymes by incubation of a resting cell suspension with isopropanol or acetone. Since acetone is more volatile than isopropanol and has other undesirable characteristics, isopropanol is the inducer of choice. It offers a non-toxic, water-soluble, relatively inexpensive alternative to propane for in situ bioremediation of waste sites contaminated with VC. PMID:14605909

  8. A 2-Hydroxypyridine Catabolism Pathway in Rhodococcus rhodochrous Strain PY11

    PubMed Central

    Gasparavičiūtė, Renata; Rutkienė, Rasa; Tauraitė, Daiva; Meškys, Rolandas

    2015-01-01

    Rhodococcus rhodochrous PY11 (DSM 101666) is able to use 2-hydroxypyridine as a sole source of carbon and energy. By investigating a gene cluster (hpo) from this bacterium, we were able to reconstruct the catabolic pathway of 2-hydroxypyridine degradation. Here, we report that in Rhodococcus rhodochrous PY11, the initial hydroxylation of 2-hydroxypyridine is catalyzed by a four-component dioxygenase (HpoBCDF). A product of the dioxygenase reaction (3,6-dihydroxy-1,2,3,6-tetrahydropyridin-2-one) is further oxidized by HpoE to 2,3,6-trihydroxypyridine, which spontaneously forms a blue pigment. In addition, we show that the subsequent 2,3,6-trihydroxypyridine ring opening is catalyzed by the hypothetical cyclase HpoH. The final products of 2-hydroxypyridine degradation in Rhodococcus rhodochrous PY11 are ammonium ion and α-ketoglutarate. PMID:26655765

  9. Nitrile Hydratase and Amidase from Rhodococcus rhodochrous Hydrolyze Acrylic Fibers and Granular Polyacrylonitriles

    PubMed Central

    Tauber, M. M.; Cavaco-Paulo, A.; Robra, K.-H.; Gübitz, G. M.

    2000-01-01

    Rhodococcus rhodochrous NCIMB 11216 produced nitrile hydratase (320 nkat mg of protein−1) and amidase activity (38.4 nkat mg of protein−1) when grown on a medium containing propionitrile. These enzymes were able to hydrolyze nitrile groups of both granular polyacrylonitriles (PAN) and acrylic fibers. Nitrile groups of PAN40 (molecular mass, 40 kDa) and PAN190 (molecular mass, 190 kDa) were converted into the corresponding carbonic acids to 1.8 and 1.0%, respectively. In contrast, surfacial nitrile groups of acrylic fibers were only converted to the corresponding amides. X-ray photoelectron spectroscopy analysis showed that 16% of the surfacial nitrile groups were hydrolyzed by the R. rhodochrous enzymes. Due to the enzymatic modification, the acrylic fibers became more hydrophilic and thus, adsorption of dyes was enhanced. This was indicated by a 15% increase in the staining level (K/S value) for C.I. Basic Blue 9. PMID:10742253

  10. Enzymatic degradation of aliphatic nitriles by Rhodococcus rhodochrous BX2, a versatile nitrile-degrading bacterium.

    PubMed

    Fang, Shumei; An, Xuejiao; Liu, Hongyuan; Cheng, Yi; Hou, Ning; Feng, Lu; Huang, Xinning; Li, Chunyan

    2015-06-01

    Nitriles are common environmental pollutants, and their removal has attracted increasing attention. Microbial degradation is considered to be the most acceptable method for removal. In this work, we investigated the biodegradation of three aliphatic nitriles (acetonitrile, acrylonitrile and crotononitrile) by Rhodococcus rhodochrous BX2 and the expression of their corresponding metabolic enzymes. This organism can utilize all three aliphatic nitriles as sole carbon and nitrogen sources, resulting in the complete degradation of these compounds. The degradation kinetics were described using a first-order model. The degradation efficiency was ranked according to t1/2 as follows: acetonitrile>trans-crotononitrile>acrylonitrile>cis-crotononitrile. Only ammonia accumulated following the three nitriles degradation, while amides and carboxylic acids were transient and disappeared by the end of the assay. mRNA expression and enzyme activity indicated that the tested aliphatic nitriles were degraded via both the inducible NHase/amidase and the constitutive nitrilase pathways, with the former most likely preferred. PMID:25746475

  11. Characterization of carbon-sulfur bond cleavage by axenic and mixed cultures of Rhodococcus rhodochrous IGTS8

    SciTech Connect

    Kayser, K.J.; Bielaga, B.A.; Jackowski, K.; Oduson, O.; Kilbane, J. II

    1992-12-31

    Growth assays reveal that Rhodococcus rhodochrous IGTS8 can utilize a wide range of organosulfur compounds as the sole source of sulfur. Compounds that are utilized include thiophenes, sulfides, disulfides, mercaptans, sulfoxides, and sulfones. None of the organosulfur compounds tested can serve as a carbon source. A convenient spectrophotometric assay (Gibbs assay) based on the chromogenic reaction of 2,6-dichloroquinone-4-chloroimide with aromatic hydroxyl groups was developed and used in conjunction with GC/MS analysis to examine the kinetics of carbon-sulfur bond cleavage by axenic and mixed cell cultures of Rhodococcus rhodochrous IGTS8. The desulfurization trait is expressed at uniform levels during the mid-exponential phase, reaches a maximum during idiophase, and then declines in stationary-phase cells. Desulfurization rates for dibenzothiophene (DBT) range from 8 to 15 {mu}M of DBT/10{sup 12} cells/hour. Mixtures of genetically marked Rhodococcus rhodochrous IGTS8 and an organisms incapable of cleaning carbon-sulfur bonds in relevant test compounds, Enterobacter cloacae, were prepared in ratios that varied over six orders of magnitude. Growth studies revealed that Enterobacter cloacae was able to gain access to sulfur liberated from organosulfur compounds by IGTS8; however, cell-to-cell contact was required. These data also indicate that the desulfurization activity of IGTS8 cells in mixed cultures may be as much as 200-fold higher than in axenic cultures.

  12. Directed Evolution and Mutant Characterization of Nitrilase from Rhodococcus rhodochrous tg1-A6.

    PubMed

    Luo, Hui; Ma, Jinwei; Chang, Yanhong; Yu, Huimin; Shen, Zhongyao

    2016-04-01

    In this paper, a molecularly directed evolution-based approach was applied to modify the nitrilase from Rhodococcus rhodochrous tg1-A6 for improving properties in catalyzing nitriles. In the process of error-prone polymerase chain reaction (PCR) with the wild-type nitrilase gene acting as the template, a library of the randomly mutated nitrilase gene was constructed. Since the pH value of catalyzing solution decreased when glycolonitrile was used as the substrate of nitrilase, a high-throughput strategy based on the color change of a pH-sensitive indicator was established for rapid screening of the mutated nitrilase. After three rounds of random mutation and screening about 5000 clones, a variant (Mut3) with 5.3-fold activity of the wild-type counterpart was obtained. Five amino acid substitutions (D27E, N97K, L246F, D108E, and S111R) were found in the variant Mut3. The properties of three mutated enzymes obtained in the three-round mutation were investigated. In the conversion of glycolonitrile, the variant (Mut2) accumulated the highest concentration of glycolic acid at 10.6 g l(-1), a much higher value than the wild type (3.2 g l(-1)). PMID:26712248

  13. Biodesulfurization of water-soluble coal-derived material by Rhodococcus rhodochrous IGTS8

    SciTech Connect

    Kilbane, J.J. II; Jackowski, K.

    1991-01-01

    Rhodococcus rhodochrous IGTS8 was previously isolated because of its ability to use coal as its sole source of sulfur for growth. Subsequent growth studies have revealed that IGTS8 is capable of using a variety of organosulfur compounds as sources of sulfur but not carbon. In this paper, the ability of IGTS8 to selectively remove organic sulfur from water-soluble coal-derived material is investigated. The microbial removal of organic sulfur from coal requires microorganisms capable of cleaving carbonsulfur bonds and the accessibility of these bonds to microorganisms. The use of water-soluble coal-derived material effectively overcomes the problem of accessibility and allows the ability of microorganisms to cleave carbonsulfur bonds present in coal-derived material to be assessed directly. Three coals, two coal solubilization procedures, and two methods of biodesulfurization were examined. The results of these experiments reveal that the microbial removal of significant amounts of organic sulfur from watersoluble coal-derived material with treatment times as brief as 24 hours is possible. Moreover, the carbon content and calorific value of biotreated products are largely unaffected. Biotreatment does, however, result in increases in the hydrogen and nitrogen content and a decreased oxygen content of the coal-derived material. The aqueous supernatant obtained from biodesulfurization experiments does not contain sulfate, sulfite, or other forms of soluble sulfur at increased concentrations in comparison with control samples. Sulfur removed from water-soluble coal-derived material appears to be incorporated into biomass.

  14. Draft Genome Sequence of Rhodococcus rhodochrous Strain KG-21, a Soil Isolate from Oil Fields of Krishna-Godavari Basin, India

    PubMed Central

    Dawar, Chhavi

    2015-01-01

    Here, we present the 6.1-Mb draft genome sequence of Rhodococcus rhodochrous strain KG-21, a soil isolate from the oil fields of Krishna-Godavari Basin in Andhra Pradesh, India. This genomic resource may help in the identification of the gene(s) involved in hydrocarbon degradation and their possible deployment for bioremediation. PMID:26472842

  15. Crystals of DhaA mutants from Rhodococcus rhodochrous NCIMB 13064 diffracted to ultrahigh resolution: crystallization and preliminary diffraction analysis

    SciTech Connect

    Stsiapanava, Alena; Koudelakova, Tana; Pavlova, Martina; Damborsky, Jiri

    2008-02-01

    Three mutants of the haloalkane dehalogenase DhaA derived from R. rhodochrous NCIMB 13064 were crystallized and diffracted to ultrahigh resolution. The enzyme DhaA from Rhodococcus rhodochrous NCIMB 13064 belongs to the haloalkane dehalogenases, which catalyze the hydrolysis of haloalkanes to the corresponding alcohols. The haloalkane dehalogenase DhaA and its variants can be used to detoxify the industrial pollutant 1,2,3-trichloropropane (TCP). Three mutants named DhaA04, DhaA14 and DhaA15 were constructed in order to study the importance of tunnels connecting the buried active site with the surrounding solvent to the enzymatic activity. All protein mutants were crystallized using the sitting-drop vapour-diffusion method. The crystals of DhaA04 belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, while the crystals of the other two mutants DhaA14 and DhaA15 belonged to the triclinic space group P1. Native data sets were collected for the DhaA04, DhaA14 and DhaA15 mutants at beamline X11 of EMBL, DESY, Hamburg to the high resolutions of 1.30, 0.95 and 1.15 Å, respectively.

  16. Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile-degrading bacterium) with biofilm-forming bacteria for wastewater treatment.

    PubMed

    Li, Chunyan; Li, Yue; Cheng, Xiaosong; Feng, Liping; Xi, Chuanwu; Zhang, Ying

    2013-03-01

    In this study, a unique biofilm consisting of three bacterial strains with high biofilm-forming capability (Bacillus subtilis E2, E3, and N4) and an acetonitrile-degrading bacterium (Rhodococcus rhodochrous BX2) was established for acetonitrile-containing wastewater treatment. The results indicated that this biofilm exhibited strong resistance to acetonitrile loading shock and displayed a typical spatial and structural heterogeneity and completely depleted the initial concentration of acetonitrile (800mgL(-1)) within 24h in a moving-bed-biofilm reactor (MBBR) after operation for 30days. The immobilization of BX2 cells in the biofilm was confirmed by PCR-DGGE. It has been demonstrated that biofilm-forming bacteria can promote the immobilization of contaminant-degrading bacteria in the biofilms and can subsequently improve the degradation of contaminants in wastewater. This approach offers a novel strategy for enhancing biological oxidation of toxic pollutants in wastewater. PMID:23376196

  17. Optimization of biosurfactant production in soybean oil by rhodococcus rhodochrous and its utilization in remediation of cadmium-contaminated solution

    NASA Astrophysics Data System (ADS)

    Suryanti, Venty; Hastuti, Sri; Andriani, Dewi

    2016-02-01

    Biosurfactant production by Rhodococcus rhodochrous in soybean oil was developed, where the effect of medium composition and fermentation time were evaluated. The optimum condition for biosurfactant production was achieved when a medium containing 30 g/L TSB (tryptic soy broth) and 20% v/v soybean oil was used as media with 7 days of fermentation. Biosurfactant was identified as glycolipids type biosurfactant which had critical micelle concentration (CMC) value of 896 mg/L. The biosurfactant had oil in water emulsion type and was able to reduce the surface tension of palm oil about 52% which could stabilize the emulsion up to 12 days. The batch removal of cadmium metal ion by crude and partially purified biosurfactants have been examined from synthetic aqueous solution at pH 6. The results exhibited that the crude biosurfactant had a much better adsorption ability of Cd(II) than that of partially purified biosurfactant. However, it was found that there was no significant difference in the adsorption of Cd(II) with 5 and 10 minutes of contact time. The results indicated that the biosurfactant could be used in remediation of heavy metals from contaminated aqueous solution.

  18. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    NASA Astrophysics Data System (ADS)

    Suryanti, Venty; Hastuti, Sri; Pujiastuti, Dwi

    2016-02-01

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.

  19. Enantioselective Metabolism of Chiral 3-Phenylbutyric Acid, an Intermediate of Linear Alkylbenzene Degradation, by Rhodococcus rhodochrous PB1

    PubMed Central

    Simoni, S.; Klinke, S.; Zipper, C.; Angst, W.; Kohler, H. E.

    1996-01-01

    Rhodococcus rhodochrous PB1 was isolated from compost soil by selective culture with racemic 3-phenylbutyric acid as the sole carbon and energy source. Growth experiments with the single pure enantiomers as well as with the racemate showed that only one of the two enantiomers, (R)-3-phenylbutyric acid, supported growth of strain PB1. Nevertheless, (S)-3-phenylbutyric acid was cometabolically transformed to, presumably, (S)-3-(2,3-dihydroxyphenyl)butyric acid (the absolute configuration at the C-3 atom is not known yet) by (R)-3-phenylbutyric acid-grown cells of strain PB1, as shown by (sup1)H nuclear magnetic resonance spectroscopy of the partially purified compound and gas chromatography-mass spectrometry analysis of the trimethylsilyl derivative. Oxygen uptake rates suggest that either 3-phenylpropionic acid or cinnamic acid (trans-3-phenyl-2-propenoic acid) is the substrate for aromatic ring hydroxylation. This view is substantiated by the fact that 3-(2,3-dihydroxyphenyl)propionic acid was a substrate for meta cleavage in cell extracts of (R)-3-phenylbutyric acid-grown cells of strain PB1. Gas chromatography-mass spectrometry analysis of trimethylsilane-treated ethyl acetate extracts of incubation mixtures showed that both the meta-cleavage product, 2-hydroxy-6-oxo-2,4-nonadiene-1,9-dicarboxylic acid, and succinate, a hydrolysis product thereof, were formed during such incubations. PMID:16535265

  20. Multiplicity of 3-Ketosteroid-9α-Hydroxylase Enzymes in Rhodococcus rhodochrous DSM43269 for Specific Degradation of Different Classes of Steroids ▿ †

    PubMed Central

    Petrusma, Mirjan; Hessels, Gerda; Dijkhuizen, Lubbert; van der Geize, Robert

    2011-01-01

    The well-known large catabolic potential of rhodococci is greatly facilitated by an impressive gene multiplicity. This study reports on the multiplicity of kshA, encoding the oxygenase component of 3-ketosteroid 9α-hydroxylase, a key enzyme in steroid catabolism. Five kshA homologues (kshA1 to kshA5) were previously identified in Rhodococcus rhodochrous DSM43269. These KshADSM43269 homologues are distributed over several phylogenetic groups. The involvement of these KshA homologues in the catabolism of different classes of steroids, i.e., sterols, pregnanes, androstenes, and bile acids, was investigated. Enzyme activity assays showed that all KSH enzymes with KshADSM43269 homologues are C-9 α-hydroxylases acting on a wide range of 3-ketosteroids, but not on 3-hydroxysteroids. KshA5 appeared to be the most versatile enzyme, with the broadest substrate range but without a clear substrate preference. In contrast, KshA1 was found to be dedicated to cholic acid catabolism. Transcriptional analysis and functional complementation studies revealed that kshA5 supported growth on any of the different classes of steroids tested, consistent with its broad expression induction pattern. The presence of multiple kshA genes in the R. rhodochrous DSM43269 genome, each displaying unique steroid induction patterns and substrate ranges, appears to facilitate a dynamic and fine-tuned steroid catabolism, with C-9 α-hydroxylation occurring at different levels during microbial steroid degradation. PMID:21642460

  1. Preliminary report on a catalyst derived from induced cells of Rhodococcus rhodochrous strain DAP 96253 that delays the ripening of selected climacteric fruit: bananas, avocados, and peaches.

    PubMed

    Pierce, G E; Drago, G K; Ganguly, S; Tucker, T-A M; Hooker, J W; Jones, S; Crow, S A

    2011-09-01

    Despite the use of refrigeration, improved packaging, adsorbents, and ethylene receptor blockers, on average, nearly 40% of all fruits and vegetables harvested in the US are not consumed. Many plant products, especially fruit, continue to ripen after harvesting, and as they do so, become increasingly susceptible to mechanical injury, resulting in increased rot. Other plant products during transportation and storage are susceptible to chill injury (CI). There is a real need for products that can delay ripening or mitigate the effects of CI, yet still permit full ripeness and quality to be achieved. Preliminary results are discussed where catalyst derived from cells of Rhodococcus rhodochrous DAP 96253, grown under conditions that induced high levels of nitrile hydratase, were able to extend the ripening and thus the shelf-life of selected climacteric fruits (banana, avocado, and peach). A catalyst, when placed in proximity to, but not touching, the test fruit delayed the ripening but did not alter the final ripeness of the fruit tested. Organoleptic evaluations conducted with control peaches and with peaches exposed to, but not in contact with, the catalyst showed that the catalyst-treated peaches achieved full, natural levels of ripeness with respect to aroma, flavor, sweetness, and juice content. Furthermore, the results of delayed ripening were achieved at ambient temperatures (without the need for refrigeration). PMID:21409422

  2. The effect of 3-ketosteroid-Δ(1)-dehydrogenase isoenzymes on the transformation of AD to 9α-OH-AD by Rhodococcus rhodochrous DSM43269.

    PubMed

    Liu, Yang; Shen, Yanbing; Qiao, Yuqian; Su, Liqiu; Li, Can; Wang, Min

    2016-09-01

    Rhodococcus rhodochrous DSM43269 is well known for its 3-ketosteroid-9α-hydroxylases. However, the function of its 3-ketosteroid-Δ(1)-dehydrogenases (KSDD) remains unknown. This study compared the involvement of ksdds in the strain's androst-4-ene-3,17-dione (AD) transformation via gene deletion. The conversion was performed using AD as substrate or directly with 9α-hydroxyandrost-4-ene-3,17-dione (9α-OH-AD). The single deletion of ksdd1 or ksdd3 did not appear to result in the accumulation of 9α-OH-AD, whereas the single mutant △ksdd2 could preserve this compound to some extent. To further compare the role of ksdds in this strain, double mutants were constructed. All ksdd2 mutants combined with ksdd1 and/or ksdd3 resulted in the accumulation of 9α-OH-AD, among which the double mutant △ksdd2,3 behaved similarly to the single mutant △ksdd2 in this process. The mutant that lacked both ksdd1 and ksdd3 was still displayed, with no effect on the degradation of 9α-OH-AD. The triple mutant △ksdd1,2,3 was then constructed and exhibited the same capability as △ksdd1,2, accumulating more 9α-OH-AD than △ksdd2,3 and △ksdd2. The transcription of KSDD1 and KSDD2 increased, whereas that of KSDD3 seemed to exhibit no change, despite the use of the inducer AD or 9α-OH-AD. Thus, only ksdd1 and ksdd2 were involved in the transformation of AD to 9α-OH-AD. ksdd2 had the main role, ksdd1 had a minor effect on 9α-OH-AD degradation, and ksdd3 did not exhibit any action in this course. PMID:27377798

  3. Rhodococcus biphenylivorans sp. nov., a polychlorinated biphenyl-degrading bacterium.

    PubMed

    Su, Xiaomei; Liu, Yindong; Hashmi, Muhammad Zaffar; Hu, Jinxing; Ding, Linxian; Wu, Min; Shen, Chaofeng

    2015-01-01

    A Gram-positive, aerobic, non-motile and rod-coccus shaped novel actinobacterial strain, designated as TG9(T), was isolated from a polychlorinated biphenyl (PCB)-contaminated sediment in Taizhou city, Zhejiang province, eastern China. The isolate was observed to grow at 10-45 °C (optimum 28-32 °C), pH 5.0-11.0 (optimum pH 7.0-8.0) and with 0-9.0 % (w/v) NaCl (optimum 0-3.0 %). Comparison of the 16S rRNA gene sequences of strain TG9(T) and other members of the genus Rhodococcus showed that strain TG9(T) shared highest similarities with Rhodococcus pyridinivorans DSM 44555(T) (99.4 %), R. rhodochrous DSM 43241(T) (99.2 %), R. gordoniae DSM 44689(T) (99.2 %) and R. artemisiae DSM 45380(T) (98.2 %). However, low levels of DNA-DNA relatedness (15-48 %), which are below the 70 % limit for prokaryotic species identification, were obtained by DNA-DNA hybridization. Strain TG9(T) was found to contain meso-diaminopimelic acid as the diagnostic diamino acid and arabinose and galactose in the whole-cell hydrolysate. Mycolic acids were found to be present. The major fatty acids were identified as C16:0, C16:1 ω7c and/or iso-C15:0 2-OH, 10-methyl C18:0 and C18:1 ω9c. The only menaquinone detected was MK-8 (H2). The major polar lipids detected were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, glycolipid and traces of some unknown lipids. The genomic DNA G+C content of strain TG9(T) was determined to be 62.8 %. The combined phenotypic and genotypic data show that the strain represents a novel species of the genus Rhodococcus for which the name Rhodococcus biphenylivorans sp. nov. is proposed, with the type strain TG9(T) (=CGMCC 1.12975(T) = KCTC 29673(T) = MCCC 1K00286(T)). PMID:25315102

  4. Production of 3-hydroxypropionic acid from acrylic acid by newly isolated rhodococcus erythropolis LG12.

    PubMed

    Lee, Sang-Hyun; Park, Si Jae; Park, Oh-Jin; Cho, Junhyeong; Rhee, Joo Won

    2009-05-01

    A novel microorganism, designated as LG12, was isolated from soil based on its ability to use acrylic acid as the sole carbon source. An electron microscopic analysis of its morphological characteristics and phylogenetic classification by 16S rRNA homology showed that the LG12 strain belongs to Rhodococcus erythropolis. R. erythropolis LG12 was able to metabolize a high concentration of acrylic acid (up to 40 g/l). In addition, R. erythropolis LG12 exhibited the highest acrylic acid-degrading activity among the tested microorganisms, including R. rhodochrous, R. equi, R. rubber, Candida rugosa, and Bacillus cereus. The effect of the culture conditions of R. erythropolis LG12 on the production of 3-hydroxypropionic acid (3HP) from acrylic acid was also examined. To enhance the production of 3HP, acrylic acid-assimilating activity was induced by adding 1 mM acrylic acid to the culture medium when the cell density reached an OD600 of 5. Further cultivation of R. erythropolis LG12 with 40 g/l of acrylic acid resulted in the production of 17.5 g/l of 3HP with a molar conversion yield of 44% and productivity of 0.22 g/I/h at 30 degrees after 72 h. PMID:19494695

  5. Cloning systems for Rhodococcus and related bacteria

    DOEpatents

    Finnerty, W.R.; Singer, M.E.

    1990-08-28

    A plasmid transformation system for Rhodococcus was developed using an Escherichia coli-Rhodococcus shuttle plasmid. Rhodococcus sp. H13-A contains three cryptic indigenous plasmids, designated pMVS100, pMVS200 and pMVS300, of 75, 19.5 and 13.4 kilobases (Kb), respectively. A 3.8 Kb restriction fragment of pMVS300 was cloned into pIJ30, a 6.3 Kb pBR322 derivative, containing the E. coli origin of replication (ori) and ampicillin resistance determinant (bla) as well as a Streptomyces gene for thiostrepton resistance, tsr. The resulting 10.1 Kb recombinant plasmid, designated pMVS301, was isolated from E. coli DH1 (pMVS301) and transformed into Rhodococcus sp. AS-50, a derivative of strain H13-A, by polyethylene glycol-assisted transformation of Rhodococcus protoplasts and selection for thiostrepton-resistant transformants. This strain was deposited with the ATCC on Feb. 1, 1988 and assigned ATCC 53719. The plasmid contains the Rhodococcus origin of replication. The plasmid and derivatives thereof can therefore be used to introduce nucleic acid sequences to and from Rhodococcus for subsequent expression and translation into protein. The isolated origin of replication can also be used in the construction of new vectors. 2 figs.

  6. Cloning systems for Rhodococcus and related bacteria

    DOEpatents

    Finnerty, William R.; Singer, Mary E.

    1990-01-01

    A plasmid transformation system for Rhodococcus was developed using an Escherichia coli-Rhodococcus shuttle plasmid. Rhodococcus sp. H13-A contains three cryptic indigenous plasmids, designated pMVS100, pMVS200 and pMVS300, of 75, 19.5 and 13.4 kilobases (Kb), respectively. A 3.8 Kb restriction fragment of pMVS300 was cloned into pIJ30, a 6.3 Kb pBR322 derivative, containing the E. coli origin of replication (ori) and ampicillin resistance determinant (bla) as well as a Streptomyces gene for thiostrepton resistance, tsr. The resulting 10.1 Kb recombinant plasmid, designated pMVS301, was isolated from E. coli DH1 (pMVS301) and transformed into Rhodococcus sp. AS-50, a derivative of strain H13-A, by polyethylene glycol-assisted transformation of Rhodococcus protoplasts and selection for thiostrepton-resistant transformants. This strain was deposited with the ATCC on Feb. 1, 1988 and assigned ATCC 53719. The plasmid contains the Rhodococcus origin of replication. The plasmid and derivatives thereof can therefore be used to introduce nucleic acid sequences to and from Rhodococcus for subsequent expression and translation into protein. The isolated origin of replication can also be used in the construction of new vectors.

  7. Rhodococcus empyema in a heart transplant patient

    PubMed Central

    Rose, Richard; Nord, John; Lanspa, Michael

    2014-01-01

    Rhodococcus equi is a rare cause of pneumonia and empyema almost exclusively occurring in immunocompromised patients. Most people who become infected have direct exposure to livestock. We present a case where the exposure was presumed to be through a family member in close contact with horses. Our case describes an infection in a heart transplant patient that was initially identified as a probable intra-abdominal infection and later reidentified as Rhodococcus equi empyema, and was treated with surgery and prolonged antibiotics. PMID:25473561

  8. Construction of an Escherichia coli-rhodococcus shuttle vector and plasmid transformation in Rhodococcus spp

    SciTech Connect

    Singer, M.E.V.; Finnerty, W.R.

    1988-02-01

    A plasmid transformation system for Rhodococcus sp. strain H13-A was developed by using an Escherichia coli-Rhodococcus shuttle plasmid constructed in this study. Rhodococcus sp. strain H13-A contains three cryptic indigenous plasmids, designated pMVS100, pMVS200, and pMVS300, of 75, 19.5, and 13.4 kilobases (kb), respectively. A 3.8-kb restriction fragment of pMVS300 was cloned into pIJ30, a 6.3-kb pBR322 derivative, containing the E. coli origin of replication (ori) and ampicillin resistance determinant (bla), as well as a Streptomyces gene for thiostrepton resistance, tsr. The resulting 10.1-kb recombinant plasmid, designated pMVS301, was isolated from E. coli DH1 (pMVS301) and transformed into Rhodococccus sp. strain AS-50, a derivative of strain H13-A. The cloned 3.8-kb fragment of Rhodococcus DNA in pMVS301 contains a Rhodococcus origin of replication, since the hybrid plasmid was capable of replication in both genera. The plasmid was identical in E. coli and Rhodococcus transformants as determined by restriction analysis and was maintained as a stable, independent replicon in both organisms. A restriction map demonstrated 14 unique restriction sites in pMVS301, some of which are potentially useful for molecular cloning in Rhodococcus spp. and other actinomycetes. This is the first report of plasmid transformation and of heterologous gene expression in a Rhodococcus sp.

  9. Alteration of Acrylonitrile-Methylacrylate-Butadiene Terpolymer by Nocardia rhodochrous and Penicillium notatum†

    PubMed Central

    Antoine, A. D.; Dean, A. V.; Gilbert, S. G.

    1980-01-01

    [14C]Barex-210, a terpolymer of acrylonitrile, methylacrylate, and butadiene, was tested for bioconversion. Powdered samples of polymer, each specifically 14C labeled at different carbon atoms of the polymer, were incubated with either Nocardia rhodochrous or Penicillium notatum in an enriched growth medium for various periods of time. After 6 months of incubation, the 14C-labeled polymer was transformed from a high-molecular-weight material completely soluble in dimethyl formamide (DMF) into both a lower-molecular-weight form still soluble in DMF and a second form that was no longer soluble in DMF. The amount of 14C-labeled carbon atoms converted into DMF-insoluble material was 8% of the backbone carbon-carbon atoms and 12% of the side-chain nitrile and acrylate atoms from the acrylonitrile-methylacrylate copolymer and 60% of the elastomer (acrylonitrile-butadiene copolymer) atoms. Metabolism of the polymer was not established from measurements of metabolic 14CO2. Evolution of 14CO2 amounted to only 0.3, 0.6, 1.8, and 3.3% of these four fractions, respectively. Although the transformation of high-molecular-weight polymer into DMF-insoluble material was rapid in the early stages of microbial growth, the accompanying CO2 evolution was much slower. Further evidence of polymer alteration was indicated by the infrared spectrum of the insoluble material, which showed a disappearance of the nitrile and methylacrylate peaks. PMID:16345541

  10. Growth of rhodococcus S1 on anthracene.

    PubMed

    Tongpim, S; Pickard, M A

    1996-03-01

    Three slow-growing bacteria were isolated from a mixed culture enriched for growth on anthracene, using creosote-contaminated soil as the inoculum. Organisms were shown to use anthracene by the production of a clear zone around the colony after a mineral salts agar plate was sprayed with anthracene. All three bacteria were nonmotile, nonsporulating, gram-positive rods and stained acid-fast. Physiological and biochemical tests, GC content, and cell wall lipid patterns of whole cell methanolysates indicated that they belonged to the Nocardia-Mycobacterium-Rhodococcus group. On the basis of these characteristics and pyrolysis gas chromatography, they were assigned to the genus Rhodococcus. Growth of the isolates was slow on crystalline anthracene, giving a doubling time of 1.5-3 days, and they grew mainly on the crystal surface. When anthracene was supplied by precipitation from a solvent, doubling time was reduced to 1 day. All three isolates mineralized anthracene but not phenanthrene or naphthalene, nor could they grow on naphthalene, phenanthrene, fluorene, fluoranthene, acenaphthene, pyrene, chrysene, or naphthacene as sole carbon source. One isolate, Rhodococcus S1, was able to use 2-methylanthracene or 2-chloroanthracene as carbon source but not 1- or 9-substituted analogs. These results suggest that the initial enzyme attacking anthracene in these isolates has a narrow substrate specificity. PMID:8868237

  11. Draft Genome Sequence of Rhodococcus sp. Strain 311R

    PubMed Central

    Ehsani, Elham; Jauregui, Ruy; Geffers, Robert; Jareck, Michael; Boon, Nico; Pieper, Dietmar H.

    2015-01-01

    Here, we report the draft genome sequence of Rhodococcus sp. strain 311R, which was isolated from a site contaminated with alkanes and aromatic compounds. Strain 311R shares 90% of the genome of Rhodococcus erythropolis SK121, which is the closest related bacteria. PMID:25999565

  12. Rhodococcus enclensis sp. nov., a novel member of the genus Rhodococcus.

    PubMed

    Dastager, Syed G; Mawlankar, Rahul; Tang, Shan-Kun; Krishnamurthi, Srinivasan; Ramana, V Venkata; Joseph, Neeta; Shouche, Yogesh S

    2014-08-01

    A novel actinobacterial strain, designated, NIO-1009(T), was isolated from a marine sediment sample collected from Chorao Island, Goa, India. Phylogenetic analysis comparisons based on 16S rRNA gene sequences between strain NIO-1009(T) and other members of the genus Rhodococcus revealed that strain NIO-1009(T) had the closest sequence similarity to Rhodococcus kroppenstedtii DSM 44908(T) and Rhodococcus corynebacterioides DSM 20151(T) with 99.2 and 99.1%, respectively. Furthermore, DNA-DNA hybridization results showed that R. kroppenstedtii DSM 44908(T) and R. corynebacterioides DSM 20151(T) were 39.5 (3.0%) and 41.7 (2.0%) with strain NIO-1009(T), respectively, which were well below the 70% limit for any novel species proposal. Phylogenetically strain NIO-1009(T) forms a stable clade with and R. kroppenstedtii DSM 44908(T) and R. corynebacterioides DSM 20151(T) with 100% bootstrap values. Strain NIO-1009(T) contained meso-diaminopimelic acid as the diagnostic diamino acid and galactose and arabinose as the cell wall sugars. The major fatty acids were C(16 : 0), C(18 : 1)ω9c, C(16 : 1)(ω6c and/or ω7c) and 10-methyl C(18 : 0). The only menaquinone detected was MK-8(H2), while the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and one unknown phospholipid. The G+C content of the genomic DNA was 66.9 mol%. The phenotypic and genotypic data showed that strain NIO-1009(T) warrants recognition as a novel species of the genus Rhodococcus for which the name Rhodococcus enclensis sp. nov., is proposed; the type strain is NIO-1009(T) ( = NCIM 5452(T) = DSM 45688(T)). PMID:24854006

  13. Rhodococcus equi: clinical manifestations, virulence, and immunity.

    PubMed

    Giguère, S; Cohen, N D; Chaffin, M Keith; Hines, S A; Hondalus, M K; Prescott, J F; Slovis, N M

    2011-01-01

    Pneumonia is a major cause of disease and death in foals. Rhodococcus equi, a gram-positive facultative intracellular pathogen, is a common cause of pneumonia in foals. This article reviews the clinical manifestations of infection caused by R. equi in foals and summarizes current knowledge regarding mechanisms of virulence of, and immunity to, R. equi. A complementary consensus statement providing recommendations for the diagnosis, treatment, control, and prevention of infections caused by R. equi in foals can be found in the same issue of the Journal. PMID:22092609

  14. Use of whole genome sequences to develop a molecular phylogenetic framework for Rhodococcus fascians and the Rhodococcus genus

    PubMed Central

    Creason, Allison L.; Davis, Edward W.; Putnam, Melodie L.; Vandeputte, Olivier M.; Chang, Jeff H.

    2014-01-01

    The accurate diagnosis of diseases caused by pathogenic bacteria requires a stable species classification. Rhodococcus fascians is the only documented member of its ill-defined genus that is capable of causing disease on a wide range of agriculturally important plants. Comparisons of genome sequences generated from isolates of Rhodococcus associated with diseased plants revealed a level of genetic diversity consistent with them representing multiple species. To test this, we generated a tree based on more than 1700 homologous sequences from plant-associated isolates of Rhodococcus, and obtained support from additional approaches that measure and cluster based on genome similarities. Results were consistent in supporting the definition of new Rhodococcus species within clades containing phytopathogenic members. We also used the genome sequences, along with other rhodococcal genome sequences to construct a molecular phylogenetic tree as a framework for resolving the Rhodococcus genus. Results indicated that Rhodococcus has the potential for having 20 species and also confirmed a need to revisit the taxonomic groupings within Rhodococcus. PMID:25237311

  15. Rhodococcus aerolatus sp. nov., isolated from subarctic rainwater.

    PubMed

    Hwang, C Y; Lee, I; Cho, Y; Lee, Y M; Baek, K; Jung, Y-J; Yang, Y Y; Lee, T; Rhee, T S; Lee, H K

    2015-02-01

    A Gram-stain-positive, rod-shaped and non-motile strain, designated PAMC 27367(T), was isolated from rainwater collected on the Bering Sea. Analysis of the 16S rRNA gene sequence of the strain showed an affiliation with the genus Rhodococcus. Phylogenetic analyses revealed that strain PAMC 27367(T) formed a robust clade with the type strains of Rhodococcus rhodnii, Rhodococcus aetherivorans and Rhodococcus ruber with 16S rRNA gene sequence similarities of 96.3 %, 95.8 % and 95.5 %, respectively. Cells of the strain grew optimally at 25 °C and at pH 6.5-7.0 in the presence of 0-2 % (w/v) sea salts. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside and three unknown phospholipids. The major cellular fatty acids (>10 %) were iso-C16 : 0, C17 : 1ω8c and 10-methyl C17 : 0. Cell wall analysis showed that strain PAMC 27367(T) contained meso-diaminopimelic acid. The genomic DNA G+C content was 77.1 mol%. Based on the phylogenetic, chemotaxonomic and phenotypic data presented here, we propose a novel species with the name Rhodococcus aerolatus sp. nov., with PAMC 27367(T) ( = KCTC 29240(T) = JCM 19485(T)) as the type strain. PMID:25385992

  16. Spheroplast formation and plasmid isolation from Rhodococcus spp.

    PubMed

    Assaf, N A; Dick, W A

    1993-12-01

    The genus Rhodococcus comprises aerobic gram-positive actinomycetes that show considerable morphological and metabolic diversity and are known to be involved in the development of plant diseases and degradation of environmental pollutants. We describe a method for cell lysis and large plasmid DNA isolation from Rhodococcus by creating lysozyme susceptible cells by predigestion with the enzyme mutanolysin. Mutanolysin action resulted in the liberation of reducing sugars and free amino acids from the peptidoglycan layers of the cell wall. A 1-h predigestion with mutanolysin followed by a 0.5-h incubation with lysozyme resulted in spheroplast formation. Complete lysis of cells and efficient isolation of intact large plasmid DNA (108 kb) from wild-type Rhodococcus strains was confirmed. PMID:8292332

  17. Rhodococcus equi: an animal and human pathogen.

    PubMed Central

    Prescott, J F

    1991-01-01

    Recent isolations of Rhodococcus equi from cavitatory pulmonary disease in patients with AIDS have aroused interest among medical microbiologists in this unusual organism. Earlier isolations from humans had also been in immunosuppressed patients following hemolymphatic tumors or renal transplantation. This organism has been recognized for many years as a cause of a serious pyogranulomatous pneumonia of young foals and is occasionally isolated from granulomatous lesions in several other species, in some cases following immunosuppression. The last decade has seen many advances in understanding of the epidemiology, pathogenesis, diagnosis, treatment, and immunity to infection in foals. The particular susceptibility of the foal is not understood but can be explained in part by a combination of heavy challenge through the respiratory route coinciding with declining maternally derived antibody in the absence of fully competent foal cellular immune mechanisms. R. equi is largely a soil organism but is widespread in the feces of herbivores. Its growth in soil is considerably improved by simple nutrients it obtains from herbivore manure. About one-third of human patients who have developed R. equi infections had contact in some way with herbivores or their manure. Others may have acquired infection from contact with soil or wild bird manure. R. equi is an intracellular parasite, which explains the typical pyogranulomatous nature of R. equi infections, the predisposition to infection in human patients with defective cell-mediated immune mechanisms, and the efficacy of antimicrobial drugs that penetrate phagocytic cells. Images PMID:2004346

  18. Rhodococcus Bacteremia in Cancer Patients Is Mostly Catheter Related and Associated with Biofilm Formation

    PubMed Central

    Al Akhrass, Fadi; Al Wohoush, Iba; Chaftari, Anne-Marie; Reitzel, Ruth; Jiang, Ying; Ghannoum, Mahmoud; Tarrand, Jeffrey; Hachem, Ray; Raad, Issam

    2012-01-01

    Rhodococcus is an emerging cause of opportunistic infection in immunocompromised patients, most commonly causing cavitary pneumonia. It has rarely been reported as a cause of isolated bacteremia. However, the relationship between bacteremia and central venous catheter is unknown. Between 2002 and 2010, the characteristics and outcomes of seventeen cancer patients with Rhodococcus bacteremia and indwelling central venous catheters were evaluated. Rhodococcus bacteremias were for the most part (94%) central line-associated bloodstream infection (CLABSI). Most of the bacteremia isolates were Rhodococcus equi (82%). Rhodococcus isolates formed heavy microbial biofilm on the surface of polyurethane catheters, which was reduced completely or partially by antimicrobial lock solution. All CLABSI patients had successful response to catheter removal and antimicrobial therapy. Rhodococcus species should be added to the list of biofilm forming organisms in immunocompromised hosts and most of the Rhodococcus bacteremias in cancer patients are central line associated. PMID:22427914

  19. Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN.

    PubMed

    Andreoni, V; Bernasconi, S; Colombo, M; van Beilen, J B; Cavalca, L

    2000-10-01

    Rhodococcus sp. 1BN was isolated from a contaminated site and showed various biodegradative capabilities. Besides naphthalene, strain 1BN degraded medium- (C6) and long-chain alkanes (C16-C28), benzene and toluene, alone or when the hydrocarbons were mixed in equal proportions. The nucleotide sequence of an alk polymerase chain reaction (PCR) fragment revealed a 59% nucleotide homology to the Pseudomonas oleovorans alkB gene. The nar fragments were highly homologous to genes coding for large and small subunits of cis-naphthalene 1,2-dioxygenase (narAa and narAb) and to cis-naphthalene dihydrodiol dehydrogenase (narB) from other rhodococci. The oxidation of indene to cis-(1S,2R)-1,2-dihydroxyindan by toluene-induced cells allows to hypothesize that strain 1BN also carries a toluene dioxygenase-like system. PMID:11233165

  20. Complete Genome and Plasmid Sequences for Rhodococcus fascians D188 and Draft Sequences for Rhodococcus Isolates PBTS 1 and PBTS 2.

    PubMed

    Stamler, Rio A; Vereecke, Danny; Zhang, Yucheng; Schilkey, Faye; Devitt, Nico; Randall, Jennifer J

    2016-01-01

    Rhodococcus fascians, a phytopathogen that alters plant development, inflicts significant losses in plant production around the world. We report here the complete genome sequence of R. fascians D188, a well-characterized model isolate, and Rhodococcus species PBTS (pistachio bushy top syndrome) 1 and 2, which were shown to be responsible for a disease outbreak in pistachios. PMID:27284129

  1. Complete Genome and Plasmid Sequences for Rhodococcus fascians D188 and Draft Sequences for Rhodococcus Isolates PBTS 1 and PBTS 2

    PubMed Central

    Stamler, Rio A.; Vereecke, Danny; Zhang, Yucheng; Schilkey, Faye; Devitt, Nico

    2016-01-01

    Rhodococcus fascians, a phytopathogen that alters plant development, inflicts significant losses in plant production around the world. We report here the complete genome sequence of R. fascians D188, a well-characterized model isolate, and Rhodococcus species PBTS (pistachio bushy top syndrome) 1 and 2, which were shown to be responsible for a disease outbreak in pistachios. PMID:27284129

  2. Classification of strain CCM 4446T as Rhodococcus degradans sp. nov.

    PubMed

    Švec, Pavel; Černohlávková, Jitka; Busse, Hans-Jürgen; Vojtková, Hana; Pantůček, Roman; Cnockaert, Margo; Mašlaňová, Ivana; Králová, Stanislava; Vandamme, Peter; Sedláček, Ivo

    2015-12-01

    Strain CCM 4446T, with notable biodegradation capabilities, was investigated in this study in order to elucidate its taxonomic position. Chemotaxonomic analyses of quinones, polar lipids, mycolic acids, polyamines and the diamino acid of the cell-wall peptidoglycan corresponded with characteristics of the genus Rhodococcus. Phylogenetic analysis, based on the 16S rRNA gene sequence, assigned strain CCM 4446T to the genus Rhodococcus and placed it in the Rhodococcus erythropolis 16S rRNA gene clade. Further analysis of catA and gyrB gene sequences, automated ribotyping with EcoRI restriction endonuclease, whole-cell protein profiling, DNA-DNA hybridization and extensive biotyping enabled differentiation of strain CCM 4446T from all phylogenetically closely related species, i.e., Rhodococcus baikonurensis, Rhodococcus qingshengii, Rhodococcus erythropolis and Rhodococcus globerulus. The results obtained show that the strain investigated represents a novel species within the genus Rhodococcus, for which the name Rhodococcus degradans sp. nov., is proposed. The type strain is CCM 4446T ( = LMG 28633T). PMID:26385412

  3. Rhodococcus equi (Prescottella equi) vaccines; the future of vaccine development.

    PubMed

    Giles, C; Vanniasinkam, T; Ndi, S; Barton, M D

    2015-09-01

    For decades researchers have been targeting prevention of Rhodococcus equi (Rhodococcus hoagui/Prescottella equi) by vaccination and the horse breeding industry has supported the ongoing efforts by researchers to develop a safe and cost effective vaccine to prevent disease in foals. Traditional vaccines including live, killed and attenuated (physical and chemical) vaccines have proved to be ineffective and more modern molecular-based vaccines including the DNA plasmid, genetically attenuated and subunit vaccines have provided inadequate protection of foals. Newer, bacterial vector vaccines have recently shown promise for R. equi in the mouse model. This article describes the findings of key research in R. equi vaccine development and looks at alternative methods that may potentially be utilised. PMID:24945608

  4. Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isolates from activated sludge in wastewater treatment plants.

    PubMed

    Yoshimoto, Takeshi; Nagai, Fumiko; Fujimoto, Junji; Watanabe, Koichi; Mizukoshi, Harumi; Makino, Takashi; Kimura, Kazumasa; Saino, Hideyuki; Sawada, Haruji; Omura, Hiroshi

    2004-09-01

    We have isolated four strains of Rhodococcus which specifically degrade estrogens by using enrichment culture of activated sludge from wastewater treatment plants. Strain Y 50158, identified as Rhodococcus zopfii, completely and rapidly degraded 100 mg of 17beta-estradiol, estrone, estriol, and ethinyl estradiol/liter, as demonstrated by thin-layer chromatography and gas chromatography-mass spectrometry analyses. Strains Y 50155, Y 50156, and Y 50157, identified as Rhodococcus equi, showed degradation activities comparable with that of Y 50158. Using the random amplified polymorphism DNA fingerprinting test, these three strains were confirmed to have been derived from different sources. R. zopfii Y 50158, which showed the highest activity among these four strains, revealed that the strain selectively degraded 17beta-estradiol during jar fermentation, even when glucose was used as a readily utilizable carbon source in the culture medium. Measurement of estrogenic activities with human breast cancer-derived MVLN cells showed that these four strains each degraded 100 mg of 17beta-estradiol/liter to 1/100 of the specific activity level after 24 h. It is thus suggested that these strains degrade 17beta-estradiol into substances without estrogenic activity. PMID:15345411

  5. Rhodococcus equi Infection after Alemtuzumab Therapy for T-cell Prolymphocytic Leukemia

    PubMed Central

    Sprenger, Herman G.; van Assen, Sander; Leduc, Dominique; Daenen, Simon M.G.J.; Arends, Jan P.; van der Werf, Tjip S.

    2007-01-01

    Rhodococcus equi, mainly known from veterinary medicine as a pathogen in domestic animals, can also cause infections in immunocompromised humans, especially in those with defects in cellular immunity. Alemtuzumab, an anti-CD52 monoclonal antibody, causes lymphocytopenia by eliminating CD52-positive cells. We report a patient in whom Rhodococcus equi infection developed after alemtuzumab therapy. PMID:18258054

  6. Complete Genome Sequence of a Rhodococcus Species Isolated from the Winter Skate Leucoraja ocellata

    PubMed Central

    Wiens, Julia; Ho, Ryan; Fernando, Dinesh; Kumar, Ayush; Loewen, Peter C.; Anderson, W. Gary

    2016-01-01

    We report here a genome sequence for Rhodococcus sp. isolate UM008 isolated from the renal/interrenal tissue of the winter skate Leucoraja ocellata. Genome sequence analysis suggests that Rhodococcus bacteria may act in a novel mutualistic relationship with their elasmobranch host, serving as biocatalysts in the steroidogenic pathway of 1α-hydroxycorticosterone. PMID:27587827

  7. Genome Sequence of the Quorum-Quenching Rhodococcus erythropolis Strain R138

    PubMed Central

    Kwasiborski, Anthony; Mondy, Samuel; Beury-Cirou, Amélie

    2014-01-01

    Rhodococcus erythropolis strain R138 was isolated from the rhizosphere of Solanum tuberosum and selected for its capacity to degrade N-acyl-homoserine lactones, quorum-sensing signals used as communication molecules by the potato pathogens Pectobacterium and Dickeya. Here, we report the genome sequence of Rhodococcus erythropolis strain R138. PMID:24675862

  8. Complete Genome Sequence of a Rhodococcus Species Isolated from the Winter Skate Leucoraja ocellata.

    PubMed

    Wiens, Julia; Ho, Ryan; Fernando, Dinesh; Kumar, Ayush; Loewen, Peter C; Brassinga, Ann Karen C; Anderson, W Gary

    2016-01-01

    We report here a genome sequence for Rhodococcus sp. isolate UM008 isolated from the renal/interrenal tissue of the winter skate Leucoraja ocellata Genome sequence analysis suggests that Rhodococcus bacteria may act in a novel mutualistic relationship with their elasmobranch host, serving as biocatalysts in the steroidogenic pathway of 1α-hydroxycorticosterone. PMID:27587827

  9. Survival and replication of Rhodococcus equi in macrophages.

    PubMed Central

    Hondalus, M K; Mosser, D M

    1994-01-01

    Rhodococcus equi is a facultative intracellular bacterium of macrophages that can cause serious pneumonia in both young horses and immunocompromised people. Essential to understanding rhodococcus pathogenesis is a quantitative documentation of the intracellular events that follow macrophage phagocytosis of the organism. By using a bacterial immunofluorescence staining assay, we verified the intracellular survival and replicative potential of R. equi in both murine peritoneal macrophages and equine alveolar macrophages in vitro. Following an initial lag period of 6 to 12 h, the intracellular numbers of R. equi begin to rise, often reaching macrophage-compromising levels by 48 h. A quantitative determination of bacterial growth by a novel image analysis cytometry technique confirmed our fluorescence microscopic results. By 48 h postinfection, bacterial numbers had increased by more than fivefold, and the majority of infected macrophages in the monolayer contained 10 or more bacteria per cell. The intracellular organisms were viable, as evidenced by the ability to incorporate radiolabeled uracil. The use of these techniques has identified differences in the in vitro replicative capacities of a virulent strain and an avirulent strain of R. equi. A clinical isolate of R. equi expressing a 17-kDa virulence-associated plasmid-encoded antigen was able to survive and replicate within macrophages, whereas an avirulent, non-plasmid-containing strain replicated poorly. These results suggest that plasmid-encoded bacterial virulence factors may contribute to the ability of R. equi to replicate within its host cell, the macrophage. Images PMID:7927672

  10. Genome Sequence of Rhodococcus sp. Strain BCP1, a Biodegrader of Alkanes and Chlorinated Compounds

    PubMed Central

    Cappelletti, M.; Di Gennaro, P.; D’Ursi, P.; Orro, A.; Mezzelani, A.; Landini, M.; Fedi, S.; Frascari, D.; Presentato, A.; Milanesi, L.

    2013-01-01

    Rhodococcus sp. strain BCP1 cometabolizes chlorinated compounds and mineralizes a broad range of alkanes, as it is highly tolerant to them. The high-quality draft genome sequence of Rhodococcus sp. strain BCP1, consisting of 6,231,823 bp, with a G+C content of 70.4%, 5,902 protein-coding genes, and 58 RNA genes, is presented here. PMID:24158549

  11. Rhodococcus baikonurensis BTM4c, a boron-tolerant actinobacterial strain isolated from soil.

    PubMed

    Yoon, Jaewoo; Miwa, Hiroki; Ahmed, Iftikhar; Yokota, Akira; Fujiwara, Toru

    2010-01-01

    By screening a bacterial population from the soil in Tokyo, Japan, we isolated a boron-tolerant bacterium, strain BTM4c. Strain BTM4c grew under the boron excess conditions with 100 mM boric acid, which is generally toxic to bacteria. Molecular phylogenetic, chemotaxonomic, and physiological data showed that the strain belongs to the genus Rhodococcus, and is to be identified as Rhodococcus baikonurensis. PMID:20057133

  12. Genome and Phenotype Microarray Analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: Genetic Determinants and Metabolic Abilities with Environmental Relevance

    PubMed Central

    D’Ursi, Pasqualina; Milanesi, Luciano; Di Canito, Alessandra; Zampolli, Jessica; Collina, Elena; Decorosi, Francesca; Viti, Carlo; Fedi, Stefano; Presentato, Alessandro; Zannoni, Davide; Di Gennaro, Patrizia

    2015-01-01

    In this paper comparative genome and phenotype microarray analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7 were performed. Rhodococcus sp. BCP1 was selected for its ability to grow on short-chain n-alkanes and R. opacus R7 was isolated for its ability to grow on naphthalene and on o-xylene. Results of genome comparison, including BCP1, R7, along with other Rhodococcus reference strains, showed that at least 30% of the genome of each strain presented unique sequences and only 50% of the predicted proteome was shared. To associate genomic features with metabolic capabilities of BCP1 and R7 strains, hundreds of different growth conditions were tested through Phenotype Microarray, by using Biolog plates and plates manually prepared with additional xenobiotic compounds. Around one-third of the surveyed carbon sources was utilized by both strains although R7 generally showed higher metabolic activity values compared to BCP1. Moreover, R7 showed broader range of nitrogen and sulphur sources. Phenotype Microarray data were combined with genomic analysis to genetically support the metabolic features of the two strains. The genome analysis allowed to identify some gene clusters involved in the metabolism of the main tested xenobiotic compounds. Results show that R7 contains multiple genes for the degradation of a large set of aromatic and PAHs compounds, while a lower variability in terms of genes predicted to be involved in aromatic degradation was found in BCP1. This genetic feature can be related to the strong genetic pressure exerted by the two different environment from which the two strains were isolated. According to this, in the BCP1 genome the smo gene cluster involved in the short-chain n-alkanes degradation, is included in one of the unique regions and it is not conserved in the Rhodococcus strains compared in this work. Data obtained underline the great potential of these two Rhodococcus spp. strains for biodegradation and environmental decontamination

  13. An Adenoviral Vector Based Vaccine for Rhodococcus equi

    PubMed Central

    Giles, Carla; Ndi, Olasumbo; Barton, Mary D.; Vanniasinkam, Thiru

    2016-01-01

    Rhodococcus equi is a respiratory pathogen which primarily infects foals and is endemic on farms around the world with 50% mortality and 80% morbidity in affected foals. Unless detected early and treated appropriately the disease can be fatal. Currently, there is no vaccine available to prevent this disease. For decades researchers have endeavoured to develop an effective vaccine to no avail. In this study a novel human adenoviral vector vaccine for R. equi was developed and tested in the mouse model. This vaccine generated a strong antibody and cytokine response and clearance of R. equi was demonstrated following challenge. These results show that this vaccine could potentially be developed further for use as a vaccine to prevent R. equi disease in foals. PMID:27008624

  14. An Adenoviral Vector Based Vaccine for Rhodococcus equi.

    PubMed

    Giles, Carla; Ndi, Olasumbo; Barton, Mary D; Vanniasinkam, Thiru

    2016-01-01

    Rhodococcus equi is a respiratory pathogen which primarily infects foals and is endemic on farms around the world with 50% mortality and 80% morbidity in affected foals. Unless detected early and treated appropriately the disease can be fatal. Currently, there is no vaccine available to prevent this disease. For decades researchers have endeavoured to develop an effective vaccine to no avail. In this study a novel human adenoviral vector vaccine for R. equi was developed and tested in the mouse model. This vaccine generated a strong antibody and cytokine response and clearance of R. equi was demonstrated following challenge. These results show that this vaccine could potentially be developed further for use as a vaccine to prevent R. equi disease in foals. PMID:27008624

  15. Initial Transformations in the Biodegradation of Benzothiazoles by Rhodococcus Isolates

    PubMed Central

    De Wever, Helene; Vereecken, Karen; Stolz, Andreas; Verachtert, Hubert

    1998-01-01

    Benzothiazole-2-sulfonate (BTSO3) is one of the side products occurring in 2-mercaptobenzothiazole (MBT) production wastewater. We are the first to isolate an axenic culture capable of BTSO3 degradation. The isolate was identified as a Rhodococcus erythropolis strain and also degraded 2-hydroxybenzothiazole (OBT) and benzothiazole (BT), but not MBT, which was found to inhibit the biodegradation of OBT, BT, and BTSO3. In anaerobic resting cell assays, BTSO3 was transformed into OBT in stoichiometric amounts. Under aerobic conditions, OBT was observed as an intermediate in BT breakdown and an unknown compound transiently accumulated in several assays. This product was identified as a dihydroxybenzothiazole. Benzothiazole degradation pathways seem to converge into OBT, which is then transformed further into the dihydroxy derivative. PMID:9726870

  16. Radiological findings in nine AIDS patients with Rhodococcus equi pneumonia.

    PubMed

    Wicky, S; Cartei, F; Mayor, B; Frija, J; Gevenois, P A; Giron, J; Laurent, F; Perri, G; Schnyder, P

    1996-01-01

    Rhodococcus equi (R. equi) infections have been incidentally reported as a cause of pulmonary infection in severely immunocompromised hosts, including AIDS patients. Our purpose is to describe the radiological findings in nine AIDS patients with R. equi pneumonia assessed by bronchoalveolar lavage (BAL), biopsies, cultures of sputum, and hemocultures. All patients were examined by chest radiographs and contrast-medium-enhanced chest CT. Dense pulmonary consolidations with or without cavitations accounted for the most striking radiological patterns. Chest CT also revealed six mediastinal involvements, strongly mimicking a lymphoma. Two of them had multiple bilateral pulmonary nodular opacities. Pleural effusion was not identified. Although intensive therapies were administered, seven among nine patients died within few months. In an AIDS patient living in a rural area or exposed to horses and presenting these radiological patterns, the possibility of R. equi pneumonia should be considered in the differential diagnosis along with other infectious diseases or lymphomas. PMID:8972317

  17. [Diagnosis and therapy of Rhodococcus equi infection in the horse].

    PubMed

    Boswinkel, M; Sloet van Oldruitenborgh-Oosterbaan, M M

    2006-09-01

    Infection with Rhodococcus equi is an important cause of pneumonia in foals, but other organ systems may also be affected. The intracellular presence of R. equi and the formation of granulomatous and suppurative inflammatory tissue mean that prolonged treatment is needed. The pharmacological properties of the combination of erythromycin and rifampicin have improved the survival of foals infected with R. equi; however, erythromycin can cause adverse reactions in foals and mares, which has prompted the search for alternative therapies. The combination of azithromycin or clarithromycin with rifampicin seems to be a promising alternative. However these combinations are expensive and adverse effects remain to be determined, especially in the dams of treated foals. Thus correct diagnosis and appropriate use of drugs are essential for the treatment of R. equi infection in foals. PMID:16989420

  18. Investigation of the biotransformation of TNT by a Rhodococcus sp.

    SciTech Connect

    Tharakan, J.P.; Welsh, G.; Johnson, J.H. Jr.

    1995-12-31

    Tri-nitro-toluene (TNT) has contaminated waterways and soils as a result of its widespread military and non-military uses. Several researches have isolated or constructed strains of microorganisms that are able to utilize TNT as sole carbon, nitrogen or energy sources. Researchers have also reported high TNT concentrations (> 50 mg/l) as inhibitory to bacteria, yeast and fungi. This study examines the degradation of TNT and pyrene using a Rhodococcus sp. isolated based on its ability to survive on pyrene as the sole carbon source. The experiments were designed to study both the direct and cometabolic transformation of TNT by the microbes in both batch and continuous modes, and to determine the optimum conditions under which TNT would be degradable.

  19. Cloning and Characterization of a Novel Esterase from Rhodococcus sp. for Highly Enantioselective Synthesis of a Chiral Cilastatin Precursor

    PubMed Central

    Zhang, Yan; Pan, Jiang; Luan, Zheng-Jiao; Park, Sunghoon

    2014-01-01

    A novel nonheme chloroperoxidase (RhEst1), with promiscuous esterase activity for enantioselective hydrolysis of ethyl (S)-2,2-dimethylcyclopropanecarboxylate, was identified from a shotgun library of Rhodococcus sp. strain ECU1013. RhEst1 was overexpressed in Escherichia coli BL21(DE3), purified to homogeneity, and functionally characterized. Fingerprinting analysis revealed that RhEst1 prefers para-nitrophenyl (pNP) esters of short-chain acyl groups. pNP esters with a cyclic acyl moiety, especially that with a cyclobutanyl group, were also substrates for RhEst1. The Km values for methyl 2,2-dimethylcyclopropanecarboxylate (DmCpCm) and ethyl 2,2-dimethylcyclopropane carboxylate (DmCpCe) were 0.25 and 0.43 mM, respectively. RhEst1 could serve as an efficient hydrolase for the bioproduction of optically pure (S)-2,2-dimethyl cyclopropane carboxylic acid (DmCpCa), which is an important chiral building block for cilastatin. As much as 0.5 M DmCpCe was enantioselectively hydrolyzed into (S)-DmCpCa, with a molar yield of 47.8% and an enantiomeric excess (ee) of 97.5%, indicating an extremely high enantioselectivity (E = 240) of this novel and unique biocatalyst for green manufacturing of highly valuable chiral chemicals. PMID:25239898

  20. Blastogenic response of lymphocytes from foals infected with Rhodococcus equi.

    PubMed

    Sanada, Y; Noda, H; Nagahata, H

    1996-04-01

    The blastogenic response of lymphocytes from 16 newborn foals naturally infected with Rhodococcus equi was investigated, in order to evaluate the relationship between R. equi infection and depressed host response. Naturally infected foals showed evidence of R. equi infection at 5-6 weeks of age, as determined by clinical, haematological, bacteriological and serological methods. The blastogenic response of lymphocytes against phytohaemagglutinin was significantly depressed (stimulation index < 1.80; P < 0.01, P < 0.05) in R. equi-infected foals at 5-6 weeks of age compared with those of control foals. Serum IgG concentration decreased rapidly after foals reached 1 week of age, and minimum levels of IgG were observed at 5-7 weeks of age in R. equi-infected foals. This study suggests that the onset of R. equi infection may be associated with the depressed immune function of naturally infected foals during the first 5-6 weeks after birth. PMID:8693847

  1. Activity of 10 antimicrobial agents against intracellular Rhodococcus equi.

    PubMed

    Giguère, Steeve; Berghaus, Londa J; Lee, Elise A

    2015-08-01

    Studies with facultative intracellular bacterial pathogens have shown that evaluation of the bactericidal activity of antimicrobial agents against intracellular bacteria is more closely associated with in vivo efficacy than traditional in vitro susceptibility testing. The objective of this study was to determine the relative activity of 10 antimicrobial agents against intracellular Rhodococcus equi. Equine monocyte-derived macrophages were infected with virulent R. equi and exposed to erythromycin, clarithromycin, azithromycin, rifampin, ceftiofur, gentamicin, enrofloxacin, vancomycin, imipenem, or doxycycline at concentrations achievable in plasma at clinically recommended dosages in foals. The number of intracellular R. equi was determined 48h after infection by counting colony forming units (CFUs). The number of R. equi CFUs in untreated control wells were significantly higher than those of monolayers treated with antimicrobial agents. Numbers of R. equi were significantly lower in monolayers treated with enrofloxacin followed by those treated with gentamicin, and vancomycin, when compared to monolayers treated with other antimicrobial agents. Numbers of R. equi in monolayers treated with doxycycline were significantly higher than those of monolayers treated with other antimicrobial agents. Differences in R. equi CFUs between monolayers treated with other antimicrobial agents were not statistically significant. Enrofloxacin, gentamicin, and vancomycin are the most active drugs in equine monocyte-derived macrophages infected with R. equi. Additional studies will be needed to determine if these findings correlate with in vivo efficacy. PMID:26051479

  2. [Antiadhesive potencial of Rhodococcus erythropolis IMB Ac-5017 biosurfactants].

    PubMed

    Pirog, T P; Gritsenko, N A; Konon, A D; Shevchuk, T A; Iutinskaia, G A

    2014-01-01

    The effect of Rhodococcus erythropolis IMB Ac-5017 biosurfactants (surface-active substances, SAS) with different degree of purification on attachment of bacteria (Escherichia coli IEM-1, Bacillus subtilis BT-2, Proteus vulgaris BT-1, Staphylococcus aureus BMC-1, Pseudomonas aeruginosa P-55, Enterobacter cloacae AC-22, Erwinia aroidaeae B-433), yeasts (Candida albicans D-6) and fungi (Aspergillus niger P-3, Fusarium culmorum T-7) to the abiotic surfaces (glass, plastic, ceramics, steel, linoleum) was studied. The dependence of microorganisms adhesion on degree of SAS purification (supernatant, purified SAS solution), SAS concentration (0,04-1,25 mg/ml), type of surface and test-cultures was established. The adhesion of majority investigated bacterial cells after treatment of abiotic surfaces with supernatant of cultural liquid with SAS concentration 0,06-0,25 mg/ml was on the average 20-45, yeasts C. albicans D-6--30-75% and was less than that purified SAS solution with the same concentration. Higher antiadhesive activity of supernatant as compared to purified SAS solution testifies to possibility of exception of the expensive stage of isolation and purification at obtaining of preparations with antiadhesive properties. PMID:25639039

  3. Deep Desulfurization of Extensively Hydrodesulfurized Middle Distillate Oil by Rhodococcus sp. Strain ECRD-1

    PubMed Central

    Grossman, M. J.; Lee, M. K.; Prince, R. C.; Minak-Bernero, V.; George, G. N.; Pickering, I. J.

    2001-01-01

    Dibenzothiophene (DBT), and in particular substituted DBTs, are resistant to hydrodesulfurization (HDS) and can persist in fuels even after aggressive HDS treatment. Treatment by Rhodococcus sp. strain ECRD-1 of a middle distillate oil whose sulfur content was virtually all substituted DBTs produced extensive desulfurization and a sulfur level of 56 ppm. PMID:11282654

  4. Rhodococcus equi hyperimmune plasma decreases pneumonia severity after a randomised experimental challenge of neonatal foals.

    PubMed

    Sanz, M G; Loynachan, A; Horohov, D W

    2016-03-12

    Since a vaccine is not available against Rhodococcus equi, R equi-specific hyperimmune plasma (HIP) is commonly used, although its efficacy remains controversial. The objective of this study was to evaluate the ability of a commercially available HIP to prevent clinical rhodococcal pneumonia in neonatal foals after experimental challenge. PMID:26932206

  5. Conversion of the Pseudomonas aeruginosa Quinolone Signal and Related Alkylhydroxyquinolines by Rhodococcus sp. Strain BG43

    PubMed Central

    Müller, Christine; Birmes, Franziska S.; Niewerth, Heiko

    2014-01-01

    A bacterial strain, which based on the sequences of its 16S rRNA, gyrB, catA, and qsdA genes, was identified as a Rhodococcus sp. closely related to Rhodococcus erythropolis, was isolated from soil by enrichment on the Pseudomonas quinolone signal [PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone], a quorum sensing signal employed by the opportunistic pathogen Pseudomonas aeruginosa. The isolate, termed Rhodococcus sp. strain BG43, cometabolically degraded PQS and its biosynthetic precursor 2-heptyl-4(1H)-quinolone (HHQ) to anthranilic acid. HHQ degradation was accompanied by transient formation of PQS, and HHQ hydroxylation by cell extracts required NADH, indicating that strain BG43 has a HHQ monooxygenase isofunctional to the biosynthetic enzyme PqsH of P. aeruginosa. The enzymes catalyzing HHQ hydroxylation and PQS degradation were inducible by PQS, suggesting a specific pathway. Remarkably, Rhodococcus sp. BG43 is also capable of transforming 2-heptyl-4-hydroxyquinoline-N-oxide to PQS. It thus converts an antibacterial secondary metabolite of P. aeruginosa to a quorum sensing signal molecule. PMID:25239889

  6. Pyogenic Liver Abscess Due to Rhodococcus equi in an Immunocompetent Host

    PubMed Central

    Napoleão, Fátima; Vieira Damasco, Paulo; Ferreira Camello, Thereza Cristina; Damasceno do Vale, Márcio; Braga de Andrade, Arnaldo Feitosa; Hirata, Raphael; de Mattos-Guaraldi, Ana Luíza

    2005-01-01

    A case of pyogenic liver abscess (PLA) due to Rhodococcus equi in an immunocompetent individual was successfully treated by combining surgery and antibiotics. The R. equi-targeted antimicrobial agents erythromycin and rifampin were used only after surgical resection of the lesion and identification of the infective organism. PMID:15695730

  7. Deep desulfurization of extensively hydrodesulfurized middle distillate oil by Rhodococcus sp. strain ECRD-1.

    PubMed

    Grossman, M J; Lee, M K; Prince, R C; Minak-Bernero, V; George, G N; Pickering, I J

    2001-04-01

    Dibenzothiophene (DBT), and in particular substituted DBTs, are resistant to hydrodesulfurization (HDS) and can persist in fuels even after aggressive HDS treatment. Treatment by Rhodococcus sp. strain ECRD-1 of a middle distillate oil whose sulfur content was virtually all substituted DBTs produced extensive desulfurization and a sulfur level of 56 ppm. PMID:11282654

  8. Comparison of Etest, disk diffusion, and broth macrodilution for in vitro susceptibility testing of Rhodococcus equi.

    PubMed

    Berghaus, Londa J; Giguère, Steeve; Guldbech, Kristen; Warner, Eleanor; Ugorji, Ukachi; Berghaus, Roy D

    2015-01-01

    MICs of erythromycin, clarithromycin, azithromycin, rifampin, gentamicin, and doxycycline against 101 isolates of Rhodococcus equi were determined by broth macrodilution, disk diffusion, and Etest. Categorical agreement ranged between 85.1 and 100%. Overall, the agreement between Etest and disk diffusion was better than the agreement between broth macrodilution and the agar-based methods. PMID:25378571

  9. Comparison of Etest, Disk Diffusion, and Broth Macrodilution for In Vitro Susceptibility Testing of Rhodococcus equi

    PubMed Central

    Berghaus, Londa J.; Guldbech, Kristen; Warner, Eleanor; Ugorji, Ukachi; Berghaus, Roy D.

    2014-01-01

    MICs of erythromycin, clarithromycin, azithromycin, rifampin, gentamicin, and doxycycline against 101 isolates of Rhodococcus equi were determined by broth macrodilution, disk diffusion, and Etest. Categorical agreement ranged between 85.1 and 100%. Overall, the agreement between Etest and disk diffusion was better than the agreement between broth macrodilution and the agar-based methods. PMID:25378571

  10. First Report of Sepsis Caused by Rhodococcus corynebacterioides in a Patient with Myelodysplastic Syndrome

    PubMed Central

    Kitamura, Yuka; Sawabe, Etsuko; Ohkusu, Kiyofumi; Tojo, Naoko

    2012-01-01

    We report a case of sepsis caused by Rhodococcus corynebacterioides, identified using 16S rRNA gene sequencing, in a myelodysplastic syndrome patient who had undergone hematopoietic stem cell transplantation. This is the first report of R. corynebacterioides infection in a human. PMID:22205796

  11. Genome Sequence of Rhodococcus opacus Strain R7, a Biodegrader of Mono- and Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Zampolli, J.; Presti, I.; Cappelletti, M.; D’Ursi, P.; Orro, A.; Mezzelani, A.; Milanesi, L.

    2014-01-01

    Rhodococcus opacus strain R7 (CIP107348) degrades several mono- and polycyclic aromatic hydrocarbons. Here, we present the high-quality draft genome sequence of strain R7, consisting of 10,118,052 bp, with a G+C content of 67.0%, 9,602 protein-coding genes, and 62 RNAs genes. PMID:25146139

  12. Establishment of Cellobiose Utilization for Lipid Production in Rhodococcus opacus PD630

    PubMed Central

    Hetzler, Stephan

    2013-01-01

    Rhodococcus opacus PD630, which is known for its ability to accumulate large amounts of triacylglycerols (TAG), was metabolically engineered, and a cellobiose utilization pathway was introduced. Activities of β-glucosidases were determined, and recombinant strains accumulated fatty acids up to 39.5 ± 5.7% (wt/wt) of cell dry mass from cellobiose. PMID:23435878

  13. Comparison of three techniques for isolation of Rhodococcus (Corynebacterium) equi from contaminated sources.

    PubMed

    Barton, M D; Hughes, K L

    1981-01-01

    Inoculation of a liquid medium comprised of Trypticase soy broth (BBL Microbiology Systems), cycloheximide, nalidixic acid, penicillin, and potassium tellurite and subcultured onto M3 medium plus potassium tellurite was highly successful for the isolation of Rhodococcus (Corynebacterium) equi from soil. PMID:7007424

  14. Analysis of genome sequences from plant pathogenic Rhodococcus reveals genetic novelties in virulence loci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Members of Gram-positive Actinobacteria cause economically important diseases to plants. Within the Rhodococcus genus, some members can cause growth deformities and persist as pathogens on a wide range of host plants. The current model predicts that phytopathogenic isolates require a cluster of thre...

  15. Comparative and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development

    PubMed Central

    Holder, Jason W.; Ulrich, Jil C.; DeBono, Anthony C.; Godfrey, Paul A.; Desjardins, Christopher A.; Zucker, Jeremy; Zeng, Qiandong; Leach, Alex L. B.; Ghiviriga, Ion; Dancel, Christine; Abeel, Thomas; Gevers, Dirk; Kodira, Chinnappa D.; Desany, Brian; Affourtit, Jason P.; Birren, Bruce W.; Sinskey, Anthony J.

    2011-01-01

    The Actinomycetales bacteria Rhodococcus opacus PD630 and Rhodococcus jostii RHA1 bioconvert a diverse range of organic substrates through lipid biosynthesis into large quantities of energy-rich triacylglycerols (TAGs). To describe the genetic basis of the Rhodococcus oleaginous metabolism, we sequenced and performed comparative analysis of the 9.27 Mb R. opacus PD630 genome. Metabolic-reconstruction assigned 2017 enzymatic reactions to the 8632 R. opacus PD630 genes we identified. Of these, 261 genes were implicated in the R. opacus PD630 TAGs cycle by metabolic reconstruction and gene family analysis. Rhodococcus synthesizes uncommon straight-chain odd-carbon fatty acids in high abundance and stores them as TAGs. We have identified these to be pentadecanoic, heptadecanoic, and cis-heptadecenoic acids. To identify bioconversion pathways, we screened R. opacus PD630, R. jostii RHA1, Ralstonia eutropha H16, and C. glutamicum 13032 for growth on 190 compounds. The results of the catabolic screen, phylogenetic analysis of the TAGs cycle enzymes, and metabolic product characterizations were integrated into a working model of prokaryotic oleaginy. PMID:21931557

  16. Draft Genome Sequence of an Aldoxime Degrader, Rhodococcus sp. Strain YH3-3

    PubMed Central

    2016-01-01

    Rhodococcus sp. strain YH3-3 has been isolated as an (E)-pyridine-3-aldoxime degrader. Here, we report the draft genome sequence of this strain, with a size of 7,316,908 bp, average G+C content of 62.15%, and 7,281 predicted protein-coding sequences. PMID:27198031

  17. Analysis of Genome Sequences from Plant Pathogenic Rhodococcus Reveals Genetic Novelties in Virulence Loci

    PubMed Central

    Davis, Edward W.; Putnam, Melodie L.; Hu, Erdong; Swader-Hines, David; Mol, Adeline; Baucher, Marie; Prinsen, Els; Zdanowska, Magdalena; Givan, Scott A.; Jaziri, Mondher El; Loper, Joyce E.; Mahmud, Taifo; Chang, Jeff H.

    2014-01-01

    Members of Gram-positive Actinobacteria cause economically important diseases to plants. Within the Rhodococcus genus, some members can cause growth deformities and persist as pathogens on a wide range of host plants. The current model predicts that phytopathogenic isolates require a cluster of three loci present on a linear plasmid, with the fas operon central to virulence. The Fas proteins synthesize, modify, and activate a mixture of growth regulating cytokinins, which cause a hormonal imbalance in plants, resulting in abnormal growth. We sequenced and compared the genomes of 20 isolates of Rhodococcus to gain insights into the mechanisms and evolution of virulence in these bacteria. Horizontal gene transfer was identified as critical but limited in the scale of virulence evolution, as few loci are conserved and exclusive to phytopathogenic isolates. Although the fas operon is present in most phytopathogenic isolates, it is absent from phytopathogenic isolate A21d2. Instead, this isolate has a horizontally acquired gene chimera that encodes a novel fusion protein with isopentyltransferase and phosphoribohydrolase domains, predicted to be capable of catalyzing and activating cytokinins, respectively. Cytokinin profiling of the archetypal D188 isolate revealed only one activate cytokinin type that was specifically synthesized in a fas-dependent manner. These results suggest that only the isopentenyladenine cytokinin type is synthesized and necessary for Rhodococcus phytopathogenicity, which is not consistent with the extant model stating that a mixture of cytokinins is necessary for Rhodococcus to cause leafy gall symptoms. In all, data indicate that only four horizontally acquired functions are sufficient to confer the trait of phytopathogenicity to members of the genetically diverse clade of Rhodococcus. PMID:25010934

  18. Isolation and characterization of RDX-degrading Rhodococcus species from a contaminated aquifer.

    PubMed

    Bernstein, Anat; Adar, Eilon; Nejidat, Ali; Ronen, Zeev

    2011-09-01

    Groundwater contamination by the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a global problem. Israel's coastal aquifer was contaminated with RDX. This aquifer is mostly aerobic and we therefore sought aerobic bacteria that might be involved in natural attenuation of the compound in the aquifer. RDX-degrading bacteria were captured by passively sampling the indigenous bacteria onto sterile sediments placed within sampling boreholes. Aerobic RDX biodegradation potential was detected in the sediments sampled from different locations along the plume. RDX degradation with the native sampled consortium was accompanied by 4-nitro-2,4-diazabutanal formation. Two bacterial strains of the genus Rhodococcus were isolated from the sediments and identified as aerobic RDX degraders. The xplA gene encoding the cytochrome P450 enzyme was partially (~500 bp) sequenced from both isolates. The obtained DNA sequences had 99% identity with corresponding gene fragments of previously isolated RDX-degrading Rhodococcus strains. RDX degradation by both strains was prevented by 200 μM of the cytochrome P450 inhibitor metyrapone, suggesting that cytochrome P450 indeed mediates the initial step in RDX degradation. RDX biodegradation activity by the T7 isolate was inhibited in the presence of nitrate or ammonium concentrations above 1.6 and 5.5 mM, respectively (100 mg l(-1)) while the T9N isolate's activity was retarded only by ammonium concentrations above 5.5 mM. This study shows that bacteria from the genus Rhodococcus, potentially degrade RDX in the saturated zone as well, following the same aerobic degradation pathway defined for other Rhodococcus species. RDX-degrading activity by the Rhodococcus species isolate T9N may have important implications for the bioremediation of nitrate-rich RDX-contaminated aquifers. PMID:21327803

  19. Rhodococcus erythropolis DCL14 Contains a Novel Degradation Pathway for Limonene

    PubMed Central

    van der Werf, Mariët J.; Swarts, Henk J.; de Bont, Jan A. M.

    1999-01-01

    Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (−)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1,2-monooxygenase activity, a cofactor-independent limonene-1,2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S,4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R,4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate. In

  20. Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene.

    PubMed

    van der Werf, M J; Swarts, H J; de Bont, J A

    1999-05-01

    Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (-)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1, 2-monooxygenase activity, a cofactor-independent limonene-1, 2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S, 4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R, 4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate

  1. Metabolism of carveol and dihydrocarveol in Rhodococcus erythropolis DCL14.

    PubMed

    van der Werf, M J; Boot, A M

    2000-05-01

    Rhodococcus erythropolis DCL14 assimilates all stereoisomers of carveol and dihydrocarveol as sole source of carbon and energy. Induction experiments with carveol- or dihydrocarveol-grown cells showed high oxygen consumption rates with these two compounds and with carvone and dihydrocarvone. (Dihydro)carveol-grown cells of R. erythropolis DCL14 contained the following enzymic activities involved in the carveol and dihydrocarveol degradation pathways of this micro-organism: (dihydro)carveol dehydrogenase (both NAD+- and dichlorophenolindophenol-dependent activities), an unknown cofactor-dependent carvone reductase, (iso-)dihydrocarvone isomerase activity, NADPH-dependent dihydrocarvone monooxygenase (Baeyer-Villiger monooxygenase), epsilon-lactone hydrolase and an NAD+-dependent 6-hydroxy-3-isopropenylheptanoate dehydrogenase. Product accumulation studies identified (4R)-carvone, (1R,4R)-dihydrocarvone, (4R,7R)-4-isopropenyl-7-methyl-2-oxo-oxepanone, (3R)-6-hydroxy-3-isopropenylheptanoate, (3R)-3-isopropenyl-6-oxoheptanoate, (3S,6R)-6-isopropenyl-3-methyl-2-oxooxepanone and (5R)-6-hydroxy-5-isopropenyl-2-methylhexanoate as intermediates in the (4R)-carveol degradation pathway. The opposite stereoisomers of these compounds were identified in the (4S)-carveol degradation pathway. With dihydrocarveol, the same intermediates are involved except that carvone was absent. These results show that R. erythropolis DCL14 metabolizes all four diastereomers of carveol via oxidation to carvone, which is subsequently stereospecifically reduced to (1R)-(iso-) dihydrocarvone. At this point also dihydrocarveol enters the pathway, and this compound is directly oxidized to (iso-)dihydrocarvone. Cell extracts contained both (1R)-(iso-)dihydrocarvone 1,2-monooxygenase and (1S)-(iso)-dihydrocarvone 2,3-monooxygenase activity, resulting in a branch point of the degradation pathway; (1R)-(iso-)dihydrocarvone was converted to 4-isopropenyl-7-methyl-2-oxo-oxepanone, while (1S

  2. Molecular biological enhancement of coal desulfurization: Cloning and expression of the sulfoxide/sulfone/sulfonate/sulfate genes in Pseudomonads and Thiobacillae. [Rhodococcus erythropolis, Thiobacillus acidophilus, Thiobacillus novellus

    SciTech Connect

    Krawiec, S.

    1992-01-01

    Research continues on desulfurization of coal using microorganisms. Topics reported on this quarter include: desulfurization with N1-36 (presumptively identified as Rhodochrous erythropolis), pulsed-field gel electrophoresis of chromosomal DNA's of Thiobacillus spp., and fresh isolates with the presumptive capacity to desulfurize dibenzothiophenes.

  3. Conservation of Rhodococcus equi (Magnusson 1923) Goodfellow and Alderson 1977 and rejection of Corynebacterium hoagii (Morse 1912) Eberson 1918.

    PubMed

    Garrity, George M

    2014-01-01

    A recent review of the nomenclatural history of Rhodococcus equi and its heterotypic synonyms reveals a situation in which the strict application of the Rules of the International Code of Nomenclature of Prokaryotes have resulted in the renaming of this known zoonotic pathogen, which may be reasonably viewed as a perilous name. This situation can be remedied only by the Judicial Commission rendering an opinion to conserve the name Rhodococcus equi and to reject its earlier heterotypic synonym, Corynebacterium hoagii. PMID:24408953

  4. MoS2 spaser

    NASA Astrophysics Data System (ADS)

    Jayasekara, Charith; Premaratne, Malin; Gunapala, Sarath D.; Stockman, Mark I.

    2016-04-01

    We present a comprehensive analysis of a spaser made of a circular shaped highly doped molybdenum disulfide (MoS2) resonator. "Spaser" is an acronym for "surface plasmon amplification by stimulated emission of radiation"-a nanoscale source of surface plasmons generated by stimulated emission in a plasmonic resonator which receives energy nonradiatively. By considering localized surface plasmon modes, operation characteristics of the model are analysed, and tunability of the design is demonstrated. We find the optimum geometric and material parameters of the spaser that provides efficient outputs and carryout a comparative analysis with a similar circular spaser made of graphene. Owing to physical and chemical properties of MoS2 and the active medium, the proposed design delivers efficient outputs in terms of spaser mode energy, operating thresholds, Q-factor, and electric field amplitude. Lower operating thresholds and higher mode energies are notable advantages of the design. Owing to having many superior features to existing similar designs, this MoS2 spaser may be much suited for applications in nanoplasmonic devices.

  5. [Cloning of new acylamidase gene from Rhodococcus erythropolis and its expression in Escherichia coli].

    PubMed

    Lavrov, K V; Ianenko, A S

    2013-10-01

    The gene for new Rhodococcus erythropolis TA37 acylamidase, which possesses unique substrate specificity, has been cloned and expressed in E. coli. Substrates for this enzyme are not only simple amides, such as acetamide and propionamide, but also N-substituted amides, such as 4'-nitroacetanilide. The 1431-bp gene was expressed in E. coli BL21 (DE3) cells on pET16b plasmid under the control of a promoter of the φ 10 gene from the T7 phage. The molecular mass of recombinant acylamidase in E. coli was 55 kDa, which corresponded to that of native acylamidase from Rhodococcus erythropolis TA37. Recombinant acylamidase was able to hydrolize N-substituted amides. A search of a nucleotide database and multiple alignment revealed that acylamidase belonged to the Amidase protein family PF01425, but its nucleotide and amino acid sequences differed significantly from those of the described amidases. PMID:25474901

  6. [Cloning of new acylamidase gene from Rhodococcus erythropolis and its expression in Escherichia coli].

    PubMed

    2013-10-01

    The gene for new Rhodococcus erythropolis TA37 acylamidase, which possesses unique substrate specificity, has been cloned and expressed in E. coli. Substrates for this enzyme are not only simple amides, such as acetamide and propionamide, but also N-substituted amides, such as 4'-nitroacetanilide. The 1431-bp gene was expressed in E. coli BL21 (DE3) cells on pET16b plasmid under the control of a promoter of the φ 10 gene from the T7 phage. The molecular mass of recombinant acylamidase in E. coli was 55 kDa, which corresponded to that of native acylamidase from Rhodococcus erythropolis TA37. Recombinant acylamidase was able to hydrolize N-substituted amides. A search of a nucleotide database and multiple alignment revealed that acylamidase belonged to the Amidase protein family PF01425, but its nucleotide and amino acid sequences differed significantly from those of the described amidases. PMID:25508680

  7. Activity of Clarithromycin or Rifampin Alone or in Combination against Experimental Rhodococcus equi Infection in Mice

    PubMed Central

    Burton, Alexandra J.; Berghaus, Londa J.; Hondalus, Mary K.

    2015-01-01

    Treatment of mice with the combination of clarithromycin with rifampin resulted in a significantly lower number of Rhodococcus equi CFU in the organs of mice than treatment with either drug alone or placebo. There was no significant difference in the number of R. equi CFU between mice treated with clarithromycin monotherapy, rifampin monotherapy, or placebo. The combination of clarithromycin with rifampin conferred a clear advantage over either drug as monotherapy in this model of chronic R. equi infection. PMID:25824218

  8. Rhodococcus jostii porin A (RjpA) functions in cholate uptake.

    PubMed

    Somalinga, Vijayakumar; Mohn, William W

    2013-10-01

    RjpA in Rhodococcus jostii is the ortholog of a channel-forming porin, MspA. Deletion of rjpA delayed growth of R. jostii on cholate but not on cholesterol. Eventual growth on cholate involved increased expression of other porins, namely, RjpB, RjpC, and RjpD. Porins appear essential for the uptake of bile acids by mycolic acid bacteria. PMID:23892747

  9. Thiocarbamate herbicide-inducible nonheme haloperoxidase of Rhodococcus erythropolis NI86/21.

    PubMed Central

    De Schrijver, A; Nagy, I; Schoofs, G; Proost, P; Vanderleyden, J; van Pée, K H; De Mot, R

    1997-01-01

    During biodegradation of thiocarbamate herbicides by Rhodococcus erythropolis NI86/21, a protein with an M(r) of 30,000 is induced (I. Nagy, G. Schoofs, F. Compernolle, P. Proost, J. Vanderleyden, and R.De Mot, J. Bacteriol. 177:676-687, 1995). Based on N-terminal sequence data for the protein purified by two-dimensional electrophoresis, the corresponding structural gene, thcF, was cloned and sequenced. The deduced protein sequence of ThcF is homologous to those of nonheme haloperoxidases. A particularly high level of sequence identity (72.6%) was observed for the chloroperoxidase from Pseudomonas pyrrocinia. A polyclonal antibody against the latter enzyme cross-reacted with ThcF either produced by the original Rhodococcus cells or overexpressed heterologously in Escherichia coli. In both thiocarbamate-grown Rhodococcus cells and E. coli cells expressing thcF, the haloperoxidase activity of ThcF was demonstrated. The thiocarbamate-inducible R. erythropolis ThcF protein represents the first (nonheme) haloperoxidase to be identified in a nocardioform actinomycete. PMID:9143122

  10. Membrane transport systems and the biodegradation potential and pathogenicity of genus Rhodococcus

    PubMed Central

    de Carvalho, Carla C. C. R.; Costa, Sofia S.; Fernandes, Pedro; Couto, Isabel; Viveiros, Miguel

    2014-01-01

    The Rhodococcus genus contains species with remarkable ability to tolerate toxic compounds and to degrade a myriad of substrates. These substrates have to cross a distinctive cell envelope dominated by mycolic acids anchored in a scaffold of arabinogalactan covalently attached to the cell wall peptidoglycan, and a cellular membrane with phospholipids, whose composition in fatty acids can be rapidly altered in response to environmental conditions. The hydrophobic nature of the cell envelope facilitates the entrance of hydrophobic molecules but some substrates require active transport systems. Additionally, toxic compounds may also be extruded by energy spending efflux systems. In this review, physiological evidences of the use of transport systems by Rhodococcus strains and genomic studies that corroborate their existence are presented and discussed. The recently released complete genomes of several Rhodococcus strains will be the basis for an in silico correlation analysis between the efflux pumps present in the genome and their role on active transport of substrates. These transport systems will be placed on an integrative perspective of the impact of this important genus on biotechnology and health, ranging from bioremediation to antibiotic and biocide resistance. PMID:24772091

  11. BACTERIA TRANSPORT AND DEPOSITION UNDER UNSATURATED CONDITIONS: THE ROLE OF THE MATRIX GRAIN SIZE AND THE BACTERIA SURFACE PROTEIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unsaturated (80% water saturated) packed column experiments were conducted to investigate the influence of grain size distribution and bacteria surface macromolecules on bacteria (Rhodococcus rhodochrous) transport and deposition mechanisms. Three sizes of silica sands were used in these transport ...

  12. Microbial cleavage of organic C-S bonds

    DOEpatents

    Kilbane, II, John J.

    1994-01-01

    A microbial process for selective cleavage of organic C--S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials, Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C--S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  13. Microbial cleavage of organic C-S bonds

    DOEpatents

    Kilbane, J.J. II.

    1994-10-25

    A microbial process is described for selective cleavage of organic C-S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials. Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C-S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  14. Analysis of Genes for Succinoyl Trehalose Lipid Production and Increasing Production in Rhodococcus sp. Strain SD-74

    PubMed Central

    Inaba, Tomohiro; Tokumoto, Yuta; Miyazaki, Yusuke; Inoue, Naoyuki; Maseda, Hideaki; Nakajima-Kambe, Toshiaki; Uchiyama, Hiroo

    2013-01-01

    Succinoyl trehalose lipids (STLs) are promising glycolipid biosurfactants produced from n-alkanes that are secreted by Rhodococcus species bacteria. These compounds not only exhibit unique interfacial properties but also demonstrate versatile biochemical actions. In this study, three novel types of genes involved in the biosynthesis of STLs, including a putative acyl coenzyme A (acyl-CoA) transferase (tlsA), fructose-bisphosphate aldolase (fda), and alkane monooxygenase (alkB), were identified. The predicted functions of these genes indicate that alkane metabolism, sugar synthesis, and the addition of acyl groups are important for the biosynthesis of STLs. Based on these results, we propose a biosynthesis pathway for STLs from alkanes in Rhodococcus sp. strain SD-74. By overexpressing tlsA, we achieved a 2-fold increase in the production of STLs. This study advances our understanding of bacterial glycolipid production in Rhodococcus species. PMID:24038682

  15. Cometabolic Degradation of Trichloroethene by Rhodococcus sp. Strain L4 Immobilized on Plant Materials Rich in Essential Oils▿ †

    PubMed Central

    Suttinun, Oramas; Müller, Rudolf; Luepromchai, Ekawan

    2010-01-01

    The cometabolic degradation of trichloroethene (TCE) by Rhodococcus sp. L4 was limited by the loss of enzyme activity during TCE transformation. This problem was overcome by repeated addition of inducing substrates, such as cumene, limonene, or cumin aldehyde, to the cells. Alternatively, Rhodococcus sp. L4 was immobilized on plant materials which contain those inducers in their essential oils. Cumin seeds were the most suitable immobilizing material, and the immobilized cells tolerated up to 68 μM TCE and degraded TCE continuously. The activity of immobilized cells, which had been inactivated partially during TCE degradation, could be reactivated by incubation in mineral salts medium without TCE. These findings demonstrate that immobilization of Rhodococcus sp. L4 on plant materials rich in essential oils is a promising method for efficient cometabolic degradation of TCE. PMID:20472723

  16. 3-nitroadipate, a metabolic intermediate for mineralization of 2, 4-dinitrophenol by a new strain of a Rhodococcus species.

    PubMed

    Blasco, R; Moore, E; Wray, V; Pieper, D; Timmis, K; Castillo, F

    1999-01-01

    The bacterial strain RB1 has been isolated by enrichment cultivation with 2,4-dinitrophenol as the sole nitrogen, carbon, and energy source and characterized, on the basis of 16S rRNA gene sequence comparison, as a Rhodococcus species closely related to Rhodococcus opacus. Rhodococcus sp. strain RB1 degrades 2,4-dinitrophenol, releasing the two nitro groups from the compound as nitrite. The release of nitro groups from 2,4-dinitrophenol occurs in two steps. First, the 2-nitro group is removed as nitrite, with the production of an aliphatic nitro compound identified by 1H nuclear magnetic resonance and mass spectrometry as 3-nitroadipate. Then, this metabolic derivative is further metabolized, releasing its nitro group as nitrite. Full nitrite assimilation upon reduction to ammonia requires that an additional carbon source be supplied to the medium. PMID:9864324

  17. Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp.

    SciTech Connect

    Whyte, L.G.; Hawari, J.; Zhou, E.; Bourbonniere, L.; Greer, C.W.; Inniss, W.E.

    1998-07-01

    The psychrotroph Rhodococcus sp. strain Q15 was examined for its ability to degrade individual n-alkanes and diesel fuel at low temperatures, and its alkane catabolic pathway was investigated by biochemical and genetic techniques. At 0 and 5 C, Q15 mineralized the short-chain alkanes dodecane and hexadecane to a greater extent than that observed for the long-chain alkanes octacosane and dotriacontane. Q15 utilized a broad range of aliphatics (C{sub 10} to C{sub 21} alkanes, branched alkanes, and a substituted cyclohexane) present in diesel fuel at 5 C. Mineralization of hexadecane at 5 C was significantly greater in both hydrocarbon-contaminated and pristine soil microcosms seeded with Q15 cells than in uninoculated control soil microcosms. The detection of hexadecane and dodecane metabolic intermediates (1-hexadecanol and 2-hexadecanol and 1-do-decanol and 2-dodecanone, respectively) by solid-phase microextraction-gas chromatography-mass spectrometry and the utilization of potential metabolic intermediates indicated that Q15 oxidizes alkanes by both the terminal oxidation pathway and the subterminal oxidation pathway. Genetic characterization by PCR and nucleotide sequence analysis indicated that Q15 possesses an aliphatic aldehyde dehydrogenase gene highly homologous to the Rhodococcus erythropolis thcA gene. Rhodococcus sp. strain Q15 possessed two large plasmids of approximately 90 and 115 kb (shown to mediate Cd resistance) which were not required for alkane mineralization, although the 90-kb plasmid enhanced mineralization of some alkanes and growth on diesel oil at both 5 and 25 C.

  18. Rhodococcus opacus B4: a promising bacterium for production of biofuels and biobased chemicals.

    PubMed

    Castro, Ana Rita; Rocha, Isabel; Alves, Maria Madalena; Pereira, Maria Alcina

    2016-12-01

    Bacterial lipids have relevant applications in the production of renewable fuels and biobased oleochemicals. The genus Rhodococcus is one of the most relevant lipid producers due to its capability to accumulate those compounds, mainly triacylglycerols (TAG), when cultivated on different defined substrates, namely sugars, organic acids and hydrocarbons but also on complex carbon sources present in industrial wastes. In this work, the production of storage lipids by Rhodococcus opacus B4 using glucose, acetate and hexadecane is reported for the first time and its productivity compared with Rhodococcus opacus PD630, the best TAG producer bacterium reported. Both strains accumulated mainly TAG from all carbon sources, being influenced by the carbon source itself and by the duration of the accumulation period. R. opacus B4 produced 0.09 and 0.14 g L(-1) at 24 and 72 h, with hexadecane as carbon source, which was 2 and 3.3 fold higher than the volumetric production obtained by R. opacus PD630. Both strains presented similar fatty acids (FA) profiles in intact cells while in TAG produced fraction, R. opacus B4 revealed a higher variability in fatty acid composition than R. opacus PD630, when both strains were cultivated on hexadecane. The obtained results open new perspectives for the use of R. opacus B4 to produce TAG, in particular using oily (alkane-contaminated) waste and wastewater as cheap raw-materials. Combining TAG production with hydrocarbons degradation is a promising strategy to achieve environmental remediation while producing added value compounds. PMID:27179529

  19. Cavitary pneumonia due to Rhodococcus equi in a heart transplant recipient.

    PubMed

    Kwak, E J; Strollo, D C; Kulich, S M; Kusne, S

    2003-03-01

    Rhodococcus equi is an uncommon human pathogen that usually affects immunocompromised patients. We present a case of a 68-year-old male heart transplant recipient, who developed rhodococcal pneumonia with secondary bacteremia 10 months post-transplant. The patient was a retired carpenter who was involved in breeding of horses. He responded completely to the treatment with vancomycin and imipenem/cilastin, followed by oral ciprofloxacin and minocycline for total treatment duration of 5 months. This case highlights the association between an animal exposure and infection with a unique opportunistic pathogen. PMID:12791074

  20. Diagnosis, treatment, control, and prevention of infections caused by Rhodococcus equi in foals.

    PubMed

    Giguère, S; Cohen, N D; Chaffin, M Keith; Slovis, N M; Hondalus, M K; Hines, S A; Prescott, J F

    2011-01-01

    Rhodococcus equi, a gram-positive facultative intracellular pathogen, is one of the most common causes of pneumonia in foals. Although R. equi can be cultured from the environment of virtually all horse farms, the clinical disease in foals is endemic at some farms, sporadic at others, and unrecognized at many. On farms where the disease is endemic, costs associated with morbidity and mortality attributable to R. equi may be very high. The purpose of this consensus statement is to provide recommendations regarding the diagnosis, treatment, control, and prevention of infections caused by R. equi in foals. PMID:22092608

  1. Failure of hyperimmune plasma to prevent pneumonia caused by Rhodococcus equi in foals.

    PubMed

    Hurley, J R; Begg, A P

    1995-11-01

    A trial was conducted on a Thoroughbred stud to determine whether or not the administration of anti-Rhodococcus equi hyperimmune plasma would reduce the prevalence of R equi pneumonia (rattles) in foals born in the 1992 horse breeding season. Hyperimmune plasma was administered to 34 foals; another 57 foals were untreated. There was no significant difference in the number of transfused foals developing R equi pneumonia compared with the untreated foals. The time required for recovery from pneumonia between the 2 groups was not significantly different. PMID:8929188

  2. Hydrophobised sawdust as a carrier for immobilisation of the hydrocarbon-oxidizing bacterium Rhodococcus ruber.

    PubMed

    Podorozhko, Elena A; Lozinsky, Vladimir I; Ivshina, Irena B; Kuyukina, Maria S; Krivorutchko, Anastasiya B; Philp, Jim C; Cunningham, Colin J

    2008-04-01

    Pine sawdust treated by a series of hydrophobising agents (drying oil, organosilicon emulsion, n-hexadecane and paraffin) was examined as carrier for adsorption immobilisation of hydrocarbon-oxidizing bacterial cells Rhodococcus ruber. It was shown that hydrophobising agents based on drying oil turned out to be optimal (among the other modifiers examined) for the preparation of sawdust carriers suitable for the efficient immobilisation. The results obtained demonstrate promising possibilities in developing a wide range of available and cheap, biodegradable cellulose-containing carriers that possess varying surface hydrophobicity. PMID:17481891

  3. Non-pulmonary Rhodococcus equi infections in patients with acquired immune deficiency syndrome (AIDS).

    PubMed Central

    Fierer, J; Wolf, P; Seed, L; Gay, T; Noonan, K; Haghighi, P

    1987-01-01

    Rhodococcus equi, formerly known as Corynebacterium equi, was isolated repeatedly from the blood of two patients with the acquired immune deficiency syndrome (AIDS). Neither of the patients had pneumonia while they were bacteraemic, whereas pneumonia has been present in all previously reported cases of human infection with R equi. One of our patients had diarrhoea and the organism was isolated from a stool culture; the other patient had a large granulomatous soft tissue mass in his pelvis caused by R equi. Both isolates were resistant to penicillin and one produced a beta-lactamase. Both patients were treated with vancomycin but only one recovered. Images Figure PMID:3584508

  4. Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24-2.

    PubMed Central

    Lenke, H; Knackmuss, H J

    1992-01-01

    Rhodococcus erythropolis HL 24-2, which was originally isolated as a 2,4-dinitrophenol-degrading bacterium, could also utilize picric acid as a nitrogen source after spontaneous mutation. During growth, the mutant HL PM-1 transiently accumulated an orange-red metabolite, which was identified as a hydride-Meisenheimer complex of picric acid. This complex was formed as the initial metabolite and further converted with concomitant liberation of nitrite. 2,4,6-Trinitrocyclohexanone was identified as a dead-end metabolite of the degradation of picric acid, indicating the addition of two hydride ions to picric acid. PMID:1444408

  5. Cyanobactericidal effect of Rhodococcus sp. isolated from eutrophic lake on Microcystis sp.

    PubMed

    Lee, Young-Ki; Ahn, Chi-Yong; Kim, Hee-Sik; Oh, Hee-Mock

    2010-11-01

    A bacterium, which was observed in all cultivations of Microcystis sp., was isolated and designated as Rhodococcus sp. KWR2. The growth of bloom-forming cyanobacteria, including four strains of Microcystis aeruginosa and Anabaena variabilis, was suppressed by up to 75-88% by 2% (v/v) culture broth of KWR2 after 5 days. But KWR2 did not inhibit eukaryotic algae, Chlorella vulgaris and Scenedesmus sp. An extracellular algicidal substance produced by KWR2 showed a cyanobactericidal activity of 94% and was water-soluble with a molecular weight of lower than 8 kDa. PMID:20640876

  6. Rhodococcus equi Sepsis in a Renal Transplant Recipient: A Case Study

    PubMed Central

    Macken, Eline; de Jonge, Hylke; Van Caesbroeck, Daniël; Verhaegen, Jan; Van Kerkhoven, Dana; Van Wijngaerden, Eric; Kuypers, Dirk

    2015-01-01

    Abstract Rhodococcus equi is an unusual cause of infection in humans, but has emerged as an opportunistic pathogen among immunocompromised patients. Primary pulmonary involvement is the most common clinical presentation, although the spectrum of disease is broad. Diagnosing R. equi infections remains challenging, both from clinical and microbiological view, and no standard treatment has been established. In this report, we present a detailed case of a 57-year-old male renal transplant recipient who developed R. equi bacteremia with a concomitant Pneumocystis jirovecii pneumonia. We describe the clinical features of R. equi infections, highlight the importance of an early diagnosis, and briefly review treatment options for this rare infection. PMID:27500216

  7. A Leaf-Inhabiting Endophytic Bacterium, Rhodococcus sp. KB6, Enhances Sweet Potato Resistance to Black Rot Disease Caused by Ceratocystis fimbriata.

    PubMed

    Hong, Chi Eun; Jeong, Haeyoung; Jo, Sung Hee; Jeong, Jae Cheol; Kwon, Suk Yoon; An, Donghwan; Park, Jeong Mee

    2016-03-01

    Rhodococcus species have become increasingly important owing to their ability to degrade a wide range of toxic chemicals and produce bioactive compounds. Here, we report isolation of the Rhodococcus sp. KB6, which is a new leaf-inhabiting endophytic bacterium that suppresses black rot disease in sweet potato leaves. We determined the 7.0 Mb draft genome sequence of KB6 and have predicted 19 biosynthetic gene clusters for secondary metabolites, including heterobactins, which are a new class of siderophores. Notably, we showed the first internal colonization of host plants with Rhodococcus sp. KB6 and discuss its potential as a biocontrol agent for sustainable agriculture. PMID:26767576

  8. Transfer of the virulence-associated protein A-bearing plasmid between field strains of virulent and avirulent Rhodococcus equi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virulent and avirulent isolates coexist in equine feces and the environment and serve as a source of infection for foals. The extent to which conjugative plasmid transfer occurs between these strains is unknown and is important for understanding the epidemiology of Rhodococcus equi infections of fo...

  9. Insight on RDX degradation mechanism by Rhodococcus strains using 13C and 15N kinetic isotope effects.

    PubMed

    Bernstein, Anat; Ronen, Zeev; Gelman, Faina

    2013-01-01

    The explosive Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is known to be degraded aerobically by various isolates of the Rhodococcus species, with denitration being the key step, mediated by Cytochrome P450. Our study aimed at gaining insight into the RDX degradation mechanism by Rhodococcus species and comparing isotope effects associated with RDX degradation by distinct Rhodococcus strains. For these purposes, enrichment in (13)C and (15)N isotopes throughout RDX denitration was studied for three distinct Rhodococcus strains, isolated from soil and groundwater in an RDX-contaminated site. The observable (15)N enrichment throughout the reaction, together with minor (13)C enrichment, suggests that N-N bond cleavage is likely to be the key rate-limiting step in the reaction. The similarity in the kinetic (15)N isotope effect between the three tested strains suggests that either isotope-masking effects are negligible, or are of a similar extent for all tested strains. The lack of variability in the kinetic (15)N isotope effect allows the interpretation of environmental studies with greater confidence. PMID:23215036

  10. Nonhealing Wound Due to Rhodococcus equi in an Apparently Immunocompetent Patient, Revealing CD8+ T-Lymphocyte Deficiency ▿

    PubMed Central

    Denes, Eric; Peignon-Orsoni, Dominique; Terrade, François-Xavier

    2010-01-01

    We describe a case of a nonhealing wound due to Rhodococcus equi. Failure of the wound to heal led to immunological investigations and the discovery of a previously unknown CD8+ T-lymphocyte deficit responsible for the chronic infection. The infection was cured after a 3-month course of a combination of antibiotics. PMID:20881171

  11. In vitro activities of polycationic peptides alone and in combination with clinically used antimicrobial agents against Rhodococcus equi.

    PubMed

    Giacometti, A; Cirioni, O; Ancarani, F; Del Prete, M S; Fortuna, M; Scalise, G

    1999-08-01

    The in vitro activities of magainin II, nisin, and ranalexin alone and in combination with other antimicrobial agents against six clinical isolates of Rhodococcus equi were investigated by MIC and time-kill studies. All isolates were more susceptible to nisin. A positive interaction was observed when the peptides were combined with ampicillin, ceftriaxone, rifabutin, rifampin, azithromycin, clarithromycin, and vancomycin. PMID:10428947

  12. Gene Cloning and Nucleotide Sequencing and Properties of a Cocaine Esterase from Rhodococcus sp. Strain MB1

    PubMed Central

    Bresler, Matthew M.; Rosser, Susan J.; Basran, Amrik; Bruce, Neil C.

    2000-01-01

    A strain of Rhodococcus designated MB1, which was capable of utilizing cocaine as a sole source of carbon and nitrogen for growth, was isolated from rhizosphere soil of the tropane alkaloid-producing plant Erythroxylum coca. A cocaine esterase was found to initiate degradation of cocaine, which was hydrolyzed to ecgonine methyl ester and benzoate; both of these esterolytic products were further metabolized by Rhodococcus sp. strain MB1. The structural gene encoding a cocaine esterase, designated cocE, was cloned from Rhodococcus sp. strain MB1 genomic libraries by screening recombinant strains of Rhodococcus erythropolis CW25 for growth on cocaine. The nucleotide sequence of cocE corresponded to an open reading frame of 1,724 bp that codes for a protein of 574 amino acids. The amino acid sequence of cocaine esterase has a region of similarity with the active serine consensus of X-prolyl dipeptidyl aminopeptidases, suggesting that the cocaine esterase is a serine esterase. The cocE coding sequence was subcloned into the pCFX1 expression plasmid and expressed in Escherichia coli. The recombinant cocaine esterase was purified to apparent homogeneity and was found to be monomeric, with an Mr of approximately 65,000. The apparent Km of the enzyme (mean ± standard deviation) for cocaine was measured as 1.33 ± 0.085 mM. These findings are of potential use in the development of a linked assay for the detection of illicit cocaine. PMID:10698749

  13. Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8.

    PubMed Central

    Piddington, C S; Kovacevich, B R; Rambosek, J

    1995-01-01

    Dibenzothiophene (DBT), a model compound for sulfur-containing organic molecules found in fossil fuels, can be desulfurized to 2-hydroxybiphenyl (2-HBP) by Rhodococcus sp. strain IGTS8. Complementation of a desulfurization (dsz) mutant provided the genes from Rhodococcus sp. strain IGTS8 responsible for desulfurization. A 6.7-kb TaqI fragment cloned in Escherichia coli-Rhodococcus shuttle vector pRR-6 was found to both complement this mutation and confer desulfurization to Rhodococcus fascians, which normally is not able to desulfurize DBT. Expression of this fragment in E. coli also conferred the ability to desulfurize DBT. A molecular analysis of the cloned fragment revealed a single operon containing three open reading frames involved in the conversion of DBT to 2-HBP. The three genes were designated dszA, dszB, and dszC. Neither the nucleotide sequences nor the deduced amino acid sequences of the enzymes exhibited significant similarity to sequences obtained from the GenBank, EMBL, and Swiss-Prot databases, indicating that these enzymes are novel enzymes. Subclone analyses revealed that the gene product of dszC converts DBT directly to DBT-sulfone and that the gene products of dszA and dszB act in concert to convert DBT-sulfone to 2-HBP. PMID:7574582

  14. Draft Genome Sequence of the Piezotolerant and Crude Oil-Degrading Bacterium Rhodococcus qingshengii Strain TUHH-12

    PubMed Central

    Hamilton, Trinity L.; Valladares Juárez, Ana Gabriela; Schedler, Martina; Macalady, Jennifer L.; Müller, Rudolf; Freeman, Katherine H.

    2015-01-01

    We report here the draft genome sequence of Rhodococcus qingshengii strain TUHH-12. The ability of this piezotolerant bacterium to grow on crude oil and tetracosane as sole carbon sources at 150 × 105 Pa makes it useful in studies of hydrocarbon degradation under simulated deep-sea conditions. PMID:25858843

  15. Metagenome Sequencing Revealed Rhodococcus Dominance in Farpuk Cave, Mizoram, India, an Eastern Himalayan Biodiversity Hot Spot Region

    PubMed Central

    De Mandal, Surajit; Sanga, Zothan

    2015-01-01

    The present study employed 16S rRNA amplicon sequencing to survey the prokaryotic microbiota on Farpuk Cave, revealing a diverse bacterial community with 4,021 operational taxonomical units (OTUs), mainly dominated by the genus Rhodococcus. Moreover, 18.17% of the OTUs were unclassified at the phylum level, suggesting the existence of novel bacterial species. PMID:26067958

  16. Combination of degradation pathways for naphthalene utilization in Rhodococcus sp. strain TFB.

    PubMed

    Tomás-Gallardo, Laura; Gómez-Álvarez, Helena; Santero, Eduardo; Floriano, Belén

    2014-03-01

    Rhodococcus sp. strain TFB is a metabolic versatile bacterium able to grow on naphthalene as the only carbon and energy source. Applying proteomic, genetic and biochemical approaches, we propose in this paper that, at least, three coordinated but independently regulated set of genes are combined to degrade naphthalene in TFB. First, proteins involved in tetralin degradation are also induced by naphthalene and may carry out its conversion to salicylaldehyde. This is the only part of the naphthalene degradation pathway showing glucose catabolite repression. Second, a salicylaldehyde dehydrogenase activity that converts salicylaldehyde to salicylate is detected in naphthalene-grown cells but not in tetralin- or salicylate-grown cells. Finally, we describe the chromosomally located nag genes, encoding the gentisate pathway for salicylate conversion into fumarate and pyruvate, which are only induced by salicylate and not by naphthalene. This work shows how biodegradation pathways in Rhodococcus sp. strain TFB could be assembled using elements from different pathways mainly because of the laxity of the regulatory systems and the broad specificity of the catabolic enzymes. PMID:24325207

  17. Attempts to find phenotypic markers of the virulence plasmid of Rhodococcus equi.

    PubMed Central

    De La Peña-Moctezuma, A; Prescott, J F; Goodfellow, M

    1996-01-01

    Four isolates of Rhodococcus equi, from pneumonic foals, and containing the 85 kb virulence plasmid, a porcine isolate containing an 80 kb plasmid, and their plasmid cured derivatives, were examined for 239 phenotypic properties in an attempt to find characters other than the virulence-associated protein (VapA) which might be encoded by the virulence plasmid in organisms grown at 37 degrees C. Tests chosen included those which have previously given variable results for R. equi isolates, since such variability might be attributed to plasmid curing, and characteristics which have been described as properties of plasmids of Rhodococcus species other than R. equi. Tests included cadmium resistance, Congo red binding, resistance to 26 antibiotics, conventional clinical microbiological tests, utilization of 95 different carbon sources, enzymatic activities in API ZYM, fluorogenic assays for exo- and endopeptidase, glycosidase activities, and testosterone degradation. Apart from production of VapA by foal isolates, no phenotypic property was identified in the plasmid-positive isolates. Phenotypic characteristics of R. equi that have not been described before, and might be useful in identification were: metabolism of N-acetyl-beta D-glucopyranoside, alpha- and beta-hydroxybutyric, alpha-ketobutyric and N-acetyl-glutamic acids, of methylpyruvate, heptanoate, nonanoate and stearate esters; exopeptidase activity against alanine-alanine-tyrosine, alanine-phenylalanine-lysine, glycine-arginine, lysine-alanine, and valine-glycine-alanine; endopeptidase activity against arginine and methionine; and hydrolysis of bis-phosphate ester. PMID:8825990

  18. Coexisting bacterial populations responsible for multiphasic mineralization kinetics in soil. [Janthinobacterium sp. Rhodococcus sp

    SciTech Connect

    Schmidt, S.K.; Gier, M.J. )

    1990-09-01

    Experiments were conducted to study populations of indigenous microorganisms capable of mineralizing 2,4-dinitrophenol (DNP) in two soils. Previous kinetic analyses indicated the presence of two coexisting populations of DNP-mineralizing microorganisms in a forest soil (soil 1). Studies in which eucaryotic and procaryotic inhibitors were added to this soil indicated that both populations were bacterial. Most-probable-number counts with media containing different concentrations of DNP indicated that more bacteria could mineralize low concentrations of DNP than could metabolize high concentrations of it. Enrichments with varying concentrations of DNP and various combinations of inhibitors consistently resulted in the isolation of the same two species of bacteria from soil 1. This soil contained a large number and variety of fungi, but no fungi capable of mineralizing DNP were isolated. The two bacterial isolates were identified as a Janthinobacterium sp. and a Rhodococcus sp. The Janthinobacterium sp. had a low {mu}{sub max} and a low K{sub m} for DNP mineralization, whereas the Rhodococcus sp. had much higher values for both parameters. These differences between the two species of bacteria were similar to differences seen when soil was incubated with different concentrations of DNP. Values for {mu}{sub max} from soil incubations were similar to {mu}{sub max} values obtained in pure culture studies. In contrast, K{sub s} and K{sub m} values showed greater variation between soil and pure culture studies.

  19. Enhanced biofilm production by a toluene-degrading Rhodococcus observed after exposure to perfluoroalkyl acids.

    PubMed

    Weathers, Tess S; Higgins, Christopher P; Sharp, Jonathan O

    2015-05-01

    This study focuses on interactions between aerobic soil-derived hydrocarbon degrading bacteria and a suite of perfluorocarboxylic acids and perfluoroalkylsulfonates that are found in aqueous film-forming foams used for fire suppression. No effect on toluene degradation rate or induction time was observed when active cells of Rhodococcus jostii strain RHA1 were exposed to toluene and a mixture of perfluoroalkyl acids (PFAAs) including perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) at concentrations near the upper bounds of groundwater relevance (11 PFAAs at 10 mg/L each). However, exposure to aqueous PFAA concentrations above 2 mg/L (each) was associated with enhanced aggregation of bacterial cells and significant increases in extracellular polymeric substance production. Flocculation was only observed during exponential growth and not elicited when PFAAs were added to resting incubations; analogous flocculation was also observed in soil enrichments. Aggregation was accompanied by 2- to 3-fold upregulation of stress-associated genes, sigF3 and prmA, during growth of this Rhodococcus in the presence of PFAAs. These results suggest that biological responses, such as microbial stress and biofilm formation, could be more prominent than suppression of co-contaminant biodegradation in subsurface locations where poly- and perfluoroalkyl substances occur with hydrocarbon fuels. PMID:25806435

  20. Influence of Rhodococcus equi on the respiratory burst of resident alveolar macrophages from horses

    SciTech Connect

    Brumbaugh, G.W.

    1986-01-01

    Rhodococcus equi is the etiologic agent of a devastating pneumonia of sporadic incidence in foals. The purpose of this study was to evaluate the influence of R. equi on the superoxide anion production, measured spectrophotometrically as the reduction of cytochrome C, and hexose monophosphate shunt activity, measured by /sup 14/CO/sub 2/ liberation from /sup 14/C-1-D-glucose, of alveolar macrophages from horses. Alveolar macrophages were harvested from 6 anesthetized, healthy, light-breed, adult horses by bronchoalveolar lavage. Following a randomized complete block design, the suspension of cells was divided into aliquots of 10/sup 6/ viable alveolar macrophages which were exposed to 1, 10 or 100 g. of opsonized R. equi or opsonized zymosan A at 37 C for 2 hours. In this study the respiratory burst of equine alveolar macrophages was only evidenced by the hexose monophosphate shunt activity and superoxide anion was not coincidentally produced. Rhodococcus equi did not adversely affect that response. The insignificant superoxide anion production by the alveolar macrophages suggests that this may not be a significant oxygen metabolite in those cells.

  1. Whole-Genome Shotgun Sequencing of Rhodococcus erythropolis Strain P27, a Highly Radiation-Resistant Actinomycete from Antarctica

    PubMed Central

    Gouvêa Taketani, Rodrigo; Domingues Zucchi, Tiago; Soares de Melo, Itamar

    2013-01-01

    Here, we report the draft genome sequence of radiation-resistant Rhodococcus erythropolis strain P27, isolated from leaves of Deschampsia antarctica Desv. (Poaceae) in the Admiralty Bay area, Antarctica. PMID:24072865

  2. Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica.

    PubMed

    Goordial, Jacqueline; Raymond-Bouchard, Isabelle; Zolotarov, Yevgen; de Bethencourt, Luis; Ronholm, Jennifer; Shapiro, Nicole; Woyke, Tanja; Stromvik, Martina; Greer, Charles W; Bakermans, Corien; Whyte, Lyle

    2016-02-01

    The permafrost soils of the high elevation McMurdo Dry Valleys are the most cold, desiccating and oligotrophic on Earth. Rhodococcus sp. JG3 is one of very few bacterial isolates from Antarctic Dry Valley permafrost, and displays subzero growth down to -5°C. To understand how Rhodococcus sp. JG3 is able to survive extreme permafrost conditions and be metabolically active at subzero temperatures, we sequenced its genome and compared it to the genomes of 14 mesophilic rhodococci. Rhodococcus sp. JG3 possessed a higher copy number of genes for general stress response, UV protection and protection from cold shock, osmotic stress and oxidative stress. We characterized genome wide molecular adaptations to cold, and identified genes that had amino acid compositions favourable for increased flexibility and functionality at low temperatures. Rhodococcus sp. JG3 possesses multiple complimentary strategies which may enable its survival in some of the harshest permafrost on Earth. PMID:26637477

  3. Rhodococcus equi pneumonia and sepsis in an allogeneic haematopoietic stem cell transplant recipient

    PubMed Central

    Shahani, Lokesh

    2014-01-01

    Rhodococcus equi is an aerobic facultative intracellular organism that is known to infect cells of the macrophage–monocyte lineage. It is a common veterinary pathogen; however, the incidence of this infection in humans has risen and it has been recognised as an emerging opportunistic pathogen among the immunocompromised patients. We present the case of a patient with chronic myeloid leukaemia who had received allogenic stem cell transplant and presented to the hospital with clinical picture of pneumonia. Her condition worsened on initial broad spectrum antimicrobials and 3 weeks into her hospitalisation, R. equi was isolated from her broncheoalveolar lavage and blood cultures. Based on the susceptibility, therapy was changed to four active antimicrobials; however, the patient failed to improve and eventually died. This case highlights the importance of considering the diagnosis of R. equi among immunosuppressed patients early in the right clinical setting due to the high virulence associated with this organism. PMID:24943142

  4. A physical map of the 85 kb virulence plasmid of Rhodococcus equi 103.

    PubMed Central

    de la Peña-Moctezuma, A; Prescott, J F

    1995-01-01

    A physical map of the 85 kb virulence plasmid pOTS from Rhodococcus equi 103 was constructed. The restriction map contains 2 AsnI, 5 BglII, 9 EcoRI, 4 HindIII, and 3 XbaI sites. The positions of the EcoRI and HindIII of pOTS are identical to that of the 85 kb virulence plasmid of R. equi ATCC 33701 reported recently by others. EcoRI restriction fragment sizes were similar in the 85 kb plasmids isolated from 4 horse derived R. equi but, except apparently for the 28.3 and possibly 2.0 and 1.5 kb fragments, were different in an 80.1 kb plasmid isolated from a pig source R. equi. PMID:8521357

  5. Identification of fluoropyrogallols as new intermediates in biotransformation of monofluorophenols in Rhodococcus opacus 1cp

    SciTech Connect

    Finkelstein, Z.I.; Baskunov, B.P.; Boersma, M.G.; Vervoort, J.; Golovlev, E.L.; Berkel, W.J.H. van; Golovleva, L.A.; Rietjens, I.M.C.M.

    2000-05-01

    The transformation of monofluorophenols by whole cells of Rhodococcus opacus 1cp was investigated, with special emphasis on the nature of hydroxylated intermediates formed. Thin-layer chromatography, mass spectrum analysis, and {sup 19}F nuclear magnetic resonance demonstrated the formation of fluorocatechol and trihydroxyfluorobenzene derivatives from each of three monofluorophenols. The {sup 19}F chemical shifts and proton-coupled splitting patterns of the fluorine resonances of the trihydroxyfluorobenzene products established that the trihydroxylated aromatic metabolites contained hydroxyl substituents on three adjacent carbon atoms. Thus, formation of 1,2,3-trihydroxy-4-fluorobenzene (4-fluoropyrogallol) from 2-fluorophenol and formation of 1,2,3-trihydroxy-5-fluorobenzene (5-fluoropyrogallol) from 3-fluorophenol and 4-fluorophenol were observed. These results indicate the involvement of fluoropyrogallols as previously unidentified metabolites in the biotransformation of monofluorophenols in R. opacus 1cp.

  6. Desulfurization and denitrogenation of heavy gas oil by Rhodococcus erythropolis ATCC 4277.

    PubMed

    Maass, D; Todescato, D; Moritz, D E; Oliveira, J Vladimir; Oliveira, D; Ulson de Souza, A A; Guelli Souza, S M A

    2015-08-01

    Some of the noxious atmospheric pollutants such as nitrogen and sulfur dioxides come from the fossil fuel combustion. Biodesulfurization and biodenitrogenation are processes which remove those pollutants through the action of microorganisms. The ability of sulfur and nitrogen removal by the strain Rhodococcus erythropolis ATCC 4277 was tested in a biphasic system containing different heavy gas oil concentrations in a batch reactor. Heavy gas oil is an important fraction of petroleum, because after passing through, the vacuum distillation is incorporated into diesel oil. This strain was able to remove about 40% of the nitrogen and sulfur present in the gas heavy oil. Additionally, no growth inhibition occurred even when in the presence of pure heavy gas oil. Results present in this work are considered relevant for the development of biocatalytic processes for nitrogen and sulfur removal toward building feasible industrial applications. PMID:25759162

  7. VapI, a new member of the Rhodococcus equi Vap family.

    PubMed

    Polidori, Marco; Haas, Albert

    2006-10-01

    Rhodococcus equi is a facultative intracellular bacterium which can cause bronchopneumonia in foals and AIDS patients. In this report we show that the ORF13-protein coded by the virulence associated plasmid of R. equi is clearly homologous to VapE. Nucleotide sequence analysis revealed frame shift mutations that shorten the sequence of the ORF13-protein. A theoretical extension of the sequence of ORF13 by the introduction of a single nucleotide yields a translated amino acid sequence that is highly homologous to VapE and other members of the Vap family. The data provided in this study indicate that the ORF13-protein is a novel member of the Vap family and is therefore designated VapI. PMID:16871422

  8. [Genetics and biochemistry of surfactant synthesis in Rhodococcus sp. H13-A]. Final report

    SciTech Connect

    Not Available

    1989-12-31

    The rationale for these studies resides is that biosurfactant synthesis occurs only when cells are grown with alkanes as sole source of carbon and energy. It is reasoned that biosurfactant synthesis is linked genetically to alkane oxidation and that the identification and characterization of the alk genes would provide information about the structural and regulator genes involved, in biosurfactant synthesis. Rhodococcus H13-A chromosomal DNA was isolated and digested with the restriction endonuclease Sau3A. The shuttle vector, pMVS301, was single site cleaved with Bgl II, phosphorylated, and the chromosomal DNA fragments agated into linearized pMVS301. The ligation mixture was used to transform competent E. coli HB101. The chromosomal DNA fragment has been cloned into pMVS301 which appears to contain genes encoding the initial oxidation of alkane. Electrophoration of Rhodococaus indicates transformation by this technique. Further studies are required to optimize conditions.

  9. (Genetics and biochemistry of surfactant synthesis in Rhodococcus sp. H13-A)

    SciTech Connect

    Not Available

    1989-01-01

    The rationale for these studies resides is that biosurfactant synthesis occurs only when cells are grown with alkanes as sole source of carbon and energy. It is reasoned that biosurfactant synthesis is linked genetically to alkane oxidation and that the identification and characterization of the alk genes would provide information about the structural and regulator genes involved, in biosurfactant synthesis. Rhodococcus H13-A chromosomal DNA was isolated and digested with the restriction endonuclease Sau3A. The shuttle vector, pMVS301, was single site cleaved with Bgl II, phosphorylated, and the chromosomal DNA fragments agated into linearized pMVS301. The ligation mixture was used to transform competent E. coli HB101. The chromosomal DNA fragment has been cloned into pMVS301 which appears to contain genes encoding the initial oxidation of alkane. Electrophoration of Rhodococaus indicates transformation by this technique. Further studies are required to optimize conditions.

  10. Antibiotic failure in a renal transplant patient with Rhodococcus equi infection: an indication for surgical lobectomy.

    PubMed

    Ursales, A; Klein, J A; Beal, S G; Koch, M; Clement-Kruzel, S; Melton, L B; Spak, C W

    2014-12-01

    Rhodococcus equi is an animal pathogen that causes infrequent but challenging infections in immunocompromised individuals, few of which have been described in solid organ transplant recipients. Common clinical presentations include indolent cough, fever, and dyspnea, with necrotizing pneumonia and cavitation. We report a case of a dense right upper lung pneumonia with resultant R. equi bacteremia in a renal transplant recipient. Our patient initially responded to antibiotic treatment with resolution of bacteremia and clinical recovery, followed by interval progression in her right upper lobe consolidation on follow-up computed tomography scans. She underwent lobectomy for definitive therapy with resolution of symptoms. Lobectomy can be utilized in isolated infection after antibiotic failure with excellent clinical outcomes. PMID:25412764

  11. The genome of a pathogenic rhodococcus: cooptive virulence underpinned by key gene acquisitions.

    PubMed

    Letek, Michal; González, Patricia; Macarthur, Iain; Rodríguez, Héctor; Freeman, Tom C; Valero-Rello, Ana; Blanco, Mónica; Buckley, Tom; Cherevach, Inna; Fahey, Ruth; Hapeshi, Alexia; Holdstock, Jolyon; Leadon, Desmond; Navas, Jesús; Ocampo, Alain; Quail, Michael A; Sanders, Mandy; Scortti, Mariela M; Prescott, John F; Fogarty, Ursula; Meijer, Wim G; Parkhill, Julian; Bentley, Stephen D; Vázquez-Boland, José A

    2010-09-01

    We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid-rich intestine and manure of herbivores--two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche-adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT-acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi. PMID:20941392

  12. The Genome of a Pathogenic Rhodococcus: Cooptive Virulence Underpinned by Key Gene Acquisitions

    PubMed Central

    Letek, Michal; González, Patricia; MacArthur, Iain; Rodríguez, Héctor; Freeman, Tom C.; Valero-Rello, Ana; Blanco, Mónica; Buckley, Tom; Cherevach, Inna; Fahey, Ruth; Hapeshi, Alexia; Holdstock, Jolyon; Leadon, Desmond; Navas, Jesús; Ocampo, Alain; Quail, Michael A.; Sanders, Mandy; Scortti, Mariela M.; Prescott, John F.; Fogarty, Ursula; Meijer, Wim G.; Parkhill, Julian; Bentley, Stephen D.; Vázquez-Boland, José A.

    2010-01-01

    We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivores—two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi. PMID:20941392

  13. Structure of the virulence-associated protein VapD from the intracellular pathogen Rhodococcus equi

    SciTech Connect

    Whittingham, Jean L.; Blagova, Elena V.; Finn, Ciaran E.; Luo, Haixia; Miranda-CasoLuengo, Raúl; Turkenburg, Johan P.; Leech, Andrew P.; Walton, Paul H.; Murzin, Alexey G.; Meijer, Wim G.; Wilkinson, Anthony J.

    2014-08-01

    VapD is one of a set of highly homologous virulence-associated proteins from the multi-host pathogen Rhodococcus equi. The crystal structure reveals an eight-stranded β-barrel with a novel fold and a glycine rich ‘bald’ surface. Rhodococcus equi is a multi-host pathogen that infects a range of animals as well as immune-compromised humans. Equine and porcine isolates harbour a virulence plasmid encoding a homologous family of virulence-associated proteins associated with the capacity of R. equi to divert the normal processes of endosomal maturation, enabling bacterial survival and proliferation in alveolar macrophages. To provide a basis for probing the function of the Vap proteins in virulence, the crystal structure of VapD was determined. VapD is a monomer as determined by multi-angle laser light scattering. The structure reveals an elliptical, compact eight-stranded β-barrel with a novel strand topology and pseudo-twofold symmetry, suggesting evolution from an ancestral dimer. Surface-associated octyl-β-d-glucoside molecules may provide clues to function. Circular-dichroism spectroscopic analysis suggests that the β-barrel structure is preceded by a natively disordered region at the N-terminus. Sequence comparisons indicate that the core folds of the other plasmid-encoded virulence-associated proteins from R. equi strains are similar to that of VapD. It is further shown that sequences encoding putative R. equi Vap-like proteins occur in diverse bacterial species. Finally, the functional implications of the structure are discussed in the light of the unique structural features of VapD and its partial structural similarity to other β-barrel proteins.

  14. Biodegradation of the Organic Disulfide 4,4′-Dithiodibutyric Acid by Rhodococcus spp.

    PubMed Central

    Khairy, Heba; Wübbeler, Jan Hendrik

    2015-01-01

    Four Rhodococcus spp. exhibited the ability to use 4,4′-dithiodibutyric acid (DTDB) as a sole carbon source for growth. The most important step for the production of a novel polythioester (PTE) using DTDB as a precursor substrate is the initial cleavage of DTDB. Thus, identification of the enzyme responsible for this step was mandatory. Because Rhodococcus erythropolis strain MI2 serves as a model organism for elucidation of the biodegradation of DTDB, it was used to identify the genes encoding the enzymes involved in DTDB utilization. To identify these genes, transposon mutagenesis of R. erythropolis MI2 was carried out using transposon pTNR-TA. Among 3,261 mutants screened, 8 showed no growth with DTDB as the sole carbon source. In five mutants, the insertion locus was mapped either within a gene coding for a polysaccharide deacetyltransferase, a putative ATPase, or an acetyl coenzyme A transferase, 1 bp upstream of a gene coding for a putative methylase, or 176 bp downstream of a gene coding for a putative kinase. In another mutant, the insertion was localized between genes encoding a putative transcriptional regulator of the TetR family (noxR) and an NADH:flavin oxidoreductase (nox). Moreover, in two other mutants, the insertion loci were mapped within a gene encoding a hypothetical protein in the vicinity of noxR and nox. The interruption mutant generated, R. erythropolis MI2 noxΩtsr, was unable to grow with DTDB as the sole carbon source. Subsequently, nox was overexpressed and purified, and its activity with DTDB was measured. The specific enzyme activity of Nox amounted to 1.2 ± 0.15 U/mg. Therefore, we propose that Nox is responsible for the initial cleavage of DTDB into 2 molecules of 4-mercaptobutyric acid (4MB). PMID:26407888

  15. Expression and characterization of an N-oxygenase from Rhodococcus jostii RHAI.

    PubMed

    Indest, Karl J; Eberly, Jed O; Hancock, Dawn E

    2015-01-01

    Nitro group-containing natural products are rare in nature. There are few examples of N-oxygenases, enzymes that incorporate atmospheric oxygen into primary and secondary amines, characterized in the literature. N-oxygenases have yet to be characterized from the Corynebacterineae, a metabolically diverse group of organisms that includes the genera Rhodococcus, Gordonia, and Mycobacterium. A preliminary in silico search for N-oxygenase AurF gene orthologs revealed multiple protein candidates present in the genome of the Actinomycete Rhodococcus jostii RHAI (RHAI_ro06104). Towards the goal of identifying novel biocatalysts with potential utility for the biosynthesis of nitroaromatics, AurF ortholog RHAI_ro6104 was cloned, expressed and purified in E. coli and amine and nitro containing phenol substrates tested for activity. RHAI-ro06104 showed the highest activity with 4-aminophenol, producing a Vmax of 18.76 μM s(-1) and a Km of 15.29 mM and demonstrated significant activities with 2-aminophenol and 2-amino-5-methylphenol, producing a Vmax of 12.86 and 12.72 μM s(-1) with a Km of 8.34 and 2.81 mM, respectively. These findings are consistent with a substrate range observed in other N-oxygenases, which seem to accommodate substrates that lack halogenated substitutions and side groups directly flanking the amine group. Attempts to identify modulators of RHAI-ro06104 gene activity demonstrated that aromatic amino acids inhibit expression by almost 50%. PMID:26782651

  16. Suspended MoS2 devices

    NASA Astrophysics Data System (ADS)

    Jin, Taiyu; Kang, Jinyoung; Liu, Renlong; Kim, Youngchan; Lee, Changgu

    2013-03-01

    Single or a few layer MoS2 sheets have been reported to have high electric mobility and current on/off ratio comparable to those of silicon due to its semiconductor properties with bandgap of 1.3 ~ 1.9eV. However, its extremely high surface to volume ratio and low thickness prohibits it from reproducing its electronic properties on SiO2 substrates possibly because of charge scattering by surface charges and phonons. In order to investigate these surface effects, we fabricated MoS2 devices suspended from the SiO2 and characterized their electronic transport properties. We exfoliated single or a few layer MoS2 on SiO2 substrates first, and fabricated field effect transistors using e-beam lithography. After that, we suspended MoS2 sheets by etching SiO2 with hydrofluoric acid. We measured mobility and current on/off ratio before and after the etching process. We found that mobility of MoS2 devices increased by factor of 5-10 after etching for all devices. However, on/off ratio did not show significant variation. Our measurements suggest that atomically thin MoS2 devices are significantly affected by substrate surface and environment.

  17. Isolation and identification of berberine and berberrubine metabolites by berberine-utilizing bacterium Rhodococcus sp. strain BD7100.

    PubMed

    Ishikawa, Kazuki; Takeda, Hisashi; Wakana, Daigo; Sato, Fumihiko; Hosoe, Tomoo

    2016-05-01

    Based on the finding of a novel berberine (BBR)-utilizing bacterium, Rhodococcus sp. strain BD7100, we investigated the degradation of BBR and its analog berberrubine (BRU). Resting cells of BD7100 demethylenated BBR and BRU, yielding benzeneacetic acid analogs. Isolation of benzeneacetic acid analogs suggested that BD7100 degraded the isoquinoline ring of the protoberberine skeleton. This work represents the first report of cleavage of protoberberine skeleton by a microorganism. PMID:26882131

  18. Clinical application of a polymerase chain reaction assay in the diagnosis of pneumonia caused by Rhodococcus equi in a horse.

    PubMed

    Vivrette, S L; Sellon, D C; Gibbons, D S

    2000-11-01

    Diagnosis of pneumonia caused by Rhodococcus equi can be made more rapidly by use of a polymerase chain reaction (PCR) assay than by use of conventional bacteriologic culture techniques. Use of a PCR assay aids in the differentiation between virulent and avirulent strains of R equi, and the assay may be used to identify R equi in feces and soil of breeding farms. PMID:11061388

  19. Genome Sequence of Rhodococcus sp. Strain PML026, a Trehalolipid Biosurfactant Producer and Biodegrader of Oil and Alkanes

    PubMed Central

    2015-01-01

    Rhodococcus sp. strain PML026 produces an array of trehalolipid biosurfactant compounds in order to utilize hydrophobic carbon sources, such as oils and alkanes. Here, we report the high-quality draft genome sequence of this strain, which has a total length of 5,168,404 bp containing 4,835 protein-coding sequences, 12 rRNAs, and 45 tRNAs. PMID:25953162

  20. Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil.

    PubMed

    Röttig, Annika; Hauschild, Philippa; Madkour, Mohamed H; Al-Ansari, Ahmed M; Almakishah, Naief H; Steinbüchel, Alexander

    2016-05-10

    As oleaginous microorganisms represent an upcoming novel feedstock for the biotechnological production of lipids or lipid-derived biofuels, we searched for novel, lipid-producing strains in desert soil. This was encouraged by the hypothesis that neutral lipids represent an ideal storage compound, especially under arid conditions, as several animals are known to outlast long periods in absence of drinking water by metabolizing their body fat. Ten lipid-accumulating bacterial strains, affiliated to the genera Bacillus, Cupriavidus, Nocardia, Rhodococcus and Streptomyces, were isolated from arid desert soil due to their ability to synthesize poly(β-hydroxybutyrate), triacylglycerols or wax esters. Particularly two Streptomyces sp. strains and one Rhodococcus sp. strain accumulate significant amounts of TAG under storage conditions under optimized cultivation conditions. Rhodococcus sp. A27 and Streptomyces sp. G49 synthesized approx. 30% (w/w) fatty acids from fructose or cellobiose, respectively, while Streptomyces isolate G25 reached a cellular fatty acid content of nearly 50% (w/w) when cultivated with cellobiose. The stored triacylglycerols were composed of 30-40% branched fatty acids, such as anteiso-pentadecanoic or iso-hexadecanoic acid. To date, this represents by far the highest lipid content described for streptomycetes. A biotechnological production of such lipids using (hemi)cellulose-derived raw material could be used to obtain sustainable biodiesel with a high proportion of branched-chain fatty acids to improve its cold-flow properties and oxidative stability. PMID:27034020

  1. On {N} = 2 supersymmetric gauge theories on S 2 × S 2

    NASA Astrophysics Data System (ADS)

    Sinamuli, Musema

    2016-05-01

    We construct a supergeometry based on S 2× S 2 on which four dimensional {N} = 2 gauge theories can be placed supersymmetrically while preserving all supersymmetries. By embedding the supergeometry in four dimensional {N} = 2 supergravity we are able to construct an arbitrary {N} = 2 gauge theory on S 2 × S 2. We show that {N} = 2 gauge theories are invariant under the exceptional superalgebra D(2 , 1 , α), where α is the ratio of the radii of the two S 2's. We solve the supersymmetry fixed points equations for a choice of supercharge in D(2 , 1 , α). The solution of these BPS equations, which we find, would serve as the exact saddle point configurations of a localization computation of the partition function of {N} = 2 gauge theories on S 2 × S 2.

  2. Induction of Viable but Nonculturable State in Rhodococcus and Transcriptome Analysis Using RNA-seq

    PubMed Central

    Su, Xiaomei; Guo, Li; Ding, Linxian; Qu, Kun; Shen, Chaofeng

    2016-01-01

    Viable but nonculturable (VBNC) bacteria, which maintain the viability with loss of culturability, universally exist in contaminated and non-contaminated environments. In this study, two strains, Rhodococcus sp. TG13 and TN3, which were isolated from PCB-contaminated sediment and non-contaminated sediment respectively, were investigated under low temperature and oligotrophic conditions. The results indicated that the two strains TG13 and TN3 could enter into the VBNC state with different incubation times, and could recover culturability by reversal of unfavourable factors and addition of resuscitation-promoting factor (Rpf), respectively. Furthermore, the gene expression variations in the VBNC response were clarified by Illumina high throughput RNA-sequencing. Genome-wide transcriptional analysis demonstrated that up-regulated genes in the VBNC cells of the strain TG13 related to protein modification, ATP accumulation and RNA polymerase, while all differentially expressed genes (DEGs) in the VBNC cells of the strain TN3 were down-regulated. However, the down-regulated genes in both the two strains mainly encoded NADH dehydrogenase subunit, catalase, oxidoreductase, which further verified that cold-induced loss of ability to defend oxidative stress may play an important role in induction of the VBNC state. This study further verified that the molecular mechanisms underlying the VBNC state varied with various bacterial species. Study on the VBNC state of non-pathogenic bacteria will provide new insights into the limitation of environmental micro-bioremediation and the cultivation of unculturable species. PMID:26808070

  3. Bacterial O-methylation of halogen-substituted phenols. [Rhodococcus; Acinetobacter

    SciTech Connect

    Allard, A.S.; Remberger, M.; Neilson, A.H.

    1987-04-01

    Two strains of bacteria capable of carrying out the O-methylation of phenolic compounds, one from the gram-positive genus Rhodococcus and one from the gram-negative genus Acinetobacter, were used to examine the O-methylation of phenols carrying fluoro-, chloro-, and bromo-substituents. Zero-order rates of O-methylation were calculated from data for the chloro- and bromophenols; there was no simple relationship between the rate of reaction and the structure of the substrates, and significant differences were observed in the responses of the two test organisms. For the gram-negative strain, the pattern of substitution was as important as the number of substituents. Hexachlorophene was resistant to O-methylation by both strains, and tetrabromobisphenol-A was O-methylated only by the gram-positive strain. It is suggested that in the natural environment, bacterial O-methylation of phenols carrying electron-attracting substituents might be a significant alternative to biodegradation.

  4. Nitric Oxide-Mediated Intracellular Growth Restriction of Pathogenic Rhodococcus equi Can Be Prevented by Iron▿

    PubMed Central

    von Bargen, Kristine; Wohlmann, Jens; Taylor, Gregory Alan; Utermöhlen, Olaf; Haas, Albert

    2011-01-01

    Rhodococcus equi is an intracellular pathogen which causes pneumonia in young horses and in immunocompromised humans. R. equi arrests phagosome maturation in macrophages at a prephagolysosome stage and grows inside a privileged compartment. Here, we show that, in murine macrophages activated with gamma interferon and lipopolysaccharide, R. equi does not multiply but stays viable for at least 24 h. Whereas infection control of other intracellular pathogens by activated macrophages is executed by enhanced phagosome acidification or phagolysosome formation, by autophagy or by the interferon-inducible GTPase Irgm1, none of these mechanisms seems to control R. equi infection. Growth control by macrophage activation is fully mimicked by treatment of resting macrophages with nitric oxide donors, and inhibition of bacterial multiplication by either activation or nitric oxide donors is annihilated by cotreatment of infected macrophages with ferrous sulfate. Transcriptional analysis of the R. equi iron-regulated gene iupT demonstrates that intracellular R. equi encounters iron stress in activated, but not in resting, macrophages and that this stress is relieved by extracellular addition of ferrous sulfate. Our results suggest that nitric oxide is central to the restriction of bacterial access to iron in activated macrophages. PMID:21383050

  5. Mouse lung infection model to assess Rhodococcus equi virulence and vaccine protection.

    PubMed

    González-Iglesias, Patricia; Scortti, Mariela; MacArthur, Iain; Hapeshi, Alexia; Rodriguez, Héctor; Prescott, John F; Vazquez-Boland, José A

    2014-08-01

    The pathogenic actinomycete Rhodococcus equi causes severe purulent lung infections in foals and immunocompromised people. Although relatively unsusceptible to R. equi, mice are widely used for in vivo studies with this pathogen. The most commonly employed mouse model is based on systemic (intravenous) infection and determination of R. equi burdens in spleen and liver. Here, we investigated the murine lung for experimental infection studies with R. equi. Using a 10(7)CFU intranasal challenge in BALB/c mice, virulent R. equi consistently survived in quantifiable numbers up to 10 days in the lungs whereas virulence-deficient R. equi bacteria were rapidly cleared. An internally controlled virulence assay was developed in which the test R. equi strains are co-inoculated and monitored in the same mouse. Isogenic R. equi bacteria lacking either the plasmid vapA gene or the entire virulence plasmid were compared using this competitive assay. Both strains showed no significant differences in in vivo fitness in the lung, indicating that the single loss of the virulence factor VapA was sufficient to account for the full attenuation seen in the absence of the virulence plasmid. To test the adequacy of the lung infection model for monitoring R. equi vaccine efficacy, BALB/c mice were immunized with live R. equi and challenged intranasally. Vaccination conferred protection against acute pulmonary challenge with virulent R. equi. Our data indicate that the murine lung infection model provides a useful tool for both R. equi virulence and vaccine studies. PMID:24852140

  6. The sensor kinase MprB is required for Rhodococcus equi virulence.

    PubMed

    MacArthur, Iain; Parreira, Valeria R; Lepp, Dion; Mutharia, Lucy M; Vazquez-Boland, José A; Prescott, John F

    2011-01-10

    Rhodococcus equi is a soil bacterium and, like Mycobacterium tuberculosis, a member of the mycolata. Through possession of a virulence plasmid, it has the ability to infect the alveolar macrophages of foals, resulting in pyogranulomatous bronchopneumonia. The virulence plasmid has an orphan two-component system (TCS) regulatory gene, orf8, mutation of which completely attenuates virulence. This study attempted to find the cognate sensor kinase (SK) of orf8. Annotation of the R. equi strain 103 genome identified 23 TCSs encoded on the chromosome, which were used in a DNA microarray to compare TCS gene transcription in murine macrophage-like cells to growth in vitro. This identified six SKs as significantly up-regulated during growth in macrophages. Mutants of these SKs were constructed and their ability to persist in macrophages was determined with one SK, MprB, found to be required for intracellular survival. The attenuation of the mprB- mutant, and its complementation, was confirmed in a mouse virulence assay. In silico analysis of the R. equi genome sequence identified an MprA binding box motif homologous to that of M. tuberculosis, on mprA, pepD, sigB and sigE. The results of this study also show that R. equi responds to the macrophage environment differently from M. tuberculosis. MprB is the first SK identified as required for R. equi virulence and intracellular survival. PMID:20637548

  7. Mining the genome of Rhodococcus fascians, a plant growth-promoting bacterium gone astray.

    PubMed

    Francis, Isolde M; Stes, Elisabeth; Zhang, Yucheng; Rangel, Diana; Audenaert, Kris; Vereecke, Danny

    2016-09-25

    Rhodococcus fascians is a phytopathogenic Gram-positive Actinomycete with a very broad host range encompassing especially dicotyledonous herbaceous perennials, but also some monocots, such as the Liliaceae and, recently, the woody crop pistachio. The pathogenicity of R. fascians strain D188 is known to be encoded by the linear plasmid pFiD188 and to be dictated by its capacity to produce a mixture of cytokinins. Here, we show that D188-5, the nonpathogenic plasmid-free derivative of the wild-type strain D188 actually has a plant growth-promoting effect. With the availability of the genome sequence of R. fascians, the chromosome of strain D188 was mined for putative plant growth-promoting functions and the functionality of some of these activities was tested. This analysis together with previous results suggests that the plant growth-promoting activity of R. fascians is due to production of plant growth modulators, such as auxin and cytokinin, combined with degradation of ethylene through 1-amino-cyclopropane-1-carboxylic acid deaminase. Moreover, R. fascians has several functions that could contribute to efficient colonization and competitiveness, but there is little evidence for a strong impact on plant nutrition. Possibly, the plant growth promotion encoded by the D188 chromosome is imperative for the epiphytic phase of the life cycle of R. fascians and prepares the plant to host the bacteria, thus ensuring proper continuation into the pathogenic phase. PMID:26877150

  8. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630

    PubMed Central

    Yoneda, Aki; Henson, William R.; Goldner, Nicholas K.; Park, Kun Joo; Forsberg, Kevin J.; Kim, Soo Ji; Pesesky, Mitchell W.; Foston, Marcus; Dantas, Gautam; Moon, Tae Seok

    2016-01-01

    Lignin-derived (e.g. phenolic) compounds can compromise the bioconversion of lignocellulosic biomass to fuels and chemicals due to their toxicity and recalcitrance. The lipid-accumulating bacterium Rhodococcus opacus PD630 has recently emerged as a promising microbial host for lignocellulose conversion to value-added products due to its natural ability to tolerate and utilize phenolics. To gain a better understanding of its phenolic tolerance and utilization mechanisms, we adaptively evolved R. opacus over 40 passages using phenol as its sole carbon source (up to 373% growth improvement over wild-type), and extensively characterized two strains from passages 33 and 40. The two adapted strains showed higher phenol consumption rates (∼20 mg/l/h) and ∼2-fold higher lipid production from phenol than the wild-type strain. Whole-genome sequencing and comparative transcriptomics identified highly-upregulated degradation pathways and putative transporters for phenol in both adapted strains, highlighting the important linkage between mechanisms of regulated phenol uptake, utilization, and evolved tolerance. Our study shows that the R. opacus mutants are likely to use their transporters to import phenol rather than export them, suggesting a new aromatic tolerance mechanism. The identified tolerance genes and pathways are promising candidates for future metabolic engineering in R. opacus for improved lignin conversion to lipid-based products. PMID:26837573

  9. Immunogenicity of synthetic Rhodococcus equi virulence-associated protein peptides in neonate foals.

    PubMed

    Cauchard, Julien; Taouji, Saïd; Sevin, Corinne; Duquesne, Fabien; Bernabé, Magali; Laugier, Claire; Ballet, Jean Jacques

    2006-10-01

    Rhodococcus equi infection is considered the most common cause of pneumonia in foals less than 6 months of age. Immunization of foals and/or mares may become a procedure of choice for prevention. The present work documents the antibody response of neonate foals to R. equi virulence-associated protein (Vap) vaccine candidate peptides. A mixture of 4 R. equi (ATCC 33701) Vap peptides was selected based on their hydrophilicity and recognition by naturally acquired IgG antibodies from 13 adult horses and 33 neonate foals from France and Japan. They were combined with a water-based nanoparticular adjuvant to promote a protective immune response including both Th1 cytokine pattern and antibody response. A single intramuscular injection resulted in an IgG antibody response 30 days later, although inconsistently. In responding animals, no bias in IgG subclass distribution was observed, and antibody response was associated with enhanced serum opsonic activity. In conclusion, data indicate that synthetic Vap peptides combined with nanoparticular adjuvant were immunogenic and resulted in a significant increase in IgG antibodies against the corresponding virulent R. equi strain in a majority of foals. PMID:16782401

  10. Rhodococcus equi venous catheter infection: a case report and review of the literature

    PubMed Central

    2011-01-01

    Introduction Rhodococcus equi is an animal pathogen that was initially isolated from horses and is being increasingly reported as a cause of infection in humans with impaired cellular immunity. However, this pathogen is underestimated as a challenging antagonist and is frequently considered to be a mere contaminant despite the potential for life-threatening infections. Most case reports have occurred in immunocompromised patients who have received organ transplants (for example kidney, heart, bone marrow) or those with human immunodeficiency virus infection. Infections often manifest as pulmonary involvement or soft tissue abscesses. Bacteremia related to R. equi infections of tunneled central venous catheters has rarely been described. Case presentation We report the case of a 63-year-old non-transplant recipient, non-HIV infected Caucasian woman with endometrial carcinoma who developed recurrent bloodstream infections and septic shock due to R. equi and ultimately required the removal of her port catheter, a subcutaneous implantable central venous catheter. We also review the medical literature related to human infections with R. equi. Conclusion R. equi should be considered a serious pathogen, not a contaminant, particularly in an immunocompromised patient who presents with a central venous catheter-related bloodstream infection. Counseling patients with central venous catheters who participate in activities involving exposure to domesticated animals is recommended. PMID:21827681

  11. Modulation of Cytokine Response of Pneumonic Foals by Virulent Rhodococcus equi

    PubMed Central

    Giguère, Steeve; Wilkie, Bruce N.; Prescott, John F.

    1999-01-01

    The ability of Rhodococcus equi to induce pneumonia in foals depends on the presence of an 85- to 90-kb plasmid. In this study, we evaluated whether plasmid-encoded products mediate virulence by modulating the cytokine response of foals. Foals infected intrabronchially with a virulence plasmid-containing strain of R. equi had similar gamma interferon (IFN-γ) and interleukin-12 (IL-12) p35 but significantly higher IL-1β, IL-10, IL-12 p40, and tumor necrosis factor alpha (TNF-α) mRNA expression in lung tissue compared to foals infected with the plasmid-cured derivative. IFN-γ mRNA expression levels in CD4+ T lymphocytes isolated from bronchial lymph nodes (BLN) were similar for the two groups of R. equi-infected foals on day 3 postinfection. However, on day 14, in association with pneumonia and marked multiplication of virulent R. equi but with complete clearance of the plasmid-cured derivative, IFN-γ mRNA expression in BLN CD4+ T lymphocytes was significantly (P < 0.001) higher in foals infected with the plasmid-cured derivative. These results suggests an immunomodulating role for R. equi virulence plasmid-encoded products in downregulating IFN-γ mRNA expression by CD4+ T lymphocytes. PMID:10496876

  12. Early development of cytotoxic T lymphocytes in neonatal foals following oral inoculation with Rhodococcus equi

    PubMed Central

    Harris, Seth P.; Hines, Melissa T.; Mealey, Robert H.; Alperin, Debra C.; Hines, Stephen A.

    2012-01-01

    Rhodococcus equi is an important respiratory pathogen of young foals for which a vaccine has long been sought. Two major impediments to effective vaccination are the functionally immature type I immune responses of neonatal foals and early exposure to the bacterium via the environment. Despite these obstacles, it appears that under specific circumstances foals can develop a protective immune response. In this study we investigated the protective mechanisms behind oral inoculation of foals with virulent R. equi bacteria. Two foals receiving an oral inoculum demonstrated accelerated development of R. equi specific cytotoxic T lymphocytes (CTL) as evidenced by significant lysis of R. equi infected, ELA-A mismatched cells at 3 weeks of age. As in a previous study, CTL were not detected until 5–6 weeks of age in two control foals. At each time point the ability of foal peripheral blood mononuclear cells (PBMC) to produce IFN-γ following stimulation with live R. equi or extracted cell wall lipids was similar to that of an adult horse control and between foals, regardless of treatment. These results provide a potential mechanism of protection which has previously been shown to occur following oral inoculation, and suggest that the early detection of CTL may be a useful marker for induction of protective immunity. PMID:21481947

  13. Eternal youth, the fate of developing Arabidopsis leaves upon Rhodococcus fascians infection.

    PubMed

    Depuydt, Stephen; De Veylder, Lieven; Holsters, Marcelle; Vereecke, Danny

    2009-03-01

    The phytopathogenic actinomycete Rhodococcus fascians induces neoplastic shooty outgrowths on infected hosts. Upon R. fascians infection of Arabidopsis (Arabidopsis thaliana), leaves are formed with small narrow lamina and serrated margins. These symptomatic leaves exhibit reduced tissue differentiation, display more but smaller cells that do not endoreduplicate, and accumulate in the G1 phase of the cell cycle. Together, these features imply that leaf growth occurs primarily through mitotic cell division and not via cell expansion. Molecular analysis revealed that cell cycle gene expression is activated continuously throughout symptomatic leaf development, ensuring persistent mitotic cycling and inhibition of cell cycle exit. The transition at the two major cell cycle checkpoints is stimulated as a direct consequence of the R. fascians signals. The extremely reduced phenotypical response of a cyclind3;1-3 triple knockout mutant indicates that the D-type cyclin/retinoblastoma/E2F transcription factor pathway, as a major mediator of cell growth and cell cycle progression, plays a key role in symptom development and is instrumental for the sustained G1-to-S and G2-to-M transitions during symptomatic leaf growth. PMID:19118126

  14. Engineering of an L-arabinose metabolic pathway in Rhodococcus jostii RHA1 for biofuel production.

    PubMed

    Xiong, Xiaochao; Wang, Xi; Chen, Shulin

    2016-07-01

    The oleaginous bacterium, Rhodococcus jostii RHA1 has attracted considerable attention due to its capability to accumulate significant levels of triacylglycerol as renewable hydrocarbon. To enable the strain to utilize arabinose derived from lignocellulosic biomass, the metabolic pathway of L-arabinose utilization was introduced into R. jostii RHA1 by heterogenous expression of the operon, araBAD from Escherichia coli. The results showed that recombinant bearing araBAD could grow on L-arabinose as the sole carbon source, and additional expression of araFGH encoding the arabinose transporter from E. coli could improve the cell biomass yield from high contents of arabinose. We further increased the content of lipid produced from arabinose in the recombinants from 47.9 to 56.8 % of the cell dry weight (CDW) by overexpression of a gene, atf1 encoding a diglyceride acyltransferase from R. opacus PD630. This work demonstrated the feasibility of producing lipid from arabinose by genetic modification of the rhodococci strain. PMID:27143134

  15. Pyrolysis oil-based lipid production as biodiesel feedstock by Rhodococcus opacus.

    PubMed

    Wei, Zhen; Zeng, Guangming; Kosa, Matyas; Huang, Danlian; Ragauskas, Arthur J

    2015-01-01

    Light oil from pyrolysis, which accounts for ∼10 % carbon yield of the starting biomass, is a complex aqueous product that is difficult to utilize and usually discarded. This work presents the feasibility of light oil as a sole carbon source to support the growth of Rhodococcus opacus (R. opacus) that in turn accumulate triacylglycerols as biodiesel feedstock. Two types of bacteria (R. opacus PD630 and DSM 1069) were selected in this study. Research results showed that after short adaption periods both strains can grow well on this complex carbon source, as proved by the consumption of oligomers and monomers in light oil. Lipid content by R. opacus PD630 and DSM 1069 was observed up to 25.8 % and 22.0 % of cell dry weight, respectively. Palmitic and stearic acids were found to be the predominant fatty acids in these bacterial cells. In addition, the light oil-based lipid production can be enhanced by reducing the pH value from 7 to 4, especially in case of DSM 1069. PMID:25377250

  16. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630

    DOE PAGESBeta

    Yoneda, Aki; Henson, William R.; Goldner, Nicholas K.; Park, Kun Joo; Forsberg, Kevin J.; Kim, Soo Ji; Pesesky, Mitchell W.; Foston, Marcus; Dantas, Gautam; Moon, Tae Seok

    2016-02-02

    Lignin-derived (e.g. phenolic) compounds can compromise the bioconversion of lignocellulosic biomass to fuels and chemicals due to their toxicity and recalcitrance. The lipid-accumulating bacterium Rhodococcus opacus PD630 has recently emerged as a promising microbial host for lignocellulose conversion to value-added products due to its natural ability to tolerate and utilize phenolics. To gain a better understanding of its phenolic tolerance and utilization mechanisms, we adaptively evolved R. opacus over 40 passages using phenol as its sole carbon source (up to 373% growth improvement over wild-type), and extensively characterized two strains from passages 33 and 40. The two adapted strains showedmore » higher phenol consumption rates (~20 mg/l/h) and ~2-fold higher lipid production from phenol than the wild-type strain.Whole-genome sequencing and comparative transcriptomics identified highly-upregulated degradation pathways and putative transporters for phenol in both adapted strains, highlighting the important linkage between mechanisms of regulated phenol uptake, utilization, and evolved tolerance. Our study shows that the R. opacus mutants are likely to use their transporters to import phenol rather than export them, suggesting a new aromatic tolerance mechanism. The identified tolerance genes and pathways are promising candidates for future metabolic engineering in R. opacus for improved lignin conversion to lipid-based products.« less

  17. Abortion in a thoroughbred mare associated with an infection with avirulent Rhodococcus equi.

    PubMed

    Nakamura, Y; Nishi, H; Katayama, Y; Niwa, H; Matsumura, T; Anzai, T; Ohtsu, Y; Tsukano, K; Shimizu, N; Takai, S

    2007-09-01

    An eight-year-old thoroughbred mare with no previous history of illness aborted a fetus at 196 days of gestation, and its internal tissues were examined immunohistologically and bacteriologically. The placenta was not examined, but specimens of the intrauterine fluids and the dam's faeces were collected four days after the abortion and examined bacteriologically. No significant histological lesions were found in the fetus but the amnion and the umbilical cord were oedematous and had petechial haemorrhages. Rhodococcus equi was isolated in pure culture from the lung, heart and stomach contents of the fetus and from an intrauterine specimen and faeces of the dam. The anti-R equi antibody titre of the mare was high after the abortion. The diagnosis was confirmed in the lung of the fetus by immunohistochemical staining with R equi-specific antibodies. Isolates from the fetus and mare were identified as avirulent R equi by pcr and the mouse pathogenicity test. The avirulent isolates were characterised by pulsed-field gel electrophoresis, which yielded only one VspI profile in all the isolates from the fetus and its dam. PMID:17827474

  18. Septic pleuritis and abdominal abscess formation caused by Rhodococcus equi in a foal.

    PubMed

    Valdes, Alejandro; Johnson, Jill R

    2005-09-15

    A 3-month-old female Arabian horse was evaluated because of fever, respiratory distress, lethargy, and decreased appetite of 5 days' duration. Pleural effusion was diagnosed on the basis of ultrasonographic and radiographic examinations. Cytologic examination of pleural fluid collected via thoracocentesis revealed septic inflammation; bacteriologic culture of a sample of that fluid yielded Rhodococcus equi. A large intra-abdominal mass adjacent to the body wall was identified ultrasonographically. A specimen of the mass was collected via aspiration; the specimen was identified cytologically as purulent exudate that contained large numbers of rod-shaped bacteria, which confirmed abdominal abscess formation. Bacteriologic culture of a sample of the exudate also yielded R. equi. The foal was treated with azithromycin (10 mg/kg [4.5 mg/lb], PO, q 24 h for 5 days then q 48 h) and rifampin (5 mg/kg [2.3 mg/lb], PO, q 12 h) for 8 weeks and metronidazole (15 mg/kg [6.8 mg/lb], PO, q 8 h) for 3 weeks. Clinically, the foal responded to antimicrobial treatment within 2 weeks. At 8 weeks after the initial evaluation, ultrasonographic examination of the foal revealed resolution of the pleural effusion and abdominal abscess. In foals, R. equi infection typically results in pyogranulomatous pneumonia, and pleural effusion is an uncommon clinical sign. The combination of azithromycin and rifampin appears to be an effective treatment for R. equi infection in foals. PMID:16190597

  19. Benzoate degradation by Rhodococcus opacus 1CP after dormancy: Characterization of dioxygenases involved in the process.

    PubMed

    Solyanikova, Inna P; Emelyanova, Elena V; Borzova, Oksana V; Golovleva, Ludmila A

    2016-01-01

    The process of benzoate degradation by strain Rhodococcus opacus 1CP after a five-year dormancy was investigated and its peculiarities were revealed. The strain was shown to be capable of growth on benzoate at a concentration of up to 10 g L(-1). The substrate specificity of benzoate dioxygenase (BDO) during the culture growth on a medium with a low (200-250 mg L(-1)) and high (4 g L(-1)) concentration of benzoate was assessed. BDO of R. opacus 1CP was shown to be an extremely narrow specificity enzyme. Out of 31 substituted benzoates, only with one, 3-chlorobenzoate, its activity was higher than 9% of that of benzoate. Two dioxygenases, catechol 1,2-dioxygenase (Cat 1,2-DO) and protocatechuate 3,4-dioxygenase (PCA 3,4-DO), were identified in a cell-free extract, purified and characterized. The substrate specificity of Cat 1,2-DO isolated from cells of strain 1CP after the dormancy was found to differ significantly from that of Cat 1,2-DO isolated earlier from cells of this strain grown on benzoate. By its substrate specificity, the described Cat 1,2-DO was close to the Cat 1,2-DO from strain 1CP grown on 4-methylbenzoate. Neither activity nor inhibition by protocatechuate was observed during the reaction of Cat 1,2-DO with catechol, and catechol had no inhibitory effect on the reaction of PCA 3,4-DO with protocatechuate. PMID:26669259

  20. Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons.

    PubMed

    Laczi, Krisztián; Kis, Ágnes; Horváth, Balázs; Maróti, Gergely; Hegedüs, Botond; Perei, Katalin; Rákhely, Gábor

    2015-11-01

    Rhodococcus erythropolis PR4 is able to degrade diesel oil, normal-, iso- and cycloparaffins and aromatic compounds. The complete DNA content of the strain was previously sequenced and numerous oxygenase genes were identified. In order to identify the key elements participating in biodegradation of various hydrocarbons, we performed a comparative whole transcriptome analysis of cells grown on hexadecane, diesel oil and acetate. The transcriptomic data for the most prominent genes were validated by RT-qPCR. The expression of two genes coding for alkane-1-monooxygenase enzymes was highly upregulated in the presence of hydrocarbon substrates. The transcription of eight phylogenetically diverse cytochrome P450 (cyp) genes was upregulated in the presence of diesel oil. The transcript levels of various oxygenase genes were determined in cells grown in an artificial mixture, containing hexadecane, cycloparaffin and aromatic compounds and six cyp genes were induced by this hydrocarbon mixture. Five of them were not upregulated by linear and branched hydrocarbons. The expression of fatty acid synthase I genes was downregulated by hydrocarbon substrates, indicating the utilization of external alkanes for fatty acid synthesis. Moreover, the transcription of genes involved in siderophore synthesis, iron transport and exopolysaccharide biosynthesis was also upregulated, indicating their important role in hydrocarbon metabolism. Based on the results, complex metabolic response profiles were established for cells grown on various hydrocarbons. Our results represent a functional annotation of a rhodococcal genome, provide deeper insight into molecular events in diesel/hydrocarbon utilization and suggest novel target genes for environmental monitoring projects. PMID:26346267

  1. A bifunctional enzyme from Rhodococcus erythropolis exhibiting secondary alcohol dehydrogenase-catalase activities.

    PubMed

    Martinez-Rojas, Enriqueta; Kurt, Tutku; Schmidt, Udo; Meyer, Vera; Garbe, Leif-Alexander

    2014-11-01

    Alcohol dehydrogenases have long been recognized as potential biocatalyst for production of chiral fine and bulk chemicals. They are relevant for industry in enantiospecific production of chiral compounds. In this study, we identified and purified a nicotinamide adenine dinucleotide (NAD)-dependent secondary alcohol dehydrogenase (SdcA) from Rhodococcus erythropolis oxidizing γ-lactols into γ-lactones. SdcA showed broad substrate specificity on γ-lactols; secondary aliphatic alcohols with 8 and 10 carbon atoms were also substrates and oxidized with (2S)-stereospecificity. The enzyme exhibited moderate stability with a half-life of 5 h at 40 °C and 20 days at 4 °C. Mass spectrometric identification revealed high sequence coverage of SdcA amino acid sequence to a highly conserved catalase from R. erythropolis. The corresponding encoding gene was isolated from genomic DNA and subsequently overexpressed in Escherichia coli BL21 DE3 cells. In addition, the recombinant SdcA was purified and characterized in order to confirm that the secondary alcohol dehydrogenase and catalase activity correspond to the same enzyme. PMID:24846734

  2. Prevalence and Antibiogram study of Rhodococcus equi in equines of Jammu and Kashmir, India

    PubMed Central

    MIR, Irfan Ahmad; KUMAR, Bablu; TAKU, Anil; BHARDWAJ, Rajinder Kumar; BHAT, Mohd Altaf; BADROO, Gulzar Ahmad

    2015-01-01

    ABSTRACT The present study was conducted to determine the prevalence of Rhodococcus equi infection in equines of Jammu and Kashmir, India, and evaluate the zoonotic threat posed by this organism to equine owners and tourists. One hundred and forty-one samples (98 samples from adult animals ≥5 years old and 43 samples from foals less than 6 months old) were collected in duplicate from nasopharyngeal tract of equines for isolation and direct PCR. A total of 12 isolates of R. equi were recovered, of which 9 were from foals and 3 from adult animals. Therefore, the present study recorded prevalence rates of 20.93% and 3.06% among foals and adult equines respectively. The prevalence rates were found to be 25.58% and 4.08% by 16S rRNA species-specific PCR among foals and adult animals respectively. Thus, the PCR-based assay was found to be more sensitive and helped in quick detection of R. equi than the culture based method which is time consuming and laborious. However, the culture-based method is still preferred due to some limitations of PCR. The antibiogram of the isolates revealed that erythromycin and rifampicin were the most effective antimicrobials with 100% sensitivity, followed by amoxicillin (66.67%), lincomycin (58.3%) and kanamycin (58.3%). The results also revealed that resistance was highest for penicillin G (50%), followed by kanamycin (25%) and streptomycin (25%). PMID:25829867

  3. Immunogenicity of an Electron Beam Inactivated Rhodococcus equi Vaccine in Neonatal Foals

    PubMed Central

    Bordin, Angela I.; Pillai, Suresh D.; Brake, Courtney; Bagley, Kaytee B.; Bourquin, Jessica R.; Coleman, Michelle; Oliveira, Fabiano N.; Mwangi, Waithaka; McMurray, David N.; Love, Charles C.; Felippe, Maria Julia B.; Cohen, Noah D.

    2014-01-01

    Rhodococcus equi is an important pathogen of foals that causes severe pneumonia. To date, there is no licensed vaccine effective against R. equi pneumonia of foals. The objectives of our study were to develop an electron beam (eBeam) inactivated vaccine against R. equi and evaluate its immunogenicity. A dose of eBeam irradiation that inactivated replication of R. equi while maintaining outer cell wall integrity was identified. Enteral administration of eBeam inactivated R. equi increased interferon-γ production by peripheral blood mononuclear cells in response to stimulation with virulent R. equi and generated naso-pharyngeal R. equi-specific IgA in newborn foals. Our results indicate that eBeam irradiated R. equi administered enterally produce cell-mediated and upper respiratory mucosal immune responses, in the face of passively transferred maternal antibodies, similar to those produced in response to enteral administration of live organisms (a strategy which previously has been documented to protect foals against intrabronchial infection with virulent R. equi). No evidence of adverse effects was noted among vaccinated foals. PMID:25153708

  4. Response of Rhodococcus erythropolis strain IBBPo1 to toxic organic solvents.

    PubMed

    Stancu, Mihaela Marilena

    2015-01-01

    Recently, there has been a lot of interest in the utilization of rhodococci in the bioremediation of petroleum contaminated environments. This study investigates the response of Rhodococcus erythropolis IBBPo1 cells to 1% organic solvents (alkanes, aromatics). A combination of microbiology, biochemical, and molecular approaches were used to examine cell adaptation mechanisms likely to be pursued by this strain after 1% organic solvent exposure. R. erythropolis IBBPo1 was found to utilize 1% alkanes (cyclohexane, n-hexane, n-decane) and aromatics (toluene, styrene, ethylbenzene) as the sole carbon source. Modifications in cell viability, cell morphology, membrane permeability, lipid profile, carotenoid pigments profile and 16S rRNA gene were revealed in R. erythropolis IBBPo1 cells grown 1 and 24 h on minimal medium in the presence of 1% alkanes (cyclohexane, n-hexane, n-decane) and aromatics (toluene, styrene, ethylbenzene). Due to its environmental origin and its metabolic potential, R. erythropolis IBBPo1 is an excellent candidate for the bioremediation of soils contaminated with crude oils and other toxic compounds. Moreover, the carotenoid pigments produced by this nonpathogenic Gram-positive bacterium have a variety of other potential applications. PMID:26691458

  5. Catabolic pathway of gamma-caprolactone in the biocontrol agent Rhodococcus erythropolis.

    PubMed

    Barbey, Corinne; Crépin, Alexandre; Cirou, Amélie; Budin-Verneuil, Aurélie; Orange, Nicole; Feuilloley, Marc; Faure, Denis; Dessaux, Yves; Burini, Jean-François; Latour, Xavier

    2012-01-01

    Gamma-caprolactone (GCL) is well-known as a food flavor and has been recently described as a biostimulant molecule promoting the growth of bacteria with biocontrol activity against soft-rot pathogens. Among these biocontrol agents, Rhodococcus erythropolis, characterized by a remarkable metabolic versatility, assimilates various γ-butyrolactone molecules with a branched-aliphatic chain, such as GCL. The assimilative pathway of GCL in R. erythropolis was investigated by two-dimensional gel electrophoresis coupled to matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) analysis. This analysis suggests the involvement of the lactonase QsdA in ring-opening, a feature confirmed by heterologous expression in Escherichia coli. According to proteome analysis, the open-chain form of GCL was degraded by β- and ω-oxidation coupled to the Krebs cycle and β-ketoadipate pathway. Ubiquity of qsdA gene among environmental R. erythropolis isolates was verified by PCR. In addition to a previous N-acyl homoserine lactone catabolic function, QsdA may therefore be involved in an intermediate degradative step of cyclic recalcitrant molecules or in synthesis of flavoring lactones. PMID:22085026

  6. Mathematic modeling for optimum conditions on aflatoxin B₁degradation by the aerobic bacterium Rhodococcus erythropolis.

    PubMed

    Kong, Qing; Zhai, Cuiping; Guan, Bin; Li, Chunjuan; Shan, Shihua; Yu, Jiujiang

    2012-11-01

    Response surface methodology was employed to optimize the degradation conditions of AFB₁ by Rhodococcus erythropolis in liquid culture. The most important factors that influence the degradation, as identified by a two-level Plackett-Burman design with six variables, were temperature, pH, liquid volume, inoculum size, agitation speed and incubation time. Central composite design (CCD) and response surface analysis were used to further investigate the interactions between these variables and to optimize the degradation efficiency of R. erythropolis based on a second-order model. The results demonstrated that the optimal parameters were: temperature, 23.2 °C; pH, 7.17; liquid volume, 24.6 mL in 100-mL flask; inoculum size, 10%; agitation speed, 180 rpm; and incubation time, 81.9 h. Under these conditions, the degradation efficiency of R. erythropolis could reach 95.8% in liquid culture, which was increased by about three times as compared to non-optimized conditions. The result by mathematic modeling has great potential for aflatoxin removal in industrial fermentation such as in food processing and ethanol production. PMID:23202311

  7. Induction of Viable but Nonculturable State in Rhodococcus and Transcriptome Analysis Using RNA-seq.

    PubMed

    Su, Xiaomei; Guo, Li; Ding, Linxian; Qu, Kun; Shen, Chaofeng

    2016-01-01

    Viable but nonculturable (VBNC) bacteria, which maintain the viability with loss of culturability, universally exist in contaminated and non-contaminated environments. In this study, two strains, Rhodococcus sp. TG13 and TN3, which were isolated from PCB-contaminated sediment and non-contaminated sediment respectively, were investigated under low temperature and oligotrophic conditions. The results indicated that the two strains TG13 and TN3 could enter into the VBNC state with different incubation times, and could recover culturability by reversal of unfavourable factors and addition of resuscitation-promoting factor (Rpf), respectively. Furthermore, the gene expression variations in the VBNC response were clarified by Illumina high throughput RNA-sequencing. Genome-wide transcriptional analysis demonstrated that up-regulated genes in the VBNC cells of the strain TG13 related to protein modification, ATP accumulation and RNA polymerase, while all differentially expressed genes (DEGs) in the VBNC cells of the strain TN3 were down-regulated. However, the down-regulated genes in both the two strains mainly encoded NADH dehydrogenase subunit, catalase, oxidoreductase, which further verified that cold-induced loss of ability to defend oxidative stress may play an important role in induction of the VBNC state. This study further verified that the molecular mechanisms underlying the VBNC state varied with various bacterial species. Study on the VBNC state of non-pathogenic bacteria will provide new insights into the limitation of environmental micro-bioremediation and the cultivation of unculturable species. PMID:26808070

  8. Disseminated rhodococcus equi infection in HIV infection despite highly active antiretroviral therapy

    PubMed Central

    2011-01-01

    Background Rhodococcus equi (R.equi) is an acid fast, GRAM + coccobacillus, which is widespread in the soil and causes pulmonary and extrapulmonary infections in immunocompromised people. In the context of HIV infection, R.equi infection (rhodococcosis) is regarded as an opportunistic disease, and its outcome is influenced by highly active antiretroviral therapy (HAART). Case presentation We report two cases of HIV-related rhodococcosis that disseminated despite suppressive HAART and anti-rhodococcal treatment; in both cases there was no immunological recovery, with CD4+ cells count below 200/μL. In the first case, pulmonary rhodococcosis presented 6 months after initiation of HAART, and was followed by an extracerebral intracranial and a cerebral rhodococcal abscess 1 and 8 months, respectively, after onset of pulmonary infection. The second case was characterized by a protracted course with spread of infection to various organs, including subcutaneous tissue, skin, colon and other intra-abdominal tissues, and central nervous system; the spread started 4 years after clinical resolution of a first pulmonary manifestation and progressed over a period of 2 years. Conclusions Our report highlights the importance of an effective immune recovery, despite fully suppressive HAART, along with anti-rhodococcal therapy, in order to clear rhodococcal infection. PMID:22168333

  9. Transformation of Rhodococcus fascians by high-voltage electroporation and development of R. fascians cloning vectors

    SciTech Connect

    Desomer, J.; Dhaese, P.; Montagu, M.V. )

    1990-09-01

    The analysis of the virulence determinants of phytopathogenic Rhodococcus fascians has been hampered by the lack of a system for introducing exogenous DNA. We investigated the possibility of genetic transformation of R. fascians by high-voltage electroporation of intact bacterial cells in the presence of plasmid DNA. Electrotransformation in R. fascians D188 resulted in transformation frequencies ranging from 10{sup 5}/{mu}g of DNA to 10{sup 7}/{mu}g of DNA, depending on the DNA concentration. The effects of different electrical parameters and composition of electroporation medium on transformation efficiency are present. By this transformation method, a cloning vector (pRF28) for R. fascians based on an indigenous 160-kilobase (chloramphenicol and cadmium resistance-encoding) plasmid pRF2 from strain NCPPB 1675 was developed. The origin of replication and the chloramphenicol resistance gene on pRF28 were used to construct cloning vectors that are capable of replication in R. fascians and Escherichia coli. The electroporation method presented was efficient enough to allow detection of the rare integration of replication-deficient pRF28 derivatives in the R.fascians D188 genome via either homologous or illegitimate recombination.

  10. Mathematic Modeling for Optimum Conditions on Aflatoxin B1 Degradation by the Aerobic Bacterium Rhodococcus erythropolis

    PubMed Central

    Kong, Qing; Zhai, Cuiping; Guan, Bin; Li, Chunjuan; Shan, Shihua; Yu, Jiujiang

    2012-01-01

    Response surface methodology was employed to optimize the degradation conditions of AFB1 by Rhodococcus erythropolis in liquid culture. The most important factors that influence the degradation, as identified by a two-level Plackett-Burman design with six variables, were temperature, pH, liquid volume, inoculum size, agitation speed and incubation time. Central composite design (CCD) and response surface analysis were used to further investigate the interactions between these variables and to optimize the degradation efficiency of R. erythropolis based on a second-order model. The results demonstrated that the optimal parameters were: temperature, 23.2 °C; pH, 7.17; liquid volume, 24.6 mL in 100-mL flask; inoculum size, 10%; agitation speed, 180 rpm; and incubation time, 81.9 h. Under these conditions, the degradation efficiency of R. erythropolis could reach 95.8% in liquid culture, which was increased by about three times as compared to non-optimized conditions. The result by mathematic modeling has great potential for aflatoxin removal in industrial fermentation such as in food processing and ethanol production. PMID:23202311

  11. Maturation of Rhodococcus equi-containing vacuoles is arrested after completion of the early endosome stage.

    PubMed

    Fernandez-Mora, Eugenia; Polidori, Marco; Lührmann, Anja; Schaible, Ulrich E; Haas, Albert

    2005-08-01

    Rhodococcus equi is a facultative intracellular bacterium that can cause bronchopneumonia in foals and AIDS patients. Here, we have analyzed R. equi-containing vacuoles (RCVs) in murine macrophages by confocal laser scanning microscopy, by transmission electron microscopy and by immunochemistry upon purification. We show that RCVs progress normally through the early stages of phagosome maturation acquiring PI3P, early endosome antigen-1, and Rab5, and loosing all or much of them within minutes. Although mature RCVs possess the normally late endocytic markers, lysosome-associated membrane proteins, lysobisphosphatidic acid and Rab7, they lack other hallmark features of late endocytic organelles such as possession of cathepsin D, acid beta-glucuronidase, proton-pumping ATPase and the ability to fuse with prelabeled lysosomes. Bacterial strains possessing a virulence-associated plasmid maintain a nonacidified compartment for 48 h, whereas isogenic strains lacking such plasmids acidify progressively. In summary, RCVs represent a novel phagosome maturation stage positioned after completion of the early endosome stage and before reaching a fully mature late endosome compartment. In addition, vacuole biogenesis can be influenced by bacterial plasmids. PMID:15998320

  12. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630.

    PubMed

    Yoneda, Aki; Henson, William R; Goldner, Nicholas K; Park, Kun Joo; Forsberg, Kevin J; Kim, Soo Ji; Pesesky, Mitchell W; Foston, Marcus; Dantas, Gautam; Moon, Tae Seok

    2016-03-18

    Lignin-derived (e.g. phenolic) compounds can compromise the bioconversion of lignocellulosic biomass to fuels and chemicals due to their toxicity and recalcitrance. The lipid-accumulating bacterium Rhodococcus opacus PD630 has recently emerged as a promising microbial host for lignocellulose conversion to value-added products due to its natural ability to tolerate and utilize phenolics. To gain a better understanding of its phenolic tolerance and utilization mechanisms, we adaptively evolved R. opacus over 40 passages using phenol as its sole carbon source (up to 373% growth improvement over wild-type), and extensively characterized two strains from passages 33 and 40. The two adapted strains showed higher phenol consumption rates (∼20 mg/l/h) and ∼2-fold higher lipid production from phenol than the wild-type strain. Whole-genome sequencing and comparative transcriptomics identified highly-upregulated degradation pathways and putative transporters for phenol in both adapted strains, highlighting the important linkage between mechanisms of regulated phenol uptake, utilization, and evolved tolerance. Our study shows that the R. opacus mutants are likely to use their transporters to import phenol rather than export them, suggesting a new aromatic tolerance mechanism. The identified tolerance genes and pathways are promising candidates for future metabolic engineering in R. opacus for improved lignin conversion to lipid-based products. PMID:26837573

  13. Response of Rhodococcus erythropolis strain IBBPo1 to toxic organic solvents

    PubMed Central

    Stancu, Mihaela Marilena

    2015-01-01

    Abstract Recently, there has been a lot of interest in the utilization of rhodococci in the bioremediation of petroleum contaminated environments. This study investigates the response of Rhodococcus erythropolis IBBPo1 cells to 1% organic solvents (alkanes, aromatics). A combination of microbiology, biochemical, and molecular approaches were used to examine cell adaptation mechanisms likely to be pursued by this strain after 1% organic solvent exposure. R. erythropolis IBBPo1 was found to utilize 1% alkanes (cyclohexane, n-hexane, n-decane) and aromatics (toluene, styrene, ethylbenzene) as the sole carbon source. Modifications in cell viability, cell morphology, membrane permeability, lipid profile, carotenoid pigments profile and 16S rRNA gene were revealed in R. erythropolis IBBPo1 cells grown 1 and 24 h on minimal medium in the presence of 1% alkanes (cyclohexane, n-hexane, n-decane) and aromatics (toluene, styrene, ethylbenzene). Due to its environmental origin and its metabolic potential, R. erythropolis IBBPo1 is an excellent candidate for the bioremediation of soils contaminated with crude oils and other toxic compounds. Moreover, the carotenoid pigments produced by this nonpathogenic Gram-positive bacterium have a variety of other potential applications. PMID:26691458

  14. Degradation of chloronitrobenzenes by a coculture of Pseudomonas putida and a Rhodococcus sp.

    SciTech Connect

    Park, H.S.; Lim, S.J.; Chang, Y.K.; Kim, H.S.; Livingston, A.G.

    1999-03-01

    A single microorganism able to mineralize chloronitrobenzenes (CNBs) has not been reported, and degradation of CNBs of coculture of two microbial strains was attempted. Pseudomonas putida HS12 was first isolated by analogue enrichment culture using nitrobenzene (NB) as the substrate, and this strain was observed to possess a partial reductive pathway for the degradation of NB. From high-performance liquid chromatography-mass spectrometry and {sup 1}H nuclear magnetic resonance analyses, NB-grown cells of P. putida HS12 were found to convert 3- and 4-CNBs to the corresponding 5- and 4-chloro-2-hydroxyacetanilides, respectively, by partial reduction and subsequent acetylation. For the degradation of CNBs, Rhodococcus sp. strain HS51, which degrades 4- and 5-chloro-2-hydroxyacetanilides, was isolated and combined with P. putida HS12 to give a coculture. This coculture was confirmed to mineralize 3- and 4-CNBs in the presence of an additional carbon source. A degradation pathway for 3- and 4-CNBs by the two isolated strains was also proposed.

  15. Bioadsorption Behavior of Rhodococcus Opacus on the Surface of Calcium and Magnesium Minerals

    NASA Astrophysics Data System (ADS)

    Li, Hongxu; Zhang, Mingming; Li, Chao; Yang, Xie; Li, An; Zhang, Lifeng

    2015-02-01

    The surface properties of minerals can be influenced and changed by microbial activities when microorganisms adhere to the mineral surface. The change of mineral surface properties and thus mineral floatability can be used to separate gangues from valuable minerals. This study investigated the Rhodococcus opacus ( R. opacus) adsorption behavior on the surfaces of calcite, serpentine, and dolomite by bioadhesive test, contact angle measurements, Zeta potential, Fourier transform infrared spectroscopy (FTIR) spectra, and scanning electron microscopy (SEM). The results showed that R. opacus could be absorbed well onto the surfaces of calcite, serpentine, and dolomite in a few minutes, with adsorption rate up to 96%. The cell adsorption was dependent on the pH value and the most suitable pH is 7.2, whereas no significant influence of temperature on adsorption was found. Increasing pulp density could provide more adsorption sites to R. opacus cells and increase the adsorption rate consequently. The contact angle of three minerals decreased after R. opacus attached, which indicated that the dispersibility of the mineral surface was improved and in favor of being separated. Zeta potential measurements showed that the cell with the charge was opposite to that of minerals on a broad of pH value. The SEM images showed that R. opacus attached very tightly onto the mineral surface, with a large number of small mineral particles gathered around the cell. FTIR spectra showed the presence of polymer groups on the cell wall that could have given a net charge on the mineral surface.

  16. Identification, characterization and molecular analysis of the viable but nonculturable Rhodococcus biphenylivorans.

    PubMed

    Su, Xiaomei; Sun, Faqian; Wang, Yalin; Hashmi, Muhammad Zaffar; Guo, Li; Ding, Linxian; Shen, Chaofeng

    2015-01-01

    Numerous bacteria, including pollutant-degrading bacteria can enter the viable but nonculturable state (VBNC) when they encounter harsh environmental conditions. VBNC bacteria, as a vast majority of potent microbial resource can be of great significance in environmental rehabilitation. It is necessary to study the VBNC state of pollutant-degrading bacteria under various stress conditions. The aim of this study was to determine whether Rhodococcus biphenylivorans could enter the VBNC state under oligotrophic and low temperature conditions, and to examine the changes of morphology, enzymatic activity and gene expressions that might underline such state. The obtained results indicated that R. biphenylivorans TG9(T) could enter into the VBNC state and recover culturability under favorable environmental conditions. Results from Illumina high throughput RNA-sequencing revealed that the up-regulated genes related to ATP accumulation, protein modification, peptidoglycan biosynthesis and RNA polymerase were found in the VBNC cells, and the down-regulated genes mainly encoded hypothetical protein, membrane protein and NADH dehydrogenase subunit, which render VBNC cells more tolerant to survive under inhospitable conditions. This study provides new insights into prevention and control of the VBNC state of pollutant-degrading bacteria for their better capabilities in environmental rehabilitation. PMID:26687808

  17. Trehalose promotes Rhodococcus sp. strain YYL colonization in activated sludge under tetrahydrofuran (THF) stress

    PubMed Central

    He, Zhixing; Zhang, Kai; Wang, Haixia; Lv, Zhenmei

    2015-01-01

    Few studies have focused on the role of compatible solutes in changing the microbial community structure in bioaugmentation systems. In this study, we investigated the influence of trehalose as a biostimulant on the microbial community in tetrahydrofuran (THF)-treated wastewater bioaugmentation systems with Rhodococcus sp. YYL. Functional gene profile changes were used to study the variation in the microbial community. Soluble di-iron monooxygenases (SDIMO), particularly group-5 SDIMOs (i.e., tetrahydrofuran and propane monooxygenases), play a significant role in the initiation of the ring cleavage of tetrahydrofuran. Group-5 SDIMOs genes are enriched upon trehalose addition, and exogenous tetrahydrofuran monooxygenase (thmA) genes can successfully colonize bioaugmentation systems. Cytochrome P450 monooxygenases (P450s) have a significant role in catalyzing the region- and stereospecific oxidation of non-activated hydrocarbons, and THF was reported to inhibit P450s in the environment. The CYP153 family was chosen as a representative P450 to study the inhibitory effects of THF. The results demonstrated that CYP153 family genes exhibited significant changes upon THF treatment and that trehalose helped maintain a rich diversity and high abundance of CYP153 family genes. Biostimulation with trehalose could alleviate the negative effects of THF stress on microbial diversity in bioaugmentation systems. Our results indicated that trehalose as a compatible solute plays a significant role for environmental strains under extreme conditions. PMID:26029182

  18. Dynamic Metabolic and Transcriptional Profiling of Rhodococcus sp. Strain YYL during the Degradation of Tetrahydrofuran

    PubMed Central

    He, Zhixing; Yao, Yanlai

    2014-01-01

    Although tetrahydrofuran-degrading Rhodococcus sp. strain YYL possesses tetrahydrofuran (THF) degradation genes similar to those of other tetrahydrofuran-degrading bacteria, a much higher degradation efficiency has been observed in strain YYL. In this study, nuclear magnetic resonance (NMR)-based metabolomics analyses were performed to explore the metabolic profiling response of strain YYL to exposure to THF. Exposure to THF slightly influenced the metabolome of strain YYL when yeast extract was present in the medium. The metabolic profile of strain YYL over time was also investigated using THF as the sole carbon source to identify the metabolites associated with high-efficiency THF degradation. Lactate, alanine, glutarate, glutamate, glutamine, succinate, lysine, trehalose, trimethylamine-N-oxide (TMAO), NAD+, and CTP were significantly altered over time in strain YYL grown in 20 mM THF. Real-time quantitative PCR (RT-qPCR) revealed changes in the transcriptional expression levels of 15 genes involved in THF degradation, suggesting that strain YYL could accumulate several disturbances in osmoregulation (trehalose, glutamate, glutamine, etc.), with reduced glycolysis levels, an accelerated tricarboxylic acid cycle, and enhanced protein synthesis. The findings obtained through 1H NMR metabolomics analyses and the transcriptional expression of the corresponding genes are complementary for exploring the dynamic metabolic profile in organisms. PMID:24532074

  19. Development of a genetic transformation system for benzene-tolerant Rhodococcus opacus strains.

    PubMed

    Na, Kyung-Su; Nagayasu, Kan; Kuroda, Akio; Takiguchi, Noboru; Ikeda, Tsukasa; Ohtake, Hisao; Kato, Junichi

    2005-04-01

    Rhodococcus opacus B-4 and B-9 are tolerant to various organic solvents including benzene, toluene, ethylbenzene, xylenes and styrene, and are suitable bacterial hosts for the production of chemical products from hydrophobic substrates. A 4.4-kb endogenous plasmid (pKNR 01) was isolated from R. opacus B-4 and sequenced completely. Plasmid pKNR 01 encodes proteins that share similarity to replication proteins from the enteric bacterial and actinomycete theta-replication plasmids. A 7.4-kb chimeric plasmid, designated pKNR 01.1, was constructed by fusing XhoI-digested pKNR 01 and Escherichia coli vector pSTV 28. Plasmid pKNR 01.1 had the ability to replicate in B-4 and B-9. A protocol for transformation of B-9 by electroporation was optimized employing pKNR 01.1. Frequencies of 4.1 x 10(5) transformants per mug of plasmid DNA were obtained for B-9 cells, whereas B-4 harboring naturally occurring pKNR 01 was transformed at lower frequencies (approximately 1 x 10(4) transformants per mug of plasmid DNA). Deletion analysis of pKNR 01.1 showed that the 1.9-kb SphI-XhoI region containing the repA and rep B genes and the 0.6-kb region upstream of repA was essential for plasmid maintenance in R. opacus strains. PMID:16233810

  20. Structure of the virulence-associated protein VapD from the intracellular pathogen Rhodococcus equi

    PubMed Central

    Whittingham, Jean L.; Blagova, Elena V.; Finn, Ciaran E.; Luo, Haixia; Miranda-CasoLuengo, Raúl; Turkenburg, Johan P.; Leech, Andrew P.; Walton, Paul H.; Murzin, Alexey G.; Meijer, Wim G.; Wilkinson, Anthony J.

    2014-01-01

    Rhodococcus equi is a multi-host pathogen that infects a range of animals as well as immune-compromised humans. Equine and porcine isolates harbour a virulence plasmid encoding a homologous family of virulence-associated proteins associated with the capacity of R. equi to divert the normal processes of endosomal maturation, enabling bacterial survival and proliferation in alveolar macrophages. To provide a basis for probing the function of the Vap proteins in virulence, the crystal structure of VapD was determined. VapD is a monomer as determined by multi-angle laser light scattering. The structure reveals an elliptical, compact eight-stranded β-barrel with a novel strand topology and pseudo-twofold symmetry, suggesting evolution from an ancestral dimer. Surface-associated octyl-β-d-glucoside molecules may provide clues to function. Circular-dichroism spectroscopic analysis suggests that the β-barrel structure is preceded by a natively disordered region at the N-terminus. Sequence comparisons indicate that the core folds of the other plasmid-encoded virulence-associated proteins from R. equi strains are similar to that of VapD. It is further shown that sequences encoding putative R. equi Vap-like proteins occur in diverse bacterial species. Finally, the functional implications of the structure are discussed in the light of the unique structural features of VapD and its partial structural similarity to other β-barrel proteins. PMID:25084333

  1. Transformation of Rhodococcus fascians by High-Voltage Electroporation and Development of R. fascians Cloning Vectors

    PubMed Central

    Desomer, Jan; Dhaese, Patrick; Montagu, Marc Van

    1990-01-01

    The analysis of the virulence determinants of phytopathogenic Rhodococcus fascians has been hampered by the lack of a system for introducing exogenous DNA. We investigated the possibility of genetic transformation of R. fascians by high-voltage electroporation of intact bacterial cells in the presence of plasmid DNA. Electrotransformation in R. fascians D188 resulted in transformation frequencies ranging from 105/μg of DNA to 107/μg of DNA, depending on the DNA concentration. The effects of different electrical parameters and composition of electroporation medium on transformation efficiency are presented. By this transformation method, a cloning vector (pRF28) for R. fascians based on an indigenous 160-kilobase (chloramphenicol and cadmium resistance-encoding) plasmid pRF2 from strain NCPPB 1675 was developed. The origin of replication and the chloramphenicol resistance gene on pRF28 were used to construct cloning vectors that are capable of replication in R. fascians and Escherichia coli. The electroporation method presented was efficient enough to allow detection of the rare integration of replication-deficient pRF28 derivatives in the R. fascians D188 genome via either homologous or illegitimate recombination. Images PMID:16348290

  2. Rhodococcus equi and Arcanobacterium haemolyticum: two "coryneform" bacteria increasingly recognized as agents of human infection.

    PubMed Central

    Linder, R.

    1997-01-01

    Rhodococcus equi and Arcanobacterium haemolyticum, formerly classified in the genus Corynebacterium, are members of the loosely defined taxon "coryneform" bacteria. Although they are the etiologic agents of distinct human infections, both organisms are frequently overlooked, which results in missed or delayed diagnoses. R. equi, long known as an important pathogen of immature horses, has become in the past three decades an opportunistic pathogen of severely immunosuppressed humans. Most cases are secondary to HIV infection. When specifically sought in throat swab cultures, A. haemolyticum is found responsible for 0.5% to 2.5% of bacterial pharyngitis, especially among adolescents. These two microorganisms represent a spectrum of disease in humans: from a mild, common illness to a rare life-threatening infection. Each organism elaborates lipid hydrolyzing enzymes (cholesterol oxidase by R. equi and sphingomyelinase D by A. haemolyticum) that are toxic to animals and humans and damaging to mammalian cell membranes. The participation of the cytotoxins in pathogenicity is discussed. Greater awareness of the properties of these two bacteria may promote faster, more accurate diagnoses and better clinical management. PMID:9204295

  3. Crystallization and preliminary structural analysis of dibenzothiophene monooxygenase (DszC) from Rhodococcus erythropolis

    PubMed Central

    Duan, Xiaolu; Zhang, Liang; Zhou, Daming; Ji, Kaihua; Ma, Ting; Shui, Wenqing; Li, Guoqiang; Li, Xin

    2013-01-01

    Dibenzothiophene (DBT) and its derivatives are typical sulfur compounds found in fossil fuels. These compounds show resistance to the hydrodesulfuriz­ation treatment that is commonly used in industry. Dibenzothiophene monooxygenase (DszC) is responsible for the oxidation of DBT, which is the first and the rate-limiting step in the DBT enzymatic desulfurization 4S pathway. In this study, the crystal structure of DszC from Rhodococcus erythropolis DS-3 is reported. The crystal of native DszC belonged to space group P1, with unit-cell parameters a = 96.16, b = 96.27, c = 98.56 Å, α = 81.03, β = 67.57, γ = 85.84°. To determine the phase, SAD X-ray diffraction data were collected from a SeMet-derivative DszC crystal, which also belonged to space group P1, with unit-cell parameters a = 95.379, b = 95.167, c = 94.891 Å, α = 87.046, β = 70.536, γ = 79.738°. Further structural analysis of DszC is in progress. PMID:23722833

  4. Diversion of phagosome trafficking by pathogenic Rhodococcus equi depends on mycolic acid chain length.

    PubMed

    Sydor, Tobias; von Bargen, Kristine; Hsu, Fong-Fu; Huth, Gitta; Holst, Otto; Wohlmann, Jens; Becken, Ulrike; Dykstra, Tobias; Söhl, Kristina; Lindner, Buko; Prescott, John F; Schaible, Ulrich E; Utermöhlen, Olaf; Haas, Albert

    2013-03-01

    Rhodococcus equi is a close relative of Mycobacterium spp. and a facultative intracellular pathogen which arrests phagosome maturation in macrophages before the late endocytic stage. We have screened a transposon mutant library of R. equi for mutants with decreased capability to prevent phagolysosome formation. This screen yielded a mutant in the gene for β-ketoacyl-(acyl carrier protein)-synthase A (KasA), a key enzyme of the long-chain mycolic acid synthesizing FAS-II system. The longest kasA mutant mycolic acid chains were 10 carbon units shorter than those of wild-type bacteria. Coating of non-pathogenic E. coli with purified wild-type trehalose dimycolate reduced phagolysosome formation substantially which was not the case with shorter kasA mutant-derived trehalose dimycolate. The mutant was moderately attenuated in macrophages and in a mouse infection model, but was fully cytotoxic.Whereas loss of KasA is lethal in mycobacteria, R. equi kasA mutant multiplication in broth was normal proving that long-chain mycolic acid compounds are not necessarily required for cellular integrity and viability of the bacteria that typically produce them. This study demonstrates a central role of mycolic acid chain length in diversion of trafficking by R. equi. PMID:23078612

  5. Identification of novel extracellular protein for PCB/biphenyl metabolism in Rhodococcus jostii RHA1.

    PubMed

    Atago, Yuki; Shimodaira, Jun; Araki, Naoto; Bin Othman, Nor'azizi; Zakaria, Zuriati; Fukuda, Masao; Futami, Junichiro; Hara, Hirofumi

    2016-05-01

    Rhodococcus jostii RHA1 (RHA1) degrades polychlorinated biphenyl (PCB) via co-metabolism with biphenyl. To identify the novel open reading frames (ORFs) that contribute to PCB/biphenyl metabolism in RHA1, we compared chromatin immunoprecipitation chip and transcriptomic data. Six novel ORFs involved in PCB/biphenyl metabolism were identified. Gene deletion mutants of these 6 ORFs were made and were tested for their ability to grow on biphenyl. Interestingly, only the ro10225 deletion mutant showed deficient growth on biphenyl. Analysis of Ro10225 protein function showed that growth of the ro10225 deletion mutant on biphenyl was recovered when exogenous recombinant Ro10225 protein was added to the culture medium. Although Ro10225 protein has no putative secretion signal sequence, partially degraded Ro10225 protein was detected in conditioned medium from wild-type RHA1 grown on biphenyl. This Ro10225 fragment appeared to form a complex with another PCB/biphenyl oxidation enzyme. These results indicated that Ro10225 protein is essential for the formation of the PCB/biphenyl dioxygenase complex in RHA1. PMID:26828632

  6. Differential Degradation of Bicyclics with Aromatic and Alicyclic Rings by Rhodococcus sp. Strain DK17 ▿

    PubMed Central

    Kim, Dockyu; Yoo, Miyoun; Choi, Ki Young; Kang, Beom Sik; Kim, Tai Kyoung; Hong, Soon Gyu; Zylstra, Gerben J.; Kim, Eungbin

    2011-01-01

    The metabolically versatile Rhodococcus sp. strain DK17 is able to grow on tetralin and indan but cannot use their respective desaturated counterparts, 1,2-dihydronaphthalene and indene, as sole carbon and energy sources. Metabolite analyses by gas chromatography-mass spectrometry and nuclear magnetic resonance spectrometry clearly show that (i) the meta-cleavage dioxygenase mutant strain DK180 accumulates 5,6,7,8-tetrahydro-1,2-naphthalene diol, 1,2-indene diol, and 3,4-dihydro-naphthalene-1,2-diol from tetralin, indene, and 1,2-dihydronaphthalene, respectively, and (ii) when expressed in Escherichia coli, the DK17 o-xylene dioxygenase transforms tetralin, indene, and 1,2-dihydronaphthalene into tetralin cis-dihydrodiol, indan-1,2-diol, and cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene, respectively. Tetralin, which is activated by aromatic hydroxylation, is degraded successfully via the ring cleavage pathway to support growth of DK17. Indene and 1,2-dihydronaphthalene do not serve as growth substrates because DK17 hydroxylates them on the alicyclic ring and further metabolism results in a dead-end metabolite. This study reveals that aromatic hydroxylation is a prerequisite for proper degradation of bicyclics with aromatic and alicyclic rings by DK17 and confirms the unique ability of the DK17 o-xylene dioxygenase to perform distinct regioselective hydroxylations. PMID:21965391

  7. O-Methylation of Chlorinated para-Hydroquinones by Rhodococcus chlorophenolicus

    PubMed Central

    Häggblom, Max M.; Apajalahti, Juha H. A.; Salkinoja-Salonen, Mirja S.

    1988-01-01

    Rhodococcus chlorophenolicus PCP-I, a degrader of polychlorinated phenols, guaiacols (2-methoxyphenols), and syringols (2,6-dimethoxyphenols), was shown to O-methylate the degradation intermediate, a chlorinated para-hydroquinone, into 4-methoxyphenol. O-methylation was constitutively expressed, whereas the degradation of chlorophenols and chlorohydroquinones was inducible in R. chlorophenolicus. The O-methylating reaction required two hydroxyl groups in positions para to each other. R. chlorophenolicus selectively methylated the hydroxyl group flanked by two chlorine substituents. Tetrachlorohydroquinone, trichlorohydroquinone, and 2,6-dichlorohydroquinone were methylated into tetrachloro-4-methoxyphenol, 2,3,5-trichloro-4-methoxyphenol, and 3,5-dichloro-4-methoxyphenol, respectively. Chlorohydroquinones with only one chlorine adjacent to a hydroxyl group were methylated only in trace amounts, and no metabolite was formed from hydroquinone. The degradation intermediates formed in hydroxylation of tetrachloroguaiacol and trichlorosyringol by R. chlorophenolicus were O-methylated into two isomeric trichlorodimethoxyphenols and two isomeric dichlorotrimethoxyphenols, respectively. R. chlorophenolicus also degraded the polychlorinated methylation products (tetrachlorinated and trichlorinated 4-methoxyphenols), but not mono- and dichlorinated 4-methoxyphenols. PMID:16347691

  8. Nitric oxide-mediated intracellular growth restriction of pathogenic Rhodococcus equi can be prevented by iron.

    PubMed

    von Bargen, Kristine; Wohlmann, Jens; Taylor, Gregory Alan; Utermöhlen, Olaf; Haas, Albert

    2011-05-01

    Rhodococcus equi is an intracellular pathogen which causes pneumonia in young horses and in immunocompromised humans. R. equi arrests phagosome maturation in macrophages at a prephagolysosome stage and grows inside a privileged compartment. Here, we show that, in murine macrophages activated with gamma interferon and lipopolysaccharide, R. equi does not multiply but stays viable for at least 24 h. Whereas infection control of other intracellular pathogens by activated macrophages is executed by enhanced phagosome acidification or phagolysosome formation, by autophagy or by the interferon-inducible GTPase Irgm1, none of these mechanisms seems to control R. equi infection. Growth control by macrophage activation is fully mimicked by treatment of resting macrophages with nitric oxide donors, and inhibition of bacterial multiplication by either activation or nitric oxide donors is annihilated by cotreatment of infected macrophages with ferrous sulfate. Transcriptional analysis of the R. equi iron-regulated gene iupT demonstrates that intracellular R. equi encounters iron stress in activated, but not in resting, macrophages and that this stress is relieved by extracellular addition of ferrous sulfate. Our results suggest that nitric oxide is central to the restriction of bacterial access to iron in activated macrophages. PMID:21383050

  9. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber.

    PubMed

    Orr, I Gilan; Hadar, Y; Sivan, A

    2004-07-01

    A two-step enrichment procedure led to the isolation of a strain of Rhodococcus ruber (C208) that utilized polyethylene films as sole carbon source. In liquid culture, C208 formed a biofilm on the polyethylene surface and degraded up to 8% (gravimetrically) of the polyolefin within 30 days of incubation. The bacterial adhesion to hydrocarbon assay and the salt aggregation test both showed that the cell-surface hydrophobicity of C208 was higher than that of three other isolates which were obtained from the same consortium but were less efficient than C208 in the degradation of polyethylene. Mineral oil, but not nonionic surfactants, enhanced the colonization of polyethylene and increased biodegradation by about 50%. Fluorescein diacetate (FDA) hydrolysis and protein content analysis were used to test the viability and biomass density of the C208 biofilm on the polyethylene, respectively. Both FDA activity and protein content of the biofilm in a medium containing mineral oil peaked 48-72 h after inoculation and then decreased sharply. This finding apparently reflected rapid utilization of the mineral oil adhering to the polyethylene. The remaining biofilm population continued to proliferate moderately and presumably played a major role in biodegradation of the polyethylene. Fourier transform infrared spectra of UV-photooxidized polyethylene incubated with C208 indicated that biodegradation was initiated by utilization of the carbonyl residues formed in the photooxidized polyethylene. PMID:15221232

  10. Identification, characterization and molecular analysis of the viable but nonculturable Rhodococcus biphenylivorans

    PubMed Central

    Su, Xiaomei; Sun, Faqian; Wang, Yalin; Hashmi, Muhammad Zaffar; Guo, Li; Ding, Linxian; Shen, Chaofeng

    2015-01-01

    Numerous bacteria, including pollutant-degrading bacteria can enter the viable but nonculturable state (VBNC) when they encounter harsh environmental conditions. VBNC bacteria, as a vast majority of potent microbial resource can be of great significance in environmental rehabilitation. It is necessary to study the VBNC state of pollutant-degrading bacteria under various stress conditions. The aim of this study was to determine whether Rhodococcus biphenylivorans could enter the VBNC state under oligotrophic and low temperature conditions, and to examine the changes of morphology, enzymatic activity and gene expressions that might underline such state. The obtained results indicated that R. biphenylivorans TG9T could enter into the VBNC state and recover culturability under favorable environmental conditions. Results from Illumina high throughput RNA-sequencing revealed that the up-regulated genes related to ATP accumulation, protein modification, peptidoglycan biosynthesis and RNA polymerase were found in the VBNC cells, and the down-regulated genes mainly encoded hypothetical protein, membrane protein and NADH dehydrogenase subunit, which render VBNC cells more tolerant to survive under inhospitable conditions. This study provides new insights into prevention and control of the VBNC state of pollutant-degrading bacteria for their better capabilities in environmental rehabilitation. PMID:26687808

  11. Immunogenicity of an electron beam inactivated Rhodococcus equi vaccine in neonatal foals.

    PubMed

    Bordin, Angela I; Pillai, Suresh D; Brake, Courtney; Bagley, Kaytee B; Bourquin, Jessica R; Coleman, Michelle; Oliveira, Fabiano N; Mwangi, Waithaka; McMurray, David N; Love, Charles C; Felippe, Maria Julia B; Cohen, Noah D

    2014-01-01

    Rhodococcus equi is an important pathogen of foals that causes severe pneumonia. To date, there is no licensed vaccine effective against R. equi pneumonia of foals. The objectives of our study were to develop an electron beam (eBeam) inactivated vaccine against R. equi and evaluate its immunogenicity. A dose of eBeam irradiation that inactivated replication of R. equi while maintaining outer cell wall integrity was identified. Enteral administration of eBeam inactivated R. equi increased interferon-γ production by peripheral blood mononuclear cells in response to stimulation with virulent R. equi and generated naso-pharyngeal R. equi-specific IgA in newborn foals. Our results indicate that eBeam irradiated R. equi administered enterally produce cell-mediated and upper respiratory mucosal immune responses, in the face of passively transferred maternal antibodies, similar to those produced in response to enteral administration of live organisms (a strategy which previously has been documented to protect foals against intrabronchial infection with virulent R. equi). No evidence of adverse effects was noted among vaccinated foals. PMID:25153708

  12. Crystal structure of DszC from Rhodococcus sp. XP at 1.79 Å.

    PubMed

    Liu, Shiheng; Zhang, Conggang; Su, Tiantian; Wei, Tiandi; Zhu, Deyu; Wang, Kang; Huang, Yan; Dong, Yuhui; Yin, Kun; Xu, Sujuan; Xu, Ping; Gu, Lichuan

    2014-09-01

    The dibenzothiophene (DBT) monooxygenase DszC, which is the key initiating enzyme in "4S" metabolic pathway, catalyzes sequential sulphoxidation reaction of DBT to DBT sulfoxide (DBTO), then DBT sulfone (DBTO2). Here, we report the crystal structure of DszC from Rhodococcus sp. XP at 1.79 Å. Intriguingly, two distinct conformations occur in the flexible lid loops adjacent to the active site (residue 280-295, between α9 and α10). They are named "open"' and "closed" state respectively, and might show the status of the free and ligand-bound DszC. The molecular docking results suggest that the reduced FMN reacts with an oxygen molecule at C4a position of the isoalloxazine ring, producing the C4a-(hydro)peroxyflavin intermediate which is stabilized by H391 and S163. H391 may contribute to the formation of the C4a-(hydro)peroxyflavin by acting as a proton donor to the proximal peroxy oxygen, and it might also be involved in the protonation process of the C4a-(hydro)xyflavin. Site-directed mutagenesis study shows that mutations in the residues involved either in catalysis or in flavin or substrate-binding result in a complete loss of enzyme activity, suggesting that the accurate positions of flavin and substrate are crucial for the enzyme activity. PMID:24470304

  13. 1s2s2p2 5p3 5S transition in B ii

    NASA Astrophysics Data System (ADS)

    Mannervik, S.; Cederquist, H.; Martinson, I.; Brage, T.; Froese Fischer, C.

    1987-04-01

    An experimental and theoretical study has been made of the 1s2s2p2 5P-1s2p3 5S transition in B ii. The experimental wavelength and lifetime (1323.92+/-0.07 Å and 0.65+/-0.01 ns), determined by beam-foil spectroscopy, are more than five times more accurate than previous experimental results. Our theoretical data, from multiconfiguration Hartree-Fock calculations, 1311.6 Å and 0.601 ns, are in excellent agreement with previous theoretical predictions of Beck and Nicolaides [Phys. Lett. 61A, 227 (1977)]. We have also observed the 1s2p3 5S-1s2p23s 5P transition, at 857.7+/-0.2 Å, in accord with the theoretical value 859.1 Å.

  14. Highly stretchable MoS2 kirigami.

    PubMed

    Hanakata, Paul Z; Qi, Zenan; Campbell, David K; Park, Harold S

    2016-01-01

    We report the results of classical molecular dynamics simulations focused on studying the mechanical properties of MoS2 kirigami. Several different kirigami structures were studied based upon two simple non-dimensional parameters, which are related to the density of cuts, as well as the ratio of the overlapping cut length to the nanoribbon length. Our key findings are significant enhancements in tensile yield (by a factor of four) and fracture strains (by a factor of six) as compared to pristine MoS2 nanoribbons. These results, in conjunction with recent results on graphene, suggest that the kirigami approach may be generally useful for enhancing the ductility of two-dimensional nanomaterials. PMID:26628005

  15. Highly stretchable MoS2 kirigami

    NASA Astrophysics Data System (ADS)

    Hanakata, Paul Z.; Qi, Zenan; Campbell, David K.; Park, Harold S.

    2015-12-01

    We report the results of classical molecular dynamics simulations focused on studying the mechanical properties of MoS2 kirigami. Several different kirigami structures were studied based upon two simple non-dimensional parameters, which are related to the density of cuts, as well as the ratio of the overlapping cut length to the nanoribbon length. Our key findings are significant enhancements in tensile yield (by a factor of four) and fracture strains (by a factor of six) as compared to pristine MoS2 nanoribbons. These results, in conjunction with recent results on graphene, suggest that the kirigami approach may be generally useful for enhancing the ductility of two-dimensional nanomaterials.

  16. Ketoreductase TpdE from Rhodococcus jostii TMP1: characterization and application in the synthesis of chiral alcohols

    PubMed Central

    Kutanovas, Simonas; Rutkienė, Rasa; Tauraitė, Daiva; Striela, Romualdas; Meškys, Rolandas

    2015-01-01

    Background. Production of highly pure enantiomers of vicinal diols is desirable, but difficult to achieve. Enantiomerically pure diols and acyloins are valuable bulk chemicals, promising synthones and potential building blocks for chiral polymers. Enzymatic reduction of ketones is a useful technique for the synthesis of the desired enantiomeric alcohols. Here, we report on the characterization of a ketoreductase TpdE from Rhodococcus jostii TMP1 that is a prospective tool for the synthesis of such compounds. Results. In this study, NADPH-dependent short-chain dehydrogenase/reductase TpdE from Rhodococcus jostii TMP1 was characterized. The enzyme exhibited broad substrate specificity towards aliphatic 2,3-diketones, butan-3-one-2-yl alkanoates, as well as acetoin and its acylated derivatives. TpdE stereospecifically reduced α-diketones to the corresponding diols. The GC-MS analysis of the reduction products of 2,3- and 3,4-diketones indicated that TpdE is capable of reducing both keto groups in its substrate leading to the formation of two new chiral atoms in the product molecule. Bioconversions of diketones to corresponding diols occurred using either purified enzyme or a whole-cell Escherichia coli BL21 (DE3) biocatalyst harbouring recombinant TpdE. The optimum temperature and pH were determined to be 30–35 °C and 7.5, respectively. Conclusions. The broad substrate specificity and stereoselectivity of TpdE from Rhodococcus jostii TMP1 make it a promising biocatalyst for the production of enantiomerically pure diols that are difficult to obtain by chemical routes. PMID:26587349

  17. Degradation of trichloroethene by a linear-plasmid-encoded alkene monooxygenase in Rhodococcus corallinus (Nocardia corallina) B-276.

    PubMed

    Saeki, H; Akira, M; Furuhashi, K; Averhoff, B; Gottschalk, G

    1999-07-01

    Rhodococcus corallinus (formerly Nocardia corallina) B-276, isolated with propene as sole carbon and energy source, is able to oxidize trichloroethene (TCE). Glucose- or propene-grown R. corallinus B-276 cells exhibited no difference in TCE degradation efficiency. TCE degradation was found to be growth-phase-dependent and maximum rates were monitored with stationary-phase cells. K(m) and Vmax values for TCE degradation of R. corallinus B-276 grown in nutrient broth medium in the presence of glucose were 187 microM and 2.4 nmol min-1 (mg protein)-1, respectively. Escherichia coli recombinants harbouring and expressing the alkene monooxygenase genes of R. corallinus B-276 exhibited the ability to degrade TCE. This result provides clear evidence that the alkene monooxygenase of R. corallinus B-276 catalyses TCE oxidation. R. corallinus B-276 was shown to contain four linear plasmids, pNC10 (70 kb), pNC20 (85 kb), pNC30 (185 kb) and pNC40 (235 kb). The observation that pNC30-deficient strains had lost the ability to grow on propene suggested that the genes of the propene degradation pathway are encoded by the linear plasmid pNC30. Southern blot analysis with cloned alkene monooxygenase genes from R. corallinus B-276 revealed a positive hybridization signal with the linear plasmid pNC30. This result clearly shows that the alkene monooxygenase is encoded by the linear plasmid pNC30. Eleven short-chain-alkene-oxidizing strains were screened for the presence of linear plasmids. Among these, four propene-oxidizing Rhodococcus strains and one ethene-oxidizing Mycobacterium strain were found to contain linear megaplasmids. Southern blot analysis with the alkene monooxygenase revealed positive signals with linear plasmids of two propene-oxidizing Rhodococcus ruber strains. These results indicate that homologous alkene monooxygenases are encoded by linear plasmids in R. ruber strains. PMID:10439411

  18. Functional divergence of HBHA from Mycobacterium tuberculosis and its evolutionary relationship with TadA from Rhodococcus opacus.

    PubMed

    Lanfranconi, Mariana P; Alvarez, Héctor M

    2016-08-01

    Rhodococcus opacus PD630 and Rhodococcus jostii RHA1 are oleaginous bacteria able to synthesize and accumulate triacylglycerols (TAG) in lipid bodies (LB). Highly relevant to the structure of LB is a protein homologous to heparin-binding hemagglutinin (HBHA) (called TadA in rhodococci), which is a virulence factor found in Mycobacterium tuberculosis. HBHA is an adhesin involved in binding to non-phagocytic cells and extrapulmonary dissemination. We observed a conserved synteny of three genes encoding a transcriptional regulator (TR), the HBHA protein and a membrane protein (MP) between TAG-accumulating actinobacteria belonging to Rhodococcus, Mycobacterium, Nocardia and Dietzia genera, among others. A 354 bp-intergenic spacing containing a SigF-binding site was found between hbha and the TR genes in M. tuberculosis, which was absent in genomes of other investigated actinobacteria. Analyses of available "omic" information revealed that TadA and TR were co-induced in rhodococci under TAG-accumulating conditions; whereas in M. tuberculosis and Mycobacterium smegmatis, HBHA and TR were regulated independently under stress conditions occurring during infection. We also found differences in protein lengths, domain content and distribution between HBHA and TadA proteins from mycobacteria and rhodococci, which may explain their different roles in cells. Based on the combination of results obtained in model actinobacteria, we hypothesize that HBHA and TadA proteins originated from a common ancestor, but later suffered a process of functional divergence during evolution. Thus, rhodococcal TadA probably has maintained its original role; whereas HBHA may have evolved as a virulence factor in pathogenic mycobacteria. PMID:27287527

  19. Biodegradation of atrazine by Rhodococcus sp. BCH2 to N-isopropylammelide with subsequent assessment of toxicity of biodegraded metabolites.

    PubMed

    Kolekar, Parag D; Phugare, Swapnil S; Jadhav, Jyoti P

    2014-02-01

    Atrazine is a persistent organic pollutant in the environment which affects not only terrestrial and aquatic biota but also human health. Since its removal from the environment is needed, atrazine biodegradation is achieved in the present study using the bacterium Rhodococcus sp. BCH2 isolated from soil, long-term treated with atrazine. The bacterium was capable of degrading about 75 % atrazine in liquid medium having pH 7 under aerobic and dark condition within 7 days. The degradation ability of the bacterium at various temperatures (20-60 °C), pH (range 3-11), carbon (glucose, fructose, sucrose, starch, lactose, and maltose), and nitrogen (ammonium molybdate, sodium nitrate, potassium nitrate, and urea) sources were studied for triumph optimum atrazine degradation. The results indicate that atrazine degradation at higher concentrations (100 ppm) was pH and temperature dependent. However, glucose and potassium nitrate were optimum carbon and nitrogen source, respectively. Atrazine biodegradation analysis was carried out by using high-performance thin-layer chromatography (HPTLC), Fourier transform infrared spectroscopy (FTIR), and liquid chromatography quadrupole time-of-flight (LC/Q-TOF-MS) techniques. LC/Q-TOF-MS analysis revealed formation of various intermediate metabolites including hydroxyatrazine, N-isopropylammelide, deisopropylhydroxyatrazine, deethylatrazine, deisopropylatrazine, and deisopropyldeethylatrazine which was helpful to propose biochemical degradation pathway of atrazine. Furthermore, the toxicological studies of atrazine and its biodegraded metabolites were executed on earthworm Eisenia foetida as a model organism with respect to enzymatic (SOD and Catalase) antioxidant defense mechanism and lipid peroxidation studies. These results suggest innocuous degradation of atrazine by Rhodococcus sp. BCH2 in nontoxic form. Therefore the Rhodococcus sp.BCH2 could prove a valuable source for the eco-friendly biodegradation of atrazine pesticide. PMID

  20. Remodulation of central carbon metabolic pathway in response to arsenite exposure in Rhodococcus sp. strain NAU‐1

    PubMed Central

    Jain, Raina; Adhikary, Hemanta; Jha, Sanjay; Jha, Anamika; Kumar, G. Naresh

    2012-01-01

    Summary Arsenite‐tolerant bacteria were isolated from an organic farm of Navsari Agricultural University (NAU), Gujarat, India (Latitude: 20°55′39.04″N; Longitude: 72°54′6.34″E). One of the isolates, NAU‐1 (aerobic, Gram‐positive, non‐motile, coccobacilli), was hyper‐tolerant to arsenite (AsIII, 23 mM) and arsenate (AsV, 180 mM). 16S rRNA gene of NAU‐1 was 99% similar to the 16S rRNA genes of Rhodococcus (Accession No. HQ659188). Assays confirmed the presence of membrane bound arsenite oxidase and cytoplasmic arsenate reductase in NAU‐1. Genes for arsenite transporters (arsB and ACR3(1)) and arsenite oxidase gene (aoxB) were confirmed by PCR. Arsenite oxidation and arsenite efflux genes help the bacteria to tolerate arsenite. Specific activities of antioxidant enzymes (catalase, ascorbate peroxidase, superoxide dismutase and glutathione S‐transferase) increased in dose‐dependent manner with arsenite, whereas glutathione reductase activity decreased with increase in AsIII concentration. Metabolic studies revealed that Rhodococcus NAU‐1 produces excess of gluconic and succinic acids, and also activities of glucose dehydrogenase, phosphoenol pyruvate carboxylase and isocitrate lyase were increased, to cope with the inhibited activities of glucose‐6‐phosphate dehydrogenase, pyruvate dehydrogenase and α‐ketoglutarate dehydrogenase enzymes respectively, in the presence of AsIII. Enzyme assays revealed the increase in direct oxidative and glyoxylate pathway in Rhodococcus NAU‐1 in the presence of AsIII. PMID:23062201

  1. Development of a conductimetric biosensor using immobilised Rhodococcus ruber whole cells for the detection and quantification of acrylonitrile.

    PubMed

    Roach, P C J; Ramsden, D K; Hughes, J; Williams, P

    2003-10-30

    A conductimetric biosensor for the detection of acrylonitrile in solution was designed and characterised using whole cells of Rhodococcus ruber NCIMB 40757, which were immobilised into a disc of dimethyl silicone sponge (ImmobaSil). The biosensor described was capable of the detection and quantification of acrylonitrile in aqueous solution, having a linear response to concentrations between 2 and 50 mM (106-2650 ppm) acrylonitrile. The biosensor has been shown to be reproducible with respect to the data obtained over a number of days, and retains stability for a minimum period of at least 5 days before recalibration of the biosensor is required. PMID:14559001

  2. Comparative Genomics and Metabolic Analysis Reveals Peculiar Characteristics of Rhodococcus opacus Strain M213 Particularly for Naphthalene Degradation

    PubMed Central

    Blom, Jochen; Indest, Karl J.; Jung, Carina M.; Stothard, Paul; Bera, Gopal; Green, Stefan J.; Ogram, Andrew

    2016-01-01

    The genome of Rhodococcus opacus strain M213, isolated from a fuel-oil contaminated soil, was sequenced and annotated which revealed a genome size of 9,194,165 bp encoding 8680 putative genes and a G+C content of 66.72%. Among the protein coding genes, 71.77% were annotated as clusters of orthologous groups of proteins (COGs); 55% of the COGs were present as paralog clusters. Pulsed field gel electrophoresis (PFGE) analysis of M213 revealed the presence of three different sized replicons- a circular chromosome and two megaplasmids (pNUO1 and pNUO2) estimated to be of 750Kb 350Kb in size, respectively. Conversely, using an alternative approach of optical mapping, the plasmid replicons appeared as a circular ~1.2 Mb megaplasmid and a linear, ~0.7 Mb megaplasmid. Genome-wide comparative analysis of M213 with a cohort of sequenced Rhodococcus species revealed low syntenic affiliation with other R. opacus species including strains B4 and PD630. Conversely, a closer affiliation of M213, at the functional (COG) level, was observed with the catabolically versatile R. jostii strain RHA1 and other Rhodococcii such as R. wratislaviensis strain IFP 2016, R. imtechensis strain RKJ300, Rhodococcus sp. strain JVH1, and Rhodococcus sp. strain DK17, respectively. An in-depth, genome-wide comparison between these functional relatives revealed 971 unique genes in M213 representing 11% of its total genome; many associating with catabolic functions. Of major interest was the identification of as many as 154 genomic islands (GEIs), many with duplicated catabolic genes, in particular for PAHs; a trait that was confirmed by PCR-based identification of naphthalene dioxygenase (NDO) as a representative gene, across PFGE-resolved replicons of strain M213. Interestingly, several plasmid/GEI-encoded genes, that likely participate in degrading naphthalene (NAP) via a peculiar pathway, were also identified in strain M213 using a combination of bioinformatics, metabolic analysis and gene

  3. Brief Tale of a Bacteraemia by Rhodococcus equi, With Concomitant Lung Mass: What Came First, the Chicken or The Egg?

    PubMed Central

    Savini, Vincenzo; Salutari, Prassede; Sborgia, Marco; Mancini, Iole; Masciarelli, Gioviana; Catavitello, Chiara; Astolfi, Daniela; D’Amario, Claudio; Fioritoni, Giuseppe; Spadaro, Antonio; D’Antonio, Domenico

    2011-01-01

    Rhodococcus equi is an uncommon Gram positive, variably acid-fast pathogen, that appears as hard to treat mostly owing to the establishment of intracellular niches. Lack of interpretive criteria for susceptibility testing may lead to under-reporting or overestimation of resistances, whereas knowledge about this pathogen’s clinical impact may be affected by erroneous phenotype-based characterization at a genus and species level. We present the case of a bacteraemia with a concomitant lung mass in a lymphoma patient, that further highlights the emergence of rhodococcal diseases as a matter for concern in the fields of infectious diseases and haematology. PMID:21625310

  4. Comparative Genomics and Metabolic Analysis Reveals Peculiar Characteristics of Rhodococcus opacus Strain M213 Particularly for Naphthalene Degradation.

    PubMed

    Pathak, Ashish; Chauhan, Ashvini; Blom, Jochen; Indest, Karl J; Jung, Carina M; Stothard, Paul; Bera, Gopal; Green, Stefan J; Ogram, Andrew

    2016-01-01

    The genome of Rhodococcus opacus strain M213, isolated from a fuel-oil contaminated soil, was sequenced and annotated which revealed a genome size of 9,194,165 bp encoding 8680 putative genes and a G+C content of 66.72%. Among the protein coding genes, 71.77% were annotated as clusters of orthologous groups of proteins (COGs); 55% of the COGs were present as paralog clusters. Pulsed field gel electrophoresis (PFGE) analysis of M213 revealed the presence of three different sized replicons- a circular chromosome and two megaplasmids (pNUO1 and pNUO2) estimated to be of 750Kb 350Kb in size, respectively. Conversely, using an alternative approach of optical mapping, the plasmid replicons appeared as a circular ~1.2 Mb megaplasmid and a linear, ~0.7 Mb megaplasmid. Genome-wide comparative analysis of M213 with a cohort of sequenced Rhodococcus species revealed low syntenic affiliation with other R. opacus species including strains B4 and PD630. Conversely, a closer affiliation of M213, at the functional (COG) level, was observed with the catabolically versatile R. jostii strain RHA1 and other Rhodococcii such as R. wratislaviensis strain IFP 2016, R. imtechensis strain RKJ300, Rhodococcus sp. strain JVH1, and Rhodococcus sp. strain DK17, respectively. An in-depth, genome-wide comparison between these functional relatives revealed 971 unique genes in M213 representing 11% of its total genome; many associating with catabolic functions. Of major interest was the identification of as many as 154 genomic islands (GEIs), many with duplicated catabolic genes, in particular for PAHs; a trait that was confirmed by PCR-based identification of naphthalene dioxygenase (NDO) as a representative gene, across PFGE-resolved replicons of strain M213. Interestingly, several plasmid/GEI-encoded genes, that likely participate in degrading naphthalene (NAP) via a peculiar pathway, were also identified in strain M213 using a combination of bioinformatics, metabolic analysis and gene

  5. Two Scalable Syntheses of (S)-2-Methylazetidine.

    PubMed

    Dowling, Matthew S; Fernando, Dilinie P; Hou, Jie; Liu, Bo; Smith, Aaron C

    2016-04-01

    Two orthogonal routes for preparing (S)-2-methylazetidine as a bench stable, crystalline (R)-(-)-CSA salt are presented. One route features the in situ generation and cyclization of a 1,3-bis-triflate to form the azetidine ring, while the second route involves chemoselective reduction of N-Boc azetidine-2-carboxylic acid. Both sequences afford the desired product in good overall yields (61% and 49%) and high enantiomeric excess (>99% ee), avoid column chromatography, and are suitable for the large-scale production of this material. PMID:26895201

  6. Tunable MoS2 bandgap in MoS2-graphene heterostructures

    NASA Astrophysics Data System (ADS)

    Ebnonnasir, Abbas; Narayanan, Badri; Kodambaka, Suneel; Ciobanu, Cristian V.

    2014-07-01

    Using density functional theory calculations with van der Waals corrections, we investigated how the interlayer orientation affects the structure and electronic properties of MoS2-graphene bilayer heterostructures. Changing the orientation of graphene with respect to MoS2 strongly influences the type and the value of the electronic bandgap in MoS2, while not significantly altering the binding energy between the layers or the interlayer spacing. We show that the physical origin of this tunable bandgap arises from variations in the S-S interplanar distance (MoS2 thickness) with the interlayer orientation, variations which are caused by electron transfer away from the Mo-S bonds.

  7. High-Quality TiS2 For Li/TiS2 Cells

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo; Surampudi, Subbarao; Shen, David H.; Delgiannis, Fotios; Halpert, Gerald

    1992-01-01

    Modified process for synthesis of battery-grade titanium sulfide (TiS2) yields substantially improved material for Li/TiS2 electrochemical cells. Includes all-vapor-phase reaction between sulfur and titanium. Product less dense and more homogeneous, consists of smaller particles of higher crystalline quality, and purer. Cells have high cathode utilization and long cycle life performance. Expected to find applications in rechargeable lithium batteries for spacecraft, military equipment, telecommunication systems, automobiles, and consumer products.

  8. RKKY interaction in MoS2

    NASA Astrophysics Data System (ADS)

    Mastrogiuseppe, Diego; Sandler, Nancy; Ulloa, Sergio

    2014-03-01

    MoS2 belongs to a family of layered compounds -the transition metal dichalcogenides- that are attracting increasing attention in the solid state community due to their very rich phase diagram. In particular, the semiconducting ones in their 2D form, are of particular interest in the search for a new generation of devices in nanoelectronics and nanophotonics. The hexagonal lattice allows one to describe the low-energy physics with a massive Dirac equation around the K and K' points. Moreover, the presence of a large intrinsic spin-orbit interaction due to the presence of transition metal atoms, leads to a valley-dependent splitting of the states of an otherwise spin-degenerate valence spectrum. We study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between two magnetic impurities in the direct band gap semiconducting single-layer MoS2, focusing in the p-doped case. Going beyond a recent study, we include the effects of the spin-degenerate valence bands at the center of the Brillouin zone, relevant for energies close to the valence band maximum. The easy experimental tunability of the carrier concentration by electrical or chemical means, makes possible the study of the carrier-mediated spin-spin interaction at different fillings. Supported by NSF-MWN/CIAM and NSF-PIRE.

  9. Plasmid Profiles of Virulent Rhodococcus equi Strains Isolated from Infected Foals in Poland.

    PubMed

    Kalinowski, Marcin; Grądzki, Zbigniew; Jarosz, Łukasz; Kato, Kiyoko; Hieda, Yu; Kakuda, Tsutomu; Takai, Shinji

    2016-01-01

    Rhodococcus equi is an important bacterial pathogen in foals up to 6 months old, widespread in horse farms all over the world. It was found that only virulent R. equi strains expressing 15-17 kDa virulence-associated protein (VapA) and having large virulence plasmid of 85-90 kb containing vapA gene are pathogenic for horses. To date, 12 plasmid types have been reported in VapA positive strains from horses. There are no data concerning plasmid types of Polish field R. equi strains isolated from horses and horse farm environment. The aim of the study is to determine plasmid profiles of virulent R. equi strains isolated in Poland from dead foals as well as from soil samples taken from horse breeding farms. Plasmid profiles of 10 clinical strains derived from 8 farms and 11 environmental strains from 3 farms, confirmed as virulent by PCR, were compared with 12 reference strains containing the known plasmid size and type. Plasmid DNAs were analysed by digestion with the restriction endonucleases BamHI, EcoRI, EcoT22I, and HindIII for detailed comparison and estimation of plasmid sizes. The results of RFLP analysis revealed that all except one isolates used in the study are classified as VapA 85 kb type I plasmid. One strain harboured VapA 87 kb type I plasmid. This is the first report of plasmid types of Polish field R. equi strains. The results of our preliminary investigations on horse farms located in central and eastern Poland indicate that the virulent R. equi strains thus far isolated from diseased foals and horse farms environment represent a highly uniform plasmid pattern. PMID:27074033

  10. Peripheral blood lymphocyte subpopulations and immunoglobulin concentrations in healthy foals and foals with Rhodococcus equi pneumonia.

    PubMed

    Flaminio, M J; Rush, B R; Shuman, W

    1999-01-01

    Infectious diseases are common in foals aged 1-5 months. The objectives of this investigation were to evaluate immunologic parameters in foals from birth to weaning to establish reference values for the proportion of circulating lymphocytes that were helper (CD4+) or cytotoxic (CD8+) T cells, or B cells; to measure serum immunoglobulin (IgM and IgG) concentrations; and to compare these immunologic parameters to values in foals with naturally occurring Rhodococcus equi pneumonia and in adult horses. Peripheral blood lymphocyte subpopulations were determined by flow cytometric analysis, and serum IgG and IgM concentrations were determined by radial immunodiffusion. Flow cytometric analysis of lymphocyte subpopulations suggested age-related changes in the cell-mediated immune system in horses. Absolute circulating CD4+ and CD8+ T lymphocytes and B cells increased linearly up to 3 months of age. Circulating B cell concentrations from birth to 6 months of age were greater than values in adult horses and the lymphocyte differences among the age groups are mainly due to variation in B lymphocytes. Both absolute and proportional B cell concentrations were greater in foals with R equi pneumonia than in healthy foals at the same age. The increase in absolute cell counts of each subpopulation was dependent on the increase of absolute peripheral blood lymphocyte count. Serum IgG concentration increased linearly from 1 to 3 months of age, and serum IgM concentrations increased from 1 to 6 months of age. These data suggest age-dependent cell-mediated and humoral development in young foals. PMID:10357110

  11. Experimental infection of neonatal foals with Rhodococcus equi triggers adult-like gamma interferon induction.

    PubMed

    Jacks, Stephanie; Giguère, Steeve; Crawford, P Cynda; Castleman, William L

    2007-06-01

    Rhodococcus equi is a facultative intracellular pathogen that causes pneumonia in young foals but does not induce disease in immunocompetent adult horses. Clearance of R. equi depends mainly on gamma interferon (IFN-gamma) production by T lymphocytes, whereas the predominance of interleukin 4 (IL-4) is detrimental. Young foals, like neonates of many other species, are generally deficient in the ability to produce IFN-gamma. The objective of this study was to compare the cytokine profiles, as well as cell-mediated and antibody responses, of young foals to those of adult horses following intrabronchial challenge with R. equi. The lymphoproliferative responses of bronchial lymph node (BLN) cells to concanavalin A were significantly higher in foals than in adult horses. In contrast, adult horses had significantly higher lymphoproliferative responses to R. equi antigens than did foals. Infected foals had significantly lower IL-4 mRNA expression but significantly higher IFN-gamma expression and IFN-gamma/IL-4 ratio in R. equi-stimulated BLN lymphocytes than did infected adults. Infection with R. equi in foals resulted in a significant increase in the percentage of T lymphocytes and CD4(+) T lymphocytes in bronchoalveolar lavage fluid in association with a significant decrease in the percentage of these cell populations in BLNs. Infection of foals also resulted in a marked increase in serum immunoglobulin Ga (IgGa) and IgGb levels, resulting in concentrations in serum that were significantly higher than those of adult horses. This study demonstrates that the immune response to R. equi in foals is not biased toward IL-4 and is characterized by the predominant induction of IFN-gamma. PMID:17409222

  12. Experimental Infection of Neonatal Foals with Rhodococcus equi Triggers Adult-Like Gamma Interferon Induction▿

    PubMed Central

    Jacks, Stephanie; Giguère, Steeve; Crawford, P. Cynda; Castleman, William L.

    2007-01-01

    Rhodococcus equi is a facultative intracellular pathogen that causes pneumonia in young foals but does not induce disease in immunocompetent adult horses. Clearance of R. equi depends mainly on gamma interferon (IFN-γ) production by T lymphocytes, whereas the predominance of interleukin 4 (IL-4) is detrimental. Young foals, like neonates of many other species, are generally deficient in the ability to produce IFN-γ. The objective of this study was to compare the cytokine profiles, as well as cell-mediated and antibody responses, of young foals to those of adult horses following intrabronchial challenge with R. equi. The lymphoproliferative responses of bronchial lymph node (BLN) cells to concanavalin A were significantly higher in foals than in adult horses. In contrast, adult horses had significantly higher lymphoproliferative responses to R. equi antigens than did foals. Infected foals had significantly lower IL-4 mRNA expression but significantly higher IFN-γ expression and IFN-γ/IL-4 ratio in R. equi-stimulated BLN lymphocytes than did infected adults. Infection with R. equi in foals resulted in a significant increase in the percentage of T lymphocytes and CD4+ T lymphocytes in bronchoalveolar lavage fluid in association with a significant decrease in the percentage of these cell populations in BLNs. Infection of foals also resulted in a marked increase in serum immunoglobulin Ga (IgGa) and IgGb levels, resulting in concentrations in serum that were significantly higher than those of adult horses. This study demonstrates that the immune response to R. equi in foals is not biased toward IL-4 and is characterized by the predominant induction of IFN-γ. PMID:17409222

  13. Virulence Plasmid of Rhodococcus equi Contains Inducible Gene Family Encoding Secreted Proteins

    PubMed Central

    Byrne, Barbara A.; Prescott, John F.; Palmer, Guy H.; Takai, Shinji; Nicholson, Vivian M.; Alperin, Debra C.; Hines, Stephen A.

    2001-01-01

    Rhodococcus equi causes severe pyogranulomatous pneumonia in foals. This facultative intracellular pathogen produces similar lesions in immunocompromised humans, particularly in AIDS patients. Virulent strains of R. equi bear a large plasmid that is required for intracellular survival within macrophages and for virulence in foals and mice. Only two plasmid-encoded proteins have been described previously; a 15- to 17-kDa surface protein designated virulence-associated protein A (VapA) and an antigenically related 20-kDa protein (herein designated VapB). These two proteins are not expressed by the same R. equi isolate. We describe here the substantial similarity between VapA and VapB. Moreover, we identify three additional genes carried on the virulence plasmid, vapC, -D, and -E, that are tandemly arranged downstream of vapA. These new genes are members of a gene family and encode proteins that are approximately 50% homologous to VapA, VapB, and each other. vapC, -D, and -E are found only in R. equi strains that express VapA and are highly conserved in VapA-positive isolates from both horses and humans. VapC, -D, and -E are secreted proteins coordinately regulated by temperature with VapA; the proteins are expressed when R. equi is cultured at 37°C but not at 30°C, a finding that is compatible with a role in virulence. As secreted proteins, VapC, -D, and -E may represent targets for the prevention of rhodococcal pneumonia. An immunologic study using VapA-specific antibodies and recombinant Vap proteins revealed no evidence of cross-reactivity despite extensive sequence similarity over the carboxy terminus of all four proteins. PMID:11159951

  14. γ-Resorcylate Catabolic-Pathway Genes in the Soil Actinomycete Rhodococcus jostii RHA1

    PubMed Central

    Kasai, Daisuke; Araki, Naoto; Motoi, Kota; Yoshikawa, Shota; Iino, Toju; Imai, Shunsuke; Masai, Eiji

    2015-01-01

    The Rhodococcus jostii RHA1 gene cluster required for γ-resorcylate (GRA) catabolism was characterized. The cluster includes tsdA, tsdB, tsdC, tsdD, tsdR, tsdT, and tsdX, which encode GRA decarboxylase, resorcinol 4-hydroxylase, hydroxyquinol 1,2-dioxygenase, maleylacetate reductase, an IclR-type regulator, a major facilitator superfamily transporter, and a putative hydrolase, respectively. The tsdA gene conferred GRA decarboxylase activity on Escherichia coli. Purified TsdB oxidized NADH in the presence of resorcinol, suggesting that tsdB encodes a unique NADH-specific single-component resorcinol 4-hydroxylase. Mutations in either tsdA or tsdB resulted in growth deficiency on GRA. The tsdC and tsdD genes conferred hydroxyquinol 1,2-dioxygenase and maleylacetate reductase activities, respectively, on E. coli. Inactivation of tsdT significantly retarded the growth of RHA1 on GRA. The growth retardation was partially suppressed under acidic conditions, suggesting the involvement of tsdT in GRA uptake. Reverse transcription-PCR analysis revealed that the tsd genes constitute three transcriptional units, the tsdBADC and tsdTX operons and tsdR. Transcription of the tsdBADC and tsdTX operons was induced during growth on GRA. Inactivation of tsdR derepressed transcription of the tsdBADC and tsdTX operons in the absence of GRA, suggesting that tsd gene transcription is negatively regulated by the tsdR-encoded regulator. Binding of TsdR to the tsdR-tsdB and tsdT-tsdR intergenic regions was inhibited by the addition of GRA, indicating that GRA interacts with TsdR as an effector molecule. PMID:26319878

  15. Association between radiographic pattern and outcome in foals with pneumonia caused by Rhodococcus equi.

    PubMed

    Giguère, Steeve; Roberts, Gregory D

    2012-01-01

    Our objective was to characterize the association between types of radiographic findings and outcome in foals with pneumonia caused by Rhodococcus equi. Admission lateral thoracic radiographs of 62 foals with culture-confirmed R. equi pneumonia were reviewed retrospectively. A scoring system was developed to individually assess the severity of alveolar pattern, interstitial pattern, tracheobronchial lymphadenopathy, pleural effusion, and the number of nodular opacities and cavitary lesions. Individual scores were added to obtain a total radiographic score ranging from 0 (normal) to 22. Forty-three of 62 foals (69%) survived to discharge. The median total radiographic score of nonsurvivors (14; range, 9-16) was significantly (P = 0.007) higher than that of survivors (11; range, 4-15). Foals with a total radiographic score of greater than or equal to 15 were 6.15 times (95% CI: 1.35 to 28.2) less likely to survive than foals with a lower score (P = 0.019). A multivariate logistic regression model was used to identify the potential associations between specific types of radiographic lesions and outcome. The model was statistically significant (P = 0.002) and correctly classified 75.8% of foals. Only severity of alveolar pattern and number of cavitary lesions made statistically significant contributions to the model. There was no significant association between concurrent isolation of other bacteria along with R. equi and the types or severity of radiographic lesions. Based on the results of this study, severity of alveolar pattern and number of cavitary lesions are the radiographic findings significantly associated with a poor outcome in foals with R. equi pneumonia. PMID:22742474

  16. Transcriptomic Assessment of Isozymes in the Biphenyl Pathway of Rhodococcus sp. Strain RHA1†

    PubMed Central

    Gonçalves, Edmilson R.; Hara, Hirofumi; Miyazawa, Daisuke; Davies, Julian E.; Eltis, Lindsay D.; Mohn, William W.

    2006-01-01

    Rhodococcus sp. RHA1 grows on a broad range of aromatic compounds and vigorously degrades polychlorinated biphenyls (PCBs). Previous work identified RHA1 genes encoding multiple isozymes for most of the seven steps of the biphenyl (BPH) pathway, provided evidence for coexpression of some of these isozymes, and indicated the involvement of some of these enzymes in the degradation of BPH, ethylbenzene (ETB), and PCBs. To investigate the expression of these isozymes and better understand how they contribute to the robust degradative capacity of RHA1, we comprehensively analyzed the 9.7-Mb genome of RHA1 for BPH pathway genes and characterized the transcriptome of RHA1 growing on benzoate (BEN), BPH, and ETB. Sequence analyses revealed 54 potential BPH pathway genes, including 28 not previously reported. Transcriptomic analysis with a DNA microarray containing 70-mer probes for 8,213 RHA1 genes revealed a suite of 320 genes of diverse functions that were upregulated during growth both on BPH and on ETB, relative to growth on the control substrate, pyruvate. By contrast, only 65 genes were upregulated during growth on BEN. Quantitative PCR assays confirmed microarray results for selected genes and indicated that some of the catabolic genes were upregulated over 10,000-fold. Our analysis suggests that up to 22 enzymes, including 8 newly identified ones, may function in the BPH pathway of RHA1. The relative expression levels of catabolic genes did not differ for BPH and ETB, suggesting a common regulatory mechanism. This study delineated a suite of catabolic enzymes for biphenyl and alkyl-benzenes in RHA1, which is larger than previously recognized and which may serve as a model for catabolism in other environmentally important bacteria having large genomes. PMID:16957245

  17. In vitro synergy, pharmacodynamics, and postantibiotic effect of 11 antimicrobial agents against Rhodococcus equi.

    PubMed

    Giguère, Steeve; Lee, Elise A; Guldbech, Kristen M; Berghaus, Londa J

    2012-11-01

    There are no studies investigating interactions between clarithromycin or azithromycin and rifampin or other commonly used antimicrobial agents against virulent isolates of Rhodococcus equi. In addition, there is no published data on the postantibiotic effects (PAEs) and pharmacodynamics properties of antimicrobial agents against R. equi. The objectives were to assess in vitro interactions, pharmacodynamics, and PAEs of 11 antimicrobial agents belonging to various antimicrobial classes against R. equi. Antimicrobial agents investigated (erythromycin, clarithromycin, azithromycin, rifampin, amikacin, gentamicin, enrofloxacin, vancomycin, imipenem, ceftiofur, and doxycycline) were selected based on in vitro activity against large numbers of isolates of R. equi and frequency of use in foals or humans infected with R. equi. Three virulent strains of R. equi were evaluated by time-kill curves and checkerboard assays, and the postantibiotic effect was measured at 5×MIC. Only amikacin, gentamicin, enrofloxacin, and vancomycin were bactericidal against R. equi. Combinations including a macrolide (erythromycin, clarithromycin, azithromycin) and either rifampin or doxycycline, and the combination doxycycline-rifampin were synergistic. Combinations containing amikacin and erythromycin, clarithromycin, azithromycin, or rifampin and the combination gentamicin-rifampin were antagonistic. The PAEs of rifampin, erythromycin, clarithromycin, vancomycin, and doxycycline were relatively long with median values ranging between 4.5 and 6.5h. Azithromycin, gentamicin, and imipenem had intermediate PAEs ranging between 3.3 and 3.5h. Amikacin, enrofloxacin, and ceftiofur had shorter PAEs ranging between 1.3 and 2.1h. Gentamicin, amikacin, enrofloxacin, and doxycycline exhibited concentration-dependent activity whereas erythromycin, clarithromycin, azithromycin, rifampin, ceftiofur, imipenem, and vancomycin exhibited time-dependent activity against R. equi. PMID:22704561

  18. Retrospective comparison of azithromycin, clarithromycin, and erythromycin for the treatment of foals with Rhodococcus equi pneumonia.

    PubMed

    Giguère, Steeve; Jacks, Stephanie; Roberts, Gregory D; Hernandez, Jorge; Long, Maureen T; Ellis, Christina

    2004-01-01

    The objective of this retrospective study was to compare the efficacy of azithromycin-rifampin, clarithromycin-rifampin, and erythromycin-rifampin for the treatment of pneumonia caused by Rhodococcus equi in foals. Eighty-one foals with naturally acquired pneumonia caused by R. equi were included in the study. Information on age, sex, breed, physical examination findings, laboratory testing, and thoracic radiography was abstracted from each medical record. Foals were divided in 3 groups based on the antimicrobial agent selected for therapy. Short-term (discharge from the hospital) and long-term (apparently healthy as a yearling) success rates, days of hospitalization, days with fever, days with tachypnea, and percentage of radiographic improvement were compared among groups. Foals treated with clarithromycin-rifampin had significantly (P = .02) higher odds of overall short-term (odds ratio [OR] = 12.2) and long-term (OR = 20.6) treatment success and significantly fewer days with fever than foals treated with erythromycin-rifampin. Foals treated with clarithromycin-rifampin had a significantly (P = .03) higher percentage of radiographic improvement and a tendency (P = .06) toward higher odds of overall short-term (OR = 8.1) and long-term (OR = 11.8) treatment success compared to foals treated with azithromycin-rifampin. Among foals with severe radiographic lesions, the success rates of foals treated with clarithromycin-rifampin both short-term (88%) and long-term (83%) were significantly (P = .02) higher than that of foals treated with azithromycin-rifampin (0%). For each treatment group, the only reported adverse effect was diarrhea that was mild and self-limiting in most cases. The combination clarithromycin-rifampin is superior to azithromycin-rifampin or erythromycin-rifampin for the treatment of pneumonia caused by R. equi in foals in a referral population. PMID:15320600

  19. Mutant prevention concentration and mutant selection window for 10 antimicrobial agents against Rhodococcus equi.

    PubMed

    Berghaus, Londa J; Giguère, Steeve; Guldbech, Kristen

    2013-10-25

    The objectives of this study were to determine the mutant prevention concentration (MPC), time above the MPC and mutant selection window for 10 antimicrobial agents against Rhodococcus equi and to determine if the combination of a macrolide with rifampin would decrease emergence of resistant mutants. Antimicrobial agents investigated (erythromycin, clarithromycin, azithromycin, rifampin, amikacin, gentamicin, enrofloxacin, vancomycin, imipenem, and doxycycline) were selected based on in vitro activity and frequency of use in foals or people infected with R. equi. Each antimicrobial agent or combination of agents was evaluated against four virulent strains of R. equi. MPC were determined using an agar plate assay. Pharmacodynamic parameters were calculated using published plasma and pulmonary pharmacokinetic variables. There was a significant (P<0.001) effect of the type of antimicrobial agent on the MPC. The MPC of clarithromycin (1.0 μg/ml) was significantly lower and the MPC of rifampin and amikacin (512 and 384 μg/ml, respectively) were significantly higher than that of all other antimicrobial agents tested. Combining erythromycin, clarithromycin, or azithromycin with rifampin resulted in a significant (P≤0.005) decrease in MPC and MPC/MIC ratio. When MIC and MPC were combined with pharmacokinetic variables, only gentamicin and vancomycin were predicted to achieve plasma concentrations above the MPC for any given periods of time. Only clarithromycin and the combination clarithromycin-rifampin were predicted to achieve concentrations in bronchoalveolar cells and pulmonary epithelial lining fluid above the MPC for the entire dosing interval. In conclusion, the combination of a macrolide with rifampin considerably decreases the emergence of resistant mutants of R. equi. PMID:23915992

  20. Rhodococcus erythropolis BG43 Genes Mediating Pseudomonas aeruginosa Quinolone Signal Degradation and Virulence Factor Attenuation.

    PubMed

    Müller, Christine; Birmes, Franziska S; Rückert, Christian; Kalinowski, Jörn; Fetzner, Susanne

    2015-11-01

    Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43. Transcription of all genes was upregulated by PQS, suggesting that both gene clusters code for alkylquinolone-specific catabolic enzymes. An aqdR gene encoding a putative transcriptional regulator, which was also inducible by PQS, is located adjacent to the aqdA2B2C2 cluster. Expression of aqdA2B2C2 in Escherichia coli conferred the ability to degrade HHQ and PQS to anthranilic acid; however, for E. coli transformed with aqdA1B1C1, only PQS degradation was observed. Purification of the recombinant AqdC1 protein verified that it catalyzes the cleavage of PQS to form N-octanoylanthranilic acid and carbon monoxide and revealed apparent Km and kcat values for PQS of ∼27 μM and 21 s(-1), respectively. Heterologous expression of the PQS dioxygenase gene aqdC1 or aqdC2 in P. aeruginosa PAO1 quenched the production of the virulence factors pyocyanin and rhamnolipid and reduced the synthesis of the siderophore pyoverdine. Thus, the toolbox of quorum-quenching enzymes is expanded by new PQS dioxygenases. PMID:26319870

  1. Chloroquine inhibits Rhodococcus equi replication in murine and foal alveolar macrophages by iron-starvation.

    PubMed

    Gressler, Leticia T; Bordin, Angela I; McQueen, Cole M; Cohen, Noah D; de Vargas, Agueda Castagna

    2016-05-30

    Rhodococcus equi preferentially infects macrophages causing pyogranulomatous pneumonia in young foals. Both the vapA and rhbC genes are up-regulated in an iron (Fe)-deprived environment, such as that found within macrophages. Chloroquine (CQ) is a drug widely used against malaria that suppresses the intracellular availability of Fe in eukaryotic cells. The main objective of this study was to evaluate the ability of CQ to inhibit replication of virulent R. equi within murine (J774A.1) and foal alveolar macrophages (AMs) and to verify whether the mechanism of inhibition could be Fe-deprivation-dependent. CQ effect on R. equi extracellular survival and toxicity to J774A.1 were evaluated. R. equi survival within J774A.1 and foal AMs was evaluated under CQ (10 and 20μM), bovine saturated transferrin (bHTF), and bovine unsaturated transferrin (bATF) exposure. To explore the action mechanism of CQ, the superoxide anion production, the lysozyme activity, as well as the relative mRNA expression of vapA and rhbC were examined. CQ at≤20μM had no effect on R. equi extracellular multiplication and J774A.1 viability. Exposure to CQ significantly and markedly reduced survival of R. equi within J774A.1 and foal AMs. Treatment with bHTF did not reverse CQ effect on R. equi. Exposure to CQ did not affected superoxide anion production or lysozyme activity, however vapA and rhbC expression was significantly increased. Our results reinforce the hypothesis that intracellular availability of Fe is required for R. equi survival, and our initial hypothesis that CQ can limit replication of R. equi in J774A.1 and foal AMs, most likely by Fe starvation. PMID:27139025

  2. Two Transporters Essential for Reassimilation of Novel Cholate Metabolites by Rhodococcus jostii RHA1

    PubMed Central

    Swain, Kendra; Casabon, Israël; Eltis, Lindsay D.

    2012-01-01

    The bacterial uptake of steroids and their metabolites remains poorly understood. We investigated two transporters associated with cholate catabolism in Rhodococcus jostii RHA1. Reverse transcriptase quantitative-PCR indicated that an ATP-binding cassette (ABC) transporter and a major facilitator superfamily (MFS) transporter were upregulated 16.7- and 174-fold, respectively, during the exponential phase of growth on cholate compared to growth on pyruvate. Gene knockout analysis established that these transporters are required for the reassimilation of distinct metabolites that accumulate during growth on cholate. The ABC transporter, encoded by camABCD, was essential for uptake of 1β(2′-propanoate)-3aα-H-4α(3″(R)-hydroxy-3″-propanoate)-7aβ-methylhexahydro-5-indanone and a desaturated analog. The MFS transporter, encoded by camM, was essential for uptake of 3,7(R),12(S)-trihydroxy-9-oxo-9,10-seco-23,24-bisnorchola-1,3,5(10)-trien-22-oate. These metabolites differ from cholate metabolites reported to be excreted by proteobacteria in that they retain an isopropanoyl side chain at C-17. The uptake of these metabolites was necessary for maximal growth on cholate: a ΔcamB mutant lacking the permease component of the ABC transporter and a ΔcamM mutant lacking the MFS transporter grew to 74% and 77%, respectively, of the yield of the wild type. This study demonstrates for the first time the requirement for specific transporters for uptake of cholate metabolites and highlights the importance and complexity of transport processes associated with bacterial steroid catabolism. PMID:23024344

  3. The intracellular bacterium Rhodococcus equi requires Mac-1 to bind to mammalian cells.

    PubMed Central

    Hondalus, M K; Diamond, M S; Rosenthal, L A; Springer, T A; Mosser, D M

    1993-01-01

    Rhodococcus equi is a facultative intracellular bacterium of macrophages that causes disease in immunocompromised individuals, particularly those with AIDS. In this report, we demonstrate that R. equi binding to mammalian cells requires complement and is mediated primarily by the leukocyte complement receptor, Mac-1. Bacteria bind to macrophages poorly unless exogenous complement is added to the incubation medium. The addition of fresh nonimmune serum, which contains no detectable antibodies to R. equi, greatly enhances bacterial binding to macrophages, whereas heat inactivation of this serum or immunological depletion of C3 from the serum reduces binding to levels only slightly higher than those of binding under serum-free conditions. Human serum depleted of C2 or C4 is fully opsonic, indicating that complement activation and fixation occur by the alternative pathway. The serum-dependent binding of rhodococci to macrophages is mediated primarily by the macrophage complement receptor type 3, Mac-1 (CD11b/CD18). Bacteria do not bind to fibroblastoid or epithelial cells that lack this receptor. Most of the bacterial binding to macrophages is inhibited by a monoclonal antibody to Mac-1 but is unaffected by a monoclonal antibody to complement receptor type 1. Furthermore, opsonized, but not unopsonized, bacteria bind to purified Mac-1 immobilized on plastic. In addition, in the presence of opsonic complement, rhodococci bind efficiently to fibroblastoid cells transfected with cloned Mac-1 but relatively poorly to cells transfected with the complement receptor type 1. Hence, R. equi fixes complement by activating the alternative complement pathway, and this fixation is a requirement for bacterial adhesion and invasion. Furthermore, complement fixation defines rhodococcal host cell tropism, since R. equi binds specifically and exclusively to cells expressing Mac-1. Images PMID:8514396

  4. IcgA Is a Virulence Factor of Rhodococcus equi That Modulates Intracellular Growth

    PubMed Central

    Wang, Xiaoguang; Coulson, Garry B.; Miranda-CasoLuengo, Aleksandra A.; Miranda-CasoLuengo, Raúl; Hondalus, Mary K.

    2014-01-01

    Virulence of the intracellular pathogen Rhodococcus equi depends on a 21.3-kb pathogenicity island located on a conjugative plasmid. To date, the only nonregulatory pathogenicity island-encoded virulence factor identified is the cell envelope-associated VapA protein. Although the pathogenicity islands from porcine and equine R. equi isolates have undergone major rearrangements, the virR operon (virR-icgA-vapH-orf7-virS) is highly conserved in both, suggesting these genes play an important role in pathogenicity. VirR and VirS are transcriptional regulators controlling expression of pathogenicity island genes, including vapA. Here, we show that while vapH and orf7 are dispensable for intracellular growth of R. equi, deletion of icgA, formerly known as orf5, encoding a major facilitator superfamily transport protein, elicited an enhanced growth phenotype in macrophages and a significant reduction in macrophage viability, while extracellular growth in broth remained unaffected. Transcription of virS, located downstream of icgA, and vapA was not affected by the icgA deletion during growth in broth or in macrophages, showing that the enhanced growth phenotype caused by deletion of icgA was not mediated through abnormal transcription of these genes. Transcription of icgA increased 6-fold within 2 h following infection of macrophages and remained significantly higher 48 h postinfection compared to levels at the start of the infection. The major facilitator superfamily transport protein IcgA is the first factor identified in R. equi that negatively affects intracellular replication. Aside from VapA, it is only the second pathogenicity island-encoded structural protein shown to play a direct role in intracellular growth of this pathogenic actinomycete. PMID:24549327

  5. DNA sequence and comparison of virulence plasmids from Rhodococcus equi ATCC 33701 and 103.

    PubMed

    Takai, S; Hines, S A; Sekizaki, T; Nicholson, V M; Alperin, D A; Osaki, M; Takamatsu, D; Nakamura, M; Suzuki, K; Ogino, N; Kakuda, T; Dan, H; Prescott, J F

    2000-12-01

    The virulence plasmids of the equine virulent strains Rhodococcus equi ATCC 33701 and 103 were sequenced, and their genetic structure was analyzed. p33701 was 80,610 bp in length, and p103 was 1 bp shorter; their sequences were virtually identical. The plasmids contained 64 open reading frames (ORFs), 22 of which were homologous with genes of known function and 3 of which were homologous with putative genes of unknown function in other species. Putative functions were assigned to five ORFs based on protein family characteristics. The most striking feature of the virulence plasmids was the presence of a 27,536-bp pathogenicity island containing seven virulence-associated protein (vap) genes, including vapA. These vap genes have extensive homology to vapA, which encodes a thermoregulated and surface-expressed protein. The pathogenicity island contained a LysR family transcriptional regulator and a two-component response regulator upstream of six of the vap genes. The vap genes were present as a cluster of three (vapA, vapC, and vapD), as a pair (vapE and vapF), or individually (vapG; vapH). A region of extensive direct repeats of unknown function, possibly associated with thermoregulation, was present immediately upstream of the clustered and the paired genes but not the individual vap genes. There was extensive homology among the C-terminal halves of all vap genes but not generally among the N-terminal halves. The remainder of the plasmid consisted of a large region which appears to be associated with conjugation functions and a large region which appears to be associated with replication and partitioning functions. PMID:11083803

  6. Plasmid Profiles of Virulent Rhodococcus equi Strains Isolated from Infected Foals in Poland

    PubMed Central

    Kalinowski, Marcin; Grądzki, Zbigniew; Jarosz, Łukasz; Kato, Kiyoko; Hieda, Yu; Kakuda, Tsutomu; Takai, Shinji

    2016-01-01

    Rhodococcus equi is an important bacterial pathogen in foals up to 6 months old, widespread in horse farms all over the world. It was found that only virulent R. equi strains expressing 15–17 kDa virulence-associated protein (VapA) and having large virulence plasmid of 85–90 kb containing vapA gene are pathogenic for horses. To date, 12 plasmid types have been reported in VapA positive strains from horses. There are no data concerning plasmid types of Polish field R. equi strains isolated from horses and horse farm environment. The aim of the study is to determine plasmid profiles of virulent R. equi strains isolated in Poland from dead foals as well as from soil samples taken from horse breeding farms. Plasmid profiles of 10 clinical strains derived from 8 farms and 11 environmental strains from 3 farms, confirmed as virulent by PCR, were compared with 12 reference strains containing the known plasmid size and type. Plasmid DNAs were analysed by digestion with the restriction endonucleases BamHI, EcoRI, EcoT22I, and HindIII for detailed comparison and estimation of plasmid sizes. The results of RFLP analysis revealed that all except one isolates used in the study are classified as VapA 85 kb type I plasmid. One strain harboured VapA 87 kb type I plasmid. This is the first report of plasmid types of Polish field R. equi strains. The results of our preliminary investigations on horse farms located in central and eastern Poland indicate that the virulent R. equi strains thus far isolated from diseased foals and horse farms environment represent a highly uniform plasmid pattern. PMID:27074033

  7. Identification of a Novel Self-Sufficient Styrene Monooxygenase from Rhodococcus opacus 1CP▿ †

    PubMed Central

    Tischler, Dirk; Eulberg, Dirk; Lakner, Silvia; Kaschabek, Stefan R.; van Berkel, Willem J. H.; Schlömann, Michael

    2009-01-01

    Sequence analysis of a 9-kb genomic fragment of the actinobacterium Rhodococcus opacus 1CP led to identification of an open reading frame encoding a novel fusion protein, StyA2B, with a putative function in styrene metabolism via styrene oxide and phenylacetic acid. Gene cluster analysis indicated that the highly related fusion proteins of Nocardia farcinica IFM10152 and Arthrobacter aurescens TC1 are involved in a similar physiological process. Whereas 413 amino acids of the N terminus of StyA2B are highly similar to those of the oxygenases of two-component styrene monooxygenases (SMOs) from pseudomonads, the residual 160 amino acids of the C terminus show significant homology to the flavin reductases of these systems. Cloning and functional expression of His10-StyA2B revealed for the first time that the fusion protein does in fact catalyze two separate reactions. Strictly NADH-dependent reduction of flavins and highly enantioselective oxygenation of styrene to (S)-styrene oxide were shown. Inhibition studies and photometric analysis of recombinant StyA2B indicated the absence of tightly bound heme and flavin cofactors in this self-sufficient monooxygenase. StyA2B oxygenates a spectrum of aromatic compounds similar to those of two-component SMOs. However, the specific activities of the flavin-reducing and styrene-oxidizing functions of StyA2B are one to two orders of magnitude lower than those of StyA/StyB from Pseudomonas sp. strain VLB120. PMID:19482928

  8. Methylated Cytokinins from the Phytopathogen Rhodococcus fascians Mimic Plant Hormone Activity1[OPEN

    PubMed Central

    Radhika, Venkatesan; Ueda, Nanae; Tsuboi, Yuuri; Kojima, Mikiko; Kikuchi, Jun; Kudo, Takuji; Sakakibara, Hitoshi

    2015-01-01

    Cytokinins (CKs), a class of phytohormones that regulate plant growth and development, are also synthesized by some phytopathogens to disrupt the hormonal balance and to facilitate niche establishment in their hosts. Rhodococcus fascians harbors the fasciation (fas) locus, an operon encoding several genes homologous to CK biosynthesis and metabolism. This pathogen causes unique leafy gall symptoms reminiscent of CK overproduction; however, bacterial CKs have not been clearly correlated with the severe symptoms, and no virulence-associated unique CKs or analogs have been identified. Here, we report the identification of monomethylated N6-(∆2-isopentenyl)adenine and dimethylated N6-(∆2-isopentenyl)adenine (collectively, methylated cytokinins [MeCKs]) from R. fascians. MeCKs were recognized by a CK receptor and up-regulated type-A ARABIDOPSIS THALIANA RESPONSE REGULATOR genes. Treatment with MeCKs inhibited root growth, a hallmark of CK action, whereas the receptor mutant was insensitive. MeCKs were retained longer in planta than canonical CKs and were poor substrates for a CK oxidase/dehydrogenase, suggesting enhanced biological stability. MeCKs were synthesized by S-adenosyl methionine-dependent methyltransferases (MT1 and MT2) that are present upstream of the fas genes. The best substrate for methylation was isopentenyl diphosphate. MT1 and MT2 catalyzed distinct methylation reactions; only the MT2 product was used by FAS4 to synthesize monomethylated N6-(∆2-isopentenyl)adenine. The MT1 product was dimethylated by MT2 and used as a substrate by FAS4 to produce dimethylated N6-(∆2-isopentenyl)adenine. Chemically synthesized MeCKs were comparable in activity. Our results strongly suggest that MeCKs function as CK mimics and play a role in this plant-pathogen interaction. PMID:26251309

  9. Cloning, purification and characterization of two components of phenol hydroxylase from Rhodococcus erythropolis UPV-1.

    PubMed

    Saa, Laura; Jaureguibeitia, Arrate; Largo, Eneko; Llama, María J; Serra, Juan L

    2010-03-01

    Phenol hydroxylase that catalyzes the conversion of phenol to catechol in Rhodococcus erythropolis UPV-1 was identified as a two-component flavin-dependent monooxygenase. The two proteins are encoded by the genes pheA1 and pheA2, located very closely in the genome. The sequenced pheA1 gene was composed of 1,629 bp encoding a protein of 542 amino acids, whereas the pheA2 gene consisted of 570 bp encoding a protein of 189 amino acids. The deduced amino acid sequences of both genes showed high homology with several two-component aromatic hydroxylases. The genes were cloned separately in cells of Escherichia coli M15 as hexahistidine-tagged proteins, and the recombinant proteins His(6)PheA1 and His(6)PheA2 were purified and its catalytic activity characterized. His(6)PheA1 exists as a homotetramer of four identical subunits of 62 kDa that has no phenol hydroxylase activity on its own. His(6)PheA2 is a homodimeric flavin reductase, consisting of two identical subunits of 22 kDa, that uses NAD(P)H in order to reduce flavin adenine dinucleotide (FAD), according to a random sequential kinetic mechanism. The reductase activity was strongly inhibited by thiol-blocking reagents. The hydroxylation of phenol in vitro requires the presence of both His(6)PheA1 and His(6)PheA2 components, in addition to NADH and FAD, but the physical interaction between the proteins is not necessary for the reaction. PMID:19787347

  10. Improvement of Biodesulfurization Rate of Alginate Immobilized Rhodococcus erythropolis R1

    PubMed Central

    Derikvand, Peyman; Etemadifar, Zahra

    2014-01-01

    Background: Sulfur oxides released from the burning of oil causes severe environmental pollution. The sulfur can be removed via the 4S pathway in biodesulfurization (BDS). Immobilization approaches have been developed to prevent cell contamination of oil during the BDS process. Objectives: The encapsulation of Rhodococcus erythropolis R1 in calcium alginate beads was studied in order to enhance conversion of dibenzothiophene (DBT) to 2-hydroxy biphenyl (2-HBP) as the final product. Also the effect of different factors on the BDS process was investigated. Materials and Methods: Calcium alginate capsules were prepared using peristaltic pumps with different needle sizes to control the beads sizes. Scanning electron microscopy and flow cytometry methods were used to study the distribution and viability of encapsulated cells, respectively. Two non-ionic surfactants and also nano Ƴ-Al2O3were used with the ratio of 0.5% (v/v) and 1:5 (v/v) respectively to investigate their BDS efficiency. In addition, the effect of different bead sizes and different concentrations of sodium alginate in BDS activity was studied. Results: The 2% (w/v) sodium alginate beads with 1.5mm size were found to be the optimum for beads stability and efficient 2-HBP production. The viability of encapsulated cells decreased by 12% after 20 h of desulfurization, compared to free cells. Adding the non-ionic surfactants markedly enhanced the rate of BDS, because of increasing mass transfer of DBT to the gel matrix. In addition, Span 80 was more effective than Tween 80. The nanoƳ-Al2O3 particles could increase BDS rate by up to two-folds greater than that of the control beads. Conclusions: The nano Ƴ-Al2O3 can improve the immobilized biocatalyst for excellent efficiency of DBT desulfurization. Also the BDS activity can be enhanced by setting the other explained factors at optimum levels. PMID:25147685

  11. Rhodococcus erythropolis BG43 Genes Mediating Pseudomonas aeruginosa Quinolone Signal Degradation and Virulence Factor Attenuation

    PubMed Central

    Müller, Christine; Birmes, Franziska S.; Rückert, Christian; Kalinowski, Jörn

    2015-01-01

    Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43. Transcription of all genes was upregulated by PQS, suggesting that both gene clusters code for alkylquinolone-specific catabolic enzymes. An aqdR gene encoding a putative transcriptional regulator, which was also inducible by PQS, is located adjacent to the aqdA2B2C2 cluster. Expression of aqdA2B2C2 in Escherichia coli conferred the ability to degrade HHQ and PQS to anthranilic acid; however, for E. coli transformed with aqdA1B1C1, only PQS degradation was observed. Purification of the recombinant AqdC1 protein verified that it catalyzes the cleavage of PQS to form N-octanoylanthranilic acid and carbon monoxide and revealed apparent Km and kcat values for PQS of ∼27 μM and 21 s−1, respectively. Heterologous expression of the PQS dioxygenase gene aqdC1 or aqdC2 in P. aeruginosa PAO1 quenched the production of the virulence factors pyocyanin and rhamnolipid and reduced the synthesis of the siderophore pyoverdine. Thus, the toolbox of quorum-quenching enzymes is expanded by new PQS dioxygenases. PMID:26319870

  12. Methylated Cytokinins from the Phytopathogen Rhodococcus fascians Mimic Plant Hormone Activity.

    PubMed

    Radhika, Venkatesan; Ueda, Nanae; Tsuboi, Yuuri; Kojima, Mikiko; Kikuchi, Jun; Kudo, Takuji; Sakakibara, Hitoshi

    2015-10-01

    Cytokinins (CKs), a class of phytohormones that regulate plant growth and development, are also synthesized by some phytopathogens to disrupt the hormonal balance and to facilitate niche establishment in their hosts. Rhodococcus fascians harbors the fasciation (fas) locus, an operon encoding several genes homologous to CK biosynthesis and metabolism. This pathogen causes unique leafy gall symptoms reminiscent of CK overproduction; however, bacterial CKs have not been clearly correlated with the severe symptoms, and no virulence-associated unique CKs or analogs have been identified. Here, we report the identification of monomethylated N(6)-(∆(2)-isopentenyl)adenine and dimethylated N(6)-(∆(2)-isopentenyl)adenine (collectively, methylated cytokinins [MeCKs]) from R. fascians. MeCKs were recognized by a CK receptor and up-regulated type-A ARABIDOPSIS THALIANA RESPONSE REGULATOR genes. Treatment with MeCKs inhibited root growth, a hallmark of CK action, whereas the receptor mutant was insensitive. MeCKs were retained longer in planta than canonical CKs and were poor substrates for a CK oxidase/dehydrogenase, suggesting enhanced biological stability. MeCKs were synthesized by S-adenosyl methionine-dependent methyltransferases (MT1 and MT2) that are present upstream of the fas genes. The best substrate for methylation was isopentenyl diphosphate. MT1 and MT2 catalyzed distinct methylation reactions; only the MT2 product was used by FAS4 to synthesize monomethylated N(6)-(∆(2)-isopentenyl)adenine. The MT1 product was dimethylated by MT2 and used as a substrate by FAS4 to produce dimethylated N(6)-(∆(2)-isopentenyl)adenine. Chemically synthesized MeCKs were comparable in activity. Our results strongly suggest that MeCKs function as CK mimics and play a role in this plant-pathogen interaction. PMID:26251309

  13. Isolation and Characterization of Carbendazim-degrading Rhodococcus erythropolis djl-11

    PubMed Central

    Harvey, Paul R.; Li, Hongmei; Ren, Yan; Li, Jishun; Wang, Jianing; Yang, Hetong

    2013-01-01

    Carbendazim (methyl 1H-benzimidazol-2-yl carbamate) is one of the most widely used fungicides in agriculture worldwide, but has been reported to have adverse effects on animal health and ecosystem function. A highly efficient carbendazim-degrading bacterium (strain dj1-11) was isolated from carbendazim-contaminated soil samples via enrichment culture. Strain dj1-11 was identified as Rhodococcus erythropolis based on morphological, physiological and biochemical characters, including sequence analysis of the 16S rRNA gene. In vitro degradation of carbendazim (1000 mg·L−1) by dj1-11 in minimal salts medium (MSM) was highly efficient, and with an average degradation rate of 333.33 mg·L−1·d−1 at 28°C. The optimal temperature range for carbendazim degradation by dj1-11 in MSM was 25–30°C. Whilst strain dj1-11 was capable of metabolizing cabendazim as the sole source of carbon and nitrogen, degradation was significantly (P<0.05) increased by addition of 12.5 mM NH4NO3. Changes in MSM pH (4–9), substitution of NH4NO3 with organic substrates as N and C sources or replacing Mg2+ with Mn2+, Zn2+ or Fe2+ did not significantly affect carbendazim degradation by dj1-11. During the degradation process, liquid chromatography-mass spectrometry (LC-MS) detected the metabolites 2-aminobenzimidazole and 2-hydroxybenzimidazole. A putative carbendazim-hydrolyzing esterase gene was cloned from chromosomal DNA of djl-11 and showed 99% sequence homology to the mheI carbendazim-hydrolyzing esterase gene from Nocardioides sp. SG-4G. PMID:24098350

  14. Identification of Genomic Loci Associated with Rhodococcus equi Susceptibility in Foals

    PubMed Central

    McQueen, Cole M.; Doan, Ryan; Dindot, Scott V.; Bourquin, Jessica R.; Zlatev, Zlatomir Z.; Chaffin, M. Keith; Blodgett, Glenn P.; Ivanov, Ivan; Cohen, Noah D.

    2014-01-01

    Pneumonia caused by Rhodococcus equi is a common cause of disease and death in foals. Although agent and environmental factors contribute to the incidence of this disease, the genetic factors influencing the clinical outcomes of R. equi pneumonia are ill-defined. Here, we performed independent single nucleotide polymorphism (SNP)- and copy number variant (CNV)-based genome-wide association studies to identify genomic loci associated with R. equi pneumonia in foals. Foals at a large Quarter Horse breeding farm were categorized into 3 groups: 1) foals with R. equi pneumonia (clinical group [N = 43]); 2) foals with ultrasonographic evidence of pulmonary lesions that never developed clinical signs of pneumonia (subclinical group [N = 156]); and, 3) foals without clinical signs or ultrasonographic evidence of pneumonia (unaffected group [N = 49]). From each group, 24 foals were randomly selected and used for independent SNP- and CNV-based genome-wide association studies (GWAS). The SNP-based GWAS identified a region on chromosome 26 that had moderate evidence of association with R. equi pneumonia when comparing clinical and subclinical foals. A joint analysis including all study foals revealed a 3- to 4-fold increase in odds of disease for a homozygous SNP within the associated region when comparing the clinical group with either of the other 2 groups of foals or their combination. The region contains the transient receptor potential cation channel, subfamily M, member 2 (TRPM2) gene, which is involved in neutrophil function. No associations were identified in the CNV-based GWAS. Collectively, these data identify a region on chromosome 26 associated with R. equi pneumonia in foals, providing evidence that genetic factors may indeed contribute to this important disease of foals. PMID:24892408

  15. A Case of Recurrent Meningitis Caused by Rhodococcus species Successfully Treated with Antibiotic Treatment and Intrathecal Injection of Vancomycin through an Ommaya Reservoir

    PubMed Central

    Lee, Kanglok; Rho, Min; Yu, Miyeon; Kwak, Joohee; Hong, Seungpyo; Kim, Jisoong; Kim, Yeonjae

    2015-01-01

    Human infection by Rhodococcus species is rare and mostly limited to immunocompromised hosts such as patients infected with the human immunodeficiency virus (HIV) or organ transplant recipients. The most common strain is R. equi, and the most common clinical presentation is pulmonary infection, reported in 80% of Rhodococcus spp. infections. The central nervous system is an uncommon infection site. We report a case of a patient with pneumonia, brain abscess, and recurrent meningitis caused by Rhodococcus spp. He initially presented with pneumonia with necrosis, which progressed to brain abscess and recurrent meningitis. Rhodococcus spp. was identified from the cerobrospinal fluid (CSF) collected during his fourth hospital admission. Despite prolonged treatment with appropriate antibiotics, meningitis recurred three times. Finally, in order to administer antibiotics directly into the CSF and bypass the blood-brain barrier, an Ommaya reservoir was inserted for administration of 90 days of intrathecal vancomycin and amikacin in conjunction with intravenous and oral antibiotics; the patient was finally cured with this treatment regimen. PMID:26483993

  16. Draft Genome Sequence of a Versatile Hydrocarbon-Degrading Bacterium, Rhodococcus pyridinivorans Strain KG-16, Collected from Oil Fields in India

    PubMed Central

    Dawar, Chhavi; Phanindranath, R.; Mutnuri, Lakshmi; Dayal, Anurodh M.

    2016-01-01

    We describe here a 5.8-Mb draft genome sequence of Rhodococcus pyridinivorans strain KG-16, which was obtained from the soil samples collected from the oilfields of Krishna-Godavari basin in India. This genomic resource can provide insights into the pathways and mechanisms of hydrocarbon degradation and potentially aid in bioremediation applications. PMID:26868394

  17. Biotransformation of d-Limonene to (+) trans-Carveol by Toluene-Grown Rhodococcus opacus PWD4 Cells

    PubMed Central

    Duetz, Wouter A.; Fjällman, Ann H. M.; Ren, Shuyu; Jourdat, Catherine; Witholt, Bernard

    2001-01-01

    The toluene-degrading strain Rhodococcus opacus PWD4 was found to hydroxylate d-limonene exclusively in the 6-position, yielding enantiomerically pure (+) trans-carveol and traces of (+) carvone. This biotransformation was studied using cells cultivated in chemostat culture with toluene as a carbon and energy source. The maximal specific activity of (+) trans-carveol formation was 14.7 U (g of cells [dry weight])−1, and the final yield was 94 to 97%. Toluene was found to be a strong competitive inhibitor of the d-limonene conversion. Glucose-grown cells did not form any trans-carveol from d-limonene. These results suggest that one of the enzymes involved in toluene degradation is responsible for this allylic monohydroxylation. Another toluene degrader (Rhodococcus globerulus PWD8) had a lower specific activity but was found to oxidize most of the formed trans-carveol to (+) carvone, allowing for the biocatalytic production of this flavor compound. PMID:11375201

  18. Isolation and characterization of styrene metabolism genes from styrene-assimilating soil bacteria Rhodococcus sp. ST-5 and ST-10.

    PubMed

    Toda, Hiroshi; Itoh, Nobuya

    2012-01-01

    Styrene metabolism genes were isolated from styrene-assimilating bacteria Rhodococcus sp. ST-5 and ST-10. Strain ST-5 had a gene cluster containing four open reading frames which encoded styrene degradation enzymes. The genes showed high similarity to styABCD of Pseudomonas sp. Y2. On the other hand, strain ST-10 had only two genes which encoded styrene monooxygenase and flavin oxidoreductase (styAB). Escherichia coli transformants possessing the sty genes of strains ST-5 and ST-10 produced (S)-styrene oxide from styrene, indicating that these genes function as styrene degradation enzymes. Metabolite analysis by resting-cell reaction with gas chromatography-mass spectrometry revealed that strain ST-5 converts styrene to phenylacetaldehyde via styrene oxide by styrene oxide isomerase (styC) reaction. On the other hand, strain ST-10 lacked this enzyme, and thus accumulated styrene oxide as an intermediate. HPLC analysis showed that styrene oxide was spontaneously isomerized to phenylacetaldehyde by chemical reaction. The produced phenylacetaldehyde was converted to phenylacetic acid (PAA) in strain ST-10 as well as in strain ST-5. Furthermore, phenylacetic acid was converted to phenylacetyl-CoA by the catalysis of phenylacetate-CoA ligase in strains ST-5 and ST-10. This study proposes possible styrene metabolism pathways in Rhodococcus sp. strains ST-5 and ST-10. PMID:21996027

  19. Expression and characterization of styrene monooxygenases of Rhodococcus sp. ST-5 and ST-10 for synthesizing enantiopure (S)-epoxides.

    PubMed

    Toda, Hiroshi; Imae, Ryouta; Komio, Tomoko; Itoh, Nobuya

    2012-10-01

    Styrene monooxygenase (StyA, SMOA)- and flavin oxidoreductase (StyB, SMOB)-coding genes of styrene-assimilating bacteria Rhodococcus sp. ST-5 and ST-10 were successfully expressed in Escherichia coli. Determined amino acid sequences of StyAs and StyBs of ST-5 and ST-10 showed more similarity with those of Pseudomonas than with self-sufficient styrene monooxygenase (StyA2B) of Rhodococcus. Recombinant enzymes were purified from E. coli cells as functional proteins, and their properties were characterized in detail. StyBs (flavin oxidoreductase) of strains ST-5 and ST-10 have similar enzymatic properties to those of Pseudomonas, but StyB of strain ST-10 exhibited higher temperature stability than that of strain ST-5. StyAs of strains ST-5 and ST-10 catalyzed the epoxidation of vinyl side-chain of styrene and its derivatives and produced (S)-epoxides from styrene derivatives and showed high stereoselectivity. Both StyAs showed higher specific activity on halogenated styrene derivatives than on styrene itself. Additionally, the enzymes could catalyze the epoxidation of short-chain 1-alkenes to the corresponding (S)-epoxides. Aromatic compounds including styrene, 3-chlorostyrene, styrene oxide, and benzene exhibited marked inhibition of SMO reaction, although linear 1-alkene showed no inhibition of SMO activity at any concentration. PMID:22258641

  20. Identification of Rhodococcus equi lipids recognized by host cytotoxic T lymphocytes

    PubMed Central

    Harris, Seth P.; Fujiwara, Nagatoshi; Mealey, Robert H.; Alperin, Debra C.; Naka, Takashi; Goda, Reina

    2010-01-01

    Immune adult horses have CD8+ cytotoxic T lymphocytes (CTLs) that recognize and lyse Rhodococcus equi-infected cells in an equine lymphocyte alloantigen (ELA)-A [classical major histocompatibility complex (MHC) class I]-unrestricted fashion. As protein antigens are MHC class I-restricted, the lack of restriction suggests that the bacterial antigens being recognized by the host are not proteins. The goals of this study were to test the hypothesis that these CTLs recognize unique R. equi cell-wall lipids related to mycobacterial lipids. Initial experiments showed that treatment of soluble R. equi antigen with broadly reactive proteases did not significantly diminish the ability of the antigen to stimulate R. equi-specific CTLs. R. equi-specific CTLs were also shown to lyse target cells (equine macrophages) pulsed with an R. equi lipid extract. Analysis of the R. equi lipid by TLC and MS (MALDI-TOF and ES) indicated that the extracted antigen consisted of three primary fractions: trehalose monomycolate (TMM), trehalose dimycolate (TDM) and cardiolipin (CL). ELA-A-mismatched cells pulsed with purified TMM and CL, but not the TDM fraction, were recognized and lysed by R. equi-specific CTLs. Because of their role in immune clearance and pathogenesis, transcription of the cytokines gamma interferon (IFN-γ) and interleukin-4 (IL-4) was also measured in response to R. equi lipids by using real-time PCR; elevated IFN-γ, but not IL-4, was associated with host clearance of the bacteria. The whole-cell R. equi lipid and all three R. equi lipid fractions resulted in marked increases in IFN-γ transcription, but no increase in IL-4 transcription. Together, these data support the hypothesis that immune recognition of unique lipids in the bacterial cell wall is an important component of the protective immune response to R. equi. The results also identify potential lipid antigens not previously shown to be recognized by CTLs in an important, naturally occurring actinomycete

  1. Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production

    PubMed Central

    2013-01-01

    Background There has been a great deal of interest in fuel productions from lignocellulosic biomass to minimize the conflict between food and fuel use. The bioconversion of xylose, which is the second most abundant sugar present after glucose in lignocellulosic biomass, is important for the development of cost effective bioprocesses to fuels. Rhodococcus opacus PD630, an oleaginous bacterium, accumulates large amounts of triacylglycerols (TAGs), which can be processed into advanced liquid fuels. However, R. opacus PD630 does not metabolize xylose. Results We generated DNA libraries from a Streptomyces bacterium capable of utilizing xylose and introduced them into R. opacus PD630. Xsp8, one of the engineered strains, was capable of growing on up to 180 g L-1 of xylose. Xsp8 grown in batch-cultures derived from unbleached kraft hardwood pulp hydrolysate containing 70 g L-1 total sugars was able to completely and simultaneously utilize xylose and glucose present in the lignocellulosic feedstock, and yielded 11.0 g L-1 of TAGs as fatty acids, corresponding to 45.8% of the cell dry weight. The yield of total fatty acids per gram of sugars consumed was 0.178 g, which consisted primarily of palmitic acid and oleic acid. The engineered strain Xsp8 was introduced with two heterologous genes from Streptomyces: xylA, encoding xylose isomerase, and xylB, encoding xylulokinase. We further demonstrated that in addition to the introduction and the concomitant expression of heterologous xylA and xylB genes, there is another molecular target in the R. opacus genome which fully enables the functionality of xylA and xylB genes to generate the robust xylose-fermenting strain capable of efficiently producing TAGs at high xylose concentrations. Conclusion We successfully engineered a R. opacus strain that is capable of completely utilizing high concentrations of xylose or mixed xylose/glucose simultaneously, and substantiated its suitability for TAG production. This study demonstrates

  2. Study of tribological behavior of Cu-MoS2 and Ag-MoS2 nanocomposite lubricants.

    PubMed

    An, V; Anisimov, E; Druzyanova, V; Burtsev, N; Shulepov, I; Khaskelberg, M

    2016-01-01

    Tribological behavior of Cu-MoS2 and Ag-MoS2 nanocomposite lubricant was studied. Cu nanoparticles produced by electrical explosion of copper wires and Ag nanoparticles prepared by electrospark erosion were employed as metal cladding modifiers of MoS2 nanolamellar particles. The tribological tests showed Cu-MoS2 and Ag-MoS2 nanocomposite lubricants changed the friction coefficient of the initial grease and essentially improved its wear resistance. PMID:26837277

  3. pureS2HAT: S 2HAT-based Pure E/B Harmonic Transforms

    NASA Astrophysics Data System (ADS)

    Grain, J.; Stompor, R.; Tristram, M.

    2011-10-01

    The pS2HAT routines allow efficient, parallel calculation of the so-called 'pure' polarized multipoles. The computed multipole coefficients are equal to the standard pseudo-multipoles calculated for the apodized sky maps of the Stokes parameters Q and U subsequently corrected by so-called counterterms. If the applied apodizations fullfill certain boundary conditions, these multipoles correspond to the pure multipoles. Pure multipoles of one type, i.e., either E or B, are ensured not to contain contributions from the other one, at least to within numerical artifacts. They can be therefore further used in the estimation of the sky power spectra via the pseudo power spectrum technique, which has to however correctly account for the applied apodization on the one hand, and the presence of the counterterms, on the other. In addition, the package contains the routines permitting calculation of the spin-weighted apodizations, given an input scalar, i.e., spin-0 window. The former are needed to compute the counterterms. It also provides routines for maps and window manipulations. The routines are written in C and based on the S2HAT library, which is used to perform all required spherical harmonic transforms as well as all inter-processor communication. They are therefore parallelized using MPI and follow the distributed-memory computational model. The data distribution patterns, pixelization choices, conventions etc are all as those assumed/allowed by the S2HAT library.

  4. Transfer of a CD4+ Th1 cell line to nude mice effects clearance of Rhodococcus equi from the lung.

    PubMed Central

    Kanaly, S T; Hines, S A; Palmer, G H

    1996-01-01

    Rhodococcus equi, and intracellular respiratory pathogen, causes sever e granulomatous pneumonia in humans with AIDS and in young horses. Pulmonary clearance of R. equi requires functional CD4+ T cells and gamma interferon (IFN-gamma) expression from bronchial lymph node cells. The purpose of this study was to investigate whether R. equi-specific CD4+ Th1 cells could effect clearance of R. equi from the lung. Adoptive transfer of a clearance of R. equi from the lungs. In contrast, mice transfused with a R. equi-specific CD4+ Th2 cell line expressed interleukin-4 but not IFN-gamma mRNA, failed to clear pulmonary infection, and developed granulomas in the lung. Control mice, which did not receive cells, did not produce IFN-gamma or interleukin-4 and developed small pulmonary granulomas. These results clearly show that a Th1 response is sufficient to effect pulmonary clearance of R. equi. PMID:8606068

  5. Identification of Atypical Rhodococcus-Like Clinical Isolates as Dietzia spp. by 16S rRNA Gene Sequencing▿

    PubMed Central

    Pilares, Lilian; Agüero, Jesús; Vázquez-Boland, José A.; Martínez-Martínez, Luis; Navas, Jesús

    2010-01-01

    Rhodococcus equi and Dietzia spp. are closely related actinomycetes that show similar phenotypic properties. In humans, R. equi is an opportunistic pathogen associated with severe immunodeficiency. Dietzia spp. are environmental bacteria that have been isolated recently from clinical material and are presumptively associated with human infections. During the last 5 years, 15 bacterial isolates from human clinical samples collected at the Hospital Marqués de Valdecilla, Santander, Spain, were identified as R. equi by the API Coryne test. 16S rRNA gene sequencing confirmed seven isolates to be true R. equi strains, whereas the other eight were identified as members of the genus Dietzia, including Dietzia maris (four isolates), Dietzia natronolimnaea (two isolates), and Dietzia timorensis and Dietzia sp. (one isolate each). The eight Dietzia isolates were highly sensitive to 12 antimicrobial compounds. PMID:20220156

  6. In vitro susceptibilities of Rhodococcus equi and other common equine pathogens to azithromycin, clarithromycin, and 20 other antimicrobials.

    PubMed

    Jacks, Stephanie S; Giguère, Steeve; Nguyen, An

    2003-05-01

    The objective of this study was to determine in vitro activities of azithromycin (AZM), clarithromycin (CLR), and 20 other antimicrobial agents against Rhodococcus equi and other common equine bacterial pathogens. A total of 201 bacterial isolates from various equine clinical samples were examined. CLR was more active than AZM against R. equi, with MICs at which 90% of the isolates were inhibited of 0.12 and 1.0 micro g/ml, respectively. Other antimicrobial agents highly active against at least 90% of R. equi isolates in vitro included rifampin, gentamicin, and imipenem. Both AZM and CLR showed good activity against beta-hemolytic streptococci and Staphylococcus spp. AZM was more active than other macrolides against Pasteurella spp. and Salmonella enterica. PMID:12709351

  7. An Invertron-Like Linear Plasmid Mediates Intracellular Survival and Virulence in Bovine Isolates of Rhodococcus equi

    PubMed Central

    Valero-Rello, Ana; Hapeshi, Alexia; Anastasi, Elisa; Alvarez, Sonsiray; Scortti, Mariela; Meijer, Wim G.; MacArthur, Iain

    2015-01-01

    We report a novel host-associated virulence plasmid in Rhodococcus equi, pVAPN, carried by bovine isolates of this facultative intracellular pathogenic actinomycete. Surprisingly, pVAPN is a 120-kb invertron-like linear replicon unrelated to the circular virulence plasmids associated with equine (pVAPA) and porcine (pVAPB variant) R. equi isolates. pVAPN is similar to the linear plasmid pNSL1 from Rhodococcus sp. NS1 and harbors six new vap multigene family members (vapN to vapS) in a vap pathogenicity locus presumably acquired via en bloc mobilization from a direct predecessor of equine pVAPA. Loss of pVAPN rendered R. equi avirulent in macrophages and mice. Mating experiments using an in vivo transconjugant selection strategy demonstrated that pVAPN transfer is sufficient to confer virulence to a plasmid-cured R. equi recipient. Phylogenetic analyses assigned the vap multigene family complement from pVAPN, pVAPA, and pVAPB to seven monophyletic clades, each containing plasmid type-specific allelic variants of a precursor vap gene carried by the nearest vap island ancestor. Deletion of vapN, the predicted “bovine-type” allelic counterpart of vapA, essential for virulence in pVAPA, abrogated pVAPN-mediated intramacrophage proliferation and virulence in mice. Our findings support a model in which R. equi virulence is conferred by host-adapted plasmids. Their central role is mediating intracellular proliferation in macrophages, promoted by a key vap determinant present in the common ancestor of the plasmid-specific vap islands, with host tropism as a secondary trait selected during coevolution with specific animal species. PMID:25895973

  8. The Rhodococcus opacus TadD protein mediates triacylglycerol metabolism by regulating intracellular NAD(P)H pools

    PubMed Central

    2013-01-01

    Background The Gram-positive actinomycete Rhodococcus opacus is widely studied for its innate ability to store large amounts of carbon in the form of triacylglycerol (TAG). Several groups have demonstrated that R. opacus PD630 is capable of storing anywhere from 50 to 76% of its cell dry weight as TAG. While numerous studies have focused on phenomenological aspects of this process, few have sought to identify the underlying molecular and biochemical mechanisms responsible for the biosynthesis and storage of this molecule. Results Herein we further our previous efforts to illuminate the black box that is lipid metabolism in actinomycetes using a genetic approach. Utilizing a simple, colorimetric genetic screen, we have identified a gene, referred to herein as tadD (triacylglycerol accumulation deficient), which is critical for TAG biosynthesis in R. opacus PD630. Furthermore, we demonstrate that the purified protein product of this gene is capable of oxidizing glyceraldehyde-3-phosphate, while simultaneously reducing NAD(P)+ to NAD(P)H. Supporting this biochemical data, we observed that the ratio of NAD(P)H to NAD(P)+ is elevated in wildtype cultures grown under lipid production conditions as compared to cultures grown under vegetative growth conditions, while the mutant strain demonstrated no change irrespective of growth conditions. Finally, we demonstrate that over-expressing a putative phosphorylative glyceraldehyde-3-phosphate dehydrogenase leads to decreased TAG production during growth on TAG accumulation conditions. Conclusion Taken together, the data support the identification of a key metabolic branch point separating vegetative growth and lipid accumulation lifestyles in Rhodococcus. PMID:24209886

  9. Biodegradation of chlorimuron-ethyl and the associated degradation pathway by Rhodococcus sp. D310-1.

    PubMed

    Li, Chunyan; Zang, Hailian; Yu, Qi; Lv, Tongyang; Cheng, Yi; Cheng, Xiaosong; Liu, Keran; Liu, Wanjun; Xu, Pianpian; Lan, Chuanzeng

    2016-05-01

    Chlorimuron-ethyl is a typical long-term residual sulfonylurea herbicide, and strategies for its removal have attracted increasing attention. Microbial degradation is considered the most acceptable dissipation method. In this study, we optimized the cultivation conditions (substrate concentration, pH, inoculum concentration, and temperature) of the chlorimuron-ethyl-degrading bacterium Rhodococcus sp. D310-1 using response surface methodology (RSM) to improve the biodegradation efficiency. A maximum biodegradation rate of 88.95 % was obtained. The Andrews model was used to describe the changes in the specific degradation rate as the substrate concentration increased. Chlorimuron-ethyl could be transformed with a maximum specific degradation rate (q max), half-saturation constant (K S), and inhibition constant (K i) of 0.4327 day(-1), 63.50045 mg L(-1), and 156.76666 mg L(-1), respectively. Eight biodegradation products (2-amino-4-chloro-6-methoxypyrimidine, ethyl 2-sulfamoyl benzoate, 2-sulfamoyl benzoic acid, o-benzoic sulfimide, 2-[[(4-chloro-6-methoxy-2-pyrimidinyl) carbamoyl] sulfamoyl] benzoic acid, ethyl 2-carbonyl sulfamoyl benzoate, ethyl 2-benzenesulfonyl isocyanate benzoate, and N,N-2(ethyl formate)benzene sulfonylurea) were identified, and three possible degradation pathways were proposed based on the results of high performance liquid chromatography HPLC, liquid chromatography tandem mass spectroscopy (LC-MS/MS), and Fourier transform infrared spectroscopy (FTIR) analyses and the relevant literature. This systematic study is the first to examine the chlorimuron-ethyl degradation pathways of the genus Rhodococcus. PMID:26810662

  10. Cloning and Characterization of Benzoate Catabolic Genes in the Gram-Positive Polychlorinated Biphenyl Degrader Rhodococcus sp. Strain RHA1

    PubMed Central

    Kitagawa, Wataru; Miyauchi, Keisuke; Masai, Eiji; Fukuda, Masao

    2001-01-01

    Benzoate catabolism is thought to play a key role in aerobic bacterial degradation of biphenyl and polychlorinated biphenyls (PCBs). Benzoate catabolic genes were cloned from a PCB degrader, Rhodococcus sp. strain RHA1, by using PCR amplification and temporal temperature gradient electrophoresis separation. A nucleotide sequence determination revealed that the deduced amino acid sequences encoded by the RHA1 benzoate catabolic genes, benABCDK, exhibit 33 to 65% identity with those of Acinetobacter sp. strain ADP1. The gene organization of the RHA1 benABCDK genes differs from that of ADP1. The RHA1 benABCDK region was localized on the chromosome, in contrast to the biphenyl catabolic genes, which are located on linear plasmids. Escherichia coli cells containing RHA1 benABCD transformed benzoate to catechol via 2-hydro-1,2-dihydroxybenzoate. They transformed neither 2- nor 4-chlorobenzoates but did transform 3-chlorobenzoate. The RHA1 benA gene was inactivated by insertion of a thiostrepton resistance gene. The resultant mutant strain, RBD169, neither grew on benzoate nor transformed benzoate, and it did not transform 3-chlorobenzoate. It did, however, exhibit diminished growth on biphenyl and growth repression in the presence of a high concentration of biphenyl (13 mM). These results indicate that the cloned benABCD genes could play an essential role not only in benzoate catabolism but also in biphenyl catabolism in RHA1. Six rhodococcal benzoate degraders were found to have homologs of RHA1 benABC. In contrast, two rhodococcal strains that cannot transform benzoate were found not to have RHA1 benABC homologs, suggesting that many Rhodococcus strains contain benzoate catabolic genes similar to RHA1 benABC. PMID:11673430

  11. The modulation of Schottky barriers of metal-MoS2 contacts via BN-MoS2 heterostructures.

    PubMed

    Su, Jie; Feng, Liping; Zhang, Yan; Liu, Zhengtang

    2016-06-22

    Using first-principles calculations within density functional theory, we systematically studied the effect of BN-MoS2 heterostructure on the Schottky barriers of metal-MoS2 contacts. Two types of FETs are designed according to the area of the BN-MoS2 heterostructure. Results show that the vertical and lateral Schottky barriers in all the studied contacts, irrespective of the work function of the metal, are significantly reduced or even vanish when the BN-MoS2 heterostructure substitutes the monolayer MoS2. Only the n-type lateral Schottky barrier of Au/BN-MoS2 contact relates to the area of the BN-MoS2 heterostructure. Notably, the Pt-MoS2 contact with n-type character is transformed into a p-type contact upon substituting the monolayer MoS2 by a BN-MoS2 heterostructure. These changes of the contact natures are ascribed to the variation of Fermi level pinning, work function and charge distribution. Analysis demonstrates that the Fermi level pinning effects are significantly weakened for metal/BN-MoS2 contacts because no gap states dominated by MoS2 are formed, in contrast to those of metal-MoS2 contacts. Although additional BN layers reduce the interlayer interaction and the work function of the metal, the Schottky barriers of metal/BN-MoS2 contacts still do not obey the Schottky-Mott rule. Moreover, different from metal-MoS2 contacts, the charges transfer from electrodes to the monolayer MoS2, resulting in an increment of the work function of these metals in metal/BN-MoS2 contacts. These findings may prove to be instrumental in the future design of new MoS2-based FETs with ohmic contact or p-type character. PMID:27282959

  12. Biodegradation of variable-chain-length n-alkanes in Rhodococcus opacus R7 and the involvement of an alkane hydroxylase system in the metabolism

    PubMed Central

    2014-01-01

    Rhodococcus opacus R7 is a Gram-positive bacterium isolated from a polycyclic aromatic hydrocarbon contaminated soil for its versatile metabolism; indeed the strain is able to grow on naphthalene, o-xylene, and several long- and medium-chain n-alkanes. In this work we determined the degradation of n-alkanes in Rhodococcus opacus R7 in presence of n-dodecane (C12), n-hexadecane (C16), n-eicosane (C20), n-tetracosane (C24) and the metabolic pathway in presence of C12. The consumption rate of C12 was 88%, of C16 was 69%, of C20 was 51% and of C24 it was 78%. The decrement of the degradation rate seems to be correlated to the length of the aliphatic chain of these hydrocarbons. On the basis of the metabolic intermediates determined by the R7 growth on C12, our data indicated that R. opacus R7 metabolizes medium-chain n-alkanes by the primary alcohol formation. This represents a difference in comparison with other Rhodococcus strains, in which a mixture of the two alcohols was observed. By GC-MSD analysis we also identified the monocarboxylic acid, confirming the terminal oxidation. Moreover, the alkB gene cluster from R. opacus R7 was isolated and its involvement in the n-alkane degradation system was investigated by the cloning of this genomic region into a shuttle-vector E. coli-Rhodococcus to evaluate the alkane hydroxylase activity. Our results showed an increased biodegradation of C12 in the recombinant strain R. erythropolis AP (pTipQT1-alkR7) in comparison with the wild type strain R. erythropolis AP. These data supported the involvement of the alkB gene cluster in the n-alkane degradation in the R7 strain. PMID:25401074

  13. Draft Genome Sequence of the Endophytic Strain Rhodococcus kyotonensis KB10, a Potential Biodegrading and Antibacterial Bacterium Isolated from Arabidopsis thaliana

    PubMed Central

    Hong, Chi Eun; Jo, Sung Hee

    2016-01-01

    Rhodococcus kyotonensis KB10 is an endophytic bacterium isolated from Arabidopsis thaliana. The organism showed mild antibacterial activity against the phytopathogen Pseudomonas syringae pv. tomato DC3000. This study reports the genome sequence of R. kyotonensis KB10. This bacterium contains an ectoine biosynthesis gene cluster and has the potential to degrade nitroaromatic compounds. The identified bacterium may be a suitable biocontrol agent and degrader of environmental pollutants. PMID:27389269

  14. Draft Genome Sequence of the Endophytic Strain Rhodococcus kyotonensis KB10, a Potential Biodegrading and Antibacterial Bacterium Isolated from Arabidopsis thaliana.

    PubMed

    Hong, Chi Eun; Jo, Sung Hee; Jeong, Haeyoung; Park, Jeong Mee

    2016-01-01

    Rhodococcus kyotonensis KB10 is an endophytic bacterium isolated from Arabidopsis thaliana The organism showed mild antibacterial activity against the phytopathogen Pseudomonas syringae pv. tomato DC3000. This study reports the genome sequence of R. kyotonensis KB10. This bacterium contains an ectoine biosynthesis gene cluster and has the potential to degrade nitroaromatic compounds. The identified bacterium may be a suitable biocontrol agent and degrader of environmental pollutants. PMID:27389269

  15. Identification of Clinically Relevant Corynebacterium spp., Arcanobacterium haemolyticum, and Rhodococcus equi by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Juiz, Pedro; Salas, Carlos; Almela, Manel; de la Fuente, Celia García; Zboromyrska, Yuliya; Navas, Jesús; Bosch, Jordi; Agüero, Jesús; de la Bellacasa, Jorge Puig; Martínez-Martínez, Luis

    2012-01-01

    The identification of 83 Corynebacterium, 13 Arcanobacterium haemolyticum, and 10 Rhodococcus equi strains by conventional methods (API Coryne complemented with 16S rRNA gene sequence analysis) was compared with matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry identification. The correlation between API and MALDI-TOF results was 89%. MALDI-TOF is a rapid and accurate system for identification of the above-mentioned microorganisms. PMID:22337985

  16. S -matrix algebra of the AdS2×S2 superstring

    NASA Astrophysics Data System (ADS)

    Hoare, Ben; Pittelli, Antonio; Torrielli, Alessandro

    2016-03-01

    In this paper, we find the Yangian algebra responsible for the integrability of the AdS2×S2×T6 superstring in the planar limit. We demonstrate the symmetry of the corresponding exact S matrix in the massive sector, including the presence of the secret symmetry. We give two alternative presentations of the Hopf algebra. The first takes the usual canonical form, which, as the relevant representations are long, leads to a Yangian representation that is not of evaluation type. After investigating the relationship between cocommutativity, evaluation representations and the shortening condition, we find an alternative realization of the Yangian whose representation is of the evaluation type. Finally, we explore two limits of the S matrix. The first is the classical r matrix, where we rediscover the need for a secret symmetry also in this context. The second is the simplifying zero-coupling limit. In this limit, taking the S matrix as a generating R matrix for the algebraic Bethe ansatz, we obtain an effective model of free fermions on a periodic spin-chain. This limit should provide hints to the one-loop anomalous dimension of the mysterious superconformal quantum mechanics dual to the superstring theory in this geometry.

  17. Characterization of the equine infectious anaemia virus S2 protein.

    PubMed

    Yoon, S; Kingsman, S M; Kingsman, A J; Wilson, S A; Mitrophanous, K A

    2000-09-01

    S2 is an accessory protein of equine infectious anaemia virus (EIAV), the function of which is unknown. In order to gain insight into the function of S2, the intracellular localization of the protein, its interaction with viral proteins and its incorporation into viral particles have been investigated. Immunolocalization of S2 revealed punctate staining in the cytoplasm and the S2 protein co-precipitated with the EIAV Gag precursor. Despite overexpression of S2 through the use of a codon-optimized sequence, there was no preferential association of S2 with EIAV particles. These data suggest that S2 may function to organize the Gag protein during particle assembly in the cytoplasm but that it is unlikely to be involved in the early stages of the virus life-cycle. PMID:10950976

  18. Supergravity background of λ-deformed model for AdS2 × S2 supercoset

    NASA Astrophysics Data System (ADS)

    Borsato, R.; Tseytlin, A. A.; Wulff, L.

    2016-04-01

    Starting with the F ˆ / G supercoset model corresponding to the AdSn ×Sn superstring one can define the λ-model of arxiv:arXiv:1409.1538 either as a deformation of the F ˆ / F ˆ gauged WZW model or as an integrable one-parameter generalisation of the non-abelian T-dual of the AdSn ×Sn superstring sigma model with respect to the whole supergroup F ˆ . Here we consider the case of n = 2 and find the explicit form of the 4d target space background for the λ-model for the PSU (1 , 1 | 2) / SO (1 , 1) × SO (2) supercoset. We show that this background represents a solution of type IIB 10d supergravity compactified on a 6-torus with only metric, dilaton Φ and the RR 5-form (represented by a 2-form F in 4d) being non-trivial. This implies that the λ-model is Weyl invariant at the quantum level and thus defines a consistent superstring sigma model. The supergravity solution we find is different from the one in arXiv:1410.1886 which should correspond to a version of the λ-model where only the bosonic subgroup of F ˆ is gauged. Still, the two solutions have equivalent scaling limit of arxiv:arXiv:1504.07213 leading to the isometric background for the metric and eΦ F which is related to the η-deformed AdS2 ×S2 sigma model of arXiv:1309.5850. Similar results are expected in the AdS3 ×S3 and AdS5 ×S5 cases.

  19. Exciton and Trion Dynamics in Bilayer MoS2.

    PubMed

    Pei, Jiajie; Yang, Jiong; Xu, Renjing; Zeng, Yong-Hui; Myint, Ye Win; Zhang, Shuang; Zheng, Jin-Cheng; Qin, Qinghua; Wang, Xibin; Jiang, Wugui; Lu, Yuerui

    2015-12-22

    The control of exciton and triondynamics in bilayer MoS2 is demonstrated, via the comodulations by both temperature and electric field. The calculations here show that the band structure of bilayer MoS2 changes from indirect at room temperature toward direct nature as temperature decreases, which enables the electrical tunability of the K-K direct PL transition in bilayer MoS2 at low temperature. PMID:26542884

  20. Rolling Up a Monolayer MoS2 Sheet.

    PubMed

    Meng, Jianling; Wang, Guole; Li, Xiaomin; Lu, Xiaobo; Zhang, Jing; Yu, Hua; Chen, Wei; Du, Luojun; Liao, Mengzhou; Zhao, Jing; Chen, Peng; Zhu, Jianqi; Bai, Xuedong; Shi, Dongxia; Zhang, Guangyu

    2016-07-01

    MoS2 nanoscrolls are formed by argon plasma treatment on monolayer MoS2 sheet. The nanoscale scroll formation is attributed to the partial removal of top sulfur layer in MoS2 during the argon plasma treatment process. This convenient, solvent-free, and high-yielding nanoscroll formation technique is also feasible for other 2D transition metal dichalcogenides. PMID:27322776

  1. Tuning the electronic properties of Ti-MoS2 contacts through introducing vacancies in monolayer MoS2.

    PubMed

    Feng, Li-ping; Su, Jie; Li, Da-peng; Liu, Zheng-tang

    2015-03-14

    The effect of vacancies in monolayer MoS2 on the electronic properties of a Ti-MoS2 top contact has been investigated using first-principles calculations. A Mo-vacancy is easier to form than a S-vacancy in a Ti-MoS2 top contact, especially under oxidation conditions. A Mo-vacancy eliminates the Schottky barrier of the Ti-MoS2 top contact, and a S-vacancy reduces the Schottky barrier from 0.28 to 0.15 eV. Mo-vacancies are beneficial for obtaining a high quality p-type Ti-MoS2 top contact, whereas S-vacancies are favorable to achieve a high quality n-type Ti-MoS2 top contact. Moreover, defective Ti-MoS2 top contacts have stronger dipole layers, a higher potential step and more transferred charges than a perfect ones. The electronic properties of Ti-MoS2 top contacts can be tuned by intrinsic vacancies in monolayer MoS2. Our findings provide important insights into the future design and fabrication of novel nanoelectronic devices with monolayer MoS2. PMID:25679945

  2. Bending response of single layer MoS2.

    PubMed

    Xiong, Si; Cao, Guoxin

    2016-03-11

    Using molecular mechanics (or dynamics) simulations, three different approaches, including the targeted molecular mechanics, four-point bending and nanotube methods, are employed to investigate the bending response of single layer MoS2 (SLMoS2), among which four-point bending is the most accurate approach to determine the bending stiffness according to the continuum theory. It is found that when the bending curvature radius is large enough (e.g. >4 nm), three approaches will give the same bending stiffness of SLMoS2 and the bending behavior is isotropic for SLMoS2, whereas the nanotube method with small tubes (e.g. <4 nm) cannot give the correct bending stiffness. Compared with the reported result from the MoS2 nanotube calculated by density functional theory, the revised Stillinger-Weber (SW) and reactive empirical bond-order (REBO) potentials can give the reasonable bending stiffness of SLMoS2 (8.7-13.4 eV) as well as the effective deformed conformation. In addition, since the Mo-S bond deformation of SLMoS2 under bending is similar to that under in-plane tension/compression, the continuum bending theory can quite accurately predict the bending stiffness of SLMoS2 if a reasonable thickness of SLMoS2 is given. For SLMoS2, the reasonable thickness should be larger than the distance between its two S atomic planes and lower than the distance between two Mo atomic planes of bulk MoS2 crystal, e.g. 0.375-0.445 nm. PMID:26861930

  3. Bending response of single layer MoS2

    NASA Astrophysics Data System (ADS)

    Xiong, Si; Cao, Guoxin

    2016-03-01

    Using molecular mechanics (or dynamics) simulations, three different approaches, including the targeted molecular mechanics, four-point bending and nanotube methods, are employed to investigate the bending response of single layer MoS2 (SLMoS2), among which four-point bending is the most accurate approach to determine the bending stiffness according to the continuum theory. It is found that when the bending curvature radius is large enough (e.g. >4 nm), three approaches will give the same bending stiffness of SLMoS2 and the bending behavior is isotropic for SLMoS2, whereas the nanotube method with small tubes (e.g. <4 nm) cannot give the correct bending stiffness. Compared with the reported result from the MoS2 nanotube calculated by density functional theory, the revised Stillinger-Weber (SW) and reactive empirical bond-order (REBO) potentials can give the reasonable bending stiffness of SLMoS2 (8.7-13.4 eV) as well as the effective deformed conformation. In addition, since the Mo-S bond deformation of SLMoS2 under bending is similar to that under in-plane tension/compression, the continuum bending theory can quite accurately predict the bending stiffness of SLMoS2 if a reasonable thickness of SLMoS2 is given. For SLMoS2, the reasonable thickness should be larger than the distance between its two S atomic planes and lower than the distance between two Mo atomic planes of bulk MoS2 crystal, e.g. 0.375-0.445 nm.

  4. Magnetoresistance in Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions.

    PubMed

    Zhang, Han; Ye, Meng; Wang, Yangyang; Quhe, Ruge; Pan, Yuanyuan; Guo, Ying; Song, Zhigang; Yang, Jinbo; Guo, Wanlin; Lu, Jing

    2016-06-28

    Semiconducting single-layer (SL) and few-layer MoS2 have a flat surface, free of dangling bonds. Using density functional theory coupled with non-equilibrium Green's function method, we investigate the spin-polarized transport properties of Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions with MoS2 layer numbers of N = 1, 3, and 5. Well-defined interfaces are formed between MoS2 and metal electrodes. The junctions with a SL MoS2 spacer are almost metallic owing to the strong coupling between MoS2 and the ferromagnets, while those are tunneling with a few layer MoS2 spacer. Both large magnetoresistance and tunneling magnetoresistance are found when fcc or hcp Co is used as an electrode. Therefore, flat single- and few-layer MoS2 can serve as an effective nonmagnetic spacer in a magnetoresistance or tunneling magnetoresistance device with a well-defined interface. PMID:27257639

  5. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, J.; Piddington, C.S.; Kovacevich, B.R.; Young, K.D.; Denome, S.A.

    1994-10-18

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous. 13 figs.

  6. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, John; Piddington, Chris S.; Kovacevich, Brian R.; Young, Kevin D.; Denome, Sylvia A.

    1994-01-01

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous.

  7. Synthesis and characterization of MoS2 nanosheets.

    PubMed

    Deokar, G; Vignaud, D; Arenal, R; Louette, P; Colomer, J-F

    2016-02-19

    Here, we report on the synthesis of MoS2 nanosheets using a simple two-step additive-free growth technique. The as-synthesized nanosheets were characterized to determine their structure and composition, as well as their optical properties. The MoS2 nanosheets were analyzed by scanning electron microscopy, transmission electron microscopy (TEM), including high-resolution scanning TEM imaging and energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy (XPS), Raman spectroscopy and photoluminescence (PL). The as-produced MoS2 nanosheets are vertically aligned with curved edges and are densely populated. The TEM measurements confirmed that the nanosheets have the 2H-MoS2 crystal structure in agreement with the Raman results. The XPS results revealed the presence of high purity MoS2. Moreover, a prominent PL similar to mechanically exfoliated few and mono-layer MoS2 was observed for the as-grown nanosheets. For the thin (≤50 nm) nanosheets, the PL feature was observed at the same energy as that for a direct band-gap monolayer MoS2 (1.83 eV). Thus, the as-produced high-quality, large-area, MoS2 nanosheets could be potentially useful for various optoelectronic and catalysis applications. PMID:26789493

  8. Synthesis and characterization of MoS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Deokar, G.; Vignaud, D.; Arenal, R.; Louette, P.; Colomer, J.-F.

    2016-02-01

    Here, we report on the synthesis of MoS2 nanosheets using a simple two-step additive-free growth technique. The as-synthesized nanosheets were characterized to determine their structure and composition, as well as their optical properties. The MoS2 nanosheets were analyzed by scanning electron microscopy, transmission electron microscopy (TEM), including high-resolution scanning TEM imaging and energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy (XPS), Raman spectroscopy and photoluminescence (PL). The as-produced MoS2 nanosheets are vertically aligned with curved edges and are densely populated. The TEM measurements confirmed that the nanosheets have the 2H-MoS2 crystal structure in agreement with the Raman results. The XPS results revealed the presence of high purity MoS2. Moreover, a prominent PL similar to mechanically exfoliated few and mono-layer MoS2 was observed for the as-grown nanosheets. For the thin (≤50 nm) nanosheets, the PL feature was observed at the same energy as that for a direct band-gap monolayer MoS2 (1.83 eV). Thus, the as-produced high-quality, large-area, MoS2 nanosheets could be potentially useful for various optoelectronic and catalysis applications.

  9. MoS2 Surface Structure Tailoring via Carbonaceous Promoter

    PubMed Central

    Shi, Yumeng; Li, Henan; Wong, Jen It; Zhang, Xiaoting; Wang, Ye; Song, Huaihe; Yang, Hui Ying

    2015-01-01

    Atomically thin semiconducting transition-metal dichalcogenides have been attracting lots of attentions, particularly, molybdenum disulfide (MoS2) monolayers show promising applications in field effect transistors, optoelectronics and valleytronics. However, the controlled synthesis of highly crystalline MoS2 remain a challenge especially the systematic approach to manipulate its structure and morphology. Herein, we report a method for controlled synthesis of highly crystalline MoS2 by using chemical vapor deposition method with carbonaceous materials as growth promoter. A uniform and highly crystalline MoS2 monolayer with the grain size close to 40 μm was achieved. Furthermore, we extend the method to the manipulation of MoS2 morphology, flower-shape vertical grown MoS2 layers were obtained on growth promoting substrates. This simple approach allows an easy access of highly crystalline MoS2 layers with morphology tuned in a controllable manner. Moreover, the flower-shape MoS2 grown on graphene oxide film used as an anode material for lithium-ion batteries showed excellent electrochemical performance. PMID:25994238

  10. Rhodococcus equi--an emerging human pathogen in immunocompromized hosts: a report of four cases from Malaysia.

    PubMed

    Puthucheary, S D; Sangkar, V; Hafeez, Asma; Karunakaran, R; Raja, Nadeem S; Hassan, H H

    2006-01-01

    Rhodococcus equi, a recognized pathogen in horses, is emerging as a human opportunistic pathogen, especially in immunocompromized hosts. We describe four immunocompromized patients who had serious R. equi infections with an overall mortality of 75%. The natural habitat of R. equi is soil, particularly soil contaminated with animal manure. Necrotizing pneumonia is the commonest form of infection but extrapulmonary infections, such as wound infections and subcutaneous abscess, have also been described in humans. R. equi is cultured easily in ordinary non-selective media. Large, smooth, irregular colonies appear within 48 hours. It is a facultative, intracellular, nonmotile, non-spore forming, gram-positive coccobacillus, which is weakly acid-fast staining and bears a similarity to diphtheroids. It forms a salmon-colored pigment usually after 48 hours incubation. A particular characteristic of this organism is that it undergoes synergistic hemolysis with some bacteria on sheep blood agar. R. equi may be misidentified as diphtheroids, Mycobacterium species, or Nocardia. In vitro R. equi is usually susceptible to erythromycin, ciprofloxacin, vancomycin, aminoglycosides, rifampin, imipenem and meropenem. The organism can be difficult to eradicate, making treatment challenging. Increased awareness of the infection may help with early diagnosis and timely treatment. PMID:16771229

  11. A nucleotide mutation associated with fluoroquinolone resistance observed in gyrA of in vitro obtained Rhodococcus equi mutants.

    PubMed

    Niwa, Hidekazu; Hobo, Seiji; Anzai, Toru

    2006-06-15

    In this study, the quinolone resistance-determining region (QRDR) in gyrA and gyrB of in vitro fluoroquinolone-resistant Rhodococcus equi mutants was sequenced. These mutants were selected from four R. equi strains on blood agar plates containing ciprofloxacin or enrofloxacin. Each mutant became 8- to 64 or greater-fold resistant to fluoroquinolones compared with their parent strains. From the results of sequence analysis of QRDR in gyrA and gyrB, a nucleotide mutation of codon GAC for GGC in gyrA was detected in all mutants, but no mutation was observed in gyrB. This mutation leads to amino acid substitution of Asp for Gly in putative GyrA in R. equi. The position of this substitution corresponds to position 87 of GyrA in Escherichia coli. Our results suggest that the mutation of QRDR in gyrA, which was observed in in vitro fluoroquinolone-resistant R. equi mutants in this study, is closely associated with fluoroquinolone resistance. PMID:16563665

  12. Biocatalytic Properties and Structural Analysis of Eugenol Oxidase from Rhodococcus jostii RHA1: A Versatile Oxidative Biocatalyst.

    PubMed

    Nguyen, Quoc-Thai; de Gonzalo, Gonzalo; Binda, Claudia; Rioz-Martínez, Ana; Mattevi, Andrea; Fraaije, Marco W

    2016-07-15

    Eugenol oxidase (EUGO) from Rhodococcus jostii RHA1 had previously been shown to convert only a limited set of phenolic compounds. In this study, we have explored the biocatalytic potential of this flavoprotein oxidase, resulting in a broadened substrate scope and a deeper insight into its structural properties. In addition to the oxidation of vanillyl alcohol and the hydroxylation of eugenol, EUGO can efficiently catalyze the dehydrogenation of various phenolic ketones and the selective oxidation of a racemic secondary alcohol-4-(1-hydroxyethyl)-2-methoxyphenol. EUGO was also found to perform the kinetic resolution of a racemic secondary alcohol. Crystal structures of the enzyme in complexes with isoeugenol, coniferyl alcohol, vanillin, and benzoate have been determined. The catalytic center is a remarkable solvent-inaccessible cavity on the si side of the flavin cofactor. Structural comparison with vanillyl alcohol oxidase from Penicillium simplicissimum highlights a few localized changes that correlate with the selectivity of EUGO for phenolic substrates bearing relatively small p-substituents while tolerating o-methoxy substituents. PMID:27123962

  13. Simple Preparation of Rhodococcus erythropolis DSM 44534 as Biocatalyst to Oxidize Diols into the Optically Active Lactones.

    PubMed

    Martinez-Rojas, Enriqueta; Olejniczak, Teresa; Neumann, Konrad; Garbe, Leif-Alexander; Boratyñski, Filip

    2016-09-01

    In the current study, we present a green toolbox to produce ecological compounds like lactone moiety. Rhodococcus erythropolis DSM 44534 cells have been used to oxidize both decane-1,4-diol () and decane-1,5-diol () into the corresponding γ- () and δ-decalactones () with yield of 80% and enantiomeric excess (ee) = 75% and ee = 90%, respectively. Among oxidation of meso diols, (-)-(1S,5R)-cis-3-oxabicyclo[4.3.0]non-7-en-2-one (5a) with 56% yield and ee = 76% as well as (-)-(2R,3S)-cis-endo-3-oxabicyclo[2.2.1]dec-7-en-2-one (6a) with 100% yield and ee = 90% were formed. It is worth mentioning that R. erythropolis DSM 44534 grew in a mineral medium containing ethanol as the sole source of energy and carbon Chirality 28:623-627, 2016. © 2016 Wiley Periodicals, Inc. PMID:27496202

  14. Modulation of the Hormone Setting by Rhodococcus fascians Results in Ectopic KNOX Activation in Arabidopsis1[W][OA

    PubMed Central

    Depuydt, Stephen; Doležal, Karel; Van Lijsebettens, Mieke; Moritz, Thomas; Holsters, Marcelle; Vereecke, Danny

    2008-01-01

    The biotrophic actinomycete Rhodococcus fascians has a profound impact on plant development and a common aspect of the symptomatology is the deformation of infected leaves. In Arabidopsis (Arabidopsis thaliana), the serrated leaf margins formed upon infection resemble the leaf phenotype of transgenic plants with ectopic expression of KNOTTED-like homeobox (KNOX) genes. Through transcript profiling, we demonstrate that class-I KNOX genes are transcribed in symptomatic leaves. Functional analysis revealed that BREVIPEDICELLUS/KNOTTED-LIKE1 and mainly SHOOT MERISTEMLESS were essential for the observed leaf dissection. However, these results also positioned the KNOX genes downstream in the signaling cascade triggered by R. fascians infection. The much faster activation of ARABIDOPSIS RESPONSE REGULATOR5 and the establishment of homeostatic and feedback mechanisms to control cytokinin (CK) levels support the overrepresentation of this hormone in infected plants due to the secretion by the pathogen, thereby placing the CK response high up in the cascade. Hormone measurements show a net decrease of tested CKs, indicating either that secretion by the bacterium and degradation by the plant are in balance, or, as suggested by the strong reaction of 35S:CKX plants, that other CKs are at play. At early time points of the interaction, activation of gibberellin 2-oxidase presumably installs a local hormonal setting favorable for meristematic activity that provokes leaf serrations. The results are discussed in the context of symptom development, evasion of plant defense, and the establishment of a specific niche by R. fascians. PMID:18184732

  15. Rhodococcus equi virulence-associated protein A is required for diversion of phagosome biogenesis but not for cytotoxicity.

    PubMed

    von Bargen, Kristine; Polidori, Marco; Becken, Ulrike; Huth, Gitta; Prescott, John F; Haas, Albert

    2009-12-01

    Rhodococcus equi is a gram-positive facultative intracellular pathogen that can cause severe bronchopneumonia in foals and AIDS patients. Virulence is plasmid regulated and is accompanied by phagosome maturation arrest and host cell necrosis. A replacement mutant in the gene for VapA (virulence-associated protein A), a major virulence factor of R. equi, was tested for its activities during macrophage infection. Early in infection, phagosomes containing the vapA mutant did not fuse with lysosomes and did not stain with the acidotropic fluor LysoTracker similar to those containing virulent wild-type R. equi. However, vapA mutant phagosomes had a lower average pH. Late in infection, phagosomes containing the vapA mutant were as frequently positive for LysoTracker as phagosomes containing plasmid-cured, avirulent bacteria, whereas those with virulent wild-type R. equi were still negative for the fluor. Macrophage necrosis after prolonged infection with virulent bacteria was accompanied by a loss of organelle staining with LysoTracker, suggesting that lysosome proton gradients had collapsed. The vapA mutant still killed the macrophages and yet did not affect the pH of host cell lysosomes. Hence, VapA is not required for host cell necrosis but is required for neutralization of phagosomes and lysosomes or their disruption. This is the first report of an R. equi mutant with altered phagosome biogenesis. PMID:19797071

  16. Serum antibody responses of foals to virulence-associated 15- to 17-kilodalton antigens of Rhodococcus equi.

    PubMed

    Tákai, S; Hidaka, D; Fujii, M; Shindoh, Y; Murata, T; Nakanishi, S; Sasaki, Y; Tsubaki, S; Kamada, M

    1996-09-01

    Humoral immune responses in 16 foals to virulence-associated 15- to 17-kDa antigens of Rhodococcus equi were studied during the first fourteen weeks of life on two horse-breeding farms with a persistent incidence of R. equi infection. Serum antibody levels specific for 15- to 17-kDa antigens were measured by enzyme-linked immunosorbent assay and Western immunoblotting. Immunoglobulin G (IgG) antibodies specific to 15- to 17-kDa antigens were detected by all the foals. R. equi was found in the feces of foals during week 1 of life, and the number of fecal R. equi rapidly increased to the highest level. Virulent R. equi were isolated from the feces of the foals at a high frequency and from their environmental soil on the farms. Evidence that serum antibody response to 15- to 17-kDa antigens of virulent R. equi occurred naturally in every foal in correlation with the quantitative changes of fecal R. equi during the first 1 to 3 months of life suggests that intestinal virulent R. equi might be the most important source of antigenic stimulation in foals from contaminated farms. PMID:8914251

  17. High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production.

    PubMed

    Kurosawa, Kazuhiko; Boccazzi, Paolo; de Almeida, Naomi M; Sinskey, Anthony J

    2010-06-01

    Biodiesel, monoalkyl esters of long-chain fatty acids with short-chain alcohols derived from triacylglycerols (TAGs), can be produced from renewable biomass sources. Recently, there has been interest in producing microbial oils from oleaginous microorganisms. Rhodococcus opacus PD630 is known to accumulate large amounts of TAGs. Following on these earlier works we demonstrate that R. opacus PD630 has the uncommon capacity to grow in defined media supplemented with glucose at a concentration of 300 g l(-1) during batch-culture fermentations. We found that we could significantly increase concentrations of both glucose and (NH4)2SO4 in the production medium resulting in a dramatic increase in fatty acid production when pH was controlled. We describe the experimental design protocol used to achieve the culture conditions necessary to obtain both high-cell-density and TAG accumulation; specifically, we describe the importance of the C/N ratio of the medium composition. Our bioprocess results demonstrate that R. opacus PD630 grown in batch-culture with an optimal production medium containing 240 g l(-1) glucose and 13.45 g l(-1) (NH4)2SO4 (C/N of 17.8) yields 77.6 g l(-1) of cell dry weight composed of approximately 38% TAGs indicating that this strain holds great potential as a future source of industrial biodiesel on starchy cellulosic feedstocks that are glucose polymers. PMID:20412824

  18. Identification of pathogens and virulence profile of Rhodococcus equi and Escherichia coli strains obtained from sand of parks

    PubMed Central

    Fernandes, M.C.; Takai, S.; Leite, D.S.; Pinto, J.P.A.N.; Brandão, P.E.; Santarém, V.A.; Listoni, F.J.P.; Da Silva, A.V.; Ribeiro, M.G.

    2013-01-01

    The identification of pathogens of viral (Rotavirus, Coronavirus), parasitic (Toxocara spp.) and bacterial (Escherichia coli, Salmonella spp., Rhodococcus equi) origin shed in feces, and the virulence profile of R. equi and E. coli isolates were investigated in 200 samples of sand obtained from 40 parks, located in central region of state of Sao Paulo, Brazil, using different diagnostic methods. From 200 samples analyzed, 23 (11.5%) strains of R. equi were isolated. None of the R. equi isolates showed a virulent (vapA gene) or intermediately virulent (vapB gene) profiles. Sixty-three (31.5%) strains of E. coli were identified. The following genes encoding virulence factors were identified in E. coli: eae, bfp, saa, iucD, papGI, sfa and hly. Phylogenetic classification showed that 63 E. coli isolates belonged to groups B1 (52.4%), A (25.4%) and B2 (22.2%). No E. coli serotype O157:H7 was identified. Eggs of Toxocara sp. were found in three parks and genetic material of bovine Coronavirus was identified in one sample of one park. No Salmonella spp. and Rotavirus isolates were identified in the samples of sand. The presence of R. equi, Toxocara sp, bovine Coronavirus and virulent E. coli isolates in the environment of parks indicates that the sanitary conditions of the sand should be improved in order to reduce the risks of fecal transmission of pathogens of zoonotic potential to humans in these places. PMID:24294244

  19. Adaptive response of Rhodococcus opacus PWD4 to salt and phenolic stress on the level of mycolic acids.

    PubMed

    de Carvalho, Carla C C R; Fischer, Martin A; Kirsten, Sandra; Würz, Birgit; Wick, Lukas Y; Heipieper, Hermann J

    2016-12-01

    Mycolata form a group of Gram-positive bacteria with unique cell envelope structures that are known for their high tolerance against antibiotics and both aromatic and aliphatic hydrocarbons. An important part of the unique surface structure of the mycolata is the presence of long chain α-alkyl-β-hydroxy fatty acids, the mycolic acids. In order to investigate the adaptive changes in the mycolic acid composition, we investigated the composition of mycolic acids during the response both to osmotic stress caused by NaCl and to 4-chlorophenol in Rhodococcus opacus PWD4. This bacterium was chosen as it is known to adapt to different kinds of stresses. In addition, it is a potential biocatalyst in bioremediation as well as for biotechnological applications. In the present study, cells of R. opacus PWD4, grown in liquid cultures, responded to toxic concentrations of NaCl by increasing the ratio between mycolic acids and membrane phospholipid fatty acids (MA/PLFA-ratio). Cells reacted to both NaCl and 4-chlorophenol by decreasing both the average chain length and the unsaturation index of their mycolic acids. These changes in mycolic acid composition correlated with increases in cell surface hydrophobicity and saturation of membrane fatty acids, demonstrating the relation between mycolic acid and phospholipid synthesis and their contribution to cell surface properties of R. opacus PWD4. PMID:27620730

  20. Electrical resistivity tomography to monitor enhanced biodegradation of hydrocarbons with Rhodococcus erythropolis T902.1 at a pilot scale

    NASA Astrophysics Data System (ADS)

    Masy, Thibaut; Caterina, David; Tromme, Olivier; Lavigne, Benoît; Thonart, Philippe; Hiligsmann, Serge; Nguyen, Frédéric

    2016-01-01

    Petroleum hydrocarbons (HC) represent the most widespread contaminants and in-situ bioremediation remains a competitive treatment in terms of cost and environmental concerns. However, the efficiency of such a technique (by biostimulation or bioaugmentation) strongly depends on the environment affected and is still difficult to predict a priori. In order to overcome these uncertainties, Electrical Resistivity Tomography (ERT) appears as a valuable non-invasive tool to detect soil heterogeneities and to monitor biodegradation. The main objective of this study was to isolate an electrical signal linked to an enhanced bacterial activity with ERT, in an aged HC-contaminated clay loam soil. To achieve this, a pilot tank was built to mimic field conditions. Compared to a first insufficient biostimulation phase, bioaugmentation with Rhodococcus erythropolis T902.1 led to a HC depletion of almost 80% (6900 to 1600 ppm) in 3 months in the center of the contaminated zone, where pollutants were less bioavailable. In the meantime, lithological heterogeneities and microbial activities (growth and biosurfactant production) were successively discriminated by ERT images. In the future, this cost-effective technique should be more and more transferred to the field in order to monitor biodegradation processes and assist in selecting the most appropriate remediation technique.

  1. Rhodococcus sp. strain TM1 plays a synergistic role in the degradation of piperidine by Mycobacterium sp. strain THO100.

    PubMed

    Kim, Yong-Hak; Kang, Un-Beom; Konishi, Kyoko; Lee, Cheolju

    2006-09-01

    Mycobacterium sp. strain THO100 and Rhodococcus sp. strain TM1 were isolated from a morpholine-containing enrichment culture of activated sewage sludge. Strain THO100, but not strain TM1, was able to degrade alicyclic amines such as morpholine, piperidine, and pyrrolidine. The mixed strains THO100 and TM1 showed a better growth on piperidine as the substrate than the pure strain THO100 because strain TM1 was able to reduce the level of glutaraldehyde (GA) produced during piperidine degradation. GA was toxic to strain THO100 (IC(50) = 28.3 microM) but less toxic to strain TM1 (IC(50) = 215 microM). Strain THO100 possessed constitutive semialdehyde dehydrogenases, namely Sad1 and Sad2, whose activities toward succinic semialdehyde (SSA) were strongly inhibited by GA. The two isozymes were identified as catalase-peroxidase (KatG = Sad1) and semialdehyde dehydrogenase (Sad2) based on mass spectrometric analyses of tryptic peptides and database searches of the partial DNA sequences of their genes. In contrast, strain TM1 containing another constitutive enzyme Gad1 could oxidize both SSA and GA. This study suggested that strain TM1 possessing Gad1 played a synergistic role in reducing the toxic and inhibitory effects of GA produced in the degradation of piperidine by strain THO100. PMID:16832627

  2. Genetic and Biochemical Characterization of a Novel Monoterpene ɛ-Lactone Hydrolase from Rhodococcus erythropolis DCL14

    PubMed Central

    van der Vlugt-Bergmans, Cécile J. B; van der Werf, Mariët J.

    2001-01-01

    A monoterpene ɛ-lactone hydrolase (MLH) from Rhodococcus erythropolis DCL14, catalyzing the ring opening of lactones which are formed during degradation of several monocyclic monoterpenes, including carvone and menthol, was purified to apparent homogeneity. It is a monomeric enzyme of 31 kDa that is active with (4R)-4-isopropenyl-7-methyl-2-oxo-oxepanone and (6R)-6-isopropenyl-3-methyl-2-oxo-oxepanone, lactones derived from (4R)-dihydrocarvone, and 7-isopropyl-4-methyl-2-oxo-oxepanone, the lactone derived from menthone. Both enantiomers of 4-, 5-, 6-, and 7-methyl-2-oxo-oxepanone were converted at equal rates, suggesting that the enzyme is not stereoselective. Maximal enzyme activity was measured at pH 9.5 and 30°C. Determination of the N-terminal amino acid sequence of purified MLH enabled cloning of the corresponding gene by a combination of PCR and colony screening. The gene, designated mlhB (monoterpene lactone hydrolysis), showed up to 43% similarity to members of the GDXG family of lipolytic enzymes. Sequencing of the adjacent regions revealed two other open reading frames, one encoding a protein with similarity to the short-chain dehydrogenase reductase family and the second encoding a protein with similarity to acyl coenzyme A dehydrogenases. Both enzymes are possibly also involved in the monoterpene degradation pathways of this microorganism. PMID:11157238

  3. The Equine Antimicrobial Peptide eCATH1 Is Effective against the Facultative Intracellular Pathogen Rhodococcus equi in Mice

    PubMed Central

    Schlusselhuber, Margot; Torelli, Riccardo; Martini, Cecilia; Leippe, Matthias; Cattoir, Vincent; Leclercq, Roland; Laugier, Claire; Grötzinger, Joachim; Sanguinetti, Maurizio

    2013-01-01

    Rhodococcus equi, the causal agent of rhodococcosis, is a major pathogen of foals and is also responsible for severe infections in immunocompromised humans. Of great concern, strains resistant to currently used antibiotics have emerged. As the number of drugs that are efficient in vivo is limited because of the intracellular localization of the bacterium inside macrophages, new active but cell-permeant drugs will be needed in the near future. In the present study, we evaluated, by in vitro and ex vivo experiments, the ability of the alpha-helical equine antimicrobial peptide eCATH1 to kill intracellular bacterial cells. Moreover, the therapeutic potential of the peptide was assessed in experimental rhodococcosis induced in mice, while the in vivo toxicity was evaluated by behavioral and histopathological analysis. The study revealed that eCATH1 significantly reduced the number of bacteria inside macrophages. Furthermore, the bactericidal potential of the peptide was maintained in vivo at doses that appeared to have no visible deleterious effects for the mice even after 7 days of treatment. Indeed, daily subcutaneous injections of 1 mg/kg body weight of eCATH1 led to a significant reduction of the bacterial load in organs comparable to that obtained after treatment with 10 mg/kg body weight of rifampin. Interestingly, the combination of the peptide with rifampin showed a synergistic interaction in both ex vivo and in vivo experiments. These results emphasize the therapeutic potential that eCATH1 represents in the treatment of rhodococcosis. PMID:23817377

  4. Comparison of tulathromycin, azithromycin and azithromycin-rifampin for the treatment of mild pneumonia associated with Rhodococcus equi.

    PubMed

    Venner, M; Credner, N; Lämmer, M; Giguère, S

    2013-10-26

    The objectives of the present study were to determine the relative efficacy of tulathromycin, azithromycin, or azithromycin with rifampin for the treatment of pulmonary abscesses on a farm with endemic infections caused by Rhodococcus equi. Foals with ultrasonographic evidence of pulmonary abscesses (abscess score 8.0-15 cm; n=120) were randomly allocated in four equal treatment groups: (1) tulathromycin intramuscularly; (2) azithromycin monotherapy, orally; (3) azithromycin with rifampin, orally; (4) saline intramuscularly as a placebo. Physical examination and thoracic ultrasonography were performed by individuals unaware of treatment group assignment. Foals that worsened were removed from the study. The proportion of foals that recovered without the need for a change in therapy was significantly higher for foals treated with azithromycin (29 of 30) or azithromycin with rifampin (28 of 30) than for foals treated with a placebo (20 of 30). Additionally, azithromycin or azithromycin with rifampin resulted in a significantly faster decrease in the number of abscesses and abscess score compared with a placebo. The proportion of foals treated with tulathromycin that recovered (27 of 30) was not significantly different from that of foals treated with a placebo. Azithromycin alone or in combination with rifampin was beneficial in the study population. PMID:24106244

  5. Regulation of plasmid-encoded isoprene metabolism in Rhodococcus, a representative of an important link in the global isoprene cycle.

    PubMed

    Crombie, Andrew T; Khawand, Myriam El; Rhodius, Virgil A; Fengler, Kevin A; Miller, Michael C; Whited, Gregg M; McGenity, Terry J; Murrell, J Colin

    2015-09-01

    Emissions of biogenic volatile organic compounds (VOCs) form an important part of the global carbon cycle, comprising a significant proportion of net ecosystem productivity. They impact atmospheric chemistry and contribute directly and indirectly to greenhouse gases. Isoprene, emitted largely from plants, comprises one third of total VOCs, yet in contrast to methane, which is released in similar quantities, we know little of its biodegradation. Here, we report the genome of an isoprene degrading isolate, Rhodococcus sp. AD45, and, using mutagenesis shows that a plasmid-encoded soluble di-iron centre isoprene monooxygenase (IsoMO) is essential for isoprene metabolism. Using RNA sequencing (RNAseq) to analyse cells exposed to isoprene or epoxyisoprene in a substrate-switch time-course experiment, we show that transcripts from 22 contiguous genes, including those encoding IsoMO, were highly upregulated, becoming among the most abundant in the cell and comprising over 25% of the entire transcriptome. Analysis of gene transcription in the wild type and an IsoMO-disrupted mutant strain showed that epoxyisoprene, or a subsequent product of isoprene metabolism, rather than isoprene itself, was the inducing molecule. We provide a foundation of molecular data for future research on the environmental biological consumption of this important, climate-active compound. PMID:25727256

  6. Functional characterization and stability improvement of a ‘thermophilic-like’ ene-reductase from Rhodococcus opacus 1CP

    PubMed Central

    Riedel, Anika; Mehnert, Marika; Paul, Caroline E.; Westphal, Adrie H.; van Berkel, Willem J. H.; Tischler, Dirk

    2015-01-01

    Ene-reductases (ERs) are widely applied for the asymmetric synthesis of relevant industrial chemicals. A novel ER OYERo2 was found within a set of 14 putative old yellow enzymes (OYEs) obtained by genome mining of the actinobacterium Rhodococcus opacus 1CP. Multiple sequence alignment suggested that the enzyme belongs to the group of ‘thermophilic-like’ OYEs. OYERo2 was produced in Escherichia coli and biochemically characterized. The enzyme is strongly NADPH dependent and uses non-covalently bound FMNH2 for the reduction of activated α,β-unsaturated alkenes. In the active form OYERo2 is a dimer. Optimal catalysis occurs at pH 7.3 and 37°C. OYERo2 showed highest specific activities (45-50 U mg-1) on maleimides, which are efficiently converted to the corresponding succinimides. The OYERo2-mediated reduction of prochiral alkenes afforded the (R)-products with excellent optical purity (ee > 99%). OYERo2 is not as thermo-resistant as related OYEs. Introduction of a characteristic intermolecular salt bridge by site-specific mutagenesis raised the half-life of enzyme inactivation at 32°C from 28 to 87 min and improved the tolerance toward organic co-solvents. The suitability of OYERo2 for application in industrial biocatalysis is discussed. PMID:26483784

  7. Degradation of recalcitrant aliphatic and aromatic hydrocarbons by a dioxin-degrader Rhodococcus sp. strain p52.

    PubMed

    Yang, Hai-Yan; Jia, Rui-Bao; Chen, Bin; Li, Li

    2014-09-01

    This study investigates the ability of Rhodococcus sp. strain p52, a dioxin degrader, to biodegrade petroleum hydrocarbons. Strain p52 can use linear alkanes (tetradecane, tetracosane, and dotriacontane), branched alkane (pristane), and aromatic hydrocarbons (naphthalene and phenanthrene) as sole carbon and energy sources. Specifically, the strain removes 85.7 % of tetradecane within 48 h at a degradation rate of 3.8 mg h(-1) g(-1) dry cells, and 79.4 % of tetracosane, 66.4 % of dotriacontane, and 63.9 % of pristane within 9-11 days at degradation rates of 20.5, 14.7, and 20.3 mg day(-1) g(-1) dry cells, respectively. Moreover, strain p52 consumes 100 % naphthalene and 55.3 % phenanthrene within 9-11 days at respective degradation rates of 16 and 12.9 mg day(-1) g(-1) dry cells. Metabolites of the petroleum hydrocarbons by strain p52 were analyzed. Genes encoding alkane-hydroxylating enzymes, including cytochrome P450 (CYP450) enzyme (CYP185) and two alkane-1-monooxygenases, were amplified by polymerase chain reaction. The transcriptional activities of these genes in the presence of petroleum hydrocarbons were detected by reverse transcription-polymerase chain reaction. The results revealed potential of strain p52 to degrade petroleum hydrocarbons. PMID:24859700

  8. Biosynthesis of Auxin by the Gram-Positive Phytopathogen Rhodococcus fascians Is Controlled by Compounds Specific to Infected Plant Tissues

    PubMed Central

    Vandeputte, Olivier; Öden, Sevgi; Mol, Adeline; Vereecke, Danny; Goethals, Koen; El Jaziri, Mondher; Prinsen, Els

    2005-01-01

    The role and metabolism of indole-3-acetic acid in gram-negative bacteria is well documented, but little is known about indole-3-acetic acid biosynthesis and regulation in gram-positive bacteria. The phytopathogen Rhodococcus fascians, a gram-positive organism, incites diverse developmental alterations, such as leafy galls, on a wide range of plants. Phenotypic analysis of a leafy gall suggests that auxin may play an important role in the development of the symptoms. We show here for the first time that R. fascians produces and secretes the auxin indole-3-acetic acid. Interestingly, whereas noninfected-tobacco extracts have no effect, indole-3-acetic acid synthesis is highly induced in the presence of infected-tobacco extracts when tryptophan is not limiting. Indole-3-acetic acid production by a plasmid-free strain shows that the biosynthetic genes are located on the bacterial chromosome, although plasmid-encoded genes contribute to the kinetics and regulation of indole-3-acetic acid biosynthesis. The indole-3-acetic acid intermediates present in bacterial cells and secreted into the growth media show that the main biosynthetic route used by R. fascians is the indole-3-pyruvic acid pathway with a possible rate-limiting role for indole-3-ethanol. The relationship between indole-3-acetic acid production and the symptoms induced by R. fascians is discussed. PMID:15746315

  9. Regulation of plasmid-encoded isoprene metabolism in Rhodococcus, a representative of an important link in the global isoprene cycle

    PubMed Central

    Crombie, Andrew T; Khawand, Myriam El; Rhodius, Virgil A; Fengler, Kevin A; Miller, Michael C; Whited, Gregg M; McGenity, Terry J; Murrell, J Colin

    2015-01-01

    Emissions of biogenic volatile organic compounds (VOCs) form an important part of the global carbon cycle, comprising a significant proportion of net ecosystem productivity. They impact atmospheric chemistry and contribute directly and indirectly to greenhouse gases. Isoprene, emitted largely from plants, comprises one third of total VOCs, yet in contrast to methane, which is released in similar quantities, we know little of its biodegradation. Here, we report the genome of an isoprene degrading isolate, Rhodococcus sp. AD45, and, using mutagenesis shows that a plasmid-encoded soluble di-iron centre isoprene monooxygenase (IsoMO) is essential for isoprene metabolism. Using RNA sequencing (RNAseq) to analyse cells exposed to isoprene or epoxyisoprene in a substrate-switch time-course experiment, we show that transcripts from 22 contiguous genes, including those encoding IsoMO, were highly upregulated, becoming among the most abundant in the cell and comprising over 25% of the entire transcriptome. Analysis of gene transcription in the wild type and an IsoMO-disrupted mutant strain showed that epoxyisoprene, or a subsequent product of isoprene metabolism, rather than isoprene itself, was the inducing molecule. We provide a foundation of molecular data for future research on the environmental biological consumption of this important, climate-active compound. PMID:25727256

  10. Purification, crystallization and preliminary X-ray crystallographic analysis of 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1

    PubMed Central

    Rohman, Ali; van Oosterwijk, Niels; Dijkstra, Bauke W.

    2012-01-01

    3-Ketosteroid Δ1-dehydrogenase plays a crucial role in the early steps of steroid degradation by introducing a double bond between the C1 and C2 atoms of the A-ring of its 3-ketosteroid substrates. The 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1, a 56 kDa flavoprotein, was crystallized using the sitting-drop vapour-diffusion method at room temperature. The crystals grew in various buffers over a wide pH range (from pH 5.5 to 10.5), but the best crystallization condition consisted of 2%(v/v) PEG 400, 0.1 M HEPES pH 7.5, 2.0 M ammonium sulfate. A native crystal diffracted X-rays to 2.0 Å resolution. It belonged to the primitive orthorhombic space group P212121, with unit-cell parameters a = 107.4, b = 131.6, c = 363.2 Å, and contained eight molecules in the asymmetric unit. The initial structure of the enzyme was solved using multi-wavelength anomalous dispersion (MAD) data collected from a Pt-derivatized crystal. PMID:22691786

  11. Selective cleavage of the two CS bonds in asymmetrically alkylated dibenzothiophenes by Rhodococcus erythropolis KA2-5-1.

    PubMed

    Onaka, T; Kobayashi, M; Ishii, Y; Konishi, J; Maruhashi, K

    2001-01-01

    The Rhodococcus erythropolis strain KA2-5-1 was characterized by its ability to cleave carbon-sulfur bonds in the dibenzothiophene (DBT) ring by asymmetrically alkyl substitution, such as C2-DBTs (e.g., dimethyl and ethyl DBTs) and C3-DBTs (e.g., trimethyl and propyl DBTs), which are known to remain in hydrodesulfurization-treated diesel fuels. After treatment by solid-phase extraction (SPE) of solvents from microbial reactions of alkylated DBTs (Cx-DBTs), we used gas chromatography (GC), GC-atomic emission detection, GC-mass spectrometry and 1H nuclear magnetic resonance spectroscopy to identify and quantitatively evaluate the Cx-DBT metabolites. Molar ratios of metabolic isomers of the desulfurization products suggested that resting-cell reactions of KA2-5-1 against these Cx-DBTs occurrs through specific carbon-sulfur-bond-targeted cleavages, yielding alkylated hydroxybiphenyls, and that the manner of the attack on the DBT skeleton is affected not only by the position but also by the number and length of the alkyl substituents. PMID:16233063

  12. Electrical resistivity tomography to monitor enhanced biodegradation of hydrocarbons with Rhodococcus erythropolis T902.1 at a pilot scale.

    PubMed

    Masy, Thibaut; Caterina, David; Tromme, Olivier; Lavigne, Benoît; Thonart, Philippe; Hiligsmann, Serge; Nguyen, Frédéric

    2016-01-01

    Petroleum hydrocarbons (HC) represent the most widespread contaminants and in-situ bioremediation remains a competitive treatment in terms of cost and environmental concerns. However, the efficiency of such a technique (by biostimulation or bioaugmentation) strongly depends on the environment affected and is still difficult to predict a priori. In order to overcome these uncertainties, Electrical Resistivity Tomography (ERT) appears as a valuable non-invasive tool to detect soil heterogeneities and to monitor biodegradation. The main objective of this study was to isolate an electrical signal linked to an enhanced bacterial activity with ERT, in an aged HC-contaminated clay loam soil. To achieve this, a pilot tank was built to mimic field conditions. Compared to a first insufficient biostimulation phase, bioaugmentation with Rhodococcus erythropolis T902.1 led to a HC depletion of almost 80% (6900 to 1600ppm) in 3months in the center of the contaminated zone, where pollutants were less bioavailable. In the meantime, lithological heterogeneities and microbial activities (growth and biosurfactant production) were successively discriminated by ERT images. In the future, this cost-effective technique should be more and more transferred to the field in order to monitor biodegradation processes and assist in selecting the most appropriate remediation technique. PMID:26697744

  13. Vaporization of ices containing S2 - Implications for comets

    NASA Technical Reports Server (NTRS)

    Moore, M. H.; Donn, B.; Hudson, R. L.

    1988-01-01

    An effort is made to ascertain whether the S2 detected in Comet IRAS-Araki-Alcock 1983d can be stored in ices during warming, and is released during the vaporization of its water ice matrix, in view of data on the UV spectrum of S2 in Ar and Kr matrices and water ice in which the ratio of matrix or molecular ice to S2 is of the order of 500:1. The results obtained support the hypothesis that the S2:H2O ratio in the solid phase may not be a predictor of the gas phase ratio. It is concluded that similar vaporization from a cometary nucleus would not release most of the S2 contained in the ice.

  14. Toward Ferroelectric Control of Monolayer MoS2.

    PubMed

    Nguyen, Ariana; Sharma, Pankaj; Scott, Thomas; Preciado, Edwin; Klee, Velveth; Sun, Dezheng; Lu, I-Hsi Daniel; Barroso, David; Kim, SukHyun; Shur, Vladimir Ya; Akhmatkhanov, Andrey R; Gruverman, Alexei; Bartels, Ludwig; Dowben, Peter A

    2015-05-13

    The chemical vapor deposition (CVD) of molybdenum disulfide (MoS2) single-layer films onto periodically poled lithium niobate is possible while maintaining the substrate polarization pattern. The MoS2 growth exhibits a preference for the ferroelectric domains polarized "up" with respect to the surface so that the MoS2 film may be templated by the substrate ferroelectric polarization pattern without the need for further lithography. MoS2 monolayers preserve the surface polarization of the "up" domains, while slightly quenching the surface polarization on the "down" domains as revealed by piezoresponse force microscopy. Electrical transport measurements suggest changes in the dominant carrier for CVD MoS2 under application of an external voltage, depending on the domain orientation of the ferroelectric substrate. Such sensitivity to ferroelectric substrate polarization opens the possibility for ferroelectric nonvolatile gating of transition metal dichalcogenides in scalable devices fabricated free of exfoliation and transfer. PMID:25909996

  15. Plasma nanocoating of thiophene onto MoS2 nanotubes

    NASA Astrophysics Data System (ADS)

    Türkaslan, Banu Esencan; Dikmen, Sibel; Öksüz, Lütfi; Öksüz, Aysegul Uygun

    2015-12-01

    MoS2 nanotubes were coated with conductive polymer thiophene by atmospheric pressure radio-frequency (RF) glow discharge. MoS2 nanotubes were prepared by thermal decomposition of hexadecylamine (HDA) intercalated laminar MoS2 precursor on anodized aluminum oxide template and the thiophene was polymerized directly on surface of these nanotubes as in situ by plasma method. The effect of plasma power on PTh/MoS2 nanocomposite properties has been investigated by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM and EDX), and X-ray diffraction spectroscopy (XRD). The presence of PTh bands in the FTIR spectra of PTh/MoS2 nanotube nanocomposites corresponding XRD results indicates that the polythiophene coating onto MoS2 nanotube. The chemical structure of PTh is not changed when the plasma power of discharge differ from 117 to 360 W. SEM images of nanocomposites show that when the discharge power is increased between 117 and 360 W the average diameter of PTh/MoS2 nanotube nanocomposites are changed and the structure become more uniformly.

  16. Imaging spectroscopic ellipsometry of MoS2

    NASA Astrophysics Data System (ADS)

    Funke, S.; Miller, B.; Parzinger, E.; Thiesen, P.; Holleitner, A. W.; Wurstbauer, U.

    2016-09-01

    Micromechanically exfoliated mono- and multilayers of molybdenum disulfide (MoS2) are investigated by spectroscopic imaging ellipsometry. In combination with knife edge illumination, MoS2 flakes can be detected and classified on arbitrary flat and also transparent substrates with a lateral resolution down to 1–2 µm. The complex dielectric functions from mono- and trilayer MoS2 are presented. They are extracted from a multilayer model to fit the measured ellipsometric angles employing an anisotropic and an isotropic fit approach. We find that the energies of the critical points of the optical constants can be treated to be independent of the utilized model, whereas the magnitude of the optical constants varies with the used model. The anisotropic model suggests a maximum absorbance for a MoS2 sheet supported by sapphire of about 14% for monolayer and of 10% for trilayer MoS2. Furthermore, the lateral homogeneity of the complex dielectric function for monolayer MoS2 is investigated with a spatial resolution of 2 µm. Only minor fluctuations are observed. No evidence for strain, for a significant amount of disorder or lattice defects can be found in the wrinkle-free regions of the MoS2 monolayer from complementary µ-Raman spectroscopy measurements. We assume that the minor lateral variation in the optical constants are caused by lateral modification in the van der Waals interaction presumably caused by the preparation using micromechanical exfoliation and viscoelastic stamping.

  17. Phonon bandgap engineering of strained monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Jiang, Jin-Wu

    2014-06-01

    The phonon band structure of monolayer MoS2 is characteristic of a large energy gap between acoustic and optical branches, which protects the vibration of acoustic modes from being scattered by optical phonon modes. Therefore, the phonon bandgap engineering is of practical significance for the manipulation of phonon-related mechanical or thermal properties in monolayer MoS2. We perform both phonon analysis and molecular dynamics simulations to investigate the tension effect on the phonon bandgap and the compression induced instability of the monolayer MoS2. Our key finding is that the phonon bandgap can be narrowed by the uniaxial tension, and is completely closed at ε = 0.145; while the biaxial tension only has a limited effect on the phonon bandgap. We also demonstrate the compression induced buckling for the monolayer MoS2. The critical strain for buckling is extracted from the band structure analysis of the flexure mode in the monolayer MoS2 and is further verified by molecular dynamics simulations and the Euler buckling theory. Our study illustrates the uniaxial tension as an efficient method for manipulating the phonon bandgap of the monolayer MoS2, while the biaxial compression as a powerful tool to intrigue buckling in the monolayer MoS2.

  18. Imaging spectroscopic ellipsometry of MoS2.

    PubMed

    Funke, S; Miller, B; Parzinger, E; Thiesen, P; Holleitner, A W; Wurstbauer, U

    2016-09-28

    Micromechanically exfoliated mono- and multilayers of molybdenum disulfide (MoS2) are investigated by spectroscopic imaging ellipsometry. In combination with knife edge illumination, MoS2 flakes can be detected and classified on arbitrary flat and also transparent substrates with a lateral resolution down to 1-2 µm. The complex dielectric functions from mono- and trilayer MoS2 are presented. They are extracted from a multilayer model to fit the measured ellipsometric angles employing an anisotropic and an isotropic fit approach. We find that the energies of the critical points of the optical constants can be treated to be independent of the utilized model, whereas the magnitude of the optical constants varies with the used model. The anisotropic model suggests a maximum absorbance for a MoS2 sheet supported by sapphire of about 14% for monolayer and of 10% for trilayer MoS2. Furthermore, the lateral homogeneity of the complex dielectric function for monolayer MoS2 is investigated with a spatial resolution of 2 µm. Only minor fluctuations are observed. No evidence for strain, for a significant amount of disorder or lattice defects can be found in the wrinkle-free regions of the MoS2 monolayer from complementary µ-Raman spectroscopy measurements. We assume that the minor lateral variation in the optical constants are caused by lateral modification in the van der Waals interaction presumably caused by the preparation using micromechanical exfoliation and viscoelastic stamping. PMID:27460278

  19. Emergence of topological and topological crystalline phases in TlBiS2 and TlSbS2

    PubMed Central

    Zhang, Qingyun; Cheng, Yingchun; Schwingenschlögl, Udo

    2015-01-01

    Using first-principles calculations, we investigate the band structure evolution and topological phase transitions in TlBiS2 and TlSbS2 under hydrostatic pressure as well as uniaxial and biaxial strain. The phase transitions are identified by parity analysis and by calculating the surface states. Zero, one, and four Dirac cones are found for the (111) surfaces of both TlBiS2 and TlSbS2 when the pressure grows, which confirms trivial-nontrivial-trivial phase transitions. The Dirac cones at the points are anisotropic with large out-of-plane component. TlBiS2 shows normal, topological, and topological crystalline insulator phases under hydrostatic pressure, thus being the first compound to exhibit a phase transition from a topological to a topological crystalline insulator. PMID:25669914

  20. Functionalization of Two-Dimensional MoS2 : On the Reaction Between MoS2 and Organic Thiols.

    PubMed

    Chen, Xin; Berner, Nina C; Backes, Claudia; Duesberg, Georg S; McDonald, Aidan R

    2016-05-01

    Two-dimensional layered transition metal dichalcogenides (TMDs) have attracted great interest owing to their unique properties and a wide array of potential applications. However, due to their inert nature, pristine TMDs are very challenging to functionalize. We demonstrate a general route to functionalize exfoliated 2H-MoS2 with cysteine. Critically, MoS2 was found to be facilitating the oxidation of the thiol cysteine to the disulfide cystine during functionalization. The resulting cystine was physisorbed on MoS2 rather than coordinated as a thiol (cysteine) filling S-vacancies in the 2H-MoS2 surface, as originally conceived. These observations were found to be true for other organic thiols and indeed other TMDs. Our findings suggest that functionalization of two-dimensional MoS2 using organic thiols may not yield covalently or datively tethered functionalities, rather, in this instance, they yield physisorbed disulfides that are easily removed. PMID:27038093

  1. Photoconductivities in MoS2 Nanoflake Photoconductors

    NASA Astrophysics Data System (ADS)

    Shen, Wei-Chu; Chen, Ruei-San; Huang, Ying-Sheng

    2016-03-01

    Photoconductivities in molybdenum disulfide (MoS2) layered nanostructures with two-hexagonal crystalline structure prepared by mechanical exfoliation were investigated. The photoconductor-type MoS2 nanoflakes exhibit remarkable photoresponse under the above bandgap excitation wavelength of 532 nm at different optical intensity. The photocurrent responsivity and photoconductive gain of nanoflakes can reach, respectively, 30 AW-1 and 103 at the intensity of 50 Wm-2, which are several orders of magnitude higher than those of their bulk counterparts. The vacuum-enhanced photocurrent and power-independent responsivity/gain indicate a surface-controlled photoconduction mechanism in the MoS2 nanomaterial.

  2. Dirac operator on fuzzy AdS2

    NASA Astrophysics Data System (ADS)

    Fakhri, Hossein; Imaanpur, Ali

    2003-03-01

    In this article we construct the chirality and Dirac operators on noncommutative AdS2. We also derive the discrete spectrum of the Dirac operator which is important in the study of the spectral triple associated to AdS2. It is shown that the degeneracy of the spectrum present in the commutative AdS2 is lifted in the noncommutative case. The way we construct the chirality operator is suggestive of how to introduce the projector operators of the corresponding projective modules on this space.

  3. An xp model on AdS2 spacetime

    NASA Astrophysics Data System (ADS)

    Molina-Vilaplana, Javier; Sierra, Germán

    2013-12-01

    In this paper we formulate the xp model on the AdS2 spacetime. We find that the spectrum of the Hamiltonian has positive and negative eigenvalues, whose absolute values are given by a harmonic oscillator spectrum, which in turn coincides with that of a massive Dirac fermion in AdS2. We extend this result to generic xp models which are shown to be equivalent to a massive Dirac fermion on spacetimes whose metric depend of the xp Hamiltonian. Finally, we construct the generators of the isometry group SO(2,1) of the AdS2 spacetime, and discuss the relation with conformal quantum mechanics.

  4. Importance of Rhodococcus strains in a bacterial consortium degrading a mixture of hydrocarbons, gasoline, and diesel oil additives revealed by metatranscriptomic analysis.

    PubMed

    Auffret, Marc D; Yergeau, Etienne; Labbé, Diane; Fayolle-Guichard, Françoise; Greer, Charles W

    2015-03-01

    A bacterial consortium (Mix3) composed of microorganisms originating from different environments (soils and wastewater) was obtained after enrichment in the presence of a mixture of 16 hydrocarbons, gasoline, and diesel oil additives. After addition of the mixture, the development of the microbial composition of Mix3 was monitored at three different times (35, 113, and 222 days) using fingerprinting method and dominant bacterial species were identified. In parallel, 14 bacteria were isolated after 113 days and identified. Degradation capacities for Mix3 and the isolated bacterial strains were characterized and compared. At day 113, we induced the expression of catabolic genes in Mix3 by adding the substrate mixture to resting cells and the metatranscriptome was analyzed. After addition of the substrate mixture, the relative abundance of Actinobacteria increased at day 222 while a shift between Rhodococcus and Mycobacterium was observed after 113 days. Mix3 was able to degrade 13 compounds completely, with partial degradation of isooctane and 2-ethylhexyl nitrate, but tert-butyl alcohol was not degraded. Rhodococcus wratislaviensis strain IFP 2016 isolated from Mix3 showed almost the same degradation capacities as Mix3: these results were not observed with the other isolated strains. Transcriptomic results revealed that Actinobacteria and in particular, Rhodococcus species, were major contributors in terms of total and catabolic gene transcripts while other species were involved in cyclohexane degradation. Not all the microorganisms identified at day 113 were active except R. wratislaviensis IFP 2016 that appeared to be a major player in the degradation activity observed in Mix3. PMID:25343979

  5. Genomic and Functional Analyses of Rhodococcus equi Phages ReqiPepy6, ReqiPoco6, ReqiPine5, and ReqiDocB7 ▿

    PubMed Central

    Summer, E. J.; Liu, M.; Gill, J. J.; Grant, M.; Chan-Cortes, T. N.; Ferguson, L.; Janes, C.; Lange, K.; Bertoli, M.; Moore, C.; Orchard, R. C.; Cohen, N. D.; Young, R.

    2011-01-01

    The isolation and results of genomic and functional analyses of Rhodococcus equi phages ReqiPepy6, ReqiDocB7, ReqiPine5, and ReqiPoco6 (hereafter referred to as Pepy6, DocB7, Pine5, and Poco6, respectively) are reported. Two phages, Pepy6 and Poco6, more than 75% identical, exhibited genome organization and protein sequence likeness to Lactococcus lactis phage 1706 and clostridial prophage elements. An unusually high fraction, 27%, of Pepy6 and Poco6 proteins were predicted to possess at least one transmembrane domain, a value much higher than the average of 8.5% transmembrane domain-containing proteins determined from a data set of 36,324 phage protein entries. Genome organization and protein sequence comparisons place phage Pine5 as the first nonmycobacteriophage member of the large Rosebush cluster. DocB7, which had the broadest host range among the four isolates, was not closely related to any phage or prophage in the database, and only 23 of 105 predicted encoded proteins could be assigned a functional annotation. Because of the relationship of Rhodococcus to Mycobacterium, it was anticipated that these phages should exhibit some of the features characteristic of mycobacteriophages. Traits that were identified as shared by the Rhodococcus phages and mycobacteriophages include the prevalent long-tailed morphology and the presence of genes encoding LysB-like mycolate-hydrolyzing lysis proteins. Application of DocB7 lysates to soils amended with a host strain of R. equi reduced recoverable bacterial CFU, suggesting that phage may be useful in limiting R. equi load in the environment while foals are susceptible to infection. PMID:21097585

  6. The elusive S2 state, the S1/S2 splitting, and the excimer states of the benzene dimer.

    PubMed

    Balmer, Franziska A; Trachsel, Maria A; van der Avoird, Ad; Leutwyler, Samuel

    2015-06-21

    We observe the weak S0 → S2 transitions of the T-shaped benzene dimers (Bz)2 and (Bz-d6)2 about 250 cm(-1) and 220 cm(-1) above their respective S0 → S1 electronic origins using two-color resonant two-photon ionization spectroscopy. Spin-component scaled (SCS) second-order approximate coupled-cluster (CC2) calculations predict that for the tipped T-shaped geometry, the S0 → S2 electronic oscillator strength fel(S2) is ∼10 times smaller than fel(S1) and the S2 state lies ∼240 cm(-1) above S1, in excellent agreement with experiment. The S0 → S1 (ππ(∗)) transition is mainly localized on the "stem" benzene, with a minor stem → cap charge-transfer contribution; the S0 → S2 transition is mainly localized on the "cap" benzene. The orbitals, electronic oscillator strengths fel(S1) and fel(S2), and transition frequencies depend strongly on the tipping angle ω between the two Bz moieties. The SCS-CC2 calculated S1 and S2 excitation energies at different T-shaped, stacked-parallel and parallel-displaced stationary points of the (Bz)2 ground-state surface allow to construct approximate S1 and S2 potential energy surfaces and reveal their relation to the "excimer" states at the stacked-parallel geometry. The fel(S1) and fel(S2) transition dipole moments at the C2v-symmetric T-shape, parallel-displaced and stacked-parallel geometries are either zero or ∼10 times smaller than at the tipped T-shaped geometry. This unusual property of the S0 → S1 and S0 → S2 transition-dipole moment surfaces of (Bz)2 restricts its observation by electronic spectroscopy to the tipped and tilted T-shaped geometries; the other ground-state geometries are impossible or extremely difficult to observe. The S0 → S1/S2 spectra of (Bz)2 are compared to those of imidazole ⋅ (Bz)2, which has a rigid triangular structure with a tilted (Bz)2 subunit. The S0 → S1/ S2 transitions of imidazole-(benzene)2 lie at similar energies as those of (Bz)2, confirming our assignment of the

  7. Mg(2+)-Dependent Control of the Spatial Arrangement of Rhodococcus erythropolis PR4 Cells in Aqueous-Alkane Two Phase Culture Containing n-Dodecane.

    PubMed

    Takihara, Hayato; Akase, Yumiko; Sunairi, Michio; Iwabuchi, Noriyuki

    2016-06-25

    We recently reported that a close relationship exists between alkane carbon-chain length, cell growth, and translocation frequency in Rhodococcus. In the present study, we examined the regulation of the spatial arrangement of cells in aqueous-alkane two phase cultures. An analysis of the effects of minerals on cell localization revealed that changes in the concentration of MgSO4 in two phase cultures containing n-dodecane (C12) altered cell localization from translocation to adhesion and vice versa. Our results indicate that the spatial arrangement of cells in two phase culture systems is controlled through the regulation of MgSO4 concentrations. PMID:27180641

  8. Mg2+-Dependent Control of the Spatial Arrangement of Rhodococcus erythropolis PR4 Cells in Aqueous-Alkane Two Phase Culture Containing n-Dodecane

    PubMed Central

    Takihara, Hayato; Akase, Yumiko; Sunairi, Michio; Iwabuchi, Noriyuki

    2016-01-01

    We recently reported that a close relationship exists between alkane carbon-chain length, cell growth, and translocation frequency in Rhodococcus. In the present study, we examined the regulation of the spatial arrangement of cells in aqueous-alkane two phase cultures. An analysis of the effects of minerals on cell localization revealed that changes in the concentration of MgSO4 in two phase cultures containing n-dodecane (C12) altered cell localization from translocation to adhesion and vice versa. Our results indicate that the spatial arrangement of cells in two phase culture systems is controlled through the regulation of MgSO4 concentrations. PMID:27180641

  9. Biaxial Strain Engineering in Suspended MoS2

    NASA Astrophysics Data System (ADS)

    Lloyd, David; Liu, Xinghui; Cantley, Lauren; Koch, Eric; Yang, Guang; Boddeti, Narasimha; Dunn, Martin L.; Bunch, J. Scott; Bunch Team

    2015-03-01

    Monolayer MoS2 is a direct gap semiconductor and has attracted significant interest for its potential uses in electronics and optoelectronics. It has also been shown to have a highly strain-sensitive bandgap and can sustain strains of up to 11 percent, making it ideally suited for using strain engineering to tune it's electrical and optical properties. Herein, we fabricate pressurized MoS2 blisters using single and few layer MoS2 membranes suspended over cylindrical microcavities. By applying a pressure difference across the membrane and measuring the changes to it's photoluminescence spectrumwe study the effect of elastic biaxial strain engineering on the bandgap of MoS2.

  10. Discovery and Classification of DES15S2kqw

    NASA Astrophysics Data System (ADS)

    Kasai, E.; Bassett, B.; Crawford, S.; Kniazev, A.; Childress, M.; D'Andrea, C.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.

    2015-10-01

    We report optical spectroscopy of DES15S2kqw discovered by the Dark Energy Survey. The spectrum (380-820nm) was obtained using the Robert Stobie Spectrograph (RSS) on the South African Large Telescope (SALT).

  11. Discovery of gaseous S2 in Io's Pele plume.

    PubMed

    Spencer, J R; Jessup, K L; McGrath, M A; Ballester, G E; Yelle, R

    2000-05-19

    Spectroscopy of Io's Pele plume against Jupiter by the Hubble Space Telescope in October 1999 revealed absorption due to S2 gas, with a column density of 1.0 +/- 0.2 x 10(16) per square centimeter, and probably also SO(2) gas with a column density of 7 +/- 3 x 10(16) per square centimeter. This SO2/S2 ratio (3 to 12) is expected from equilibration with silicate magmas near the quartz-fayalite-magnetite or wüstite-magnetite buffers. Condensed S3 and S4, probable coloring agents in Pele's red plume deposits, may form by polymerization of the S2, which is unstable to ultraviolet photolysis. Diffuse red deposits near other Io volcanoes suggest that venting and polymerization of S2 gas is a widespread feature of Io volcanism. PMID:10817990

  12. Ferromagnetism in freestanding MoS2 nanosheets

    PubMed Central

    2013-01-01

    Freestanding MoS2 nanosheets with different sizes were prepared through a simple exfoliated method by tuning the ultrasonic time in the organic solvent. Magnetic measurement results reveal the clear room-temperature ferromagnetism for all the MoS2 nanosheets, in contrast to the pristine MoS2 in its bulk form which shows diamagnetism only. Furthermore, results indicate that the saturation magnetizations of the nanosheets increase as the size decreases. Combining the X-ray photoelectron spectroscopy, transmission electron microscopy, and electron spin resonance results, it is suggested that the observed magnetization is related to the presence of edge spins on the edges of the nanosheets. These MoS2 nanosheets may find applications in nanodevices and spintronics by controlling the edge structures. PMID:23496904

  13. Bandgap tuning in armchair MoS2 nanoribbon

    NASA Astrophysics Data System (ADS)

    Yue, Qu; Chang, Shengli; Kang, Jun; Zhang, Xueao; Shao, Zhengzheng; Qin, Shiqiao; Li, Jingbo

    2012-08-01

    We report on the first-principles calculations of bandgap modulation in armchair MoS2 nanoribbon (AMoS2NR) by transverse and perpendicular electric fields respectively. In the monolayer AMoS2NR case, it is shown that the bandgap can be significantly reduced and be closed by transverse field, whereas the bandgap modulation is absent under perpendicular field. The critical strength of transverse field for gap closure decreases as ribbon width increases. In the multilayer AMoS2NR case, in contrast, it is shown that the bandgap can be effectively reduced by both transverse and perpendicular fields. Nevertheless, it seems that the two fields exhibit different modulation effects on the gap. The critical strength of perpendicular field for gap closure decreases with increasing number of layers, while the critical strength of transverse field is almost independent of it.

  14. Bandgap tuning in armchair MoS2 nanoribbon.

    PubMed

    Yue, Qu; Chang, Shengli; Kang, Jun; Zhang, Xueao; Shao, Zhengzheng; Qin, Shiqiao; Li, Jingbo

    2012-08-22

    We report on the first-principles calculations of bandgap modulation in armchair MoS(2) nanoribbon (AMoS(2)NR) by transverse and perpendicular electric fields respectively. In the monolayer AMoS(2)NR case, it is shown that the bandgap can be significantly reduced and be closed by transverse field, whereas the bandgap modulation is absent under perpendicular field. The critical strength of transverse field for gap closure decreases as ribbon width increases. In the multilayer AMoS(2)NR case, in contrast, it is shown that the bandgap can be effectively reduced by both transverse and perpendicular fields. Nevertheless, it seems that the two fields exhibit different modulation effects on the gap. The critical strength of perpendicular field for gap closure decreases with increasing number of layers, while the critical strength of transverse field is almost independent of it. PMID:22813480

  15. Precision polarizability measurements of atomic cesium's 8 s 2S1 / 2 and 9 s 2S1 / 2 states

    NASA Astrophysics Data System (ADS)

    Weaver, Hannah; Kortyna, Andrew

    2013-05-01

    We report hyperfine-resolved scalar polarizabilities for cesium's 8 s 2S1 / 2 and 9 s 2S1 / 2 states using resonant two-photon spectroscopy. Two single-mode, external-cavity diode lasers drive the 6 s 2S1 / 2 --> 6 p 2P1 / 2 --> ns 2S1 / 2 transition (n = 8 or 9). Both laser beams are split and counter-propagate through an effusive beam and a vapor cell. An electric field applied across two parallel plates imposes Stark shifts on the ns 2S1 / 2 levels in the effusive beam. Electric-field strengths are measured in situ. The laser frequency is calibrated in the vapor cell using a phase modulation technique, with the modulation frequency referenced to the ground-state hyperfine splitting of atomic rubidium. Our measured 8 s 2S1 / 2 polarizability, 38370 +/- 380 a03, agrees with previous theory and experiments. Our measured 9 s 2S1 / 2 polarizability, 150700 +/- 1100 a03, agrees within two sigma of theory, but we are unaware of previous measurements. We also verify that these polarizabilities are independent of the hyperfine levels, placing upper limits on the differential polarizabilities of 200 +/- 260 a03 for the 8 s 2S1 / 2 state and 490 +/- 450 a03 for the 9 s 2S1 / 2 state. Supported by the National Science Foundation under Grant PHY-0653107.

  16. Pressure confinement effect in MoS2 monolayers.

    PubMed

    Li, Fangfei; Yan, Yalan; Han, Bo; Li, Liang; Huang, Xiaoli; Yao, Mingguang; Gong, Yuanbo; Jin, Xilian; Liu, Baoli; Zhu, Chuanrui; Zhou, Qiang; Cui, Tian

    2015-05-21

    With ever increasing interest in layered materials, molybdenum disulfide has been widely investigated due to its unique optoelectronic properties. Pressure is an effective technique to tune the lattice and electronic structure of materials such that high pressure studies can disclose new structural and optical phenomena. In this study, taking MoS2 as an example, we investigate the pressure confinement effect on monolayer MoS2 by in situ high pressure Raman and photoluminescence (PL) measurements. Our results reveal a structural deformation of monolayer MoS2 starting from 0.84 GPa, which is evidenced by the splitting of E(1)2g and A1g modes. A further compression leads to a transition from the 1H-MoS2 phase to a novel structure evidenced by the appearance of two new peaks located at 200 and 240 cm(-1). This is a distinct feature of monolayer MoS2 compared with bulk MoS2. The new structure is supposed to have a distorted unit with the S atoms slided within a single layer like that of metastable 1T'-MoS2. However, unlike the non-photoluminescent 1T'-MoS2 structure, our monolayer shows a remarkable PL peak and a pressure-induced blue shift up to 13.1 GPa. This pressure-dependent behavior might enable the development of novel devices with multiple phenomena involving the strong coupling of the mechanical, electrical and optical properties of layered nanomaterials. PMID:25922917

  17. Few-layer HfS2 transistors.

    PubMed

    Kanazawa, Toru; Amemiya, Tomohiro; Ishikawa, Atsushi; Upadhyaya, Vikrant; Tsuruta, Kenji; Tanaka, Takuo; Miyamoto, Yasuyuki

    2016-01-01

    HfS2 is the novel transition metal dichalcogenide, which has not been experimentally investigated as the material for electron devices. As per the theoretical calculations, HfS2 has the potential for well-balanced mobility (1,800 cm(2)/V·s) and bandgap (1.2 eV) and hence it can be a good candidate for realizing low-power devices. In this paper, the fundamental properties of few-layer HfS2 flakes were experimentally evaluated. Micromechanical exfoliation using scotch tape extracted atomically thin HfS2 flakes with varying colour contrasts associated with the number of layers and resonant Raman peaks. We demonstrated the I-V characteristics of the back-gated few-layer (3.8 nm) HfS2 transistor with the robust current saturation. The on/off ratio was more than 10(4) and the maximum drain current of 0.2 μA/μm was observed. Moreover, using the electric double-layer gate structure with LiClO4:PEO electrolyte, the drain current of the HfS2 transistor significantly increased to 0.75 mA/μm and the mobility was estimated to be 45 cm(2)/V·s at least. This improved current seemed to indicate superior intrinsic properties of HfS2. These results provides the basic information for the experimental researches of electron devices based on HfS2. PMID:26926098

  18. Few-layer HfS2 transistors

    PubMed Central

    Kanazawa, Toru; Amemiya, Tomohiro; Ishikawa, Atsushi; Upadhyaya, Vikrant; Tsuruta, Kenji; Tanaka, Takuo; Miyamoto, Yasuyuki

    2016-01-01

    HfS2 is the novel transition metal dichalcogenide, which has not been experimentally investigated as the material for electron devices. As per the theoretical calculations, HfS2 has the potential for well-balanced mobility (1,800 cm2/V·s) and bandgap (1.2 eV) and hence it can be a good candidate for realizing low-power devices. In this paper, the fundamental properties of few-layer HfS2 flakes were experimentally evaluated. Micromechanical exfoliation using scotch tape extracted atomically thin HfS2 flakes with varying colour contrasts associated with the number of layers and resonant Raman peaks. We demonstrated the I-V characteristics of the back-gated few-layer (3.8 nm) HfS2 transistor with the robust current saturation. The on/off ratio was more than 104 and the maximum drain current of 0.2 μA/μm was observed. Moreover, using the electric double-layer gate structure with LiClO4:PEO electrolyte, the drain current of the HfS2 transistor significantly increased to 0.75 mA/μm and the mobility was estimated to be 45 cm2/V·s at least. This improved current seemed to indicate superior intrinsic properties of HfS2. These results provides the basic information for the experimental researches of electron devices based on HfS2. PMID:26926098

  19. Crystal structure of new AsS2 compound

    NASA Astrophysics Data System (ADS)

    Bolotina, N. B.; Brazhkin, V. V.; Dyuzheva, T. I.; Lityagina, L. M.; Kulikova, L. F.; Nikolaev, N. A.; Verin, I. A.

    2013-01-01

    AsS2 single crystals have been obtained for the first time from an As2S3 melt at pressures above 6 GPa and temperatures above 800 K in the As2S3 → AsS + AsS2 reaction. The monoclinic structure of the new high-pressure phase is solved by X-ray diffraction analysis and compared to the structure of high-pressure AsS phase, which was studied previously.

  20. Electrical Transport Properties of Polymorphic MoS2.

    PubMed

    Kim, Jun Suk; Kim, Jaesu; Zhao, Jiong; Kim, Sungho; Lee, Jin Hee; Jin, Youngjo; Choi, Homin; Moon, Byoung Hee; Bae, Jung Jun; Lee, Young Hee; Lim, Seong Chu

    2016-08-23

    The engineering of polymorphs in two-dimensional layered materials has recently attracted significant interest. Although the semiconducting (2H) and metallic (1T) phases are known to be stable in thin-film MoTe2, semiconducting 2H-MoS2 is locally converted into metallic 1T-MoS2 through chemical lithiation. In this paper, we describe the observation of the 2H, 1T, and 1T' phases coexisting in Li-treated MoS2, which result in unusual transport phenomena. Although multiphase MoS2 shows no transistor-gating response, the channel resistance decreases in proportion to the temperature, similar to the behavior of a typical semiconductor. Transmission electron microscopy images clearly show that the 1T and 1T' phases are randomly distributed and intervened with 2H-MoS2, which is referred to as the 1T and 1T' puddling phenomenon. The resistance curve fits well with 2D-variable range-hopping transport behavior, where electrons hop over 1T domains that are bounded by semiconducting 2H phases. However, near 30 K, electrons hop over charge puddles. The large temperature coefficient of resistance (TCR) of multiphase MoS2, -2.0 × 10(-2) K(-1) at 300 K, allows for efficient IR detection at room temperature by means of the photothermal effect. PMID:27399325

  1. Immunogenecity of synthetic peptides representing linear B-cell epitopes of VapA of Rhodococcus equi.

    PubMed

    Taouji, Saïd; Nomura, Izumi; Giguère, Steeve; Tomomitsu, Seiji; Kakuda, Tsutomu; Ganne, Vincent; Takaï, Shinji

    2004-03-12

    Amino acid 65-78 of membrane protein VapA of the facultative intracellular Rhodococcus equi contained an immunodominant N-terminal B-cell epitope (N15Y peptide). Safety and immunogenecity of a synthetic peptide consisting of the amino acid 65-78 of VapA (peptide N15Y) were evaluated first in mice and in healthy adult horses. A single dose of a peptide-VapA vaccine induced and only in presence of adjuvant, specific IgG antibodies in sera of mice. After challenge with virulent R. equi 3 weeks after immunization, tissue clearance was more delayed in immunized mice than in control mice. An antibody-mediated response (restricted to IgG1 and IgG2b subclasses) predominated in vaccinated mice sera and no specific lymphocytes proliferation was observed. Next, a total of 15 mares were given systemic inoculation of N15Y peptide with IMS3012 ( n = 4 ) or IMS2211 ( n = 4 ) or ISA35 ( n = 4 ) or placebo ( n = 2). Serological responses to the peptide vaccine were found in all but not in placebo group. A significant increase of IgGb subclass in sera of vaccinated mare with N15Y peptide in presence of IMS3012 was observed in comparison to IMS2211 or ISA35 or control group. Moreover, INF-gamma, IL-2 and IL-10 mRNA expression increased more significantly in peripheral blood lymphocytes of IMS3012 group than in IMS2211 or ISA35 group. Interestingly, a significant decrease of IL-4 mRNA expression (undetectable level) was observed with all adjuvants. These results support the use of peptide N15Y in presence of IMS3012 adjuvant in future studies of protection of foals against R. equi. PMID:15003638

  2. Identification of Pulmonary T-Lymphocyte and Serum Antibody Isotype Responses Associated with Protection against Rhodococcus equi

    PubMed Central

    Lopez, A. Marianela; Hines, Melissa T.; Palmer, Guy H.; Alperin, Debra C.; Hines, Stephen A.

    2002-01-01

    Rhodococcus equi infects and causes pneumonia in foals between 2 and 4 months of age but does not induce disease in immunocompetent adults, which are immune and remain clinically normal upon challenge. Understanding the protective response against R. equi in adult horses is important in the development of vaccine strategies, since those mechanisms likely reflect the protective phenotype that an effective vaccine would generate in the foal. Twelve adult horses were challenged with virulent R. equi and shown to be protected against clinical disease. Stimulation of cells obtained from bronchoalveolar lavage fluid with either R. equi or the vaccine candidate protein VapA resulted in significant proliferation and a significant increase in the level of gamma interferon (IFN-γ) expression by day 7 postchallenge. The levels of interleukin-4 expression were also increased at day 7 postchallenge; however, this increase was not antigen specific. Anamnestic increases in the levels of binding to R. equi and VapA of all immunoglobulin G (IgG) antibody isotypes [IgGa, IgGb, IgG(T)] examined were detected postchallenge. The levels of R. equi- and VapA-specific IgGa and IgGb antibodies, the IgG isotypes that preferentially opsonize and fix complement in horses, were dramatically enhanced postchallenge. The antigen-specific proliferation of bronchoalveolar lavage fluid cells, the levels of IFN-γ expression by these cells, and the anamnestic increases in the levels of opsonizing IgG isotypes are consistent with stimulation of a memory response in immune adult horses and represent correlates for vaccine development in foals. PMID:12414760

  3. Identification of pulmonary T-lymphocyte and serum antibody isotype responses associated with protection against Rhodococcus equi.

    PubMed

    Lopez, A Marianela; Hines, Melissa T; Palmer, Guy H; Alperin, Debra C; Hines, Stephen A

    2002-11-01

    Rhodococcus equi infects and causes pneumonia in foals between 2 and 4 months of age but does not induce disease in immunocompetent adults, which are immune and remain clinically normal upon challenge. Understanding the protective response against R. equi in adult horses is important in the development of vaccine strategies, since those mechanisms likely reflect the protective phenotype that an effective vaccine would generate in the foal. Twelve adult horses were challenged with virulent R. equi and shown to be protected against clinical disease. Stimulation of cells obtained from bronchoalveolar lavage fluid with either R. equi or the vaccine candidate protein VapA resulted in significant proliferation and a significant increase in the level of gamma interferon (IFN-gamma) expression by day 7 postchallenge. The levels of interleukin-4 expression were also increased at day 7 postchallenge; however, this increase was not antigen specific. Anamnestic increases in the levels of binding to R. equi and VapA of all immunoglobulin G (IgG) antibody isotypes [IgGa, IgGb, IgG(T)] examined were detected postchallenge. The levels of R. equi- and VapA-specific IgGa and IgGb antibodies, the IgG isotypes that preferentially opsonize and fix complement in horses, were dramatically enhanced postchallenge. The antigen-specific proliferation of bronchoalveolar lavage fluid cells, the levels of IFN-gamma expression by these cells, and the anamnestic increases in the levels of opsonizing IgG isotypes are consistent with stimulation of a memory response in immune adult horses and represent correlates for vaccine development in foals. PMID:12414760

  4. Immunoglobulin G Subisotype Responses of Pneumonic and Healthy, Exposed Foals and Adult Horses to Rhodococcus equi Virulence-Associated Proteins

    PubMed Central

    Hooper-McGrevy, Kathleen E.; Wilkie, Bruce N.; Prescott, John F.

    2003-01-01

    Rhodococcus equi causes severe pyogranulomatous pneumonia in foals and in immunocompromised humans. Replication of virulent isolates within macrophages correlates with the presence of a large plasmid which encodes a family of seven virulence-associated proteins (VapA and VapC to VapH), whose functions are unknown. Although cell-mediated immunity is thought to be crucial in eliminating R. equi infection, antibody partially protects foals. The antibody response to both VapA and VapC was similar in six adult horses and six naturally exposed but healthy foals, as well as in eight foals with R. equi pneumonia. The immunoglobulin G (IgG) subisotype response of pneumonic foals to Vap proteins was significantly IgGb biased and also had a trend toward higher IgGT association compared to the isotype association of antibody in adult horses and healthy exposed foals. This suggests that in horses, IgGb and IgGT are Th2 isotypes and IgGa is a Th1 isotype. Furthermore, it suggests that foals which develop R. equi pneumonia have a Th2-biased, ineffective immune response whereas foals which become immune develop a Th1-biased immune response. Pneumonic foals had significantly more antibody to VapD and VapE than did healthy exposed foals. This may indicate a difference in the expression of these two Vap proteins during persistent infection. Alternatively, in pneumonic foals the deviation of the immune response toward VapD and VapE may reflect a bias unfavorable to R. equi resistance. These data indicate possible age-related differences in the equine immune response affecting Th1-Th2 bias as well as antibody specificity bias, which together favor the susceptibility of foals to R. equi pneumonia. PMID:12738629

  5. Metabolism of 2-Chloro-4-Nitroaniline via Novel Aerobic Degradation Pathway by Rhodococcus sp. Strain MB-P1

    PubMed Central

    Khan, Fazlurrahman; Pal, Deepika; Vikram, Surendra; Cameotra, Swaranjit Singh

    2013-01-01

    2-chloro-4-nitroaniline (2-C-4-NA) is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium, the degradation of 2-C-4-NA occurs with the release of nitrite ions, chloride ions, and ammonia. During the resting cell studies, the 2-C-4-NA-induced cells of strain MB-P1 transformed 2-C-4-NA stoichiometrically to 4-amino-3-chlorophenol (4-A-3-CP), which subsequently gets transformed to 6-chlorohydroxyquinol (6-CHQ) metabolite. Enzyme assays by cell-free lysates prepared from 2-C-4-NA-induced MB-P1 cells, demonstrated that the first enzyme in the 2-C-4-NA degradation pathway is a flavin-dependent monooxygenase that catalyzes the stoichiometric removal of nitro group and production of 4-A-3-CP. Oxygen uptake studies on 4-A-3-CP and related anilines by 2-C-4-NA-induced MB-P1 cells demonstrated the involvement of aniline dioxygenase in the second step of 2-C-4-NA degradation. This is the first report showing 2-C-4-NA degradation and elucidation of corresponding metabolic pathway by an aerobic bacterium. PMID:23614030

  6. Stereoselective carveol dehydrogenase from Rhodococcus erythropolis DCL14. A novel nicotinoprotein belonging to the short chain dehydrogenase/reductase superfamily.

    PubMed

    van der Werf, M J; van der Ven, C; Barbirato, F; Eppink, M H; de Bont, J A; van Berkel, W J

    1999-09-10

    A novel nicotinoprotein, catalyzing the dichlorophenolindophenol-dependent oxidation of carveol to carvone, was purified to homogeneity from Rhodococcus erythropolis DCL14. The enzyme is specifically induced after growth on limonene and carveol. Dichlorophenolindophenol-dependent carveol dehydrogenase (CDH) is a homotetramer of 120 kDa with each subunit containing a tightly bound NAD(H) molecule. The enzyme is optimally active at pH 5.5 and 50 degrees C and displays a broad substrate specificity with a preference for substituted cyclohexanols. When incubated with a diastereomeric mixture of (4R)- or (4S)-carveol, CDH stereoselectively catalyzes the conversion of the (6S)-carveol stereoisomers only. Kinetic studies with pure stereoisomers showed that this is due to large differences in V(max)/K(m) values and simultaneous product inhibition by (R)- or (S)-carvone. The R. erythropolis CDH gene (limC) was identified in an operon encoding the enzymes involved in limonene degradation. The CDH nucleotide sequence revealed an open reading frame of 831 base pairs encoding a 277-amino acid protein with a deduced mass of 29,531 Da. The CDH primary structure shares 10-30% sequence identity with members of the short chain dehydrogenase/reductase superfamily. Structure homology modeling with trihydroxynaphthalene reductase from Magnaporthe grisea suggests that CDH from R. erythropolis DCL14 is an alpha/beta one-domain protein with an extra loop insertion involved in NAD binding and a flexible C-terminal part involved in monoterpene binding. PMID:10473585

  7. Age-Related Changes following In Vitro Stimulation with Rhodococcus equi of Peripheral Blood Leukocytes from Neonatal Foals

    PubMed Central

    Kachroo, Priyanka; Ivanov, Ivan; Seabury, Ashley G.; Liu, Mei; Chowdhary, Bhanu P.; Cohen, Noah D.

    2013-01-01

    Rhodococcus equi is an intracellular bacterium primarily known as an equine pathogen that infects young foals causing a pyogranulomatuous pneumonia. The molecular mechanisms mediating the immune response of foals to R. equi are not fully elucidated. Hence, global genomic high-throughput tools like gene expression microarrays might identify age-related gene expression signatures and molecular pathways that contribute to the immune mechanisms underlying the inherent susceptibility of foals to disease caused by R. equi. The objectives of this study were 2-fold: 1) to compare the expression profiles at specific ages of blood leukocytes from foals stimulated with virulent R. equi with those of unstimulated leukocytes; and, 2) to characterize the age-related changes in the gene expression profile associated with blood leukocytes in response to stimulation with virulent R. equi. Peripheral blood leukocytes were obtained from 6 foals within 24 hours (h) of birth (day 1) and 2, 4, and 8 weeks after birth. The samples were split, such that half were stimulated with live virulent R. equi, and the other half served as unstimulated control. RNA was extracted and the generated cDNA was labeled with fluorescent dyes for microarray hybridizations using an equine microarray. Our findings suggest that there is age-related differential expression of genes involved in host immune response and immunity. We found induction of genes critical for host immunity against pathogens (MHC class II) only at the later time-points (compared to birth). While it appears that foals up to 8-weeks of age are able to initiate a protective inflammatory response against the bacteria, relatively decreased expression of various other immune-related genes points toward inherent diminished immune responses closer to birth. These genes and pathways may contribute to disease susceptibility in foals if infected early in life, and might thus be targeted for developing preventative or therapeutic strategies. PMID

  8. Transcriptome of the quorum-sensing signal-degrading Rhodococcus erythropolis responds differentially to virulent and avirulent Pectobacterium atrosepticum.

    PubMed

    Kwasiborski, A; Mondy, S; Chong, T-M; Barbey, C; Chan, K-G; Beury-Cirou, A; Latour, X; Faure, D

    2015-05-01

    Social bacteria use chemical communication to coordinate and synchronize gene expression via the quorum-sensing (QS) regulatory pathway. In Pectobacterium, a causative agent of the blackleg and soft-rot diseases on potato plants and tubers, expression of the virulence factors is collectively controlled by the QS-signals N-acylhomoserine lactones (NAHLs). Several soil bacteria, such as the actinobacterium Rhodococcus erythropolis, are able to degrade NAHLs, hence quench the chemical communication and virulence of Pectobacterium. Here, next-generation sequencing was used to investigate structural and functional genomics of the NAHL-degrading R. erythropolis strain R138. The R. erythropolis R138 genome (6.7 Mbp) contained a single circular chromosome, one linear (250 kbp) and one circular (84 kbp) plasmid. Growth of R. erythropolis and P. atrosepticum was not altered in mixed-cultures as compared with monocultures on potato tuber slices. HiSeq-transcriptomics revealed that no R. erythropolis genes were differentially expressed when R. erythropolis was cultivated in the presence vs absence of the avirulent P. atrosepticum mutant expI, which is defective for QS-signal synthesis. By contrast 50 genes (<1% of the R. erythropolis genome) were differentially expressed when R. erythropolis was cultivated in the presence vs absence of the NAHL-producing virulent P. atrosepticum. Among them, quantitative real-time reverse-transcriptase-PCR confirmed that the expression of some alkyl-sulfatase genes decreased in the presence of a virulent P. atrosepticum, as well as deprivation of organic sulfur such as methionine, which is a key precursor in the synthesis of NAHL by P. atrosepticum. PMID:25585922

  9. Transcriptome of the quorum-sensing signal-degrading Rhodococcus erythropolis responds differentially to virulent and avirulent Pectobacterium atrosepticum

    PubMed Central

    Kwasiborski, A; Mondy, S; Chong, T-M; Barbey, C; Chan, K-G; Beury-Cirou, A; Latour, X; Faure, D

    2015-01-01

    Social bacteria use chemical communication to coordinate and synchronize gene expression via the quorum-sensing (QS) regulatory pathway. In Pectobacterium, a causative agent of the blackleg and soft-rot diseases on potato plants and tubers, expression of the virulence factors is collectively controlled by the QS-signals N-acylhomoserine lactones (NAHLs). Several soil bacteria, such as the actinobacterium Rhodococcus erythropolis, are able to degrade NAHLs, hence quench the chemical communication and virulence of Pectobacterium. Here, next-generation sequencing was used to investigate structural and functional genomics of the NAHL-degrading R. erythropolis strain R138. The R. erythropolis R138 genome (6.7 Mbp) contained a single circular chromosome, one linear (250 kbp) and one circular (84 kbp) plasmid. Growth of R. erythropolis and P. atrosepticum was not altered in mixed-cultures as compared with monocultures on potato tuber slices. HiSeq-transcriptomics revealed that no R. erythropolis genes were differentially expressed when R. erythropolis was cultivated in the presence vs absence of the avirulent P. atrosepticum mutant expI, which is defective for QS-signal synthesis. By contrast 50 genes (<1% of the R. erythropolis genome) were differentially expressed when R. erythropolis was cultivated in the presence vs absence of the NAHL-producing virulent P. atrosepticum. Among them, quantitative real-time reverse-transcriptase–PCR confirmed that the expression of some alkyl-sulfatase genes decreased in the presence of a virulent P. atrosepticum, as well as deprivation of organic sulfur such as methionine, which is a key precursor in the synthesis of NAHL by P. atrosepticum. PMID:25585922

  10. Structural characterisation of the virulence-associated protein VapG from the horse pathogen Rhodococcus equi

    PubMed Central

    Okoko, Tebekeme; Blagova, Elena V.; Whittingham, Jean L.; Dover, Lynn G.; Wilkinson, Anthony J.

    2015-01-01

    Virulence and host range in Rhodococcus equi depends on the variable pathogenicity island of their virulence plasmids. Notable gene products are a family of small secreted virulence-associated proteins (Vaps) that are critical to intramacrophagic proliferation. Equine-adapted strains, which cause severe pyogranulomatous pneumonia in foals, produce a cell-associated VapA that is necessary for virulence, alongside five other secreted homologues. In the absence of biochemical insight, attention has turned to the structures of these proteins to develop a functional hypothesis. Recent studies have described crystal structures for VapD and a truncate of the VapA orthologue of porcine-adapted strains, VapB. Here, we crystallised the full-length VapG and determined its structure by molecular replacement. Electron density corresponding to the N-terminal domain was not visible suggesting that it is disordered. The protein core adopted a compact elliptical, anti-parallel β-barrel fold with β1–β2–β3–β8–β5–β6–β7–β4 topology decorated by a single peripheral α-helix unique to this family. The high glycine content of the protein allows close packing of secondary structural elements. Topologically, the surface has no indentations that indicate a nexus for molecular interactions. The distribution of polar and apolar groups on the surface of VapG is markedly uneven. One-third of the surface is dominated by exposed apolar side-chains, with no ionisable and only four polar side-chains exposed, giving rise to an expansive flat hydrophobic surface. Other surface regions are more polar, especially on or near the α-helix and a belt around the centre of the β-barrel. Possible functional significance of these recent structures is discussed. PMID:25746683

  11. Metabolism of 2-chloro-4-nitroaniline via novel aerobic degradation pathway by Rhodococcus sp. strain MB-P1.

    PubMed

    Khan, Fazlurrahman; Pal, Deepika; Vikram, Surendra; Cameotra, Swaranjit Singh

    2013-01-01

    2-chloro-4-nitroaniline (2-C-4-NA) is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium, the degradation of 2-C-4-NA occurs with the release of nitrite ions, chloride ions, and ammonia. During the resting cell studies, the 2-C-4-NA-induced cells of strain MB-P1 transformed 2-C-4-NA stoichiometrically to 4-amino-3-chlorophenol (4-A-3-CP), which subsequently gets transformed to 6-chlorohydroxyquinol (6-CHQ) metabolite. Enzyme assays by cell-free lysates prepared from 2-C-4-NA-induced MB-P1 cells, demonstrated that the first enzyme in the 2-C-4-NA degradation pathway is a flavin-dependent monooxygenase that catalyzes the stoichiometric removal of nitro group and production of 4-A-3-CP. Oxygen uptake studies on 4-A-3-CP and related anilines by 2-C-4-NA-induced MB-P1 cells demonstrated the involvement of aniline dioxygenase in the second step of 2-C-4-NA degradation. This is the first report showing 2-C-4-NA degradation and elucidation of corresponding metabolic pathway by an aerobic bacterium. PMID:23614030

  12. Immunoglobulin G subisotype responses of pneumonic and healthy, exposed foals and adult horses to Rhodococcus equi virulence-associated proteins.

    PubMed

    Hooper-McGrevy, Kathleen E; Wilkie, Bruce N; Prescott, John F

    2003-05-01

    Rhodococcus equi causes severe pyogranulomatous pneumonia in foals and in immunocompromised humans. Replication of virulent isolates within macrophages correlates with the presence of a large plasmid which encodes a family of seven virulence-associated proteins (VapA and VapC to VapH), whose functions are unknown. Although cell-mediated immunity is thought to be crucial in eliminating R. equi infection, antibody partially protects foals. The antibody response to both VapA and VapC was similar in six adult horses and six naturally exposed but healthy foals, as well as in eight foals with R. equi pneumonia. The immunoglobulin G (IgG) subisotype response of pneumonic foals to Vap proteins was significantly IgGb biased and also had a trend toward higher IgGT association compared to the isotype association of antibody in adult horses and healthy exposed foals. This suggests that in horses, IgGb and IgGT are Th2 isotypes and IgGa is a Th1 isotype. Furthermore, it suggests that foals which develop R. equi pneumonia have a Th2-biased, ineffective immune response whereas foals which become immune develop a Th1-biased immune response. Pneumonic foals had significantly more antibody to VapD and VapE than did healthy exposed foals. This may indicate a difference in the expression of these two Vap proteins during persistent infection. Alternatively, in pneumonic foals the deviation of the immune response toward VapD and VapE may reflect a bias unfavorable to R. equi resistance. These data indicate possible age-related differences in the equine immune response affecting Th1-Th2 bias as well as antibody specificity bias, which together favor the susceptibility of foals to R. equi pneumonia. PMID:12738629

  13. Molecular characterization of Rhodococcus equi from horse-breeding farms by means of multiplex PCR for the vap gene family.

    PubMed

    Monego, Fernanda; Maboni, Franciele; Krewer, Cristina; Vargas, Agueda; Costa, Mateus; Loreto, Elgion

    2009-04-01

    This study evaluated the molecular characteristics of Rhodococcus equi isolates obtained from horses by a multiplex PCR assay that amplifies the vap gene family (vapA, -B, -C, -D, -E, -F, -G, and -H). A total of 180 R. equi isolates were studied from four different sources, namely healthy horse feces (112), soil (12), stalls (23), and clinical isolates (33) from horse-breeding farms. The technique was performed and confirmed by sequencing of amplified vap gene family controls. Thirty-two (17.8%) of the R. equi isolates were positive for the vapA gene and carried at least three other vap genes. All 147 isolates from equine feces, stalls, and soil failed to demonstrate any genes associated with virulence-inducing proteins. About 32 (97.0%) out of the 33 clinical equine isolates tested positive for the multiplex PCR assay for the vap gene family. They demonstrated six molecular profiles: 100% featured the vapA, vapD, and vapG genes, 86.6% vapF, 76.6% vapH, 43.3% vapC, 36.6% vapE, and none vapB. The most frequent molecular profile was vap A, -D, -F, G, and -H, where this profile was present in 37.5% of the strains. Moreover, there was no molecular epidemiological pattern for R. equi isolates that uniquely mapped to each horse-breeding farm studied. Our proposed technique allows the identification of eight members of the vap gene family (vapA, B, -C, -D, -E, -F, -G, and -H). It is a practical and efficient method of conducting clinical and epidemiological studies on R. equi isolates. PMID:19205798

  14. Extracellular production of Streptomyces exfoliatus poly(3-hydroxybutyrate) depolymerase in Rhodococcus sp. T104: determination of optimal biocatalyst conditions.

    PubMed

    García-Hidalgo, Javier; Hormigo, Daniel; Prieto, María Auxiliadora; Arroyo, Miguel; de la Mata, Isabel

    2012-03-01

    The phaZ ( Sex ) gene encoding poly(3-hydroxybutyrate) depolymerase from Streptomyces exfoliatus has been successfully cloned and expressed in Rhodococcus sp. T104 for the first time. Likewise, the recombinant enzyme was efficiently produced as an extracellular active form and purified to homogeneity by two hydrophobic chromatographic steps. MALDI-TOF analysis showed that the native enzyme is a monomer. Circular dichroism studies have revealed a secondary structure showing 25.6% α-helix, 21.4% β-sheet, 17.1% β-turns, and 35.2% random coil, with a midpoint transition temperature (T (m)) of 55.8 °C. Magnesium and calcium ions enhanced the enzyme activity, whereas manganese inhibited it. EDTA moderately decreased the activity, and the enzyme was completely deactivated at 3 M NaCl. Chemical modification studies indicated the presence of the catalytic triad serine-histidine-carboxylic acid in the active site. High-performance liquid chromatography (HPLC)-mass spectrometry (MS) analysis of PHB products of enzymatic hydrolysis showed monomers and dimers of 3-hydroxybutyric acid, demonstrating that PHB depolymerase is an exo-hydrolase. Addition of methyl-β-cyclodextrin simultaneously increased the activity as well as preserved the enzyme during lyophilization. Finally, thermoinactivation studies showed that the enzyme is highly stable at 40 °C. All these features support the potential industrial application of this recombinant enzyme in the production of (R)-3-hydroxyalkanoic acid derivatives as well as in the degradation of bioplastics. PMID:21845385

  15. [Conversion of soybean sterols into 3,17-diketosteroids using actinobacteria Mycobacterium neoaurum, Pimelobacter simplex, and Rhodococcus erythropolis].

    PubMed

    Andriushina, V A; Rodina, N V; Stytsenko, T C; Luu, Duc Huy; Druzhinina, A V; Iaderets, V V; Voîshvillo, N E

    2011-01-01

    Abstract-Soybean sterols were converted into androst-4-ene-3,17-dione (AD) and 9alpha-hydroxyandrost-4-ene-3,17-dione (9-OH-AD) using three actinobacterium strains. The transformation of a microcrystallic substrate (particle size 5-15 nm) or the transformation in the presence of randomly methylated beta-cyclodextrin (MCD) were carried out by Mycobacterium neoaurum with a phytosterol load of 30 g/l over 144 h with an AD content of 14.5 and 15.2 g/l, respectively. AD obtained in the presence of MCD was transformed into ADD (13.5 g/l) by Pimelobacter simplex cells over 3 h and into 9-OH-AD by Rhodococcus erythropolis cells after 22 h without the isolation of AD from the cultural liquid. The technical product ADD was obtained in 75% yield, based on phytosterol. It contained as impurity 1.25% of AD and 1.5% of 1,2-dehydrotestosterone. In a control experiment-the process of 1,2-dehydrogenation of 20 g/l AD in the water solution of MCD-no by products were isolated. Thus, it is more expedient to introduce the 1,2-double bond into pure AD, whereas R. erythropolis strain with low destructive activity towards steroid nucleus can be used in the mixed culture with M. neoaurum. The crystal product contained, according to HPLC, 80% of 9-OH-AD, and 1.5 AD was combined. The yield of 9-OH-AD (m.p. 218-220 degrees C) based on transformed phytosterol was 56%. PMID:21790029

  16. Physiological Adaptations Involved in Alkane Assimilation at a Low Temperature by Rhodococcus sp. Strain Q15†

    PubMed Central

    Whyte, L. G.; Slagman, S. J.; Pietrantonio, F.; Bourbonnière, L.; Koval, S. F.; Lawrence, J. R.; Inniss, W. E.; Greer, C. W.

    1999-01-01

    We examined physiological adaptations which allow the psychrotroph Rhodococcus sp. strain Q15 to assimilate alkanes at a low temperature (alkanes are contaminants which are generally insoluble and/or solid at low temperatures). During growth at 5°C on hexadecane or diesel fuel, strain Q15 produced a cell surface-associated biosurfactant(s) and, compared to glucose-acetate-grown cells, exhibited increased cell surface hydrophobicity. A transmission electron microscopy examination of strain Q15 grown at 5°C revealed the presence of intracellular electron-transparent inclusions and flocs of cells connected by an extracellular polymeric substance (EPS) when cells were grown on a hydrocarbon and morphological differences between the EPS of glucose-acetate-grown and diesel fuel-grown cells. A lectin binding analysis performed by using confocal scanning laser microscopy (CSLM) showed that the EPS contained a complex mixture of glycoconjugates, depending on both the growth temperature and the carbon source. Two glycoconjugates [β-d-Gal-(1-3)-d-GlcNAc and α-l-fucose] were detected only on the surfaces of cells grown on diesel fuel at 5°C. Using scanning electron microscopy, we observed strain Q15 cells on the surfaces of octacosane crystals, and using CSLM, we observed strain Q15 cells covering the surfaces of diesel fuel microdroplets; these findings indicate that this organism assimilates both solid and liquid alkane substrates at a low temperature by adhering to the alkane phase. Membrane fatty acid analysis demonstrated that strain Q15 adapted to growth at a low temperature by decreasing the degree of saturation of membrane lipid fatty acids, but it did so to a lesser extent when it was grown on hydrocarbons at 5°C; these findings suggest that strain Q15 modulates membrane fluidity in response to the counteracting influences of low temperature and hydrocarbon toxicity. PMID:10388690

  17. Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene.

    PubMed

    Kuyukina, Maria S; Ivshina, Irena B; Korshunova, Irina O; Stukova, Galina I; Krivoruchko, Anastasiya V

    2016-03-01

    This study evaluated the effects of a trehalolipid biosurfactant produced by Rhodococcus ruber IEGM 231 on the bacterial adhesion and biofilm formation on the surface of polystyrene microplates. The adhesion of Gram-positive (Arthrobacter simplex, Bacillus subtilis, Brevibacterium linens, Corynebacterium glutamicum, Micrococcus luteus) and Gram-negative (Escherichia coli, Pseudomonas fluorescencens) bacteria correlated differently with the cell hydrophobicity and surface charge. In particular, exponentially growing bacterial cells with increased hydrophobicities adhered stronger to polystyrene compared to more hydrophilic stationary phase cells. Also, a moderate correlation (0.56) was found between zeta potential and adhesion values of actively growing bacteria, suggesting that less negatively charged cells adhered stronger to polystyrene. Efficient biosurfactant concentrations (10-100 mg/L) were determined, which selectively inhibited (up to 76 %) the adhesion of tested bacterial cultures, however without inhibiting their growth. The biosurfactant was more active against growing bacteria rather than resting cells, thus showing high biofilm-preventing properties. Contact angle measurements revealed more hydrophilic surface of the biosurfactant-covered polystyrene compared to bare polystyrene, which allowed less adhesion of hydrophobic bacteria. Furthermore, surface free-energy calculations showed a decrease in the Wan der Waals (γ(LW)) component and an increase in the acid-based (γ(AB)) component caused by the biosurfactant coating of polysterene. However, our results suggested that the biosurfactant inhibited the adhesion of bacteria independently on their surface charges. AFM scanning revealed three-type biosurfactant structures (micelles, cord-like assemblies and large vesicles) formed on glass, depending on concentrations used, that could lead to diverse anti-adhesive effects against different bacterial species. PMID:26888203

  18. Ln3I5(S2N2)(S2)(THF)10 - a new type of molecular compounds.

    PubMed

    Fagin, A A; Fukin, G K; Cherkasov, A V; Shestakov, A F; Pushkarev, A P; Balashova, T V; Maleev, A A; Bochkarev, M N

    2016-03-21

    Unprecedented complexes of the composition Ln3I5(S2N2)(S2)(THF)10 were obtained in the reactions of neodymium and dysprosium iodide-nitrides with sulfur. The inorganic core of the molecules contains the cyclic fragments Ln(μ-S2)Ln, LnSNSN and LnSN. Ten of the fourteen atoms of the core are coplanar, the remaining four S2 and I2 atoms lie in the other two orthogonal planes. The dysprosium complex upon excitation with UV light exhibits the metal-centered luminescence characteristic of the Dy(3+) ion. Geometric parameters of the molecules, computational data, electron spectroscopy and fluorescence suggest the existence of some conjugation in the mentioned heterocycles. PMID:26842841

  19. Surface Defects on Natural MoS2.

    PubMed

    Addou, Rafik; Colombo, Luigi; Wallace, Robert M

    2015-06-10

    Transition metal dichalcogenides (TMDs) are being considered for a variety of electronic and optoelectronic devices such as beyond complementary metal-oxide-semiconductor (CMOS) switches, light-emitting diodes, solar cells, as well as sensors, among others. Molybdenum disulfide (MoS2) is the most studied of the TMDs in part because of its availability in the natural or geological form. The performance of most devices is strongly affected by the intrinsic defects in geological MoS2. Indeed, most sources of current transition metal dichalcogenides have defects, including many impurities. The variability in the electrical properties of MoS2 across the surface of the same crystal has been shown to be correlated with local variations in stoichiometry as well as metallic-like and structural defects. The presence of impurities has also been suggested to play a role in determining the Fermi level in MoS2. The main focus of this work is to highlight a number of intrinsic defects detected on natural, exfoliated MoS2 crystals from two different sources that have been often used in previous reports for device fabrication. We employed room temperature scanning tunneling microscopy (STM) and spectroscopy (STS), inductively coupled plasma mass spectrometry (ICPMS), as well as X-ray photoelectron spectroscopy (XPS) to study the pristine surface of MoS2(0001) immediately after exfoliation. ICPMS used to measure the concentration of impurity elements can in part explain the local contrast behavior observed in STM images. This work highlights that the high concentration of surface defects and impurity atoms may explain the variability observed in the electrical and physical characteristics of MoS2. PMID:25980312

  20. Structure and dielectric behavior of TlSbS2

    NASA Astrophysics Data System (ADS)

    Parto, M.; Deger, D.; Ulutas, K.; Yakut, Ş.

    2013-09-01

    A comparison of structure and dielectric properties of TlSbS2 thin films, deposited in different thicknesses (400-4100 Å) by thermal evaporation of TlSbS2 crystals that were grown by the Stockbarger-Bridgman technique and the bulk material properties of TlSbS2 are presented. Dielectric constant ɛ 1 and dielectric loss ɛ 2 have been calculated by measuring capacitance and dielectric loss factor in the frequency range 20 Hz-10 KHz and in the temperature range 273-433 K. It is observed that at 1 kHz frequency and 293 K temperature the dielectric constant of TlSbS2 thin films is ɛ 1=1.8-6 and the dielectric loss of TlSbS2 thin films is ɛ 2=0.5-3 depending on film thickness. In the given intervals, both of dielectric constant and dielectric loss decrease with frequency, but increase with temperature. The maximum barrier height W m is calculated from the dielectric measurements. The values of W m for TlSbS2 films and bulk are obtained as 0.56 eV and 0.62 eV at room temperature, respectively. The obtained values agree with those proposed by the theory of hopping over the potential barrier. The temperature variation of ac conductivity can be reasonably interpreted in terms of the correlated barrier hopping model since it obeys the ω s law with a temperature dependent s ( s<1) and going down as the temperature is increased. The temperature coefficient of capacitance (TCC) and permittivity (TCP) are evaluated for both thin films and bulk material of TlSbS2.

  1. Involvement of a putative cyclic amp receptor protein (CRP)-like binding sequence and a CRP-like protein in glucose-mediated catabolite repression of thn genes in Rhodococcus sp. strain TFB.

    PubMed

    Tomás-Gallardo, Laura; Santero, Eduardo; Floriano, Belén

    2012-08-01

    Glucose catabolite repression of tetralin catabolic genes in Rhodococcus sp. strain TFB was shown to be exerted by a protein homologous to transcriptional regulators of the cyclic AMP receptor (CRP)-FNR family. The protein was detected bound to putative CRP-like boxes localized at the promoters of the thnA1 and thnS genes. PMID:22636000

  2. High frequency MoS2 nanomechanical resonators.

    PubMed

    Lee, Jaesung; Wang, Zenghui; He, Keliang; Shan, Jie; Feng, Philip X-L

    2013-07-23

    Molybdenum disulfide (MoS2), a layered semiconducting material in transition metal dichalcogenides (TMDCs), as thin as a monolayer (consisting of a hexagonal plane of Mo atoms covalently bonded and sandwiched between two planes of S atoms, in a trigonal prismatic structure), has demonstrated unique properties and strong promises for emerging two-dimensional (2D) nanodevices. Here we report on the demonstration of movable and vibrating MoS2 nanodevices, where MoS2 diaphragms as thin as 6 nm (a stack of 9 monolayers) exhibit fundamental-mode nanomechanical resonances up to f0 ~ 60 MHz in the very high frequency (VHF) band, and frequency-quality (Q) factor products up to f0 × Q ~ 2 × 10(10)Hz, all at room temperature. The experimental results from many devices with a wide range of thicknesses and lateral sizes, in combination with theoretical analysis, quantitatively elucidate the elastic transition regimes in these ultrathin MoS2 nanomechanical resonators. We further delineate a roadmap for scaling MoS2 2D resonators and transducers toward microwave frequencies. This study also opens up possibilities for new classes of vibratory devices to exploit strain- and dynamics-engineered ultrathin semiconducting 2D crystals. PMID:23738924

  3. Phonon thermal conductivity of monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Wang, Xiaonan; Tabarraei, Alireza

    2016-05-01

    We use nonequilibrium molecular dynamics modeling using Stillinger-Weber interatomic potential to investigate the thermal properties of monolayer molybdenum disulfide (MoS2) nanoribbons. We study the impact of factors such as length, edge chirality, monovacancies, and uniaxial stretching on the thermal conductivity of MoS2 nanoribbons. Our results show that longer ribbons have a higher thermal conductivity, and the thermal conductivity of infinitely long zigzag and armchair MoS2 nanoribbons is, respectively, 54 W/mK and 33 W/mK. This is significantly lower than the thermal conductivity of some other graphene-like two-dimensional materials such as graphene and boron nitride. While the presence of molybdenum or sulfur vacancies reduces the thermal conductivity of ribbons, molybdenum vacancies have a more deteriorating effect on thermal conductivities. We also have studied the impact of uniaxial stretching on the thermal conductivity of MoS2 nanoribbons. The results show that in contrast to three dimensional materials, thermal conductivity of MoS2 is fairly insensitive to stretching. We have used the phonon dispersion curves and group velocities to investigate the mechanism of this unexpected behavior. Our results show that tensile strain does not alter the phonon dispersion curves and hence the thermal conductivity does not change.

  4. Carbon nanotube-MoS2 composites as solid lubricants.

    PubMed

    Zhang, Xianfeng; Luster, Brandon; Church, Amelia; Muratore, Christopher; Voevodin, Andrey A; Kohli, Punit; Aouadi, Samir; Talapatra, Saikat

    2009-03-01

    Solid lubricants (SLs) characterized by low coefficients of friction (mu) and wear rates (w) drastically improve the life span of instruments that undergo extreme frictional wear. However, the performance of SLs such as sputtered or nanoparticulate molybdenum disulfide (MoS(2)), tungsten disulfide (WS(2)), or graphite deteriorates heavily under extreme operational conditions such as elevated temperatures and high humidity. Here, we present our preliminary results, which demonstrate that composites of carbon nanotubes (CNTs) and MoS(2) produced by electrodeposition of MoS(2) on vertically aligned CNT films have low mu ( approximately 0.03) and w (approximately 10(-13) mm(3)/N.mm) even at 300 degrees C, which are about 2 orders of magnitude better than those of nanoparticulate MoS(2)-based coatings. The high load-bearing capacity of CNTs provides a strong enduring support to MoS(2) nanoclusters and is responsible for their ultralow w. The incorporation of these composites in liquid lubricants reduces the friction coefficient of the liquid lubricants by approximately 15%. The technique described here to produce SL coatings with extremely appealing frictional properties will provide valuable solutions for a variety of tribological applications where the coatings encounter high temperature, reduced pressure, and/or low- and high-humidity conditions. PMID:20355996

  5. S2PLOT: Three-dimensional (3D) Plotting Library

    NASA Astrophysics Data System (ADS)

    Barnes, D. G.; Fluke, C. J.; Bourke, P. D.; Parry, O. T.

    2011-03-01

    We present a new, three-dimensional (3D) plotting library with advanced features, and support for standard and enhanced display devices. The library - S2PLOT - is written in C and can be used by C, C++ and FORTRAN programs on GNU/Linux and Apple/OSX systems. S2PLOT draws objects in a 3D (x,y,z) Cartesian space and the user interactively controls how this space is rendered at run time. With a PGPLOT inspired interface, S2PLOT provides astronomers with elegant techniques for displaying and exploring 3D data sets directly from their program code, and the potential to use stereoscopic and dome display devices. The S2PLOT architecture supports dynamic geometry and can be used to plot time-evolving data sets, such as might be produced by simulation codes. In this paper, we introduce S2PLOT to the astronomical community, describe its potential applications, and present some example uses of the library.

  6. Methylation of halogenated phenols and thiophenols by cell extracts of gram-positive and gram-negative bacteria. [Rhodococcus sp. ; Pseudomonas sp. ; Acinetobacter sp

    SciTech Connect

    Neilson, A.H.; Lindgren, C.; Hynning, P.A.; Remberger, M.

    1988-02-01

    O-methylation of 2,6-dibromophenol was studied in cell extracts prepared from Rhodococcus sp. strain 1395. O-methylation activity was also demonstrated in extracts from two other Rhodococcus sp. strains, an Acinetobacter sp. strain, and a Pseudomonas sp. strain. A diverse range of chloro- and bromophenols, chlorothiophenols, chloro- and bromoguaiacols, and chloro- and bromocatechols were assayed as the substrates by using extracts prepared from strain 1395; all of the compounds were methylated to the corresponding anisoles, veratroles, or guaiacols. The specific activity of the enzyme towards the thiophenols was significantly higher than it was towards all the other substrates-high activity was found with pentafluorothiophenol, although the activity with pentafluorophenol was undetectable with the incubation times used. For the chlorophenols, the position of the substituents was of cardinal importance. The enzyme had higher activity towards the halogenated catechols than towards the corresponding guaiacols, and selective O-methylation of the 3,4,5-trihalogenocatechols yielded predominantly the 3,4,5-trihalogenoguaiacols. Neither 2,4-dinitrophenol, hexachlorophene, nor 5-chloro- or 5-bromovanillin was O-methylated. The results showed conclusively that the methylation reactions were enzymatic and confirmed the conclusion from extensive studies using whole cells that methylation of halogenated phenols may be a significant alternative to biodegradation.

  7. Utilization of Trihalogenated Propanes by Agrobacterium radiobacter AD1 through Heterologous Expression of the Haloalkane Dehalogenase from Rhodococcus sp. Strain m15-3

    PubMed Central

    Bosma, Tjibbe; Kruizinga, Edwin; de Bruin, Erik J.; Poelarends, Gerrit J.; Janssen, Dick B.

    1999-01-01

    Trihalogenated propanes are toxic and recalcitrant organic compounds. Attempts to obtain pure bacterial cultures able to use these compounds as sole carbon and energy sources were unsuccessful. Both the haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 (DhlA) and that from Rhodococcus sp. strain m15-3 (DhaA) were found to dehalogenate trihalopropanes to 2,3-dihalogenated propanols, but the kinetic properties of the latter enzyme are much better. Broad-host-range dehalogenase expression plasmids, based on RSF1010 derivatives, were constructed with the haloalkane dehalogenase from Rhodococcus sp. strain m15-3 under the control of the heterologous promoters Plac, PdhlA, and Ptrc. The resulting plasmids yielded functional expression in several gram-negative bacteria. A catabolic pathway for trihalopropanes was designed by introducing these broad-host-range dehalogenase expression plasmids into Agrobacterium radiobacter AD1, which has the ability to utilize dihalogenated propanols for growth. The recombinant strain AD1(pTB3), expressing the haloalkane dehalogenase gene under the control of the dhlA promoter, was able to utilize both 1,2,3-tribromopropane and 1,2-dibromo-3-chloropropane as sole carbon sources. Moreover, increased expression of the haloalkane dehalogenase resulted in elevated resistance to trihalopropanes. PMID:10508091

  8. Single-layer MoS2 electronics.

    PubMed

    Lembke, Dominik; Bertolazzi, Simone; Kis, Andras

    2015-01-20

    CONSPECTUS: Atomic crystals of two-dimensional materials consisting of single sheets extracted from layered materials are gaining increasing attention. The most well-known material from this group is graphene, a single layer of graphite that can be extracted from the bulk material or grown on a suitable substrate. Its discovery has given rise to intense research effort culminating in the 2010 Nobel Prize in physics awarded to Andre Geim and Konstantin Novoselov. Graphene however represents only the proverbial tip of the iceberg, and increasing attention of researchers is now turning towards the veritable zoo of so-called "other 2D materials". They have properties complementary to graphene, which in its pristine form lacks a bandgap: MoS2, for example, is a semiconductor, while NbSe2 is a superconductor. They could hold the key to important practical applications and new scientific discoveries in the two-dimensional limit. This family of materials has been studied since the 1960s, but most of the research focused on their tribological applications: MoS2 is best known today as a high-performance dry lubricant for ultrahigh-vacuum applications and in car engines. The realization that single layers of MoS2 and related materials could also be used in functional electronic devices where they could offer advantages compared with silicon or graphene created a renewed interest in these materials. MoS2 is currently gaining the most attention because the material is easily available in the form of a mineral, molybdenite, but other 2D transition metal dichalcogenide (TMD) semiconductors are expected to have qualitatively similar properties. In this Account, we describe recent progress in the area of single-layer MoS2-based devices for electronic circuits. We will start with MoS2 transistors, which showed for the first time that devices based on MoS2 and related TMDs could have electrical properties on the same level as other, more established semiconducting materials. This

  9. Band gap engineering of MoS2 upon compression

    NASA Astrophysics Data System (ADS)

    López-Suárez, Miquel; Neri, Igor; Rurali, Riccardo

    2016-04-01

    Molybdenum disulfide (MoS2) is a promising candidate for 2D nanoelectronic devices, which shows a direct band-gap for monolayer structure. In this work we study the electronic structure of MoS2 upon both compressive and tensile strains with first-principles density-functional calculations for different number of layers. The results show that the band-gap can be engineered for experimentally attainable strains (i.e., ±0.15). However, compressive strain can result in bucking that can prevent the use of large compressive strain. We then studied the stability of the compression, calculating the critical strain that results in the on-set of buckling for free-standing nanoribbons of different lengths. The results demonstrate that short structures, or few-layer MoS2, show semi-conductor to metal transition upon compressive strain without bucking.

  10. Synthesis of Large Scale MoS2 -Graphene Heterostructures

    NASA Astrophysics Data System (ADS)

    McCreary, Kathleen; Hanbicki, Aubrey; Friedman, Adam; Robinson, Jeremy; Jonker, Berend

    2014-03-01

    A rapidly progressing field involves the stacking of multiple two dimensional materials to form heterostructures. These heterosctructures have exhibited unique and interesting properties. For the most part, heterostructure devices are produced via mechanical exfoliation followed by careful aligning and stacking of the various components, limiting dimensions to micron-scale devices. Chemical vapor deposition (CVD) has proven to be a useful tool in the production of graphene and has very recently been investigated as a means for the growth of other 2D materials such as MoS2, hexagonal boron nitride and WS2. Using a two-step CVD process we are able to synthesize MoS2 on CVD grown graphene. AFM and Raman microscopy of the MoS2-graphene heterostructure show a uniform and continuous film on the cm scale.

  11. Towards an optimised sputtered MoS2 lubricant film

    NASA Technical Reports Server (NTRS)

    Roberts, E. W.

    1986-01-01

    It is shown that the tribological quality of MoS2 lubricant films formed by magnetron sputtering is determined by the choice of sputtering conditions. By selecting the appropriate conditions, films of extremely high lubricity and endurance (in vacuum), which are well suited to many space applications, are obtained. Such MoS2 films, when applied to precision ball hearings, give rise to the lowest torques (for the given test conditions) yet seen in our laboratory. While a remarkably good performance is obtained in vacuum, tests in air show a marked deterioration in lubricating qualities. It is demonstrated that this is attributable to the adsorption of water vapor on MoS2 surfaces and that the degree of deterioration is related to the partial pressure of water vapor present. Analysis of results indicates that the factors relevant to obtaining optimum films are deposition rate and film composition.

  12. Preparation of Drosophila S2 cells for Light Microscopy

    PubMed Central

    Buster, Daniel W.; Nye, Jonathan; Klebba, Joseph E.; Rogers, Gregory C.

    2010-01-01

    The ideal experimental system would be cheap and easy to maintain, amenable to a variety of techniques, and would be supported by an extensive literature and genome sequence database. Cultured Drosophila S2 cells, the product of disassociated 20-24 hour old embryos1, possess all these properties. Consequently, S2 cells are extremely well-suited for the analysis of cellular processes, including the discovery of the genes encoding the molecular components of the process or mechanism of interest. The features of S2 cells that are most responsible for their utility are the ease with which they are maintained, their exquisite sensitivity to double-stranded (ds)RNA-mediated interference (RNAi), and their tractability to fluorescence microscopy as either live or fixed cells. S2 cells can be grown in a variety of media, including a number of inexpensive, commercially-available, fully-defined, serum-free media2. In addition, they grow optimally and quickly at 21-24°C and can be cultured in a variety of containers. Unlike mammalian cells, S2 cells do not require a regulated atmosphere, but instead do well with normal air and can even be maintained in sealed flasks. Complementing the ease of RNAi in S2 cells is the ability to readily analyze experimentally-induced phenotypes by phase or fluorescence microscopy of fixed or live cells. S2 cells grow in culture as a single monolayer but do not display contact inhibition. Instead, cells tend to grow in colonies in dense cultures. At low density, S2 cultures grown on glass or tissue culture-treated plastic are round and loosely-attached. However, the cytology of S2 cells can be greatly improved by inducing them to flatten extensively by briefly culturing them on a surface coated with the lectin, concanavalin A (ConA)3. S2 cells can also be stably transfected with fluorescently-tagged markers to label structures or organelles of interest in live or fixed cells. Therefore, the usual scenario for the microscopic analysis of cells is

  13. Plasma assisted CVD of TiS2

    NASA Astrophysics Data System (ADS)

    Kikkawa, S.; Shimanouchi-Futagami, R.; Koizumi, M.

    1989-07-01

    Fine powder and highly oriented thin film TiS2 were prepared by a reaction between TiCl4 and H2S in low-pressure glow discharge at low substrate temperatures (≦450°C). The products were investigated by changing the reaction conditions, e.g. the substrate temperature, the applied rf power between electrodes, and the reactant ratio ([H2S]/[TiCl4]). The fine powder product was an aggregate of plate-like crystallites of some ten nm in width and less than ten nm in thickness. Lithium batteries using the fine TiS2 powder showed a flat discharge voltage around 2.2 V up to 100% utilization. Submicron TiS2 crystallites had their lattice planes perpendicular to the substrate in the thin films having thicknesses greater than 1 μm. This orientation is expected to be favorable for the application to lithium rechargable batteries.

  14. Plasmons on the edge of MoS2 nanostructures

    NASA Astrophysics Data System (ADS)

    Andersen, Kirsten; Jacobsen, Karsten W.; Thygesen, Kristian S.

    2014-10-01

    Using ab initio calculations we predict the existence of one-dimensional (1D), atomically confined plasmons at the edges of a zigzag MoS2 nanoribbon. The strongest plasmon originates from a metallic edge state localized on the sulfur dimers decorating the Mo edge of the ribbon. A detailed analysis of the dielectric function reveals that the observed deviations from the ideal 1D plasmon behavior result from single-particle transitions between the metallic edge state and the valence and conduction bands of the MoS2 sheet. The Mo and S edges of the ribbon are clearly distinguishable in calculated spatially resolved electron energy loss spectrum owing to the different plasmonic properties of the two edges. The edge plasmons could potentially be utilized for tuning the photocatalytic activity of MoS2 nanoparticles.

  15. Photoconductivities in MoS2 Nanoflake Photoconductors.

    PubMed

    Shen, Wei-Chu; Chen, Ruei-San; Huang, Ying-Sheng

    2016-12-01

    Photoconductivities in molybdenum disulfide (MoS2) layered nanostructures with two-hexagonal crystalline structure prepared by mechanical exfoliation were investigated. The photoconductor-type MoS2 nanoflakes exhibit remarkable photoresponse under the above bandgap excitation wavelength of 532 nm at different optical intensity. The photocurrent responsivity and photoconductive gain of nanoflakes can reach, respectively, 30 AW(-1) and 103 at the intensity of 50 Wm(-2), which are several orders of magnitude higher than those of their bulk counterparts. The vacuum-enhanced photocurrent and power-independent responsivity/gain indicate a surface-controlled photoconduction mechanism in the MoS2 nanomaterial. PMID:26935304

  16. Excitation intensity dependence of photoluminescence from monolayers of MoS2 and WS2/MoS2 heterostructures

    NASA Astrophysics Data System (ADS)

    Kaplan, D.; Gong, Y.; Mills, K.; Swaminathan, V.; Ajayan, P. M.; Shirodkar, S.; Kaxiras, E.

    2016-03-01

    A detailed study of the excitation dependence of the photoluminescence (PL) from monolayers of MoS2 and WS2/MoS2 heterostructures grown by chemical vapor deposition on Si substrates has revealed that the luminescence from band edge excitons from MoS2 monolayers shows a linear dependence on excitation intensity for both above band gap and resonant excitation conditions. In particular, a band separated by ∼55 meV from the A exciton, referred to as the C band, shows the same linear dependence on excitation intensity as the band edge excitons. A band similar to the C band has been previously ascribed to a trion, a charged, three-particle exciton. However, in our study the C band does not show the 3/2 power dependence on excitation intensity as would be expected for a three-particle exciton. Further, the PL from the MoS2 monolayer in a bilayer WS2/MoS2 heterostructure, under resonant excitation conditions where only the MoS2 absorbs the laser energy, also revealed a linear dependence on excitation intensity for the C band, confirming that its origin is not due to a trion but instead a bound exciton, presumably of an unintentional impurity or a native point defect such as a sulfur vacancy. The PL from the WS2/MoS2 heterostructure, under resonant excitation conditions also showed additional features which are suggested to arise from the interface states at the heteroboundary. Further studies are required to clearly identify the origin of these features.

  17. MoS2 actuators: reversible mechanical responses of MoS2-polymer nanocomposites to photons.

    PubMed

    Fan, Xiaoming; Khosravi, Farhad; Rahneshin, Vahid; Shanmugam, Mariyappan; Loeian, Masoud; Jasinski, Jacek; Cohn, Robert W; Terentjev, Eugene; Panchapakesan, Balaji

    2015-07-01

    New molybdenum disulfide (MoS2)-based polymer composites and their reversible mechanical responses to light are presented, suggesting MoS2 as an excellent candidate for energy conversion. Homogeneous mixtures of MoS2/polydimethylsiloxane (PDMS) nanocomposites (0.1-5 wt.%) were prepared and their near infrared (NIR) mechanical responses studied with increasing pre-strains. NIR triggering resulted in an extraordinary change in stress levels of the actuators by ~490 times. Actuation responses of MoS2 polymer composites depended on applied pre-strains. At lower levels of pre-strains (3-9%) the actuators showed reversible expansion while at high levels (15-50%), the actuators exhibited reversible contraction. An opto-mechanical conversion (η)∼0.5-3 MPa W(-1) was calculated. The ratio of maximum stress due to photo-actuation (σmax) at 50% strain to the minimum stress due to photo-actuation (σmin) at 3% strain was found to be ∼315-322% for MoS2 actuators (for 0.1 to 5 wt.% additive), greater than single layer graphene (∼188%) and multi-wall nanotube (∼172%) photo-mechanical actuators. Unlike other photomechanical actuators, the MoS2 actuators exhibited strong light-matter interactions and an unambiguous increase in amplitude of photomechanical response with increasing strains. A power law dependence of σmax/σmin on strains with a scaling exponent of β = 0.87-1.32 was observed, suggesting that the origin of photomechanical response is intertwined dynamically with the molecular mechanisms at play in MoS2 actuators. PMID:26056744

  18. MoS2 actuators: reversible mechanical responses of MoS2-polymer nanocomposites to photons

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoming; Khosravi, Farhad; Rahneshin, Vahid; Shanmugam, Mariyappan; Loeian, Masoud; Jasinski, Jacek; Cohn, Robert W.; Terentjev, Eugene; Panchapakesan, Balaji

    2015-07-01

    New molybdenum disulfide (MoS2)-based polymer composites and their reversible mechanical responses to light are presented, suggesting MoS2 as an excellent candidate for energy conversion. Homogeneous mixtures of MoS2/polydimethylsiloxane (PDMS) nanocomposites (0.1-5 wt.%) were prepared and their near infrared (NIR) mechanical responses studied with increasing pre-strains. NIR triggering resulted in an extraordinary change in stress levels of the actuators by ~490 times. Actuation responses of MoS2 polymer composites depended on applied pre-strains. At lower levels of pre-strains (3-9%) the actuators showed reversible expansion while at high levels (15-50%), the actuators exhibited reversible contraction. An opto-mechanical conversion (η)˜0.5-3 MPa W-1 was calculated. The ratio of maximum stress due to photo-actuation (σmax) at 50% strain to the minimum stress due to photo-actuation (σmin) at 3% strain was found to be ˜315-322% for MoS2 actuators (for 0.1 to 5 wt.% additive), greater than single layer graphene (˜188%) and multi-wall nanotube (˜172%) photo-mechanical actuators. Unlike other photomechanical actuators, the MoS2 actuators exhibited strong light-matter interactions and an unambiguous increase in amplitude of photomechanical response with increasing strains. A power law dependence of σmax/σmin on strains with a scaling exponent of β = 0.87-1.32 was observed, suggesting that the origin of photomechanical response is intertwined dynamically with the molecular mechanisms at play in MoS2 actuators.

  19. Large-Area Epitaxial Monolayer MoS2

    PubMed Central

    2015-01-01

    Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics, and energy harvesting. Large-area growth methods are needed to open the way to applications. Control over lattice orientation during growth remains a challenge. This is needed to minimize or even avoid the formation of grain boundaries, detrimental to electrical, optical, and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the growth of high-quality monolayer MoS2 with control over lattice orientation. We show that the monolayer film is composed of coalescing single islands with limited numbers of lattice orientation due to an epitaxial growth mechanism. Optical absorbance spectra acquired over large areas show significant absorbance in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though the interaction between the growth substrate and MoS2 is strong enough to induce lattice alignment via van der Waals interaction, we can easily transfer the grown material and fabricate devices. Local potential mapping along channels in field-effect transistors shows that the single-crystal MoS2 grains in our film are well connected, with interfaces that do not degrade the electrical conductivity. This is also confirmed by the relatively large and length-independent mobility in devices with a channel length reaching 80 μm. PMID:25843548

  20. Large-Area Epitaxial Monolayer MoS2.

    PubMed

    Dumcenco, Dumitru; Ovchinnikov, Dmitry; Marinov, Kolyo; Lazić, Predrag; Gibertini, Marco; Marzari, Nicola; Lopez Sanchez, Oriol; Kung, Yen-Cheng; Krasnozhon, Daria; Chen, Ming-Wei; Bertolazzi, Simone; Gillet, Philippe; Fontcuberta i Morral, Anna; Radenovic, Aleksandra; Kis, Andras

    2015-04-28

    Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics, and energy harvesting. Large-area growth methods are needed to open the way to applications. Control over lattice orientation during growth remains a challenge. This is needed to minimize or even avoid the formation of grain boundaries, detrimental to electrical, optical, and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the growth of high-quality monolayer MoS2 with control over lattice orientation. We show that the monolayer film is composed of coalescing single islands with limited numbers of lattice orientation due to an epitaxial growth mechanism. Optical absorbance spectra acquired over large areas show significant absorbance in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though the interaction between the growth substrate and MoS2 is strong enough to induce lattice alignment via van der Waals interaction, we can easily transfer the grown material and fabricate devices. Local potential mapping along channels in field-effect transistors shows that the single-crystal MoS2 grains in our film are well connected, with interfaces that do not degrade the electrical conductivity. This is also confirmed by the relatively large and length-independent mobility in devices with a channel length reaching 80 μm. PMID:25843548

  1. Thermal Treatment Improvement of CuSbS2 Absorbers

    SciTech Connect

    de Souza Lucas, Francisco Willian; Welch, Adam W.; Baranowski, Lauryn L.; Dippo, Patricia C.; Mascaro, Lucia H.; Zakutayev, Andriy

    2015-06-14

    Thermal treatment in Sb2S3 vapor was used to improve the quality of CuSbS2 thin films, a promising non-toxic and earth-abundant absorber. A change in the CuSbS2 crystallographic texture and a decrease in the lattice stress were observed, as well as increases in the grain size, photoluminescence intensity and photoconductivity. To eliminate the influence of the possible Sb2S3 rich surface layer on photovoltaic performance, a selective chemical etching with KOH was developed.

  2. Carrier transport at the metal-MoS2 interface

    NASA Astrophysics Data System (ADS)

    Ahmed, Faisal; Choi, Min Sup; Liu, Xiaochi; Yoo, Won Jong

    2015-05-01

    This study illustrates the nature of electronic transport and its transition from one mechanism to another between a metal electrode and MoS2 channel interface in a field effect transistor (FET) device. Interestingly, measurements of the contact resistance (Rc) as a function of temperature indicate a transition in the carrier transport across the energy barrier from thermionic emission at a high temperature to tunneling at a low temperature. Furthermore, at a low temperature, the nature of the tunneling behavior is ascertained by the current-voltage dependency that helps us feature direct tunneling at a low bias and Fowler-Nordheim tunneling at a high bias for a Pd-MoS2 contact due to the effective barrier shape modulation by biasing. In contrast, only direct tunneling is observed for a Cr-MoS2 contact over the entire applied bias range. In addition, simple analytical calculations were carried out to extract Rc at the gating range, and the results are consistent with the experimental data. Our results describe the transition in carrier transport mechanisms across a metal-MoS2 interface, and this information provides guidance for the design of future flexible, transparent electronic devices based on 2-dimensional materials.This study illustrates the nature of electronic transport and its transition from one mechanism to another between a metal electrode and MoS2 channel interface in a field effect transistor (FET) device. Interestingly, measurements of the contact resistance (Rc) as a function of temperature indicate a transition in the carrier transport across the energy barrier from thermionic emission at a high temperature to tunneling at a low temperature. Furthermore, at a low temperature, the nature of the tunneling behavior is ascertained by the current-voltage dependency that helps us feature direct tunneling at a low bias and Fowler-Nordheim tunneling at a high bias for a Pd-MoS2 contact due to the effective barrier shape modulation by biasing. In contrast

  3. Design analysis of bipolar Li-TiS2 batteries

    NASA Technical Reports Server (NTRS)

    Shen, D. H.; Attia, A.; Subbarao, S.; Halpert, G.

    1992-01-01

    The present study uses an empirical model to assess the feasibility of using the Li-TiS2 bipolar battery for high power applications. Predicted performance outputs at a variety of conditions were calculated. The effects of the design parameters on the performance of bipolar Li-TiS2 batteries are presented. Specific energies greater than 150 Wh/kg can be achieved at low rates. Specific power levels in excess of 100 W/kg can be reached at high rates but with a reduction of the specific energy to less than 70 Wh/kg.

  4. Biotransformation of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) by a Rabbit Liver Cytochrome P450: Insight into the Mechanism of RDX Biodegradation by Rhodococcus sp. Strain DN22

    PubMed Central

    Bhushan, Bharat; Trott, Sandra; Spain, Jim C.; Halasz, Annamaria; Paquet, Louise; Hawari, Jalal

    2003-01-01

    A unique metabolite with a molecular mass of 119 Da (C2H5N3O3) accumulated during biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Rhodococcus sp. strain DN22 (D. Fournier, A. Halasz, J. C. Spain, P. Fiurasek, and J. Hawari, Appl. Environ. Microbiol. 68:166-172, 2002). The structure of the molecule and the reactions that led to its synthesis were not known. In the present study, we produced and purified the unknown metabolite by biotransformation of RDX with Rhodococcus sp. strain DN22 and identified the molecule as 4-nitro-2,4-diazabutanal using nuclear magnetic resonance and elemental analyses. Furthermore, we tested the hypothesis that a cytochrome P450 enzyme was responsible for RDX biotransformation by strain DN22. A cytochrome P450 2B4 from rabbit liver catalyzed a very similar biotransformation of RDX to 4-nitro-2,4-diazabutanal. Both the cytochrome P450 2B4 and intact cells of Rhodococcus sp. strain DN22 catalyzed the release of two nitrite ions from each reacted RDX molecule. A comparative study of cytochrome P450 2B4 and Rhodococcus sp. strain DN22 revealed substantial similarities in the product distribution and inhibition by cytochrome P450 inhibitors. The experimental evidence led us to propose that cytochrome P450 2B4 can catalyze two single electron transfers to RDX, thereby causing double denitration, which leads to spontaneous hydrolytic ring cleavage and decomposition to produce 4-nitro-2,4-diazabutanal. Our results provide strong evidence that a cytochrome P450 enzyme is the key enzyme responsible for RDX biotransformation by Rhodococcus sp. strain DN22. PMID:12620815

  5. Formation of nanosized monolayer MoS2 by oxygen-assisted thinning of multilayer MoS2

    NASA Astrophysics Data System (ADS)

    Neupane, Guru P.; Dhakal, Krishna P.; Kim, Hyun; Lee, Jubok; Kim, Min Su; Han, Ganghee; Lee, Young Hee; Kim, Jeongyong

    2016-08-01

    We report the controllable nanosized local thinning of multi-layer (2 L and 3 L)-thickness MoS2 films down to the monolayer (1 L) thickness using the simple method of annealing in a dry oxygen atmosphere. The annealing temperature was optimized in the range of 240 °C to 270 °C for 1.5 h, and 1 L thick nanosized pits were developed on the uniform film of the 2 L and 3 L MoS2 grown using the chemical vapor deposition method. We characterized the formation of the 1 L nanosized pits using nanoscale confocal photoluminescence (PL) and Raman spectroscopy. We observed that the PL intensity increased and the Raman frequency shifted, representative of the characteristics of 1 L MoS2 films. A subsequent hydrogen treatment process was useful for removing the oxygen-induced doping effect resulting from the annealing.

  6. AgGaS2 infrared parametric oscillator

    NASA Technical Reports Server (NTRS)

    Fan, Y. X.; Eckardt, R. C.; Byer, R. L.; Route, R. K.; Feigelson, R. S.

    1984-01-01

    A report is presented of the first operation of an optical parametric oscillator in a chalcopyrite crystal, AgGaS2. Tuning from 1.4 to 4.0 microns is demonstrated for 1.06-micron Nd:yttrium aluminum garnet pumping. The potential tuning range extends to the 12-micron transparency limit of the crystal.

  7. Optoelectrical Molybdenum Disulfide (MoS2)--Ferroelectric Memories.

    PubMed

    Lipatov, Alexey; Sharma, Pankaj; Gruverman, Alexei; Sinitskii, Alexander

    2015-08-25

    In this study, we fabricated and tested electronic and memory properties of field-effect transistors (FETs) based on monolayer or few-layer molybdenum disulfide (MoS2) on a lead zirconium titanate (Pb(Zr,Ti)O3, PZT) substrate that was used as a gate dielectric. MoS2-PZT FETs exhibit a large hysteresis of electronic transport with high ON/OFF ratios. We demonstrate that the interplay of polarization and interfacial phenomena strongly affects the electronic behavior and memory characteristics of MoS2-PZT FETs. We further demonstrate that MoS2-PZT memories have a number of advantages and unique features compared to their graphene-based counterparts as well as commercial ferroelectric random-access memories (FeRAMs), such as nondestructive data readout, low operation voltage, wide memory window and the possibility to write and erase them both electrically and optically. This dual optoelectrical operation of these memories can simplify the device architecture and offer additional practical functionalities, such as an instant optical erase of large data arrays that is unavailable for many conventional memories. PMID:26222209

  8. Structural Properties of Finite MoS2 Nanowires

    NASA Astrophysics Data System (ADS)

    Clark, Shaylyn; Salgado, Andres; Fernandez-Seivane, Lucas; Lopez-Lozano, Xochitl

    2015-03-01

    Molybdenum disulfide (MoS2) has been one of the most important catalysts used in refineries worldwide for hydrodesulfurization over the past century. In the last decade, and with the advent of nanotechnology, there has been a special interest in MoS2 nanostructures due to their high potential as novel nanocatalysts. The study of the properties of these systems is of fundamental interest for the experimental design of their catalytic activity and efficiency. In this work, we have performed ab initio density-functional calculations (DFT) to investigate the structural properties of finite MoS2 nanostrutures. All the models here presented were based on newly experimentally observed morphologies in MoS2 industrial catalysts using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images. We simulated STEM images of the theoretical models to compare it with the experimental ones. In contrast with infinite models, the finite models prefer a rippled/twisted structure morphology over the planar or helical ones. The rippled/twisted models appear to be structurally more stable.

  9. Thermal transport in MoS2/Graphene hybrid nanosheets.

    PubMed

    Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping

    2015-09-18

    Heat dissipation is a very critical problem for designing nano-functional devices, including MoS2/graphene heterojunctions. In this paper we investigate thermal transport in MoS2/graphene hybrid nanosheets under various heating conditions, by using molecular dynamics simulation. Diverse transport processes and characteristics, depending on the conducting layers, are found in these structures. The thermal conductivities can be tuned by interlayer coupling, environment temperature, and interlayer overlap. The highest thermal conductivity at room temperature is achieved as more than 5 times of that of single-layer MoS2 when both layers are heated and 100% overlapped. Different transport mechanisms in the hybrid nanosheets are explained by phonon density of states, temperature distribution, and interlayer thermal resistance. Our results could not only provide clues to master the heat transport in functional devices based on MoS2/graphene heterojunctions, but are also useful for analyzing thermal transport in other van der Waals hybrid nanosheets. PMID:26313739

  10. Cycle life characteristics of Li-TiS2 cells

    NASA Technical Reports Server (NTRS)

    Deligiannis, Frank; Shen, D.; Huang, C. K.; Surampudi, S.

    1991-01-01

    The development of lithium ambient temperature rechargeable cells is discussed. During the development process, we hope to gain a greater understanding of the materials and the properties of the Li-TiS2 cell and its components. The design will meet the requirements of 100 Wh/Kg and 1000 cycles, at 50 percent depth-of-discharge, by 1995.

  11. Carrier transport at the metal-MoS2 interface.

    PubMed

    Ahmed, Faisal; Choi, Min Sup; Liu, Xiaochi; Yoo, Won Jong

    2015-05-28

    This study illustrates the nature of electronic transport and its transition from one mechanism to another between a metal electrode and MoS2 channel interface in a field effect transistor (FET) device. Interestingly, measurements of the contact resistance (Rc) as a function of temperature indicate a transition in the carrier transport across the energy barrier from thermionic emission at a high temperature to tunneling at a low temperature. Furthermore, at a low temperature, the nature of the tunneling behavior is ascertained by the current-voltage dependency that helps us feature direct tunneling at a low bias and Fowler-Nordheim tunneling at a high bias for a Pd-MoS2 contact due to the effective barrier shape modulation by biasing. In contrast, only direct tunneling is observed for a Cr-MoS2 contact over the entire applied bias range. In addition, simple analytical calculations were carried out to extract Rc at the gating range, and the results are consistent with the experimental data. Our results describe the transition in carrier transport mechanisms across a metal-MoS2 interface, and this information provides guidance for the design of future flexible, transparent electronic devices based on 2-dimensional materials. PMID:25927942

  12. Extraordinary attributes of 2-dimensional MoS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Rao, C. N. R.; Maitra, Urmimala; Waghmare, Umesh V.

    2014-08-01

    The discovery of the amazing properties of graphene has stimulated exploration of single- and few-layer structures of layered inorganic materials. Of all the inorganic 2D nanosheet structures, those of MoS2 have attracted great attention because of their novel properties such as the presence of a direct bandgap, good field-effect transistor characteristics, large spin-orbit splitting, intense photoluminescence, catalytic properties, magnetism, superconductivity, ferroelectricity and several other properties with potential applications in electronics, optoelectronics, energy devices and spintronics. MoS2 nanosheets have been used in lithium batteries, supercapacitors and to generate hydrogen. Highlights of the impressive properties of MoS2 nanosheets, along with their structural and spectroscopic features are presented in this Letter. MoS2 typifies the family of metal dichalcogenides such as MoSe2 and WS2 and there is much to be done on nanosheets of these materials. Linus Pauling would have been pleased to see how molybdenite whose structure he studied in 1923 has become so important today.

  13. Compliant substrate epitaxy: Au on MoS2

    NASA Astrophysics Data System (ADS)

    Zhou, Yuzhi; Kiriya, Daisuke; Haller, E. E.; Ager, Joel W.; Javey, Ali; Chrzan, D. C.

    2016-02-01

    A theory for the epitaxial growth of Au on MoS2 is developed and analyzed. The theory combines continuum linear elasticity theory with density functional theory to analyze epitaxial growth in this system. It is demonstrated that if one accounts for interfacial energies and strains, the presence of misfit dislocations, and the compliance of the MoS2 substrate, the experimentally observed growth orientation is favored despite the fact that it represents a larger elastic mismatch than two competing structures. The stability of the experimentally preferred orientation is attributed to the formation of a large number of strong Au-S bonds, and it is noted that this strong bond may serve as a means to exfoliate and transfer large single layers sheets of MoS2, as well as to engineer strain within single layers of MoS2. The potential for using a van der Waals-bonded layered material as a compliant substrate for applications in 2D electronic devices and epitaxial thin film growth is discussed.

  14. The PI2S2 project: grid and new challenges .

    NASA Astrophysics Data System (ADS)

    Becciani, U.

    The new grid e-Infrastructure in Sicily is offering new perspectives and important resources for both scientific and industrial application in the National context. This paper shows the infrastructure of the Cometa Consortium built with the PI2S2 project, the current status of the project and the new challenges, mainly in the HPC area, that the project is carrying out.

  15. Single-layer MoS2 transistors.

    PubMed

    Radisavljevic, B; Radenovic, A; Brivio, J; Giacometti, V; Kis, A

    2011-03-01

    Two-dimensional materials are attractive for use in next-generation nanoelectronic devices because, compared to one-dimensional materials, it is relatively easy to fabricate complex structures from them. The most widely studied two-dimensional material is graphene, both because of its rich physics and its high mobility. However, pristine graphene does not have a bandgap, a property that is essential for many applications, including transistors. Engineering a graphene bandgap increases fabrication complexity and either reduces mobilities to the level of strained silicon films or requires high voltages. Although single layers of MoS(2) have a large intrinsic bandgap of 1.8 eV (ref. 16), previously reported mobilities in the 0.5-3 cm(2) V(-1) s(-1) range are too low for practical devices. Here, we use a halfnium oxide gate dielectric to demonstrate a room-temperature single-layer MoS(2) mobility of at least 200 cm(2) V(-1) s(-1), similar to that of graphene nanoribbons, and demonstrate transistors with room-temperature current on/off ratios of 1 × 10(8) and ultralow standby power dissipation. Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors. Monolayer MoS(2) could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting. PMID:21278752

  16. Moderate temperature rechargeable NaNiS2 cells

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.

    1983-01-01

    A rechargeable sodium battery of the configuration, liquid Na/beta double prime -Al2O3/molten NaAlCl4, NiS2, operating in the temperature range of 170 to 190 C, is described. This battery is capable of delivering or = to 50 W-hr/1b and 1000 deep discharge/charge cycles.

  17. Chemical sensing with ultra-thin MoS2

    NASA Astrophysics Data System (ADS)

    Friedman, Adam; Perkins, Keith; Cobas, Enrique; Campbell, Paul; Jernigan, Glenn; Jonker, Berend

    2013-03-01

    Although the majority of focus and excitement in recent years has been on studying the remarkable properties of single atomic-layer graphene, there exists a whole class of materials called dichalcogenides that are relatively easily fabricated in single-crystal mono- or few-layer format. Graphene, being chemically inert, does not lend itself to chemical sensing applications. However, MoS2, a dichalcogenide of recent interest because of its potential for transistor applications, possesses many advantageous properties for chemical sensing. Two primary examples include a sizable bandgap, which is necessary for fabricating transistors with large on/off current ratios, and a chemically reactive surface, which is necessary for easy surface functionalization. In this talk, we discuss our current research effort on MoS2 chemical sensors. We discuss aspects of transistor device fabrication and chemical sensing experiments. We expose MoS2 chemical sensors to a variety of analytes, finding the best response to triethylamine, a nerve gas by product, and explain our results based on a donor-acceptor model. MoS2 sensors are compared to other similar low-dimensional sensors and found to be of comparable quality.

  18. Degenerative Sacrolisthesis of S1-S2: A Case Report

    PubMed Central

    Rajendra, Thakre Kunwar; Issac, Thomas; Swamy, B Mallikarjuna

    2015-01-01

    Introduction: Degenerative spondylolisthesis (DS) is usually seen at L4-L5 level and less frequently at L5-S1 level. This is a rare case report of spondylolisthesis of S1 over S2 with lumbarization of S1. Lumbarization of S1 is seen in just 1-2% of the population and to have spondylolisthesis in this segment is even rarer. The purpose is to report a rare case of DS at S1-S2 level. Case Report: This is a single case report of a 66-year-old gentleman who presented with complains of lower backache for 2 years and acute retention of urine to the emergency department. Detailed clinical and radiological evaluation of the spine was done which revealed lumbarization of S1 with spondylolisthesis at S1-S2 and facetal hypertrophy at L5, S1, and S2. He underwent decompression and stabilization at L5, S1, and S2 along with placement of autologous bone graft. The bladder symptoms disappeared after 3 weeks. At 1-year follow-up, patient’s clinical symptoms were relieved, and he improved clinically. Conclusion: To the best of our knowledge, this is probably the first case of DS of sacral vertebrae to be reported in English literature. The prevalence of complete lumbarization is around 1.8% and to get spondylolisthesis in this segment is even rarer, hence the lack of literature in this regard. Since this is the first of its kind of case, further case series or longitudinal studies of such cases may help understand better the pathomechanics related to spondylolisthesis at this level. PMID:27299082

  19. Polarization-dependent photocurrent in MoS2 phototransistor

    NASA Astrophysics Data System (ADS)

    Li, Jiu; Yu, Wentao; Chu, Saisai; Yang, Hong; Shi, Kebin; Gong, Qihuang

    2015-03-01

    Monolayer or few-layer molybdenum disulfide (MoS2) has attracted increasing interests in studying light-induced electronic effect due to its prominent photo-responsivity at visible spectral range, fast photo-switching rate and high channel mobility. However, the atomically thin layers make the interaction between light and matter much weaker than that in bulk state, hampering its application in two-dimensional material optoelectronics. One of recent efforts was to utilize resonantly enhanced localized surface plasmon for boosting light-matter interaction in MoS2 thin layer phototransistor. Randomly deposited metallic nano-particles were previously reported to modify surface of a back-gated MoS2 transistor for increasing light absorption cross-section of the phototransistor. Wavelength-dependent photocurrent enhancement was observed. In this paper, we report on a back-gated multilayer MoS2 field-effect-transistor (FET), whose surface is decorated with oriented gold nanobar array, of which the size of a single nanobar is 60nm:60nm:120nm. With these oriented nanostructures, photocurrent of the MoS2 FET could be successfully manipulated by a linear polarized incident 633nm laser, which fell into the resonance band of nanobar structure. We find that the drain-source current follows cos2θ relationship with respect to the incident polarization angle. We attribute the polarization modulation effect to the localized enhancement nature of gold nanobar layer, where the plasmon enhancement occurs only when the polarization of incident laser parallels to the longitudinal axis of nanobars and when the incident wavelength matches the resonance absorption of nanobars simultaneously. Our results indicate a promising application of polarization-dependent plasmonic manipulation in two-dimension semiconductor materials and devices.

  20. Molecular characterization of a lipid-modified virulence-associated protein of Rhodococcus equi and its potential in protective immunity.

    PubMed Central

    Tan, C; Prescott, J F; Patterson, M C; Nicholson, V M

    1995-01-01

    Virulent strains of Rhodococcus equi produce plasmid-mediated 15- and 17-kDa proteins, which are thermoregulated and apparently surface-expressed. We demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) that R. equi produce three antigenically-related virulence-associated proteins, a diffuse 18-22-kDa, a 17.5-kDa and a 15-kDa protein. Phase partitioning of whole cells of R. equi strain 103 with Triton X-114 (TX-114) and labelling with [3H]-labelled palmitic acid showed that the two higher molecular weight proteins are hydrophobic and lipid modified. The 15-kDa protein did not partition into TX-114 and was not lipid modified. Cloning and expression of a fragment of the R. equi virulence plasmid in Escherichia coli showed that the three proteins were expressed from a single gene. Sequence analysis of this gene (designated vapA) revealed a 570-bp open reading frame encoding a polypeptide of 189 amino acids with a calculated molecular mass of 19,175 Da. The mature, nonlipid modified protein had a calculated mass of 16,246 Da. The 17.5- and 18-22-kDa forms of the protein are therefore due to lipid modification. No significant sequence homology of the vapA gene with other reported nucleotide sequences were found. Opsonization of virulent R. equi with an IgG1 mouse monoclonal antibody (MAb103) to the VapA protein significantly enhanced uptake in the murine macrophage cell line IC-21. Intraperitoneal injection of mice with Mab103 enhanced initial clearance from the liver of mice challenged intravenously with R. equi. Immunization of mice with the lipid-modified VapA purified by SDS-PAGE fractionation or with acetone precipitated VapA protein following TX-114 extraction resulted in significantly enhanced clearance from the liver and spleen following intravenous challenge. The VapA protein of R. equi appears therefore to be a protective immunogen. Images Fig. 1. Fig. 4. PMID:7704843

  1. Molecular characterization of a lipid-modified virulence-associated protein of Rhodococcus equi and its potential in protective immunity.

    PubMed

    Tan, C; Prescott, J F; Patterson, M C; Nicholson, V M

    1995-01-01

    Virulent strains of Rhodococcus equi produce plasmid-mediated 15- and 17-kDa proteins, which are thermoregulated and apparently surface-expressed. We demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) that R. equi produce three antigenically-related virulence-associated proteins, a diffuse 18-22-kDa, a 17.5-kDa and a 15-kDa protein. Phase partitioning of whole cells of R. equi strain 103 with Triton X-114 (TX-114) and labelling with [3H]-labelled palmitic acid showed that the two higher molecular weight proteins are hydrophobic and lipid modified. The 15-kDa protein did not partition into TX-114 and was not lipid modified. Cloning and expression of a fragment of the R. equi virulence plasmid in Escherichia coli showed that the three proteins were expressed from a single gene. Sequence analysis of this gene (designated vapA) revealed a 570-bp open reading frame encoding a polypeptide of 189 amino acids with a calculated molecular mass of 19,175 Da. The mature, nonlipid modified protein had a calculated mass of 16,246 Da. The 17.5- and 18-22-kDa forms of the protein are therefore due to lipid modification. No significant sequence homology of the vapA gene with other reported nucleotide sequences were found. Opsonization of virulent R. equi with an IgG1 mouse monoclonal antibody (MAb103) to the VapA protein significantly enhanced uptake in the murine macrophage cell line IC-21. Intraperitoneal injection of mice with Mab103 enhanced initial clearance from the liver of mice challenged intravenously with R. equi. Immunization of mice with the lipid-modified VapA purified by SDS-PAGE fractionation or with acetone precipitated VapA protein following TX-114 extraction resulted in significantly enhanced clearance from the liver and spleen following intravenous challenge. The VapA protein of R. equi appears therefore to be a protective immunogen. PMID:7704843

  2. Biodegradation of RDX and MNX with Rhodococcus sp. strain DN22: new insights into the degradation pathway.

    PubMed

    Annamaria, Halasz; Manno, Dominic; Strand, Stuart E; Bruce, Neil C; Hawari, Jalal

    2010-12-15

    Previously we demonstrated that Rhodococcus sp. strain DN22 can degrade RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) aerobically via initial denitration. The present study describes the role of oxygen and water in the key denitration step leading to RDX decomposition using (18)O(2) and H(2)(18)O labeling experiments. We also investigated degradation of MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine) with DN22 under similar conditions. DN22 degraded RDX and MNX giving NO(2)(-), NO(3)(-), NDAB (4-nitro-diazabutanal), NH(3), N(2)O, and HCHO with NO(2)(-)/NO(3)(-) molar ratio reaching 17 and ca. 2, respectively. In the presence of (18)O(2), DN22 degraded RDX and produced NO(2)(-) with m/z at 46 Da that subsequently oxidized to NO(3)(-) containing one (18)O atom, but in the presence of H(2)(18)O we detected NO(3)(-) without (18)O. A control containing NO(2)(-), DN22, and (18)O(2) gave NO(3)(-) with one (18)O, confirming biotic oxidation of NO(2)(-) to NO(3)(-). Treatment of MNX with DN22 and (18)O(2) produced NO(3)(-) with two mass ions, one (66 Da) incorporating two (18)O atoms and another (64 Da) incorporating only one (18)O atom and we attributed their formation to bio-oxidation of the initially formed NO and NO(2)(-), respectively. In the presence of H(2)(18)O we detected NO(2)(-) with two different masses, one representing NO(2)(-) (46 Da) and another representing NO(2)(-) (48 Da) with the inclusion of one (18)O atom suggesting auto-oxidation of NO to NO(2)(-). Results indicated that denitration of either RDX or MNX and denitrosation of MNX by DN22 did not involve direct participation of either oxygen or water, but both played major roles in subsequent secondary chemical and biochemical reactions of NO and NO(2)(-). PMID:21105645

  3. Optimizing Polychlorinated Biphenyl Degradation by Flavonoid-Induced Cells of the Rhizobacterium Rhodococcus erythropolis U23A

    PubMed Central

    Hijri, Mohamed; Sylvestre, Michel

    2015-01-01

    There is evidence that many plant secondary metabolites may act as signal molecules to trigger the bacterial ability to metabolize polychlorinated biphenyls (PCBs) during the rhizoremediation process. However, the bases for the PCB rhizoremediation process are still largely unknown. The rhizobacterium Rhodococcus erythropolis U23A is unable to use flavanone as a growth substrate. However, on the basis of an assay that monitors the amount of 4-chlorobenzoate produced from 4-chlorobiphenyl by cells grown co-metabolically on flavanone plus sodium acetate, this flavonoid was previously found to be a potential inducer of the U23A biphenyl catabolic pathway. In this work, and using the same assay, we identified ten other flavonoids that did not support growth, but that acted as inducers of the U23A biphenyl pathway, and we confirmed flavonoid induction of the biphenyl catabolic pathway using quantitative real-time polymerase chain reaction (RT-qPCR) on the bphA gene. We also examined the effect of the growth co-substrate on flavonoid induction. Sodium acetate was replaced by glucose, mannose, sucrose, or mannitol, which are sugars found in plant root exudates. The data showed that the level of induction of strain U23A biphenyl-degrading enzymes was significantly influenced by the nature and concentration of the flavonoid in the growth medium, as well as by the substrate used for growth. Sucrose allowed for an optimal induction response for most flavonoids. Some flavonoids, such as flavone and isoflavone, were better inducers of the biphenyl catabolic enzymes than biphenyl itself. We also found that all flavonoids tested in this work were metabolized by strain U23A during co-metabolic growth, but that the metabolite profiles, as well as the level of efficiency of degradation, differed for each flavonoid. To obtain insight into how flavonoids interact with strain U23A to promote polychlorinated biphenyl (PCB) degradation, we determined the concentration of flavanone at

  4. The Steroid Catabolic Pathway of the Intracellular Pathogen Rhodococcus equi Is Important for Pathogenesis and a Target for Vaccine Development

    PubMed Central

    van der Geize, R.; Grommen, A. W. F.; Hessels, G. I.; Jacobs, A. A. C.; Dijkhuizen, L.

    2011-01-01

    Rhodococcus equi causes fatal pyogranulomatous pneumonia in foals and immunocompromised animals and humans. Despite its importance, there is currently no effective vaccine against the disease. The actinobacteria R. equi and the human pathogen Mycobacterium tuberculosis are related, and both cause pulmonary diseases. Recently, we have shown that essential steps in the cholesterol catabolic pathway are involved in the pathogenicity of M. tuberculosis. Bioinformatic analysis revealed the presence of a similar cholesterol catabolic gene cluster in R. equi. Orthologs of predicted M. tuberculosis virulence genes located within this cluster, i.e. ipdA (rv3551), ipdB (rv3552), fadA6 and fadE30, were identified in R. equi RE1 and inactivated. The ipdA and ipdB genes of R. equi RE1 appear to constitute the α-subunit and β-subunit, respectively, of a heterodimeric coenzyme A transferase. Mutant strains RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, were impaired in growth on the steroid catabolic pathway intermediates 4-androstene-3,17-dione (AD) and 3aα-H-4α(3′-propionic acid)-5α-hydroxy-7aβ-methylhexahydro-1-indanone (5α-hydroxy-methylhexahydro-1-indanone propionate; 5OH-HIP). Interestingly, RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, also displayed an attenuated phenotype in a macrophage infection assay. Gene products important for growth on 5OH-HIP, as part of the steroid catabolic pathway, thus appear to act as factors involved in the pathogenicity of R. equi. Challenge experiments showed that RE1ΔipdAB could be safely administered intratracheally to 2 to 5 week-old foals and oral immunization of foals even elicited a substantial protective immunity against a virulent R. equi strain. Our data show that genes involved in steroid catabolism are promising targets for the development of a live-attenuated vaccine against R. equi infections. PMID:21901092

  5. Optical response of the Cu2 S2 diamond core in Cu2II(NGuaS)2 Cl2.

    PubMed

    Witte, Matthias; Grimm-Lebsanft, Benjamin; Goos, Arne; Binder, Stephan; Rübhausen, Michael; Bernard, Martin; Neuba, Adam; Gorelsky, Serge; Gerstmann, Uwe; Henkel, Gerald; Gero Schmidt, Wolf; Herres-Pawlis, Sonja

    2016-09-15

    Density functional theory (DFT) and time-dependent DFT calculations are presented for the dicopper thiolate complex Cu2 (NGuaS)2 Cl2 [NGuaS=2-(1,1,3,3-tetramethylguanidino) benzenethiolate] with a special focus on the bonding mechanism of the Cu2 S2 Cl2 core and the spectroscopic response. This complex is relevant for the understanding of dicopper redox centers, for example, the CuA center. Its UV/Vis absorption is theoretically studied and found to be similar to other structural CuA models. The spectrum can be roughly divided in the known regions of metal d-d absorptions and metal to ligand charge transfer regions. Nevertheless the chloride ions play an important role as electron donors, with the thiolate groups as electron acceptors. The bonding mechanism is dissected by means of charge decomposition analysis which reveals the large covalency of the Cu2 S2 diamond core mediated between Cu dz2 and S-S π and π* orbitals forming Cu-S σ bonds. Measured resonant Raman spectra are shown for 360- and 720-nm excitation wavelength and interpreted using the calculated vibrational eigenmodes and frequencies. The calculations help to rationalize the varying resonant behavior at different optical excitations. Especially the phenylene rings are only resonant for 720 nm. © 2016 Wiley Periodicals, Inc. PMID:27362786

  6. (1S,2R,2'S)- and (1S,2S, 2'S)-1-phenyl-2-phenylthio-2-(tetrahydropyran-2'-ylthio)ethanol diastereoisomers at 193 K.

    PubMed

    Kansikas, J; Sipilä, K

    2000-11-01

    In the synthesis of 1-phenyl-2-phenylthio-2-(tetrahydropyran-2-ylthio)ethanol, C(19)H(22)O(2)S(2), four diastereoisomers are formed. Two non-centrosymmetric enantiomeric forms which crystallize in space groups P2(1)2(1)2(1) and Pna2(1) are presented. The former has an intramolecular hydrogen bond between the hydroxyl group and the O atom of the tetrahydropyran ring. In the latter isomer, the hydroxyl group forms an intermolecular hydrogen bond to the O atom of the tetrahydropyranyl group of a neighbouring molecule, joining the molecules into chains in the c-axis direction; the O.O distances are 2.962 (4) and 2.764 (3) A, respectively. The tetrahydropyran rings are in chair conformations in both isomers and the S side chain has an equatorial orientation in the former, but an axial orientation in the latter molecule. PMID:11077307

  7. Superconductivity in BiS2-based compounds

    NASA Astrophysics Data System (ADS)

    Yazici, Duygu

    2014-03-01

    Polycrystalline samples of Ln O0.5F0.5BiS2 (Ln = La, Ce, Pr, Nd, Yb) were synthesized by solid-state reaction. These compounds form in a tetragonal structure with space group P 4 / nmm conforming to the CeOBiS2 crystal structure. Electrical resistivity, magnetic susceptibility and specific heat measurements were performed on all of the samples. All of the compounds exhibit superconductivity in the range 1.9 K - 5.4 K, and the YbO0.5F0.5BiS2 sample was also found to exhibit magnetic order (probably antiferromagnetic order) at ~2.7 K that appears to coexist with superconductivity below 5.4 K. Electron-doping appears to induce superconductivity in the BiS2-based superconductors as partial substitution of F for O is necessary to observe superconductivity. This was further demonstrated in a study where trivalent La+3 was partially substituted with tetravalent Th+4, Hf+4, Zr+4, and Ti+4, all of which induced superconductivity. We also observed that substitution of divalent Sr+2 for La+3 (hole doping) does not induce superconductivity. Electrical resistivity measurements were also performed under applied pressure on Ln O0.5F0.5BiS2 (Ln = La, Ce, Pr, Nd) up to ~3 GPa and down to 1 K. These studies revealed a universal behavior where the systems are tuned away from semi-conducting behavior towards metallic behavior. The superconducting states were stabilized by applied pressure, so that Tc increased in all of the rare earth members listed. At a critical pressure Pc, Tc increases rapidly from a low Tc phase to a distinct high Tc phase, after which additional pressure no longer suppressed the semiconducting behavior in the normal state [3,4]. In addition, the metallization of NdO0.5F0.5BiS2 also occurs at Pc. Research was supported by the US AFOSR MURI FA9550-09-1-0603, US DOE DE-FG02-04-ER46105 and NNSA DE-NA0001841.

  8. MoS2-Titanium Contact Interface Reactions.

    PubMed

    McDonnell, Stephen; Smyth, Christopher; Hinkle, Christopher L; Wallace, Robert M

    2016-03-01

    The formation of the Ti-MoS2 interface, which is heavily utilized in nanoelectronic device research, is studied by X-ray photoelectron spectroscopy. It is found that, if deposition under high vacuum (∼1 × 10(-6) mbar) as opposed to ultrahigh vacuum (∼1 × 10(-9) mbar) conditions are used, TiO2 forms at the interface rather than Ti. The high vacuum deposition results in an interface free of any detectable reaction between the semiconductor and the deposited contact. In contrast, when metallic titanium is successfully deposited by carrying out depositions in ultrahigh vacuum, the titanium reacts with MoS2 forming Ti(x)S(y) and metallic Mo at the interface. These results have far reaching implications as many prior studies assuming Ti contacts may have actually used TiO2 due to the nature of the deposition tools used. PMID:26967016

  9. SnS2 Thin Film Deposition by Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Yahia Jaber, Abdallah; Noaiman Alamri, Saleh; Salah Aida, Mohammed

    2012-06-01

    Tin disulfide (SnS2) thin films have been synthesized using a simplified spray pyrolysis technique using a perfume atomizer. The films were deposited using two different solutions prepared by the dilution of SnCl2 and thiourea in distilled water and in methanol. The obtained films have a microcrystalline structure. The film deposited using methanol as the solvent is nearly stochiometric SnS2 with a spinel phase having a (001) preferential orientation. The film prepared with an aqueous solution is Sn-rich. Scanning electronic microscopy (SEM) images reveal that the film deposited with the aqueous solution is rough and is formed with large wires. However, the film deposited with methanol is dense and smooth. Conductivity measurements indicate that the aqueous solution leads to an n-type semiconductor, while methanol leads to a p-type semiconductor.

  10. MoS2 Heterojunctions by Thickness Modulation.

    PubMed

    Tosun, Mahmut; Fu, Deyi; Desai, Sujay B; Ko, Changhyun; Kang, Jeong Seuk; Lien, Der-Hsien; Najmzadeh, Mohammad; Tongay, Sefaattin; Wu, Junqiao; Javey, Ali

    2015-01-01

    In this work, we report lateral heterojunction formation in as-exfoliated MoS2 flakes by thickness modulation. Kelvin probe force microscopy is used to map the surface potential at the monolayer-multilayer heterojunction, and consequently the conduction band offset is extracted. Scanning photocurrent microscopy is performed to investigate the spatial photocurrent response along the length of the device including the source and the drain contacts as well as the monolayer-multilayer junction. The peak photocurrent is measured at the monolayer-multilayer interface, which is attributed to the formation of a type-I heterojunction. The work presents experimental and theoretical understanding of the band alignment and photoresponse of thickness modulated MoS2 junctions with important implications for exploring novel optoelectronic devices. PMID:26121940

  11. Superconductivity in layered BiS2-based compounds

    DOE PAGESBeta

    Yazici, D.; Jeon, I.; White, B. D.; Maple, M. B.

    2015-02-25

    Here, a novel family of superconductors based on BiS2-based superconducting layers were discovered in 2012. In short order, other BiS2-based superconductors with the same or related crystal structures were discovered with superconducting critical temperatures Tc of up to 10 K. Many experimental and theoretical studies have been carried out with the goal of establishing the basic properties of these new materials and understanding the underlying mechanism for superconductivity. In this selective review of the literature, we distill the central discoveries from this extensive body of work, and discuss the results from different types of experiments on these materials within themore » context of theoretical concepts and models.« less

  12. Some dynamic A-n, S-2n analytic calculations

    SciTech Connect

    Coppa, G.; Ravetto, P.; Sumini, M.

    1987-11-01

    A-n, S-2n dynamic equations in neutron transport theory are given an analytic solution, suitable for numerical safety code validation. Some numerical results are presented for plane geometry with periodic boundary conditions, within the monokinetic isotropic scattering case. They turn out to be very interesting and physically well interpretable and seem to give a deep insight into the transport effects connected with the finite velocity space migration of localized neutron signals. Balance equations are solved by means of a space Helmholtz series expansion connected to a time-variable Laplace transformation technique. The equations that are to be solved for the considered slab geometry, although perfectly equivalent to S-2n equations, are actually the ones corresponding to the typical second-order A-n model. The given fully analytic solution can be used to yield standard reference results for peculiar space transients, against which any numerical safety code exploiting the same discrete ordinate model can be validated.

  13. Magnetic structure of NiS2 -xSex

    NASA Astrophysics Data System (ADS)

    Yano, S.; Louca, Despina; Yang, J.; Chatterjee, U.; Bugaris, D. E.; Chung, D. Y.; Peng, L.; Grayson, M.; Kanatzidis, Mercouri G.

    2016-01-01

    NiS2 -2 xSex is revisited to determine the magnetic structure using neutron diffraction and magnetic representational analysis. Upon cooling, the insulating parent compound, NiS2, becomes antiferromagnetic with two successive magnetic transitions. The first transition (M 1 ) occurs at TN˜39 K with Γ1ψ1 symmetry and a magnetic propagation vector of k =(000 ) . The second transition (M 2 ) occurs at TN˜30 K with k =(0.5 ,0.5 ,0.5 ) and a Γ1ψ2 symmetry with face-centered translations, giving rise to four possible magnetic domains. With doping, the system becomes metallic. The transition to the M 2 state is suppressed prior to x =0.4 while the M 1 state persists. The M 1 magnetic structure gradually vanishes by x ˜0.8 at a lower concentration than previously reported. The details of the magnetic structures are provided.

  14. Unusual reactivity of MoS2 nanosheets.

    PubMed

    Mondal, Biswajit; Som, Anirban; Chakraborty, Indranath; Baksi, Ananya; Sarkar, Depanjan; Pradeep, Thalappil

    2016-05-21

    The reactivity of the 2D nanosheets of MoS2 with silver ions in solution, leading to their spontaneous morphological and chemical transformations, is reported. This unique reactivity of the nanoscale form of MoS2 was in stark contrast to its bulk counterpart. While the gradual morphological transformation involving several steps has been captured with an electron microscope, precise chemical identification of the species involved was achieved by electron spectroscopy and mass spectrometry. The energetics of the system investigated supports the observed chemical transformation. The reaction with mercury and gold ions shows similar and dissimilar reaction products, respectively and points to the stability of the metal-sulphur bond in determining the chemical compositions of the final products. PMID:27128579

  15. Electronic and elastic properties of MoS 2

    NASA Astrophysics Data System (ADS)

    Wei, Li; Jun-fang, Chen; Qinyu, He; Teng, Wang

    2010-05-01

    The electronic structures and elastic properties of molybdenum disulfide are studied using first-principles calculations. The energy band structure and density of state (DOS) of MoS 2 at 0 GPa are calculated. The band gap energy of MoS 2 versus the pressure 0-40 GPa is obtained. We find that the band gap energy decreases as the pressure increases. The geometry optimized structural parameters for lithium nitride under different pressures are listed. The parameters a, c, and E (the enthalpy) all decrease with increasing pressure. However, parameter B (the bulk modulus), S (the shear modulus) and Y (the Young’s modulus) increase with pressure. The normalized lattice constants and the elastic modulus as two functions of pressure from 0-40 GPa are obtained. All the calculated elastic constants Cij increase by different rates with increasing pressure.

  16. MoS2 Heterojunctions by Thickness Modulation

    PubMed Central

    Tosun, Mahmut; Fu, Deyi; Desai, Sujay B.; Ko, Changhyun; Seuk Kang, Jeong; Lien, Der-Hsien; Najmzadeh, Mohammad; Tongay, Sefaattin; Wu, Junqiao; Javey, Ali

    2015-01-01

    In this work, we report lateral heterojunction formation in as-exfoliated MoS2 flakes by thickness modulation. Kelvin probe force microscopy is used to map the surface potential at the monolayer-multilayer heterojunction, and consequently the conduction band offset is extracted. Scanning photocurrent microscopy is performed to investigate the spatial photocurrent response along the length of the device including the source and the drain contacts as well as the monolayer-multilayer junction. The peak photocurrent is measured at the monolayer-multilayer interface, which is attributed to the formation of a type-I heterojunction. The work presents experimental and theoretical understanding of the band alignment and photoresponse of thickness modulated MoS2 junctions with important implications for exploring novel optoelectronic devices. PMID:26121940

  17. MoS2 Heterojunctions by Thickness Modulation

    DOE PAGESBeta

    Tosun, Mahmut; Fu, Deyi; Desai, Sujay B.; Ko, Changhyun; Seuk Kang, Jeong; Lien, Der-Hsien; Najmzadeh, Mohammad; Tongay, Sefaattin; Wu, Junqiao; Javey, Ali

    2015-06-30

    In this work, we report lateral heterojunction formation in as-exfoliated MoS2 flakes by thickness modulation. Kelvin probe force microscopy is used to map the surface potential at the monolayer-multilayer heterojunction, and consequently the conduction band offset is extracted. Scanning photocurrent microscopy is performed to investigate the spatial photocurrent response along the length of the device including the source and the drain contacts as well as the monolayer-multilayer junction. The peak photocurrent is measured at the monolayer-multilayer interface, which is attributed to the formation of a type-I heterojunction. Finally, the work presents experimental and theoretical understanding of the band alignment andmore » photoresponse of thickness modulated MoS2 junctions with important implications for exploring novel optoelectronic devices.« less

  18. Protecting Li/TiS2 Cells Against Overcharge

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Surampudi, Subbarao; Attia, Alan I.

    1992-01-01

    New electrolyte additive, N,N,N',N'- tetramethyl-1,4-phenylenediamine (TMPD), helps protect lithium/titanium disulfide rechargeable cells against overcharge. TMPD is redox couple: during overcharge, it undergoes electrochemical reactions at both electrodes and takes up excess input charge. Without TMPD, overcharge results in oxidative degradation of nonaqueous electrolyte, leading to loss of rechargeability and safety problems. Li/TiS2 cells currently being considered for spacecraft and military applications.

  19. Physics and chemistry of MoS2 intercalation compounds

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Somoano, R. B.

    1977-01-01

    An investigation is made of the physics and chemistry of MoS2 intercalation compounds. These compounds may be separated into two groups according to their stoichiometry, structure and superconducting properties. The first group consists of Na, Ca, and Sr intercalates, and the second group consists of K, Rb, and Cs intercalates. Particular attention is given to the structure of the electronic energy band and to the normal state and superconducting properties of these compounds.

  20. Unusual reactivity of MoS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Mondal, Biswajit; Som, Anirban; Chakraborty, Indranath; Baksi, Ananya; Sarkar, Depanjan; Pradeep, Thalappil

    2016-05-01

    The reactivity of the 2D nanosheets of MoS2 with silver ions in solution, leading to their spontaneous morphological and chemical transformations, is reported. This unique reactivity of the nanoscale form of MoS2 was in stark contrast to its bulk counterpart. While the gradual morphological transformation involving several steps has been captured with an electron microscope, precise chemical identification of the species involved was achieved by electron spectroscopy and mass spectrometry. The energetics of the system investigated supports the observed chemical transformation. The reaction with mercury and gold ions shows similar and dissimilar reaction products, respectively and points to the stability of the metal-sulphur bond in determining the chemical compositions of the final products.The reactivity of the 2D nanosheets of MoS2 with silver ions in solution, leading to their spontaneous morphological and chemical transformations, is reported. This unique reactivity of the nanoscale form of MoS2 was in stark contrast to its bulk counterpart. While the gradual morphological transformation involving several steps has been captured with an electron microscope, precise chemical identification of the species involved was achieved by electron spectroscopy and mass spectrometry. The energetics of the system investigated supports the observed chemical transformation. The reaction with mercury and gold ions shows similar and dissimilar reaction products, respectively and points to the stability of the metal-sulphur bond in determining the chemical compositions of the final products. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00878j

  1. Discovery and Classification of DES15S2lam

    NASA Astrophysics Data System (ADS)

    Pan, Y.-C.; Foley, R. J.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.

    2015-10-01

    We report optical spectroscopy of DES15S2lam discovered by the Dark Energy Survey. The spectrum (540-965nm) was obtained using GMOS on Gemini-North. Object classification was performed using superfit (Howell et al, 2005, ApJ, 634, 1190) and SNID (Blondin & Tonry, 2007, ApJ, 666, 1024), the details of which are reported in the table below.

  2. s2: Object oriented wrapper for functions on the sphere

    NASA Astrophysics Data System (ADS)

    McEwen, Jason C.

    2016-06-01

    The s2 package can represent any arbitrary function defined on the sphere. Both real space map and harmonic space spherical harmonic representations are supported. Basic sky representations have been extended to simulate full sky noise distributions and Gaussian cosmic microwave background realisations. Support for the representation and convolution of beams is also provided. The code requires HEALPix (ascl:1107.018) and CFITSIO (ascl:1010.001).

  3. The Cometa Consortium and the PI2S2 project .

    NASA Astrophysics Data System (ADS)

    Becciani, U.

    The new grid e-Infrastructure in Sicily is offering new perspectives and important resources and starts to give new great opportunity for research using the HPC resources. We will show the infrastructure of the Cometa Consortium, the main activities of the PI2S2 project and the new challenges, mainly in the HPC area, that the project is carrying out. A simple but useful procedure for running HPC is also described.

  4. Graphene/MoS2 heterostructures for optoelectronics applications

    NASA Astrophysics Data System (ADS)

    Han, P.; Wong, Q.; El Fatimy, A.; Ishigami, M.; Barbara, P.

    Graphene and other atomically thin materials can be combined to make novel ultra-thin devices that are suitable for flexible substrates. However, fabricating these heterostructures is a challenge. Most previous work was done by stacking monolayers exfoliated from bulk materials , which is a very time-consuming, low-yield method. Large-area monolayer can also be grown by CVD and stacked, as demonstrated by the successful transfer of graphene on as-grown MoS2, yet the optical properties of some materials like MoS2 may be degraded by the processing required to detach them from the growth substrate, thereby limiting options in device architecture. Here we develop a method to transfer, align and stack large flakes and films of MoS2 and graphene after transferring both from the growth substrate onto an arbitrary substrate. The Raman and photoluminescence measurements show that the optical properties of the stacked monolayers are not degraded, making this method viable for fabrication of optoelectronics devices. . Work supported by the U.S. ONR (Award: N000141310865) and the NSF-REU (DMR-1358978).

  5. Analytical approach to excitonic properties of MoS2

    NASA Astrophysics Data System (ADS)

    Berghäuser, Gunnar; Malic, Ermin

    2014-03-01

    We present an analytical investigation of the optical absorption spectrum of monolayer molybdenum-disulfide. Based on the density matrix formalism, our approach gives insights into the microscopic origin of excitonic transitions, their relative oscillator strength, and binding energy. We show analytical expressions for the carrier-light coupling element, which contains the optical selection rules and describes well the valley-selective polarization in MoS2. In agreement with experimental results, we find the formation of strongly bound electron-hole pairs due to the efficient Coulomb interaction. The absorption spectrum of MoS2 features two pronounced peaks corresponding to the A and B exciton. For MoS2 on a SiO2 substrate, these are characterized by binding energies of 455 meV and 465 meV, respectively. Our calculations reveal their relative oscillator strength and predict the appearance of further low-intensity excitonic transitions at higher energies. The presented approach is applicable to other transition metal dichalcogenides and can be extended to investigations of trion and biexcitonic effects.

  6. Memristive Phenomena in Polycrystalline Single Layer MoS2

    NASA Astrophysics Data System (ADS)

    Sangwan, Vinod; Jariwala, Deep; Kim, In-Soo; Chen, Kan-Sheng; Marks, Tobin; Lauhon, Lincoln; Hersam, Mark; Hersam Laboratory Team

    Recently, a new class of layered two-dimensional semiconductors has shown promise for various electronic applications. In particular, ultrathin transition metal dichalcogenides (e.g. MoS2) present a host of attractive features such as high carrier mobility and tunable band-gap. However, available growth methods produce polycrystalline films with grain-boundaries and point defects that can be detrimental in conventional electronic devices. In contrast, we have developed unconventional device structures that exploit these defects for useful electronic functions. In particular, we observe grain-boundary mediated memristive phenomena in single layer MoS2 transistors. Memristor current-voltage characteristics depend strongly on the topology of grain-boundaries in MoS2. A grain boundary directly connecting metal electrodes produces thermally assisted switching with dynamic negative differential resistance, whereas a grain boundary bisecting the channel shows non-filamentary soft-switching. In addition, devices with intersecting grain boundaries in the channel show bipolar resistive switching with high on/off ratios up to ~103. Furthermore, the gate electrode in the field-effect geometry can be used to control the absolute resistance of the on and off states. Correlated electrostatic force microscopy, photoluminescence, and Raman microscopy reveal the role of sulfur vacancies in the switching mechanism. This abstract is replacing MAR16-2015-004166 that had exceeded the character limit.

  7. Memristive Phenomena in Polycrystalline Single Layer MoS2

    NASA Astrophysics Data System (ADS)

    Sangwan, Vinod; Jariwala, Deep; Kim, In-Soo; Chen, Kan-Sheng; Marks, Tobin; Lauhon, Lincoln; Hersam, Mark; Hersam Laboratory Team

    Recently, a new class of layered two-dimensional semiconductors has shown promise for various electronic applications. In particular, single layer transition metal dichalcogenides (e.g. MoS2) present a host of attractive features such as high electrical conductivity, tunable band-gap, and strong light-matter interaction. However, available growth methods produce large-area polycrystalline films with grain-boundaries and point defects that can be detrimental in conventional electronic devices. In contrast, we have developed unconventional device structures that exploit these defects for useful electronic functions. In particular, we observe grain-boundary mediated memristive phenomena in single layer MoS2 transistors. Memristor current-voltage characteristics depend strongly on the topology of grain-boundaries in MoS2. A grain boundary directly connecting metal electrodes produces thermally assisted switching with dynamic negative differential resistance, whereas a grain boundary bisecting the channel shows non-filamentary soft-switching. In addition, devices with intersecting grain boundaries in the channel show bipolar resistive switching with high on/off ratios up to ~103. Furthermore, the gate electrode in the field-effect geometry can be used to control the absolute resistance of the on and off states. Complementary electrostatic force microscopy, photoluminescence, and Raman microscopy reveal the role of sulfur vacancies in the switching mechanism.

  8. Monolayer MoS2 self-switching diodes

    NASA Astrophysics Data System (ADS)

    Al-Dirini, Feras; Hossain, Faruque M.; Mohammed, Mahmood A.; Hossain, Md Sharafat; Nirmalathas, Ampalavanapillai; Skafidas, Efstratios

    2016-01-01

    This paper presents a new molybdenum disulphide (MoS2) nanodevice that acts as a two-terminal field-effect rectifier. The device is an atomically-thin two-dimensional self-switching diode (SSD) that can be realized within a single MoS2 monolayer with very minimal process steps. Quantum simulation results are presented confirming the device's operation as a diode and showing strong non-linear I-V characteristics. Interestingly, the device shows p-type behavior, in which conduction is dominated by holes as majority charge carriers and the flow of reverse current is enhanced, while the flow of forward current is suppressed, in contrast to monolayer graphene SSDs, which behave as n-type devices. The presence of a large bandgap in monolayer MoS2 results in strong control over the channel, showing complete channel pinch-off in forward conduction, which was confirmed with transmission pathways plots. The device exhibited large leakage tunnelling current through the insulating trenches, which may have been due to the lack of passivation; nevertheless, reverse current remained to be 6 times higher than forward current, showing strong rectification. The effect of p-type substitutional channel doping of sulphur with phosphorus was investigated and showed that it greatly enhances the performance of the device, increasing the reverse-to-forward current rectification ratio more than an order of magnitude, up to a value of 70.

  9. Ab initio study of MoS2 nanotube bundles

    NASA Astrophysics Data System (ADS)

    Verstraete, Matthieu; Charlier, Jean-Christophe

    2003-07-01

    Recently, the synthesis of a new phase of MoS2I1/3 stoichiometry was reported [M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy, and D. Mihailovic, Science 292, 479 (2001)]. Electron microscope images and diffraction data were interpreted to indicate bundles of sub-nanometer-diameter single-wall MoS2 nanotubes. After experimental characterization, the structure was attributed to an assembly of “armchair” nanotubes with interstitial iodine. Using first-principles total-energy calculations, bundles of MoS2 nanotubes with different topologies and stoichiometries are investigated. All of the systems are strongly metallic. Configurations with “zigzag” structures are found to be more stable energetically than the “armchair” ones, though all of the structures have similar stabilities. After relaxation, there remain several candidates which give a lattice parameter in relative agreement with experiment. Further, spin-polarized calculations indicate that a structure with armchair tubes iodine atoms in their center acquires a very large spontaneous magnetic moment of 12μB, while the other structures are nonmagnetic. Our ab initio calculations show that in most of the other structures, the tubes are very strongly bound together, and that the compounds should be considered as a crystal, rather than as a bundle of tubes in the habitual sense.

  10. Visible Aligned Carbon Nanotube-MoS2 Hybrids

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Hong, Tu; Wang, Tianjiao; Ali, Ahmad Iffat; Chani, Devpaul Singh; Xu, Yaqiong

    Single-walled carbon nanotubes (SWNTs) have gained great interest due to their excellent electrical, mechanical and thermal properties. Recent progress in two-dimensional (2D) materials has opened up new horizons in the realm of physics and engineering that could lead to the revolution of future electronics and optoelectronics. Various hybrid structures have been developed for different applications. Here we report a facile method to synthesize ultrathin 2D hybrids between horizontally-aligned SWNT and monolayer molybdenum sulfide (MoS2) through chemical vapor deposition (CVD). These hybrid structures can be imaged under an optical microscope; and their Raman mapping indicates that MoS2 flakes are partially grown on top of SWNTs. Moreover, strong photocurrent signals have been observed in SWNT-MoS2 hybrids through scanning photocurrent measurements. These fundamental studies may provide a new way to fabricate 2D hybrids for future electronics and optoelectronics. Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN 37235, USA.

  11. Highly Stretchable MoS2 and Phosphorene Kirigami

    NASA Astrophysics Data System (ADS)

    Campbell, David; Hanakata, Paul; Park, Harold

    Several recent works have shown how nanomesh and kirigami patterning can be used to increase the ductility of monolayer graphene and thin film electrodes, suggesting that this approach should be useful for other 2D materials. We have studied the effects of kirigami patterning on the mechanical properties of MoS2 and phosphorene ``monolayers,'' using classical molecular dynamics simulations. We have explored several different kirigami structures, focusing on two simple non-dimensional parameters found to be relevant in our previous study of graphene. These parameters are related to the density of cuts and to the ratio of the overlapping cut length to the nanoribbon length. We found that these membranes, despite not having the single atomic layer planar structure of graphene, show a significantly enhanced ductility that can be understood in terms of the two geometric parameters. For instance, fracture strains of MoS2 kirigami can be enhanced by a factor of six relative to pristine MoS2 nanoribbons. Our findings suggest that the kirigami cuts are the key to changing the morphology of 2D membranes to allow out of plane deflection and to prevent early failure

  12. Molecular biological enhancement of coal biodesulfurization. Quarterly technical report, September 1, 1993--November 30, 1993

    SciTech Connect

    Kilbane, J.J. II

    1993-12-31

    IGT has developed a microbial culture of Rhodococcus rhodochrous, designated as IGTS8, that is capable of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum without significantly sacrificing the calorific value of the fuel. Although IGTS8 possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop improved strains of microorganisms that possess higher levels of desulfurization activity and therefore will permit more favorable biodesulfurization process conditions: faster rates, more complete removal, and smaller reactor size. strain improvement is the single most important aspect to the development of a practical coal biodesulfurization process and accordingly is the focus of research in this project. During this quarter the promoter probe vectors that were constructed last quarter were found to be unstable in E. coli. Fragments of R. rhodochrous IGTS8 chromosomal DNA were cloned into pRCAT3 and pRCM1 (previously described in final ICCI report 1993). Many derivatives of pRCM1 and pRCAT3 receiving inserts that regulated the expression of chloramphenicol resistance in Rhodococcus rhodochrous IGTS8 proved to be unstable in E. coli frequently yielding plasmids containing deletions. Stable inserts have been observed ranging from 100 bp to 2.0 kb that regulated expression in Rhodococcus rhodochrous IGTS8. Subtractive hybridization studies continue, several candidates have been isolated and are being confirmed for inducible promoters. Primer extension analysis of the Rhodococcus rhodochrous IGTS8 16S RNA promoter region was initiated this quarter.

  13. Rare and persistent Rhodococcus equi infection in a diffuse large B cell lymphoma patient: case report and review of the literature

    PubMed Central

    Zhang, Junli; Xu, Jing; Du, Xiaoxing; Yu, Yunsong

    2014-01-01

    Rhodococcus equi (R. equi) is an uncommon gram positive organism. It is a rare but recognized pathogen in humans and has emerged as an important cause of morbidity and mortality among immunocompromised patients. Generally, R. equi infection needs combined treatment with effective antibiotics, and often requires the immune adjuvant therapy. Here we reported a 49-year-old man presented dyspnea with fever, skin ulcer for 5 months, and the final diagnosis was diffuse large B cell lymphoma with R. equi septicemia and pneumonia, the treatment was failure, the blood culture was always positive during the course of disease, though he was given combined treatment with effective antibiotics, perhaps the immune reconstitution or immune supportive treatment was more important. PMID:25590009

  14. B-Cell Epitope Mapping of the VapA Protein of Rhodococcus equi: Implications for Early Detection of R. equi Disease in Foals

    PubMed Central

    Vanniasinkam, Thiru; Barton, Mary D.; Heuzenroeder, Michael W.

    2001-01-01

    Linear B-cell epitopes of the Rhodococcus equi virulence-associated protein (VapA) were mapped using a synthetic peptide bank in this study. The peptides were screened in an enzyme-linked immunosorbent assay (ELISA) with a total of 70 sera from foals with current R. equi disease (51 sera), as well as from foals that had either recovered from R. equi infection 10 months previously (3 sera) or that had no known history of R. equi disease (16 sera). An epitope with the sequence NLQKDEPNGRA was identified and was universally recognized by all 51 sera from foals with R. equi disease and was not recognized by any of the other sera. There was poor reactivity between all sera and peptides relating to other areas of the VapA protein. It is proposed that an ELISA based upon a defined peptide epitope may be used in an improved serological diagnostic test for R. equi infection in foals. PMID:11283104

  15. Spectrum of disease caused by Rhodococcus equi in human immunodeficiency virus infection: Report of a case and review of the literature

    PubMed Central

    Willsie-Ediger, Sandra K; Stanford, James F; Salzman, Gary A; Bamberger, David M

    1990-01-01

    Since the first report of Rhodococcus equi infection in an acquired immune deficiency syndrome patient in 1986, seven additional cases have been described. A patient is described in whom the diagnosis was delayed due to misidentification of the organism as an atypical mycobacterial species. The literature regarding R equi infection in persons infected with the human immunodeficiency virus is reviewed. The most common presentation is one of a chronic, indolent pulmonary infiltrative disease (78%). Fever (78%), cough (67%), and hemoptysis (44%) are frequently present. Coexistent opportunistic illnesses are common (67%). In the laboratory identification of this organism, it is important to communicate the clinical setting to the microbiologist and to recognize the potential for the organism to be overlooked as normal flora or a contaminant, or misidentified as an organism with similar phenotypic characteristics (Nocardia species or a rapidly growing mycobacterium). Based on experience in foals, therapy with erythromycin and rifampin is suggested. PMID:22553450

  16. Purification and characterization of a carbon-sulfur lyase (aryl desulfinase) from rhodococcus Sp. IGTS8 involved in desulfurization of dibenzothiophene

    SciTech Connect

    Mrachko, G.T.; Gray, K.A.

    1996-12-31

    Biocatalysts are being developed at Energy BioSystems Corporation to remove sulfur from sulfur-containing organic molecules found in fossil fuel without decreasing the carbon content of the fuel. A metabolic pathway has been discovered in the Gram positive organism Rhodococcus sp IGTS8 consisting of four enzymes which converts dibenzothiophene (DBT), a major organosulfur constituent in middle distillate, to 2-hydroxybiphenyl (HBP) and sulfite. The final enzyme in this pathway (encoded by dszB) catalyzes a reaction of which there are few examples involving the formation of sulfite from 2-(2-hydroxyphenyl)benzene sulfuric acid to yield HBP. The desulfinase has been purified and characterized both kinetically and physically. We report on chemical modification and other enzyme mechanism studies of this protein. The reaction is presented in light of chemical precedents and the results are summarized in the form of a proposed enzyme reaction mechanism.

  17. Transcriptional regulation by VirR and VirS of members of the Rhodococcus equi virulence-associated protein multigene family.

    PubMed

    Kakuda, Tsutomu; Miyazaki, Shiko; Hagiuda, Hirofumi; Takai, Shinji

    2015-08-01

    A virulence plasmid of Rhodococcus equi harbors the vap mutigene family. Here it is shown that transcription of vap gene family members other than vapA (vapD, vapE and vapG) is regulated by temperature and pH and abolished when either virS or virR is deleted. Expression of VirS in the absence of functional VirR was found to increase the transcription of vap genes to the amount expressed in the presence of VirR. These findings suggest that transcription of vap genes is regulated by VirS and that VirR is involved in the mechanism of transcriptional responses to temperature and pH. PMID:26094962

  18. [Synthesis of surfactants by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii IMV B-7405 on industrial waste].

    PubMed

    Pirog, T P; Sofilkanich, A P; Pokora, K A; Shevchuk, T A; Iutinskaia, G A

    2014-01-01

    The synthesis of surfactants by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii IMV B-7405 on industrial waste (food and oil-processing industry, production of biodiesel) was investigated. The possibility of replacing the expensive substrates (n-hexadecane and ethanol) by industrial waste (oil and fat industry, fried sunflower oil, glycerol, liquid paraffin) for the surfactant biosynthesis was established. The conditional concentration of surfactants was maximal on oil containing substrates and exceeded those on n-hexadecane and ethanol 2-3 times. The highest rates of surfactants synthesis were observed on fried sunflower oil with the use of inoculum grown on carbohydrate substrates (glucose, molasses). It was established that the addition of glucose (0.1%) was accompanied by 2-4-fold intensification of surfactants synthesis by R. erythropolis IMV Ac-5017 and N. vaccinii IMV B-7405 on fried sunflower oil (2%). PMID:25000725

  19. Overproduction of the Escherichia coli Chaperones GroEL-GroES in Rhodococcus ruber Improves the Activity and Stability of Cell Catalysts Harboring a Nitrile Hydratase.

    PubMed

    Tian, Yuxuan; Chen, Jie; Yu, Huimin; Shen, Zhongyao

    2016-02-01

    Three combinations of molecular chaperones from Escherichia coli (i.e., DnaK-DnaJ-GrpEGroEL- GroES, GroEL-GroES, and DnaK-DnaJ-GrpE) were overproduced in E. coli BL21, and their in vitro stabilizing effects on a nitrile hydratase (NHase) were assessed. The optimal gene combination, E. coli groEL-groES (ecgroEL-ES), was introduced into Rhodococcus ruber TH3. A novel engineered strain, R. ruber TH3G was constructed with the native NHase gene on its chromosome and the heterologous ecgroEL-ES genes in a shuttle plasmid. In R. ruber TH3G, NHase activity was enhanced 37.3% compared with the control, TH3. The in vivo stabilizing effect of ecGroEL-ES on the NHase was assessed using both acrylamide immersion and heat shock experiments. The inactivation behavior of the in vivo NHase after immersion in a solution of dynamically increased concentrations of acrylamide was particularly evident. When the acrylamide concentration was increased to 500 g/l (50%), the remaining NHase activity in TH3G was 38%, but in TH3, activity was reduced to 10%. Reactivation of the in vivo NHases after varying degrees of inactivation was further assessed. The activity of the reactivated NHase was more than 2-fold greater in TH3G than in TH3. The hydration synthesis of acrylamide catalyzed by the in vivo NHase was performed with continuous acrylonitrile feeding. The final concentration of acrylamide was 640 g/l when catalyzed by TH3G, compared with 490 g/l acrylamide by TH3. This study is the first to show that the chaperones ecGroEL-ES work well in Rhodococcus and simultaneously possess protein-folding assistance functions and the ability to stabilize and reactivate the native NHases. PMID:26562693

  20. Uptake of radioiodide by Paenibacillus sp., Pseudomonas sp., Burkholderia sp. and Rhodococcus sp. isolated from a boreal nutrient-poor bog.

    PubMed

    Lusa, Merja; Lehto, Jukka; Aromaa, Hanna; Knuutinen, Jenna; Bomberg, Malin

    2016-06-01

    Radionuclides, like radioiodine ((129)I), may escape deep geological nuclear waste repositories and migrate to the surface ecosystems. In surface ecosystems, microorganisms can affect their movement. Iodide uptake of six bacterial strains belonging to the genera Paenibacillus, Pseudomonas, Burkholderia and Rhodococcus isolated from an acidic boreal nutrient-poor bog was tested. The tests were run in four different growth media at three temperatures. All bacterial strains removed iodide from the solution with the highest efficiency shown by one of the Paenibacillus strains with >99% of iodide removed from the solution in one of the used growth media. Pseudomonas, Rhodococcus and one of the two Paenibacillus strains showed highest iodide uptake in 1% yeast extract with maximum values for the distribution coefficient (Kd) ranging from 90 to 270L/kg DW. The Burkholderia strain showed highest uptake in 1% Tryptone (maximum Kd 170L/kg DW). The Paenibacillus strain V0-1-LW showed exceptionally high uptake in 0.5% peptone +0.25% yeast extract broth (maximum Kd>1,000,000L/kg DW). Addition of 0.1% glucose to the 0.5% peptone +0.25% yeast extract broth reduced iodide uptake at 4°C and 20°C and enhanced iodide uptake at 37°C compared to the uptake without glucose. This indicates that the uptake of glucose and iodide may be competing processes in these bacteria. We estimated that in in situ conditions of the bog, the bacterial uptake of iodide accounts for approximately 0.1%-0.3% of the total sorption of iodide in the surface, subsurface peat, gyttja and clay layers. PMID:27266299

  1. Mechanism of 4-Nitrophenol Oxidation in Rhodococcus sp. Strain PN1: Characterization of the Two-Component 4-Nitrophenol Hydroxylase and Regulation of Its Expression▿

    PubMed Central

    Takeo, Masahiro; Murakami, Masumi; Niihara, Sanae; Yamamoto, Kenta; Nishimura, Munehiro; Kato, Dai-ichiro; Negoro, Seiji

    2008-01-01

    4-Nitrophenol (4-NP) is a toxic product of the hydrolysis of organophosphorus pesticides such as parathion in soil. Rhodococcus sp. strain PN1 degrades 4-NP via 4-nitrocatechol (4-NC) for use as the sole carbon, nitrogen, and energy source. A 5-kb EcoRI DNA fragment previously cloned from PN1 contained a gene cluster (nphRA1A2) involved in 4-NP oxidation. From sequence analysis, this gene cluster is expected to encode an AraC/XylS family regulatory protein (NphR) and a two-component 4-NP hydroxylase (NphA1 and NphA2). A transcriptional assay in a Rhodococcus strain revealed that the transcription of nphA1 is induced by only 4-NP (of several phenolic compounds tested) in the presence of nphR, which is constitutively expressed. Disruption of nphR abolished transcriptional activity, suggesting that nphR encodes a positive regulatory protein. The two proteins of the 4-NP hydroxylase, NphA1 and NphA2, were independently expressed in Escherichia coli and purified by ion-exchange chromatography or affinity chromatography. The purified NphA2 reduced flavin adenine dinucleotide (FAD) with the concomitant oxidation of NADH, while the purified NphA1 oxidized 4-NP into 4-NC almost quantitatively in the presence of FAD, NADH, and NphA2. This functional analysis, in addition to the sequence analysis, revealed that this enzyme system belongs to the two-component flavin-diffusible monooxygenase family. The 4-NP hydroxylase showed comparable oxidation activities for phenol and 4-chlorophenol to that for 4-NP and weaker activities for 3-NP and 4-NC. PMID:18805976

  2. On the Kinetic and Allosteric Regulatory Properties of the ADP-Glucose Pyrophosphorylase from Rhodococcus jostii: An Approach to Evaluate Glycogen Metabolism in Oleaginous Bacteria

    PubMed Central

    Cereijo, Antonela E.; Asencion Diez, Matías D.; Dávila Costa, José S.; Alvarez, Héctor M.; Iglesias, Alberto A.

    2016-01-01

    Rhodococcus spp. are oleaginous bacteria that accumulate glycogen during exponential growth. Despite the importance of these microorganisms in biotechnology, little is known about the regulation of carbon and energy storage, mainly the relationship between glycogen and triacylglycerols metabolisms. Herein, we report the molecular cloning and heterologous expression of the gene coding for ADP-glucose pyrophosphorylase (EC 2.7.7.27) of Rhodococcus jostii, strain RHA1. The recombinant enzyme was purified to electrophoretic homogeneity to accurately characterize its oligomeric, kinetic, and regulatory properties. The R. jostii ADP-glucose pyrophosphorylase is a homotetramer of 190 kDa exhibiting low basal activity to catalyze synthesis of ADP-glucose, which is markedly influenced by different allosteric effectors. Glucose-6P, mannose-6P, fructose-6P, ribose-5P, and phosphoenolpyruvate were major activators; whereas, NADPH and 6P-gluconate behaved as main inhibitors of the enzyme. The combination of glucose-6P and other effectors (activators or inhibitors) showed a cross-talk effect suggesting that the different metabolites could orchestrate a fine regulation of ADP-glucose pyrophosphorylase in R. jostii. The enzyme exhibited some degree of affinity toward ATP, GTP, CTP, and other sugar-1P substrates. Remarkably, the use of glucosamine-1P was sensitive to allosteric activation. The relevance of the fine regulation of R. jostii ADP-glucose pyrophosphorylase is further analyzed in the framework of proteomic studies already determined for the bacterium. Results support a critical role for glycogen as a temporal reserve that provides a pool of carbon able of be re-routed to produce long-term storage of lipids under certain conditions. PMID:27313571

  3. Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma.

    PubMed

    Kundu, Debasree; Hazra, Chinmay; Chatterjee, Aniruddha; Chaudhari, Ambalal; Mishra, Satyendra

    2014-11-01

    In this study, zinc oxide (ZnO) nanoparticles (NPs) were rapidly synthesized from zinc sulfate solution at room temperature using a metabolically versatile actinobacteria Rhodococcus pyridinivorans NT2. The morphology, structure and stability of the synthesized ZnO NPs were studied using UV-visible absorption spectroscopy, X-ray Diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) with energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), Zeta potential, and thermogravimetry. The data indicated that the synthesized nanoparticles were moderately stable, hexagonal phase, roughly spherical with average particle diameter in the range of 100-120 nm. Results obtained on examination of protein expression revealed that cell enzymes and extracellular protein systems of Rhodococcus sp. may take part in synthesis process. Furthermore, the ZnO NPs were coated onto textile fabrics to enhance UV-blocking, self-cleaning and antibacterial properties. Ultraviolet protecting factor (UPF) indicating UV-blocking properties of ZnO NPs coated textile fabrics were determined as 65, 88, 121, 172 and 241 for 1, 2, 3, 4 and 5 gm(-2) of ZnO NPs, respectively. Besides, self-cleaning activity was assessed by investigating photocatalytic activity on malachite green as well as antibacterial activity against aerobic Gram-positive Staphylococcus epidermidis NCIM 2493 (ATCC 12228). The antibacterial effects of these textiles were evaluated using ISO 20743 standard. In addition, ZnO NPs exhibited a preferential ability to kill HT-29 cancerous cells as compared with normal peripheral blood mononuclear cells (PBMCs). PMID:25169770

  4. Pressure Effects on Superconducting Properties of the BiS2-Based Superconductor Bi2(O,F)S2

    NASA Astrophysics Data System (ADS)

    Okada, Tomoyuki; Ogino, Hiraku; Shimoyama, Jun-ichi; Kishio, Kohji; Takeshita, Nao; Shirakawa, Naoki; Iyo, Akira; Eisaki, Hiroshi

    2015-08-01

    Pressure effects on the recently discovered BiS2-based superconductor Bi2(O,F)S2 (Tc = 5.1 K) were examined by two different methods: high-pressure resistivity measurement and high-pressure annealing. The effects of these two methods on the superconducting properties of Bi2(O,F)S2 were significantly different, although in both methods, hydrostatic pressure is applied to the sample using a cubic-anvil-type apparatus. In high-pressure resistivity measurement, Tc linearly decreased at a rate of -1.2 K GPa-1. In contrast, the Tc of 5.1 K is maintained after high-pressure annealing under 2 GPa and 470 °C of an optimally doped sample despite a significant change in lattice parameters. In addition, superconductivity was observed in fluorine-free Bi2OS2 after high-pressure annealing. These results suggest that high-pressure annealing has a unique effect on the physical properties of layered compounds.

  5. Exfoliated MoS2 in Water without Additives

    PubMed Central

    Forsberg, Viviane; Zhang, Renyun; Bäckström, Joakim; Dahlström, Christina; Andres, Britta; Norgren, Magnus; Andersson, Mattias; Hummelgård, Magnus; Olin, Håkan

    2016-01-01

    Many solution processing methods of exfoliation of layered materials have been studied during the last few years; most of them are based on organic solvents or rely on surfactants and other funtionalization agents. Pure water should be an ideal solvent, however, it is generally believed, based on solubility theories that stable dispersions of water could not be achieved and systematic studies are lacking. Here we describe the use of water as a solvent and the stabilization process involved therein. We introduce an exfoliation method of molybdenum disulfide (MoS2) in pure water at high concentration (i.e., 0.14 ± 0.01 g L−1). This was achieved by thinning the bulk MoS2 by mechanical exfoliation between sand papers and dispersing it by liquid exfoliation through probe sonication in water. We observed thin MoS2 nanosheets in water characterized by TEM, AFM and SEM images. The dimensions of the nanosheets were around 200 nm, the same range obtained in organic solvents. Electrophoretic mobility measurements indicated that electrical charges may be responsible for the stabilization of the dispersions. A probability decay equation was proposed to compare the stability of these dispersions with the ones reported in the literature. Water can be used as a solvent to disperse nanosheets and although the stability of the dispersions may not be as high as in organic solvents, the present method could be employed for a number of applications where the dispersions can be produced on site and organic solvents are not desirable. PMID:27120098

  6. Exfoliated MoS2 in Water without Additives.

    PubMed

    Forsberg, Viviane; Zhang, Renyun; Bäckström, Joakim; Dahlström, Christina; Andres, Britta; Norgren, Magnus; Andersson, Mattias; Hummelgård, Magnus; Olin, Håkan

    2016-01-01

    Many solution processing methods of exfoliation of layered materials have been studied during the last few years; most of them are based on organic solvents or rely on surfactants and other funtionalization agents. Pure water should be an ideal solvent, however, it is generally believed, based on solubility theories that stable dispersions of water could not be achieved and systematic studies are lacking. Here we describe the use of water as a solvent and the stabilization process involved therein. We introduce an exfoliation method of molybdenum disulfide (MoS2) in pure water at high concentration (i.e., 0.14 ± 0.01 g L-1). This was achieved by thinning the bulk MoS2 by mechanical exfoliation between sand papers and dispersing it by liquid exfoliation through probe sonication in water. We observed thin MoS2 nanosheets in water characterized by TEM, AFM and SEM images. The dimensions of the nanosheets were around 200 nm, the same range obtained in organic solvents. Electrophoretic mobility measurements indicated that electrical charges may be responsible for the stabilization of the dispersions. A probability decay equation was proposed to compare the stability of these dispersions with the ones reported in the literature. Water can be used as a solvent to disperse nanosheets and although the stability of the dispersions may not be as high as in organic solvents, the present method could be employed for a number of applications where the dispersions can be produced on site and organic solvents are not desirable. PMID:27120098

  7. Performance potential and limit of MoS2 transistors.

    PubMed

    Li, Xuefei; Yang, Lingming; Si, Mengwei; Li, Sichao; Huang, Mingqiang; Ye, Peide; Wu, Yanqing

    2015-03-01

    High-performance MoS2 transistors scaled down to 100 nm are studied at various temperatures down to 20 K, where a highest drive current of 800 μA μm(-1) can be achieved. Extremely low electrical noise of 2.8 × 10(-10) μm(2) Hz(-1) at 10 Hz is also achieved at room temperature. Furthermore, a negative differential resistance behavior is experimentally observed and its origin of self-heating is identified using pulsed-current-voltage measurements. PMID:25586919

  8. Hall and Nernst effects in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Zhang, Yun-Hai; Zhang, Ming-Hua

    2016-03-01

    We study Hall and Nernst transports in monolayer MoS2 based on Green’s function formalism. We have derived analytical results for spin and valley Hall conductivities in the zero temperature and spin and valley Nernst conductivities in the low temperature. We found that tuning of the band gap and spin-orbit splitting can drive system transition from spin Hall insulator (SHI) to valley Hall insulator (VHI). When the system is subjected to a temperature gradient, the spin and valley Nernst conductivities are dependent on Berry curvature.

  9. Spectroscopic confirmation of DES12S2a

    NASA Astrophysics Data System (ADS)

    Brown, P. J.; Krisciunas, K.; Marshall, J.; Suntzeff, N.; Ahn, E.; Finley, D.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Bloom, J. S.; Kim, A.; Nugent, P.; Perlmutter, S.; Thomas, R. C.; Desai, S.; Paech, K.; Smith, R. C.; Kessler, R.; Covarrubias, R. A.; Cane, R.; Fischer, J. A.; Gilhool, S.; Gladney, L.; Gupta, R.; Mosher, J.; Sako, M.; Campbell, H.; D'Andrea, C.; Nichol, R.; Papadopoulos, A.; Sullivan, M.; March, M.; Smith, M.; Barbary, K.; Bernstein, J. P.; Biswas, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.

    2013-02-01

    We report optical spectroscopy of a supernova (SN) candidate discovered by the Dark Energy Supernova Survey (ATel #4668). The spectrum (450-1000 nm) of DES12S2a was obtained with the 9.2-m Hobby-Eberly Telescope (+Marcario Low-Resolution Spectrograph) by J. Caldwell. The spectrum shows a blue continuum with a narrow H-alpha emission feature atop a broader component indicative of a type IIn SN. The phase at the date of the spectrum given below is based on the DES light curves.

  10. The roles of bacterial biofilm and oxidizing enzymes in the biodegradation of plastic by the bacterium Rhodococcus ruber (C208)

    NASA Astrophysics Data System (ADS)

    Sivan, A.; Gilan, I.; Santo, M.

    2011-12-01

    Synthetic polymers such as polyethylene are amongst the most durable plastic materials and, therefore are resistant to natural biodegradation resulting in their accumulation in the environment posing a global hazard. We have carried out a two-step enrichment procedure aimed at the isolation of polyethylene-degrading bacteria from soil. The initial enrichment was carried out in soil and the second, in a liquid mineral medium supplemented with linear low-density polyethylene (LDPE; MW 191,000) as the sole carbon source. UV-photooxidation may enhance biodegradation by the formation of carbonyl residues that can be utilized by microorganisms. This screening gave rise to several bacterial strains that were capable of degrading polyethylene. One of these strains (C208), identified as the actinomycete Rhodococcus ruber, colonized the polyethylene producing a biofilm which eventually lead to the degradation of the polyethylene. Adherence and colonization of planktonic C208 cells to the polyethylene surface occurred within minutes from exposure to the polyolefin. This resulted in formation of an initial biofilm that differentiated into cell-aggregation-forming microcolonies. Further organization yielded three-dimensional sessile structures as the mature biofilm. The ratio between the population densities, of the biofilm and planktonic, was about 60:1, indicating a high preference for the biofilm mode of growth. Analysis of the extra-cellular polymeric substances (EPS) in the biofilm of C208 revealed that the polysaccharides level was up to 2.5 folds higher than that of the protein. Surprisingly, the EPS also contained DNA that is actively excreted from live bacterial cells. This is supported by the reduction in biofilm content (but not in viability) following addition, of DNase 1 and RNAse A. The biofilm showed a high viability even after 60 days of incubation in a carbon free medium. This durability of the biofilm, can be attributed to biodegradation of polyethylene. A

  11. MoS2 Nanosheet-Modified CuInS2 Photocatalyst for Visible-Light-Driven Hydrogen Production from Water.

    PubMed

    Yuan, Yong-Jun; Chen, Da-Qin; Huang, Yan-Wei; Yu, Zhen-Tao; Zhong, Jia-Song; Chen, Ting-Ting; Tu, Wen-Guang; Guan, Zhong-Jie; Cao, Da-Peng; Zou, Zhi-Gang

    2016-05-10

    Exploiting photocatalysts respond to visible light is of huge challenge for photocatalytic H2 production. Here, we synthesize a new composite material consisting of few-layer MoS2 nanosheets grown on CuInS2 surface as an efficient photocatalyst for solar H2 generation. The photocatalytic results demonstrate that the 3 wt % MoS2 /CuInS2 photocatalyst exhibits the highest H2 generation rate of 316 μmol h(-1)  g(-1) under visible light irradiation, which is almost 28 times higher than that of CuInS2 . Importantly, the MoS2 /CuInS2 photocatalyst shows a much higher photocatalytic activity than that of Pt-loaded CuInS2 photocatalyst. The enhanced photocatalytic activities of MoS2 /CuInS2 photocatalysts can be attributed to the improved charge separation at the interface of MoS2 and CuInS2, which is demonstrated by the significant enhancement of photocurrent responses in MoS2 /CuInS2 photoelectrodes. This work presents a noble-metal-free photocatalyst that responds to visible light for solar H2 generation. PMID:27062042

  12. Open Standards and Technologies in the S2S Framework

    NASA Astrophysics Data System (ADS)

    Maffei, A. R.; Rozell, E. A.; West, P.; Zednik, S.; Fox, P. A.

    2011-12-01

    The S2S Search Interface Framework provides tools and services to build customized user interfaces. It also serves as a focal point for repository managers to develop science data services and reusable components for search interfaces. The framework has been used to design a faceted browsing platform for web services, including OpenSearch and SAWSDL. This exemplar faceted browsing platform has been applied in our development of search interfaces for 1) an international open government dataset catalog and 2) a metadata catalog for biological and chemical oceanography. S2S was designed from the ground up using open standards and technologies. The framework was initially created to develop "data dashboard" interfaces on top of OpenSearch services, but has been generalized to support web services and standards with semantic annotation capabilities. We apply OWL, a W3C standard for ontologies on the Web, to create a vocabulary for the description of framework metadata. Our faceted browsing platform is heavily focused on the use of jQuery; we have created reusable user interface "widgets" that leverage OpenLayers and MapServer technology in geospatial selection and visualization, which can be used in this and future platforms. The use of open standards and technologies has enabled rapid iterations over software development lifecycles, and has kept the framework agile as new use cases and ideas have emerged.

  13. Tightly bound trions in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Mak, Kin Fai; He, Keliang; Lee, Changgu; Lee, Gwan Hyoung; Hone, James; Heinz, Tony F.; Shan, Jie

    2013-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and transition-metal dichalcogenides, have emerged as a new class of materials with remarkable physical properties. In contrast to graphene, monolayer MoS2 is a non-centrosymmetric material with a direct energy gap. Strong photoluminescence, a current on/off ratio exceeding 108 in field-effect transistors, and efficient valley and spin control by optical helicity have recently been demonstrated in this material. Here we report the spectroscopic identification in a monolayer MoS2 field-effect transistor of tightly bound negative trions, a quasiparticle composed of two electrons and a hole. These quasiparticles, which can be optically created with valley and spin polarized holes, have no analogue in conventional semiconductors. They also possess a large binding energy (~ 20 meV), rendering them significant even at room temperature. Our results open up possibilities both for fundamental studies of many-body interactions and for optoelectronic and valleytronic applications in 2D atomic crystals.

  14. Identification of single nucleotides in MoS2 nanopores.

    PubMed

    Feng, Jiandong; Liu, Ke; Bulushev, Roman D; Khlybov, Sergey; Dumcenco, Dumitru; Kis, Andras; Radenovic, Aleksandra

    2015-12-01

    The size of the sensing region in solid-state nanopores is determined by the size of the pore and the thickness of the pore membrane, so ultrathin membranes such as graphene and single-layer molybdenum disulphide could potentially offer the necessary spatial resolution for nanopore DNA sequencing. However, the fast translocation speeds (3,000-50,000 nt ms(-1)) of DNA molecules moving across such membranes limit their usability. Here, we show that a viscosity gradient system based on room-temperature ionic liquids can be used to control the dynamics of DNA translocation through MoS2 nanopores. The approach can be used to statistically detect all four types of nucleotide, which are identified according to current signatures recorded during their transient residence in the narrow orifice of the atomically thin MoS2 nanopore. Our technique, which exploits the high viscosity of room-temperature ionic liquids, provides optimal single nucleotide translocation speeds for DNA sequencing, while maintaining a signal-to-noise ratio higher than 10. PMID:26389660

  15. Critical gravity on AdS2 spacetimes

    NASA Astrophysics Data System (ADS)

    Myung, Yun Soo; Kim, Yong-Wan; Park, Young-Jai

    2011-09-01

    We study the critical gravity in two-dimensional anti-de Sitter (AdS2) spacetimes, which was obtained from the cosmological topologically massive gravity (TMGΛ) in three dimensions by using the Kaluza-Klein dimensional reduction. We perform the perturbation analysis around AdS2, which may correspond to the near-horizon geometry of the extremal Banados, Teitelboim, and Zanelli (BTZ) black hole obtained from the TMGΛ with identification upon uplifting three dimensions. A massive propagating scalar mode δF satisfies the second-order differential equation away from the critical point of K=l, whose solution is given by the Bessel functions. On the other hand, δF satisfies the fourth-order equation at the critical point. We exactly solve the fourth-order equation, and compare it with the log gravity in two dimensions. Consequently, the critical gravity in two dimensions could not be described by a massless scalar δFml and its logarithmic partner δFlog⁡4th.

  16. Photoluminescence properties of S2 molecule trapped in Melanophlogite

    NASA Astrophysics Data System (ADS)

    Messina, Fabrizio; Todaro, Michela; Buscarino, Gianpiero; Vaccaro, Lavinia; Cannas, Marco; Gelardi, Franco M.

    2016-03-01

    We studied the photoluminescence properties of a sample of SiO2-clathrate Melanophlogite, a crystalline microporous material which is found in nature as a rare mineral. Upon β irradiation, the material displays an intense light emission under near-UV illumination. We studied in detail this optical activity by steady-state and time-resolved photoluminescence measurements as a function of temperature. The spectroscopic properties we find can be ascribed to a population of quasi-free molecules trapped within each of the two different types of cage available in the structure of this clathrate, although the spectroscopic properties of the guest molecules are affected by their interactions with the host matrix. Based on the available data, we attribute the observed photoluminescence to trapped S2 molecules, emitting from their excited 3Σ u - or 3Π u electronic states, depending on the cage they are trapped in and on temperature. Our results have an impact on the fundamental understanding of host-guest interactions characteristic of microporous systems such as clathrates. Indeed, the data highlight that even a relatively weak coupling between quasi-free S2 molecules and the two types of cages provided by the Melanophlogite host has a surprisingly complex influence on the optical properties of the guest.

  17. MoS2 memristor with photoresistive switching

    PubMed Central

    Wang, Wei; Panin, Gennady N.; Fu, Xiao; Zhang, Lei; Ilanchezhiyan, P.; Pelenovich, Vasiliy O.; Fu, Dejun; Kang, Tae Won

    2016-01-01

    A MoS2 nanosphere memristor with lateral gold electrodes was found to show photoresistive switching. The new device can be controlled by the polarization of nanospheres, which causes resistance switching in an electric field in the dark or under white light illumination. The polarization charge allows to change the switching voltage of the photomemristor, providing its multi-level operation. The device, polarized at a voltage 6 V, switches abruptly from a high resistance state (HRSL6) to a low resistance state (LRSL6) with the On/Off resistance ratio of about 10 under white light and smooth in the dark. Analysis of device conductivity in different resistive states indicates that its resistive state could be changed by the modulation of the charge in an electric field in the dark or under light, resulting in the formation/disruption of filaments with high conductivity. A MoS2 photomemristor has great potential as a multifunctional device designed by using cost-effective fabrication techniques. PMID:27492593

  18. Fracture in MoS2 Solid Lubricant Films

    SciTech Connect

    Hilton, M.R.

    1995-09-01

    The fracture properties of sputter-deposited films of MoS2 as a function of the additive-controlled microstructure were assessed using brale indentation contact and scanning electron microscopy (SEM). Additives were incorporated as either co-sputtered species (Ni, SbO(x)) or as multilayers (Au-20%Pd, Ni). Undoped films were also examined as references. The undoped films and 3% co-sputtered Ni films (deposited at 2.66 Pa argon background pressure) showed zone 2 columnar plate morphologies with porosity. Co-sputtered films having higher concentrations of Ni or SbO(x) showed zone 1 dense cauliflower morphologies, while the multilayer films (and pure MoS2 films deposited at 0.266 Pa) exhibited dense, featureless morphologies. The porous zone 2 films generally resisted delamination better than the denser morphologies. High Ni concentrations increased spallation. The presence of SbO(x) affected fracture propagation and appeared to be more benign than Ni. The presence of multilayers also affected fracture and retarded spallation in dense microstructures. However, many multilayer structures showed significant delamination.

  19. S2HAT: Scalable Spherical Harmonic Transform Library

    NASA Astrophysics Data System (ADS)

    Stompor, Radek

    2011-10-01

    Many problems in astronomy and astrophysics require a computation of the spherical harmonic transforms. This is in particular the case whenever data to be analyzed are distributed over the sphere or a set of corresponding mock data sets has to be generated. In many of those contexts, rapidly improving resolutions of both the data and simulations puts increasingly bigger emphasis on our ability to calculate the transforms quickly and reliably. The scalable spherical harmonic transform library S2HAT consists of a set of flexible, massively parallel, and scalable routines for calculating diverse (scalar, spin-weighted, etc) spherical harmonic transforms for a class of isolatitude sky grids or pixelizations. The library routines implement the standard algorithm with the complexity of O(n^3/2), where n is a number of pixels/grid points on the sphere, however, owing to their efficient parallelization and advanced numerical implementation, they achieve very competitive performance and near perfect scalability. S2HAT is written in Fortran 90 with a C interface. This software is a derivative of the spherical harmonic transforms included in the HEALPix package and is based on both serial and MPI routines of its version 2.01, however, since version 2.5 this software is fully autonomous of HEALPix and can be compiled and run without the HEALPix library.

  20. MoS2 memristor with photoresistive switching.

    PubMed

    Wang, Wei; Panin, Gennady N; Fu, Xiao; Zhang, Lei; Ilanchezhiyan, P; Pelenovich, Vasiliy O; Fu, Dejun; Kang, Tae Won

    2016-01-01

    A MoS2 nanosphere memristor with lateral gold electrodes was found to show photoresistive switching. The new device can be controlled by the polarization of nanospheres, which causes resistance switching in an electric field in the dark or under white light illumination. The polarization charge allows to change the switching voltage of the photomemristor, providing its multi-level operation. The device, polarized at a voltage 6 V, switches abruptly from a high resistance state (HRSL6) to a low resistance state (LRSL6) with the On/Off resistance ratio of about 10 under white light and smooth in the dark. Analysis of device conductivity in different resistive states indicates that its resistive state could be changed by the modulation of the charge in an electric field in the dark or under light, resulting in the formation/disruption of filaments with high conductivity. A MoS2 photomemristor has great potential as a multifunctional device designed by using cost-effective fabrication techniques. PMID:27492593

  1. MoS2 memristor with photoresistive switching

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Panin, Gennady N.; Fu, Xiao; Zhang, Lei; Ilanchezhiyan, P.; Pelenovich, Vasiliy O.; Fu, Dejun; Kang, Tae Won

    2016-08-01

    A MoS2 nanosphere memristor with lateral gold electrodes was found to show photoresistive switching. The new device can be controlled by the polarization of nanospheres, which causes resistance switching in an electric field in the dark or under white light illumination. The polarization charge allows to change the switching voltage of the photomemristor, providing its multi-level operation. The device, polarized at a voltage 6 V, switches abruptly from a high resistance state (HRSL6) to a low resistance state (LRSL6) with the On/Off resistance ratio of about 10 under white light and smooth in the dark. Analysis of device conductivity in different resistive states indicates that its resistive state could be changed by the modulation of the charge in an electric field in the dark or under light, resulting in the formation/disruption of filaments with high conductivity. A MoS2 photomemristor has great potential as a multifunctional device designed by using cost-effective fabrication techniques.

  2. Multiple genes encoding 2,3-dihydroxybiphenyl 1,2-dioxygenase in the gram-positive polychlorinated biphenyl-degrading bacterium Rhodococcus erythropolis TA421, isolated from a termite ecosystem.

    PubMed Central

    Maeda, M; Chung, S Y; Song, E; Kudo, T

    1995-01-01

    Rhodococcus erythropolis TA421 was isolated from a termite ecosystem and is able to degrade a wide range of polychlorinated biphenyl (PCB) congeners. Genetic and biochemical analyses of the PCB catabolic pathway of this organism revealed that there are four different bphC genes (bphC1, bphC2, bphC3, and bphC4) which encode 2,3-dihydroxybiphenyl dioxygenases. As determined by Southern hybridization, none of the bphC genes exhibits homology to any other bphC gene. bphC1, bphC2, and bphC4 encode enzymes that have narrow substrate specificities and cleave the first aromatic ring in the meta position. In contrast, bphC3 encodes a meta cleavage dioxygenase with broad substrate specificity. Asturias et al. have shown that the closely related organism Rhodococcus globerulus P6 contains three different bphC genes (bphC1, bphC2, and bpHC3) which encode meta cleavage dioxygenases. The data suggest that there is a diverse family of bphC genes which encode PCB meta cleavage dioxygenases in members of the genus Rhodococcus. PMID:7574595

  3. Characterization of the Genome of the Polyvalent Lytic Bacteriophage GTE2, Which Has Potential for Biocontrol of Gordonia-, Rhodococcus-, and Nocardia-Stabilized Foams in Activated Sludge Plants ▿ †

    PubMed Central

    Petrovski, Steve; Seviour, Robert J.; Tillett, Daniel

    2011-01-01

    Hydrophobic Actinobacteria are commonly associated with the stabilization of foams in activated sludge systems. One possible attractive approach to control these foam-stabilizing organisms is the use of specific bacteriophages. We describe the genome characterization of a novel polyvalent DNA phage, GTE2, isolated from activated sludge. This phage is lytic for Gordonia terrae, Rhodococcus globerulus, Rhodococcus erythropolis, Rhodococcus erythropolis, Nocardia otitidiscaviarum, and Nocardia brasiliensis. Phage GTE2 belongs to the family Siphoviridae, possessing a characteristic icosahedral head encapsulating a double-stranded DNA linear genome (45,530 bp) having 10-bp 3′-protruding cohesive ends. The genome sequence is 98% unique at the DNA level and contains 57 putative genes. The genome can be divided into two components, where the first is modular and encodes phage structural proteins and lysis genes. The second is not modular, and the genes harbored there are involved in DNA replication, repair, and metabolism. Some have no known function. GTE2 shows promising results in controlling stable foam production by its host bacteria under laboratory conditions, suggesting that it may prove useful in the field as a biocontrol agent. PMID:21498753

  4. Perfect fluidity of a dissipative system: Analytical solution for the Boltzmann equation in AdS2S2

    DOE PAGESBeta

    Noronha, Jorge; Denicol, Gabriel S.

    2015-12-30

    In this paper we obtain an analytical solution of the relativistic Boltzmann equation under the relaxation time approximation that describes the out-of-equilibrium dynamics of a radially expanding massless gas. This solution is found by mapping this expanding system in flat spacetime to a static flow in the curved spacetime AdS2S2. We further derive explicit analytic expressions for the momentum dependence of the single-particle distribution function as well as for the spatial dependence of its moments. We find that this dissipative system has the ability to flow as a perfect fluid even though its entropy density does not matchmore » the equilibrium form. The nonequilibrium contribution to the entropy density is shown to be due to higher-order scalar moments (which possess no hydrodynamical interpretation) of the Boltzmann equation that can remain out of equilibrium but do not couple to the energy-momentum tensor of the system. Furthermore, in this system the slowly moving hydrodynamic degrees of freedom can exhibit true perfect fluidity while being totally decoupled from the fast moving, nonhydrodynamical microscopic degrees of freedom that lead to entropy production.« less

  5. Search for Delta S = 2 nonleptonic hyperon decays

    SciTech Connect

    White, C.G.; Burnstein, R.A.; Chakravorty, A.; Chan, A.; Chen, Y.C.; Choong, W.S.; Clark, K.; Dukes, E.C.; Durandet, C.; Felix, J.; Gidal, G.; Gu, P.; Gustafson, H.R.; Ho, C.; Holmstrom, T.; Huang, M.; James, C.; Jenkins, C.M.; Kaplan, D.M.; Lederman, L.M.; Leros, N.; /Taiwan, Inst. Phys. /UC, Berkeley /Fermilab /Guanajuato U. /IIT, Chicago /Lausanne U. /LBL, Berkeley /Michigan U. /South Alabama U. /Virginia U.

    2005-03-01

    A sensitive search for the rare decays {Omega}{sup -} {yields} {Lambda}{pi}{sup -} and {Xi}{sup 0} {yields} p{pi}{sup -} has been performed using data from the 1997 run of the HyperCP (Fermilab E871) experiment. Limits on other such processes do not exclude the possibility of observable rates for |{Delta}S| = 2 nonleptonic hyperon decays, provided the decays occur through parity-odd operators. They obtain the branching-fraction limits {Beta}({Omega}{sup -} {yields} {Lambda}{pi}{sup -}) < 2.9 x 10{sup -6} and {Beta}({Xi}{sup 0} {yields} p{pi}{sup -}) < 8.2 x 10{sup -6}, both at 90% confidence level.

  6. Vibrational photodetachment spectroscopy near the electron affinity of S2

    NASA Astrophysics Data System (ADS)

    Barrick, J. B.; Yukich, J. N.

    2016-02-01

    We have conducted laser photodetachment spectroscopy near the detachment threshold of the electron affinity of S2 in a 1.8-T field. The ions are prepared by dissociative electron attachment to carbonyl sulfide. The experiment is conducted in a Penning ion trap and with a narrow-band, tunable, Ti:sapphire laser. A hybrid model for photodetachment in an ion trap is fit to the data using the appropriate Franck-Condon factors. The observations reveal detachment from and to the first few vibrational levels of the anion and the neutral molecule, respectively. Evaporative cooling of the anion ensemble condenses the thermal distribution to the lowest initial vibrational states. The subsequent detachment spectroscopy yields results consistent with a vibrationally cooled anion population.

  7. Measurement of the muonium 1S-2S transition frequency

    SciTech Connect

    Jungmann, K.; Baird, P. E. G.; Barr, J. R. M.; Berkeland, D.; Boshier, M. G.; Braun, B.; Eaton, G. H.; Ferguson, A. I.; Geerds, H.; Hughes, V. W.; Maas, F.; Matthias, B. E.; Matousek, P.; Persaud, M.; Putlitz, G. zu; Reinhard, I.; Riis, E.; Sandars, P. G. H.; Schwarz, W.; Toner, W. T.

    1995-04-01

    Resonant ionization spectroscopy has been employed for measuring the 1{sup 2}S1/2-2{sup 2}S1/2 frequency difference in the hydrogen-like muonium atom to 2 455 529 002(33)(46) MHz. The 1S-2S two-photon transition was induced Doppler-free using two counter-propagating laser beams. The 2S state was photo-ionized by a third photon from the same laser field. The measurement agrees with QED theory within two standard deviations. The mass of the positive muon can be extracted from the isotope shifts in this transition to hydrogen and deuterium to 105.658 80(29)(43) MeV/c{sup 2}.

  8. Measurement of the muonium 1S-2S transition frequency

    SciTech Connect

    Jungmann, K.; Baird, P.E.G.; Barr, J.R.M.; Berkeland, D.; Boshier, M.G.; Braun, B.; Eaton, G.H.; Ferguson, A.I.; Geerds, H.; Hughes, V.W.; Maas, F.; Matthias, B.E.; Matousek, P.; Persaud, M.; zu Putlitz, G.; Reinhard, I.; Riis, E.; Sandars, P.G.H.; Schwarz, W.; Toner, W.T.; Towrie, M.; Willmann, L.; Woodle, K.A.; Woodman, G.

    1995-04-01

    Resonant ionization spectroscopy has been employed for measuring the 1{sup 2}{ital S}{sub 1/2}{minus}2{sup 2}{ital S}{sub 1/2} frequency difference in the hydrogen-like muonium atom to 2 455 529 002(33)(46) MHz. The 1S-2S two-photon transition was induced Doppler-free using two counter-propagating laser beams. The 2S state was photo-ionized by a third photon from the same laser field. The measurement agrees with QED theory within two standard deviations. The mass of the positive muon can be extracted from the isotope shifts in this transition to hydrogen and deuterium to 105.658 80(29)(43) MeV/c{sup 2}. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

  9. Photoluminescence Studies in CuAlS2 Crystals

    NASA Astrophysics Data System (ADS)

    Shirakata, Sho; Aksenov, Igor; Sato, Katsuaki; Isomura, Shigehiro

    1992-08-01

    Photoluminescence (PL) measurements have been carried out at low temperature (77 and 10 K) on CuAlS2 crystals grown by the chemical vapor transport method. Seven sharp PL lines have been observed near the band edge. Based on the photoreflectance measurements, the PL line at 3.550 eV has been assigned to a free exciton emission. The lines at 3.540, 3.532, 3.500 and 3.475 eV are tentatively assigned to the bound excitons, and they are discussed in terms of the crystal composition and the annealing conditions. This study also refers to the PL lines and peaks at about 2.9 eV.

  10. An investigation of AdS2 backreaction and holography

    NASA Astrophysics Data System (ADS)

    Engelsöy, Julius; Mertens, Thomas G.; Verlinde, Herman

    2016-07-01

    We investigate a dilaton gravity model in AdS2 proposed by Almheiri and Polchinski [1] and develop a 1d effective description in terms of a dynamical boundary time with a Schwarzian derivative action. We show that the effective model is equivalent to a 1d version of Liouville theory, and investigate its dynamics and symmetries via a standard canonical framework. We include the coupling to arbitrary conformal matter and analyze the effective action in the presence of possible sources. We compute commutators of local operators at large time separation, and match the result with the time shift due to a gravitational shockwave interaction. We study a black hole evaporation process and comment on the role of entropy in this model.

  11. Morphological growth of sputtered MoS2 films

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1975-01-01

    Sputtered MoS2 films from 300 A to 20,000 A thick were deposited on metal and glass surfaces. The substrate effects such as surface temperature, finish, pretreatment and chemistry as they affect the film formation characteristics were investigated by optical, electron transmission, electron diffraction, and scanning electron microscopy. Substrate temperature and surface chemistry were found to be the prime variables as to the formation of a crystalline or amorphous film. The friction characteristics are strictly influenced by the type of film formed. Surface chemistry and surface pretreatment account for compound formation and corresponding grain growth, which directly affect the adhesion characteristics, resulting in poor adherence. The type of surface finish (topography) as related to scratches, impurities, inhomogeneities, etc., are favorable nucleation sites for the growth of isolated and complex nodules within the film, and various complex surface overgrowths on the film. These nodular growth features have progressively more undesirable effects on the film behavior as the film thickness increases.

  12. Morphological growth of sputtered MoS2 films

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1975-01-01

    Sputtered MoS2 films from 300 A to 20,000 A thick were deposited on metal and glass surfaces. The substrate effects such as surface temperature, finish, pretreatment, and chemistry as they affect the film formation characteristics were investigated by optical, electron transmission, electron diffraction, and scanning electron microscopy. Substrate temperature and surface chemistry were found to be the prime variables as to the formation of a crystalline or amorphous film. The friction characteristics are strictly influenced by the type of film formed. Surface chemistry and surface pretreatment account for compound formation and corresponding grain growth, which directly affect the adhesion characteristics, resulting in poor adherence. Scratches, impurities, inhomogeneities, etc., are favorable nucleation sites for the growth of isolated and complex nodules within the film.

  13. Lubrication with sputtered MoS2 films.

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1971-01-01

    Sputtered MoS2 films (2000-6500 A) were deposited on highly polished metal surfaces. These films have a low coefficient of friction (0.03-0.04) at speeds of 40-80 rpm and loads of 250-1000 grams. At loads of 250 grams, the wear lives are over 0.5 million cycles, but at 1000 gram loads, it decreases to 38,000 cycles. Friction experiments and tensile tests have indicated that sputtered films have a strong adherence to metal surfaces. Electron transmission, diffraction, and scanning electron microscopy show that these films have an extremely small particle size less than 30 A in diameter and are very dense and free from observable pinholes.

  14. Lubrication with sputtered MoS2 films.

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1971-01-01

    Sputtered MoS2 films (2000-6500 A) were deposited on highly polished metal surfaces. These films have a low coefficient of friction (0.03-0.04) at speeds of 40-80 rpm and loads of 250-1000 grams. At loads of 250 grams the wear lives are over 0.5 million cycles, but at 1000 gram loads, it decreases to 38,000 cycles. Friction experiments and tensile tests have indicated that sputtered films have a strong adherence to metal surfaces. Electron transmission, diffraction and scanning electron microscopy show that these films have an extremely small particle size, less than 30 A in diameter, and are very dense and free from observable pinholes. The high kinetic energy of these sputtered species, the submicroscopic particle size and the sputter-etched substrate surface is responsible for strong adhesion and cohesion of the sputtered film.

  15. Synthesis, photocatalytic and antimicrobial properties of SnO2, SnS2 and SnO2/SnS2 nanostructure.

    PubMed

    Fakhri, Ali; Behrouz, Sajjad; Pourmand, Melika

    2015-08-01

    Nanoscale SnO2, SnS2 and SnO2/SnS2 were synthesized by hydrothermal treatment method and characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH) and UV-vis spectra. The photocatalytic activity of SnO2, SnS2 and SnO2/SnS2 were tested with Enrofloxacin antibiotic. The tetragonal and hexagonal SnO2 and SnS2 phase was confirmed through XRD, respectively. The photocatalytic results indicated that the SnO2/SnS2 enhanced the photocatalytic activity and could be effectively used as photocatalyst for degradation of Enrofloxacin antibiotic pollutant. The results of antibacterial experiment under visible light irradiation demonstrate that the SnO2/SnS2 nanocomposite exhibit enhanced antibacterial efficiency compared with pure SnO2 and SnS2. The antifungal activity of the nanoscale SnO2, SnS2 and SnO2/SnS2 against Candida albicans was assessed using the disc-diffusion susceptibility tests. It was seen that the antifungal activity of SnO2/SnS2 nanocomposite is higher than the pure SnO2 and SnS2 toward pathogenic C. albicans. PMID:26046748

  16. The creation of the magnetic and metallic characteristics in low-width MoS 2 nanoribbon (1D MoS 2): A DFT study

    NASA Astrophysics Data System (ADS)

    Shidpour, Reza; Manteghian, Merhrdad

    2009-06-01

    A basic understanding of the catalytic performance is needed to probe the physical properties that change with a reduction in the catalytic clusters size. It has been shown that the edge of low-width MoS2 nanoribbon has a metallic characteristic, while that of bulk MoS2 has a semi-conductive characteristic. For probing the observations, we constructed the models representing the surface atoms and the edge atoms of the MoS2 nanoribbon. The nanoribbon-like model can also be used to model the edge atoms of the nanocluster MoS2 .Then we calculated the density of states (DOS) of infinitely two-dimensional MoS2 and of the structure corresponding to the edge atoms of the MoS2 nanoribbon-like structure with Wien2K software. The magnetic moment of structures was calculated for identifying the magnetic structure. We found that the bulk MoS2 and infinitely two-dimensional MoS2 are semi-conductive and not magnetic, while the computation model corresponding to MoS2 nanoribbon is metallic. The calculation anticipates that the edges of the MoS2 nanocluster and the low-width MoS2 nanoribbon are strongly magnetic.

  17. Monolayer-by-monolayer stacked pyramid-like MoS2 nanodots on monolayered MoS2 flakes with enhanced photoluminescence.

    PubMed

    Yuan, Cailei; Cao, Yingjie; Luo, Xingfang; Yu, Ting; Huang, Zhenping; Xu, Bo; Yang, Yong; Li, Qinliang; Gu, Gang; Lei, Wen

    2015-11-01

    The precise control of the morphology and crystal shape of MoS2 nanostructures is of particular importance for their application in nanoelectronic and optoelectronic devices. Here, we describe a single step route for the synthesis of monolayer-by-monolayer stacked pyramid-like MoS2 nanodots on monolayered MoS2 flakes using a chemical vapor deposition method. First-principles calculations demonstrated that the bandgap of the pyramid-like MoS2 nanodot is a direct bandgap. Enhanced local photoluminescence emission was observed in the pyramid-like MoS2 nanodot, in comparison with monolayered MoS2 flakes. The findings presented here provide new opportunities to tailor the physical properties of MoS2via morphology-controlled synthesis. PMID:26439853

  18. Monolayer-by-monolayer stacked pyramid-like MoS2 nanodots on monolayered MoS2 flakes with enhanced photoluminescence

    NASA Astrophysics Data System (ADS)

    Yuan, Cailei; Cao, Yingjie; Luo, Xingfang; Yu, Ting; Huang, Zhenping; Xu, Bo; Yang, Yong; Li, Qinliang; Gu, Gang; Lei, Wen

    2015-10-01

    The precise control of the morphology and crystal shape of MoS2 nanostructures is of particular importance for their application in nanoelectronic and optoelectronic devices. Here, we describe a single step route for the synthesis of monolayer-by-monolayer stacked pyramid-like MoS2 nanodots on monolayered MoS2 flakes using a chemical vapor deposition method. First-principles calculations demonstrated that the bandgap of the pyramid-like MoS2 nanodot is a direct bandgap. Enhanced local photoluminescence emission was observed in the pyramid-like MoS2 nanodot, in comparison with monolayered MoS2 flakes. The findings presented here provide new opportunities to tailor the physical properties of MoS2via morphology-controlled synthesis.

  19. Improving crystalline quality of sputtering-deposited MoS2 thin film by postdeposition sulfurization annealing using (t-C4H9)2S2

    NASA Astrophysics Data System (ADS)

    Ishihara, Seiya; Hibino, Yusuke; Sawamoto, Naomi; Suda, Kohei; Ohashi, Takumi; Matsuura, Kentarou; Machida, Hideaki; Ishikawa, Masato; Sudoh, Hiroshi; Wakabayashi, Hitoshi; Ogura, Atsushi

    2016-04-01

    A sputtered MoS2 thin film is a candidate for realizing enhancement-mode MoS2 metal-oxide-semiconductor field-effect transistors (MOSFETs). However, there are some sulfur vacancies in the film, which degrade the device performance. In this study, we performed postdeposition sulfurization annealing (PSA) on a sputtered MoS2 thin film in order to complement sulfur vacancies, and we investigated the fundamental properties of the MoS2 film. As a result, a high-quality crystalline 10-layer MoS2 film with an ideal stoichiometric composition was obtained at a relatively low process temperature (500 °C). The MoS2 film had an indirect bandgap of 1.36 eV and a high Hall mobility compared with the as-deposited sputtered MoS2 film.

  20. Quantum magnetotransport properties of a MoS2 monolayer

    NASA Astrophysics Data System (ADS)

    Tahir, M.; Vasilopoulos, P.; Peeters, F. M.

    2016-01-01

    We study transport properties of a MoS2 monolayer in the presence of a perpendicular magnetic field B . We derive and discuss its band structure and take into account spin and valley Zeeman effects. Compared to a conventional two-dimensional electron gas, these effects lead to new quantum Hall plateaus and new peaks in the longitudinal resistivity as functions of the magnetic field. The field B leads to a significant enhancement of the spin splitting in the conduction band, to a beating of the Shubnikov-de Haas (SdH) oscillations in the low-field regime, and to their splitting in the high-field regime. The Zeeman fields suppress significantly the beating of the SdH oscillations in the low-field regime and strongly enhance their splitting at high fields. The spin and valley polarizations show a similar beating pattern at low fields and are clearly separated at high fields in which they attain a value higher than 90 % .

  1. Identifying multiexcitons in Mo S2 monolayers at room temperature

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Seok; Kim, Min Su; Kim, Hyun; Lee, Young Hee

    2016-04-01

    One of the unique features of atomically thin two-dimensional materials is strong Coulomb interactions due to the reduced dielectric screening effect; this feature enables the study of many-body phenomena such as excitons, trions, and biexcitons. However, identification of biexcitons remains unresolved owing to their broad peak feature at room temperature. Here, we investigate multiexcitons in monolayer Mo S2 using both electrical and optical doping and identify the transition energies for each exciton. The binding energy of the assigned biexciton is twice that of the trion, in quantitative agreement with theoretical predictions. The biexciton population is predominant under optical doping but negligible under electrical doping. The biexciton population is quadratically proportional to the exciton population, obeying the mass-action theory. Our results illustrate the stable formation of not only trions but also biexcitons due to strong Coulomb interaction even at room temperature; therefore, these results provide a deeper understanding of the complex excitonic behaviors in two-dimensional semiconductors.

  2. MoS2 nanoribbons as promising thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Fan, D. D.; Liu, H. J.; Cheng, L.; Jiang, P. H.; Shi, J.; Tang, X. F.

    2014-09-01

    The thermoelectric properties of MoS2 armchair nanoribbons with different width are studied by using first-principles calculations and Boltzmann transport theory, where the relaxation time is predicted from deformation potential theory. Due to the dangling bonds at the armchair edge, there is obvious structure reconstruction of the nanoribbons which plays an important role in governing the electronic and transport properties. The investigated armchair nanoribbons are found to be semiconducting with indirect gaps, which exhibit interesting width-dependent oscillation behavior. The smaller gap of nanoribbon with width N = 4 (Here, N represents the number of dimer lines or zigzag chains across the ribbon width) leads to a much larger electrical conductivity at 300 K, which outweighs the relatively larger electronic thermal conductivity when compared with those of N = 5, 6. As a result, the ZT values can be optimized to 3.4 (p-type) and 2.5 (n-type) at room temperature, which significantly exceed the performance of most laboratory results reported in the literature.

  3. RKKY interaction in triangular MoS2 nanoflakes

    NASA Astrophysics Data System (ADS)

    Mastrogiuseppe, Diego; Avalos-Ovando, Oscar; Ulloa, Sergio

    Transition-metal dichalcogenides (TMDs), such as MoS2, possess unique electronic and optical properties, making them promising for optospintronics. Exfoliation and CVD growth processes produce nanoflakes of different shapes, often triangular with zigzag edges. Magnetic impurities in this material interact indirectly through the TMD conduction electrons/holes. Using an effective 3-orbital tight-binding model, we study the Ruderman-Kittel-Kasuya-Yosida interaction between magnetic impurities in p-doped triangular flakes with zigzag termination. We analyze the interaction as function of impurity separation along high symmetry directions in the nanoflake, considering hybridization to different Mo orbitals, and different fillings. The interaction is anisotropic for impurities in the interior of the flake. However, when impurities lie on the edges of the crystallite, the effective exchange is Ising-like, reflecting the presence of z2-orbitals associated with edge states. Other interactions are possible by selecting impurity positions and orbital character of the states in their neighborhood. Our results can be tested with local probes, such as spin-polarized STM Supported by NSF DMR-1508325.

  4. Electric field effects on armchair MoS2 nanoribbons.

    PubMed

    Dolui, Kapildeb; Pemmaraju, Chaitanya Das; Sanvito, Stefano

    2012-06-26

    Ab initio density functional theory calculations are performed to investigate the electronic structure of MoS(2) armchair nanoribbons in the presence of an external static electric field. Such nanoribbons, which are nonmagnetic and semiconducting, exhibit a set of weakly interacting edge states whose energy position determines the band gap of the system. We show that, by applying an external transverse electric field, E(ext), the nanoribbon band gap can be significantly reduced, leading to a metal-insulator transition beyond a certain critical value. Moreover, the presence of a sufficiently high density of states at the Fermi level in the vicinity of the metal-insulator transition leads to the onset of Stoner ferromagnetism that can be modulated, and even extinguished, by E(ext). In the case of bilayer nanoribbons we further show that the band gap can be changed from indirect to direct by applying a transverse field, an effect that might be of significance for opto-electronics applications. PMID:22546015

  5. Two Dimensional Ising Superconductivity in Gated MoS2

    NASA Astrophysics Data System (ADS)

    Yuan, Noah; Lu, Jianming; Law, Kam Tuen; Zheliuk, Oleksandr; Leermakers, Inge; Zeitler, Ulrich; Ye, Jianting

    The Zeeman effect, which is usually considered to be detrimental to superconductivity, can surprisingly protect the superconducting states created by gating a layered transition metal dichalcogenide. This effective Zeeman field, which is originated from intrinsic spin orbit coupling induced by breaking in-plane inversion symmetry, can reach nearly a hundred Tesla in magnitude. It strongly pins the spin orientation of the electrons to the out-of-plane directions and protects the superconductivity from being destroyed by an in-plane external magnetic field. In magnetotransport experiments of ionic-gate MoS2 transistors, where gating prepares individual superconducting state with different carrier doping, we indeed observe a spin-protected superconductivity by measuring an in-plane critical field Bc 2 far beyond the Pauli paramagnetic limit. The gating-enhanced Bc 2 is more than an order of magnitude larger compared to the bulk superconducting phases where the effective Zeeman field is weakened by interlayer coupling. Our study gives the first experimental evidence of an Ising superconductor, in which spins of the pairing electrons are strongly pinned by an effective Zeeman field.

  6. The titanium binding protein of Rhodococcus ruber GIN1 (NCIMB 40340) is a cell-surface homolog of the cytosolic enzyme dihydrolipoamide dehydrogenase.

    PubMed

    Siegmann, Ari; Komarska, Avital; Betzalel, Yifaat; Brudo, Irene; Jindou, Sadanari; Mor, Gil; Fleminger, Gideon

    2009-01-01

    Rhodococcus ruber GIN1 (formally Rh. strain GIN1) was previously isolated on the basis of its strong adherence to coal fly ash (CFA) and titanium dioxide particles from CFA sedimentation ponds of an electrical power plant in Israel. The interaction of the bacterium with oxides has been shown to be mediated by a cell surface protein designated TiBP (titanium binding protein) involving primarily strong, non-electrostatic forces. In this work, we set forward to identify this unique exocellular protein. Sequence analysis of the purified protein by mass spectrometry (LC/MS/MS) following trypsinization revealed 11 peptides. All of them showed >90% amino acid residues identity with sequences of one of the orthologs (dldh1) of the cytosolic enzyme dihydrolipoamide dehydrogenase (DLDH), based on the genome sequence of Rhodococcus strain RHA1. This genome was selected as a reference since currently it is the only sequenced Rhodococcal genome. Altogether, these peptides covered over 25% of the 52 kDa protein molecule. N- and C-termini primers were prepared and used to sequence the paralog gene from Rh. ruber GIN1 after polymerase chain reaction (PCR) amplification. All 11 peptides showed 100% identity with the sequence of this gene. The homology of TiBP with the supposedly cytosolic DLDH raised the question of whether the exocellular TiBP possesses DLDH activity. Indeed, intact late logarithmic phase Rh. ruber GIN1 cells, previously shown to express TiBP, were found to possess such activity, while very low activity was associated with stationary phase cells which possess diminished TiBP expression on their surface. Further evidence for the exocellular location of TiBP/DLDH was achieved using specific anti-TiBP polyclonal antibodies by whole cell and protein enzyme-linked immunosorbent assay (ELISA), showing high reactivity of the logarithmic phase cell surface and substantially lower reactivity with the stationary phase cells. As expected, logarithmic phase spheroplasts were

  7. Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Nocardia, Rhodococcus, Kocuria, Gordonia, Tsukamurella, and Listeria Species

    PubMed Central

    Lee, Tai-Fen; Du, Shin-Hei; Teng, Shih-Hua; Liao, Chun-Hsing; Sheng, Wang-Hui; Teng, Lee-Jene

    2014-01-01

    We evaluated whether the Bruker Biotyper matrix-associated laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) system provides accurate species-level identifications of 147 isolates of aerobically growing Gram-positive rods (GPRs). The bacterial isolates included Nocardia (n = 74), Listeria (n = 39), Kocuria (n = 15), Rhodococcus (n = 10), Gordonia (n = 7), and Tsukamurella (n = 2) species, which had all been identified by conventional methods, molecular methods, or both. In total, 89.7% of Listeria monocytogenes, 80% of Rhodococcus species, 26.7% of Kocuria species, and 14.9% of Nocardia species (n = 11, all N. nova and N. otitidiscaviarum) were correctly identified to the species level (score values, ≥2.0). A clustering analysis of spectra generated by the Bruker Biotyper identified six clusters of Nocardia species, i.e., cluster 1 (N. cyriacigeorgica), cluster 2 (N. brasiliensis), cluster 3 (N. farcinica), cluster 4 (N. puris), cluster 5 (N. asiatica), and cluster 6 (N. beijingensis), based on the six peaks generated by ClinProTools with the genetic algorithm, i.e., m/z 2,774.477 (cluster 1), m/z 5,389.792 (cluster 2), m/z 6,505.720 (cluster 3), m/z 5,428.795 (cluster 4), m/z 6,525.326 (cluster 5), and m/z 16,085.216 (cluster 6). Two clusters of L. monocytogenes spectra were also found according to the five peaks, i.e., m/z 5,594.85, m/z 6,184.39, and m/z 11,187.31, for cluster 1 (serotype 1/2a) and m/z 5,601.21 and m/z 11,199.33 for cluster 2 (serotypes 1/2b and 4b). The Bruker Biotyper system was unable to accurately identify Nocardia (except for N. nova and N. otitidiscaviarum), Tsukamurella, or Gordonia species. Continuous expansion of the MALDI-TOF MS databases to include more GPRs is necessary. PMID:24759706

  8. Planar B3S2H3(-) and B3S2H3 clusters with a five-membered B3S2 ring: boron-sulfur hydride analogues of cyclopentadiene.

    PubMed

    Li, Da-Zhi; Li, Rui; Zhang, Li-Juan; Ou, Ting; Zhai, Hua-Jin

    2016-08-21

    Boron clusters can serve as inorganic analogues of hydrocarbons or polycyclic aromatic hydrocarbons (PAHs). We present herein, based upon global searches and electronic structural calculations at the B3LYP and CCSD(T) levels, the global-minimum structures of two boron-sulfur hydride clusters: C2v B3S2H3(-) (1, (2)B1) and C2v B3S2H3 (2, (1)A1). Both species are perfectly planar and feature a five-membered B3S2 ring as the structural core, with three H atoms attached terminally to the B sites. Chemical bonding analysis shows that C2v B3S2H3(-) (1) has a delocalized 5π system within a heteroatomic B3S2 ring, analogous to the π bonding in cyclopentadiene, D5h C5H5. The corresponding closed-shell C2v B3S2H3(2-) (3, (1)A1) dianion is only a local minimum. At the single-point CCSD(T) level, it is 5.7 kcal mol(-1) above the chain-like C1 ((1)A) open structure. This situation is in contrast to the cyclopentadienyl anion, C5H5(-), a prototypical aromatic hydrocarbon with a π sextet. The C2v B3S2H3 (2) neutral cluster is readily obtained upon removal of one π electron from C2v B3S2H3(-) (1). The anion photoelectron spectrum of C2v B3S2H3(-) (1) and the infrared absorption spectrum of C2v B3S2H3 (2) are predicted. The C2v B3S2H3(-) (1) species can be stabilized in sandwich-type C2h [(B3S2H3)2Fe](2-) and salt C2h [(B3S2H3)2Fe]Li2 complexes. An intriguing difference is observed between the pattern of π sextet in C2v B3S2H3(2-) (3) dianion and that in cyclopentadienyl anion. The present work also sheds light on the mechanism of structural evolution in the B3S2H3(0/-/2-) series with charge states. PMID:27424889

  9. In Situ Synthesis of Carbon Nanotube Hybrids with Alternate MoC and MoS2 to Enhance the Electrochemical Activities of MoS2.

    PubMed

    Li, Xin; Zhang, Jinying; Wang, Rui; Huang, Hongyang; Xie, Chong; Li, Zhihui; Li, Jun; Niu, Chunming

    2015-08-12

    Molybdenum disulfides and carbides are effective catalysts for hydrogenation and hydridesulfurization, where MoS2 nanostructures are also highly promising materials for lithium ion batteries. High surface-to-volume ratio and strong interactions with conducting networks are crucial factors for their activities. A new hybrid structure of multiwalled carbon nanotube (MWCNT) with alternate MoC nanoparticles and MoS2 nanosheets (MoS2 + MoC-MWCNT) has been synthesized by controlled carburization of core-shell MoS2-MWCNT hybrid nanotubes and demonstrated by HRTEM, FFT, XRD, and Raman scattering. The MoS2 nanosheets (∼10 nm) remain tightly connected to MWCNT surfaces with {001} planes in parallel to MWCNT walls and the highly crystallized α-MoC particles (∼10 nm) are adhered to MWCNTs at angles of 60-80° between {111} planes and MWCNT walls. The electrochemical performances of the hybrid structures have been demonstrated as anodes for lithium ion batteries to be significantly increased by breaking MoS2 nanotubes into nanosheets (patches) on MWCNT surfaces, especially at high current rates. The specific capacities of MoS2 + MoC-MWCNT sample with ∼23% MoS2 have been demonstrated to be higher than those of MoS2-MWCNTs containing ∼70% MoS2. PMID:26226386

  10. In Vitro Study of SnS2, BiOCl and SnS2-Incorporated BiOCl Inorganic Nanoparticles Used as Doxorubicin Carrier.

    PubMed

    Deng, Jiangming; Mo, Yunfei; Liu, Jianghui; Guo, Rui; Zhang, Yi; Xue, Wei; Zhang, Yuanming

    2016-06-01

    Inorganic nanoparticles have been widely used in biomedical field. In this paper, we try to study the use of three types of inorganic nanoparticles (i.e., SnS2, BiOCl and SnS2-incorporated BiOCl (SnS2/BiOCl)) as doxorubicin (DOX) carriers. Firstly, SnS2, BiOCl and SnS2/BiOCl were synthesised, then were characterized by TEM, nanoparticles size and zeta potential. Next the drug release and cell viability test were carried out. The cell viability test indicated that the drug carriers can effectively kill HeLa cells while maintaining low cytotoxicity against normal cells-fibroblasts. The results show the potential of SnS2/BiOCl nanoparticles for antitumor applications. PMID:27427625

  11. Targeted Disruption of the kstD Gene Encoding a 3-Ketosteroid Δ1-Dehydrogenase Isoenzyme of Rhodococcus erythropolis Strain SQ1

    PubMed Central

    van der Geize, R.; Hessels, G. I.; van Gerwen, R.; Vrijbloed, J. W.; van der Meijden, P.; Dijkhuizen, L.

    2000-01-01

    Microbial phytosterol degradation is accompanied by the formation of steroid pathway intermediates, which are potential precursors in the synthesis of bioactive steroids. Degradation of these steroid intermediates is initiated by Δ1-dehydrogenation of the steroid ring structure. Characterization of a 2.9-kb DNA fragment of Rhodococcus erythropolis SQ1 revealed an open reading frame (kstD) showing similarity with known 3-ketosteroid Δ1-dehydrogenase genes. Heterologous expression of kstD yielded 3-ketosteroid Δ1-dehydrogenase (KSTD) activity under the control of the lac promoter in Escherichia coli. Targeted disruption of the kstD gene in R. erythropolis SQ1 was achieved, resulting in loss of more than 99% of the KSTD activity. However, growth on the steroid substrate 4-androstene-3,17-dione or 9α-hydroxy-4-androstene-3,17-dione was not abolished by the kstD gene disruption. Bioconversion of phytosterols was also not blocked at the level of Δ1-dehydrogenation in the kstD mutant strain, since no accumulation of steroid pathway intermediates was observed. Thus, inactivation of kstD is not sufficient for inactivation of the Δ1-dehydrogenase activity. Native polyacrylamide gel electrophoresis of cell extracts stained for KSTD activity showed that R. erythropolis SQ1 in fact harbors two activity bands, one of which is absent in the kstD mutant strain. PMID:10788377

  12. Oral Administration of Electron-Beam Inactivated Rhodococcus equi Failed to Protect Foals against Intrabronchial Infection with Live, Virulent R. equi

    PubMed Central

    Rocha, Joana N.; Cohen, Noah D.; Bordin, Angela I.; Brake, Courtney N.; Giguère, Steeve; Coleman, Michelle C.; Alaniz, Robert C.; Lawhon, Sara D.; Mwangi, Waithaka; Pillai, Suresh D.

    2016-01-01

    There is currently no licensed vaccine that protects foals against Rhodococcus equi–induced pneumonia. Oral administration of live, virulent R. equi to neonatal foals has been demonstrated to protect against subsequent intrabronchial challenge with virulent R. equi. Electron beam (eBeam)-inactivated R. equi are structurally intact and have been demonstrated to be immunogenic when administered orally to neonatal foals. Thus, we investigated whether eBeam inactivated R. equi could protect foals against developing pneumonia after experimental infection with live, virulent R. equi. Foals (n = 8) were vaccinated by gavaging with eBeam-inactivated R. equi at ages 2, 7, and 14 days, or gavaged with equal volume of saline solution (n = 4), and subsequently infected intrabronchially with live, virulent R. equi at age 21 days. The proportion of vaccinated foals that developed pneumonia following challenge was similar among the vaccinated (7/8; 88%) and unvaccinated foals (3/4; 75%). This vaccination regimen did not appear to be strongly immunogenic in foals. Alternative dosing regimens or routes of administration need further investigation and may prove to be immunogenic and protective. PMID:26828865

  13. Oral Administration of Electron-Beam Inactivated Rhodococcus equi Failed to Protect Foals against Intrabronchial Infection with Live, Virulent R. equi.

    PubMed

    Rocha, Joana N; Cohen, Noah D; Bordin, Angela I; Brake, Courtney N; Giguère, Steeve; Coleman, Michelle C; Alaniz, Robert C; Lawhon, Sara D; Mwangi, Waithaka; Pillai, Suresh D

    2016-01-01

    There is currently no licensed vaccine that protects foals against Rhodococcus equi-induced pneumonia. Oral administration of live, virulent R. equi to neonatal foals has been demonstrated to protect against subsequent intrabronchial challenge with virulent R. equi. Electron beam (eBeam)-inactivated R. equi are structurally intact and have been demonstrated to be immunogenic when administered orally to neonatal foals. Thus, we investigated whether eBeam inactivated R. equi could protect foals against developing pneumonia after experimental infection with live, virulent R. equi. Foals (n = 8) were vaccinated by gavaging with eBeam-inactivated R. equi at ages 2, 7, and 14 days, or gavaged with equal volume of saline solution (n = 4), and subsequently infected intrabronchially with live, virulent R. equi at age 21 days. The proportion of vaccinated foals that developed pneumonia following challenge was similar among the vaccinated (7/8; 88%) and unvaccinated foals (3/4; 75%). This vaccination regimen did not appear to be strongly immunogenic in foals. Alternative dosing regimens or routes of administration need further investigation and may prove to be immunogenic and protective. PMID:26828865

  14. Isolation of an aryloxyphenoxy propanoate (AOPP) herbicide-degrading strain Rhodococcus ruber JPL-2 and the cloning of a novel carboxylesterase gene (feh).

    PubMed

    Hongming, Liu; Xu, Lou; Zhaojian, Ge; Fan, Yang; Dingbin, Chen; Jianchun, Zhu; Jianhong, Xu; Shunpeng, Li; Qing, Hong

    2015-06-01

    The strain JPL-2, capable of degrading fenoxaprop-P-ethyl (FE), was isolated from the soil of a wheat field and identified as Rhodococcus ruber. This strain could utilize FE as its sole carbon source and degrade 94.6% of 100 mg L(-1) FE in 54 h. Strain JPL-2 could also degrade other aryloxyphenoxy propanoate (AOPP) herbicides. The initial step of the degradation pathway is to hydrolyze the carboxylic acid ester bond. A novel esterase gene feh, encoding the FE-hydrolyzing carboxylesterase (FeH) responsible for this initial step, was cloned from strain JPL-2. Its molecular mass was approximately 39 kDa, and the catalytic efficiency of FeH followed the order of FE > quizalofop-P-ethyl > clodinafop-propargyl > cyhalofop-butyl > fluazifop-P-butyl > haloxyfop-P-methyl > diclofop-methy, which indicated that the chain length of the alcohol moiety strongly affected the hydrolysis activity of the FeH toward AOPP herbicides. PMID:26273257

  15. Administration of commercial Rhodococcus equi specific hyperimmune plasma results in variable amounts of IgG against pathogenic bacteria in foals.

    PubMed

    Sanz, M G; Oliveira, A F; Page, A; Horohov, D W

    2014-11-15

    Rhodococcus equi is the most common cause of pneumonia in young foals. A vaccine is not available and the use of R equi-specific hyperimmune plasma (HIP) is common. Despite its widespread use, the efficacy of HIP in preventing disease remains controversial. The objectives of this study were (1) to evaluate the virulence associate protein A (VapA)-specific IgG and IgG subclasses in commercially available R equi HIP and (2) to evaluate serum VapA-specific IgG and IgG subclasses in foals following administration of commercial R equi HIP. Three different lots from four commercial R equi HIP were sampled. VapA-specific IgG and IgG subclasses were evaluated in all samples using an ELISA. Serum was collected from newborn foals either after commercial R equi HIP was administered (n=97) or not (n=70). Serum was also collected from each mare. Administration of HIP significantly (P<0.001) increased VapA-specific IgGs in recipient foals, however, there was a marked variation in VapA-specific IgGs in foals receiving the same product. VapA-specific IgGs were significantly different (P<0.001) between products and varied between lots, with coefficients of variation ranging from 17 to 123 per cent. These results may explain previously reported disparities in HIP efficacy. PMID:25117301

  16. Characterization of the Role of the Pathogenicity Island and vapG in the Virulence of the Intracellular Actinomycete Pathogen Rhodococcus equi▿

    PubMed Central

    Coulson, Garry B.; Agarwal, Shruti; Hondalus, Mary K.

    2010-01-01

    Rhodococcus equi, a facultative intracellular pathogen of macrophages, causes severe, life-threatening pneumonia in young foals and in people with underlying immune deficiencies. R. equi virulence is dependent on the presence of a large virulence plasmid that houses a pathogenicity island (PAI) encoding a novel family of surface-localized and secreted proteins of largely unknown function termed the virulence-associated proteins (VapACDEFGHI). To date, vapA and its positive regulators virR and orf8 are the only experimentally established virulence genes residing on the virulence plasmid. In this study, a PAI deletion mutant was constructed and, as anticipated, was attenuated for growth both in macrophages and in mice due to the absence of vapA expression. Expression of vapA in the PAI mutant from a constitutive promoter, thereby eliminating the requirement for the PAI-encoded vapA regulators, resulted in delayed bacterial clearance in vivo, yet full virulence was not restored, indicating that additional virulence genes are indeed located within the deleted pathogenicity island region. Based on previous reports demonstrating that the PAI-carried gene vapG is highly upregulated in macrophages and in the lungs of R. equi-infected foals, we hypothesized that vapG could be an important virulence factor. However, analysis of a marked vapG deletion mutant determined the gene to be dispensable for growth in macrophages and in vivo in mice. PMID:20439471

  17. Effects of inoculum size on cell-mediated and humoral immune responses of foals experimentally infected with Rhodococcus equi: a pilot study.

    PubMed

    Jacks, Stephanie; Giguère, Steeve

    2010-02-15

    The objective of this pilot study was to compare the cytokine profile as well as cell-mediated and antibody responses of foals infected with a low inoculum of virulent Rhodococcus equi resulting in subclinical pneumonia to that of foals infected with a high inoculum resulting in severe clinical pneumonia. The mean (+/-SD) ratio of post-infection to pre-infection anti-R. equi IgG(T) concentration was significantly (P=0.002) higher in foals infected with the high inoculum (195+/-145; range 62-328) compared to foals infected with the low inoculum (3.9+/-4.5; range 0.5-11). Similarly, mean (+/-SD) ratio of post-infection to pre-infection IgM concentration was significantly (P=0.002) higher in foals infected with the high inoculum (12+/-4.0; range 7.4-14) compared to foals infected with the low inoculum (2.5+/-1.5; range 1.2-4.7). Proliferative responses to R. equi antigens as well as expression of mRNA for IL-2, IL-4, IL-10, and IFN-gamma in BLN were not significantly different between the two groups. There was a tendency (P=0.073) towards a higher IFN-gamma/IL-4 ratio in the low inoculum group. This study demonstrates that the size of inoculum modulates the IgG subisotype response and possibly the cytokine profile of foals. PMID:19720402

  18. Oral administration of a live attenuated Salmonella vaccine strain expressing the VapA protein induces protection against infection by Rhodococcus equi.

    PubMed

    Oliveira, Aline F; Ferraz, Luciana C; Brocchi, Marcelo; Roque-Barreira, Maria-Cristina

    2007-03-01

    Rhodococcus equi remains one of the most important pathogens of foals and vaccination strategies to prevent rhodococcosis are under increasing investigation. Attenuated Salmonella strains carrying heterologous antigens offer an advantageous alternative to conventional vaccines, especially because they induce mucosal and systemic immunity. In this work, we expressed the VapA antigen from R. equi in a Salmonella enterica Typhimurium strain, which was able to colonize and persist in the lymphoid tissue of BALB/c mice. Two days after being challenged, oral immunized mice presented a 3- to 7-fold increase in R. equi clearance. This was progressively enhanced during infection and, on the 10th day, a CFU value 50-fold lower than that recovered from non-immunized mice was attained. The number of hepatic granulomas was 2 times lower, and leukocyte infiltration was transiently detected in immunized mice, contrasting with the severe inflammation and necrosis presented by non-immunized mice. Infection with 1 x 10(7)R. equi CFU caused 100% mortality in the control groups, while all immunized mice survived. This protection was associated with the detection of high levels of anti-VapA IgG in the serum of the vaccinated mice, predominantly the IgG2a isotype. Our results suggest that attenuated Salmonella encoding VapA may be used in foals to prevent rhodococcosis. PMID:17307012

  19. Isolation of an aryloxyphenoxy propanoate (AOPP) herbicide-degrading strain Rhodococcus ruber JPL-2 and the cloning of a novel carboxylesterase gene (feh)

    PubMed Central

    Hongming, Liu; Xu, Lou; Zhaojian, Ge; Fan, Yang; Dingbin, Chen; Jianchun, Zhu; Jianhong, Xu; Shunpeng, Li; Qing, Hong

    2015-01-01

    The strain JPL-2, capable of degrading fenoxaprop-P-ethyl (FE), was isolated from the soil of a wheat field and identified as Rhodococcus ruber. This strain could utilize FE as its sole carbon source and degrade 94.6% of 100 mg L−1 FE in 54 h. Strain JPL-2 could also degrade other aryloxyphenoxy propanoate (AOPP) herbicides. The initial step of the degradation pathway is to hydrolyze the carboxylic acid ester bond. A novel esterase gene feh, encoding the FE-hydrolyzing carboxylesterase (FeH) responsible for this initial step, was cloned from strain JPL-2. Its molecular mass was approximately 39 kDa, and the catalytic efficiency of FeH followed the order of FE > quizalofop-P-ethyl > clodinafop-propargyl > cyhalofop-butyl > fluazifop-P-butyl > haloxyfop-P-methyl > diclofop-methy, which indicated that the chain length of the alcohol moiety strongly affected the hydrolysis activity of the FeH toward AOPP herbicides. PMID:26273257

  20. [Destruction of oil in the presence of Cu2+ and surfactants of Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017 and Nocardia vaccinii IMV B-7405].

    PubMed

    Pirog, T P; Konon, A D; Sofilkanich, A P; Shevchuk, T A; Iutinska, G O

    2015-01-01

    The effect of copper cations (0.01-1.0 mM) and surface-active agents (surfactants) of Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Alc-5017 and Nocardia vaccinii IMV B-7405 in the form of culture liquid on the destruction of oil in water (3.0-6.0 g/L) and soil (20 g/kg), including in the presence of Cd2+ and Pb2+ (0.01-0.5 mM), was investigated. It was shown that the degree of oil degradation in water and soil after 20 days in the presence of low concentrations of Cu2+ (0.01-0.05 mM) and culture liquid of strains IMV B-7241, IMV Ac-5017, and IMV B-7405 was 15 - 25% higher than without copper cations. The activating effect of Cu2+ on the decomposition of complex oil and Cd2+ and Pb2+ pollution was established: after treatment with surfactant of A. calcoacelicus IMV B-7241 and R. erythropolis IMV Ac-5017 destruction of oil in water and soil was 85-95%, and after removal of the copper cations decreased to 45-70%. Intensification of oil destruction in the presence of copper cations may be due to their stimulating effect on the activity of alkane hydroxylases as in surfactant-producing strains, and natural (autochthonous) oxidizing microbiota. PMID:26036026

  1. Metabolomic-Based Study of the Leafy Gall, the Ecological Niche of the Phytopathogen Rhodococcus Fascians, as a Potential Source of Bioactive Compounds

    PubMed Central

    Nacoulma, Aminata P.; Vandeputte, Olivier M.; De Lorenzi, Manuella; El Jaziri, Mondher; Duez, Pierre

    2013-01-01

    Leafy gall is a plant hyperplasia induced upon Rhodococcus fascians infection. Previously, by genomic and transcriptomic analysis, it has been reported that, at the early stage of symptom development, both primary and secondary metabolisms are modified. The present study is based on the hypothesis that fully developed leafy gall, could represent a potential source of new bioactive compounds. Therefore, non-targeted metabolomic analysis of aqueous and chloroform extracts of leafy gall and non-infected tobacco was carried out by 1H-NMR coupled to principal component analysis (PCA) and orthogonal projections to latent structures-discriminant analysis (OPLS-DA). Polar metabolite profiling reflects modifications mainly in the primary metabolites and in some polyphenolics. In contrast, main modifications occurring in non-polar metabolites concern secondary metabolites, and gas chromatography and mass spectrometry (GC-MS) evidenced alterations in diterpenoids family. Analysis of crude extracts of leafy galls and non-infected tobacco leaves exhibited a distinct antiproliferative activity against all four tested human cancer cell lines. A bio-guided fractionation of chloroformic crude extract yield to semi-purified fractions, which inhibited proliferation of glioblastoma U373 cells with IC50 between 14.0 and 2.4 μg/mL. Discussion is focused on the consequence of these metabolic changes, with respect to plant defense mechanisms following infection. Considering the promising role of diterpenoid family as bioactive compounds, leafy gall may rather be a propitious source for drug discovery. PMID:23771021

  2. Purification and characterization of a 14-kilodalton protein that is bound to the surface of polyhydroxyalkanoic acid granules in Rhodococcus ruber.

    PubMed Central

    Pieper-Fürst, U.; Madkour, M. H.; Mayer, F.; Steinbüchel, A.

    1994-01-01

    The N-terminal amino acid sequence of the polyhydroxyalkanoic acid (PHA) granule-associated M(r)-15,500 protein of Rhodococcus ruber (the GA14 protein) was analyzed. The sequence revealed that the corresponding structural gene is represented by open reading frame 3, encoding a protein with a calculated M(r) of 14,175 which was recently localized downstream of the PHA synthase gene (U. Pieper and A. Steinbüchel, FEMS Microbiol. Lett. 96:73-80, 1992). A recombinant strain of Escherichia coli XL1-Blue carrying the hybrid plasmid (pSKXA10*) with open reading frame 3 overexpressed the GA14 protein. The GA14 protein was subsequently purified in a three-step procedure including chromatography on DEAE-Sephacel, phenyl-Sepharose CL-4B, and Superose 12. Determination of the molecular weight by gel filtration as well as electron microscopic studies indicates that a tetrameric structure of the recombinant, native GA14 protein is most likely. Immunoelectron microscopy demonstrated a localization of the GA14 protein at the periphery of PHA granules as well as close to the cell membrane in R. ruber. Investigations of PHA-leaky and PHA-negative mutants of R. ruber indicated that expression of the GA14 protein depended strongly on PHA synthesis. Images PMID:8021220

  3. Composition and Diversity of the Fecal Microbiome and Inferred Fecal Metagenome Does Not Predict Subsequent Pneumonia Caused by Rhodococcus equi in Foals

    PubMed Central

    Whitfield-Cargile, Canaan M.; Cohen, Noah D.; Suchodolski, Jan; Chaffin, M. Keith; McQueen, Cole M.; Arnold, Carolyn E.; Dowd, Scot E.; Blodgett, Glenn P.

    2015-01-01

    In equids, susceptibility to disease caused by Rhodococcus equi occurs almost exclusively in foals. This distribution might be attributable to the age-dependent maturation of immunity following birth undergone by mammalian neonates that renders them especially susceptible to infectious diseases. Expansion and diversification of the neonatal microbiome contribute to development of immunity in the gut. Moreover, diminished diversity of the gastrointestinal microbiome has been associated with risk of infections and immune dysregulation. We thus hypothesized that varying composition or reduced diversity of the intestinal microbiome of neonatal foals would contribute to increased susceptibility of their developing R. equi pneumonia. The composition and diversity indices of the fecal microbiota at 3 and 5 weeks of age were compared among 3 groups of foals: 1) foals that subsequently developed R. equi pneumonia after sampling; 2) foals that subsequently developed ultrasonographic evidence of pulmonary abscess formation or consolidation but not clinical signs (subclinical group); and, 3) foals that developed neither clinical signs nor ultrasonographic evidence of pulmonary abscess formation or consolidation. No significant differences were found among groups at either sampling time, indicating absence of evidence of an influence of composition or diversity of the fecal microbiome, or predicted fecal metagenome, on susceptibility to subsequent R. equi pneumonia. A marked and significant difference identified between a relatively short interval of time appeared to reflect ongoing adaptation to transition from a milk diet to a diet including available forage (including hay) and access to concentrate fed to the mare. PMID:26305682

  4. Differences in Rhodococcus equi Infections Based on Immune Status and Antibiotic Susceptibility of Clinical Isolates in a Case Series of 12 Patients and Cases in the Literature

    PubMed Central

    Suzuki, Yasuhiro; Ribes, Julie A.; Thornton, Alice

    2016-01-01

    Rhodococcus equi is an unusual zoonotic pathogen that can cause life-threatening diseases in susceptible hosts. Twelve patients with R. equi infection in Kentucky were compared to 137 cases reported in the literature. Although lungs were the primary sites of infection in immunocompromised patients, extrapulmonary involvement only was more common in immunocompetent patients (P < 0.0001). Mortality in R. equi-infected HIV patients was lower in the HAART era (8%) than in pre-HAART era (56%) (P < 0.0001), suggesting that HAART improves prognosis in these patients. Most (85–100%) of clinical isolates were susceptible to vancomycin, clarithromycin, rifampin, aminoglycosides, ciprofloxacin, and imipenem. Interestingly, there was a marked difference in susceptibility of the isolates to cotrimoxazole between Europe (35/76) and the US (15/15) (P < 0.0001). Empiric treatment of R. equi infection should include a combination of two antibiotics, preferably selected from vancomycin, imipenem, clarithromycin/azithromycin, ciprofloxacin, rifampin, or cotrimoxazole. Local antibiograms should be checked prior to using cotrimoxazole due to developing resistance.

  5. Genetic analysis around aminoalcohol dehydrogenase gene of Rhodococcus erythropolis MAK154: a putative GntR transcription factor in transcriptional regulation.

    PubMed

    Urano, Nobuyuki; Kataoka, Michihiko; Ishige, Takeru; Kita, Shinji; Sakamoto, Keiji; Shimizu, Sakayu

    2011-02-01

    NADP(+)-dependent aminoalcohol dehydrogenase (AADH) of Rhodococcus erythropolis MAK154 catalyzes the reduction of (S)-1-phenyl-1-keto-2-methylaminopropane ((S)-MAK) to d-pseudoephedrine, which is used as a pharmaceutical. AADH is suggested to participate in aminoalcohol or aminoketone metabolism in this organism because it is induced by the addition of several aminoalcohols, such as 1-amino-2-propanol. Genetic analysis of around the aadh gene showed that some open reading frames (ORFs) are involved in this metabolic pathway. Four of these ORFs might form a carboxysome-like polyhedral organelle, and others are predicted to encode aminotransferase, aldehyde dehydrogenase, phosphotransferase, and regulator protein. OrfE, a homologous ORF of the FadR subfamily of GntR transcriptional regulators, lies downstream from aadh. To investigate whether or not orfE plays a role in the regulation of aadh expression, the gene disruption mutant of R. erythropolis MAK154 was constructed. The ΔorfE strain showed higher AADH activity than wild-type strain. In addition, a transformed strain, which harbored multi-orfE, showed no AADH activity even in the induced condition with 1-amino-2-propanol. These results suggest that OrfE is a negative regulator that represses aadh expression in the absence of 1-amino-2-propanol. PMID:20953603

  6. In Planta Biocontrol of Pectobacterium atrosepticum by Rhodococcus erythropolis Involves Silencing of Pathogen Communication by the Rhodococcal Gamma-Lactone Catabolic Pathway

    PubMed Central

    Barbey, Corinne; Crépin, Alexandre; Bergeau, Dorian; Ouchiha, Asma; Mijouin, Lily; Taupin, Laure; Orange, Nicole; Feuilloley, Marc; Dufour, Alain; Burini, Jean-François; Latour, Xavier

    2013-01-01

    The virulence of numerous Gram-negative bacteria is under the control of a quorum sensing process based on synthesis and perception of N-acyl homoserine lactones. Rhodococcus erythropolis, a Gram-positive bacterium, has recently been proposed as a biocontrol agent for plant protection against soft-rot bacteria, including Pectobacterium. Here, we show that the γ-lactone catabolic pathway of R. erythropolis disrupts Pectobacterium communication and prevents plant soft-rot. We report the first characterization and demonstration of N-acyl homoserine lactone quenching in planta. In particular, we describe the transcription of the R. erythropolis lactonase gene, encoding the key enzyme of this pathway, and the subsequent lactone breakdown. The role of this catabolic pathway in biocontrol activity was confirmed by deletion of the lactonase gene from R. erythropolis and also its heterologous expression in Escherichia coli. The γ-lactone catabolic pathway is induced by pathogen communication rather than by pathogen invasion. This is thus a novel and unusual biocontrol pathway, differing from those previously described as protecting plants from phytopathogens. These findings also suggest the existence of an additional pathway contributing to plant protection. PMID:23805254

  7. In Planta Biocontrol of Pectobacterium atrosepticum by Rhodococcus erythropolis Involves Silencing of Pathogen Communication by the Rhodococcal Gamma-Lactone Catabolic Pathway.

    PubMed

    Barbey, Corinne; Crépin, Alexandre; Bergeau, Dorian; Ouchiha, Asma; Mijouin, Lily; Taupin, Laure; Orange, Nicole; Feuilloley, Marc; Dufour, Alain; Burini, Jean-François; Latour, Xavier

    2013-01-01

    The virulence of numerous Gram-negative bacteria is under the control of a quorum sensing process based on synthesis and perception of N-acyl homoserine lactones. Rhodococcus erythropolis, a Gram-positive bacterium, has recently been proposed as a biocontrol agent for plant protection against soft-rot bacteria, including Pectobacterium. Here, we show that the γ-lactone catabolic pathway of R. erythropolis disrupts Pectobacterium communication and prevents plant soft-rot. We report the first characterization and demonstration of N-acyl homoserine lactone quenching in planta. In particular, we describe the transcription of the R. erythropolis lactonase gene, encoding the key enzyme of this pathway, and the subsequent lactone breakdown. The role of this catabolic pathway in biocontrol activity was confirmed by deletion of the lactonase gene from R. erythropolis and also its heterologous expression in Escherichia coli. The γ-lactone catabolic pathway is induced by pathogen communication rather than by pathogen invasion. This is thus a novel and unusual biocontrol pathway, differing from those previously described as protecting plants from phytopathogens. These findings also suggest the existence of an additional pathway contributing to plant protection. PMID:23805254

  8. Production, Purification, and Identification of Cholest-4-en-3-one Produced by Cholesterol Oxidase from Rhodococcus sp. in Aqueous/Organic Biphasic System

    PubMed Central

    Wu, Ke; Li, Wei; Song, Jianrui; Li, Tao

    2015-01-01

    Cholest-4-en-3-one has positive uses against obesity, liver disease, and keratinization. It can be applied in the synthesis of steroid drugs as well. Most related studies are focused on preparation of cholest-4-en-3-one by using whole cells as catalysts, but production of high-quality cholest-4-en-3-one directly from cholesterol oxidase (COD) using an aqueous/organic two-phase system has been rarely explored. This study set up an enzymatic reaction system to produce cholest-4-en-3-one. We developed and optimized the enzymatic reaction system using COD from COX5-6 (a strain of Rhodococcus) instead of whole-cell biocatalyst. This not only simplifies and accelerates the production but also benefits the subsequent separation and purification process. Through extraction, washing, evaporation, column chromatography, and recrystallization, we got cholest-4-en-3-one with purity of 99.78%, which was identified by nuclear magnetic resonance, mass spectroscopy, and infrared spectroscopy. In addition, this optimized process of cholest-4-en-3-one production and purification can be easily scaled up for industrial production, which can largely decrease the cost and guarantee the purity of the product. PMID:25733914

  9. Microbial production of aliphatic (S)-epoxyalkanes by using Rhodococcus sp. strain ST-10 styrene monooxygenase expressed in organic-solvent-tolerant Kocuria rhizophila DC2201.

    PubMed

    Toda, Hiroshi; Ohuchi, Takuya; Imae, Ryouta; Itoh, Nobuya

    2015-03-01

    We describe the development of biocatalysis for producing optically pure straight-chain (S)-epoxyalkanes using styrene monooxygenase of Rhodococcus sp. strain ST-10 (RhSMO). RhSMO was expressed in the organic solvent-tolerant microorganism Kocuria rhizophila DC2201, and the bioconversion reaction was performed in an organic solvent-water biphasic reaction system. The biocatalytic process enantioselectively converted linear terminal alkenes to their corresponding (S)-epoxyalkanes using glucose and molecular oxygen. When 1-heptene and 6-chloro-1-hexene were used as substrates (400 mM) under optimized conditions, 88.3 mM (S)-1,2-epoxyheptane and 246.5 mM (S)-1,2-epoxy-6-chlorohexane, respectively, accumulated in the organic phase with good enantiomeric excess (ee; 84.2 and 95.5%). The biocatalysis showed broad substrate specificity toward various aliphatic alkenes, including functionalized and unfunctionalized alkenes, with good to excellent ee. Here, we demonstrate that this biocatalytic system is environmentally friendly and useful for producing various enantiopure (S)-epoxyalkanes. PMID:25556188

  10. Studies on the isopropylbenzene 2,3-dioxygenase and the 3-isopropylcatechol 2,3-dioxygenase genes encoded by the linear plasmid of Rhodococcus erythropolis BD2.

    PubMed

    Kesseler, M; Dabbs, E R; Averhoff, B; Gottschalk, G

    1996-11-01

    The enzymes responsible for the degradation of isopropylbenzene (IPB) and co-oxidation of trichloroethene (TCE) by Rhodococcus erythropolis BD2 are encoded by the linear plasmid pBD2. Fragments containing IPB catabolic genes were cloned from pBD2 and the nucleotide sequence was determined. By means of database searches and expression of the cloned genes in recombinant strains, we identified five clustered genes, ipbA1A2A3A4C, which encode the three components of the IPB 2,3-dioxygenase system, reductaseIPB (ipbA4), ferredoxinIPB (ipbA3) and the two subunits of the terminal dioxygenase (ipbA1A2), as well as the 3-isopropylcatechol (IPC) 2,3-dioxygenase (ipbC). The protein sequences deduced from the ipbA1A2A3A4C gene cluster exhibited significant homology with the corresponding proteins of analogous degradative pathways in Gram-negative and Gram-positive bacteria, but the gene order differed from most of them. IPB 2,3-dioxygenase and 3-IPC 2,3-dioxygenase could both be expressed in Escherichia coli, but the IPB 2,3-dioxygenase activities were too low to be detected by polarographic and TCE degradative means. However, inhibitor studies with the R. erythropolis BD2 wild-type are in accordance with the involvement of the IPB 2,3-dioxygenase in TCE oxidation. PMID:8969521

  11. L-pantoyl lactone dehydrogenase from Rhodococcus erythropolis: genetic analyses and application to the stereospecific oxidation of L-pantoyl lactone.

    PubMed

    Si, Dayong; Urano, Nobuyuki; Nozaki, Shinya; Honda, Kohsuke; Shimizu, Sakayu; Kataoka, Michihiko

    2012-07-01

    The 1,2-propanediol (1,2-PD) inducible membrane-bound L-pantoyl lactone (L-PL) dehydrogenase (LPLDH) has been isolated from Rhodococcus erythropolis AKU2103 (Kataoka et al. in Eur J Biochem 204:799, 1992). Based on the N-terminal amino acid sequence of LPLDH and the highly conserved amino acid sequence in homology search results, the LPLDH gene (lpldh) was cloned. The gene consists of 1,179 bases and encodes a protein of 392 amino acid residues. The deduced amino acid sequence showed high similarity to the proteins of the FMN-dependent α-hydroxy acid dehydrogenase/oxidase family. The overexpression vector pKLPLDH containing lpldh with its upstream region (1,940 bp) was constructed and introduced into R. erythropolis AKU2103. The recombinant R. erythropolis AKU2103 harboring pKLPLDH showed six times higher LPLDH activity than the wild-type strain. Conversion of L-PL to ketopantoyl lactone was achieved with 92% or 80% conversion yield when the substrate concentration was 0.768 or 1.15 M, respectively. Stereoinversion of L-PL to D-PL was also carried out by using the combination of recombinant R. erythropolis AKU2103 harboring pKLPLDH and ketopantoic acid-reducing Escherichia coli. PMID:22398860

  12. Purification and characterization of a Baeyer-Villiger mono-oxygenase from Rhodococcus erythropolis DCL14 involved in three different monocyclic monoterpene degradation pathways.

    PubMed Central

    Van Der Werf, M J

    2000-01-01

    A Baeyer-Villiger mono-oxygenase (BVMO), catalysing the NADPH- and oxygen-dependent oxidation of the monocyclic monoterpene ketones 1-hydroxy-2-oxolimonene, dihydrocarvone and menthone, was purified to homogeneity from Rhodococcus erythropolis DCL14. Monocyclic monoterpene ketone mono-oxygenase (MMKMO) is a monomeric enzyme of molecular mass 60 kDa. It contains 1 mol of FAD/monomer as the prosthetic group. The N-terminal amino acid sequence showed homology with many other NADPH-dependent and FAD-containing (Type 1) BVMOs. Maximal enzyme activity was measured at pH 9 and 35 degrees C. MMKMO has a broad substrate specificity, catalysing the lactonization of a large number of monocyclic monoterpene ketones and substituted cyclohexanones. The natural substrates 1-hydroxy-2-oxolimonene, dihydrocarvone and menthone were converted stoichiometrically into 3-isopropenyl-6-oxoheptanoate (the spontaneous rearrangement product of the lactone formed by MMKMO), 4-isopropenyl-7-methyl-2-oxo-oxepanone and 7-isopropyl-4-methyl-2-oxo-oxepanone respectively. The MMKMO-catalysed conversion of iso-dihydrocarvone showed an opposite regioselectivity to that of dihydrocarvone; in this case, 6-isopropenyl-3-methyl-2-oxo-oxepanone was formed as the product. MMKMO converted all enantiomers of the natural substrates with almost equal efficiency. MMKMO is involved in the conversion of the monocyclic monoterpene ketone intermediates formed in the degradation pathways of all stereoisomers of three different monocyclic monoterpenes, i.e. limonene, (dihydro)carveol and menthol. PMID:10769172

  13. Structure and Catalytic Mechanism of 3-Ketosteroid-Δ4-(5α)-dehydrogenase from Rhodococcus jostii RHA1 Genome*

    PubMed Central

    van Oosterwijk, Niels; Knol, Jan; Dijkhuizen, Lubbert; van der Geize, Robert; Dijkstra, Bauke W.

    2012-01-01

    3-Ketosteroid Δ4-(5α)-dehydrogenases (Δ4-(5α)-KSTDs) are enzymes that introduce a double bond between the C4 and C5 atoms of 3-keto-(5α)-steroids. Here we show that the ro05698 gene from Rhodococcus jostii RHA1 codes for a flavoprotein with Δ4-(5α)-KSTD activity. The 1.6 Å resolution crystal structure of the enzyme revealed three conserved residues (Tyr-319, Tyr-466, and Ser-468) in a pocket near the isoalloxazine ring system of the FAD co-factor. Site-directed mutagenesis of these residues confirmed that they are absolutely essential for catalytic activity. A crystal structure with bound product 4-androstene-3,17-dione showed that Ser-468 is in a position in which it can serve as the base abstracting the 4β-proton from the C4 atom of the substrate. Ser-468 is assisted by Tyr-319, which possibly is involved in shuttling the proton to the solvent. Tyr-466 is at hydrogen bonding distance to the C3 oxygen atom of the substrate and can stabilize the keto-enol intermediate occurring during the reaction. Finally, the FAD N5 atom is in a position to be able to abstract the 5α-hydrogen of the substrate as a hydride ion. These features fully explain the reaction catalyzed by Δ4-(5α)-KSTDs. PMID:22833669

  14. Isolation of endosulfan sulfate-degrading Rhodococcus koreensis strain S1-1 from endosulfan contaminated soil and identification of a novel metabolite, endosulfan diol monosulfate.

    PubMed

    Ito, Koji; Kawashima, Fujimasa; Takagi, Kazuhiro; Kataoka, Ryota; Kotake, Masaaki; Kiyota, Hiromasa; Yamazaki, Kenichi; Sakakibara, Futa; Okada, Sanae

    2016-05-13

    An aerobic endosulfan sulfate-degrading bacterium, Rhodococcus koreensis strain S1-1, was isolated from soil to which endosulfan had been applied annually for more than 10 years until 2008. The strain isolated in this work reduced the concentration of endosulfan sulfate (2) from 12.25 μM to 2.11 μM during 14 d at 30 °C. Using ultra performance liquid chromatography-electrospray ionization-mass spectroscopy (UPLC-ESI-MS), a new highly water-soluble metabolite possessing six chlorine atoms was found to be endosulfan diol monosulfate (6), derived from 2 by hydrolysis of the cyclic sulfate ester ring. The structure of 6 was elucidated by chemical synthesis of the candidate derivatives and by HR-MS and UPLC-MS analyses. Therefore, it was suggested that the strain S1-1 has a new metabolic pathway of 2. In addition, 6 was expected to be less toxic among the metabolites of 1 because of its higher water-solubility. PMID:27073164

  15. Structure of Rhodococcus equi virulence-associated protein B (VapB) reveals an eight-stranded antiparallel β-barrel consisting of two Greek-key motifs.

    PubMed

    Geerds, Christina; Wohlmann, Jens; Haas, Albert; Niemann, Hartmut H

    2014-07-01

    Members of the virulence-associated protein (Vap) family from the pathogen Rhodococcus equi regulate virulence in an unknown manner. They do not share recognizable sequence homology with any protein of known structure. VapB and VapA are normally associated with isolates from pigs and horses, respectively. To contribute to a molecular understanding of Vap function, the crystal structure of a protease-resistant VapB fragment was determined at 1.4 Å resolution. The structure was solved by SAD phasing employing the anomalous signal of one endogenous S atom and two bound Co ions with low occupancy. VapB is an eight-stranded antiparallel β-barrel with a single helix. Structural similarity to avidins suggests a potential binding function. Unlike other eight- or ten-stranded β-barrels found in avidins, bacterial outer membrane proteins, fatty-acid-binding proteins and lysozyme inhibitors, Vaps do not have a next-neighbour arrangement but consist of two Greek-key motifs with strand order 41238567, suggesting an unusual or even unique topology. PMID:25005079

  16. Structure of Rhodococcus equi virulence-associated protein B (VapB) reveals an eight-stranded antiparallel β-barrel consisting of two Greek-key motifs

    PubMed Central

    Geerds, Christina; Wohlmann, Jens; Haas, Albert; Niemann, Hartmut H.

    2014-01-01

    Members of the virulence-associated protein (Vap) family from the pathogen Rhodococcus equi regulate virulence in an unknown manner. They do not share recognizable sequence homology with any protein of known structure. VapB and VapA are normally associated with isolates from pigs and horses, respectively. To contribute to a molecular understanding of Vap function, the crystal structure of a protease-resistant VapB fragment was determined at 1.4 Å resolution. The structure was solved by SAD phasing employing the anomalous signal of one endogenous S atom and two bound Co ions with low occupancy. VapB is an eight-stranded antiparallel β-barrel with a single helix. Structural similarity to avidins suggests a potential binding function. Unlike other eight- or ten-stranded β-barrels found in avidins, bacterial outer membrane proteins, fatty-acid-binding proteins and lysozyme inhibitors, Vaps do not have a next-neighbour arrangement but consist of two Greek-key motifs with strand order 41238567, suggesting an unusual or even unique topology. PMID:25005079

  17. Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231.

    PubMed

    Ivshina, Irina; Kostina, Ludmila; Krivoruchko, Anastasiya; Kuyukina, Maria; Peshkur, Tatyana; Anderson, Peter; Cunningham, Colin

    2016-07-15

    Removal of polycyclic aromatic hydrocarbons (PAHs) in soil using biosurfactants (BS) produced by Rhodococcus ruber IEGM 231 was studied in soil columns spiked with model mixtures of major petroleum constituents. A crystalline mixture of single PAHs (0.63g/kg), a crystalline mixture of PAHs (0.63g/kg) and polycyclic aromatic sulfur heterocycles (PASHs), and an artificially synthesized non-aqueous phase liquid (NAPL) containing PAHs (3.00g/kg) dissolved in alkanes C10-C19 were used for spiking. Percentage of PAH removal with BS varied from 16 to 69%. Washing activities of BS were 2.5 times greater than those of synthetic surfactant Tween 60 in NAPL-spiked soil and similar to Tween 60 in crystalline-spiked soil. At the same time, amounts of removed PAHs were equal and consisted of 0.3-0.5g/kg dry soil regardless the chemical pattern of a model mixture of petroleum hydrocarbons and heterocycles used for spiking. UV spectra for soil before and after BS treatment were obtained and their applicability for differentiated analysis of PAH and PASH concentration changes in remediated soil was shown. The ratios A254nm/A288nm revealed that BS increased biotreatability of PAH-contaminated soils. PMID:27015374

  18. Biodegradation of phenol in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1 immobilized in an air-stirred reactor with clarifier.

    PubMed

    Prieto, M B; Hidalgo, A; Rodríguez-Fernández, C; Serra, J L; Llama, M J

    2002-05-01

    Phenol biodegradation by suspended and immobilized cells of Rhodococcus erythropolis UPV-1 was studied in discontinuous and continuous mode under optimum culture conditions. Phenol-acclimated cells were adsorbed on diatomaceous earth, where they grew actively forming a biofilm of short filaments. Immobilization protected cells against phenol and resulted in a remarkable enhancement of their respiratory activity and a shorter lag phase preceding active phenol degradation. Under optimum operation conditions in a laboratory-scale air-stirred reactor, the immobilized cells were able to completely degrade phenol in synthetic wastewater at a volumetric productivity of 11.5 kg phenol m(-3) day(-1). Phenol biodegradation was also tested in two different industrial wastewaters (WW1 and WW2) obtained from local resin manufacturing companies, which contained both phenols and formaldehyde. In this case, after wastewater conditioning (i.e., dilution, pH, nitrogen and phosphorous sources and micronutrient amendments) the immobilized cells were able to completely remove the formaldehyde present in both waters. Moreover, they biodegraded phenols completely at a rate of 0.5 kg phenol m(-3) day(-1) in the case of WW1 and partially (but at concentrations lower than 50 mg l(-1)) at 0.1 and 1.0 kg phenol m(-3) day(-1) in the cases of WW2 and WW1, respectively. PMID:12021809

  19. Structure of Rhodococcus equi virulence-associated protein B (VapB) reveals an eight-stranded antiparallel β-barrel consisting of two Greek-key motifs

    SciTech Connect

    Geerds, Christina; Wohlmann, Jens; Haas, Albert; Niemann, Hartmut H.

    2014-06-18

    The structure of VapB, a member of the Vap protein family that is involved in virulence of the bacterial pathogen R. equi, was determined by SAD phasing and reveals an eight-stranded antiparallel β-barrel similar to avidin, suggestive of a binding function. Made up of two Greek-key motifs, the topology of VapB is unusual or even unique. Members of the virulence-associated protein (Vap) family from the pathogen Rhodococcus equi regulate virulence in an unknown manner. They do not share recognizable sequence homology with any protein of known structure. VapB and VapA are normally associated with isolates from pigs and horses, respectively. To contribute to a molecular understanding of Vap function, the crystal structure of a protease-resistant VapB fragment was determined at 1.4 Å resolution. The structure was solved by SAD phasing employing the anomalous signal of one endogenous S atom and two bound Co ions with low occupancy. VapB is an eight-stranded antiparallel β-barrel with a single helix. Structural similarity to avidins suggests a potential binding function. Unlike other eight- or ten-stranded β-barrels found in avidins, bacterial outer membrane proteins, fatty-acid-binding proteins and lysozyme inhibitors, Vaps do not have a next-neighbour arrangement but consist of two Greek-key motifs with strand order 41238567, suggesting an unusual or even unique topology.

  20. Composition and Diversity of the Fecal Microbiome and Inferred Fecal Metagenome Does Not Predict Subsequent Pneumonia Caused by Rhodococcus equi in Foals.

    PubMed

    Whitfield-Cargile, Canaan M; Cohen, Noah D; Suchodolski, Jan; Chaffin, M Keith; McQueen, Cole M; Arnold, Carolyn E; Dowd, Scot E; Blodgett, Glenn P

    2015-01-01

    In equids, susceptibility to disease caused by Rhodococcus equi occurs almost exclusively in foals. This distribution might be attributable to the age-dependent maturation of immunity following birth undergone by mammalian neonates that renders them especially susceptible to infectious diseases. Expansion and diversification of the neonatal microbiome contribute to development of immunity in the gut. Moreover, diminished diversity of the gastrointestinal microbiome has been associated with risk of infections and immune dysregulation. We thus hypothesized that varying composition or reduced diversity of the intestinal microbiome of neonatal foals would contribute to increased susceptibility of their developing R. equi pneumonia. The composition and diversity indices of the fecal microbiota at 3 and 5 weeks of age were compared among 3 groups of foals: 1) foals that subsequently developed R. equi pneumonia after sampling; 2) foals that subsequently developed ultrasonographic evidence of pulmonary abscess formation or consolidation but not clinical signs (subclinical group); and, 3) foals that developed neither clinical signs nor ultrasonographic evidence of pulmonary abscess formation or consolidation. No significant differences were found among groups at either sampling time, indicating absence of evidence of an influence of composition or diversity of the fecal microbiome, or predicted fecal metagenome, on susceptibility to subsequent R. equi pneumonia. A marked and significant difference identified between a relatively short interval of time appeared to reflect ongoing adaptation to transition from a milk diet to a diet including available forage (including hay) and access to concentrate fed to the mare. PMID:26305682