Science.gov

Sample records for rice blast fungal

  1. Identification of rice blast resistance genes using international monogenic differentials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast disease, caused by the fungal pathogen Magnaporthe oryzae, is one of the most devastating diseases of rice that severely affects crop production in Jilin Province, Northeast China, where temperate japonica rice is primarily grown. In the present study, 44 representative local blast isolat...

  2. Co-expression of RCH10 and AGLU1 confers rice resistance to fungal sheath blight Rhizoctonia solani and blast Magnorpathe oryzae and reveals impact on seed germination.

    PubMed

    Mao, Bizeng; Liu, Xuehui; Hu, Dongwei; Li, Debao

    2014-04-01

    Rice sheath blight and blast caused by Rhizoctonia solani Kühn and Magnorpathe oryzae respectively, are the two most destructive fungal diseases in rice. With no genetic natural traits conferring resistance to sheath blight, transgenic manipulation provides an obvious approach. In this study, the rice basic chitinase gene (RCH10) and the alfalfa β-1,3-glucanase gene (AGLU1) were tandemly inserted into transformation vector pBI101 under the control of 35S promoter with its enhancer sequence to generate a double-defense gene expression cassette pZ100. The pZ100 cassette was transformed into rice (cv. Taipei 309) by Agrobacterium-mediated transformation. More than 160 independent transformants were obtained and confirmed by PCR. Northern analysis of inheritable progenies revealed similar levels of both RCH10 and AGLU1 transcripts in the same individuals. Disease resistance to both sheath blight and blast was challenged in open field inoculation. Immunogold detection revealed that RCH10 and AGLU1 proteins were initially located mainly in the chloroplasts and were delivered to the vacuole and cell wall upon infection, suggesting that these subcellular compartments act as the gathering and execution site for these anti-fungal proteins. We also observed that transgenic seeds display lower germination rate and seedling vigor, indicating that defense enhancement might be achieved at the expense of development. PMID:24197785

  3. Current advances on genetic resistance to rice blast disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast disease caused by the fungal pathogen Magnaporthe oryzae is one of the most threatening fungal diseases resulting in significant annual crop losses worldwide. Blast disease has been effectively managed by a combination of resistant (R) gene deployment, application of fungicides, and suita...

  4. Rice blast disease in Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice is an important agricultural commodity in Texas, with an economic impact of more than $1 billion annually. Rice blast, caused by Magnaporthe oryzae, is one of the most devastating diseases in rice. Texas Rice Belt provides a warm, humid climate favorable for the infection and reproduction of M....

  5. Functional characterization of electron-transferring flavoprotein and its dehydrogenase required for fungal development and plant infection by the rice blast fungus

    PubMed Central

    Li, Ya; Zhu, Jindong; Hu, Jiexiong; Meng, Xiuli; Zhang, Qi; Zhu, Kunpeng; Chen, Xiaomin; Chen, Xuehang; Li, Guangpu; Wang, Zonghua; Lu, Guodong

    2016-01-01

    Electron-transferring flavoprotein (ETF) and its dehydrogenase (ETFDH) are highly conserved electron carriers which mainly function in mitochondrial fatty acid β oxidation. Here, we report the identification and characterization of ETF α and β subunit encoding genes (ETFA and ETFB) and ETFDH encoding gene (ETFDH) in the rice blast fungus Magnaporthe oryzae. It was demonstrated that, by impacting fatty acid metabolism, ETF and ETFDH mutations led to severe growth and conidiation defects, which could be largely rescued by exogenous acetate or carbonate. Furthermore, although conidium germination and appressorium formation appeared to be normal in ETF and ETFDH mutants, most appressoria failed to penetrate the host epidermis due to low turgor pressure. The few appressoria that succeeded in penetration were severely restricted in invasive growth and consequently failed to cause disease. Moreover, ETF mutant etfb− induced ROS accumulation in infected host cells and exogenous antioxidant GSH accelerated mutant invading growth without increasing the penetration rate. In addition, mutant etfb− displayed elevated lipid body accumulation and reduced ATP synthesis. Taken together, ETF and ETFDH play an important role in fungal development and plant infection in M. oryzae by regulation of fatty acid metabolism, turgor establishment and induction of host ROS accumulation. PMID:27113712

  6. Structure, Function, Interaction, Co-evolution of Rice Blast Resistance Genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast disease caused by the fungal pathogen Magnaporthe oryzae is one of the most destructive rice diseases worldwide. Resistance (R) genes to blast encode proteins that detect pathogen signaling molecules encoded by M. oryzae avirulence (AVR) genes. R genes can be a single or a member of clu...

  7. Registration of four rice germplasm lines with improved resistance to sheath blight and blast diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice sheath blight (ShB) and blast caused by the fungal pathogens Rhizoctonia solani and Magnaporthe oryzae, respectively, are the two most serious diseases of rice worldwide. Four rice (Oryza sativa L.) germplasm lines designated as LJRIL103 (PI 660982), LJRIL158 (PI 660983), LJRIL186 (PI 660984),...

  8. Analysis of rice blast resistance in rice breeding parents from USA using molecular markers and pathogenicity assays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast disease is caused by the fungal pathogen Magnaporthe oryzae. The Pi-ta gene in rice is effective in preventing infections by strains of M. oryzae that carry AVR-Pita1 in a gene for gene specificity. In the present study, two dominant markers YL153/YL154 and YL155/YL87 derived from diffe...

  9. New Marker Development for the Rice Blast Resistance Gene Pi-km

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The blast resistance (R) gene Pi-km protects rice against specific races of the fungal pathogen Magnaporthe oryzae. The use of blast R genes remains the most cost-effective method of disease control. To facilitate the breeding process, we developed a Pi-km specific molecular marker. For this purp...

  10. Sequence variation at the rice blast resistance gene Pi-km locus: Implications for the development of allele specific markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recently cloned blast resistance (R) gene Pi-km protects rice crops against specific races of the fungal pathogen Magnaporthe oryzae in a gene-for-gene manner. The use of blast R genes remains the most cost-effective method for an integrated disease management strategy. To facilitate rice breed...

  11. Storage stability of flour-blasted brown rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown rice was blasted with rice flour rather than sand in a sand blaster to make microscopic nicks and cuts so that water can easily penetrate into the brown rice endosperm and cook the rice in a shorter time. The flour-blasted American Basmati brown rice, long grain brown rice, and parboiled long...

  12. Identification of rice blast resistant gene Pi-z(t) in NSGC using DNA markers and pathogenicity assays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast disease, caused by the fungus Magnaporthe oryzae (formerly Magnaporthe grisea) is a major fungal disease threatening rice production worldwide. Genetic resistance in rice to M. oryzae typically belongs to a classic gene-for-gene system where a resistance (R) gene is effective in preventin...

  13. Blast resistance in rice: a review of conventional breeding to molecular approaches.

    PubMed

    Miah, G; Rafii, M Y; Ismail, M R; Puteh, A B; Rahim, H A; Asfaliza, R; Latif, M A

    2013-03-01

    Blast disease caused by the fungal pathogen Magnaporthe oryzae is the most severe diseases of rice. Using classical plant breeding techniques, breeders have developed a number of blast resistant cultivars adapted to different rice growing regions worldwide. However, the rice industry remains threatened by blast disease due to the instability of blast fungus. Recent advances in rice genomics provide additional tools for plant breeders to improve rice production systems that would be environmentally friendly. This article outlines the application of conventional breeding, tissue culture and DNA-based markers that are used for accelerating the development of blast resistant rice cultivars. The best way for controlling the disease is to incorporate both qualitative and quantitative genes in resistant variety. Through conventional and molecular breeding many blast-resistant varieties have been developed. Conventional breeding for disease resistance is tedious, time consuming and mostly dependent on environment as compare to molecular breeding particularly marker assisted selection, which is easier, highly efficient and precise. For effective management of blast disease, breeding work should be focused on utilizing the broad spectrum of resistance genes and pyramiding genes and quantitative trait loci. Marker assisted selection provides potential solution to some of the problems that conventional breeding cannot resolve. In recent years, blast resistant genes have introgressed into Luhui 17, G46B, Zhenshan 97B, Jin 23B, CO39, IR50, Pusa1602 and Pusa1603 lines through marker assisted selection. Introduction of exotic genes for resistance induced the occurrence of new races of blast fungus, therefore breeding work should be concentrated in local resistance genes. This review focuses on the conventional breeding to the latest molecular progress in blast disease resistance in rice. This update information will be helpful guidance for rice breeders to develop durable blast

  14. Rice blast evaluation of newly introduced germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic resistance to the rice blast fungus, Magnaporthe oryzae (anamorph Pyricularia grisea oryzae) was identified in newly introduced rice germplasm through quarantine when tested in artificially inoculated greenhouse and field nursery tests during the 2007 growing season. Of 229 accessions, 31 we...

  15. Test of Some Hybrid Combinations to Rice Blast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast disease caused by Magnaporthe oryzae is one of the most devastating rice diseases worldwide. Blast resistant cultivars are recognized as the most efficacious and economical way to control this disease. Genetic resistance to rice blast is generally governed by a few major genes, often in c...

  16. New insight for two major rice blast R genes: Pi-ta and Pi-km

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In rice breeding programs across the world, the introgression of major resistance (R) genes remains the most cost-effective method to control blast epidemics caused by the fungal pathogen Magnaporthe oryzae. During the last two years, we have examined two loci, on chromosome 12 and 11, which harbor ...

  17. Global efforts in managing rice blast disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast disease caused by the fungus Magnaporthe oryzae is a major destructive disease threatening global food security. Resistance (R) genes to M. oryzae are effective in preventing infections by strains of M. oryzae carry the corresponding avirulence (AVR) genes. Effectiveness of genetic resist...

  18. Large-scale rewiring of innate immunity circuitry and microRNA regulation during initial rice blast infection.

    PubMed

    Li, Ze-Yuan; Xia, Jing; Chen, Zheng; Yu, Yang; Li, Quan-Feng; Zhang, Yu-Chan; Zhang, Jin-Ping; Wang, Cong-Ying; Zhu, Xiao-Yuan; Zhang, Weixiong; Chen, Yue-Qin

    2016-01-01

    Rice blast is a recurrent fungal disease, and resistance to fungal infection is a complex trait. Therefore, a comprehensive examination of rice transcriptome and its variation during fungal infection is necessary to understand the complex gene regulatory networks. In this study, adopting Next-Generation Sequencing we profiled the transcriptomes and microRNAomes of rice varieties, one susceptible and the other resistant to M. oryzae, at multiple time points during the fungal infection. Our results revealed a substantial variation in the plant transcriptome and microRNAome as well as change to rice innate immunity during fungal infection. A number of putative R gene candidates were identified from a perturbed rice transcriptome analysis. The expression of genes and non-coding RNA molecules changed in both fungal resistant and susceptible plants during M. oryzae invasion discovered distinct pathways triggered in the susceptible and resistant plants. In addition, a number of fungus genes in the susceptible and resistant plants were constantly expressed at different time points, suggesting that they were likely to be the potential AVR genes. Our results revealed large-scale rewiring of innate immunity circuitry and microRNA regulation during initial rice blast infection, which would help to develop more robust blast-resistant rice plants. PMID:27150822

  19. Large-scale rewiring of innate immunity circuitry and microRNA regulation during initial rice blast infection

    PubMed Central

    Li, Ze-Yuan; Xia, Jing; Chen, Zheng; Yu, Yang; Li, Quan-Feng; Zhang, Yu-Chan; Zhang, Jin-Ping; Wang, Cong-Ying; Zhu, Xiao-Yuan; Zhang, Weixiong; Chen, Yue-Qin

    2016-01-01

    Rice blast is a recurrent fungal disease, and resistance to fungal infection is a complex trait. Therefore, a comprehensive examination of rice transcriptome and its variation during fungal infection is necessary to understand the complex gene regulatory networks. In this study, adopting Next-Generation Sequencing we profiled the transcriptomes and microRNAomes of rice varieties, one susceptible and the other resistant to M. oryzae, at multiple time points during the fungal infection. Our results revealed a substantial variation in the plant transcriptome and microRNAome as well as change to rice innate immunity during fungal infection. A number of putative R gene candidates were identified from a perturbed rice transcriptome analysis. The expression of genes and non-coding RNA molecules changed in both fungal resistant and susceptible plants during M. oryzae invasion discovered distinct pathways triggered in the susceptible and resistant plants. In addition, a number of fungus genes in the susceptible and resistant plants were constantly expressed at different time points, suggesting that they were likely to be the potential AVR genes. Our results revealed large-scale rewiring of innate immunity circuitry and microRNA regulation during initial rice blast infection, which would help to develop more robust blast-resistant rice plants. PMID:27150822

  20. Insights into molecular mechanism of blast resistance in weedy rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weedy rice is a serious pest in direct-seeded rice fields in the U.S. and worldwide. Under suitable conditions, weedy rice can reduce crop yields up to 70%. However, weedy rice may carry novel disease resistance genes. Rice blast disease caused by the fungus Magnaporthe oryzae is a major disease wo...

  1. Characterization of novel blast resistant genes for US rice breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blast resistance genes, such as Pi-ta, conveying resistance up to 8 common US races of the blast pathogen (Magnaporthe oryzae), have been used for 20 years in the US rice (Oryza sativa) industry. However, Pi-ta is susceptible to two known US races of blast. Race IE-1K has caused blast outbreaks in A...

  2. Rice OsVAMP714, a membrane-trafficking protein localized to the chloroplast and vacuolar membrane, is involved in resistance to rice blast disease.

    PubMed

    Sugano, Shoji; Hayashi, Nagao; Kawagoe, Yasushi; Mochizuki, Susumu; Inoue, Haruhiko; Mori, Masaki; Nishizawa, Yoko; Jiang, Chang-Jie; Matsui, Minami; Takatsuji, Hiroshi

    2016-05-01

    Membrane trafficking plays pivotal roles in many cellular processes including plant immunity. Here, we report the characterization of OsVAMP714, an intracellular SNARE protein, focusing on its role in resistance to rice blast disease caused by the fungal pathogen Magnaporthe oryzae. Disease resistance tests using OsVAMP714 knockdown and overexpressing rice plants demonstrated the involvement of OsVAMP714 in blast resistance. The overexpression of OsVAMP7111, whose product is highly homologous to OsVAMP714, did not enhance blast resistance to rice, implying a potential specificity of OsVAMP714 to blast resistance. OsVAMP714 was localized to the chloroplast in mesophyll cells and to the cellular periphery in epidermal cells of transgenic rice plant leaves. We showed that chloroplast localization is critical for the normal OsVAMP714 functioning in blast resistance by analyzing the rice plants overexpressing OsVAMP714 mutants whose products did not localize in the chloroplast. We also found that OsVAMP714 was located in the vacuolar membrane surrounding the invasive hyphae of M. oryzae. Furthermore, we showed that OsVAMP714 overexpression promotes leaf sheath elongation and that the first 19 amino acids, which are highly conserved between animal and plant VAMP7 proteins, are crucial for normal rice plant growths. Our studies imply that the OsVAMP714-mediated trafficking pathway plays an important role in rice blast resistance as well as in the vegetative growth of rice. PMID:26879413

  3. Enhancing blast disease resistance by overexpression of the calcium-dependent protein kinase OsCPK4 in rice.

    PubMed

    Bundó, Mireia; Coca, María

    2016-06-01

    Rice is the most important staple food for more than half of the human population, and blast disease is the most serious disease affecting global rice production. In this work, the isoform OsCPK4 of the rice calcium-dependent protein kinase family is reported as a regulator of rice immunity to blast fungal infection. It shows that overexpression of OsCPK4 gene in rice plants enhances resistance to blast disease by preventing fungal penetration. The constitutive accumulation of OsCPK4 protein prepares rice plants for a rapid and potentiated defence response, including the production of reactive oxygen species, callose deposition and defence gene expression. OsCPK4 overexpression leads also to constitutive increased content of the glycosylated salicylic acid hormone in leaves without compromising rice yield. Given that OsCPK4 overexpression was known to confer also salt and drought tolerance in rice, the results reported in this article demonstrate that OsCPK4 acts as a convergence component that positively modulates both biotic and abiotic signalling pathways. Altogether, our findings indicate that OsCPK4 is a potential molecular target to improve not only abiotic stress tolerance, but also blast disease resistance of rice crops. PMID:26578239

  4. Overexpression of BSR1 confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice.

    PubMed

    Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki

    2016-06-01

    Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen. PMID:27436950

  5. Overexpression of BSR1 confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice

    PubMed Central

    Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki

    2016-01-01

    Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen. PMID:27436950

  6. Screening and association mapping of rice blast disease resistance using a diverse collection of rice germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast, caused by the fungus Magnaporthe oryzae B. Couch, is a very serious disease in rice (Oryza sativa L.) worldwide. Incorporation of new blast resistance genes into breeding lines is an important objective of many rice breeding programs. A diverse collection of 409 O. sativa accessions des...

  7. Genetic analysis of durable resistance to Magnaporthe oryzae in the rice accession Gigante Vercelli identified two blast resistance loci.

    PubMed

    Urso, Simona; Desiderio, Francesca; Biselli, Chiara; Bagnaresi, Paolo; Crispino, Laura; Piffanelli, Pietro; Abbruscato, Pamela; Assenza, Federica; Guarnieri, Giada; Cattivelli, Luigi; Valè, Giampiero

    2016-02-01

    Rice cultivars exhibiting durable resistance to blast, the most important rice fungal disease provoking up to 30 % of rice losses, are very rare and searching for sources of such a resistance represents a priority for rice-breeding programs. To this aim we analyzed Gigante Vercelli (GV) and Vialone Nano (VN), two temperate japonica rice cultivars in Italy displaying contrasting response to blast, with GV showing a durable and broad-spectrum resistance, whereas VN being highly susceptible. An SSR-based genetic map developed using a GV × VN population segregating for blast resistance identified two blast resistance loci, localized to the long arm of chromosomes 1 and 4 explaining more than 78 % of the observed phenotypic variation for blast resistance. The pyramiding of two blast resistance QTLs was therefore involved in the observed durable resistance in GV. Mapping data were integrated with information obtained from RNA-seq expression profiling of all classes of resistance protein genes (resistance gene analogs, RGAs) and with the map position of known cloned or mapped blast resistance genes to search candidates for the GV resistant response. A co-localization of RGAs with the LOD peak or the marker interval of the chromosome 1 QTL was highlighted and a valuable tool for selecting the resistance gene during breeding programs was developed. Comparative analysis with known blast resistance genes revealed co-positional relationships between the chromosome 1 QTL with the Pi35/Pish blast resistance alleles and showed that the chromosome 4 QTL represents a newly identified blast resistance gene. The present genetic analysis has therefore allowed the identification of two blast resistance loci in the durable blast-resistant rice cultivar GV and tools for molecular selection of these resistance genes. PMID:26141566

  8. Molecular dynamics of interactions of rice with rice blast and sheath blight pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an effort to develop the molecular strategies to control rice (Oryzae sativa) diseases, molecular interactions of rice with rice blast [Magnaporthe oryzae, formerly (Magnaporthe grisea] and sheath blight (Rhizoctonia solani) fungi were analyzed. The interaction of rice with M. oryzae follows a b...

  9. Chloroplast-Expressed MSI-99 in Tobacco Improves Disease Resistance and Displays Inhibitory Effect against Rice Blast Fungus

    PubMed Central

    Wang, Yun-Peng; Wei, Zheng-Yi; Zhang, Yu-Ying; Lin, Chun-Jing; Zhong, Xiao-Fang; Wang, Yue-Lin; Ma, Jing-Yong; Ma, Jian; Xing, Shao-Chen

    2015-01-01

    Rice blast is a major destructive fungal disease that poses a serious threat to rice production and the improvement of blast resistance is critical to rice breeding. The antimicrobial peptide MSI-99 has been suggested as an antimicrobial peptide conferring resistance to bacterial and fungal diseases. Here, a vector harboring the MSI-99 gene was constructed and introduced into the tobacco chloroplast genome via particle bombardment. Transformed plants were obtained and verified to be homoplastomic by PCR and Southern hybridization. In planta assays demonstrated that the transgenic tobacco plants displayed an enhanced resistance to the fungal disease. The evaluation of the antimicrobial activity revealed that the crude protein extracts from the transgenic plants manifested an antimicrobial activity against E. coli, even after incubation at 120 °C for 20 min, indicating significant heat stability of MSI-99. More importantly, the MSI-99-containing protein extracts were firstly proved in vitro and in vivo to display significant suppressive effects on two rice blast isolates. These findings provide a strong basis for the development of new biopesticides to combat rice blast. PMID:25739079

  10. Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea.

    PubMed

    Coca, María; Bortolotti, Cristina; Rufat, Mar; Peñas, Gisela; Eritja, Ramón; Tharreau, Didier; del Pozo, Alvaro Martinez; Messeguer, Joaquima; San Segundo, Blanca

    2004-01-01

    The Aspergillus giganteus antifungal protein (AFP), encoded by the afp gene, has been reported to possess in vitro antifungal activity against various economically important fungal pathogens, including the rice blast fungus Magnaporthe grisea. In this study, transgenic rice ( Oryza sativa ) constitutively expressing the afp gene was generated by Agrobacterium -mediated transformation. Two different DNA constructs containing either the afp cDNA sequence from Aspergillus or a chemically synthesized codon-optimized afp gene were introduced into rice plants. In both cases, the DNA region encoding the signal sequence from the tobacco AP24 gene was N-terminally fused to the coding sequence of the mature AFP protein. Transgenic rice plants showed stable integration and inheritance of the transgene. No effect on plant morphology was observed in the afp -expressing rice lines. The inhibitory activity of protein extracts prepared from leaves of afp plants on the in vitro growth of M. grisea indicated that the AFP protein produced by the trangenic rice plants was biologically active. Several of the T(2) homozygous afp lines were challenged with M. grisea in a detached leaf infection assay. Transformants exhibited resistance to rice blast at various levels. Altogether, the results presented here indicate that AFP can be functionally expressed in rice plants for protection against the rice blast fungus M. grisea. PMID:15159626

  11. Genome-Wide Analysis of Hypoxia-Responsive Genes in the Rice Blast Fungus, Magnaporthe oryzae

    PubMed Central

    Lee, Gir-Won; Koh, Sun-Ki; Chae, Suhn-Kee; Lee, Yong-Hwan

    2015-01-01

    Rice blast fungus, Magnaporthe oryzae, is the most destructive pathogen in the rice-growing area. This fungus has a biotrophic phase early in infection and later switches to a necrotrophic lifestyle. During the biotrophic phase, the fungus competes with its host for nutrients and oxygen. Continuous uptake of oxygen is essential for successful establishment of blast disease of this pathogen. Here, we report transcriptional responses of the fungus to oxygen limitation. Transcriptome analysis using RNA-Seq identified that 1,047 genes were up-regulated in response to hypoxia. Those genes are involved in mycelial development, sterol biosynthesis, and metal ion transport based on hierarchical GO terms, and are well-conserved among three fungal species. In addition, null mutants of two hypoxia-responsive genes were generated and their roles in fungal development and pathogenicity tested. The mutant for the sterol regulatory element-binding protein gene, MoSRE1, exhibited increased sensitivity to a hypoxia-mimicking agent, increased conidiation, and delayed invasive growth within host cells, which is suggestive of important roles in fungal development. However, such defects did not cause any significant decrease in disease severity. The other null mutant, for the alcohol dehydrogenase gene MoADH1, showed no defect in the hypoxia-mimicking condition (using cobalt chloride) and fungal development. Taken together, this comprehensive transcriptional profiling in response to a hypoxic condition with experimental validations would provide new insights into fungal development and pathogenicity in plant pathogenic fungi. PMID:26241858

  12. Rapidly evolving R genes in diverse grass species confer resistance to rice blast disease

    PubMed Central

    Yang, Sihai; Li, Jing; Zhang, Xiaohui; Zhang, Qijun; Huang, Ju; Chen, Jian-Qun; Hartl, Daniel L.; Tian, Dacheng

    2013-01-01

    We show that the genomes of maize, sorghum, and brachypodium contain genes that, when transformed into rice, confer resistance to rice blast disease. The genes are resistance genes (R genes) that encode proteins with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains (NBS–LRR proteins). By using criteria associated with rapid molecular evolution, we identified three rapidly evolving R-gene families in these species as well as in rice, and transformed a randomly chosen subset of these genes into rice strains known to be sensitive to rice blast disease caused by the fungus Magnaporthe oryzae. The transformed strains were then tested for sensitivity or resistance to 12 diverse strains of M. oryzae. A total of 15 functional blast R genes were identified among 60 NBS–LRR genes cloned from maize, sorghum, and brachypodium; and 13 blast R genes were obtained from 20 NBS–LRR paralogs in rice. These results show that abundant blast R genes occur not only within species but also among species, and that the R genes in the same rapidly evolving gene family can exhibit an effector response that confers resistance to rapidly evolving fungal pathogens. Neither conventional evolutionary conservation nor conventional evolutionary convergence supplies a satisfactory explanation of our findings. We suggest a unique mechanism termed “constrained divergence,” in which R genes and pathogen effectors can follow only limited evolutionary pathways to increase fitness. Our results open avenues for R-gene identification that will help to elucidate R-gene vs. effector mechanisms and may yield new sources of durable pathogen resistance. PMID:24145399

  13. Crucial Roles of Abscisic Acid Biogenesis in Virulence of Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Spence, Carla A.; Lakshmanan, Venkatachalam; Donofrio, Nicole; Bais, Harsh P.

    2015-01-01

    Rice suffers dramatic yield losses due to blast pathogen Magnaporthe oryzae. Pseudomonas chlororaphis EA105, a bacterium that was isolated from the rice rhizosphere, inhibits M. oryzae. It was shown previously that pre-treatment of rice with EA105 reduced the size of blast lesions through jasmonic acid (JA)- and ethylene (ETH)-mediated ISR. Abscisic acid (ABA) acts antagonistically toward salicylic acid (SA), JA, and ETH signaling, to impede plant defense responses. EA105 may be reducing the virulence of M. oryzae by preventing the pathogen from up-regulating the key ABA biosynthetic gene NCED3 in rice roots, as well as a β-glucosidase likely involved in activating conjugated inactive forms of ABA. However, changes in total ABA concentrations were not apparent, provoking the question of whether ABA concentration is an indicator of ABA signaling and response. In the rice-M. oryzae interaction, ABA plays a dual role in disease severity by increasing plant susceptibility and accelerating pathogenesis in the fungus itself. ABA is biosynthesized by M. oryzae. Further, exogenous ABA increased spore germination and appressoria formation, distinct from other plant growth regulators. EA105, which inhibits appressoria formation, counteracted the virulence-promoting effects of ABA on M. oryzae. The role of endogenous fungal ABA in blast disease was confirmed through the inability of a knockout mutant impaired in ABA biosynthesis to form lesions on rice. Therefore, it appears that EA105 is invoking multiple strategies in its protection of rice from blast including direct mechanisms as well as those mediated through plant signaling. ABA is a molecule that is likely implicated in both tactics. PMID:26648962

  14. The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice.

    PubMed

    Krattinger, Simon G; Sucher, Justine; Selter, Liselotte L; Chauhan, Harsh; Zhou, Bo; Tang, Mingzhi; Upadhyaya, Narayana M; Mieulet, Delphine; Guiderdoni, Emmanuel; Weidenbach, Denise; Schaffrath, Ulrich; Lagudah, Evans S; Keller, Beat

    2016-05-01

    The wheat gene Lr34 confers durable and partial field resistance against the obligate biotrophic, pathogenic rust fungi and powdery mildew in adult wheat plants. The resistant Lr34 allele evolved after wheat domestication through two gain-of-function mutations in an ATP-binding cassette transporter gene. An Lr34-like fungal disease resistance with a similar broad-spectrum specificity and durability has not been described in other cereals. Here, we transformed the resistant Lr34 allele into the japonica rice cultivar Nipponbare. Transgenic rice plants expressing Lr34 showed increased resistance against multiple isolates of the hemibiotrophic pathogen Magnaporthe oryzae, the causal agent of rice blast disease. Host cell invasion during the biotrophic growth phase of rice blast was delayed in Lr34-expressing rice plants, resulting in smaller necrotic lesions on leaves. Lines with Lr34 also developed a typical, senescence-based leaf tip necrosis (LTN) phenotype. Development of LTN during early seedling growth had a negative impact on formation of axillary shoots and spikelets in some transgenic lines. One transgenic line developed LTN only at adult plant stage which was correlated with lower Lr34 expression levels at seedling stage. This line showed normal tiller formation and more importantly, disease resistance in this particular line was not compromised. Interestingly, Lr34 in rice is effective against a hemibiotrophic pathogen with a lifestyle and infection strategy that is different from obligate biotrophic rusts and mildew fungi. Lr34 might therefore be used as a source in rice breeding to improve broad-spectrum disease resistance against the most devastating fungal disease of rice. PMID:26471973

  15. Single spore isolation and morphological characterization of local Malaysian isolates of rice blast fungus Magnoporthe grisea

    NASA Astrophysics Data System (ADS)

    Mishra, Ankitta; Ratnam, Wickneswari; Bhuiyan, Md Atiqur Rahman; Ponaya, Ariane; Jena, Khisord K.

    2015-09-01

    Rice blast is a destructive disease, caused by the fungal pathogen Magnaporthe grisea. It causes considerable damage to rice and leads to crop loss in rice growing regions worldwide. Although fungicides can be used to control rice blast, they generate additional cost in rice production and contamination of environment and food. Therefore, the use of resistant varieties is thought to be one of the most economically and environmentally efficient ways of crop protection from the disease. Six new local Malaysian isolates of M. grisea were isolated using single spore isolation method. Five isolates were from infected leaf samples collected from Kompleks Latihan MADA, Kedah and one was from Kelantan. These isolates were identified using morphological characteristics and microscopic studies and later confirmed by ITSequences. These isolates were induced to sporulate and used for greenhouse screening on two differential rice varieties: Mahsuri (susceptible) and Pongsu Seribu 2 (resistant). Among the 6 isolates, isolate number 3 was found to be the most virulent showing high sporulation while isolate number 4 was very slow growing, and the least virulent.

  16. Evidence for Biotrophic Lifestyle and Biocontrol Potential of Dark Septate Endophyte Harpophora oryzae to Rice Blast Disease

    PubMed Central

    Su, Zhen-Zhu; Mao, Li-Juan; Li, Na; Feng, Xiao-Xiao; Yuan, Zhi-Lin; Wang, Li-Wei; Lin, Fu-Cheng; Zhang, Chu-Long

    2013-01-01

    The mutualism pattern of the dark septate endophyte (DSE) Harpophora oryzae in rice roots and its biocontrol potential in rice blast disease caused by Magnaporthe oryzae were investigated. Fluorescent protein-expressing H. oryzae was used to monitor the colonization pattern. Hyphae invaded from the epidermis to the inner cortex, but not into the root stele. Fungal colonization increased with root tissue maturation, showing no colonization in the meristematic zone, slight colonization in the elongation zone, and heavy colonization in the differentiation zone. H. oryzae adopted a biotrophic lifestyle in roots accompanied by programmed cell death. Real-time PCR facilitated the accurate quantification of fungal growth and the respective plant response. The biocontrol potential of H. oryzae was visualized by inoculation with eGFP-tagged M. oryzae in rice. H. oryzae protected rice from M. oryzae root invasion by the accumulation of H2O2 and elevated antioxidative capacity. H. oryzae also induced systemic resistance against rice blast. This systemic resistance was mediated by the OsWRKY45-dependent salicylic acid (SA) signaling pathway, as indicated by the strongly upregulated expression of OsWRKY45. The colonization pattern of H. oryzae was consistent with the typical characteristics of DSEs. H. oryzae enhanced local resistance by reactive oxygen species (ROS) and high antioxidative level and induced OsWRKY45-dependent SA-mediated systemic resistance against rice blast. PMID:23637814

  17. Development of strategies to manage rice blast disease in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast disease has been a serious threat to stable rice production in the southern USA. Blast disease has been causing yield losses for decades. Severity of blast epidemics has been always influenced by a combination of the following three factors: 1) rice cultivars deployed with different comb...

  18. Investigating the biology of plant infection by the rice blast fungus Magnaporthe oryzae.

    PubMed

    Martin-Urdiroz, Magdalena; Oses-Ruiz, Miriam; Ryder, Lauren S; Talbot, Nicholas J

    2016-05-01

    The rice blast fungus, Magnaporthe oryzae, is responsible for the most serious disease of rice and is a continuing threat to ensuring global food security. The fungus has also, however, emerged as a model experimental organism for understanding plant infection processes by pathogenic fungi. This is largely due to its amenability to both classical and molecular genetics, coupled with the efforts of a very large international research community. This review, which is based on a plenary presentation at the 28th Fungal Genetics Conference in Asilomar, California in March 2015, describes recent progress in understanding how M. oryzae uses specialised cell called appressoria to bring about plant infection and the underlying biology of this developmental process. We also review how the fungus is then able to proliferate within rice tissue, deploying effector proteins to facilitate its spread by suppressing plant immunity and promoting growth and development of the fungus. PMID:26703899

  19. Geographically Distinct and Domain-Specific Sequence Variations in the Alleles of Rice Blast Resistance Gene Pib

    PubMed Central

    Vasudevan, Kumar; Vera Cruz, Casiana M.; Gruissem, Wilhelm; Bhullar, Navreet K.

    2016-01-01

    Rice blast is caused by Magnaporthe oryzae, which is the most destructive fungal pathogen affecting rice growing regions worldwide. The rice blast resistance gene Pib confers broad-spectrum resistance against Southeast Asian M. oryzae races. We investigated the allelic diversity of Pib in rice germplasm originating from 12 major rice growing countries. Twenty-five new Pib alleles were identified that have unique single nucleotide polymorphisms (SNPs), insertions and/or deletions, in addition to the polymorphic nucleotides that are shared between the different alleles. These partially or completely shared polymorphic nucleotides indicate frequent sequence exchange events between the Pib alleles. In some of the new Pib alleles, nucleotide diversity is high in the LRR domain, whereas, in others it is distributed among the NB-ARC and LRR domains. Most of the polymorphic amino acids in LRR and NB-ARC2 domains are predicted as solvent-exposed. Several of the alleles and the unique SNPs are country specific, suggesting a diversifying selection of alleles in various geographical locations in response to the locally prevalent M. oryzae population. Together, the new Pib alleles are an important genetic resource for rice blast resistance breeding programs and provide new information on rice-M. oryzae interactions at the molecular level. PMID:27446145

  20. Characterization of rice blast resistance gene Pi61(t) in rice germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of resistance (R) genes to races of Magnaporthe oryzae in rice germplasm is essential for the development of rice cultivars with long lasting blast resistance. In the present study, one major quantitative trait locus, qPi93-3, was fine mapped using a recombinant inbred line (RIL), F8 ...

  1. Current progress on genetic interactions of rice with rice blast and sheath blight fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of genetic interactions between rice and its pathogenic fungi Magnaporthe oryzae and Rhizoctonia solani should lead to a better understanding of molecular mechanisms of host resistance, and the improvement of strategies to manage rice blast and sheath blight diseases. Presently dozens of ri...

  2. Transcriptomic analyses of space-induced rice mutants with enhanced susceptibility to rice blast

    NASA Astrophysics Data System (ADS)

    Cheng, Zhenlong; Liu, Ming; Zhang, Meng; Hang, Xiaoming; Lei, Cailin; Sun, Yeqing

    Mutagenic factors of the space environment influence organisms in different aspects. To elucidate the transcriptomic effects of space flight, a space flight-induced rice mutant, 972-4, and its on-ground control, 972ck, were inoculated with rice blast pathogens. Compared to the control, the mutant exhibited reduced resistance to the rice blast pathogen CH45. Microarray technique was employed to analyze affected genes and revealed that 481 genes were expressed at higher levels in the mutant strain and 188 genes were expressed at higher levels in the control strain under normal growth conditions, indicating that transcriptomic changes of rice seeds are induced by the space environment. After inoculation with the rice blast pathogen CH45, however, 2680 genes were differentially expressed in 972ck and 1863 genes were differentially expressed in 972-4. In addition, disease evaluation indicated that the control strain 972ck is more resistant to the rice blast pathogen CH45 than mutant strain 972-4. In addition, genes in both strains that were co-regulated after blast inoculation account for only 36.8% and 53.3% of the genes expressed in 972ck and 972-4, respectively. A large percentage of blast-regulated genes were not consistently expressed in 972-4 and 972ck, and the mutant and control strains exhibit different gene expression patterns after blast inoculation. Interestingly, 84 genes constitutively expressed higher in 972ck were up-regulated by blast inoculation, and 105 genes that were expressed at constitutively higher levels in 972-4 were down-regulated by blast inoculation. Of the differentially expressed, 7 encoded genes associated with pathogen resistance. Taken together, our results suggest that gene expression patterns are different between a space flight-induced rice mutant and its on-ground control, and the differential expression of resistance genes may be a potential mechanism that modulates the resistance of 972-4 to rice blast. Our results also suggest

  3. Fungal diversity of rice straw for meju fermentation.

    PubMed

    Kim, Dae-Ho; Kim, Seon-Hwa; Kwon, Soon-Wo; Lee, Jong-Kyu; Hong, Seung-Beom

    2013-12-01

    Rice straw is closely associated with meju fermentation and it is generally known that the rice straw provides meju with many kinds of microorganisms. In order to elucidate the origin of meju fungi, the fungal diversity of rice straw was examined. Rice straw was collected from 12 Jang factories where meju are produced, and were incubated under nine different conditions by altering the media (MEA, DRBC, and DG18), and temperature (15°C, 25°C, and 35°C). In total, 937 strains were isolated and identified as belonging to 39 genera and 103 species. Among these, Aspergillus, Cladosporium, Eurotium, Fusarium, and Penicillium were the dominant genera. Fusarium asiaticum (56.3%), Cladosporium cladosporioides (48.6%), Aspergillus tubingensis (37.5%), A. oryzae (31.9%), Eurotium repens (27.1%), and E. chevalieri (25.0%) were frequently isolated from the rice straw obtained from many factories. Twelve genera and 40 species of fungi that were isolated in the rice straw in this study were also isolated from meju. Specifically, A. oryzae, C. cladosporioides, E. chevalieri, E. repens, F. asiaticum, and Penicillium polonicum (11.8%), which are abundant species in meju, were also isolated frequently from rice straw. C. cladosporioides, F. asiaticum, and P. polonicum, which are abundant in the low temperature fermentation process of meju fermentation, were frequently isolated from rice straw incubated at 15°C and 25°C, whereas A. oryzae, E. repens, and E. chevalieri, which are abundant in the high temperature fermentation process of meju fermentation, were frequently isolated from rice straw incubated at 25°C and 35°C. This suggests that the mycobiota of rice straw has a large influence in the mycobiota of meju. The influence of fungi on the rice straw as feed and silage for livestock, and as plant pathogens for rice, are discussed as well. PMID:24043125

  4. Mapping Quantitative Trait Loci for Resistance to Rice Blast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative trait loci (QTLs) conferring resistance to rice blast, caused by Magnaporthe oryzae, have been under-explored. In the present study, composite interval mapping was used to identify the QTLs that condition resistance to the six out of the twelve common races IB1, IB45, IB49, IB54, IC17,...

  5. Pathological and Molecular Characterization of Rice Blast Pathogenicity Factor AVR-Pita 1 in Field Isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rice blast resistance gene Pi-ta has been effective in managing rice blast disease in Arkansas and the Southern US. The AVR-Pita1 gene in the pathogen, Maganporthe oryzae, encodes a metalloprotease that determines the efficacy of Pi-ta mediated blast resistance. Analysis of genetic variation ...

  6. Pathological and molecular characterization of rice blast pathogenicity factor AVR-Pital in field isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rice blast resistance gene Pi-ta has been effective in managing rice blast disease in Arkansas and the Southern US. The AVR-Pita1 gene in the pathogen, Maganporthe oryzae, encodes a metalloprotease that determines the efficacy of Pi-ta mediated blast resistance. Analysis of genetic variation ...

  7. Analysis of rice blast resistance gene Pi-z in rice germplasm using pathogenicity assays and DNA markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pi-z(t) gene in rice confers resistance to a wide range of races of the rice blast fungus, Magnaporthe oryzae. The objective of this study was to characterize Pi-z(t) in 117 rice germplasm accessions using DNA markers and pathogenicity assays. The existence of Pi-z(t) in rice germplasm was detec...

  8. Evolutionary dynamics and structure of the rice blast resistance locus Pi-ta in wild, cultivated, and US weedy rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pi-ta gene in rice has been used to control rice blast pathogen, Magnaporthe oryza, in rice growing areas worldwide for decades. To understand the evolutionary process and natural selection of Pi-ta during rice domestication, we first examined sequences of the genomic region of Pi-ta in geograph...

  9. QTL Analysis for Resistance to Blast Disease in U.S. Weedy Rice.

    PubMed

    Liu, Yan; Qi, Xinshuai; Gealy, Dave R; Olsen, Kenneth M; Caicedo, Ana L; Jia, Yulin

    2015-07-01

    Understanding the genetic architecture of adaptation is of great importance in evolutionary biology. U.S. weedy rice is well adapted to the local conditions in U.S. rice fields. Rice blast disease is one of the most destructive diseases of cultivated rice worldwide. However, information about resistance to blast in weedy rice is limited. Here, we evaluated the disease reactions of 60 U.S. weedy rice accessions with 14 blast races, and investigated the quantitative trait loci (QTL) associated with blast resistance in two major ecotypes of U.S. weedy rice. Our results revealed that U.S. weedy rice exhibited a broad resistance spectrum. Using genotyping by sequencing, we identified 28 resistance QTL in two U.S. weedy rice ecotypes. The resistance QTL with relatively large and small effects suggest that U.S. weedy rice groups have adapted to blast disease using two methods, both major resistance (R) genes and QTL. Three genomic loci shared by some of the resistance QTL indicated that these loci may contribute to no-race-specific resistance in weedy rice. Comparing with known blast disease R genes, we found that the R genes at these resistance QTL are novel, suggesting that U.S. weedy rice is a potential source of novel blast R genes for resistant breeding. PMID:25761210

  10. Cytokinin Production by the Rice Blast Fungus Is a Pivotal Requirement for Full Virulence

    PubMed Central

    Chanclud, Emilie; Kisiala, Anna; Emery, Neil R. J; Chalvon, Véronique; Ducasse, Aurélie; Romiti-Michel, Corinne; Gravot, Antoine; Kroj, Thomas; Morel, Jean-Benoit

    2016-01-01

    Plants produce cytokinin (CK) hormones for controlling key developmental processes like source/sink distribution, cell division or programmed cell-death. Some plant pathogens have been shown to produce CKs but the function of this mimicry production by non-tumor inducing pathogens, has yet to be established. Here we identify a gene required for CK biosynthesis, CKS1, in the rice blast fungus Magnaporthe oryzae. The fungal-secreted CKs are likely perceived by the plant during infection since the transcriptional regulation of rice CK-responsive genes is altered in plants infected by the mutants in which CKS1 gene was deleted. Although cks1 mutants showed normal in vitro growth and development, they were severely affected for in planta growth and virulence. Moreover, we showed that the cks1 mutant triggered enhanced induction of plant defenses as manifested by an elevated oxidative burst and expression of defense-related markers. In addition, the contents of sugars and key amino acids for fungal growth were altered in and around the infection site by the cks1 mutant in a different manner than by the control strain. These results suggest that fungal-derived CKs are key effectors required for dampening host defenses and affecting sugar and amino acid distribution in and around the infection site. PMID:26900703

  11. Roles of Peroxisomes in the Rice Blast Fungus

    PubMed Central

    Liu, Caiyun

    2016-01-01

    The rice blast fungus, Magnaporthe oryzae, is a model plant pathogenic fungus and is a severe threat to global rice production. Over the past two decades, it has been found that the peroxisomes play indispensable roles during M. oryzae infection. Given the importance of the peroxisomes for virulence, we review recent advances of the peroxisomes roles during M. oryzae infection processes. We firstly introduce the molecular mechanisms and life cycles of the peroxisomes. And then, metabolic functions related to the peroxisomes are also discussed. Finally, we provide an overview of the relationship between peroxisomes and pathogenicity. PMID:27610388

  12. Roles of Peroxisomes in the Rice Blast Fungus.

    PubMed

    Chen, Xiao-Lin; Wang, Zhao; Liu, Caiyun

    2016-01-01

    The rice blast fungus, Magnaporthe oryzae, is a model plant pathogenic fungus and is a severe threat to global rice production. Over the past two decades, it has been found that the peroxisomes play indispensable roles during M. oryzae infection. Given the importance of the peroxisomes for virulence, we review recent advances of the peroxisomes roles during M. oryzae infection processes. We firstly introduce the molecular mechanisms and life cycles of the peroxisomes. And then, metabolic functions related to the peroxisomes are also discussed. Finally, we provide an overview of the relationship between peroxisomes and pathogenicity. PMID:27610388

  13. OsGF14e positively regulates panicle blast resistance in rice.

    PubMed

    Liu, Qing; Yang, Jianyuan; Zhang, Shaohong; Zhao, Junliang; Feng, Aiqing; Yang, Tifeng; Wang, Xiaofei; Mao, Xingxue; Dong, Jingfang; Zhu, Xiaoyuan; Leung, Hei; Leach, Jan E; Liu, Bin

    2016-02-26

    Though GF14e has been reported to negatively regulate bacterial blight and sheath blight resistance in rice, its effect on panicle blast, the most destructive disease in rice is still unknown. In the present study, we identified that GF14e was highly expressed in panicles and was induced in panicles infected by blast pathogen. Overexpression of GF14e enhances resistance to panicle blast whereas silencing GF14e results in increased susceptibility to panicle blast, suggesting that GF14e plays a positive role in quantitative panicle blast resistance in rice. Our results also demonstrate that GF14e is regulated by WRKY71 and GF14e-mediated panicle blast resistance is related to activation of SA-dependent pathway and suppression of JA-dependent pathway. The functional confirmation of GF14e in panicle blast resistance makes it to be a promising target in molecular rice breeding. PMID:26851365

  14. Genome-wide association of rice blast disease resistance and yield-related components of rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Robust disease resistance may require an expenditure of energy that may limit crop yield potential. In the present study, a subset of a USDA rice core collection consisting of 151 accessions was selected using a major blast resistance (R) gene Pi-ta marker, and was genotyped with 156 simple sequence...

  15. QTLs analysis for resistance to blast disease in US weedy rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the genetic architecture of adaptation is of great importance in evolutionary biology. US weedy rice is well-adapted to the local conditions in US rice fields. Rice blast disease is one of the most destructive diseases of cultivated rice worldwide. However, information about resistance...

  16. OsGF14b Positively Regulates Panicle Blast Resistance but Negatively Regulates Leaf Blast Resistance in Rice.

    PubMed

    Liu, Qing; Yang, Jianyuan; Zhang, Shaohong; Zhao, Junliang; Feng, Aiqing; Yang, Tifeng; Wang, Xiaofei; Mao, Xinxue; Dong, Jingfang; Zhu, Xiaoyuan; Leung, Hei; Leach, Jan E; Liu, Bin

    2016-01-01

    Although 14-3-3 proteins have been reported to be involved in responses to biotic stresses in plants, their functions in rice blast, the most destructive disease in rice, are largely unknown. Only GF14e has been confirmed to negatively regulate leaf blast. We report that GF14b is highly expressed in seedlings and panicles during blast infection. Rice plants overexpressing GF14b show enhanced resistance to panicle blast but are susceptible to leaf blast. In contrast, GF14b-silenced plants show increased susceptibility to panicle blast but enhanced resistance to leaf blast. Yeast one-hybrid assays demonstrate that WRKY71 binds to the promoter of GF14b and modulates its expression. Overexpression of GF14b induces expression of jasmonic acid (JA) synthesis-related genes but suppresses expression of salicylic acid (SA) synthesis-related genes. In contrast, suppressed GF14b expression causes decreased expression of JA synthesis-related genes but activation of SA synthesis-related genes. These results suggest that GF14b positively regulates panicle blast resistance but negatively regulates leaf blast resistance, and that GF14b-mediated disease resistance is associated with the JA- and SA-dependent pathway. The different functions for 14-3-3 proteins in leaf and panicle blast provide new evidence that leaf and panicle blast resistance are controlled by different mechanisms. PMID:26467468

  17. Molecular evolution of the rice blast resistance gene Pi-ta in invasive weedy rice in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pi-ta gene has been effectively used to control rice blast disease caused by Magnaporthe oryzae in many rice growing regions in the world. A number of studies have characterized the molecular evolution of the Pi-ta gene in cultivated rice, O. sativa, and its wild ancestor O. rufipogon; however,...

  18. Screening for resistance against Pseudomonas syringae in rice-FOX Arabidopsis lines identified a putative receptor-like cytoplasmic kinase gene that confers resistance to major bacterial and fungal pathogens in Arabidopsis and rice

    PubMed Central

    Dubouzet, Joseph G; Maeda, Satoru; Sugano, Shoji; Ohtake, Miki; Hayashi, Nagao; Ichikawa, Takanari; Kondou, Youichi; Kuroda, Hirofumi; Horii, Yoko; Matsui, Minami; Oda, Kenji; Hirochika, Hirohiko; Takatsuji, Hiroshi; Mori, Masaki

    2011-01-01

    Approximately 20 000 of the rice-FOX Arabidopsis transgenic lines, which overexpress 13 000 rice full-length cDNAs at random in Arabidopsis, were screened for bacterial disease resistance by dip inoculation with Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). The identities of the overexpressed genes were determined in 72 lines that showed consistent resistance after three independent screens. Pst DC3000 resistance was verified for 19 genes by characterizing other independent Arabidopsis lines for the same genes in the original rice-FOX hunting population or obtained by reintroducing the genes into ecotype Columbia by floral dip transformation. Thirteen lines of these 72 selections were also resistant to the fungal pathogen Colletotrichum higginsianum. Eight genes that conferred resistance to Pst DC3000 in Arabidopsis have been introduced into rice for overexpression, and transformants were evaluated for resistance to the rice bacterial pathogen, Xanthomonas oryzae pv. oryzae. One of the transgenic rice lines was highly resistant to Xanthomonas oryzae pv. oryzae. Interestingly, this line also showed remarkably high resistance to Magnaporthe grisea, the fungal pathogen causing rice blast, which is the most devastating rice disease in many countries. The causal rice gene, encoding a putative receptor-like cytoplasmic kinase, was therefore designated as BROAD-SPECTRUM RESISTANCE 1. Our results demonstrate the utility of the rice-FOX Arabidopsis lines as a tool for the identification of genes involved in plant defence and suggest the presence of a defence mechanism common between monocots and dicots. PMID:20955180

  19. Confirming and Identifying New Loci for Rice Blast Disease Resistance using Magnaporthe oryzae Field Isolates in the US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative trait loci (QTL) in rice play important roles in controlling rice blast disease. In the present study, 10 field isolates of the races IA1, IB1, IB17, and IC1 of U.S. rice blast fungus Magnaporthe oryzae collected in 1996 and 2009 were used to identify blast resistance QTL with a recombi...

  20. PEDIGREE AND DNA MARKER ANALYSIS OF BLAST RESISTANCE GENES IN US RICE GERMPLASM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blast resistance genes have been effectively used in southern US rice germplasm to reduce crop losses from this serious disease threat. Historical records indicate the most common blast resistance genes in USA rice germplasm are Pi-z and Pi-ks in medium grain and Pi-kh and Pi-ta2 in long grain varie...

  1. Characterization of genetic diversity of rice blast fungus in Arkansas field isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rice blast resistance gene Pita has been deployed for preventing blast disease in the southern US for the past two decades. To date, at least eleven rice cultivars, Katy, Drew, Madison, Kaybonnet, Banks, Ahrent, Spring, Cybonnet, Catahoula, CL111, and Templeton carrying Pi-ta were developed by ...

  2. Large scale germplasm screening for identification of novel rice blast resistance sources

    PubMed Central

    Vasudevan, Kumar; Vera Cruz, Casiana M.; Gruissem, Wilhelm; Bhullar, Navreet K.

    2014-01-01

    Rice is a major cereal crop that contributes significantly to global food security. Biotic stresses, including the rice blast fungus, cause severe yield losses that significantly impair rice production worldwide. The rapid genetic evolution of the fungus often overcomes the resistance conferred by major genes after a few years of intensive agricultural use. Therefore, resistance breeding requires continuous efforts of enriching the reservoir of resistance genes/alleles to effectively tackle the disease. Seed banks represent a rich stock of genetic diversity, however, they are still under-explored for identifying novel genes and/or their functional alleles. We conducted a large-scale screen for new rice blast resistance sources in 4246 geographically diverse rice accessions originating from 13 major rice-growing countries. The accessions were selected from a total collection of over 120,000 accessions based on their annotated rice blast resistance information in the International Rice Genebank. A two-step resistance screening protocol was used involving natural infection in a rice uniform blast nursery and subsequent artificial infections with five single rice blast isolates. The nursery-resistant accessions showed varied disease responses when infected with single isolates, suggesting the presence of diverse resistance genes/alleles in this accession collection. In addition, 289 accessions showed broad-spectrum resistance against all five single rice blast isolates. The selected resistant accessions were genotyped for the presence of the Pi2 resistance gene, thereby identifying potential accessions for isolation of allelic variants of this blast resistance gene. Together, the accession collection with broad spectrum and isolate specific blast resistance represent the core material for isolation of previously unknown blast resistance genes and/or their allelic variants that can be deployed in rice breeding programs. PMID:25324853

  3. DEVELOPMENT OF A MOLECULAR MARKER FROM THE RICE BLAST AVIRULENCE GEN AVR-PITA FOR SURVEILLANCE OF DURABLE RICE BLAST RESISTANCE CONFERRED BY PI-TA IN ARKANSAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Arkansas, a major resistance gene Pi-ta in rice has been deployed effectively to prevent blast disease. Currently, the US cultivars, Katy, Madison, Kaybonnet, Drew, Cybonnet and Ahrent were confirmed to contain the resistance gene Pi-ta. Pi-ta is effective only when blast pathogen Magnaporthe o...

  4. First report of multiple races of the rice blast fungus Magnaporthe oryzae in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rice nursery located in the Lajas Valley, in the southwestern corner of Puerto Rico has been used by US rice breeders for the past 43 years to produce one to two extra generations per year. In April, 2015, blast disease lesions were observed on rice breeding lines belonging to the USDA ARS DB NR...

  5. Characterization of the Pi-b Rice Blast Resistance Gene in the National Small Grains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pi-b gene in rice confers resistance to a wide range of races of the rice blast fungus, Magnaporthe oryzae, including race IE1k that overcomes Pi-ta. In the present study, Pi-b was identified in 164 rice germplasm accessions from the National Small Grains Collection using DNA markers and pathog...

  6. Identification of the rice blast resistance gene Pi-b in the national small grains collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pi-b gene in rice confers resistance to a wide range of races of the rice blast pathogen, Magnaporthe oryzae, including race IE1k that overcomes Pi-ta. In this study, the presence of Pi-b in 164 rice germplasm accessions from the National Small Grains Collection was determined utilizing DNA mar...

  7. Monitoring fungal growth on brown rice grains using rapid and non-destructive hyperspectral imaging.

    PubMed

    Siripatrawan, U; Makino, Y

    2015-04-16

    This research aimed to develop a rapid, non-destructive, and accurate method based on hyperspectral imaging (HSI) for monitoring spoilage fungal growth on stored brown rice. Brown rice was inoculated with a non-pathogenic strain of Aspergillus oryzae and stored at 30 °C and 85% RH. Growth of A. oryzae on rice was monitored using viable colony counts, expressed as colony forming units per gram (CFU/g). The fungal development was observed using scanning electron microscopy. The HSI system was used to acquire reflectance images of the samples covering the visible and near-infrared (NIR) wavelength range of 400-1000 nm. Unsupervised self-organizing map (SOM) was used to visualize data classification of different levels of fungal infection. Partial least squares (PLS) regression was used to predict fungal growth on rice grains from the HSI reflectance spectra. The HSI spectral signals decreased with increasing colony counts, while conserving similar spectral pattern during the fungal growth. When integrated with SOM, the proposed HSI method could be used to classify rice samples with different levels of fungal infection without sample manipulation. Moreover, HSI was able to rapidly identify infected rice although the samples showed no symptoms of fungal infection. Based on PLS regression, the coefficient of determination was 0.97 and root mean square error of prediction was 0.39 log (CFU/g), demonstrating that the HSI technique was effective for prediction of fungal infection in rice grains. The ability of HSI to detect fungal infection at early stage would help to prevent contaminated rice grains from entering the food chain. This research provides scientific information on the rapid, non-destructive, and effective fungal detection system for rice grains. PMID:25662486

  8. Rice Blast Fungus (Magnaporthe oryzae) Infects Arabidopsis via a Mechanism Distinct from That Required for the Infection of Rice1[W][OA

    PubMed Central

    Park, Ju-Young; Jin, Jianming; Lee, Yin-Won; Kang, Seogchan; Lee, Yong-Hwan

    2009-01-01

    Magnaporthe oryzae is a hemibiotrophic fungal pathogen that causes rice (Oryza sativa) blast. Although M. oryzae as a whole infects a wide variety of monocotyledonous hosts, no dicotyledonous plant has been reported as a host. We found that two rice pathogenic strains of M. oryzae, KJ201 and 70-15, interacted differentially with 16 ecotypes of Arabidopsis (Arabidopsis thaliana). Strain KJ201 infected all ecotypes with varying degrees of virulence, whereas strain 70-15 caused no symptoms in certain ecotypes. In highly susceptible ecotypes, small chlorotic lesions appeared on infected leaves within 3 d after inoculation and subsequently expanded across the affected leaves. The fungus produced spores in susceptible ecotypes but not in resistant ecotypes. Fungal cultures recovered from necrotic lesions caused the same symptoms in healthy plants, satisfying Koch's postulates. Histochemical analyses showed that infection by the fungus caused an accumulation of reactive oxygen species and eventual cell death. Similar to the infection process in rice, the fungus differentiated to form appressorium and directly penetrated the leaf surface in Arabidopsis. However, the pathogenic mechanism in Arabidopsis appears distinct from that in rice; three fungal genes essential for pathogenicity in rice played only limited roles in causing disease symptoms in Arabidopsis, and the fungus seems to colonize Arabidopsis as a necrotroph through the secretion of phytotoxic compounds, including 9,12-octadecadienoic acid. Expression of PR-1 and PDF1.2 was induced in response to infection by the fungus, suggesting the activation of salicylic acid- and jasmonic acid/ethylene-dependent signaling pathways. However, the roles of these signaling pathways in defense against M. oryzae remain unclear. In combination with the wealth of genetic and genomic resources available for M. oryzae, this newly established pathosystem allows comparison of the molecular and cellular mechanisms underlying

  9. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani.

    PubMed

    Helliwell, Emily E; Wang, Qin; Yang, Yinong

    2013-01-01

    Rice blast (Magnaporthe oryzae) and sheath blight (Rhizoctonia solani) are the two most devastating diseases of rice (Oryza sativa), and have severe impacts on crop yield and grain quality. Recent evidence suggests that ethylene (ET) may play a more prominent role than salicylic acid and jasmonic acid in mediating rice disease resistance. In this study, we attempt to genetically manipulate endogenous ET levels in rice for enhancing resistance to rice blast and sheath blight diseases. Transgenic lines with inducible production of ET were generated by expressing the rice ACS2 (1-aminocyclopropane-1-carboxylic acid synthase, a key enzyme of ET biosynthesis) transgene under control of a strong pathogen-inducible promoter. In comparison with the wild-type plant, the OsACS2-overexpression lines showed significantly increased levels of the OsACS2 transcripts, endogenous ET and defence gene expression, especially in response to pathogen infection. More importantly, the transgenic lines exhibited increased resistance to a field isolate of R. solani, as well as different races of M. oryzae. Assessment of the growth rate, generational time and seed production revealed little or no differences between wild type and transgenic lines. These results suggest that pathogen-inducible production of ET in transgenic rice can enhance resistance to necrotrophic and hemibiotrophic fungal pathogens without negatively impacting crop productivity. PMID:23031077

  10. Characterization of resistance genes to rice blast fungus Magnaporthe oryzae in a “Green Revolution” rice variety

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The indica rice variety Dee Geo Woo Gen (DGWG) was the source of the semi-dwarf gene (SD1) which played an important role in the Green Revolution. In the present study, resistance (R) genes to the U.S. race (isolate) IB54 of Magnaporthe oryzae, causal agent of rice blast disease, was investigated. T...

  11. [Identification and classification of rice leaf blast based on multi-spectral imaging sensor].

    PubMed

    Feng, Lei; Chai, Rong-Yao; Sun, Guang-Ming; Wu, Di; Lou, Bing-Gan; He, Yong

    2009-10-01

    Site-specific variable pesticide application is one of the major precision crop production management operations. Rice blast is a severe threat for rice production. Traditional chemistry methods can do the accurate crop disease identification, however they are time-consuming, require being executed by professionals and are of high cost. Crop disease identification and classification by human sight need special crop protection knowledge, and is low efficient. To obtain fast, reliable, accurate rice blast disease information is essential for achieving effective site-specific pesticide applications and crop management. The present paper describes a multi-spectral leaf blast identification and classification image sensor, which uses three channels of crop leaf and canopy images. The objective of this work was to develop and evaluate an algorithm under simplified lighting conditions for identifying damaged rice plants by the leaf blast using digital color images. Based on the results obtained from this study, the seed blast identification accuracy can be achieved at 95%, and the leaf blast identification accuracy can be achieved at 90% during the rice growing season. Thus it can be concluded that multi-spectral camera can provide sufficient information to perform reasonable rice leaf blast estimation. PMID:20038048

  12. Registration of 42 blast resistant medium grain rice genetic stocks with suitable agronomic, yield, milling yield, and grain characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast disease caused by the filamentous ascomycete fungus Magnaporthe oryzae Cav. [Magnaporthe grisea (Herbert) Barr.] is one of the most threatening rice diseases in the southern United States. In the present study, 42 rice (Oryza sativa L.) blast resistant genetic stocks (GSOR102501 to 201542...

  13. NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus.

    PubMed

    Ryder, Lauren S; Dagdas, Yasin F; Mentlak, Thomas A; Kershaw, Michael J; Thornton, Christopher R; Schuster, Martin; Chen, Jisheng; Wang, Zonghua; Talbot, Nicholas J

    2013-02-19

    The rice blast fungus Magnaporthe oryzae infects plants with a specialized cell called an appressorium, which uses turgor to drive a rigid penetration peg through the rice leaf cuticle. Here, we show that NADPH oxidases (Nox) are necessary for septin-mediated reorientation of the F-actin cytoskeleton to facilitate cuticle rupture and plant cell invasion. We report that the Nox2-NoxR complex spatially organizes a heteroligomeric septin ring at the appressorium pore, required for assembly of a toroidal F-actin network at the point of penetration peg emergence. Maintenance of the cortical F-actin network during plant infection independently requires Nox1, a second NADPH oxidase, which is necessary for penetration hypha elongation. Organization of F-actin in appressoria is disrupted by application of antioxidants, whereas latrunculin-mediated depolymerization of appressorial F-actin is competitively inhibited by reactive oxygen species, providing evidence that regulated synthesis of reactive oxygen species by fungal NADPH oxidases directly controls septin and F-actin dynamics. PMID:23382235

  14. TPS1 drug design for rice blast disease in magnaporthe oryzae.

    PubMed

    Xue, Yangkui; Shui, Guanghou; Wenk, Markus R

    2014-01-01

    Magnaporthe oryzae (M. oryzae) is a fungal pathogen and the causal agent of rice blast disease. Previous lipidomics analysis of M. oryzae demonstrated that trehalose, a carbohydrate common to various fungi and algae, is thought to be involved in the possible conversion of glycogen into triacylglycerides for energy, an important step in the pathogenesis of M. oryzae. A key enzyme responsible for trehalose synthesis is trehalose-6-phosphate synthase 1 (Tps1). Therefore, we modeled the structure of Tps1 and sought to screen a chemical database in silico for possible inhibitors of the enzyme. Based on homologous alignment and sequence analysis, we first modeled the structure of Tps1 to determine the potential active site of the enzyme and its conformation. Using this model, we then undertook a docking study to determine the potential interaction that would manifest between Tsp1 and potential chemical inhibitors. Of the 400,000 chemicals screened in the Molecular Libraries Small Molecule Repository, we identified 45 potential candidates. The best candidate (Compound 24789937) was chosen and subjected to various structural optimization techniques to improve the suitability of the potential chemical inhibitors at the docking site of Tps1. From these modified versions of Compound 24789937, one lead compound (Lead 25) was shown to have the best binding affinity to Tps1 and good water solubility as compared with the ideal template compound and the other 44 potential candidates. Molecular dynamics simulation further confirmed the strength of the Tps1-Lead 25 complex and indicated the potential for Lead 25 to be used as an inhibitor of Tps1 in the control of M. oryzae-mediated rice blast disease. PMID:24478940

  15. Cloning of novel rice blast resistance genes from two rapidly evolving NBS-LRR gene families in rice.

    PubMed

    Guo, Changjiang; Sun, Xiaoguang; Chen, Xiao; Yang, Sihai; Li, Jing; Wang, Long; Zhang, Xiaohui

    2016-01-01

    Most rice blast resistance genes (R-genes) encode proteins with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. Our previous study has shown that more rice blast R-genes can be cloned in rapidly evolving NBS-LRR gene families. In the present study, two rapidly evolving R-gene families in rice were selected for cloning a subset of genes from their paralogs in three resistant rice lines. A total of eight functional blast R-genes were identified among nine NBS-LRR genes, and some of these showed resistance to three or more blast strains. Evolutionary analysis indicated that high nucleotide diversity of coding regions served as important parameters in the determination of gene resistance. We also observed that amino-acid variants (nonsynonymous mutations, insertions, or deletions) in essential motifs of the NBS domain contribute to the blast resistance capacity of NBS-LRR genes. These results suggested that the NBS regions might also play an important role in resistance specificity determination. On the other hand, different splicing patterns of introns were commonly observed in R-genes. The results of the present study contribute to improving the effectiveness of R-gene identification by using evolutionary analysis method and acquisition of novel blast resistance genes. PMID:26530637

  16. Molecular Screening of Blast Resistance Genes in Rice using SSR Markers

    PubMed Central

    Singh, A. K.; Singh, P. K.; Arya, Madhuri; Singh, N. K.; Singh, U. S.

    2015-01-01

    Rice Blast is the most devastating disease causing major yield losses in every year worldwide. It had been proved that using resistant rice varieties would be the most effective way to control this disease. Molecular screening and genetic diversities of major rice blast resistance genes were determined in 192 rice germplasm accessions using simple sequence repeat (SSR) markers. The genetic frequencies of the 10 major rice blast resistance genes varied from 19.79% to 54.69%. Seven accessions IC337593, IC346002, IC346004, IC346813, IC356117, IC356422 and IC383441 had maximum eight blast resistance gene, while FR13B, Hourakani, Kala Rata 1–24, Lemont, Brown Gora, IR87756-20-2-2-3, IC282418, IC356419, PKSLGR-1 and PKSLGR-39 had seven blast resistance genes. Twenty accessions possessed six genes, 36 accessions had five genes, 41 accessions had four genes, 38 accessions had three genes, 26 accessions had two genes, 13 accessions had single R gene and only one accession IC438644 does not possess any one blast resistant gene. Out of 192 accessions only 17 accessions harboured 7 to 8 blast resistance genes. PMID:25774106

  17. Identifying novel resistance genes in rice wild relatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast and sheath blight are major fungal diseases of cultivated rice (Oryza sativa L. ) that limit Arkansas rough rice yields and market potential. Resistance to these diseases has been found in rice wild relatives (Oryza spp.) A collection of these wild relatives originating from outside the U...

  18. Structural and functional analysis of rice blast avirulence gene AVR-Pita1 in Magnaporthe oryzae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The resistance gene Pi-ta in rice has been effectively deployed around the globe to prevent the rice blast disease. It was previously known that Pi-ta interacts with the avirulence gene AVR-Pita1 in the fungus in triggering effective resistance responses. In order to predict the stability of deploy...

  19. Possible Contribution of Blast Spores to the Oxidative Burst in the Infection Droplet on Rice Leaf

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The infection-induced overproduction of reactive oxygen species (ROS) in resistant plants is usually ascribed to the host. Here we tested the possible contribution of the parasite, the rice blast fungus to ROS production. Droplets of spore suspensions or water were kept on rice leaves or on plastic....

  20. Analysis of the effectiveness of the rice blast resistance gene Pi-ta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The casual agent of rice blast, Magnaporthe oryzae, continues to remain a serious threat for rice production and in general for the world food supply. The most economically and environmentally viable strategy to control this pathogen is the development of cultivars which possess major resistance gen...

  1. Statistical inference of selection and divergence of rice blast resistance gene Pi-ta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The resistance gene Pi-ta has been effectively used to control rice blast disease worldwide. A few recent studies have described the possible evolution of Pi-ta in cultivated and weedy rice. However, evolutionary statistics used for the studies are too limited to precisely understand selection and d...

  2. Population structure analysis and association mapping of blast resistance in indica rice (Oryza sativa L.) landraces.

    PubMed

    Wu, Y Y; He, J B; Li, A H; Fang, N Y; He, W W; Dang, L L; Zeng, G Y; Huang, J; Bao, Y M; Zhang, H S

    2016-01-01

    Rice blast caused by Magnaporthe oryzae is one of the most devastating rice diseases worldwide. To understand the genetic diversity of indica landrace accessions and identify simple sequence repeat (SSR) markers that are associated with blast resistance, a population of 276 indica landraces from across the world was constructed. This population was then used to evaluate the blast-resistance phenotype through artificial inoculation under controlled conditions in 2012 and 2013. The genetic diversity and association of the population with resistance were analyzed by examining the phenotype for 160 SSR markers distributed on 12 rice chromosomes. The 276 accessions were classified into seven groups using model- and distance-based cluster analyses. Associations between SSR markers and blast resistance showed that 26 SSR markers were significantly associated with blast resistance in 2012 and 2013 (P < 0.01) and that the phenotypic variation ranged from 2.68 to 13.11%. Nineteen of the markers associated with blast resistance were located in regions where genes or quantitative trait loci (QTLs) have been previously reported, and seven were newly identified in this study. These results indicate that marker-trait association has potential advantages over classical linkage analysis and QTL mapping, and that these markers could be used for marker-assisted selection in rice blast-resistance-breeding programs. PMID:27525942

  3. Phenotypic screening and molecular analysis of blast resistance in fragrant rice for marker assisted selection.

    PubMed

    Khan, Mohammad Ashik Iqbal; Sen, Partha Pratim; Bhuiyan, Rejwan; Kabir, Enamul; Chowdhury, Abul Kashem; Fukuta, Yoshimichi; Ali, Ansar; Latif, Mohammad Abdul

    2014-05-01

    Experiments were conducted to identify blast-resistant fragrant genotypes for the development of a durable blast-resistant rice variety during years 2012-2013. The results indicate that out of 140 test materials including 114 fragrant germplasms, 25 differential varieties (DVs) harbouring 23 blast-resistant genes, only 16 fragrant rice germplasms showed comparatively better performance against a virulent isolate of blast disease. The reaction pattern of single-spore isolate of Magnaporthe oryzae to differential varieties showed that Pish, Pi9, Pita-2 and Pita are the effective blast-resistant genes against the tested blast isolates in Bangladesh. The DNA markers profiles of selected 16 rice germplasms indicated that genotype Chinigura contained Pish, Pi9 and Pita genes; on the other hand, both BRRI dhan50 and Bawaibhog contained Pish and Pita genes in their genetic background. Genotypes Jirakatari, BR5, and Gopalbhog possessed Pish gene, while Uknimodhu, Deshikatari, Radhunipagol, Kalijira (3), Chinikanai each contained the Pita gene only. There are some materials that did not contain any target gene(s) in their genetic background, but proved resistant in pathogenicity tests. This information provided valuable genetic information for breeders to develop durable blast-resistant fragrant or aromatic rice varieties in Bangladesh. PMID:24841958

  4. MOLECULAR MECHANISMS OF THE INSTABILITY OF AVIRULENCE GENE AVR-PITA IN RICE BLAST FUNGUS MAGNAPORTHE ORYZAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast, caused by Magnaporthe Oryzae, is one of the most serious diseases of rice worldwide. The Pi-ta gene in rice confers resistance to M. Oryzae isolates containing the corresponding avirulence gene AVR-Pita. In the southern U.S., rice cultivars containing Pi-ta have been widely utilized sinc...

  5. Identification of novel alleles of the rice blast resistance gene Pi54

    PubMed Central

    Vasudevan, Kumar; Gruissem, Wilhelm; Bhullar, Navreet K.

    2015-01-01

    Rice blast is one of the most devastating rice diseases and continuous resistance breeding is required to control the disease. The rice blast resistance gene Pi54 initially identified in an Indian cultivar confers broad-spectrum resistance in India. We explored the allelic diversity of the Pi54 gene among 885 Indian rice genotypes that were found resistant in our screening against field mixture of naturally existing M. oryzae strains as well as against five unique strains. These genotypes are also annotated as rice blast resistant in the International Rice Genebank database. Sequence-based allele mining was used to amplify and clone the Pi54 allelic variants. Nine new alleles of Pi54 were identified based on the nucleotide sequence comparison to the Pi54 reference sequence as well as to already known Pi54 alleles. DNA sequence analysis of the newly identified Pi54 alleles revealed several single polymorphic sites, three double deletions and an eight base pair deletion. A SNP-rich region was found between a tyrosine kinase phosphorylation site and the nucleotide binding site (NBS) domain. Together, the newly identified Pi54 alleles expand the allelic series and are candidates for rice blast resistance breeding programs. PMID:26498172

  6. Identification of novel alleles of the rice blast resistance gene Pi54

    NASA Astrophysics Data System (ADS)

    Vasudevan, Kumar; Gruissem, Wilhelm; Bhullar, Navreet K.

    2015-10-01

    Rice blast is one of the most devastating rice diseases and continuous resistance breeding is required to control the disease. The rice blast resistance gene Pi54 initially identified in an Indian cultivar confers broad-spectrum resistance in India. We explored the allelic diversity of the Pi54 gene among 885 Indian rice genotypes that were found resistant in our screening against field mixture of naturally existing M. oryzae strains as well as against five unique strains. These genotypes are also annotated as rice blast resistant in the International Rice Genebank database. Sequence-based allele mining was used to amplify and clone the Pi54 allelic variants. Nine new alleles of Pi54 were identified based on the nucleotide sequence comparison to the Pi54 reference sequence as well as to already known Pi54 alleles. DNA sequence analysis of the newly identified Pi54 alleles revealed several single polymorphic sites, three double deletions and an eight base pair deletion. A SNP-rich region was found between a tyrosine kinase phosphorylation site and the nucleotide binding site (NBS) domain. Together, the newly identified Pi54 alleles expand the allelic series and are candidates for rice blast resistance breeding programs.

  7. Molecular Breeding Strategy and Challenges Towards Improvement of Blast Disease Resistance in Rice Crop

    PubMed Central

    Ashkani, Sadegh; Rafii, Mohd Y.; Shabanimofrad, Mahmoodreza; Miah, Gous; Sahebi, Mahbod; Azizi, Parisa; Tanweer, Fatah A.; Akhtar, Mohd Sayeed; Nasehi, Abbas

    2015-01-01

    Rice is a staple and most important security food crop consumed by almost half of the world’s population. More rice production is needed due to the rapid population growth in the world. Rice blast caused by the fungus, Magnaporthe oryzae is one of the most destructive diseases of this crop in different part of the world. Breakdown of blast resistance is the major cause of yield instability in several rice growing areas. There is a need to develop strategies providing long-lasting disease resistance against a broad spectrum of pathogens, giving protection for a long time over a broad geographic area, promising for sustainable rice production in the future. So far, molecular breeding approaches involving DNA markers, such as QTL mapping, marker-aided selection, gene pyramiding, allele mining and genetic transformation have been used to develop new resistant rice cultivars. Such techniques now are used as a low-cost, high-throughput alternative to conventional methods allowing rapid introgression of disease resistance genes into susceptible varieties as well as the incorporation of multiple genes into individual lines for more durable blast resistance. The paper briefly reviewed the progress of studies on this aspect to provide the interest information for rice disease resistance breeding. This review includes examples of how advanced molecular method have been used in breeding programs for improving blast resistance. New information and knowledge gained from previous research on the recent strategy and challenges towards improvement of blast disease such as pyramiding disease resistance gene for creating new rice varieties with high resistance against multiple diseases will undoubtedly provide new insights into the rice disease control. PMID:26635817

  8. Validation of rice blast resistance genes in barley using a QTL mapping population and near-isolines.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are prior reports of Pyricularia grisea – the causal agent of blast of rice – causing disease in barley. In order to determine the specificity of this resistance in barley, we extended our previous mapping efforts to include blast isolates from barley and rice grown in Thailand and we assesse...

  9. Three Early Flowering Germplasms of a Blast Disease-Resistant Indica Rice for U.S. Rice Improveemnt Programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three early flowering indica germplasms of rice (Oryza sativa L.), indica-16 through indica-18, are described. These three lines are induced early flowering mutants of Oryzica llanos 5 (PI 584668, henceforth abbreviated as OL5), a highly blast disease [Pyricularia grisea (Cooke) Sacc.] resistant cul...

  10. Suppression of Magnaporthe oryzae and interaction between Bacillus subtilis and rice plants in the control of rice blast.

    PubMed

    Sha, Yuexia; Wang, Qi; Li, Yan

    2016-01-01

    Magnaporthe oryzae, the causative pathogen of rice blast, has caused extensive losses to rice cultivation worldwide. Strains of the bacterium Bacillus subtilis have been used as biocontrol agents against rice blast. However, little has been reported about the interaction between B. subtilis and the rice plant and its mechanism of action. Here, the colonization process and induced disease resistance by B. subtilis SYX04 and SYX20 in rice plants was examined. Strains of B. subtilis labeled with green fluorescent protein reached population of more than 5 × 10(6) CFU/g after 20 days on mature rice leaves and were detected after 3 days on newly grown leaves. Results showed that SYX04 and SYX20 not only inhibited spore germination, germ tube length, and appressorial formation but also caused a series of alterations in the structures of hyphae and conidia. The cell walls and membrane structures of the fungus showed ultrastructural abnormalities, which became severely degraded as observed through scanning electron microscopy and transmission electron microscopy. The mixture of both B. subtilis and M. oryzae resulted in enhanced activity of peroxidase, and polyphenol oxidase while there was significantly more superoxide dismutase activity in plants that had been sprayed with B. subtilis alone. The present study suggests that colonized SYX04 and SYX20 strains protected rice plants and exhibited antifungal activity and induced systemic resistance, thus indicating their potential biological control agents. PMID:27536521

  11. Analysis of in planta Expressed Orphan Genes in the Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Sadat, Abu; Jeon, Junhyun; Mir, Albely Afifa; Kim, Seongbeom; Choi, Jaeyoung; Lee, Yong-Hwan

    2014-01-01

    Genomes contain a large number of unique genes which have not been found in other species. Although the origin of such “orphan” genes remains unclear, they are thought to be involved in species-specific adaptive processes. Here, we analyzed seven orphan genes (MoSPC1 to MoSPC7) prioritized based on in planta expressed sequence tag data in the rice blast fungus, Magnaporthe oryzae. Expression analysis using qRT-PCR confirmed the expression of four genes (MoSPC1, MoSPC2, MoSPC3 and MoSPC7) during plant infection. However, individual deletion mutants of these four genes did not differ from the wild-type strain for all phenotypes examined, including pathogenicity. The length, GC contents, codon adaptation index and expression during mycelial growth of the four genes suggest that these genes formed during the evolutionary history of M. oryzae. Synteny analyses using closely related fungal species corroborated the notion that these genes evolved de novo in the M. oryzae genome. In this report, we discuss our inability to detect phenotypic changes in the four deletion mutants. Based on these results, the four orphan genes may be products of de novo gene birth processes, and their adaptive potential is in the course of being tested for retention or extinction through natural selection. PMID:25506301

  12. Analysis of Magnaporthe oryzae Genome Reveals a Fungal Effector, Which Is Able to Induce Resistance Response in Transgenic Rice Line Containing Resistance Gene, Pi54

    PubMed Central

    Ray, Soham; Singh, Pankaj K.; Gupta, Deepak K.; Mahato, Ajay K.; Sarkar, Chiranjib; Rathour, Rajeev; Singh, Nagendra K.; Sharma, Tilak R.

    2016-01-01

    Rice blast caused by Magnaporthe oryzae is one of the most important diseases of rice. Pi54, a rice gene that imparts resistance to M. oryzae isolates prevalent in India, was already cloned but its avirulent counterpart in the pathogen was not known. After decoding the whole genome of an avirulent isolate of M. oryzae, we predicted 11440 protein coding genes and then identified four candidate effector proteins which are exclusively expressed in the infectious structure, appresoria. In silico protein modeling followed by interaction analysis between Pi54 protein model and selected four candidate effector proteins models revealed that Mo-01947_9 protein model encoded by a gene located at chromosome 4 of M. oryzae, interacted best at the Leucine Rich Repeat domain of Pi54 protein model. Yeast-two-hybrid analysis showed that Mo-01947_9 protein physically interacts with Pi54 protein. Nicotiana benthamiana leaf infiltration assay confirmed induction of hypersensitive response in the presence of Pi54 gene in a heterologous system. Genetic complementation test also proved that Mo-01947_9 protein induces avirulence response in the pathogen in presence of Pi54 gene. Here, we report identification and cloning of a new fungal effector gene which interacts with blast resistance gene Pi54 in rice. PMID:27551285

  13. Analysis of Magnaporthe oryzae Genome Reveals a Fungal Effector, Which Is Able to Induce Resistance Response in Transgenic Rice Line Containing Resistance Gene, Pi54.

    PubMed

    Ray, Soham; Singh, Pankaj K; Gupta, Deepak K; Mahato, Ajay K; Sarkar, Chiranjib; Rathour, Rajeev; Singh, Nagendra K; Sharma, Tilak R

    2016-01-01

    Rice blast caused by Magnaporthe oryzae is one of the most important diseases of rice. Pi54, a rice gene that imparts resistance to M. oryzae isolates prevalent in India, was already cloned but its avirulent counterpart in the pathogen was not known. After decoding the whole genome of an avirulent isolate of M. oryzae, we predicted 11440 protein coding genes and then identified four candidate effector proteins which are exclusively expressed in the infectious structure, appresoria. In silico protein modeling followed by interaction analysis between Pi54 protein model and selected four candidate effector proteins models revealed that Mo-01947_9 protein model encoded by a gene located at chromosome 4 of M. oryzae, interacted best at the Leucine Rich Repeat domain of Pi54 protein model. Yeast-two-hybrid analysis showed that Mo-01947_9 protein physically interacts with Pi54 protein. Nicotiana benthamiana leaf infiltration assay confirmed induction of hypersensitive response in the presence of Pi54 gene in a heterologous system. Genetic complementation test also proved that Mo-01947_9 protein induces avirulence response in the pathogen in presence of Pi54 gene. Here, we report identification and cloning of a new fungal effector gene which interacts with blast resistance gene Pi54 in rice. PMID:27551285

  14. DEVELOPMENT AND CHARACTERIZATION OF RICE MUTANTS ALTERED IN THE RICE BLAST RESISTANT GENE PI-TA-MEDIATED DISEASE RESISTANCE PATHWAY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pi-ta gene in rice prevents the infection of the fungal pathogen Magnaporthe oryzae races containing the corresponding avirulence gene AVR-Pita. The Pi-ta gene encodes a putative cytoplasmic protein with a centrally localized nucleotide binding site and a leucine rich domain. AVR-Pita is a met...

  15. Physiological stressors and invasive plant infections alter the small RNA transcriptome of the rice blast fungus, Magnaporthe oryzae

    PubMed Central

    2013-01-01

    Background The rice blast fungus, Magnaporthe oryzae is a destructive pathogen of rice and other related crops, causing significant yield losses worldwide. Endogenous small RNAs (sRNAs), including small interfering RNAs (siRNAs) and microRNAs (miRNAs) are critical components of gene regulation in many eukaryotic organisms. Recently several new species of sRNAs have been identified in fungi. This fact along with the availability of genome sequence makes M. oryzae a compelling target for sRNA profiling. We have examined sRNA species and their biosynthetic genes in M. oryzae, and the degree to which these elements regulate fungal stress responses. To this end, we have characterized sRNAs under different physiological stress conditions, which had not yet been examined in this fungus. Results The resulting libraries are composed of more than 37 million total genome matched reads mapping to intergenic regions, coding sequences, retrotransposons, inverted, tandem, and other repeated regions of the genome with more than half of the small RNAs arising from intergenic regions. The 24 nucleotide (nt) size class of sRNAs was predominant. A comparison to transcriptional data of M. oryzae undergoing the same physiological stresses indicates that sRNAs play a role in transcriptional regulation for a small subset of genes. Support for this idea comes from generation and characterization of mutants putatively involved in sRNAs biogenesis; our results indicate that the deletion of Dicer-like genes and an RNA-Dependent RNA Polymerase gene increases the transcriptional regulation of this subset of genes, including one involved in virulence. Conclusions Various physiological stressors and in planta conditions alter the small RNA profile of the rice blast fungus. Characterization of sRNA biosynthetic mutants helps to clarify the role of sRNAs in transcriptional control. PMID:23663523

  16. The assessment of the rice cultivars/lines resistance to blast disease in Mazandaran province, Iran.

    PubMed

    Amanzadeh, M; Okhovvat, S M; Moumeni, A; Javan-Nikkhah, M; Khosravi, V

    2004-01-01

    Blast, caused by Magnaporthe grisea, is one of the most important diseases in rice production regions of the world including Iran. To determine progress of rice blast disease on the selective cultivars and lines also to assay some components of partial resistance, a set of Iranian rice cultivars (Local and breeding) along with near-isogenic lines (NILs) and breeding lines from International Rice Research Institute (IRRI) were tested with some field races of the fungus in blast nursery and five of selective races in greenhouse. These experiments were conducted in a Randomized complete Block Design (RCBD) with three replications (except greenhouse experiment on the leaves). Traits in this study consisted of Infection Neck Number (INN), Neck Lesion Size (NLS), Infection Type (IT), percent Diseased Leaf Area (DLA) and Area Under Disease Progress Curve (AUDPC); also IT, Sporulation Lesion Number (SLN), Sporulating Region Diameter (SRD) and percent DLA were measured in leaf blast in greenhouse (one replication). The Iranian local cultivars and NILs i.e. Co-39 and C104-PKT located as susceptible group for AUDPC, IT, INN and NLS. Iranian breeding cultivars, breeding lines from IRRI and NILs (except Co-39 and C104-PKT) were resistant or indicated hypersensivity reaction (HR). Some cultivars (Fujiminori, Onda, and Hassan Saraii) were semi susceptible to leaf blast in nursery. The main point is correlation in 1% (a = 0.0001) between the traits in greenhouse and blast nursery. Neck node infection of Haraz cultivar in greenhouse experiment to IA-89 race is very important, because Haraz is a resistant cultivar to blast disease in Iran. PMID:15756856

  17. Draft Genome Sequence of Rice Isolate Pseudomonas chlororaphis EA105

    PubMed Central

    McCully, Lucy M.; Bitzer, Adam S.; Spence, Carla A.; Bais, Harsh P.

    2014-01-01

    Pseudomonas chlororaphis EA105, a strain isolated from rice rhizosphere, has shown antagonistic activities against a rice fungal pathogen, and could be important in defense against rice blast. We report the draft genome sequence of EA105, which is an estimated size of 6.6 Mb. PMID:25540352

  18. Investigating the impact of rice blast disease on the livelihood of the local farmers in greater Mwea region of Kenya.

    PubMed

    Kihoro, Joseph; Bosco, Njoroge J; Murage, Hunja; Ateka, Elijah; Makihara, Daigo

    2013-12-01

    Rice is the most important cereal crop in Kenya coming third after maize and wheat. It forms a very important diet for a majority of families in Kenya. The demand for rice in Kenya has seen a dramatic increase over the last few years while production has remained low. This is because rice production has been faced by serious constraints notably plant diseases of which the most devastating is rice blast. Rice blast is known to cause approximately 60% -100% yield losses. It is caused by an Ascomycete fungus called Magnaporthe Oryzae. The aim of this study was to investigate the impact of rice blast disease on the livelihood of the local farmers in Greater Mwea region and develop a rice blast disease distribution map using GIS approach. The study methodology employed a questionnaire survey which were subjected to sample population of households in the 7 sections with 70 blocks within Mwea region. The collected data was analysed using SAS Version 9.1. Descriptive statistics were used to summarize the household characteristics, the farm characteristics and the farmers' perceptions of rice blast disease. In the questionnaire, farmers' response on whether they had been affected by rice blast disease and the total production per acreage was used to develop an attribute table with GPS points. The GPS points were interpolated to create a geographical distribution map of rice blast disease. From the research findings almost all the farmers' had awareness and knowledge of rice blast disease, 98% of the farmers interviewed were aware of rice blast disease. Out of the 98% with knowledge and awareness 76% have been affected by the disease, while 24% have never been affected. Farmers attributed rice blast disease to a range of different causes, including excessive use of nitrogen fertilizer, water shortage, lack of proper drainage canal and due to climate change. Majority of the farmers interviewed (72%) did not engage themselves in any other socio-economic activity even after

  19. Self-assembly of MPG1, a hydrophobin protein from the rice blast fungus that forms functional amyloid coatings, occurs by a surface-driven mechanism

    PubMed Central

    Pham, Chi L. L.; Rey, Anthony; Lo, Victor; Soulès, Margaux; Ren, Qin; Meisl, Georg; Knowles, Tuomas P. J.; Kwan, Ann H.; Sunde, Margaret

    2016-01-01

    Rice blast is a devastating disease of rice caused by the fungus Magnaporthe oryzae and can result in loss of a third of the annual global rice harvest. Two hydrophobin proteins, MPG1 and MHP1, are highly expressed during rice blast infections. These hydrophobins have been suggested to facilitate fungal spore adhesion and to direct the action of the enzyme cutinase 2, resulting in penetration of the plant host. Therefore a mechanistic understanding of the self-assembly properties of these hydrophobins and their interaction with cutinase 2 is crucial for the development of novel antifungals. Here we report details of a study of the structure, assembly and interactions of these proteins. We demonstrate that, in vitro, MPG1 assembles spontaneously into amyloid structures while MHP1 forms a non-fibrillar film. The assembly of MPG1 only occurs at a hydrophobic:hydrophilic interface and can be modulated by MHP1 and other factors. We further show that MPG1 assemblies can much more effectively retain cutinase 2 activity on a surface after co-incubation and extensive washing compared with other protein coatings. The assembly and interactions of MPG1 and MHP1 at hydrophobic surfaces thereby provide the basis for a possible mechanism by which the fungus can develop appropriately at the infection interface. PMID:27142249

  20. Self-assembly of MPG1, a hydrophobin protein from the rice blast fungus that forms functional amyloid coatings, occurs by a surface-driven mechanism.

    PubMed

    Pham, Chi L L; Rey, Anthony; Lo, Victor; Soulès, Margaux; Ren, Qin; Meisl, Georg; Knowles, Tuomas P J; Kwan, Ann H; Sunde, Margaret

    2016-01-01

    Rice blast is a devastating disease of rice caused by the fungus Magnaporthe oryzae and can result in loss of a third of the annual global rice harvest. Two hydrophobin proteins, MPG1 and MHP1, are highly expressed during rice blast infections. These hydrophobins have been suggested to facilitate fungal spore adhesion and to direct the action of the enzyme cutinase 2, resulting in penetration of the plant host. Therefore a mechanistic understanding of the self-assembly properties of these hydrophobins and their interaction with cutinase 2 is crucial for the development of novel antifungals. Here we report details of a study of the structure, assembly and interactions of these proteins. We demonstrate that, in vitro, MPG1 assembles spontaneously into amyloid structures while MHP1 forms a non-fibrillar film. The assembly of MPG1 only occurs at a hydrophobic:hydrophilic interface and can be modulated by MHP1 and other factors. We further show that MPG1 assemblies can much more effectively retain cutinase 2 activity on a surface after co-incubation and extensive washing compared with other protein coatings. The assembly and interactions of MPG1 and MHP1 at hydrophobic surfaces thereby provide the basis for a possible mechanism by which the fungus can develop appropriately at the infection interface. PMID:27142249

  1. Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae

    PubMed Central

    Oh, Yeonyee; Donofrio, Nicole; Pan, Huaqin; Coughlan, Sean; Brown, Douglas E; Meng, Shaowu; Mitchell, Thomas; Dean, Ralph A

    2008-01-01

    Background Rice blast disease is caused by the filamentous Ascomycetous fungus Magnaporthe oryzae and results in significant annual rice yield losses worldwide. Infection by this and many other fungal plant pathogens requires the development of a specialized infection cell called an appressorium. The molecular processes regulating appressorium formation are incompletely understood. Results We analyzed genome-wide gene expression changes during spore germination and appressorium formation on a hydrophobic surface compared to induction by cAMP. During spore germination, 2,154 (approximately 21%) genes showed differential expression, with the majority being up-regulated. During appressorium formation, 357 genes were differentially expressed in response to both stimuli. These genes, which we refer to as appressorium consensus genes, were functionally grouped into Gene Ontology categories. Overall, we found a significant decrease in expression of genes involved in protein synthesis. Conversely, expression of genes associated with protein and amino acid degradation, lipid metabolism, secondary metabolism and cellular transportation exhibited a dramatic increase. We functionally characterized several differentially regulated genes, including a subtilisin protease (SPM1) and a NAD specific glutamate dehydrogenase (Mgd1), by targeted gene disruption. These studies revealed hitherto unknown findings that protein degradation and amino acid metabolism are essential for appressorium formation and subsequent infection. Conclusion We present the first comprehensive genome-wide transcript profile study and functional analysis of infection structure formation by a fungal plant pathogen. Our data provide novel insight into the underlying molecular mechanisms that will directly benefit efforts to identify fungal pathogenicity factors and aid the development of new disease management strategies. PMID:18492280

  2. Dissection of the genetic architecture of rice resistance to the blast fungus Magnaporthe oryzae.

    PubMed

    Kang, Houxiang; Wang, Yue; Peng, Shasha; Zhang, Yanli; Xiao, Yinghui; Wang, Dan; Qu, Shaohong; Li, Zhiqiang; Yan, Shuangyong; Wang, Zhilong; Liu, Wende; Ning, Yuese; Korniliev, Pavel; Leung, Hei; Mezey, Jason; McCouch, Susan R; Wang, Guo-Liang

    2016-08-01

    Resistance in rice cultivars to the rice blast fungus Magnaporthe oryzae is complex and is controlled by both major genes and quantitative trait loci (QTLs). We undertook a genome-wide association study (GWAS) using the rice diversity panel 1 (RDP1) that was genotyped using a high-density (700 000 single nucleotide polymorphisms) array and inoculated with five diverse M. oryzae isolates. We identified 97 loci associated with blast resistance (LABRs). Among them, 82 were new regions and 15 co-localized with known blast resistance loci. The top 72 LABRs explained up to 98% of the phenotypic variation. The candidate genes in the LABRs encode nucleotide-binding site leucine-rich repeat (NBS-LRR) resistance proteins, receptor-like protein kinases, transcription factors and defence-related proteins. Among them, LABR_64 was strongly associated with resistance to all five isolates. We analysed the function of candidate genes underlying LABR_64 using RNA interference (RNAi) technology and identified two new resistance alleles at the Pi5 locus. We demonstrate an efficient strategy for rapid allele discovery using the power of GWAS, coupled with RNAi technology, for the dissection of complex blast resistance in rice. PMID:26574735

  3. Preillumination of rice blast conidia induces tolerance to subsequent oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many environmental factors, alone or combined, affect organisms by changing a pro-/antioxidant balance. Here we tested rice blast fungus (Magnaporthe oryzae) for possible cross-adaptations caused by relatively intense light and protecting from artificially formed reactive oxygen species (ROS) and RO...

  4. Release of elicitors from rice blast spores under the action of reactive oxygen species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of reactive oxygen species (ROS) on secretion of hypothesized elicitors from spores of rice blast causal fungus Magnaporthe grisea were studied. For spore exposure to exogenous ROS, they were germinated for 5 h in 50 µM H2O2 followed by addition of catalase E.C. 1.11.1.6 (to decompose pe...

  5. Molecular mechanisms of the instability of rice blast fungus avirulence gene AVR-Pita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AVR-Pita in races of Magnaporthe oryzae (formerly Magnaporthe grisea) is responsible for triggering a strong response by the resistant gene Pi-ta in rice. Pi-ta is a valuable resistance gene that has been deployed to prevent blast disease worldwide. The AVR-Pita gene is located in the telomeric regi...

  6. Mapping quantitative trait loci of rice to blast using physiological races of the fungus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has known for sometime that genetic resistance to blast caused by Magnaporthe oryzae are controlled by major resistance (R) and minor resistance genes. Minor resistance genes each of them providing different extent of resistance have been identified on different rice chromosome as quantitative tr...

  7. Rice resistance to blast caused by leaf surface moistening prior to inoculation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effect of water droplets placed onto rice (Oryza sativa L.) leaves before inoculation with blast fungus Magnaporthe grisea (Hebert) Barr on disease severity and superoxide radical generation by the leaves was investigated. The leaves were inoculated by placement of spore suspension droplets. One da...

  8. The WRKY45-2 WRKY13 WRKY42 Transcriptional Regulatory Cascade Is Required for Rice Resistance to Fungal Pathogen1[OPEN

    PubMed Central

    Cheng, Hongtao; Liu, Hongbo; Deng, Yong; Xiao, Jinghua; Li, Xianghua; Wang, Shiping

    2015-01-01

    Blast caused by fungal Magnaporthe oryzae is a devastating disease of rice (Oryza sativa) worldwide, and this fungus also infects barley (Hordeum vulgare). At least 11 rice WRKY transcription factors have been reported to regulate rice response to M. oryzae either positively or negatively. However, the relationships of these WRKYs in the rice defense signaling pathway against M. oryzae are unknown. Previous studies have revealed that rice WRKY13 (as a transcriptional repressor) and WRKY45-2 enhance resistance to M. oryzae. Here, we show that rice WRKY42, functioning as a transcriptional repressor, suppresses resistance to M. oryzae. WRKY42-RNA interference (RNAi) and WRKY42-overexpressing (oe) plants showed increased resistance and susceptibility to M. oryzae, accompanied by increased or reduced jasmonic acid (JA) content, respectively, compared with wild-type plants. JA pretreatment enhanced the resistance of WRKY42-oe plants to M. oryzae. WRKY13 directly suppressed WRKY42. WRKY45-2, functioning as a transcriptional activator, directly activated WRKY13. In addition, WRKY13 directly suppressed WRKY45-2 by feedback regulation. The WRKY13-RNAi WRKY45-2-oe and WRKY13-oe WRKY42-oe double transgenic lines showed increased susceptibility to M. oryzae compared with WRKY45-2-oe and WRKY13-oe plants, respectively. These results suggest that the three WRKYs form a sequential transcriptional regulatory cascade. WRKY42 may negatively regulate rice response to M. oryzae by suppressing JA signaling-related genes, and WRKY45-2 transcriptionally activates WRKY13, whose encoding protein in turn transcriptionally suppresses WRKY42 to regulate rice resistance to M. oryzae. PMID:25624395

  9. Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.).

    PubMed

    Wang, Wenfeng; Zhai, Yanyan; Cao, Lixiang; Tan, Hongming; Zhang, Renduo

    2016-01-01

    The objective of this study was to elucidate the endophytic microbiota in rice sprouts, roots, and stems, and their transmission in the plant development. Prior to DNA extraction, roots and stems were treated with 36% formaldehyde and 0.1M NaOH solutions to remove epiphytic bacterial whole 16S rRNA genes. Bacterial and fungal taxa in the sprout, root, and stem samples were analyzed using Illumina-based sequencing of the V3-V4 hyper variable regions of bacterial 16S rRNA genes and the ITS2 regions of fungal rRNA genes, respectively. Results showed that more diverse bacterial OTUs were detected in roots than in stems, while more diverse fungal OTUs were detected in stems than in roots. Compared with the endophytic microbiota in sprouts, the bacterial OTUs increased in roots but decreased in stems, whereas the fungal OTUs in both stems and roots decreased. Sprout-borne bacterial genera Sphingomonas and Pseudomonus, and fungal genera Fusarium, Pestalotiopsis, and Penicillium were detected in stems and roots. The coexistence of these indigenous bacterial and fungal taxa in sprouts, roots, and stems indicated their transmission during the development from sprouts to mature plants. The results from this study should be useful to better understand the plant-microbe interactions and to select suitable microbial taxa for rice production. PMID:27296957

  10. Fungal mycoflora and mycotoxins in Korean polished rice destined for humans.

    PubMed

    Park, Je Won; Choi, Sang-Youn; Hwang, Han-Joon; Kim, Young-Bae

    2005-09-15

    Rice samples collected from the Republic of Korea were analyzed for fungal mycoflora and mycotoxins: fumonisins, ochratoxin A, trichothecenes, and zearalenone. The potential of the fungi to produce each mycotoxin was also examined, so that the fungal isolates associated with mycotoxins occurring in rice could be verified. Penicillium citrinum and Aspergillus candidus were the most prevalent species infecting the samples, while Fusarium proliferatum was found as the dominant Fusarium species. Ochratoxin A was the most commonly detected mycotoxin analyzed in the present study; moreover, its level in some samples was above the EU tolerable limit (3 ng/g). According to rice culture experiments, it was revealed that in Korea, fumonisins detected in rice were due to F. proliferatum infection, whereas the occurrence of ochratoxin A was caused by Penicillium verrucosum, though there were no symptoms of disease in rice found in any sample. Furthermore, there appears to be an uneven geographical distribution of P. verrucosum as well as ochratoxin A in that most of them are found in the rice samples produced in the northern region of Korea. PMID:16099315

  11. Identification and QTL mapping of blast resistance in wild Oryza species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf blast disease of rice (Oryza sativa L.) caused by Magnaporthe oryzae B. Couch is one of the most devastating rice fungal diseases worldwide. Wild relatives of rice (Oryza spp.) may contain novel genes for biotic and abiotic stress resistance lost during domestication. A collection of 67 wild ...

  12. Global Expression Profiling of Transcription Factor Genes Provides New Insights into Pathogenicity and Stress Responses in the Rice Blast Fungus

    PubMed Central

    Park, Sook-Young; Choi, Jaeyoung; Lim, Se-Eun; Lee, Gir-Won; Park, Jongsun; Kim, Yang; Kong, Sunghyung; Kim, Se Ryun; Rho, Hee-Sool; Jeon, Junhyun; Chi, Myung-Hwan; Kim, Soonok; Khang, Chang Hyun; Kang, Seogchan; Lee, Yong-Hwan

    2013-01-01

    Because most efforts to understand the molecular mechanisms underpinning fungal pathogenicity have focused on studying the function and role of individual genes, relatively little is known about how transcriptional machineries globally regulate and coordinate the expression of a large group of genes involved in pathogenesis. Using quantitative real-time PCR, we analyzed the expression patterns of 206 transcription factor (TF) genes in the rice blast fungus Magnaporthe oryzae under 32 conditions, including multiple infection-related developmental stages and various abiotic stresses. The resulting data, which are publicly available via an online platform, provided new insights into how these TFs are regulated and potentially work together to control cellular responses to a diverse array of stimuli. High degrees of differential TF expression were observed under the conditions tested. More than 50% of the 206 TF genes were up-regulated during conidiation and/or in conidia. Mutations in ten conidiation-specific TF genes caused defects in conidiation. Expression patterns in planta were similar to those under oxidative stress conditions. Mutants of in planta inducible genes not only exhibited sensitive to oxidative stress but also failed to infect rice. These experimental validations clearly demonstrated the value of TF expression patterns in predicting the function of individual TF genes. The regulatory network of TF genes revealed by this study provides a solid foundation for elucidating how M. oryzae regulates its pathogenesis, development, and stress responses. PMID:23762023

  13. A genome-wide survey reveals abundant rice blast R genes in resistant cultivars.

    PubMed

    Zhang, Xiaohui; Yang, Sihai; Wang, Jiao; Jia, Yanxiao; Huang, Ju; Tan, Shengjun; Zhong, Yan; Wang, Ling; Gu, Longjiang; Chen, Jian-Qun; Pan, Qinghua; Bergelson, Joy; Tian, Dacheng

    2015-10-01

    Plant resistance genes (R genes) harbor tremendous allelic diversity, constituting a robust immune system effective against microbial pathogens. Nevertheless, few functional R genes have been identified for even the best-studied pathosystems. Does this limited repertoire reflect specificity, with most R genes having been defeated by former pests, or do plants harbor a rich diversity of functional R genes, the composite behavior of which is yet to be characterized? Here, we survey 332 NBS-LRR genes cloned from five resistant Oryza sativa (rice) cultivars for their ability to confer recognition of 12 rice blast isolates when transformed into susceptible cultivars. Our survey reveals that 48.5% of the 132 NBS-LRR loci tested contain functional rice blast R genes, with most R genes deriving from multi-copy clades containing especially diversified loci. Each R gene recognized, on average, 2.42 of the 12 isolates screened. The abundant R genes identified in resistant genomes provide extraordinary redundancy in the ability of host genotypes to recognize particular isolates. If the same is true for other pathogens, many extant NBS-LRR genes retain functionality. Our success at identifying rice blast R genes also validates a highly efficient cloning and screening strategy. PMID:26248689

  14. HYR1-Mediated Detoxification of Reactive Oxygen Species Is Required for Full Virulence in the Rice Blast Fungus

    PubMed Central

    Huang, Kun; Czymmek, Kirk J.; Caplan, Jeffrey L.; Sweigard, James A.; Donofrio, Nicole M.

    2011-01-01

    During plant-pathogen interactions, the plant may mount several types of defense responses to either block the pathogen completely or ameliorate the amount of disease. Such responses include release of reactive oxygen species (ROS) to attack the pathogen, as well as formation of cell wall appositions (CWAs) to physically block pathogen penetration. A successful pathogen will likely have its own ROS detoxification mechanisms to cope with this inhospitable environment. Here, we report one such candidate mechanism in the rice blast fungus, Magnaporthe oryzae, governed by a gene we refer to as MoHYR1. This gene (MGG_07460) encodes a glutathione peroxidase (GSHPx) domain, and its homologue in yeast was reported to specifically detoxify phospholipid peroxides. To characterize this gene in M. oryzae, we generated a deletion mutantΔhyr1 which showed growth inhibition with increased amounts of hydrogen peroxide (H2O2). Moreover, we observed that the fungal mutants had a decreased ability to tolerate ROS generated by a susceptible plant, including ROS found associated with CWAs. Ultimately, this resulted in significantly smaller lesion sizes on both barley and rice. In order to determine how this gene interacts with other (ROS) scavenging-related genes in M. oryzae, we compared expression levels of ten genes in mutant versus wild type with and without H2O2. Our results indicated that the HYR1 gene was important for allowing the fungus to tolerate H2O2 in vitro and in planta and that this ability was directly related to fungal virulence. PMID:21533213

  15. Differential Gene Expression Reflects Morphological Characteristics and Physiological Processes in Rice Immunity against Blast Pathogen Magnaporthe oryzae

    PubMed Central

    Mahmood, Maziah; Abdullah, Siti N. A.; Hanafi, Mohamed M.; Nejat, Naghmeh; Latif, Muhammad A.

    2015-01-01

    The rice blast fungus Magnaporthe oryzae is a serious pathogen that jeopardises the world’s most important food-security crop. Ten common Malaysian rice varieties were examined for their morphological, physiological and genomic responses to this rice blast pathogen. qPCR quantification was used to assess the growth of the pathogen population in resistant and susceptible rice varieties. The chlorophyll content and photosynthesis were also measured to further understand the disruptive effects that M. oryzae has on infected plants of these varieties. Real-time PCR was used to explore the differential expression of eight blast resistance genes among the ten local varieties. Blast disease has destructive effects on the growth of rice, and the findings of our study provide evidence that the Pikh, Pi9, Pi21, and Osw45 genes are involved in defence responses in the leaves of Malaysian rice at 31 h after inoculation with M. oryzae pathotype P7.2. Both the chlorophyll content and photosynthesis were reduced, but the levels of Pikh gene expression remained constant in susceptible varieties, with a developed pathogen population and mild or severe symptoms. The Pi9, Pi21, and Osw45 genes, however, were simultaneously upregulated in infected rice plants. Therefore, the presence of the Pikh, Pi9, Pi21, and Osw45 genes in the germplasm is useful for improving the resistance of rice varieties. PMID:26001124

  16. Understanding the coevolution of rice blast resistance gene Pi-ta and Magnaporthe oryzae avirulence gene AVR-Pita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast disease caused by the filamentous ascomycetous fungus Magnaporthe oryzae remains to be one of the most serious threats for food security globally. Using resistance (R) genes in integrated cultural practices has been the most powerful practice for rice crop protection. Genetic analysis s...

  17. Differential Gene Expression Reflects Morphological Characteristics and Physiological Processes in Rice Immunity against Blast Pathogen Magnaporthe oryzae.

    PubMed

    Azizi, Parisa; Rafii, Mohd Y; Mahmood, Maziah; Abdullah, Siti N A; Hanafi, Mohamed M; Nejat, Naghmeh; Latif, Muhammad A; Sahebi, Mahbod

    2015-01-01

    The rice blast fungus Magnaporthe oryzae is a serious pathogen that jeopardises the world's most important food-security crop. Ten common Malaysian rice varieties were examined for their morphological, physiological and genomic responses to this rice blast pathogen. qPCR quantification was used to assess the growth of the pathogen population in resistant and susceptible rice varieties. The chlorophyll content and photosynthesis were also measured to further understand the disruptive effects that M. oryzae has on infected plants of these varieties. Real-time PCR was used to explore the differential expression of eight blast resistance genes among the ten local varieties. Blast disease has destructive effects on the growth of rice, and the findings of our study provide evidence that the Pikh, Pi9, Pi21, and Osw45 genes are involved in defence responses in the leaves of Malaysian rice at 31 h after inoculation with M. oryzae pathotype P7.2. Both the chlorophyll content and photosynthesis were reduced, but the levels of Pikh gene expression remained constant in susceptible varieties, with a developed pathogen population and mild or severe symptoms. The Pi9, Pi21, and Osw45 genes, however, were simultaneously upregulated in infected rice plants. Therefore, the presence of the Pikh, Pi9, Pi21, and Osw45 genes in the germplasm is useful for improving the resistance of rice varieties. PMID:26001124

  18. Molecular evolution and strong selective sweep at the rice blast resistance gene Pi-ta during crop domestication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pi-ta gene in rice has been effectively deployed worldwide to prevent the infection by the blast fungus Magnaporthe oryzae in a gene for gene specificity. The genomic region spanning Pi-ta and six flanking genes in 157 rice accessions composed of seven Oryza species including US and Asian culti...

  19. Proteomics of rice and Cochliobolus miyabeanus fungal interaction: insight into proteins at intracellular and extracellular spaces.

    PubMed

    Kim, Jin Yeong; Wu, Jingni; Kwon, Soon Jae; Oh, Haram; Lee, So Eui; Kim, Sang Gon; Wang, Yiming; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kang, Kyu Young; Ahn, Il-Pyung; Kim, Beom-Gi; Kim, Sun Tae

    2014-10-01

    Necrotrophic fungal pathogen Cochliobolus miyabeanus causes brown spot disease in rice leaves upon infection, resulting in critical rice yield loss. To better understand the rice-C. miyabeanus interaction, we employed proteomic approaches to establish differential proteomes of total and secreted proteins from the inoculated leaves. The 2DE approach after PEG-fractionation of total proteins coupled with MS (MALDI-TOF/TOF and nESI-LC-MS/MS) analyses led to identification of 49 unique proteins out of 63 differential spots. SDS-PAGE in combination with nESI-LC-MS/MS shotgun approach was applied to identify secreted proteins in the leaf apoplast upon infection and resulted in cataloging of 501 unique proteins, of which 470 and 31 proteins were secreted from rice and C. miyabeanus, respectively. Proteins mapped onto metabolic pathways implied their reprogramming upon infection. The enzymes involved in Calvin cycle and glycolysis decreased in their protein abundance, whereas enzymes in the TCA cycle, amino acids, and ethylene biosynthesis increased. Differential proteomes also generated distribution of identified proteins in the intracellular and extracellular spaces, providing a better insight into defense responses of proteins in rice against C. miyabeanus. Established proteome of the rice-C. miyabeanus interaction serves not only as a good resource for the scientific community but also highlights its significance from biological aspects. PMID:25047395

  20. Suppression of Rice Blast by Preinoculation with Avirulent Pyricularia oryzae and the Nonrice Pathogen Bipolaris sorokiniana.

    PubMed

    Manandhar, H K; Lyngs Jørgensen, H J; Mathur, S B; Smedegaard-Petersen, V

    1998-07-01

    ABSTRACT Avirulent isolates of Pyricularia oryzae and isolates of Bipolaris sorokiniana, a nonrice pathogen, were used to suppress rice blast caused by P. oryzae. In greenhouse experiments, both fungi substantially reduced leaf blast when applied 24 h or more before the pathogen. B. sorokiniana, but not avirulent isolates of P. oryzae, systemically reduced disease in leaf 5 when applied to whole plants at the four-leaf stage. In field experiments, both fungi were able to reduce neck blast significantly. No increase in grain yield was obtained by using avirulent isolates of P. oryzae, whereas five sprays with B. sorokiniana from seedling to heading stages increased the grain yield in two of three experiments conducted at two locations in Nepal. The significant increase in yield was observed under high inoculum pressure of P. oryzae. Induced resistance is suggested to be involved in the suppression of disease. PMID:18944948

  1. Introgression of Blast Resistance Genes (Putative Pi-b and Pi-kh) into Elite Rice Cultivar MR219 through Marker-Assisted Selection.

    PubMed

    Tanweer, Fatah A; Rafii, Mohd Y; Sijam, Kamaruzaman; Rahim, Harun A; Ahmed, Fahim; Ashkani, Sadegh; Latif, Mohammad A

    2015-01-01

    Blast is the most common biotic stress leading to the reduction of rice yield in many rice-growing areas of the world, including Malaysia. Improvement of blast resistance of rice varieties cultivated in blast endemic areas is one of the most important objectives of rice breeding programs. In this study, the marker-assisted backcrossing strategy was applied to improve the blast resistance of the most popular Malaysian rice variety MR219 by introgressing blast resistance genes from the Pongsu Seribu 2 variety. Two blast resistance genes, Pi-b and Pi-kh, were pyramided into MR219. Foreground selection coupled with stringent phenotypic selection identified 15 plants homozygous for the Pi-b and Pi-kh genes, and background selection revealed more than 95% genome recovery of MR219 in advanced blast resistant lines. Phenotypic screening against blast disease indicated that advanced homozygous blast resistant lines were strongly resistant against pathotype P7.2 in the blast disease endemic areas. The morphological, yield, grain quality, and yield-contributing characteristics were significantly similar to those of MR219. The newly developed blast resistant improved lines will retain the high adoptability of MR219 by farmers. The present results will also play an important role in sustaining the rice production of Malaysia. PMID:26734013

  2. Introgression of Blast Resistance Genes (Putative Pi-b and Pi-kh) into Elite Rice Cultivar MR219 through Marker-Assisted Selection

    PubMed Central

    Tanweer, Fatah A.; Rafii, Mohd Y.; Sijam, Kamaruzaman; Rahim, Harun A.; Ahmed, Fahim; Ashkani, Sadegh; Latif, Mohammad A.

    2015-01-01

    Blast is the most common biotic stress leading to the reduction of rice yield in many rice-growing areas of the world, including Malaysia. Improvement of blast resistance of rice varieties cultivated in blast endemic areas is one of the most important objectives of rice breeding programs. In this study, the marker-assisted backcrossing strategy was applied to improve the blast resistance of the most popular Malaysian rice variety MR219 by introgressing blast resistance genes from the Pongsu Seribu 2 variety. Two blast resistance genes, Pi-b and Pi-kh, were pyramided into MR219. Foreground selection coupled with stringent phenotypic selection identified 15 plants homozygous for the Pi-b and Pi-kh genes, and background selection revealed more than 95% genome recovery of MR219 in advanced blast resistant lines. Phenotypic screening against blast disease indicated that advanced homozygous blast resistant lines were strongly resistant against pathotype P7.2 in the blast disease endemic areas. The morphological, yield, grain quality, and yield-contributing characteristics were significantly similar to those of MR219. The newly developed blast resistant improved lines will retain the high adoptability of MR219 by farmers. The present results will also play an important role in sustaining the rice production of Malaysia. PMID:26734013

  3. MoPex19, which Is Essential for Maintenance of Peroxisomal Structure and Woronin Bodies, Is Required for Metabolism and Development in the Rice Blast Fungus

    PubMed Central

    Zhang, Zhen; Wang, Yanli; Liu, Maoxin; Jiang, Hua; Chai, Rongyao; Mao, Xueqin; Qiu, Haiping; Liu, Fengquan; Sun, Guochang

    2014-01-01

    Peroxisomes are present ubiquitously and make important contributions to cellular metabolism in eukaryotes. They play crucial roles in pathogenicity of plant fungal pathogens. The peroxisomal matrix proteins and peroxisomal membrane proteins (PMPs) are synthesized in the cytosol and imported post-translationally. Although the peroxisomal import machineries are generally conserved, some species-specific features were found in different types of organisms. In phytopathogenic fungi, the pathways of the matrix proteins have been elucidated, while the import machinery of PMPs remains obscure. Here, we report that MoPEX19, an ortholog of ScPEX19, was required for PMPs import and peroxisomal maintenance, and played crucial roles in metabolism and pathogenicity of the rice blast fungus Magnaporthe oryzae. MoPEX19 was expressed in a low level and Mopex19p was distributed in the cytoplasm and newly formed peroxisomes. MoPEX19 deletion led to mislocalization of peroxisomal membrane proteins (PMPs), as well peroxisomal matrix proteins. Peroxisomal structures were totally absent in Δmopex19 mutants and woronin bodies also vanished. Δmopex19 exhibited metabolic deficiency typical in peroxisomal disorders and also abnormality in glyoxylate cycle which was undetected in the known mopex mutants. The Δmopex19 mutants performed multiple disorders in fungal development and pathogenicity-related morphogenesis, and lost completely the pathogenicity on its hosts. These data demonstrate that MoPEX19 plays crucial roles in maintenance of peroxisomal and peroxisome-derived structures and makes more contributions to fungal development and pathogenicity than the known MoPEX genes in the rice blast fungus. PMID:24454828

  4. Quantitative trait loci for rice blast resistance detected in a local rice breeding population by genome-wide association mapping

    PubMed Central

    Shinada, Hiroshi; Yamamoto, Toshio; Sato, Hirokazu; Yamamoto, Eiji; Hori, Kiyosumi; Yonemaru, Junichi; Sato, Takashi; Fujino, Kenji

    2015-01-01

    Plant breeding programs aim to develop cultivars with high adaptability to the specific conditions in a local region. As a result, unique genes and gene combinations have been accumulated in local elite breeding populations during the long history of plant breeding. Genetic analyses on such genes and combinations may be useful for developing new cultivars with more-desirable agronomic traits. Here, we attempted to detect quantitative trait loci (QTL) for rice blast resistance (BR) using a local breeding rice population from Hokkaido, Japan. Using genotyping data on single nucleotide polymorphisms and simple sequence repeat markers distributed throughout the whole genomic region, we detected genetic regions associated with phenotypic variation in BR by a genome-wide association mapping study (GWAS). An additional association analysis using other breeding cultivars verified the effect and inheritance of the associated region. Furthermore, the existence of a gene for BR in the associated region was confirmed by QTL mapping. The results from these studies enabled us to estimate potential of the Hokkaido rice population as a gene pool for improving BR. The results of this study could be useful for developing novel cultivars with vigorous BR in rice breeding programs. PMID:26719741

  5. Extensive sequence variation in rice blast resistance gene Pi54 makes it broad spectrum in nature

    PubMed Central

    Thakur, Shallu; Singh, Pankaj K.; Das, Alok; Rathour, R.; Variar, M.; Prashanthi, S. K.; Singh, A. K.; Singh, U. D.; Chand, Duni; Singh, N. K.; Sharma, Tilak R.

    2015-01-01

    Rice blast resistant gene, Pi54 cloned from rice line, Tetep, is effective against diverse isolates of Magnaporthe oryzae. In this study, we prospected the allelic variants of the dominant blast resistance gene from a set of 92 rice lines to determine the nucleotide diversity, pattern of its molecular evolution, phylogenetic relationships and evolutionary dynamics, and to develop allele specific markers. High quality sequences were generated for homologs of Pi54 gene. Using comparative sequence analysis, InDels of variable sizes in all the alleles were observed. Profiling of the selected sites of SNP (Single Nucleotide Polymorphism) and amino acids (N sites ≥ 10) exhibited constant frequency distribution of mutational and substitutional sites between the resistance and susceptible rice lines, respectively. A total of 50 new haplotypes based on the nucleotide polymorphism was also identified. A unique haplotype (H_3) was found to be linked to all the resistant alleles isolated from indica rice lines. Unique leucine zipper and tyrosine sulfation sites were identified in the predicted Pi54 proteins. Selection signals were observed in entire coding sequence of resistance alleles, as compared to LRR domains for susceptible alleles. This is a maiden report of extensive variability of Pi54 alleles in different landraces and cultivated varieties, possibly, attributing broad-spectrum resistance to Magnaporthe oryzae. The sequence variation in two consensus region: 163 and 144 bp were used for the development of allele specific DNA markers. Validated markers can be used for the selection and identification of better allele(s) and their introgression in commercial rice cultivars employing marker assisted selection. PMID:26052332

  6. Understanding the co-evolution of the rice blast resistance gene Pi-ta and Magnaporthe oryzae avirulence gene AVR-Pita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the molecular basis of coevolutionary relationship between resistance genes in plants and the avirulence genes in the pathogen should benefit the development of methods to control plant diseases. Rice blast disease is one of the most damaging diseases worldwide. Rice blast disease has ...

  7. Genome analysis of rice-blast fungus Magnaporthe oryzae field isolates from southern India.

    PubMed

    Gowda, Malali; Shirke, Meghana D; Mahesh, H B; Chandarana, Pinal; Rajamani, Anantharamanan; Chattoo, Bharat B

    2015-09-01

    The Indian subcontinent is the center of origin and diversity for rice (Oryza sativa L.). The O. sativa ssp. indica is a major food crop grown in India, which occupies the first and second position in area and production, respectively. Blast disease caused by Magnaporthe oryzae is a major constraint to rice production. Here, we report the analysis of genome architecture and sequence variation of two field isolates, B157 and MG01, of the blast fungus from southern India. The 40 Mb genome of B157 and 43 Mb genome of MG01 contained 11,344 and 11,733 predicted genes, respectively. Genomic comparisons unveiled a large set of SNPs and several isolate specific genes in the Indian blast isolates. Avr genes were analyzed in several sequenced Magnaporthe strains; this analysis revealed the presence of Avr-Pizt and Avr-Ace1 genes in all the sequenced isolates. Availability of whole genomes of field isolates from India will contribute to global efforts to understand genetic diversity of M. oryzae population and to track the emergence of virulent pathotypes. PMID:26484270

  8. Role of MoAND1-mediated nuclear positioning in morphogenesis and pathogenicity in the rice blast fungus, Magnaporthe oryzae.

    PubMed

    Jeon, Junhyun; Rho, Heekyoung; Kim, Seongbeom; Kim, Kyoung Su; Lee, Yong-Hwan

    2014-08-01

    To cause disease on host plants, many phytopathogenic fungi undergo morphological transitions including development of reproductive structures as well as specialized infection structures called appressoria. Such morphological transitions display distinct nuclear dynamics. Here we report the developmental requirement of MoAND1-mediated nuclear positioning for pathogenesis of the rice blast fungus, Magnaporthe oryzae. The MoAND1 gene encodes a protein that shows high similarity to Num1 in Saccharomyces cerevisiae and ApsA in Aspergillus nidulans, both of which are cell cortex proteins involved in nuclear migration and positioning. Targeted deletion of MoAND1 did not affect radial growth of the fungus but impaired nuclear distribution along the hyphae, which is reminiscent of ApsA mutant. In contrast to the wild-type, which produces three to five spores in a sympodial manner on the conidiophore, only a single spore was borne on the conidiophore of ΔMoand1, resulting in ∼65% decrease in conidia production, compared to the wild-type. The mutant conidia displayed abnormalities in septation pattern and nuclear distribution, which were correlated with their inability to germinate. Spores of the mutant that did germinate were capable of differentiating appressoria but were defective in the execution of programmed nuclear migration and positioning during development. Furthermore, mutant appressoria were not fully functional, leading to delay in penetration of host plants. However, the ability of ΔMoand1 to grow inside host tissues was comparable to that of the wild-type. All these defects greatly decreased the virulence of the mutant. Taken together, our data suggest that there is a stringent but incomplete developmental requirement for proper migration and positioning of fungal nuclei mediated by MoAND1 during asexual reproduction and pre-penetration phase of fungal pathogenesis. PMID:24875422

  9. Expression and characterization of manganese lipoxygenase of the rice blast fungus reveals prominent sequential lipoxygenation of α-linolenic acid.

    PubMed

    Wennman, Anneli; Jernerén, Fredrik; Magnuson, Ann; Oliw, Ernst H

    2015-10-01

    Magnaporthe oryzae causes rice blast disease and has become a model organism of fungal infections. M. oryzae can oxygenate fatty acids by 7,8-linoleate diol synthase, 10R-dioxygenase-epoxy alcohol synthase, and by a putative manganese lipoxygenase (Mo-MnLOX). The latter two are transcribed during infection. The open reading frame of Mo-MnLOX was deduced from genome and cDNA analysis. Recombinant Mo-MnLOX was expressed in Pichia pastoris and purified to homogeneity. The enzyme contained protein-bound Mn and oxidized 18:2n-6 and 18:3n-3 to 9S-, 11-, and 13R-hydroperoxy metabolites by suprafacial hydrogen abstraction and oxygenation. The 11-hydroperoxides were subject to β-fragmentation with formation of 9S- and 13R-hydroperoxy fatty acids. Oxygen consumption indicated apparent kcat values of 2.8 s(-1) (18:2n-6) and 3.9 s(-1) (18:3n-3), and UV analysis yielded apparent Km values of 8 and 12 μM, respectively, for biosynthesis of cis-trans conjugated metabolites. 9S-Hydroperoxy-10E,12Z,15Z-octadecatrienoic acid was rapidly further oxidized to a triene, 9S,16S-dihydroperoxy-10E,12Z,14E-octadecatrienoic acid. In conclusion, we have expressed, purified and characterized a new MnLOX from M. oryzae. The pathogen likely secretes Mo-MnLOX and phospholipases to generate oxylipins and to oxidize lipid membranes of rice cells and the cuticle. PMID:26264916

  10. Genetic dissections of partial resistances to leaf and neck blast in rice (Oryza sativa L.).

    PubMed

    Rao, Zhi-Ming; Wu, Jian-Li; Zhuang, Jie-Yun; Chai, Rong-Yao; Fan, Ye-Yang; Leung, Hei; Zheng, Kang-Le

    2005-06-01

    In a recombinant inbred line (RIL) population of indica rice, two subpopulations composed of susceptible lines were selected for mapping of partial resistance to leaf blast with two isolates of the pathogen. A third subpopulation composed of susceptible lines with similar heading time was used for mapping of partial resistance to neck blast with a third isolate. The traits measured for partial resistance included diseased leaf area (DLA), lesion size (LS) and lesion number (LN) for leaf blast and lesion length (LL) and conidium amount (CA) for neck blast. A linkage map consisting of 168 DNA markers was constructed by using the whole RIL population. Quantitative trait loci (QTLs) conditioning these traits were determined at one-locus and two-locus levels. Eleven main-effect QTLs and 28 digenic interactions were detected by QTLMapper 1.01 b. Only three QTLs showing main effects were also involved in digenic interactions for the same trait. General contributions of epistatic QTLs of each trait ranged from 16.0% to 51.7%, while those of main-effect QTLs of each trait ranged from 4.7% to 38.8%. The general contributions of main-effect QTLs of most traits were smaller than those of epistatic QTLs, confirming the importance of epistasis as the genetic basis for complex traits. The general contributions of the main and epistatic effects of all QTLs detected for the two traits LL and CA of the partial resistance to neck blast reached 70.6% and 82.6% respectively, which obviously represented a major part of the genetic basis controlling partial resistance to neck blast. The results indicated the necessity for partial resistance mapping to use susceptible subpopulations where the interference of major resistance genes is avoided. PMID:16018181

  11. Fungal Elicitor MoHrip2 Induces Disease Resistance in Rice Leaves, Triggering Stress-Related Pathways

    PubMed Central

    Khan, Najeeb Ullah; Liu, Mengjie; Yang, Xiufen; Qiu, Dewen

    2016-01-01

    MoHrip2 Magnaporthe oryzae hypersensitive protein 2 is an elicitor protein of rice blast fungus M. oryzae. Rice seedlings treated with MoHrip2 have shown an induced resistance to rice blast. To elucidate the mechanism underlying this MoHrip2 elicitation in rice, we used differential-display 2-D gel electrophoresis and qRT-PCR to assess the differential expression among the total proteins extracted from rice leaves at 24 h after treatment with MoHrip2 and buffer as a control. Among ~1000 protein spots detected on each gel, 10 proteins were newly induced, 4 were up-regulated, and 3 were down-regulated in MoHrip2-treated samples compared with the buffer control. Seventeen differentially expressed proteins were detected using MS/MS analysis and categorized into six groups according to their putative function: defense-related transcriptional factors, signal transduction-related proteins, reactive oxygen species (ROS) production, programmed cell death (PCD), defense-related proteins, and photosynthesis and energy-related proteins. The qPCR results (relative expression level of genes) further supported the differential expression of proteins in MoHrip2-treated rice leaves identified with 2D-gel, suggesting that MoHrip2 triggers an early defense response in rice leaves via stress-related pathways, and the results provide evidence for elicitor-induced resistance at the protein level. PMID:27348754

  12. Fungal Elicitor MoHrip2 Induces Disease Resistance in Rice Leaves, Triggering Stress-Related Pathways.

    PubMed

    Khan, Najeeb Ullah; Liu, Mengjie; Yang, Xiufen; Qiu, Dewen

    2016-01-01

    MoHrip2 Magnaporthe oryzae hypersensitive protein 2 is an elicitor protein of rice blast fungus M. oryzae. Rice seedlings treated with MoHrip2 have shown an induced resistance to rice blast. To elucidate the mechanism underlying this MoHrip2 elicitation in rice, we used differential-display 2-D gel electrophoresis and qRT-PCR to assess the differential expression among the total proteins extracted from rice leaves at 24 h after treatment with MoHrip2 and buffer as a control. Among ~1000 protein spots detected on each gel, 10 proteins were newly induced, 4 were up-regulated, and 3 were down-regulated in MoHrip2-treated samples compared with the buffer control. Seventeen differentially expressed proteins were detected using MS/MS analysis and categorized into six groups according to their putative function: defense-related transcriptional factors, signal transduction-related proteins, reactive oxygen species (ROS) production, programmed cell death (PCD), defense-related proteins, and photosynthesis and energy-related proteins. The qPCR results (relative expression level of genes) further supported the differential expression of proteins in MoHrip2-treated rice leaves identified with 2D-gel, suggesting that MoHrip2 triggers an early defense response in rice leaves via stress-related pathways, and the results provide evidence for elicitor-induced resistance at the protein level. PMID:27348754

  13. New solid-state fermentation chamber for bulk production of aerial conidia of fungal biocontrol agents on rice.

    PubMed

    Ye, S D; Ying, S H; Chen, C; Feng, M G

    2006-06-01

    A novel solid-state fermentation apparatus, namely an upright multi-tray conidiation chamber, was developed to facilitate the production of aerial conidia of fungal biocontrol agents, such as Beauveria bassiana. The chamber with 25 bottom-meshed metal trays had a capacity of > or =50 kg rice with each tray holding > or =2 kg. In repeated trials, a mean yield of 2.4 (1.8-2.7) x 10(12) conidia kg(-1) rice was harvested from the 7-day cultures of B. bassiana in a fully loaded chamber. The new apparatus has a high potential for bulk production of fungal conidia. PMID:16786244

  14. Cooking quality and blast disease resistance linked markers: Genotyping a working rice germplasm collection for future marker-assisted breeding applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marker-assisted breeding is being used in US rice breeding programs to enhance development of rice cultivars with improved cooking quality and genetic resistance to rice blast disease. Because there is a continuous threat of race shifts within the Magnaporthe grisea populations found in Southern US...

  15. Molecular Mechanism for Fungal Cell Wall Recognition by Rice Chitin Receptor OsCEBiP.

    PubMed

    Liu, Simiao; Wang, Jizong; Han, Zhifu; Gong, Xinqi; Zhang, Heqiao; Chai, Jijie

    2016-07-01

    Chitin is the major component of fungal cell wall and serves as a molecular pattern that can be recognized by the receptor OsCEBiP in rice, a lysine motif (LysM) receptor-like protein (RLP), to trigger immune responses. The molecular mechanisms underlying chitin recognition remain elusive. Here we report the crystal structures of the ectodomain of OsCEBiP (OsCEBiP-ECD) in free and chitin-bound forms. The structures reveal that OsCEBiP-ECD contains three tandem LysMs followed by a novel structure fold of cysteine-rich domain. The structures showed that chitin binding induces no striking conformational changes in OsCEBiP. Structural comparison among N-acetylglucosamine (NAG) oligomer-bound LysMs revealed a highly conserved recognition mechanism, which is expected to facilitate study of other LysM-containing proteins for their NAG binding. Modeling study showed that chitin induces OsCEBiP homodimerization in a "sliding mode". Our data provide insights into rice chitin receptor-mediated immunity triggered by fungal cell wall. PMID:27238968

  16. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance

    PubMed Central

    Nishizawa, Yoko

    2013-01-01

    OsWRKY76 encodes a group IIa WRKY transcription factor of rice. The expression of OsWRKY76 was induced within 48h after inoculation with rice blast fungus (Magnaporthe oryzae), and by wounding, low temperature, benzothiadiazole, and abscisic acid. Green fluorescent protein-fused OsWRKY76 localized to the nuclei in rice epidermal cells. OsWRKY76 showed sequence-specific DNA binding to the W-box element in vitro and exhibited W-box-mediated transcriptional repressor activity in cultured rice cells. Overexpression of OsWRKY76 in rice plants resulted in drastically increased susceptibility to M. oryzae, but improved tolerance to cold stress. Microarray analysis revealed that overexpression of OsWRKY76 suppresses the induction of a specific set of PR genes and of genes involved in phytoalexin synthesis after inoculation with blast fungus, consistent with the observation that the levels of phytoalexins in the transgenic rice plants remained significantly lower than those in non-transformed control plants. Furthermore, overexpression of OsWRKY76 led to the increased expression of abiotic stress-associated genes such as peroxidase and lipid metabolism genes. These results strongly suggest that OsWRKY76 plays dual and opposing roles in blast disease resistance and cold tolerance. PMID:24043853

  17. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance.

    PubMed

    Yokotani, Naoki; Sato, Yuko; Tanabe, Shigeru; Chujo, Tetsuya; Shimizu, Takafumi; Okada, Kazunori; Yamane, Hisakazu; Shimono, Masaki; Sugano, Shoji; Takatsuji, Hiroshi; Kaku, Hisatoshi; Minami, Eiichi; Nishizawa, Yoko

    2013-11-01

    OsWRKY76 encodes a group IIa WRKY transcription factor of rice. The expression of OsWRKY76 was induced within 48h after inoculation with rice blast fungus (Magnaporthe oryzae), and by wounding, low temperature, benzothiadiazole, and abscisic acid. Green fluorescent protein-fused OsWRKY76 localized to the nuclei in rice epidermal cells. OsWRKY76 showed sequence-specific DNA binding to the W-box element in vitro and exhibited W-box-mediated transcriptional repressor activity in cultured rice cells. Overexpression of OsWRKY76 in rice plants resulted in drastically increased susceptibility to M. oryzae, but improved tolerance to cold stress. Microarray analysis revealed that overexpression of OsWRKY76 suppresses the induction of a specific set of PR genes and of genes involved in phytoalexin synthesis after inoculation with blast fungus, consistent with the observation that the levels of phytoalexins in the transgenic rice plants remained significantly lower than those in non-transformed control plants. Furthermore, overexpression of OsWRKY76 led to the increased expression of abiotic stress-associated genes such as peroxidase and lipid metabolism genes. These results strongly suggest that OsWRKY76 plays dual and opposing roles in blast disease resistance and cold tolerance. PMID:24043853

  18. Variability in Aggressiveness of Rice Blast (Magnaporthe oryzae) Isolates Originating from Rice Leaves and Necks: A Case of Pathogen Specialization?

    PubMed Central

    Ghatak, Abhijeet; Willocquet, Laetitia; Savary, Serge; Kumar, Jatinder

    2013-01-01

    Rice blast, caused by Magnaporthe oryzae, causes yield losses associated with injuries on leaves and necks, the latter being in general far more important than the former. Many questions remain on the relationships between leaf and neck blast, including questions related to the population biology of the pathogen. Our objective was to test the hypothesis of adaptation of M. oryzae isolates to the type of organ they infect. To that aim, the components of aggressiveness of isolates originating from leaves and necks were measured. Infection efficiency, latent period, sporulation intensity, and lesion size were measured on both leaves and necks. Univariate and multivariate analyses indicated that isolates originating from leaves were less aggressive than isolates originating from necks, when aggressiveness components were measured on leaves as well as on necks, indicating that there is no specialization within the pathogen population with respect to the type of organ infected. This result suggests that the more aggressive isolates involved in epidemics on leaves during the vegetative stage of the crop cycle have a higher probability to infect necks, and that a population shift may occur during disease transmission from leaves to necks. Implications for disease management are discussed. PMID:23776629

  19. Systematic Analysis of Zn2Cys6 Transcription Factors Required for Development and Pathogenicity by High-Throughput Gene Knockout in the Rice Blast Fungus

    PubMed Central

    Huang, Pengyun; Lin, Fucheng

    2014-01-01

    Because of great challenges and workload in deleting genes on a large scale, the functions of most genes in pathogenic fungi are still unclear. In this study, we developed a high-throughput gene knockout system using a novel yeast-Escherichia-Agrobacterium shuttle vector, pKO1B, in the rice blast fungus Magnaporthe oryzae. Using this method, we deleted 104 fungal-specific Zn2Cys6 transcription factor (TF) genes in M. oryzae. We then analyzed the phenotypes of these mutants with regard to growth, asexual and infection-related development, pathogenesis, and 9 abiotic stresses. The resulting data provide new insights into how this rice pathogen of global significance regulates important traits in the infection cycle through Zn2Cys6TF genes. A large variation in biological functions of Zn2Cys6TF genes was observed under the conditions tested. Sixty-one of 104 Zn2Cys6 TF genes were found to be required for fungal development. In-depth analysis of TF genes revealed that TF genes involved in pathogenicity frequently tend to function in multiple development stages, and disclosed many highly conserved but unidentified functional TF genes of importance in the fungal kingdom. We further found that the virulence-required TF genes GPF1 and CNF2 have similar regulation mechanisms in the gene expression involved in pathogenicity. These experimental validations clearly demonstrated the value of a high-throughput gene knockout system in understanding the biological functions of genes on a genome scale in fungi, and provided a solid foundation for elucidating the gene expression network that regulates the development and pathogenicity of M. oryzae. PMID:25299517

  20. Retromer Is Essential for Autophagy-Dependent Plant Infection by the Rice Blast Fungus

    PubMed Central

    He, Yunlong; Xie, Qiurong; Chen, Ahai; Zheng, Huawei; Shi, Lei; Zhao, Xu; Zhang, Chengkang; Huang, Qingping; Fang, Kunhai; Lu, Guodong; Ebbole, Daniel J.; Li, Guangpu; Naqvi, Naweed I.; Wang, Zonghua

    2015-01-01

    The retromer mediates protein trafficking through recycling cargo from endosomes to the trans-Golgi network in eukaryotes. However, the role of such trafficking events during pathogen-host interaction remains unclear. Here, we report that the cargo-recognition complex (MoVps35, MoVps26 and MoVps29) of the retromer is essential for appressorium-mediated host penetration by Magnaporthe oryzae, the causal pathogen of the blast disease in rice. Loss of retromer function blocked glycogen distribution and turnover of lipid bodies, delayed nuclear degeneration and reduced turgor during appressorial development. Cytological observation revealed dynamic MoVps35-GFP foci co-localized with autophagy-related protein RFP-MoAtg8 at the periphery of autolysosomes. Furthermore, RFP-MoAtg8 interacted with MoVps35-GFP in vivo, RFP-MoAtg8 was mislocalized to the vacuole and failed to recycle from the autolysosome in the absence of the retromer function, leading to impaired biogenesis of autophagosomes. We therefore conclude that retromer is essential for autophagy-dependent plant infection by the rice blast fungus. PMID:26658729

  1. Identification of quantitative trait loci conferring blast resistance in Bodao, a japonica rice landrace.

    PubMed

    Huan, J; Bao, Y M; Wu, Y Y; Zeng, G Y; He, W W; Dang, L L; Wang, J F; Zhang, H S

    2014-01-01

    Bodao, a japonica landrace from the Taihu Lake region of China, is highly resistant to most Chinese isolates of Magnaporthe oryzea, a form of rice blast. To effectively dissect the influence of genetics on this blast resistance, a population of 155 recombinant inbred lines (F2:8) derived from a cross of Bodao x Suyunuo was inoculated with 12 blast isolates. Using a quantitative trait locus (QTL) mapping approach, 13 QTL on chromosomes 1, 2, 9, 11, and 12 were detected from Bodao. Five QTL, including qtl11-1-1, qtl11-3-7, qtl11-4-9, qtl12-1-1, and qtl12-2-3, have not been previously reported. The qtl11-3-7 and qtl11-4-9 may be the two main effective QTL and resistant to 7 and 9 isolates, respectively. The results of the present study will be valuable for the fine mapping and cloning of these two new resistance genes. PMID:25501185

  2. Characterization of rice blast resistance genes in rice germplasm with monogenic lines and pathogenicity assays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance (R) genes have been effectively deployed in preventing rice crop losses due to the fungus Magnaporthe oryzae. In the present study, we studied the interaction between 24 monogenic lines carrying at least one major R gene, Pia, Pib, Pii, Pik, Pik-h, Pik-m, Pik-p, Pik-s, Pish, Pit, Pita, Pi...

  3. Constitutive expression of McCHIT1-PAT enhances resistance to rice blast and herbicide, but does not affect grain yield in transgenic glutinous rice.

    PubMed

    Zeng, Xiao-Fang; Li, Lei; Li, Jian-Rong; Zhao, De-Gang

    2016-01-01

    To produce new rice blast- and herbicide-resistant transgenic rice lines, the McCHIT1 gene encoding the class I chitinase from Momordica charantia and the herbicide resistance gene PAT were introduced into Lailong (Oryza sativa L. ssp. Japonica), a glutinous local rice variety from Guizhou Province, People's Republic of China. Transgenic lines were identified by ß-glucuronidase (GUS) histochemical staining, PCR, and Southern blot analyses. Agronomic traits, resistance to rice blast and herbicide, chitinase activities, and transcript levels of McCHIT1 were assessed in the T2 progeny of three transgenic lines (L1, L8, and L10). The results showed that the introduction of McCHIT1-PAT into Lailong significantly enhanced herbicide and blast resistance. After infection with the blast fungus Magnaporthe oryzae, all of the T2 progeny exhibited less severe lesion symptoms than those of wild type. The disease indices were 100% for wild type, 65.66% for T2 transgenic line L1, 59.69% for T2 transgenic line L8, and 79.80% for T2 transgenic line L10. Transgenic lines expressing McCHIT1-PAT did not show a significant difference from wild type in terms of malondialdehyde (MDA) content, polyphenol oxidase (PPO) activity, and superoxide dismutase (SOD) activity in the leaves. However, after inoculation with M. oryzae, transgenic plants showed significantly higher SOD and PPO activities and lower MDA contents in leaves, compared with those in wild-type leaves. The transgenic and the wild-type plants did not show significant differences in grain yield parameters including plant height, panicles per plant, seeds per panicle, and 1000-grain weight. Therefore, the transgenic plants showed increased herbicide and blast resistance, with no yield penalty. PMID:25639923

  4. Pre-illumination of rice blast conidia induces tolerance to subsequent oxidative stress.

    PubMed

    Aver'yanov, Andrey A; Lapikova, Vera P; Pasechnik, Tatiana D; Abramova, Olga S; Gaivoronskaya, Ludmilla M; Kuznetsov, Vladimir V; Baker, C Jacyn

    2014-08-01

    Many environmental factors, alone or combined, affect organisms by changing a pro-/antioxidant balance. Here we tested rice blast fungus (Magnaporthe oryzae) for possible cross-adaptations caused by relatively intense light and protecting from artificially formed reactive oxygen species (ROS) and ROS-dependent fungitoxic response of the host plant. Spore germination was found to be suppressed under 4-h and, to larger extent, 5-h illumination. The effect was diminished by antioxidants and, therefore, suggests involvement of ROS. One-hour of light did not affect spore germination, but stimulated their chemically assayed superoxide production. The illuminated spores were more tolerant (than non-illuminated ones) to artificially generated H(2)O(2), O(2)(-), or OH or to toxic diffusate of rice leaf. They also caused more severe disease symptoms if applied to leaves of the susceptible rice cultivar at low concentration. Spore diffusates decomposed hydrogen peroxide. They detoxified exogenous H(2)O(2) and superoxide radical as well as leaf diffusates. Spore illumination increased some of these protective effects. It is suggested that short-term light led to mild oxidative stress, which induced spore antioxidant capacity, enhancing spore tolerance to subsequent stronger oxidative stress and its aggressiveness in planta. Such tolerance depends partly on the antidotal action of spore extracellular compounds, which may also be light-stimulated. Therefore, a certain ROS-related environmental factor may adapt a fungus to other factors and so modulate its pathogenic properties. PMID:25110136

  5. A Review of Microsatellite Markers and Their Applications in Rice Breeding Programs to Improve Blast Disease Resistance

    PubMed Central

    Miah, Gous; Rafii, Mohd Y.; Ismail, Mohd R.; Puteh, Adam B.; Rahim, Harun A.; Islam, Kh. Nurul; Latif, Mohammad Abdul

    2013-01-01

    Over the last few decades, the use of molecular markers has played an increasing role in rice breeding and genetics. Of the different types of molecular markers, microsatellites have been utilized most extensively, because they can be readily amplified by PCR and the large amount of allelic variation at each locus. Microsatellites are also known as simple sequence repeats (SSR), and they are typically composed of 1–6 nucleotide repeats. These markers are abundant, distributed throughout the genome and are highly polymorphic compared with other genetic markers, as well as being species-specific and co-dominant. For these reasons, they have become increasingly important genetic markers in rice breeding programs. The evolution of new biotypes of pests and diseases as well as the pressures of climate change pose serious challenges to rice breeders, who would like to increase rice production by introducing resistance to multiple biotic and abiotic stresses. Recent advances in rice genomics have now made it possible to identify and map a number of genes through linkage to existing DNA markers. Among the more noteworthy examples of genes that have been tightly linked to molecular markers in rice are those that confer resistance or tolerance to blast. Therefore, in combination with conventional breeding approaches, marker-assisted selection (MAS) can be used to monitor the presence or lack of these genes in breeding populations. For example, marker-assisted backcross breeding has been used to integrate important genes with significant biological effects into a number of commonly grown rice varieties. The use of cost-effective, finely mapped microsatellite markers and MAS strategies should provide opportunities for breeders to develop high-yield, blast resistance rice cultivars. The aim of this review is to summarize the current knowledge concerning the linkage of microsatellite markers to rice blast resistance genes, as well as to explore the use of MAS in rice breeding

  6. One of Three Pex11 Family Members Is Required for Peroxisomal Proliferation and Full Virulence of the Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Wang, Jiaoyu; Li, Ling; Zhang, Zhen; Qiu, Haiping; Li, Dongmei; Fang, Yuan; Jiang, Hua; Chai, Rong Yao; Mao, Xueqin; Wang, Yanli; Sun, Guochang

    2015-01-01

    Peroxisomes play important roles in metabolisms of eukaryotes and infection of plant fungal pathogens. These organelles proliferate by de novo formation or division in response to environmental stimulation. Although the assembly of peroxisomes was documented in fungal pathogens, their division and its relationship to pathogenicity remain obscure. In present work, we analyzed the roles of three Pex11 family members in peroxisomal division and pathogenicity of the rice blast fungus Magnaporthe oryzae. Deletion of MoPEX11A led to fewer but enlarged peroxisomes, and impaired the separation of Woronin bodies from peroxisomes, while deletion of MoPEX11B or MoPEX11C put no evident impacts to peroxisomal profiles. MoPEX11A mutant exhibited typical peroxisome related defects, delayed conidial germination and appressoria formation, and decreased appressorial turgor and host penetration. As a result, the virulence of MoPEX11A mutant was greatly reduced. Deletion of MoPEX11B and MoPEX11C did not alter the virulence of the fungus. Further, double or triple deletions of the three genes were unable to enhance the virulence decrease in MoPEX11A mutant. Our data indicated that MoPEX11A is the main factor modulating peroxisomal division and is required for full virulence of the fungus. PMID:26218097

  7. Bioconversion of Straw into Improved Fodder: Fungal Flora Decomposing Rice Straw

    PubMed Central

    2005-01-01

    The fungal flora decomposing rice straw were investigated all over the soil of Sharkia Province, east of Nile Delta, Egypt, using the nylon net bag technique. Sixty-four straw-decomposing species belonging to 30 genera were isolated by the dilution plate method in ground rice straw-Czapek's agar medium at pH 6. The plates were incubated separately at 5℃, 25℃ and 45℃, respectively. Twenty nine species belonging to 14 genera were isolated at 5℃. The most frequent genus was Penicillium (seven species), and the next frequent genera were Acremonium (three species), Fusarium (three species), Alternaria, Chaetomium, Cladosporium, Mucor, Stachybotrys (two species) and Rhizopus stolonifer. At 25℃, 47 species belonging to 24 genera were isolated. The most frequent genus was Aspergillus (nine species), and the next frequent genera were ranked by Penicillium (five species), Chaetomium (three species), Fusarium (three species). Each of Alternaria, Cladosporium, Mucor, Myrothecium and Trichoderma was represented by two species. At 45℃, 15 species belonging to seven genera were isolated. These were seven species of Aspergillus, two species of Chaetomium and two species of Emericella, while Humicola, Malbranchea, Rhizomucor and Talaromyces were represented by one species respectively. The total counts of fungi the genera, and species per gram of dry straw were significantly affected by incubation temperature and soil analysis (P < 0.05). PMID:24049492

  8. Suppressive effects of mycoviral proteins encoded by Magnaporthe oryzae chrysovirus 1 strain A on conidial germination of the rice blast fungus.

    PubMed

    Urayama, Syun-Ichi; Kimura, Yuri; Katoh, Yu; Ohta, Tomoko; Onozuka, Nobuya; Fukuhara, Toshiyuki; Arie, Tsutomu; Teraoka, Tohru; Komatsu, Ken; Moriyama, Hiromitsu

    2016-09-01

    Magnaporthe oryzae chrysovirus 1 strain A (MoCV1-A) is the causal agent of growth repression and attenuated virulence (hypovirulence) of the rice blast fungus, Magnaporthe oryzae. We previously revealed that heterologous expression of the MoCV1-A ORF4 protein resulted in cytological damage to the yeasts Saccharomyces cerevisiae and Cryptococcus neoformans. Since the ORF4 protein is one of the components of viral particles, we evaluated the inhibitory effects of the purified virus particle against the conidial germination of M. oryzae, and confirmed its suppressive effects. Recombinant MoCV1-A ORF4 protein produced in Pichia pastoris was also effective for suppression of conidial germination of M. oryzae. MoCV1-A ORF4 protein sequence showed significant similarity to 6 related mycoviral proteins; Botrysphaeria dothidea chrysovirus 1, two Fusarium graminearum viruses, Fusarium oxysporum f. sp. dianthi mycovirus 1, Penicillium janczewski chrysovirus and Agaricus bisporus virus 1 in the Chrysoviridae family. Multiple alignments of the ORF4-related protein sequences showed that their central regions (210-591 aa in MoCV1-A ORF4) are relatively conserved. Indeed, yeast transformants expressing the conserved central region of MoCV1-A ORF4 protein (325-575 aa) showed similar impaired growth phenotypes as those observed in yeasts expressing the full-length MoCV1-A ORF4 protein. These data suggest that the mycovirus itself and its encoded viral protein can be useful as anti-fungal proteins to control rice blast disease caused by M. oryzae and other pathogenic fungi. PMID:27329666

  9. Evidence for a Transketolase-Mediated Metabolic Checkpoint Governing Biotrophic Growth in Rice Cells by the Blast Fungus Magnaporthe oryzae

    PubMed Central

    Fernandez, Jessie; Marroquin-Guzman, Margarita; Wilson, Richard A.

    2014-01-01

    The blast fungus Magnaporthe oryzae threatens global food security through the widespread destruction of cultivated rice. Foliar infection requires a specialized cell called an appressorium that generates turgor to force a thin penetration hypha through the rice cuticle and into the underlying epidermal cells, where the fungus grows for the first days of infection as a symptomless biotroph. Understanding what controls biotrophic growth could open new avenues for developing sustainable blast intervention programs. Here, using molecular genetics and live-cell imaging, we dismantled M. oryzae glucose-metabolizing pathways to reveal that the transketolase enzyme, encoded by TKL1, plays an essential role in facilitating host colonization during rice blast disease. In the absence of transketolase, Δtkl1 mutant strains formed functional appressoria that penetrated rice cuticles successfully and developed invasive hyphae (IH) in rice cells from primary hyphae. However, Δtkl1 could not undertake sustained biotrophic growth or cell-to-cell movement. Transcript data and observations using fluorescently labeled histone H1:RFP fusion proteins indicated Δtkl1 mutant strains were alive in host cells but were delayed in mitosis. Mitotic delay could be reversed and IH growth restored by the addition of exogenous ATP, a metabolite depleted in Δtkl1 mutant strains. We show that ATP might act via the TOR signaling pathway, and TOR is likely a downstream target of activation for TKL1. TKL1 is also involved in controlling the migration of appressorial nuclei into primary hyphae in host cells. When taken together, our results indicate transketolase has a novel role in mediating - via ATP and TOR signaling - an in planta-specific metabolic checkpoint that controls nuclear migration from appressoria into primary hyphae, prevents mitotic delay in early IH and promotes biotrophic growth. This work thus provides new information about the metabolic strategies employed by M. oryzae to

  10. Structural and functional analysis of the avirulence gene AVR-Pita1 of the rice blast fungus in isolates of Magnaporthe oryzae worldwide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The avirulence gene AVR-Pita1 of the rice blast fungus triggers race-specific resistance when races of Magnaporthe oryzae that contain AVR-Pita1 infect rice cultivars that contain the resistance gene Pi-ta. In the present study, a panel of 221 isolates from the US, China, Colombia, Egypt, India and ...

  11. Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae.

    PubMed

    Muzaffar, Suhail; Bose, Chinchu; Banerji, Ashok; Nair, Bipin G; Chattoo, Bharat B

    2016-01-01

    Anacardic acid (6-pentadecylsalicylic acid), extracted from cashew nut shell liquid, is a natural phenolic lipid well known for its strong antibacterial, antioxidant, and anticancer activities. Its effect has been well studied in bacterial and mammalian systems but remains largely unexplored in fungi. The present study identifies antifungal, cytotoxic, and antioxidant activities of anacardic acid in the rice blast fungus Magnaporthe oryzae. It was found that anacardic acid causes inhibition of conidial germination and mycelial growth in this ascomycetous fungus. Phosphatidylserine externalization, chromatin condensation, DNA degradation, and loss of mitochondrial membrane potential suggest that growth inhibition of fungus is mainly caused by apoptosis-like cell death. Broad-spectrum caspase inhibitor Z-VAD-FMK treatment indicated that anacardic acid induces caspase-independent apoptosis in M. oryzae. Expression of a predicted ortholog of apoptosis-inducing factor (AIF) was upregulated during the process of apoptosis, suggesting the possibility of mitochondria dependent apoptosis via activation of apoptosis-inducing factor. Anacardic acid treatment leads to decrease in reactive oxygen species rather than increase in reactive oxygen species (ROS) accumulation normally observed during apoptosis, confirming the antioxidant properties of anacardic acid as suggested by earlier reports. Our study also shows that anacardic acid renders the fungus highly sensitive to DNA damaging agents like ethyl methanesulfonate (EMS). Treatment of rice leaves with anacardic acid prevents M. oryzae from infecting the plant without affecting the leaf, suggesting that anacardic acid can be an effective antifungal agent. PMID:26381667

  12. South-East Asia is the center of origin, diversity and dispersion of the rice blast fungus, Magnaporthe oryzae

    PubMed Central

    Saleh, Dounia; Milazzo, Joëlle; Adreit, Henri; Fournier, Elisabeth; Tharreau, Didier

    2014-01-01

    Inferring invasion routes and identifying reservoirs of diversity of plant pathogens are essential in proposing new strategies for their control. Magnaporthe oryzae, the fungus responsible for rice blast disease, has invaded all rice growing areas. Virulent genotypes regularly (re)emerge, causing rapid resistance breakdowns. However, the world-wide genetic subdivision of M. oryzae populations on rice and its past history of invasion have never been elucidated. In order to investigate the centers of diversity, origin and migration of M. oryzae on rice, we analyzed the genetic diversity of 55 populations from 15 countries. Three genetic clusters were identified world-wide. Asia was the center of diversity and the origin of most migrations to other continents. In Asia, two centers of diversity were revealed in the Himalayan foothills: South China–Laos–North Thailand, and western Nepal. Sexual reproduction persisted only in the South China–Laos–North Thailand region, which was identified as the putative center of origin of all M. oryzae populations on rice. Our results suggest a scenario of early evolution of M. oryzae on rice that matches the past history of rice domestication. This study confirms that crop domestication may have considerable influence on the pestification process of natural enemies. PMID:24320224

  13. MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors.

    PubMed

    Baldrich, Patricia; Campo, Sonia; Wu, Ming-Tsung; Liu, Tze-Tze; Hsing, Yue-Ie Caroline; San Segundo, Blanca

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that have important regulatory functions in plant growth, development, and response to abiotic stress. Increasing evidence also supports that plant miRNAs contribute to immune responses to pathogens. Here, we used deep sequencing of small RNA libraries for global identification of rice miRNAs that are regulated by fungal elicitors. We also describe 9 previously uncharacterized miRNAs in rice. Combined small RNA and degradome analyses revealed regulatory networks enriched in elicitor-regulated miRNAs supported by the identification of their corresponding target genes. Specifically, we identified an important number of miRNA/target gene pairs involved in small RNA pathways, including miRNA, heterochromatic and trans-acting siRNA pathways. We present evidence for miRNA/target gene pairs implicated in hormone signaling and cross-talk among hormone pathways having great potential in regulating rice immunity. Furthermore, we describe miRNA-mediated regulation of Conserved-Peptide upstream Open Reading Frame (CPuORF)-containing genes in rice, which suggests the existence of a novel regulatory network that integrates miRNA and CPuORF functions in plants. The knowledge gained in this study will help in understanding the underlying regulatory mechanisms of miRNAs in rice immunity and develop appropriate strategies for rice protection. PMID:26083154

  14. MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors

    PubMed Central

    Baldrich, Patricia; Campo, Sonia; Wu, Ming-Tsung; Liu, Tze-Tze; Hsing, Yue-Ie Caroline; Segundo, Blanca San

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that have important regulatory functions in plant growth, development, and response to abiotic stress. Increasing evidence also supports that plant miRNAs contribute to immune responses to pathogens. Here, we used deep sequencing of small RNA libraries for global identification of rice miRNAs that are regulated by fungal elicitors. We also describe 9 previously uncharacterized miRNAs in rice. Combined small RNA and degradome analyses revealed regulatory networks enriched in elicitor-regulated miRNAs supported by the identification of their corresponding target genes. Specifically, we identified an important number of miRNA/target gene pairs involved in small RNA pathways, including miRNA, heterochromatic and trans-acting siRNA pathways. We present evidence for miRNA/target gene pairs implicated in hormone signaling and cross-talk among hormone pathways having great potential in regulating rice immunity. Furthermore, we describe miRNA-mediated regulation of Conserved-Peptide upstream Open Reading Frame (CPuORF)-containing genes in rice, which suggests the existence of a novel regulatory network that integrates miRNA and CPuORF functions in plants. The knowledge gained in this study will help in understanding the underlying regulatory mechanisms of miRNAs in rice immunity and develop appropriate strategies for rice protection. PMID:26083154

  15. Deciphering Cis-Regulatory Element Mediated Combinatorial Regulation in Rice under Blast Infected Condition.

    PubMed

    Deb, Arindam; Kundu, Sudip

    2015-01-01

    Combinations of cis-regulatory elements (CREs) present at the promoters facilitate the binding of several transcription factors (TFs), thereby altering the consequent gene expressions. Due to the eminent complexity of the regulatory mechanism, the combinatorics of CRE-mediated transcriptional regulation has been elusive. In this work, we have developed a new methodology that quantifies the co-occurrence tendencies of CREs present in a set of promoter sequences; these co-occurrence scores are filtered in three consecutive steps to test their statistical significance; and the significantly co-occurring CRE pairs are presented as networks. These networks of co-occurring CREs are further transformed to derive higher order of regulatory combinatorics. We have further applied this methodology on the differentially up-regulated gene-sets of rice tissues under fungal (Magnaporthe) infected conditions to demonstrate how it helps to understand the CRE-mediated combinatorial gene regulation. Our analysis includes a wide spectrum of biologically important results. The CRE pairs having a strong tendency to co-occur often exhibit very similar joint distribution patterns at the promoters of rice. We couple the network approach with experimental results of plant gene regulation and defense mechanisms and find evidences of auto and cross regulation among TF families, cross-talk among multiple hormone signaling pathways, similarities and dissimilarities in regulatory combinatorics between different tissues, etc. Our analyses have pointed a highly distributed nature of the combinatorial gene regulation facilitating an efficient alteration in response to fungal attack. All together, our proposed methodology could be an important approach in understanding the combinatorial gene regulation. It can be further applied to unravel the tissue and/or condition specific combinatorial gene regulation in other eukaryotic systems with the availability of annotated genomic sequences and suitable

  16. Deciphering Cis-Regulatory Element Mediated Combinatorial Regulation in Rice under Blast Infected Condition

    PubMed Central

    Deb, Arindam; Kundu, Sudip

    2015-01-01

    Combinations of cis-regulatory elements (CREs) present at the promoters facilitate the binding of several transcription factors (TFs), thereby altering the consequent gene expressions. Due to the eminent complexity of the regulatory mechanism, the combinatorics of CRE-mediated transcriptional regulation has been elusive. In this work, we have developed a new methodology that quantifies the co-occurrence tendencies of CREs present in a set of promoter sequences; these co-occurrence scores are filtered in three consecutive steps to test their statistical significance; and the significantly co-occurring CRE pairs are presented as networks. These networks of co-occurring CREs are further transformed to derive higher order of regulatory combinatorics. We have further applied this methodology on the differentially up-regulated gene-sets of rice tissues under fungal (Magnaporthe) infected conditions to demonstrate how it helps to understand the CRE-mediated combinatorial gene regulation. Our analysis includes a wide spectrum of biologically important results. The CRE pairs having a strong tendency to co-occur often exhibit very similar joint distribution patterns at the promoters of rice. We couple the network approach with experimental results of plant gene regulation and defense mechanisms and find evidences of auto and cross regulation among TF families, cross-talk among multiple hormone signaling pathways, similarities and dissimilarities in regulatory combinatorics between different tissues, etc. Our analyses have pointed a highly distributed nature of the combinatorial gene regulation facilitating an efficient alteration in response to fungal attack. All together, our proposed methodology could be an important approach in understanding the combinatorial gene regulation. It can be further applied to unravel the tissue and/or condition specific combinatorial gene regulation in other eukaryotic systems with the availability of annotated genomic sequences and suitable

  17. Overexpression of Rice Wall-Associated Kinase 25 (OsWAK25) Alters Resistance to Bacterial and Fungal Pathogens.

    PubMed

    Harkenrider, Mitch; Sharma, Rita; De Vleesschauwer, David; Tsao, Li; Zhang, Xuting; Chern, Mawsheng; Canlas, Patrick; Zuo, Shimin; Ronald, Pamela C

    2016-01-01

    Wall-associated kinases comprise a sub-family of receptor-like kinases that function in plant growth and stress responses. Previous studies have shown that the rice wall-associated kinase, OsWAK25, interacts with a diverse set of proteins associated with both biotic and abiotic stress responses. Here, we show that wounding and BTH treatments induce OsWAK25 transcript expression in rice. We generated OsWAK25 overexpression lines and show that these lines exhibit a lesion mimic phenotype and enhanced expression of rice NH1 (NPR1 homolog 1), OsPAL2, PBZ1 and PR10. Furthermore, these lines show resistance to the hemibiotrophic pathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe oryzae, yet display increased susceptibility to necrotrophic fungal pathogens, Rhizoctonia solani and Cochliobolus miyabeanus. PMID:26795719

  18. Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress*

    PubMed Central

    Waqas, Muhammad; Khan, Abdul Latif; Shahzad, Raheem; Ullah, Ihsan; Khan, Abdur Rahim; Lee, In-Jung

    2015-01-01

    This study identifies the potential role in heat-stress mitigation of phytohormones and other secondary metabolites produced by the endophytic fungus Paecilomyces formosus LWL1 in japonica rice cultivar Dongjin. The japonica rice was grown in controlled chamber conditions with and without P. formosus LWL1 under no stress (NS) and prolonged heat stress (HS) conditions. Endophytic association under NS and HS conditions significantly improved plant growth attributes, such as plant height, fresh weight, dry weight, and chlorophyll content. Furthermore, P. formosus LWL1 protected the rice plants from HS compared with controls, indicated by the lower endogenous level of stress-signaling compounds such as abscisic acid (25.71%) and jasmonic acid (34.57%) and the increase in total protein content (18.76%–33.22%). Such fungal endophytes may be helpful for sustainable crop production under high environmental temperatures. PMID:26642184

  19. Overexpression of Rice Wall-Associated Kinase 25 (OsWAK25) Alters Resistance to Bacterial and Fungal Pathogens

    PubMed Central

    Harkenrider, Mitch; Sharma, Rita; De Vleesschauwer, David; Tsao, Li; Zhang, Xuting; Chern, Mawsheng; Canlas, Patrick; Zuo, Shimin; Ronald, Pamela C.

    2016-01-01

    Wall-associated kinases comprise a sub-family of receptor-like kinases that function in plant growth and stress responses. Previous studies have shown that the rice wall-associated kinase, OsWAK25, interacts with a diverse set of proteins associated with both biotic and abiotic stress responses. Here, we show that wounding and BTH treatments induce OsWAK25 transcript expression in rice. We generated OsWAK25 overexpression lines and show that these lines exhibit a lesion mimic phenotype and enhanced expression of rice NH1 (NPR1 homolog 1), OsPAL2, PBZ1 and PR10. Furthermore, these lines show resistance to the hemibiotrophic pathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe oryzae, yet display increased susceptibility to necrotrophic fungal pathogens, Rhizoctonia solani and Cochliobolus miyabeanus. PMID:26795719

  20. Combined genetic analysis of partial blast resistance in an upland rice population and recurrent selection for line and hybrid values.

    PubMed

    Veillet, S; Filippi, M C; Gallais, A

    1996-05-01

    The CNA-IRAT 5 upland rice population has been improved for 4 years by recurrent selection for blast resistance in Brazil. In order to predict the efficiency of recurrent selection in different test systems and to compare the relative advantage of hybrids versus pure line breeding, a combined genetic analysis of partial blast resistance in the CNA-IRAT 5 population was undertaken. A three-level hierarchical design in inbreeding and a factorial design were derived from the base population. Partial blast resistance of lines and hybrids was evaluated in the greenhouse and in the field by inoculation with one virulent blast isolate. The means and genetic variances of the hybrids and lines were estimated. Genetic advance by recurrent selection was predicted from estimates of variance components. The inheritance of partial blast resistance was mainly additive but non-additive effects were detected at both levels of means and variances. Mean heterosis ranged from 4%-8% for lesion size and lesion density to 10-12% for leaf and panicle resistance. High dominance or homozygous dominance variances relative to additive variance and negative covariance between additive and homozygous dominance effects were estimated. A low frequency of favourable alleles for partial resistance would explain the observed organisation of genetic variability in the base population. Recurrent selection will efficiently improve partial blast resistance of the CNA-IRAT 5 population. Genetic advance for line or hybrid values was expected to be higher testing doubled haploid lines than S1 lines, or than general combining ability. Two components of partial resistance assessed in the greenhouse, lesion size and lesion density, could be used as indirect selection criteria to improve field resistance. On the whole, hybrid breeding for partial blast resistance appeared to be slightly more advantageous than pure line breeding. PMID:24166386

  1. Validation of Reference Genes for Robust qRT-PCR Gene Expression Analysis in the Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Che Omar, Sarena; Bentley, Michael A.; Morieri, Giulia; Preston, Gail M.; Gurr, Sarah J.

    2016-01-01

    The rice blast fungus causes significant annual harvest losses. It also serves as a genetically-tractable model to study fungal ingress. Whilst pathogenicity determinants have been unmasked and changes in global gene expression described, we know little about Magnaporthe oryzae cell wall remodelling. Our interests, in wall remodelling genes expressed during infection, vegetative growth and under exogenous wall stress, demand robust choice of reference genes for quantitative Real Time-PCR (qRT-PCR) data normalisation. We describe the expression stability of nine candidate reference genes profiled by qRT-PCR with cDNAs derived during asexual germling development, from sexual stage perithecia and from vegetative mycelium grown under various exogenous stressors. Our Minimum Information for Publication of qRT-PCR Experiments (MIQE) compliant analysis reveals a set of robust reference genes used to track changes in the expression of the cell wall remodelling gene MGG_Crh2 (MGG_00592). We ranked nine candidate reference genes by their expression stability (M) and report the best gene combination needed for reliable gene expression normalisation, when assayed in three tissue groups (Infective, Vegetative, and Global) frequently used in M. oryzae expression studies. We found that MGG_Actin (MGG_03982) and the 40S 27a ribosomal subunit MGG_40s (MGG_02872) proved to be robust reference genes for the Infection group and MGG_40s and MGG_Ef1 (Elongation Factor1-α) for both Vegetative and Global groups. Using the above validated reference genes, M. oryzae MGG_Crh2 expression was found to be significantly (p<0.05) elevated three-fold during vegetative growth as compared with dormant spores and two fold higher under cell wall stress (Congo Red) compared to growth under optimal conditions. We recommend the combinatorial use of two reference genes, belonging to the cytoskeleton and ribosomal synthesis functional groups, MGG_Actin, MGG_40s, MGG_S8 (Ribosomal subunit 40S S8) or MGG

  2. Validation of Reference Genes for Robust qRT-PCR Gene Expression Analysis in the Rice Blast Fungus Magnaporthe oryzae.

    PubMed

    Che Omar, Sarena; Bentley, Michael A; Morieri, Giulia; Preston, Gail M; Gurr, Sarah J

    2016-01-01

    The rice blast fungus causes significant annual harvest losses. It also serves as a genetically-tractable model to study fungal ingress. Whilst pathogenicity determinants have been unmasked and changes in global gene expression described, we know little about Magnaporthe oryzae cell wall remodelling. Our interests, in wall remodelling genes expressed during infection, vegetative growth and under exogenous wall stress, demand robust choice of reference genes for quantitative Real Time-PCR (qRT-PCR) data normalisation. We describe the expression stability of nine candidate reference genes profiled by qRT-PCR with cDNAs derived during asexual germling development, from sexual stage perithecia and from vegetative mycelium grown under various exogenous stressors. Our Minimum Information for Publication of qRT-PCR Experiments (MIQE) compliant analysis reveals a set of robust reference genes used to track changes in the expression of the cell wall remodelling gene MGG_Crh2 (MGG_00592). We ranked nine candidate reference genes by their expression stability (M) and report the best gene combination needed for reliable gene expression normalisation, when assayed in three tissue groups (Infective, Vegetative, and Global) frequently used in M. oryzae expression studies. We found that MGG_Actin (MGG_03982) and the 40S 27a ribosomal subunit MGG_40s (MGG_02872) proved to be robust reference genes for the Infection group and MGG_40s and MGG_Ef1 (Elongation Factor1-α) for both Vegetative and Global groups. Using the above validated reference genes, M. oryzae MGG_Crh2 expression was found to be significantly (p<0.05) elevated three-fold during vegetative growth as compared with dormant spores and two fold higher under cell wall stress (Congo Red) compared to growth under optimal conditions. We recommend the combinatorial use of two reference genes, belonging to the cytoskeleton and ribosomal synthesis functional groups, MGG_Actin, MGG_40s, MGG_S8 (Ribosomal subunit 40S S8) or MGG

  3. Methionine Biosynthesis is Essential for Infection in the Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Gagey, Marie Josèphe; Frelin, Océane; Beffa, Roland; Lebrun, Marc Henri; Droux, Michel

    2015-01-01

    Methionine is a sulfur amino acid standing at the crossroads of several biosynthetic pathways. In fungi, the last step of methionine biosynthesis is catalyzed by a cobalamine-independent methionine synthase (Met6, EC 2.1.1.14). In the present work, we studied the role of Met6 in the infection process of the rice blast fungus, Magnaporthe oryzae. To this end MET6 null mutants were obtained by targeted gene replacement. On minimum medium, MET6 null mutants were auxotrophic for methionine. Even when grown in presence of excess methionine, these mutants displayed developmental defects, such as reduced mycelium pigmentation, aerial hypha formation and sporulation. They also displayed characteristic metabolic signatures such as increased levels of cysteine, cystathionine, homocysteine, S-adenosylmethionine, S-adenosylhomocysteine while methionine and glutathione levels remained unchanged. These metabolic perturbations were associated with the over-expression of MgCBS1 involved in the reversed transsulfuration pathway that metabolizes homocysteine into cysteine and MgSAM1 and MgSAHH1 involved in the methyl cycle. This suggests a physiological adaptation of M. oryzae to metabolic defects induced by the loss of Met6, in particular an increase in homocysteine levels. Pathogenicity assays showed that MET6 null mutants were non-pathogenic on both barley and rice leaves. These mutants were defective in appressorium-mediated penetration and invasive infectious growth. These pathogenicity defects were rescued by addition of exogenous methionine and S-methylmethionine. These results show that M. oryzae cannot assimilate sufficient methionine from plant tissues and must synthesize this amino acid de novo to fulfill its sulfur amino acid requirement during infection. PMID:25856162

  4. Breeding for blast-disease-resistant and high-yield Thai jasmine rice (Oryza sativa L. cv. KDML 105) mutants using low-energy ion beams

    NASA Astrophysics Data System (ADS)

    Mahadtanapuk, S.; Teraarusiri, W.; Phanchaisri, B.; Yu, L. D.; Anuntalabhochai, S.

    2013-07-01

    Low-energy ion beam was applied on mutation induction for plant breeding of blast-disease-resistant Thai jasmine rice (Oryza sativa L. cv. KDML 105). Seeds of the wild-type rice were bombarded in vacuum by nitrogen ion beam at energy of 60-80 keV to a beam fluence range of 2 × 1016-2 × 1017 ions/cm2. The ion-bombarded rice seeds were grown in soil for 2 weeks as transplanted rice in plastic pots at 1 seedling/pot. The seedlings were then screened for blast resistance by Pyricularia grisea inoculation with 106 spores/ml concentrations. The blast-resistant rice mutant was planted up to F6 generation with the consistent phenotypic variation. The high percentage of the blast-disease-resistant rice was analyzed with DNA fingerprint. The HAT-RAPD (high annealing temperature-random amplified polymorphic DNA) marker revealed the modified polymorphism fragment presenting in the mutant compared with wild type (KDML 105). The cDNA fingerprints were investigated and the polymorphism fragment was subcloned into pGEM-T easy vector and then sequenced. The sequence of this fragment was compared with those already contained in the database, and the fragment was found to be related to the Spotted leaf protein 11 (Spl11).

  5. COMPLEMENTARY PROTEOMIC AND GENETIC ANALYSES OF RICE RESPONSE TO RICE CHALLENGE BY THE FUNGAL PATHOGEN RHIZOCTONIA SOLANI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice (Oryza sativa L.) is considered a model crop plant due to its importance worldwide as a food source, a small diploid genome suitable for genetic and proteomic analyses, and completion of the rice genome sequence. The objective of our research was to utilize both proteomic and genetic approaches...

  6. Regulation of the MPG1 hydrophobin gene in the rice blast fungus Magnaporthe grisea.

    PubMed

    Soanes, Darren M; Kershaw, Michael J; Cooley, R Neil; Talbot, Nicholas J

    2002-12-01

    The hydrophobin-encoding gene MPG1 of the rice blast fungus Magnaporthe grisea is highly expressed during the initial stages of host plant infection and targeted deletion of the gene results in a mutant strain that is reduced in virulence, conidiation, and appressorium formation. The green fluorescent protein-encoding allele sGFP was used as a reporter to investigate regulatory genes that control MPG1 expression. The MAP kinase-encoding gene PMK1 and the wide domain regulators of nitrogen source utilization, NPR1 and NUT1, were required for full expression of MPG1 in response to starvation stress. The CPKA gene, encoding the catalytic subunit of protein kinase A, was required for repression of MPG1 during growth in rich nutrient conditions. During appressorium morphogenesis, high-level MPG1 expression was found to require the CPKA and NPR1 genes. Expression of a destabilized GFP allele indicated that de novo MPG1 expression occurs during appressorium formation. Three regions of the MPG1 promoter were identified which are required for high-level expression of MPG1 during appressorium formation and are necessary for the biological activity of the MPG1 hydrophobin during spore formation and plant infection. PMID:12481998

  7. Phylogenomic analysis uncovers the evolutionary history of nutrition and infection mode in rice blast fungus and other Magnaporthales

    PubMed Central

    Luo, Jing; Qiu, Huan; Cai, Guohong; Wagner, Nicole E.; Bhattacharya, Debashish; Zhang, Ning

    2015-01-01

    The order Magnaporthales (Ascomycota, Fungi) includes devastating pathogens of cereals, such as the rice blast fungus Pyricularia (Magnaporthe) oryzae, which is a model in host-pathogen interaction studies. Magnaporthales also includes saprotrophic species associated with grass roots and submerged wood. Despite its scientific and economic importance, the phylogenetic position of Magnaporthales within Sordariomycetes and the interrelationships of its constituent taxa, remain controversial. In this study, we generated novel transcriptome data from 21 taxa that represent key Magnaporthales lineages of different infection and nutrition modes and phenotypes. Phylogenomic analysis of >200 conserved genes allowed the reconstruction of a robust Sordariomycetes tree of life that placed the monophyletic group of Magnaporthales sister to Ophiostomatales. Among Magnaporthales, three major clades were recognized: 1) an early diverging clade A comprised of saprotrophs associated with submerged woods; 2) clade B that includes the rice blast fungus and other pathogens that cause blast diseases of monocot plants. These species infect the above-ground tissues of host plants using the penetration structure, appressorium; and 3) clade C comprised primarily of root-associated species that penetrate the root tissue with hyphopodia. The well-supported phylogenies provide a robust framework for elucidating evolution of pathogenesis, nutrition modes, and phenotypic characters in Magnaporthales. PMID:25819715

  8. Production of Beauveria bassiana Fungal Spores on Rice to Control the Coffee Berry Borer, Hypothenemus hampei, in Colombia

    PubMed Central

    Posada-Flórez, Francisco J

    2008-01-01

    Two isolates of fungal entomopathogen Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Clavicipitaceae) were grown on cooked rice using diphasic liquid-solid fermentation in plastic bags to produce and harvest spore powder. The cultures were dried and significant differences were found for isolates and time of harvest. The spores were harvested manually and mechanically and after the cultures were dried for nine days, when moisture content was near 10%. After harvesting, spores were submitted to quality control to assess concentration, germination, purity, moisture content, particle size and pathogenicity to the coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae). Spore productivity on cooked rice was less than 1×1010 spores/g using both manually and mechanically harvesting methodologies. Germination at 24 hours was over 75% and pathogenicity against H. hampei was over 92.5%. This methodology is suitable for laboratory and field studies, but not for industrial production when a high concentration of spores are required for formulation and field applications.

  9. Crystal Structure of Manganese Lipoxygenase of the Rice Blast Fungus Magnaporthe oryzae.

    PubMed

    Wennman, Anneli; Oliw, Ernst H; Karkehabadi, Saeid; Chen, Yang

    2016-04-01

    Lipoxygenases (LOX) are non-heme metal enzymes, which oxidize polyunsaturated fatty acids to hydroperoxides. All LOX belong to the same gene family, and they are widely distributed. LOX of animals, plants, and prokaryotes contain iron as the catalytic metal, whereas fungi express LOX with iron or with manganese. Little is known about metal selection by LOX and the adjustment of the redox potentials of their protein-bound catalytic metals. Thirteen three-dimensional structures of animal, plant, and prokaryotic FeLOX are available, but none of MnLOX. The MnLOX of the most important plant pathogen, the rice blast fungusMagnaporthe oryzae(Mo), was expressed inPichia pastoris.Mo-MnLOX was deglycosylated, purified to homogeneity, and subjected to crystal screening and x-ray diffraction. The structure was solved by sulfur and manganese single wavelength anomalous dispersion to a resolution of 2.0 Å. The manganese coordinating sphere is similar to iron ligands of coral 8R-LOX and soybean LOX-1 but is not overlapping. The Asn-473 is positioned on a short loop (Asn-Gln-Gly-Glu-Pro) instead of an α-helix and forms hydrogen bonds with Gln-281. Comparison with FeLOX suggests that Phe-332 and Phe-525 might contribute to the unique suprafacial hydrogen abstraction and oxygenation mechanism of Mo-MnLOX by controlling oxygen access to the pentadiene radical. Modeling suggests that Arg-525 is positioned close to Arg-182 of 8R-LOX, and both residues likely tether the carboxylate group of the substrate. An oxygen channel could not be identified. We conclude that Mo-MnLOX illustrates a partly unique variation of the structural theme of FeLOX. PMID:26783260

  10. Effect of Rice Cultivation Systems on Indigenous Arbuscular Mycorrhizal Fungal Community Structure

    PubMed Central

    Watanarojanaporn, Nantida; Boonkerd, Nantakorn; Tittabutr, Panlada; Longtonglang, Aphakorn; Young, J. Peter W.; Teaumroong, Neung

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) in an agricultural ecosystem are necessary for proper management of beneficial symbiosis. Here we explored how the patterns of the AMF community in rice roots were affected by rice cultivation systems (the system of rice intensification [SRI] and the conventional rice cultivation system [CS]), and by compost application during growth stages. Rice plants harvested from SRI-managed plots exhibited considerably higher total biomass, root dry weight, and seed fill than those obtained from conventionally managed plots. Our findings revealed that all AMF sequences observed from CS plots belonged (only) to the genus Glomus, colonizing in rice roots grown under this type of cultivation, while rice roots sown in SRI showed sequences belonging to both Glomus and Acaulospora. The AMF community was compared between the different cultivation types (CS and SRI) and compost applications by principle component analysis. In all rice growth stages, AMF assemblages of CS management were not separated from those of SRI management. The distribution of AMF community composition based on T-RFLP data showed that the AMF community structure was different among four cultivation systems, and there was a gradual increase of Shannon-Weaver indices of diversity (H′) of the AMF community under SRI during growth stages. The results of this research indicated that rice grown in SRI-managed plots had more diverse AMF communities than those grown in CS plots. PMID:23719585

  11. Effect of rice cultivation systems on indigenous arbuscular mycorrhizal fungal community structure.

    PubMed

    Watanarojanaporn, Nantida; Boonkerd, Nantakorn; Tittabutr, Panlada; Longtonglang, Aphakorn; Young, J Peter W; Teaumroong, Neung

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) in an agricultural ecosystem are necessary for proper management of beneficial symbiosis. Here we explored how the patterns of the AMF community in rice roots were affected by rice cultivation systems (the system of rice intensification [SRI] and the conventional rice cultivation system [CS]), and by compost application during growth stages. Rice plants harvested from SRI-managed plots exhibited considerably higher total biomass, root dry weight, and seed fill than those obtained from conventionally managed plots. Our findings revealed that all AMF sequences observed from CS plots belonged (only) to the genus Glomus, colonizing in rice roots grown under this type of cultivation, while rice roots sown in SRI showed sequences belonging to both Glomus and Acaulospora. The AMF community was compared between the different cultivation types (CS and SRI) and compost applications by principle component analysis. In all rice growth stages, AMF assemblages of CS management were not separated from those of SRI management. The distribution of AMF community composition based on T-RFLP data showed that the AMF community structure was different among four cultivation systems, and there was a gradual increase of Shannon-Weaver indices of diversity (H') of the AMF community under SRI during growth stages. The results of this research indicated that rice grown in SRI-managed plots had more diverse AMF communities than those grown in CS plots. PMID:23719585

  12. A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice.

    PubMed

    Jeung, J U; Kim, B R; Cho, Y C; Han, S S; Moon, H P; Lee, Y T; Jena, K K

    2007-11-01

    Rice blast disease caused by Magnaporthe grisea is a continuous threat to stable rice production worldwide. In a modernized agricultural system, the development of varieties with broad-spectrum and durable resistance to blast disease is essential for increased rice production and sustainability. In this study, a new gene is identified in the introgression line IR65482-4-136-2-2 that has inherited the resistance gene from an EE genome wild Oryza species, O. australiensis (Acc. 100882). Genetic and molecular analysis localized a major resistance gene, Pi40(t), on the short arm of chromosome 6, where four blast resistance genes (Piz, Piz-5, Piz-t, and Pi9) were also identified, flanked by the markers S2539 and RM3330. Through e-Landing, 14 BAC/PAC clones within the 1.81-Mb equivalent virtual contig were identified on Rice Pseudomolecule3. Highly stringent primer sets designed for 6 NBS-LRR motifs located within PAC clone P0649C11 facilitated high-resolution mapping of the new resistance gene, Pi40(t). Following association analysis and detailed haplotyping approaches, a DNA marker, 9871.T7E2b, was identified to be linked to the Pi40(t) gene at the 70 Kb chromosomal region, and differentiated the Pi40(t) gene from the LTH monogenic differential lines possessing genes Piz, Piz-5, Piz-t, and Pi-9. Pi40(t) was validated using the most virulent isolates of Korea as well as the Philippines, suggesting a broad spectrum for the resistance gene. Marker-assisted selection (MAS) and pathotyping of BC progenies having two japonica cultivar genetic backgrounds further supported the potential of the resistance gene in rice breeding. Our study based on new gene identification strategies provides insight into novel genetic resources for blast resistance as well as future studies on cloning and functional analysis of a blast resistance gene useful for rice improvement. PMID:17909744

  13. Genome-wide characterization of methylguanosine-capped and polyadenylated small RNAs in the rice blast fungus Magnaporthe oryzae

    PubMed Central

    Gowda, Malali; Nunes, Cristiano C.; Sailsbery, Joshua; Xue, Minfeng; Chen, Feng; Nelson, Cassie A.; Brown, Douglas E.; Oh, Yeonyee; Meng, Shaowu; Mitchell, Thomas; Hagedorn, Curt H.; Dean, Ralph A.

    2010-01-01

    Small RNAs are well described in higher eukaryotes such as mammals and plants; however, knowledge in simple eukaryotes such as filamentous fungi is limited. In this study, we discovered and characterized methylguanosine-capped and polyadenylated small RNAs (CPA-sRNAs) by using differential RNA selection, full-length cDNA cloning and 454 transcriptome sequencing of the rice blast fungus Magnaporthe oryzae. This fungus causes blast, a devastating disease on rice, the principle food staple for over half the world’s population. CPA-sRNAs mapped primarily to the transcription initiation and termination sites of protein-coding genes and were positively correlated with gene expression, particularly for highly expressed genes including those encoding ribosomal proteins. Numerous CPA-sRNAs also mapped to rRNAs, tRNAs, snRNAs, transposable elements and intergenic regions. Many other 454 sequence reads could not be mapped to the genome; however, inspection revealed evidence for non-template additions and chimeric sequences. CPA-sRNAs were independently confirmed using a high affinity variant of eIF-4E to capture 5′-methylguanosine-capped RNA followed by 3′-RACE sequencing. These results expand the repertoire of small RNAs in filamentous fungi. PMID:20660015

  14. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice.

    PubMed

    Wu, Jun; Kou, Yanjun; Bao, Jiandong; Li, Ya; Tang, Mingzhi; Zhu, Xiaoli; Ponaya, Ariane; Xiao, Gui; Li, Jinbin; Li, Chenyun; Song, Min-Young; Cumagun, Christian Joseph R; Deng, Qiyun; Lu, Guodong; Jeon, Jong-Seong; Naqvi, Naweed I; Zhou, Bo

    2015-06-01

    We identified the Magnaporthe oryzae avirulence effector AvrPi9 cognate to rice blast resistance gene Pi9 by comparative genomics of requisite strains derived from a sequential planting method. AvrPi9 encodes a small secreted protein that appears to localize in the biotrophic interfacial complex and is translocated to the host cell during rice infection. AvrPi9 forms a tandem gene array with its paralogue proximal to centromeric region of chromosome 7. AvrPi9 is expressed highly at early stages during initiation of blast disease. Virulent isolate strains contain Mg-SINE within the AvrPi9 coding sequence. Loss of AvrPi9 did not lead to any discernible defects during growth or pathogenesis in M. oryzae. This study reiterates the role of diverse transposable elements as off-switch agents in acquisition of gain-of-virulence in the rice blast fungus. The prevalence of AvrPi9 correlates well with the avirulence pathotype in diverse blast isolates from the Philippines and China, thus supporting the broad-spectrum resistance conferred by Pi9 in different rice growing areas. Our results revealed that Pi9 and Piz-t at the Pi2/9 locus activate race specific resistance by recognizing sequence-unrelated AvrPi9 and AvrPiz-t genes, respectively. PMID:25659573

  15. Effect of flour-blasting of brown rice on reduction of cooking time and resulting texture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long grain non-parboiled, long grain parboiled, and American basmati-type brown rice were bombarded with parboiled rice flour sufficient to create microperforations in the water-resistant outer coat of the seed. These microperforations in the treated rice significantly increased the rate of hydratio...

  16. Common Genetic Pathways Regulate Organ-Specific Infection-Related Development in the Rice Blast Fungus[W

    PubMed Central

    Tucker, Sara L.; Besi, Maria I.; Galhano, Rita; Franceschetti, Marina; Goetz, Stephan; Lenhert, Steven; Osbourn, Anne; Sesma, Ane

    2010-01-01

    Magnaporthe oryzae is the most important fungal pathogen of rice (Oryza sativa). Under laboratory conditions, it is able to colonize both aerial and underground plant organs using different mechanisms. Here, we characterize an infection-related development in M. oryzae produced on hydrophilic polystyrene (PHIL-PS) and on roots. We show that fungal spores develop preinvasive hyphae (pre-IH) from hyphopodia (root penetration structures) or germ tubes and that pre-IH also enter root cells. Changes in fungal cell wall structure accompanying pre-IH are seen on both artificial and root surfaces. Using characterized mutants, we show that the PMK1 (for pathogenicity mitogen-activated protein kinase 1) pathway is required for pre-IH development. Twenty mutants with altered pre-IH differentiation on PHIL-PS identified from an insertional library of 2885 M. oryzae T-DNA transformants were found to be defective in pathogenicity. The phenotypic analysis of these mutants revealed that appressorium, hyphopodium, and pre-IH formation are genetically linked fungal developmental processes. We further characterized one of these mutants, M1373, which lacked the M. oryzae ortholog of exportin-5/Msn5p (EXP5). Mutants lacking EXP5 were much less virulent on roots, suggesting an important involvement of proteins and/or RNAs transported by EXP5 during M. oryzae root infection. PMID:20348434

  17. Coevolutionary Dynamics of Rice Blast Resistance Gene Pi-ta and Magnaporthe oryzae Avirulence Gene AVR-Pita 1.

    PubMed

    Jia, Yulin; Zhou, Erxun; Lee, Seonghee; Bianco, Tracy

    2016-07-01

    The Pi-ta gene in rice is effective in preventing infections by Magnaporthe oryzae strains that contain the corresponding avirulence gene, AVR-Pita1. Diverse haplotypes of AVR-Pita1 have been identified from isolates of M. oryzae from rice production areas in the United States and worldwide. DNA sequencing and mapping studies have revealed that AVR-Pita1 is highly unstable, while expression analysis and quantitative resistance loci mapping of the Pi-ta locus revealed complex evolutionary mechanisms of Pi-ta-mediated resistance. Among these studies, several Pi-ta transcripts were identified, most of which are probably derived from alternative splicing and exon skipping, which could produce functional resistance proteins that support a new concept of coevolution of Pi-ta and AVR-Pita1. User-friendly DNA markers for Pi-ta have been developed to support marker-assisted selection, and development of new rice varieties with the Pi-ta markers. Genome-wide association studies revealed a link between Pi-ta-mediated resistance and yield components suggesting that rice has evolved a complicated defense mechanism against the blast fungus. In this review, we detail the current understanding of Pi-ta allelic variation, its linkage with rice productivity, AVR-Pita allelic variation, and the coevolution of Pi-ta and AVR-Pita in Oryza species and M. oryzae populations, respectively. We also review the genetic and molecular basis of Pi-ta and AVR-Pita interaction, and its value in marker-assisted selection and engineering resistance. PMID:27070427

  18. Multiplex SSR-PCR approaches for semi-automated genotyping and characterization of loci linked to blast disease resistance genes in rice.

    PubMed

    Ashkani, Sadegh; Rafii, Mohd Yusop; Shabanimofrad, Mahmoodreza; Foroughi, Majid; Azizia, Parisa; Akhtar, Mohd Sayeed; Sahebi, Mahbod; Harun, Abd Rahim; Nasehi, Abbas

    2015-11-01

    In the present study, 63 polymorphic microsatellite markers related to rice blast resistance genes were fluorescently labelled at the 5'-end with either 6-FAM or HEX using the G5 dye set and incorporated into a multiplex SSR-PCR for the detection of fragments using an automated system. For rice F3 families obtained from crosses between Pongsu Seribu 2 (Malaysian blast resistant cultivar) and Mahsuri (a susceptible rice cultivar), the genotypes for 13 designated multiplex SSR panels were determined. The genotyping assays were performed using a capillary-based ABIPRISM 3100 genetic analyser. The sizes of the SSRs alleles observed in the range from 79 to 324 bp. The observed marker segregation data were analysed using the Chi(2) test. A genetic linkage map covering ten chromosomes and comprising 63 polymorphic SSR markers was constructed, and the distorted loci were localised to linkage groups. The results indicated that distorted loci are presented on eight chromosomes. PMID:26318048

  19. Characterization of interacting genes with the rice blast fungus avirulence gene AVR-Pita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The AVR-Pita gene in Magnaporthe oryzae determines the efficacy of the Pi-ta blast resistance gene. AVR-Pita encodes a predicted metalloprotease with 223 amino acids. AVR-Pita176 with deletion of 57 amino acids at the amino terminus was previously shown to be involved in Pi-ta mediated blast resista...

  20. Morphological and molecular characterization of Magnaporthe oryzae (fungus) from infected rice leaf samples

    NASA Astrophysics Data System (ADS)

    Muni, Nurulhidayah Mat; Nadarajah, Kalaivani

    2014-09-01

    Magnaporthe oryzae is a plant-pathogenic fungus that causes a serious disease affecting rice called rice blast. Outbreaks of rice blast have been a threat to the global production of rice. This fungal disease is estimated to cause production losses of US55 million each year in South and Southeast Asia. It has been used as a primary model for elucidating various aspects of the host-pathogen interaction with its host. We have isolated five isolates of Magnaporthe oryzae from diseased leaf samples obtained from the field at Kompleks Latihan MADA, Kedah, Malaysia. We have identified the isolates using morphological and microscopic studies on the fungal spores and the lesions on the diseased leaves. Amplification of the internal transcribed spacer (ITS) was carried out with universal primers ITS1 and ITS4. The sequence of each isolates showed at least 99% nucleotide identity with the corresponding sequence in GenBank for Magnaporthe oryzae.

  1. Effect of Early Screening for Invasive Fungal Infections in U.S. Service Members with Explosive Blast Injuries

    PubMed Central

    Weintrob, Amy C.; Rodriguez, Carlos; Dunne, James R.; Weisbrod, Allison B.; Hinkle, Mary; Warkentien, Tyler; Murray, Clinton K.; Oh, John; Millar, Eugene V.; Shah, Jinesh; Shaikh, Faraz; Gregg, Stacie; Lloyd, Gina; Stevens, Julie; Carson, M. Leigh; Aggarwal, Deepak; Tribble, David R.

    2014-01-01

    Abstract Background: An outbreak of invasive fungal infections (IFI) began in 2009 among United States servicemen who sustained blast injuries in Afghanistan. In response, the military trauma community sought a uniform approach to early diagnosis and treatment. Toward this goal, a local clinical practice guideline (CPG) was implemented at Landstuhl Regional Medical Center (LRMC) in early 2011 to screen for IFI in high-risk patients using tissue histopathology and fungal cultures. Methods: We compared IFI cases identified after initiation of the CPG (February through August 2011) to cases from a pre-CPG period (June 2009 through January 2011). Results: Sixty-one patients were screened in the CPG period, among whom 30 IFI cases were identified and compared with 44 pre-CPG IFI cases. Demographics between the two study periods were similar, although significantly higher transfusion requirements (p<0.05) and non-significant trends in injury severity scores and early lower extremity amputation rates suggested more severe injuries in CPG-period cases. Pre-CPG IFI cases were more likely to be associated with angioinvasion on histopathology than CPG IFI cases (48% versus 17%; p<0.001). Time to IFI diagnosis (three versus nine days) and to initiation of antifungal therapy (seven versus 14 days) were significantly decreased in the CPG period (p<0.001). Additionally, more IFI patients received antifungal agent at LRMC during the CPG period (30%) versus pre-CPG period (5%; p=0.005). The CPG IFI cases were also prescribed more commonly dual antifungal therapy (73% versus 36%; p=0.002). There was no statistical difference in length of stay or mortality between pre-CPG and CPG IFI cases; although a non-significant reduction in crude mortality from 11.4% to 6.7% was observed. Conclusions: Angioinvasive IFI as a percentage of total IFI cases decreased during the CPG period. Earlier diagnosis and commencement of more timely treatment was achieved. Despite these improvements, no

  2. Expression of a plant defensin in rice confers resistance to fungal phytopathogens.

    PubMed

    Jha, Sanjay; Chattoo, Bharat B

    2010-06-01

    Transgenic rice (Oryza sativa L. cv. Pusa basmati 1), overexpressing the Rs-AFP2 defensin gene from the Raphanus sativus was generated by Agrobacterium tumefaciens-mediated transformation. Expression levels of Rs-AFP2 ranged from 0.45 to 0.53% of total soluble protein in transgenic plants. It was observed that constitutive expression of Rs-AFP2 suppresses the growth of Magnaporthe oryzae and Rhizoctonia solani by 77 and 45%, respectively. No effect on plant morphology was observed in the Rs-AFP2 expressing rice lines. The inhibitory activity of protein extracts prepared from leaves of Rs-AFP2 plants on the in vitro growth of M. oryzae indicated that the Rs-AFP2 protein produced by transgenic rice plants was biologically active. Transgene expression of Rs-AFP2 was not accompanied by an induction of pathogenesis-related (PR) gene expression, suggesting that the expression of Rs-AFP2 directly inhibits the pathogens. Here, we demonstrate that transgenic rice plants expressing the Rs-AFP2 gene show enhanced resistance to M. oryzae and R. solani, two of the most important pathogens of rice. PMID:19690975

  3. Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities.

    PubMed

    Lumini, Erica; Vallino, Marta; Alguacil, Maria M; Romani, Marco; Bianciotto, Valeria

    2011-07-01

    Arbuscular mycorrhizal fungi (AMF) comprise one of the main components of soil microbiota in most agroecosystems. These obligate mutualistic symbionts colonize the roots of most plants, including crop plants. Many papers have indicated that different crop management practices could affect AMF communities and their root colonization. However, there is little knowledge available on the influence of conventional and low-input agriculture on root colonization and AMF molecular diversity in rice fields. Two different agroecosystems (continuous conventional high-input rice monocropping and organic farming with a five-year crop rotation) and two different water management regimes have been considered in this study. Both morphological and molecular analyses were performed. The soil mycorrhizal potential, estimated using clover trap cultures, was high and similar in the two agroecosystems. The diversity of the AMF community in the soil, calculated by means of PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) and 18S rDNA sequencing on clover trap cultures roots, was higher for the organic cultivation. The rice roots cultivated in the conventional agrosystem or under permanent flooding showed no AMF colonization, while the rice plants grown under the organic agriculture system showed typical mycorrhization patterns. Considered together, our data suggest that a high-input cropping system and conventional flooding depress AMF colonization in rice roots and that organic managements could help maintain a higher diversity of AMF communities in soil. PMID:21830711

  4. Calpains are involved in asexual and sexual development, cell wall integrity and pathogenicity of the rice blast fungus.

    PubMed

    Liu, Xiao-Hong; Ning, Guo-Ao; Huang, Lu-Yao; Zhao, Ya-Hui; Dong, Bo; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-01-01

    Calpains are ubiquitous and well-conserved proteins that belong to the calcium-dependent, non-lysosomal cysteine protease family. In this study, 8 putative calpains were identified using Pfam domain analysis and BlastP searches in M. oryzae. Three single gene deletion mutants (ΔMocapn7, ΔMocapn9 and ΔMocapn14) and two double gene deletion mutants (ΔMocapn4ΔMocapn7 and ΔMocapn9ΔMocapn7) were obtained using the high-throughput gene knockout system. The calpain disruption mutants showed defects in colony characteristics, conidiation, sexual reproduction and cell wall integrity. The mycelia of the ΔMocapn7, ΔMocapn4ΔMocapn7 and ΔMocapn9ΔMocapn7 mutants showed reduced pathogenicity on rice and barley. PMID:27502542

  5. Calpains are involved in asexual and sexual development, cell wall integrity and pathogenicity of the rice blast fungus

    PubMed Central

    Liu, Xiao-Hong; Ning, Guo-Ao; Huang, Lu-Yao; Zhao, Ya-Hui; Dong, Bo; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-01-01

    Calpains are ubiquitous and well-conserved proteins that belong to the calcium-dependent, non-lysosomal cysteine protease family. In this study, 8 putative calpains were identified using Pfam domain analysis and BlastP searches in M. oryzae. Three single gene deletion mutants (ΔMocapn7, ΔMocapn9 and ΔMocapn14) and two double gene deletion mutants (ΔMocapn4ΔMocapn7 and ΔMocapn9ΔMocapn7) were obtained using the high-throughput gene knockout system. The calpain disruption mutants showed defects in colony characteristics, conidiation, sexual reproduction and cell wall integrity. The mycelia of the ΔMocapn7, ΔMocapn4ΔMocapn7 and ΔMocapn9ΔMocapn7 mutants showed reduced pathogenicity on rice and barley. PMID:27502542

  6. Host active defense responses occur within 24 hours after pathogen inoculation in the rice blast system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenotypic, cytological and molecular responses of rice to the fungus M. grisea were studied using rice cultivars and lesion mimic plants. Cultivar Katy was susceptible to several virulent Magnaporthe grisea isolates. A Sekiguchi-like lesion mimic mutant of Katy (LmmKaty) has shown enhanced resista...

  7. Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922

    PubMed Central

    Wang, Chunlian; Liu, Piqing; Lei, Cailin; Hao, Wei; Gao, Ying; Liu, Yao-Guang; Zhao, Kaijun

    2016-01-01

    Rice blast is one of the most destructive diseases affecting rice worldwide. The adoption of host resistance has proven to be the most economical and effective approach to control rice blast. In recent years, sequence-specific nucleases (SSNs) have been demonstrated to be powerful tools for the improvement of crops via gene-specific genome editing, and CRISPR/Cas9 is thought to be the most effective SSN. Here, we report the improvement of rice blast resistance by engineering a CRISPR/Cas9 SSN (C-ERF922) targeting the OsERF922 gene in rice. Twenty-one C-ERF922-induced mutant plants (42.0%) were identified from 50 T0 transgenic plants. Sanger sequencing revealed that these plants harbored various insertion or deletion (InDel) mutations at the target site. We showed that all of the C-ERF922-induced allele mutations were transmitted to subsequent generations. Mutant plants harboring the desired gene modification but not containing the transferred DNA were obtained by segregation in the T1 and T2 generations. Six T2 homozygous mutant lines were further examined for a blast resistance phenotype and agronomic traits, such as plant height, flag leaf length and width, number of productive panicles, panicle length, number of grains per panicle, seed setting percentage and thousand seed weight. The results revealed that the number of blast lesions formed following pathogen infection was significantly decreased in all 6 mutant lines compared with wild-type plants at both the seedling and tillering stages. Furthermore, there were no significant differences between any of the 6 T2 mutant lines and the wild-type plants with regard to the agronomic traits tested. We also simultaneously targeted multiple sites within OsERF922 by using Cas9/Multi-target-sgRNAs (C-ERF922S1S2 and C-ERF922S1S2S3) to obtain plants harboring mutations at two or three sites. Our results indicate that gene modification via CRISPR/Cas9 is a useful approach for enhancing blast resistance in rice. PMID

  8. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere

    PubMed Central

    Yang, Bo; Wang, Xiao-Mi; Ma, Hai-Yan; Yang, Teng; Jia, Yong; Zhou, Jun; Dai, Chuan-Chao

    2015-01-01

    The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N), but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics, the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea). Ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage). A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates, affected the abundance and community structure of AOA, AOB, and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids in root exudates. Plant-soil feedback mechanisms may be mediated by the rice-endophyte interaction, especially in nutrient-limited soil. PMID:26441912

  9. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere.

    PubMed

    Yang, Bo; Wang, Xiao-Mi; Ma, Hai-Yan; Yang, Teng; Jia, Yong; Zhou, Jun; Dai, Chuan-Chao

    2015-01-01

    The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N), but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics, the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea). Ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage). A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates, affected the abundance and community structure of AOA, AOB, and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids in root exudates. Plant-soil feedback mechanisms may be mediated by the rice-endophyte interaction, especially in nutrient-limited soil. PMID:26441912

  10. The elicitor-responsive gene for a GRAS family protein, CIGR2, suppresses cell death in rice inoculated with rice blast fungus via activation of a heat shock transcription factor, OsHsf23.

    PubMed

    Tanabe, Shigeru; Onodera, Haruko; Hara, Naho; Ishii-Minami, Naoko; Day, Brad; Fujisawa, Yukiko; Hagio, Takashi; Toki, Seiichi; Shibuya, Naoto; Nishizawa, Yoko; Minami, Eiichi

    2015-01-01

    We show that a rice GRAS family protein, CIGR2, is a bonafide transcriptional activator, and through this function, targets the B-type heat shock protein-encoding gene OsHsf23 (Os09g0456800). CIGR2 (Os07g0583600) is an N-acetylchitooligosaccharide elicitor-responsive gene whose activity, through the direct transcriptional control of OsHsf23, is required for mediating hypersensitive cell death activation during pathogen infection. RNAi lines of CIGR2 and OsHsf23 similarly exhibited the higher level of granulation in the epidermal cells of leaf sheath inoculated with an avirulent isolate of rice blast fungus. Interestingly, we did not observe altered levels of resistance, suggesting that CIGR2 suppresses excessive cell death in the incompatible interaction with blast fungus via activation of OsHsf23. PMID:26287768

  11. Repression of microRNA biogenesis by silencing of OsDCL1 activates the basal resistance to Magnaporthe oryzae in rice.

    PubMed

    Zhang, Dandan; Liu, Muxing; Tang, Mingzhi; Dong, Bo; Wu, Dianxing; Zhang, Zhengguang; Zhou, Bo

    2015-08-01

    The RNaseIII enzyme Dicer-like 1 (DCL1) processes the microRNA biogenesis and plays a determinant role in plant development. In this study, we reported the function of OsDCL1 in the immunity to rice blast, the devastating disease caused by the fungal pathogen, Magnaporthe oryzae. Expression profiling demonstrated that different OsDCLs responded dynamically and OsDCL1 reduced its expression upon the challenge of rice blast pathogen. In contrast, miR162a predicted to target OsDCL1 increased its expression, implying a negative feedback loop between OsDCL1 and miR162a in rice. In addition to developmental defects, the OsDCL1-silencing mutants showed enhanced resistance to virulent rice blast strains in a non-race specific manner. Accumulation of hydrogen peroxide and cell death were observed in the contact cells with infectious hyphae, revealing that silencing of OsDCL1 activated cellular defense responses. In OsDCL1 RNAi lines, 12 differentially expressed miRNAs were identified, of which 5 and 7 were down- and up-regulated, respectively, indicating that miRNAs responded dynamically in the interaction between rice and rice blast. Moreover, silencing of OsDCL1 activated the constitutive expression of defense related genes. Taken together, our results indicate that rice is capable of activating basal resistance against rice blast by perturbing OsDCL1-dependent miRNA biogenesis pathway. PMID:26089149

  12. Study on the interaction between methyl jasmonate and the coiled-coil domain of rice blast resistance protein Pi36 by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Liu, Xin Q.; Zhang, Dan; Zhang, Xiang M.; Wang, Chun T.; Liu, Xue Q.; Tan, Yan P.; Wu, Yun H.

    2012-03-01

    Interaction between the coiled-coil domain of rice blast resistance protein Pi36 and methyl-jasmonate (MeJA) was studied by fluorescence and UV-vis spectroscopic techniques. The quenching mechanism of fluorescence of MeJA by this domain was discussed to be a static quenching procedure. Fluorescence quenching was explored to measure the number of binding sites n and apparent binding constants K. The thermodynamics parameters ΔH, ΔG, ΔS were also calculated. The results indicate the binding reaction was not entropy-driven but enthalpy-driven, and hydrophobic binding played major role in the interaction. The binding sites of MeJA with the coiled-coil structural domain of rice blast resistance protein Pi36 were found to approach the microenvironment of both Tyr and Trp by the synchronous fluorescence spectrometry. The distance r between donor (the coiled-coil domain of rice blast resistance protein Pi36) and acceptor (MeJA) was obtained according to Förster theory of non-radioactive energy transfer.

  13. Understanding the molecular mechanisms of the instability of rice blast resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Race-specific blast resistance is not durable and the molecular mechanisms of the instability of race-specific resistance are unclear. The pathogenicity factor AVR-Pita in Magnaporthe oryzae that determines the efficacy of the resistance gene Pi-ta encodes a predicted metalloprotease. Here we repo...

  14. Mechanisms of Rice Blast Resistance and Its Implication for Breeding for Improved Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major Pyricularia (Pi) resistance (R) gene to the blast pathogen M. oryzae prevents only isolates of M. oryzae that contain the corresponding avirulence (AVR) genes. The AVR genes in M. oryzae are presumably meant to promote diseases and are often evolved for the adaptation and fitness of the pat...

  15. Characterization of Pi-ta Blast resistance gene in an international rice core collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pi-ta gene in rice prevents infections by races of Magnaporthe oryzae containing AVR-Pita. In the present study, 1,790 accessions were characterized for Pi-ta, and the Pi-ta independent resistance genes using marker analysis, disease evaluation with the race IB-49 carrying AVR-Pita, and IE-1k n...

  16. Structural and functional analysis of the rice blast fungus avirulence gene AVR-Pita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The AVR-Pita gene in Magnaporthe oryzae determines efficacy of resistance stability provided by a major effective resistance gene Pi-ta in rice. AVR-Pita encodes a predicted secreted metalloprotease that appears to interact with the Pi-ta protein, a cytoplamic NBS-LRR protein directly in triggering...

  17. Examination of the rice blast pathogen population diversity in Arkansas, USA – Stable or Unstable?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past 17 years, isolates of Pyricularia oryzae (= P. grisea) have been recovered from commercial rice fields in Arkansas. Annual samples have typically included 100–500 isolates recovered from 5 to 10 cultivars from 10 different counties with the majority of the isolates being recovered from...

  18. Examination of the rice blast pathogen population diversity between 1990 and 2006 - Stable or unstable?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past 17 yeas, isolates of Pyricularia grisea (P. oryzae) have been recovered from commercial rice fields in Arkansas. Annual samples have typically included 200-500 isolates recovered from 5-10 cultivars from 10 different counties with the majority of the isolates being recovered from the n...

  19. Natural variation of rice blast resistant gene Pi-ta in Oryza species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pi-ta gene in rice is a putative NBS type cytoplasmic receptor conferring resistance to races of Magnaporthe oryzae in a gene-for-gene manner. A Functional Nucleotide Polymorphism (FNP) change resulting in an amino acid substitution of Alanine to Serine at position 918 (nucleotide G to T at posi...

  20. Antimicrobial activity of UV-induced phenylamides from rice leaves.

    PubMed

    Park, Hye Lin; Yoo, Youngchul; Hahn, Tae-Ryong; Bhoo, Seong Hee; Lee, Sang-Won; Cho, Man-Ho

    2014-01-01

    Rice produces a wide array of phytoalexins in response to pathogen attacks and UV-irradiation. Except for the flavonoid sakuranetin, most phytoalexins identified in rice are diterpenoid compounds. Analysis of phenolic-enriched fractions from UV-treated rice leaves showed that several phenolic compounds in addition to sakuranetin accumulated remarkably in rice leaves. We isolated two compounds from UV-treated rice leaves using silica gel column chromatography and preparative HPLC. The isolated phenolic compounds were identified as phenylamide compounds: N-trans-cinnamoyltryptamine and N-p-coumaroylserotonin. Expression analysis of biosynthetic genes demonstrated that genes for arylamine biosynthesis were upregulated by UV irradiation. This result suggested that phenylamide biosynthetic pathways are activated in rice leaves by UV treatment. To unravel the role of UV-induced phenylamides as phytoalexins, we examined their antimicrobial activity against rice fungal and bacterial pathogens. N-trans-Cinnamoyltryptamine inhibited the growth of rice brown spot fungus (Bipolaris oryzae). In addition to the known antifungal activity to the blast fungus, sakuranetin had antimicrobial activity toward B. oryzae and Rhizoctonia solani (rice sheath blight fungus). UV-induced phenylamides and sakuranetin also had antimicrobial activity against rice bacterial pathogens for grain rot (Burkholderia glumae), blight (Xanthomonas oryzae pv. oryzae) and leaf streak (X. oryzae pv. oryzicola) diseases. These findings suggested that the UV-induced phenylamides in rice are phytoalexins against a diverse array of pathogens. PMID:25383752

  1. A Novel Pathogenicity Gene Is Required in the Rice Blast Fungus to Suppress the Basal Defenses of the Host

    PubMed Central

    Chi, Myoung-Hwan; Park, Sook-Young; Kim, Soonok; Lee, Yong-Hwan

    2009-01-01

    For successful colonization and further reproduction in host plants, pathogens need to overcome the innate defenses of the plant. We demonstrate that a novel pathogenicity gene, DES1, in Magnaporthe oryzae regulates counter-defenses against host basal resistance. The DES1 gene was identified by screening for pathogenicity-defective mutants in a T-DNA insertional mutant library. Bioinformatic analysis revealed that this gene encodes a serine-rich protein that has unknown biochemical properties, and its homologs are strictly conserved in filamentous Ascomycetes. Targeted gene deletion of DES1 had no apparent effect on developmental morphogenesis, including vegetative growth, conidial germination, appressorium formation, and appressorium-mediated penetration. Conidial size of the mutant became smaller than that of the wild type, but the mutant displayed no defects on cell wall integrity. The Δdes1 mutant was hypersensitive to exogenous oxidative stress and the activity and transcription level of extracellular enzymes including peroxidases and laccases were severely decreased in the mutant. In addition, ferrous ion leakage was observed in the Δdes1 mutant. In the interaction with a susceptible rice cultivar, rice cells inoculated with the Δdes1 mutant exhibited strong defense responses accompanied by brown granules in primary infected cells, the accumulation of reactive oxygen species (ROS), the generation of autofluorescent materials, and PR gene induction in neighboring tissues. The Δdes1 mutant displayed a significant reduction in infectious hyphal extension, which caused a decrease in pathogenicity. Notably, the suppression of ROS generation by treatment with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidases, resulted in a significant reduction in the defense responses in plant tissues challenged with the Δdes1 mutant. Furthermore, the Δdes1 mutant recovered its normal infectious growth in DPI-treated plant tissues. These results suggest that DES1

  2. Decline in Topsoil Microbial Quotient, Fungal Abundance and C Utilization Efficiency of Rice Paddies under Heavy Metal Pollution across South China

    PubMed Central

    Liu, Yongzhuo; Zhou, Tong; Crowley, David; Li, Lianqing; Liu, Dawen; Zheng, Jinwei; Yu, Xinyan; Pan, Genxing; Hussain, Qaiser; Zhang, Xuhui; Zheng, Jufeng

    2012-01-01

    Agricultural soils have been increasingly subject to heavy metal pollution worldwide. However, the impacts on soil microbial community structure and activity of field soils have been not yet well characterized. Topsoil samples were collected from heavy metal polluted (PS) and their background (BGS) fields of rice paddies in four sites across South China in 2009. Changes with metal pollution relative to the BGS in the size and community structure of soil microorganisms were examined with multiple microbiological assays of biomass carbon (MBC) and nitrogen (MBN) measurement, plate counting of culturable colonies and phospholipids fatty acids (PLFAs) analysis along with denaturing gradient gel electrophoresis (DGGE) profile of 16S rRNA and 18S rRNA gene and real-time PCR assay. In addition, a 7-day lab incubation under constantly 25°C was conducted to further track the changes in metabolic activity. While the decrease under metal pollution in MBC and MBN, as well as in culturable population size, total PLFA contents and DGGE band numbers of bacteria were not significantly and consistently seen, a significant reduction was indeed observed under metal pollution in microbial quotient, in culturable fungal population size and in ratio of fungal to bacterial PLFAs consistently across the sites by an extent ranging from 6% to 74%. Moreover, a consistently significant increase in metabolic quotient was observed by up to 68% under pollution across the sites. These observations supported a shift of microbial community with decline in its abundance, decrease in fungal proportion and thus in C utilization efficiency under pollution in the soils. In addition, ratios of microbial quotient, of fungal to bacterial and qCO2 are proved better indicative of heavy metal impacts on microbial community structure and activity. The potential effects of these changes on C cycling and CO2 production in the polluted rice paddies deserve further field studies. PMID:22701725

  3. Mitotic stopwatch for the blast fungus Magnaporthe oryzae during invasion of rice cells.

    PubMed

    Jones, Kiersun; Jenkinson, Cory B; Borges Araújo, Maíra; Zhu, Jie; Kim, Rebecca Y; Kim, Dong Won; Khang, Chang Hyun

    2016-08-01

    To study nuclear dynamics of Magnaporthe oryzae, we developed a novel mitotic reporter strain with GFP-NLS (localized in nuclei during interphase but in the cytoplasm during mitosis) and H1-tdTomato (localized in nuclei throughout the cell cycle). Time-lapse confocal microscopy of the reporter strain during host cell invasion provided several new insights into nuclear division and migration in M. oryzae: (i) mitosis lasts about 5min; (ii) mitosis is semi-closed; (iii) septal pores are closed during mitosis; and (iv) a nucleus exhibits extreme constriction (approximately from 2μm to 0.5μm), elongation (over 5μm), and long migration (over 16μm). Our observations raise new questions about mechanisms controlling the mitotic dynamics, and the answers to these questions may result in new means to prevent fungal proliferation without negatively affecting the host cell cycle. PMID:27321562

  4. Over-Expression of the Pikh Gene with a CaMV 35S Promoter Leads to Improved Blast Disease (Magnaporthe oryzae) Tolerance in Rice

    PubMed Central

    Azizi, Parisa; Rafii, Mohd Y.; Abdullah, Siti N. A.; Hanafi, Mohamed M.; Maziah, M.; Sahebi, Mahbod; Ashkani, Sadegh; Taheri, Sima; Jahromi, Mohammad F.

    2016-01-01

    Magnaporthe oryzae is a rice blast fungus and plant pathogen that causes a serious rice disease and, therefore, poses a threat to the world's second most important food security crop. Plant transformation technology has become an adaptable system for cultivar improvement and to functionally analyze genes in plants. The objective of this study was to determine the effects (through over-expressing and using the CaMV 35S promoter) of Pikh on MR219 resistance because it is a rice variety that is susceptible to the blast fungus pathotype P7.2. Thus, a full DNA and coding DNA sequence (CDS) of the Pikh gene, 3172 bp, and 1206 bp in length, were obtained through amplifying the gDNA and cDNA template from a PH9-resistant rice variety using a specific primer. Agrobacterium-mediated transformation technology was also used to introduce the Pikh gene into the MR219 callus. Subsequently, transgenic plants were evaluated from the DNA to protein stages using polymerase chain reaction (PCR), semi-quantitative RT-PCR, real-time quantitative PCR and high performance liquid chromatography (HPLC). Transgenic plants were also compared with a control using a real-time quantification technique (to quantify the pathogen population), and transgenic and control plants were challenged with the local most virulent M. oryzae pathotype, P7.2. Based on the results, the Pikh gene encodes a hydrophilic protein with 18 sheets, 4 helixes, and 21 coils. This protein contains 401 amino acids, among which the amino acid sequence from 1 to 376 is a non-cytoplasmic region, that from 377 to 397 is a transmembrane region, and that from 398 to 401 is a cytoplasmic region with no identified disordered regions. The Pikh gene was up-regulated in the transgenic plants compared with the control plants. The quantity of the amino acid leucine in the transgenic rice plants increased significantly from 17.131 in the wild-type to 47.865 mg g−1 in transgenic plants. The M. oryzae population was constant at 31, 48

  5. Over-Expression of the Pikh Gene with a CaMV 35S Promoter Leads to Improved Blast Disease (Magnaporthe oryzae) Tolerance in Rice.

    PubMed

    Azizi, Parisa; Rafii, Mohd Y; Abdullah, Siti N A; Hanafi, Mohamed M; Maziah, M; Sahebi, Mahbod; Ashkani, Sadegh; Taheri, Sima; Jahromi, Mohammad F

    2016-01-01

    Magnaporthe oryzae is a rice blast fungus and plant pathogen that causes a serious rice disease and, therefore, poses a threat to the world's second most important food security crop. Plant transformation technology has become an adaptable system for cultivar improvement and to functionally analyze genes in plants. The objective of this study was to determine the effects (through over-expressing and using the CaMV 35S promoter) of Pikh on MR219 resistance because it is a rice variety that is susceptible to the blast fungus pathotype P7.2. Thus, a full DNA and coding DNA sequence (CDS) of the Pikh gene, 3172 bp, and 1206 bp in length, were obtained through amplifying the gDNA and cDNA template from a PH9-resistant rice variety using a specific primer. Agrobacterium-mediated transformation technology was also used to introduce the Pikh gene into the MR219 callus. Subsequently, transgenic plants were evaluated from the DNA to protein stages using polymerase chain reaction (PCR), semi-quantitative RT-PCR, real-time quantitative PCR and high performance liquid chromatography (HPLC). Transgenic plants were also compared with a control using a real-time quantification technique (to quantify the pathogen population), and transgenic and control plants were challenged with the local most virulent M. oryzae pathotype, P7.2. Based on the results, the Pikh gene encodes a hydrophilic protein with 18 sheets, 4 helixes, and 21 coils. This protein contains 401 amino acids, among which the amino acid sequence from 1 to 376 is a non-cytoplasmic region, that from 377 to 397 is a transmembrane region, and that from 398 to 401 is a cytoplasmic region with no identified disordered regions. The Pikh gene was up-regulated in the transgenic plants compared with the control plants. The quantity of the amino acid leucine in the transgenic rice plants increased significantly from 17.131 in the wild-type to 47.865 mg g(-1) in transgenic plants. The M. oryzae population was constant at 31, 48

  6. The single functional blast resistance gene Pi54 activates a complex defence mechanism in rice.

    PubMed

    Gupta, Santosh Kumar; Rai, Amit Kumar; Kanwar, Shamsher Singh; Chand, Duni; Singh, Nagendera Kumar; Sharma, Tilak Raj

    2012-01-01

    The Pi54 gene (Pi-k(h)) confers a high degree of resistance to diverse strains of the fungus Magnaporthe oryzae. In order to understand the genome-wide co-expression of genes in the transgenic rice plant Taipei 309 (TP) containing the Pi54 gene, microarray analysis was performed at 72 h post-inoculation of the M. oryzae strain PLP-1. A total of 1154 differentially expressing genes were identified in TP-Pi54 plants. Of these, 587 were up-regulated, whereas 567 genes were found to be down-regulated. 107 genes were found that were exclusively up-regulated and 58 genes that were down- regulated in the case of TP-Pi54. Various defence response genes, such as callose, laccase, PAL, and peroxidase, and genes related to transcription factors like NAC6, Dof zinc finger, MAD box, bZIP, and WRKY were found to be up-regulated in the transgenic line. The enzymatic activities of six plant defence response enzymes, such as peroxidase, polyphenol oxidase, phenylalanine ammonia lyase, β-glucosidase, β-1,3-glucanase, and chitinase, were found to be significantly high in TP-Pi54 at different stages of inoculation by M. oryzae. The total phenol content also increased significantly in resistant transgenic plants after pathogen inoculation. This study suggests the activation of defence response and transcription factor-related genes and a higher expression of key enzymes involved in the defence response pathway in the rice line TP-Pi54, thus leading to incompatible host-pathogen interaction. PMID:22058403

  7. [Genetic analysis of blast resistance in japonica rice landrace heikezijing from Taihu region].

    PubMed

    Wang, Jian-Fei; He, Xin-Jian; Zhang, Hong-Sheng; Chen, Zhi-Yi

    2002-09-01

    Japonica rice landrace Heikezijing (HKZJ) from Taihu region is highly resistant to several Chinese and Japanese differential strains of Magnaporthe grisea. The F1, F2 and RIL populations from the cross between the resistant variety Heikezijing and the susceptible variety Lijiangxintuanheigu (LJXTHG) were inoculated by spray with two strains of Ken 54-04 and Hoku 1 in seedling stages. Based on the R:S ratios of segregation in F1, F2 and RIL populations it was showed that there were two independent dominant genes in Heikezijing in responsible for resistance to strain Ken 54-04 and one dominant R gene to strain Hoku 1 which is the same to one of the two genes resistant to Ken 54-04. The allelic test indicated that the gene with resistance to both Hoku 1 and Ken 54-04 is non-allelic to loci of Pi-k, Pi-z, Pi-ta, Pi-b and Pi-t, also neither Pi-i nor Pi-a gene. It is necessary to confirm whether it is an unknown gene. PMID:12561228

  8. ZNF1 Encodes a Putative C2H2 Zinc-Finger Protein Essential for Appressorium Differentiation by the Rice Blast Fungus Magnaporthe oryzae.

    PubMed

    Yue, Xiaofeng; Que, Yawei; Xu, Lin; Deng, Shuzhen; Peng, Youliang; Talbot, Nicholas J; Wang, Zhengyi

    2016-01-01

    The rice blast fungus Magnaporthe oryzae forms specialized infection structures called appressoria which are essential for gaining entry to plant tissue. Here, we report the identification of a novel nonpathogenic T-DNA-tagged mutant XF696 of M. oryzae with a single insertion in the promoter of ZNF1, which encodes a putative transcription factor (TF). Targeted gene deletion mutants of ZNF1 are nonpathogenic and unable to develop appressoria. However, Δznf1 mutants still respond to exogenous cyclic AMP on hydrophilic surfaces and can sense hydrophobic surfaces, initiating the differentiation of germ tubes. Interestingly, Δznf1 mutants also produce significantly more conidia compared with the isogenic wild-type strain. Quantitative reverse-transcription polymerase chain reaction analysis and green fluorescent protein fusion experiments revealed that expression of ZNF1 was highly induced during germination and appressorium development in M. oryzae and potentially regulated by the Pmk1 mitogen-activated protein kinase pathway. We observed that Δznf1 mutants are affected in mitosis and impaired in mobilization and degradation of lipid droplets and glycogen reserves during appressorium differentiation. Site-directed mutagenesis confirmed that three of the four C2H2 zinc-finger domains are essential for the function of Znf1. Taken together, we conclude that a C2H2 zinc-finger TF encoded by ZNF1 is essential for appressorium development by the rice blast fungus. PMID:26441322

  9. FAR1 and FAR2 Regulate the Expression of Genes Associated with Lipid Metabolism in the Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    bin Yusof, Mohammad Termizi; Kershaw, Michael J.; Soanes, Darren M.; Talbot, Nicholas J.

    2014-01-01

    The rice blast fungus Magnaporthe oryzae causes plant disease via specialised infection structures called appressoria. These dome-shaped cells are able to generate enormous internal pressure, which enables penetration of rice tissue by invasive hyphae. Previous studies have shown that mobilisation of lipid bodies and subsequent lipid metabolism are essential pre-requisites for successful appressorium-mediated plant infection, which requires autophagic recycling of the contents of germinated spores and germ tubes to the developing appressorium. Here, we set out to identify putative regulators of lipid metabolism in the rice blast fungus. We report the identification of FAR1 and FAR2, which encode highly conserved members of the Zn2-Cys6 family of transcriptional regulators. We generated Δfar1, Δfar2 and Δfar1Δfar2 double mutants in M. oryzae and show that these deletion mutants are deficient in growth on long chain fatty acids. In addition, Δfar2 mutants are also unable to grow on acetate and short chain fatty acids. FAR1 and FAR2 are necessary for differential expression of genes involved in fatty acid β-oxidation, acetyl-CoA translocation, peroxisomal biogenesis, and the glyoxylate cycle in response to the presence of lipids. Furthermore, FAR2 is necessary for expression of genes associated with acetyl-CoA synthesis. Interestingly, Δfar1, Δfar2 and Δfar1Δfar2 mutants show no observable delay or reduction in lipid body mobilisation during plant infection, suggesting that these transcriptional regulators control lipid substrate utilization by the fungus but not the mobilisation of intracellular lipid reserves during infection-related morphogenesis. PMID:24949933

  10. FAR1 and FAR2 regulate the expression of genes associated with lipid metabolism in the rice blast fungus Magnaporthe oryzae.

    PubMed

    bin Yusof, Mohammad Termizi; Kershaw, Michael J; Soanes, Darren M; Talbot, Nicholas J

    2014-01-01

    The rice blast fungus Magnaporthe oryzae causes plant disease via specialised infection structures called appressoria. These dome-shaped cells are able to generate enormous internal pressure, which enables penetration of rice tissue by invasive hyphae. Previous studies have shown that mobilisation of lipid bodies and subsequent lipid metabolism are essential pre-requisites for successful appressorium-mediated plant infection, which requires autophagic recycling of the contents of germinated spores and germ tubes to the developing appressorium. Here, we set out to identify putative regulators of lipid metabolism in the rice blast fungus. We report the identification of FAR1 and FAR2, which encode highly conserved members of the Zn2-Cys6 family of transcriptional regulators. We generated Δfar1, Δfar2 and Δfar1Δfar2 double mutants in M. oryzae and show that these deletion mutants are deficient in growth on long chain fatty acids. In addition, Δfar2 mutants are also unable to grow on acetate and short chain fatty acids. FAR1 and FAR2 are necessary for differential expression of genes involved in fatty acid β-oxidation, acetyl-CoA translocation, peroxisomal biogenesis, and the glyoxylate cycle in response to the presence of lipids. Furthermore, FAR2 is necessary for expression of genes associated with acetyl-CoA synthesis. Interestingly, Δfar1, Δfar2 and Δfar1Δfar2 mutants show no observable delay or reduction in lipid body mobilisation during plant infection, suggesting that these transcriptional regulators control lipid substrate utilization by the fungus but not the mobilisation of intracellular lipid reserves during infection-related morphogenesis. PMID:24949933

  11. Distinct Biochemical and Functional Properties of Two Rab5 Homologs from the Rice Blast Fungus Magnaporthe oryzae*

    PubMed Central

    Qi, Yaoyao; Marlin, M. Caleb; Liang, Zhimin; Berry, William L.; Janknecht, Ralf; Zhou, Jie; Wang, Zonghua; Lu, Guodong; Li, Guangpu

    2014-01-01

    Rab5 is a key regulator of early endocytosis by promoting early endosomal fusion and motility. In this study, we have unexpectedly found distinct properties of the two Rab5 homologs (MoRab5A and MoRab5B) from Magnaporthe oryzae, a pathogenic fungus in plants whose infection causes rice blast disease. Like mammalian Rab5, MoRab5A and MoRab5B can bind to several Rab5 effectors in a GTP-dependent manner, including EEA1, Rabenosyn-5, and Rabaptin-5. However, MoRab5A shows distinct binding characteristics in the sense that both the wild-type and the GTP hydrolysis-defective constitutively active mutant bind the effectors equally well in GST pull-down assays, suggesting that MoRab5A is defective in GTP hydrolysis and mostly in the GTP-bound conformation in the cell. Indeed, GTP hydrolysis assays indicate that MoRab5A GTPase activity is dramatically lower than MoRab5B and human Rab5 and is insensitive to RabGAP5 stimulation. We have further identified a Pro residue in the switch I region largely responsible for the distinct MoRab5A properties by characterization of MoRab5A and MoRab5B chimeras and mutagenesis. The differences between MoRab5A and MoRab5B extend to their functions in the cell. Although they both target to early endosomes, only MoRab5B closely resembles human Rab5 in promoting early endosome fusion and stimulating fluid phase endocytosis. In contrast, MoRab5A correlates with another related early endosomal Rab, Rab22, in terms of the presence of the switch I Pro residue and the blocked GTPase activity. Our data thus identify MoRab5B as the Rab5 ortholog and suggest that MoRab5A specializes to perform a non-redundant function in endosomal sorting. PMID:25164815

  12. Morphological and molecular characterization of fungal pathogen, Magnaphorthe oryzae

    NASA Astrophysics Data System (ADS)

    Hasan, Nor'Aishah; Rafii, Mohd Y.; Rahim, Harun A.; Ali, Nusaibah Syd; Mazlan, Norida; Abdullah, Shamsiah

    2016-02-01

    Rice is arguably the most crucial food crops supplying quarter of calories intake. Fungal pathogen, Magnaphorthe oryzae promotes blast disease unconditionally to gramineous host including rice species. This disease spurred an outbreaks and constant threat to cereal production. Global rice yield declining almost 10-30% including Malaysia. As Magnaphorthe oryzae and its host is model in disease plant study, the rice blast pathosystem has been the subject of intense interest to overcome the importance of the disease to world agriculture. Therefore, in this study, our prime objective was to isolate samples of Magnaphorthe oryzae from diseased leaf obtained from MARDI Seberang Perai, Penang, Malaysia. Molecular identification was performed by sequences analysis from internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes. Phylogenetic affiliation of the isolated samples were analyzed by comparing the ITS sequences with those deposited in the GenBank database. The sequence of the isolate demonstrated at least 99% nucleotide identity with the corresponding sequence in GenBank for Magnaphorthe oryzae. Morphological observed under microscope demonstrated that the structure of conidia followed similar characteristic as M. oryzae. Finding in this study provide useful information for breeding programs, epidemiology studies and improved disease management.

  13. Distinctively variable sequence-based nuclear DNA markers for multilocus phylogeography of the soybean- and rice-infecting fungal pathogen Rhizoctonia solani AG-1 IA

    PubMed Central

    2009-01-01

    A series of multilocus sequence-based nuclear DNA markers was developed to infer the phylogeographical history of the Basidiomycetous fungal pathogen Rhizoctonia solani AG-1 IA infecting rice and soybean worldwide. The strategy was based on sequencing of cloned genomic DNA fragments (previously used as RFLP probes) and subsequent screening of fungal isolates to detect single nucleotide polymorphisms (SNPs). Ten primer pairs were designed based on these sequences, which resulted in PCR amplification of 200-320 bp size products and polymorphic sequences in all markers analyzed. By direct sequencing we identified both homokaryon and heterokaryon (i.e. dikaryon) isolates at each marker. Cloning the PCR products effectively estimated the allelic phase from heterokaryotic isolates. Information content varied among markers from 0.5 to 5.9 mutations per 100 bp. Thus, the former RFLP codominant probes were successfully converted into six distinctively variable sequence-based nuclear DNA markers. Rather than discarding low polymorphism loci, the combination of these distinctively variable anonymous nuclear markers would constitute an asset for the unbiased estimate of the phylogeographical parameters such as population sizes and divergent times, providing a more reliable species history that shaped the current population structure of R. solani AG-1 IA. PMID:21637462

  14. Data set from the phosphoproteomic analysis of Magnaporthe oryzae-responsive proteins in susceptible and resistant rice cultivars

    PubMed Central

    Li, Yunfeng; Ye, Zhijian; Nie, Yanfang; Zhang, Jian; Wang, Guo-Liang; Wang, Zhenzhong

    2015-01-01

    Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is the most destructive disease of rice and causes tremendous losses of rice yield worldwide. To explore the molecular mechanisms involved in the rice–M. oryzae interaction, we conducted a time-course phosphoproteomic analysis of leaf samples from resistant and susceptible rice cultivars infected with M. oryzae. This data article contains additional results and analysis of M. oryzae-regulated phosphoproteins in rice leaves [1]. We report the analysis of M. oryzae-regulated phosphoproteins at all time points, including Venn diagram analysis, close-up views, relative intensities, and functional category, and the MS spectra of representative phosphoprotein and representative phosphorylated peptides. PMID:26217708

  15. Live-cell imaging of rice cytological changes reveals the importance of host vacuole maintenance for biotrophic invasion by blast fungus, Magnaporthe oryzae.

    PubMed

    Mochizuki, Susumu; Minami, Eiichi; Nishizawa, Yoko

    2015-12-01

    The rice blast fungus Magnaporthe oryzae grows inside living host cells. Cytological analyses by live-cell imaging have revealed characteristics of the biotrophic invasion, particularly the extrainvasive hyphal membrane (EIHM) originating from the host plasma membrane and a host membrane-rich structure, biotrophic interfacial complex (BIC). Here, we observed rice subcellular changes associated with invasive hyphal growth using various transformants expressing specifically localized fluorescent proteins. The invasive hyphae did not penetrate across but were surrounded by the host vacuolar membrane together with EIHM even after branching. High-resolution imaging of BICs revealed that the host cytosol was accumulated at BIC with aggregated EIHM and a symplastic effector, Pwl2, in a punctate form. The vacuolar membrane did not aggregate in but closely surrounded the BIC. A good correlation was observed between the early collapse of vacuoles and damage of invasive hyphae in the first-invaded cell. Furthermore, a newly developed, long-term imaging method has revealed that the central vacuole gradually shrank until collapse, which was caused by the hyphal invasion occurring earlier in the neighboring cells than in the first-invaded cells. These data suggest that M. oryzae may suppress host vacuole collapse during early infection stages for successful infection. PMID:26472068

  16. Artificial introgression of a large fragment around the Pi-ta rice blast resistance gene in backcross progenies and several elite rice cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Study of the size of genomic introgressions should lead to a better understanding of linkage disequilibrium in crop breeding. Rice presents a unique opportunity to examine the size of introgressions because of the availability of abundant simple sequence repeat (SSR) markers. In the present study, ...

  17. Identification of major blast resistance genes in the southern US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance (R) genes in rice play important roles in preventing infections of rice blast fungus, Magnaporthe oryzae. In order to identify more R genes for different rice growing areas in the Southern US, an extensive field survey of the blast fungus was performed from 2012 to 2013. A total of 500 is...

  18. Identification of a new locus Ptr(t) required for rice blast resistance gene Pi-ta-mediated resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance to the blast pathogen Magnaporthe oryzae is proposed to be initiated by physical binding of a putative cytoplasmic receptor encoded by a NBS-type resistance gene, Pi-ta, to the processed elicitor encoded by the corresponding avirulence gene AVR-Pita. Here we report the identification of a...

  19. Expression profiling of common and specific defense responses of rice to Magnaporthe oryzae infection using deep sequencing technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast caused by Magnaporthe oryzae is a serious disease in rice production. Wild type Nipponbare and transgenic rice plants (carrying the Pi9 blast resistance gene) were challenged with the rice blast strain KJ201 to identify the early, mid and late host responses to M. oryzae infection at the ...

  20. Fungal arthritis

    MedlinePlus

    ... and irritation (inflammation) of a joint by a fungal infection. It is also called mycotic arthritis. Causes Fungal ... symptoms of fungal arthritis. Prevention Thorough treatment of fungal infections elsewhere in the body may help prevent fungal ...

  1. Coevolutionary dynamics of rice blast resistance gene Pi-ta and Magnaporthe oryzae avirulence gene AVR-Pita 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pi-ta gene in rice is effective in preventing infections by Magnaporthe oryzae strains that contain the corresponding avirulence gene, AVR-Pita1. Genome sequencing and mapping studies demonstrated that AVR-Pita1 is highly unstable, and diverse haplotypes of AVR-Pita1 have been identified from is...

  2. Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae.

    PubMed

    Cao, Huijuan; Huang, Pengyun; Zhang, Lilin; Shi, Yongkai; Sun, Dandan; Yan, Yuxin; Liu, Xiaohong; Dong, Bo; Chen, Guoqing; Snyder, John Hugh; Lin, Fucheng; Lu, Jianping

    2016-08-01

    The Cys2 -His2 (C2H2) zinc finger protein family is the second-largest family of transcription factors (TFs) in Magnaporthe oryzae, the causal fungus responsible for the destructive rice blast disease. However, little is known about the roles of most C2H2 TFs in the development and pathogenicity of M. oryzae. The roles of 47 C2H2 genes in development and pathogenicity were investigated by gene deletion in M. oryzae. The TF-dependent genes in mycelia or appressoria were analyzed with RNA sequencing and quantitative PCR (qPCR). Forty-four C2H2 genes are involved in growth (20 genes), conidiation (28 genes), appressorium formation (four genes) and pathogenicity (22 genes) in M. oryzae. Of these, MGG_14931, named as VRF1, is required for pathogenicity, specifically controlling appressorium maturation by affecting the expression of genes related to appressorial structure and function, including melanin biosynthesis, chitin catabolism, lipid metabolism, proteolysis, transmembrane transport, and response to oxidative stress; MGG_01776, named as VRF2, is required for plant penetration and invasive growth; conidiation-related gene CON7 is required for conidial differentiation; and MoCREA, encoding a carbon catabolite repression protein, is a novel repressor of lipid catabolism when glucose obtainable in M. oryzae. This study provides many insights into the regulation of growth, asexual development, appressorium formation, and pathogenicity by C2H2 TFs in M. oryzae. PMID:27041000

  3. Germin-like protein 2 gene promoter from rice is responsive to fungal pathogens in transgenic potato plants.

    PubMed

    Munir, Faiza; Hayashi, Satomi; Batley, Jacqueline; Naqvi, Syed Muhammad Saqlan; Mahmood, Tariq

    2016-01-01

    Controlled transgene expression via a promoter is particularly triggered in response to pathogen infiltration. This is significant for eliciting disease-resistant features in crops through genetic engineering. The germins and germin-like proteins (GLPs) are known to be associated with plant and developmental stages. The 1107-bp Oryza sativa root GLP2 (OsRGLP2) gene promoter fused to a β-glucuronidase (GUS) reporter gene was transformed into potato plants through an Agrobacterium-mediated transformation. The OsRGLP2 promoter was activated in response to Fusarium solani (Mart.) Sacc. and Alternaria solani Sorauer. Quantitative real-time PCR results revealed 4-5-fold increase in promoter activity every 24 h following infection. There was a 15-fold increase in OsRGLP2 promoter activity after 72 h of F. solani (Mart.) Sacc. treatment and a 12-fold increase observed with A. solani Sorauer. Our results confirmed that the OsRGLP2 promoter activity was enhanced under fungal stress. Furthermore, a hyperaccumulation of H2O2 in transgenic plants is a clear signal for the involvement of OsRGLP2 promoter region in the activation of specific genes in the potato genome involved in H2O2-mediated defense response. The OsRGLP2 promoter evidently harbors copies of GT-I and Dof transcription factors (AAAG) that act in response to elicitors generated in the wake of pathogen infection. PMID:26277722

  4. Regulation of cellular diacylglycerol through lipid phosphate phosphatases is required for pathogenesis of the rice blast fungus, Magnaporthe oryzae.

    PubMed

    Sadat, Md Abu; Jeon, Junhyun; Mir, Albely Afifa; Choi, Jaeyoung; Choi, Jaehyuk; Lee, Yong-Hwan

    2014-01-01

    Considering implication of diacylglycerol in both metabolism and signaling pathways, maintaining proper levels of diacylglycerol (DAG) is critical to cellular homeostasis and development. Except the PIP2-PLC mediated pathway, metabolic pathways leading to generation of DAG converge on dephosphorylation of phosphatidic acid catalyzed by lipid phosphate phosphatases. Here we report the role of such enzymes in a model plant pathogenic fungus, Magnaporthe oryzae. We identified five genes encoding putative lipid phosphate phosphatases (MoLPP1 to MoLPP5). Targeted disruption of four genes (except MoLPP4) showed that MoLPP3 and MoLPP5 are required for normal progression of infection-specific development and proliferation within host plants, whereas MoLPP1 and MoLPP2 are indispensable for fungal pathogenicity. Reintroduction of MoLPP3 and MoLPP5 into individual deletion mutants restored all the defects. Furthermore, exogenous addition of saturated DAG not only restored defect in appressorium formation but also complemented reduced virulence in both mutants. Taken together, our data indicate differential roles of lipid phosphate phosphatase genes and requirement of proper regulation of cellular DAGs for fungal development and pathogenesis. PMID:24959955

  5. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement.

    PubMed

    Khang, Chang Hyun; Berruyer, Romain; Giraldo, Martha C; Kankanala, Prasanna; Park, Sook-Young; Czymmek, Kirk; Kang, Seogchan; Valent, Barbara

    2010-04-01

    Knowledge remains limited about how fungal pathogens that colonize living plant cells translocate effector proteins inside host cells to regulate cellular processes and neutralize defense responses. To cause the globally important rice blast disease, specialized invasive hyphae (IH) invade successive living rice (Oryza sativa) cells while enclosed in host-derived extrainvasive hyphal membrane. Using live-cell imaging, we identified a highly localized structure, the biotrophic interfacial complex (BIC), which accumulates fluorescently labeled effectors secreted by IH. In each newly entered rice cell, effectors were first secreted into BICs at the tips of the initially filamentous hyphae in the cell. These tip BICs were left behind beside the first-differentiated bulbous IH cells as the fungus continued to colonize the host cell. Fluorescence recovery after photobleaching experiments showed that the effector protein PWL2 (for prevents pathogenicity toward weeping lovegrass [Eragrostis curvula]) continued to accumulate in BICs after IH were growing elsewhere. PWL2 and BAS1 (for biotrophy-associated secreted protein 1), BIC-localized secreted proteins, were translocated into the rice cytoplasm. By contrast, BAS4, which uniformly outlines the IH, was not translocated into the host cytoplasm. Fluorescent PWL2 and BAS1 proteins that reached the rice cytoplasm moved into uninvaded neighbors, presumably preparing host cells before invasion. We report robust assays for elucidating the molecular mechanisms that underpin effector secretion into BICs, translocation to the rice cytoplasm, and cell-to-cell movement in rice. PMID:20435900

  6. The durably resistant rice cultivar Digu activates defence gene expression before the full maturation of Magnaporthe oryzae appressorium.

    PubMed

    Li, Weitao; Liu, Ya; Wang, Jing; He, Min; Zhou, Xiaogang; Yang, Chao; Yuan, Can; Wang, Jichun; Chern, Mawsheng; Yin, Junjie; Chen, Weilan; Ma, Bingtian; Wang, Yuping; Qin, Peng; Li, Shigui; Ronald, Pamela; Chen, Xuewei

    2016-04-01

    Rice blast caused by the fungal pathogen Magnaporthe oryzae is one of the most destructive diseases worldwide. Although the rice-M. oryzae interaction has been studied extensively, the early molecular events that occur in rice before full maturation of the appressorium during M. oryzae invasion are unknown. Here, we report a comparative transcriptomics analysis of the durably resistant rice variety Digu and the susceptible rice variety Lijiangxintuanheigu (LTH) in response to infection by M. oryzae (5, 10 and 20 h post-inoculation, prior to full development of the appressorium). We found that the transcriptional responses differed significantly between these two rice varieties. Gene ontology and pathway analyses revealed that many biological processes, including extracellular recognition and biosynthesis of antioxidants, terpenes and hormones, were specifically activated in Digu shortly after infection. Forty-eight genes encoding receptor kinases (RKs) were significantly differentially regulated by M. oryzae infection in Digu. One of these genes, LOC_Os08g10300, encoding a leucine-rich repeat RK from the LRR VIII-2 subfamily, conferred enhanced resistance to M. oryzae when overexpressed in rice. Our study reveals that a multitude of molecular events occur in the durably resistant rice Digu before the full maturation of the appressorium after M. oryzae infection and that membrane-associated RKs play important roles in the early response. PMID:26095454

  7. Skp1, a component of E3 ubiquitin ligase, is necessary for growth, sporulation, development and pathogenicity in rice blast fungus (Magnaporthe oryzae).

    PubMed

    Prakash, Chandra; Manjrekar, Johannes; Chattoo, Bharat B

    2016-08-01

    Ubiqitination is an important process in eukaryotic cells involving E3 ubiquitin ligase, which co-ordinates with cell cycle proteins and controls various cell functions. Skp1 (S-phase kinase-associated protein 1) is a core component of the SCF (Skp1-Cullin 1-F-box) E3 ubiquitin ligase complex necessary for protein degradation by the 26S proteasomal pathway. The rice blast fungus Magnaporthe oryzae has a single MoSKP1(MGG_04978) required for viability. Skp1 has multiple functions; however, its roles in growth, sporulation and appressorial development are not understood. MoSKP1 complements Skp1 function in the fission yeast temperature-sensitive mutant skp1 A7, restoring the normal length of yeast cells at restrictive temperature. The MoSkp1 protein in M. oryzae is present in spores and germ tubes, and is abundantly expressed in appressoria. Various RNA interference (RNAi) and antisense transformants of MoSKP1 in B157 show reduced sporulation, defective spore morphology, lesser septation and diffuse nuclei. Further, they show elongated germ tubes and are unable to form appressoria. Transformants arrested in G1/S stage during initial spore germination show a similar phenotype to wild-type spores treated with hydroxyurea (HU). Reduced MoSkp1 transcript and protein levels in knockdown transformants result in atypical germ tube development. MoSkp1 interacts with the putative F-box protein (MGG_06351) revealing the ability to form protein complexes. Our investigation of the role of MoSKP1 suggests that a decrease in MoSkp1 manifests in decreased total protein ubiquitination and, consequently, defective cell cycle and appressorial development. Thus, MoSKP1 plays important roles in growth, sporulation, appressorial development and pathogenicity of M. oryzae. PMID:26575697

  8. Principles of Carbon Catabolite Repression in the Rice Blast Fungus: Tps1, Nmr1-3, and a MATE–Family Pump Regulate Glucose Metabolism during Infection

    PubMed Central

    Hartline, David; Quispe, Cristian F.; Madayiputhiya, Nandakumar; Wilson, Richard A.

    2012-01-01

    Understanding the genetic pathways that regulate how pathogenic fungi respond to their environment is paramount to developing effective mitigation strategies against disease. Carbon catabolite repression (CCR) is a global regulatory mechanism found in a wide range of microbial organisms that ensures the preferential utilization of glucose over less favourable carbon sources, but little is known about the components of CCR in filamentous fungi. Here we report three new mediators of CCR in the devastating rice blast fungus Magnaporthe oryzae: the sugar sensor Tps1, the Nmr1-3 inhibitor proteins, and the multidrug and toxin extrusion (MATE)–family pump, Mdt1. Using simple plate tests coupled with transcriptional analysis, we show that Tps1, in response to glucose-6-phosphate sensing, triggers CCR via the inactivation of Nmr1-3. In addition, by dissecting the CCR pathway using Agrobacterium tumefaciens-mediated mutagenesis, we also show that Mdt1 is an additional and previously unknown regulator of glucose metabolism. Mdt1 regulates glucose assimilation downstream of Tps1 and is necessary for nutrient utilization, sporulation, and pathogenicity. This is the first functional characterization of a MATE–family protein in filamentous fungi and the first description of a MATE protein in genetic regulation or plant pathogenicity. Perturbing CCR in Δtps1 and MDT1 disruption strains thus results in physiological defects that impact pathogenesis, possibly through the early expression of cell wall–degrading enzymes. Taken together, the importance of discovering three new regulators of carbon metabolism lies in understanding how M. oryzae and other pathogenic fungi respond to nutrient availability and control development during infection. PMID:22570632

  9. A microsatellite sequence from the rice blast fungus (Magnaporthe grisea) distinguishes between the centromeres of Hordeum vulgare and H. bulbosum in hybrid plants.

    PubMed

    Kim, N S; Armstrong, K C; Fedak, G; Ho, K; Park, N I

    2002-02-01

    A TC/AG-repeat microsatellite sequence derived from the rice blast fungus (Magnaporthe grisea) hybridized to all of the centromeres of Hordeum vulgare chromosomes, but hybridized faintly or not at all to the chromosomes of Hordeum bulbosum. Using this H. vulgare centromere-specific probe, the chromosomes of four F1 hybrids between H. vulgare and H. bulbosum were analyzed. The chromosome constitution in the root tips of the hybrids was mosaic, i.e., 7 (7v, H. vulgare) and 14 (7v + 7b H. bulbosum), or 14 (7v + 7b) and 27 (14v + 13b), or 7 (7v), 14 (7v + 7b), and 27 (14v + 13b). The 27-chromosome tetraploid hybrid cells were revealed to have the NOR (nucleolus organizer region) bearing chromosome of H. bulbosum in a hemizygous state, which might indicate some role for this chromosome in the chromosome instability of the hybrid condition. The chromosomal distribution showed that the chromosomes of H. vulgare were concentric and chromosomes of H. bulbosum were peripheral in the mitotic squash. This non-random chromosome distribution and the centromere-specific repeated DNA differences in the two species were discussed in relation to H. bulbosum chromosome elimination. Meiotic chromosome analyses revealed a high frequency of homoeologous chromosome pairing in early prophase. However, this chromosome pairing did not persist until later meiotic stages and many univalents and chromosome fragments resulted. These were revealed to be H. bulbosum by fluorescence in situ hybridization (FISH) analysis with the H. vulgare centromere-specific probe. Because the chromosome segregation of H. vulgare and H. bulbosum chromosomes at anaphase I of meiosis was random, the possibility for obtaining chromosome substitution lines in diploid barley from the diploid hybrid was discussed. PMID:11908659

  10. Identification of a New Locus, Ptr(t), Required for Rice Blast Resistance Gene Pi-ta-Mediated Resistance

    SciTech Connect

    Jia, Yulin; Martin, Rodger Carl

    2008-01-01

    Resistance to the blast pathogen Magnaporthe oryzae is proposed to be initiated by physical binding of a putative cytoplasmic receptor encoded by a NBS type resistance gene Pi-ta to the processed elicitor encoded by the corresponding avirulence gene AVR-Pita. Here we report the identification of a new locus Ptr(t) that is required for Pi-ta-mediated signal recognition. A Pi-ta expressing susceptible mutant was identified using a genetic screen. Putative mutations at Ptr(t) does not alter recognition specificity to another resistance gene Pi-ks in the Pi-ta homozygote indicate that Ptr(t) is more likely specific to Pi-ta-mediated signal recognition. Genetic crosses of Pi-ta Ptr(t) and Pi-ta ptr(t) homozygotes suggest that Ptr(t) segregate at single dominant nuclear gene. A ratio of 1 resistant: 1 susceptible of a BC1 using Pi-ta Ptr(t) with pi-ta ptr(t) homozygotes indicates that Pi-ta and Ptr(t) are linked and co-segregated. Genotyping of mutants of pi-ta ptr(t) and Pi-ta Ptr(t) homozygotes using ten simple sequence repeat markers spanning 9 megabase of Pi-ta determines that Pi-ta and Ptr(t) are of indica origin. Identification of Ptr(t) is a significant advancement in studying Pi-ta-mediated signal recognition and transduction.

  11. Rice arbuscular mycorrhiza as a tool to study the molecular mechanisms of fungal symbiosis and a potential target to increase productivity.

    PubMed

    Nakagawa, Tomomi; Imaizumi-Anraku, Haruko

    2015-12-01

    Rice (Oryza sativa L.) is a monocot model crop for cereal molecular biology. Following the emergence of molecular genetics of arbuscular mycorrhizal (AM) symbiosis in model legumes in the 1990s, studies on rice genetic resources have considerably contributed to our understanding of the molecular mechanisms and evolution of root intracellular symbioses.In this review, we trace the history of these studies and suggest the potential utility of AM symbiosis for improvement in rice productivity. PMID:26516078

  12. Identification of a new locus, Ptr(t), required for rice blast resistance gene Pi-ta-mediated resistance.

    PubMed

    Jia, Yulin; Martin, Rodger

    2008-04-01

    Resistance to the blast pathogen Magnaporthe oryzae is proposed to be initiated by physical binding of a putative cytoplasmic receptor encoded by a nucleotide binding site-type resistance gene, Pi-ta, to the processed elicitor encoded by the corresponding avirulence gene AVR-Pita. Here, we report the identification of a new locus, Ptr(t), that is required for Pi-ta-mediated signal recognition. A Pi-ta-expressing susceptible mutant was identified using a genetic screen. Putative mutations at Ptr(t) do not alter recognition specificity to another resistance gene, Pi-k(s), in the Pi-ta homozygote, indicating that Ptr(t) is more likely specific to Pi-ta-mediated signal recognition. Genetic crosses of Pi-ta Ptr(t) and Pi-ta ptr(t) homozygotes suggest that Ptr(t) segregates as a single dominant nuclear gene. A ratio of 1:1 (resistant/susceptible) of a population of BC1 of Pi-ta Ptr(t) with pi-ta ptr(t) homozygotes indicates that Pi-ta and Ptr(t) are linked and cosegregate. Genotyping of mutants of pi-ta ptr(t) and Pi-ta Ptr(t) homozygotes using ten simple sequence repeat markers at the Pi-ta region determined that Pi-ta and Ptr(t) are located within a 9-megabase region and are of indica origin. Identification of Ptr(t) is a significant advancement in studying Pi-ta-mediated signal recognition and transduction. PMID:18321185

  13. Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding.

    PubMed

    Ellur, Ranjith K; Khanna, Apurva; Yadav, Ashutosh; Pathania, Sandeep; Rajashekara, H; Singh, Vikas K; Gopala Krishnan, S; Bhowmick, Prolay K; Nagarajan, M; Vinod, K K; Prakash, G; Mondal, Kalyan K; Singh, Nagendra K; Vinod Prabhu, K; Singh, Ashok K

    2016-01-01

    Marker assisted backcross breeding was employed to incorporate the blast resistance genes, Pi2 and Pi54 and bacterial blight (BB) resistance genes xa13 and Xa21 into the genetic background of Pusa Basmati 1121 (PB1121) and Pusa Basmati 6. Foreground selection for target gene(s) was followed by arduous phenotypic and background selection which fast-tracked the recovery of recurrent parent genome (RPG) to an extent of 95.8% in one of the near-isogenic lines (NILs) namely, Pusa 1728-23-33-31-56, which also showed high degree of resemblance to recurrent parent, PB6 in phenotype. The phenotypic selection prior to background selection provided an additional opportunity for identifying the novel recombinants viz., Pusa 1884-9-12-14 and Pusa 1884-3-9-175, superior to parental lines in terms of early maturity, higher yield and improved quality parameters. There was no significant difference between the RPG recovery estimated based on SSR or SNP markers, however, the panel of SNPs markers was considered as the better choice for background selection as it provided better genome coverage and included SNPs in the genic regions. Multi-location evaluation of NILs depicted their stable and high mean performance in comparison to the respective recurrent parents. The Pi2+Pi54 carrying NILs were effective in combating a pan-India panel of Magnaporthe oryzae isolates with high level of field resistance in northern, eastern and southern parts of India. Alongside, the PB1121-NILs and PB6-NILs carrying BB resistance genes xa13+Xa21 were resistant against Xanthomonas oryzae pv. oryzae races of north-western, southern and eastern parts of the country. Three of NILs developed in this study, have been promoted to final stage of testing during the ​Kharif 2015 in the Indian National Basmati Trial. PMID:26566849

  14. Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus.

    PubMed

    Arazoe, Takayuki; Miyoshi, Kennosuke; Yamato, Tohru; Ogawa, Tetsuo; Ohsato, Shuichi; Arie, Tsutomu; Kuwata, Shigeru

    2015-12-01

    CRISPR/Cas-derived RNA-guided nucleases (RGNs) that can generate DNA double-strand breaks (DSBs) at a specific sequence are widely used for targeted genome editing by induction of DSB repair in many organisms. The CRISPR/Cas system consists of two components: a single Cas9 nuclease and a single-guide RNA (sgRNA). Therefore, the system for constructing RGNs is simple and efficient, but the utilization of RGNs in filamentous fungi has not been validated. In this study, we established the CRISPR/Cas system in the model filamentous fungus, Pyricularia oryzae, using Cas9 that was codon-optimized for filamentous fungi, and the endogenous RNA polymerase (RNAP) III U6 promoter and a RNAP II fungal promoter for the expression of the sgRNA. We further demonstrated that RGNs could recognize the desired sequences and edit endogenous genes through homologous recombination-mediated targeted gene replacement with high efficiency. Our system will open the way for the development of various CRISPR/Cas-based applications in filamentous fungi. PMID:26039904

  15. Antifungal Activity of Eucalyptus Oil against Rice Blast Fungi and the Possible Mechanism of Gene Expression Pattern.

    PubMed

    Zhou, Li-Jun; Li, Fu-Rong; Huang, Li-Jie; Yang, Zhi-Rong; Yuan, Shu; Bai, Lin-Han

    2016-01-01

    Eucalyptus oil possesses a wide spectrum of biological activity, including anti-microbial, fungicidal, herbicidal, acaricidal and nematicidal properties. We studied anti-fungal activities of the leaf oil extracted from Eucalyptus. grandis × E. urophylla. Eleven plant pathogenic fungi were tested based on the mycelium growth rates with negative control. The results showed that Eucalyptus oil has broad-spectrum inhibitory effects toward these fungi. Remarkable morphological and structural alterations of hypha have been observed for Magnaporthe grisea after the treatment. The mRNA genome array of M. grisea was used to detect genes that were differentially expressed in the test strains treated by the Eucalyptus oil than the normal strains. The results showed 1919 genes were significantly affected, among which 1109 were down-regulated and 810 were up-regulated (p < 0.05, absolute fold change >2). According to gene ontology annotation analysis, these differentially expressed genes may cause abnormal structures and physiological function disorders, which may reduce the fungus growth. These results show the oil has potential for use in the biological control of plant disease as a green biopesticide. PMID:27187335

  16. A Rice Gene Homologous to Arabidopsis AGD2-LIKE DEFENSE1 Participates in Disease Resistance Response against Infection with Magnaporthe oryzae.

    PubMed

    Jung, Ga Young; Park, Ju Yeon; Choi, Hyo Ju; Yoo, Sung-Je; Park, Jung-Kwon; Jung, Ho Won

    2016-08-01

    ALD1 (ABERRANT GROWTH AND DEATH2 [AGD2]-LIKE DEFENSE1) is one of the key defense regulators in Arabidopsis thaliana and Nicotiana benthamiana. In these model plants, ALD1 is responsible for triggering basal defense response and systemic resistance against bacterial infection. As well ALD1 is involved in the production of pipecolic acid and an unidentified compound(s) for systemic resistance and priming syndrome, respectively. These previous studies proposed that ALD1 is a potential candidate for developing genetically modified (GM) plants that may be resistant to pathogen infection. Here we introduce a role of ALD1-LIKE gene of Oryza sativa, named as OsALD1, during plant immunity. OsALD1 mRNA was strongly transcribed in the infected leaves of rice plants by Magnaporthe oryzae, the rice blast fungus. OsALD1 proteins predominantly localized at the chloroplast in the plant cells. GM rice plants over-expressing OsALD1 were resistant to the fungal infection. The stable expression of OsALD1 also triggered strong mRNA expression of PATHOGENESIS-RELATED PROTEIN1 genes in the leaves of rice plants during infection. Taken together, we conclude that OsALD1 plays a role in disease resistance response of rice against the infection with rice blast fungus. PMID:27493611

  17. A Rice Gene Homologous to Arabidopsis AGD2-LIKE DEFENSE1 Participates in Disease Resistance Response against Infection with Magnaporthe oryzae

    PubMed Central

    Jung, Ga Young; Park, Ju Yeon; Choi, Hyo Ju; Yoo, Sung-Je; Park, Jung-Kwon; Jung, Ho Won

    2016-01-01

    ALD1 (ABERRANT GROWTH AND DEATH2 [AGD2]-LIKE DEFENSE1) is one of the key defense regulators in Arabidopsis thaliana and Nicotiana benthamiana. In these model plants, ALD1 is responsible for triggering basal defense response and systemic resistance against bacterial infection. As well ALD1 is involved in the production of pipecolic acid and an unidentified compound(s) for systemic resistance and priming syndrome, respectively. These previous studies proposed that ALD1 is a potential candidate for developing genetically modified (GM) plants that may be resistant to pathogen infection. Here we introduce a role of ALD1-LIKE gene of Oryza sativa, named as OsALD1, during plant immunity. OsALD1 mRNA was strongly transcribed in the infected leaves of rice plants by Magnaporthe oryzae, the rice blast fungus. OsALD1 proteins predominantly localized at the chloroplast in the plant cells. GM rice plants over-expressing OsALD1 were resistant to the fungal infection. The stable expression of OsALD1 also triggered strong mRNA expression of PATHOGENESIS-RELATED PROTEIN1 genes in the leaves of rice plants during infection. Taken together, we conclude that OsALD1 plays a role in disease resistance response of rice against the infection with rice blast fungus. PMID:27493611

  18. The Blast Resistance Gene Pi37 Encodes a Nucleotide Binding Site–Leucine-Rich Repeat Protein and Is a Member of a Resistance Gene Cluster on Rice Chromosome 1

    PubMed Central

    Lin, Fei; Chen, Shen; Que, Zhiqun; Wang, Ling; Liu, Xinqiong; Pan, Qinghua

    2007-01-01

    The resistance (R) gene Pi37, present in the rice cultivar St. No. 1, was isolated by an in silico map-based cloning procedure. The equivalent genetic region in Nipponbare contains four nucleotide binding site–leucine-rich repeat (NBS–LRR) type loci. These four candidates for Pi37 (Pi37-1, -2, -3, and -4) were amplified separately from St. No. 1 via long-range PCR, and cloned into a binary vector. Each construct was individually transformed into the highly blast susceptible cultivar Q1063. The subsequent complementation analysis revealed Pi37-3 to be the functional gene, while -1, -2, and -4 are probably pseudogenes. Pi37 encodes a 1290 peptide NBS–LRR product, and the presence of substitutions at two sites in the NBS region (V239A and I247M) is associated with the resistance phenotype. Semiquantitative expression analysis showed that in St. No. 1, Pi37 was constitutively expressed and only slightly induced by blast infection. Transient expression experiments indicated that the Pi37 product is restricted to the cytoplasm. Pi37-3 is thought to have evolved recently from -2, which in turn was derived from an ancestral -1 sequence. Pi37-4 is likely the most recently evolved member of the cluster and probably represents a duplication of -3. The four Pi37 paralogs are more closely related to maize rp1 than to any of the currently isolated rice blast R genes Pita, Pib, Pi9, Pi2, Piz-t, and Pi36. PMID:17947408

  19. Utilization of trait-linked DNA markers in rice breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA marker technology is being used in U.S. rice breeding programs to enhance development of rice cultivars with improved cooking quality and genetic resistance to rice blast disease. Because there is a continuous threat of race shifts within the Magnaporthe grisea populations found in rice fields t...

  20. Magnesium Uptake by CorA Transporters Is Essential for Growth, Development and Infection in the Rice Blast Fungus Magnaporthe oryzae.

    PubMed

    Reza, Md Hashim; Shah, Hiral; Manjrekar, Johannes; Chattoo, Bharat B

    2016-01-01

    Magnaporthe oryzae, the causative organism of rice blast, infects cereal crops and grasses at various stages of plant development. A comprehensive understanding of its metabolism and the implications on pathogenesis is necessary for countering this devastating crop disease. We present the role of the CorA magnesium transporters, MoAlr2 and MoMnr2, in development and pathogenicity of M. oryzae. The MoALR2 and MoMNR2 genes individually complement the Mg2+ uptake defects of a S. cerevisiae CorA transporter double mutant. MoALR2 and MoMNR2 respond to extracellular Mg2+ and Ca2+ levels and their expression is elevated under Mg2+ scarce conditions. RNA silencing mediated knockdown of MoALR2 (WT+siALR2, Δmnr2+siALR2 and ALR2+MNR2 simultaneous silencing) drastically alters intracellular cation concentrations and sensitivity to metal ions. MoALR2 silencing is detrimental to vegetative growth and surface hydrophobicity of mycelia, and the transformants display loss of cell wall integrity. MoALR2 is required for conidiogenesis and appressorium development, and is essential for infection. Investigation of knockdown transformants reveal low cAMP levels and altered expression of genes encoding proteins involved in MoMps1 cell wall integrity and cAMP MoPmk1 driven MAP Kinase signaling pathways. In contrast to MoALR2 knockdowns, the MoMNR2 deletion (Δmnr2) shows increased sensitivity to CorA inhibitors as well as altered cation sensitivity, but has limited effect on surface hydrophobicity and severity of plant infection. Interestingly, MoALR2 expression is elevated in Δmnr2. Impairment of development and infectivity of knockdown transformants and altered intracellular cation composition suggest that CorA transporters are essential for Mg2+ homeostasis within the cell, and are crucial to maintaining normal gene expression associated with cell structure, signal transduction and surface hydrophobicity in M. oryzae. We suggest that CorA transporters, and especially MoALR2

  1. Magnesium Uptake by CorA Transporters Is Essential for Growth, Development and Infection in the Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Reza, Md. Hashim; Shah, Hiral; Manjrekar, Johannes; Chattoo, Bharat B.

    2016-01-01

    Magnaporthe oryzae, the causative organism of rice blast, infects cereal crops and grasses at various stages of plant development. A comprehensive understanding of its metabolism and the implications on pathogenesis is necessary for countering this devastating crop disease. We present the role of the CorA magnesium transporters, MoAlr2 and MoMnr2, in development and pathogenicity of M. oryzae. The MoALR2 and MoMNR2 genes individually complement the Mg2+ uptake defects of a S. cerevisiae CorA transporter double mutant. MoALR2 and MoMNR2 respond to extracellular Mg2+ and Ca2+ levels and their expression is elevated under Mg2+ scarce conditions. RNA silencing mediated knockdown of MoALR2 (WT+siALR2, Δmnr2+siALR2 and ALR2+MNR2 simultaneous silencing) drastically alters intracellular cation concentrations and sensitivity to metal ions. MoALR2 silencing is detrimental to vegetative growth and surface hydrophobicity of mycelia, and the transformants display loss of cell wall integrity. MoALR2 is required for conidiogenesis and appressorium development, and is essential for infection. Investigation of knockdown transformants reveal low cAMP levels and altered expression of genes encoding proteins involved in MoMps1 cell wall integrity and cAMP MoPmk1 driven MAP Kinase signaling pathways. In contrast to MoALR2 knockdowns, the MoMNR2 deletion (Δmnr2) shows increased sensitivity to CorA inhibitors as well as altered cation sensitivity, but has limited effect on surface hydrophobicity and severity of plant infection. Interestingly, MoALR2 expression is elevated in Δmnr2. Impairment of development and infectivity of knockdown transformants and altered intracellular cation composition suggest that CorA transporters are essential for Mg2+ homeostasis within the cell, and are crucial to maintaining normal gene expression associated with cell structure, signal transduction and surface hydrophobicity in M. oryzae. We suggest that CorA transporters, and especially MoALR2

  2. Blast vulnerability detected in novel blast-resistant germplasm.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research in artificially inoculated greenhouse tests and field nurseries identified new rice germplasm accession as being resistant to the common blast (Pyricularia grisea) races found in Arkansas (IB-1, IB-49, IC-17, IE-1, IE-1k, IG-1, and IH-1) and eliminated those accessions with major b...

  3. MutMap-Gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii.

    PubMed

    Takagi, Hiroki; Uemura, Aiko; Yaegashi, Hiroki; Tamiru, Muluneh; Abe, Akira; Mitsuoka, Chikako; Utsushi, Hiroe; Natsume, Satoshi; Kanzaki, Hiroyuki; Matsumura, Hideo; Saitoh, Hiromasa; Yoshida, Kentaro; Cano, Liliana M; Kamoun, Sophien; Terauchi, Ryohei

    2013-10-01

    Next-generation sequencing allows the identification of mutations responsible for mutant phenotypes by whole-genome resequencing and alignment to a reference genome. However, when the resequenced cultivar/line displays significant structural variation from the reference genome, mutations in the genome regions missing from the reference (gaps) cannot be identified by simple alignment. Here we report on a method called 'MutMap-Gap', which involves delineating a candidate region harboring a mutation of interest using the recently reported MutMap method, followed by de novo assembly, alignment, and identification of the mutation within genome gaps. We applied MutMap-Gap to isolate the blast resistant gene Pii from the rice cv Hitomebore using mutant lines that have lost Pii function. MutMap-Gap should prove useful for cloning genes that exhibit significant structural variations such as disease resistance genes of the nucleotide-binding site-leucine rich repeat (NBS-LRR) class. PMID:23790109

  4. Analysis of genetic and molecular identity among field isolates of the rice blast fungus with an international differential system, rep-PCR and DNA sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pi-ta gene deployed in the Southern US rice germplasm is effective in preventing the infection by strains of Magnaporthe oryzae isolates that carry the avirulence gene AVR-Pita1. In the present study, a total of 169 isolates from rice (Oryza sativa) cultivars, with and without Pi-ta, were analyz...

  5. SHEATH BLIGHT RESISTANCE IN SOUTHERN RICE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheath blight is a serious fungal disease problem in southern US rice production, making it necessary for rice farmers to diligently use fungicides for its control. There are no long grain rice varieties adapted to commercial production in the southern US that have adequate resistance to sheath bli...

  6. Fungal Tests

    MedlinePlus

    ... effectiveness of treatment. For many superficial skin and yeast infections, a clinical examination of the affected person ... the chemical solution dissolves non-fungal elements; reveals yeast cells and fungal hyphae (branching filaments) on a ...

  7. Enhancement of innate immune system in monocot rice by transferring the dicotyledonous elongation factor Tu receptor EFR.

    PubMed

    Lu, Fen; Wang, Huiqin; Wang, Shanzhi; Jiang, Wendi; Shan, Changlin; Li, Bin; Yang, Jun; Zhang, Shiyong; Sun, Wenxian

    2015-07-01

    The elongation factor Tu (EF-Tu) receptor (EFR) in cruciferous plants specifically recognizes the N-terminal acetylated elf18 region of bacterial EF-Tu and thereby activates plant immunity. It has been demonstrated that Arabidopsis EFR confers broad-spectrum bacterial resistance in the EFR transgenic solanaceous plants. Here, the transgenic rice plants (Oryza sativa L. ssp. japonica cv. Zhonghua 17) and cell cultures with constitutive expression of AtEFR were developed to investigate whether AtEFR senses EF-Tu and thus enhances bacterial resistance in the monocot plants. We demonstrated that the Xanthomonas oryzae-derived elf18 peptide induced oxidative burst and mitogen-activated protein kinase activation in the AtEFR transgenic rice cells and plants, respectively. Pathogenesis-related genes, such as OsPBZ1, were upregulated dramatically in transgenic rice plant and cell lines in response to elf18 stimulation. Importantly, pretreatment with elf18 triggered strong resistance to X. oryzae pv. oryzae in the transgenic plants, which was largely dependent on the AtEFR expression level. These plants also exhibited enhanced resistance to rice bacterial brown stripe, but not to rice fungal blast. Collectively, the results indicate that the rice plants with heterologous expression of AtEFR recognize bacterial EF-Tu and exhibit enhanced broad-spectrum bacterial disease resistance and that pattern recognition receptor-mediated immunity may be manipulated across the two plant classes, dicots and monocots. PMID:25358295

  8. Toward understanding of rice innate immunity against Magnaporthe oryzae.

    PubMed

    Azizi, P; Rafii, M Y; Abdullah, S N A; Nejat, N; Maziah, M; Hanafi, M M; Latif, M A; Sahebi, M

    2016-01-01

    The blast fungus, Magnaporthe oryzae, causes serious disease on a wide variety of grasses including rice, wheat and barley. The recognition of pathogens is an amazing ability of plants including strategies for displacing virulence effectors through the adaption of both conserved and variable pathogen elicitors. The pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) were reported as two main innate immune responses in plants, where PTI gives basal resistance and ETI confers durable resistance. The PTI consists of extracellular surface receptors that are able to recognize PAMPs. PAMPs detect microbial features such as fungal chitin that complete a vital function during the organism's life. In contrast, ETI is mediated by intracellular receptor molecules containing nucleotide-binding (NB) and leucine rich repeat (LRR) domains that specifically recognize effector proteins produced by the pathogen. To enhance crop resistance, understanding the host resistance mechanisms against pathogen infection strategies and having a deeper knowledge of innate immunity system are essential. This review summarizes the recent advances on the molecular mechanism of innate immunity systems of rice against M. oryzae. The discussion will be centered on the latest success reported in plant-pathogen interactions and integrated defense responses in rice. PMID:25198435

  9. Blast Injuries

    MedlinePlus

    ... Service Members & Veterans Family & Caregivers Medical Providers Blast Injuries U.S. Army photo by Sgt. Gustavo Olgiati How ... tertiary injury Does a blast cause different brain injuries than blunt trauma? There currently is no evidence ...

  10. Selection of optimized candidate reference genes for qRT-PCR normalization in rice (Oryza sativa L.) during Magnaporthe oryzae infection and drought.

    PubMed

    Bevitori, R; Oliveira, M B; Grossi-de-Sá, M F; Lanna, A C; da Silveira, R D; Petrofeza, S

    2014-01-01

    Drought and rice blast disease caused by Magnaporthe oryzae are two of the most serious threats to global rice production. To explore the mechanisms underlying gene expression induced in rice by stresses, studies involving transcriptome analyses have been conducted over the past few years. Thus, it is crucial to have a reliable set of reference genes to normalize the expression levels of rice genes affected by different stresses. To identify potential reference genes for studies of the differential expression of target genes in rice under M. oryzae infection and drought conditions, the present study evaluated five housekeeping genes for the normalization of gene expression. The stability of the expression of these genes was assessed using the analytical software packages geNorm and NormFinder. For all samples analyzed, the stability rank was UBQ5 > GAPDH > eIF-4α> β-TUB > 18S rRNA. The data showed that the UBQ5, GAPDH, and eIF-4αgenes are appropriate, high-performing reference genes and will be highly useful in future expression studies of fungal infections and drought in rice. PMID:25501189