Science.gov

Sample records for rice brittle culm

  1. Rice BRITTLE CULM 5 (BRITTLE NODE) is Involved in Secondary Cell Wall Formation in the Sclerenchyma Tissue of Nodes

    PubMed Central

    Aohara, Tsutomu; Kotake, Toshihisa; Kaneko, Yasuko; Takatsuji, Hiroshi; Tsumuraya, Yoichi; Kawasaki, Shinji

    2009-01-01

    Several brittle culm (bc) mutants known in grasses are considered excellent materials to study the process of secondary cell wall formation. The brittle phenotype of the rice bc5 (brittle node) mutant appears exclusively in the developed nodes, which is distinct from other bc mutants (bc1, 2, 3, 4, 6 and 7) that show the brittle phenotype in culms and leaves. To address the defects of the rice bc5 mutant in node-specific cell wall formation, we analyzed tissue morphology and cell wall composition. The bc5 mutation was found to affect the cell wall deposition of node sclerenchyma tissues at 1 week after heading, the stage at which the cell wall sugar content is reduced, in the bc5 nodes, compared with wild-type nodes. Moreover, decreased accumulation of lignin and thickness of cell walls in the sclerenchyma tissues were also observed in the bc5 nodes. The amounts of cellulose and hemicellulose were reduced to 53 and 65% of those in the wild-type plants, respectively. Sugar composition and glycosidic linkage analyses of the hemicellulose showed that the accumulation of glucuronosyl arabinoxylan in bc5 nodes was perturbed by the mutation. The bc5 locus was narrowed to an approximately 3.1 Mb region of chromosome 2, where none of the other bc genes is located. The bc5 mutation appeared to reduce the expression levels of the OsCesA genes in the nodes after heading. The results indicate that the BC5 gene regulates the development of secondary cell walls of node sclerenchyma tissues. PMID:19812064

  2. Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice

    PubMed Central

    Zhang, Mu; Zhang, Baocai; Qian, Qian; Yu, Yanchun; Li, Rui; Zhang, Junwen; Liu, Xiangling; Zeng, Dali; Li, Jiayang; Zhou, Yihua

    2010-01-01

    Kinesins are encoded by a large gene family involved in many basic processes of plant development. However, the number of functionally identified kinesins in rice is very limited. Here, we report the functional characterization of Brittle Culm12 (BC12), a gene encoding a kinesin-4 protein. bc12 mutants display dwarfism resulting from a significant reduction in cell number and brittleness due to an alteration in cellulose microfibril orientation and wall composition. BC12 is expressed mainly in tissues undergoing cell division and secondary wall thickening. In vitro biochemical analyses verified BC12 as an authentic motor protein. This protein was present in both the nucleus and cytoplasm and associated with microtubule arrays during cell division. Mitotic microtubule array comparison, flow cytometric analysis and expression assays of cyclin-dependent kinase (CDK) complexes in root-tip cells showed that cell-cycle progression is affected in bc12 mutants. BC12 is very probably regulated by CDKA;3 based on yeast two-hybrid and microarray data. Therefore, BC12 functions as a dual-targeting kinesin protein and is implicated in cell-cycle progression, cellulose microfibril deposition and wall composition in the monocot plant rice. PMID:20444225

  3. Brittle Culm15 Encodes a Membrane-Associated Chitinase-Like Protein Required for Cellulose Biosynthesis in Rice1[C][W][OA

    PubMed Central

    Wu, Bin; Zhang, Baocai; Dai, Yan; Zhang, Lei; Shang-Guan, Keke; Peng, Yonggang; Zhou, Yihua; Zhu, Zhen

    2012-01-01

    Plant chitinases, a class of glycosyl hydrolases, participate in various aspects of normal plant growth and development, including cell wall metabolism and disease resistance. The rice (Oryza sativa) genome encodes 37 putative chitinases and chitinase-like proteins. However, none of them has been characterized at the genetic level. In this study, we report the isolation of a brittle culm mutant, bc15, and the map-based cloning of the BC15/OsCTL1 (for chitinase-like1) gene affected in the mutant. The gene encodes the rice chitinase-like protein BC15/OsCTL1. Mutation of BC15/OsCTL1 causes reduced cellulose content and mechanical strength without obvious alterations in plant growth. Bioinformatic analyses indicated that BC15/OsCTL1 is a class II chitinase-like protein that is devoid of both an amino-terminal cysteine-rich domain and the chitinase activity motif H-E-T-T but possesses an amino-terminal transmembrane domain. Biochemical assays demonstrated that BC15/OsCTL1 is a Golgi-localized type II membrane protein that lacks classical chitinase activity. Quantitative real-time polymerase chain reaction and β-glucuronidase activity analyses indicated that BC15/OsCTL1 is ubiquitously expressed. Investigation of the global expression profile of wild-type and bc15 plants, using Illumina RNA sequencing, further suggested a possible mechanism by which BC15/OsCTL1 mediates cellulose biosynthesis and cell wall remodeling. Our findings provide genetic evidence of a role for plant chitinases in cellulose biosynthesis in rice, which appears to differ from their roles as revealed by analysis of Arabidopsis (Arabidopsis thaliana). PMID:22665444

  4. Brittle Culm1, a COBRA-Like Protein, Functions in Cellulose Assembly through Binding Cellulose Microfibrils

    PubMed Central

    Zhang, Baocai; Liu, Xiangling; Yan, Meixian; Zhang, Lanjun; Shi, Yanyun; Zhang, Mu; Qian, Qian; Li, Jiayang; Zhou, Yihua

    2013-01-01

    Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1), a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI) anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM) at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD) assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs) function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity. PMID:23990797

  5. Utilization of stiff culm trait of rice smos1 mutant for increased lodging resistance.

    PubMed

    Hirano, Ko; Okuno, Ayako; Hobo, Tokunori; Ordonio, Reynante; Shinozaki, Yusuke; Asano, Kenji; Kitano, Hidemi; Matsuoka, Makoto

    2014-01-01

    Although the introduction of semi-dwarf trait into rice has led to improved lodging resistance making it capable of supporting high grain yield, lodging still remains a concern when attempting to further increase the grain yield of rice. However, improving the lodging resistance in rice by depending on the semi-dwarf trait alone is possible only up to a certain limit, beyond which other traits may be needed for reinforcement. To search for alternative traits relating to high lodging resistance, we identified 9 rice mutant lines possessing improved culm strength. To evaluate whether such lines can be useful for breeding lodging resistant rice, small organ size1 (smos1) mutant having increased lodging resistance but low tiller number and low grain yield, was chosen as a representative for a breeding trial. smos1 was crossed with ST-4 (from the Stock rice collection of Nagoya University Togo field #4), a cultivar with high tiller number and high grain yield, and from their progeny, LRC1 (lodging resistance candidate-1) was selected. Although the low tiller number trait of smos1 was not fully reversed in LRC1, this was compensated by an increase in grain weight per panicle, thereby resulting in high grain yield per plant. This important attribute of LRC1 was further enhanced by the improved lodging resistance trait inherited from smos1. Such improved lodging resistance in LRC1 and smos1 was revealed to be mainly due to increased culm diameter and culm thickness, which led to a high section modulus (SM) value, a parameter defining the physical strength of the culm. Since smos1 possesses high breaking-type lodging resistance which is different from semi-dwarf plants with high bending-type lodging resistance, an alternative approach of using thick culm lines for the creation of rice with increased lodging resistance is hereby proposed. PMID:24987959

  6. Nucleotide diversity, natural variation, and evolution of Flexible culm-1 and Strong culm-2 lodging resistance genes in rice.

    PubMed

    Rashid, Muhammad Abdul Rehman; Zhao, Yan; Zhang, Hongliang; Li, Jinjie; Li, Zichao

    2016-07-01

    Lodging resistance is one of the vital traits in yield improvement and sustainability. Culm wall thickness, diameter, and strength are different traits that can govern the lodging resistance in rice. The genes SCM2 and FC1 have been isolated for culm thickness, strength, and flexibility, but their functional nucleotide variations were still unknown. We used a 13× deep sequence of 795 diverse genotypes to present the functional variation and SNP diversity in SCM2 and FC1. The major functional variant for the SCM2 gene was at position 27480181 and for the FC1 gene at position 31072992. Haplotype analysis of both genes provided their various allelic differences among haplotypes. SCM2 alleles further presented the evolution of Oryza sativa L. subsp. indica and subsp. japonica genomes from common parent in different geographical zones, while the haplotypes of FC1 suggested their evolution from different strains of the common parent Oryza rufipogon. SCM2 showed purifying selection and functional associations with rare alleles, while FC1 displayed balanced selection favored by multiple heterozygous alleles. Genotypes with an allelic combination of SCM2-3 and FC1-2 in japonica background exhibited striking resistance against lodging, which can be used in further breeding programs. PMID:27373308

  7. Increased lodging resistance in long-culm, low-lignin gh2 rice for improved feed and bioenergy production.

    PubMed

    Ookawa, Taiichiro; Inoue, Kazuya; Matsuoka, Makoto; Ebitani, Takeshi; Takarada, Takeshi; Yamamoto, Toshio; Ueda, Tadamasa; Yokoyama, Tadashi; Sugiyama, Chisato; Nakaba, Satoshi; Funada, Ryo; Kato, Hiroshi; Kanekatsu, Motoki; Toyota, Koki; Motobayashi, Takashi; Vazirzanjani, Mehran; Tojo, Seishu; Hirasawa, Tadashi

    2014-01-01

    Lignin modification has been a breeding target for the improvements of forage digestibility and energy yields in forage and bioenergy crops, but decreased lignin levels are often accompanied by reduced lodging resistance. The rice mutant gold hull and internode2 (gh2) has been identified to be lignin deficient. GH2 has been mapped to the short arm of chromosome 2 and encodes cinnamyl-alcohol dehydrogenase (CAD). We developed a long-culm variety, 'Leaf Star', with superior lodging resistance and a gh phenotype similar to one of its parents, 'Chugoku 117'. The gh loci in Leaf Star and Chugoku 117 were localized to the same region of chromosome 2 as the gh2 mutant. Leaf Star had culms with low lignin concentrations due to a natural mutation in OsCAD2 that was not present in Chugoku 117. However, this variety had high culm strength due to its strong, thick culms. Additionally, this variety had a thick layer of cortical fiber tissue with well-developed secondary cell walls. Our results suggest that rice can be improved for forage and bioenergy production by combining superior lodging resistance, which can be obtained by introducing thick and stiff culm traits, with low lignin concentrations, which can be obtained using the gh2 variety. PMID:25298209

  8. Increased lodging resistance in long-culm, low-lignin gh2 rice for improved feed and bioenergy production

    PubMed Central

    Ookawa, Taiichiro; Inoue, Kazuya; Matsuoka, Makoto; Ebitani, Takeshi; Takarada, Takeshi; Yamamoto, Toshio; Ueda, Tadamasa; Yokoyama, Tadashi; Sugiyama, Chisato; Nakaba, Satoshi; Funada, Ryo; Kato, Hiroshi; Kanekatsu, Motoki; Toyota, Koki; Motobayashi, Takashi; Vazirzanjani, Mehran; Tojo, Seishu; Hirasawa, Tadashi

    2014-01-01

    Lignin modification has been a breeding target for the improvements of forage digestibility and energy yields in forage and bioenergy crops, but decreased lignin levels are often accompanied by reduced lodging resistance. The rice mutant gold hull and internode2 (gh2) has been identified to be lignin deficient. GH2 has been mapped to the short arm of chromosome 2 and encodes cinnamyl-alcohol dehydrogenase (CAD). We developed a long-culm variety, ‘Leaf Star’, with superior lodging resistance and a gh phenotype similar to one of its parents, ‘Chugoku 117’. The gh loci in Leaf Star and Chugoku 117 were localized to the same region of chromosome 2 as the gh2 mutant. Leaf Star had culms with low lignin concentrations due to a natural mutation in OsCAD2 that was not present in Chugoku 117. However, this variety had high culm strength due to its strong, thick culms. Additionally, this variety had a thick layer of cortical fiber tissue with well-developed secondary cell walls. Our results suggest that rice can be improved for forage and bioenergy production by combining superior lodging resistance, which can be obtained by introducing thick and stiff culm traits, with low lignin concentrations, which can be obtained using the gh2 variety. PMID:25298209

  9. A Missense Mutation in the Zinc Finger Domain of OsCESA7 Deleteriously Affects Cellulose Biosynthesis and Plant Growth in Rice.

    PubMed

    Wang, Daofeng; Qin, Yanling; Fang, Jingjing; Yuan, Shoujiang; Peng, Lixiang; Zhao, Jinfeng; Li, Xueyong

    2016-01-01

    Rice is a model plant species for the study of cellulose biosynthesis. We isolated a mutant, S1-24, from ethyl methanesulfonate (EMS)-treated plants of the japonica rice cultivar, Nipponbare. The mutant exhibited brittle culms and other pleiotropic phenotypes such as dwarfism and partial sterility. The brittle culms resulted from reduced mechanical strength due to a defect in thickening of the sclerenchyma cell wall and reduced cellulose content in the culms of the S1-24 mutant. Map-based gene cloning and a complementation assay showed that phenotypes of the S1-24 mutant were caused by a recessive point mutation in the OsCESA7 gene, which encodes cellulose synthase A subunit 7. The missense mutation changed the highly conserved C40 to Y in the zinc finger domain. The OsCESA7 gene is expressed predominantly in the culm at the mature stage, particularly in mechanical tissues such as vascular bundles and sclerenchyma cells, consistent with the brittle phenotype in the culm. These results indicate that OsCESA7 plays an important role in cellulose biosynthesis and plant growth. PMID:27092937

  10. A Missense Mutation in the Zinc Finger Domain of OsCESA7 Deleteriously Affects Cellulose Biosynthesis and Plant Growth in Rice

    PubMed Central

    Wang, Daofeng; Qin, Yanling; Fang, Jingjing; Yuan, Shoujiang; Peng, Lixiang; Zhao, Jinfeng; Li, Xueyong

    2016-01-01

    Rice is a model plant species for the study of cellulose biosynthesis. We isolated a mutant, S1-24, from ethyl methanesulfonate (EMS)-treated plants of the japonica rice cultivar, Nipponbare. The mutant exhibited brittle culms and other pleiotropic phenotypes such as dwarfism and partial sterility. The brittle culms resulted from reduced mechanical strength due to a defect in thickening of the sclerenchyma cell wall and reduced cellulose content in the culms of the S1-24 mutant. Map-based gene cloning and a complementation assay showed that phenotypes of the S1-24 mutant were caused by a recessive point mutation in the OsCESA7 gene, which encodes cellulose synthase A subunit 7. The missense mutation changed the highly conserved C40 to Y in the zinc finger domain. The OsCESA7 gene is expressed predominantly in the culm at the mature stage, particularly in mechanical tissues such as vascular bundles and sclerenchyma cells, consistent with the brittle phenotype in the culm. These results indicate that OsCESA7 plays an important role in cellulose biosynthesis and plant growth. PMID:27092937

  11. Uncovering a Nuisance Influence of a Phenological Trait of Plants Using a Nonlinear Structural Equation: Application to Days to Heading and Culm Length in Asian Cultivated Rice (Oryza Sativa L.).

    PubMed

    Onogi, Akio; Ideta, Osamu; Yoshioka, Takuma; Ebana, Kaworu; Yamasaki, Masanori; Iwata, Hiroyoshi

    2016-01-01

    Phenological traits of plants, such as flowering time, are linked to growth phase transition. Thus, phenological traits often influence other traits through the modification of the duration of growth period. This influence is a nuisance in plant breeding because it hampers genetic evaluation of the influenced traits. Genetic effects on the influenced traits have two components, one that directly affects the traits and one that indirectly affects the traits via the phenological trait. These cannot be distinguished by phenotypic evaluation and ordinary linear regression models. Consequently, if a phenological trait is modified by introgression or editing of the responsible genes, the phenotypes of the influenced traits can change unexpectedly. To uncover the influence of the phenological trait and evaluate the direct genetic effects on the influenced traits, we developed a nonlinear structural equation (NSE) incorporating a nonlinear influence of the phenological trait. We applied the NSE to real data for cultivated rice (Oryza sativa L.): days to heading (DH) as a phenological trait and culm length (CL) as the influenced trait. This showed that CL of the cultivars that showed extremely early heading was shortened by the strong influence of DH. In a simulation study, it was shown that the NSE was able to infer the nonlinear influence and direct genetic effects with reasonable accuracy. However, the NSE failed to infer the linear influence in this study. When no influence was simulated, an ordinary bi-trait linear model (OLM) tended to infer the genetic effects more accurately. In such cases, however, by comparing the NSE and OLM using an information criterion, we could assess whether the nonlinear assumption of the NSE was appropriate for the data analyzed. This study demonstrates the usefulness of the NSE in revealing the phenotypic influence of phenological traits. PMID:26859143

  12. Uncovering a Nuisance Influence of a Phenological Trait of Plants Using a Nonlinear Structural Equation: Application to Days to Heading and Culm Length in Asian Cultivated Rice (Oryza Sativa L.)

    PubMed Central

    Onogi, Akio; Ideta, Osamu; Yoshioka, Takuma; Ebana, Kaworu; Yamasaki, Masanori; Iwata, Hiroyoshi

    2016-01-01

    Phenological traits of plants, such as flowering time, are linked to growth phase transition. Thus, phenological traits often influence other traits through the modification of the duration of growth period. This influence is a nuisance in plant breeding because it hampers genetic evaluation of the influenced traits. Genetic effects on the influenced traits have two components, one that directly affects the traits and one that indirectly affects the traits via the phenological trait. These cannot be distinguished by phenotypic evaluation and ordinary linear regression models. Consequently, if a phenological trait is modified by introgression or editing of the responsible genes, the phenotypes of the influenced traits can change unexpectedly. To uncover the influence of the phenological trait and evaluate the direct genetic effects on the influenced traits, we developed a nonlinear structural equation (NSE) incorporating a nonlinear influence of the phenological trait. We applied the NSE to real data for cultivated rice (Oryza sativa L.): days to heading (DH) as a phenological trait and culm length (CL) as the influenced trait. This showed that CL of the cultivars that showed extremely early heading was shortened by the strong influence of DH. In a simulation study, it was shown that the NSE was able to infer the nonlinear influence and direct genetic effects with reasonable accuracy. However, the NSE failed to infer the linear influence in this study. When no influence was simulated, an ordinary bi-trait linear model (OLM) tended to infer the genetic effects more accurately. In such cases, however, by comparing the NSE and OLM using an information criterion, we could assess whether the nonlinear assumption of the NSE was appropriate for the data analyzed. This study demonstrates the usefulness of the NSE in revealing the phenotypic influence of phenological traits. PMID:26859143

  13. Anthracite culm fired fluidized-bed boiler

    SciTech Connect

    Lentz, E.C.

    1984-01-01

    The author describes a fluidised-bed boiler that has been designed by FluiDyne Engineering Corp. for the combustion of anthracite culm, a material containing about 40% ash and consisting of coal particles embedded in mineral matter. There are some 900 million tons of anthracite culm in northeast Pennsylvania within easy reach of many large metropolitan areas. It is estimated that the material can be used economically within a distance of 200 miles.

  14. Transcriptome Sequencing and Analysis for Culm Elongation of the World's Largest Bamboo (Dendrocalamus sinicus).

    PubMed

    Cui, Kai; Wang, Haiying; Liao, Shengxi; Tang, Qi; Li, Li; Cui, Yongzhong; He, Yuan

    2016-01-01

    Dendrocalamus sinicus is the world's largest bamboo species with strong woody culms, and known for its fast-growing culms. As an economic bamboo species, it was popularized for multi-functional applications including furniture, construction, and industrial paper pulp. To comprehensively elucidate the molecular processes involved in its culm elongation, Illumina paired-end sequencing was conducted. About 65.08 million high-quality reads were produced, and assembled into 81,744 unigenes with an average length of 723 bp. A total of 64,338 (79%) unigenes were annotated for their functions, of which, 56,587 were annotated in the NCBI non-redundant protein database and 35,262 were annotated in the Swiss-Prot database. Also, 42,508 and 21,009 annotated unigenes were allocated to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. By searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG), 33,920 unigenes were assigned to 128 KEGG pathways. Meanwhile, 8,553 simple sequence repeats (SSRs) and 81,534 single-nucleotide polymorphism (SNPs) were identified, respectively. Additionally, 388 transcripts encoding lignin biosynthesis were detected, among which, 27 transcripts encoding Shikimate O-hydroxycinnamoyltransferase (HCT) specifically expressed in D. sinicus when compared to other bamboo species and rice. The phylogenetic relationship between D. sinicus and other plants was analyzed, suggesting functional diversity of HCT unigenes in D. sinicus. We conjectured that HCT might lead to the high lignin content and giant culm. Given that the leaves are not yet formed and culm is covered with sheaths during culm elongation, the existence of photosynthesis of bamboo culm is usually neglected. Surprisedly, 109 transcripts encoding photosynthesis were identified, including photosystem I and II, cytochrome b6/f complex, photosynthetic electron transport and F-type ATPase, and 24 transcripts were characterized as antenna

  15. Transcriptome Sequencing and Analysis for Culm Elongation of the World’s Largest Bamboo (Dendrocalamus sinicus)

    PubMed Central

    Cui, Kai; Wang, Haiying; Liao, Shengxi; Tang, Qi; Li, Li; Cui, Yongzhong; He, Yuan

    2016-01-01

    Dendrocalamus sinicus is the world’s largest bamboo species with strong woody culms, and known for its fast-growing culms. As an economic bamboo species, it was popularized for multi-functional applications including furniture, construction, and industrial paper pulp. To comprehensively elucidate the molecular processes involved in its culm elongation, Illumina paired-end sequencing was conducted. About 65.08 million high-quality reads were produced, and assembled into 81,744 unigenes with an average length of 723 bp. A total of 64,338 (79%) unigenes were annotated for their functions, of which, 56,587 were annotated in the NCBI non-redundant protein database and 35,262 were annotated in the Swiss-Prot database. Also, 42,508 and 21,009 annotated unigenes were allocated to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. By searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG), 33,920 unigenes were assigned to 128 KEGG pathways. Meanwhile, 8,553 simple sequence repeats (SSRs) and 81,534 single-nucleotide polymorphism (SNPs) were identified, respectively. Additionally, 388 transcripts encoding lignin biosynthesis were detected, among which, 27 transcripts encoding Shikimate O-hydroxycinnamoyltransferase (HCT) specifically expressed in D. sinicus when compared to other bamboo species and rice. The phylogenetic relationship between D. sinicus and other plants was analyzed, suggesting functional diversity of HCT unigenes in D. sinicus. We conjectured that HCT might lead to the high lignin content and giant culm. Given that the leaves are not yet formed and culm is covered with sheaths during culm elongation, the existence of photosynthesis of bamboo culm is usually neglected. Surprisedly, 109 transcripts encoding photosynthesis were identified, including photosystem I and II, cytochrome b6/f complex, photosynthetic electron transport and F-type ATPase, and 24 transcripts were characterized as antenna

  16. Carbon dioxide emission from bamboo culms.

    PubMed

    Zachariah, E J; Sabulal, B; Nair, D N K; Johnson, A J; Kumar, C S P

    2016-05-01

    Bamboos are one of the fastest growing plants on Earth, and are widely considered to have high ability to capture and sequester atmospheric carbon, and consequently to mitigate climate change. We tested this hypothesis by measuring carbon dioxide (CO2 ) emissions from bamboo culms and comparing them with their biomass sequestration potential. We analysed diurnal effluxes from Bambusa vulgaris culm surface and gas mixtures inside hollow sections of various bamboos using gas chromatography. Corresponding variations in gas pressure inside the bamboo section and culm surface temperature were measured. SEM micrographs of rhizome and bud portions of bamboo culms were also recorded. We found very high CO2 effluxes from culm surface, nodes and buds of bamboos. Positive gas pressure and very high concentrations of CO2 were observed inside hollow sections of bamboos. The CO2 effluxes observed from bamboos were very high compared to their carbon sequestration potential. Our measurements suggest that bamboos are net emitters of CO2 during their lifespan. PMID:26802362

  17. Anthracite culm fired fluidized-bed boiler

    SciTech Connect

    Lentz, E.C.

    1984-01-01

    This chapter discusses a DOE-sponsored project to design, fabricate, install and demonstrate a system which can be fired with anthracite refuse coal (culm) or other coal. It is estimated that there are over 800 culm banks containing approximately 900 million ton of material in the northeast Pennsylvania area, which represents 1 billion barrels (159 GL) of oil equivalent. Culm combustion tests were conducted to establish and confirm the start-up and load following control systems to be used in the fluidized-bed boiler. The main purpose of the examined project is to demonstrate to industry that mine-site preparation/delivery of ready-to-burn fuel and disposal of the ash can be accomplished reliably, economically, and without detriment to the industrial or community environment.

  18. Operating experience at the Shamokin Culm burning steam generation plant

    SciTech Connect

    Bender, P.A.; Laukaitis, J.F.; Lockman, H.W.; Samela, D.; Smith, W.G.; Tsoumpas, G.

    1983-06-01

    After 9200 hours of operation it can be concluded that low grade anthracite culm refuse fuel can be properly combusted in a fluidized-bed boiler. The Shamokin Culm Burning Steam Generation Plant has demonstrated environmental compliance while operating over a wide range of operational variables. As changes in equipment and materials are implemented and other fuels are combusted, it is expected that a further demonstration of the Plant's capabilities will be realized.

  19. Compartmentation of sucrose during radial transfer in mature sorghum culm

    PubMed Central

    Tarpley, Lee; Vietor, Donald M

    2007-01-01

    Background The sucrose that accumulates in the culm of sorghum (Sorghum bicolor (L.) Moench) and other large tropical andropogonoid grasses can be of commercial value, and can buffer assimilate supply during development. Previous study conducted with intact plants showed that sucrose can be radially transferred to the intracellular compartment of mature ripening sorghum internode without being hydrolysed. In this study, culm-infused radiolabelled sucrose was traced between cellular compartments and among related metabolites to determine if the compartmental path of sucrose during radial transfer in culm tissue was symplasmic or included an apoplasmic step. This transfer path was evaluated for elongating and ripening culm tissue of intact plants of two semidwarf grain sorghums. The metabolic path in elongating internode tissue was also evaluated. Results On the day after culm infusion of the tracer sucrose, the specific radioactivity of sucrose recovered from the intracellular compartment of growing axillary-branch tissue was greater (nearly twice) than that in the free space, indicating that sucrose was preferentially transferred through symplasmic routes. In contrast, the sucrose specific radioactivity in the intracellular compartment of the mature (ripening) culm tissue was probably less (about 3/4's) than that in free space indicating that sucrose was preferentially transferred through routes that included an apoplasmic step. In growing internodes of the axillary branch of sorghum, the tritium label initially provided in the fructose moiety of sucrose molecules was largely (81%) recovered in the fructose moiety, indicating that a large portion of sucrose molecules is not hydrolysed and resynthesized during radial transfer. Conclusion During radial transfer of sucrose in ripening internodes of intact sorghum plants, much of the sucrose is transferred intact (without hydrolysis and resynthesis) and primarily through a path that includes an apoplasmic step. In

  20. 48. Northwest Side of Breaker, from Culm Bank, date unknown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. Northwest Side of Breaker, from Culm Bank, date unknown Historic Photograph, Photographer Unknown; Collection of William Everett, Jr. (Wilkes-Barre,PA), photocopy by Joseph E.B. Elliot - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

  1. Brittle nails (image)

    MedlinePlus

    Like the skin, the fingernails are a reflection of a person's state of health. Low levels of zinc and iron as well as thyroid problems can cause brittle nails. However, brittle nails are often a normal ...

  2. Brittle diabetes: psychopathological aspects.

    PubMed

    Pelizza, Lorenzo; Bonazzi, Federica; Scaltriti, Sara; Milli, Bruna; Giuseppina, Chierici

    2014-01-01

    Background. The term "brittle" is used to described an uncommon subgroup of type I diabetics whose lives are disrupted by severe glycaemic instability with repeated and prolonged hospitalization. Psychosocial problems are the major perceived underlying causes of brittle behaviour. Aim of this study is a systematic psychopathological assessement of brittleness using specific parameters of general psychopathology and personality traits following the multiaxial format (axis I and II) of the current DSM-IV-TR diagnostic criteria for mental disorders. Methods. Patients comprised 21 brittle type I diabetics and a case-control group of 21 stable diabetics, matched for age, gender, years of education, and diabetes duration. General psychopathology and the DSM-IV-TR personality traits/disorders were assessed using the Syptom Checklist-90-R (SCL-90-R) and the Millon Clinical Multiaxial Inventory-III (MCMI-III). Results. The comparison for SCL-90-R parameters exclusively revealed higher scores in "Phobic Anxiety" subscale in brittle diabetics. No differences in all the other SCL-90-R primary symptom dimensions and in the three SCL-90-R global distress indices were observed between the two diabetic groups, as well as in the all MCMI-III clinical syndrome categories corresponding to DSM-IV-TR specific psychiatric disorders. However, brittle patients presented lower scores in MCMI-III compulsive personality traits and higher scores in paranoid, schizoid, schizotypal, antisocial, borderline, narcissistic, avoidant, dependent, depressive, and passive-aggressive personality traits. Conclusions. In this study, brittle diabetics show no differencies in terms of global severity of psychopathological distress and axis I specific DSM-IV-TR diagnoses in comparison with non-brittle subjects (except for phobic anxiety). Differently, brittle diabetics are characterized from less functional and maladaptive personality features and suffer more frequently and intensively from specific

  3. Understanding the importance wet, unimproved Culm grasslands have for the provision of multiple ecosystem services

    NASA Astrophysics Data System (ADS)

    Brazier, Richard; Elliot, Mark; Warren, Susan; Puttock, Alan

    2014-05-01

    It is increasingly recognised that catchments must be carefully managed for the provision of multiple, sometimes conflicting ecosystem services. This requires an increased interdisciplinary environmental understanding to inform management policy and practices by government, landowners and stakeholders. The Culm National Character Area (NCA) covers 3,500 square kilometres in South West England with Culm grasslands consisting of wet unimproved, species rich pastures, typically on poorly drained soils. Since the 1960's, policy changes have encouraged the drainage of large areas of land for agricultural improvement and consequently Culm grassland sites have become highly fragmented. There are currently 575 Culm grassland sites in the Culm NCA with a mean area of 7 ha. Traditionally, Culm grasslands have been managed by light grazing and scrub management. Since 2008, Devon Wildlife Trust's Working Wetlands project has been working with farmers and landowners to manage and restore and recreate Culm grasslands. It is part of South West Water's Upstream Thinking initiative and is now augmented by the Northern Devon Nature Improvement Area programme. However, from a hydrological perspective, Culm and similar unimproved grasslands remain poorly understood. In addition to their recognised conservation and biodiversity importance; unimproved grasslands such as Culm are thought to have a high water storage capacity, reducing runoff and therefore flooding during wet periods, whilst slowly releasing and filtering water to help maintain water quality, and base river flows during dry periods. Therefore, if properly understood and managed Culm soils have the potential to play an important role in the management of catchment water resources. Furthermore, Culm grassland soils are thought to have a high potential for the sequestration and storage of carbon, an increasingly valuable ecosystem service. This study aims to increase understanding of the influence Culm grasslands have upon

  4. Kinetic model of sucrose accumulation in maturing sugarcane culm tissue.

    PubMed

    Uys, Lafras; Botha, Frederik C; Hofmeyr, Jan-Hendrik S; Rohwer, Johann M

    2007-01-01

    Biochemically, it is not completely understood why or how commercial varieties of sugarcane (Saccharum officinarum) are able to accumulate sucrose in high concentrations. Such concentrations are obtained despite the presence of sucrose synthesis/breakdown cycles (futile cycling) in the culm of the storage parenchyma. Given the complexity of the process, kinetic modelling may help to elucidate the factors governing sucrose accumulation or direct the design of experimental optimisation strategies. This paper describes the extension of an existing model of sucrose accumulation (Rohwer, J.M., Botha, F.C., 2001. Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochem. J. 358, 437-445) to account for isoforms of sucrose synthase and fructokinase, carbon partitioning towards fibre formation, and the glycolytic enzymes phosphofructokinase (PFK), pyrophosphate-dependent PFK and aldolase. Moreover, by including data on the maximal activity of the enzymes as measured in different internodes, a growth model was constructed that describes the metabolic behaviour as sugarcane parenchymal tissue matures from internodes 3-10. While there was some discrepancy between modelled and experimentally determined steady-state sucrose concentrations in the cytoplasm, steady-state fluxes showed a better fit. The model supports a hypothesis of vacuolar sucrose accumulation against a concentration gradient. A detailed metabolic control analysis of sucrose synthase showed that each isoform has a unique control profile. Fructose uptake by the cell and sucrose uptake by the vacuole had a negative control on the futile cycling of sucrose and a positive control on sucrose accumulation, while the control profile for neutral invertase was reversed. When the activities of these three enzymes were changed from their reference values, the effects on futile cycling and sucrose accumulation were amplified. The model can be run online at the JWS Online

  5. Brittleness of ceramics

    NASA Technical Reports Server (NTRS)

    Kroupa, F.

    1984-01-01

    The main characteristics of mechanical properties of ceramics are summarized and the causes of their brittleness, especially the limited mobility of dislocations, are discussed. The possibility of improving the fracture toughness of ceramics and the basic research needs relating to technology, structure and mechanical properties of ceramics are stressed in connection with their possible applications in engineering at high temperature.

  6. Fracture of brittle solids

    NASA Technical Reports Server (NTRS)

    Doherty, R. D.; Nash, S. K.

    1990-01-01

    Upon completion of this experiment, the student should be able to give an elementary account of brittle versus ductile failure, conduct a three-point bend test on a tensile testing machine, and statistically analyze experimental data that exhibit inherently wide scatter. The experimental procedure is described.

  7. Measuring bulrush culm relationships to estimate plant biomass within a southern California treatment wetland

    USGS Publications Warehouse

    Daniels, Joan S. (Thullen); Cade, Brian S.; Sartoris, James J.

    2010-01-01

    Assessment of emergent vegetation biomass can be time consuming and labor intensive. To establish a less onerous, yet accurate method, for determining emergent plant biomass than by direct measurements we collected vegetation data over a six-year period and modeled biomass using easily obtained variables: culm (stem) diameter, culm height and culm density. From 1998 through 2005, we collected emergent vegetation samples (Schoenoplectus californicus andSchoenoplectus acutus) at a constructed treatment wetland in San Jacinto, California during spring and fall. Various statistical models were run on the data to determine the strongest relationships. We found that the nonlinear relationship: CB=β0DHβ110ε, where CB was dry culm biomass (g m−2), DH was density of culms × average height of culms in a plot, and β0 and β1 were parameters to estimate, proved to be the best fit for predicting dried-live above-ground biomass of the two Schoenoplectus species. The random error distribution, ε, was either assumed to be normally distributed for mean regression estimates or assumed to be an unspecified continuous distribution for quantile regression estimates.

  8. Disruption of secondary wall cellulose biosynthesis alters cadmium translocation and tolerance in rice plants.

    PubMed

    Song, Xue-Qin; Liu, Li-Feng; Jiang, Yi-Jun; Zhang, Bao-Cai; Gao, Ya-Ping; Liu, Xiang-Ling; Lin, Qing-Shan; Ling, Hong-Qing; Zhou, Yi-Hua

    2013-05-01

    Tricheary elements (TEs), wrapped by secondary cell wall, play essential roles in water, mineral, and nutrient transduction. Cadmium (Cd) is a toxic heavy metal that is absorbed by roots and transported to shoot, leaves, and grains through vascular systems in plants. As rice is a major source of Cd intake, many efforts have been made to establish 'low-Cd rice'. However, no links have been found between cellulose biosynthesis and cadmium accumulation. We report here a rice brittle culm13 mutant, resulting from a novel missense mutation (E101K) [corrected] in the N-terminus of cellulose synthase subunit 9 (CESA9). Except for the abnormal mechanical strength, the mutant plants are morphologically indistinguishable from the wild-type plants. Transmission electron microscopy (TEM) and chemical analyses showed a slight reduction in secondary wall thickness and 22% decrease in cellulose content in bc13 plants. Moreover, this mutation unexpectedly confers the mutant plants Cd tolerance due to less Cd accumulation in leaves. Expression analysis of the genes required for Cd uptake and transport revealed complicated alterations after applying Cd to wild-type and bc13. The mutants were further found to have altered vascular structure. More importantly, Cd concentration in the xylem saps from the bc13 plants was significantly lower than that from the wild-type. Combining the analyses of CESA9 gene expression and Cd content retention in the cell-wall residues, we conclude that CESA9(E101K) [corrected] mutation alters cell-wall properties in the conducting tissues, which consequently affects Cd translocation efficiency that largely contributes to the low Cd accumulation in the mutant plants. PMID:23376772

  9. Design, construction, operation and evaluation of a prototype culm combustion boiler/heater unit. Final design of prototype unit

    SciTech Connect

    Not Available

    1980-10-01

    A final design of a prototype anthracite culm combustion boiler has been accomplished under Phase I of DOE Contract ET-78-C-01-3269. The prototype boiler has been designed to generate 20,000 pounds per hour of 150 psig saturated steam using low Btu (4000 Btu per pound) anthracite culm as a fuel. This boiler will be located at the industrial park of the Shamokin Area Industrial Corporation (SAIC). This program is directed at demonstrating the commercial viability of anthracite culm fueled FBC steam generation systems.

  10. Determinants of water circulation in a woody bamboo species: afternoon use and night-time recharge of culm water storage.

    PubMed

    Yang, Shi-Jian; Zhang, Yong-Jiang; Goldstein, Guillermo; Sun, Mei; Ma, Ren-Yi; Cao, Kun-Fang

    2015-09-01

    To understand water-use strategies of woody bamboo species, sap flux density (Fd) in the culms of a woody bamboo (Bambusa vulgaris Schrader ex Wendland) was monitored using the thermal dissipation method. The daytime and night-time Fd were analyzed in the dry and rainy seasons. Additionally, diurnal changes in root pressure, culm circumference, and stomatal conductance (gs) were investigated to characterize the mechanisms used to maintain diurnal water balance of woody bamboos. Both in the dry and rainy seasons, daytime Fd responded to vapor pressure deficit (VPD) in an exponential fashion, with a fast initial increase in Fd when VPD increased from 0 to 1 kPa. The Fd and gs started to increase very fast as light intensity and VPD increased in the morning, but they decreased sharply once the maximum value was achieved. The Fd response of this woody bamboo to VPD was much faster than that of representative trees and palms growing in the same study site, suggesting its fast sap flow and stomatal responses to changes in ambient environmental factors. The Fd in the lower and higher culm positions started to increase at the same time in the morning, but the Fd in the higher culm position was higher than that of the lower culm in the afternoon. Consistently, distinct decreases in its culm circumference in the afternoon were detected. Therefore, unlike trees, water storage of bamboo culms was not used for its transpiration in the morning but in the afternoon. Nocturnal sap flow of this woody bamboo was also detected and related to root pressure. We conclude that this bamboo has fast sap flow/stomatal responses to irradiance and evaporative demands, and it uses substantial water storage for transpiration in the afternoon, while root pressure appears to be a mechanism resulting in culm water storage recharge during the night. PMID:26232783

  11. Design, construction, operation, and evaluation of a prototype culm combustion boiler/heater unit

    SciTech Connect

    D'Aciermo, J.; Richards, H.; Spindler, F.

    1983-10-01

    A process for utilizing anthracite culm in a fluidized bed combustion system was demonstrated by the design and construction of a prototype steam plant at Shamokin, PA, and operation of the plant for parametric tests and a nine month extended durability test. The parametric tests evaluated turndown capability of the plant and established turndown techniques to be used to achieve best performance. Throughout the test program the fluidized bed boiler durability was excellent, showing very high resistence to corrosion and erosion. A series of 39 parametric tests was performed in order to demonstrate turndown capabilities of the atmospheric fluidized bed boiler burning anthracite culm. Four tests were performed with bituminous coal waste (called gob) which contains 4.8 to 5.5% sulfur. Heating value of both fuels is approximately 3000 Btu/lb and ash content is approximately 70%. Combustion efficiency, boiler efficiency, and emissions of NO/sub x/ and SO/sub 2/ were also determined for the tests.

  12. Identification of genes involved in color variation of bamboo culms by suppression subtractive hybridization.

    PubMed

    Xia, Xiangwan; Gui, Renyi; Yang, Haiyun; Fu, Ying; Wei, Fang; Zhou, Mingbing

    2015-12-01

    Phyllostachys vivax cv. aureocaulis is a widely planted ornamental bamboo with evergreen leaves. This plant's culm exhibits a golden-yellow background color marked randomly with narrow and broad green stripes but is occasionally light green with yellow stripes. In this study, we attempt to identify the molecular mechanism underlying the color variation in striped culms. We found that neither stroma nor grana lamellas were observed in plastids in yellow tissue cells, while complete chloroplasts were observed in green tissue. In addition, chlorophyll a and b were mainly distributed in ground tissue under the epiderm and in the cells surrounding the bundle sheath in the green portion of internodes. The amount of chlorophyll contained in cross-sections of the green portion of culms is significantly higher than in the yellow portion. However, carotenoid was nearly undetectable in both samples. In addition, we found that the expression levels of 7 ESTs, including PvESTs-F641 (JZ893845), PvESTs-F681 (JZ893885) and PvESTs-F798 (JZ894002), were significantly higher in green samples than that in yellow samples, while PvESTs-R200 (JZ894906), PvESTs-R541 (JZ895247), PvESTs-R333 (JZ895039) and PvESTs-R266 (JZ894972) were found at a higher level in yellow samples. These ESTs are thought to play a role in this color variation in plants. Our current results indicate that insufficient photosynthetic membrane proteins and lipids in yellow tissue could lead to chloroplast dysfunction and could result in the yellow appearance on certain P. vivax cv. aureocaulis culms. PMID:26473665

  13. Effects of high NH+4 on K+ uptake, culm mechanical strength and grain filling in wheat

    PubMed Central

    Kong, Lingan; Sun, Mingze; Wang, Fahong; Liu, Jia; Feng, Bo; Si, Jisheng; Zhang, Bin; Li, Shengdong; Li, Huawei

    2014-01-01

    It is well established that a high external NH+4 concentration depresses many processes in plant development, but the underlying mechanisms are still not well understood. To determine whether the negative effects of high levels of NH+4 are related to competitive cation uptake, wheat was grown in a field with moderate (18 g N m−2) and high (30 g N m−2) supplies of NH+4 in the presence or absence of additional K+ (6 g K2O m−2) to examine culm mechanical strength, the main components of the vascular bundle, nitrogen (N) remobilization and the grain-filling rate. The results indicated that an excessive supply of NH+4 significantly decreased culm mechanical strength, the cellulose and lignin contents of vascular bundles, the N remobilization efficiency (NRE) and the grain-filling rate compared with a moderate level of NH+4. The additional provision of K+ considerably alleviated these negative effects of high NH+4, resulting in a 19.41–26.95% increase in culm mechanical strength during grain filling and a 34.59% increase in the NRE. An assay using the scanning ion-selective electrode technique (SIET) showed that the net rate of transmembrane K+ influx decreased by 84.62%, and measurements using flame photometry demonstrated that the K+ content decreased by 36.13% in wheat plants subjected to high NH+4. This study indicates that the effects of high NH+4 on culm mechanical strength, cellulose and lignin contents, the NRE and the grain-filling rate are probably associated with inhibition of K+ uptake in wheat. PMID:25566278

  14. Improving barley culm robustness for secured crop yield in a changing climate.

    PubMed

    Dockter, Christoph; Hansson, Mats

    2015-06-01

    The Green Revolution combined advancements in breeding and agricultural practice, and provided food security to millions of people. Daily food supply is still a major issue in many parts of the world and is further challenged by future climate change. Fortunately, life science research is currently making huge progress, and the development of future crop plants will be explored. Today, plant breeding typically follows one gene per trait. However, new scientific achievements have revealed that many of these traits depend on different genes and complex interactions of proteins reacting to various external stimuli. These findings open up new possibilities for breeding where variations in several genes can be combined to enhance productivity and quality. In this review we present an overview of genes determining plant architecture in barley, with a special focus on culm length. Many genes are currently known only through their mutant phenotypes, but emerging genomic sequence information will accelerate their identification. More than 1000 different short-culm barley mutants have been isolated and classified in different phenotypic groups according to culm length and additional pleiotropic characters. Some mutants have been connected to deficiencies in biosynthesis and reception of brassinosteroids and gibberellic acids. Still other mutants are unlikely to be connected to these hormones. The genes and corresponding mutations are of potential interest for development of stiff-straw crop plants tolerant to lodging, which occurs in extreme weather conditions with strong winds and heavy precipitation. PMID:25614659

  15. Fracture technology for brittle materials

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.

    1988-01-01

    Ceramics materials have the potential for use in high-temperature, fuel-efficient engines. However, because these materials are brittle, their fracture characteristics must be well documented prior to their application. Thus Lewis is working to understand the fracture and strength properties of brittle ceramic and ceramic matrix materials. An understanding of fracture properties aids both designers who are attempting to design high-temperature structures and materials scientists who seek to design more temperature-resistant materials. Both analytical and experimental approaches to fracture analysis are being taken. Methods for testing fracture toughness, crack growth resistance, and strength are being developed. The failure mechanisms at both room and elevated temperatures are also being investigated. Such investigations aid materials scientists in developing better high-temperature materials. Of concern is the anisotropy of ceramic materials and the experimental verification of ceramic design codes that will allow brittle material behavior to be accurately predicted at high temperature.

  16. Soft matter: Brittle for breakfast

    NASA Astrophysics Data System (ADS)

    Vandewalle, Nicolas

    2015-10-01

    Crushing a brittle porous medium such as a box of cereal causes the grains to break up and rearrange themselves. A lattice spring model based on simple physical assumptions gives rise to behaviours that are complex enough to reproduce diverse compaction patterns.

  17. Design, construction, operation and evaluation of a prototype culm combustion boiler/heater unit: site evaluation; socio-economic impact

    SciTech Connect

    Not Available

    1981-11-01

    It has been proposed to construct a fluidized bed culm combustion boiler/heater unit in the Shamokin, Pennsylvania area. The facility would burn culm from a nearby coal mine and provide steam to an industrial user. The environmental setting of the area prior to development is described, including climatology, air quality, ecology, hydrology, wastes, noise, land use, socioeconomics, and geology and subsurface conditions. The environmental impacts of the proposed action are then evaluated as related to air quality, ecology, hydrology, wastes, noise, and socioeconomics. Measures for mitigating impacts on air quality, wastes, and noise are briefly described, and possible environmental effects that cannot be avoided are briefly enumerated. (LEW)

  18. Testing Bonds Between Brittle And Ductile Films

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Ohsaki, Hiroyuki

    1989-01-01

    Simple uniaxial strain test devised to measure intrinsic shear strength. Brittle film deposited on ductile stubstrate film, and combination stretched until brittle film cracks, then separates from substrate. Dimensions of cracked segments related in known way to tensile strength of brittle film and shear strength of bond between two films. Despite approximations and limitations of technique, tests show it yields semiquantitative measures of bond strengths, independent of mechanical properties of substrates, with results reproducible with plus or minus 6 percent.

  19. Protection of brittle film against cracking

    NASA Astrophysics Data System (ADS)

    Musil, J.; Sklenka, J.; Čerstvý, R.

    2016-05-01

    This article reports on the protection of the brittle Zrsbnd Sisbnd O film against cracking in bending by the highly elastic top film (over-layer). In experiments the Zrsbnd Sisbnd O films with different elemental composition and structure were used. Both the brittle and highly elastic films were prepared by magnetron sputtering using a dual magnetron. The brittle film easily cracks in bending. On the other hand, the highly elastic film exhibits enhanced resistance to cracking in bending. Main characteristic parameters of both the brittle and highly elastic films are given. Special attention is devoted to the effect of the structure (crystalline, amorphous) of both the brittle and highly elastic top film on the resistance of cracking of the brittle film. It was found that (1) both the X-ray amorphous and crystalline brittle films easily crack in bending, (2) the highly elastic film can have either X-ray amorphous or crystalline structure and (3) both the X-ray amorphous and crystalline, highly elastic top films perfectly protect the brittle films against cracking in bending. The structure, mechanical properties and optical transparency of the brittle and highly elastic sputtered Zrsbnd Sisbnd O films are described in detail. At the end of this article, the principle of the low-temperature formation of the highly elastic films is also explained.

  20. Evaluation of the brittleness of the rocks using various brittleness indices

    NASA Astrophysics Data System (ADS)

    Cheon, Dae-Sung; Jung, Yong-Bok; Park, Chan; Park, Eui-Seob

    2015-04-01

    In general, the rock has the feature of drastically reduced bearing capacity during the small strain by the brittle characteristic. Because brittleness is considered as both of inherent property and behavior of materials, various brittleness indices have been proposed and based on these the brittleness degrees of the rock are determined. The brittleness indices are used for evaluating the stability of brittle failure in deep mines or underground excavations, drillability evaluation in the well drilling field, sawability evaluation in the building stone field and others. In recent years there has been utilized as a descriptor of the hydraulic fracturing in shale gas and enhanced geothermal system. In this paper, we estimated the brittleness index of different types of rocks using various brittleness indices proposed by previous researchers and investigated their relationship and applicability. The commonly used brittleness index in Rock Mechanics is the ratio between uniaxial compressive strength and tensile strength. In Reservior Geomechanics, the indices using dynamic elastic modulus and Poisson's ratio calculated from well logging data are generally used. In higher brittleness or brittleness index, the rock shows the following characteristics; low values of elongation of grains, fracture failure, formation of fines and debris, a higher ratio of compressive to tensile strength, higher resilience, higher internal friction angle, formation of cracks in indentation, easy to fracture etc.. The brittleness index showed relatively good relations with rock intrinsic properties such as uniaxial compressive strength, elastic modulus and fracture toughness in particular rock types. The correlation among brittleness index using geophysical logging data was shown. However, it was difficult to find a relationship of the brittleness indices between uses in traditional Rock Mechanics and Reservoir Geomechanics. Since some brittleness indices have no special meaning, a careful

  1. Morphological Study of the Relationships between Weedy Rice Accessions (Oryza sativa Complex) and Commercial Rice Varieties in Pulau Pinang Rice Granary Area

    PubMed Central

    Hussain, Zainudin PMD; Man, Azmi; Othman, Ahmad Sofiman

    2010-01-01

    Weedy rice (WR) is found in many direct-seeded rice fields. WR possesses morphological characteristics that are similar to cultivated rice varieties in the early stage of growth, making them more difficult to control than other weeds. A comparative morphological study was conducted by collecting WR accessions from four sites within the Pulau Pinang rice growing areas. The objective of the study was to characterise WR accessions of the Pulau Pinang rice granary by comparing their morphological characteristics to those of commercially grown rice in the area. Their morphometric relations were established by comparing 17 morphological characteristics of the WR accessions and the commercial varieties. A total of 36 WR morphotypes were identified from these 4 sites based on 17 characteristics, which included grain shattering habit and germination rate. The Principal Component Analysis (PCA) showed that 45.88% of the variation observed among the WR accessions and commercial varieties were within the first 3 axes. PB6, PP2 and SGA5 WR accessions had a higher number of tillers and longer panicle lengths, culm heights and leaf lengths compared to the commercial rice. The grain sizes of the commercial varieties were slightly longer, and the chlorophyll contents at 60–70 days after sowing (DAS) were higher than those of the WR accessions. Results from this study are useful for predicting potential WR accession growth, which might improve WR management and agriculture practices that control WR in the future. PMID:24575197

  2. Prototype anthracite culm combustion boiler/heater unit. Quarterly technical report No. 4, July 1-September 30, 1979

    SciTech Connect

    Not Available

    1980-01-01

    There are currently about 910 million cubic yards of anthracite culm (mine refuse) contained in 800 separate banks in a 480 square mile area in the Wilkes-Barre (W-B) anthracite mining region. Although this material represents a significant fuel value, equivalent to approximately 1.25 billion barrels of fuel oil, the culm banks have accumulated because no satisfactory method of combusting this fuel was available until the relatively recent development of the atmospheric fluidized bed (AFB) steam generator. A program was initiated in October 1978 to design, construct and evaluate a 100,000 pph AFB steam generator burning anthracite culm with the addition of fresh anthracite, if required. The unit is to demonstrate the technical, economical and environmental feasibility of producing 150 psig saturated steam for district heating in downtown W-B. Phase I of the program consists of the design of the atmospheric fluidized bed (AFB) plant and a hot model test program. Phase II of the program consists of construction, operation, testing and evaluation of the boiler and boiler plant.

  3. Computational brittle fracture using smooth particle hydrodynamics

    SciTech Connect

    Mandell, D.A.; Wingate, C.A.; Schwalbe, L.A.

    1996-10-01

    We are developing statistically based, brittle-fracture models and are implementing them into hydrocodes that can be used for designing systems with components of ceramics, glass, and/or other brittle materials. Because of the advantages it has simulating fracture, we are working primarily with the smooth particle hydrodynamics code SPBM. We describe a new brittle fracture model that we have implemented into SPBM. To illustrate the code`s current capability, we have simulated a number of experiments. We discuss three of these simulations in this paper. The first experiment consists of a brittle steel sphere impacting a plate. The experimental sphere fragment patterns are compared to the calculations. The second experiment is a steel flyer plate in which the recovered steel target crack patterns are compared to the calculated crack patterns. We also briefly describe a simulation of a tungsten rod impacting a heavily confined alumina target, which has been recently reported on in detail.

  4. The bioprocessing of stem cells: how to reach the clinic. Interviewed by Emily Culme-Seymour.

    PubMed

    Zandstra, Peter

    2013-07-01

    Peter Zandstra speaks to Emily Culme-Seymour, Assistant Commissioning Editor Peter Zandstra graduated with a Bachelor of Engineering degree from McGill University (QC, Canada) in the Department of Chemical Engineering, and obtained his PhD degree from the University of British Columbia (BC, USA) in the Department of Chemical Engineering and Biotechnology, under the supervision of Jamie Piret and Connie Eaves. He continued his research training as a Post Doctoral Fellow in the field of Bioengineering at the Massachusetts Institute of Technology (MA, USA; with Doug Lauffenburger) before being appointed to the University of Toronto (ON, USA) in 1999. He holds an academic appointment as a Professor at the University of Toronto's Institute of Biomaterials and Biomedical Engineering, and he is cross-appointed with the Departments of Chemical Engineering and Applied Chemistry, and the Donnelly Centre for Cellular and Biomolecular Research. Zandstra is a Canada Research Chair in Stem Cell Bioengineering and is a recipient of a number of awards and fellowships including the Premiers Research Excellence Award (2002), the Edgar William Richard Steacie Memorial Fellowship (2006), the John Simon Guggenheim Memorial Foundation Fellowship (2007) and the McLean Award (2009). Zandstra is a fellow of the American Institute for Medical and Biological Engineering and the American Association for the Advancement of Science. Zandstra currently serves as associate editor for several journals. In addition to his academic appointment, he serves as the Chief Scientific Officer for the Centre for Commercialization of Regenerative Medicine in Toronto (ON, Canada). PMID:23826695

  5. Brittleness Effect on Rock Fatigue Damage Evolution

    NASA Astrophysics Data System (ADS)

    Nejati, Hamid Reza; Ghazvinian, Abdolhadi

    2014-09-01

    The damage evolution mechanism of rocks is one of the most important aspects in studying of rock fatigue behavior. Fatigue damage evolution of three rock types (onyx marble, sandstone and soft limestone) with different brittleness were considered in the present study. Intensive experimental tests were conducted on the chosen rock samples and acoustic emission (AE) sensors were used in some of them to monitor the fracturing process. Experimental tests indicated that brittleness strongly influences damage evolution of rocks in the course of static and dynamic loading. AE monitoring revealed that micro-crack density induced by the applied loads during different stages of the failure processes increases as rock brittleness increases. Also, results of fatigue tests on the three rock types indicated that the rock with the most induced micro-cracks during loading cycles has the least fatigue life. Furthermore, the condition of failure surfaces of the studied rocks samples, subjected to dynamic and static loading, were evaluated and it was concluded that the roughness of failure surfaces is influenced by loading types and rock brittleness. Dynamic failure surfaces were rougher than static ones and low brittle rock demonstrate a smoother failure surface compared to high brittle rock.

  6. Fracturing and brittleness index analyses of shales

    NASA Astrophysics Data System (ADS)

    Barnhoorn, Auke; Primarini, Mutia; Houben, Maartje

    2016-04-01

    The formation of a fracture network in rocks has a crucial control on the flow behaviour of fluids. In addition, an existing network of fractures , influences the propagation of new fractures during e.g. hydraulic fracturing or during a seismic event. Understanding of the type and characteristics of the fracture network that will be formed during e.g. hydraulic fracturing is thus crucial to better predict the outcome of a hydraulic fracturing job. For this, knowledge of the rock properties is crucial. The brittleness index is often used as a rock property that can be used to predict the fracturing behaviour of a rock for e.g. hydraulic fracturing of shales. Various terminologies of the brittleness index (BI1, BI2 and BI3) exist based on mineralogy, elastic constants and stress-strain behaviour (Jin et al., 2014, Jarvie et al., 2007 and Holt et al., 2011). A maximum brittleness index of 1 predicts very good and efficient fracturing behaviour while a minimum brittleness index of 0 predicts a much more ductile shale behaviour. Here, we have performed systematic petrophysical, acoustic and geomechanical analyses on a set of shale samples from Whitby (UK) and we have determined the three different brittleness indices on each sample by performing all the analyses on each of the samples. We show that each of the three brittleness indices are very different for the same sample and as such it can be concluded that the brittleness index is not a good predictor of the fracturing behaviour of shales. The brittleness index based on the acoustic data (BI1) all lie around values of 0.5, while the brittleness index based on the stress strain data (BI2) give an average brittleness index around 0.75, whereas the mineralogy brittleness index (BI3) predict values below 0.2. This shows that by using different estimates of the brittleness index different decisions can be made for hydraulic fracturing. If we would rely on the mineralogy (BI3), the Whitby mudstone is not a suitable

  7. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  8. High Speed Dynamics in Brittle Materials

    NASA Astrophysics Data System (ADS)

    Hiermaier, Stefan

    2015-06-01

    Brittle Materials under High Speed and Shock loading provide a continuous challenge in experimental physics, analysis and numerical modelling, and consequently for engineering design. The dependence of damage and fracture processes on material-inherent length and time scales, the influence of defects, rate-dependent material properties and inertia effects on different scales make their understanding a true multi-scale problem. In addition, it is not uncommon that materials show a transition from ductile to brittle behavior when the loading rate is increased. A particular case is spallation, a brittle tensile failure induced by the interaction of stress waves leading to a sudden change from compressive to tensile loading states that can be invoked in various materials. This contribution highlights typical phenomena occurring when brittle materials are exposed to high loading rates in applications such as blast and impact on protective structures, or meteorite impact on geological materials. A short review on experimental methods that are used for dynamic characterization of brittle materials will be given. A close interaction of experimental analysis and numerical simulation has turned out to be very helpful in analyzing experimental results. For this purpose, adequate numerical methods are required. Cohesive zone models are one possible method for the analysis of brittle failure as long as some degree of tension is present. Their recent successful application for meso-mechanical simulations of concrete in Hopkinson-type spallation tests provides new insight into the dynamic failure process. Failure under compressive loading is a particular challenge for numerical simulations as it involves crushing of material which in turn influences stress states in other parts of a structure. On a continuum scale, it can be modeled using more or less complex plasticity models combined with failure surfaces, as will be demonstrated for ceramics. Models which take microstructural

  9. Shock-wave properties of brittle solids

    SciTech Connect

    Grady, D.E.

    1995-10-01

    Extensive experimental investigation in the form of large-amplitude, nonlinear wave-profile measurements which manifest the shock strength and equation-of-state properties of brittle solids has been performed. Brittle materials for which a base of dynamic property data is available include Al{sub 2}O{sub 3}, AlN, B{sub 4}C, CaCO{sub 3}, SiC, Si{sub 3}N{sub 4}, SiO{sub 2} (quartz and glass), TiB{sub 2}, WC and ZrO{sub 2}. Planar impact methods and velocity interferometry diagnostics have been used exclusively to provide the high-resolution shock-profile data. These wave-profile data are providing engineering dynamic strength and equation-of-state properties as well as controlled, shock-induced motion histories for the validation of theoretical and Computational models. Of equal importance, such data are providing a window into the physics of a newly emerging understanding of the compression and deformation behavior of high-strength brittle solids. When considered along with a rich assortment of strength and deformation data in the literature, a systematic assessment of this shock-wave data lends strong support for failure waves and concomitant high-confinement dilatancy as a general mechanism of inelastic deformation in the shock compression of ceramics. Phase transformation in selected brittle solids appears to be a critical state phenomenon strongly controlled by kinetics. The risetime and structure of deformation shock waves in brittle solids are controlled by viscous effects which at present are still poorly understood. The shockwave data also suggest that both crystalline plasticity and brittle fracture may play important and interconnected roles in the dynamic failure process.

  10. Origin of brittle cleavage in iridium.

    PubMed

    Cawkwell, Marc J; Nguyen-Manh, Duc; Woodward, Christopher; Pettifor, David G; Vitek, Vaclav

    2005-08-12

    Iridium is unique among the face-centered cubic metals in that it undergoes brittle cleavage after a period of plastic deformation under tensile stress. Atomistic simulation using a quantum-mechanically derived bond-order potential shows that in iridium, two core structures for the screw dislocation are possible: a glissile planar core and a metastable nonplanar core. Transformation between the two core structures is athermal and leads to exceptionally high rates of cross slip during plastic deformation. Associated with this athermal cross slip is an exponential increase in the dislocation density and strong work hardening from which brittle cleavage is a natural consequence. PMID:16099981

  11. Guadua zuloagae sp. nov., the First Petrified Bamboo Culm Record from the Ituzaingó Formation (Pliocene), Paraná Basin, Argentina

    PubMed Central

    Brea, Mariana; Zucol, Alejandro F.

    2007-01-01

    Background and Aims The anatomical characterization and morphology of Guadua zuloagae nov. sp. (Poaceae–Bambusoideae) culm was determined. This material was collected at the Toma Vieja fossil locality, Paraná basin, Argentina. This fossil culm is the first record of Bambusoideae in sediments of the Pliocene from the Ituzaingó Formation. The studied specimen was compared with the taxa of the Bambusoideae sub-family, especially with the American woody bamboos and others taxa that have woody culms, including Arundo, Thysalonaena and Gynerium. Methods The material was preserved by siliceous cellular permineralization, and it was prepared for microscopic examination by surface polishing and thin sections. The morphology and anatomy of this new species were described. The estimated height, critical buckling height and safety factor were calculated on the basis of the fossil bamboo diameter using the formula of Niklas. The relationship and comparison with the nearest living relatives (NLRs) are discussed. Key Results Well-preserved petrified culm with internodes and nodes from the Pliocene of Argentina provides the basis for the description of a new fossil bamboo, Guadua zuloagae. The results of the anatomical analysis of the fossil bamboo showed a great affinity with the extant species Guadua angustifolia and constitute the first evidence of petrified bamboo culm. Conclusions The new fossil bamboo culm constitutes the only fossil record, preserved as permineralized by silicification, in the world. This fossil record indicates that the genus Guadua was more widespread in the past than today. Discovery of G. zuloagae allows the presence of a Bambusoideae understorey in the mixed forests described for the Ituzaingó Formation to be inferred. The climatic conditions inferred from fossil bamboo and sedimentary deposits indicate a temperate-warm, humid climate. PMID:17728337

  12. Ductile to brittle transition in dynamic fracture of brittle bulk metallic glass

    SciTech Connect

    Wang, G.; Han, Y. N.; Han, B. S.; Wang, W. H.; Xu, X. H.; Ke, F. J.

    2008-05-01

    We report an unusual transition from a locally ductile to a pure brittle fracture in the dynamic fracture of brittle Mg{sub 65}Cu{sub 20}Gd{sub 10} bulk metallic glass. The fractographic evolution from a dimple structure to a periodic corrugation pattern and then to the mirror zone along the crack propagation direction during the dynamic fracture process is discussed within the framework of the meniscus instability of the fracture process zone. This work might provide an important clue in understanding of the energy dissipation mechanism for dynamic crack propagation in brittle glassy materials.

  13. Precision grinding process development for brittle materials

    SciTech Connect

    Blaedel, K L; Davis, P J; Piscotty, M A

    1999-04-01

    High performance, brittle materials are the materials of choice for many of today's engineering applications. This paper describes three separate precision grinding processes developed at Lawrence Liver-more National Laboratory to machine precision ceramic components. Included in the discussion of the precision processes is a variety of grinding wheel dressing, truing and profiling techniques.

  14. Johanna and Tommy: Two Preschoolers in Sweden with Brittle Bones.

    ERIC Educational Resources Information Center

    Millde, Kristina; Brodin, Jane

    Information is presented for caregivers of Swedish children with osteogenesis imperfecta (brittle bones) and their families. Approximately five children with brittle bones are born in Sweden annually. Two main types of brittle bone disease have been identified: congenita and tarda. Typical symptoms include numerous and unexpected fractures, bluish…

  15. Using TeQing-into-Lemont introgression lines (TILs) to dissect sheath blight resistance QTLs and fine-map a spreading culm gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have been using a set of TeQing-into-Lemont introgression lines to fine-map sheath blight resistance QTL. In the course of dissection a QTL region previously mapped on chromosome 9, we discovered a gene for spreading culms (or open plant-type) residing in one half of the QTL region, while the she...

  16. Optimization of regimes for the feed of highly concentrated culm-anthracite coal dust for burning in a TPP-210A boiler

    SciTech Connect

    L.V. Golyshev; G.A. Dovgoteles

    2007-05-15

    Results are presented for regime adjustment of feed systems for a TPP-210A boiler for the burning of highly concentrated culm-anthracite coal dust. As compared with nonoptimal regimes, optimal regimes of high-concentration-feed systems improve the economy of the boiler by 1.7% on average.

  17. Fracture in compression of brittle solids

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The fracture of brittle solids in monotonic compression is reviewed from both the mechanistic and phenomenological points of view. The fundamental theoretical developments based on the extension of pre-existing cracks in general multiaxial stress fields are recognized as explaining extrinsic behavior where a single crack is responsible for the final failure. In contrast, shear faulting in compression is recognized to be the result of an evolutionary localization process involving en echelon action of cracks and is termed intrinsic.

  18. Fabrication of brittle materials -- current status

    SciTech Connect

    Scattergood, R.O.

    1988-12-01

    The research initiatives in the area of precision fabrication will be continued in the upcoming year. Three students, T. Bifano (PhD), P. Blake (PhD) and E. Smith (MS), finished their research programs in the last year. Sections 13 and 14 will summarize the essential results from the work of the Materials Engineering students Blake and Smith. Further details will be presented in forthcoming publications that are now in preparation. The results from Bifano`s thesis have been published in adequate detail and need not be summarized further. Three new students, S. Blackley (MS), H. Paul (PhD), and S. Smith (PhD) have joined the program and will continue the research efforts in precision fabrication. The programs for these students will be outlined in Sections 15 and 16. Because of the success of the earlier work in establishing new process models and experimental techniques for the study of diamond turning and diamond grinding, the new programs will, in part, build upon the earlier work. This is especially true for investigations concerned with brittle materials. The basic understanding of material response of nominally brittle materials during machining or grinding operations remains as a challenge. The precision fabrication of brittle materials will continue as an area of emphasis for the Precision Engineering Center.

  19. Towards an Approach to Overcome Software Brittleness

    SciTech Connect

    OSBOURN,GORDON C.

    1999-11-01

    Development of bug-free, high-surety, complex software is quite difficult using current tools. The brittle nature of the programming constructs in popular languages such as C/C++ is one root cause. Brittle commands force the designer to rigidly specify the minutiae of tasks, e.g. using ''for(index=0;index>total;index++)'', rather than specifying the goals or intent of the tasks, e.g. ''ensure that all relevant data elements have been examined''. Specification of task minutiae makes code hard to comprehend, which in turn encourages design errors/limitations and makes future modifications quite difficult. This report describes an LDRD project to seed the development of a surety computer language, for stand-alone computing environments, to be implemented using the swarm intelligence of autonomous agents. The long term vision of this project was to develop a language with the following surety capabilities: (1) Reliability -- Autonomous agents can appropriate y decide when to act and when a task is complete, provide a natural means for avoiding brittle task specifications, and can overcome many hardware glitches. (2) Safety, security -- Watchdog safety and security agents can monitor other agents to prevent unauthorized or dangerous actions. (3) An immune system -- The small chunks of agent code can have an encryption scheme to enable detection and elimination of unauthorized and corrupted agents. This report describes the progress achieved during this small 9 month project and describes lessons learned.

  20. Industrial application of fluidized-bed combustion, Anthracite Culm Combustion Program, A/E Technical Management Services. Final report

    SciTech Connect

    Not Available

    1981-01-01

    The Energy Research and Development Administration (now DOE) initiated the $80,000,000 Fluidized Bed Combustion Programs in 1976 and contracts were awarded to five participants. Subsequently, in 1977 there were three additional contracts awarded for the Anthracite Culm Program. The objectives were to determine which applications were most feasible, and to design, build and operate demonstration plants with capacities of 25 to 100 million Btu per hour output burning high sulfur coals and other fuels to obtain sufficient data to enable industry to scale up to larger plant sized installations. Contributions of each of the participants are discussed. Relative merits of each design approach is covered. Specific areas such as fuel feed systems, grid plate design, ignition systems, fly ash reinjection systems, particulate clean up and control systems are discussed. Remaining areas of concern are errosion, combustion efficiency and reliability.

  1. Aerogel: Tile Composites Toughen a Brittle Superinsulation

    NASA Technical Reports Server (NTRS)

    White, Susan; Rasky, Daniel; Arnold, James O. (Technical Monitor)

    1998-01-01

    Pure aerogels, though familiar in the laboratory for decades as exotic lightweight insulators with unusual physical properties, have had limited industrial applications due to their low strength and high brittleness. Composites formed of aerogels and the ceramic fiber matrices like those used as space shuttle tiles bypass the fragility of pure aerogels and can enhance the performance of space shuttle tiles in their harsh operating environment. Using a layer of aerogel embedded in a tile may open up a wide range of applications where thermal insulation, gas convection control and mechanical strength matter.

  2. Controlled crack growth specimen for brittle systems

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Brewer, David N.

    1990-01-01

    A pure Mode 1 fracture specimen and test procedure has been developed which provides extended, stable, through-thickness crack growth in ceramics and other brittle, nonmetallic materials. Fixed displacement loading, applied at the crack mouth, promotes stable crack extension by reducing the stored elastic strain energy. Extremely fine control of applied displacements is achieved by utilizing the Poisson's expansion of a compressively loaded cylindrical pin. Stable cracks were successfully grown in soda-lime glass and monolithic Al2O3 for lengths in excess of 20 mm without uncontrollable catastrophic failure.

  3. Controlled crack growth specimen for brittle systems

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Brewer, David N.

    1992-01-01

    A pure Mode 1 fracture specimen and test procedure has been developed which provides extended, stable, through-thickness crack growth in ceramics and other brittle, nonmetallic materials. Fixed displacement loading, applied at the crack mouth, promotes stable crack extension by reducing the stored elastic strain energy. Extremely fine control of applied displacements is achieved by utilizing the Poisson's expansion of a compressively loaded cylindrical pin. Stable cracks were successfully grown in soda-lime glass and monolithic Al2O3 for lengths in excess of 2O mm without uncontrollable catastrophic failure.

  4. Brittle and semi-brittle behaviours of a carbonate rock: influence of water and temperature

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Regnet, J. B.; Dimanov, A.; Guéguen, Y.

    2016-07-01

    Inelastic deformation can either occur with dilatancy or compaction, implying differences in porosity changes, failure and petrophysical properties. In this study, the roles of water as a pore fluid, and of temperature, on the deformation and failure of a micritic limestone (white Tavel limestone, porosity 14.7 per cent) were investigated under triaxial stresses. For each sample, a hydrostatic load was applied up to the desired confining pressure (from 0 up to 85 MPa) at either room temperature or at 70 °C. Two pore fluid conditions were investigated at room temperature: dry and water saturated. The samples were deformed up to failure at a constant strain rate of ˜10-5 s-1. The experiments were coupled with ultrasonic wave velocity surveys to monitor crack densities. The linear trend between the axial crack density and the relative volumetric strain beyond the onset of dilatancy suggests that cracks propagate at constant aspect ratio. The decrease of ultrasonic wave velocities beyond the onset of inelastic compaction in the semi-brittle regime indicates the ongoing interplay of shear-enhanced compaction and crack development. Water has a weakening effect on the onset of dilatancy in the brittle regime, but no measurable influence on the peak strength. Temperature lowers the confining pressure at which the brittle-semi-brittle transition is observed but does not change the stress states at the onset of inelastic compaction and at the post-yield onset of dilatancy.

  5. Precise estimation of genomic regions controlling lodging resistance using a set of reciprocal chromosome segment substitution lines in rice.

    PubMed

    Ookawa, Taiichiro; Aoba, Ryo; Yamamoto, Toshio; Ueda, Tadamasa; Takai, Toshiyuki; Fukuoka, Shuichi; Ando, Tsuyu; Adachi, Shunsuke; Matsuoka, Makoto; Ebitani, Takeshi; Kato, Yoichiro; Mulsanti, Indria Wahyu; Kishii, Masahiro; Reynolds, Matthew; Piñera, Francisco; Kotake, Toshihisa; Kawasaki, Shinji; Motobayashi, Takashi; Hirasawa, Tadashi

    2016-01-01

    Severe lodging has occurred in many improved rice varieties after the recent strong typhoons in East and Southeast Asian countries. The indica variety Takanari possesses strong culm characteristics due to its large section modulus, which indicates culm thickness, whereas the japonica variety Koshihikari is subject to substantial bending stress due to its thick cortical fibre tissue. To detect quantitative trait loci (QTLs) for lodging resistance and to eliminate the effects of genetic background, we used reciprocal chromosome segment substitution lines (CSSLs) derived from a cross between Koshihikari and Takanari. The oppositional effects of QTLs for section modulus were confirmed in both genetic backgrounds on chromosomes 1, 5 and 6, suggesting that these QTLs are not affected by the genetic background and are controlled independently by a single factor. The candidate region of a QTL for section modulus included SD1. The section modulus of NIL-sd1 was lower than that of Koshihikari, whereas the section modulus of NIL-SD1 was higher than that of Takanari. This result indicated that those regions regulate the culm thickness. The reciprocal effects of the QTLs for cortical fibre tissue thickness were confirmed in both genetic backgrounds on chromosome 9 using CSSLs. PMID:27465821

  6. Precise estimation of genomic regions controlling lodging resistance using a set of reciprocal chromosome segment substitution lines in rice

    PubMed Central

    Ookawa, Taiichiro; Aoba, Ryo; Yamamoto, Toshio; Ueda, Tadamasa; Takai, Toshiyuki; Fukuoka, Shuichi; Ando, Tsuyu; Adachi, Shunsuke; Matsuoka, Makoto; Ebitani, Takeshi; Kato, Yoichiro; Mulsanti, Indria Wahyu; Kishii, Masahiro; Reynolds, Matthew; Piñera, Francisco; Kotake, Toshihisa; Kawasaki, Shinji; Motobayashi, Takashi; Hirasawa, Tadashi

    2016-01-01

    Severe lodging has occurred in many improved rice varieties after the recent strong typhoons in East and Southeast Asian countries. The indica variety Takanari possesses strong culm characteristics due to its large section modulus, which indicates culm thickness, whereas the japonica variety Koshihikari is subject to substantial bending stress due to its thick cortical fibre tissue. To detect quantitative trait loci (QTLs) for lodging resistance and to eliminate the effects of genetic background, we used reciprocal chromosome segment substitution lines (CSSLs) derived from a cross between Koshihikari and Takanari. The oppositional effects of QTLs for section modulus were confirmed in both genetic backgrounds on chromosomes 1, 5 and 6, suggesting that these QTLs are not affected by the genetic background and are controlled independently by a single factor. The candidate region of a QTL for section modulus included SD1. The section modulus of NIL-sd1 was lower than that of Koshihikari, whereas the section modulus of NIL-SD1 was higher than that of Takanari. This result indicated that those regions regulate the culm thickness. The reciprocal effects of the QTLs for cortical fibre tissue thickness were confirmed in both genetic backgrounds on chromosome 9 using CSSLs. PMID:27465821

  7. Atomistic simulations of brittle crack growth.

    SciTech Connect

    Hoyt, Jeffrey John

    2007-04-01

    Ceramic materials such as lead zirconium titanates (PZT), low temperature co-fired ceramics and silica glasses are used in several of Sandia's mission critical components. Brittle fracture, either during machining and processing or after many years in service, remains a serious reliability and cost issue. Despite its technological importance, brittle fracture remains poorly understand, especially the onset and propagation of sub-critical cracks. However, some insights into the onset of fracture can be gleaned from the atomic scale structure of the amorphous material. In silica for example, it is well known [1] that the Si-O-Si bonds are relatively weak and, in angle distribution functions determined from scattering experiments, the bonds exhibit a wide spread around a peak at 150. By contrast the O-Si-O bonds are strong with a narrow peak in the distribution around the 109 dictated by the SiO{sub 4} tetrahedron. In addition, slow energy release in silica, as deduced from dissolution experiments, depends on the distribution of 3-fold and higher rings in the amorphous structure. The purpose of this four month LDRD project was to investigate the atomic structure of silica in the bulk and in the vicinity of a crack tip using molecular dynamics simulations. Changes in the amorphous structure in the neighborhood of an atomically sharp tip may provide important clues as to the initiation sites and the stress intensity required to propagate a sub-critical crack.

  8. Phase field approximation of dynamic brittle fracture

    NASA Astrophysics Data System (ADS)

    Schlüter, Alexander; Willenbücher, Adrian; Kuhn, Charlotte; Müller, Ralf

    2014-11-01

    Numerical methods that are able to predict the failure of technical structures due to fracture are important in many engineering applications. One of these approaches, the so-called phase field method, represents cracks by means of an additional continuous field variable. This strategy avoids some of the main drawbacks of a sharp interface description of cracks. For example, it is not necessary to track or model crack faces explicitly, which allows a simple algorithmic treatment. The phase field model for brittle fracture presented in Kuhn and Müller (Eng Fract Mech 77(18):3625-3634, 2010) assumes quasi-static loading conditions. However dynamic effects have a great impact on the crack growth in many practical applications. Therefore this investigation presents an extension of the quasi-static phase field model for fracture from Kuhn and Müller (Eng Fract Mech 77(18):3625-3634, 2010) to the dynamic case. First of all Hamilton's principle is applied to derive a coupled set of Euler-Lagrange equations that govern the mechanical behaviour of the body as well as the crack growth. Subsequently the model is implemented in a finite element scheme which allows to solve several test problems numerically. The numerical examples illustrate the capabilities of the developed approach to dynamic fracture in brittle materials.

  9. Rice Nutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter presents the symptoms of deficiency and toxicity of the major and minor mineral nutrients in rice, as well as a current synopsis of nutrient transporters and their regulation. The availability of sequences from the recently completed rice genome has furthered the knowledge of how plants...

  10. Identification of drought-response genes and a study of their expression during sucrose accumulation and water deficit in sugarcane culms

    PubMed Central

    2011-01-01

    Background The ability of sugarcane to accumulate high concentrations of sucrose in its culm requires adaptation to maintain cellular function under the high solute load. We have investigated the expression of 51 genes implicated in abiotic stress to determine their expression in the context of sucrose accumulation by studying mature and immature culm internodes of a high sucrose accumulating sugarcane cultivar. Using a sub-set of eight genes, expression was examined in mature internode tissues of sugarcane cultivars as well as ancestral and more widely related species with a range of sucrose contents. Expression of these genes was also analysed in internode tissue from a high sucrose cultivar undergoing water deficit stress to compare effects of sucrose accumulation and water deficit. Results A sub-set of stress-related genes that are potentially associated with sucrose accumulation in sugarcane culms was identified through correlation analysis, and these included genes encoding enzymes involved in amino acid metabolism, a sugar transporter and a transcription factor. Subsequent analysis of the expression of these stress-response genes in sugarcane plants that were under water deficit stress revealed a different transcriptional profile to that which correlated with sucrose accumulation. For example, genes with homology to late embryogenesis abundant-related proteins and dehydrin were strongly induced under water deficit but this did not correlate with sucrose content. The expression of genes encoding proline biosynthesis was associated with both sucrose accumulation and water deficit, but amino acid analysis indicated that proline was negatively correlated with sucrose concentration, and whilst total amino acid concentrations increased about seven-fold under water deficit, the relatively low concentration of proline suggested that it had no osmoprotectant role in sugarcane culms. Conclusions The results show that while there was a change in stress-related gene

  11. Brittle dynamic damage due to earthquake rupture

    NASA Astrophysics Data System (ADS)

    Bhat, Harsha; Thomas, Marion

    2016-04-01

    The micromechanical damage mechanics formulated by Ashby and Sammis, 1990, and generalized by Deshpande and Evans 2008 has been extended to allow for a more generalized stress state and to incorporate an experimentally motivated new crack growth (damage evolution) law that is valid over a wide range of loading rates. This law is sensitive to both the crack tip stress field and its time derivative. Incorporating this feature produces additional strain-rate sensitivity in the constitutive response. The model is also experimentally verified by predicting the failure strength of Dionysus-Pentelicon marble over wide range of strain rates. We then implement this constitutive response to understand the role of dynamic brittle off-fault damage on earthquake ruptures. We show that off-fault damage plays an important role in asymmetry of rupture propagation and is a source of high-frequency ground motion in the near source region.

  12. Brittle failure kinetics model for concrete

    SciTech Connect

    Silling, S.A.

    1997-03-01

    A new constitutive model is proposed for the modeling of penetration and large stress waves in concrete. Rate effects are incorporated explicitly into the damage evolution law, hence the term brittle failure kinetics. The damage variable parameterizes a family of Mohr-Coulomb strength curves. The model, which has been implemented in the CTH code, has been shown to reproduce some distinctive phenomena that occur in penetration of concrete targets. Among these are the sharp spike in deceleration of a rigid penetrator immediately after impact. Another is the size scale effect, which leads to a nonlinear scaling of penetration depth with penetrator size. This paper discusses the theory of the model and some results of an extensive validation effort.

  13. Isotropic MD simulations of dynamic brittle fracture

    SciTech Connect

    Espanol, P.; Rubio, M.A.; Zuniga, I.

    1996-12-01

    The authors present results obtained by molecular dynamics simulations on the propagation of fast cracks in triangular 2D lattices. Their aim is to simulate Mode 1 fracture of brittle isotropic materials. They propose a force law that respects the isotropy of the material. The code yields the correct imposed sound c{sub {parallel}}, shear c{sub {perpendicular}} and surface V{sub R} wave speeds. Different notch lengths are systematically studied. They observed that initially the cracks are linear and always branch at a particular critical velocity c* {approx} 0.8V{sub R} and that this occurs when the crack tip reaches the position of a front emitted from the initial crack tip and propagating at a speed c = 0.68V{sub R}.

  14. Reliability Analysis of Brittle, Thin Walled Structures

    SciTech Connect

    Jonathan A Salem and Lynn Powers

    2007-02-09

    One emerging application for ceramics is diesel particulate filters being used order to meet EPA regulations going into effect in 2008. Diesel particulates are known to be carcinogenic and thus need to be minimized. Current systems use filters made from ceramics such as mullite and corderite. The filters are brittle and must operate at very high temperatures during a burn out cycle used to remove the soot buildup. Thus the filters are subjected to thermal shock stresses and life time reliability analysis is required. NASA GRC has developed reliability based design methods and test methods for such applications, such as CARES/Life and American Society for Testing and Materials (ASTM) C1499 “Standard Test Method for Equibiaxial Strength of Ceramics.”

  15. Design, construction, operation, and evaluation of a prototype culm combustion boiler/heater unit. Quarterly technical progress report, October 1-December 21, 1981

    SciTech Connect

    Not Available

    1982-01-01

    This report provides a summary of the work performed on the Prototype Culm Combustion Boiler/Heater Unit, Phase I - Engineering Design and Analysis, Phase II - Prototype Plant Construction and Phase III - Start-Up and Operation during the period October 1, 1981 through December 31, 1981. The objectives of the program as well as the technical progress and problem areas encountered during the reporting period are presented. Seven shakedown tests were run. Start-up and shakedown testing was completed. Four parametric tests were run. Performance data are presented with the exception of boiler efficiency which will be reported once chemical analyses are completed. Total boiler operation time through the end of this quarter - 1225 h, 50 min; operating time on culm and culm/limestone - 682 h, 43 min. Inspection revealed no problems with boiler tube wear. Sulfur capture greater than 94% was demonstrated (design is 88%). A turndown of better than 4 to 1 was shown (design is 2.5 to 1). Computer control of most of the loops has been successful and manual control was also demonstrated.

  16. Fracture process zone of brittle composites

    SciTech Connect

    Yu, C.

    1992-01-01

    An experimental-numerical analysis was used to study the fracture process zone (FPZ) trailing the crack tip in brittle composites. Two major parts are included in this dissertation. Part 1 is a static mode 1 fracture analysis of ceramic matrix composites. Part 2 is a mixed mode 1 and mode 2 dynamic fracture analysis of concrete. In Part 1, the FPZ which trailed a stably growing crack in SiC(w)/Al2O3 ceramic matrix composite was investigated through a hybrid experimental-numerical analysis. Surface displacements on the sides of three-point bend and wedge loaded-double cantilever beam (WL-DCB) specimens with chevron notch starter cracks were measured with moire interferometry during crack growth. The three-point bend specimens were precracked by the single edge precrack bend (SEPB) method. The experimental data was then input to two and three dimensional finite element models of the three-point bend and WL-DCB specimens, respectively, to determine by an inverse analysis the crack closure stress (CCS) versus crack opening displacement (COD) relations for SiC(w)/Al2O3. Energy dissipation rates in the trailing process zone plus the matrix fracture and fiber breakage accounted for about 80 percent of the release energy rate with the remainder being dissipated through the frontal process zone. In Part 2, a hybrid experimental-numerical procedure was used to analyze rapid crack growth in an impact loaded three-point bend concrete specimen with an offset straight precrack. Two-beam dynamic moire interferometry was used to record eight sequential moire patterns of the horizontal or vertical displacements by a ultra-high speed camera with an exposure of 2 microseconds and a framing rate of 100,000 frames/sec. The fracture responses of ceramic composites and concrete were both characterized by FPZ models which are the dominant fracture energy dissipation mechanism in this type of brittle composite.

  17. Magnetic fabric of brittle fault rocks

    NASA Astrophysics Data System (ADS)

    Pomella, Hannah

    2014-05-01

    The anisotropy of magnetic susceptibility (AMS) has been recognized as a highly sensitive indicator of rock fabric and is widely employed in the field of structural geology. Brittle faults are often characterized by fault breccia and gouge, fault rocks with clast-in-matrix textures. A noteworthy property of both gouge and breccia is the often observed presence of a fabric that is defined by the preferred orientation of clasts and grains in the matrix. In the very fine-grained gouge and in the matrix of the breccia the fabric is not visible in the field or in thin sections but can probably be detected by AMS analyses. For the present study different kinds of brittle fault rocks have been sampled on two faults with known tectonic settings, in order to allow for a structural interpretation of the measured AMS signal. The measurements were carried out with an AGICO MFK1-FA Kappabridge and a CS4 furnace apparatus at the Institute of Geology, University of Innsbruck. Fault gouge was sampled on the Naif fault located in the Southern Alps, E of Meran, South Tyrol, Italy. Along this fault the Permian Granodiorite overthrusts the Southalpine basement and its Permomesozoic cover. The Neoalpine thrust fault is characterised by a wide cataclastic zone and an up to 1 m thick fault gouge. The gouge was sampled using paleomagnetic sample boxes. Heating experiments indicate that the magnetic fabric is dominated by paramagnetic minerals (>95%). The samples provide a magnetic susceptibility in the range of +10*E-5 [SI]. The K-min axis of the magnetic ellipsoid corresponds approximately to the pol of the fault plane measured in the field. However the whole magnetic ellipsoid shows a variation in the inclination compared to the structural data. Fine-grained ultracataclasites were sampled on the Assergi fault, located in the Abruzzi Apennines, NE of L'Aquila, Italy. This normal fault was active in historical time and crosscuts limestones as well as talus deposits. An up to 20 cm thick

  18. Brittle and compaction creep in porous sandstone

    NASA Astrophysics Data System (ADS)

    Heap, Michael; Brantut, Nicolas; Baud, Patrick; Meredith, Philip

    2015-04-01

    Strain localisation in the Earth's crust occurs at all scales, from the fracture of grains at the microscale to crustal-scale faulting. Over the last fifty years, laboratory rock deformation studies have exposed the variety of deformation mechanisms and failure modes of rock. Broadly speaking, rock failure can be described as either dilatant (brittle) or compactive. While dilatant failure in porous sandstones is manifest as shear fracturing, their failure in the compactant regime can be characterised by either distributed cataclastic flow or the formation of localised compaction bands. To better understand the time-dependency of strain localisation (shear fracturing and compaction band growth), we performed triaxial deformation experiments on water-saturated Bleurswiller sandstone (porosity = 24%) under a constant stress (creep) in the dilatant and compactive regimes, with particular focus on time-dependent compaction band formation in the compactive regime. Our experiments show that inelastic strain accumulates at a constant stress in the brittle and compactive regimes leading to the development of shear fractures and compaction bands, respectively. While creep in the dilatant regime is characterised by an increase in porosity and, ultimately, an acceleration in axial strain to shear failure (as observed in previous studies), compaction creep is characterised by a reduction in porosity and a gradual deceleration in axial strain. The overall deceleration in axial strain, AE activity, and porosity change during creep compaction is punctuated by excursions interpreted as the formation of compaction bands. The growth rate of compaction bands formed during creep is lower as the applied differential stress, and hence background creep strain rate, is decreased, although the inelastic strain required for a compaction band remains constant over strain rates spanning several orders of magnitude. We find that, despite the large differences in strain rate and growth rate

  19. Modeling failure in brittle porous ceramics

    NASA Astrophysics Data System (ADS)

    Keles, Ozgur

    Brittle porous materials (BPMs) are used for battery, fuel cell, catalyst, membrane, filter, bone graft, and pharmacy applications due to the multi-functionality of their underlying porosity. However, in spite of its technological benefits the effects of porosity on BPM fracture strength and Weibull statistics are not fully understood--limiting a wider use. In this context, classical fracture mechanics was combined with two-dimensional finite element simulations not only to account for pore-pore stress interactions, but also to numerically quantify the relationship between the local pore volume fraction and fracture statistics. Simulations show that even the microstructures with the same porosity level and size of pores differ substantially in fracture strength. The maximum reliability of BPMs was shown to be limited by the underlying pore--pore interactions. Fracture strength of BMPs decreases at a faster rate under biaxial loading than under uniaxial loading. Three different types of deviation from classic Weibull behavior are identified: P-type corresponding to a positive lower tail deviation, N-type corresponding to a negative lower tail deviation, and S-type corresponding to both positive upper and lower tail deviations. Pore-pore interactions result in either P-type or N-type deviation in the limit of low porosity, whereas S-type behavior occurs when clusters of low and high fracture strengths coexist in a fracture data.

  20. Theory of friction based on brittle fracture

    USGS Publications Warehouse

    Byerlee, J.D.

    1967-01-01

    A theory of friction is presented that may be more applicable to geologic materials than the classic Bowden and Tabor theory. In the model, surfaces touch at the peaks of asperities and sliding occurs when the asperities fail by brittle fracture. The coefficient of friction, ??, was calculated from the strength of asperities of certain ideal shapes; for cone-shaped asperities, ?? is about 0.1 and for wedge-shaped asperities, ?? is about 0.15. For actual situations which seem close to the ideal model, observed ?? was found to be very close to 0.1, even for materials such as quartz and calcite with widely differing strengths. If surface forces are present, the theory predicts that ?? should decrease with load and that it should be higher in a vacuum than in air. In the presence of a fluid film between sliding surfaces, ?? should depend on the area of the surfaces in contact. Both effects are observed. The character of wear particles produced during sliding and the way in which ?? depends on normal load, roughness, and environment lend further support to the model of friction presented here. ?? 1967 The American Institute of Physics.

  1. Characteristics of phenotype and genetic mutations in rice after spaceflight

    NASA Astrophysics Data System (ADS)

    Yu, X.; Wu, H.; Wei, L. J.; Cheng, Z. L.; Xin, P.; Huang, C. L.; Zhang, K. P.; Sun, Y. Q.

    To investigate the mechanism of spaceflight induced mutations, seeds of 11 pure rice varieties carried by Shenzhou-3 spaceship of China in 2002 for six-day flight were planted and investigated. Results showed that mutations could be induced in the first generation (M 1). Five tall mutants were found in DongnongV7 variety, and the average height of the mutants was 31% taller than that of the control. Other traits such as the panicle length were also remarkably different from the control. In the second generation (M 2), various changes of traits were observed in all 11 varieties, including the height, heading date, leaf color, leaf shape, flag leaf angle, awns, panicle length, panicle type, rice shape (length-width ratio), and maturity. The mutation rate for the changes of the plant height and of the rice color (purple) varied from 0.05% to 0.52% among ten varieties except Xixuan-1. Changes of the height, fresh weight, dry weight, and culm width of the five DongnongV7 tall mutants were observed in the progeny individually. By using the AFLP (amplified fragment length polymorphism) method, 21 pairs of primers were employed and the mutated loci rate of the genome in 10 M 2 mutants from 10 varieties was found between 1.7% and 6.2%. In the third generation (M 3), many traits, such as the awn length, main panicle exertion date and plant height, were still segregated widely and diversely. In addition, the leaf color and awn color varied in the progenies of purple rice mutants. Our study suggested that spaceflight induced mutations were dependent on different rice varieties.

  2. ON THE BRITTLENESS OF ENAMEL AND SELECTED DENTAL MATERIALS

    PubMed Central

    Park, S.; Quinn, J. B; Romberg, E.; Arola, D.

    2008-01-01

    Although brittle material behavior is often considered undesirable, a quantitative measure of “brittleness” is currently not used in assessing the clinical merits of dental materials. Objective To quantify and compare the brittleness of human enamel and common dental restorative materials used for crown replacement. Methods Specimens of human enamel were prepared from the 3rd molars of “young” (18≤age≤25) and “old” (50≤age) patients. The hardness, elastic modulus and apparent fracture toughness were characterized as a function of distance from the DEJ using indentation approaches. These properties were then used in estimating the brittleness according to a model that accounts for the competing dissipative processes of deformation and fracture. The brittleness of selected porcelain, ceramic and Micaceous Glass Ceramic (MGC) dental materials was estimated and compared with that of the enamel. Results The average brittleness of the young and old enamel increased with distance from the DEJ. For the old enamel the average brittleness increased from approximately 300 µm−1 at the DEJ to nearly 900 µm−1 at the occlusal surface. While there was no significant difference between the two age groups at the DEJ, the brittleness of the old enamel was significantly greater (and up to 4 times higher) than that of the young enamel near the occlusal surface. The brittleness numbers for the restorative materials were up to 90% lower than that of young occlusal enamel. Significance The brittleness index could serve as a useful scale in the design of materials used for crown replacement, as well as a quantitative tool for characterizing degradation in the mechanical behavior of enamel. PMID:18436299

  3. Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data.

    PubMed

    Rohwer, J M; Botha, F C

    2001-09-01

    Sucrose accumulation in developing sugar cane (Saccharum officinarum) is accompanied by a continuous synthesis and cleavage of sucrose in the storage tissues. Despite numerous studies, the factors affecting sucrose accumulation are still poorly understood, and no consistent pattern has emerged which pinpoints certain enzyme activities as important controlling steps. Here, we develop an approach based on pathway analysis and kinetic modelling to assess the biochemical control of sucrose accumulation and futile cycling in sugar cane. By using the concept of elementary flux modes, all possible routes of futile cycling of sucrose were enumerated in the metabolic system. The available kinetic data for the pathway enzymes were then collected and assembled in a kinetic model of sucrose accumulation in sugar cane culm tissue. Although no data were fitted, the model agreed well with independent experimental results: in no case was the difference between calculated and measured fluxes and concentrations greater than 2-fold. The model thus validated was then used to assess different enhancement strategies for increasing sucrose accumulation. First, the control coefficient of each enzyme in the system on futile cycling of sucrose was calculated. Secondly, the activities of those enzymes with the numerically largest control coefficients were varied over a 5-fold range to determine the effect on the degree of futile cycling, the conversion efficiency from hexoses into sucrose, and the net sucrose accumulation rate. In view of the modelling results, overexpression of the fructose or glucose transporter or the vacuolar sucrose import protein, as well as reduction of cytosolic neutral invertase levels, appear to be the most promising targets for genetic manipulation. This offers a more directed improvement strategy than cumbersome gene-by-gene manipulation. The kinetic model can be viewed and interrogated on the World Wide Web at http://jjj.biochem.sun.ac.za. PMID:11513743

  4. Dependence of tablet brittleness on tensile strength and porosity.

    PubMed

    Gong, Xingchu; Chang, Shao-Yu; Osei-Yeboah, Frederick; Paul, Shubhajit; Perumalla, Sathyanarayana Reddy; Shi, Limin; Sun, Wei-Jhe; Zhou, Qun; Sun, Changquan Calvin

    2015-09-30

    An analysis of data collected from 25 sets of diverse pharmaceutical powders has identified that an exponential growth function satisfactorily describes the relationship between tablet brittleness and tablet porosity while a power law function well describes the relationship between tablet brittleness and tensile strength. These equations have the potential to facilitate better characterization of tablet mechanical properties and to guide the design and optimization of pharmaceutical tablet products. PMID:26226338

  5. Universal behaviour in compressive failure of brittle materials.

    PubMed

    Renshaw, C E; Schulson, E M

    2001-08-30

    Brittle failure limits the compressive strength of rock and ice when rapidly loaded under low to moderate confinement. Higher confinement or slower loading results in ductile failure once the brittle-ductile transition is crossed. Brittle failure begins when primary cracks initiate and slide, creating wing cracks at their tips. Under little to no confinement, wing cracks extend and link together, splitting the material into slender columns which then fail. Under low to moderate confinement, wing crack growth is restricted and terminal failure is controlled by the localization of damage along a narrow band. Early investigations proposed that localization results from either the linkage of wing cracks or the buckling of microcolumns created between adjacent wing cracks. Observations of compressive failure in ice suggest a mechanism whereby localization initiates owing to the bending-induced failure of slender microcolumns created between sets of secondary cracks emanating from one side of a primary crack. Here we analyse this mechanism, and show that it leads to a closed-form, quantitative model that depends only on independently measurable mechanical parameters. Our model predictions for both the brittle compressive strength and the brittle-ductile transition are consistent with data from a variety of crystalline materials, offering quantitative evidence for universal processes in brittle failure and for the broad applicability of the model. PMID:11528475

  6. Intermittent single point machining of brittle materials

    SciTech Connect

    Marsh, E

    1999-12-07

    A series of tests were undertaken to explore diamond tool wear in the intermittent cutting of brittle materials, specifically silicon. The tests were carried out on a plain way No. 3 Moore machine base equipped as a flycutter with a motorized Professional Instruments 4R air bearing spindle. The diamond tools were made by Edge Technologies with known crystal orientation and composition and sharpened with either an abrasive or chemical process, depending on the individual test. The flycutting machine configuration allowed precise control over the angle at which the tool engages the anisotropic silicon workpiece. In contrast, the crystallographic orientation of the silicon workpiece changes continuously during on-axis turning. As a result, it is possible to flycut a workpiece in cutting directions that are known to be easy or hard. All cuts were run in the 100 plane of the silicon, with a slight angle deliberately introduced to ensure that the 100 plane is engaged in ''up-cutting'' which lengthens the tool life. A Kistler 9256 dynamometer was used to measure the cutting forces in order to gain insight into the material removal process and tool wear during testing. The dynamometer provides high bandwidth force measurement with milli-Newton resolution and good thermal stability. After many successive passes over the workpiece, it was observed that the cutting forces grow at a rate that is roughly proportional to the degradation of the workpiece surface finish. The exact relationship between cutting force growth and surface finish degradation was not quantified because of the problems associated with measuring surface finish in situ. However, a series of witness marks were made during testing in an aluminum sample that clearly show the development of wear flats on the tool nose profile as the forces grow and the surface finish worsens. The test results show that workpieces requiring on the order of two miles of track length can be made with low tool wear and excellent

  7. Ultrasonic Apparatus for Pulverizing Brittle Material

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bao, Xiaoqi; Bar-Cohen, Yoseph; Dolgin, Benjamin; Chang, Zensheu

    2004-01-01

    The figure depicts an apparatus that pulverizes brittle material by means of a combination of ultrasonic and sonic vibration, hammering, and abrasion. The basic design of the apparatus could be specialized to be a portable version for use by a geologist in collecting powdered rock samples for analysis in the field or in a laboratory. Alternatively, a larger benchtop version could be designed for milling and mixing of precursor powders for such purposes as synthesis of ceramic and other polycrystalline materials or preparing powder samples for x-ray diffraction or x-ray fluorescence measurements to determine crystalline structures and compositions. Among the most attractive characteristics of this apparatus are its light weight and the ability to function without need for a large preload or a large power supply: It has been estimated that a portable version could have a mass <0.5 kg, would consume less than 1 W h of energy in milling a 1-cm3 volume of rock, and could operate at a preload <10 N. The basic design and principle of operation of this apparatus are similar to those of other apparatuses described in a series of prior NASA Tech Briefs articles, the two most relevant being Ultrasonic/ Sonic Drill/Corers With Integrated Sensors (NPO-20856), Vol. 25, No. 1 (January 2001), page 38 and Ultrasonic/ Sonic Mechanisms for Deep Drilling and Coring (NPO-30291), Vol. 27, No. 9 (September 2003), page 65. As before, vibrations are excited by means of a piezoelectric actuator, an ultrasonic horn, and a mass that is free to move axially over a limited range. As before, the ultrasonic harmonic motion of the horn drives the free-mass in a combination of ultrasonic harmonic and lower-frequency hammering motion. In this case, the free-mass is confined within a hollow cylinder that serves as a crushing chamber, and the free-mass serves as a crushing or milling tool. The hammering of the free-mass against a material sample at the lower end of the chamber grinds the sample into

  8. Interview: commercial translation of cell-based therapies and regenerative medicine: learning by experience. Interview by Emily Culme-Seymour.

    PubMed

    Haseltine, William A

    2011-07-01

    Dr Haseltine speaks to Emily Culme-Seymour, Assistant Commissioning Editor William A Haseltine, PhD has an active career in both Science and Business. He was a professor at Harvard Medical School and Harvard School of Public Health (MA, USA) from 1976 to 1993, where he was Founder and Chair of two academic research departments. He is well known for his pioneering work on cancer, HIV/AIDS and genomics. He has authored more than 200 manuscripts in peer-reviewed journals and is the author of several books. He is the founder of Human Genome Sciences, Inc. and served as the Chairman and CEO of the company until 2004. He is also the founder of several other successful biotechnology companies. William Haseltine is currently Chairman and President of ACCESS Health International, Inc., which supports access to affordable, high-quality health services in low, middle and high income countries, and Chairman of the Haseltine Foundation for Science and the Arts, which fosters a dialog between sciences and the arts. He is an Adjunct Professor at the Scripps Institute for Medical Research and the Institute of Chemical Engineering, the University of Mumbai, India. He is a member of the Advisory Board of the IE University, Madrid, the President's Council of the Cold Spring Harbor Laboratory, the Advisory Council for the Koch Institute of MIT, a member of the University Council Committee on technology transfer, Yale University, and is a Lifetime Governor of the New York Academy of Science (NY, USA). He is an honorary member of the Board of Trustees of the Brookings Institution, a member of the Board of Trustees of the Center for Emerging Markets of the Indian School of Business, a member of the Council on Foreign Relations, a member of the Board of AID for AIDS International, and a member of the Chairman's Circle of the Asia Society. He is a member of the Advisory Board of the Metropolitan Opera (NY, USA), the Chairman's Council of the Metropolitan Museum (NY, USA), the International

  9. Determination of fractionation of oxygen isotopes between rice grain and environmental water

    NASA Astrophysics Data System (ADS)

    Kaushal, R.; Ghosh, P.

    2013-12-01

    Oxygen isotopic composition (δ18O) of plant organic matter (POM) serves as a valuable proxy for paleoclimatic studies [1].The δ18O of POM emulates the isotopic composition of the source water [2]. Rice crop cultivation goes back to 12,000 years, when rice was first domesticated in China and the earliest cultivation of rice observed in India was during 3000- 2500 BC. Presently rice is cultivated in many countries around the world including India where the prerequisite of saturated soil water condition for optimum growth of rice crop is provided by the South west monsoons. Earlier studies on δ18O of rice have been limited to its geographic characterization [3]. However, detailed investigations to determine fractionation of oxygen isotopes in water, in different parts of a rice plant, with rice seed organic matter is the primary objective of this work. This is important for understanding the mechanism responsible for the transfer of source water signature to the seed organics and can facilitate understanding of past monsoonal regime using well preserved rice grain remains from archaeological sites. Water from the leaves and culms was extracted by means of heating and cryogenic distillation in a vacuum extraction system [4]. The source water and the water extracted from plant parts were analysed by CO2 equilibration method using Gas Bench peripheral. Rice seed powder, after removal of husk, is composed primarily of starch and were analysed using High Temperature Conversion-Elemental Analyser. Both these peripherals were coupled to an Isotope Ratio Mass spectrometer- MAT253 (Thermo Finnigan). Experimental results discussed here were based on greenhouse and field based studies of water and seed organic composition. The water fed to the plant in the green house showed an average δ18O value of -0.50‰ whereas the field water from irrigation covering the time of grain filling ranges between -1.03‰ and -3.08‰. Figure 1 displays the extent of enrichment recorded in

  10. Brittle and semibrittle creep in a low porosity carbonate rock

    NASA Astrophysics Data System (ADS)

    Nicolas, Aurélien; Fortin, Jérôme; Regnet, Jean-Baptiste; Dimanov, Alexandre; Guéguen, Yves

    2016-04-01

    The mechanical behavior of limestones at room temperature is brittle at low confining pressure and becomes semi-brittle with the increase of the confining pressure. The brittle behavior is characterized by a macroscopic dilatancy due to crack propagation, leading to a stress drop when cracks coalesce at failure. The semi-brittle behavior is characterized by diffuse deformation due to intra-crystalline plasticity (dislocation movements and twinning) and microcracking. The aim of this work is to examine the influence of pore fluid and time on the mechanical behavior. Constant strain rate triaxial deformation experiments and stress-stepping creep experiments were performed on white Tavel limestone (porosity 14.7%). Elastic wave velocity evolutions were recorded during each experiment and inverted to crack densities. Constant strain rate triaxial experiments were performed for confining pressure in the range of 5-90 MPa. For Pc≤55 MPa our results show that the behavior is brittle. In this regime, water-saturation decreases the differential stress at the onset of crack propagation and enhances macroscopic dilatancy. For Pc≥70 MPa, the behavior is semi-brittle. Inelastic compaction is due to intra-crystalline plasticity and micro-cracking. However, in this regime, our results show that water-saturation has no clear effect at the onset of inelastic compaction. Stress stepping creep experiments were performed in a range of confining pressures crossing the brittle-ductile transition. In the brittle regime, the time-dependent axial deformation is coupled with dilatancy and a decrease of elastic wave velocities, which is characteristic of crack propagation and/or nucleation. In the semi-brittle regime, the first steps are inelastic compactant because of plastic pore collapse. But, following stress steps are dilatant because of crack nucleation and/or propagation. However, our results show that the axial strain rate is always controlled by plastic phenomena, until the last

  11. Constrained molecular dynamics for quantifying intrinsic ductility versus brittleness

    NASA Astrophysics Data System (ADS)

    Tanguy, D.

    2007-10-01

    Evaluating the critical load levels for intrinsic ductility and brittle propagation is a first, but necessary, step for modeling semibrittle crack propagation. In the most general case, the calculations have to be fully atomistic because the details of the crack tip structure cannot be captured by continuum mechanics. In this paper, we present a method to explore ductile and brittle configurations, within the same force field, giving a quantitative estimate of the proximity of a transition from intrinsic ductility to brittleness. The shear localization is characterized by a centrosymmetry criterion evaluated on each atom in the vicinity of the crack tip. This provides an efficient order parameter to track the nucleation and propagation of dislocations. We show that it can be used as a holonomic constraint within molecular dynamics simulations, giving a precise control over plasticity during crack propagation. The equations of motion are derived and applied to crack propagation in the [112¯] direction of an fcc crystal loaded in mode I along [111]. The critical loads for dislocation emission and for brittle propagation are computed. The key point is that the generalized forces of constraint are not dissipative. Therefore, they do not spoil the critical elastic energy release rates (the Griffith criterion is preserved). As an example of the possibilities of the method, the response of blunted tips is investigated for three configurations: a slab of vacancies, an elliptical hole, and a circular hole. Brittle propagation by an alternative mechanism to cleavage, called “vacancy injection,” is reported.

  12. Brittle failure mode plots for compressional and extensional tectonic regimes

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    1998-05-01

    Equations governing different macroscopic modes of brittle rock failure (extensional fracturing, extensional-shear fracturing, compressional shear failure and reshear of existing faults) can be represented on plots of differential stress vs effective vertical stress for a set of material properties. Such plots can be constructed for different tectonic regimes and correlated to depth for particular fluid pressure conditions, allowing easy evaluation of the physical controls on brittle rock failure, and ready comparison of the fields occupied by the three failure modes in different tectonic settings. They emphasize the relative ease, in terms of differential stress and fluid-pressure levels, of deforming a rock mass by brittle fracturing and faulting in extensional regimes compared with compressional. Aside from their relevance to general structural mechanics, these generic failure plots have wide-ranging application to understanding the initial development and progressive evolution of fault-fracture systems, both in sedimentary basins and as hosting structures for hydrothermal mineralization in different tectonic settings.

  13. Brittle and ductile friction and the physics of tectonic tremor

    USGS Publications Warehouse

    Daub, E.G.; Shelly, D.R.; Guyer, R.A.; Johnson, P.A.

    2011-01-01

    Observations of nonvolcanic tremor provide a unique window into the mechanisms of deformation and failure in the lower crust. At increasing depths, rock deformation gradually transitions from brittle, where earthquakes occur, to ductile, with tremor occurring in the transitional region. The physics of deformation in the transition region remain poorly constrained, limiting our basic understanding of tremor and its relation to earthquakes. We combine field and laboratory observations with a physical friction model comprised of brittle and ductile components, and use the model to provide constraints on the friction and stress state in the lower crust. A phase diagram is constructed that characterizes under what conditions all faulting behaviors occur, including earthquakes, tremor, silent transient slip, and steady sliding. Our results show that tremor occurs over a range of ductile and brittle frictional strengths, and advances our understanding of the physical conditions at which tremor and earthquakes take place. Copyright ?? 2011 by the American Geophysical Union.

  14. Cuttability Assessment of Selected Rocks Through Different Brittleness Values

    NASA Astrophysics Data System (ADS)

    Dursun, Arif Emre; Gokay, M. Kemal

    2016-04-01

    Prediction of cuttability is a critical issue for successful execution of tunnel or mining excavation projects. Rock cuttability is also used to determine specific energy, which is defined as the work done by the cutting force to excavate a unit volume of yield. Specific energy is a meaningful inverse measure of cutting efficiency, since it simply states how much energy must be expended to excavate a unit volume of rock. Brittleness is a fundamental rock property and applied in drilling and rock excavation. Brittleness is one of the most crucial rock features for rock excavation. For this reason, determination of relations between cuttability and brittleness will help rock engineers. This study aims to estimate the specific energy from different brittleness values of rocks by means of simple and multiple regression analyses. In this study, rock cutting, rock property, and brittleness index tests were carried out on 24 different rock samples with different strength values, including marble, travertine, and tuff, collected from sites around Konya Province, Turkey. Four previously used brittleness concepts were evaluated in this study, denoted as B 1 (ratio of compressive to tensile strength), B 2 (ratio of the difference between compressive and tensile strength to the sum of compressive and tensile strength), B 3 (area under the stress-strain line in relation to compressive and tensile strength), and B 9 = S 20, the percentage of fines (<11.2 mm) formed in an impact test for the Norwegian University of Science and Technology (NTNU) model as well as B 9p (B 9 as predicted from uniaxial compressive, Brazilian tensile, and point load strengths of rocks using multiple regression analysis). The results suggest that the proposed simple regression-based prediction models including B 3, B 9, and B 9p outperform the other models including B 1 and B 2 and can be used for more accurate and reliable estimation of specific energy.

  15. In the Initiation of Brittle Compressive Failure: Lessons From Ice

    NASA Astrophysics Data System (ADS)

    Renshaw, C. E.; Schulson, E. M.

    2001-12-01

    Brittle failure limits the compressive strength of rock and ice when rapidly loaded under low to moderate confinement. Higher confinement or slower loading results in ductile failure once the brittle-ductile transition is crossed. It is well established that the macroscopic brittle failure of rock, concrete and other brittle materials under compression is preceded by the initiation and sliding of microscopic primary cracks, creating wing cracks at their tips. In laboratory samples, microcracks begin to nucleate more or less uniformly throughout the sample at compressions equal to about 1/5 to 1/3 the terminal failure stress. Under little to no confinement, wing cracks extend and link together, splitting the material into slender columns which then fail. Under low to moderate confinement, wing crack growth is restricted and terminal failure is controlled by the localization of damage along discrete bands of intense damage inclined by approximately 30 degrees to the direction of the most compressive stress. Earlier investigators proposed that localization results from either the linkage of wing cracks or the buckling of microcolumns created between adjacent wing cracks. Observations of compressive failure in ice suggest a new mechanism whereby localization initiates due to the bending-induced failure of slender microcolumns created between sets of secondary cracks emanating from one side of a primary crack. Analysis of this mechanism leads to a closed-form, quantitative model that only depends on independently measureable mechanical parameters. We show that model predictions for both the brittle compressive strength and the brittle-ductile transition are consistent with data from a variety of crystalline materials.

  16. A Weibull characterization for tensile fracture of multicomponent brittle fibers

    NASA Technical Reports Server (NTRS)

    Barrows, R. G.

    1977-01-01

    Necessary to the development and understanding of brittle fiber reinforced composites is a means to statistically describe fiber strength and strain-to-failure behavior. A statistical characterization for multicomponent brittle fibers is presented. The method, which is an extension of usual Weibull distribution procedures, statistically considers the components making up a fiber (e.g., substrate, sheath, and surface) as separate entities and taken together as in a fiber. Tensile data for silicon carbide fiber and for an experimental carbon-boron alloy fiber are evaluated in terms of the proposed multicomponent Weibull characterization.

  17. Finite element model for brittle fracture and fragmentation

    DOE PAGESBeta

    Li, Wei; Delaney, Tristan J.; Jiao, Xiangmin; Samulyak, Roman; Lu, Cao

    2016-06-01

    A new computational model for brittle fracture and fragmentation has been developed based on finite element analysis of non-linear elasticity equations. The proposed model propagates the cracks by splitting the mesh nodes alongside the most over-strained edges based on the principal direction of strain tensor. To prevent elements from overlapping and folding under large deformations, robust geometrical constraints using the method of Lagrange multipliers have been incorporated. In conclusion, the model has been applied to 2D simulations of the formation and propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and compressed materials.

  18. Contact urticaria from rice.

    PubMed

    Yamakawa, Y; Ohsuna, H; Aihara, M; Tsubaki, K; Ikezawa, Z

    2001-02-01

    A 30-year-old man with atopic dermatitis had had erythema and itching of the hands after washing rice in water, though he had always eaten cooked rice without problems. Handling test with water used to wash regular rice was performed on abraded hands, and produced urticarial erythema after several minutes. Applications of water used to wash allergen-reduced rice were negative for urticarial reaction. Prick test with water used to wash regular rice was +++. However prick test reaction with water used to wash allergen-reduced rice was +. Histamine-release test of regular rice-washing water was grade 3 and that of allergen-reduced rice grade 1. In immunoblotting analysis with regular rice washing water, there were no bands with this patient. These results suggest that the allergen responsible for contact urticaria in this patient might be water-soluble, heat-unstable, and not contained in allergen-reduced rice. PMID:11205411

  19. Rice ( Oryza) hemoglobins

    PubMed Central

    Arredondo-Peter, Raúl; Moran, Jose F.; Sarath, Gautam

    2014-01-01

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice ( Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var. indica and O. sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O 2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O 2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O 2-transport, O 2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice nshb and thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice nshbs and thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the cis-elements and trans-acting factors that regulate the expression of rice hb genes, and the partial understanding of the evolution of rice Hbs. PMID:25653837

  20. Maize Brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity.

    PubMed

    Sindhu, Anoop; Langewisch, Tiffany; Olek, Anna; Multani, Dilbag S; McCann, Maureen C; Vermerris, Wilfred; Carpita, Nicholas C; Johal, Gurmukh

    2007-12-01

    The maize (Zea mays) brittle stalk2 (bk2) is a recessive mutant, the aerial parts of which are easily broken. The bk2 phenotype is developmentally regulated and appears 4 weeks after planting, at about the fifth-leaf stage. Before this time, mutants are indistinguishable from wild-type siblings. Afterward, all organs of the bk2 mutants turn brittle, even the preexisting ones, and they remain brittle throughout the life of the plant. Leaf tension assays and bend tests of the internodes show that the brittle phenotype does not result from loss of tensile strength but from loss in flexibility that causes the tissues to snap instead of bend. The Bk2 gene was cloned by a combination of transposon tagging and a candidate gene approach and found to encode a COBRA-like protein similar to rice (Oryza sativa) BC1 and Arabidopsis (Arabidopsis thaliana) COBRA-LIKE4. The outer periphery of the stalk has fewer vascular bundles, and the sclerids underlying the epidermis possess thinner secondary walls. Relative cellulose content is not strictly correlated with the brittle phenotype. Cellulose content in mature zones of bk2 mature stems is lowered by 40% but is about the same as wild type in developing stems. Although relative cellulose content is lowered in leaves after the onset of the brittle phenotype, total wall mass as a proportion of dry mass is either unchanged or slightly increased, indicating a compensatory increase in noncellulosic carbohydrate mass. Fourier transform infrared spectra indicated an increase in phenolic ester content in the walls of bk2 leaves and stems. Total content of lignin is unaffected in bk2 juvenile leaves before or after appearance of the brittle phenotype, but bk2 mature and developing stems are markedly enriched in lignin compared to wild-type stems. Despite increased lignin in bk2 stems, loss of staining with phloroglucinol and ultraviolet autofluorescence is observed in vascular bundles and sclerid layers. Consistent with the infrared

  1. Brittle fracture of old storage tanks can be prevented

    SciTech Connect

    DeWit, J

    1990-02-19

    To see how the fundamentals of brittle fracture play a part in the catastrophic failure of older storage tanks, this article examines and compares four tanks that failed due to brittle fracture. These tanks are: a 42.7-m dia. by 16.5-m high crude oil tank with a floating roof that collapsed in February 1952 at the refinery in Fawley, U.K., during a water test; a 45.7-m dia. by 14.64-m high gas oil tank with a fixed roof that collapsed in March 1952 at a refinery in Fawley; a 45-m dia. by 12.5-m high fuel oil tank with a fixed roof that collapsed in December 1970 at a power station in The Netherlands; and a 36.6-m dia. by 14.64-m high fuel oil tank with a fixed roof that collapsed in January 1988 at a terminal near Pittsburgh. Investigations, experience, and test work show that a brittle fracture in a tank shell is always caused by a combination of specific factors. Important factors that directly influence brittle fracture are discussed.

  2. Macroscopic shock plasticity of brittle material through designed void patterns

    NASA Astrophysics Data System (ADS)

    Jiang, Tailong; Yu, Yin; He, Hongliang; Li, Yongqiang; Huan, Qiang; Wu, Jiankui

    2016-03-01

    The rapid propagation and coalescence of cracks and catastrophic fractures, which occur often under shock compression, compromise a brittle material's design function and restrict its scope of practical application. The shock plasticity of brittle materials can be improved significantly by introducing and designing its microstructure, which can help reduce or delay failure. We used a lattice-spring model, which can describe elastic deformation and brittle fracture of modeled material accurately, to study the influence of void distributions (random, square, hexagonal, and triangular void patterns) on the macroscopic shock response and the mesoscopic deformation feature of brittle materials. Calculated results indicate that the void patterns dominate two inelastic deformation stages on the Hugoniot stress-strain curves (the collapse deformation stage and the slippage deformation stage). It shows that the strain localization is not strong and that the broken media are closer to a round bulk when the samples exist in random and triangular void patterns. This favors an increase in deformation during the slippage deformation stage. For the samples with square and hexagonal void patterns, the strain localization is strong and the broken media are closer to columnar bulks, which favors an increase in deformation during the collapse deformation stage.

  3. Brittle-to-Ductile Transition in Metallic Glass Nanowires.

    PubMed

    Şopu, D; Foroughi, A; Stoica, M; Eckert, J

    2016-07-13

    When reducing the size of metallic glass samples down to the nanoscale regime, experimental studies on the plasticity under uniaxial tension show a wide range of failure modes ranging from brittle to ductile ones. Simulations on the deformation behavior of nanoscaled metallic glasses report an unusual extended strain softening and are not able to reproduce the brittle-like fracture deformation as found in experiments. Using large-scale molecular dynamics simulations we provide an atomistic understanding of the deformation mechanisms of metallic glass nanowires and differentiate the extrinsic size effects and aspect ratio contribution to plasticity. A model for predicting the critical nanowire aspect ratio for the ductile-to-brittle transition is developed. Furthermore, the structure of brittle nanowires can be tuned to a softer phase characterized by a defective short-range order and an excess free volume upon systematic structural rejuvenation, leading to enhanced tensile ductility. The presented results shed light on the fundamental deformation mechanisms of nanoscaled metallic glasses and demarcate ductile and catastrophic failure. PMID:27248329

  4. Fracture mechanics applied to the machining of brittle materials

    SciTech Connect

    Hiatt, G.D.; Strenkowski, J.S.

    1988-12-01

    Research has begun on incorporating fracture mechanics into a model of the orthogonal cutting of brittle materials. Residual stresses are calculated for the machined material by a combination of Eulerian and Lagrangian finite element models and then used in the calculation of stress intensity factors by the Green`s Function Method.

  5. Design, construction, operation, and evaluation of a prototype culm-combustion boiler/heater unit. Quarterly technical progress report, October 1-December 31, 1980

    SciTech Connect

    Not Available

    1981-02-01

    This report provides a summary of the work performed on the Prototype Culm Combustion Boiler/Heater Unit, Phase I - Engineering Design and Analysis and Phase II - Prototype Plant Construction during the period October 1, 1980 through December 31, 1980. The objectives of the program as well as the technical progress and problem areas encountered during the reporting period are presented. The final detail design effort was completed and the final design report submitted. Progress on procurement activity authorized by full Phase II release on March 20, 1980, is discussed. Following approval by DOE, a purchase order was placed with the Norflor Construction Corporation for the prototype plant construction which began in November. Construction of the access roadway installation of the electric power, sewer and water lines was completed during this reporting period. Boiler construction continued.

  6. Overexpression of a rice TIFY gene increases grain size through enhanced accumulation of carbohydrates in the stem.

    PubMed

    Hakata, Makoto; Kuroda, Masaharu; Ohsumi, Akihiro; Hirose, Tatsuro; Nakamura, Hidemitsu; Muramatsu, Masayuki; Ichikawa, Hiroaki; Yamakawa, Hiromoto

    2012-01-01

    Screening of rice full-length cDNA overexpressing (FOX) lines allowed the identification of a TIFY gene, TIFY11b, as a growth-promoting gene whose overexpression increased plant height and seed size. The grains of TIFY11b-overexpressing plants exceeded those of non-transformants in length, width and thickness, resulting in 9-21% increases in grain weight. The increase was achieved by overexpressing the gene in the whole plant body, but not by seed-restricted expression, indicating that seed enlargement is attributable to overexpression in vegetative organs such as the leaf. The whole-body overexpressing plants developed longer leaves along with higher levels of starch and sucrose in the leaf sheath and culm at the heading stage than the non-transformants. Although overexpression of TIFY11b did not alter the photosynthetic rate per leaf area before and after heading, it caused an accumulation of higher levels of the carbohydrate assimilate, probably due to increased photosynthesis per plant, suggesting that the increase in grain size and weight is attained by enhanced accumulation and translocation of the carbohydrate in the culms and leaf sheaths of the transgenic plants. Thus, TIFY11b is a novel grain-size increasing gene. PMID:23132589

  7. Experimental and continuum plasticity aspects of the brittleness and ductility of bicrystal interfacial fracture

    NASA Astrophysics Data System (ADS)

    Kysar, Jeffrey William

    1998-12-01

    The philosophical basis of this work is to gain a better understanding of the issues which determine the brittleness and ductility of materials. One approach to the question, pioneered by Rice and Thomson, has been to characterize a material in terms of its intrinsic brittleness and ductility based on a competition between dislocation emission and cleavage failure at a crack tip. To test this hypothesis, Beltz and Wang constructed a copper/sapphire bicrystal which exhibits a directional dependence of fracture when loaded in four-point bending and reported that the observed directional dependence can be rationalized on the basis of dislocation nucleation at the crack tips. In the present work we independently repeat the Beltz and Wang experiments in an effort to quantify them and to compare the results to finite element simulation. In the process we show that the observed directional dependence of fracture is opposite to that predicted on the basis of dislocation nucleation at the crack tip. One goal of the present work is to experimentally characterize the directional dependence of fracture. A specially designed crack opening interferometer and an Atomic Force Microscope are used to measure the crack opening displacement profile. General features of crack growth are also observed directly through the transparent sapphire. Another main thrust of this work is to use continuum plasticity in an attempt to explain the directional dependence of fracture. To that end we model the copper/sapphire specimen with the finite element technique while accounting for the full elastic-plastic anisotropy of the single copper crystal. The experimental results show that both cracks propagate in a quasistatic manner at a fixed crack tip angle opening, at least away from the crack tip. The experimentally observed brittle crack has an opening approximately one-half that of the ductile crack. Further, atomic force microscopy measurements show that the near tip crack opening displacement

  8. Comparing the Bending Stiffness Measurements of Brittle Paper

    NASA Astrophysics Data System (ADS)

    Hall, Andrea; McGath, Molly; McGuiggan, Patricia

    It has been estimated that one third of the paper materials in libraries are too brittle to handle. A typical paper sheet is comprised of semi-rigid cellulose fibers that are more than ten times longer than the sheet thickness and can be considered a two dimensional random fiber network. The main pathways of degradation, acid-catalyzed hydrolysis and oxidation, cause depolymerization of the cellulose chains and breaking of the intrafiber bonds. Conventional mechanical measurements of aged paper are destructive and often too severe to understand the true extent of deterioration. By comparing the roll test, folding endurance tests, tensile tests and stiffness tests of naturally aged papers with varying amounts of brittleness, we intend to show the limits of each test and relate the state of the paper degradation to the mechanical test results. We thank the Andrew W. Mellon Foundation for funding this research.

  9. Reliability-based failure analysis of brittle materials

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Ghosn, Louis J.

    1989-01-01

    The reliability of brittle materials under a generalized state of stress is analyzed using the Batdorf model. The model is modified to include the reduction in shear due to the effect of the compressive stress on the microscopic crack faces. The combined effect of both surface and volume flaws is included. Due to the nature of fracture of brittle materials under compressive loading, the component is modeled as a series system in order to establish bounds on the probability of failure. A computer program was written to determine the probability of failure employing data from a finite element analysis. The analysis showed that for tensile loading a single crack will be the cause of total failure but under compressive loading a series of microscopic cracks must join together to form a dominant crack.

  10. Brittle to Ductile Transition in Densified Silica Glass

    PubMed Central

    Yuan, Fenglin; Huang, Liping

    2014-01-01

    Current understanding of the brittleness of glass is limited by our poor understanding and control over the microscopic structure. In this study, we used a pressure quenching route to tune the structure of silica glass in a controllable manner, and observed a systematic increase in ductility in samples quenched under increasingly higher pressure. The brittle to ductile transition in densified silica glass can be attributed to the critical role of 5-fold Si coordination defects (bonded to 5 O neighbors) in facilitating shear deformation and in dissipating energy by converting back to the 4-fold coordination state during deformation. As an archetypal glass former and one of the most abundant minerals in the Earth's crest, a fundamental understanding of the microscopic structure underpinning the ductility of silica glass will not only pave the way toward rational design of strong glasses, but also advance our knowledge of the geological processes in the Earth's interior. PMID:24849328

  11. Ductile-to-brittle transition in spallation of metallic glasses

    SciTech Connect

    Huang, X.; Ling, Z.; Dai, L. H.

    2014-10-14

    In this paper, the spallation behavior of a binary metallic glass Cu{sub 50}Zr{sub 50} is investigated with molecular dynamics simulations. With increasing the impact velocity, micro-voids induced by tensile pulses become smaller and more concentrated. The phenomenon suggests a ductile-to-brittle transition during the spallation process. Further investigation indicates that the transition is controlled by the interaction between void nucleation and growth, which can be regarded as a competition between tension transformation zones (TTZs) and shear transformation zones (STZs) at atomic scale. As impact velocities become higher, the stress amplitude and temperature rise in the spall region increase and micro-structures of the material become more unstable. Therefore, TTZs are prone to activation in metallic glasses, leading to a brittle behavior during the spallation process.

  12. A partial skeletal proteome of the brittle star Ophiocoma wendtii

    NASA Astrophysics Data System (ADS)

    Seaver, Ryan W.

    The formation of mineralized tissue was critical to the evolution and diversification of metazoans and remains functionally significant in most animal lineages. Of special importance is the protein found occluded within the mineral matrix, which facilitates the process of biomineralization and modulates the final mineral structure. These skeletal matrix proteins have well been described in several species, including the sea urchin Stronglyocentrotus purpuratus, an important model organism. Biomineralization research is limited in other echinoderm classes. This research encompasses the first description of mineral matrix proteins in a member of the echinoderm class Ophiuroidea. This work describes the skeletal matrix proteins of the brittle star Ophiocoma wendtii using bioinformatic and proteomic techniques. General characteristics of matrix protein are described and a number of candidate biomineralization related genes have been identified, cloned, and sequenced. The unique evolutionary and biochemical properties of brittle star skeletal matrix proteins are also described.

  13. The Brittle-Ductile Transition - A Self-Consistent Approach.

    NASA Astrophysics Data System (ADS)

    Hobbs, B.; Regenauer-Lieb, K.; Ord, A.; Yuen, D. A.

    2006-12-01

    The brittle-ductile transition (BDT) in the Earth is commonly viewed as a switch between two different constitutive behaviors, plastic and viscous, and is represented in models by various formulations. We show that thermal-mechanical coupling leads to a self consistent view where the BDT emerges naturally within one constitutive framework once a critical temperature is attained. Viscous folding occurs above this temperature and brittle fracturing below. Seismic activity is maximised at the BDT. Orogenesis emerges as a thermal-mechanical decoupling near the BDT during flexing of the lithosphere with the development of "crocodile" -like structures, fold-nappe systems and far-travelled thrust sheets. For quartz- feldspar composite materials this transition lies in a critical range of 500 K to 580 K.

  14. Statistical characterization of fracture of brittle MEMS materials

    NASA Astrophysics Data System (ADS)

    Jones, Peter T.; Johnson, George C.; Howe, Roger T.

    1999-08-01

    The fracture of brittle MEMS materials is often characterized by ultimate strength measures such as the maximum stress or strain in an element at failure. It has been known for many decades that a better way to characterize the strength of a brittle material on the macro-scale is to make use of statistical measures. This is due to the nature of brittle materials in which failure occurs when a critically sized flaw exists in the region that is under tensile stress. The distribution of flaws is often random, so the strength of a brittle material can only be properly characterized by statistical measures. Working with MEMS devices, where the site scale is small, it becomes even more important to use a statistical approach. Doing so can explain two observed effects. First, there is an apparent size effect on the strength of the material. The larger the structure that is under a given stress, the larger the region where a critically sized flaw may exist, resulting a higher probability of failure. Second, two identical beams with different stress states, loaded to the same maximum stress can have dramatically different average strengths. In this paper, Weibull statistics are used to characterize the strength of one MEMS material-- polycrystalline silicon. The relevant statistical measures are obtained from the fracture of a large number of cantilever beams. It is shown that, for this material, the average failure strength of a beam loaded in uniaxial tension should be on the order of 40% lower than the average strength of identical beams loaded in cantilever bending.

  15. Potential of carnuba wax in ameliorating brittle fracture during tableting.

    PubMed

    Uhumwangho, M U; Okor, R S; Adogah, J T

    2009-01-01

    Carnuba wax (as binder) forms hard tablets even at low compression load attributable to its high plasticity. The aim of the present study is to investigate its potential in ameliorating brittle fracture (i.e., lamination and capping) a problem often encountered during tableting. Granules of paracetamol (test drug) were made by triturating the drug powder with the melted wax or starch mucilage (20%w/v). Resulting granules were separated into different size fractions which were separately compressed into tablets with and without a centre hole (as in- built defect) using different compression loads. The tablets were evaluated for tensile strength and the data used to calculate the brittle fracture index (BFI), using the expression: BFI = 0.5(T/T(0)-1) where T0 and T are the tensile strength of tablets with and without a centre hole respectively. The BFI values were significantly lower (p<0.05) in tablets made with carnuba wax compared with tablets made with maize starch as binders. Increase in particle size of the granules or lowering of the compression load further ameliorated the brittle fracture tendency of the tablets. Using granules with the larger particle size (850microm) and applying the lowest unit of load (6 arbitrary unit on the load scale of the tableting machine) the BFI values were 0.03 (carnuba wax tablets) and 0.11 (maize starch tablets). When the conditions were reversed (i.e., a highest load, 8 units and the smallest particle size, 212microm) the BFI values now became 0.17 (carnuba wax tablets) and 0.26 (maize starch tablets). The indication is that the use of large granules and low compression loads to form tablets can further enhance the potential of carnuba wax in ameliorating brittle fracture tendency of tablets during their manufacture. PMID:19168422

  16. Rate-dependent deformation of rocks in the brittle regime

    NASA Astrophysics Data System (ADS)

    Baud, P.; Brantut, N.; Heap, M. J.; Meredith, P. G.

    2013-12-01

    Rate-dependent brittle deformation of rocks, a phenomenon relevant for long-term interseismic phases of deformation, is poorly understood quantitatively. Rate-dependence can arise from chemically-activated, subcritical crack growth, which is known to occur in the presence of aqueous fluids. Here we attempt to establish quantitative links between this small scale process and its macroscopic manifestations. We performed a series of brittle deformation experiments in porous sandstones, in creep (constant stress) and constant strain rate conditions, in order to investigate the relationship between their short- and long-term mechanical behaviors. Elastic wave velocities measurements indicate that the amount of microcracking follows the amount of inelastic strain in a trend which does not depend upon the timescale involved. The comparison of stress-strain curves between constant strain rate and creep tests allows us to define a stress difference between the two, which can be viewed as a difference in energy release rate. We empirically show that the creep strain rates are proportional to an exponential function of this stress difference. We then establish a general method to estimate empirical micromechanical functions relating the applied stresses to mode I stress intensity factors at microcrack tips, and we determine the relationship between creep strain rates and stress intensity factors in our sandstone creep experiments. We finally provide an estimate of the sub-critical crack growth law parameters, and find that they match -within the experimental errors and approximations of the method- the typical values observed in independent single crack tests. Our approach provides a comprehensive and unifying explanation for the origin and the macroscopic manifestation of time-dependent brittle deformation in brittle rocks.

  17. Time-dependent Brittle Deformation in Darley Dale Sandstone

    NASA Astrophysics Data System (ADS)

    Baud, P.; Heap, M. J.; Meredith, P. G.; Bell, A. F.; Main, I. G.

    2008-12-01

    The characterization of time-dependent brittle rock deformation is fundamental to understanding the long- term evolution and dynamics of the Earth's upper crust. The chemical influence of water promotes time- dependent deformation through stress corrosion cracking that allows rocks to deform at stresses far below their short-term failure strength. Here we report results from a study of time-dependent brittle creep in water- saturated samples of Darley Dale sandstone (initial porosity of 13%). Conventional creep experiments (or 'static fatigue' tests) show that time to failure decreases dramatically with the imposed deviatoric stress. They also suggest the existence of a critical level of damage beyond which localized failure develops. Sample variability results however in significant scattering in the experimental data and numerous tests are needed to clearly define a relation between the strain rate and the applied stress. We show here that stress-stepping experiments provide a means to overcome this problem and that it is possible this way to obtain the strain rate dependence on applied stress with a single test. This allows to study in details the impact of various thermodynamical conditions on brittle creep. The influence of effective stress was investigated in stress-stepping experiments with effective confining pressures of 10, 30 and 50 MPa (whilst maintaining a constant pore fluid pressure of 20 MPa). In addition to the expected purely mechanical influence of an elevated effective stress our results also demonstrate that stress corrosion appears to be inhibited at higher effective stresses. The influence of doubling the pore fluid pressure however, whilst maintaining a constant effective stress, is shown to have no effect on the rate of stress corrosion. We then discuss the results in light of acoustic emission hypocentre location data and optical microscope analysis and use our experimental data to validate proposed macroscopic creep laws. Finally, using

  18. A Weibull characterization for tensile fracture of multicomponent brittle fibers

    NASA Technical Reports Server (NTRS)

    Barrows, R. G.

    1977-01-01

    A statistical characterization for multicomponent brittle fibers in presented. The method, which is an extension of usual Weibull distribution procedures, statistically considers the components making up a fiber (e.g., substrate, sheath, and surface) as separate entities and taken together as in a fiber. Tensile data for silicon carbide fiber and for an experimental carbon-boron alloy fiber are evaluated in terms of the proposed multicomponent Weibull characterization.

  19. Using a set of TeQing-into-Lemont chromosome segment substitution lines for fine mapping QTL: Case studies on sheath blight resistance, spreading culm, and mesocotyl elongation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A set of backcross introgression lines containing portions of the TeQing genome now introgressed into a Lemont genetic background allows us to fine map rice QTL, and measure their breeding value within U.S. rice genetic and field environments....

  20. Interpreting finite element results for brittle materials in endodontic restorations

    PubMed Central

    2011-01-01

    Background Finite element simulation has been used in last years for analysing the biomechanical performance of post-core restorations in endodontics, but results of these simulations have been interpreted in most of the works using von Mises stress criterion. However, the validity of this failure criterion for brittle materials, which are present in these restorations, is questionable. The objective of the paper is to analyse how finite element results for brittle materials of endodontic restorations should be interpreted to obtain correct conclusions about the possible failure in the restoration. Methods Different failure criteria (Von Mises, Rankine, Coulomb-Mohr, Modified Mohr and Christensen) and material strength data (diametral tensile strength and flexural strength) were considered in the study. Three finite element models (FEM) were developed to simulate an endodontic restoration and two typical material tests: diametral tensile test and flexural test. Results Results showed that the Christensen criterion predicts similar results as the Von Mises criterion for ductile components, while it predicts similar results to all other criteria for brittle components. The different criteria predict different failure points for the diametral tensile test, all of them under multi-axial stress states. All criteria except Von Mises predict failure for flexural test at the same point of the specimen, with this point under uniaxial tensile stress. Conclusions From the results it is concluded that the Christensen criterion is recommended for FEM result interpretation in endodontic restorations and that the flexural test is recommended to estimate tensile strength instead of the diametral tensile test. PMID:21635759

  1. Guidelines for Design and Analysis of Large, Brittle Spacecraft Components

    NASA Technical Reports Server (NTRS)

    Robinson, E. Y.

    1993-01-01

    There were two related parts to this work. The first, conducted at The Aerospace Corporation was to develop and define methods for integrating the statistical theory of brittle strength with conventional finite element stress analysis, and to carry out a limited laboratory test program to illustrate the methods. The second part, separately funded at Aerojet Electronic Systems Division, was to create the finite element postprocessing program for integrating the statistical strength analysis with the structural analysis. The second part was monitored by Capt. Jeff McCann of USAF/SMC, as Special Study No.11, which authorized Aerojet to support Aerospace on this work requested by NASA. This second part is documented in Appendix A. The activity at Aerojet was guided by the Aerospace methods developed in the first part of this work. This joint work of Aerospace and Aerojet stemmed from prior related work for the Defense Support Program (DSP) Program Office, to qualify the DSP sensor main mirror and corrector lens for flight as part of a shuttle payload. These large brittle components of the DSP sensor are provided by Aerojet. This document defines rational methods for addressing the structural integrity and safety of large, brittle, payload components, which have low and variable tensile strength and can suddenly break or shatter. The methods are applicable to the evaluation and validation of such components, which, because of size and configuration restrictions, cannot be validated by direct proof test.

  2. Modeling multiscale evolution of numerous voids in shocked brittle material

    NASA Astrophysics Data System (ADS)

    Yu, Yin; Wang, Wenqiang; He, Hongliang; Lu, Tiecheng

    2014-04-01

    The influence of the evolution of numerous voids on macroscopic properties of materials is a multiscale problem that challenges computational research. A shock-wave compression model for brittle material, which can obtain both microscopic evolution and macroscopic shock properties, was developed using discrete element methods (lattice model). Using a model interaction-parameter-mapping procedure, qualitative features, as well as trends in the calculated shock-wave profiles, are shown to agree with experimental results. The shock wave splits into an elastic wave and a deformation wave in porous brittle materials, indicating significant shock plasticity. Void collapses in the deformation wave were the natural reason for volume shrinkage and deformation. However, media slippage and rotation deformations indicated by complex vortex patterns composed of relative velocity vectors were also confirmed as an important source of shock plasticity. With increasing pressure, the contribution from slippage deformation to the final plastic strain increased. Porosity was found to determine the amplitude of the elastic wave; porosity and shock stress together determine propagation speed of the deformation wave, as well as stress and strain on the final equilibrium state. Thus, shock behaviors of porous brittle material can be systematically designed for specific applications.

  3. Patterns of brittle deformation under extension on Venus

    NASA Technical Reports Server (NTRS)

    Neumann, G. A.; Zuber, M. T.

    1994-01-01

    The development of fractures at regular length scales is a widespread feature of Venusian tectonics. Models of lithospheric deformation under extension based on non-Newtonian viscous flow and brittle-plastic flow develop localized failure at preferred wavelengths that depend on lithospheric thickness and stratification. The characteristic wavelengths seen in rift zones and tessera can therefore provide constraints on crustal and thermal structure. Analytic solutions were obtained for growth rates in infinitesimal perturbations imposed on a one-dimensional, layered rheology. Brittle layers were approximated by perfectly-plastic, uniform strength, overlying ductile layers exhibiting thermally-activated power-law creep. This study investigates the formation of faults under finite amounts of extension, employing a finite-element approach. Our model incorporates non-linear viscous rheology and a Coulomb failure envelope. An initial perturbation in crustal thickness gives rise to necking instabilities. A small amount of velocity weakening serves to localize deformation into planar regions of high strain rate. Such planes are analogous to normal faults seen in terrestrial rift zones. These 'faults' evolve to low angle under finite extension. Fault spacing, orientation and location, and the depth to the brittle-ductile transition, depend in a complex way on lateral variations in crustal thickness. In general, we find that multiple wavelengths of deformation can arise from the interaction of crustal and mantle lithosphere.

  4. Transcriptome pyrosequencing of the Antarctic brittle star Ophionotus victoriae.

    PubMed

    Burns, Gavin; Thorndyke, Michael C; Peck, Lloyd S; Clark, Melody S

    2013-03-01

    Brittle stars are included within a whole range of species, which contribute to knowledge in the medically important area of tissue regeneration. All brittle stars regenerate lose limbs, but the rate at which this occurs is highly variable and species-specific. One of the slowest rates of arm regeneration reported so far is that of the Antarctic Ophionotus victoriae. Additionally, O. victoriae also has an unusual delay in the onset of regeneration of about 5months. Both processes are of interest for the areas of regeneration biology and adaptation to cold environments. One method of understanding the details of regeneration events in brittle stars is to characterise the genes involved. In the largest transcriptome study of any ophiuroid to date, we describe the results of mRNA pyrosequencing from pooled samples of regenerating arms of O. victoriae. The sequencing reads resulted in 18,000 assembled contiguous sequences of which 19% were putatively annotated by blast sequence similarity searching. We focus on the identification of major gene families and pathways with potential relevance to the regenerative processes including the Wnt/β-catenin pathway, Hox genes, the SOX gene family and the TGF beta signalling pathways. These data significantly increase the amount of ophiuroid sequences publicly available and provide candidate transcripts for the further investigation of the unusual regenerative process in this Antarctic ophiuroid. PMID:23904059

  5. Displacement–length scaling of brittle faults in ductile shear

    PubMed Central

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  6. Rice Production and Marketing.

    ERIC Educational Resources Information Center

    Briers, Gary; Lee, Jasper S.

    This guide contains lesson plans for use in secondary programs of agricultural education in geographical areas in which rice is produced. Six units and 13 problem areas are organized into teaching plans that cover the broad nature of rice production. The six units are: (1) determining the importance and history of rice production; (2) determining…

  7. Map-based analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum turgidum L.).

    PubMed

    Nalam, Vamsi J; Vales, M Isabel; Watson, Christy J W; Kianian, Shahryar F; Riera-Lizarazu, Oscar

    2006-01-01

    The mature spike rachis of wild emmer [Triticum turgidum L. ssp. dicoccoides (Körn. ex Asch. and Graebner) Thell.] disarticulates spontaneously between each spikelet leading to the dispersion of wedge-type diaspores. By contrast, the spike rachis of domesticated emmer (Triticum turgidum L. ssp. turgidum) fails to disarticulate and remains intact until it is harvested. This major distinguishing feature between wild and domesticated emmer is controlled by two major genes, brittle rachis 2 (Br-A2) and brittle rachis 3 (Br-A3) on the short arms of chromosomes 3A and 3B, respectively. Because of their biological and agricultural importance, a map-based analysis of these genes was undertaken. Using two recombinant inbred chromosome line (RICL) populations, Br-A2, on chromosome 3A, was localized to a approximately 11-cM region between Xgwm2 and a cluster of linked loci (Xgwm666.1, Xbarc19, Xcfa2164, Xbarc356, and Xgwm674), whereas Br-A3, on chromosome 3B, was localized to a approximately 24-cM interval between Xbarc218 and Xwmc777. Comparative mapping analyses suggested that both Br-A2 and Br-A3 were present in homologous regions on chromosomes 3A and 3B, respectively. Furthermore, Br-A2 and Br-A3 from wheat and Btr1/Btr2 on chromosome 3H of barley (Hordeum vulgare L.) also were homologous suggesting that the location of major determinants of the brittle rachis trait in these species has been conserved. On the other hand, brittle rachis loci of wheat and barley, and a shattering locus on rice chromosome 1 did not appear to be orthologous. Linkage and deletion-based bin mapping comparisons suggested that Br-A2 and Br-A3 may reside in chromosomal areas where the estimated frequency of recombination was approximately 4.3 Mb/cM. These estimates indicated that the cloning of Br-A2 and Br-A3 using map-based methods would be extremely challenging. PMID:16328232

  8. A Genome-Wide Association Study for Culm Cellulose Content in Barley Reveals Candidate Genes Co-Expressed with Members of the CELLULOSE SYNTHASE A Gene Family

    PubMed Central

    Houston, Kelly; Burton, Rachel A.; Sznajder, Beata; Rafalski, Antoni J.; Dhugga, Kanwarpal S.; Mather, Diane E.; Taylor, Jillian; Steffenson, Brian J.; Waugh, Robbie; Fincher, Geoffrey B.

    2015-01-01

    Cellulose is a fundamentally important component of cell walls of higher plants. It provides a scaffold that allows the development and growth of the plant to occur in an ordered fashion. Cellulose also provides mechanical strength, which is crucial for both normal development and to enable the plant to withstand both abiotic and biotic stresses. We quantified the cellulose concentration in the culm of 288 two – rowed and 288 six – rowed spring type barley accessions that were part of the USDA funded barley Coordinated Agricultural Project (CAP) program in the USA. When the population structure of these accessions was analysed we identified six distinct populations, four of which we considered to be comprised of a sufficient number of accessions to be suitable for genome-wide association studies (GWAS). These lines had been genotyped with 3072 SNPs so we combined the trait and genetic data to carry out GWAS. The analysis allowed us to identify regions of the genome containing significant associations between molecular markers and cellulose concentration data, including one region cross-validated in multiple populations. To identify candidate genes we assembled the gene content of these regions and used these to query a comprehensive RNA-seq based gene expression atlas. This provided us with gene annotations and associated expression data across multiple tissues, which allowed us to formulate a supported list of candidate genes that regulate cellulose biosynthesis. Several regions identified by our analysis contain genes that are co-expressed with CELLULOSE SYNTHASE A (HvCesA) across a range of tissues and developmental stages. These genes are involved in both primary and secondary cell wall development. In addition, genes that have been previously linked with cellulose synthesis by biochemical methods, such as HvCOBRA, a gene of unknown function, were also associated with cellulose levels in the association panel. Our analyses provide new insights into the

  9. High-throughput measurement of rice tillers using a conveyor equipped with x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Yang, Wanneng; Xu, Xiaochun; Duan, Lingfeng; Luo, Qingming; Chen, Shangbin; Zeng, Shaoqun; Liu, Qian

    2011-02-01

    Tillering is one of the most important agronomic traits because the number of shoots per plant determines panicle number, a key component of grain yield. The conventional method of counting tillers is still manual. Under the condition of mass measurement, the accuracy and efficiency could be gradually degraded along with fatigue of experienced staff. Thus, manual measurement, including counting and recording, is not only time consuming but also lack objectivity. To automate this process, we developed a high-throughput facility, dubbed high-throughput system for measuring automatically rice tillers (H-SMART), for measuring rice tillers based on a conventional x-ray computed tomography (CT) system and industrial conveyor. Each pot-grown rice plant was delivered into the CT system for scanning via the conveyor equipment. A filtered back-projection algorithm was used to reconstruct the transverse section image of the rice culms. The number of tillers was then automatically extracted by image segmentation. To evaluate the accuracy of this system, three batches of rice at different growth stages (tillering, heading, or filling) were tested, yielding absolute mean absolute errors of 0.22, 0.36, and 0.36, respectively. Subsequently, the complete machine was used under industry conditions to estimate its efficiency, which was 4320 pots per continuous 24 h workday. Thus, the H-SMART could determine the number of tillers of pot-grown rice plants, providing three advantages over the manual tillering method: absence of human disturbance, automation, and high throughput. This facility expands the application of agricultural photonics in plant phenomics.

  10. Nuclear and Chloroplast DNA Variation Provides Insights into Population Structure and Multiple Origin of Native Aromatic Rices of Odisha, India.

    PubMed

    Roy, Pritesh Sundar; Rao, Gundimeda Jwala Narasimha; Jena, Sudipta; Samal, Rashmita; Patnaik, Ashok; Patnaik, Sasank Sekhar Chyau; Jambhulkar, Nitiprasad Namdeorao; Sharma, Srigopal; Mohapatra, Trilochan

    2016-01-01

    A large number of short grain aromatic rice suited to the agro-climatic conditions and local preferences are grown in niche areas of different parts of India and their diversity is evolved over centuries as a result of selection by traditional farmers. Systematic characterization of these specialty rices has not been attempted. An effort was made to characterize 126 aromatic short grain rice landraces, collected from 19 different districts in the State of Odisha, from eastern India. High level of variation for grain quality and agronomic traits among these aromatic rices was observed and genotypes having desirable phenotypic traits like erect flag leaf, thick culm, compact and dense panicles, short plant stature, early duration, superior yield and grain quality traits were identified. A total of 24 SSR markers corresponding to the hyper variable regions of rice chromosomes were used to understand the genetic diversity and to establish the genetic relationship among the aromatic short grain rice landraces at nuclear genome level. SSR analysis of 126 genotypes from Odisha and 10 genotypes from other states revealed 110 alleles with an average of 4.583 and the Nei's genetic diversity value (He) was in the range of 0.034-0.880 revealing two sub-populations SP 1 (membership percentage-27.1%) and SP 2 (72.9%). At the organelle genomic level for the C/A repeats in PS1D sequence of chloroplasts, eight different plastid sub types and 33 haplotypes were detected. The japonica (Nipponbare) subtype (6C7A) was detected in 100 genotypes followed by O. rufipogon (KF428978) subtype (6C6A) in 13 genotypes while indica (93-11) sub type (8C8A) was seen in 14 genotypes. The tree constructed based on haplotypes suggests that short grain aromatic landraces might have independent origin of these plastid subtypes. Notably a wide range of diversity was observed among these landraces cultivated in different parts confined to the State of Odisha. PMID:27598392

  11. Neogene transtensional brittle tectonics in the Lepontine D

    NASA Astrophysics Data System (ADS)

    Allanic, C.; Sue, C.; Champagnac, J.-D.

    2009-04-01

    The Lepontine Dome is investigated regarding faulting and paleostress, which allows to constrain the late brittle deformation of this gneissic core. Its tectonic evolution under brittle conditions was determined using fault mapping and paleostress inversions. Three brittle phases were reconstructed. The older phase is a NW-SE extension restricted to the eastern parts of the Dome. The second phase (major signal) is an upper Miocene transtension with stable orogen-parallel sigma3 axes (NE-SW), which is found from the Mont-Blanc to the Bergell massifs. The late phase is a N-S extension, expressed north of the Dome, and probably linked to the current collapse of the belt. The stress fields we determine for the Lepontine Dome are very similar to the stress fields determined by Champagnac et al (2006) westward in the South-Valais area, with a major signal in orogen-parallel extension and a minor signal in orogen-perpendicular extension. In the close vicinity of the Simplon fault, Grosjean et al (2004) only reported the orogen-parallel extensional stress field. Eastward, in the Bergell area, Ciancaleoni and Marquer (2008) also found a very regular NE-SW extensional paleostress field, using similar methods. Indeed, the main paleostress field determined in the Lepontine Dome is very homogeneous from a regional viewpoint. It is largely dominated by the NE-SW brittle extension, described in the whole northwestern Alps. The Lepontine Dome also bears witness of two minor extensional signals (N-S and WNW-ESE directions of extension). The absolute dating of this orogen-parallel extensional phase is based on the occurrence of pseudotachylytes locally injected in the related fault system. Pseudotachylyte development is directly linked to frictional heating due to earthquake and faulting. The Ar/Ar dating of three pseudotachylytes samples of the Lepontine Dome provided ages in the range of 9-11 Ma ±1 (Allanic, et al., 2006). Thus, one can attribute a global 10 Ma age for the orogen

  12. Extraction of light filth from rice flours, extruded rice products, and rice paper: collaborative study.

    PubMed

    Dent, R G

    1982-09-01

    Two new methods were developed for the extraction of rodent hairs and insect fragments from rice products: one for rice flour and one for extruded rice products and rice paper. A 100 g sample of rice flour was extracted with mineral oil-40% isopropanol, followed by a water phase as needed for additional cycles. For extruded rice products and rice paper, a 225 g sample of each was initially extracted as above, followed by a single extraction with mineral oil-20% isopropanol. Both methods used an acid hydrolysis pretreatment followed by wet sieving and a percolator extraction. Average rodent hair recoveries were 77.8% for rice flour and 82.2% for extruded rice products and rice paper. Average insect fragment recoveries were 89.6% for rice flour and 91.9% for extruded rice products and rice paper. Both methods were adopted official first action. PMID:7130079

  13. Quantitative comparisons of numerical models of brittle deformation

    NASA Astrophysics Data System (ADS)

    Buiter, S.

    2009-04-01

    Numerical modelling of brittle deformation in the uppermost crust can be challenging owing to the requirement of an accurate pressure calculation, the ability to achieve post-yield deformation and localisation, and the choice of rheology (plasticity law). One way to approach these issues is to conduct model comparisons that can evaluate the effects of different implementations of brittle behaviour in crustal deformation models. We present a comparison of three brittle shortening experiments for fourteen different numerical codes, which use finite element, finite difference, boundary element and distinct element techniques. Our aim is to constrain and quantify the variability among models in order to improve our understanding of causes leading to differences between model results. Our first experiment of translation of a stable sand-like wedge serves as a reference that allows for testing against analytical solutions (e.g., taper angle, root-mean-square velocity and gravitational rate of work). The next two experiments investigate an unstable wedge in a sandbox-like setup which deforms by inward translation of a mobile wall. All models accommodate shortening by in-sequence formation of forward shear zones. We analyse the location, dip angle and spacing of thrusts in detail as previous comparisons have shown that these can be highly variable in numerical and analogue models of crustal shortening and extension. We find that an accurate implementation of boundary friction is important for our models. Our results are encouraging in the overall agreement in their dynamic evolution, but show at the same time the effort that is needed to understand shear zone evolution. GeoMod2008 Team: Markus Albertz, Michele Cooke, Susan Ellis, Taras Gerya, Luke Hodkinson, Kristin Hughes, Katrin Huhn, Boris Kaus, Walter Landry, Bertrand Maillot, Christophe Pascal, Anton Popov, Guido Schreurs, Christopher Beaumont, Tony Crook, Mario Del Castello and Yves Leroy

  14. Design, construction, operation and evaluation of a Prototype Culm Combustion Boiler/Heater Unit. Quarterly technical progress report, April 1-June 30, 1983

    SciTech Connect

    Not Available

    1983-08-01

    This report provides a summary of the work performed on the Prototype Culm Combustion Boiler/Heater Unit, Phase I - Engineering Design and Analysis, Phase II - Prototype Plant Construction and Phase III - Start-Up and Operation during the period April 1, 1983 through June 30, 1983. The objectives of the program as well as the technical progress and problem areas encountered during the reporting period are presented. The Extended Test continued throughout April after which the plant was shutdown for final inspection and preparation for storage. An additional 528-1/2 hours of operation were accumulated during April bringing the total boiler operating time through the end of this quarter to 10,128 hours. Steam was delivered to the User (Cellu Products) during this time to generate steam revenue. During this period, a stack emission test was conducted which indicated particulate emissions well below the state requirement. Also, a short (100 hrs.) feasibility test was conducted using bituminous waste (gob) as fuel. The test demonstrated the successful combustion and sulfur capture characteristics of the fluidized bed combustion of this low heating value (3000 Btu/lb.), high sulfur (5%) fuel type. Data analysis and report preparation has continued throughout the period. A compilation of economic operating cost data was completed and forwarded to DOE and to Gilbert Associates of Reading, Pennsylvania for use in preparation of an operating cost analysis for the Shamokin Fluidized Bed Boiler.

  15. Elastic shear moduli of brittle matrix composites with interfacial debonding

    SciTech Connect

    Yuan, F.G.; Pagano, N.J.

    1994-12-31

    Elastic shear moduli of brittle matrix composites with interfacial debonding are studied. Compatibility displacement boundary conditions between representative volume elements are imposed through finite element analyses. Comparisons of the moduli between the full RVE model and quarter cell model are made. Parametric studies assessing the effect of the debonding, the shear moduli ratios in the constituents and the fiber volume fractions on the composite shear moduli are also presented. Results show that the commonly used quarter cell model overestimate the moduli. The disparity increases as the rigidity of the fibers or fiber volume fraction increases.

  16. Cavitation-Induced Fracture Causes Nanocorrugations in Brittle Metallic Glasses.

    PubMed

    Singh, I; Narasimhan, R; Ramamurty, Upadrasta

    2016-07-22

    Brittle metallic glasses exhibit a unique and intriguing fracture morphology of periodic nanocorrugations whose spacing and amplitude are of the order of tens of nanometers. We show through continuum simulations that they fail by spontaneous and simultaneous cavitation within multiple weak zones arising due to intrinsic atomic density fluctuations ahead of a notch tip. Dynamic crack growth would then occur along curved but narrowly confined shear bands that link the growing cavities. This mechanism involves little dissipation and also explains the formation of nanocorrugations. PMID:27494475

  17. On the brittle nature of rare earth pnictides

    NASA Astrophysics Data System (ADS)

    Shriya, S.; Sapkale, R.; Singh, N.; Varshney, M.; Varshney, Dinesh

    2016-05-01

    The high-pressure structural phase transition and pressure as well temperature induced elastic properties in ReY; (Re = La, Sc, Pr; Y = N, P, As, Sb, Bi) pnictides have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from NaCl to CsCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, second order Cauchy discrepancy, anisotropy, hardness and brittle/ductile nature of rare earth pnictides are computed.

  18. Development of massproductive ultraprecision grinding technology for brittle material devices

    SciTech Connect

    Kanai, A.; Miyashita, M.; Daito, M.

    1996-12-31

    Experimental results from an ultaprecision, centerless grinding system are reported. The system is designed for ductile mode grinding of brittle material devices on a mass production scale. A postprocess work diameter measuring stand was used with the high stiffness grinding machine.Size error correction was shown to be practically applicable as a mass production ultraprecision ferrule grinding technology. The key items were determined to be: (1) force-operated positioning servo system of slide on plain bearing guideways, (2) measurement of relative motion between grinding and regulating wheels with differential linear encoder, (3) application of linear encoder stability, and (4) application of microtruing technology to wheels.

  19. Cooked rice texture and rice flour pasting properties; impacted by rice temperature during milling.

    PubMed

    Saleh, Mohammed; Meullenet, Jean-Francois

    2015-03-01

    Rice milling plays a key factor in determining rice quality and value. Therefore accurate quality assessments are critical to the rice industry. This study was undertaken to assess the effect of exposing rice to elevated temperatures during milling, on cooked rice texture and rice flour pasting properties. Two long (Cybonnett and Francis) and one medium (Jupiter) rice (oryzae sativa L.) cultivars were milled using McGill laboratory mill for 30 and 40 s after warmed up the mill before milling. Four different milling temperatures per milling duration were achieved. Cooked rice texture properties were assessed using a uniaxial compression test and rice flour pasting properties measured using a TA-2000 rheometer. Results of this study showed that exposure of rice to high temperatures during milling significantly decreased cooked rice firmness. An increase in milled rice temperature after milling from 10.0 to 13.3 °C resulted in a 5.4 and 8.1 N decrease in cooked rice firmness. Although not always significant, the increase in milled rice temperature during milling resulted in an increase in cooked rice stickiness. The increase in milling temperature also showed significant increase in rice flour pasting properties. Changes in rice functional characteristics were attributed to the changes occurring to rice chemical constituents due to temperature exposure as indicated by the increase in rice protein hydrophobicity. Proteins are known to affect rice starch water holding capacity and other starch gelatinization properties. PMID:25745230

  20. The maize brittle 1 gene encodes amyloplast membrane polypeptides.

    PubMed

    Sullivan, T D; Kaneko, Y

    1995-01-01

    A chimeric protein, formed of 56 amino acids from the carboxy terminus of the maize (Zea mays L.) wild-type Brittle1 (Bt1) protein fused to the glutathione-S-transferase gene, was synthesized in Escherichia coli, and used to raise antibodies. Following affinity purification, the antibodies recognized a set of 38- to 42-kDa proteins in endosperm from wild-type Bt1 plants, as well as from brittle2, shrunken2 and sugary1 plants, but not in mutant bt1 endosperm. Bt1 proteins were not detected with the preimmune antibodies. A low level of Bt1-specific proteins was detected at 10 d after pollination (DAP) and increased to a plateau at 16 DAP. At the same time, the ratio of slow- to fast-migrating forms of the protein decreased. During endosperm fractionation by differential centrifugation and membrane sedimentation in sucrose gradients, the Bt1 proteins co-purified with the carotenoid-containing plastid membranes. They were localized to amyloplasts by electron-microscopic immunocytochemistry; most of the signal was detected at the plastid periphery. These results are consistent with predictions made from the deduced amino-acid sequence and previous in-vitro experiments that the bt1 locus encodes amyloplast membrane proteins. PMID:7647682

  1. Brittle failure prediction of ceramics using a multiscale approach

    SciTech Connect

    Berdin, C.; Cailletaud, G.; Jeulin, D.

    1996-11-01

    Brittle failure is classically modeled by the Weibull distribution, based on a phenomenological approach. The procedure fails if the distribution of the failure-initiating defects varies within material batches and may lead to a wrong conclusion about the predictive power of the model. The purpose of this paper is to highlight this problem, which can occur with brittle materials such as ceramics. This study, based on the results of tensile and bending tests made on silicon nitride specimens, consists of three steps: (i) micrographic and fractographic studies are performed to determine the defect-size density in each type of specimen and the mechanical behavior of the defects, (ii) the classical modeling with a Weibull distribution is shown to fail to predict the results, and (iii) a new approach for the identification of a fracture model is developed, based on step (i). The fracture prediction is computed from the actual defect-size distribution in each material batch, so that the procedure can be adapted to changes in the defect-size distribution caused by the manufacturing process.

  2. Cyclic fatigue of intrinsically brittle ceramics in contact with spheres

    SciTech Connect

    Kim, D.K.; Jung, Y.G.; Peterson, I.M.; Lawn, B.R.

    1999-12-10

    Contact damage modes in cyclic loading with spheres are investigated in three nominally brittle ceramics, soda-lime glass, porcelain and fine-grain silicon nitride, in moist environments. Initial damage at small numbers of cycles and low loads consists of tensile-driven macroscopic cone cracks (brittle mode). Secondary damage at large numbers of cycles and high loads consists of shear-driven distributed microdamage (quasi-plastic mode), with attendant radial cracks and a new form of deeply penetrating subsidiary cone cracks. Strength tests on indented specimens are used to quantify the degree of damage. Both damage modes degrade the strength: the first, immediately after cone crack initiation, relatively slowly; the second, after development of radial cracks, much more rapidly. A fracture mechanics model describing the first mode, based on time-integration of slow growth of cone cracks, is presented. This model provides simple power-law relations for the remaining strength in terms of number of cycles and contact load for materials design. Extrapolations of these relations into the quasi-plastic region are shown to be non-conservative, highlighting the need for further understanding of the deleterious quasi-plastic mode in tougher ceramics. Comparison with static contact data indicates a strong mechanical (as opposed to chemical) component in the cyclic fatigue in the quasi-plastic region.

  3. A generalized law for brittle deformation of Westerly granite

    USGS Publications Warehouse

    Lockner, D.A.

    1998-01-01

    A semiempirical constitutive law is presented for the brittle deformation of intact Westerly granite. The law can be extended to larger displacements, dominated by localized deformation, by including a displacement-weakening break-down region terminating in a frictional sliding regime often described by a rate- and state-dependent constitutive law. The intact deformation law, based on an Arrhenius type rate equation, relates inelastic strain rate to confining pressure Pc, differential stress ????, inelastic strain ??i, and temperature T. The basic form of the law for deformation prior to fault nucleation is In ????i = c - (E*/RT) + (????/a??o)sin-??(???? i/2??o) where ??o and ??o are normalization constants (dependent on confining pressure), a is rate sensitivity of stress, and ?? is a shape parameter. At room temperature, eight experimentally determined coefficients are needed to fully describe the stress-strain-strain rate response for Westerly granite from initial loading to failure. Temperature dependence requires apparent activation energy (E* ??? 90 kJ/mol) and one additional experimentally determined coefficient. The similarity between the prefailure constitutive law for intact rock and the rate- and state-dependent friction laws for frictional sliding on fracture surfaces suggests a close connection between these brittle phenomena.

  4. Self-repair of cracks in brittle material systems

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn M.

    2016-04-01

    One of the most effective uses for self repair is in material systems that crack because the cracks can allow the repair chemical to flow into the crack damage sites in all three dimensions. In order for the repair chemical to stay in the damage site and flow along to all the crack and repair there must be enough chemical to fill the entire crack. The repair chemical must be designed appropriately for the particular crack size and total volume of cracks. In each of the three examples of self repair in crackable brittle systems, the viscosity and chemical makeup and volume of the repair chemicals used is different for each system. Further the chemical delivery system has to be designed for each application also. Test results from self repair of three brittle systems are discussed. In "Self Repair of Concrete Bridges and Infrastructure" two chemicals were used due to different placements in bridges to repair different types of cracks- surface shrinkage and shear cracks, In "Airplane Wings and Fuselage, in Graphite" the composite has very different properties than the concrete bridges. In the graphite for airplane components the chemical also had to survive the high processing temperatures. In this composite the cracks were so definite and deep and thin that the repair chemical could flow easily and repair in all layers of the composite. In "Ceramic/Composite Demonstrating Self Repair" the self repair system not only repaired the broken ceramic but also rebounded the composite to the ceramic layer

  5. Interfacial sliding in fibrous brittle-matrix composites

    NASA Astrophysics Data System (ADS)

    Miles, Herbert Frederick, II

    Ceramic materials have desirable characteristics for use in high temperature applications, but due to their brittle nature they were avoided until the recent advent of ceramic matrix composites (CMCs) in which ceramic fibers are inserted into a ceramic matrix to toughen the material by retarding crack growth. This work investigates the role of sliding at interfaces in making brittle matrix composites (BMCs) more crack resistant. A two-dimensional study investigates the effects of roughness, toughness, and friction on the fracture behavior of BMCs. This study was then expanded to an axisymmetric study of a fiber engulfed by a crack. The results indicate that there are significant interaction effects between friction and the other parameters. To achieve 'long' sliding lengths, the magnitude of the interfacial critical energy release rate must be significantly less than the magnitude required to ensure crack deflection. The study then investigates the three-dimensional nature of a crack as it flows past a fiber. A computational analysis is performed to determine the crack propagation angle at a frictional interface. The computational results show good agreement with a novel experimental analysis using modified DCDC specimens. The experiments show, in real time, the propagation of a crack which is perpendicular to and intersects a frictional interface.

  6. How plasticizer makes a ductile polymer glass brittle?

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Li, Xiaoxiao; Wang, Shi-Qing

    During uniaxial extension, a polymer glass of high molecular weight is ductile at high temperatures (still below Tg) and turns brittle when the temperature is sufficiently lowered. Incorporation of small-molecular additives to polymer glasses can speed up segmental relaxation considerably. The effect of such plasticization should be to make the polymers more ductile. We examined the effect of blending a few weight percent of either triphenyl phosphate (TPP) or a mineral oil to a commercial-grade PS and PMMA. Our Instron tests show that the plasticized PS is less ductile. Specifically, at 70 oC, the original PS is ductile at an extensional rate of 0.02 s-1 whereas the PS with 4 wt. % TPP turns brittle. Mechanical spectroscopic measurements show that the alpha relaxation time is shortened by more than two orders of magnitude with 4 wt. % TPP. On the other hand, such anomalous behavior did not occur in PMMA. We need to go beyond the conventional description to rationalize these results This work is supported, in part, by a NSF Grant (DMR-EAGER-1444859).

  7. Quantifying reliability statistics for electrochemical shock of brittle materials

    NASA Astrophysics Data System (ADS)

    Woodford, William H.; Chiang, Yet-Ming; Carter, W. Craig

    2014-10-01

    In brittle polycrystalline materials, anisotropic shape changes-such as those due to thermal expansion, composition changes, and piezoelectricity-can induce stresses severe enough to drive fracture. The stresses developed are microstructurally heterogeneous and develop in proportion to a generalized external stimulus rather than an applied load; as a consequence, traditional Weibull models do not capture the relevant scaling of failure probabilities with respect to applied stimulus or microstructural feature sizes. These limitations are surmounted by a stochastic method, called Finite Element plus Monte Carlo (FE+MC), which enables quantification of reliability statistics in brittle polycrystalline materials subjected to microstructurally heterogeneous stresses which may be driven by non-mechanical stimulii. A finite element analysis computes the stress distributions for a hypothetical defect-free virtual microstructure and a subsequent Monte Carlo analysis distributes flaws throughout the microstructure with sizes chosen from an experimental flaw size distribution. The FE+MC method is validated for uniaxial tensile loading, for which the expected Weibull distribution of failure probability is reproduced. As a demonstration of the utility of this method in a more complex stress state, we consider electrochemical shock of polycrystalline LiXCoO2 electrodes; the computed composition-dependent failure probabilities reproduce key features of experimental acoustic emission measurements not explained by previous modeling approaches.

  8. The initiation of brittle faults in crystalline rock

    NASA Astrophysics Data System (ADS)

    Crider, Juliet G.

    2015-08-01

    Faults in the upper crust initiate from pre-existing (inherited) or precursory (early-formed) structures and typically grow by the mechanical interaction and linkage of these structures. In crystalline rock, rock architecture, composition, cooling, and exhumation influence the initiation of faults, with contrasting styles observed in plutonic rocks, extrusive igneous rocks, and foliated metamorphic rocks. Brittle fault growth in granitic rock is commonly controlled by the architecture of inherited joints or preexisting dikes. In basalt, abundant joints control the surface expression of faulting, and enhanced compliance due to abundant joints leads to folding and deformation asymmetry in the fault zone. Highly reactive mafic minerals likely become rapidly evolving fault rocks. In foliated metamorphic rocks, fault initiation style is strongly influenced by strength anisotropy relative to the principal stress directions, with fracturing favored when the foliation is aligned with the directions of principal stress. The continuity of micas within the foliation also influences the micromechanics of fault initiation. Brittle kink bands are an example of a strain-hardening precursory structure unique to foliated rock. Each of these fault initiation processes produces different initial fault geometry and spatial heterogeneity that influence such properties as fault permeability and seismogenesis.

  9. Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants

    SciTech Connect

    Nouchi, Isamu ); Mariko, Shigeru ); Aoki, Kazuyuki )

    1990-09-01

    To clarify the mechanisms of methane transport from the rhizosphere into the atmosphere through rice plants (Oryza sativa L.), the methane emission rate was measured from a shoot whose roots had been kept in a culture solution with a high methane concentration or exposed to methane gas in the gas phase by using a cylindrical chamber. No clear correlation was observed between change in the transpiration rate and that in the methane emission rate. Methane was mostly released from the culm, which is an aggregation of leaf sheaths, but not from the leaf blade. Micropores which are different from stomata were newly found at the abaxial epidermis of the leaf sheath by scanning electron microscopy. The measured methane emission rate was much higher than the calculated methane emission rate that would result from transpiration and the methane concentration in the culture solution. Rice roots absorb methane gas in the gas phase without water uptake. These results suggest that methane dissolved in the soil water surrounding the roots diffuses into the cell-wall water of the root cells, gasifies in the root cortex, and then is mostly released through the micropores in the leaf sheaths.

  10. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice

    PubMed Central

    Liu, Linchuan; Tong, Hongning; Xiao, Yunhua; Che, Ronghui; Xu, Fan; Hu, Bin; Liang, Chengzhen; Chu, Jinfang; Li, Jiayang; Chu, Chengcai

    2015-01-01

    Grain size is one of the key factors determining grain yield. However, it remains largely unknown how grain size is regulated by developmental signals. Here, we report the identification and characterization of a dominant mutant big grain1 (Bg1-D) that shows an extra-large grain phenotype from our rice T-DNA insertion population. Overexpression of BG1 leads to significantly increased grain size, and the severe lines exhibit obviously perturbed gravitropism. In addition, the mutant has increased sensitivities to both auxin and N-1-naphthylphthalamic acid, an auxin transport inhibitor, whereas knockdown of BG1 results in decreased sensitivities and smaller grains. Moreover, BG1 is specifically induced by auxin treatment, preferentially expresses in the vascular tissue of culms and young panicles, and encodes a novel membrane-localized protein, strongly suggesting its role in regulating auxin transport. Consistent with this finding, the mutant has increased auxin basipetal transport and altered auxin distribution, whereas the knockdown plants have decreased auxin transport. Manipulation of BG1 in both rice and Arabidopsis can enhance plant biomass, seed weight, and yield. Taking these data together, we identify a novel positive regulator of auxin response and transport in a crop plant and demonstrate its role in regulating grain size, thus illuminating a new strategy to improve plant productivity. PMID:26283354

  11. Mechanism of Methane Transport from the Rhizosphere to the Atmosphere through Rice Plants 1

    PubMed Central

    Nouchi, Isamu; Mariko, Shigeru; Aoki, Kazuyuki

    1990-01-01

    To clarify the mechanisms of methane transport from the rhizosphere into the atmosphere through rice plants (Oryza sativa L.), the methane emission rate was measured from a shoot whose roots had been kept in a culture solution with a high methane concentration or exposed to methane gas in the gas phase by using a cylindrical chamber. No clear correlation was observed between change in the transpiration rate and that in the methane emission rate. Methane was mostly released from the culm, which is an aggregation of leaf sheaths, but not from the leaf blade. Micropores which are different from stomata were newly found at the abaxial epidermis of the leaf sheath by scanning electron microscopy. The measured methane emission rate was much higher than the calculated methane emission rate that would result from transpiration and the methane concentration in the culture solution. Rice roots could absorb methane gas in the gas phase without water uptake. These results suggest that methane dissolved in the soil water surrounding the roots diffuses into the cell-wall water of the root cells, gasifies in the root cortex, and then is mostly released through the micropores in the leaf sheaths. Images Figure 7 PMID:16667719

  12. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice.

    PubMed

    Liu, Linchuan; Tong, Hongning; Xiao, Yunhua; Che, Ronghui; Xu, Fan; Hu, Bin; Liang, Chengzhen; Chu, Jinfang; Li, Jiayang; Chu, Chengcai

    2015-09-01

    Grain size is one of the key factors determining grain yield. However, it remains largely unknown how grain size is regulated by developmental signals. Here, we report the identification and characterization of a dominant mutant big grain1 (Bg1-D) that shows an extra-large grain phenotype from our rice T-DNA insertion population. Overexpression of BG1 leads to significantly increased grain size, and the severe lines exhibit obviously perturbed gravitropism. In addition, the mutant has increased sensitivities to both auxin and N-1-naphthylphthalamic acid, an auxin transport inhibitor, whereas knockdown of BG1 results in decreased sensitivities and smaller grains. Moreover, BG1 is specifically induced by auxin treatment, preferentially expresses in the vascular tissue of culms and young panicles, and encodes a novel membrane-localized protein, strongly suggesting its role in regulating auxin transport. Consistent with this finding, the mutant has increased auxin basipetal transport and altered auxin distribution, whereas the knockdown plants have decreased auxin transport. Manipulation of BG1 in both rice and Arabidopsis can enhance plant biomass, seed weight, and yield. Taking these data together, we identify a novel positive regulator of auxin response and transport in a crop plant and demonstrate its role in regulating grain size, thus illuminating a new strategy to improve plant productivity. PMID:26283354

  13. Characterization and molecular cloning of a serine hydroxymethyltransferase 1 (OsSHM1) in rice.

    PubMed

    Wang, Dekai; Liu, Heqin; Li, Sujuan; Zhai, Guowei; Shao, Jianfeng; Tao, Yuezhi

    2015-09-01

    Serine hydroxymethyltransferase (SHMT) is important for one carbon metabolism and photorespiration in higher plants for its participation in plant growth and development, and resistance to biotic and abiotic stresses. A rice serine hydroxymethyltransferase gene, OsSHM1, an ortholog of Arabidopsis SHM1, was isolated using map-based cloning. The osshm1 mutant had chlorotic lesions and a considerably smaller, lethal phenotype under natural ambient CO2 concentrations, but could be restored to wild type with normal growth under elevated CO2 levels (0.5% CO2 ), showing a typical photorespiratory phenotype. The data from antioxidant enzymes activity measurement suggested that osshm1 was subjected to significant oxidative stress. Also, OsSHM1 was expressed in all organs tested (root, culm, leaf, and young panicle) but predominantly in leaves. OsSHM1 protein is localized to the mitochondria. Our study suggested that molecular function of the OsSHM1 gene is conserved in rice and Arabidopsis. PMID:25641188

  14. Energy from rice residues

    SciTech Connect

    Mahin, D.B.

    1990-03-01

    Developing countries produce millions of tons of rice husks and straw as a byproduct of harvesting rice. Although some of these rice residues are used for fuel or other purposes, most are burned for disposal or just dumped. However, since the mid- 1980's, industrial plants for rice residue utilization have been installed in several countries and are planned in a number of others. The report provides information on systems to produce energy from rice residues that are commercially available in the United States, Europe, and various developing countries, with an emphasis on those currently used or sold on an international level. Specifically reviewed are the use of rice husks to produce: (1) industrial process heat either directly from furnaces or by generating low pressure steam in boilers; (2) mechanical and electrical power for rice milling via steam engine systems, steam turbine/generator systems, and gasifier/engine systems; and (3) electric power for the grid. The outlook for producing energy from rice straw is also assessed. In addition, the prospects for the use of energy from husks or straw in the processing of rice bran are reviewed.

  15. Method for preparing surfaces of metal composites having a brittle phase for plating. [Patent application

    DOEpatents

    Coates, C.W.; Wilson, T.J.

    1982-05-19

    The present invention is directed to a method for preparing surfaces of two-phase metal composites having relatively brittle and malleable components for plating with corrosion-resistant material. In practice of the present invention, the surfaces of the composite are etched to remove a major portion or fraction of the brittle component. The etched surface is then peened with particulates for breaking the brittle component from the surfaces and for spreading or smearing the malleable component over the surfaces. The peened surface is then chemically cleaned of residual traces of the brittle component to which the corrosion-resistant material may be plated thereon in an adherent manner.

  16. Hydraulic Fracture and Toughening of a Brittle Layer Bonded to a Hydrogel

    NASA Astrophysics Data System (ADS)

    Lucantonio, Alessandro; Noselli, Giovanni; Trepat, Xavier; DeSimone, Antonio; Arroyo, Marino

    2015-10-01

    Brittle materials propagate opening cracks under tension. When stress increases beyond a critical magnitude, then quasistatic crack propagation becomes unstable. In the presence of several precracks, a brittle material always propagates only the weakest crack, leading to catastrophic failure. Here, we show that all these features of brittle fracture are fundamentally modified when the material susceptible to cracking is bonded to a hydrogel, a common situation in biological tissues. In the presence of the hydrogel, the brittle material can fracture in compression and can hydraulically resist cracking in tension. Furthermore, the poroelastic coupling regularizes the crack dynamics and enhances material toughness by promoting multiple cracking.

  17. Determinants for grading Malaysian rice

    NASA Astrophysics Data System (ADS)

    ChePa, Noraziah; Yusoff, Nooraini; Ahmad, Norhayati

    2016-08-01

    Due to un-uniformity of rice grading practices in Malaysia, zones which actively producing rice in Malaysia are using their own way of grading rice. Rice grading is important in determining rice quality and its subsequent price in the market. It is an important process applied in the rice production industry with the purpose of ensuring that the rice produced for the market meets the quality requirements of consumer. Two important aspects that need to be considered in determining rice grades are grading technique and determinants to be used for grading (usually referred as rice attributes). This article proposes the list of determinants to be used in grading Malaysian rice. Determinants were explored through combination of extensive literature review and series of interview with the domain experts and practitioners. The proposed determinants are believed to be beneficial to BERNAS in improving the current Malaysian rice grading process.

  18. Spotlight on rice: an update from the Rice Division

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This short paper is a 'spotlight' on the Rice Division of the Marican Association of Cereal Chemists, International and features an update and future challenges in rice research and industry. Since rice is consumed largely as milled white rice intact kernals, size, shape, color, appearance, function...

  19. Dynamic brittle material response based on a continuum damage model

    SciTech Connect

    Chen, E.P.

    1994-12-31

    The response of brittle materials to dynamic loads was studied in this investigation based on a continuum damage model. Damage mechanism was selected to be interaction and growth of subscale cracks. Briefly, the cracks are activated by bulk tension and the density of activated cracks are described by a Weibull statistical distribution. The moduli of a cracked solid derived by Budiansky and O`Connell are then used to represent the global material degradation due to subscale cracking. This continuum damage model was originally developed to study rock fragmentation and was modified in the present study to improve on the post-limit structural response. The model was implemented into a transient dynamic explicit finite element code PRONTO 2D and then used for a numerical study involving the sudden stretching of a plate with a centrally located hole. Numerical results characterizing the dynamic responses of the material were presented. The effect of damage on dynamic material behavior was discussed.

  20. Stability analysis of bridged cracks in brittle matrix composites

    NASA Technical Reports Server (NTRS)

    Ballarini, Roberto; Muju, Sandeep

    1991-01-01

    The bridging of matrix cracks by fibers is an important toughening mechanism in fiber reinforced brittle matrix composites. This paper presents the results of a nonlinear finite element analysis of the Mode-I propagation of a bridged matrix crack in a finite size specimen. The composite is modeled as an orthotropic continuum and the bridging due to the fibers is modeled as a distribution of tractions which resist crack opening. A critical stress intensity factor criterion is employed for matrix crack propagation while a critical crack opening condition is used for fiber failure. The structural response of the specimen (load-deflection curves) as well as the stress intensity factor of the propagating crack are calculated for various constituent properties and specimen configurations for both tensile and bending loading. By controlling the length of the bridged crack results are obtained which highlight the transition from stable to unstable behavior of the propagating crack.

  1. Methods for assessing the structural reliability of brittle materials

    NASA Technical Reports Server (NTRS)

    Freiman, S. W. (Editor); Hudson, C. M. (Editor)

    1984-01-01

    Failure from contact-induced surface flaws is considered along with controlled indentation flaws for construction of toughness and fatigue master maps, fatigue properties of ceramics with natural and controlled flaws, and a statistical analysis of size and stress state effects on the strength of an alumina ceramic. Attention is also given to dynamic and static fatigue of a machinable glass ceramic, the effect of multiregion crack growth on proof testing, and a fracture mechanics analysis of defect sizes. Other topics explored are related to the effect of temperature and humidity on delayed failure of optical glass fibers, subthreshold indentation flaws in the study of fatigue properties of ultrahigh-strength glass, the lifetime prediction for hot-pressed silicon nitride at high temperatures, static fatigue in high-performance ceramics, and requirements for flexure testing of brittle materials.

  2. Depinning transition in the failure of inhomogeneous brittle materials.

    PubMed

    Ponson, Laurent

    2009-07-31

    The dynamics of cracks propagating in elastic inhomogeneous materials is investigated experimentally. The variations of the average crack velocity with the external driving force are measured for a brittle rock and shown to display two distinct regimes: an exponential law characteristic of subcritical propagation at a low driving force and a power law above a critical threshold. This behavior can be explained quantitatively by extending linear elastic fracture mechanics to disordered systems. In this description, the motion of a crack is analogous to the one of an elastic line driven in a random medium, and critical failure occurs when the external force is sufficiently large to depin the crack front from the heterogeneities of the material. PMID:19792511

  3. Peripartum anesthetic management of a patient with brittle cornea syndrome.

    PubMed

    Ioscovich, A; Grisaru-Granovsky, S; Halpern, S; Shapiro, Y

    2011-03-01

    Brittle cornea syndrome (BCS) is a rare autosomal recessive disease that affects the connective tissue. The syndrome is caused by genetic changes in the 4.7-Mb interval between the D16S3423 and D16S3425 markers on the 16q24 chromosome and mutations in the Zinc-Finger 469 gene (ZNF469). BCS is characterized by thin and fragile cornea that tends to perforate spontaneously or as a result of minor trauma to the eye. In addition, the patient usually suffers from hearing loss, mental retardation, hyperextensibility of skin and joints, as well as varying degrees of scoliosis. This phenotypical expression presents an interesting challenge to anesthetic care. We briefly present the perioperative management of a patient with BCS who underwent three cesarean sections. PMID:21258811

  4. Brittle onset of monodispersed magmatic suspensions: from spheres to spheroid

    NASA Astrophysics Data System (ADS)

    Cordonnier, B.; Kaus, B.; Manga, M.; Caricchi, L.; Pistone, M.; Castro, J.; Hess, K.-U.; Gottschaller, S.; Dingwell, D. B.; Burlini, L.

    2012-04-01

    This abstract describes one of the last projects engaged by Dr. Luigi Burlini. It highlights his wish to make a close link between experimental and numerical studies, and push even further our understanding of rock mechanics. His students, engaged in this study, wish to credit these results to the legacy left by him owing to his constant involvement in Science and in educating the next generation of rheologists. While he could not see this project to fruition, his constant support and help during the conception of the project made it possible. The brittle-ductile transition remains a central question of modern geology as rock failure is the main parameter in mitigating geological risks, such as, for volcanic eruptions, the transitions from effusive to explosive eruptive style. Although numerical simulations are the only way to fully understanding the physical processes involved, we are in a strong need of an experimental validation of the proposed models. We first recall some experimental results obtained under torsion and uni-axial compression on both pure melts and crystal-bearing magmas. Torsion experiments were performed at high temperature (600 to 900 degC) and high pressure (200 to 300 MPa) using a Paterson-type rock deformation apparatus (ETH Zurich). We characterized the brittle onset of two phases magmas from 0 to 65 vol% crystals. The strain-rates span 5 orders of magnitude, with a change in the behavior of the material from viscous to brittle (10^-5- 100 s^-1). The materials tested are a standard borosilicate glass (NIST717), a natural crystal bearing rhyolitic melt (Mt Unzen volcano) and a suspension of haplogranitic synthetic sample with corundum particles. To characterize the physical processes leading to failure in the experiments, we performed 2D and 3D numerical simulations on monodispersed rigid spheroids with eccentricities ranging from 10^-2 to 10^2. The model is numerically solved with Finite Elements Methods. The pre-processing, processing and

  5. Micromechanical modelling of quasi-brittle materials behavior

    SciTech Connect

    Li, V.C.

    1992-12-01

    This special issues on Micromechanical modelling of quasi-brittle materials behavior represents an outgrowth of presentations given at a symposium of the same title held at the 1991 ASME Applied Mechanics and Biomechanics Summer Conference at the Ohio State University. The symposium was organized to promote communication between researchers in three materials groups: rock, cementitious materials, ceramics and related composites. The enthusiastic response of both speakers and attendants at the ASME symposium convinced the organizer that it would be useful to put together a coherent volume which can reach a larger audience. It was decided that the papers individually and as a volume ought to provide a broader view, so that as much as possible, the work contained in each paper would be accessible to readers working in any of the three materials groups. Applied Mechanics Reviews presents an appropriate platform for achieving these objectives.

  6. Composition effect on intrinsic plasticity or brittleness in metallic glasses.

    PubMed

    Zhao, Yuan-Yun; Inoue, Akihisa; Chang, Chuntao; Liu, Jian; Shen, Baolong; Wang, Xinmin; Li, Run-Wei

    2014-01-01

    The high plasticity of metallic glasses is highly desirable for a wide range of novel engineering applications. However, the physical origin of the ductile/brittle behaviour of metallic glasses with various compositions and thermal histories has not been fully clarified. Here we have found that metallic glasses with compositions at or near intermetallic compounds, in contrast to the ones at or near eutectics, are extremely ductile and also insensitive to annealing-induced embrittlement. We have also proposed a close correlation between the element distribution features and the plasticity of metallic glasses by tracing the evolutions of the element distribution rearrangement and the corresponding potential energy change within the sliding shear band. These novel results provide useful and universal guidelines to search for new ductile metallic glasses at or near the intermetallic compound compositions in a number of glass-forming alloy systems. PMID:25043428

  7. Composition Effect on Intrinsic Plasticity or Brittleness in Metallic Glasses

    PubMed Central

    Zhao, Yuan-Yun; Inoue, Akihisa; Chang, Chuntao; Liu, Jian; Shen, Baolong; Wang, Xinmin; Li, Run-Wei

    2014-01-01

    The high plasticity of metallic glasses is highly desirable for a wide range of novel engineering applications. However, the physical origin of the ductile/brittle behaviour of metallic glasses with various compositions and thermal histories has not been fully clarified. Here we have found that metallic glasses with compositions at or near intermetallic compounds, in contrast to the ones at or near eutectics, are extremely ductile and also insensitive to annealing-induced embrittlement. We have also proposed a close correlation between the element distribution features and the plasticity of metallic glasses by tracing the evolutions of the element distribution rearrangement and the corresponding potential energy change within the sliding shear band. These novel results provide useful and universal guidelines to search for new ductile metallic glasses at or near the intermetallic compound compositions in a number of glass-forming alloy systems. PMID:25043428

  8. Simulations of ductile flow in brittle material processing

    SciTech Connect

    Luh, M.H.; Strenkowski, J.S.

    1988-12-01

    Research is continuing on the effects of thermal properties of the cutting tool and workpiece on the overall temperature distribution. Using an Eulerian finite element model, diamond and steel tools cutting aluminum have been simulated at various, speeds, and depths of cut. The relative magnitude of the thermal conductivity of the tool and the workpiece is believed to be a primary factor in the resulting temperature distribution in the workpiece. This effect is demonstrated in the change of maximum surface temperatures for diamond on aluminum vs. steel on aluminum. As a preliminary step toward the study of ductile flow in brittle materials, the relative thermal conductivities of diamond on polycarbonate is simulated. In this case, the maximum temperature shifts from the rake face of the tool to the surface of the machined workpiece, thus promoting ductile flow in the workpiece surface.

  9. High Speed Strain Measurements Surrounding Hydraulic Fracture in Brittle Hydrogel

    NASA Astrophysics Data System (ADS)

    Steinhardt, Will; Rubinstein, Shmuel

    2015-11-01

    Hydraulic fractures of oil and gas shales occur miles underground, below complex, layered rocks, making measurements of their dynamics, extent, or structure difficult to impossible. Rocks are heterogeneous at a wide range of length scales, and investigating how these non-uniformities affect the propagation and extent of fractures is vital to improving both the safety and efficiency of hydraulic fracturing operations. To study these effects we have developed a model system using brittle, heavily cross-linked hydrogels that we can fracture with fluids and observe with a fast camera. By embedding tracer particles within the gel and using laser sheet microscopy, we obtain three dimensional stress and strain maps of the zone surrounding a hydraulic fracture tip. Gels can also be set in layers or interfaces with tunable strengths or with designed heterogeneities, allowing us to understand the fundamental science of hydraulic fractures and investigate the dynamics of controllably complex materials.

  10. New probability distribution for the strength of brittle fibers

    SciTech Connect

    Black, C.M.; Durham, S.D.; Lynch, J.D.; Padgett, W.J.

    1989-11-01

    Brittle fibers, used in modern fibrous composite materials, are found in many structures such as ships, airplanes, swimming pools, etc.These fibers are commonly made from materials such as boron, glass, and carbon. There can be substantial benefits in using fiber composites rather than the traditional materials such as metal and wood, including lighter weight and added stiffness. For example, seventy-five to eighty percent of a projected Grumman aircraft will be constructed from carbon fiber composites. This will reduce the weight of the structure by an estimated 26 percent (Gordon, 1988). However, the intrinsic tensile strength per unit volume of most fibers is less than that of most metals. Their strength is a function of their microstructure, the fiber length, and the number and types of flaws in the fiber. (JS)

  11. Fracture toughness of brittle materials determined with chevron notch specimens

    NASA Technical Reports Server (NTRS)

    Shannon, J. L., Jr.; Bubsey, R. T.; Pierce, W. S.; Munz, D.

    1981-01-01

    Short bar, short rod, and four-point-bend chevron-notch specimens were used to determine the plane strain fracture toughness of hot-pressed silicon nitride and sintered aluminum oxide brittle ceramics. The unique advantages of this specimen type are: (1) the production of a sharp natural crack during the early stage of test loading, so that no precracking is required, and (2) the load passes through a maximum at a constant, material-independent crack length-to-width ratio for a specific geometry, so that no post-test crack measurement is required. The plane strain fracture toughness is proportional to the maximum test load and functions of the specimen geometry and elastic compliance. Although results obtained for silicon nitride are in good mutual agreement and relatively free of geometry and size effects, aluminum oxide results were affected in both these respects by the rising crack growth resistance curve of the material.

  12. Rate- and strain-dependent brittle deformation of rocks

    NASA Astrophysics Data System (ADS)

    Brantut, N.; Heap, M. J.; Baud, P.; Meredith, P. G.

    2014-03-01

    We develop a unifying framework to quantify rate-dependent deformation in the brittle field and establish links between the microscale time-dependent crack growth processes and the macroscopically observed rate dependency. Triaxial deformation experiments have been performed under both constant strain rate and constant stress (creep) conditions on three types of sandstone. The measured relative evolution of P wave speeds as a function of inelastic axial strain is similar for both types of test, despite differences in strain rate of up to 3 orders of magnitude. This similarity indicates that there exists a direct, time-independent link between the microstructural state (as reflected by the variations in P wave speed) and the inelastic axial strain. Comparison of applied stresses between constant strain rate and creep experiments as a function of inelastic strain indicates that creep deformation requires less mechanical work to bring the sample to failure. This energy deficit corresponds to a stress deficit, which can be related to a deficit in energy release rate of the microcracks. We establish empirically that the creep strain rate is given by ɛ˙∝exp(ΔQ/σ∗), where ΔQ is the stress deficit (negative) and σ∗ is an activation stress. This empirical exponential relation between creep strain rate and stress deficit is analogous to rate-and-state friction law. We develop a micromechanical approach based on fracture mechanics to determine the evolution of an effective stress intensity factor at crack tips during creep deformation and estimate the activation volume of the stress corrosion reaction responsible for brittle creep.

  13. Quantitative comparisons of numerical models of brittle wedge dynamics

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne

    2010-05-01

    Numerical and laboratory models are often used to investigate the evolution of deformation processes at various scales in crust and lithosphere. In both approaches, the freedom in choice of simulation method, materials and their properties, and deformation laws could affect model outcomes. To assess the role of modelling method and to quantify the variability among models, we have performed a comparison of laboratory and numerical experiments. Here, we present results of 11 numerical codes, which use finite element, finite difference and distinct element techniques. We present three experiments that describe shortening of a sand-like, brittle wedge. The material properties of the numerical ‘sand', the model set-up and the boundary conditions are strictly prescribed and follow the analogue setup as closely as possible. Our first experiment translates a non-accreting wedge with a stable surface slope of 20 degrees. In agreement with critical wedge theory, all models maintain the same surface slope and do not deform. This experiment serves as a reference that allows for testing against analytical solutions for taper angle, root-mean-square velocity and gravitational rate of work. The next two experiments investigate an unstable wedge in a sandbox-like setup, which deforms by inward translation of a mobile wall. The models accommodate shortening by formation of forward and backward shear zones. We compare surface slope, rate of dissipation of energy, root-mean-square velocity, and the location, dip angle and spacing of shear zones. We show that we successfully simulate sandbox-style brittle behaviour using different numerical modelling techniques and that we obtain the same styles of deformation behaviour in numerical and laboratory experiments at similar levels of variability. The GeoMod2008 Numerical Team: Markus Albertz, Michelle Cooke, Tony Crook, David Egholm, Susan Ellis, Taras Gerya, Luke Hodkinson, Boris Kaus, Walter Landry, Bertrand Maillot, Yury Mishin

  14. Using Brittle Fragmentation Theory to represent Aerosol Mineral Composition

    NASA Astrophysics Data System (ADS)

    Pérez García-Pando, C.; Miller, R. L.; Perlwitz, J. P.

    2014-12-01

    Improved estimates of dust aerosol effects upon climate require the characterization of dust mineral and chemical composition. Regional variations in soil mineral composition lead to variations in dust aerosol composition. Yet, deriving aerosol mineral content also requires knowledge of the parent soil size distribution along with the fragmentation of soil particles and aggregates during the emission process. These processes modify the size distribution and mineral abundance of the emitted aerosols compared to the parent soil. An additional challenge for modeling is that global atlases of soil texture and composition are based on wet sieving, a technique that breaks the aggregates, particularly phyllosilicates, that are encountered in natural soils, drastically altering the original size distribution of the soil that is subject to wind erosion. We propose both a semi-empirical and theoretical method to constrain the size-resolved mineral composition of emitted dust aerosols based on global atlases of soil texture and composition. Our semi-empirical method re-aggregates clay phyllosilicate minerals into larger soil particle sizes and constrains the size distribution of each emitted mineral based on observed mineral distributions at the source. Our theoretical method extends Kok's brittle fragmentation theory to individual minerals. To this end we reconstruct the undisturbed size distribution for each mineral as a function of soil texture and soil type and calculate the emitted size distribution applying brittle fragmentation and assuming homogeneous fragmentation properties among the mineral aggregates. These approaches were tested within the NASA GISS Earth System ModelE. We discuss the improvements achieved and suggest future developments.

  15. Registration of 'Cybonnet' Rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Cybonnet’ rice is a high-yielding, short-season, long-grain cultivar. It originated form the cross ‘Cypress’//’Newbonnet’/’Katy’ made at the University of Arkansas Rice Research and Extension Center in Stuttgart, AR. Cybonnet is similar in maturity to ‘Kaybonnet’ and ‘Wells’, is a simidwarf culti...

  16. Making rice even healthier!

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice is a naturally healthy food, but what if it could be made even healthier? Would Americans eat more rice if it could be advertised to be a 'New and Improved' source of calcium to promote bone growth, or iron to prevent anemia? Grocery stores are full of foods that are vitamin enhanced to attract...

  17. Registration of 'Medark' Rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Medark’ rice is a high-yielding, early maturing, semidwarf, medium-grain cultivar. It originated from the cross ‘Bengal’/’Short Rico’ and is similar in maturity to Bengal. It has improved disease resistance to rice blase, brown spot and straighthead. Medark has a lodging resistance slightly less...

  18. Rice (Oryza) hemoglobins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a sin...

  19. Rice blast disease in Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice is an important agricultural commodity in Texas, with an economic impact of more than $1 billion annually. Rice blast, caused by Magnaporthe oryzae, is one of the most devastating diseases in rice. Texas Rice Belt provides a warm, humid climate favorable for the infection and reproduction of M....

  20. Rice and red rice interference. II. Rice response to population densities of three red rice (Oryza sativa) ecotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice, which grows taller and produces more tillers than domestic rice and shatters most of its seeds early, is a major weed in many rice-growing areas of the world. Field experiments were conducted at Stuttgart, AR in 1997 and 1998 to evaluate the growth response of the Kaybonnet (KBNT) rice cul...

  1. A combined analytical-experimental tensile test technique for brittle materials

    NASA Technical Reports Server (NTRS)

    Chu, M. L.; Scavuzzo, R. J.; Srivatsan, T. S.

    1992-01-01

    A semiconventional tensile test technique is developed for impact ices and other brittle materials. Accurate results have been obtained on ultimate strength and modulus of elasticity in a refrigerated ice test. It is noted that the technique can be used to determine the physical properties of impact ices accreted inside icing wind tunnels or other brittle materials.

  2. Spreading culm locus discovered while dissecting a sheath blight resistance QTL within a set of TeQing-into-Lemont introgression lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new gene-mapping population comprised of 123 TeQing-into-Lemont backcross introgression lines (TILs) was developed for the purpose of providing a uniquely efficient avenue for verifying, molecularly tagging, and incorporating desired TeQing QTL into improved U.S. rice varieties. The TILs were bei...

  3. Modeling Shear Instabilities With Block Sliders: Brittle and Ductile

    NASA Astrophysics Data System (ADS)

    Riedel, M. R.

    2003-12-01

    Block slider-type models have been succesfully used for almost 35 years to describe the spatio-temporal development of shear instabilities in the brittle crust (Burridge & Knopoff, 1967; Olami et al., 1992). More recently, increasing attention is paid on the extension of the classical Burridge-Knopoff model (based on a pure Mohr-Coulomb rheology) with a viscous component, either to include depth-dependent properties into the model or aiming at a more accurate description of fore- and aftershock sequences of a main earthquake event (e.g. Hainzl et al., 1999). On the other hand, viscous feedback mechanisms of various types have become an increasingly attractive mechanism for the generation of intermediate-depth and deep-focus earthquakes in the ductile mantle lithosphere (e.g. Wiens & Snider, 2001). Heat generated during viscous deformation provides a positive feedback to creep and eventually faulting under high pressure (Karato et al., 2001, Bercovici & Karato, 2003). The present paper discusses the specific properties of block slider-type models that are extended with a viscous component and compare their behaviour with the pure brittle ("classical") case. Block slider-type models for ductile instabilities are numerically much less demanding than solutions based on the corresponding, thermal-mechanically coupled, continuum equations. They allow for the inclusion of possible non-equilibrium effects associated with mineral phase transformations in a subducting slab (kinetic overshoot, grainsize reduction, latent heat release) in a straightforward manner. They may therefore serve as an effective tool to study the coupling of viscous heating, temperature-dependent viscosity and brittle stress transfer that are thought to cause the specific spatial-temporal clustering of intermediate-depth and deep-focus eartquakes. References D. Bercovici and S. Karato "Theoretical Analysis of Shear Localization in the Lithosphere", in: Reviews in Mineralogy and Geochemistry 51, eds. S

  4. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice...) (percent) Chalky kernels 1,2 In long grain rice (percent) In medium or short grain rice (percent)...

  5. Brittle-tough transitions during crack growth in toughened adhesives

    NASA Astrophysics Data System (ADS)

    Thoules, Michael

    2008-03-01

    The use of structural adhesives in automotive applications relies on an effective understanding of their performance under crash conditions. In particular, there is considerable potential for mechanics-based modeling of the interaction between an adhesive layer and the adherends, to replace current empirical approaches to design. Since energy dissipation during a crash, mediated by plastic deformation of the structure, is a primary consideration for automotive applications, traditional approaches of fracture mechanics are not appropriate. Cohesive-zone models that use two fracture parameters - cohesive strength and toughness - have been shown to provide a method for quantitative mechanics analysis. Combined numerical and experimental techniques have been developed to deduce the toughness and strength parameters of adhesive layers, allowing qualitative modeling of the performance of adhesive joints. These techniques have been used to study the failure of joints, formed from a toughened adhesive and sheet metal, over a wide range of loading rates. Two fracture modes are observed: quasi-static crack growth and dynamic crack growth. The quasi-static crack growth is associated with a toughened mode of failure; the dynamic crack growth is associated with a more brittle mode of failure. The results of the experiments and analyses indicate that the fracture parameters for quasi-static crack growth in this toughened system are essentially rate independent, and that quasi-static crack growth can occur even at the highest crack velocities. Effects of rate appear to be limited to the ease with which a transition to dynamic fracture could be triggered. This transition appears to be stochastic in nature, and it does not appear to be associated with the attainment of any critical value for crack velocity or loading rate. Fracture-mechanics models exist in the literature for brittle-ductile transitions in rate-dependent polymers, which rely on rate dependent values of toughness

  6. Semi-brittle flow of granitoid fault rocks in experiments

    NASA Astrophysics Data System (ADS)

    Pec, Matej; Stünitz, Holger; Heilbronner, Renée.; Drury, Martyn

    2016-03-01

    Field studies and seismic data show that semi-brittle flow of fault rocks probably is the dominant deformation mechanism at the base of the seismogenic zone at the so-called frictional-viscous transition. To understand the physical and chemical processes accommodating semi-brittle flow, we have performed an experimental study on synthetic granitoid fault rocks exploring a broad parameter space (temperature, T = 300, 400, 500, and 600°C, confining pressure, Pc ≈ 300, 500, 1000, and 1500 MPa, shear strain rate, γṡ ≈ 10-3, 10-4, 10-5, and 10-6 s-1, to finite shear strains, γ = 0-5). The experiments have been carried out using a granular material with grain size smaller than 200 µm with a little H2O added (0.2 wt %). Only two experiments (performed at the fastest strain rates and lowest temperatures) have failed abruptly right after reaching peak strength (τ ~ 1400 MPa). All other samples reach high shear stresses (τ ~ 570-1600 MPa) then weaken slightly (by Δτ ~ 10-190 MPa) and continue to deform at a more or less steady state stress level. Clear temperature dependence and a weak strain rate dependence of the peak as well as steady state stress levels are observed. In order to express this relationship, the strain rate-stress sensitivity has been fit with a stress exponent, assuming γ˙ ∝ τn and yields high stress exponents (n ≈ 10-140), which decrease with increasing temperature. The microstructures show widespread comminution, strain partitioning, and localization into slip zones. The slip zones contain at first nanocrystalline and partly amorphous material. Later, during continued deformation, fully amorphous material develops in some of the slip zones. Despite the mechanical steady state conditions, the fabrics in the slip zones and outside continue to evolve and do not reach a steady state microstructure below γ = 5. Within the slip zones, the fault rock material progressively transforms from a crystalline solid to an amorphous material. We

  7. SAFOD Brittle Microstructure and Mechanics Knowledge Base (BM2KB)

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan A.; Broda Cindi, M.; Hadizadeh, Jafar; Kumar, Anuj

    2013-07-01

    Scientific drilling near Parkfield, California has established the San Andreas Fault Observatory at Depth (SAFOD), which provides the solid earth community with short range geophysical and fault zone material data. The BM2KB ontology was developed in order to formalize the knowledge about brittle microstructures in the fault rocks sampled from the SAFOD cores. A knowledge base, instantiated from this domain ontology, stores and presents the observed microstructural and analytical data with respect to implications for brittle deformation and mechanics of faulting. These data can be searched on the knowledge base‧s Web interface by selecting a set of terms (classes, properties) from different drop-down lists that are dynamically populated from the ontology. In addition to this general search, a query can also be conducted to view data contributed by a specific investigator. A search by sample is done using the EarthScope SAFOD Core Viewer that allows a user to locate samples on high resolution images of core sections belonging to different runs and holes. The class hierarchy of the BM2KB ontology was initially designed using the Unified Modeling Language (UML), which was used as a visual guide to develop the ontology in OWL applying the Protégé ontology editor. Various Semantic Web technologies such as the RDF, RDFS, and OWL ontology languages, SPARQL query language, and Pellet reasoning engine, were used to develop the ontology. An interactive Web application interface was developed through Jena, a java based framework, with AJAX technology, jsp pages, and java servlets, and deployed via an Apache tomcat server. The interface allows the registered user to submit data related to their research on a sample of the SAFOD core. The submitted data, after initial review by the knowledge base administrator, are added to the extensible knowledge base and become available in subsequent queries to all types of users. The interface facilitates inference capabilities in the

  8. Coupling between anisotropic damage and permeability variation in brittle rocks

    NASA Astrophysics Data System (ADS)

    Shao, J. F.; Zhou, H.; Chau, K. T.

    2005-10-01

    In this paper, a coupled constitutive model is proposed for anisotropic damage and permeability variation in brittle rocks under deviatoric compressive stresses. The formulation of the model is based on experimental evidences and main physical mechanisms involved in the scale of microcracks are taken into account. The proposed model is expressed in the macroscopic framework and can be easily implemented for engineering application. The macroscopic free enthalpy of cracked solid is first determined by approximating crack distribution by a second-order damage tensor. The effective elastic properties of damaged material are then derived from the free enthalpy function. The damage evolution is related to the crack growth in multiple orientations. A pragmatic approach inspired from fracture mechanics is used for the formulation of the crack propagation criterion. Compressive stress induced crack opening is taken into account and leads to macroscopic volumetric dilatancy and permeability variation. The overall permeability tensor of cracked material is determined using a micro-macro averaging procedure. Darcy's law is used for fluid flow at the macroscopic scale whereas laminar flow is assumed at the microcrack scale. Hydraulic connectivity of cracks increases with crack growth. The proposed model is applied to the Lac du Bonnet granite. Generally, good agreement is observed between numerical simulations and experimental data. Copyright

  9. Simulating Brittle Fracture of Rocks using Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Das, Rajarshi; Cleary, Paul W.

    2009-05-01

    Numerical modelling can assist in understanding and predicting complex fracture processes. Smoothed Particle Hydrodynamics (SPH) is a particle-based Lagrangian method that is particularly suited to the analysis of fracture due to its capacity to model large deformation and to track free surfaces generated. A damage model is used to predict the fracture of elastic solids. The damage parameter represents the volume-averaged micro-fracture of the volume of material represented by an SPH particle. Evolution of damage is predicted using the strain history of each particle. Damage inhibits the transmission of tensile stress between particles, and once it reaches unity, the interface becomes unable to transmit tensile stress, resulting in a macro-crack. Connected macro-cracks lead to complete fragmentation. In this paper, we explore the ability of an SPH-based damage model to predict brittle fracture of rocks during impact. Rock shape is found to have considerable influence on the fracture process, the fragment sizes, the energy dissipation during impact, and the post-fracture motion of the fragments.

  10. Brittle thermoelectric semiconductors extrusion under high hydrostatic pressure

    SciTech Connect

    Sidorenko, N.A.

    1994-08-10

    Origins of strength increase of brittle materials like thermoelectric (TE) semiconductors during plastic deformation under high external pressure are analyzed. TE material stressed state in the process of extrusion is reviewed. Plastic deformation of monocrystalline TE material billet produced by extrusion under sufficiently high external hydrostatic pressure is more uniform than under ordinary ambient pressure and can lead to crack free extruded TE material structure, crystallographic symmetry of which coincides with original billet one. Experimental device realized the scheme of extrusion under high hydrostatic pressure is described. Here extrusion are carrying out in compressed liquid medium. The developed device ensures the value of hydrostatic pressure up to 2 GPa and extrusion temperature interval 300--600 K. Properties of extruded Bi-Sb and Bi-Sb-Te single crystals are also reviewed. Possible application of presented method of extrusion under high hydrostatic pressure to form TE branches with highly accurate cross section for miniature TE coolers or generators is discussed. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  11. Thermal stress fracture in elastic-brittle materials

    NASA Technical Reports Server (NTRS)

    Emery, A. F.

    1980-01-01

    The reported investigation shows that the assessment of the possibility of the thermal fracture of brittle materials depends upon an accurate evaluation of the thermal stresses and the determination of the resulting stress intensity factors. The stress intensity factors can be calculated in a variety of ways ranging from the very precise to approximate, but only for a limited number of geometries. The main difficulty is related to the determination of the thermal stress field because of its unusual character and its dependence upon boundary conditions at points far from the region of thermal activity. Examination of a number of examples suggests that the best visualization of the thermal stresses and any associated fracture can be made by considering the problem to be the combination of thermal and isothermal problems or by considering that the prime effect of the temperature is in the generation of thermal strains and that the thermal stresses are simply the result of the region trying to accommodate these strains.

  12. Experimental formation of brittle structural assemblages in oblique divergence

    NASA Astrophysics Data System (ADS)

    Smith, J. V.; Durney, D. W.

    1992-12-01

    A series of experiments is reported in which brittle minor structures are initiated in narrow deformation zones in clay under conditions of kinematically controlled oblique divergent displacement. Nineteen settings of boundary displacement angle were used from pure wrench to pure divergence under conditions favouring either faults (dry experiments) or extension fractures (wet experiments). Pure wrench produced the well known assemblage of Riedel strike-slip faults whereas experiments in pure divergence produced conjugate arrays of normal faults and extension fractures with a dihedral angle of 30° bisected by the direction of the zone, as has been described in rift zones. Experiments with boundary displacements at intermediate settings show a continuum of structural orientations and dihedral angles between these two extremes. A boundary between assemblages dominated by strike-slip faults and extensional faults was found at a displacement angle of 45° from the deformation zone. These results are interpreted kinematically in terms of: (1) principal axes of infinitesimal incremental strain; (2) material dilatancy control on shear structure dihedral angles; and (3) whether the vertical strain in divergent wrench settings is a thickening (strike-slip assemblage) or a thinning (normal fault assemblage).

  13. A Maxwell elasto-brittle rheology for sea ice modelling

    NASA Astrophysics Data System (ADS)

    Dansereau, Véronique; Weiss, Jérôme; Saramito, Pierre; Lattes, Philippe

    2016-07-01

    A new rheological model is developed that builds on an elasto-brittle (EB) framework used for sea ice and rock mechanics, with the intent of representing both the small elastic deformations associated with fracturing processes and the larger deformations occurring along the faults/leads once the material is highly damaged and fragmented. A viscous-like relaxation term is added to the linear-elastic constitutive law together with an effective viscosity that evolves according to the local level of damage of the material, like its elastic modulus. The coupling between the level of damage and both mechanical parameters is such that within an undamaged ice cover the viscosity is infinitely large and deformations are strictly elastic, while along highly damaged zones the elastic modulus vanishes and most of the stress is dissipated through permanent deformations. A healing mechanism is also introduced, counterbalancing the effects of damaging over large timescales. In this new model, named Maxwell-EB after the Maxwell rheology, the irreversible and reversible deformations are solved for simultaneously; hence drift velocities are defined naturally. First idealized simulations without advection show that the model reproduces the main characteristics of sea ice mechanics and deformation: strain localization, anisotropy, intermittency and associated scaling laws.

  14. Brittle cornea syndrome: recognition, molecular diagnosis and management

    PubMed Central

    2013-01-01

    Brittle cornea syndrome (BCS) is an autosomal recessive disorder characterised by extreme corneal thinning and fragility. Corneal rupture can therefore occur either spontaneously or following minimal trauma in affected patients. Two genes, ZNF469 and PRDM5, have now been identified, in which causative pathogenic mutations collectively account for the condition in nearly all patients with BCS ascertained to date. Therefore, effective molecular diagnosis is now available for affected patients, and those at risk of being heterozygous carriers for BCS. We have previously identified mutations in ZNF469 in 14 families (in addition to 6 reported by others in the literature), and in PRDM5 in 8 families (with 1 further family now published by others). Clinical features include extreme corneal thinning with rupture, high myopia, blue sclerae, deafness of mixed aetiology with hypercompliant tympanic membranes, and variable skeletal manifestations. Corneal rupture may be the presenting feature of BCS, and it is possible that this may be incorrectly attributed to non-accidental injury. Mainstays of management include the prevention of ocular rupture by provision of protective polycarbonate spectacles, careful monitoring of visual and auditory function, and assessment for skeletal complications such as developmental dysplasia of the hip. Effective management depends upon appropriate identification of affected individuals, which may be challenging given the phenotypic overlap of BCS with other connective tissue disorders. PMID:23642083

  15. Brittle fracture in a periodic structure with internal potential energy

    PubMed Central

    Mishuris, Gennady S.; Slepyan, Leonid I.

    2014-01-01

    We consider a brittle fracture taking account of self-equilibrated distributed stresses existing at microlevel in the absence of external forces. To determine how the latter can affect the crack equilibrium and growth, a model of a structured linearly elastic body is introduced, consisting of two equal symmetrically arranged layers (or half-planes) connected by an interface as a prospective crack path. The interface comprises a discrete set of elastic bonds. In the initial state, the bonds are assumed to be stressed in such a way that tensile and compressive forces of the same value alternate. In the general considerations, the layers are assumed to be of an unspecified periodic structure, where such self-equilibrated stresses may also exist. A two-line chain and a lattice are examined as the specified structure. We consider the states of the body-with-a-crack under such microlevel stresses (MS) and under a combined action of the remote forces and MS. Analytical solutions to the considered problems are presented based on the introduction of a selective discrete transform. We demonstrate that MS can increase as well as decrease the crack resistance depending on the internal energy level. We also discuss different scenarios of the crack growth. PMID:24808756

  16. Fracture toughness of brittle materials determined with chevron notch specimens

    NASA Technical Reports Server (NTRS)

    Shannon, J. L., Jr.; Bursey, R. T.; Munz, D.; Pierce, W. S.

    1980-01-01

    The use of chevron-notch specimens for determining the plane strain fracture toughness (K sub Ic) of brittle materials is discussed. Three chevron-notch specimens were investigated: short bar, short rod, and four-point-bend. The dimensionless stress intensity coefficient used in computing K sub Ic is derived for the short bar specimen from the superposition of ligament-dependent and ligament-independent solutions for the straight through crack, and also from experimental compliance calibrations. Coefficients for the four-point-bend specimen were developed by the same superposition procedure, and with additional refinement using the slice model of Bluhm. Short rod specimen stress intensity coefficients were determined only by experimental compliance calibration. Performance of the three chevron-notch specimens and their stress intensity factor relations were evaluated by tests on hot-pressed silicon nitride and sintered aluminum oxide. Results obtained with the short bar and the four-point-bend specimens on silicon nitride are in good agreement and relatively free of specimen geometry and size effects within the range investigated. Results on aluminum oxide were affected by specimen size and chevron-notch geometry, believed due to a rising crack growth resistance curve for the material. Only the results for the short bar specimen are presented in detail.

  17. Delayed brittle-like fragmentation of vesicular magma analogue by decompression

    NASA Astrophysics Data System (ADS)

    Kameda, Masaharu; Ichihara, Mie; Shimanuki, Susumu; Okabe, Wataru; Shida, Tsukasa

    2013-05-01

    A rapid decompression experiment using syrup containing gas bubbles was conducted in order to clarify the fragmentation of vesicular magma, which is a key phenomenon in volcanic eruptions. We focus on brittle-like fragmentation, which occurs with a longer time scale than brittle fragmentation. The response of the bubbly syrup to the decompression for various viscosities and porosities was tested under various initial pressures, pressure differences, and decompression times. The response observed by high-speed photography was classified using the Deborah number DeDT, which is defined as the ratio of the viscoelastic relaxation time of the syrup to the decompression time, the maximum differential stress at the bubble surface Δσmax, and a measure of instantaneous brittleness at the bubble surface βc at the time when the differential stress at the surface reaches the critical fracture stress Δσc. In a number of the experimental runs in which both DeDT and βc indicated ductile response of the material, brittle-like fragmentation occurred when Δσmax substantially exceeded Δσc. For all of the runs in which brittle-like fragmentation was observed, the onset of fragmentation was delayed substantially from the relaxation time, whereas the onset occurred within the characteristic time for viscous expansion of the bubbles. In many cases of brittle-like fragmentation, fragmentation continued after the onset triggered by a single decompression event. Detailed analysis indicates that brittle-like fragmentation started with a sudden release of the gas in the bubbly syrup through a surface crack, which might lead to an increase in local brittleness. Magma fragmentation may be viewed as sequential brittle-like fragmentation. This view may provide an explanation for the observed time delay for the onset of an explosive eruption after a triggering decompression event.

  18. The rice RCN11 gene encodes β1,2-xylosyltransferase and is required for plant responses to abiotic stresses and phytohormones.

    PubMed

    Takano, Sho; Matsuda, Shuichi; Funabiki, Atsushi; Furukawa, Jun-ichi; Yamauchi, Takaki; Tokuji, Yoshihiko; Nakazono, Mikio; Shinohara, Yasuro; Takamure, Itsuro; Kato, Kiyoaki

    2015-07-01

    Seed germination rates and plant development and growth under abiotic stress are important aspects of crop productivity. Here, our characterization of the rice (Oryza sativa L.) mutant reduced culm number11 (rcn11) showed that RCN11 controls growth of plants exposed to abnormal temperature, salinity and drought conditions. RCN11 also mediates root aerenchyma formation under oxygen-deficient conditions and ABA sensitivity during seed germination. Molecular studies showed that the rcn11 mutation resulted from a 966-bp deletion that caused loss of function of β1,2-xylosyltransferase (OsXylT). This enzyme is located in the Golgi apparatus where it catalyzes the transfer of xylose from UDP-xylose to the core β-linked mannose of N-glycans. RCN11/OsXylT promoter activity was observed in the basal part of the shoot containing the shoot and axillary meristems and in the base of crown roots. The level of RCN11/OsXylT expression was regulated by multiple phytohormones and various abiotic stresses suggesting that plant specific N-glycosylation is regulated by multiple signals in rice plants. The present study is the first to demonstrate that rice β1,2-linked xylose residues on N-glycans are critical for seed germination and plant development and growth under conditions of abiotic stress. PMID:26025522

  19. Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport.

    PubMed

    Xia, Xiudong; Fan, Xiaorong; Wei, Jia; Feng, Huimin; Qu, Hongye; Xie, Dan; Miller, Anthony J; Xu, Guohua

    2015-01-01

    Plant proteins belonging to the NPF (formerly NRT1/PTR) family are well represented in every genome and function in transporting a wide variety of substrates. In this study, we showed that rice OsNPF2.4 is located in the plasma membrane and is expressed mainly in the epidermis, xylem parenchyma, and phloem companion cells. Functional analysis in oocytes showed that OsNPF2.4 is a pH-dependent, low-affinity NO₃⁻ transporter. Short-term (¹⁵NO₃⁻) influx rate, long-term NO₃⁻ acquisition by root, and upward transfer from root to shoot were decreased by disruption of OsNPF2.4 and increased by OsNPF2.4 overexpression under high NO₃⁻ supply. Moreover, the redistribution of NO₃⁻ in the mutants in comparison with the wild type from the oldest leaf to other organs, particularly to N-starved roots, was dramatically changed. Knockout of OsNPF2.4 decreased rice growth and potassium (K) concentration in xylem sap, root, culm, and sheath, but increased the shoot:root ratio of tissue K under higher NO₃⁻. We conclude that OsNPF2.4 functions in acquisition and long-distance transport of NO₃⁻ , and that altering its expression has an indirect effect on K recycling between the root and shoot. PMID:25332358

  20. Resequencing rice genomes: an emerging new era of rice genomics.

    PubMed

    Huang, Xuehui; Lu, Tingting; Han, Bin

    2013-04-01

    Rice is a model system for crop genomics studies. Much of the early work on rice genomics focused on analyzing genome-wide genetic variation to further understand rice gene functions in agronomic traits and to generate data and resources for rice research. The advent of next-generation high-throughput DNA sequencing technologies and the completion of high-quality reference genome sequences have enabled the development of sequencing-based genotyping and genome-wide association studies (GWAS) that have significantly advanced rice genetics research. This has led to the emergence of a new era of rice genomics aimed at bridging the knowledge gap between genotype and phenotype in rice. These technologies have also led to pyramid breeding through genomics-assisted selection, which will be useful in breeding elite varieties suitable for sustainable agriculture. Here, we review the recent advances in rice genomics and discuss the future of this line of research. PMID:23295340

  1. Mutation of Cellulose Synthase Gene Improves the Nutritive Value of Rice Straw

    PubMed Central

    Su, Yanjing; Zhao, Guoqi; Wei, Zhenwu; Yan, Changjie; Liu, Sujiao

    2012-01-01

    Rice straw is an important roughage resource for ruminants in many rice-producing countries. In this study, a rice brittle mutant (BM, mutation in OsCesA4, encoding cellulose synthase) and its wild type (WT) were employed to investigate the effects of a cellulose synthase gene mutation on rice straw morphological fractions, chemical composition, stem histological structure and in situ digestibility. The morphological fractions investigation showed that BM had a higher leaf sheath proportion (43.70% vs 38.21%, p<0.01) and a lower leaf blade proportion (25.21% vs 32.14%, p<0.01) than WT. Chemical composition analysis showed that BM rice straw was significantly (p<0.01) higher in CP (crude protein), hemicellulose and acid insoluble ash (AIA) contents, but lower in dry matter (DM), acid detergent fiber (ADFom) and cellulose contents when compared to WT. No significant difference (p>0.05) was detected in neutral detergent fiber (NDFom) and ADL contents for both strains. Histological structure observation indicated that BM stems had fewer sclerenchyma cells and a thinner sclerenchyma cell wall than WT. The results of in situ digestion showed that BM had higher DM, NDFom, cellulose and hemicellulose disappearance at 24 or 48 h of incubation (p<0.05). The effective digestibility of BM rice straw DM and NDFom was greater than that of WT (31.4% vs 26.7% for DM, 29.1% vs 24.3% for NDFom, p<0.05), but the rate of digestion of the slowly digested fraction of BM rice straw DM and NDF was decreased. These results indicated that the mutation in the cellulose synthase gene could improve the nutritive value of rice straw for ruminants. PMID:25049629

  2. An experimental investigation of wave propagation in fractured brittle material

    NASA Astrophysics Data System (ADS)

    Patel, Bibhuti Bhusan

    An experimental method for visualizing and analyzing the propagation of plate stress waves in a brittle plate is developed. A procedure has been developed to cast Break-Away glass (a low molecular weight polystyrene material) plate specimens in an open mold. The specimens are loaded with short duration (200 [...]s) stress pulses on one edge by an electromagnetic stress wave generator. The propagating stress waves generate out-of-plane deformations on the specimen surface, which are observed using Twyman-Green interferometry. The fringe patterns created by the propagating stress waves are captured using a high speed camera - pulsing laser combination at 4[...]s intervals.A generalized "Fringe Analysis Procedure" is developed to subtract the reference interferogram from the subsequent interferograms. The "Fringe Analysis Procedure" employs a fringe edge detection algorithm to obtain the sharp edge lines of the fringes in an interferogram. A digitizer is used to extract points on these edge lines and assign them fringe numbers. The "griddata" option in the commercial software "Matlab" is utilized to interpolate the deformation field on to the nodes of a uniform grid. The field values at these nodes in the reference image are then subtracted from corresponding values in the subsequent images to obtain the actual deformation patterns generated by the propagating stress waves. The "Fringe Analysis Procedure" has eliminated the subjective element introduced by human judgment in manual fringe tracing procedures.The developed experimental method and the image analysis technique is used to investigate the propagation of stress waves in Break-Away glass plate specimens.

  3. Micromechanics of brittle faulting and cataclastic flow in Berea sandstone

    NASA Astrophysics Data System (ADS)

    Menéndez, Beatriz; Zhu, Wenlu; Wong, Teng-Fong

    1996-01-01

    The micromechanics of failure in Berea sandstone were investigated by characterizing quantitatively the evolution of damage under the optical and scanning electron microscopes. Three series of triaxial compression experiments were conducted at the fixed pore pressure of 10 MPa and confining pressures of 20, 50 and 260 MPa, respectively, corresponding to three different failure modes: shear localization with positive dilatancy, shear localization with relatively little dilatancy and distributed cataclastic flow. To distinguish the effect of non-hydrostatic stress from that of hydrostatic pressure, a fourth suite of hydrostatically loaded samples was also studied. Using stereological procedures, we characterized quantitatively the following damage parameters: microcrack density and its anisotropy, pore-size distribution, comminuted volume fraction and mineral damage index. In the brittle regime, shear localization did not develop until the post-failure stage, after the peak stress had been attained. The microcrack density data show that very little intragranular cracking occurred before the peak stress was attained. We infer that dilatancy and acoustic emission activity in the prefailure stage are primarily due to intergranular cracking, probably related to the shear rupture of lithified and cemented grain contacts. Near the peak stress, intragranular cracking initiates from grain contacts and this type of Hertzian fracture first develops in isolated clusters, and their subsequent coalescence results in shear localization in the post-failure stage. The very high density of intragranular microcracking and pronounced stress-induced anisotropy in the post-failure samples are the consequence of shear localization and compactive processes operative inside the shear band. In contrast, Hertzian fracture was a primary cause for shear-enhanced compaction and strain hardening throughout the cataclastic flow regime. Grain crushing and pore collapse seem to be most intense in

  4. Preventing and Treating Brittle Bones and Osteoporosis | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Javascript on. Feature: Osteoporosis Preventing and Treating Brittle Bones and Osteoporosis Past Issues / Winter 2011 Table of ... at high risk due to low bone mass. Bone and Bone Loss Bone is living, growing tissue. ...

  5. The ceramic brittleness of the pressed and sintered yttria zirconia-mullite-magnesia system

    NASA Astrophysics Data System (ADS)

    Hakim, Budi L.; Soepriyanto, Syoni; Korda, Akhmad A.; Sunendar, Bambang

    2015-09-01

    The brittleness behaviour of the pressed and sintered Yttria Zirconia-Mullite-Magnesia system has been studied. Specifically, the brittleness index represents a correlation of material properties for predicting mechanical properties such as for the characterization of machinability, wear or erosion resistance. The brittleness index as well as fracture toughness were obtained from indentation testing of the Vickers hardness. In this study, the fracture toughness considered the crack extension mechanism to accommodate Palmqvist crack criteria for the measured data. The additional of Mullite at amount of 15% into 3Y-TZP system significantly reduces the brittleness index while compared to pure Mullite system up to 69%. In the other hand, the additional Mullite 15% by weight into 3Y-TZP system proved an increase of fracture toughness value up to 138% than pure 3Y-TZP system

  6. Method for preparing surfaces of metal composites having a brittle phase for plating

    DOEpatents

    Coates, Cameron W.; Wilson, Thomas J.

    1984-01-01

    The present invention is directed to a method for preparing surfaces of two-phase metal composites having relatively brittle and malleable components for plating with corrosion-resistant material. In practice of the present invention, the surfaces of the composites are etched to remove a major portion or fraction of the brittle component. The etched surface is then peened with particulates for breaking the brittle component from the surfaces and for spreading or smearing the malleable component over the surfaces. The peened surface is then chemically cleaned of residual traces of the brittle component so as to provide a surface of essentially the malleable component to which the corrosion-resistant material may be plated thereon in an adherent manner.

  7. Dissecting the distribution of brittle stars along a sewage pollution gradient indicated by organic markers.

    PubMed

    Barboza, Carlos Alberto de Moura; Martins, César C; Lana, Paulo da Cunha

    2015-11-15

    We have assessed variation in brittle star distribution patterns along a contamination gradient identified by fecal steroids and aliphatic hydrocarbons in Paranaguá Bay, southern Brazil. A hierarchical design using multiple spatial scales (centimeters-kilometers) was applied. Generalized linear mixed models (GLMMs) were used to investigate the spatial and temporal variability of brittle stars. Main principal components from the contamination and environmental matrices were used to investigate the best explanatory dataset. The abundance of brittle stars was significantly lower in sites with high concentrations of fecal steroids and aliphatic hydrocarbons. The best model fitting always included components from the contamination gradients, which precludes a purely environmental driving of brittle star abundance. Variability in spatial scales lower than kilometers was probably driven by sediment characteristics. We highlighted the importance of a robust multi-scale sampling design for a better biological indication of coastal contamination. PMID:26323862

  8. Hydraulic fracture and toughening of a brittle layer bonded to a hydrogel

    NASA Astrophysics Data System (ADS)

    Lucantonio, Alessandro; Noselli, Giovanni; Trepat, Xavier; Desimone, Antonio; Arroyo, Marino

    Brittle materials fracture under tensile or shear stress. When stress attains a critical threshold, crack propagation becomes unstable and proceeds dynamically. In the presence of several precracks, a brittle material always propagates only the weakest crack, leading to catastrophic failure. Here, we show that all these features of brittle fracture are radically modified when the material susceptible to cracking is bonded to a poroelastic medium, such as a hydrogel, a common situation in biological tissues. In particular, we show that the brittle material can fracture in compression and can resist cracking in tension, thanks to the hydraulic coupling with the hydrogel. In the case of multiple cracks, we find that localized fracture occurs when the permeability of the hydrogel is high, whereas decreased permeability leads to toughening by promoting multiple cracking. Our results may contribute to the understanding of fracture in biological tissues and provide inspiration for the design of tough, biomimetic materials.

  9. Brittle cornea syndrome: a case report and comparison with Ehlers Danlos syndrome.

    PubMed

    Ramappa, Muralidhar; Wilson, M Edward; Rogers, R Curtis; Trivedi, Rupal H

    2014-10-01

    We report a 6-week-old white boy of nonconsanguineous parents who presented with bluish scleral discoloration, thin corneas, and progressive high myopia. A diagnosis of brittle cornea syndrome was confirmed by molecular analysis and prompt measures were taken to manage the condition. Long-term follow-up of children diagnosed with brittle cornea syndrome is important to minimize the risks of corneal rupture and for detecting late-onset systemic conditions. PMID:25266838

  10. Synthesis and single crystal structure refinement of the one-layer hydrate of sodium brittle mica

    SciTech Connect

    Kalo, Hussein; Milius, Wolfgang; Braeu, Michael; Breu, Josef

    2013-02-15

    A sodium brittle mica with the ideal composition [Na{sub 4}]{sup inter}[Mg{sub 6}]{sup oct}[Si{sub 4}Al{sub 4}]{sup tet}O{sub 20}F{sub 4} was synthesized via melt synthesis in a gas tight crucible. This mica is unusual inasmuch as the known mica structure holds only room for two interlayer cations per unit cell and inasmuch as it readily hydrates despite the high layer charge while ordinary micas and brittle micas are non-swelling. The crystal structure of one-layer hydrate sodium brittle mica was determined and refined from single crystal X-ray data. Interlayer cations reside at the center of the distorted hexagonal cavities and are coordinated by the three inner basal oxygen atoms. The coordination of the interlayer cation is completed by three interlayer water molecules residing at the center of the interlayer region. The relative position of adjacent 2:1-layers thus is fixed by these octahedrally coordinated interlayer cations. Pseudo-symmetry leads to extensive twinning. In total five twin operations generate the same environment for the interlayer species and are energetically degenerate. - Graphical abstract: The sodium brittle mica has been successfully synthesized by melt synthesis and the crystal structure of the one-layer hydrate of sodium brittle mica was determined from single crystal X-ray diffraction data. Highlights: Black-Right-Pointing-Pointer Melt synthesis yielded coarse grained sodium brittle mica which showed little disorder. Black-Right-Pointing-Pointer Sodium brittle mica hydrated completely to the state of one-layer hydrate. Black-Right-Pointing-Pointer Structure of one-layer hydrate of sodium brittle mica could therefore be determined and refined. Black-Right-Pointing-Pointer Arrangement of upper and lower tetrahedral sheet encompassing interlayer cation were clarified.

  11. Atomistic Simulation of Brittle to Ductile Transition in GaN Nanotubes

    SciTech Connect

    Wang, Zhiguo; Zu, Xiaotao; Gao, Fei; Weber, William J.

    2006-12-11

    Molecular dynamics methods with a Stillinger-Weber potential have been used to investigate the mechanical properties of wurtzite-type single crystalline GaN nanotubes under applied tensile stresses. At lower temperatures, the nanotubes show brittle properties; whereas at higher temperatures, they behave as ductile materials. The brittle to ductile transition (BDT) is systemically investigated, and the corresponding transition temperatures have been determined in GaN. The BDT temperature generally increases with increasing thickness of nanotubes and strain rate.

  12. A new approach to rock brittleness and its usability at prediction of drillability

    NASA Astrophysics Data System (ADS)

    Özfırat, M. Kemal; Yenice, Hayati; Şimşir, Ferhan; Yaralı, Olgay

    2016-07-01

    Rock brittleness is one of the most important issues in rock drilling and cutting. The relations between drillability and brittleness will assist engineers in excavation works. The demand for representative rock parameters related to planning of underground excavations is increasing, as these parameters constitute fundamental input for obtaining the most reliable cost and time estimates. In rock cutting mechanics, the effects of the rock and brittleness on the efficiency of drilling and excavation are examined by many researchers. In this study, 41 different rock types were tested in laboratory to investigate the relations between the drilling rate index and different brittleness values. Firstly, the relations defined in literature are tested. Strength tests are made according to International Society for Rock Mechanics standards. In addition Norwegian University of Science and Technology standards are used to determine drilling rate index. Then, a new brittleness index is proposed which is the arithmetic average of uniaxial compressive strength and tensile strength. Considering the regression analysis carried out, it was seen that the proposed formula showed good correlation for these samples handled in this study. As a result of this study, a high correlation is obtained between the proposed index and drilling rate index values (R:0.84). The results are found to be at least reliable as well as other brittleness equations given in literature.

  13. The brittle deformation regime of water-saturated siliceous sandstones

    NASA Astrophysics Data System (ADS)

    Reviron, N.; Reuschlé, T.; Bernard, J.-D.

    2009-09-01

    We present here new experimental data on the mechanical behaviour of water-saturated Bentheim and Fontainebleau sandstones deformed in the brittle failure regime. Bentheim sandstone samples were stressed at room temperature and subjected to confining pressures PC ranging from 12 to 120 MPa and pore pressures PP ranging from 1 to 70 MPa. For all samples the evolution of the volumetric strain first shows compaction eventually reversing to dilation of the pore volume when approaching the peak stress. All samples failed localized on a single shear zone. Critical stresses that is onset of dilatancy and peak stress, can be uniquely defined as a function of the effective pressure Peff = PC - PP. The failure curve parameters, when fitted with the Hoek-Brown criterion or a parabolic envelope, are consistent with previous values obtained on similar material. When compared to data obtained on dry samples of the same rock, the present data show no notable effect of the presence of water on the critical stress levels. The same conclusion holds for the stress-strain curves when dry and water-saturated experiments under equivalent effective confining pressures are compared. When compared to previously published data obtained on various quartzose rocks, which show a quite variable water-weakening effect, our results lead to the conclusion that the quasi-exclusive presence of quartz grains bonded together by a quartzose cement combined with the absence of clayey minerals may explain the absence of this effect in Bentheim sandstone. Moreover, this conclusion is supported by complementary results obtained by Fontainebleau sandstone with similar microstructural and compositional characteristics. A previously developed micromechanical model based on the interaction of pore cracks has been used and modified to take into account the presence of water. When compared to the experimental data, the results of the model show good agreement for low to intermediate effective confining pressures

  14. Forecasting volcanic eruptions: the control of elastic-brittle deformation

    NASA Astrophysics Data System (ADS)

    Kilburn, Christopher; Robertson, Robert; Wall, Richard; Steele, Alexander

    2016-04-01

    At volcanoes reawakening after long repose, patterns of unrest normally reflect the elastic-brittle deformation of crust above a magma reservoir. Local fault movements, detected as volcano-tectonic (VT) earthquakes, increase in number with surface deformation, at first approximately exponentially and then linearly. The trends describe how crustal behaviour evolves from quasi-elastic deformation under an increasing stress to inelastic deformation under a constant stress. They have been quantified and verified against experiments for deformation in compression [1]. We have extended the analysis to extensional deformation. The results agree well with field data for crust being stretched by a pressurizing magmatic system [2]. They also provide new criteria for enhancing the definitions of alert levels and preferred times to eruption. The VT-deformation sequence is a field proxy for changes in deformation with applied stress. The transition from quasi-elastic to inelastic behaviour is characterised in extension by the ratio of differential failure stress SF to tensile strength σT. Unrest data from at least basaltic to andesitic stratovolcanoes, as well as large calderas, yield preferred values for SF/σT ≤ 4, coinciding with the range for tensile failure expected from established theoretical constraints (from Mohr-Coulomb-Griffiths failure). We thus associate the transition with the approach to tensile rupture at the wall of a pressurized magma reservoir. In particular, values of about 2 are consistent with the rupture of a cylindrical reservoir, such as a closed conduit within a volcanic edifice, whereas values of about 3 suggest an approximately spherical reservoir, such as may exist at deeper levels. The onset of inelastic behaviour reflects the emergence of self-accelerating crack growth under a constant stress. Applied to forecasting eruptions, it provides a new and objective criterion for raising alert levels during an emergency; it yields the classic linear

  15. Analysis of the progressive failure of brittle matrix composites

    NASA Technical Reports Server (NTRS)

    Thomas, David J.

    1995-01-01

    This report investigates two of the most common modes of localized failures, namely, periodic fiber-bridged matrix cracks and transverse matrix cracks. A modification of Daniels' bundle theory is combined with Weibull's weakest link theory to model the statistical distribution of the periodic matrix cracking strength for an individual layer. Results of the model predictions are compared with experimental data from the open literature. Extensions to the model are made to account for possible imperfections within the layer (i.e., nonuniform fiber lengths, irregular crack spacing, and degraded in-situ fiber properties), and the results of these studies are presented. A generalized shear-lag analysis is derived which is capable of modeling the development of transverse matrix cracks in material systems having a general multilayer configuration and under states of full in-plane load. A method for computing the effective elastic properties for the damaged layer at the global level is detailed based upon the solution for the effects of the damage at the local level. This methodology is general in nature and is therefore also applicable to (0(sub m)/90(sub n))(sub s) systems. The characteristic stress-strain response for more general cases is shown to be qualitatively correct (experimental data is not available for a quantitative evaluation), and the damage evolution is recorded in terms of the matrix crack density as a function of the applied strain. Probabilistic effects are introduced to account for the statistical nature of the material strengths, thus allowing cumulative distribution curves for the probability of failure to be generated for each of the example laminates. Additionally, Oh and Finney's classic work on fracture location in brittle materials is extended and combined with the shear-lag analysis. The result is an analytical form for predicting the probability density function for the location of the next transverse crack occurrence within a crack bounded

  16. Ultrastructure of the wild rice Oryza grandiglumis (Gramineae) in Costa Rica.

    PubMed

    Sánchez, Ethel; Quesada, Tania; Espinoza, Ana M

    2006-06-01

    Oryza grandiglumis is a wild species of rice endemic to tropical America. This species was first found in 1998 in the wetlands of Caño Negro, located in the northern part of Costa Rica. Twenty five plants of O. grandiglumis were processed for scanning electron microscope. An ultrastructural description of the leaf blade, ligule, auricles, spikelet and caryopsis, with an emphasis on structures of taxonomic value. The leaf blade has a characteristic cuticular wax pattern, composed of dense rod-like structures, and is surrounded by papillae, zipper-like silica cells, abundant bulky prickle trichomes, and hooked trichomes. The blade's edge has three rows of hooked prickle trichomes of various sizes. The auricles wrapped the culm, with long attenuated trichomes at the edges; the base was surrounded by oblong cells. The ligule is a blunt membrane covered by short prickle trichomes. Spikelet morphology is characteristic of the Poaceae family, but the sterile lemmas were nearly as long as the fertile lemmas, and they have an unique crown-like structure of lignified spines between the rachilla and the fertile lemmas. Comparison with Brazilian specimens of O. grandiglumis revealed little differences in the ultrastructural characteristics. PMID:18494308

  17. Effect of rice variety and nutrient management on rice productivity in organic rice system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Demand for organic rice has been increasing for decades. However, the information on sustainable organic rice production systems is still lacking. The objective of this study was to investigate the effects of soil amendment products, nitrogen rate, and variety on rice grain yield, yield components, ...

  18. Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments.

    PubMed

    Sun, Guo-Xin; Williams, Paul N; Zhu, Yong-Guan; Deacon, Claire; Carey, Anne-Marie; Raab, Andrea; Feldmann, Joerg; Meharg, Andrew A

    2009-04-01

    Rice has been demonstrated to be one of the major contributors to arsenic (As) in human diets in addition to drinking water, but little is known about rice products as an additional source of As exposure. Rice products were analyzed for total As and a subset of samples were measured for arsenic speciation using high performance liquid chromatography interfaced with inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). A wide range of rice products had total and inorganic arsenic levels that typified those found in rice grain including, crisped rice, puffed rice, rice crackers, rice noodles and a range of Japanese rice condiments as well as rice products targeted at the macrobiotic, vegan, lactose intolerant and gluten intolerance food market. Most As in rice products are inorganic As (75.2-90.1%). This study provides a wider appreciation of how inorganic arsenic derived from rice products enters the human diet. PMID:18775567

  19. RICE IDENTITY TESTING USING DNA MARKER ANALYSIS OF PROCESSEDOR ARCHIVED RICE TISSUE AND RICE-INGREDIENT FOODS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The highly regarded reputation of USA rice in the world marketplace rice has been achieved by delivering rice and rice products that meet rigorous standards of uniformity and quality. In this regard, seed dealers, farmers, millers, and processors are concerned that the rice seed they are handling is...

  20. Two brittle ductile transitions in subduction wedges, as revealed by topography

    NASA Astrophysics Data System (ADS)

    Thissen, C.; Brandon, M. T.

    2013-12-01

    Subduction wedges contain two brittle ductile transitions. One transition occurs within the wedge interior, and a second transition occurs along the decollement. The decollement typically has faster strain rates, which suggests that the brittle ductile transition along the decollement will be more rearward (deeper) than the transition within the interior. However, the presence of distinct rheologies or other factors such as pore fluid pressure along the decollement may reverse the order of the brittle-ductile transitions. We adopt a solution by Williams et al., (1994) to invert for these brittle ductile transitions using the wedge surface topography. At present, this model does not include an s point or sediment loading atop the wedge. The Hellenic wedge, however, as exposed in Crete presents an ideal setting to test these ideas. We find that the broad high of the Mediterranean ridge represents the coulomb frictional part of the Hellenic wedge. The rollover in topography north of the ridge results from curvature of the down going plate, creating a negative alpha depression in the vicinity of the Strabo, Pliny, and Ionian 'troughs' south of Crete. A steep topographic rise out of these troughs and subsequent flattening reflects the brittle ductile transition at depth in both the decollement and the wedge interior. Crete exposes the high-pressure viscous core of the wedge, and pressure solution textures provide additional evidence for viscous deformation in the rearward part of the wedge. The location of the decollement brittle ductile transition has been previously poorly constrained, and Crete has never experienced a subduction zone earthquake in recorded history. Williams, C. A., et al., (1994). Effect of the brittle ductile transition on the topography of compressive mountain belts on Earth and Venus. Journal of Geophysical Research Solid Earth

  1. The anti-proliferative and anti-angiogenic effect of the methanol extract from brittle star

    PubMed Central

    Baharara, Javad; Amini, Elaheh; Mousavi, Marzieh

    2015-01-01

    Background: Anti-angiogenic therapy is a crucial step in cancer treatment. The discovery of new anti-angiogenic compounds from marine organisms has become an attractive concept in anti-cancer therapy. Because little data correlated to the pro- and anti-angiogenic efficacies of Ophiuroidea, which include brittle star, the current study was designed to explore the anti-angiogenic potential of brittle star methanol extract in vitro and in vivo. Methods: The anti-proliferative effect of brittle star extract on A2780cp cells was examined by MTT assays, and transcriptional expression of VEGF and b-FGF was evaluated by RT-PCR. In an in vivo model, 40 fertilized Ross eggs were divided into control and three experimental groups. The experimental groups were incubated with brittle star extract at concentrations of 25, 50 and 100 µg/ml, and photographed by photo-stereomicroscopy. Ultimately, numbers and lengths of vessels were measured by Image J software. Data were analyzed with SPSS software (p<0.05). Results: Results illustrated that the brittle star extract exerted a dose- and time-dependent anti-proliferative effect on A2780cp cancer cells. In addition, VEGF and b-FGF expression decreased with brittle star methanol extract treatment. Macroscopic evaluations revealed significant changes in the second and third experimental group compared to controls (p<0.05). Conclusion: These finding revealed the anti-angiogenic effects of brittle star methanol extract in vitro and in vivo confer novel insight into the application of natural marine products in angiogenesis-related pathologies. PMID:26989740

  2. Nitrogen uptake and use efficiency in rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice is a staple food for a large proportion of the world’s population. Most of the rice is produced and consumed in Asia. Rice is produced in both upland and lowland systems, with about 76% of the global rice produced from irrigated-lowland rice systems. Nitrogen (N) is one of the most important in...

  3. Rice disease management under organic production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in organic rice production has increased because of the increased market demand for organic rice. Texas organic rice acreage has constantly increased over the last decade, reaching 32,000 acres in 2012. Texas is now the leading state in organic rice production in the U.S. Organic rice is p...

  4. Organic Rice Production: Challenges and Opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The market demand for organically produced rice has grown steadily with the majority of the acreage now being located in Texas and California. A wide range of organic products are marketed including conventional long and medium grain rice, aromatic or scented rice, rice with colored bran, and rice f...

  5. Quantitative comparisons of analogue models of brittle wedge dynamics

    NASA Astrophysics Data System (ADS)

    Schreurs, Guido

    2010-05-01

    Analogue model experiments are widely used to gain insights into the evolution of geological structures. In this study, we present a direct comparison of experimental results of 14 analogue modelling laboratories using prescribed set-ups. A quantitative analysis of the results will document the variability among models and will allow an appraisal of reproducibility and limits of interpretation. This has direct implications for comparisons between structures in analogue models and natural field examples. All laboratories used the same frictional analogue materials (quartz and corundum sand) and prescribed model-building techniques (sieving and levelling). Although each laboratory used its own experimental apparatus, the same type of self-adhesive foil was used to cover the base and all the walls of the experimental apparatus in order to guarantee identical boundary conditions (i.e. identical shear stresses at the base and walls). Three experimental set-ups using only brittle frictional materials were examined. In each of the three set-ups the model was shortened by a vertical wall, which moved with respect to the fixed base and the three remaining sidewalls. The minimum width of the model (dimension parallel to mobile wall) was also prescribed. In the first experimental set-up, a quartz sand wedge with a surface slope of ˜20° was pushed by a mobile wall. All models conformed to the critical taper theory, maintained a stable surface slope and did not show internal deformation. In the next two experimental set-ups, a horizontal sand pack consisting of alternating quartz sand and corundum sand layers was shortened from one side by the mobile wall. In one of the set-ups a thin rigid sheet covered part of the model base and was attached to the mobile wall (i.e. a basal velocity discontinuity distant from the mobile wall). In the other set-up a basal rigid sheet was absent and the basal velocity discontinuity was located at the mobile wall. In both types of experiments

  6. The evolution of fabric with displacement in natural brittle faults

    NASA Astrophysics Data System (ADS)

    Mittempergher, S.; Di Toro, G.; Gratier, J.; Aretusini, S.; Boullier-Bertrand, A.

    2011-12-01

    and titanite in the foliation planes. The cataclasites are cemented by pervasive precipitation of K-feldspar plagues and idiomorphic, randomly oriented, epidote and chlorite. We conclude that the textures of these small displacement (< 500 mm) faults are controlled by brittle processes (fracture propagation and cataclastic comminution) similar to those reproduced in friction experiments performed on granite gouge (e.g., Beeler et al., 1996; Logan, 2007). Then progressively, stress driven fluid-rock reactions develop as fracturing and grain size reduction allows the kinetics of these reactions to be more efficient and fracture interconnection allows fluid infiltration. Healing of microfractures and fault rock cementation caused a rapid posteismic recovery of fault strength. References Beeler, N.M., Tullis, T.E., Blanpied, L., Weeks, J.D., 1996. Frictional behaviour of large displacement experimental faults. Journal of Geophysical Research 101, B4, 8697-8715. Logan, J.M., 2007. The progression from damage to localization of displacement observed in laboratory testing of porous rocks, in Lewis, H., and Couples, G.D. (eds.) The relationship between damage and localization. Geological Society of London Special Publication 289, 75-87.

  7. Cloning and characterization of three genes encoding Qb-SNARE proteins in rice.

    PubMed

    Bao, Yong-Mei; Wang, Jian-Fei; Huang, Ji; Zhang, Hong-Sheng

    2008-03-01

    Qb-SNARE proteins belong to the superfamily of SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) and function as important components of the vesicle trafficking machinery in eukaryotic cells. Here, we report three novel plant SNARE (NPSN) genes isolated from rice and named OsNPSN11, OsNPSN12 and OsNPSN13. They have about 70% nucleotide identity over their entire coding regions and similar genomic organization with ten exons and nine introns in each gene. Multiple alignment of deduced amino acid sequences indicate that the OsNPSNs proteins are homologous to AtNPSNs from Arabidopsis, containing a Qb-SNARE domain and a membrane-spanning domain in the C-terminal region. Semi-quantitative RT-PCR assays showed that the OsNPSNs were ubiquitously and differentially expressed in roots, culms, leaves, immature spikes and flowering spikes. The expression of OsNPSNs was significantly activated in rice seedlings treated with H(2)O(2), but down-regulated under NaCl and PEG6000 stresses. Transient expression method in onion epidermal cells revealed that OsNPSNs were located in the plasma membrane. Transformed yeast cells with OsNPSNs had better growth rates than empty-vector transformants when cultured on either solid or liquid selective media containing various concentrations of H(2)O(2), but more sensitive to NaCl and mannitol stresses. The 35S:OsNPSN11 transgenic tobacco also showed more tolerance to H(2)O(2) and sensitivity to NaCl and mannitol than non-transgenic tobacco. These results indicate that OsNPSNs may be involved in different aspects of the signal transduction in plant and yeast responses to abiotic stresses. PMID:18197419

  8. Rice: chemistry and technology.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice has taken center stage this last decade, not only as an important provider of nourishment for the world’s population, but as a grain now recognized as having many unique nutritional and functional attributes with potential to be captured in a multitude of value-added food and non-food applicati...

  9. Exploring Japan through Rice.

    ERIC Educational Resources Information Center

    Wojtan, Linda S.

    1998-01-01

    Explores the role of rice in Japanese culture by presenting historical background and teaching activities in a variety of categories, such as language, sociology, history, and contemporary politics. Suggests teachers create cross-cultural comparisons; for example, the role of corn in the United States. Provides a list of teacher resources. (CMK)

  10. Augmenting in vitro shoot multiplication by vipul (triacontanol) and adventitious rhizogenesis by rice bran extract in Dendrocalamus strictus.

    PubMed

    Mishra, Y; Rana, P K; Shirin, F; Ansari, S A

    2001-02-01

    Like other bamboo species, Dendrocalamus strictus flowers gregariously after a prolonged intermast period of 48 years and constitutes an ideal material for in vitro clonal propagation. In this study, MS liquid medium containing 0.5, 1.0 and 2.0 mL/L vipul (Godrej Agrovet, Ltd., Sachin, India), a commercial formulation of triacontanol, with or without BA (3.0 mg/L) was tested for in vitro shoot multiplication and 1.0, 2.5 and 5.0 mL/L of 20% (w/v) alcoholic/aqueous rice bran extract (alone or in combination) with NAA (3 mg/L) used for in vitro adventitious rhizogenesis in single node culture derived shoots of Dendrocalamus strictus.. After a multiplication cycle for 4-5 week, vipul (0.5 mL/L) with BA (3.0 mg/L) in the culture medium induced 4.59 fold shoot multiplication rate whereas application of BA and vipul alone had corresponding values of 3.29 and 0.53 fold respectively. Maximum vipul concentration (2 mL/L) with BA (3 mg/L) exhibited shoot multiplication higher than (or equal to) that of BA alone. Maximum in vitro rooting percentage (55.66%) was obtained on half MS medium enriched with alcoholic rice bran extract (2.5 mL/L) and NAA (3 mg/L). This is the first investigation reporting amelioration of in vitro shoot multiplication rate by triacontanol and rooting percentage by rice bran extract in explants from mature bamboo culms. The protocol is economical and rapid for in vitro clonal propagation of Dendrocalamus strictus. PMID:11480214

  11. CEF1/OsMYB103L is involved in GA-mediated regulation of secondary wall biosynthesis in rice.

    PubMed

    Ye, Yafeng; Liu, Binmei; Zhao, Meng; Wu, Kun; Cheng, Weimin; Chen, Xiangbin; Liu, Qian; Liu, Zan; Fu, Xiangdong; Wu, Yuejin

    2015-11-01

    Although the main genes in rice involved in the biosynthesis of secondary wall components have been characterized, the molecular mechanism underlying coordinated regulation of genes expression is not clear. In this study, we reported a new rice variety, cef1, showed the culm easily fragile (CEF) without other concomitant phenotypes. The CEF1 gene encodes a MYB family transcription factor OsMYB103L, was cloned based on map-based approach. Bioinformatics analyses indicated that CEF1 belongs to the R2R3-MYB subfamily and highly similar to Arabidopsis AtMYB103. Expression pattern analysis indicated that CEF1 is mainly expressed in internodes and panicles. Biochemical assays demonstrated that OsMYB103L is a nuclear protein and shows high transcriptional activation activity at C-terminus. OsMYB103L mediates cellulose biosynthesis and secondary walls formation mainly through directly binding the CESA4, CESA7, CESA9 and BC1 promoters and regulating their expression. OsMYB103L may also function as a master switch to regulate the expression of several downstream TFs, which involved in secondary cell wall biosynthesis. Furthermore, OsMYB103L physically interacts with SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and involved in GA-mediated regulation of cellulose synthesis pathway. Our findings revealed that OsMYB103L plays an important role in GA-regulating secondary cell wall synthesis, and the manipulation of this gene provide a new strategy to help the straw decay in soil. PMID:26350403

  12. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  13. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  14. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice... (percent) Removed by a 5 plate 3 (percent) Removed by a 6 plate 3 (percent) Through a 6 sieve 3...

  15. Brittle Rock Modeling Approach and its Validation Using Excavation-Induced Micro-Seismicity

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Chi; Li, Tian-Bin; Xing, Hui-Lin; Zhang, Hang; Wang, Min-Jie; Liu, Tian-Yi; Chen, Guo-Qing; Chen, Zi-Quan

    2016-08-01

    With improvements to the bonded-particle model, a custom indicator of crack intensity is introduced to grade rock fractures accurately. Brittle fracturing of rock mass is studied using the bonded-particle model; here, "brittle" refers to the process where more energy is released towards making particles collide and disperse, and hence results in the quick emergence of "chain cracks". Certain principles concerning how to construct brittle rock are then proposed. Furthermore, a modeling approach for brittle rocks based on the adaptive continuum/discontinuum (AC/DC) method is proposed to aid the construction of large-scale models of tunnel excavations. To connect with actual tunneling conditions, fundamental mechanical properties, the mechanism for brittle fracturing, the joint distribution, and the initial stress field are considered in the modeling approach. Results from micro-seismic monitoring of a tunnel excavation confirmed the suitability of this modeling approach to simulate crack behavior, and results show that simulated cracking exhibit similar trends (evolution, location, and intensity) with micro-seismic cracking.

  16. Ultraprecision machining of micro-structured functional surfaces on brittle materials

    NASA Astrophysics Data System (ADS)

    Yu, D. P.; Wong, Y. S.; Hong, G. S.

    2011-09-01

    Ultraprecision micro-structured functional surfaces on hard and brittle materials, e.g. ceramic and glass, are gaining increasing application in a range of areas such as engineering optics and semiconductor and biomedical products. However, due to their tendency of being damaged in brittle fracture in machining, it is challenging to achieve both a high surface finish and complex surface shapes. In this paper, ultraprecision machining of micro-structured functional surfaces on brittle materials by fast tool servo diamond turning is studied. A machining model has been developed to ensure ductile regime machining of the brittle material, in which the material is removed by both plastic deformation and brittle fracture, but the cracks produced are prevented from being extended into the finished surface. Based on the model, an iterative numerical method has been proposed to predict the maximum feed rate for producing crack-free micro-structured surfaces. Machining experiments on typical micro-structured functional surfaces have been carried out to validate the effectiveness of the proposed method for producing ultraprecision micro-structured functional surfaces.

  17. Insensitivity of compaction properties of brittle granules to size enlargement by roller compaction.

    PubMed

    Wu, Sy-Juen; Sun, Changquan 'Calvin'

    2007-05-01

    Pharmaceutical granules prepared by roller compaction often exhibit significant loss of tabletability, that is, reduction in tensile strength, when compared to virgin powder. This may be attributed to granule size enlargement for highly plastic materials, for example, microcrystalline cellulose. The sensitivity of powder compaction properties on granule size variations impacts the robustness of the dry granulation process. We hypothesize that such sensitivity of compaction properties on granule size is minimum for brittle materials because extensive fracture of brittle granules during compaction minimizes differences in initial granule size. We tested the hypothesis using three common brittle excipients. Results show that the fine (44-106 microm), medium (106-250 microm), and coarse (250-500 microm) granules exhibit essentially identical tabletability below a certain critical compaction pressure, 100, 140, and 100 MPa for spray-dried lactose monohydrate, anhydrous dibasic calcium phosphate, and mannitol, respectively. Above respective critical pressure, tabletability lines diverge with smaller granules exhibiting slightly higher tablet tensile strength at identical compaction conditions. Overall, tabletability of brittle granules is insensitive to granule size enlargement. The results provide a scientific basis to the common practice of incorporating brittle filler to a typical tablet formulation processed by roller compaction granulation. PMID:17455348

  18. Rice Glycosyltransferase (GT) Phylogenomic Database

    DOE Data Explorer

    Ronald, Pamela

    The Ronald Laboratory staff at the University of California-Davis has a primary research focus on the genes of the rice plant. They study the role that genetics plays in the way rice plants respond to their environment. They created the Rice GT Database in order to integrate functional genomic information for putative rice Glycosyltransferases (GTs). This database contains information on nearly 800 putative rice GTs (gene models) identified by sequence similarity searches based on the Carbohydrate Active enZymes (CAZy) database. The Rice GT Database provides a platform to display user-selected functional genomic data on a phylogenetic tree. This includes sequence information, mutant line information, expression data, etc. An interactive chromosomal map shows the position of all rice GTs, and links to rice annotation databases are included. The format is intended to "facilitate the comparison of closely related GTs within different families, as well as perform global comparisons between sets of related families." [From http://ricephylogenomics.ucdavis.edu/cellwalls/gt/genInfo.shtml] See also the primary paper discussing this work: Peijian Cao, Laura E. Bartley, Ki-Hong Jung and Pamela C. Ronalda. Construction of a Rice Glycosyltransferase Phylogenomic Database and Identification of Rice-Diverged Glycosyltransferases. Molecular Plant, 2008, 1(5): 858-877.

  19. Analytical model of brittle destruction based on hypothesis of scale similarity

    SciTech Connect

    Arakcheev, A. S. Lotov, K. V.

    2012-08-15

    The size distribution of dust particles in thermonuclear (fusion) devices is closely described by a power law, which may be related to the brittle destruction of materials. The hypothesis of scale similarity leads to the conclusion that the size distribution of particles formed as a result of a brittle destruction is described by a power law with the exponent -{alpha} that can range from -4 to -1. The model of brittle destruction is described in terms of the fractal geometry, and the distribution exponent is expressed via the fractal dimension of packing. Under additional assumptions, it is possible to refine the {alpha} value and, vice versa, to determine the type of destruction using the measured size distribution of particles.

  20. Simulation study on the avalanche process of the mixed brittle-plastic fiber bundle model

    NASA Astrophysics Data System (ADS)

    Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui

    2016-01-01

    The mixed brittle-plastic fiber bundle model is an extension model based on the classical fiber bundle model to describe the nonbrittle failure process of some hierarchical structure materials such as spider silk. In order to explore the breaking dynamic properties of the hierarchical structure materials in short-range correlation, the mixed brittle-plastic fiber bundle model in local load sharing condition is detailed and numerically studied. The impacts of the proportion of plastic fibers and the plastic strength of a single plastic fiber on the macroscopic constitutive behavior, the avalanche size distribution and the step number of the external load increasing are investigated, respectively. The numerical results show that the insert of plastic fibers will hinder the brittle fracture process; as a result, both the macroscopic mechanical natures and the statistical properties of fracture are significantly influenced.

  1. Sometimes two arms are enough--an unusual life-stage in brittle stars (Echinodermata: Ophiuroidea).

    PubMed

    Stöhr, Sabine; Alme, Øydis

    2015-01-01

    Off West Africa (Angola-Morocco), benthos samples were collected in the years 2005-2012. These contained 124 specimens of brittle stars with two long arms and three extremely short or absent arms and an elongated, narrow disc. These unusual brittle stars, as well as 33 specimens with five fully developed arms, were identified as Amphiura ungulata. The specimens with unequal arms were juvenile stages, whereas adults had five equal arms. The large number of specimens with unequal arms suggests that this condition is not the result of damage and regeneration, but a normal growth pattern in this species. This study documents the morphology by SEM, amends the species description, and discusses possible explanations for the evolution of this condition. Although brittle star species with unequal arm growth have been reported, this is an extreme case that was unknown before this study. PMID:26250282

  2. ADOLESCENT ROMANCE AND DELINQUENCY: A FURTHER EXPLORATION OF HIRSCHI'S "COLD AND BRITTLE" RELATIONSHIPS HYPOTHESIS.

    PubMed

    Giordano, Peggy C; Lonardo, Robert A; Manning, Wendy D; Longmore, Monica A

    2010-11-28

    Hirschi argued that delinquent youth tend to form relatively "cold and brittle" relationships with peers, depicting these youths as deficient in their attachments to others. The current analysis explores connections between delinquency and the character of adolescent romantic ties, drawing primarily on the first wave of the Toledo Adolescent Relationships Study, and focusing on 957 teens with dating experience. We examine multiple relationship qualities/dynamics in order to explore both the "cold" and "brittle" dimensions of Hirschi's hypothesis. Regarding the "cold" assumption, results suggest that delinquency is not related to perceived importance of the romantic relationship, level of intimate self-disclosure or feelings of romantic love, and more delinquent youth actually report more frequent contact with their romantic partners. Analyses focused on two dimensions tapping the "brittle" description indicate that while durations of a focal relationship do not differ according to level of respondent delinquency, more delinquent youths report higher levels of verbal conflict. PMID:21423845

  3. OsSIZ1, a SUMO E3 Ligase Gene, is Involved in the Regulation of the Responses to Phosphate and Nitrogen in Rice.

    PubMed

    Wang, Huadun; Sun, Rui; Cao, Yue; Pei, Wenxia; Sun, Yafei; Zhou, Hongmin; Wu, Xueneng; Zhang, Fang; Luo, Le; Shen, Qirong; Xu, Guohua; Sun, Shubin

    2015-12-01

    SIZ1-mediated SUMOylation regulates hormone signaling as well as abiotic and biotic stress responses in plants. Here, we investigated the expression profile of OsSIZ1 in rice using quantitative reverse transcription-PCR (qRT-PCR) and pOsSIZ1-GUS transgenic plants, and the function of OsSIZ1 in the responses to phosphate and nitrogen using a reverse genetics approach. OsSIZ1 is constitutively expressed throughout the vegetative and reproductive growth of rice, with stronger promoter activities in vascular bundles of culms. ossiz1 mutants had shorter primary roots and adventitious roots than wild-type plants, suggesting that OsSIZ1 is associated with the regulation of root system architecture. Total phosphorus (P) and phosphate (Pi) concentrations in both roots and shoots of ossiz1 mutants were significantly increased irrespective of Pi supply conditions compared with the wild type. Pi concentration in the xylem sap of ossiz1 mutants was significantly higher than that of the wild type under a Pi-sufficient growth regime. Total nitrogen (N) concentrations in the most detected tissues of ossiz1 mutants were significantly increased compared with the wild type. Analysis of mineral contents in ossiz1 mutants indicated that OsSIZ1 functions specifically in Pi and N responses, not those of other nutrients examined, in rice. Further, qRT-PCR analyses revealed that the expression of multiple genes involved in Pi starvation signaling and N transport and assimilation were altered in ossiz1 mutants. Together, these results suggested that OsSIZ1 may act as a regulator of the Pi (N)-dependent responses in rice. PMID:26615033

  4. Influence of Composition and Deformation Conditions on the Strength and Brittleness of Shale Rock

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Reinicke, A.; Meier, T.; Makasi, M.; Dresen, G. H.

    2015-12-01

    Stimulation of shale gas reservoirs by hydraulic fracturing operations aims to increase the production rate by increasing the rock surface connected to the borehole. Prospective shales are often believed to display high strength and brittleness to decrease the breakdown pressure required to (re-) initiate a fracture as well as slow healing of natural and hydraulically induced fractures to increase the lifetime of the fracture network. Laboratory deformation tests were performed on several, mainly European black shales with different mineralogical composition, porosity and maturity at ambient and elevated pressures and temperatures. Mechanical properties such as compressive strength and elastic moduli strongly depend on shale composition, porosity, water content, structural anisotropy, and on pressure (P) and temperature (T) conditions, but less on strain rate. We observed a transition from brittle to semibrittle deformation at high P-T conditions, in particular for high porosity shales. At given P-T conditions, the variation of compressive strength and Young's modulus with composition can be roughly estimated from the volumetric proportion of all components including organic matter and pores. We determined also brittleness index values based on pre-failure deformation behavior, Young's modulus and bulk composition. At low P-T conditions, where samples showed pronounced post-failure weakening, brittleness may be empirically estimated from bulk composition or Young's modulus. Similar to strength, at given P-T conditions, brittleness depends on the fraction of all components and not the amount of a specific component, e.g. clays, alone. Beside strength and brittleness, knowledge of the long term creep properties of shales is required to estimate in-situ stress anisotropy and the healing of (propped) hydraulic fractures.

  5. The Potential of Brittle Star Extracted Polysaccharide in Promoting Apoptosis via Intrinsic Signaling Pathway

    PubMed Central

    Baharara, Javad; Amini, Elaheh

    2015-01-01

    Background: Anti-cancer potential of marine natural products such as polysaccharides represented therapeutic potential in oncological researches. In this study, total polysaccharide from brittle star [Ophiocoma erinaceus (O. erinaceus)] was extracted and chemopreventive efficacy of Persian Gulf brittle star polysaccharide was investigated in HeLa human cervical cancer cells. Methods: To extract polysaccharide, dried brittle stars were ground and extracted mechanically. Then, detection of polysaccharide was performed by phenol sulfuric acid, Ultra Violet (UV)-sulfuric acid method and FTIR. The anti proliferative activity of isolated polysaccharide was examined by MTT assay and evaluation of cell death was done through morphological cell changes; Propodium Iodide staining, fluorescence microscopy and caspase-3, -9 enzymatic measurements. To assess its underlying mechanism, expression of Bax, Bcl-2 was evaluated. Results: The polysaccharide detection methods demonstrated isolation of crude polysaccharide from Persian Gulf brittle star. The results revealed that O. erinaceus polysaccharide suppressed the proliferation of HeLa cells in a dose and time dependent manner. Morphological observation of DAPI and Acridine Orange/Propodium Iodide staining was documented by typical characteristics of apoptotic cell death. Flow cytometry analyses exhibited the accumulation of treated cells in sub-G1 region. Additionally, polysaccharide extracted induced intrinsic apoptosis via up-regulation of caspase-3, caspase-9 and Bax along with down-regulation of Bcl-2 in HeLa cells. Conclusion: Taken together, the apoptosis inducing effect of brittle star polysaccharide via intrinsic pathway confirmed the anti tumor potential of marine polysaccharide. Therefore, these findings proposed new insight into anti cancer properties of brittle star polysaccharide as a promising agent in cervical cancer treatment. PMID:26605009

  6. Prediction of Brittle Failure for TBM Tunnels in Anisotropic Rock: A Case Study from Northern Norway

    NASA Astrophysics Data System (ADS)

    Dammyr, Øyvind

    2016-06-01

    Prediction of spalling and rock burst is especially important for hard rock TBM tunneling, because failure can have larger impact than in a drill and blast tunnel and ultimately threaten excavation feasibility. The majority of research on brittle failure has focused on rock types with isotropic behavior. This paper gives a review of existing theory and its application before a 3.5-m-diameter TBM tunnel in foliated granitic gneiss is used as a case to study brittle failure characteristics of anisotropic rock. Important aspects that should be considered in order to predict brittle failure in anisotropic rock are highlighted. Foliation is responsible for considerable strength anisotropy and is believed to influence the preferred side of v-shaped notch development in the investigated tunnel. Prediction methods such as the semi- empirical criterion, the Hoek- Brown brittle parameters, and the non-linear damage initiation and spalling limit method give reliable results; but only as long as the angle between compression axis and foliation in uniaxial compressive tests is relevant, dependent on the relation between tunnel trend/plunge, strike/dip of foliation, and tunnel boundary stresses. It is further demonstrated that local in situ stress variations, for example, due to the presence of discontinuities, can have profound impact on failure predictions. Other carefully documented case studies into the brittle failure nature of rock, in particular anisotropic rock, are encouraged in order to expand the existing and relatively small database. This will be valuable for future TBM planning and construction stages in highly stressed brittle anisotropic rock.

  7. Possible transient creep events in a brittle-ductile continental crust: observations, experiments and potential models.

    NASA Astrophysics Data System (ADS)

    Lavier, Luc

    2016-04-01

    In a given tectonic province and over thousands to millions of years, slip on faults is believed to be constant and approximately equal to the local tectonic rate in agreement with rigid plate tectonic theory. In this model the ductile lower crust flows in response to this steady plate motion. Moreover brittle and ductile behaviors interact only at a sharp boundary defined as the brittle ductile transition (BDT). However in the continental lithosphere brittle and ductile behavior may coexist over a large range of pressure and temperature conditions for different mineral compositions. This generates heterogeneities in the brittle and ductile crust that are often ignored in models of shear zones. We hypothesize that the interaction between brittle (elastic) and ductile (viscous) behavior may cause deviations from steady-state slip and generates transient creep events on shear zones that release many meters of creep over years to thousands of years marked by a single period of tectonic activity followed by quiescence. We present a set of numerical and analytical models, analogue experiments as well as some observations in nature that may support this hypothesis. In this presentation we extend an analytic formulation to model creep events within shear zones at the transition between brittle and ductile behavior in the crust. We assume that creep events are triggered by a set of interconnected fractures modeled as propagating dislocations. The amount of connectivity controls the nature and the intensity of the transient creep events. The shear zone behaves as a forced damped oscillator that can release strain accumulated during jammed/locked periods. The creep can be over-, critically-, or under-damped. The time scale of the events may vary between seconds to thousands of years depending on the viscous, elastic and plastic (fractures) properties of the shear zone.

  8. How melt stretching affect the brittle-ductile transition temperature of polymer glasses

    NASA Astrophysics Data System (ADS)

    Cheng, Shiwang; Wang, Shi-Qing

    2013-03-01

    Upon increasing temperature a brittle polymer glass can turn ductile. PMMA is a good example. For a while this brittle-ductile transition (BDT) was thought to be determined by the emergence of a secondary relaxation....1-3 On the other hand, it has been known for a long time...4-6 that predeformation in the melt state (e.g., melt stretching) can also make brittle glasses behave in a ductile manner. This transformation has recently received a satisfactory explanation based on a picture of structural hybrid for polymer glasses....7 It appears that BDT is dictated by the relative mechanical characteristics of the primary structure (due to the van der Waals bonds) and the chain network. The present work, based on conventional Instron tensile extension tests and DMA tests, shows that melt stretching does not alter the secondary relaxation behavior of PMMA and PC yet can turn them the brittle PMMA ductile and the ductile PC brittle. Moreover, sufficient melt stretching makes the brittle PS ductile although it does not produce any secondary relaxation process..1. Monnerie, L.; Laupretre, F.; Halary, J. L. Adv. Polym. Sci2005, 187, 35-213. 2. Monnerie, L.; Halary, J. L.; Kausch, H. Adv. Polym. Sci2005, 187, 215-364. 3. Wu, S. J. Appl. Polym. Sci.1992, 46, (4), 619-624. 4. Vincent, P. I. Polymer1960, 1, (0), 425-444. 5. Harris, J. S.; Ward, I. M. J. Mater. Sci.1970, 5, (7), 573-579. 6. Ender, D. H.; Andrews, R. D. J. Appl. Phys.1965, 36, (10), 3057-3062. 7. Zartman, G. D.; Cheng, S.; Li, X.; Lin, F.; Becker, M. L.; Wang, S.-Q. Macromolecules2012, 45, (16), 6719-6732.

  9. Micromechanics-Based Permeability Evolution in Brittle Materials at High Strain Rates

    NASA Astrophysics Data System (ADS)

    Perol, Thibaut; Bhat, Harsha S.

    2016-08-01

    We develop a micromechanics-based permeability evolution model for brittle materials at high strain rates (≥ 100 s^{-1}). Extending for undrained deformation the mechanical constitutive description of brittle solids, whose constitutive response is governed by micro-cracks, we now relate the damage-induced strains to micro-crack aperture. We then use an existing permeability model to evaluate the permeability evolution. This model predicts both the percolative and connected regime of permeability evolution of Westerly Granite during triaxial loading at high strain rate. This model can simulate pore pressure history during earthquake coseismic dynamic ruptures under undrained conditions.

  10. Apparatus for measuring internal friction Q factors in brittle materials. [applied to lunar samples

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Curnow, J. M.

    1976-01-01

    A flexural analog of the torsion pendulum for measuring the Young's modulus and the internal friction Q factor of brittle materials has been developed for Q greater than 10 to the 3rd measurements at a zero static stress and at 10 to the -7th strains of brittle materials in the Hz frequency range. The present design was motivated by the desire to measure Q in fragile lunar return samples at zero static stress to shed light on the anomalously low attenuation of seismic waves on the moon. The use of the apparatus is demonstrated with data on fused silica and on a terrestrial analog of lunar basalt.